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Abstract 

Protein based emulsifiers play an important role in food colloids. Modified proteins 

derived from animal sources, formed by covalent bonding with polysaccharide via 

Maillard reaction, have been reported in the literature to have excellent emulsifying 

and stabilizing abilities under harsh environmental stresses (e.g. high ionic strengths, 

freeze-thaw cycles, acidic pH conditions). On the contrary, conjugates based on plant 

derived proteins, have presented an incomplete, and often confusing picture of their 

colloidal stabilizing behaviour.  

In the current study, milk whey protein isolate (WPI) and commercial soy protein 

isolate (SPI) were used as respective typical representatives of animal and plant 

sourced proteins. Careful comparisons were made between these two materials, 

undergoing exactly the same modification process (i.e. hydrolysis of proteins followed 

by conjugation with maltodextrin). The aim is to explore the possibility of and the 

difficulties in obtaining suitable conjugated plant proteins which have comparable 

emulsifying efficiency to their animal derived counterparts in producing stable and fine 

submicron sized oil-in-water (O/W) emulsion systems.  

Two enzymes (i.e. trypsin and alcalase) were used to digest protein, particularly in 

order to improve the poor solubility and emulsifying property of SPI. Various degrees 

of hydrolysis (i.e. DH = 2.5%, 5.5% and 8.0%) were attempted. It is seen that for both 

WPI and SPI, trypsin, which has a higher level of selectivity at cleaving peptide bonds 

than alcalase, is more beneficial in producing polypeptides with improved emulsifying 

and colloidal stabilizing performance. The optimal DH was found to be roughly 2.5% 

and 8.0% for WPI and SPI, respectively.  

Furthermore, by using an uncharged, linear and relatively small maltodextrin with no 

special surface functionalities (e.g. emulsifying, gelling or stabilizing properties) on its 

own, the impacts of conjugation with this polysaccharide on the colloidal stabilizing 

capacities of proteins and their hydrolysates under various pH conditions were 

investigated. Consistent with the literature, conjugated whey protein materials offered 

excellent flocculation stabilization to emulsion droplets in the absence of sufficient 

electrostatic repulsion. The situation was slightly different with regard to modified soy 

protein materials. The emulsion droplets coated by the conjugated biopolymers, based 
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on fragmented soy protein, only exhibited limitedly enhanced flocculation stability. This 

is attributed to the inefficient level of Maillard reaction between protein/hydrolysates 

and maltodextrin. For soy protein (and probably most plant derived proteins), the major 

issue of synthesizing Maillard reaction products (MPRs) is the presence of particulate 

proteins in the sample, which is not desirable for achieving a molecular-scale intimate 

mixing of protein materials and polysaccharide, thus not facilitating the covalent 

bonding between those two species.  

Last but not least, theoretical calculations were also performed, evaluating the impact 

of the size of a protein fragment and polysaccharide on the colloidal stabilizing 

capacity of emulsifiers made from these two components. The predicted theoretical 

results, together with experimental results, demonstrated that short peptides (and 

conjugated polymers derived from them) fail to deliver proper emulsifying and 

stabilising functionalities, as they are not able to adsorb sufficiently at the droplet 

surface (even though they may have a large proportion of hydrophobic amino acid 

residues). The critical size of a polypeptide to fulfil the role of strongly anchoring the 

composite polypeptide + maltodextrin biopolymer at the O/W interface was found to 

be roughly 10 kDa from the experiments. For conjugated polymer that can adsorb 

substantially, the size of its polysaccharide attachment now becomes predominant in 

controlling the colloidal stabilizing ability of this hybrid polymer species.  

This study highlights the benefits of using highly selective enzymes, such as trypsin, 

in producing plant protein fragments with good colloidal performances. It also 

demonstrates that the major obstacle for obtaining suitable plant based conjugated 

emulsifier is the aggregated state of the protein material. Thus, an important 

prerequisite is a reasonable solubility of plant protein, which allows for a uniform 

mixture of protein materials with polysaccharide, prior to their Maillard reaction via 

heating process.  

 

 

 

  



- viii- 
 

Table of Contents 

Acknowledgements ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ iii 

Publications from thesis ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ iv 

Attended conferences and accepted abstracts ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ v 

Abstract ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ vi 

Table of Contents ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ viii 

List of Tables ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ xiii 

List of Figures ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ xiv 

Chapter 1 Introduction ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 1 - 

1.1 Foundation of research ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 1 - 

1.1.1 Colloidal state of matter ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 1 - 

1.1.2 Surface free energy ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 2 - 

1.1.3 Colloidal interactions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 3 - 

1.1.3.1 Van der Waals force ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 4 - 

1.1.3.2 Electrostatic repulsion and DLVO theory ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 5 - 

1.1.3.3 Steric repulsion and total interaction potential ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 6 - 

1.1.3.4 Bridging and depletion attractions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 7 - 

1.1.3.5 Hydrophobic interactions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 8 - 

1.1.4 Stability of emulsions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 8 - 

1.1.4.1 Creaming ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 8 - 

1.1.4.2 Flocculation ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 9 - 

1.1.4.3 Coalescence ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 10 - 

1.1.4.4 Ostwald ripening ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 11 - 

1.1.5 Emulsifiers and stabilizers ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 11 - 

1.2 Protein-polysaccharide conjugates as food emulsifiers ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 12 - 

1.2.1 Stabilizing mechanism of protein-polysaccharide conjugates ꞏꞏꞏ - 13 - 

1.2.2 Preparation of protein-polysaccharide conjugates ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 14 - 

1.2.3 Conjugates based on animal-derived proteins ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 18 - 

1.2.4 Conjugates based on plant-derived proteins ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 20 - 

1.3 Aims and objectives ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 26 - 

1.4 Thesis outline ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 27 - 

Chapter 2 Theoretical and Experimental Methods ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 29 - 

2.1 Introduction ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 29 - 

2.2 Theoretical methods ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 29 - 



- ix- 
 

2.2.1 Statistical and thermal physicsꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 30 - 

2.2.2 SCF theory applied to dense adsorbed interfacial layers ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 31 - 

2.3 Experimental methods ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 35 - 

2.3.1 Degree of hydrolysis ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 36 - 

2.3.2 Gel electrophoresis ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 37 - 

2.3.3 Solubility ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 38 - 

2.3.4 Sulfhydryl (-SH) content ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 39 - 

2.3.5 Particle sizing ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 40 - 

2.3.5.1 Sizing of emulsifiers ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 40 - 

2.3.5.2 Sizing of emulsion droplets ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 42 - 

2.3.6 Zeta potential ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 43 - 

2.3.7 Rheological measurements ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 45 - 

Chapter 3 A Theoretical Study of the Colloidal Stabilizing Ability of 
Emulsifiers Influenced by Structural Properties of Polypeptide and 
Polysaccharide ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 48 - 

3.1 Introduction ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 48 - 

3.2 Models ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 49 - 

3.3 Results and Discussions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 54 - 

3.3.1 The impact of the structural properties of a protein fragment on its 
emulsion stabilizing capacity ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 54 - 

3.3.2 The impact of the grafted hydrophilic chain on the emulsion 
stabilizing capacity of a protein fragment ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 62 - 

3.4 General Conclusions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 68 - 

Chapter 4 Characteristics and Functional Properties of Modified Whey 
Protein as Food Emulsifiers at Various pH Conditions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 70 - 

4.1 Introduction ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 70 - 

4.2 Materials and Methods ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 70 - 

4.2.1 Materials ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 70 - 

4.2.2 Hydrolysis of WPI by trypsin and alcalase ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 71 - 

4.2.3 Preparation of protein-polysaccharide conjugates ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 72 - 

4.2.4 Electrophoresis analysis ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 72 - 

4.2.5 Protein solubility ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 73 - 

4.2.6 Determination of sulfhydryl content ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 73 - 

4.2.7 Preparation of emulsions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 74 - 

4.2.8 Storage stability of emulsions at different pH conditions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 74 - 

4.2.9 Statistical analysis ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 75 - 



- x- 
 

4.3 Results and Discussions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 75 - 

4.3.1 Molecular weight profiles ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 75 - 

4.3.2 Solubility ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 77 - 

4.3.2.1 Solubility of WPI and WPHs samples ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 78 - 

4.3.2.2 Solubility of conjugated WPI and WPHs samples ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 80 - 

4.3.3 Morphology and stability of emulsions at different pH conditions ꞏꞏ - 83 - 

4.3.3.1 Emulsions based on WPI and WPHs samples ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 84 - 

4.3.3.2 Emulsions based on conjugated WPI and WPHs samples ꞏꞏꞏ - 91 - 

4.4 General Conclusions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 95 - 

Chapter 5 Characteristics and Functional Properties of Modified Soy 
Protein as Food Emulsifiers at Various pH Conditions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 97 - 

5.1 Introduction ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 97 - 

5.2 Materials and Methods ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 98 - 

5.2.1 Materials ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 98 - 

5.2.2 Hydrolysis of SPI by trypsin and alcalase ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 98 - 

5.2.3 Preparation of protein-polysaccharide conjugates ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 99 - 

5.2.4 Particle sizing of protein/polypeptide dispersions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 100 - 

5.2.5 Electrophoresis analysis ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 100 - 

5.2.6 Protein solubility ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 100 - 

5.2.7 Dissociation of insoluble MRPs made from SSPI ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 100 - 

5.2.8 Preparation of emulsions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 101 - 

5.2.9 Storage stability of emulsions at different pH conditions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 101 - 

5.2.10 Statistical analysis ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 101 - 

5.3 Results and Discussions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 101 - 

5.3.1 Protein particle size ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 102 - 

5.3.2 Molecular weight profiles ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 106 - 

5.3.3 Solubility ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 108 - 

5.3.3.1 Solubility of SPI, SSPI and SSPHs samples ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 108 - 

5.3.3.2 Solubility of conjugated SPI, SSPI and SSPHs samples ꞏꞏ - 111 - 

5.3.4 Morphology and stability of emulsions at different pH conditions ꞏ - 116 - 

5.3.4.1 Emulsions based on unconjugated soy 
proteins/hydrolysates ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 116 - 

5.3.4.2 Emulsions based on conjugated soy hydrolysates ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 124 - 

5.4 General Conclusions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 132 - 



- xi- 
 

Chapter 6 Emulsifying and Stabilizing Properties of Soy Peptides 
Produced by Ultrafiltration and Covalently Bonded with 
Maltodextrin ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 135 - 

6.1 Introduction ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 135 - 

6.2 Materials and Methods ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 136 - 

6.2.1 Materials ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 136 - 

6.2.2 Hydrolysis of WPI and SPI by trypsin ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 136 - 

6.2.3 Fractionation of polypeptides by membrane ultrafiltration ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 136 - 

6.2.4 Preparation of protein-polysaccharide conjugates ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 137 - 

6.2.5 Electrophoresis analysis ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 138 - 

6.2.6 Preparation of emulsions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 138 - 

6.2.7 Storage stability of emulsions at different pH conditions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 138 - 

6.2.8 Statistical analysis ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 138 - 

6.3 Results and Discussions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 138 - 

6.3.1 Molecular weight profiles ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 138 - 

6.3.2 Morphology and stability of emulsions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 141 - 

6.3.2.1 Emulsions based on conjugates made from WR30 and SR30 
(fragmented whey and soy protein of molecular size larger 
than 30 kDa) ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 141 - 

6.3.2.2 Emulsions based on conjugates made from WR10 and SR10 
(fragmented whey and soy protein of molecular size 
between 10~30 kDa) ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 144 - 

6.3.2.3 Emulsions based on conjugates made from WP10 and SP10 
(fragmented whey and soy protein of molecular size less 
than 10 kDa) ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 147 - 

6.4 General Conclusions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 149 - 

Chapter 7 General Discussions and Conclusions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 151 - 

7.1 Introduction ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 151 - 

7.2 Improved emulsion stability induced by protein-polysaccharide 
conjugate ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 152 - 

7.3 The impact of the molecular size of a polypeptide ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 153 - 

7.4 The impact of the degree of hydrolysis (DH) and the choice of enzyme
 ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 154 - 

7.5 The impact of the protein structureꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 155 - 

7.6 Conclusions and outlook ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 156 - 



- xii- 
 

List of Abbreviationsꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 158 - 

Appendix I ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 161 - 

Appendix II ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 168 - 

Appendix III ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 171 - 

Appendix IV ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 172 - 

Bibliography ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 173 - 

 

 

 

 

 

 

 

 

 

 

 

 

  



- xiii- 
 

List of Tables 

Table 1.1 Classification of a two-phase colloidal system. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 2 - 

Table 3.1 The list of the Flory-Huggins interaction parameters (in the unit 
of kBT) between different types of monomers and the pKa values for 
the groups of charged amino acid residues. The numbers (0 to 8) in 
this table indicate the nine types of monomers in the model system: 
solvents (0), five groups of amino acid residues (1 to 5), glucose 
residues of maltodextrin (6) and ions (7 and 8). A list of the 
classification of amino acid residues in this study is provided in 
Appendix II. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 52 - 

Table 3.2 The characteristic properties of the selected soy polypeptides.
 ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 54 - 

Table 3.3 The predicted total amount of adsorption (in the unit of mg/m2) 
for various polypeptides at the droplet surface, obtained from SCF 
calculations. The results are produced at a background electrolyte 
volume fraction of 0.001 and at pH = 5.5. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 59 - 

Table 4.1 -potential (mV) of freshly made and stored (for 60 days) 
emulsion droplets, stabilized by WT1 sample as emulsifiers. 
Results are shown at different pH conditions. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 86 - 

Table 4.2 -potential (mV) of freshly made and stored (for 60 days) 
emulsion droplets, stabilized by WT1-MD sample as emulsifiers. 
Results are shown at different pH conditions. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 93 - 

Table 5.1 -potential (mV) of freshly made and stored (for 60 days) 
emulsion droplets, stabilized by SST3 sample as emulsifiers. 
Results are shown at different pH conditions. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 121 - 

Table 5.2 -potential (mV) of freshly made and stored (for 60 days) 
emulsion droplets, stabilized by SST3-MD sample as emulsifiers. 
Results are shown at different pH conditions. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 129 - 

 

 

 

 

 

  



- xiv- 
 

List of Figures 

Figure 1.1 Schematic illustration of the kinetically stable and 
thermodynamically stable state of a two-phase dispersed system. ꞏꞏꞏꞏ - 3 - 

Figure 1.2 Schematic illustration of the interactions between two 
identical droplets according to DLVO theory. The total pair 
potential, the potentials derived from van der Waals attraction and 
electrostatic double layer repulsion are plotted as a function of the 
separation between droplets.ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 5 - 

Figure 1.3 Schematic illustration of the interactions between two 
identical droplets which are sterically stabilized by adsorbed 
macromolecules. The total pair potential, the potentials derived 
from van der Waals attraction and steric repulsion are plotted as a 
function of the separation between droplets. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 7 - 

Figure 1.4 Schematic illustration of bridging attraction (A) and depletion 
attraction (B). ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 7 - 

Figure 1.5 Schematic illustration of the deformation of droplets and the 
formation of the liquid film of the continuous phase as the droplets 
approach and/or stay close. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 10 - 

Figure 1.6 Schematic comparison of oil droplet stabilized by proteins 
and conjugates respectively. The red dot in the conjugates 
represents the covalent bonding between protein and 
polysaccharide. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 13 - 

Figure 1.7 Basic chemical reaction mechanism for the formation of 
protein-polysaccharide conjugate in the initial stage of Maillard 
reaction. The highlighted groups in red colour on the structures of 
polysaccharide and protein are the sites involved in Maillard 
reaction. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 16 - 

Figure 1.8 Preparation of protein-polysaccharide conjugates via wet-
heating (A) and dry-heating (B) pathways. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 17 - 

Figure 2.1 (A) Schematic illustration of two approaching dispersed 
phases with the space in between. (B) Magnified two-dimensional 
lattice model of this space and the different species existing in 
between. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 33 - 

Figure 2.2 Schematic illustration of the migration of proteins on the solid 
polyacrylamide gel support during electrophoresis. The green 
arrow indicates the direction of protein movement. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 37 - 

Figure 2.3 The chemical reaction mechanism of Biuret assay for 
quantification of protein solubility. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 38 - 

Figure 2.4 The chemical reaction mechanism of Ellman’s reagent for 
analysis of the free sulfhydryl content of protein materials. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 39 - 

Figure 2.5 Schematic illustration of the basic setup for Dynamic Light 
Scattering (DLS) technique. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 40 - 



- xv- 
 

Figure 2.6 Schematic illustration of the hydrodynamic size of a particle. ꞏ - 42 - 

Figure 2.7 Schematic illustration of the basic setup for Light Diffraction 
technique. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 43 - 

Figure 2.8 Schematic illustration of the basic principles of zeta potential 
measurement. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 44 - 

Figure 2.9 (A) The three types of flow behaviour. (B) Schematic 
illustration of the shear-thinning flow behaviour. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 46 - 

Figure 2.10 The double gap cylinder geometry measuring system. ꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 47 - 

Figure 3.1 Primary structure representing soy peptide Met322-Lys355 in 
the SCF calculations. A list of the full names of the amino acids 
shown here in abbreviations is provided in Appendix II.ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 51 - 

Figure 3.2 The interaction potentials, plotted against the inter-droplet 
separation distance, resulting from the adsorbed layers of five 
different soy polypeptides (i.e. Met322-Arg334, Met322-Lys355, Asn356-
Arg425, His160-Arg290 and Glu93-Arg302) respectively. The diameter of 
oil droplets is 1 μm. The results are produced at a background 
electrolyte volume fraction of 0.001 and at pH = 5.5. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 55 - 

Figure 3.3 The average distance of each monomer residue that makes 
up the adsorbed soy polypeptides (i.e. Met322-Arg334, Met322-Lys355 
and Asn356-Arg425), away from a hydrophobic surface, plotted 
against the sequence number of monomers starting with the first 
monomer at N-terminus of a protein fragment. The results were 
calculated at a background electrolyte volume fraction of 0.001 and 
at pH = 5.5. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 57 - 

Figure 3.4 Density profiles of the five different polypeptides (i.e. Met322-
Arg334, Met322-Lys355, Asn356-Arg425, His160-Arg290 and Glu93-Arg302) 
adsorbed at an isolated droplet, plotted against the distance away 
from the hydrophobic surface. The inset graph is a magnification of 
the same graph by a factor of 2500, so as to illustrate more clearly 
the result for the smallest peptide Met322-Arg334 (black line). All the 
data were calculated at a background electrolyte volume fraction of 
0.001 and at pH = 5.5.ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 58 - 

Figure 3.5 The average distance of each monomer residue that makes 
up the adsorbed soy polypeptides (i.e. His160-Arg290 and Glu93-
Arg302), away from a hydrophobic surface, plotted against the 
sequence number of monomers starting with the first monomer at 
N-terminus of a protein fragment. The results are produced at a 
background electrolyte volume fraction of 0.001 and at pH = 5.5. ꞏꞏꞏꞏ - 61 - 

Figure 3.6 Density profiles of the conjugated polymers made from three 
polypeptides (i.e. Met322-Lys355, Asn356-Arg425 and Glu93-Arg302), 
respectively bonded with a hydrophilic chain (𝑳 = 60 𝒂𝟎), adsorbed 
at an isolated droplet, plotted against the distance away from the 
hydrophobic surface. The results are produced at a background 
electrolyte volume fraction of 0.001 and at pH = 5.5. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 63 - 



- xvi- 
 

Figure 3.7 The interaction potential, plotted against the inter-droplet 
separation distance, resulting from the adsorbed layers of the 
conjugates made from three polypeptides (i.e. Met322-Lys355, Asn356-
Arg425 and Glu93-Arg302), respectively bonded with a hydrophilic 
chain (𝑳 = 60 𝒂𝟎). The diameter of oil droplets is 1 μm. The results 
are produced at a background electrolyte volume fraction of 0.001 
and at pH = 5.5. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 65 - 

Figure 3.8 The interaction potential, induced by the conjugate made from 
polypeptide Asn356-Arg425 and a hydrophilic chain of various 
lengths (𝑳 = 30, 60 and 180 𝒂𝟎), between two oil droplets (diameter 
1 μm), plotted against the separation distance. The results are 
produced at a background electrolyte volume fraction of 0.001 and 
at pH = 5.5. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 67 - 

Figure 4.1 Reducing SDS-PAGE analysis of the protein/peptide profiles 
for various whey protein samples. Lane 0 is intact WPI. Lane 1-3 are 
polypeptides produced by trypsin digestion at increasing DH (i.e. 
WT1 at 2.5%, WT2 at 5.5% and WT3 at 8.0%, respectively). Lane 4-6 
are polypeptides produced by alcalase digestion, from lower to 
higher DH (i.e. WA1 at 2.5%, WA2 at 5.5% and WA3 at 8.0%, 
respectively). Lane M is the molecular weight ladder (with values 
presented in the unit of kDa). A sample post conjugation with 
maltodextrin (i.e. WT1-MD) is also shown at lane 8 to compare with 
its unconjugated counterpart (i.e. WT1) at lane 7. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 76 - 

Figure 4.2 The solubility of intact WPI and WPHs samples hydrolysed by 
trypsin (A) and alcalase (B) at various DH, plotted as a function of 
pH. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 79 - 

Figure 4.3 The visual appearance of 1% (w/v) WT1 sample solution at 
various pH conditions. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 80 - 

Figure 4.4 The visual appearance of 1% (w/v) WT1-MD sample solution 
at various pH conditions. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 81 - 

Figure 4.5 The solubility of conjugates made from intact WPI and those 
from WPHs at various levels of hydrolysis, produced by either 
trypsin (A) or alcalase (B), plotted as a function of pH. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 82 - 

Figure 4.6 Free sulfhydryl (-SH) content of protein and hydrolysates prior 
to and post dry-heating Maillard reaction. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 83 - 

Figure 4.7 The average droplet size 𝑫𝟒, 𝟑 of freshly made and stored (60 
days) emulsions, fabricated by intact and hydrolysed whey protein, 
at various pH conditions (i.e. pH 7.5, 4.5 and 3.0). ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 84 - 

Figure 4.8 Micrographs of WT1 fabricated emulsion, stored at pH 7.5, on 
day 1 (A) and after 60 days of storage (B). The droplet size 
distribution and the mean droplet size 𝑫𝟒, 𝟑 are also provided on 
each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 85 - 



- xvii- 
 

Figure 4.9 Micrographs of WT1 fabricated emulsion, stored at pH 4.5, on 
day 1 (A) and after 60 days of storage (B). The droplet size 
distribution and the mean droplet size 𝑫𝟒, 𝟑 are also provided on 
each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 88 - 

Figure 4.10 Apparent viscosity of the emulsions fabricated by WT1, 
stored for 1 day at pH 7.5 and pH 4.5, plotted against shear rate. ꞏꞏꞏꞏ - 89 - 

Figure 4.11 Micrographs of WT1 based emulsion stored at pH 4.5 after 
60 days. (A) and (B) respectively display the microstructure when 
this stored emulsion was adjusted to pH 3.0, or when it was diluted 
in 5% SDS. The droplet size distribution and the mean droplet size 
𝑫𝟒, 𝟑 are also provided in each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 90 - 

Figure 4.12 The average droplet size 𝑫𝟒, 𝟑 of freshly made and stored (60 
days) emulsions, fabricated by conjugates made from WPI/WPHs + 
maltodextrin, at various pH conditions (i.e. pH 7.5, 4.5 and 3.0). The 
scale in this graph is kept the same as that in Figure 4.7 for the ease 
of comparison. However, a more detailed version is also shown in 
the inset. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 91 - 

Figure 4.13 Micrographs of WT1-MD fabricated emulsion, stored at pH 
4.5, on day 1 (A) and after 60 days of storage (B). The droplet size 
distribution and the mean droplet size 𝑫𝟒, 𝟑 are also provided on 
each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 92 - 

Figure 5.1 The visual appearance of various 0.5% (w/v) soy protein 
dispersions at pH 7.5. SPI and SSPI refer to intact and 
ultrasonicated soy protein isolate, accordingly. SSPI digested by 
trypsin and alcalase at different levels of hydrolysis (i.e. 2.5%, 5.5% 
and 8.0%) are denoted as SST1, SST2, SST3 and SSA1, SSA2, SSA3, 
respectively. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 102 - 

Figure 5.2 The average protein particle size of SSPI and its hydrolysates 
post digestion by trypsin (A) and alcalase (B), accordingly. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 103 - 

Figure 5.3 The schematic picture of the processes of protein hydrolysis 
by alcalase (A) and trypsin (B). ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 105 - 

Figure 5.4 Reducing SDS-PAGE analysis of the protein/peptide profiles 
for various soy protein samples. Lane 0 is ultrasonicated SPI. Lane 
1-3 are polypeptides produced by trypsin digestion at lower to 
higher DH (i.e. SST1, SST2 and SST3, respectively). Lane 4-6 are 
polypeptides produced by alcalase digestion at lower to higher DH 
(i.e. SSA1, SSA2 and SSA3, respectively). Lane M is the molecular 
weight ladder (with values presented in the unit of kDa). A sample 
post conjugation with maltodextrin (i.e. SST3-MD) is also shown at 
lane 8 to be compared with its unconjugated counterpart (i.e. SST3) 
at lane 7. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 106 - 

Figure 5.5 The solubility of SPI, ultrasonicated SPI (i.e. SSPI), and SSPHs 
samples hydrolysed by trypsin (A) or alcalase (B) at various DH, 
plotted as a function of pH. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 110 - 
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Figure 5.6 The visual appearance of 1% (w/v) SST3 sample, dispersed 
under various pH conditions. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 111 - 

Figure 5.7 The solubility of conjugates made from ultrasonicated SPI (i.e. 
SSPI-MD), and those made from fragmented soy protein produced 
by either trypsin (A) and alcalase (B) at various levels of hydrolysis, 
plotted as a function of pH. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 112 - 

Figure 5.8 Effects of addition of SDS, DTT, or both to a dispersion of 
otherwise insoluble MRPs, produced from ultrasonicated soy 
protein + maltodextrin (i.e. sample SSPI-MD). Ultrasonicated soy 
protein without conjugation (SSPI) was dissolved in deionized 
water and is included for comparison on the left. SSPI-MD was 
dissolved in different solvents (from left to right): deionized water, 
buffer (pH 9.0, 0.086 M Tris, 0.09 M Glycine), 5% SDS + buffer, 0.5 M 
DTT + buffer, 5% SDS + 0.5 M DTT + buffer. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 113 - 

Figure 5.9 The visual appearance of 1% (w/v) SST3-MD sample, 
dispersed  under various pH conditions. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 114 - 

Figure 5.10 Average droplet size 𝑫𝟒, 𝟑 of freshly made and stored (for 60 
days) emulsions, fabricated using intact SPI, ultrasonicated SPI (i.e. 
SSPI) and SSPHs, at various pH conditions (i.e. pH 7.5, 4.5 and 3.0).
 ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 117 - 

Figure 5.11 Micrographs of SST3 fabricated emulsion, stored at pH 7.5, 
on day 1 (A) and after 60 days of storage (B). The droplet size 
distribution and the mean droplet size 𝑫𝟒, 𝟑 are superimposed on 
each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 118 - 

Figure 5.12 The change of mean droplet size 𝑫𝟒, 𝟑  of O/W emulsion, 
stabilized by SST3, stored at pH 7.5. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 119 - 

Figure 5.13 Apparent viscosity of O/W emulsions fabricated by SST3 
stored at pH 7.5 for 1 day and 60 days. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 120 - 

Figure 5.14 Micrograph of WT1 based emulsion stored at pH 7.5, with 
addition of 0.03% soy lecithin (i.e. 3 g soy lecithin/100 g WT1), 
following 60 days of storage. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 122 - 

Figure 5.15 Micrographs of SST3 fabricated emulsions, stored at pH 4.5, 
on day 1 (A) and after 60 days of storage (B). The droplet size 
distribution and the mean droplet size 𝑫𝟒, 𝟑 are also provided on 
each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 123 - 

Figure 5.16 The average droplet size 𝑫𝟒, 𝟑 of freshly made and stored (60 
days) emulsions, fabricated by conjugates made from SSPHs + 
maltodextrin, under various pH conditions (i.e. pH 7.5, 4.5 and 3.0). - 124 - 

Figure 5.17 Micrographs of SST3-MD fabricated emulsions, stored at pH 
7.5, on day 1 (A) and after 60 days of storage (B). The droplet size 
distribution and the mean droplet size 𝑫𝟒, 𝟑 are also provided on 
each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 125 - 
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Figure 5.18 Micrographs of emulsions stored at pH 7.5 after 60 days. The 
emulsions were stabilized by conjugated SST3 + maltodextrin DE4-
7 (𝑴𝒘= 65 kDa) and SST3 + dextran (𝑴𝒘= 500 kDa), which are 
displayed in (A) and (B), respectively. The droplet size distribution 
and the mean droplet size 𝑫𝟒, 𝟑 are also provided on each photo. ꞏꞏ - 126 - 

Figure 5.19 Micrographs of SST3-MD fabricated emulsion, stored at pH 
4.5, on day 1 (A) and after 60 days of storage (B). The droplet size 
distribution and the mean droplet size 𝑫𝟒, 𝟑 are also provided on 
each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 127 - 

Figure 5.20 Apparent viscosity of freshly made O/W emulsions 
fabricated by SST3 and SST3-MD, stored at pH 7.5 and pH 4.5. ꞏꞏꞏꞏꞏꞏ - 128 - 

Figure 5.21 Micrographs of emulsions produced by SST3-MD conjugates 
as emulsifiers, after adjustment of pH to 3.0 (A), then to 2.0 (B). The 
emulsion sample was kept at the intermediate pH for only a few 
minutes. The droplet size distribution and the mean droplet size 
𝑫𝟒, 𝟑 are also provided on each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 131 - 

Figure 5.22 Micrographs of emulsion produced by SST3-MD as 
emulsifiers, stored at pH 7.5, on day 1 (A) and after 60 days of 
storage (B). This emulsion was subjected to an acid treatment by 
adjustment of pH to 4.5, then back up to 7.5. The emulsion sample 
was kept at pH 4.5 for only a few minutes. The droplet size 
distribution and the mean droplet size 𝑫𝟒, 𝟑 are also provided on 
each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 132 - 

Figure 6.1 Reducing SDS-PAGE analysis of the peptide profiles for 
various fractionated protein samples. Lane W is intact WPI and lane 
S is ultrasonicated SPI. Lane 1, 2, 3 are the fractions of polypeptides 
derived from WPI (produced by trypsin digestion) of molecular size 
larger than 30 kDa, between 10~30 kDa and less than 10 kDa, 
respectively. Lane 1*, 2*, 3* are the fractions of polypeptides derived 
from ultrasonicated SPI (produced by trypsin digestion) of 
molecular size larger than 30 kDa, between 10~30 kDa and less than 
10 kDa, respectively. Lane M is the molecular weight ladder (with 
values presented in the unit of kDa). ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 139 - 

Figure 6.2 Micrographs of conjugated WR30 fabricated emulsion. The 
freshly made and stored (for 60 days) samples at pH 7.5 are shown 
in (A) and (B), respectively. The samples adjusted to and stored at 
pH 4.5 on day 1 (C) and after 60 days of storage (D) are also 
displayed. The droplet size distribution and the mean droplet size 
𝑫𝟒, 𝟑 are provided on each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 141 - 

Figure 6.3 Micrographs of conjugated SR30 fabricated emulsion. The 
freshly made and stored (for 60 days) samples at pH 7.5 are shown 
in (A) and (B), respectively. The samples adjusted to and stored at 
pH 4.5 on day 1 (C) and after 60 days of storage (D) are also 
displayed. The droplet size distribution and the mean droplet size 
𝑫𝟒, 𝟑 are provided on each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 142 - 
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Figure 6.4 Micrographs of conjugated WR10 fabricated emulsion. The 
freshly made and stored (for 60 days) samples at pH 7.5 are shown 
in (A) and (B), respectively. The samples adjusted to and stored at 
pH 4.5 on day 1 (C) and after 60 days of storage (D) are also 
displayed. The droplet size distribution and the mean droplet size 
𝑫𝟒, 𝟑 are provided on each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 144 - 

Figure 6.5 Micrographs of conjugated SR10 fabricated emulsion. The 
freshly made and stored (for 60 days) samples at pH 7.5 are shown 
in (A) and (B), respectively. The samples adjusted to and stored at 
pH 4.5 on day 1 (C) and after 60 days of storage (D) are also 
displayed. The droplet size distribution and the mean droplet size 
𝑫𝟒, 𝟑 are provided on each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 146 - 

Figure 6.6 Micrographs of freshly made emulsion samples fabricated 
with conjugated WP10 (A) and conjugated SP10 (B) at pH 7.5. The 
droplet size distribution and the mean droplet size 𝑫𝟒, 𝟑  are 
provided on each photo. ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ - 147 - 

Figure 6.7 Micrograph of freshly made emulsion samples fabricated 
using conjugated WP10, after adjustment of pH to 4.5. The droplet 
size distribution and the mean droplet size 𝑫𝟒, 𝟑 are provided on the 
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Chapter 1 Introduction 

This chapter will start with a brief description of colloidal science and the so called 

colloidal state of matter. Focus will be placed on the oil-in-water (O/W) emulsion 

stabilized by macromolecules (e.g. proteins), which is the most commonly seen form 

of colloids in foods and is also the system of main concern in this project. A review of 

previous work regarding protein-polysaccharide conjugates as food emulsifiers will 

follow to demonstrate the significance of the current study in the context of the work 

done so far in the literature. At the end of this chapter, the aims and organisation of 

the thesis are discussed, illustrating the general flow of the theme of this project 

through different chapters and how they relate to each other. 

 

1.1 Foundation of research 

1.1.1 Colloidal state of matter 

Solid, liquid and gas have been largely regarded as the three states of matter for 

centuries. This classification applies to systems where pure or molecularly-scaled 

mixed substances are being considered. It was only a century and half ago that the 

colloidal state of matter was officially recognized as potentially a different state of 

matter. This intermediate state of matter, colloids, has one component finely dispersed 

in another but the degree of dispersion does not approach a molecular level (Everett, 

1988e). Colloidal systems and techniques relating to their production and 

characterisation have been applied in a wide variety of fields. Examples of colloids 

include milk, yogurt, jelly, toothpaste, ink, emulsion explosives, paint and coatings. 

Many biological materials are also colloids in nature (e.g. saliva and blood). 

The simplest type of a colloidal system consists of a single dispersed phase and a 

second dispersion medium. However, more than one dispersed phase can be present 

simultaneously in a system (e.g. ice cream). Based on the nature of dispersed phase 

and dispersion medium, simple colloids, consisting of two phases, can be grouped into 

different types, as summarized in Table 1.1 (Hunter, 2001b, Dickinson, 1992d, 

Everett, 1988e).  
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Colloids have distinct characteristics. They can behave like solid or liquid under 

different circumstances. They are all heterogeneous and contain structural entities 

with at least one relevant dimension ranging from 1 nm to 1 µm. However, the limit of 

the size range is not strict. In most food colloids, the size of some dispersed particles 

can be outside this range. Though much larger than molecules, colloidal particles are 

sufficiently small for Brownian motion to still be of some significance. For instance, the 

Brownian motion can be sufficient to overcome the effects of gravity (Dickinson, 

1992d). Colloidal-sized entities also tend to strongly scatter light. Another crucial 

characteristic of these systems is the large interfacial area between the dispersed 

phase and the dispersion medium. The physicochemical properties of a substantial 

amount of molecules residing at the interface will determine the behaviours of the 

colloidal system to a large extent (Everett, 1988e). Colloidal systems are 

thermodynamically unstable. They are not in their state of the lowest possible free 

energy. Given a long enough time (which could be days, months, years or even 

centuries), they will eventually revert to their phase separated components. This is 

different from molecular mixtures that are homogeneous and thermodynamically 

stable, such as salt or sugar solution (McClements, 2015v).  

1.1.2 Surface free energy 

Table 1.1 Classification of a two-phase colloidal system. 
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The instability of colloidal systems arises from the large contact area between the two 

immiscible phases. Compared to bulk molecules, the molecules at the interface are 

experiencing unbalanced intermolecular forces (Coupland, 2014c). As a 

consequence, dispersed systems consisting of a large amount of surface molecules 

possess substantial excess free energy (Everett, 1988g). From the perspective of 

thermodynamics, such systems always tend to change spontaneously in the direction 

of lowering their free energy. Therefore, there is a tendency for them to shrink the 

contact area between the two phases. This eventually induces complete phase 

separation (McClements, 2015v).  

Nevertheless, it is possible to generate dispersed systems that are kinetically stable 

for a considerable length of time, by introducing an energy barrier which separates the 

kinetically stable and thermodynamically stable states (Figure 1.1). Though there are 

always some molecules that meet the activation energy requirements and have a 

chance to jump over the energy barrier to get into the lower-energy state, the 

transformation would be imperceptibly slow if the energy barrier is sufficiently high. 

The existence of such an energy barrier is the reason why the colloidal systems could 

be maintained in a dispersed and relatively stable state over long durations, sufficient 

to make colloids useful in many practical situations (McClements, 2015v, Everett, 

1988f).  

1.1.3 Colloidal interactions 

Figure 1.1 Schematic illustration of the kinetically stable and 
thermodynamically stable state of a two-phase dispersed system. 
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The excess free energy of a colloidal system can be dramatically altered by the 

presence of molecules adsorbed and accumulated at the interface (e.g. amphiphilic 

macromolecules, surfactants, ions) (Coupland, 2014c, Dickinson, 1992a). In 

particular, for O/W emulsions in foods (e.g. milk, cream, salad dressing), the 

behaviours of such systems are the result of the overall free energy change when two 

droplets approach each other, determined normally by three major contributions, i.e. 

the van der Waals force, the electrostatic force and the steric force (Everett, 1988k). 

In some systems, other types of forces are also significant, including depletion force, 

bridging attraction and hydrophobic force (McClements, 2015c, Dickinson, 1992a).  

1.1.3.1 Van der Waals force 

This interaction is derived from the permanent or induced dipoles of molecules making 

up the dispersed phase. It is always attractive for molecules of the same species, and 

is very short ranged between two individual molecules (Everett, 1988j). However, the 

energy of this attractive force, when acted between two particles or droplets, becomes 

the sum of all the pair interactions between individual molecules within the two 

dispersed particles. As such, it falls much more slowly (line A in Figure 1.2). Due to 

this long-ranged attractive potential, colloidal particles under Brownian motion or shear 

force tend to approach and stick together, and eventually coalesce (McClements, 

2015d). 
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1.1.3.2 Electrostatic repulsion and DLVO theory 

If there are repulsive forces present in the system, they can result in an energy barrier 

against the approach of droplets and therefore prevent dispersed droplets, under the 

influence of van der Waals force, from aggregating. The repulsive forces could come 

from the overlap of the electrical double layers that are built up around the droplets 

due to the adsorption of the charged species at the droplet surface. Such forces are 

referred to as electrostatic repulsion (Everett, 1988i). The sign and magnitude of the 

charge carried by the adsorbed species, and most importantly the thickness of the 

formed electrical double layer, would largely depend on the environmental conditions 

as well as the type and concentration of the emulsifiers used (McClements, 2015e).  

In the classical DLVO theory (Figure 1.2), the overall pair potential between two 

dispersed droplets is the combination of van der Waals attraction and electrostatic 

repulsion. Van der Waals attractive energy predominates at small and large 

separations. This often leads to the formation of a primary and a separate secondary 

minimum in the droplet-droplet interaction potential. An energy barrier would exist at 

intermediate separations due to the electrostatic repulsion. However, in the presence 

Figure 1.2 Schematic illustration of the interactions between two identical
droplets according to DLVO theory. The total pair potential, the potentials
derived from van der Waals attraction and electrostatic double layer
repulsion are plotted as a function of the separation between droplets. 
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of a high ionic strength, which is often the case for most food emulsions, such an 

energy barrier could disappear. Then, systems that rely mainly on electrostatic 

repulsion for maintaining colloidal stability will become unstable to droplet aggregation 

(Dickinson, 1992a). 

1.1.3.3 Steric repulsion and total interaction potential 

In addition to electrostatic repulsion, a steric repulsive force could also be generated 

by the adsorbed macromolecules, irrespective of their charge. The free energy change 

induced by the steric force involves both entropic and enthalpic components (Everett, 

1988h). The former is mainly resulted from the reduction of conformational entropy of 

adsorbed polymers at the interface, due to the progressively restricted space between 

two approaching droplets. Therefore, this is always a repulsive contribution to the inter-

droplet potential. The latter component mainly arises from the change of local osmotic 

pressure when adsorbed polymers on two individual droplets start to interpenetrate. 

Whether its contribution to free energy is positive or negative depends on the solvent 

quality. In a good solvent, polymer-solvent contacts are more favourable than polymer-

polymer contacts. The free energy will grow when the adsorbed polymers have more 

chance to interact as dispersed droplets come closer. In this sense, a repulsive force 

will be produced. Whereas in a poor solvent, the overlap of polymer layers is more 

favoured. Under this circumstance, the free energy of the system decreases with 

droplet-droplet separation distance. This will result in an attractive force between 

droplets as they approach (McClements, 2015f).  

Generally, for hydrophilic macromolecules in good solvent, the steric force is always 

repulsive. The change of total interaction potential between two sterically stabilized 

droplets under good solvent conditions is illustrated in Figure 1.3. Van der Waals 

attractive energy predominates at large separations. A steeply increased repulsion 

arises at short separations, as soon as the two adsorbed layers overlap. At 

separations just before the overlap occurs, there is an attractive energy minimum, the 

depth of which is mainly dependent on the thickness of the interfacial layer formed by 

the adsorbed polymers. The magnitude of this energy minimum governs the colloidal 

behaviours of dispersed droplets (McClements, 2015g, Dickinson, 1992a).   
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1.1.3.4 Bridging and depletion attractions 

In contrast to a strong steric repulsion, adsorbed polymers in good solvent can also 

induce an attraction between droplets, under the circumstance where the droplet 

surface is not fully coated with polymers. Such attraction is the consequence of 

polymer bridging, where a polymer chain adsorbs onto the surface of two or more 

neighbouring droplets (Figure 1.4A) (Dickinson, 1992a).  

Figure 1.3 Schematic illustration of the interactions between two identical
droplets which are sterically stabilized by adsorbed macromolecules. The
total pair potential, the potentials derived from van der Waals attraction and
steric repulsion are plotted as a function of the separation between droplets.

Figure 1.4 Schematic illustration of bridging attraction (A) and depletion
attraction (B). 
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Inter-droplet attraction can also be induced by non-adsorbed polymers present in the 

bulk. When two droplets approach, these polymers will avoid residing in the gap 

between droplets, due to the loss of conformational entropy. This will create a polymer 

concentration gradient between the bulk and the gap, with the amount of polymers 

being lower in the gap. Under the influence of the resultant osmotic pressure, the 

solvent molecules between the gap will flow out into the bulk, making droplets 

approach even more closely. Such osmotic driving force, induced by non-adsorbed 

polymers, is referred to as depletion attraction (Figure 1.4B) (McClements, 2015h). 

The magnitude of depletion force largely depends on the size and concentration of 

non-adsorbed polymers (McClements, 2015t). 

1.1.3.5 Hydrophobic interactions 

Hydrophobic interaction is normally not believed to play an important role in 

determining the colloidal stability of food emulsions, but it would if the adsorbed 

emulsifiers at the droplet surface have some nonpolar/hydrophobic regions exposed 

to the aqueous phase (McClements, 2015i). Typical examples are heat-denatured 

globular proteins and partially unfolded proteins upon adsorption. The hydrophobic 

interactions induced by them can have significant impact on the flocculation stability 

of some food emulsions (Kim et al., 2002a, McClements, 2004). 

1.1.4 Stability of emulsions 

The total interaction potential between dispersed droplets discussed previously in 

section 1.1.3 is the major factor that governs the behaviours of dispersed droplets and 

the stability of O/W emulsion. Other factors (e.g. the solubility of dispersed phase in 

dispersion medium, the strength of interfacial layer) also play a role. Based on the 

underlying mechanism involved, the instability of emulsion is normally classified into 

creaming, flocculation, coalescence and Ostwald ripening. 

1.1.4.1 Creaming 

Compared to other instability mechanisms, creaming is a relatively insensitive process 

to inter-droplet interaction, only affected by it in an indirect manner. Creaming involves 

the formation of a concentrated layer of oil droplets at the top of an emulsion sample 

due to gravity or centrifugal force. Creaming does not involve the change of droplet 
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size distribution (Dickinson, 1992a), but it can indirectly aid other processes that 

contribute to the size change. Creaming is enhanced in dilute flocculated emulsions. 

While if the flocculated emulsion is concentrated, creaming is likely to be inhibited to 

some extent, because of the spanning network formed by the highly interconnected 

flocs throughout the whole system which locks the flocs in position, preventing them 

from moving upwards. Creaming can also be effectively controlled by reducing the 

droplet size or by modifying the viscosity of the dispersion medium (McClements, 

2015p, Dickinson, 1992b).  

1.1.4.2 Flocculation 

As a precursor to creaming and coalescence in many cases, flocculation is very 

important to the stability of food emulsions. There are quite a few different situations 

where droplets can become flocculated. Most of the time, emulsion droplets 

completely coated with emulsifiers will flocculate when the inter-droplet pair potential 

is appreciably attractive at short separations. For this case, the most effective means 

of controlling the rate and extent of flocculation is to manipulate the colloidal 

interactions between droplets by introducing strong electrostatic and/or steric 

repulsions (McClements, 2015q).  

If there are not sufficient emulsifiers to fully cover the newly created droplet surface 

during homogenization, bridging flocculation may occur (Figure 1.4A) where droplets 

are strongly held together by adsorbed species shared between two or more individual 

droplets (McClements, 2015s, Dickinson, 1992a). The presence of non-adsorbed 

polymers (e.g. proteins, polysaccharides) in the dispersion medium could also lead to 

droplet flocculation, called depletion flocculation as illustrated in Figure 1.4B. 

Depletion flocculation is negligible, if the concentration of non-adsorbed polymers is 

below a critical level. But it will become significant when a substantial amount of non-

adsorbed polymers is present (McClements, 2015t). On the other hand, if the 

concentration of non-adsorbed polymers is increased to an extent that it is able to 

provide a substantial enhancement in the viscosity of the aqueous phase, depletion 

flocculation would become completely inhibited (Dickinson, 1992a). Flocculation could 

also result from the thermal or surface denaturation of adsorbed globular proteins that 

leads to nonpolar patches exposed to the aqueous phase (McClements, 2015r). 
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Generally speaking, any perturbations that can cause adsorbed polymers to become 

insoluble or aggregated (e.g. heating, change of pH and ionic strength), are likely to 

promote flocculation (Dickinson, 1992a). Flocculation of emulsion droplets could also 

be induced as a result of the competitive adsorption in a mixed polymer system or 

polymer/surfactant system. For instance, under environmental stresses, the 

displacement of initially adsorbed β-casein from the droplet surface by αS1-casein 

(Dickinson, 1997) or low-molecular-weight surfactants (Courthaudon et al., 1991) 

could lead to some extent of droplet flocculation.  

1.1.4.3 Coalescence 

Coalescence is the irreversible merging of two or more emulsion droplets into one 

single droplet. It is much more severe than creaming and flocculation in terms of 

emulsion stability (Dickinson, 1992a). Nevertheless, coalescence becomes desirable 

when encapsulated components need to be released during oral processing and 

digestion (McClements, 2015k). 

The susceptibility of an emulsion to coalescence depends on the stability of the thin 

aqueous film separating the two closely seated droplets (Figure 1.5). When droplets 

collide, as a result of their Brownian motion or applied forces (e.g. shear, centrifuge), 

or if they stay close for an extended period of time (e.g. when they are in a flocculated 

state), the droplets would deform and the film of the continuous phase separating the 

droplets tends to be squeezed out. If the thickness of the film gets below a critical 

value, there is a chance for subsequent film rupture and formation of holes in the film 

between the droplets. Eventually droplet coalescence occurs (McClements, 2015w, 

Dickinson, 1992a).  

Figure 1.5 Schematic illustration of the deformation of droplets and the
formation of the liquid film of the continuous phase as the droplets
approach and/or stay close.  



- 11 - 
 

The resistance of the film to rupture is generally governed by the rate of droplet 

collisions, the nature of interactions between droplets, the interfacial tension and the 

surface rheology of the interfacial layers (McClements, 2015w). In most cases, 

proteins offer better coalescence stability to O/W emulsions than low-molecular-weight 

surfactants, mainly because proteins are able to form thicker protective interfacial 

layers with a much higher viscoelasticity, via the intermolecular forces (Dickinson, 

1992a).  

1.1.4.4 Ostwald ripening 

This process describes the growth of larger droplets at the expense of smaller ones 

due to the mass transport of dispersed phase through the continuous medium. The 

thermodynamic driving force for Ostwald ripening is the chemical potential difference 

of the dispersed phase in large and small droplets (Dickinson, 1992a).  

Ostwald ripening can be significant if the dispersed phase is sufficiently soluble in the 

continuous phase, such as when short-chain triglycerides, flavour oils or essential oils 

are incorporated in the oil phase (Li et al., 2009, Rao et al., 2012). Nonetheless, in 

most food O/W emulsions, Ostwald ripening is negligible, as long chain triglycerides 

are virtually insoluble in water (McClements, 2015u).  

1.1.5 Emulsifiers and stabilizers 

To obtain stable O/W emulsions, an emulsifier must be present to protect the newly 

formed droplets against immediate recoalescence during vigorous homogenization.  

An effective emulsifier has to first facilitate the creation of new interface by rapidly 

adsorbing at the interface and lowering the interfacial free energy. Then they should 

be able to form a protective coating around the droplets and provide sufficient 

repulsions between droplets for long-term stability (McClements, 2015n). There are 

generally two classes of emulsifiers in food, low-molecular-weight surfactants and 

proteins. As to the formation of emulsion droplets, surfactants tend to be more effective 

than proteins, due to their structure and smaller size, which enable a more rapid 

reduction of the interfacial tension. The reverse is true when it comes to the stabilizing 

ability. Compared to surfactants, proteins are able to provide a much better long-term 

stabilization to emulsion systems, as a result of their irreversible adsorption as well as 



- 12 - 
 

the formation of thicker viscoelastic interfacial layers (Dickinson, 1992d). Protein 

materials are the most important and widely used stabilizing agents in food colloids.  

Furthermore, for proteins to display excellent colloidal emulsifying and stabilizing 

ability, they are required to have a sufficient solubility, hydrophobicity and flexibility. In 

this sense, disordered proteins with a structure more closely resembling a diblock, 

consisting of a strongly anchored hydrophobic train at the interface and a hydrophilic 

tail extending into the bulk phase (e.g. β-casein), are shown to be better candidates 

as food emulsifiers than the globular counterparts (e.g. soy proteins) (Dickinson, 

1992f, McClements, 2015n).  

Another widely used biopolymer, high-molecular-weight polysaccharides (e.g. 

carrageenan, xanthan gum) are only regarded as stabilizers rather than emulsifiers, 

as most of them cannot be used alone to produce an emulsion. The main stabilizing 

mechanism of polysaccharides is to modify the viscosity of dispersion medium 

(McClements, 2015l), inhibiting the Brownian movement of the droplets. In this 

respect, such polysaccharides, despite often being called stabilizers, are not true 

stabilizers in the sense of colloidal science. Proteins, on the other hand, fulfil both the 

roles of emulsifiers and true colloidal stabilizers in many cases (Dickinson, 1992d).  

 

1.2 Protein-polysaccharide conjugates as food emulsifiers 

O/W emulsion systems have been applied to a wide variety of fields. Products ranging 

from foods, pharmaceuticals, cosmetics, agrochemicals to personal care and cleaning 

products etc., rely heavily on the use of O/W emulsions to deliver different active 

ingredients (e.g. vitamins, essential oils, drugs, flavours and pesticides) for the 

purpose of improving their stability, availability as well as controlled release (Dubey et 

al., 2009, Burgos-Díaz et al., 2016, McClements, 2010). In addition to conventional 

O/W emulsions where dispersed oil droplets are shielded by a single layer of wall 

materials, a few newly designed structured delivering systems are created, for 

instance, multiple emulsion, multilayer emulsion, Pickering emulsion and emulsion gel 

(McClements, 2010, 2012, Ettelaie et al., 2017, Dickinson, 2015). Depending on the 

delivery strategy of choice, various kinds of emulsifiers are available. Nevertheless, 
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the scope of this research project focuses only on the application of protein fragments 

and their covalent conjugates as food emulsifiers, in conventional O/W emulsions. 

1.2.1 Stabilizing mechanism of protein-polysaccharide conjugates 

Proteins, particularly milk proteins, are effective emulsifiers by virtue of their 

amphiphilic characteristics which enable them to adsorb strongly to the oil-water 

interface, rapidly reduce the interfacial tension and protect the freshly formed oil 

droplets from coalescing during the emulsification process (McClements, 2015n).  

The stability of protein based emulsions mainly derives from the ability of proteins to 

induce electrostatic stabilization, provided by virtue of the charge on the adsorbed 

proteins (Figure 1.6). Therefore, in cases involving high ionic strength or when the pH 

approaches pI of the protein, the colloidal stability is often lost (Dickinson, 2015, Evans 

et al., 2013). In order to improve the stability of protein based emulsions under such 

unfavourable conditions, polysaccharides are commonly incorporated to form a 

second protective layer deposited on top of the primary protein layer, enhancing the 

steric component of the repulsive force between the droplets.  

Figure 1.6 Schematic comparison of oil droplet stabilized by proteins 
and conjugates respectively. The red dot in the conjugates represents
the covalent bonding between protein and polysaccharide. 
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This idea can be realised either by forming electrostatically-driven protein-

polysaccharide complexes (i.e. the so-called layer-by-layer films) (McClements, 

2010), or by the use of covalently bonded protein-polysaccharide conjugates (Evans 

et al., 2013, Wooster et al., 2007, Al-Hakkak et al., 2010). The first approach can give 

rise to several issues of its own, including the possibility of bridging and depletion 

flocculation during the deposition of polysaccharides layers (Dickinson, 2008), the 

breakdown of the structural integrity of the complexes induced by large pH shifts 

(Guzey et al., 2006, Ettelaie et al., 2017), and also the gradual mutual diffusion of 

biopolymers layers to form a single mixed film rather than the desired layer-by-layer 

preparation (Ettelaie et al., 2017, Ettelaie et al., 2012). In contrast, protein-

polysaccharide conjugates behave somewhat like a copolymer. The polysaccharide 

moiety protrudes outwards away from the surface, thus effectively forming a second 

outer layer surrounding the oil droplets, while the protein part ensures the strong 

anchoring of the conjugated molecule to the surface of the droplets (Figure 1.6). This 

design aims to keep the integrity of the composite macromolecules, while avoiding any 

bridging flocculation arising from the separate loading of polysaccharides as happens 

in the layer-by-layer approach, irrespective of the changes in the environmental 

conditions (Dickinson, 2008, 2015, 2019, Akhtar et al., 2017).  

1.2.2 Preparation of protein-polysaccharide conjugates 

The covalent linking of protein and polysaccharide can be achieved by means of 

Maillard reaction (de Oliveira et al., 2016, Kato et al., 1993, Akhtar et al., 2003) or  

enzyme treatment (e.g. laccase, tyrosinase) (Jung et al., 2012, 2014, Liu et al., 2017).  

Enzyme-catalysed conjugation of protein and polysaccharide has been reported to 

produce biomaterials (e.g. highly absorbent hydrogels) for medical use and in food 

packaging (e.g. edible films and coatings) (Milczek, 2018, Azeredo et al., 2016). 

Recently, its application to produce food emulsifiers has drawn much research interest 

(Liu et al., 2015, Liu et al., 2018b). Based on the catalysing mechanisms, enzyme-

mediated crosslinking requires substrates that have certain functional groups (e.g. free 

amino groups, phenolic compounds). Therefore, the choice of polysaccharide for 

crosslinking with protein is limited to complex polysaccharides (e.g. pectin, chitosan, 

gum Arabic) (Milczek, 2018, Isaschar-Ovdat et al., 2018). Furthermore, enzyme-

catalysed conjugation has not yet been extensively investigated for the possible 
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improvement of the emulsifying property of protein, under applied environmental 

stresses (Jung et al., 2012, 2014, Jiang et al., 2011, Zhu et al., 2015). In some cases, 

it can be considered as a way to modify complex polysaccharides that do not have 

sufficiently good emulsifying and stabilizing abilities. For example, Liu et al. (2015) and 

Chen et al. (2018a) reported enhanced emulsifying properties of corn fibre gum and 

sugar beet pectin, respectively, under a variety of harsh conditions, following their 

conjugation with proteins. Most importantly, crosslinking enzymes are capable of 

catalysing the formation of not only protein-polysaccharide conjugates, but also 

protein-protein conjugates and even polysaccharide-polysaccharide conjugates 

(Milczek, 2018). The extent of hetero crosslinking depends on the accessibility of 

reactive sites on protein and polysaccharide to enzymes (Selinheimo et al., 2008). 

Therefore, not all of these cases may result in a better emulsifier. For example, due to 

the formation of protein-protein crosslinks, such covalently bonded polymers display 

a lower emulsifying activity, compared to untreated proteins (Liu et al., 1999, Isaschar-

Ovdat et al., 2015, Zhu et al., 2015). Furthermore, the dispersion of enzymatically 

crosslinked polymers has been reported to have a dramatically increased viscosity as 

compared to that formed by non-crosslinked counterparts (Jiang et al., 2010, 2011, 

Zhu et al., 2015, Chen et al., 2012). This significant alteration of the rheological 

property should be taken into account when protein-polysaccharide conjugates are 

being prepared as food emulsifiers by enzyme treatment.  

To avoid issues mentioned above, Maillard reaction has become the most popular and 

straightforward approach to produce protein-polysaccharide conjugates (Zhang et al., 

2019b, Akhtar et al., 2017). Maillard reaction refers to a series of complex reactions 

which naturally occur during cooking and are responsible for the creation of major 

flavour and colour compounds in most cooked foods (Ames, 1992). For the purpose 

of simplicity, Maillard reaction is usually summarized into three stages: early, 

intermediate and final (Friedman, 1996, de Oliveira et al., 2016). Only the early stage 

is relatively well characterized, which involves the formation of covalent bond between 

a free amino group of protein (usually the Lysine or N-terminus) and a reducing 

carboxylic group of a polysaccharide (Figure 1.7) (Kato, 2002, Oliver et al., 2006). 

There is no colour change at this stage of Maillard reaction. While the numerous 

reaction pathways and chemical transformations (e.g. oxidation, degradation, 

dehydration, free radical reactions) at the intermediate stage result in multiple poorly 
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characterized compounds which give yellow to golden brown colour and distinctive 

flavour to cooked foods (de Oliveira et al., 2016, Ames, 1992, Martins et al., 2000). 

Maillard reaction products (MRPs) formed at these two stages are food grade and are 

reported to have some health benefits (Gu et al., 2010, Rufián-Henares et al., 2007). 

At the final stage, advanced reactions will lead to the formation of highly coloured 

(usually dark brown coloured) nitrogenous polymers, known as melanoidins, which 

have detrimental health effects (de Oliveira et al., 2016, Martins et al., 2000). 

Therefore, incorporation of protein-polysaccharide conjugates into foods requires 

Maillard reaction to be conducted under controlled conditions (including temperature, 

incubation time, pH, etc.) in order to prevent the reactions from proceeding into more 

advanced stages. 

Formation of conjugates by Maillard reaction can include both complex polysaccharide 

(e.g. pectin, gum Arabic, chitosan) as well as simple polysaccharide (e.g. dextran, 

maltodextrin) (Kato, 2002, de Oliveira et al., 2016). There are generally two possible 

routes to perform Maillard reaction, the wet-heating route and the dry-heating route. 

The former has only been studied in the last few years for the preparation of protein-

polysaccharide conjugates as emulsifiers. It is a modification of the dry-heating route 

in the attempt to eliminate the energy-consuming freeze-drying process in the latter 

(de Oliveira et al., 2016). It is more often used than the dry-heating route when plant 

based MRPs are prepared (Qu et al., 2018, Li et al., 2014, Pirestani et al., 2017). The 

Figure 1.7 Basic chemical reaction mechanism for the formation of
protein-polysaccharide conjugate in the initial stage of Maillard
reaction. The highlighted groups in red colour on the structures of
polysaccharide and protein are the sites involved in Maillard reaction.
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wet-heating route is shown in Figure 1.8A. The MRPs formed in this way have been 

confirmed by various analytical methods, such as electrophoresis, amino acid 

analysis, FTIR (Guan et al., 2006, Zhu et al., 2008, Zhang et al., 2012b). However, 

there are relatively few systematic studies with regard to the emulsifying and emulsion 

stabilizing properties of the conjugates formed via wet-heating route, under 

environmental stresses. Moreover, the degree of conjugation is heavily influenced by 

water activity (𝑎௪), with the optimal 𝑎௪ around 0.6~0.8. Therefore, in the wet-heating 

approach, where excess water is present, the reaction between protein and 

polysaccharide is thought to be not particularly efficient (Nursten, 2005, Wrolstad, 

2012).  

Based on the above stated issues, dry-heating Maillard reaction remains the most 

effective approach to produce proper MRPs (Akhtar et al., 2017, de Oliveira et al., 

2016). In practice, dry-heating Maillard reaction is usually conducted under controlled 

temperature and humidity, with no requirement of additional chemicals (Oliver et al., 

2006, de Oliveira et al., 2016). Commonly used reaction conditions are incubation for 

a few days at 60˚C and relative humidity (RH) of 65% (de Oliveira et al., 2016, Kato, 

2002), or at a higher temperature and RH (e.g. 80˚C and 75% RH) for only a few hours  

(de Oliveira et al., 2016, Akhtar et al., 2017). The flow chart in Figure 1.8B 

demonstrates the preparation of MRPs via dry heating.  

Figure 1.8 Preparation of protein-polysaccharide conjugates via wet-
heating (A) and dry-heating (B) pathways. 
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1.2.3 Conjugates based on animal-derived proteins 

Since the pioneer studies on Maillard-type protein-polysaccharide conjugates in the 

early 1990s (Kato et al., 1992, Kato et al., 1993, Dickinson et al., 1992), their excellent 

functionalities and potential use in the food industry have steadily attracted the 

attention of many researchers. In the past thirty years, glycoproteins made by dry 

heating have been extensively studied with a diverse combination of animal-derived 

proteins and polysaccharides (de Oliveira et al., 2016, Dickinson, 2015), including milk 

β-lactoglobulin-maltodextrin conjugates (Wooster et al., 2007), sodium caseinate-

maltodextrin conjugates (O’Regan et al., 2010a), egg white-pectin conjugates (Al-

Hakkak et al., 2010), and lysozyme–xanthan gum conjugates (Hashemi et al., 2014).  

Protein conjugates have been reported for their remarkably improved solubility 

(Jiménez-Castaño et al., 2007, Wang et al., 2012) as well as superior emulsifying and 

stabilizing properties, compared to unmodified proteins, particularly under harsh 

storage and processing conditions, such as high ionic strength (Kato et al., 1992, Kato 

et al., 1993, Wooster et al., 2007), acidic pH (Ding et al., 2017), freeze-thaw cycles 

(O’Regan et al., 2010a), thermal treatment (Wooster et al., 2007, O’Regan et al., 

2010a, Wang et al., 2014). In addition, Maillard-type conjugates have also been found 

to have some health benefits, such as enhanced antioxidant (Xu et al., 2013) and 

antimicrobial activities (Nakamura et al., 1991).  

There are also a couple of studies involving conjugation of polysaccharide with 

hydrolysed animal-derived proteins. O’Regan et al. (2010b) and O’Regan et al. (2013) 

investigated the behaviours of hydrolysed sodium caseinate-maltodextrin conjugates 

under environmental stresses (e.g. elevated temperature, acidic pH), and assessed 

their potential as low-molecular-weight molecules in aiding emulsification as a 

replacement for surfactants (e.g. glycerol monostearate). In another study (Hou et al., 

2017), hydrophobic casein fragments were obtained by trypsin hydrolysis and 

conjugated with A. seyal gum, so as to modify the weak emulsifying capacity of this 

cheap gum. Results showed that the hydrophobically modified gum has dramatically 

improved emulsification performance which is not far from that achievable by gum 

Arabic. 
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The factors that would influence the emulsifying and stabilizing properties of the 

produced conjugates have also been systematically investigated, mostly by taking milk 

proteins as a model. For instance, the impact of molecular mass of polysaccharides 

was studied. Polysaccharides of larger molecular mass were found more effective than 

smaller ones on preventing emulsion flocculation (Wooster et al., 2007, 2006, Dunlap 

et al., 2005). This is because they are capable of forming a thicker protective layer 

around droplets, which provides a strong steric repulsion coming into operation at 

larger droplet-droplet separations. In this sense, mono- and oligosaccharides showed 

no effect on enhancing the flocculation stability (Ding et al., 2017, Delahaije et al., 

2013). Some studies estimated the critical size of polysaccharides necessary to 

convey effective steric stabilization to roughly be around 6~10 kDa (Shu et al., 1996, 

Kato, 2002, Akhtar et al., 2007). On the other hand, emulsion stability only increased 

with the molecular size of polysaccharides up to a certain value. Attachment of larger 

polysaccharides exceeding that value did not offer any further benefits in terms of the 

steric stability, and even started to damage the stability of emulsions, probably due to 

disturbing the adsorption of conjugates onto the O/W interface (Akhtar et al., 2007, 

Dunlap et al., 2005).  

Another essential factor is the average density of carbohydrate moieties that are linked 

to one protein molecule. A few studies have demonstrated the improvement of 

emulsion stability with increasing number of polysaccharide attachments (Wooster et 

al., 2007, Akhtar et al., 2007). Similarly, over-attachment of polysaccharides impaired 

the emulsifying and stabilizing ability of conjugates (Dickinson et al., 1992, Akhtar et 

al., 2007), possibly due to making the conjugates too hydrophilic.  

In the study by Wooster et al. (2007), the influence of the polysaccharide structure on 

the induced steric stabilization was investigated. It was shown that linear 

polysaccharides were superior to branched ones in preventing droplet flocculation, 

when the two kinds of polysaccharides had similar molecular mass. 

In addition to the structure of polysaccharides, the distinct structure of proteins also 

played an important role in the performance of the final conjugated products. In an 

early study by Dickinson et al. (1992), three proteins (i.e. 11S globulin Vicia faba, 

bovine serum albumin (BSA) and β-casein) were conjugated with both a small (40 

kDa) and a large (500 kDa) dextran in order to assess the emulsifying behaviour as a 
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function of the molecular size of dextran and the dextran/protein ratio. It was found 

that attached dextran substantially enhanced the emulsifying ability of the two globular 

proteins (i.e. 11S globulin and BSA), whereas its impact in the case of the disordered 

β-casein was detrimental. The size of dextran and the ratio of dextran/protein for the 

optimum colloidal performances were dependent on the combination of protein and 

dextran.  

1.2.4 Conjugates based on plant-derived proteins 

In recent years, the ‘’green’’ trends in food industries have motivated a significant level 

of research interest in achieving completely plant based protein-polysaccharide 

conjugates. Plant proteins considered extensively so far for this purpose include soy 

protein, peanut protein, pea protein and wheat protein. However, the published work 

on the colloidal performances of plant based MRPs as emulsifiers is still incomplete.  

Firstly, quite a few studies only assessed the emulsifying activity index (EAI) and 

emulsion stability index (ESI) of the produced plant protein conjugates, but detailed 

information on the storage stability of emulsions under harsh conditions (e.g. the 

change of droplet size and distribution over time, the microstructure of emulsions) has 

rarely been provided (Liu et al., 2012, Qu et al., 2018, Matemu et al., 2009, Li et al., 

2014, Ma et al., 2020).  

In a number of other studies, plant proteins were covalently bonded with complex 

polysaccharides, such as soy soluble polysaccharides (Yang et al., 2015), gum Arabic 

(Pirestani et al., 2017, Zha et al., 2019), or fenugreek gum (Kasran et al., 2013). These 

polysaccharides, to a greater or lesser extent, already exhibit a reasonable degree of 

emulsifying ability on their own (Nakamura et al., 2004, McNamee et al., 1998, Huang 

et al., 2001, Garti et al., 1997). Therefore, it is difficult to attribute the improvement in 

the functionalities of plant protein solely to the formation of covalent conjugates, and 

to exclude the contribution made by the presence of those already surface active 

polysaccharides in the system. 

More importantly, the published results on emulsifying and stabilizing behaviours of 

MRPs derived from plant proteins provide a rather mixed picture. On one hand, a 

couple of studies have demonstrated dramatically modified functional properties for 

the conjugated plant proteins. For instance, in the study of Dickinson et al. (1992), 11S 
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globulin, isolated from Vicia faba, was conjugated with dextran (40 kDa) by incubating 

the dry mixture at controlled temperature and RH. The resultant hybrid polymers 

showed significantly enhanced emulsifying capacity. They generated a fresh O/W 

emulsion of smaller droplets (𝐷ସ,ଷ = 1.35 μm) with a  monomodal size distribution at 

pH 8.0 and 0.1 M ionic strength, compared to unmodified 11S globulin which produced 

an emulsion with a broad bimodal size distribution (𝐷ସ,ଷ = 2.2 μm). In another study 

(Delahaije et al., 2013), isolated potato protein, called patatin, was conjugated with 

oligosaccharides via dry heating. The O/W emulsion made by modified patatin 

exhibited a remarkably improved stability to flocculation at the pH range 3.0~7.0 or in 

the presence of high ionic strength (0.2 M). Another good example is the conjugates 

made from isolated wheat protein with dextran (64~76 kDa) via dry heating (Wong et 

al., 2011). The O/W emulsion made from those conjugates was adjusted to pH 4.0 

(approximately the pI of isolated wheat protein). Although the zeta-potential of the oil 

droplets was reduced almost to zero, the emulsion remained completely stable (𝐷ସ,ଷ 

around 1.5 μm) with no change in the droplet size. This indicated the excellent steric 

stabilizing ability of conjugated wheat protein.  

On the other hand, a large number of studies reported limited improvement of the 

emulsifying and stabilizing properties of conjugates based on plant derived proteins. 

For example, conjugation of dextran on wheat germ protein only slightly modified the 

solubility of protein (Niu et al., 2011). The case was the same for conjugates of 

rapeseed protein-dextran (Qu et al., 2018), soy protein-dextran (Diftis et al., 2006) and 

peanut protein-glucomannan (Li et al., 2014). The emulsion stability under acid pH 

conditions or high ionic strength was also found to be marginal in the studies of 

conjugated soy protein-dextran (Xu et al., 2009), conjugated soy β-conglycinin (Zhang 

et al., 2012a) and conjugated oat protein-dextran (Zhang et al., 2015). There are even 

a couple of cases reporting that the MRPs had significantly deteriorated solubility as 

well as emulsifying capacity as a result of conjugation, for instance, the MRPs of soy 

protein-maltodextrin (Akhtar et al., 2007) and acid soluble soy protein-dextran (Xu et 

al., 2009). This makes the picture emerging from these studies, involving the 

properties of conjugated plant protein, even more confusing.  

Last but not least, conjugated plant proteins normally produce relatively coarse 

emulsions. The average droplet size is around a few microns (Chen et al., 2016, Diftis 
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et al., 2006, Diftis et al., 2005, Mu et al., 2010, Zhang et al., 2012a). It is suspected 

that in many cases those reported emulsions may be of Pickering type, stabilized not 

by molecularly adsorbed protein layers, but rather by particulate protein aggregates. 

This is usually the case for proteins with a poor solubility. 

From the reviews of previously published studies on both animal- and plant-based 

conjugates, it is noticed that conjugates made from animal derived proteins are more 

successful with respect to their colloidal performances than those made from plant 

proteins. It is postulated that the key factor in synthesizing suitable covalent complexes 

with polysaccharides is the solubility of the original protein. The solubility of protein is 

not only critical in producing fine emulsions, but is also crucial to guarantee an 

intimately mixed blend of the two biopolymers in the first instance, so that the Maillard 

reaction could proceed at a sufficient level. This point is sometimes overlooked in the 

literature, particularly when plant based conjugates are prepared. 

If the three studies aforementioned which demonstrated conjugated plant proteins with 

improved functionalities, are carefully examined, it is noted that the plant proteins 

involved in those studies all have a reasonable level of solubility to start with. The 11S 

globulin Vicia faba in the study of Dickinson et al. (1992) was reported to be able to 

produce a fine emulsion which had a similar mean droplet size to that made by BSA 

(𝐷ସ,ଷ for the former and the latter case is 2.2 μm and 2.0 μm, respectively), implying 

that the protein chains of 11S globulin were in a much less aggregated state, as 

compared for example to commercial isolated soy proteins which normally fabricate 

coarse Pickering-type emulsions (𝐷ସ,ଷ  normally over 10 μm) (Chen et al., 2011a, 

2011b) with the measured soy protein particle size in dispersion normally over a few 

hundred nanometres (Zhang et al., 2018). Likewise, the potato patatin used in the 

study of Delahaije et al. (2013) has a relatively high solubility over the pH range 3.0 to 

7.0, and was found to have a comparable emulsifying property to milk β-lactoglobulin 

(van Koningsveld et al., 2001). The isolated wheat protein used in forming conjugates 

with dextran in the study of Wong et al. (2011) was indeed a modified wheat protein 

isolate. Modification was conducted via deamidation, in which more than 90% of the 

protein fraction was made quite soluble. The solubility of such deamidated wheat 

protein was observed to be similar to that of sodium caseinate and about seven times 

superior to that of isolated soy protein (Ahmedna et al., 1999).  
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However, most of the native plant proteins (e.g. soy proteins, pea proteins and peanut 

protein) have a compact and complex tertiary and quaternary structure (Chen et al., 

2011a, Chen et al., 2016, Burger et al., 2019). Besides, commercially available plant 

proteins are normally denatured, which exposes their hydrophobic residues and 

causes their aggregation through hydrophobic association (and where cysteine is 

involved, the formation of disulphide bonds) (Dickinson, 2019). The structural 

properties and the aggregated state of commercial plant proteins vary according to the 

extraction and processing conditions that they have been subjected to (Dickinson, 

2019, McClements, 2015n). This renders many plant proteins a poor solubility and 

limited dispersibility, which become a major obstacle in obtaining a well-blended mix 

of protein and polysaccharide. Such a molecularly mixed blend is the first step in order 

for an efficient synthesis of plant based conjugated biopolymers. Therefore, it is 

essential to modify the protein solubility prior to its mixing with polysaccharide in the 

solution and its subsequent conjugation with polysaccharide.  

One effective way to achieve the above goal is to fragment plant proteins. Generated 

smaller peptides will not only tend to be more soluble than the original protein, but also 

aid the formation of fine emulsions due to the breakdown of large aggregated protein 

particles. Therefore, this could be a promising way to produce molecular (as opposed 

to Pickering-type) plant based emulsifying agents. In an early study of Kato et al. 

(1991), insoluble wheat gluten was first treated by protease (i.e. Pronase), and was 

found to have improved solubility. However, the solubility of hydrolysed gluten was still 

not greatly modified at acidic conditions. Following incubation with dextran via dry 

heating, the conjugated wheat protein peptides constantly maintained a high level of 

solubility over a wide pH range from 2.0 to 12.0. Unfortunately, this study did not 

provide information on the emulsion stabilizing capacity of the conjugated wheat gluten 

fragments.  

In addition to fragmentation, it is noted that plant protein can also be made more 

soluble by deamidation reaction. This treatment introduces additional carboxyl groups 

(-COOH) to proteins by converting asparagine and glutamine residues into aspartic 

acid and glutamic acid respectively. In the meantime, the high alkaline condition 

required by the deamidation reaction hydrolyzes the peptide bonds. Both effects 

benefit the solubilization of plant proteins in neutral and alkaline conditions, whereas 
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the solubility in acidic conditions is not improved much. In the study of Yin et al. (2017), 

insoluble zein protein was deamidated under alkaline conditions. The obtained zein 

peptides themselves were not able to produce proper emulsions at pH 4.0, due to their 

low solubility and weak electrostatic repulsion. In contrast, their conjugated 

counterparts with maltodextrin, formed post dry heating treatment, exhibited excellent 

emulsifying and long-term emulsion stabilizing ability at pH 4.0. The reported droplet 

size of the O/W emulsions had a hydrodynamic diameter of around 200 nm and 

remained stable over 70 days of storage. Unexpectedly, if stored at pH 7.0, these 

emulsions completely broke up. At this pH condition, the peptides became highly 

charged and some of them became too hydrophilic, arising from the deprotonation of 

a large amount of carboxyl groups which were introduced during protein deamidation. 

Consequently, there are strong electrostatic repulsions between the polymers which 

made up the adsorbed layer. Also, some polymers previously anchored at the surface 

of oil droplets may become detached. These effects together lead to the dissociation 

of the interfacial films that coated the oil droplets and the eventual breakdown of 

emulsions. Another disadvantage of deamidation is that the cleavage of peptide bonds 

during this treatment normally happens at random and in a non-selective way along 

the protein backbone. This is likely to generate a large number of peptides which would 

be too small to be effective emulsifiers.  

For most of the research in food colloids,  the solubility of protein is improved via the 

strategy of enzymatic hydrolysis. There is one study in which plant protein was 

modified by a combination of conjugation and enzymatic hydrolysis, showing 

promising functionalities. Zhang et al. (2012a) first synthesized conjugated soy β-

conglycinin with dextran (67 kDa). The product was then hydrolysed by trypsin in a 

controlled manner. Although the hydrolysis was performed post conjugation (which is 

the opposite way to what is being proposed in the current project), the final products 

at the degree of hydrolysis (DH) of 2.2% formed a fine emulsion (𝐷ସ,ଷ < 1 μm). The 

droplets remained reasonably stable under a wide range of tested pH (pH 2.0 to 10.0), 

at high ionic strength (up to 0.2 M NaCl), and post thermal treatment (90˚C for 30 min) 

for a storage period of 4 weeks. Whereas extensive hydrolysis at higher DH of 6.5% 

was seen to significantly deteriorate the functional properties of β-conglycinin-dextran 

conjugates. Unfortunately, β-conglycinin, as one of the components of isolated soy 

protein, is tedious to isolate and is rarely commercially available (Nagano et al., 1992, 
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Vu Huu et al., 1979, Thanh et al., 1975). (Particularly, as will be discussed later in this 

thesis, our work showed that the same technique, i.e. conjugation prior to 

fragmentation, does not work if commercial SPI is used instead of β-conglycinin.) 

The ability of conjugated protein fragments to stabilize emulsions during repeated 

freeze-thaw treatments has been assessed as well. In the study by Yu et al. (2018a), 

soy protein isolate (SPI) was digested by trypsin. The soy hydrolysates at two different 

DH (2% and 5%) were conjugated with dextran (40 kDa). Emulsions made by 

conjugated soy peptides at DH 2% exhibited significantly better stability (𝐷ସ,ଷ = 3.13 

μm) subjected to three freeze-thaw cycles than both SPI/SPI-dextran based emulsions 

(𝐷ସ,ଷ about 15 μm) and those made by conjugated peptides at DH 5% (𝐷ସ,ଷ = 5.61 μm). 

Another study of conjugated soy fragments also showed positive results on the freeze-

thaw stability of emulsions by evaluating the creaming index of emulsions (Zhang et 

al., 2019a, Lee et al., 1987).  

It is also worth noting here that with regard to the conjugates made from protein 

fragments, there will be a few more issues of concern in addition to the solubility of 

proteins (e.g. the optimal degree of hydrolysis of proteins, the choice of enzyme), in 

order for the conjugates to display good emulsifying and stabilizing properties.  

In addition, research also studied the interfacial adsorption behaviours (Li et al., 2016), 

the structural properties (Xu et al., 2018, Zhang et al., 2014c), and the antioxidant 

properties (Xu et al., 2018, Zhang et al., 2014a) of conjugated plant protein fragments.  

To summarize, the picture of modification of the functional properties of plant 

protein/peptides with polysaccharide via Maillard reaction is far from clear. Although a 

few studies have provided useful information, these have not been enough for us to 

totally understand the contrasting results reported in the literature on the emulsifying 

and stabilizing abilities of plant based conjugates. In spite of that, through a careful 

comparison of previous studies, a couple of factors that could significantly influence 

the properties of conjugated products could already be identified. The most crucial one 

is the solubility of protein to start with, prior to Maillard reaction. Enzymatic hydrolysis 

of plant protein prior to conjugation would be beneficial for enhancing the protein 

solubility. When it comes to protein fragmentation, additional factors have to be taken 

into consideration, such as the degree of hydrolysis and the choice of enzyme to use. 
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However, various investigations in the literature have used a different enzyme and the 

degree of hydrolysis (DH) was also not the same. This makes a comparative analysis 

of how enzymatic hydrolysis affects the colloidal behaviours of protein more difficult. 

In order to clarify the picture, more systematic studies are required on the 

investigations of the emulsifying and long-term stabilizing properties of conjugated 

plant protein/peptides, particularly under environmental stresses.  

 

1.3 Aims and objectives 

The current project aims to systematically investigate the feasibility of conjugated 

polypeptides to create and stabilize fine submicron-sized O/W emulsions under 

challenging environments (particularly acidic pH conditions). We hope to establish 

guidelines for synthesizing fully plant-based food emulsifiers for this purpose. To 

achieve this aim, the following objectives are included in this project. 

First of all, both milk whey protein isolate (WPI) and commercial soy protein isolate 

(SPI) are studied, as typical examples of proteins derived from animal and plant 

sources, respectively. WPI is a protein mixture with its pI value roughly around pH 

4.5~5.0 (Boland, 2011). The major component of WPI is β-lactoglobulin, which makes 

up more than 60% of the total protein. The other important component is α-lactalbumin 

(Boland, 2011, Kilara et al., 2004). SPI is also a mixture of various proteins. The main 

protein ingredients are classified into four categories (i.e. 2S, 7S, 11S and 15S) 

according to their sedimentation coefficients (Fukushima, 2004). Among these, β-

conglycinin (7S) and glycinin (11S) represent more than 80% of the total protein 

content in SPI, with the ratio of 7S to 11S varying between 0.5~1.7 depending on the 

type of cultivars (Tang, 2017, Nishinari et al., 2014). The pI value of SPI is estimated 

to be around pH 4.5~4.8 (Nishinari et al., 2014). 

Careful comparisons are made between the observed behaviours for whey protein 

samples and those for equivalent soy protein samples that have undergone exactly 

the same enzyme treatment and the subsequent Maillard reaction process. Greater 

emphasis is placed on soy protein, as the picture of emulsifying and stabilizing 
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properties of conjugated plant protein/peptides is far from clear (as discussed in 

section 1.2.4). We hope to provide more clarity on this aspect.  

As to the polysaccharide, a neutral, linear and relatively small maltodextrin with 

dextrose equivalent (DE) of 16.5-19.5 (𝑀௪= 8.7 kDa) is chosen to conjugate with 

protein/peptides. This is to avoid the formation of electrostatically-driven complexes 

between protein/peptides and polysaccharides. The use of this maltodextrin also 

ensures that no complications, such as those coming from the emulsifying, gelling or 

stabilizing capabilities of polysaccharides, arise. In the meantime, we would like to 

maintain some level of continuity with earlier published work in our labs, on the 

modification of emulsifying and stabilizing properties of whey protein isolate by 

covalently bonding with this maltodextrin (Akhtar et al., 2003, 2007, Ding et al., 2017). 

Most importantly, two distinct enzymes (i.e. trypsin and alcalase) are used to digest 

protein. These two enzymes dramatically differ in their overall level of selectivity of 

peptide bonds to cleave. Trypsin only acts on the C-terminal sides of lysine and 

arginine residues, whereas alcalase has a much broader range of substrates (e.g. 

aromatic, acidic and basic amino acid residues). The aim is to interpret the role of the 

selectivity of enzyme and the degree of hydrolysis in the performance of the 

fragmented protein materials, both prior to and post reaction with polysaccharide. 

 

1.4 Thesis outline 

The thesis is composed of 7 chapters. 

Chapter 1 briefly introduced the foundation of colloidal systems, with focus on the 

stability of O/W emulsions made by macromolecules. Then the major literature 

regarding the preparation of MRPs and the emulsifying and stabilizing properties of 

conjugated animal- and plant-based protein/peptides was reviewed, with the research 

gap in this field identified. Finally, the organization of the thesis is presented. 

Chapter 2 explains in detail the basic physical and chemical principles underlying the 

theoretical and experimental methods that were employed in this project. This builds 
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up a general understanding of how the theoretical calculations and the experiments 

were conducted. 

Chapter 3 is theoretical work, which mainly discusses how the structural properties of 

fragmented protein (i.e. the size, the hydrophobicity and conformation) and 

polysaccharide (i.e. the size) would affect the emulsifying and stabilizing properties of 

biopolymers. This chapter serves as a theoretical foundation for the following 

experimental investigations. 

Chapter 4 and Chapter 5 present the results for the non-conjugated and conjugated 

whey protein/peptides and soy protein/peptides, respectively. Results from these two 

chapters are compared in detail from various aspects (e.g. solubility, efficiency of 

conjugation, emulsifying and long-term stabilizing ability). In this way, we aim to 

provide a clearer understanding of the possibility and complications involved in 

producing suitable plant based food emulsifiers for the use of making stable and fine 

submicron-sized O/W emulsion systems.  

Chapter 6 is a relatively short study, which provides some preliminary data on the 

impact of the molecular size of protein fragments on the emulsifying and stabilizing 

properties of conjugated products. This short study offers some experimental evidence 

for the theoretical results in Chapter 3, and is also helpful to interpret some of the 

findings in Chapter 4 and Chapter 5. 

Last but not least, Chapter 7 summarizes the key findings in this project and manifests 

the contributions of this entire study to the understandings of the properties of not just 

soy protein/peptides, but plant proteins more generally.  
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Chapter 2 Theoretical and Experimental Methods 

2.1 Introduction 

Experimental investigations have played an essential role in the study of colloidal 

systems. They provide the solid foundation for understanding many aspects of the 

behaviour of the colloidal materials and systems, such as the stability, the 

microstructure and rheological properties of emulsions. Nevertheless, the complexity 

of food systems, due to the simultaneous presence of various components (e.g. 

dispersed particles, polymers, surfactants, salts, sugars, fats), can lead to different or 

even sometimes contrasting expectations of the behaviour to those actually found 

experimentally. On the other hand, mathematical and computer simulations can 

simplify those situations by offering the flexibility of changing or completely switching 

off certain disturbances arising from the presence of a particular type of ingredient, 

without altering the interactions between the others. This allows simulations to provide 

a unique insight and critical ability to examine possible conclusions arrived at through 

experiments. Mathematical and computer simulations have been broadly applied to 

the studies of food colloidal systems (Ettelaie, 2003), such as the structure and 

mechanical behaviours of food gels, and the conformational structures of protein 

materials at the interface (Dickinson et al., 1997a, Akinshina et al., 2008).  

In this project, both experimental and simulation techniques are employed to study the 

performance of unconjugated and conjugated protein materials, in particular the 

colloidal stability that adsorbed layers of these biopolymers induce in O/W emulsion 

systems. The theoretical method used here is numerical based self-consistent-field 

(SCF) calculations, which are a valuable tool in the study of the equilibrium property 

of adsorbed polymers at the interface. This chapter will start with a discussion of this 

theoretical method first, and then continue to explain the principles of the experimental 

techniques that have been used in the project. 

 

2.2 Theoretical methods 

The self-consistent-field (SCF) theory and calculations are firmly based on the 

principles of thermodynamics. In order to get a better idea of this theory, it is necessary 
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to first provide a basic sense of the thermal and statistical physics involved, before 

moving on to a more detailed description of SCF calculations as applied to adsorbed 

interfacial polymer layers. 

2.2.1 Statistical and thermal physics 

A thermal system normally consists of an extremely large number of molecules. These 

molecules can exist in many different configurations, depending on their positions, 

velocities, orientations and other possible internal states. Each possible configuration 

of such an ensemble of molecules is regarded as a microstate. The number of possible 

microstates is extremely huge. A thermal system is not going to stay long in any of 

these microstates, but rather continuously evolves from one microstate to another. All 

the accessible microstates can be conveniently grouped into different “macrostates” 

which are associated with macroscale parameters that can be measured (e.g. 

pressure, volume, density, etc.) (Lee, 2002a). 

The fundamental postulate in statistical and thermal physics is that an isolated system 

visits each of its accessible microstates with equal frequency. According to that, the 

most probable macrostate that the system will be found in is the one which has the 

largest number of microstates (Dill et al., 2003b). This number tends to be so 

overwhelmingly large for a normal thermal system that in many cases it is safe to 

ignore those macrostates with smaller number of microstates. In other words, an 

isolated system will always evolve spontaneously towards the macrostate that 

contains the largest number of microstates, even though it was initially put in a different 

macrostate (Lee, 2002a). This indeed is a statement of the second law of 

thermodynamics. Based on the Boltzmann Law below, the macrostate with the largest 

number of microstates also has the maximum entropy: 

𝑆 ൌ 𝑘஻ ∙ 𝐼𝑛𝑊         ሺ2.1ሻ 

where 𝑆 is the entropy of the system 

           𝑘஻ is the Boltzmann’s constant (1.38 ൈ 10ିଶଷ𝐽𝐾ିଵ) 

           𝑊 is the number of microstates (also called multiplicity) of a specific macrostate 

For the above reason, the second law of thermodynamics is also referred to as the 

maximum entropy principle, which is the only rule that governs how an isolated thermal 
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system will behave when the energy, volume and number of molecules of the system 

have changed (Dill et al., 2003a). A thermal system is considered to have reached the 

equilibrium when it is in the macrostate with the highest entropy. If left alone once this 

macrostate is attained, the isolated thermal system will remain in this equilibrium state 

forever, with various observable parameters only showing very small fluctuations 

around their values for this macrostate (Lee, 2002a).  

When a thermal system is brought into contact with a large reservoir, the two will 

cooperate to maximize their combined total entropy, instead of their own. In the pursuit 

of doing this, the probability 𝑃ሺ𝐸௜ሻ  of the system visiting a microstate 𝑖 with an energy 

𝐸௜ is altered and now becomes proportional to the Boltzmann factor 𝑒𝑥𝑝 ሺെ 𝐸௜ 𝑘஻𝑇ሻ⁄  

that is associated with the energy 𝐸௜  of the system. Compared to the fundamental 

postulate for an isolated system, this is called the modified postulate (Lee, 2002b). If 

one takes the total number W	of the microstates in a specific macrostate into account, 

then the probability of finding the system in a macrostate 𝑗 of an energy 𝐸௝ is given by  

     𝑃൫𝐸௝൯ ~  𝑊൫𝐸௝൯ 𝑒𝑥𝑝 ൬െ
𝐸௝

𝑘஻𝑇
൰ ൌ exp ൬െ

𝐹௝

𝑘஻𝑇
൰         ሺ2.2ሻ 

Equation (2.2) stresses that from a macroscopic point of view, the probability of a 

system being in a macrostate with an energy 𝐸௝ is now proportional to the Boltzmann 

factor that is associated with the free energy 𝐹௝ of the system. In other words, the most 

probable macrostate of a system is the one with the lowest free energy (Lee, 2002b). 

Another point worth noting is that the maximum entropy principle for the combined 

system has now been converted to a minimum free energy principle for the system of 

interest (Dill et al., 2003c). This conversion is of significant importance, because 

instead of working on the combined entropy of the system plus the large reservoir, 

which is barely possible to calculate and measure, one can handle the free energy 

more easily both in experimental and theoretical approaches (Lee, 2002b). 

The above considerations are quite general, but of course apply to the equilibrium 

properties of dense adsorbed polymer layers at the interfaces, as will be discussed 

next.    

2.2.2 SCF theory applied to dense adsorbed interfacial layers 
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There has been a great deal of efforts in theoretical modelling of the interactions 

between polymers (e.g. proteins and polysaccharides). With regard to Monte Carlo 

and Molecular Dynamics simulations, they normally deal with a relatively small number 

of molecules over a short period of time. However, when one considers the adsorbed 

layer at the interface, one molecule is very likely to interact with many other molecules. 

Therefore, it will be too time-consuming to apply Monte Carlo and Molecular Dynamics 

in such situations (Ettelaie et al., 2008, Ettelaie et al., 2012). On the other hand, the 

highly concentrated interfacial layer can be regarded as homogenous along the 

surface, and this is particularly true for flexible and disordered polymers (e.g. αs1-

casein and β-casein) or hydrolysed protein fragments as are considered in this project. 

Thus, it becomes feasible to apply the mean-field numerical self-consistent field (SCF) 

calculations, which are well-established in the field of polymer physics, to examine the 

properties of such dense interfacial layers (Ettelaie, 2003, Ettelaie et al., 2005). 

The self-consistent field (SCF) calculations in this project are performed by using the 

Scheutjens-Fleer scheme (Scheutjens et al., 1979, 1980). It was originally introduced 

to the study of adsorption behaviour of protein-like chains by the work of Leermakers 

et al. (1996), Dickinson et al. (1997a) and Dickinson et al. (1997b). The predicted 

results in terms of the structures of interfacial layers formed by αs1-casein and β-casein 

in those early works were in very good qualitative agreement with the neutron 

reflectometry experiments (Atkinson et al., 1995, Atkinson et al., 1996, Dickinson et 

al., 1993), and also provided a clear explanation for the observed differences in the 

colloidal stabilizing behaviours of these two proteins (Dickinson et al., 1997a, 

Dickinson et al., 1997b). The SCF calculations have also been successfully extended 

to a variety of other colloidal materials, such as interfacial layers consisting of mixed 

biopolymers (Parkinson et al., 2005, Ettelaie et al., 2008), protein-polysaccharide 

conjugates (Akinshina et al., 2008) and fragmented proteins (Ettelaie et al., 2014). 

The Scheutjens-Fleer scheme for implementation of the SCF calculation is established 

on a 3D lattice model. Figure 2.1 provides a simpler 2D illustration of the model. Two 

approaching interfaces (representing part of the surface of two dispersed droplets) are 

taken as two parallel planar planes with the space in between them being divided into 

layers (𝑟 ൌ 1,2,3, … , 𝐿), each of a thickness of one monomeric size 𝑎଴. These layers 

are further divided into equal-sized cubic cells. For the purpose of numerical 
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calculations, all the different monomeric segments making up the polymers (i.e. amino 

acid or glucose residues), individual ions and solvent molecules are considered to be 

of equal size 𝑎଴. Each monomer occupies one lattice site, and all the sites are required 

to be occupied either by a polymer segment, an ion or a solvent molecule. The 

excluded volume (i.e. one monomer cannot land on a lattice site that has already been 

occupied by another monomer) is accounted for in SCF theory by putting a constraint 

in the calculations which ensures the sum of the volume fractions of all monomer 

species for each lattice site in the system has to add up to one (see Appendix I). 

Particularly for polymers, the excluded volume effect, arising from the conformational 

entropy of polymer chains, induces repulsive forces and is the basis for the steric 

stabilization in colloidal systems (Dill et al., 2003d, 2003e). This entropic term is 

inherently built in the SCF calculations for the free energy of the dispersed system. 

More details regarding this are provided in Appendix I. 

The essential aim of self-consistent field (SCF) calculations is to determine the most 

probable macrostates for all the species (including polymers, solvent, ions) that exist 

in the gap between a pair of planar surfaces. The discussions in the previous section 

indicate that such states will be the ones that minimize the free energy of the system. 

To obtain these states, the free energy of the system is evaluated in terms of a set of 

concentration profiles for all different types of monomers, instead of the position or 

Figure 2.1 (A) Schematic illustration of two approaching dispersed 
phases with the space in between. (B) Magnified two-dimensional lattice 
model of this space and the different species existing in between. 
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conformation of individual molecules (Ettelaie et al., 2014). Due to the fact that in this 

lattice model one monomer size is chosen as one lattice size, the concentration or 

density is now the same thing as the volume fraction for a certain type of monomer. 

Furthermore, provided that the environment of all the lattice sites within a given layer 

is the same (see Figure 2.1), the density of the monomers of a certain type 𝛼 is 

assumed to be uniform within the same layer, only varying in the direction 

perpendicular to the two interfaces (across the gap) but with no variation parallel to 

the surfaces (Ettelaie et al., 2014, Ettelaie et al., 2008, Ettelaie et al., 2005). Thus, 

variations in the concentration of any type of monomers can be expressed as a 

function of the perpendicular distance 𝑟 away from one or the other planar surface. 

In principle, associated with each set of concentration profiles (for all types of 

monomers) there is a free energy, which in line with the discussions of section 2.2.1, 

determines the likelihood of that set of profiles to happen. Strictly speaking, for a 

thermal system, all the thermodynamic quantities of interest have to be averaged over 

all possible outcomes, each one of which has a probability of occurring proportional to 

its own appropriate Boltzmann factor. Unfortunately, the task of summing over all 

concentration profiles with their corresponding probabilities is very difficult to carry out 

mathematically. Therefore, the SCF theory adopts an important approximation in that 

the most probable set of concentration profiles dominates the behaviour of the system, 

with the fluctuations around this set being negligible and hence ignored (Fleer et al., 

1996, Lifshits et al., 1978, Ettelaie et al., 2014). This is a feature that SCF calculations 

share with all mean-field type theories. This approximation is valid for sufficiently 

concentrated systems with a large number of molecules present, such as the dense 

interfacial layers formed by adsorbed polymers in our case (Ettelaie et al., 2012, 

Ettelaie et al., 2014, Ettelaie et al., 2008). 

The concentration profiles of different monomer species are influenced by a variety of 

interactions between monomers in the system, such as the electrostatic interactions 

and hydrophobic interactions. In SCF calculations, the net result of these interactions, 

experienced by a monomer, is represented by an “effective field” acting on it. For each 

type of monomer, a set of such fields are applied on the monomer at any layer it may 

sit. These fields themselves depend on how molecules are distributed in the space 

between the two planar surfaces. Unfortunately, neither the distributions of different 
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species nor the interacting fields resulting from them are known to us in advance. In 

order to solve this issue, an iterative process is performed. A much more detailed 

description of how SCF calculations are done via such an iterative procedure can be 

found in Appendix I. Here only a brief explanation is provided. The iteration begins 

with a trial set of interacting fields. Then the concentration profiles of various species 

are calculated under the influence of these guessed fields. Based on the calculated 

concentration profiles, an updated set of fields are then obtained. This procedure is 

repeated until the concentration profiles and the fields no longer change substantially 

with further iterations. At this point, the iteration process has converged and the 

density profiles thus obtained are the most probable profiles, representing the 

equilibrium density profiles.  

These calculations and iteration processes can be implemented by using an already 

developed program available for Windows platform. The calculations are done for a 

series of separation distances between the two surfaces, to obtain the variations of 

free energy. Combined with the attractive van der Waals forces, the total colloidal 

interactions between two dispersed droplets coated with adsorbed polymers will be 

presented as a function of separation. This plot of interaction potential-distance may 

for example look like Figure 1.2 or Figure 1.3 in Chapter 1, and it will help to 

theoretically examine the colloidal emulsifying and stabilizing properties of a particular 

polymer.  

Apart from the inter-droplet interaction potentials, the density profiles for each type of 

monomer species in the gap between two droplets, and the most probable 

conformation of adsorbed polymers at the droplet surface, can also be determined 

through SCF calculations. These will provide additional information to interpret the 

colloidal stability of an O/W emulsion system. An important point to note here is that 

the SCF calculations only predict the equilibrium properties of a dispersed system, 

without any kinetic factors taken into account. 

 

2.3 Experimental methods 
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In this section, the basic physical and chemical principles underlying the key 

experimental methods used in this project are discussed. The details of how the 

experiments were performed (e.g. reaction time, temperature) will be given in each of 

the following chapters, as appropriate.  

2.3.1 Degree of hydrolysis 

Limited enzymatic hydrolysis has been demonstrated to be an effective way to modify 

the functional properties of proteins, more often with vegetable proteins. The 

parameter to control the proteolytic reaction in the current work is the degree of 

hydrolysis (DH), which is defined as the percentage of peptide bonds cleaved 

(Panyam et al., 1996). The advantage of using DH over other parameters (e.g. enzyme 

dosage, reaction time) is that the properties of hydrolysed proteins are mainly 

governed by DH alone (Adler-Nissen et al., 1979, Adler-Nissen et al., 1983).  

There are a couple of analytical methods commonly used for determining DH, e.g. the 

TNBS (trinitrobenzenesulfonic acid) assay, the OPA (o-phthalaldehyde) assay or the 

pH-stat technique. As to this project, pH-stat is chosen as the preferred method, 

because it is a very convenient, fast, reproducible and non-destructive way to monitor 

DH as hydrolysis is taking place (Mat et al., 2018).  

In pH-stat approach, protein is hydrolysed under constant pH and temperature. 

Particularly for our case, proteins will be digested by two enzymes (i.e. trypsin and 

alcalase) where both enzymes have optimal activity in the pH range 7.0 to 9.0. The 

breakdown of peptide bonds will release carboxyl groups (-COOH) and amino groups 

(-NH2). At neutral or alkaline condition, the deprotonation of carboxyl groups, which is 

more intensive than the protonation of amino groups, will lead to a decrease of pH in 

the system as enzymatic hydrolysis proceeds. In order to keep the pH constant, base 

solution has to be added. The DH can therefore be calculated from the amount of base 

consumed according to the following equation (Adler-Nissen et al., 1983): 

𝐷𝐻ሺ%ሻ ൌ
𝐵 ൈ 𝑁௕

𝛼 ൈ 𝑀௣ ൈ ℎ௧௢௧
ൈ 100%  

where 𝐵 = consumption of base (in litre) 

𝑁௕ = normality of the base  
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           𝛼 = average degree of dissociation of the amino groups 

           𝑀௣ = mass of protein to be hydrolysed (in kg) 

           ℎ௧௢௧ = total number of peptide bonds per gram of protein substrate (meqv/g) 

The values of 𝛼 for a series of temperature and pH conditions are given in the book of 

Adler-Nissen (1986). The value of ℎ௧௢௧ depends on the amino acid composition of the 

protein. For the two proteins under investigation in this study, ℎ௧௢௧ is 8.8 meqv/g for 

whey protein and 7.8 meqv/g for soy protein (Adler-Nissen, 1986). 

2.3.2 Gel electrophoresis 

After the preparation of conjugates, it is essential to confirm that protein and 

polysaccharide are covalently bonded. A major difference of a conjugated 

protein/peptide compared to its unreacted counterpart is the significant increase of the 

molecular weight of the former. This can be readily visualized by performing gel 

electrophoresis. 

In this technique, protein materials are pretreated with both an anionic detergent, i.e. 

SDS (sodium dodecyl sulphate), and a reducing reagent, i.e. DTT (dithiothreitol). SDS 

strongly associates with protein to mask the original charges on the protein backbone, 

so that protein obtains sufficient negative charges and will move towards the anode 

under an applied electric field. SDS also denatures and unfolds protein. In contrast, 

Figure 2.2 Schematic illustration of the migration of proteins on the 
solid polyacrylamide gel support during electrophoresis. The green
arrow indicates the direction of protein movement. 
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DTT is added to break up the disulphide bonds in protein. The treatment with SDS and 

DTT makes protein materials acquire a rod-like shape. This eliminates the difference 

between proteins in their secondary and tertiary structure (and also quaternary 

structure where it applies). Therefore, protein materials will be separated based on 

their molecular weight alone (Srinivas, 2012). As shown in Figure 2.2, the difference 

in molecular weight of protein materials is reflected by how fast they migrate through 

the solid polyacrylamide gel support (i.e. PAGE) when an electric field is applied. 

Protein materials of larger molecular size will move more slowly and eventually appear 

on the upper end of a vertical gel platform, as compared to those of smaller molecular 

size (Srinivas, 2012). By using a standard molecular weight ruler, the molecular weight 

of a tested protein sample can thus roughly be estimated. 

2.3.3 Solubility  

The solubility is one of the most important characteristics that affect the emulsifying 

capacity of protein materials. It is usually defined as the protein content in the 

supernatant after centrifugation. There are several analytical methods that can 

quantify the protein content in a sample, such as Kjeldahl, Biuret, Lowry, BCA 

(bicinchoninic acid) and Bradford assays (Moore et al., 2010). In this study, solubility 

is determined by Biuret assay, which is a relatively simple, rapid and accurate 

technique (Gornall et al., 1949). 

Figure 2.3 The chemical reaction mechanism of Biuret assay for 
quantification of protein solubility. 
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The principle of Biuret assay is illustrated in Figure 2.3. In alkaline conditions, cupric 

ions (Cu2+) in Biuret reagent will complex with the unshared electron pairs on 

the nitrogen atoms in peptide bonds, which produces cuprous ions (Cu+). The shift 

from Cu2+ to Cu+ results in the solution turning from blue to purple. The deeper the 

purple colour, the higher the number of peptide-copper complexes (Rocco, 2006). This 

is the basis of the quantitative colorimetric measurement of total protein content in the 

supernatant.  

2.3.4 Sulfhydryl (-SH) content 

The change of free sulfhydryl content of a sample is detected in order to display the 

structural properties of different protein materials. The free -SH groups are quantified 

based on a stoichiometric disulphide exchange reaction (Figure 2.4), where the highly 

oxidizing disulphide bond in 5,5’-Dithiobis-(2-nitrobenzoic acid) (called DTNB or 

Ellman’s reagent) is reduced by free -SH (Hansen et al., 2009, Winther et al., 2014). 

The formed compound, 5-thio-2-nitrobenzoic acid (TNB), gives bright yellow color and 

absorbs strongly at 412 nm. The free –SH content 𝐶ௌு (mol/g protein) is then easily 

obtained from the absorbance measurement according to the following equation 

(Ellman, 1959): 

𝐶ௌு ൌ   
𝐴ସଵଶ

𝜀
ൈ 𝐷/𝐶௣      

where 𝐴ସଵଶ = absorbance reading at 412 nm 

𝜀 = molar extinction coefficient of TNB (13,600 M-1cm-1) 

 𝐷 = dilution factor of the sample 

 𝐶௣ = protein content of the tested sample (g/L) 

Figure 2.4 The chemical reaction mechanism of Ellman’s reagent for
analysis of the free sulfhydryl content of protein materials. 
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2.3.5 Particle sizing 

The molecular size of emulsifiers plays an essential role in determining the emulsion 

droplet size. For example, surfactants and macromolecules are able to produce nano- 

or submicron-sized O/W emulsions, while large particles more than a few hundred 

nanometres can only create micron-sized Pickering emulsions. In turn, the size 

distribution of oil droplets formed is closely related to the behaviours of O/W 

emulsions, such as the creaming stability and the rheological property of an emulsion. 

Therefore, it is crucial to investigate the size of both the emulsifiers and the emulsion 

droplets. The size information can be obtained by light scattering techniques. 

When a light beam hits a particle, the incident light will be scattered in a well-defined 

manner. The scattering pattern (i.e. mainly the angle and intensity of scattered light) 

is characteristically dependent on the size of the particle relative to the wavelength of 

the light, supposing the particle is of a spherical shape (Everett, 1988b, McClements, 

2015a). This is the basis of how the particle size distribution of a sample can be derived 

from collecting the signals of scattered light at different angles. 

2.3.5.1 Sizing of emulsifiers  

Figure 2.5 Schematic illustration of the basic setup for Dynamic
Light Scattering (DLS) technique. 
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In this project, the sizing of protein particles was conducted by a Zetasizer Nano ZS 

instrument (Malvern Panalytical, USA), which is built on Dynamic Light Scattering 

(DLS) technique (also known as photon correlation spectroscopy).  

The instrument setup is schematically shown in Figure 2.5. Laser is used to illuminate 

the particles in the sample. The signal of scattered light is collected at a fixed angle, 

normally either at a 90 degree (right angle) or 173 degree (back angle). In this work, 

the back angle detector is chosen to collect the scattered light signal. If the particles 

in the sample are completely still, a constant intensity of scattered light will be 

detected. In contrast, particles subjected to random Brownian motion will cause the 

intensity of scattered light to continuously fluctuate over time. How fast the fluctuations 

occur depends on the diffusion rate of the particle. Smaller particles diffuse more 

quickly, and will lead to more rapid fluctuations of scattered intensity than larger 

particles. Based on this, DLS technique extracts the information on the diffusion 

coefficient of a dispersed particle from the time-varying intensity profile of the scattered 

light. Then this information is used to derive the radius 𝑅 of the particle by applying 

the Stokes-Einstein formula (see below) (Hirst, 2013a, McClements, 2015b): 

𝑅 ൌ
𝑘𝑇

6𝜋𝜂𝐷
 

where 𝑘 is the Boltzmann’s constant, 𝑇 is the absolute temperature, 𝜂 is the viscosity 

of the continuous phase and 𝐷 is the diffusion coefficient. 

One important point to note is that the particle under investigation is assumed to be 

spherical and the size obtained by DLS technique is defined as the hydrodynamic size 

(Figure 2.6), which comprises the particle plus anything that binds onto its surface 

and thus diffuses with the particle at the same rate. This can for example include 

solvent molecules, ions, surfactants and adsorbed polymers (Everett, 1988c). The 

particle size of a sample is reported as 𝑍-average diameter which is an intensity-

weighted average. 
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2.3.5.2 Sizing of emulsion droplets 

Particle size can also be measured through the Laser Diffraction technique (or Static 

Light Scattering). Different from the DLS technique, where the signals of scattered light 

are only detected at specific angles with the scattered intensity recorded and 

evaluated as a function of time, Laser Diffraction measures the scattered pattern using 

a series of detectors over a wide range of angles (Figure 2.7) (Hirst, 2013a). Then an 

intensity distribution is generated as a function of the scattering angle. This information 

is turned into a size distribution of particles in the sample, using an optical model called 

Mie scattering theory. This theory also assumes that all the particles under 

investigation are spherical. It enables sizing analysis over a wide range of particle size, 

from nanoparticles to large micron-sized particles, to be conducted quite rapidly (Hirst, 

2013a, Everett, 1988b, McClements, 2015b).  

Figure 2.6 Schematic illustration of the hydrodynamic size of a particle.
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This project determined the size of dispersed oil droplets in O/W emulsions by using 

a Mastersizer 3000 instrument (Malvern Panalytical, USA), which applies the Laser 

Diffraction technique. The results of the oil droplet sizing measurements are  

presented as volume-mean diameter 𝐷ସ,ଷ, as well as the size distribution plotted based 

on the volume ratio of droplets. For a polydisperse emulsion sample, 𝐷ସ,ଷ value is very 

sensitive to the presence of large particles or aggregates (McClements, 2015j). 

Therefore, a full size distribution is necessary to provide a more reliable picture of the 

size characteristics of an emulsion system. 

2.3.6 Zeta potential 

Zeta potential is the electrical potential close to the surface of the particles dispersed 

in a specific liquid medium. It is a very useful parameter to understand the strength of 

the electrostatic interactions between the particles and thus to predict the stability of 

dispersions (Everett, 1988a). In this project, the zeta potential of emulsion droplets 

was obtained using a Zetasizer Nano ZS instrument (Malvern Panalytical, USA).  

Figure 2.7 Schematic illustration of the basic setup for Light Diffraction
technique. 
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The principles of zeta potential measurement are schematically displayed in Figure 

2.8. An electric field is applied to a sample, which causes charged particles in the 

sample to move towards either the anode or cathode, depending on the net charge 

carried by the particle. When the electrostatic force that is pulling the particle is 

balanced by the drag force exerted on the moving particle due to the viscosity of the 

medium, the particle will eventually travel at a steady speed. This process is called 

electrophoresis (Hirst, 2013c, McClements, 2015b). The terminal velocity of particle 

motion can be determined by comparing the frequency shift of the incident and 

scattered light, due to the Doppler effect (Everett, 1988a). From this velocity, one can 

derive the magnitude of the zeta potential of a particle with the aid of either 

Smoluchowski’s or Huckel’s formula. The choice of the formula depends on the 

thickness of electrical double layer relative to the size of the particle. In this work, 

Smoluchowski’s equation is more suitable, on the account that there is normally a 

relatively thin ionic cloud around the emulsion droplets compared to the droplet size 

(Hirst, 2013c). 

It should be noted that zeta potential refers to the potential measured at the boundary 

which moves with the particle under the influence of applied electric field (Figure 2.8). 

This boundary is also called the shear plane or slipping plane. Its precise location is 

Figure 2.8 Schematic illustration of the basic principles of zeta 
potential measurement. 
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not so easy to define. Therefore, zeta potential is an estimated measure of the 

electrical potential at the particle surface (Everett, 1988a).  

2.3.7 Rheological measurements 

Rheology studies the flow and deformation of materials. On one extreme, there are 

ideally viscous fluids (e.g. water and mineral oil). At the opposite limit, one has ideally 

elastic solids (e.g. stone and steel). Most real materials fall between these two 

extremes and behave to a lesser or greater extent in a viscoelastic way. They show a 

combination of both viscous and elastic properties (e.g. paint, salad dressing, 

cosmetics, personal care products) (Everett, 1988d, McClements, 2015o).  

Generally, there are two types of rheological tests available for assessment, the shear 

flow tests and oscillatory tests. The former are used to investigate the flow behaviour 

and viscous property of a liquid-like material, while the latter are for evaluating both 

the viscous and elastic characteristics of a material. Both types of rheological 

measurements can provide very useful information on the inner structure and 

molecular interactions, as well as the stability of a colloidal system. However, they 

have to be used together with other methods in order to properly interpret the structure 

of a material (McClements, 2015o). 

In this project, controlled shear rate (CSR) rotational tests were performed on O/W 

emulsions using a Kinexus Ultra rheometer (Malvern Panalytical, UK). The aim is to 

check the inner structure of an emulsion sample by looking at its flow behaviour.  
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There are basically three kinds of flow behaviour in rotational tests (Figure 2.9A) 

(Hirst, 2013b). A fluid is regarded as Newtonian if its viscosity does not change with 

shear rate. If the viscosity deceases with increasing shear rate, the fluid exhibits shear-

thinning behaviour. Shear-thinning is the most common type of non-Newtonian flow in 

many food and non-food products. The decreased viscosity is due to the gradual 

breakdown of the material structure in response to a high shear force (e.g. 

disintegration of colloidal aggregates), as shown in Figure 2.9B. The other, less 

common, type of non-Newtonian flow is shear-thickening, which describes an increase 

of viscosity with shear rate. The three types of flow behaviour are also frequently 

summarized with the aid of a ‘power-law’ model as given below (Dickinson, 1992g, 

McClements, 2015o), 

𝜂 ൌ 𝑘𝛾ሶ ௡ିଵ       ሺ2.1ሻ 

In the above equation, 𝜂 is the viscosity of a sample, 𝛾ሶ  is the shear rate, 𝑘 is known 

as the consistency index, while 𝑛 is a parameter, called the flow behaviour index, 

indicating the type of flow: 𝑛 ൏ 1 for shear-thinning, 𝑛 ൌ 1 for Newtonian and 𝑛 ൐ 1 for 

shear-thickening.  

Moreover, a double gap cylinder geometry was used to test the flow behaviour of our 

emulsion samples (Figure 2.10), as this measuring geometry enables testing of low-

Figure 2.9 (A) The three types of flow behaviour. (B) Schematic
illustration of the shear-thinning flow behaviour. 
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viscosity liquids owing to the large contact area (McClements, 2015o). The rheometer 

collects raw data of the rotational speed and torque, which are converted into 

rheological parameters, i.e. shear rate (𝛾ሶ ) and shear stress (𝜏), respectively. The 

viscosity (𝜂) of the sample is then calculated according to the following equation,  

𝜂 ൌ
𝜏
𝛾ሶ

          ሺ2.2ሻ 

and presented as a 𝜂 -𝛾ሶ  plot in this study. 

 

 

 

  

Figure 2.10 The double gap cylinder geometry measuring system. 
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Chapter 3 A Theoretical Study of the Colloidal Stabilizing Ability of 

Emulsifiers Influenced by Structural Properties of Polypeptide and 

Polysaccharide 

3.1 Introduction 

During the production of emulsifying agents based on covalent bonding of protein 

fragments with polysaccharide, partial hydrolysis of protein as the first step generates 

a multitude of polypeptides with different molecular sizes and degrees of 

hydrophobicity. Moreover, as the chemistry of the Maillard reaction is neither 

straightforward nor specific, the final products will inevitably consist of a mixture of 

conjugated polymers which differ from one another in the number of attached 

polysaccharide chains and the location of these attachments. The system is also likely 

to have some peptides which would not have reacted with any polysaccharides, also 

simultaneously present in the final product. These issues would make it difficult to 

interpret the experimental results obtained from such heterogeneous systems. 

Concerning the question of how those factors mentioned above may influence the 

emulsifying and stabilizing abilities of the conjugated polymers, there have been a few  

theoretically established insights, involving investigation of the interfacial properties of 

adsorbed polymers using the so called self-consistent-field (SCF) approach. Akinshina 

et al. (2008) and Ettelaie et al. (2008) examined the effects of both the length and 

location of the grafted polysaccharide on the stabilizing ability of 𝛼௦ଵ-casein under pH 

values close to the pI of the protein and high background ionic strength conditions. 

They found that the attachment of a short hydrophilic chain may either be detrimental 

or enhance the emulsion stabilizing ability of 𝛼௦ଵ -casein against flocculation, 

depending on the location of the attachment. When the polysaccharide is attached at 

or close to the middle of 𝛼௦ଵ-casein backbone, the colloidal performance deteriorates 

relative to the original non-bonded protein. Yet if the covalent bonding is made towards 

the end of 𝛼௦ଵ-casein, the stabilizing ability improves. For a hydrophilic polysaccharide 

chain larger than a critical length, it was found to be always beneficial to the emulsion 

stabilizing properties of 𝛼௦ଵ-casein, irrespective of the position where the attachment 

was made. 
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However, the influence coming from the various structural characteristics of protein 

fragments on the emulsion stabilizing ability of the produced conjugates has not yet 

been studied, although these are also important in determining whether a polypeptide 

and its conjugated form are able to be a good emulsifier. 

Based on these research gaps, in this chapter, from a theoretical prospective, the 

impacts of three essential structural characteristics of a protein fragment, i.e. the 

molecular size, the degree of hydrophobicity (i.e. the proportion of hydrophobic amino 

acids)  and the conformation adopted by a protein fragment at the droplet surface, on 

its emulsifying and emulsion stabilizing capacity, are first investigated. This allows one 

in turn to see the role of the degree of hydrolysis (DH) in producing suitable fragmented 

protein as emulsifying materials. Next, the emulsion stabilizing abilities of a modified 

protein fragment following its conjugation with a hydrophilic polysaccharide chain are 

evaluated. The respective role of the protein and polysaccharide moieties, as well as 

the relative importance of their structures on the colloidal performance of the 

conjugated polymer fabricated from them, are also discussed.  

 

3.2 Models 

All the protein fragments used in this theoretical study are derived from soybean β-

conglycinin 𝛼ᇱ subunit. The primary structure of this protein chain, referred to as 

GLCAP-SOYBN (P11827), is found in the database UniProt (Magrane et al., 2005). 

This protein chain consists of 621 amino acid residues. These residues are numbered 

sequentially from the N-terminus of the protein chain. For instance, the 322nd amino 

acid residue on the primary structure of β-conglycinin 𝛼ᇱsubunit is Methionine, so it will 

be labelled as Met322. Various protein fragments are obtained by applying ExPASy 

PeptideCutter Tool (Gasteiger et al., 2005) in which trypsin is used to perform the 

hydrolysis. Trypsin is chosen because it is one of the two enzymes that will be used in 

the experiments in the following chapters. Its high specificity of the amino acid 

substrates also eases the selection of example polypeptide. The generated 

polypeptides are labelled by stating the amino acid residues at both ends of a 

fragmented chain, starting with the one at the N-terminus followed by the one at the 

C-terminus. For example, Met322-Lys355 represents a polypeptide chain which is 
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obtained by cleaving the peptide bond between Arg321 and Met322 and that between 

Lys355 and Asn356. Practically, enzyme hydrolysis would produce many different types 

of polypeptides with a wide distribution of molecular size as well as the degree of 

hydrophobicity. However, here for the purpose of the theoretical study, it is assumed 

that only a few specific bonds are targeted, with the desired piece or set of protein 

fragments generated and separated from the rest of the hydrolysates. We shall not be 

concerned with the highly non-trivial issue of how such separation can actually be 

achieved in practice, in this chapter.  

In the theoretical model system at its simplest (as previously illustrated in Figure 2.1), 

there are four types of components present: solvent, polymers and two oppositely 

charged ions. An amino acid residue of a protein fragment, a glucose segment of 

maltodextrin, an ion or a solvent molecule are all taken to have an equal size 𝑎଴ (i.e. 

the size of a lattice site). The nominal value for 𝑎଴ is roughly taken as the length of a 

peptide bond ~0.3 nm (Scheutjens et al., 1979, 1980, Ettelaie et al., 2014, Ettelaie et 

al., 2008). 

In order to maintain a reasonably good representation of the hydrophobic and 

hydrophilic blocks on the protein primary structure, amino acid residues are grouped 

into five distinct categories based on their degree of hydrophobicity, the nature of 

charge and the value of their pKa (Leermakers et al., 1996). These groups are 1) 

hydrophobic, 2) polar but non-charged, 3) positively charged (under neutral pH), 4) 

histidine and 5) negatively charged (under neutral pH). Histidine is placed in a group 

of its own due to its rather different pKa value compared to all the other positively 

charged amino acid residues. According to this classification, the primary structure of 

a peptide containing 34 amino acid residues (i.e. Met322-Lys355), derived from soy β-

conglycinin 𝛼ᇱsubunit (P11827), is illustrated in Figure 3.1 as an example, showing 

how this polypeptide is modelled in the SCF calculation.  
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The maltodextrin chain is considered to be made up of a separate category of 

uncharged hydrophilic monomers. For a protein-polysaccharide conjugate, the 

primary structure of the protein moiety is kept the same. The only difference is the 

covalently bonded polysaccharide chain, which can either be attached to a lysine 

residue or to the residue at the N-terminus end of the polypeptide backbone, i.e. sites 

where a covalent bond between protein and polysaccharide is formed in the actual 

Maillard reaction. The maltodextrin DE16.5-19.5 (𝑀௪ = 8.7 kDa) that will be used in 

the experimental part of this project in the following chapters, is assumed here to have 

a size of roughly 60 hydrophilic monomers (𝐿 = 60 𝑎଴), as calculated from its molecular 

weight. In practice, there may be more than one maltodextrin molecule reacting with 

and covalently bonding to a polypeptide chain. However, this theoretical study will only 

consider the situation where only one molecule of maltodextrin is attached per 

polypeptide chain for simplicity. The polydispersity in the number of attached 

maltodextrin chains per polypeptide molecule is a complication worth considering in 

future theoretical studies, but is beyond the current work. It is worth noting here that 

although a simple non-charged linear polysaccharide (i.e. maltodextrin) is considered 

here throughout this theoretical study, other characteristic aspects of polysaccharides 

Figure 3.1 Primary structure representing soy peptide Met322-Lys355 in 
the SCF calculations. A list of the full names of the amino acids shown 
here in abbreviations is provided in Appendix II.  
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can be modeled in the currently available SCF calculations. These aspects include the 

branching and charging properties of a polysaccharide. The flexibility of a 

polysaccharide chain is not included in the calculations yet. 

Finally, there are also positive and negative ions present in the current theoretical 

model system. They are regarded as two further categories which are different from 

the six groups mentioned above (Akinshina et al., 2008, Ettelaie et al., 2008). The 

electrolyte is taken to be simplest monovalent type, e.g. NaCl. The presence of ions 

in the model, gives one the flexibility to adjust the background ionic strength in the 

study, when this is required.   

The chemical natures of monomers in each group and their interactions with 

monomers from other groups, as well as those with the solvent molecules and the 

hydrophobic surface, are defined by a set of Flory-Huggins χ parameters. The values 

of these χ parameters are adopted from previously published work (Ettelaie et al., 

2008, Akinshina et al., 2008, Leermakers et al., 1996), as listed in Table 3.1. A positive 

Table 3.1 The list of the Flory-Huggins interaction parameters (in the unit 
of kBT) between different types of monomers and the pKa values for the 
groups of charged amino acid residues. The numbers (0 to 8) in this table 
indicate the nine types of monomers in the model system: solvents (0), 
five groups of amino acid residues (1 to 5), glucose residues of 
maltodextrin (6) and ions (7 and 8). A list of the classification of amino acid 
residues in this study is provided in Appendix II. 
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value of χ indicates an unfavorable interaction between two types of monomers, while 

a negative value signifies a favorable interaction. The χ parameter of -2 kBT between 

a hydrophobic monomer (group 1 in the classification) and the surface is a typical 

value for the adsorption energy of a hydrophobic monomer onto such an O/W interface 

(Ettelaie et al., 2008). With no specific affinity for the surface, monomers from all the 

other groups (including the ions and solvent molecules) have their interaction 

parameter χ with the surface set to be 0 kBT (Ettelaie et al., 2008, Akinshina et al., 

2008). As a result of the tendency of ions for hydration by solvent molecules (assumed 

to be water), the ion-solvent interaction parameter χ is taken to be -1 kBT (Ettelaie et 

al., 2014, Akinshina et al., 2008). 

In a well formulated emulsion, if the total adsorption energy for the emulsifiers is 

sufficiently high, most of them will tend to become adsorbed onto the hydrophobic 

surface of droplets, leaving only a very small fraction of the polymers remaining in the 

bulk phase (Ettelaie et al., 2014). Hence, the volume fraction of polymers in bulk 

solution is set at a low level Ф௣ ൌ 1.0 ൈ 10ିଵଵ for all the cases in this study. But it must 

be noted that this does not necessarily represent a low content of emulsifiers in the 

system.  

The electrolyte volume fraction is maintained throughout this study at a low level Ф௦= 

0.001 (roughly corresponding to 10 mM for NaCl). The environmental pH is fixed at a 

value close to the isoelectric point of each protein fragment under investigation, in 

order to minimize the electrostatic stabilizing effect and allow us to explore the 

repulsion arising from the steric component. 

Interaction potentials, induced by the presence of polymers in the gap between two oil 

droplets, are calculated using a program already developed by our school which is 

available for Windows platform. With the inter-droplet Van der Waals attraction also 

included (see Appendix I), the total interaction potentials between two emulsion 

droplets (of equal size of 1 μm) are obtained and plotted against the inter-droplet 

separation distance. The configurations and density profiles of adsorbed polymers can 

also be obtained from our SCF calculations. These results are plotted and discussed 

as well to better understand the properties of the interfacial layers.  
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3.3 Results and Discussions 

Two aspects are investigated theoretically. Firstly, the role of the size, the degree of 

hydrophobicity (i.e. the proportion of hydrophobic amino acids) and the adopted 

conformation of a protein fragment on its emulsifying and stabilizing properties is 

explored. In the next step, we evaluate the modification of the colloidal performance 

of a protein fragment by a grafted polysaccharide. 

In order to achieve the above purpose, five different polypeptides are carefully 

selected. The characteristic properties of these selected polypeptides, including their 

size, degree of hydrophobicity and isoelectric point, are shown in Table 3.2. This 

selection of polypeptides have a reduced proportion of hydrophobic residues as their 

size grows. For the ease of demonstration, these fragments were chosen to have 

similar isoelectric point (between pH 5.5 ~ 6.0). Nonetheless, the following discussions 

are also largely applicable to situations where the protein fragments may have different 

pI values. 

3.3.1 The impact of the structural properties of a protein fragment on its 

emulsion stabilizing capacity  

In this section, we have oil droplets coated by (either non-conjugated or conjugated) 

soy polypeptide of a single species. One way to gain an insight into the colloidal 

stabilizing ability of a polymer is to examine the variation of the interaction potential 

mediated between two emulsion droplets that are coated by these polymers as a 

Table 3.2 The characteristic properties of the selected soy polypeptides. 
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function of inter-droplet separation distance. At any separation distance, a decrease 

of interaction potential as two droplets come close or an increase as two droplets move 

away, indicates an overall attractive force between them. The converse cases imply a 

repulsive force. Consequently, droplets tend to remain in the state where no force is 

acting on them and they have the minimum potential energy. This state is reflected by 

an energy well in the plot of interaction potential as a function of separation distance 

(Coupland, 2014a, McClements, 2015x). 

Figure 3.2 compares the profiles of total interaction potential between two oil droplets 

stabilized by five different soy fragments respectively. The environmental pH is set to 

5.5, which is or is close to the pI of these polypeptides (see Table 3.2). For the 

absorbed layers formed by the three relatively short fragments (i.e. Met322-Arg334, 

Met322-Lys355 and Asn356-Arg425), the induced interaction potential profiles all look 

similar. In particular, no energy barrier is seen in any of these interaction potential 

curves to prevent the approach of two droplets coated by them. This type of profile 

Figure 3.2 The interaction potentials, plotted against the inter-droplet 
separation distance, resulting from the adsorbed layers of five different
soy polypeptides (i.e. Met322-Arg334, Met322-Lys355, Asn356-Arg425, His160-
Arg290 and Glu93-Arg302) respectively. The diameter of oil droplets is 1 
μm. The results are produced at a background electrolyte volume
fraction of 0.001 and at pH = 5.5. 
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indicates the dominant role of the attractive Van der Waals force. This, together with 

the lack of a sufficient energy barrier in droplet-droplet interaction potential, will result 

in severe flocculation of emulsion droplets.  

For the inter-droplet potential that is generated by the adsorbed fragment Glu93-Arg302 

(see Figure 3.2), it is also seen that the Van der Waals attraction dominates as 

droplets approach. Only at very small inter-droplet separations, the repulsive force 

overcomes the Van der Waals attraction. This results in a deep energy minimum well 

(~ - 41 kBT) at the separation around 4 nm. Given the depth of this well, it is unlikely 

that Brownian motion or even agitation of simple shear can prevent droplets from 

getting into this energy minimum. Under this circumstance, the droplets will also 

undergo severe flocculation (Ettelaie et al., 2014, Dickinson, 1992a), being trapped at 

a distance ~ 4 nm apart from one another in clustered aggregates. Such flocculated 

droplets in turn greatly increase the chance of them coalescing, with the emulsion 

system eventually starting to break up as a result.  

In contrast to the above results, there is barely a detectable energy well (larger than -

4 kBT) when the emulsion droplets stabilized by soy fragment His160-Arg290 are 

approaching (see Figure 3.2). The droplets are seen to experience a progressively 

increased repulsion, starting from the separation distance of around 8 nm. Then a 

sufficient energy barrier (over ~20 kBT) (Dickinson, 1992a) builds up to effectively stop 

any two droplets from coming closer than 4 nm.  

The interaction potential profile between two approaching droplets coated by a 

polymer can be interpreted by examining the possible conformation that the polymer 

takes at the interface, as well as by studying the density profile formed by that polymer 

as it adsorbs on an isolated interface. 

Let’s first look at the conformation of the polymers adsorbed at the hydrophobic 

surface. Figure 3.3 presents the average distance adopted by each monomer 

segment that makes up the three relatively short soy polypeptides, i.e. Met322-Arg334, 

Met322-Lys355 and Asn356-Arg425. The sequence number of monomers along the 

backbone of a protein fragment is counted from the N-terminus of this fragment. It is 

seen that all of these three short polypeptides lie nearly flat at the droplet surface, due 

to the multiple small blocks, made of hydrophilic and hydrophobic residues, on the 
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primary structure of these polypeptides (Wijmans et al., 1994, Ettelaie et al., 2003). 

The average distance for any of these residues does not exceed one monomer unit 

𝑎଴ away from the surface.   

The conformation that a polymer adopts at the interface is closely related to the 

interfacial structure formed by this polymer. In Figure 3.4, the density profile of protein 

fragments when they adsorb at an isolated droplet surface is displayed. The density 

is plotted along the distance perpendicular to the droplet surface. For the two larger 

polypeptides amongst those three discussed above, i.e. Met322-Lys355 and Asn356-

Arg425, their flat conformation only enables them to form a rather thin coating layer with 

a thickness of ~ 1 nm around the oil droplet (Figure 3.4). In the absence of 

electrostatic repulsion at pH = 5.5 (where this environmental pH is close to the 

isoelectric point of the fragment), the hydrophobic blocks on the polypeptide can form 

bridges between two individual droplet surfaces, thus generating a strong attractive 

force, once the droplets get close into a certain separation distance (Wijmans et al., 

1994). Only when the two droplets become very close to each other with their thin 

Figure 3.3 The average distance of each monomer residue that makes 
up the adsorbed soy polypeptides (i.e. Met322-Arg334, Met322-Lys355 and 
Asn356-Arg425), away from a hydrophobic surface, plotted against the 
sequence number of monomers starting with the first monomer at N-
terminus of a protein fragment. The results were calculated at a 
background electrolyte volume fraction of 0.001 and at pH = 5.5. 
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interfacial layers starting to overlap, will a repulsion build. However, at such close 

separation, the Van der Waals attraction is already dominant, leading to a deep energy 

minimum (Wijmans et al., 1994).  

 

For the smallest fragment Met322-Arg334, the case is different. It is noticed from the 

inset graph in Figure 3.4 that this fragment, despite having the highest degree of 

hydrophobicity (i.e. 69.2% of all its constituent residues are hydrophobic amino acids, 

see Table 3.2), adsorbs scantily at the droplet surface, relative to the other larger 

fragments. In contrast, larger peptides, although less hydrophobic, are able to adsorb 

at a substantially higher level on the hydrophobic surface. For instance, as to the 

largest two polypeptides, i.e. His160-Arg290 and Glu93-Arg302, in which only 29.0% and 

27.6% of their total residues, respectively, are hydrophobic amino acids (see Table 

3.2), their total amount of adsorption is four orders of magnitude more than that of the 

smallest fragment Met322-Arg334 (see Table 3.3). 

Figure 3.4 Density profiles of the five different polypeptides (i.e. Met322-
Arg334, Met322-Lys355, Asn356-Arg425, His160-Arg290 and Glu93-Arg302) adsorbed 
at an isolated droplet, plotted against the distance away from the 
hydrophobic surface. The inset graph is a magnification of the same graph 
by a factor of 2500, so as to illustrate more clearly the result for the smallest 
peptide Met322-Arg334 (black line). All the data were calculated at a 
background electrolyte volume fraction of 0.001 and at pH = 5.5. 
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The poor adsorption of a small peptide is mainly related to its insufficient total binding 

energy. When a polymer adsorbs onto an interface, the equilibrium between the 

adsorbed and desorbed states is determined by the Boltzmann factor, exp ሺ𝐸 𝑘஻𝑇ሻ⁄ , 

where 𝐸 is the total binding energy. In the case of a small peptide (e.g. the fragment 

Met322-Arg334, with 9 out of 13 residues being hydrophobic, see Table 3.2), the total 

binding energy per molecule is still not sufficiently large for the adsorbed state to be 

strongly weighted over the state of being in the bulk (Dickinson, 1992f). This is 

particularly true at low bulk concentrations that is considered here. This is somewhat 

similar to the situation seen for a small-molecular-weight surfactant. The bulk 

concentration for such molecules has to be much higher than that found for a large 

polymeric molecule, in order for the surface to attain sufficient coverage. Thus, at low 

bulk concentrations, the surface coverage induced by small molecules will be 

extremely low. In contrast, for a polymer that consists of hundreds of monomeric 

segments, despite only a small fraction (say one fourth or maybe even one fifth) of 

these having affinity for the hydrophobic surface, the total binding energy per polymer 

is significantly large. In such cases, the Boltzmann factor for equilibrium becomes 

overwhelmingly biased in favour of the adsorbed state. It is for this reason that a 

polymer has a progressively higher surface affinity as its molecular weight increases 

(Dickinson, 1992f). Particularly, for naturally-occurring proteins and polypeptides 

derived from them, the hydrophobic and hydrophilic amino acids are more or less 

evenly distributed along the backbone of the chain. As a result, the protein fragment 

with a larger size will normally have a greater number of hydrophobic binding groups 

than a smaller one and consequently can saturate the interface at much lower bulk 

concentrations.    

Table 3.3 The predicted total amount of adsorption (in the unit of mg/m2) 
for various polypeptides at the droplet surface, obtained from SCF 
calculations. The results are produced at a background electrolyte 
volume fraction of 0.001 and at pH = 5.5. 
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A second reason for the poor adsorption of small polymers may be associated with 

the entropy of mixing when they dissolve in the solvent. Whether a polymer will prefer 

to mix with solvent and stay in the bulk or to separate out from the aqueous phase 

mainly depends on two factors: the enthalpic interactions and the entropy of mixing 

(Coupland, 2014b, Dill et al., 2003d). Provided that the enthalpic contribution to free 

energy of mixing is roughly the same for a certain amount (based on weight) of 

polypeptides dissolved in the solvent, it is then the entropy of mixing that largely 

determines the solubility of a polypeptide species. However, the contribution of a 

polymer to the entropy of mixing decreases as its molecular weight increases. This 

contribution becomes negligible for very large polymers. Consequently, a small 

polymer tends to have a better solubility than a large polymer (Coupland, 2014b). In 

our case, the small peptide Met322-Arg334 will dissolve much better in the aqueous 

phase, as compared to the other large polypeptides. Therefore, they become 

significantly less adsorbed at the surface. 

The above results and discussions demonstrate a crucial criterion when it comes to 

the use of protein fragments as emulsifying and colloidal stabilizing agents. For a 

polypeptide derived from naturally-occurring proteins, the size of such protein 

fragment is seen more important than its degree of hydrophobicity in determining the 

colloidal performance of this polymer. In this respect, for a mixture of protein 

hydrolysates obtained by enzymatic digestion, the degree of hydrolysis (DH) could 

serve as a reasonable guiding parameter to control the emulsifying and stabilizing 

ability of the fragmented proteins, as it governs the content of large polypeptides 

present in the mixture. A lower level of hydrolysis will produce a distribution of 

fragments with a greater content of larger-sized polypeptides, while extensive 

hydrolysis will cause no such large chains to remain in the system. Also, due to the 

alternating nature of the hydrophobic and hydrophilic blocks on the backbone of a 

naturally-occurring protein, a small polypeptide derived from it is more likely than a 

large one to have an excessively hydrophilic primary structure (thus cannot adsorb at 

all). Consequently, in theory at least, a mixture of polypeptides tends to have a reduced 

overall surface affinity as the fragmentation of protein proceeds to higher levels.   

We now turn attention to the interfacial structures of the two largest polypeptides, i.e. 

His160-Arg290 and Glu93-Arg302. From the graphs of the density profiles in Figure 3.4, 



- 61 - 
 

adsorption of these polypeptides leads to the formation of a much more extended 

interfacial layer. For both cases, the thickness of the layer is ~ 3.5 nm. This is to be 

compared to that produced by the two smaller fragments (i.e. Met322-Lys355 and Asn356-

Arg425, as discussed previously in Figure 3.4). The polypeptide Glu93-Arg302 is also 

seen to have a larger amount of adsorption, thus forming a denser layer at the 

interface, than the peptide His160-Arg290 (see both Figure 3.4 and Table 3.3). 

However, as observed previously in Figure 3.2 for the inter-droplet potentials, the 

droplets stabilized by the fragment Glu93-Arg302, were predicted to be subject to 

flocculation as a result of the presence of a deep energy minimum in the mediated 

interaction potential. On the other hand, the droplets coated by polypeptide His160-

Arg290 were predicted to stay well dispersed. The distinct interaction potential profiles 

induced by these two large polypeptides, as well as the different colloidal behaviours 

between the emulsion droplets that are respectively coated by them, can be attributed 

to their conformations at the interface (see Figure 3.5) as discussed below.  

 

Figure 3.5 The average distance of each monomer residue that makes up 
the adsorbed soy polypeptides (i.e. His160-Arg290 and Glu93-Arg302), away 
from a hydrophobic surface, plotted against the sequence number of 
monomers starting with the first monomer at N-terminus of a protein 
fragment. The results are produced at a background electrolyte volume 
fraction of 0.001 and at pH = 5.5. 



- 62 - 
 

It is seen that polypeptide His160-Arg290 adopts a diblock-like configuration, with the its 

N-terminus end extending by ~ 4.5 𝑎଴ away from the surface of the droplet. This is the 

origin of the strong and more importantly the longer-ranged steric repulsion. This 

repulsive force arises when interfacial layers on neighbouring emulsion droplets 

overlap. In contrast, the other polypeptide Glu93-Arg302 behaves much more like a 

triblock at the interface. Although it also has its central part (called a loop) protruding 

outward away from the droplet surface, thus helping to form a thick interfacial layer, 

this polypeptide is able to also adopt a bridging conformation between two adjacent 

droplets over certain ranges of inter-droplet separations. This results in a strong 

attractive force which is not desirable (Ettelaie et al., 2003, Ettelaie et al., 2008, 

Wijmans et al., 1994, Akinshina et al., 2008). This situation is somewhat similar to the 

behaviour of s1-casein compared to that of -casein (Dickinson et al., 1997a, 

Dickinson et al., 1997b). 

To summarize, the emulsion stabilizing property of a protein fragment is seen closely 

connected with its structural characteristics. The first and foremost requirement for a 

protein fragment to be a potentially good colloidal emulsifying and stabilizing agent is 

the ability to adsorb sufficiently at the droplet surface. In this regard, the theoretical 

results in this section have indicated that at low bulk concentrations (i.e. the situation 

considered here where conventional-type O/W emulsion is prepared), the size of a 

polypeptide is more important than its degree of hydrophobicity. This is due to the fact 

that it is the overall binding energy that determines the level of adsorption of a 

polymeric molecule. Therefore, for a polypeptide derived from naturally-occurring 

proteins, a larger peptide will normally induce a stronger surface adsorption than a 

smaller one, thus being a more suitable candidate as an emulsifying agent. This in 

turn signifies the role of degree of hydrolysis (DH) as a relatively reliable parameter to 

control the colloidal performance of hydrolysed protein materials. In addition to a 

sufficient size and adsorption, a protein fragment also has to adopt a specific 

conformation (i.e. diblock-like, rather than flat or triblock) at the hydrophobic surface 

in favour of providing a steric repulsion in the absence of electrostatic stabilization.  

3.3.2 The impact of the grafted hydrophilic chain on the emulsion 

stabilizing capacity of a protein fragment 
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From the above discussions in the previous section, it is clearly noted that the 

polypeptides obtained by the action of enzyme can exhibit various differing colloidal 

and interfacial behaviours. Unless by some fortunate production of diblock-like protein 

fragments, most of the generated polypeptides are not able to convey a very good 

emulsion stabilizing capacity in the absence of electrostatic stabilization (i.e. when the 

environmental pH is close to pI of a protein fragment). This situation will be totally 

modified, following covalent bonding of a hydrophilic chain to the protein fragment.  

Figure 3.6 presents the density profiles of the conjugated polymers adsorbed onto an 

isolated droplet, plotted as a function of the distance perpendicular to the droplet 

surface. The results are produced for the three polypeptides that were previously 

showed not to a have good colloidal stabilizing capacity (i.e. Met322-Lys355, Asn356-

Arg425 and Glu93-Arg302). These polypeptides are modified by attaching a hydrophilic 

chain of size 60 monomer units (i.e. maltodextrin DE 16.5-19.5 with 𝐿 = 60 𝑎଴) to the 

N-terminus end of each polypeptide. This is to minimize the influence coming from the 

position of hydrophilic attachment on the colloidal stabilizing performance of the 

polymer, as previously reported by Akinshina et al. (2008). 

Figure 3.6 Density profiles of the conjugated polymers made from three 
polypeptides (i.e. Met322-Lys355, Asn356-Arg425 and Glu93-Arg302), respectively 
bonded with a hydrophilic chain (𝑳 = 60 𝒂𝟎), adsorbed at an isolated droplet, 
plotted against the distance away from the hydrophobic surface. The 
results are produced at a background electrolyte volume fraction of 0.001 
and at pH = 5.5. 
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From this plot, the interfacial structure of the adsorbed polymers was examined. It is 

seen in Figure 3.6 that there is a distinct modification to the structure of the interfacial 

layer formed by a conjugated polypeptide, when compared to that formed by its 

unbonded counterpart. The polypeptides with a hydrophilic attachment develop a far 

more  extended ‘two-layer like’ structure around the oil droplet. The inner layer mainly 

consists of the protein moieties which strongly anchor at the hydrophobic surface. 

While the second outer layer is predominantly formed with the polysaccharide chains 

which protrude out into the aqueous phase. This feature is most obviously seen for 

conjugates made from the two shorter peptides (i.e. Met322-Lys355 and Asn356-Arg425). 

For both cases, the thickness of the interfacial film increases to roughly 3 nm, in 

comparison to the thin layer (~ 1 nm) formed by the corresponding unmodified 

polypeptides (see Figure 3.4). 

The most crucial advantage due to the hydrophilic attachment is the modification of 

the interaction potential mediated between two approaching droplets (compare Figure 

3.2 and Figure 3.7). Recall from Figure 3.2 that the three non-bonded polypeptides 

(i.e. Met322-Lys355, Asn356-Arg425 and Glu93-Arg302) have induced a strong attraction 

between droplets coated by them. Their corresponding conjugates, in contrast, are 

observed to only generate a small energy well (see Figure 3.7). If the two droplets 

coated by the conjugated polymers were to come even closer to a distance where the 

overlap of adsorbed layers starts to occur (~ 3.0 nm for conjugates made from 

peptides Met322-Lys355 and Asn356-Arg425, and ~ 4.0 nm for conjugate made from 

peptide Glu93-Arg302, see Figure 3.6), the interaction potential becomes steeply 

repulsive. Moreover, as the energy well is relatively shallow (only around -4 ~ -6 kBT 

for all the three cases), being of the same order of magnitude as the kinetic energy of 

droplets, it can readily be overcome by the droplets via Brownian motion (Ettelaie et 

al., 2014, Dickinson, 1992a). Under such circumstance, the emulsion droplets are 

likely to maintain well dispersed (or form very weak flocs that are easy to redisperse 

by a modest shear force). 
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It is also worth noting from Figure 3.7 that the conjugate made from a larger 

polypeptide induces a profile of interaction potential with a comparable shape and 

magnitude to that mediated by the conjugate derived from a smaller peptide. For 

instance, the conjugates made from the small peptide Met322-Lys355 are seen to lead 

to an inter-droplet potential profile of almost the same strength as the conjugates 

fabricated from the larger peptide Asn356-Arg425. Similarly, for the largest polypeptide 

considered here, Glu93-Arg302 (consisting of 210 amino acid residues), though it is 

approximately six times larger than the smallest polypeptide Met322-Lys355 (made up 

of 34 residues), the depths of the energy wells for both cases (~ -4 kBT for the former 

and ~ -6 kBT for the latter) are also not that different. These results indicate that as 

long as the conjugated polymers have the surface affinity to achieve a sufficient level 

of surface coverage, the O/W emulsions fabricated by them will exhibit similar level of 

colloidal stability, irrespective of the huge differences in the molecular size, degree of 

Figure 3.7 The interaction potential, plotted against the inter-droplet
separation distance, resulting from the adsorbed layers of the conjugates
made from three polypeptides (i.e. Met322-Lys355, Asn356-Arg425 and Glu93-
Arg302), respectively bonded with a hydrophilic chain (𝑳 = 60 𝒂𝟎 ). The
diameter of oil droplets is 1 μm. The results are produced at a background
electrolyte volume fraction of 0.001 and at pH = 5.5. 
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hydrophobicity and the adopted conformation of the polypeptide components that the 

hybrid polymers form from. 

In contrast to the above results, the molecular size of polysaccharide attachment is 

found to have a significantly larger impact on the stabilizing ability of the hybrid 

conjugated polymers. In Figure 3.8, the variation of the inter-droplet potentials, 

induced by the conjugated emulsifier formed from the protein fragment Asn356-Arg425 

and a hydrophilic chain of various lengths (𝐿 = 30, 60 and 180 𝑎଴), is plotted. Recall 

from Figure 3.2 that the droplets stabilized by non-bonded polypeptides Asn356-Arg425 

are subjected to severe flocculation as a result of a net strong attractive force, while 

the same polypeptides, when modified by covalently attaching a short hydrophilic 

chain (𝐿 = 30 𝑎଴), start to produce an increasing repulsive force at close inter-droplet 

separations less than 3.0 nm (see Figure 3.8). Unfortunately, the potential well (the 

depth of which is ~ -11 kBT) formed prior to the energy barrier, is deep enough to trap 

an appreciable amount of droplets, forming flocs. Doubling the size of the hydrophilic 

chain (to 𝐿 = 60 𝑎଴) reduces the energy well to a more acceptable depth of ~ -6 kBT. 

When the polypeptides are bonded with an even larger chain 𝐿 = 180 𝑎଴, which is six 

times the size of the short chain 𝐿 = 30 𝑎଴, there is hardly any perceptible energy well 

produced between droplets stabilized by them. Moreover, the inter-droplet repulsion 

now starts to come into operation from a significantly larger inter-droplet separation 

distance (~ 11 nm).  
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The results in this section suggest that in comparison to the size of the polypeptide, 

the length of the grafted hydrophilic attachment plays a much more crucial role in 

modulating the interactions between emulsion droplets and thus the emulsion stability 

against droplet flocculation. A dramatic improvement to the stability of the colloidal 

system is associated with the size of the grafted polysaccharide chain. The two 

approaching droplets coated by conjugated polymer with a short hydrophilic chain (i.e. 

𝐿 = 30 𝑎଴), will probably undergo some extent of flocculation (see Figure 3.8). While 

the adsorbed polypeptide bonded with a larger hydrophilic chain (i.e. 𝐿 = 60 𝑎଴ or 180 

𝑎଴) will prevent any droplet flocculation from happening (see Figure 3.8). The main 

job of the protein moiety in a conjugated polymer is to serve as an anchor, so as to 

entice the whole hybrid molecule to adsorb strongly onto the hydrophobic surface. On 

the other hand, it is the attached polysaccharide chain that fulfils the role of providing 

the steric stabilization necessary for achieving a well dispersed stable emulsion 

system. 

Figure 3.8 The interaction potential, induced by the conjugate made from 
polypeptide Asn356-Arg425 and a hydrophilic chain of various lengths (𝑳 = 
30, 60 and 180 𝒂𝟎), between two oil droplets (diameter 1 μm), plotted 
against the separation distance. The results are produced at a 
background electrolyte volume fraction of 0.001 and at pH = 5.5. 
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3.4 General Conclusions 

In this chapter, the colloidal stabilizing behaviours of various protein fragments, and 

how these are altered following covalently bonding with a polysaccharide attachment 

were examined. The investigations were done through a theoretical approach of the 

self-consistent field (SCF) calculations to look at the inter-droplet interaction potentials 

mediated by adsorbed polymers, as well as to examine the configuration and density 

profile of the adsorbed chains in the interfacial films.  

For the polypeptides to provide a good level of colloidal stabilization, they are required 

to firstly adsorb sufficiently in order to fully cover the droplet surface. To meet this 

criterion, it is widely believed that it is essential for a polypeptide to have a sufficient 

degree of hydrophobicity (i.e. the proportion of hydrophobic groups), and desirable 

polypeptides are considered to be selected based on their hydrophobicity. However, 

this theoretical study highlights the significant importance of the molecular size of a 

polypeptide (over other characteristics, such as hydrophobicity) to its colloidal 

performance. It is demonstrated that small protein fragments are not suitable 

emulsifiers, as they fail to establish a sufficient level of adsorption, despite some 

having a high percentage of hydrophobic residues. This is probably due to the 

inadequate total binding energy for the whole molecule. According to our theoretical 

results, for the selection of desirable protein fragments, it would be more 

advantageous to base on the molecular size, rather than the degree of hydrophobicity 

of a polypeptide. The former approach is also more feasible than the latter in real 

practice.  

In a mixture of protein fragments obtained by the action of a hydrolytic enzyme, various 

types of polypeptides are released. Nonetheless, a mixture of hydrolysates with a 

lower level of fragmentation will always have a greater number of larger-sized 

polypeptides than that obtained at a higher level of fragmentation. In this respect, the 

degree of hydrolysis (DH) can be used as a single reliable parameter to control the 

emulsifying and emulsion stabilizing ability of the protein hydrolysates. In the next two 

chapters, we shall examine experimentally how the colloidal behaviour of protein 

materials is altered when different levels of hydrolysis are applied. 
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For those polypeptides which are able to adsorb strongly at the droplet surface, they 

will have to possess a diblock-like interfacial structure as they become adsorbed at 

the droplet surface, in order to provide a good level of steric stabilization to colloidal 

systems. Otherwise, they will fail to protect emulsion droplets from severe flocculation 

in the absence of electrostatic repulsion (like when the environmental pH is close to 

the pI of a peptide). Such a situation can be totally modified by covalently grafting a 

polysaccharide chain (of sufficient length) to the protein fragment. These conjugated 

polypeptides display comparably good emulsion stabilizing performances against 

droplet flocculation, regardless of the large differences in the molecular size, degree 

of hydrophobicity and the adopted configurations at the interface of the original 

polypeptides. Hydrolysis of a protein, followed by conjugation of obtained peptides 

with a polysaccharide, in reality, leads to various different species. These above 

theoretical results indicate that the competitive adsorption between small and large 

conjugated polymers at the droplet surface (either during the emulsification or the 

storage of emulsion sample), is not supposed to make a significant difference with 

regard to the flocculation stability of the emulsion system. 
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Chapter 4 Characteristics and Functional Properties of Modified 

Whey Protein as Food Emulsifiers at Various pH Conditions 

4.1 Introduction 

Whey protein isolate (WPI) is one of the most extensively studied model proteins. 

Conjugated whey proteins with various polysaccharides have been reported to deliver 

good emulsifying and stabilizing abilities. Given the excellent emulsifying power of 

whey protein materials, normally it is not worthwhile to use the hydrolysed form of WPI 

as emulsifying agents, either conjugated or otherwise. Despite this, whey protein was 

fragmented in this study. This was to see if the conjugates made from the protein 

fragments could also replicate the known success of conjugated milk based proteins 

in stabilizing O/W emulsion at various pH conditions (Akhtar et al., 2007, Ding et al., 

2017, Kato et al., 1992). This pH range includes the pI of the original unmodified 

protein, where major emulsifying functionalities of the protein itself are minimized due 

to the loss of charge and solubility. More importantly, the studies on WPI materials in 

this chapter provide us with a baseline to compare with the performance of vegetable 

protein based emulsifiers, undergoing exactly the same procedures (as will be 

described in the next chapter). 

The current chapter presents and discusses the results obtained for the characteristics 

and emulsifying/stabilizing behaviours of the intact WPI and fragmented WPI which 

are produced by two enzymes with distinct levels of specificity (i.e. trypsin and 

alcalase). These results are then compared to those observed for their conjugated 

counterparts made through reaction with maltodextrin. The results presented in this 

chapter will be used to make comparisons with results obtained for soy protein 

materials in the next chapter. The aim is that these comparisons will aid better and 

clearer interpretations of the properties of both whey protein (milk based) and soy 

protein (plant based) materials. 

 

4.2 Materials and Methods 

4.2.1 Materials 
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The commercial isolated whey protein (WPI) was obtained from Davisco Foods 

International (USA). The WPI has a protein content of at least 95% (w/w) with a 

composition of 74% β-lactoglobulin (β-LG), 20% α-lactalbumin (α-LA) and 6% bovine 

serum albumin (BSA), as provided by the supplier. Porcine trypsin (T7409) in the form 

of lyophilized powder, and Alcalase 2.4L (from Bacillus licheniformis) in the form of 

aqueous solution, as well as all the other chemicals were purchased from Sigma-

Aldrich. The materials required for electrophoresis analysis were all purchased from 

ThermoFisher Scientific Co. (USA), which included the pre-casted gel sheets, sample 

buffer, running buffer and molecular weight ladder. The deionised water from a Milli-Q 

water system (Millipore Co., USA) was used in all the experiments, including 

preparations of samples, buffers and reagents.  

4.2.2 Hydrolysis of WPI by trypsin and alcalase 

2.5% (w/v) 100 mL WPI solution was prepared by dissolving WPI powder in deionised 

water for 2 h with gentle stirring. The solution was then allowed to hydrate overnight 

at 4°C. For hydrolysis by trypsin, the protein solution was preheated to 37°C by 

incubation in a 37°C water bath for 20 min with gentle stirring. Then the pH of the 

solution was adjusted to 8.5 with 1 M NaOH. According to preliminary tests, trypsin 

was added at enzyme-to-substrate (E/S) ratios (w/w) of 1/300, 1/150 and 1/80 to 

achieve three different degrees of hydrolysis (i.e. DH = 2.5%, 5.5%, 8.0%), obtained 

within approximately 2 h. In the case of alcalase, the WPI solution was preheated to 

50°C by incubation in a 50°C water bath for 20 min with gentle stirring. Then the pH of 

the solution was adjusted to 8.5 with 1 M NaOH. Different amounts of alcalase solution 

(i.e. 2.5, 4.5 and 7.5 L/100 mL protein solution) were added respectively, again to 

provide different levels of hydrolysis.  

For each case, protein was hydrolysed under constant temperature and pH, controlled 

by a water bath and Metrohm 902 Titrando system (Metrohm Co., USA). The DH was 

monitored by pH-stat method according to section 2.3.1.  

When the desired DH (i.e. 2.5%, 5.5%, 8.0%) was reached, the enzyme activity was 

immediately stopped by diluting the protein solution to 1.0% (w/v) with 4°C deionized 

water and incubating in an ice bath with gentle stirring for 0.5 h. The protein 

hydrolysates were then freeze dried over a period of 48 h. A moderate heating 
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treatment (80˚C, 5 min) was applied to the freeze-dried samples, in order to ensure 

the complete inactivation of enzyme activity. 

Whey protein hydrolysates (WPHs) produced by trypsin and alcalase digestion at 

different values of DH (i.e. 2.5%, 5.5%, 8.0%) were labelled as WT1, WT2, WT3 and 

WA1, WA2, WA3, respectively.  

4.2.3 Preparation of protein-polysaccharide conjugates 

The Maillard reaction products (MRPs) were prepared by dry heating according to Xu 

et al. (2009), Akhtar et al. (2007). First, maltodextrin DE16.5-19.5 (MD, 𝑀௪ = 8.7 kDa) 

in the powder form was added to a 1.0% (w/v) solution of WPI and hydrolysed WPI 

(WPHs) with different DH, as fragmented by either trypsin (WT1, WT2, WT3) or 

alcalase (WA1, WA2, WA3). The ratio of the added maltodextrin (MD) to 

protein/polypeptides was 2:1 by weight. The protein/polypeptides + maltodextrin 

mixture solution was stirred for 1 h at room temperature, and the pH was adjusted to 

7.5 with 1 M HCl, before being subjected to freeze drying process for 48 h. Freeze-

dried samples were placed in a desiccator with saturated NaCl solution to control the 

relative humidity. Then the desiccator was either incubated at 90°C for 3 h, or at 60°C 

for 24 h, allowing the investigation of whether these two commonly used heating 

practices would result in any differences regarding the emulsifying and stabilizing 

properties of the produced conjugates. 

The Maillard reaction products (MRPs) are denoted in here starting with the type of 

the protein/polypeptides, followed by polysaccharide. For example, the MRPs made 

from WT1 and maltodextrin DE16.5-19.5 is marked and referred to as WT1-MD 

throughout the study.  

4.2.4 Electrophoresis analysis 

SDS-PAGE was performed under reduced conditions on pre-casted BoltTM Bis-Tris 

Plus Mini Gel 4-12%. According to the instructions from the supplier (ThermoFisher 

Scientific Co., USA), 65 L of each tested sample (containing 0.15% of protein) was 

thoroughly mixed with 25 L BoltTM LDS sample buffer and 10 L 0.5 M dithiothreitol 

(DTT). The resulting solution was then heated in a 70°C water bath for 10 min. A 

running buffer (1× BoltTM MES SDS) was added into the chamber. Then 20 L of each 
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heated sample solution was loaded per lane. An unstained broad-range protein ladder 

(2.5 ∽ 200 kDa) was used to estimate the molecular weight of the protein materials in 

the samples. The electrophoresis was carried out at a constant voltage of 200 V for 

22 min. The gel sheet was stained for protein by Coomassie brilliant blue for 2 h, and 

was then destained with deionised water until the background colour was largely 

washed off and the protein bands were sufficiently clear.  

4.2.5 Protein solubility 

The soluble protein content was determined by Biuret assay (see section 2.3.3). The 

Biuret reagent was prepared according to the previous literature (Gornall et al., 1949, 

Kim et al., 1990). 1.5 g cupric sulphate (CuSO4 ൉5H2O) and 6.0 g sodium potassium 

tartrate (NaKC4H4O6 ൉4H2O) are weighed and made totally dissolved in about 500 mL 

deionised water. The mixture is transferred to a 1 L volumetric flask. Then 300 mL of 

10% (w/v) NaOH solution is added to it. The mixture solution is made to volume 

(exactly 1 L) with deionised water and then is well mixed before use. For long-term 

storage, the Biuret reagent should be kept in a plastic bottle and away from light. The 

reagent must be discarded, if there are any black or reddish precipitates in it. 

Tested protein/polypeptide samples were prepared at a protein/polypeptide 

concentration of 1.0% (w/v) and adjusted to five different pH conditions (pH 7.5, 6.0, 

4.5, 3.0 and 2.0) with 1 M NaOH or HCl. Then the samples were centrifuged at 12,000 

g for 15 min. A volume of 200 L supernatant was incubated with 1 mL Biuret reagent 

for 1 h at room temperature. The absorbance was read at 540 nm using a 

spectrophotometer UV-2600 (Shimadzu, Japan). In order to convert the absorbance 

into protein content (g/L), a standard curve was produced using bovine serum albumin 

(BSA) as a reference protein (see Appendix III). 

4.2.6 Determination of sulfhydryl content 

The sulfhydryl (-SH) content of the intact and hydrolysed proteins, as well as their 

corresponding MRPs, was determined. Sample was dissolved in Tris-Glycine buffer 

(0.086 M Tris, 0.090 M Glycine, 4 mM Na2EDTA) at a protein/polypeptide content of 3 

mg/ml with gentle mixing for 2 h. Then 0.2 mL Ellman’s reagent (4 mg DTNB /mL 

buffer) was added rapidly to 4 mL of the sample. The resulting mixture was then 
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allowed to stand for 5 min at 20°C, before centrifuged at 12,000 g for 10 min. The 

absorbance of the supernatant was read at 412 nm. A reagent blank (i.e. 0.2 mL 

Ellman’s reagent mixed with 4 mL deionised water) and a protein blank (i.e. 0.2 mL 

deionised water mixed with 4 mL sample) were prepared for each sample for 

correction. The absorbance was then converted into free –SH content 𝐶ௌு  (mol/g 

protein) based on the principles explained in the section 2.3.4. 

4.2.7 Preparation of emulsions 

1.0% (w/v, based on protein content) unconjugated and conjugated protein samples 

were prepared in deionised water and mixed for 2 h and then left for hydration 

overnight at 4°C. Sodium azide (0.02%) was added to prevent microbial activity. Then 

the pH of the sample was adjusted to 7.5 with 1 M NaOH. An oil-in-water emulsion (10 

vol.% sunflower oil) was prepared in two steps, by a first pre-homogenization (12,000 

rpm, 5 min) followed by two passes through Leeds Jet homogenizer at 300 bar (Akhtar 

et al., 2003, Dickinson et al., 1988b). The pH of the freshly made emulsions was then 

adjusted to various desired values (pH 7.5, 4.5, and 3.0) with 1 M NaOH or HCl. The 

emulsion samples were stored at 4°C for further investigations. 

4.2.8 Storage stability of emulsions at different pH conditions 

The stability of emulsions was assessed according to different measures. These 

included the mean droplet size 𝐷ସ,ଷ  and the size distribution of emulsions, both 

obtained by a Mastersizer 3000 analyser (Malvern, UK), the rheological flow properties 

of emulsions measured using a Kinexus Ultra rheometer (Malvern, UK), the -potential 

of the emulsion droplets using a Nano ZS Zetasizer (Malvern, UK) and the emulsion 

microstructure by optical microscopy. The assessments were performed at various 

stages during the storage period.  

More specifically, in the measure of emulsion droplet size, the refractive indices used 

for oil and aqueous phase were 1.47 and 1.33, respectively. The optical absorption 

parameter was set at 0.01. The rheological behaviour was conducted using a double 

gap cylinder geometry (DG25), as described in section 2.3.7. The emulsion sample 

was gently mixed before loading into a temperature-controlled cell. The temperature 

was allowed to equilibrate at 25°C for 20 min prior to any measurements. The viscosity 
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of an emulsion was measured at shear rates ranging from 1 to 100 s-1, using the 

continuous shear mode of operation for the rheometer. The -potential of the emulsion 

droplets was determined at different pH conditions, by diluting the emulsion sample 

200 times (i.e. 10 μL emulsion sample in 1.99 mL buffer) with the corresponding 

buffering system that has the same pH as the tested sample and a low background 

electrolyte concentration of 20 mM. The recipe for these buffering systems is provided 

in Appendix IV. 

4.2.9 Statistical analysis 

All the measurements were performed in triplicate. The obtained data were averaged 

and reported as a mean value in each case. The error bars were added as standard 

deviations. All the calculations were analysed by Microsoft Excel 2016. 

 

4.3 Results and Discussions 

In this section we shall focus on the data obtained for proteins that were conjugated 

with polysaccharides at 90°C for 3 h. The results obtained for these conjugated 

biopolymers are compared with those for the unconjugated equivalents. No significant 

differences in respect of the functional properties were found between conjugates 

made at 90°C for 3 h and those produced at 60°C for 24 h, except for a slightly lower 

level of solubility for the latter. Therefore, unless specifically stated, the discussions 

concerning the conjugates formed at 90°C for 3 h are understood to largely apply to 

those made at 60°C for 24 h. 

4.3.1 Molecular weight profiles 
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The peptide profiles of whey protein digested by trypsin and alcalase were analysed 

by reducing SDS-PAGE and were displayed in Figure 4.1. The major components of 

intact WPI, i.e. β-LG, α-LA and BSA, were marked on the gel sheet as reference (lane 

0). The component α-LA showed more resistance to enzymatic attack than β-LG, 

which has also been reported to be the case by Cheison et al. (2011). It is clearly seen 

that trypsin and alcalase generated polypeptides with distinct profiles. Trypsin is found 

to gradually break whey protein down. This is seen as a shift of bands towards lower 

molecular weight range with increasing DH (lane 1-3). As for alcalase, the profiles of 

Figure 4.1 Reducing SDS-PAGE analysis of the protein/peptide profiles for
various whey protein samples. Lane 0 is intact WPI. Lane 1-3 are 
polypeptides produced by trypsin digestion at increasing DH (i.e. WT1 at
2.5%, WT2 at 5.5% and WT3 at 8.0%, respectively). Lane 4-6 are 
polypeptides produced by alcalase digestion, from lower to higher DH (i.e.
WA1 at 2.5%, WA2 at 5.5% and WA3 at 8.0%, respectively). Lane M is the
molecular weight ladder (with values presented in the unit of kDa). A 
sample post conjugation with maltodextrin (i.e. WT1-MD) is also shown at 
lane 8 to compare with its unconjugated counterpart (i.e. WT1) at lane 7. 
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hydrolysates (lane 4-6) did not show a distinct difference with increasing DH beyond 

2.5%. Moreover, under SDS-PAGE reducing conditions, all the associations between 

peptides are broken (including disulphide bonds and hydrophobic interactions). A large 

number of small peptides, less than 2.5 kDa, would have also been expected to be 

released. However, these would be too small to show up on the gel sheet used here 

and therefore were not detected. 

The contrasting sets of polypeptide profiles obtained by trypsin and alcalase digestion 

indicate that compared to the enzymes having a broader range of amino acid 

substrates (e.g. alcalase), the ones with a higher selectivity (e.g. trypsin in our case) 

seem to be more effective in breaking up the protein structure, thus causing a 

significant change to the distribution of polypeptides released. The influence of the 

actions of trypsin and alcalase on the properties of obtained peptides is much more 

pronounced when it comes to soy proteins. We will return to this point and provide 

more details in the next chapter. 

Last but not least, the successful formation of conjugates was confirmed as well. The 

presented result here is limited to the conjugates formed using WT1, though similar 

data would be expected for other hydrolysed samples too. In comparison to the 

equivalent unmodified protein fragments (lane 7), a noticeable shift in molecular 

weight, towards higher values, was observed for conjugated WT1 (lane 8). This 

increase in molecular weight is indicative of the formation of covalent bonding of 

maltodextrin (𝑀௪= 8.7 kDa) with the protein fragments.  

4.3.2 Solubility 

A reasonable level of solubility of protein/peptide is known to be a key requirement for 

satisfactory functioning of any good molecular (i.e. non-Pickering type) emulsifier 

(Dickinson, 1992e). It is also crucial when it comes to synthesising the conjugated 

emulsifier/colloidal stabiliser, as carefully discussed in section 1.2.4. Whether the 

conjugates are prepared from the dry mixture (e.g. using heat treatment (Akhtar et al., 

2007, Wooster et al., 2007)) or in a solution (e.g. enzymatically (Chen et al., 2018a, 

Liu et al., 2018a)), it is important that the protein and polysaccharide molecules are in 

intimate contact, distributed homogenously in the mixture. It is only then that the 
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Maillard reaction between the two can proceed to an extent that a sufficient number of 

conjugated emulsifiers are produced.  

Additional requirements, such as preventing possible segregative phase separation 

(Fang et al., 2006, Banta et al., 2018) may also need some consideration, but normally 

can be avoided if uncharged polysaccharides are used.  

Given the importance of the initial solubility of protein materials to the colloidal 

behaviours as well as to the efficient synthesis of conjugates, it is useful to consider 

how the solubility of protein fragments differs from their original intact protein, and how 

this alters with the choice of the enzyme, the degree of hydrolysis (DH) and the 

covalent attachment of polysaccharide. In this section, we shall present and discuss 

the results of the solubility measurements, both for hydrolysates prior to and post 

conjugation with maltodextrin. 

4.3.2.1 Solubility of WPI and WPHs samples 

Starting with intact WPI as the first example (Figure 4.2), the results showed that the 

protein has the lowest solubility at pH 4.5, which indeed is at its reported pI value. At 

all other pH conditions (i.e. pH 7.5, 6.0, 3.0 and 2.0), WPI exhibited a high level of 

solubility. The same trend was observed for all the hydrolysed whey protein samples 

produced under the action of either enzyme (i.e. WT1, WT2, WT3 and WA1, WA2, 

WA3).  
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The change in the solubility with pH was also seen visually in Figure 4.3. The figure 

displays the variation of the solubility of 1% (w/v) WT1 solution as a function of pH. A 

clear solution was obtained at all pH values except at pH 4.5. At pH = 4.5, the 

fragments aggregated and settled down due to their reduced net surface charge. 

Figure 4.2 The solubility of intact WPI and WPHs samples hydrolysed by
trypsin (A) and alcalase (B) at various DH, plotted as a function of pH. 
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Our data also showed that a limited hydrolysis of up to DH 8.0%, by either trypsin or 

alcalase, caused a distinct drop in the solubility when compared to the intact WPI. This 

decrease was seen at all tested pH conditions (Figure 4.2). A likely explanation of this 

would be that when proteins are only hydrolysed to a limited extent (DH < 20%), the 

distribution of broken bonds along the protein backbone creates a mixture of 

polypeptides with various sizes and a range of pI values. As a result, each fragment 

would have a slightly different pH-solubility profile (Ettelaie et al., 2014), not only to 

other fragments but also to the original intact protein. Thus, at any pH, it is likely that 

a subset of the fragments is either at, or close to, their respective pI. Therefore, at pH 

conditions where the intact protein already exhibits a good level of solubility, enzyme 

hydrolysis is likely to serve to reduce the overall solubility. This is what is observed 

here for whey protein in our case. The same is also reported to be true of casein 

(Chobert et al., 1988), where once again the solubility of the original protein, at least 

away from pI, happens to be high. Additionally, for whey protein (though not so much 

for casein) the process of hydrolysis can also cause the exposure of the hydrophobic 

residues (Chen et al., 2011a, 2011b, Wu et al., 1998, Zhao et al., 2011). These tend 

to be buried deep within the interior of the globular protein. When exposed, they will 

probably lead to a reduction of solubility. However, it is also noticed that the solubility 

of WPHs at pI of WPI, though still not quite as good as the original protein, did 

gradually improve with increasing DH. 

4.3.2.2 Solubility of conjugated WPI and WPHs samples 

Figure 4.3 The visual appearance of 1% (w/v) WT1 sample solution
at various pH conditions. 
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The solubility of WPI and WPHs that were conjugated with maltodextrin (i.e. WPI-MD, 

WT1-MD, WT2-MD, WT3-MD and WA1-MD, WA2-MD, WA3-MD), obtained via dry-

heating Maillard reaction in accordance to the recipe in section 4.2.3, was also 

examined. These samples showed a golden brown colour which is typical of the 

characterized compounds formed during Maillard reaction (as have been discussed 

extensively in section 1.2.2). When dissolved in deionised water, these conjugated 

protein samples formed a clear golden solution at all tested pH conditions, including 

pI of WPI, without formation of any visible aggregates. The visual appearance of the 

solution involving sample WT1-MD was shown in Figure 4.4. This improvement in 

solubility at pI was also quantitively seen in Figure 4.5. For example, the solubility of 

WT1 post conjugation with maltodextrin increased to 8.2 g/L from 7.7 g/L for unreacted 

WT1 sample (compare Figure 4.2 and Figure 4.5). The enhanced solubility at pI is 

attributed to the covalent attachment of maltodextrin, which was confirmed by the 

increased molecular weight of the hybrid polymer on SDS-PAGE analysis (lane 7 and 

8 in Figure 4.1).  

 

Figure 4.4 The visual appearance of 1% (w/v) WT1-MD sample solution
at various pH conditions. 
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Nonetheless, at conditions away from pI, a decrease was noticed in the solubility of 

the conjugates in comparison to non-reacted equivalents (compare Figure 4.2 and 

Figure 4.5). For instance, the solubility of WT1 at pH conditions other than 4.5 was 

measured to be around 8.8 g/L, while that of WT1-MD was approximately 8.2 g/L at 

the corresponding pH conditions.  

Figure 4.5 The solubility of conjugates made from intact WPI and those
from WPHs at various levels of hydrolysis, produced by either trypsin (A)
or alcalase (B), plotted as a function of pH. 



- 83 - 
 

The exact reason for this decrease in solubility at conditions away from pI is not 

currently apparent to us. It is suspected to arise from the heat-induced intermolecular 

aggregation of proteins through the disulphide bond formation, which was 

demonstrated by the consumption of free -SH groups (Figure 4.6), and hydrophobic 

interactions (Diftis et al., 2006, McClements, 2004, Ren et al., 2009, Dickinson et al., 

1992) as occurring during the synthesis of conjugates via dry heating. This point merits 

further investigation. 

To summarise then, the solubility of the conjugated WPI and WPHs improved at pH 

values close to pI of WPI, but decreased at all other pH values further away from pI. 

Thus, the solubility profiles of conjugated samples generally displayed rather flat lines 

without any significant changes across the studied pH range (Figure 4.5). This is in 

contrast to the large variation seen in the solubility of unconjugated samples with 

changing pH (Figure 4.2). Despite its observed decrease at pH values away from pI, 

the solubility of the conjugated WPI and WPHs remained at around 8.2 g/L throughout 

the entire studied pH range. This is sufficient to meet this particular key requirement 

for having a good emulsifier.   

4.3.3 Morphology and stability of emulsions at different pH conditions  

Figure 4.6 Free sulfhydryl (-SH) content of protein and hydrolysates 
prior to and post dry-heating Maillard reaction. 
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The peptide distribution profile and the solubility, as investigated in the previous 

sections, focused on some of the key features that could influence the functional 

properties of a protein material as a suitable emulsifier and colloidal stabiliser. In this 

section, the results for the storage stability of emulsions under three pH conditions are 

presented. The microstructure, droplet size and distribution, potential and flow 

behaviour between different emulsion samples are compared. We discuss the 

emulsifying and stabilizing abilities of the modified protein materials, in the light of the 

observed attributes studied in the last two sections, as well as other possible relevant 

parameters.  

4.3.3.1 Emulsions based on WPI and WPHs samples 

At neutral pH conditions, WPI is well known to be able to form fine stable emulsions 

(Akhtar et al., 2007, Ding et al., 2017), as is also observed here in Figure 4.7. The 

droplet size, 𝐷ସ,ଷ , of fresh emulsion stabilized by WPI at pH 7.5 was 0.682 m, 

although this increased to 0.833 m after 60 days.  

Figure 4.7 The average droplet size 𝑫𝟒,𝟑 of freshly made and stored (60 
days) emulsions, fabricated by intact and hydrolysed whey protein, at 
various pH conditions (i.e. pH 7.5, 4.5 and 3.0). 
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The hydrolysis by trypsin at DH 2.5% (WT1) produced fragments with improved 

emulsifying and stabilizing capacities compared to the intact WPI (Figure 4.7). The 

micrograph of fresh WT1 stabilized emulsion at pH 7.5 (Figure 4.8A), showed fine oil 

droplets (𝐷ସ,ଷ = 0.628 m) with a monomodal size distribution. The -potential was 

measured to be around -55.7 mV (Table 4.1), indicating the presence of strong 

electrostatic repulsion between the droplets. The emulsion remained reasonably 

stable, with 𝐷ସ,ଷ = 0.656 m, even after 60 days (Figure 4.8B). However, as WPI was 

further fragmented to achieve higher DH values of 5.5% and 8.0% (WT2 and WT3), 

the emulsifying functionality was found to suffer. The droplet sizes at day 1 were 0.837 

m and 1.49 m for emulsions made by WT2 and WT3, respectively. These grew to 

1.37 m and 1.73 m after 60 days of storage at pH 7.5 (Figure 4.7).  

As for fragments produced by alcalase digestion, no improvement was observed. Both 

the emulsifying and stabilizing properties of WPI worsened from the very onset as a 

result of hydrolysis. The droplet sizes, 𝐷ସ,ଷ  of fresh emulsions made by alcalase 

generated WPHs at day 1 were 0.713 m (WA1), 1.02 m (WA2) and 1.56 m (WA3), 

which were noticeably larger than the ones made with the intact WPI (𝐷ସ,ଷ = 0.682 

m). After 60 days of storage, these values increased to 1.65 m, 2.16 m and 3.02 

m for WA1, WA2 and WA3 stabilized emulsions, respectively. This was to be 

compared to 0.833 m found for the unmodified WPI at day 60 (Figure 4.7). 

Nonetheless, the possibility of a small improvement at even lower DH values of less 

Figure 4.8 Micrographs of WT1 fabricated emulsion, stored at pH 7.5, on 
day 1 (A) and after 60 days of storage (B). The droplet size distribution 
and the mean droplet size 𝑫𝟒,𝟑 are also provided on each photo. 
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than 2.5% cannot be entirely ruled out. While this point was not investigated further, if 

observed it will confirm a similar trend as that found for trypsin produced WPHs. That 

is to say, a modest improvement at low levels of fragmentation is followed by inferior 

emulsifying and stabilizing properties as the protein is broken down even more.  

The above results presented here are found to be consistent with the theoretical 

findings in the previous chapter. Recall from Chapter 3, it was also demonstrated that 

the degree of hydrolysis (DH) could serve as a guiding parameter to control the 

emulsifying and stabilizing abilities of the protein hydrolysates, as it governs the 

content of large polypeptides present in the obtained mixture of hydrolysates. A lower 

level of hydrolysis will produce a distribution of fragments with a greater content of 

larger-sized polypeptides, while extensive hydrolysis will cause fewer such large 

chains to remain in the system. These large protein fragments, despite only having a 

much lower percentage of hydrophobic amino acids in their primary structure 

compared to the small fragments, possess a significantly higher surface affinity and 

are able to adsorb substantially on the droplet surface. On the other hand, small 

protein fragments were seen to fail to establish a sufficient level of surface adsorption, 

attributed to the inadequate total binding energy of the whole molecule. Such being 

the case, for polypeptides (derived from naturally occurring proteins) to be good 

emulsifiers, they will need to have the right size. We will continue to investigate the 

critical size of a protein fragment that enables it to be an effective emulsifier and 

colloidal stabilizer in Chapter 6. 

For those protein fragments that are able to adsorb sufficiently on the interface, they 

may well be more flexible than the intact globular protein (as long as the fragments 

are not too small in size), due to their lack of secondary and tertiary structures 

compared to the latter. They may also be more surface active than the parental 

Table 4.1 -potential (mV) of freshly made and stored (for 60 days) 
emulsion droplets, stabilized by WT1 sample as emulsifiers. Results are 
shown at different pH conditions. 
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globular protein, because of the exposure of their hydrophobic amino acid residues. 

Thus, their presence will be beneficial for the emulsification process. However, 

fragmented proteins are not able to prevent possible colloidal instability (e.g. 

coalescence) effectively if they are made too small. During the storage of emulsions, 

some of the small polypeptides may be capable of gradually disturbing and even 

displacing large adsorbed fragments from the interface (Dickinson, 2011). These latter 

chains can potentially provide better steric stabilizing ability and form stronger 

interfacial films (Ipsen et al., 2001, Schröder et al., 2017, Chen et al., 2019). Hence, 

their displacement from the surface of droplets is not desired and may lead to colloidal 

instability for droplets stabilised by hydrolysates generated by alcalase or trypsin at 

higher levels of fragmentation.  

The weakening in the stabilising ability, resulting from excessive hydrolysis, seems to 

be a general feature. It has also been observed in other studies, involving not only 

whey proteins (Schröder et al., 2017, Tirok et al., 2001) but also casein (Luo et al., 

2014), soy proteins (Qi et al., 1997, Chen et al., 2011b, 2011a) and peanut protein 

(Chen et al., 2018b). The presence of a sufficiently high proportion of peptides > 2~3 

kDa is demonstrated to be beneficial for the stability of emulsions (van der Ven et al., 

2001, Lee et al., 1987, Schröder et al., 2017).  

As seen above, the overall differences between the performances of WPI derived 

polypeptides produced by trypsin and alcalase, at currently investigated levels of DH, 

are relatively small. When considering soy protein as opposed to WPI in the next 

chapter, we shall see that the choice of the enzyme becomes much more critical. 

Hydrolysates produced by different enzymes exhibit much clearer and more 

pronounced variation in their colloidal performances.  
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When the pH of the whey protein based emulsions (i.e. those made from the intact 

WPI or WPHs produced by digestion with trypsin and alcalase) was adjusted to pH 

4.5, the originally well dispersed droplets became strongly destabilized. This was 

illustrated by the dramatic increase in the mean droplet size, as indicated in Figure 

4.7. For example, the measured 𝐷ସ,ଷ rose from 0.628 m at pH 7.5 to 11.1 m at pH 

4.5, for fresh WT1 stabilized emulsion. The micrograph of fresh WT1 stabilized 

emulsion at pH 4.5 displayed the formation of clusters of highly flocculated droplets 

(Figure 4.9A). A significant increase in the low shear viscosity of this emulsion was 

also observed, compared to that at pH 7.5 (Figure 4.10). These are all attributed to 

the reduced electrostatic stabilization between emulsion droplets (-potential = +11.1 

േ 0.6 mV, see Table 4.1).  

Figure 4.9 Micrographs of WT1 fabricated emulsion, stored at pH 4.5, on
day 1 (A) and after 60 days of storage (B). The droplet size distribution and
the mean droplet size 𝑫𝟒,𝟑 are also provided on each photo. 
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Recall from Chapter 3, the theoretical results demonstrated that adsorbed protein 

fragment has to adopt a diblock-like conformation at the interface, which is in favour 

of providing an enhanced steric repulsion, so as to deliver stabilization to emulsion 

systems in the absence of electrostatic repulsion. However, the action of enzyme 

mostly generates polypeptides with various primary structures and differing colloidal 

and interfacial behaviours. Unless by some fortunate production of diblock-like 

fragments, most of the generated polypeptides, which take either a flat, triblock- or 

multiblock-like conformation at the interface, are not able to convey a good emulsion 

stabilizing capacity under the circumstances where the electrostatic repulsion is 

largely reduced, thus leading to droplet flocculation. Such situations were seen, from 

a theoretical perspective, to be totally modified following covalent bonding of a 

hydrophilic chain to the protein fragment. The performance of the conjugated 

protein/polysaccharide will be investigated experimentally in the next section. 

After 60 days of storage, a few large droplets were observed in the micrograph of WT1 

stabilized emulsion stored at pH 4.5 (Figure 4.9B). This is the result of expected 

droplet coalescence following the earlier droplet aggregation (Dickinson, 1992h, 

Tcholakova et al., 2006). However, it should be noted that the coalescence process 

here proceeded at a much slower rate, in comparison to the initial rapid droplet 

aggregation. This is a feature seen in quite a few of the samples studied here, where 

the loss of colloidal stability following a change in pH was observed.    

Figure 4.10 Apparent viscosity of the emulsions fabricated by WT1, stored
for 1 day at pH 7.5 and pH 4.5, plotted against shear rate. 
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If the pH was subsequently lowered down to 3.0, reasonably quickly (i.e. within 5 min) 

following its previous adjustment to pH 4.5, the flocculated droplets were seen to 

redisperse to a large extent. This observation was true of WPI and all WPHs based 

samples. It can be seen from the much smaller size measured following such an 

adjustment of pH, as indicated by the average sizes 𝐷ସ,ଷ at pH = 3.0 and pH = 4.5 

presented in Figure 4.7. For example, the droplet size 𝐷ସ,ଷ  of the WT1 stabilized 

emulsion dropped down from 11.1 m at pH 4.5 back to 0.856 m at pH 3.0. This was 

attributed to the fact that while the droplets aggregated at pH 4.5, they did not 

immediately coalesce. Thus, when a sufficient degree of surface charge was regained 

at pH 3.0 (-potential = +45.9 േ 1.5 mV, see Table 4.1), the clusters broke down. The 

same did not happen if the systems were retained at pH 4.5 for a period longer than a 

few days, prior to adjustment of pH to 3.0. In this case, flocs of droplets were only 

slightly dissociated (Figure 4.11A), with a relatively small change in the measured 

size distribution, as the pH was adjusted down to 3.0 (compare Figure 4.11A with 

Figure 4.9B). Yet, when the stored emulsion at pH 4.5 was diluted in 5% SDS, a vast 

majority of the droplet clusters were seen to break up (Figure 4.11B). The droplet size 

distribution following the treatment with SDS indicates that a substantial number of 

submicron droplets were still present in the system, although of course larger droplets 

were also clearly visible in the micrograph for the same sample. The overall 𝐷ସ,ଷ was 

4.54 m, as compared to 11.4 m prior to addition with SDS (Figure 4.11). This 

Figure 4.11 Micrographs of WT1 based emulsion stored at pH 4.5 after 60
days. (A) and (B) respectively display the microstructure when this stored
emulsion was adjusted to pH 3.0, or when it was diluted in 5% SDS. The
droplet size distribution and the mean droplet size 𝑫𝟒,𝟑 are also provided 
in each photo. 
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indicates that the associations between the flocculated droplets were mainly 

hydrophobic in origin. These are likely to arise from the conformational 

rearrangements of adsorbed proteins/peptides on the surface of the droplets, via 

exposure of their hydrophobic residues during the aging of the emulsions 

(McClements, 2004, Freer et al., 2004, Kim et al., 2002a, 2002b).  

Moreover, when emulsions are stored at pH = 4.5 for long periods (more than a couple 

of days), the rearrangement and mutual diffusion of the polypeptides between adjacent 

surface layers might result in the formation of interfacial films shared between 

neighbouring droplets. Once such layers are formed, switching the electrostatic 

repulsion back on between the droplets by adjustment of pH, is no longer sufficient to 

redisperse the emulsion system. On the other hand, the shared layers would not have 

formed if the storage time (at pH = 4.5) is kept short. Then, as clearly found here, the 

flocs were able to break up and fall apart as soon as a sufficient level of electrostatic 

repulsion between the droplets was operational. As an aside, the fact that a large 

number of small droplets were still present following dilution with SDS, shows that the 

coalescence kinetic was slow, even in these highly flocculated and sufficiently aged 

emulsions at pH 4.5.     

4.3.3.2 Emulsions based on conjugated WPI and WPHs samples 

Figure 4.12 The average droplet size 𝑫𝟒,𝟑 of freshly made and stored (60 
days) emulsions, fabricated by conjugates made from WPI/WPHs + 
maltodextrin, at various pH conditions (i.e. pH 7.5, 4.5 and 3.0). The scale 
in this graph is kept the same as that in Figure 4.7 for the ease of 
comparison. However, a more detailed version is also shown in the inset.
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When WPI/WPHs were conjugated with maltodextrin, both the emulsifying and 

stabilizing abilities were enhanced substantially at all tested pH conditions (Figure 

4.12). The difference was particularly pronounced at pH 4.5 where emulsion droplets 

stabilised by unconjugated WPI/WPHs became strongly aggregated. For example, 

unlike the highly flocculated state of WT1 stabilized emulsion at pH 4.5, the conjugated 

WT1 based emulsion sample stayed well dispersed throughout the whole storage 

period, with no change in droplet size (𝐷ସ,ଷ was 0.660 m at day 1 and 0.657 m at 

day 60, see Figure 4.13). Since the potential measured at pH 4.5 was only +1 ∽ +2 

mV (Table 4.2), the excellent stability to flocculation and coalescence for WT1-MD 

stabilised emulsion is not the result of electrostatic repulsion. It must be due to the 

strong steric stabilization, operating between the adsorbed layers of conjugated 

polypeptides.  

 

The steric stabilization is the result of the excluded volume effect arising from the 

polysaccharide attachments (Dickinson, 2008, Ettelaie et al., 2017, Ettelaie et al., 

2012, Dickinson, 1992e), and will not be significantly altered by the change of 

background pH or the high concentration of electrolytes. Nonetheless, in order for the 

steric stabilization to remain sufficiently strong so as to ensure an excellent long-term 

storage stability of an emulsion, the attached polysaccharide is required to have the 

right size. As demonstrated theoretically in Chapter 3, short hydrophilic attachments, 

although starting to produce a steric repulsion between two approaching emulsion 

Figure 4.13 Micrographs of WT1-MD fabricated emulsion, stored at pH 4.5, 
on day 1 (A) and after 60 days of storage (B). The droplet size distribution
and the mean droplet size 𝑫𝟒,𝟑 are also provided on each photo. 
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droplets coated by them, still create a relatively deep energy well which is able to trap 

a sizable amount of droplets and therefore induces some degree of droplet 

flocculation. Only sufficiently large polysaccharides are able to generate a sufficiently 

strong energy barrier that builds up before the inter-droplet Van der Waals attractive 

force dominates. Some experimental work in the literature has evaluated the critical 

size of a polysaccharide to convey a reasonably good steric stabilization to an 

emulsion system (Wooster et al., 2006, 2007).  

It was also suggested that the polysaccharide chain should have an appropriate size 

so that the hydrophilic-hydrophobic balance of most of the composite polymers 

continues to favour their adsorption onto the O/W interface (de Oliveira et al., 2016, 

Oliver et al., 2006, Panyam et al., 1996). As for our study, fragmentation of proteins at 

the initial stage probably has enabled the exposure of hydrophobic residues in parental 

globular proteins, as has been reported by many other researchers (Zhang et al., 

2012a, Chen et al., 2011a, 2011b, Wu et al., 1998, Zhao et al., 2011). This increased 

hydrophobicity gets balanced by covalent attachment of hydrophilic chains. This not 

only renders the hybrid polymers to become more surface active (Zhang et al., 2012a), 

but also strengthens colloidal stability against flocculation and coalescence due to the 

large hydrophilic polysaccharide sections of the adsorbed molecules. However, at high 

DH values, the generated peptides become significantly smaller and less surface 

active (Zhang et al., 2012a, Chen et al., 2011b, 2011a, Wu et al., 1998, Zhao et al., 

2011). When synthesised from such small fragments, the produced conjugated 

biopolymers may become excessively hydrophilic and lose their interfacial properties 

(Zhang et al., 2012a, Oliver et al., 2006), particularly considering the much larger size 

of polysaccharide relative to the small polypeptide part. This will leave the surface of 

the droplets insufficiently protected.  

Table 4.2 -potential (mV) of freshly made and stored (for 60 days) emulsion 
droplets, stabilized by WT1-MD sample as emulsifiers. Results are shown 
at different pH conditions. 
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Moreover, the conjugated protein fragments in our studied systems will inevitably 

consist of polymers of different sizes, as well as containing both unconjugated 

peptides and those fragments bonded with polysaccharides. The coexistence of a 

spectrum of varying polymers will lead to some degree of competitive adsorption 

occurring both during emulsification and the storage period of emulsion. As shown by 

the theoretical findings in Chapter 3, competitive adsorption and displacement 

between conjugated biopolymers are not likely to make a significant difference to the 

stability of an emulsion system. This is because the length of the grafted hydrophilic 

attachment was seen much more crucial in manipulating the interactions between 

dispersed droplets, compared to the size of the polypeptide. Therefore, conjugated 

polymers (as long as they can achieve a sufficient level of adsorption at the droplet 

surface) were found to exhibit a similar level of colloidal stabilizing capacity, 

irrespective of the huge differences in the molecular size, degree of hydrophobicity 

and the adopted conformation of the polypeptide moieties that the hybrid polymers are 

made from. As opposed to that, the competition between conjugated fragments and 

those unconjugated ones would possibly change the emulsion stability. This is 

particularly true for the emulsion system fabricated using the mixture of protein 

hydrolysates obtained at higher DH values. In those cases, there will be a lot more 

small polypeptide chains which will no longer have many suitable amino acid residues 

(i.e. lysine) to form covalent bonds with polysaccharide. When these small non-bonded 

fragments are present in the system, they can still adsorb onto the oil-water interface 

and may displace the more desired large conjugated molecules, therefore are not 

conducive to provide strong and long-range steric repulsion upon their adsorption, 

both due to their lack of any attached polysaccharide part as well as their small size 

and weak ability to form strong interfacial films. This may be another factor in 

explaining the increase of droplet size in some of our emulsion samples during 

storage.  

According to the above discussions, the destabilization of emulsions is more likely to 

happen in systems with conjugates produced from the more highly fragmented 

proteins. This is also what we have observed in our emulsion samples (see Figure 

4.12). For instance, the mean droplet size 𝐷ସ,ଷ of fresh emulsion made with WT3-MD 

at pH 7.5 and 4.5 was 0.682 m and 2.32 m respectively, but grew to 1.47 m and 

5.22 m accordingly after the storage period of 60 days. While the emulsion made by 
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WT1-MD stored at both pH 7.5 and 4.5 kept completely stable during storage (𝐷ସ,ଷ = 

0.661 m and 0.660 m for fresh emulsion at pH 7.5 and 4.5 respectively, and 0.658 

m and 0.657 m accordingly for day 60). 

 

4.4 General Conclusions 

This chapter investigated and compared the use of milk whey protein and its 

hydrolysates, prior to and post conjugation with maltodextrin, as emulsifying agents at 

various pH conditions. The impacts of the choice of enzyme and degree of hydrolysis 

on the solubility, molecular weight distribution and emulsifying/stabilizing properties of 

fragmented whey proteins were discussed. 

Whey protein was hydrolysed with two very different enzymes (i.e. trypsin and 

alcalase). The digestion of protein by either enzyme led to a decrease in the solubility 

of parental protein at all pH conditions studied. Despite this, both intact whey protein 

and its various hydrolysates showed similar trends in their solubility-pH profile. They 

stayed fairly soluble at a wide range of pH conditions, except for at pH 4.5 where they 

formed visible aggregates. However, the solubility at pH 4.5 was seen to significantly 

improve by covalent linking of maltodextrin to the protein/polypeptides. The conjugated 

biopolymers formed clear solution at all the pH conditions (including pH 4.5).  

Due to the differences in the cleavable peptide bonds by trypsin and alcalase, these 

two enzymes produced distinct sets of polypeptides. For those generated by trypsin, 

there was a gradual shift of bands towards lower molecular weight range with 

increasing DH. While the profiles of hydrolysates obtained by the action of alcalase 

did not show a significant difference as hydrolysis proceeded beyond DH 2.5%. These 

suggested that trypsin is more effective than alcalase with regards to breaking down 

the structure of globular protein. Despite this, the colloidal stabilizing properties of the 

resulting fragmented proteins were seen to be broadly similar for corresponding 

polypeptides generated by these two enzymes. In both cases, a deterioration of the 

emulsifying and stabilizing properties of protein was observed with increased DH 

above 2.5%. 
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When fresh emulsion made at pH 7.5, fabricated using WPI/WPHs as emulsifiers, was 

adjusted to acidic condition, i.e. pH ൌ 4.5, the emulsion droplets became highly 

flocculated due to the loss of sufficient electrostatic repulsion. Some of the clustered 

droplets were seen to have undergone slow coalescence, during the storage period of 

60 days. Such situation improved noticeably for all the samples made with whey 

protein/polypeptides post covalent linkage with maltodextrin. The improvement was 

particularly significant for the emulsion made from conjugated WT1. This sample 

maintained the same level of stability at pH 4.5 as was seen at pH 7.5, without any 

droplet flocculation nor coarsening during storage. The modified emulsion stability is 

attributed to the strongly enhanced steric stabilization offered by the polysaccharide 

moiety of the conjugated emulsifier. 

In summary, we replicated with fragmented whey proteins the well-known success of 

(milk derived) protein-polysaccharide conjugates in delivering excellent emulsion 

stability against flocculation and coalescence, under a wide range of pH conditions. 

The contrasting polypeptide profiles produced by the two different enzymes, trypsin 

and alcalase, were also seen. This is a preliminary step towards synthesising a 

suitable Maillard-type emulsifier based on plant protein (as will be discussed in the 

next chapter). 
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Chapter 5 Characteristics and Functional Properties of Modified 

Soy Protein as Food Emulsifiers at Various pH Conditions 

5.1 Introduction 

In recent years, the ‘’green’’ trends in the food industries have motivated a significant 

level of research interest in achieving completely plant based protein-polysaccharide 

conjugates. The most popular plant protein being considered for this purpose is 

isolated soy protein (SPI). Commercial isolated soy protein is the by-product of the 

soybean oil industry. They are amphiphilic molecules, with a high nutritional value and 

abundancy, therefore are expected to be a suitable source of food emulsifiers, as an 

alternative to colloidal materials derived from milk. However, they turn out to exhibit 

poor emulsifying capability compared to milk derived proteins (e.g. casein or whey 

protein). This is due to the compact globular structure and, more importantly, the 

insoluble nature of commercial SPI (Dickinson, 2019, Tang, 2017).  

Solubility of protein is not only critical in producing fine emulsions, but is also a key in 

synthesizing suitable covalent complexes with polysaccharide. It is crucial that a well-

mixed blend of the two biopolymers is achieved in the solution in the first instance, and 

remains so once the solution is freeze-dried prior to the heat induced Maillard reaction. 

Thus, the lack of sufficient solubility of many plant proteins becomes a major stumbling 

block in obtaining such an intimate mix, leading to a reduction in the efficiency of bond 

formation between the protein and the polysaccharide molecules. 

Our approach to overcome the poor solubility of commercial SPI is to hydrolyse it prior 

to its conjugation with polysaccharide. The hypothesis is to unfold the protein structure 

and also to produce smaller polypeptides which are expected to be more soluble and 

surface active (Ettelaie et al., 2017, Ettelaie et al., 2014, Chen et al., 2011a). The 

covalent bonding of these polypeptides with polysaccharides may therefore be a 

promising way to produce molecular level plant-based emulsifying agents. 

The idea is not entirely new and has been explored in a few studies in relation to the 

interfacial adsorption behaviour (Li et al., 2016),  emulsion stability during freeze-thaw 

cycles (Yu et al., 2018b) and protection against oxidation offered by these composite 

macromolecules (Zhang et al., 2014b). However, the focus of these studies, unlike the 
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present work, had not been the long-term emulsion stability, particularly at acidic 

conditions. 

Moreover, the synthesis of the current type of conjugates based on the use of plant 

protein fragments, also requires an understanding of the role of the type of enzyme 

used and the degree of hydrolysis (DH) in producing the polypeptides. For previous 

investigations, each used a different enzyme, which makes a comparative analysis 

more difficult. To the best of our knowledge, very few studies have systematically 

examined these factors.  

The present work investigates the possibility of creating stable submicron O/W 

emulsions at acidic pH conditions, using commercial isolated soy proteins. We 

consider soy protein fragments, obtained at various degrees of hydrolysis by two very 

different enzymes, trypsin and alcalase. The first acts on a rather selective set of 

peptide bonds, while the latter is much more indiscriminate. The emulsifying and 

emulsion stabilizing abilities of the polypeptides resulting from the action of these 

enzymes, both prior to and post the formation of covalent bonds with an electrically 

neutral and surface inactive polysaccharide, namely maltodextrin, are examined. The 

observed behaviours of these soy materials are carefully compared to those seen for 

whey protein hydrolysates (in the previous chapter), undergoing exactly the same 

enzyme treatment and the subsequent Maillard reaction process. 

 

5.2 Materials and Methods 

5.2.1 Materials 

Commercial isolated soy protein (SPI) powder was purchased from Shandong 

Yuwang Industrial Co. (China). The sample contains approximately 90% (w/w) protein 

according to the supplier. The two enzymes, i.e. trypsin and alcalase, as well as all the 

other chemicals used in this chapter are the same as those already described in 

Chapter 4.   

5.2.2 Hydrolysis of SPI by trypsin and alcalase 
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2.5% (w/v) 100 mL SPI dispersion was prepared by dissolving SPI powder in deionised 

water for 2 h with gentle stirring. The dispersion was then allowed to hydrate overnight 

at 4°C. Before enzymatic hydrolysis was conducted, the dispersion (100 mL/batch, 

contained in a cylinder beaker of 150 mL) was treated with ultrasonication (200W, 

25kHz) for 10 min. The probe of the sonicator was sunk 4 cm into the protein 

dispersion. An ice bath was used to control the temperature increase during the 

ultrasonication treatment.  

For hydrolysis by trypsin, the dispersion was preheated to 37°C by incubation in a 

37°C water bath for 20 min with gentle stirring. Then the pH was adjusted to 8.5 with 

1 M NaOH. According to preliminary tests, trypsin was added at enzyme-to-substrate 

(E/S) ratios (w/w) of 1/200, 1/100, 1/50 to achieve three different degrees of hydrolysis 

(i.e. DH = 2.5%, 5.5%, 8.0%), obtained within approximately 2 h. In the case of 

alcalase, the SPI dispersion was preheated to 50°C by incubation in a 50°C water bath 

for 20 min with gentle stirring. Then pH was adjusted to 8.5 with 1 M NaOH. Different 

amounts of alcalase solution (i.e. 3, 7 and 15 L/100 mL protein dispersion) were 

added respectively, again to provide different levels of hydrolysis.  

For each case, protein was hydrolysed under constant temperature and pH, controlled 

by a water bath and Metrohm 902 Titrando system (Metrohm Co., USA). The DH was 

determined according to the pH-stat method according to section 2.3.1.   

When the desired DH (i.e. 2.5%, 5.5%, 8.0%) was reached, the enzyme activity was 

immediately stopped by diluting the dispersion to 1.0% (w/v) with 4°C deionised water 

and incubating in the ice bath with gentle stirring for 0.5 h. The protein hydrolysates 

were then freeze dried over a period of 48 h. A moderate heating treatment (80˚C, 5 

min) was applied to the freeze-dried samples, in order to ensure the complete 

inactivation of enzyme activity. 

Ultrasonicated soy protein hydrolysates (SSPHs) by trypsin and alcalase at different 

values of DH (i.e. 2.5%, 5.5%, 8.0%) were labelled as SST1, SST2, SST3 and SSA1, 

SSA2, SSA3, respectively.  

5.2.3 Preparation of protein-polysaccharide conjugates 
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The Maillard reaction products (MRPs) were prepared between maltodextrin DE16.5-

19.5 (MD, 𝑀௪= 8.7 kDa) and different soy protein samples (i.e. ultrasonicated SPI, 

SST1, SST2, SST3 and SSA1, SSA2, SSA3) by dry heating. The preparation process 

followed the same procedure to that described in section 4.2.3.  

The Maillard reaction products (MRPs) are denoted and identified here using the same 

convention as those for whey protein based materials in Chapter 4, starting with the 

type of the protein/peptides, followed by polysaccharides. For example, the MRPs 

made from SST1 with maltodextrin DE16.5-19.5 is marked and referred to as SST1-

MD throughout the study. 

5.2.4 Particle sizing of protein/polypeptide dispersions  

Ultrasonicated SPI (SSPI) and soy protein hydrolysates (SSPHs) samples with 

different degrees of hydrolysis (DH = 2.5%, 5.5% and 8.0%) caused by trypsin (SST1, 

SST2, SST3) and alcalase (SSA1, SSA2, SSA3) were diluted 25 times (i.e. 40 μL 2.5 

(w/v) protein dispersion in 960 μL buffer) using a pH 7.5 buffering system (with a low 

background electrolyte concentration of 20 mM). The recipe for this buffering system 

is provided in Appendix IV. Protein particle size was measured by Nano ZS Zetasizer 

(Malvern, UK) and was given as 𝑍-average diameter (nm). The measurements were 

conducted at 25°C. The refractive indices used for protein and aqueous phase were 

1.45 and 1.33, respectively.  

5.2.5 Electrophoresis analysis 

SDS-PAGE was performed under reduced conditions, in order to study the molecular 

weight profiles of produced polypeptides. The details of the procedure were the same 

to those provided in section 4.2.4.  

5.2.6 Protein solubility 

The protein solubility is defined as the soluble protein content remaining in the 

supernatant after a certain level of centrifugation. It was determined by the Biuret 

method according to the procedure described in section 4.2.5.  

5.2.7 Dissociation of insoluble MRPs made from SSPI 
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Since the MRPs made from ultrasonicated SPI and maltodextrin (i.e. SSPI-MD) were 

found to be quite insoluble, despite their hydrophilic polysaccharide attachment, the 

interactions involved in the formation of SSPI-MD were evaluated using a method 

according to the study of Liu et al. (2014). An amount of 0.05 g SSPI-MD sample was 

incubated in 10 mL of several different solvents: buffer (pH 9.0, containing 0.086 M 

Tris, 0.090 M Glycine), SDS (5% SDS in buffer), DTT (0.5 M DTT in buffer) and SDS 

+ DTT (5% SDS plus 0.5 M DTT in buffer). The incubation was allowed for 3 h at 25 

°C with gentle stirring. Then the improvement in the solubility of the tested sample in 

different solvents was visually assessed. 

5.2.8 Preparation of emulsions 

O/W emulsions (10 vol.% sunflower oil), made by unconjugated and conjugated 

protein samples, were prepared in the same way as those prepared with whey protein 

materials (see section 4.2.7). The pH of the freshly made emulsions was then adjusted 

to various desired values (pH 7.5, 4.5, and 3.0) with 1 M NaOH or HCl. The emulsion 

samples were stored at 4°C for further investigations. 

5.2.9 Storage stability of emulsions at different pH conditions 

The stability of emulsion was assessed by various measures same as those that have 

been done for emulsion samples stabilized by whey protein materials (see section 

4.2.8). These included the sizing and -potential measurements of emulsion droplets, 

the rheological flow properties and the microstructure of emulsions. The assessments 

were performed at various stages during the storage period. 

5.2.10 Statistical analysis 

All the measurements were performed in triplicate. The obtained data was averaged 

and reported as a mean value in each case. The error bars were added as standard 

deviations. All the calculations were analysed by Microsoft Excel 2016. 

 

5.3 Results and Discussions 
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This section displays the alteration of a few important characteristic properties 

(including protein particle size, solubility, profiles of hydrolysates, and colloidal 

functionalities) of commercial isolated soy protein post the modification of enzymatic 

digestion followed by covalent conjugation with polysaccharide. Again, we shall focus 

on the data obtained for protein/peptides that were conjugated with polysaccharide at 

90°C for 3 h, since these conjugated biopolymers were found to be not significantly 

different from those conjugates made at 60°C for 24 h in respect of their colloidal 

functional properties, except for a slightly lower level of solubility for the latter. 

Therefore, unless specifically stated, the discussions concerning the conjugates 

formed at 90°C for 3 h are understood to largely apply to those made at 60°C for 24 

h. 

5.3.1 Protein particle size 

Figure 5.1 shows the visual appearances of the intact, as well as partially hydrolysed, 

SPI dispersions in water. As can be seen from the sample SPI in Figure 5.1, the intact 

SPI dispersion rapidly settled down because of its very poor solubility. Due to various 

processing conditions applied to the commercial SPI, the extracted proteins become 

totally or partially denatured (Adler-Nissen, 1976). Resultant exposure of the 

hydrophobic amino acid residues leads to significant clustering of the protein 

molecules. Thus, commercial SPI is normally present in a highly aggregated form, 

Figure 5.1 The visual appearance of various 0.5% (w/v) soy protein 
dispersions at pH 7.5. SPI and SSPI refer to intact and ultrasonicated soy 
protein isolate, accordingly. SSPI digested by trypsin and alcalase at
different levels of hydrolysis (i.e. 2.5%, 5.5% and 8.0%) are denoted as
SST1, SST2, SST3 and SSA1, SSA2, SSA3, respectively. 
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giving it poor solubility and inferior dispersibility (Wagner et al., 2000, Dickinson, 2019, 

Tang, 2017).  

After ultrasonication treatment (see SSPI in Figure 5.1), a stable and homogenous 

dispersion formed. The size of protein aggregates was found to reduce to 226 nm in 

diameter (see SSPI in Figure 5.2A). Ultrasonication is a low-cost treatment which is 

known to be able to break up the non-covalent inter- and intra-molecular interactions 

(e.g. hydrogen bonding, hydrophobic interactions), resulting in protein denaturation as 

well as dissociation of protein aggregates. Therefore, ultrasonicated proteins have 

been reported to be more accessible for enzymatic hydrolysis than their untreated 

counterparts (Chen et al., 2011a, Jia et al., 2010).  

SSPI was then hydrolysed by two distinctly different enzymes, trypsin and alcalase. 

Our choice of these two enzymes was based on their differing levels of selectivity to 

cleave various peptide bonds. Trypsin is one of the most specific enzymes, which 

tends to only break the peptide bonds at the C-terminal of lysine (Lys) and arginine 

(Arg) (Tavano, 2013). On the other hand, alcalase has a much broader range of amino 

acid substrates as compared to trypsin (Doucet et al., 2003). The dispersions of 

SSPHs samples obtained from different levels of hydrolysis by trypsin (i.e. SST1 at 

DH 2.5%, SST2 at DH 5.5% and SST3 at DH 8.0%), exhibited a marked reduction in 

their degree of turbidity (Figure 5.1). This was particularly noticeable at DH 5.5%, and 

even more at DH 8.0%. In comparison, those samples hydrolysed by alcalase (i.e. 

Figure 5.2 The average protein particle size of SSPI and its hydrolysates 
post digestion by trypsin (A) and alcalase (B), accordingly. 
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SSA1 at DH 2.5%, SSA2 at DH 5.5% and SSA3 at DH 8.0%) continued to remain 

rather opaque (Figure 5.1).  

The observed changes in turbidity are the result of a reduction in the aggregated 

protein particle size (Figure 5.2). The mean protein particle size was reduced from 

226 nm (SSPI) down to 84 nm (SST3) by trypsin. In contrast, the protein particle size 

was only slightly reduced to around 200 nm at the early stage of alcalase hydrolysis 

(SSA1), and then stayed more or less unchanged as hydrolysis proceeded further 

(SSA2 and SSA3). 

A rational explanation of the distinct alterations of the soy protein particle size by the 

action of the two enzymes is proposed as follows. At a low degree of hydrolysis, one 

would presume that most of the cleavable bonds will reside close to the surface of the 

aggregated protein particles. As DH increases, this is likely to continue to be the case 

for alcalase, given its less selective nature and higher ability to break peptide bonds 

of various types. On the other hand, trypsin will begin to run out of specific bonds it 

can hydrolyse near the surface. If it is to achieve the same degree of hydrolysis, trypsin 

is required to diffuse deeper into the core of the protein particles to find further bonds 

to break. Though it may take longer to achieve the same value of DH (i.e. the same 

number of broken bonds), the breakage would be more uniformly distributed on the 

protein particles for trypsin case.  

The breakage of bonds leads to the formation of a spectrum of polypeptides with not 

only a distribution of molecular weights, but also varying pI values. At any pH, some 

of these protein fragments will be more soluble than the intact protein. Their presence 

in the interior of the protein aggregates may be able to aid the breakup of protein 

particles, and progressively lead to the reduction in the aggregated protein particle 

size. This is indeed what is seen in Figure 5.1 and Figure 5.2A when hydrolysis took 

place using trypsin. In contrast, for the protein aggregates exposed to alcalase, most 

of the cleaved bonds occur close to the surface of the aggregates and the core of the 

protein particles remains much less affected. Therefore, a much smaller reduction in 

the particle size was found, at least at the levels of hydrolysis considered here (Figure 

5.2B). 
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The arguments presented above also indicate that trypsin hydrolysis probably favours 

the generation of a large number of intermediate-sized polypeptides. The ability of 

trypsin to more uniformly decrease the molecular size of plant proteins than alcalase 

can also be seen in the studies of Kim et al. (1990) and Tamm et al. (2016). In 

comparison, alcalase hydrolysis is likely to produce much smaller-sized peptides, 

which we assume are mostly produced from the fragmentation of protein chains close 

to the surface of the protein aggregates. The majority of the protein chains residing 

further down inside the aggregates are probably less impacted by the action of 

alcalase during such limited hydrolysis (DH < 20%).  

Figure 5.3 shows a schematic picture summarizing the proposed mechanism in the 

size reduction of the protein aggregates and the resulting generated polypeptides, 

arising from the actions of the two contrasting enzymes. The molecular weight 

distribution of produced fragments is discussed in the next section. 

It should also be pointed out that, in addition to the differences in molecular size of the 

produced polypeptides by trypsin and alcalase, these enzymes are also known for 

their respective preference to cleave at hydrophilic and hydrophobic amino acid 

residues (Doucet et al., 2003, Tavano, 2013). Therefore, the hydrolysates produced 

Figure 5.3 The schematic picture of the processes of protein hydrolysis 
by alcalase (A) and trypsin (B). 
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by them are expected to have other contrasting properties too, such as different 

charges and hydrophilic-hydrophobic balances (Panyam et al., 1996). All of these 

intrinsic properties of protein fragments are of importance in determining their 

solubility, and thus have a bearing on their interfacial properties and emulsifying and 

colloidal stabilizing abilities. 

5.3.2 Molecular weight profiles 

Figure 5.4 Reducing SDS-PAGE analysis of the protein/peptide profiles 
for various soy protein samples. Lane 0 is ultrasonicated SPI. Lane 1-3 
are polypeptides produced by trypsin digestion at lower to higher DH (i.e.
SST1, SST2 and SST3, respectively). Lane 4-6 are polypeptides produced 
by alcalase digestion at lower to higher DH (i.e. SSA1, SSA2 and SSA3, 
respectively). Lane M is the molecular weight ladder (with values
presented in the unit of kDa). A sample post conjugation with 
maltodextrin (i.e. SST3-MD) is also shown at lane 8 to be compared with 
its unconjugated counterpart (i.e. SST3) at lane 7. 
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The composition of soy protein isolate has been discussed extensively by the excellent 

review of Nishinari et al. (2014) on this subject. The profile of hydrolysed soy proteins 

was analysed here by reducing SDS-PAGE. The two major components of intact SPI 

(Samoto et al., 2007, Kuipers, 2007, Nishinari et al., 2014), i.e. 7S (β-conglycinin) and 

11S (glycinin), including their constituent subunits (i.e. α, α’ and β subunits of 7S, 

acidic and basic subunits of 11S), were marked in lane 0 of Figure 5.4 for comparison. 

It is clearly seen that trypsin and alcalase generated polypeptides with distinct profiles. 

Similar to the observation by Kim et al. (1990), trypsin was also found here to be able 

to gradually break soy protein down. This was seen as a shift of bands towards lower 

molecular weight range with increasing DH (see lane 1-3 in Figure 5.4). As for 

alcalase, the profiles of hydrolysates (see lane 4-6 in Figure 5.4) did not show a 

distinct difference with increasing DH beyond 2.5%. Recall from Chapter 4 that the 

profiles of the fragments of whey protein obtained from treatment by trypsin and 

alcalase (see Figure 4.1 in section 4.3.1), exhibited similar patterns to the 

corresponding ones produced for soy protein hydrolysates. 

These results from SDS-PAGE on molecular size profiles of WPHs and SSPHs were 

consistent with the discussions in the previous section, suggesting that by the end of 

the hydrolysis, the mixture of protein fragments obtained by trypsin treatment would 

probably consist of a large content of intermediate-sized polypeptides. Due to the 

highly selective nature of peptide bonds broken by trypsin, this enzyme has to get 

deep into the core of the structure of the protein aggregates in order to achieve the 

required degree of hydrolysis. This means that the protein chains would be chopped 

down throughout the whole body of the protein aggregate particles. On the other hand, 

alcalase hydrolysis was highly likely to produce large amounts of very small fragments, 

which we suspect are predominantly produced here from a subset of protein chains 

residing close to the surface of the protein aggregates, due to the low selectivity of this 

enzyme (Tamm et al., 2016). 

The successful formation of conjugates was also confirmed using SDS-PAGE 

analysis. The presented result here is limited to conjugates formed using SST3, 

though similar data would also be expected for other hydrolysed samples too. In 

comparison to the equivalent unmodified protein fragments (lane 7 in Figure 5.4), a 

noticeable shift in molecular weight, towards higher values, was observed for 
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conjugated SST3 (lane 8 in Figure 5.4), due to the covalent bonding of maltodextrin 

(𝑀௪= 8.7 kDa) with the protein fragments.  

5.3.3 Solubility  

As have been emphasized, a relatively good solubility of protein materials is crucial 

for being a good molecular (i.e. non-Pickering type) emulsifier with satisfactory 

colloidal functionalities (Dickinson, 1992e). Recall from Chapter 4 that the covalent 

bonding of whey protein or their fragments with a highly soluble polysaccharide, i.e. 

maltodextrin, has rendered the conjugated biopolymers a sufficient level of solubility 

when the solubility of the non-bonded protein or fragments is not particularly high at 

their pI.  

Despite this enhancement of protein solubility due to polysaccharide attachment, it 

does not mitigate the requirement for protein to have a good solubility to start with, 

when it comes to synthesising the conjugated emulsifier/colloidal stabiliser, as already 

discussed in section 1.2.4. A reasonable solubility guarantees a well-mixed state of 

protein, or hydrolysates as the case may be, and polysaccharide, so as for a sufficient 

level of reaction between those two types of molecules.  

Additional considerations, when it comes to synthesizing vegetable protein based 

conjugates, perhaps involve the aggregated state of proteins. Protein in an aggregated 

form may not allow for adequate exposure of all its reactive sites (i.e. lysine or N-

terminal residue) to polysaccharide. However, a satisfactory functional property can 

only be achieved when the Maillard reaction can proceed to an extent where a 

sufficient number of conjugated emulsifiers are produced. 

This section will present and discuss how the solubility of soy protein fragments differs 

from the original intact proteins, and how this alters with the choice of the enzyme and 

increasing DH. These results are compared with those for their conjugated 

counterparts. Moreover, comparisons are made with equivalent whey protein samples 

where it is necessary.  

5.3.3.1 Solubility of SPI, SSPI and SSPHs samples 
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As shown in Figure 5.5, ultrasonication treatment of intact soy protein broke up the 

non-covalent intermolecular interactions within large protein aggregates. This 

produced an apparent improvement in the solubility of the protein at all tested pH 

conditions, with exception of pH 4.5 (i.e. the isoelectric point of SPI).  

The word apparent is used here, as it is suspected that a large portion of ultrasonicated 

proteins still remain in the form of aggregates, but with a much-reduced particle size 

~ 226 nm (see Figure 5.2). However, protein material in these aggregates is not truly 

dissolved. At pH conditions away from pI, the fine protein particles are sufficiently 

charged to stay colloidally stable. In fact, the aggregates are probably small enough 

not to be completely separated by the centrifugation process. Their continued 

presence in the supernatant leads to a higher perceived level of solubility, then 

otherwise the case if they could have been removed. Of course, this issue does not 

arise at pH 4.5 where the total net charge on both SPI and SSPI is largely lost. This 

leads to complete precipitation, with neither any small aggregates nor individual 

protein molecules remaining in the solution. 

The enzymatic hydrolysis, particularly by trypsin, noticeably enhanced the protein 

solubility at all tested pH values. This was especially so at pI, irrespective of which 

enzyme was used (Figure 5.5). At pH 4.5, the solubility improved to around 5 ~ 6 g/L 

from a value well below 1 g/L for SSPI. In contrast, whey protein fragments, produced 

by either enzyme, displayed reduced level of solubility at the entire tested pH range, 

compared to intact WPI (see Figure 4.2 in section 4.3.2.1).  
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A likely explanation of the contrasting impacts of protein fragmentation on the solubility 

of soy and whey protein can be rationalised as follows. As mentioned in previous 

sections, the process of hydrolysis produces various polypeptides with a variety of 

different pI values. Instead of a sharp well-defined pH value associated with the 

isoelectric point of the intact protein, now one has a more smeared distribution of pI 

values for various fragmented chains, following hydrolysis. Thus, at any pH, some 

fragments are away from their respective pI so as to be reasonably soluble, while 

others are not. For the whey protein sample, which is already highly soluble, this effect 

tends to reduce the solubility of protein hydrolysates compared to the intact protein. 

Figure 5.5 The solubility of SPI, ultrasonicated SPI (i.e. SSPI), and
SSPHs samples hydrolysed by trypsin (A) or alcalase (B) at various DH,
plotted as a function of pH. 
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However, by the same token, the averaging effect induced by fragmentation tends to 

improve the solubility, if the original protein is not especially water soluble to begin 

with. This is indeed the behaviour that is observed here for soy protein. The improved 

solubility of SSPHs throughout the entire tested pH range, as in comparison to SSPI, 

is also partially attributed to the breakdown of soy protein aggregate particles. The 

measured apparent solubility is expected to increase when these aggregates are 

broken down more effectively. This is probably why soy fragments hydrolysed by 

trypsin exhibited a higher solubility (5 ~ 8 g/L in Figure 5.5A) in comparison to those 

produced by alcalase (4 ~ 6 g/L in Figure 5.5B). Kim et al. (1990) also found a similar 

result that soy peptides obtained by trypsin digestion were more soluble than those 

obtained by alcalase.  

The visual appearance of 1% (w/v) SST3 sample as a function of pH was shown in 

Figure 5.6. At pH values below 6.0, a substantial formation of precipitates was 

observed due to reduced electrostatic repulsion between the fragmented chains. But 

a stable and homogenous particulate protein dispersion was formed at higher pH. The 

situation was the same for all the SSPHs samples. Therefore, the mixture of soy 

protein hydrolysates and maltodextrin in water was produced at pH 7.5, in order to 

ensure a homogenous and well-mixed system of the two biopolymers, prior to its 

freeze drying.  

5.3.3.2 Solubility of conjugated SPI, SSPI and SSPHs samples 

Figure 5.6 The visual appearance of 1% (w/v) SST3 sample, dispersed
under various pH conditions. 
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The synthesis of conjugates was carried out according to the procedure outlined in 

section 5.2.3 and section 4.2.3. The solubility of various conjugated samples was 

displayed in Figure 5.7. 

 

Figure 5.7 The solubility of conjugates made from ultrasonicated SPI (i.e.
SSPI-MD), and those made from fragmented soy protein produced by
either trypsin (A) and alcalase (B) at various levels of hydrolysis, plotted 
as a function of pH. 



- 113 - 
 

The conjugates SSPI-MD, formed between the ultrasonicated soy protein and 

maltodextrin, may have been expected to have a better solubility than SSPI on its own. 

Instead, a dramatic decrease in the dispersibility was found for SSPI-MD (~2 g/L) 

compared to SSPI ሺ~5 g/L) at pH 7.5 (see Figure 5.5 and Figure 5.7), with highly 

insoluble products formed from the dry-heating Maillard reaction (Figure 5.8). This 

result was replicated for conjugates formed at 90°C, as well as at 60°C.  

The formation of such kind of insoluble products has been reported in the literature 

(Akhtar et al., 2007, Xu et al., 2009). In order to investigate this issue further, SSPI-

MD was dissolved in various denaturing solvents, including those with added SDS and 

DTT (Figure 5.8). These help the dissociation and breakup of different types of inter- 

and intra-molecular bonds, such as hydrophobic interactions and disulphide bonds. 

The SSPI-MD conjugates remained insoluble in Tris-Glycine buffer at pH 9.0. This 

indicates that the poor solubility of SSPI-MD is not merely due to the lack of 

electrostatic repulsions between the conjugated biopolymers, since they would have 

acquired sufficient charges at such alkaline condition. In a buffer solution with the 

presence of 5% SDS, insoluble flakes of SSPI-MD started breaking into smaller 

pieces, due to the disturbance of the hydrophobic associations by SDS (Ren et al., 

2009). The inclusion of 0.5 M DTT, which aids to break the disulphide bonds under 

Figure 5.8 Effects of addition of SDS, DTT, or both to a dispersion of
otherwise insoluble MRPs, produced from ultrasonicated soy protein
+ maltodextrin (i.e. sample SSPI-MD). Ultrasonicated soy protein 
without conjugation (SSPI) was dissolved in deionized water and is
included for comparison on the left. SSPI-MD was dissolved in 
different solvents (from left to right): deionized water, buffer (pH 9.0, 
0.086 M Tris, 0.09 M Glycine), 5% SDS + buffer, 0.5 M DTT + buffer, 5% 
SDS + 0.5 M DTT + buffer. 
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alkaline conditions (pH > 8.0) (Liu et al., 2014, Singh et al., 1995), also proved helpful 

in dispersing SSPI-MD aggregates. However, the effect was not quite as strong as 

that seen with SDS. When both SDS and DTT were present, SSPI-MD aggregates 

were broken down into much smaller particles as can be seen in Figure 5.8.  

These results taken together, suggest that hydrophobic interactions are likely the main 

driving force in the extensive aggregation of SSPI-MD, occurring during the dry-

heating Maillard reaction phase. Exchange of disulphide bonds provides further 

contribution to this process. Nevertheless, no matter how much denaturing agents 

were added, SSPI-MD could never be made to completely dissolve. This indicates the 

rather tight and dense structure of the formed SSPI-MD aggregates, which does not 

allow for easy penetration of small-molecular-weight reagents (i.e. SDS and DTT) 

deep into the aggregates, at least not within the time scale of the current experiments 

here (~ 3 h). 

Unlike insoluble SSPI-MD, the conjugated soy hydrolysates with maltodextrin (see 

Figure 5.9) stayed easily dispersible, without any noticeable formation of insoluble 

products as that seen in SSPI-MD post Maillard reaction. However, they also did not 

show any improvement in their solubility relative to the unreacted fragments either, at 

the whole tested pH range (compare Figure 5.5 and Figure 5.7). Visible aggregates 

were observed both at pI and other acidic pH conditions (Figure 5.9). Separately, the 

solubility of conjugates made from WPI/WPHs and maltodextrin was seen to improve 

(Figure 4.4 in section 4.3.2.2), with conjugates forming a clear golden brown solution 

at pI of whey protein materials (i.e. pH 4.5). In contrast, the unconjugated equivalents 

lacking the sufficient charge under this pH condition, settled down out of the solution 

Figure 5.9 The visual appearance of 1% (w/v) SST3-MD sample, dispersed
under various pH conditions. 
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(Figure 4.3 in section 4.3.2.1). The absence of precipitation at pI confirmed the 

formation of covalent bonds between WPI/WPHs and maltodextrin.  

As for conjugated soy fragments, the formation of large visible aggregates at pI and 

other low pH values generally, could be an indication of the fact that a sizeable portion 

of protein fragments did not form the required covalent bonds with maltodextrin, at 

least not under the same heating regime as that used for the WPI/WPHs + 

maltodextrin. Prolonged heating time, and addition of a higher amount of maltodextrin 

(i.e. the weight ratio of peptide/maltodextrin increasing to 1:3, 1:4 and 1:5), were both 

tried, in the hope of facilitating conjugation between soy protein fragments and 

maltodextrin. However, these did not improve the situation dramatically, neither with 

respect to the solubility nor emulsifying and stabilizing abilities of conjugates (as will 

be discussed in the next section).  

The difficulty for soy protein to form covalent bonds with maltodextrin, in contrast to 

whey protein, is presumably related to its distinct and more complex structure. When 

protein conjugates are made via heating of the dry mixture of protein and 

polysaccharide, two main competing processes occur simultaneously in the system. 

Firstly, the required Maillard reaction between protein and polysaccharide, involving 

free α-NH2 groups of the protein. The second is the undesirable heat-induced protein 

aggregation (Akhtar et al., 2007, Dickinson et al., 1992). It is suggested that due to the 

structural characteristics and the aggregated state of the soy protein materials, the 

heat-induced associations between protein molecules via hydrophobic interactions, as 

well as exchange of disulphide bonds, tend to take place at a much more rapid and 

intense rate than the Maillard reaction.  

Substantial associations between soy protein molecules tend to shield the chemically 

reactive sites on protein (i.e. free α-NH2), making the bonding between protein and 

polysaccharide much harder (Mulcahy et al., 2017). Under such circumstances, 

insoluble products are formed, which are simply aggregates of protein molecules, 

rather than the desired MRPs. It is obvious that improving this situation needs a 

homogeneous dry mixture, with intimate contacts between the two biopolymers on 

length scales of individual chains. Existence of large protein particles during the 

preparation of protein + polysaccharide solution, present even before the freeze drying 

phase, is clearly not conducive in achieving a complete and efficient synthesis of 
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conjugates. This situation seems to improve for hydrolysed soy protein (SSPHs). As 

the compact structure of soy protein is broken down, protein particulate aggregates 

fall apart. Then the preparation of a well-blended homogenous mixture of protein 

fragments and polysaccharides becomes more feasible.  

Additionally, protein fragmentation also causes unfolding of protein structure and 

allows for more reactive sites on protein chains to become exposed. This again 

increases the chance for their bonding with polysaccharides. However, we must keep 

in mind that extensive hydrolysis above a certain level can have a detrimental effect 

on the emulsifying and stabilizing properties of protein fragments, as well as their 

conjugated derivatives. This adverse effect has already been observed in whey protein 

based samples and discussed with details in Chapter 4. It is noted that this implies a 

possible optimal value for DH, where the above-mentioned benefits of hydrolysis are 

achieved, but yet the resulting fragmented proteins are still not made too small to lose 

their functionalities. 

5.3.4 Morphology and stability of emulsions at different pH conditions  

The particle size, the peptide distribution profile and the solubility, as investigated in 

the previous sections, illustrated some of the key features of various modified soy 

protein materials. This section will present and discuss the emulsifying and long-term 

stabilizing capacities of those soy protein samples under various pH conditions, in the 

light of the observed attributes studied in the last sections, as well as other possible 

relevant parameters. Similar to Chapter 4, we shall include results of the 

microstructure, droplet size and distribution of emulsions, potential of emulsion 

droplets, and flow behaviour of emulsion samples. In the meantime, the colloidal 

behaviours of soy protein materials are also compared to their whey protein 

counterparts. 

5.3.4.1 Emulsions based on unconjugated soy proteins/hydrolysates 

The relatively large aggregated protein particles in SPI and SSPI samples manifested 

themselves by their rather poor emulsifying abilities. The emulsion droplet sizes 

obtained for intact soy protein, used for fabricating emulsions in the absence of or with 
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prior ultrasonication treatment, were 𝐷ସ,ଷ = 28.4 m and 9.8 m at pH 7.5, respectively 

(Figure 5.10). 

 

The droplet size decreased dramatically as soy protein was progressively broken 

down by trypsin, before its use as emulsifiers (Figure 5.10). From the micrographs 

(Figure 5.11A), it was observed that soy fragments with the highest DH 8.0% (SST3) 

were able to produce a finely dispersed submicron-sized emulsion. The average size 

𝐷ସ,ଷ  was found to be 0.608 m, at pH 7.5. This is comparable to the emulsions 

stabilized by WPHs (e.g. 𝐷ସ,ଷ  = 0.628 m for WT1). On the other hand, alcalase 

digestion progressively worsened the emulsifying capacities of SSPI, leading to the 

formation of larger droplets (𝐷ସ,ଷ = 9.8 m, 14.6 m, 18.4 m and 21.4 m, for fresh 

emulsions made at pH 7.5 by SSPI, SSA1, SSA2 and SSA3, respectively). It was clear 

that the more the soy protein was hydrolysed with alcalase, the poorer its emulsifying 

performance became. 

 

 

 

Figure 5.10 Average droplet size 𝑫𝟒,𝟑 of freshly made and stored (for 60 
days) emulsions, fabricated using intact SPI, ultrasonicated SPI (i.e.
SSPI) and SSPHs, at various pH conditions (i.e. pH 7.5, 4.5 and 3.0). 
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On the contrary, recall from Chapter 4 that for whey protein materials, hydrolysis by 

trypsin up to DH of 2.5% moderately enhanced the emulsifying/stabilizing capacities 

of WPI. This trend did not continue with further fragmentation, where the required 

emulsifying properties were instead seen to rather suffer. The worsening of the 

functional properties of whey proteins was observed from the very onset for alcalase 

treatment, even at DH 2.5% (see Figure 4.7 in section 4.3.3.1). Despite this small 

difference at DH = 2.5%, the overall trend between the performances of hydrolysates 

produced by the two enzymes upon increasing DH was otherwise similar. 

The striking contrasts in the observed performances of SSPHs and WPHs, resulting 

from the action of two different types of enzymes, trypsin and alcalase, are likely to be 

sought in the distinct structures of SSPI and WPI when present in the solution. The 

former exists in the form of dispersed protein aggregates of particle size ~ 226 nm 

(after ultrasonication), which remain hard to break down further by ultrasonication 

treatment. WPI on the other hand is relatively well dissolved. As discussed in section 

5.3.1, hydrolysis of SSPI aggregates by trypsin tends to mostly produce intermediate-

sized fragments, at the DH values studied here. In contrast, at the same comparable 

DH, alcalase is likely to generate rather small peptides from the exterior of soy protein 

aggregates. The remaining unhydrolyzed parts of the soy protein aggregates, post 

alcalase digestion, are probably still of fairly large size (see Figure 5.2B). While it is 

conceivable that those remaining particles may be able to stabilize oil droplets through 

Figure 5.11 Micrographs of SST3 fabricated emulsion, stored at pH 7.5, 
on day 1 (A) and after 60 days of storage (B). The droplet size distribution 
and the mean droplet size 𝑫𝟒,𝟑 are superimposed on each photo. 
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Pickering type action, it is not clear that they will be very useful in the fabrication of 

submicron-sized fine oil droplets. It also seems that the simultaneous presence of 

small peptides and protein particles contributes to a deterioration of functional 

properties of SSPI. In contrast, trypsin digestion, where the protein chains tend to be 

broken in a more uniform manner, resulting in a mixture of intermediate-sized 

polypeptides, proves to be a much better approach for modification of soy proteins. 

The differences between the actions of the two enzymes did not arise significantly for 

WPI, probably because whey protein is well dissolved and not dispersed as particulate 

aggregates. Thus, for WPHs with the same DH, the emulsifying abilities remained 

broadly comparable for fragments generated by trypsin and alcalase. 

As the aim of this whole project is to produce plant based emulsifying agents for the 

preparation of fine submicron sized O/W emulsion system, our discussions will from 

now on be limited largely to trypsin generated soy fragments. 

Let us now turn attention to the long-term storage stability of emulsions stabilised by 

soy protein fragments generated by the action of trypsin. At pH 7.5, there was a 

gradual increase of mean droplet size for all SSPHs stabilised emulsions during the 

storage, with the growth most clearly seen in the emulsion stabilized by SST3 (Figure 

5.10). The droplet size 𝐷ସ,ଷ of SST3 based emulsion sample started to dramatically 

rise from around day 3, but began to slow down from the 30th day onwards (Figure 

Figure 5.12 The change of mean droplet size 𝑫𝟒,𝟑  of O/W emulsion,
stabilized by SST3, stored at pH 7.5. 
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5.12). In the micrograph (Figure 5.11B), quite a few large droplets were visible, with 

the average size 𝐷ସ,ଷ measured to be 4.22 m at the end of 60 days of storage. The 

size distribution was also observed to become bimodal after this period. Nonetheless, 

it was also noticed that this emulsion had a relatively Newtonian flow behaviour 

(Figure 5.13) and the droplets remained highly charged, with -potential around -46 ~ 

-50 mV (Table 5.1). Thus, it was unlikely for such growth of droplets to be the result 

of emulsion flocculation, and indeed no significant evidence for any droplet 

aggregation was seen in the micrograph for this sample (Figure 5.11B).  

Furthermore, in protein-stabilized emulsions when the droplets are in a non-flocculated 

state, there is normally a high level of stability against coalescence, too. This is 

because the aggregation of droplets is often the first required step towards their 

coalescence. Yet, with a high level of surface charge, no evidence for flocculation, and 

adsorbed proteins forming viscoelastic protective interfacial layers around the 

droplets, coalescence is unlikely to be the main reason responsible for the 

development of large emulsion droplets in our sample here (Murray, 2011, Dickinson 

et al., 1988a, Bos et al., 2001).  

Figure 5.13 Apparent viscosity of O/W emulsions fabricated by SST3 
stored at pH 7.5 for 1 day and 60 days. 
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It is tempting then to associate the coarsening of the droplets to Ostwald ripening. 

Recall from section 1.1.4.4 that the process of Ostwald ripening is fairly insensitive to 

the type of emulsifier used, but is mainly controlled by the solubility of the dispersed 

phase in the dispersion medium (McClements, 2015u). For this process to be 

significant, the oil phase is required to be sufficiently soluble in the aqueous phase, as 

this phenomenon involves the mass transportation of oil molecules from smaller to 

larger droplets (Dickinson, 1992c, Tcholakova et al., 2006). In our case, sunflower oil 

was used to prepare emulsions, which is fairly hydrophobic and insoluble in water. 

Moreover, the emulsion sample made from WT1 stored at pH 7.5 was extremely 

stable, showing no evidence of Ostwald ripening during the 60 days of storage period 

(see Figure 4.8B in section 4.3.3.1). These facts suggest that the formation of larger 

droplets in our soy protein hydrolysates stabilised samples is not the result of a 

straightforward Ostwald ripening process, at least not one driven by the direct 

migration of oil molecules between the droplets through the continuous medium.  

At present we have no definitive evidence for the underlying process driving the 

observed gradual formation of these larger droplets in the system. Nonetheless, a 

possibility worth further investigation concerns the presence of soy phospholipids on 

the emulsion stability, as suggested by the observations of Tirok et al. (2001), Drapala 

et al. (2016) and Drapala et al. (2015). This point is discussed below. 

Soy phospholipids are a mixture of low-molecular-weight surfactants and are important 

constituents of the oil bodies in soybeans. During the extraction of soybean oil, they 

form complexes with soy storage proteins (Matsumura et al., 2017). It has proved a 

difficult and expensive process to completely remove all the soy phospholipids from 

commercial SPI. A typical residual soy phospholipid of 3% (w/w) is often reported in 

commercial SPI (Arora et al., 2011, Samoto et al., 2007).  

Table 5.1 -potential (mV) of freshly made and stored (for 60 days) 
emulsion droplets, stabilized by SST3 sample as emulsifiers. Results are 
shown at different pH conditions. 



- 122 - 
 

Similar to other kinds of low-molecular-weight surfactants, soy phospholipids facilitate 

the emulsification process. However, the interfacial coatings they form around the oil 

droplets are rather thin and not sufficient to guarantee the long-term stability of 

emulsions. This is why emulsion droplets stabilized by such small-molecular-weight 

surfactants are susceptible to gradual coalescence during their storage (Bos et al., 

2001, McClements, 2015x). In our fragmented soy protein based emulsions, the 

residual soy phospholipids (also known as soy lecithin), while only present in small 

amounts, are nonetheless able to partially displace proteins from the surface of 

droplets. This could disturb the viscoelastic network of protein films at the oil droplet 

surface and introduce small patches at the interface that may lack sufficient degree of 

protection from proteins (Bos et al., 2001, Petkov et al., 2000, Pugnaloni et al., 2004, 

Pugnaloni et al., 2003).  

Furthermore, and perhaps more significantly, it is known that nonpolar molecules can 

be transported between dispersed oil droplets via solubilization in surfactant micelles 

(McClements, 2015m, Moulik, 1996). Although this micelle solubilization effect is still 

a slow process, it nonetheless allows for the transportation of oil molecules between 

dispersed phases to proceed at a somewhat faster speed than otherwise in the 

absence of soy phospholipids. 

Irrespective of the actual mechanisms responsible for the formation of the large oil 

drops, we have found experimental evidence that soy phospholipids can accelerate 

the growth of emulsion droplets during storage. A particularly clear example of this 

Figure 5.14 Micrograph of WT1 based emulsion stored at pH 7.5, with
addition of 0.03% soy lecithin (i.e. 3 g soy lecithin/100 g WT1), following
60 days of storage. 
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phenomenon occurs in the otherwise very stable hydrolysed whey protein stabilized 

emulsions, upon addition of soy phospholipids. We were able to confirm this result by 

spiking the WT1 stabilised emulsion (found here to be stable at pH 7.5 over 60 days) 

with a small amount of soy lecithin (i.e. 3 g lecithin/100 g WT1). The micrograph taken 

for the system after 60 days (Figure 5.14) looked remarkably similar to that obtained 

for fragmented soy protein stabilised emulsion (Figure 5.11B).  

One may speculate then that if the commercial isolated soy protein used here was 

further purified from the residual lecithin, the storage stability for (trypsin produced) 

SSPHs based emulsions may have been just as impressive as those obtained with 

WPI or its low DH hydrolysates. The exact role played by soy phospholipids in causing 

the formation of large droplets is worthy of a future work, but is beyond the scope of 

the present study. 

So far, the discussion of emulsions stabilised by trypsin fragmented SSPHs was 

limited to the pH values away from pI. Next, the impact of pH variation on the colloidal 

stability of the SSPHs stabilised systems will be considered. Fresh emulsions adjusted 

to acidic pH conditions, exhibited a marked rapid increase in droplet size (Figure 

5.10). For instance, the droplets became flocculated and the value of 𝐷ସ,ଷ jumped to 

12.9 m at pH 4.5 for SST3 stabilized emulsion sample (Figure 5.15A). This is 

expected due to an insufficient level of surface charge, where the -potential was 

found to be -6.7 േ 0.9 mV (Table 5.1). Thus, so far, this behaviour is similar to what 

has been found for WPHs stabilised emulsions (see Figure 4.7 and Figure 4.8 in 

Figure 5.15 Micrographs of SST3 fabricated emulsions, stored at pH 4.5,
on day 1 (A) and after 60 days of storage (B). The droplet size distribution
and the mean droplet size 𝑫𝟒,𝟑 are also provided on each photo. 
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section 4.3.3.1). However, differences arose when the pH was further lowered to 3.0, 

with the system retained at the intermediate pH of 4.5 for only a short period (< 5 

mins). Unlike the WPHs based systems, where the droplets became well dispersed at 

pH 3.0 once regaining sufficient charge (see Figure 4.7 and Table 4.1 in section 

4.3.3.1), on this occasion the flocs did not break down into individual oil droplets for 

any of the emulsion samples stabilised by SSPHs (Figure 5.10). For example, the 

droplet size of fresh SST3 stabilized emulsion at pH 3.0 was 14.8 m, which was not 

all that different from 12.9 m at pH 4.5. These values are to be compared to 𝐷ସ,ଷ of 

0.608 m at pH 7.5, prior to any pH adjustment.  

The same phenomenon also occurred for conjugated SSPHs stabilized emulsions 

considered in the next section. A discussion of these observations will be provided 

once the data for the stability of emulsions made by SSPHs and maltodextrin covalent 

complexes are also presented below.  

5.3.4.2 Emulsions based on conjugated soy hydrolysates 

When soy protein hydrolysates were conjugated with maltodextrin, all modified SSPHs 

samples delivered significantly improved emulsifying and stabilizing capabilities, in 

comparison to their unconjugated counterparts. This was true at all tested pH 

conditions (Figure 5.16).  

Figure 5.16 The average droplet size 𝑫𝟒,𝟑 of freshly made and stored (60 
days) emulsions, fabricated by conjugates made from SSPHs + 
maltodextrin, under various pH conditions (i.e. pH 7.5, 4.5 and 3.0). 
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We present as an example here the results for soy protein hydrolysates, generated by 

trypsin digestion at DH = 8.0%. It is seen that initially the conjugated and non-

conjugated fragments (i.e. SST3-MD and SST3) produced fine emulsions with similar 

average droplet sizes of 0.638 m and 0.608 m at pH = 7.5. The droplet size 

distributions of the two emulsions closely resembled each other too (compare Figure 

5.17A and Figure 5.11A). However, after 60 days of storage, a significantly higher 

number of larger droplets was visible in the emulsion sample stabilized by non-

conjugated SST3 (compare Figure 5.17B and Figure 5.11B). The size distributions 

of the two emulsions are also seen to diverge, reflecting again the formation of a larger 

number of bigger droplets in the emulsion made by SST3. In the conjugated sample 

(Figure 5.17B), the secondary peak for the part of the distribution curve occurring at 

sizes larger than 1 m, remained small relative to that for sizes less than 1 m. The 

opposite was observed for the emulsion based on unconjugated SST3 (Figure 5.11B). 

While both emulsions exhibited some degree of coarsening, the average droplet size 

𝐷ସ,ଷ was only 2.29 m for the conjugated polypeptides, whereas it increased to 4.22 

m for the non-bonded fragments.  

The most likely reason for this superior behaviour of the conjugated system is the 

provision of enhanced steric repulsion as well as the physical hindrance, due to the 

presence of the polysaccharide moiety of these composite biopolymers (Tcholakova 

et al., 2006, Dickinson et al., 1988a, McClements, 2015u). If this assertion is true, it 

Figure 5.17 Micrographs of SST3-MD fabricated emulsions, stored at 
pH 7.5, on day 1 (A) and after 60 days of storage (B). The droplet size
distribution and the mean droplet size 𝑫𝟒,𝟑 are also provided on each 
photo. 
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may be possible to further improve the stabilizing ability of our emulsifiers by 

attachment of larger molecular weight (𝑀௪) polysaccharides (Wooster et al., 2006, 

2007, Dunlap et al., 2005). To demonstrate this, conjugated SST3 with maltodextrin 

DE4-7 (MD7, 𝑀௪= 65 kDa) and dextran (DX, 𝑀௪= 500 kDa) were prepared. It was 

observed that the long-term emulsion stability at pH 7.5 progressively improved with 

an increase in 𝑀௪  of the polysaccharide (Figure 5.18). For the conjugated soy 

peptides with polysaccharide of the highest 𝑀௪  used here, the emulsion remained 

reasonably stable post 60 days of storage, with 𝐷ସ,ଷ = 0.665 m as compared to 0.598 

m on day 1.  

The primary reason for conjugating a protein with a polysaccharide is to improve the 

stabilizing properties of the former, particularly at pH values close to its isoelectric 

point. Recall that our results indicated a poor stability against aggregation at pH = 4.5,  

when droplets were stabilized by the non-bonded SSPHs, or WPHs. However, for the 

WT1 fragments, covalent bonding with maltodextrin was seen to vastly improve the 

performance of the emulsifier, to the extent that the emulsion stability at pH = 4.5 was 

similar to that found at pH = 7.5 (see Figure 4.13 in section 4.3.3.2). Nonetheless, 

recall from previous discussions in Chapter 3 and Chapter 4 that the released small 

peptides at high levels of DH will either start to have insufficient overall adsorption 

energy or become excessively hydrophilic following covalently bonding with the 

polysaccharide attachment. In both cases, the presence of too small peptides were 

Figure 5.18 Micrographs of emulsions stored at pH 7.5 after 60 days.
The emulsions were stabilized by conjugated SST3 + maltodextrin DE4-
7 (𝑴𝒘= 65 kDa) and SST3 + dextran (𝑴𝒘= 500 kDa), which are displayed
in (A) and (B), respectively. The droplet size distribution and the mean
droplet size 𝑫𝟒,𝟑 are also provided on each photo. 
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seen to be detrimental to the stability of emulsions, due to their loss of the surface 

affinity for adsorption onto the surface of oil droplets. Moreover, the existence of a 

wide spectrum of varying polymer species are likely to lead to some degree of 

competitive adsorption in these systems. Both effects were demonstrated by the 

experimental results in Chapter 4 to have induced instability during the long-term 

storage in emulsion systems fabricated with conjugates derived from the more highly 

fragmented proteins (see Figure 4.12 in section 4.3.3.2). These results suggest that 

in achieving suitable vegetable protein based conjugates, in order to match the 

excellent performance of WT1-MD, one needs a careful optimisation of the degree of 

fragmentation of soy proteins. This result is likely to be general and applies equally to 

most storage plant proteins. 

Let us now turn attention to the stability of emulsions made of SSPHs + maltodextrin 

conjugates at pH values close to the isoelectric point of protein/peptides. In general, 

the flocculation stability of fresh emulsions fabricated with conjugated SSPHs 

remained somewhat poorer at pH = 4.5, relative to that seen for them at pH = 7.5 

(Figure 5.16). This can also be observed by comparing the micrographs of the freshly 

made emulsions stored at pH 4.5 (Figure 5.19A) and at pH 7.5 (Figure 5.17A), both 

produced using SST3-MD emulsifier. Clear evidence for some level of droplet 

clustering was seen in the emulsion sample at pH 4.5, with the average particle size 

changing from 0.638 m to 1.87 m upon pH adjustment. Further support for the 

flocculation in the system at pH = 4.5 came from a study of the rheological behaviour 

Figure 5.19 Micrographs of SST3-MD fabricated emulsion, stored at pH 
4.5, on day 1 (A) and after 60 days of storage (B). The droplet size
distribution and the mean droplet size 𝑫𝟒,𝟑 are also provided on each 
photo. 
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(Figure 5.20). The low shear viscosity of this emulsion was markedly higher at pH = 

4.5 compared to at pH 7.5. Also, the emulsion sample exhibited shear-thinning 

behaviour (flow behaviour index = 0.492) at acidic condition, while it was closer to 

Newtonian at pH = 7.5.  

Despite this result, it has to be said that in comparison with their non-bonded 

counterparts (i.e. SST3), the conjugated hydrolysates SST3-MD still did offer a 

significant enhancement in the emulsion stabilising properties against droplet 

flocculation. The micrograph and the size distribution at pH = 4.5 indicate that the 

majority of droplet clusters were small and less than 3 m for the SST3-MD based 

system, with average size 𝐷ସ,ଷ  = 1.87 m (Figure 5.19A). On the other hand, the 

non-conjugated SST3 based system showed a much more extensive level of 

aggregation, with the measured average droplet size being a far larger value at pH 4.5 

(𝐷ସ,ଷ = 12.9 m, see Figure 5.15A). Consistent with those results, the viscosity at low 

shear rate was also seen to be considerably lower for the emulsion system stabilized 

by SST3-MD than that of the emulsion stabilized by SST3. This indicates a 

modification in the flocculated state of the emulsion droplets in the former system, in 

comparison to the latter (Figure 5.20). 

Figure 5.20 Apparent viscosity of freshly made O/W emulsions fabricated
by SST3 and SST3-MD, stored at pH 7.5 and pH 4.5. 
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Even with its aggregated morphology, the SST3-MD based emulsion at pH = 4.5 

showed far less evidence for the formation of large droplets than was the case at pH 

= 7.5, following 60 days of storage (compare Figure 5.19B and Figure 5.17B). As 

mentioned before, we believe that the formation of larger droplets at such long storage 

time is largely the result of a limited micelle-solubilization-effect induced Ostwald 

ripening process. As such, the more compact and aggregated adsorbed protein films 

formed at pH = 4.5, may resist Ostwald ripening and the shrinkage of droplets more 

effectively than the more extended but sparsely configured layers at pH = 7.5 (Murray, 

2002, Rivas et al., 1984, Graham et al., 1980, Pezennec et al., 2000, Meinders et al., 

2001, McClements, 2015u).  

The above set of results indicates that the strength of the steric forces provided by 

adsorbed layers made of SST3-MD, fall somewhat short of those achieved by WT1 

(DH = 2.5%) based conjugates. This is likely due to the limited number of covalent 

bonds formed between soy fragments and polysaccharides, at the value of DH = 8.0%. 

The conjugated and the unreacted polypeptides will tend to compete with each other 

for adsorption onto droplet surfaces. This may result in mixed layers, leaving the 

surface of droplets not sufficiently covered with the desired additional protection from 

polysaccharides. Thus, as the droplet surface charge is lost at pH 4.5 (-potential = -

3.7 േ 0.5 mV, see Table 5.2), the lack of electrostatic repulsion between the droplets, 

coupled with an insufficient steric stabilization, can no longer prevent aggregation of 

the droplets.  

It is tempting to follow the same recipe as WT1 to produce MRPs by using SSPHs with 

lower DH, thus hoping to improve the yield of the Maillard-type biopolymers. For WPI 

fragments, conjugates made with WT1 (i.e. hydrolysates at DH = 2.5%) was seen to 

perform far better than those based on WT3 having higher DH of 8.0%. However, one 

Table 5.2 -potential (mV) of freshly made and stored (for 60 days)
emulsion droplets, stabilized by SST3-MD sample as emulsifiers. 
Results are shown at different pH conditions. 
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has to remember that fragmentation of soy protein is a necessary step for the breakup 

of the aggregated protein particles to ensure a homogenous dry mixture with intimate 

contacts between protein/peptides and polysaccharide as well as the exposure of 

chemical reactive sites on the soy protein, prior to Maillard reaction. If the degree of 

hydrolysis is too low, then this latter requirement would not be met.  

A degree of hydrolysis of 2.5% or 5.5% is simply not sufficient to achieve this for soy 

protein. This point is clearly seen from Figure 5.16 that for SSPHs having lower levels 

of fragmentation (i.e. SST1 at DH 2.5% and SST2 at DH 5.5%), their conjugated form 

did not offer better flocculation stability. Following pH adjustment to 4.5, the droplet 

size 𝐷ସ,ଷ of fresh emulsions made by SST1-MD and SST2-MD increased to 8.82 m 

and 3.87 m, from 1.45 m and 0.787 m (at pH 7.5) respectively. Those data 

suggested a higher extent of droplet flocculation at pH 4.5, compared to the emulsion 

made by SST3-MD (𝐷ସ,ଷ = 1.87 m at pH 4.5), attributed to the low yield of conjugated 

biopolymers for systems derived from SST1 and SST2.   

In order to improve the degree of conjugation between maltodextrin and soy fragments 

with high DH of 8.0%, we prepared conjugated SST3 at increased weight ratio of 

maltodextrin (i.e. the ratio of SST3/MD = 1:3, 1:4 and 1:5). Unfortunately, there was 

no significant enhancement in the stabilizing ability against droplet flocculation at pH 

4.5. This again indicates the restricted level of Maillard reaction between soy 

protein/peptides and polysaccharide. We believe that this relatively inefficient reaction 

between the two biopolymers arises mainly from the aggregated state of soy protein 

or its hydrolysates (i.e. the average particle size of various SSPHs samples is around 

80∽200 nm). In addition, the presence of non-protein substances in the form of 

impurities in commercial SPI, may also play a role in further reducing the degree of 

reaction between polypeptides and polysaccharides. These minor components bind 

on protein molecules through strong electrostatic and hydrophobic interactions, 

masking or affecting the availability and reactivity of α-NH2 on soy protein materials 

(Nash et al., 1967, Skorepova et al., 2007, Genovese et al., 2007).  

For freshly made emulsion samples adjusted to even lower pH conditions (i.e. pH 3.0 

and 2.0), clustered droplets already formed at pH 4.5 were not broken down (Figure 

5.21). Even if the sample was brought back to pH 7.5 (with -potential = -37.2 േ 2.6 
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mV) where the freshly made emulsion without acid treatment was well dispersed, the 

flocs of droplets still remained visible (compare Figure 5.22A and Figure 5.17A).  

Recall from section 4.3.3.1 that this same situation did not occur in emulsions based 

on whey protein materials, as long as the sample was kept just a short time (< a few 

minutes) at pH = 4.5, before lowering pH to 3.0 or back up to 7.5 again. The same 

phenomenon for whey protein based emulsions, was only seen when the flocculated 

droplets formed at pH 4.5 were allowed to age for more than a few days (see Figure 

4.11A in section 4.3.3.1). This phenomenon probably arises from the conformational 

rearrangements of adsorbed protein/peptides on the surface of the droplets, via 

exposure of their hydrophobic residues during the storage of emulsions (McClements, 

2004, Freer et al., 2004, Kim et al., 2002a, 2002b). These rearrangements and mutual 

diffusion of the polypeptides between adjacent surface layers could result in the 

formation of interfacial films shared between neighbouring droplets. Once such layers 

are formed, switching the electrostatic repulsion back on between the droplets by 

adjustment of pH, is no longer sufficient to redisperse the emulsion system. However, 

it seems that the processes leading to the formation of such shared layers, happen 

rapidly when soy protein materials are involved, but take a while to be established with 

whey protein based fragments. 

 

Figure 5.21 Micrographs of emulsions produced by SST3-MD 
conjugates as emulsifiers, after adjustment of pH to 3.0 (A), then to 2.0 
(B). The emulsion sample was kept at the intermediate pH for only a few
minutes. The droplet size distribution and the mean droplet size 𝑫𝟒,𝟑 are 
also provided on each photo. 
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5.4 General Conclusions 

The current study systematically evaluated the ability of commercial isolated soy 

protein (SPI), via a combined modification of enzymatic hydrolysis and covalent 

conjugation of hydrolysates with maltodextrin, to form an emulsifier capable of forming 

fine submicron-sized stable emulsions at various pH conditions. The dual role of the 

degree of hydrolysis (DH) in improving the solubility of soy protein on one hand, and 

the difficulties of linking soy hydrolysates to polysaccharide on the other, have been 

highlighted.  

The hydrolysis of soy protein was conducted with two very different enzymes (i.e. 

trypsin and alcalase). The action of both enzymes significantly improved the 

(apparent) solubility of soy protein. At the same achieved DH, the soy protein 

fragments generated by trypsin showed distinctly superior solubility, as well as 

emulsifying properties, compared to those produced by alcalase. These differences 

were related to how efficiently soy protein, existing as aggregated colloidal particles 

dispersed in the solution, can be turned into polypeptides. Trypsin, due to the rather 

selective nature of peptide bonds it cleaves, was believed to produce a large number 

of intermediate-sized peptides by getting into the core of soy protein aggregates and 

Figure 5.22 Micrographs of emulsion produced by SST3-MD as
emulsifiers, stored at pH 7.5, on day 1 (A) and after 60 days of storage
(B). This emulsion was subjected to an acid treatment by adjustment of
pH to 4.5, then back up to 7.5. The emulsion sample was kept at pH 4.5
for only a few minutes. The droplet size distribution and the mean droplet
size 𝑫𝟒,𝟑 are also provided on each photo. 
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chopping down chains uniformly. The obtained peptides were demonstrated to be 

effective emulsifying agents. Soy fragments, with the highest DH used here (i.e. SST3 

with DH = 8.0%), were able to produce an equally fine O/W emulsion system at pH 

7.5 (𝐷ସ,ଷ = 0.608 m) as that achieved by milk whey protein materials. Alcalase, having 

a broad range of amino acid substrates, on the other hand, was suggested to generate 

a set of small peptides, leaving a large proportion of less affected protein particles in 

the core. Such kind of hydrolysates, with small peptides mixing with large particles, 

were seen to deteriorate the emulsifying and stabilizing properties of soy protein, even 

with low DH values. 

With regards to the long-term stabilizing properties of fragmented soy protein, a 

development of large droplets was observed in all the emulsions made by SSPHs 

stored at pH 7.5. This phenomenon was attributed mainly to the Ostwald ripening, 

facilitated by a small amount of soy phospholipids present in commercial SPI.  

When the pH of freshly made emulsion at pH 7.5 was lowered to 4.5, emulsion droplets 

became strongly flocculated due to reduced electrostatic repulsion. This flocculation 

instability at acidic conditions, as well as the coarsening of oil droplets, was seen 

significantly modified, when fragmented soy protein was covalently bonded with 

maltodextrin. Such improvement was true for all the conjugated SSPHs samples, and 

was most remarkable in conjugated SST3 stabilized emulsion. The value of 𝐷ସ,ଷ was 

2.18 m for the emulsion made from SST3-MD stored at pH 4.5 for 60 days, compared 

to non-bonded SST3 (𝐷ସ,ଷ= 24.3 m). Despite this enhancement in emulsion stability, 

there were still some flocculated droplets present in the sample of SST3-MD stabilized 

emulsion. In contrast, the emulsion made by conjugated whey protein fragments did 

not exhibit any evidence of droplet clustering at pH 4.5. 

The limited flocculation stability of conjugated soy protein materials at pH 4.5 is most 

likely due to the insufficient degree of reaction between protein chains and 

maltodextrin. Major obstacles come from the poor solubility and the aggregated state 

of soy protein materials, which fail to offer a well-blended dry mixture of protein chains 

and polysaccharides at a molecular scale. Under such circumstances, the Maillard 

reaction between these two biopolymers cannot proceed efficiently during heating, 

with thermal-induced protein aggregation predominating. This situation was seen 
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gradually ameliorated with increased level of fragmentation of soy protein (by trypsin). 

Nonetheless, it is noted that the improved colloidal functionalities of conjugated 

fragments, resulting from a higher level of hydrolysis, will be offset by further 

fragmentation (this point has been clearly seen and discussed for whey protein 

materials in Chapter 4). This leads to an optimum value of DH for plant proteins in 

order to synthesize the most suitable Maillard based emulsifiers. For SPI material used 

in this study, this value was found to be around 8%. 

Another feature reported here was the irreversible aggregation of emulsion droplets 

stabilized by soy protein materials post acid treatment. Once the emulsion droplets 

became flocculated, regaining sufficient level of electrostatic repulsion was not able to 

effectively separate the clustered droplets into individual ones. This was completely 

different from the case seen with milk whey protein/peptides (discussed in Chapter 4).  

To summarize, the findings in this chapter suggest that it is not easy to modify 

commercial isolated soy protein to be a suitable colloidal material. The difficulties are 

suggested to mainly originate from the structural and compositional characteristics of 

commercial soy protein. Enzymes having a high selectivity on cleavable peptide 

bonds, such as trypsin in our case, are shown to be beneficial for overcoming those 

obstacles. For plant based polypeptides and their conjugated form to be good 

emulsifiers, one needs a careful optimisation of the degree of fragmentation. 
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Chapter 6 Emulsifying and Stabilizing Properties of Soy Peptides 

Produced by Ultrafiltration and Covalently Bonded with 

Maltodextrin 

6.1 Introduction 

It has been seen from Chapter 4 and 5 that excessive hydrolysis, with large content of 

small peptides released at high levels of fragmentation, induced detrimental effect on 

the emulsifying and stabilizing properties of proteins. In this chapter, we aim to further 

investigate the critical size of a protein fragment for it to fulfil the role of an effective 

emulsifier and colloidal stabilizer, following its bonding with polysaccharide.  

As trypsin generated polypeptides were demonstrated in the previous two chapters to 

exhibit a superior colloidal functional property than those produced by the action of 

alcalase (though the difference is not so huge between whey protein fragments 

obtained by the action of these two enzymes), only the polypeptides produced by 

trypsin are used in the current study in this chapter. The mixture of protein hydrolysates 

is first separated via membrane ultrafiltration to obtain protein fragments of three 

different size ranges (i.e. larger than 30 kDa, between 10~30 kDa and less than 10 

kDa). Conjugated polymers are then produced from these fractions of polypeptides,  

and are assessed for their emulsifying and emulsion stabilizing abilities under different 

pH conditions. 

It is useful to note here that in membrane ultrafiltration, whether a macromolecule will 

pass or be retained by a membrane of a given pore size depends not only on the 

molecular size of the macromolecule, but also on a few other factors, such as the 

shape (e.g. linear or globular) and the charge of the macromolecule. Moreover, 

membranes made from different materials, although claimed to have the same 

molecular-weight-cut-off value, can exhibit distinct retention behaviours, due to the 

distribution of their pore sizes (Schratter et al., 2004). For these reasons, membrane 

ultrafiltration can only be viewed as an efficient tool for a rough separation of 

biopolymers, in accordance to the molecular weight and size.  

Nonetheless, for a given claimed cut-off value, the membrane can reject at least 90% 

of hypothetical globular solutes that are equal to or above this value (Schratter et al., 
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2004). Therefore, using this separation technique, one can still gain a reasonably good 

insight into the impact of the molecular size of a polypeptide on the colloidal 

performance of the conjugated emulsifier made from it. 

 

6.2 Materials and Methods 

6.2.1 Materials 

The commercial isolated whey protein (WPI) and soy protein (SPI), the enzyme 

trypsin, and all the other chemicals used in this study are the same as those used in 

Chapter 4 and Chapter 5. The stirred ultrafiltration cell (Amicon UFSC400001, volume 

400 mL) and the disc membranes (PLC010 and PLCTK with molecular weight cut-off 

10 kDa and 30 kDa, respectively) were purchased from Millipore (Merck, UK). 

6.2.2 Hydrolysis of WPI and SPI by trypsin 

Three batches of WPI (2.5 g/batch) were hydrolysed by trypsin to achieve three 

different degrees of hydrolysis (i.e. DH = 2.5%, 5.5% and 8.0%), accordingly. This is 

for obtaining sufficient amount of protein fragments in each of the molecular size 

ranges studied. The digestion of WPI was conducted following the procedure 

described in section 4.2.2. Those three batches of whey protein hydrolysates were 

then incubated in the ice bath with gentle stirring for 15 min, and then stored there for 

further fractionation by membrane.  

For soy protein, the hydrolysis was conducted according to the procedure in section 

5.2.2. Unlike the preparation of whey protein fragments, the three batches of SPI (2.5 

g/batch) were all digested to achieve DH = 8.0%, for the ease of collection of the final 

products. This DH was chosen since according to the preliminary experiments, the 

hydrolysis of soy protein at low DH values (e.g. 2.5% and 5.5%) could only generate 

a tiny amount of soy peptides less than 10 kDa. The three batches of digested soy 

protein were also mixed (for 15 min) and stored in the ice bath. 

6.2.3 Fractionation of polypeptides by membrane ultrafiltration 
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The whey protein hydrolysates were fractionated by ultrafiltration with a stirred cell and 

disc membrane system in a discontinuous manner. They were first separated by the 

30 kDa molecular weight cut-off (MWCO) membrane in the cell. The separation was 

operated at 45 psi in the ice bath, and proceeded until the volume of the retentate in 

the stirred cell was reduced to about 100~120 mL. Then a further second separation 

was conducted by adding 250 mL deionised water into the stirred cell, and continued 

until the volume retained in the cell was concentrated down to about 100~120 mL. 

This procedure was repeated yet one more time, in order for a relatively complete 

removal of the polypeptide chains less than 30 kDa from the retentate. The protein 

fragments retained by the membrane were assumed to have a molecular size larger 

than 30 kDa (labelled as WR30). This retentate was collected and then freeze dried 

over a period of 48 h. At the same time, the permeate was further separated by the 10 

kDa MWCO membrane, which generated a further retentate (labelled as WR10) and 

a permeate (labelled as WP10). The polypeptides in this retentate and permeate 

should then have a molecular size between 10~30 kDa and < 10 kDa, respectively. 

Both these two fractions of polypeptides were also collected separately and freeze 

dried. A moderate heating treatment (80˚C, 5 min) was applied to all the freeze-dried 

samples, in order to ensure the complete inactivation of enzyme activity. 

Soy protein hydrolysates were fractionated in the same way as the whey protein 

fragments, as described above. The fractions collected from this two-step separation 

process were labelled as SR30, SR10 and SP10 to identify the soy polypeptide chains 

in the size ranges of > 30 kDa, between 10~30 kDa and < 10 kDa. 

6.2.4 Preparation of protein-polysaccharide conjugates 

The Maillard reaction products (MRPs) were prepared between maltodextrin DE16.5-

19.5 (MD, 𝑀௪= 8.7 kDa) and different fractionated protein samples (i.e. WR30, WR10, 

WP10 and SR30, SR10, SP10) using the dry heating route. The ratio of added 

maltodextrin to peptides was 2:1 (based on weight). The details of the preparation 

procedure were the same to the ones described in section 4.2.3. 

The Maillard reaction products (MRPs) are denoted using the same convention as that 

for conjugated whey protein materials in Chapter 4, i.e. starting with the type of the 

polypeptides, followed by polysaccharide. For example, the MRPs made from whey 
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protein fragments larger than 30 kDa, conjugated with maltodextrin DE16.5-19.5, are 

marked as WR30-MD throughout the study. 

6.2.5 Electrophoresis analysis 

SDS-PAGE was performed under reduced conditions, in order to confirm the 

fractionation of hydrolysed protein. The detailed procedure was once again the same 

as the ones given in section 4.2.4. 

6.2.6 Preparation of emulsions 

O/W emulsions (10 vol.% sunflower oil), made by various conjugated samples, were 

prepared according to the procedure in section 4.2.7. The pH of the freshly made 

emulsions was adjusted to two pH conditions (i.e. pH 7.5 and 4.5) with 1 M NaOH or 

HCl. The emulsion samples were stored at 4°C for further investigations. 

6.2.7 Storage stability of emulsions at different pH conditions 

The stability of emulsions was assessed by sizing the emulsion droplets and 

examining the microstructure of the emulsion samples. The instruments involved in 

the measurements are the same as those applied in Chapter 4. The assessments 

were performed at various stages during the storage period. 

6.2.8 Statistical analysis 

All the measurements were performed in triplicate. The obtained data was averaged 

and reported as a mean value in each case. All the calculations were analysed using 

Microsoft Excel 2016. 

 

6.3 Results and Discussions 

6.3.1 Molecular weight profiles 

In this section, the separation of protein hydrolysates is confirmed based on the 

molecular size. The peptide profiles of different fractions of whey protein and soy 

protein hydrolysates were analysed by reducing SDS-PAGE (Figure 6.1). Similar to 
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Chapter 4 and Chapter 5, the major components of intact WPI (lane W) and 

ultrasonicated SPI (lane S), were marked on the gel sheet as reference. The fractions 

of polypeptides larger than 30 kDa, between 10~30 kDa, and less than 10 kDa were 

respectively displayed in lane 1, 2 and 3 for whey protein and lane 1*, 2* and 3* for 

soy protein. Distinct differences were observed between those fractions. 

For fractionated polypeptides derived from whey protein, the pattern of the retentate 

WR30 (lane 1) was similar to that of the hydrolysates at low DH 2.5% (i.e. WT1, see 

Figure 6.1 Reducing SDS-PAGE analysis of the peptide profiles for 
various fractionated protein samples. Lane W is intact WPI and lane S is 
ultrasonicated SPI. Lane 1, 2, 3 are the fractions of polypeptides derived 
from WPI (produced by trypsin digestion) of molecular size larger than 
30 kDa, between 10~30 kDa and less than 10 kDa, respectively. Lane 1*, 
2*, 3* are the fractions of polypeptides derived from ultrasonicated SPI
(produced by trypsin digestion) of molecular size larger than 30 kDa, 
between 10~30 kDa and less than 10 kDa, respectively. Lane M is the 
molecular weight ladder (with values presented in the unit of kDa). 
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lane 1 in Figure 4.1). This indicates that a sizeable proportion of the released 

polypeptides in the retentate did not separate from one another after membrane 

ultrafiltration. This is probably due to the fact that these chains still bind with other 

peptides through non-covalent or covalent bonds, such as hydrophobic interactions, 

disulphide bonds or the less specific electrostatic interactions. This stops the passage 

of such associated peptides through the pores of the membrane (Wu et al., 1998), 

even though individual chains should have been able to go through. When these 

interactions are totally broken up in the reducing SDS-PAGE buffering system, all 

these large and small associated polypeptides eventually become free and show up 

on the gel sheet. 

It is also seen that the bands of unaffected β-LG (18.4 kDa) and α-LA (14.2 kDa)  

substantially or completely disappeared from the two fractions of peptides less than 

30 kDa (WR10 in lane 2 and WP10 in lane 3). This is probably due to the fact that 

most of these proteins cannot truly dissolve into individual molecules, but instead exist 

as protein aggregates. That is why they are largely retained by the membrane with a 

molecular weight cut-off of 30 kDa. Nonetheless, it is suspected that the aggregates 

they form are of very small size which consist of only a few protein molecules, since 

the solution formed by whey protein or its hydrolysates are generally clear without any 

visible particles at pH 7.5 (see Figure 4.3). Moreover, the bands in lane 2 and 3 were 

weaker than those in lane 1. This is probably because a large content of small peptides 

that are contained in those two fractions of peptides (< 30 kDa) are likely to be less 

than 2.5 kDa. Therefore, they are too small to be detected on the gel sheet, once freed 

due to the breakup of all the inter-molecular associations under reducing conditions. 

Likewise, for soy hydrolysates, as all the covalent and non-covalent bonds are 

completely broken between generated polypeptides during SDS-PAGE analysis, the 

three fractions were seen to have different molecular weight patterns. For instance, 

the polypeptides in the sample of retentate SR30 (consisting of fragments more than 

30 kDa, see lane 1*) were abundant in the regions of 3 ~14 kDa, as compared to the 

other two fractions (i.e. lane 2* and 3*). Peptides in the retentate SR10 (made of chains 

having a molecular size of 10~30 kDa, see lane 2*) were more prominent in the size 

range between 4~10 kDa. As with the fraction of whey protein peptides less than 10 

kDa (WP10 in lane 3), the equivalent soy peptides (SP10 in lane 3*) also had relatively 
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faint bands, again indicating many released small polypeptides were beyond the limit 

of detection by the gel sheet. 

6.3.2 Morphology and stability of emulsions 

In this section, the emulsifying and emulsion stabilizing properties of the conjugated 

biopolymers made from maltodextrin and polypeptides in each size range are 

assessed. The emulsion stability is examined at two different pH conditions, i.e. pH 

7.5 and pH 4.5. It is presented here the results for the average droplet size and the 

droplet size distribution. The microstructure of emulsion samples is also examined 

using optical microscopy. 

6.3.2.1 Emulsions based on conjugates made from WR30 and SR30 

(fragmented whey and soy protein of molecular size larger than 30 kDa) 

Figure 6.2 Micrographs of conjugated WR30 fabricated emulsion. The
freshly made and stored (for 60 days) samples at pH 7.5 are shown in (A)
and (B), respectively. The samples adjusted to and stored at pH 4.5 on day
1 (C) and after 60 days of storage (D) are also displayed. The droplet size 
distribution and the mean droplet size 𝑫𝟒,𝟑 are provided on each photo. 
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Conjugated whey protein fragments (WR30-MD) delivered excellent colloidal 

functionalities, irrespective of the pH condition at which the emulsion was stored 

(Figure 6.2). From the micrographs, the oil droplets were observed to remain well 

dispersed, with 𝐷ସ,ଷ around 600~700 nm, during the entire storage period of 60 days. 

As for conjugated soy fragments (SR30-MD), these were able to form fine emulsion at 

pH 7.5 (𝐷ସ,ଷ = 0.683 m, see Figure 6.3A), which has similar mean droplet size as 

that fabricated by the equivalent whey protein materials (i.e. WR30-MD). However, a 

development of larger droplets in this emulsion sample during the storage period was 

clearly visible (Figure 6.3B).  

As most of the small fragments (less than 30 kDa) have been removed by membrane 

ultrafiltration from the retentate polypeptides SR30, the occurrence of large droplets in 

Figure 6.3 Micrographs of conjugated SR30 fabricated emulsion. The
freshly made and stored (for 60 days) samples at pH 7.5 are shown in (A) 
and (B), respectively. The samples adjusted to and stored at pH 4.5 on day
1 (C) and after 60 days of storage (D) are also displayed. The droplet size
distribution and the mean droplet size 𝑫𝟒,𝟑 are provided on each photo. 
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this emulsion sample cannot simply be attributed to droplet coalescence, induced by 

the displacement of larger polymer chains by the smaller ones from the surface of 

droplets. Instead, it is more likely that it was the result of the slow Ostwald Ripening 

process, facilitated by the presence of a small amount of soy lecithin impurity in the 

system, as was discussed in Chapter 5.  

Nonetheless, the growth of droplets in SR30-MD stabilized emulsion was observed to 

be much less pronounced, relative to that seen in the emulsion sample stabilized by 

SST3-MD (compare Figure 6.3B and Figure 5.17B). The droplet size 𝐷ସ,ଷ for the 

former and the latter (after 60 days) were 1.18 m and 2.29 m, respectively. The size 

distribution and micrographs also showed that fewer large oil droplets were formed in 

the emulsion stabilized by the conjugated SR30. This is attributed to the fact that more 

chains of larger molecular size are present in the sample SR30-MD (conjugates made 

from the fraction of soy fragments larger than 30 kDa), compared to in the sample 

SST3-MD, when the same amount of emulsifiers (based on weight) were used to 

produce the emulsion. These large polymers play an important role in forming 

strengthened viscoelastic interfacial layers which offer a better emulsion stability 

(particularly against Ostwald ripening and coalescence) than smaller polymers do (as 

was discussed in Chapter 4) (Chen et al., 2019, McClements, 2015u, Schröder et al., 

2017, Ipsen et al., 2001). 

When the pH of this fresh emulsion (made using SR30-MD) was lowered to pH 4.5, 

some of the well dispersed oil droplets became flocculated (Figure 6.3C). The 

measured mean droplet size suggests that the flocculation in this sample was 

significantly worse than that seen in the SST3-MD fabricated emulsion, as displayed 

in Figure 5.19A (𝐷ସ,ଷ  for the former and the latter were 3.29 m and 1.87 m, 

respectively). This is probably due to the lower level of reaction between the 

fractionated sample SR30 and maltodextrin. Given the same amount of materials 

(based on weight), there is supposed to be a larger content of non-fully digested 

protein particles remaining in the fraction of soy peptides SR30 than in the SST3 

sample. As discussed in Chapter 5, the presence of such protein particles is not 

favourable for an intimate mixing of the protein material (in the sample SR30) with 

maltodextrin at molecular level, thus restricting their bonding with polysaccharide 

during Maillard reaction. Therefore, the oil droplets stabilized by the emulsifiers SR30-
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MD lack sufficient inter-droplet repulsion to prevent them from approaching one 

another. This becomes particularly problematic in the absence of surface charge at 

pH 4.5 where electrostatic repulsion is also largely switched off. Following a storage 

period of 60 days, these flocculated droplets were seen to have undergone some 

extent of slow coalescence. The micrograph of this emulsion sample showed the 

appearance of a few large oil droplets (Figure 6.3D). 

6.3.2.2 Emulsions based on conjugates made from WR10 and SR10 

(fragmented whey and soy protein of molecular size between 10~30 

kDa) 

Conjugated whey protein fragments (WR10-MD) were seen to have formed finely 

dispersed oil droplets at pH 7.5 (𝐷ସ,ଷ= 0.573 m, see Figure 6.4A), which were able 

Figure 6.4 Micrographs of conjugated WR10 fabricated emulsion. The
freshly made and stored (for 60 days) samples at pH 7.5 are shown in (A)
and (B), respectively. The samples adjusted to and stored at pH 4.5 on
day 1 (C) and after 60 days of storage (D) are also displayed. The droplet
size distribution and the mean droplet size 𝑫𝟒,𝟑  are provided on each 
photo. 
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to maintain stable during the long-term storage of 60 days (𝐷ସ,ଷ= 0.597 m, see Figure 

6.4B).  

For fresh emulsion adjusted to pH 4.5, a slight extent of droplet clustering was 

observed in the micrograph of the sample (𝐷ସ,ଷ = 1.76 m, see Figure 6.4C). This 

indicates an insufficient level of steric stabilization between these emulsion droplets, 

which led to droplet flocculation. The lack of steric repulsion is likewise attributed to a 

large proportion of unconjugated protein fragments present in the mixture of 

emulsifying agents. However, it is suspected that the reason for their presence is 

different from that in the case of fragmented soy protein based conjugates (e.g. SR30-

MD and SST3-MD). For those latter systems, a large number of soy protein chains 

being non-bonded with polysaccharide is mainly due to their aggregated nature, 

present as protein particles, which disables the intimate blending with polysaccharide 

and the exposure of reactive sites (i.e. lysine or N-terminal residue on protein 

materials) for Maillard reaction. In contrast, for this whey protein system (i.e. the dry 

mixture of WR10 + maltodextrin), the presence of excessive number of unreacted 

protein fragments is probably due to the shortage of maltodextrin molecules. As the 

molecular size of protein fragments in the fraction WR10 (fragments between 10~30 

kDa) is much smaller than that in the fraction WR30 (fragments larger than 30 kDa), 

the total number of polypeptide chains for a fixed amount (based on weight) of WR10 

sample becomes much larger than that for the same amount of WR30 sample. Given 

that in the current experiments, maltodextrin is always added to fragmented protein 

samples at the same weight ratio (i.e. 2:1), the molar ratio of protein fragments to 

maltodextrin in the sample WR10 + maltodextrin will be considerably bigger as 

compared to in the system of WR30+ maltodextrin. Therefore, at the currently used 

weight ratio (2:1) of maltodextrin to fragmented protein, there will certainly be a large 

proportion of polypeptides that find no maltodextrin molecules to bond with. 

Nonetheless, we did not investigate whether the flocculation stability of emulsions will 

be further enhanced if an additional amount of maltodextrin is introduced to the system 

WR10 + maltodextrin prior to Maillard reactions. Despite being slightly flocculated, this 

emulsion displayed a reasonable level of stability to coalescence during storage, with 

almost no significant formation of large droplets occurring (see micrograph in Figure 

6.4D).  
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Similarly, conjugated soy fragments (SR10-MD) also displayed excellent emulsifying 

ability at pH 7.5 (𝐷ସ,ଷ= 0.665 m, see Figure 6.5A). While good at producing initially 

fine emulsion, these conjugated polymers were not seen to be particularly good 

emulsion stabilizers. There were very large droplets formed (bigger than 10 m) in the 

emulsion sample, following a storage of 60 days (see micrograph in Figure 6.5B). This 

is probably due to the coalescence of droplets and possibly also the simultaneous 

Ostwald ripening process (as discussed in Chapter 5). Thus, the stability of this 

emulsion was worse, in contrast to the emulsion fabricated with conjugated polymers 

made from larger polypeptides (i.e. SR30-MD, see Figure 6.3B). These results 

indicate that the conjugated polymers made from small polypeptides are less able, 

than the counterparts made from large peptides, to prevent destabilization processes 

from taking place.  

Figure 6.5 Micrographs of conjugated SR10 fabricated emulsion. The
freshly made and stored (for 60 days) samples at pH 7.5 are shown in (A)
and (B), respectively. The samples adjusted to and stored at pH 4.5 on day
1 (C) and after 60 days of storage (D) are also displayed. The droplet size 
distribution and the mean droplet size 𝑫𝟒,𝟑 are provided on each photo. 
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As for the stability of the emulsion (fabricated with SR10-MD) at pH 4.5, a certain 

extent of droplet flocculation was observed immediately after pH adjustment (with 

𝐷ସ,ଷ= 3.64 m, see Figure 6.5C), which is likewise attributed to the presence of a large 

proportion of non-bonded soy polypeptide chains in the system, probably because of 

the shortage of maltodextrin (as explained previously in this section for the system of 

WR10 + maltodextrin). As this fractionated soy peptides sample (SR10) forms a clear 

solution, this signifies that most of the large protein particles are depleted via 

membrane ultrafiltration. In future work, it is worth examining whether adding more 

maltodextrin to this fractionated soy polypeptide sample will effectively promote the 

yield of conjugated polymers, allowing for producing fully plant based emulsifiers that 

offer better stabilization to droplet flocculation under acidic conditions.    

After storage for 60 days, a few large droplets were found to have developed (see 

micrograph in Figure 6.5D). The situation was worse than that seen in the emulsion 

sample fabricated by conjugates made from unfractionated SST3 (see Figure 5.19B) 

or fractionated soy fragments larger than 30 kDa (see Figure 6.3D). This again 

demonstrates the superior emulsion stabilizing capacity of the larger-size polymers 

against coalescence and Ostwald ripening over the smaller ones.   

6.3.2.3 Emulsions based on conjugates made from WP10 and SP10 

(fragmented whey and soy protein of molecular size less than 10 kDa) 

Figure 6.6 Micrographs of freshly made emulsion samples fabricated with
conjugated WP10 (A) and conjugated SP10 (B) at pH 7.5. The droplet size
distribution and the mean droplet size 𝑫𝟒,𝟑 are provided on each photo. 
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Conjugated polymers made from the fraction of the smallest peptides obtained in this 

study, i.e. less than 10 kDa (WP10-MD and SP10-MD), were seen to have a 

significantly worse emulsifying ability at pH 7.5, when compared to those made from 

the other fractions of larger polypeptides with sizes greater than 10 kDa (i.e. WR30-

MD and WR10-MD, SR30-MD and SR10-MD). This observation holds true for both 

conjugated whey protein materials, as well as for the corresponding soy protein 

materials. The mean droplet size 𝐷ସ,ଷ of fresh emulsion fabricated using WP10-MD 

was 0.874 m (Figure 6.6A), while the value was even larger (at 1.62 m) for the 

SP10-MD stabilized emulsion system. The presence of a few big droplets in the latter 

system is clearly seen in micrograph of Figure 6.6B. Following 60 days of storage, a 

thin oil layer appeared on top of both emulsion samples, although the whole system 

was still not completely destabilized at this stage. The formation of the oil layer is the 

result of coalescence of emulsion droplets, suggesting that the conjugated polymers 

made from these small protein fragments (of less than 10 kDa) do not possess the 

interfacial properties that are required for a good emulsifier. 

When the fresh emulsion sample made from conjugated WP10 was adjusted to pH 

4.5, rapid coalescence was seen to occur where all the fine submicron oil droplets 

immediately disappeared and merged into fairly large ones within a few minutes (see 

micrograph in Figure 6.7). This rapidly destabilized emulsion sample broke down into 

an upper oil layer and a bottom aqueous phase after just a few days of storage. The 

Figure 6.7 Micrograph of freshly made emulsion samples fabricated
using conjugated WP10, after adjustment of pH to 4.5. The droplet size 
distribution and the mean droplet size 𝑫𝟒,𝟑 are provided on the photo. 
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rapid coalescence seen in the current emulsion sample once again indicates that 

these conjugated polymers, made with small peptides, are unable to provide good 

stabilization to the emulsion droplets. 

The process of droplet coalescence proceeded at an even faster speed in the 

emulsion sample that was fabricated by conjugated SP10 polymers, when pH was 

adjusted to 4.5. This emulsion sample was observed to start to show a light yellowish 

colour during the pH adjustment. Meanwhile, the sample also became significantly 

more viscous than it was at pH 7.5. A thin layer of oil appeared on the top of the 

emulsion after the sample was left at room temperature for a few hours. The entire 

emulsion system completely separated into two immiscible phases (i.e. oil and water) 

in just a couple of days. 

 

6.4 General Conclusions 

In this chapter, the whey and soy protein fragments were separated into three fractions 

based on their molecular size, i.e. > 30 kDa, 10~30 kDa and < 10 kDa. Conjugates 

were made using these fractions of protein fragments reacted with maltodextrin. The 

emulsifying and stabilizing properties of these conjugates were assessed at pH 7.5 

and pH 4.5.  

It was found that conjugated polymers made from protein fragments larger than 10 

kDa were able to provide a reasonable level of emulsion stability. In contrast, the ones 

made from smaller fragments (less than 10 kDa) were observed to have lost their 

colloidal stabilizing functionalities. The critical size of a protein fragment for serving as 

an effective emulsifying and stabilizing agent, post its covalent conjugation with 

maltodextrin of 8.7 kDa, is found to be roughly 10 kDa.  

Moreover, consistent with the findings in Chapter 4 and Chapter 5, it was 

demonstrated here that for conjugated whey protein materials, the larger the 

polypeptide size, the more effective the conjugates are as emulsifiers and stabilizers, 

delivering better stabilization against both flocculation and coalescence. When it 

comes to conjugated polymers derived from soy fragments, it was observed that the 

conjugates made from larger soy fragments (e.g. SR30-MD) provide better emulsion 
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stability against coalescence and Ostwald ripening, compared to the ones produced 

from smaller soy fragments (e.g. SR10-MD). However, the former is not able to offer 

better stabilization against droplet flocculation at acidic pH conditions, which is most 

likely due to the large content of particulate protein aggregates present in this portion 

of soy protein sample. Such protein particles are not conducive to efficiently react with 

maltodextrin.  

The results in this chapter once again highlight the dual role of the size of soy 

fragments in inducing good emulsifying and stabilizing ability on one hand and in 

facilitating the covalent bonding to polysaccharides on the other. In this sense, in order 

to produce fully plant based conjugated biopolymers for the preparation of fine and 

stable O/W emulsion at various pH conditions, it may well be promising to remove both 

the large protein particles and the small peptides (less than a critical size, such as 10 

kDa) remaining in the fragmented protein sample.  
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Chapter 7 General Discussions and Conclusions 

7.1 Introduction 

The study of protein-polysaccharide conjugates has a long history of more than three 

decades. Conjugated biopolymers based on milk proteins are typically prepared using 

a dry-heating Maillard reaction and have been reported to deliver excellent emulsifying 

and stabilizing functions even under various environmental stresses (e.g. high ionic 

strength, various pH conditions including pI of the original unmodified protein, 

temperature cycles, etc.). However, the published work so far on conjugates fabricated 

from plant proteins, as opposed to animal derived ones, has only provided an 

incomplete picture and mixed conclusions on the colloidal performances of such 

emulsifiers. 

The current study aims to understand the possibility and the complications involved in 

turning vegetable proteins into suitable biopolymer-based emulsifying agents using 

the conjugation route. Ultimately, we hope that this work presented here will aid in 

producing this class of emulsifiers which rival their animal derived counterparts for 

making stable and fine O/W emulsions. 

Taking commercial isolated soy protein (SPI) as an example of widely used plant 

storage proteins, the project investigated the impact of enzymatic hydrolysis, followed 

by conjugation with maltodextrin, on improving the emulsifying and emulsion 

stabilising behaviour of this protein under various pH conditions. At each stage, careful 

comparisons with whey protein materials, undergoing exactly the same modification 

process, were made in order to provide a clearer understanding of the impact of the 

changes made to SPI. 

Hydrolysis was attempted with two enzymes having very different levels of selectivity 

towards cleavage of peptide bonds. Also, various degrees of hydrolysis (DH = 2.5%, 

5.5% and 8.0%) were engineered, in order to examine how the choice of enzyme and 

DH are affecting the emulsifying and stabilizing properties of protein materials.  

Furthermore, by using an electrically neutral, linear and relatively small maltodextrin 

with no special surface functionalities (e.g. emulsifying, gelling, stabilizing properties) 

of its own, the characteristics of commercial isolated soy protein and its hydrolysates 
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as emulsifiers, both prior to and post conjugation with this polysaccharide, were 

explored.  

The main findings regarding the emulsifying and stabilizing performance of protein 

materials for fabricating stable submicron-sized O/W emulsions under various pH 

conditions are summarized in this chapter. 

7.2 Improved emulsion stability induced by protein-polysaccharide 

conjugate 

The emulsion stabilizing capacity of protein/polypeptide under various pH conditions 

is found to be significantly enhanced post covalently bonding with maltodextrin. This 

is demonstrated both theoretically, using self-consistent field calculations (see 

Chapter 3) and experimentally (see Chapter 4 and Chapter 5).  

Chapter 3 displayed the alteration of the total interaction potential, mediated by the 

adsorbed layers of emulsifiers, between two approaching droplets. It was found that 

most of the produced polypeptides, unless they happen to adopt a diblock-like 

structure on the interface, result in a deep potential minimum between droplets, at their 

respective isoelectric point condition of the polypeptide. However, with a grafted 

hydrophilic chain (of a sufficient length), the adsorbed conjugated polymer is seen to 

produce a shallow energy well, followed by an established high energy barrier (> 20 

kBT) between the droplets at close inter-droplet separations. The presence of such 

energy barrier, resulting from steric repulsion, is able to inhibit the approach of 

droplets, in the absence of electrostatic stabilization. Our theoretical calculations also 

indicate that various conjugated polymers, so long as they can adsorb at a sufficient 

level, provide a good and similar stability against droplet flocculation in an emulsion 

system, regardless of the different structures of the non-bonded polypeptides. In this 

sense, it is suggested that the mixed interfacial layer, formed as a result of the 

simultaneous presence of various conjugates (derived from many different 

polypeptides released during enzymatic hydrolysis), has the ability to continue to 

provide strong steric stabilization to an emulsion system.  

The points above become evident in the experiments in Chapter 4 and Chapter 5. For 

instance, the emulsion sample stabilized by a mixture of conjugated whey protein 
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hydrolysates obtained by trypsin digestion at low degree of hydrolysis (i.e. WT1-MD) 

maintains completely stable at pH 4.5 (i.e. the pI of the protein/polypeptides) during a 

storage period of 60 days. In contrast, the emulsion sample fabricated using the non-

bonded counterparts (i.e. WT1) becomes highly clustered. This is then followed by 

slow droplet coalescence, under the same storage condition. Similarly, for soy protein 

materials (except for conjugated SSPI which will be summarized in section 7.5), 

conjugated emulsifiers are also seen to deliver a superior stabilization to emulsion 

systems.  

The colloidal performance of protein/polypeptide and polysaccharide conjugates 

depends on several factors. The influences arising from the properties of the 

generated polypeptide and intact protein, the degree of hydrolysis and the choice of 

enzyme, are captured in the following sections. 

7.3 The impact of the molecular size of a polypeptide  

For a protein fragment (as well as its conjugated counterpart) to be a good emulsifying 

and stabilizing agent, it is essential for it to adsorb strongly and substantially on the 

O/W interface. The desired structural properties for a protein fragment to fulfil the role 

of providing a strong anchor onto the surface of droplets were theoretically evaluated 

in Chapter 3. The impact of the two most important characteristics of a polypeptide, 

i.e. the molecular size and the degree of hydrophobicity (i.e. the proportion of 

hydrophobic groups), were discussed. It is widely acknowledged that a certain level of 

hydrophobicity is an important requirement. However, our theoretical results highlight 

that the molecular size of a protein fragment is more crucial. This is due to the fact that 

the adsorbed state at equilibrium is determined by the total amount of binding energy 

of a polymer, instead of just the fraction of hydrophobic groups (i.e. mean binding 

energy per segment). For a polypeptide derived from naturally occurring proteins, 

where the hydrophobic and hydrophilic amino acids are relatively evenly distributed 

along the protein chain, a fragment of a larger size will normally also have a greater 

number of total binding groups than a smaller one. Consequently, highly hydrophobic 

but yet small peptides are seen to be unable to establish sufficient amount of 

adsorption around the droplet surface. Whereas large polypeptides, though with a 

relatively small fraction of hydrophobic segments, possess a high level of surface 

affinity. In Chapter 6, it was estimated experimentally that the critical size of a 
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polypeptide required to anchor the conjugated polymer, produced from its covalent 

bonding with maltodextrin (𝑀௪ = 8.7 kDa), was roughly ~10 kDa. 

As the average molecular size of a mixture of protein hydrolysates obtained through 

enzyme digestion is governed by the level of fragmentation of proteins, it is suggested 

that the DH value could serve as a valid parameter to monitor and modulate the 

emulsifying and stabilizing abilities of fragmented proteins.  

7.4 The impact of the degree of hydrolysis (DH) and the choice of 

enzyme 

The variation of the colloidal performance of protein as a function of DH was 

experimentally evaluated with whey protein (in Chapter 4) and commercial isolated 

soy protein (in Chapter 5). The action of trypsin was observed to enhance the colloidal 

performance of whey protein materials at low level of fragmentation (DH = 2.5%). 

Nonetheless, the improvement for intact whey protein as a result of hydrolysis was 

quite modest at best. In contrast, the improvement was much more pronounced for 

intact soy protein, with the optimal DH found to be ~8%. A higher level of hydrolysis 

beyond the optimal point was seen to cause a detrimental effect to the emulsifying and 

stabilising ability of proteins. Such effect is not limited to whey and soy protein alone, 

but is a general feature also seen with many other proteins. As discussed previously, 

this is the result of the increasing release of small peptides.  

As enzyme differs in the selectivity of cleavable peptide bonds, the choice of enzyme 

is also crucial in addition to the degree of hydrolysis. Our experiments with whey 

protein (in Chapter 4) and soy protein (in Chapter 5) both showed that trypsin is 

advantageous in terms of the colloidal performance of the resulting fragmented protein 

materials. The use of alcalase, on the other hand, leads to a deterioration of the 

functional properties, almost from the very onset of hydrolysis. A likely explanation of 

the contrasting influences of these two enzymes on the performance of generated 

protein hydrolysates is that alcalase, having a wide range of amino acid substrates, 

can achieve a low value of DH (< 20%) by mostly breaking bonds on the surface of 

protein particles, thus leaving the protein chains in the core of such aggregates less 

affected. On the other hand, trypsin, with a much more restricted choice of peptide 

bonds to cleave, has to penetrate deeper into the protein structure and cleave peptide 
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bonds more uniformly throughout the proteins, in order to achieve the same DH level. 

Consequently, the action of alcalase tends to lead to the release of a large amount of 

small fragments, while trypsin is prone to produce intermediate-sized polypeptides. 

The presence of these latter fragments contributes positively to the modified colloidal 

emulsifying and stabilising functionality of the protein materials obtained by trypsin 

digestion. 

7.5 The impact of the protein structure 

So far, we have mostly captured the common features of modified whey protein and 

soy protein materials as emulsifying and stabilizing agents. Nonetheless, these 

materials also displayed some contrasting behaviours (as seen in Chapter 4 and 

Chapter 5), arising from the different states of the parental intact proteins in the 

solution.  

First of all, the hydrolysates derived from whey protein and soy protein behave 

differently in their solubility post digestion by enzyme. For milk whey protein which can 

readily dissolve down to “almost” individual protein molecules, the action of both 

trypsin and alcalase was seen to cause a reduction in the solubility (at all tested pH 

conditions). This is suggested to be the result of an averaging effect for the influence 

of pH on the protein solubility, arising from the production of a mixture of polypeptides 

(having a distribution of pI values). Whereas the solubility was significantly improved 

for soy protein following hydrolysis. Nonetheless, the solubility here only refers to the 

apparent solubility, but not the amount of protein material that is truly dissolved. As 

most commercially available plant derived proteins are present in the form of colloidal-

sized protein aggregates in the solution, the reduction of soy protein particle size 

largely leads to such increase in the apparent solubility.  

Moreover, the Maillard reaction products (i.e. MRPs) made with whey 

protein/polypeptide and those with soy protein/polypeptide, formed following 

conjugation with polysaccharide, also exhibited distinct functional properties. The 

former became highly soluble at pH conditions close to pI, without formation of any 

visible protein aggregates, in comparison to their non-bonded counterparts. The 

emulsion droplets fabricated by these MRPs were all able to remain well dispersed 

during pH adjustment. On the other hand, all the conjugated soy protein materials did 
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not show a significant enhancement in their solubility at pI. Particularly, the MRPs 

made between the non-hydrolysed (but ultrasonicated) SPI and maltodextrin (i.e. 

SSPI-MD) became extremely insoluble. This is most likely attributed to the large 

amount of protein aggregates present in the soy protein samples, which does not allow 

for chemically reactive sites (i.e. -NH2) on protein backbone to be sufficiently exposed 

nor an intimate mixing of biopolymers on a molecular scale. Therefore, the Maillard 

reaction between soy protein/polypeptide and maltodextrin becomes restricted. Other 

obstacles to the efficiency of reaction could come from the non-protein components 

which bind the protein chains and shield the chemically reactive sites. This insufficient 

level of conjugation, in the final produced emulsifiers, was responsible for the 

flocculated morphology of the emulsions stabilized by conjugated soy protein 

materials.  

7.6 Conclusions and outlook 

The ultimate aim of this project is to form plant based emulsifiers that are capable of 

producing and stabilising submicron sized O/W emulsion systems under challenging 

environmental conditions (e.g. low pH, high salt, etc.), by the route of protein 

hydrolysis, followed by conjugation with polysaccharides. To achieve this, enzymes 

with a high level of selectivity are found to be much more beneficial in producing 

suitable polypeptides. In the following stage of conjugation reaction between 

protein/polypeptide and polysaccharide, one requires a good mixing between these 

two biopolymers, almost down to molecular scales.  

When it comes to vegetable proteins, the major issue of synthesizing MPRs is the 

delicate choice of the level of hydrolysis. If too little, then the solubility of the plant 

protein would remain poor, with the presence of a large number of aggregated 

proteins. Thus, it would not be possible to achieve a molecular-scaled uniform mixture 

of protein fragments with polysaccharides, which is an important prerequisite for good 

reaction efficiency in obtaining suitable conjugates via heating process. Yet, a high DH 

is equally undesirable as it leads to the production of many small peptides, which will 

deteriorate the overall colloidal performance. One possible way to overcome such 

issue is to remove those large and small undesirable components from the protein 

hydrolysates via ultrafiltration (based on molecular weight of the peptide) in future. 

Similar studies for other plant proteins (e.g. pea protein) and comparisons with animal 
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derived ones (e.g. s1- and -casein) in future would be most helpful to solidify and 

support the conclusions that have been arrived at in the current research work.  

Whilst a non-charged linear polysaccharide (i.e. maltodextrin) is used throughout the 

entire project, conjugation with polysaccharide having a more sophisticated structure 

(e.g. charged or branched) is worthy of future investigations both from a theoretical 

(though the stiffness of chains is not considered in the currently applied SCF 

calculations) and experimental perspectives, to see whether the protein/polypeptide 

with superior emulsifying and stabilizing capacities could be generated.  

To conclude, the conjugates of protein and polysaccharide are capable of inducing 

strong steric stabilization to O/W systems under a wide variety of environmental 

stresses. They are not only effective emulsifying and stabilizing agents to potentially 

replace the currently used expensive emulsifiers (e.g. Gum Arabic) in beverage 

industry (Williams et al., Akhtar et al., 2017), but also promising wall materials for 

encapsulating lipophilic bioactive compounds (e.g. curcumin, essential oils) (Araiza-

Calahorra et al., 2018, Majeed et al., 2015). Moreover, turning vegetable proteins into 

suitable biopolymer-based emulsifying agents via the current strategy (i.e. protein 

hydrolysis followed by conjugation with polysaccharides), is likely to provide additional 

positive biological effects (e.g. antioxidant and immunomodulating activities), due to 

the health-enhancing properties of the bioactive peptides which may be released from 

enzymatic hydrolysis of the parental vegetable proteins (Wang et al., 2005, Gibbs et 

al., 2004).  
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List of Abbreviations 

𝒂𝒘: water activity 

BCA: bicinchoninic acid 

BSA: bovine serum albumin 

DE: dextrose equivalent  

DH: degree of hydrolysis 

DLS: Dynamic Light Scattering  

DTNB: 5,5’-Dithiobis-(2-nitrobenzoic acid) 

DTT: dithiothreitol 

DX: dextran  

EAI: emulsifying activity index 

E/S ratio: enzyme-to-substrate ratio 

ESI: emulsion stability index  

Ka: acid dissociation constant 

pI: isoelectric point 

MD7: maltodextrin with a dextrose equivalent number of 4-7 

MRPs: Maillard reaction products 

𝑴𝒘: molecular weight 

MWCO: molecular weight cut-off  

OPA: o-phthalaldehyde 

O/W: oil-in-water 

RH: relative humidity 

SCF: self-consistent field  

SDS: sodium dodecyl sulphate 

SDS-PAGE: sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SPI: soy protein isolate 

SSA1: hydrolysed ultrasonicated soy protein isolate obtained by the action of 
alcalase at DH 2.5% 

SSA1-MD: conjugates made from SSA1 and maltodextrin  
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SSA2: hydrolysed ultrasonicated soy protein isolate obtained by the action of 
alcalase at DH 5.5% 

SSA2-MD: conjugates made from SSA2 and maltodextrin  

SSA3: hydrolysed ultrasonicated soy protein isolate obtained by the action of 
alcalase at DH 8.0% 

SSA3-MD: conjugates made from SSA3 and maltodextrin  

SSPI: ultrasonicated soy protein isolate 

SSPHs: hydrolysed ultrasonicated soy protein isolate 

SP10: ultrasonicated soy protein fragments (obtained by the action of trypsin) in the 
molecular size range of < 10 kDa 

SP10-MD: conjugates made from SP10 and maltodextrin 

SR10: ultrasonicated soy protein fragments (obtained by the action of trypsin) in the 
molecular size range between 10~30 kDa 

SR10-MD: conjugates made from SR10 and maltodextrin 

SR30: ultrasonicated soy protein fragments (obtained by the action of trypsin) in the 
molecular size range of > 30 kDa 

SR30-MD: conjugates made from SR30 and maltodextrin 

SST1: hydrolysed ultrasonicated soy protein isolate obtained by the action of trypsin 
at DH 2.5% 

SST1-MD: conjugates made from SST1 and maltodextrin  

SST2: hydrolysed ultrasonicated soy protein isolate obtained by the action of trypsin 
at DH 5.5% 

SST2-MD: conjugates made from SST2 and maltodextrin  

SST3: hydrolysed ultrasonicated soy protein isolate obtained by the action of trypsin 
at DH 8.0% 

SST3-MD: conjugates made from SST3 and maltodextrin  

TNBS: trinitrobenzenesulfonic acid 

TNB: 5-thio-2-nitrobenzoic acid 

WA1: hydrolysed whey protein isolate obtained by the action of alcalase at DH 2.5% 

WA1-MD: conjugates made from WA1 and maltodextrin  

WA2: hydrolysed whey protein isolate obtained by the action of alcalase at DH 5.5% 

WA2-MD: conjugates made from WA2 and maltodextrin  

WA3: hydrolysed whey protein isolate obtained by the action of alcalase at DH 8.0% 
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WA3-MD: conjugates made from WA3 and maltodextrin  

WPHs: whey protein hydrolysates 

WPI: whey protein isolate 

WP10: whey protein fragments (obtained by the action of trypsin) in the molecular 
size range of < 10 kDa 

WP10-MD: conjugates made from WP10 and maltodextrin 

WR10: whey protein fragments (obtained by the action of trypsin) in the molecular 
size range between 10~30 kDa 

WR10-MD: conjugates made from WR10 and maltodextrin 

WR30: whey protein fragments (obtained by the action of trypsin) in the molecular 
size range of > 30 kDa 

WR30-MD: conjugates made from WR30 and maltodextrin 

WT1: hydrolysed whey protein isolate obtained by the action of trypsin at DH 2.5% 

WT1-MD: conjugates made from WT1 and maltodextrin  

WT2: hydrolysed whey protein isolate obtained by the action of trypsin at DH 5.5% 

WT2-MD: conjugates made from WT2 and maltodextrin  

WT3: hydrolysed whey protein isolate obtained by the action of trypsin at DH 8.0% 

WT3-MD: conjugates made from WT3 and maltodextrin  
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Appendix I 

Here we provide a more detailed discussion of the self-consistent-field (SCF) theory 

and calculations on the prediction of the most probable density profiles of various 

species at equilibrium and the corresponding colloidal interaction potentials mediated 

by the polymeric chains between the particles.  

There are two contributions to the free energy of a system, the enthalpic term and the 

entropic term (Akinshina et al., 2008, Ettelaie et al., 2014). The former derives from 

the interactions between different species in the system and is in principle easy to 

model and compute. The latter however is much more difficult to cope with 

theoretically, given that a polymer is normally composed of tens or even hundreds or 

thousands of monomeric segments. This allows such macromolecules to adopt many 

internal configurations. When polymeric chains interact with each other, the problem 

becomes a complex many-body problem, with the configuration adopted by one chain 

also influencing that taken by its neighbouring macromolecules. In order to make 

progress, a non-interacting system and a set of auxiliary fields 𝜓ఈሺ𝑟ሻ are considered 

instead (Ettelaie et al., 2014, Ettelaie et al., 2016, Ettelaie et al., 2003). The non-

interacting system comprises of equivalent polymers (i.e. polymer chains that have the 

same size and sequence of monomer residues as the interacting polymers), as well 

as all the other monomeric species (ions, solvent, etc.) with the same bulk 

concentrations as in the interacting system. The difference is that all the species in the 

non-interacting system are considered to not interact with each other, but instead only 

interact with a set of external fields 𝜓ఈሺ𝑟ሻ (Ettelaie et al., 2014). These auxiliary fields 

𝜓ఈሺ𝑟ሻ  are specified for each type of monomers at every layer between the two 

surfaces and only act on their corresponding type of monomers (Ettelaie et al., 2003). 

In this way, an interacting many-body problem is replaced with that of individual chains 

interacting with external fields. This latter is far easier to tackle theoretically (Ettelaie 

et al., 2014). Through tuning those external fields, the concentration profiles 𝜙௜
ఈሺ𝑟ሻ of 

the non-interacting system could be adjusted until they satisfy certain constraints. 

These constraints, when satisfied, can be shown to lead to the desired concentration 

profiles of the equivalent interacting system that minimize the free energy (Ettelaie et 

al., 2014, Ettelaie et al., 2016, Akinshina et al., 2008). Those above are the general 
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principles of how to solve the free energy of a real system and sort out the 

concentration profiles for the minimum free energy.  

For convenience, in our project here, the free energy is calculated in units of per 

surface area 𝑎଴
2 and expressed in reference to the free energy of a uniform profile in 

the bulk (Ettelaie et al., 2014, Akinshina et al., 2008). For an arbitrary set of density 

profiles 𝜙௜
ఈሺ𝑟ሻ of each monomer species between two planar surfaces at a distance 𝐿 

apart, immersed in a polymer solution, the free energy of the system is obtained by 

equation (1) (Ettelaie et al., 2014, Akinshina et al., 2008),  
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The 𝜙௜
ఈሺ𝑟ሻ and Ф௜

ఈ in equation (1) represent the concentration of monomers of type α 

that make up polymer 𝑖, in layer r and in bulk, respectively. The layer number 𝑟 ሺ1 ൑

𝑟 ൑ 𝐿ሻ represents the distance of each layer measured relative to one of the surfaces 

(see Figure 2.1). The quantities 𝜓ఈሺ𝑟ሻ are the mean fields that are specified for each 

type of monomers in every layer between the surfaces. The 𝜒ఈఉ is the Flory-Huggins 

interaction parameter between monomers of types α and β. Similarly, 𝜒ఈ௦ is the Flory-

Huggins interaction parameter between monomers of type α and the surface, which 

indeed describes the adsorption energy when a monomer of type α comes into contact 

with the surface. The number of residues that constitutes polymers of type 𝑖 is denoted 

as 𝑁௜. For a solvent molecule or an ion, 𝑁௜ is taken to be 1 (i.e. a single monomeric 

species with a degree of polymerization of 1). Finally, 𝜓௘௟ሺ𝑟ሻ  represents the 

electrostatic fields across the gap between the two planar surfaces.  

The first two terms in equation (1) account for the entropic contribution to free energy 

of the system, which derives from the number of different possible spatial and 

conformational arrangements of all species (i.e. polymers, ions and solvents) in the 
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system, when a particular set of density profiles 𝜙௜
ఈሺ𝑟ሻ for all the monomer species is 

given (Ettelaie et al., 2014). This entropic term is obtained with the aid of the non-

interacting system introduced (as described previously). 

The last three terms in equation (1) involve the enthalpic contribution to free energy 

that is associated with any given set of density profiles 𝜙௜
ఈሺ𝑟ሻ  for each type of 

monomers (Ettelaie et al., 2014). These are the results of molecular interactions, which 

include the short-ranged interactions that occur only between neighbouring 

monomers, the longer ranged electrostatic interactions between the charged 

monomer species and also the interaction energy due to the adsorption of hydrophobic 

monomers onto the hydrophobic surfaces (Ettelaie et al., 2014, Akinshina et al., 2008, 

Ettelaie et al., 2008).  

The set of mean fields 𝜓ఈሺ𝑟ሻ in equation (1) is expressed as below (Ettelaie et al., 

2008, Ettelaie et al., 2016, Ettelaie et al., 2014),  

𝜓ఈሺ𝑟ሻ ൌ 𝜓௛ሺ𝑟ሻ ൅ ෍ ෍ 𝜒ఈఉቀ𝜙௜
ఉሺ𝑟ሻ െФ௜

ఉቁ
ఉ௜

൅ 𝑞ఈ𝜓௘௟ሺ𝑟ሻ ൅ 𝜒ఈ௦൫𝛿௥,ଵ ൅ 𝛿௥,௅൯     ሺ2ሻ 

where 𝜓௛ሺ𝑟ሻ is the hard core potential, arising from the crowding effect of monomers 

in layer 𝑟. It ensures the incompressibility of the fluid system, assumed in this work 

(Ettelaie et al., 2014, Ettelaie et al., 2008). The other components include all possible 

interactions between different types of monomers and those with the hydrophobic 

surfaces. 

A given set of mean fields 𝜓ఈሺ𝑟ሻ will result in a corresponding set of density profiles 

𝜙௜
ఈሺ𝑟ሻ, which can be calculated with the aid of the segment density function 𝐺௜ሺ𝑟, 𝑠ሻ. 

The quantity 𝐺௜ሺ𝑟, 𝑠ሻ is the probability of finding a fragment of polymer 𝑖 which consists 

of the first 𝑠 monomers of the polymer chain with the 𝑠௧௛ ሺ1 ൑ 𝑠 ൑ 𝑁௜ሻ monomer ending 

in layer 𝑟 ሺ1 ൑ 𝑟 ൑ 𝐿ሻ. The 𝑠 monomers can be chosen from either end of the chain. 

As a result of the connectivity of the polymer, consecutive monomers have to reside 

on adjacent layers or within the same layer. So 𝐺௜ሺ𝑟, 𝑠ሻ is obtained by equation (3) 

below (Akinshina et al., 2008, Ettelaie et al., 2016), 
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𝐺௜ሺ𝑟, 𝑠ሻ ൌ exp ቀെ𝜓௧೔
ഀሺ௦ሻሺ𝑟ሻቁ ሾ𝜆ିଵ𝐺௜ሺ𝑟 െ 1, 𝑠 െ 1ሻ ൅ 𝜆଴𝐺௜ሺ𝑟, 𝑠 െ 1ሻ

൅ 𝜆ଵ𝐺௜ሺ𝑟 ൅ 1, 𝑠 െ 1ሻሿ      ሺ3ሻ 

In the above equation, the function 𝑡௜
ఈሺ𝑠ሻ is defined here to indicate the type to which 

the 𝑠௧௛ monomer of polymer 𝑖  belongs. To simplify the calculations and prevent a 

proliferation of parameters, the twenty or so amino acid residues of proteins will be 

grouped into six different categories, depending on the nature of their side chains 

(Leermakers et al., 1996). The sugar unit that makes up polysaccharides, the solvent 

molecules, the positive and negative ions, as well as other species that may exist in 

the system, are regarded as separate monomeric types, as earlier work (Akinshina et 

al., 2008, Ettelaie et al., 2008). The coefficients 𝜆 in the above equation is related to 

the possible number of positions for the ሺ𝑠 ൅ 1ሻ௧௛ monomer that is connected to the 

𝑠௧௛ monomer residing in layer 𝑟. Based on a cubic lattice model, in the absence of 

interactions between monomers, the values are 𝜆ିଵ ൌ 𝜆ଵ ൌ 1/6  and 𝜆଴ ൌ 4/6 

(Akinshina et al., 2008, Ettelaie et al., 2016), as illustrated in Figure A.1. That is to 

say, there are one possible position in layer (𝑟 ൅ 1) and one in layer (𝑟 െ 1), and a 

further four in layer 𝑟 available to the ሺ𝑠 ൅ 1ሻ௧௛ monomer, so as to ensure it remains 

connected to the 𝑠௧௛ monomer that is already placed in layer 𝑟.  

 

 

Figure A.1 Schematic illustration of possible positions for the ሺ𝒔 ൅ 𝟏ሻ𝒕𝒉 
monomer that is connected to the 𝒔𝒕𝒉 monomer in a cubic lattice model. 
If the  𝒔𝒕𝒉 monomer resides in the middle layer 𝒓 (yellow colour), then the 
ሺ𝒔 ൅ 𝟏ሻ𝒕𝒉 monomer can be placed at any of the four positions in the same 
layer 𝒓, or the one position in layer ሺ𝒓 െ 𝟏ሻ (green colour), or the one 
position in layer ሺ𝒓 ൅ 𝟏ሻ (blue colour). 
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With the use of composition law and equation (3), density profiles 𝜙௜
ఈሺ𝑟ሻ for each 

monomer species α belonging to the polymer 𝑖 , everywhere in the gap, can be 

determined for a set of arbitrarily applied mean fields 𝜓ఈሺ𝑟ሻ by equation (4) below 

(Ettelaie et al., 2016, Ettelaie et al., 2014), 

𝜙௜
ఈሺ𝑟ሻ ൌ

Ф௜
ఈ

𝑁௜
෍

𝐺௜
௙ሺ𝑟, 𝑠ሻ𝐺௜

௕ሺ𝑟, 𝑁௜ െ 𝑠 ൅ 1ሻ

exp ቀെ𝜓௧೔
ഀሺ௦ሻሺ𝑟ሻቁ

ே೔

௦ୀଵ

        ሺ4ሻ 

The suffix ′𝑓′ and ′𝑏′, denote ‘forward’ and ‘backward’ calculation of the segment 

density functions respectively, i.e.  𝐺௜
௙ሺ𝑟, 𝑠ሻ and 𝐺௜

௕ሺ𝑟, 𝑠ሻ, distinguishing the two ends 

of the polymer chain from which the 𝑠 monomers are counted (Ettelaie et al., 2014, 

Akinshina et al., 2008). Obviously for a homopolymer or a symmetrical chain, this 

distinction is not necessary and the segment densities calculated from either end 

would be identical. However, this is often not the case in our study here. For solvent 

molecules and ions, which are considered as single monomers, equation (4) is simply 

reduced to, 

𝜙ఈሺ𝑟ሻ ൌ  Фఈ𝑒𝑥𝑝൫െ𝜓ఈሺ𝑟ሻ൯         ሺ5ሻ 

In order to solve the most probable concentration profiles 𝜙௜
ఈሺ𝑟ሻ of various species in 

the gap between two planar surfaces, the free energy in equation (1) has to be 

minimized, subjected to an additional constraint satisfying the incompressibility of all 

the species in the system (Ettelaie et al., 2014). This constraint means that the sum of 

the volume fractions of all monomer species, for every lattice site in the model system, 

has to add up to one, as shown below in equation (6) , 

෍ ෍ 𝜙௜
ఈሺ𝑟ሻ ൌ ෍ ෍Ф௜

ఈ ൌ 1
ఈ௜ఈ௜

      ሺ6ሻ 

Minimization of free energy, under the above constraint expressed in equation (6), will 

be achieved when the hard core potential 𝜓௛ሺ𝑟ሻ attains the same value for every type 

of monomers in layer (Akinshina et al., 2008, Ettelaie et al., 2008). From a 

mathematical point of view, the hard core potential 𝜓௛ሺ𝑟ሻ is the Lagrange multiplier 

associated with the constraint of incompressibility in equation (6) (Ettelaie et al., 2008).  
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Now it is clearly seen from the above equations that, to obtain the density profiles 

𝜙௜
ఈሺ𝑟ሻ through equation (4), we will have to know the mean fields 𝜓ఈሺ𝑟ሻ. On the other 

hand, the set of fields 𝜓ఈሺ𝑟ሻ  in equation (2) depends on the unknown density 

distributions 𝜙௜
ఈሺ𝑟ሻ of all types of monomers, in turn. To obtain both sets of quantities, 

i.e. fields and density profiles, involves solving a set of non-linear equations in a self-

consistent manner by an iterative process (Akinshina et al., 2008, Ettelaie et al., 2008). 

One normally starts the iteration with a set of initially guessed fields 𝜓ఈሺ𝑟ሻ for each 

type of monomer in every layer. These values are used in equation (4) to obtain a set 

of density profiles 𝜙௜
ఈሺ𝑟ሻ, from which a new set of fields 𝜓ఈሺ𝑟ሻ is calculated using 

equation (2) and compared with the previous set (Ettelaie et al., 2016, Ettelaie et al., 

2014). This process is repeated until the difference of both 𝜙௜
ఈሺ𝑟ሻ and 𝜓ఈሺ𝑟ሻ in two 

consecutive iterations is within a required degree of accuracy. That is to say, 

convergence has been achieved. At this point, the desired equilibrium density profiles 

𝜙௜
ఈሺ𝑟ሻ and the corresponding mean fields 𝜓ఈሺ𝑟ሻ, which minimize the free energy, have 

been determined for the specified separation distance between the two hydrophobic 

surfaces (Ettelaie et al., 2014, Akinshina et al., 2008, Ettelaie et al., 2016).  

Such calculations are done for a series of separations between the two planar 

surfaces. Finally, the interaction potential (per unit area a0
2) between two surfaces 

immersed in a polymer solution, due to the presence of adsorbed polymers, is 

obtained by equation (7) below (Ettelaie et al., 2014),  

𝑉ሺ𝑟ሻ ൌ Δ𝐹ሺ𝑟ሻ െ Δ𝐹ሺ∞ሻ        ሺ7ሻ  

where we take the value of ∆𝐹 when two surfaces are sufficiently apart as ∆𝐹ሺ∞ሻ.  

It is to note that the interaction potentials obtained from equation (7) are indeed the 

interactions between two flat surfaces. These values have to be further manipulated 

using Derjaguin approximation (Hunter, 2001a, Ettelaie et al., 2014), 

𝑉௣௔௥௧௜௖௟௘ሺ𝑟ሻ ൌ െ𝜋𝑅 න 𝑉ሺ𝑟ሻ𝑑𝑟

ஶ

௅

       ሺ8ሻ 

so as to gain the mediated interaction potentials between two spherical colloidal 

particles/droplets of radius 𝑅. 
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The interaction potentials induced as a result of adsorbed polymer layers, obtained 

from equation (8), are then combined with the attractive van der Waals forces, which 

are always present between colloidal particles, irrespective of the behaviors of the 

polymers. The van der Waals interactions are easily calculated with the aid of the 

following equation (Everett, 1988j, McClements, 2015c), 

𝑉௩௔௡ ௗ௘௥ ௐ௔௔௟௦ ൌ െ
𝐴𝑅
12𝑟

            ሺ8ሻ 

which is valid for equal-sized droplets of radius 𝑅, at a separation distance of 𝑟 apart. 

𝐴 in the above equation is the composite Hamaker constant and is taken as 1 kBT, 

typical of edible oils in O/W emulsions (Ettelaie et al., 2014). The value of 𝐴 depends 

on the ease of polarizability of both the material in the droplets and that in the 

dispersion medium (Everett, 1988j, McClements, 2015c).  

Eventually from the above calculations, the total interaction potential between two 

dispersed droplets coated with adsorbed polymers in an aqueous solution, can be 

generated and plotted against the separation distance between the droplets. Such 

graphs provide useful information on the colloidal stabilizing abilities of polymers. 

Moreover, the density profiles of polymers, as well as the average distance of each 

polymer segment can also be determined from these calculations, and are often 

plotted in conjugation with the induced interaction potential profiles, in order to provide 

further data on the structural characteristics of the adsorbed polymers that form the 

interfacial films. 

 

 

 

 

 

 

  



- 168 - 
 

Appendix II 

A list of the abbreviations, full names and structures of the amino acids (Belitz et al., 

2009) and their classification, based on their degree of hydrophobicity, the nature of 

charge and the value of their pKa, is provided in the table below. 

Group Abbreviation Full name Structure 

 

 

 

 

 

 

 

 

1 - Hydrophobic 

Pro Proline 

 

Ile Isoleucine 

 

Met Methionine 

 

Gly Glycine 

 

Leu Leucine 

 

Trp Tryptophan 

 

Val Valine 

 

Phe Phenylalanine 
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Ala Alanine 

 

 

 

 

 

 

2 - Polar non-charged 

Gln Glutamine 

 

Thr Threonine 

 

Asn Asparagine 

 

Tyr Tyrosine 

 

Ser Serine 

 

 

 

3 - Positively charged 

Arg Arginine 

 

Lys Lysine 

 

4 - Histidine His Histidine 
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5 - Negatively charged 

Glu Glutamic acid 

 

Asp Aspartic acid 

 

Cys Cysteine 
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Appendix III 

A standard curve of the absorbance (at 540 nm) against protein content (g/L), 

produced using bovine serum albumin (BSA) as a reference protein, is shown below, 

in order to determine the protein solubility in the tested samples.  
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Appendix IV 

Citric acid monohydrate (C6H8O7 ∙ H2O, 𝑀௪ = 210.14 g/mol) and trisodium citrate 

dihydrate (C6H5O7Na3 ∙2H2O 𝑀௪= 294.12 g/mol) are used to prepare the buffering 

systems at pH 3.0 and 4.5. Recipe for the preparation of 1 L buffer with a low 

background electrolyte concentration of 20 mM is given in the table below (Dawson et 

al., 1986). The appropriate amounts of the two chemicals are respectively weighed 

and dissolved in roughly 400 mL deionised water. The obtained two solutions are 

transferred to a 1 L volumetric flask and made to exactly 1 L with deionised water. The 

buffer should be well mixed before use. 

pH C6H8O7 ∙H2O  (g) C6H5O7Na3 ∙2H2O  (g) 

3.0 3.446 1.059 

4.5 1.870 3.265 

 

Monopotassium phosphate (KH2PO4, 𝑀௪= 136.09 g/mol) and disodium phosphate 

(Na2HPO4, 𝑀௪= 141.98 g/mol) are used to prepare the buffering system at pH 7.5. 

Recipe for the preparation of 1 L buffer with a low background electrolyte concentration 

of 20 mM is given in the table below (Dawson et al., 1986). The appropriate amounts 

of the two chemicals are respectively weighed and dissolved in roughly 400 mL 

deionised water. The obtained two solutions are transferred to a 1 L volumetric flask 

and made to exactly 1 L with deionised water. The buffer should be well mixed before 

use. 

pH KH2PO4  (g) Na2HPO4  (g) 

7.5 0.384 2.388 
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