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Abstract

Computational Biophysics lies at the intersection between biology, physics,
applied mathematics and software engineering. Some of the most burning
questions in molecular biology are concerned with biomechanical systems,
the dynamics of which are driven by chemistry and physics. Unfortunately,
we have extremely limited means to observe these dynamics experiment-
ally. In the past, this problem has been solved with the use of molecular
dynamics, sometimes referred to as a ‘computational microscope’. Studying
biomolecules in silico can provide a wealth of new information at temporal
and spatial resolutions far beyond any current imaging modality. But mo-
lecular dynamics algorithms are limited by current computing power, and
by the assumptions used to construct them.

The kinetochore, a supramolecular structure crucial to the process of
cell division, operates on time and length scales outside the reach of atom-
istic molecular dynamics with current computing power. To overcome this
limitation, we propose a new, coarse-grained algorithm, which allows for a
more computationally inexpensive representation of the biomolecules that
comprise the kinetochore.

This algorithm, KOBRA (KirchOff Biological Rod Algorithm) is de-
signed to perform dynamical simulations of elongated biomolecules such
as those containing alpha-helices and coiled-coils. It represents these as
coarsely-discretised Kirchoff rods, with linear elements that can stretch,
bend and twist independently. These rods can have anisotropic and inhomo-
geneous parameters and bent or twisted equilibrium structures, allowing for
a coarse-grained parameterisation of complex biological structures. Each
element is non-inertial and subject to thermal fluctuations. This coarse-
grained representation allows for simulations of extremely large, long-lived
systems at the biological mesoscale.

KOBRA has been extended with a parameterisation scheme that allows
for rod parameters (in terms of stretching, bending and twisting constants)
to be extracted from all-atom simulation trajectories. An all-atom repres-
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entation of Ndc80C - a sub-unit of the kinetochore - was constructed, and
the KOBRA parameters for the molecule were extracted from its trajectory.

The KOBRA algorithm is validated against both the physics of elastic
rods and the biology of Ndc80C and the kinetochore. A partial kinetochore
system was constructed and simulated using KOBRA and FFEA (Fluctu-
ating Finite Element Analysis). The resulting trajectories were analysed
and used to investigate the microtubule-binding ability of Ndc80C in a
variety of configurations. A C++ implementation of KOBRA is available
under the GNU GPLv3 free software licence, and can be downloaded at
http://ffea.bitbucket.io.

iv

http://ffea.bitbucket.io


Contents

1 Introduction 1
1.1 Study of Hideous and Visceral-Looking Objects . . . . . . . . . . . . . . 2
1.2 What and Why is the Kinetochore? . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Large-scale Structure and Function of the Kinetochore . . . . . . 7
1.2.2 Force Transduction Through the Kinechore in Yeast . . . . . . . 9
1.2.3 Force Transduction Through Human Kinetochores . . . . . . . . 11
1.2.4 Error Correction and the Role of Aurora B Kinase . . . . . . . . 12
1.2.5 Ndc80C Structure and the Loop Region . . . . . . . . . . . . . . 12

1.3 Why Simulating Biomolecules is So Difficult . . . . . . . . . . . . . . . . 13
1.3.1 What Is Atomistic Molecular Dynamics? . . . . . . . . . . . . . . 13
1.3.2 What Are Continuum Models? . . . . . . . . . . . . . . . . . . . 16
1.3.3 In Defence of Abstractions . . . . . . . . . . . . . . . . . . . . . 18
1.3.4 What Are Elastic Rod Models? . . . . . . . . . . . . . . . . . . . 19
1.3.5 Examples of Elastic Rod Models in Biology . . . . . . . . . . . . 20
1.3.6 Macroscopic Elastic Rod Models and Their Applications . . . . . 23

2 KOBRA Algorithm and Validation 26
2.1 Formulation and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Definition of the Elastic Rod Model . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Construction and Notation . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Parallel Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Elastic Energy of Deformation . . . . . . . . . . . . . . . . . . . 33
2.2.4 Dynamical Equations . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.5 Material Axis Update . . . . . . . . . . . . . . . . . . . . . . . . 46

v



CONTENTS

2.3 Algorithm Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.2 Factors Determining Performance . . . . . . . . . . . . . . . . . . 51
2.3.3 Numerical Precision . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.1 Equipartition Theorem . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.2 Comparison with Polymer Chain Models . . . . . . . . . . . . . . 59
2.4.3 Buckling Under Torsional Strain . . . . . . . . . . . . . . . . . . 61

3 Parameterisation of KOBRA Simulations from All-Atom Data 63
3.1 Creation of an All-atom Ndc80C Model . . . . . . . . . . . . . . . . . . 64
3.2 Rod Parameter Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Mapping All-atom Structures Onto Rods . . . . . . . . . . . . . 68
3.2.2 Calculating Rod Parameters . . . . . . . . . . . . . . . . . . . . . 72
3.2.3 Parameterisation Validation . . . . . . . . . . . . . . . . . . . . . 75

3.3 All-atom Parameterisation Results . . . . . . . . . . . . . . . . . . . . . 81
3.4 Comparison of KOBRA Dynamics With Atomistic Molecular Dynamics

and Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.4.1 Comparison of Molecular Kink Angles . . . . . . . . . . . . . . . 83
3.4.2 Comparison of Principle Components . . . . . . . . . . . . . . . 87
3.4.3 Range of Motion of the Hinge . . . . . . . . . . . . . . . . . . . . 91

4 Connecting Rods to Tetrahedra and Kinetochore-MT Binding 94
4.1 Exchange of Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.1 Attachment Node . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.2 Attachment Element . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1.3 Attachment Material Axis . . . . . . . . . . . . . . . . . . . . . . 100
4.1.4 Attachment Energy . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.1.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Simulations of Larger MT-Kinetochore Systems . . . . . . . . . . . . . . 105
4.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2.2 Parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.3 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vi



CONTENTS

5 Conclusion and Future Work 121
5.1 Summary of Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 Rod-rod Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3 Rod-blob Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4 Other Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A FFEA Method Validation 131

B Automated Tests 136
B.1 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.2 Integration Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.2.1 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
B.2.2 Connection propagation . . . . . . . . . . . . . . . . . . . . . . . 142

C KOBRA Code Style 144

D Roadmap for the KOBRA Code 147
D.1 Python 2 to 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
D.2 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
D.3 Selecting Optimal Parallelisation . . . . . . . . . . . . . . . . . . . . . . 151
D.4 FFEA Collision Detection Data Structures . . . . . . . . . . . . . . . . . 152
D.5 Structure Alignment Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 152
D.6 Structure of ffeatools and Python Scripts . . . . . . . . . . . . . . . . . 153
D.7 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 154
D.8 Caching of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

E Simulation Parameters 156

F Walrus 161

References 163

vii



List of Figures

1.1 Images of cell division taken using indirect immunofluorescence. Kin-
etochores are stained in pink, microtubules in red, Aurora B kinase in
green, and DNA in blue [3]. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Low-resolution structure of myoglobin as known in 1958. Polypeptide
chains in white, haem group in grey, heavy atoms in black [4]. . . . . . . 3

1.3 Structure of the kinetochore [5]. DAM1 is in green, Ndc80C is in purple,
the microtubule is in grey. The structures of the DAM1 subunits are
taken from cryo-EM, and the globular domains of Ndc80C are from X-
ray diffraction. The rest is hypothesized. . . . . . . . . . . . . . . . . . . 4

1.4 Sample molecular dynamics system from the AMBER MD website. Atoms
and bonds are represented as cylinders. An abstract representation of
the protein secondary structure and electron density profile are overlaid. 6

1.5 Schematic diagram of the kinetochore based on negative stain EM and
ET studies. To give an idea of the scale, the Ndc80 protein complex is
around 60nm long [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Transition of the kinetochore from side-on to end-on attachment [7]. . . 9
1.7 Force generation from depolymerising microtubule [8]. The outward

bending of the microtubule forces the DAM1 ring away from the de-
polymerising end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Mechanical model of proposed kinetochore-MT attachments. Tubulin
and kinetochore fibrils are represented by networks of connected springs
[9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

viii



LIST OF FIGURES

1.9 Mockup of Ndc80C showing the four chains (Nuf2, Ndc80, Spc25 and
Spc24) and their secondary structure [10]. The entire molecule is ap-
proximately 60nm in length. . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.10 Top: All-atom protein representation vs Levitt-Warshel discrete coarse-
grained representation, bottom: energy landscape associated with those
potentials [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.11 Cumulative (left) and per-year (right) submissions to the EMDB since
2002 [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.12 FFEA’s coarse-grained tetrahedral representation of a biomolecule. Left:
all-atom apo-GRoEL with cartoon representation. Right: tetrahedral
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1.1 Study of Hideous and Visceral-Looking Objects

1.1 Study of Hideous and Visceral-Looking Objects

The kinetochore is a supramolecular structure that attaches the chromosomes, contain-
ing DNA, to the microtubules of the mitotic spindle. During cell division, the mitotic
spindle draws the newly-duplicated genetic material from the centre of the original cell
into the two daughter cells. The kinetochore’s role is therefore to transfer the force
from the spindle microtubules to the chromosomes [22].

Figure 1.1: Images of cell division taken using indirect immunofluorescence. Kineto-
chores are stained in pink, microtubules in red, Aurora B kinase in green, and DNA in
blue [3].

The first references [23] to the kinetochore in the literature date from the early
20th century. Most papers from this time aren’t concerned with structure or function,
instead they argue the validity of the term ‘kinetochore’ itself [24]. At this time, ‘kineto-
chore’ was a word describing a hypothetical object that went between the centromere
and the mitotic spindle, although not everyone agreed that it should be considered a
standalone molecule, instead considering it an extension of the centromere. The kin-
etochore existed in diagrams as the Platonic ideal of all biological molecules: a circle.
Only recently has it been given a structure at all, and yet the structure ultimately
poses more questions than it answers.
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1.1 Study of Hideous and Visceral-Looking Objects

Figure 1.2: Low-resolution structure of myoglobin as known in 1958. Polypeptide chains
in white, haem group in grey, heavy atoms in black [4].

When X-ray crystallography pioneer Max Perutz first saw the structure of myo-
globin (Figure 1.2), he famously remarked “Could the search for ultimate truth really
have revealed so hideous and visceral-looking an object?” [25]. The biological com-
munity believed that once they had resolved the structure, all the secrets and intricacies
of nature would be revealed to them — but none were. Instead, they found themselves
staring into an abyss. For molecular biology, no end was in sight. But whether that’s
a good thing or a bad thing is really a matter of personal preference. Perutz himself
eventually came to see the strange beauty of myoglobin.

The kinetochore seems doomed to the same fate. For a molecule that is seemingly
responsible only for attaching two things together, it’s huge — likely in the millions of
atoms — and is made up of an array of interconnected protein complexes, arranged in a
cylinder, with large globular domains connected to spindly coiled-coils [5]. Its structure
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1.1 Study of Hideous and Visceral-Looking Objects

Figure 1.3: Structure of the kinetochore [5]. DAM1 is in green, Ndc80C is in purple,
the microtubule is in grey. The structures of the DAM1 subunits are taken from cryo-
EM, and the globular domains of Ndc80C are from X-ray diffraction. The rest is
hypothesized.

only tells us the extent of what we do not know.

Our understanding of the kinetochore is also hampered by our inability to image it
properly. Diagrams such as Figure 1.1 use images from fluorescence microscopy, and
the kinetochore is represented, once again, as a dot. Figure 1.3 gives the impression of
a structure resolved by cryogenic electron microscopy (Cryo-EM), but while the struc-
tures of the various subunits are indeed derived from cryo-EM, this image is actually a
composite of many smaller protein complexes, fit to a much lower-resolution electron
tomography structure. It’s a painstakingly-constructed kinetochore diorama, an ideal
of the kinetochore which is clean and orderly and logical. The kinetochore cannot be
imaged in the same way that myoglobin was. X-ray crystallography requires the target
molecule to be crystallizable, but even the subunits of the kinetochore, such as the
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1.1 Study of Hideous and Visceral-Looking Objects

Ndc80 protein complex, do not have resolved crystal structures. Ndc80C may never
have a resolved crystal structure, as it’s too flexible. Electron microscopy — mostly
negative-stain and cryo-EM — fares better [26] [27], but has its own limitations, and
introduces its own artefacts.

Yet even a fully-resolved kinetochore structure would not tell the whole story. Be-
fore the invention of the video camera, horses in paintings looked wrong. They were
commonly painted in a pose called the ‘flying gallop’, with all four legs outstretched at
once. The structure of the horse was well-understood, but its dynamics were a mys-
tery. Horse dynamics were only imaged properly in 1878 by Eadweard Muybridge, who
took photographs of a galloping horse named Sallie Gardner and sequenced them in
chronological order.

Any form of imaging, be it biomolecular or equine, is limited to producing snapshots
of singular moments in time, under certain conditions which make the subjects easy
to image. We cannot understand the dynamics of biomolecules from imaging alone,
and yet, we cannot simply take more pictures, as Muybridge did. Although statist-
ical methods, from Bayesian methods to machine learning, can be a powerful tool for
finding correlations, they cannot provide us with an understanding of the underlying
systems [28].
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Figure 1.4: Sample molecular dynamics system from the AMBER MD website. Atoms
and bonds are represented as cylinders. An abstract representation of the protein
secondary structure and electron density profile are overlaid.

With the careful application of some physics, we can generate dynamics from static
structural data using computer simulations. Molecular dynamics (MD) (Figure 1.4),
and biological simulations in general, are sometimes referred to as a ‘computational
microscope’ [29], because they allow us to see dynamics that we cannot image. These
simulations can provide a wealth of new information, and their use in molecular biology
has become ubiquitous.

But most of our current biomolecular simulation algorithms were, and still are,
designed for small, single-protein systems on nanosecond to microsecond timescales.
Supramolecular structures such as the kinetochore are many orders of magnitude lar-
ger and longer-lived, far out of the reach of our current computing power. Furthermore,
decomposing the problem can only take us so far. These systems, composed of many
interacting proteins and protein complexes, have emergent properties that cannot be
understood by simulating their constituent parts in isolation [30].

The development of new simulation tools and new mathematical abstractions is
essential to understanding and solving the current problems in molecular biology [31].
This work will cover one approach to one aspect of this problem: the modelling of
slender biological objects - such as Ndc80C - using elastic rods. In this section, we
will discuss the biology of the kinetochore, the limitations of molecular dynamics, the
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current state of elastic rod models and their suitability to biological systems.

1.2 What and Why is the Kinetochore?

1.2.1 Large-scale Structure and Function of the Kinetochore

When eukaryotic cells undergo mitosis (Figure 1.1), the DNA in the cell nucleus rep-
licates - it splits into two identical copies. Pairs of sister chromatids line up, facing
opposite directions, and attach to the microtubules of the mitotic spindle, which draw
them from the nucleus of the original cell into the nuclei of the two daughter cells. The
process which allows the DNA to separate into two separate copies, and ensures that
each daughter cell gets a complete copy of the DNA, is called chromosome segregation.
Correct chromosome segregation is crucial to maintaining genomic integrity [32] and
thus preventing improper cell division.
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Microtubule

Depolymerising 

tubulin strands

NDC80 protein 

complex

Inner 

kinetochore

Chromosome

DAM1 

ring

Figure 1.5: Schematic diagram of the kinetochore based on negative stain EM and ET
studies. To give an idea of the scale, the Ndc80 protein complex is around 60nm long
[6].

The kinetochore’s role in this process is to transmit forces between the chromosomes
and the microtubules. It is a supramolecular structure formed of three large protein
complexes [5] (Figure 1.5). The inner kinetochore attaches to the chromosomes. A
concentric ring of long, thin Ndc80 complexes (around 6) attach the inner kinetochore
to the DAM1 complex [22]. DAM1 (also called DASH1) is a donut-shaped protein
complex which encircles the microtubule [33] [34] [6]. Sections 1.2.2 through 1.2.5 will
describe how the kinetochore might attach to the microtubules (which will be studied
more closely in chapter 4), how this attachment is regulated, and the role played by
the Ndc80C complex in this attachment (which will be studied more closely in chapter
3).
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1.2.2 Force Transduction Through the Kinechore in Yeast

The kinetochore is attached to the spindle microtubules in two distinct phases: side-on
and end-on. In side-on attachment, the slender Ndc80 protein complex (Ndc80C) binds
to the MT surface laterally. Its motion is thought to be assisted by the kinesin-like
KAR3, which moves toward the poles during anaphase [35], while the two daughter
cells are beginning to take form (see Figure 1.3). At the same time, the microtubule is
depolymerising. Live-cell imaging and mutant studies suggest that if the kinetochore
cannot move faster than the microtubule depolymerises, it switches to ‘end-on’ attach-
ment [7] (Figure 1.6).
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Figure 4 The Dam1 C-terminus helps Stu2 to rescue an MT. (a) Diagrams
illustrating three events following lateral KT–MT attachment: end-on
attachment, MT rescue at the KT and MT rescue distal to the KT. Relevant
mechanisms are shown in pale blue4,30. (b–d) The Dam1 C-terminus assists
Stu2 in rescuing an MT after Stu2 is transported from a KT along the
MT to the MT plus end, during the lateral KT–MT interaction. DAM1+

(T9229) and dam1–TEVsites PGAL–TEV (producing Dam11Cclv; T9166)
cells with PGAL–CEN3–tetOs TetR–3×CFP STU2–4×mCherry GFP–TUB1
PMET3–CDC20 were treated as in Fig. 2b–h. Images were acquired every
7 s. (b) Percentage of Stu2 transport events along an MT, leading, or not
leading, to MT rescue; n=25 and 37 Stu2 transport events were analysed
for T9229 and T9166, respectively. WT, wild type. (c,d) Representative
examples of Stu2 transport along an MT, leading (c) or not leading (d)

to MT rescue. In b, experiments were carried out twice (statistics source
data are shown in Supplementary Table 2), a representative experiment
is shown here, and the P value (two tailed) was obtained by Fisher’s
exact test. (e) Diagram illustrating the roles of the Ndc80 N-tail and the
Dam1 C-terminus, in the conversion to end-on attachment and in MT
rescue. The diagram explains the results in Figs 3 and 4, as follows: with
Ndc801N, the end-on conversion is not initiated efficiently, explaining
frequent MT rescue; with Dam11Cclv, the end-on conversion is initiated
but not completed efficiently, that is, end-on pulling often fails, accounting
for the end-on standstill; with Ndc801N plus Dam11Cclv, the end-on
conversion is not initiated efficiently and MT rescue often fails, that is, all
subsequent steps are often blocked, leading to frequent KT detachment from
the MT end.
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Figure 1.6: Transition of the kinetochore from side-on to end-on attachment [7].

Over the years, many models have been proposed to explain how kinetochores can
form stable end-on attachments with depolymerising microtubules. An early explana-
tion was the sleeve model, which suggested that the MT and Ndc80C are held together
by an external force of unknown origin [36]. The binding model suggests that there is a
binding interaction between DAM1 and the MT that keeps it attached [37]. Perhaps the
most compelling is the curling model. The tubulin fibres that make up the microtubule
are intrinsically bent outward. FRET studies and negative stain EM have shown that,
as it depolymerises, DAM1 and its cargo are forced up the microtubule (Figure 1.7)
at ‘the speed of depolymerisation’ [22] [8]. Hybrid models have also been proposed [38].
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Figure 1.7: Force generation from depolymerising microtubule [8]. The outward bend-
ing of the microtubule forces the DAM1 ring away from the depolymerising end.

The precise nature of the interaction between Ndc80C and DAM1 is not well-
understood. Ndc80C binds DAM1 at the CH domain — without the CH domain,
binding is inhibited. Truncation of the N-terminal domain in Ndc80C is lethal to the
cell [39]. There is also some evidence, via negative stain EM, that Ndc80C can bind to
two DAM1 rings simultaneously on the same microtubule [40].
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1.2.3 Force Transduction Through Human Kinetochores

Figure 1.8: Mechanical model of proposed kinetochore-MT attachments. Tubulin and
kinetochore fibrils are represented by networks of connected springs [9].

The DAM1 complex is not conserved in humans from budding yeast [41], and end-on
attachment in humans may be achieved by the curled microtubules interlocking with
multiple Ndc80Cs (Figure 1.8). Ndc80C binds directly to microtubules in both their
uncurled and curled states [42], though it binds preferentially to uncurled microtubules
[43]. Simulations suggest that the interaction of Ndc80C with the curled microtubules
may be a catch-bond. Catch-bonds have unusual mechanical properties — they are
strengthened by the application of force, not weakened, like most bonds [44]. As more
force is applied, the tubulin and Ndc80Cs are pulled taught, and the bond becomes
more stable. In the absence of external forces, the microtubules and kinetochore fibres
can disentangle via thermal noise [9].
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1.2.4 Error Correction and the Role of Aurora B Kinase

Bi-orientation is the process which ensures that chromosomes line up opposite to each
other, and that pairs of duplicate chromosome are drawn into opposite cells. Through
mechanical studies, mutation studies and EM imaging, we know that kinetochore bi-
orientation is a dynamically regulated process. During bi-orientation, kinetochores are
continually attaching to microtubules, and are detached if the interaction is unstable
or the attachment is aberrant [7] [45]. This error-correction process is stabilised by
tension, which is only present if two kinetochores have successfully bound to opposite
chromosomes.

Two mechanisms have been proposed to explain this stabilisation by tension. In
the catch-bond mechanism, the application of tensile force changes the conformation of
the kinetochore, and the new kinetochore conformation results in a more stable attach-
ment [46]. In the spatial separation mechanism, the force delocalizes Aurora B kinase
from the outer kinetochore, and Aurora B dephosphorylates the tails of Ndc80C and
Dam1 [47], resulting in a more stable attachment [48] [49]. These mechanisms are not
mutually exclusive, they could both play a role in the error-correction process.

1.2.5 Ndc80C Structure and the Loop Region

Figure 1.9: Mockup of Ndc80C showing the four chains (Nuf2, Ndc80, Spc25 and
Spc24) and their secondary structure [10]. The entire molecule is approximately 60nm
in length.

Ndc80C (Figure 1.9) is a long, slender protein complex at the centre of the kinetochore’s
structure and functions. Most of the structure is made up of a long coiled-coil, a struc-
tural motif comprising of two α-helical chains coiling around one another. At each end
is a small globular domain, and at the coiled-coil’s centre is a short, unstructured loop
(see Figure 3.2). This loop is a protein-protein interaction motif [50], and EM imaging
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suggests that it acts as a molecular hinge, greatly increasing the flexibility of Ndc80C
[18]. When Ndc80C bends, the loop straightens out, so Ndc80C can explore highly
kinked conformations without stretching bonds. This tightly folded conformation is
necessary for Ndc80C’s role in the spindle checkpoint process, and mutations in this
loop impede the ability of other proteins such as ipl1 and aurora B to disrupt aberrant
attachments [51]. In addition, single molecule FRET analysis suggests that the highly
bent conformations the loop allows access to can regulate Ndc80C’s affinity to bind to
microtubules [10].

Ndc80C is also involved in the spindle assembly checkpoint [52], a mechanism which
ensures that the chromosomes have segregated correctly [53]. The correct functioning
of the spindle assembly checkpoint is regulated by a combination of the proteins in-
volved and the mechanical forces acting upon them [32].

Although end-on attachments are prohibited in mutants which lack the loop, lateral
attachments are still possible. The loop may not be necessary for end-on attachment
itself, but instead in the transition between the two states, which is less well-understood
[54].

1.3 Why Simulating Biomolecules is So Difficult

1.3.1 What Is Atomistic Molecular Dynamics?

All organisms are highly sophisticated atom wigglers [55]. The forces that proteins
experience from thermal noise cause them to fold themselves into different configura-
tions (also called ‘conformations’), move between conformations, and interact with one
another. Molecular dynamics algorithms apply physics to protein structures in order to
make these interatomic interactions occur. Atoms can interact via the Pauli exclusion
principle, van der Waals forces, torsion angles, bond length, and sometimes hydro-
phobicity. In atomistic molecular dynamics, these interactions are typically combined
into a classical force field, which describes how every atom in a given system interacts
with every other atom,
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where r are bond lengths, θ are bond (bending) angles, φ are bond torsion angles,
Vimp represents the energy contributions due to improper dihedrals, ρ is the minimum
of the Lennard-Jones potential, qi and qj are charges, and rij is the interatomic radius.

This energy equation is used to calculate the forces acting on atoms, which are
in turn used to resolve the dynamics of those atoms [56]. The dynamical equations
are found using the Euler method, a simple, first-order numerical integration scheme
for finding the solutions to these equations at a set of equally-spaced points in time
(timesteps).

Successive generations of molecular dynamics algorithms have benefited greatly
from Moore’s law. The first ever molecular dynamics simulations were performed by
Fermi, Pasta, Ulam and Tsingou on the vacuum tubes of the MANIAC I computer [57]
in 1955. The first molecular dynamics simulation of a protein dates from 1975 [58] - a
short simulation of a simplified bovine pancreatic trypsin inhibitor (PTI). Current force
fields and implementations of atomistic molecular dynamics algorithms for biological
systems, such as GROMACS [59], AMBER [60] and CHARMM [61], were developed in
the 1990s. They targeted systems similar in size to PTI — small, singular proteins, nor-
mally of order hundreds to thousands of atoms in size, with femtosecond-scale timesteps.

These algorithms have spent decades comfortably producing a prodigious volume
of information about biomolecules with structures resolved by X-ray diffraction. But
there is an increasingly large category of problems that atomistic molecular dynamics
cannot solve — systems at the molecular mesoscale, comprised of tens or hundreds
of proteins, with dynamics that are very long-lived. Molecular dynamics algorithms
weren’t designed to scale to multi-million atom systems, or millisecond-plus timescales,
let alone both.
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Figure 1.10: Top: All-atom protein representation vs Levitt-Warshel discrete coarse-
grained representation, bottom: energy landscape associated with those potentials [11].

The most common solution to this problem has, in the past, been ‘coarse-grained’
molecular dynamics (Figure 1.10), which combines groups of atoms into a larger, com-
pound objects. Examples of such systems include MARTINI [62], UNRES [63] and
CABS [64]. At larger length scales, LAMMPS [65] is commonly used instead. These
systems, however, have both philosophical and practical limitations. On a practical
level, these systems increase the size of discontinuities in systems which are large enough
to be approaching continua. On a more philosophical level, some of these tools are de-
signed such that, eventually, atomistic resolution can be recovered. Is that really a
truly ‘multiscale’ simulation?
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1.3 Why Simulating Biomolecules is So Difficult

It’s also more difficult to generate crystal structures of large, flexible, slender objects.
Many components of the Kinetochore, including Ndc80C, do not have fully resolved
structures at atomistic resolution. As the time and length scales of current biological
problems have increased, biologists and biophysicists have turned, increasingly, to elec-
tron microscopy — in particular, cryogenic electron microscopy (cryo-EM). Cryo-EM
is a technique that can probe the structures of molecules flash-frozen with liquid ethane
or propane. It has allowed for the resolution of almost 10,000 new macromolecules [66],
and submissions to the Electron Microscopy Data Bank are still increasing, year-on-
year (Figure 1.11).
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Figure 1.11: Cumulative (left) and per-year (right) submissions to the EMDB since
2002 [12].

1.3.2 What Are Continuum Models?

The proliferation of EM data presents a challenge for atomistic MD. Structures resolved
by cryo-EM do not have atomistic resolution. They are intrinsically continuum objects,
electron density maps — probability distributions, indicating where electrons are most
likely to be found. There is no way to use cryo-EM data with an all-atom simulation
algorithm. This has given rise to the practice of cryo-EM fitting [67] [68] [69], fitting
atoms into cryo-EM structures so that they can be used in atomistic MD simulations.
But what if atomistic MD wasn’t an inevitability? What if we don’t need atoms at all?
At some point, the distance between atoms, relative to the total size of the system, will
become very small, and the system will begin to behave less like a group of discrete
atoms and more like a continuum. Using a more abstract representation of the struc-
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ture could reduce the computational cost of the simulation, and allow for trajectories
of larger objects on longer timescales.

Figure 1.12: FFEA’s coarse-grained tetrahedral representation of a biomolecule. Left:
all-atom apo-GRoEL with cartoon representation. Right: tetrahedral mesh coarse-
grained at 8Å resolution.

Fluctuating Finite Element Analysis (FFEA) [1] is one attempt at solving this
problem. While tools such as LAMMPS represent biological systems as coarse-grained
particles, FFEA represents them as viscoelastic (Kelvin-Voigt) continuum objects which
are subject to stochastic thermal fluctuations in accordance with the fluctuation-dissipation
theorem [70]. These objects are tetrahedral meshes, with each tetrahedron representing
many atoms (Figure 1.12). Tetrahedral meshes can be generated both from atomistic
structures, and directly from cryo-EM surface profiles.

The FFEA method can best be explained in reference to Cauchy’s momentum
equation,

ρ
Duuu

dt
= ∇ · (σσσν + σσσe + πππ) + fff. (1.2)

Here, ρ is the density, and Duuu/Dt is the material derivative of the velocity with respect
to time. The behaviour of FFEA objects is described by stresses resulting from the
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terms on the right-hand side of the equation: σσσν is the stress resulting from the internal
viscosity of the material, σσσe is the elastic stress, πππ is the stress resulting from stochastic
thermal noise. Finally, fff describes any external force, which can include external vis-
cosity, or short-range interactions such as a Lennard-Jones potential or steric repulsion.

This approach has allowed for long-lived simulations of large, complex systems,
such as cytoplasmic dynein [71], myosin-VII [72], rotary ATPase [73] and antibody
proteins [74]. However, three-dimensional continuum methods have distinct limitations
in dealing with long, thin objects, such as coiled-coils and stable alpha-helices. In these
algorithms, the numerical instability is largest in the axis that is smallest — the cross-
section of the coiled-coil. This instability is compounded by the addition of thermal
fluctuations, which become larger as the axis gets smaller. Therefore, an alternative
way to represent long thin structures is needed. This need not be a finite element
method — however, it should constitute a coarse-grained, abstract representation of
the system, incorporating a ‘top-down’ parameterisation, as the FFEA algorithm does.

1.3.3 In Defence of Abstractions

The FFEA coarse-graining method makes some people justifiably sceptical. In biolo-
gical systems, tiny changes to atoms or groups of atoms are magnified into enormous
changes in protein dynamics and the functioning of molecular processes. For example,
the phosphorylation of Aurora B (section 1.2.4) — a change affecting no more than
a handful of atoms — completely alters the dynamics of the kinetochore during bi-
orientation [48] [49]. This in turn is crucial to the process of bi-orientation, which is
needed to ensure genomic integrity and correct cell division [32]. Small changes like
this are called ‘post-translational modifications’ and they form the foundation of many
biological processes. It might, therefore, be reasonable to ask: how could a coarse-
grained scheme such as FFEA, or an elastic rod model, possibly capture the kind of
information necessary to make all of this work?

The answer is to know what information is important and what information can be
discarded, and build a model that allows the important information to persist across
length scales. The FFEA algorithm uses, as parameters, data describing conformational
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changes, the locations of binding sites, and the kinds of potentials they experience [1].
The FFEA representation of conformational changes is an abstraction, but a necessary
one. These kinds of trade-offs are not unique to coarse-graining, they are prevalent at
every length-scale, including all-atom molecular dynamics, itself an approximation of
quantum mechanics.

This extreme sensitivity of biological systems to small changes is also true of
Ndc80C. In chapter 3 of this thesis, we will discuss the parameterisation of the elastic
rod model from all-atom simulations. We can make the correct abstractions, as long as
we carefully consider all assumptions when building the model, and seek to understand
the physics and the biology that drives the behaviours of the systems that we wish to
simulate.

1.3.4 What Are Elastic Rod Models?

For the purposes of this work, a rod will be defined as an object in 3-d space with a
one-dimensional topology, whose radius is much smaller than its length. Mathematical
representations of these objects were first fully described by Leonhard Euler, advancing
on the work of James Bernoulli, in his elastica theory, in 1744 [75]1. The elastica the-
ory is, in many ways, an advancement on older theories such as Euler-Bernoulli beam
theory. Elastica theory generates exact solutions for minimizing the curvature (and
hence, the elastic energy) of three-dimensional curves. This model does not allow for
twisting or stretching, and the number of analytical solutions is limited.

Euler and Bernoulli’s ideas were advanced in 1859 by Kirchoff [76]. Kirchoff’s the-
ory of finite displacement was, in many ways, ahead of its time, developed without
modern mathematical theories of elasticity. Unlike Euler’s, this model assigns elastic
energy to a curve based on strain, rather than curvature. Additionally, Kirchoff rods
have cross-sections that can twist independently of one another, increasing the number
of degrees of freedom to two.2

1This makes the study of elastic rods older than the spinning jenny.
2Although many current interpretations rest on the assumption that these infinitesimally thin cross

sections are perpendicular to the axis of the rod, and stresses are not conducted through them, Kirchoff’s
original paper only states that the deformations themselves have to be small [77].
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The most fully-formed conception of the elastic rod would be developed in 1909 by
the Cosserat brothers, who generalized many of Kirchoff, Euler and Bernoulli’s ideas
to shells, and derived energies for rods from constitutive laws for stress and strain. Not
only was the Cosserat theory able to make use of these ideas from continuum mechan-
ics, it also benefited greatly from the works of Frenet [78] and Serret [79] on adapted,
framed curves. This notion of framed curves allows for an elegant description of the
local deformation of the rod, which will be discussed more in section 2.1. It should
be noted that these rod theories were not created in a vacuum, and nor did the next
theory directly supplant the previous one. Many aspects of Cosserat rod theory, par-
ticularly framed curves, made their way into Kirchoff rod theory, and both approaches
are widely used today. Section 1.3.5 will discuss these approaches in more detail.

1.3.5 Examples of Elastic Rod Models in Biology

Existing rod models can be broken into three main categories; microscopic models for
coiled-coils, microscopic models for DNA, and macroscopic models of rod-like systems
such as ropes, hair and cords. Each of these approaches has its own strengths, weak-
nesses and assumptions. Coiled-coil and DNA models are not necessarily looking at
the same kinds of forces and dynamics that we are interested in, so we will undertake
a broader view, and examine general-purpose rod models as well.

Coiled-coils

Dynamic coiled-coil elastic rod models are not prolific in the literature. Most of the sys-
tems being studied are of time and length scales such that all-atom molecular dynamics
is more appropriate. Additionally, in molecules such as Ndc80C, more importance is
placed on binding and biochemical interactions than biophysical ones. Therefore, the
role of the elastic rod model in this scenario is more of a supplementary one.

Linka et al. [80] use a Cosserat representation to create a constitutive damage
model for double and triple-helical collagen fibrils. A triple-helical coiled-coil model
is developed, and used to examine collagen fibrils as they ravel and unravel due to
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external stretch forces. This model does not offer a dynamic simulation, but rather a
prediction of these stress/strain relationships and their implications on damage to the
collagen.

Figure 1.13: Interface curves predicted for rods with hydrophobic strips as in [13].
Hydrophobic strip shown in blue.

Similarly, Neukrich et al. [13] propose a model that predicts the structure of coiled-
coils based on self-contact between the two strands at the interface curve. This model
features isotropic and homogeneous bending and twisting, but also offers analytical solu-
tions for the physical parameters of the coil (such as radius and pitch) (Figure 1.13).
Wang et al. [81] use Cosserat rods to predict the relationship in coiled-coils between
strain and chirality, and profile the stretch-twist and bend-shear coupling deformations.

Prior et al. [82], although focusing on helical birods and not specifically coiled-coils,
develop a Kirchoff rod model with a similar purpose in mind - finding the bending and
torsional response of helical birods from the bending and torsional responses of the
constituent rods.
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DNA models

DNA rod models have many similarities with coiled-coil models. DNA can also be
described by bending, twisting and stretching stiffnesses, although these are normally
considered homogeneous. However, DNA models are complicated by circularisation,
major and minor grooves, and supercoiling.

Swigon et al. [83] use an elastic rod model to predict the structure and DNA-
histone binding energies of DNA minicircles, while Smith et al. [84] use Cosserat rods
to predict the onset of supercoiling with applied tension. Yang et al. [85] apply finite
element analysis to resolve the equilibrium configurations of rods for DNA supercoiling.

Diverging from the realm of structure prediction, Purohit et al. [86] use elastic rod
models in order to predict the formation of plectonemes in twisted, fluctuating DNA,
due to torsional buckling. However, rather than using explicit dynamics, this model
instead opts for an implicit representation of thermal fluctuations, based on the average
energy imparted to the DNA double-helix by thermal noise.

Goyal et al. [87] formulate a DNA model that includes inhomogeneous, anisotropic
Kirchoff rods, with a finite difference solution. They also introduce chirality, which
couples the tension and torsion of the rod together. This model requires fixed bound-
ary conditions, so although dynamical simulations are performed, these aren’t subject
to thermal noise, instead they study the response of clamped rods to compression and
twisting, particularly the formation of loops (‘hockles’) and other dynamic instabilities.

Skoruppa et al. [88] study the effect of groove asymmetry on DNA. This model
is effectively a twistable worm-like chain, featuring twisting, bending and twist-bend
coupling. Skoruppa et al. investigate the effect of this coupling on DNA with both
symmetric and asymmetric grooves. Not only is this the one of the rare biological
models with explicit dynamics, it contains a relatively in-depth look into parameter
extraction, a topic which will be the focus of chapter 3.
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1.3.6 Macroscopic Elastic Rod Models and Their Applications

Macroscopic rods are also used to represent ropes, cables and hair. They encompass
a broad range of disciplines, from the study of knots, to engineering, to visual effects.
These models do not contain thermal noise, are typically more focused on dynamics
than structure prediction, and utilize second-order equations of motion for single rods,
rather than explicit coiled-coils.

Dynamic elastic rod models became viable as computer models in the 1990s, with
an early example being Goldstein et al. [89], who developed a model for the folding
dynamics of stiff polymers. They found new and elegant applications for framed curves
in the development of a dynamical model which closely resembles a highly developed
version of Euler’s elastica. The use of the twist-free Bishop frame simplifies the calcu-
lation of the dynamics and energies.

Pai et al. [90] developed STRANDS as a computationally-inexpensive elastic rod
model for use in surgical simulations. STRANDS is a Cosserat rod model designed to
run in real-time on a modest computer. It accomplishes this by reducing the elastic
rod dynamics to a boundary value ODE, but unfortunately, this only works for a rod
which has a fixed position at one end and a known stress at the other.
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Figure 1.14: Choe et al.’s model [14] features a series of rigid bodies connected by joints
that stretch and bend with harmonic potentials.

Simulations of elastic rods are common in Visual effects (VFX), as they can be used
to create procedural animations for use in movies and TV. These models offer many
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interesting and novel solutions to traditional rod problems. For example, Choe et al.
[14] (Figure 1.14) present a model primarily developed for hair and foliage, a hybrid
of rigid body systems and elastic rod models. This is also one of the few elastic rod
models with an explicit radius. Another VFX model, Hadap et al. [91], models rods as
‘strands’, chains of rigid segments connected by spherical joints. Unlike Choe’s model,
this one includes a reduced co-ordinate formulation and implicit integration scheme,
making it fast for stiff elements with large timesteps. Like many VFX models, however,
it is more tuned for visual quality and speed than for physical accuracy.

Recently, a number of elastic rod algorithms have been developed which are general-
purpose, feature-rich, and still fast enough to run for the timescales required by the
dynamics of the Kinetochore.

CoRdE [92] is a dynamic Cosserat rod simulation employing a discretisation based
on finite element methods and Lagrange equations of motion. It supports bending and
twisting of the rod, but it is assumed to be inextensible, although few assumptions are
made on that basis. The rod is represented as a series of linear nodes and elements,
where the element’s rotation is described by a quaternion attached at the midpoint of
the centreline. The dynamics use a second-order Lagrangian equation of motion which
captures both internal friction and external viscosity, solved implicitly.

Theeten et al. [15] propose a spline-based representation of the centreline, including
Kirchoff-derived stretching, bending and twisting energies, with both reversible and ir-
reversible deformations. Unlike other models, the curve is considered to be intrinsically
continuous, and the dynamics are calculated based on the energies associated with ele-
ments sampled from the spline at fixed intervals. This results in an interesting hybrid
of first and second-order rod elements (Figure 1.15).

Finally, perhaps most straightforward comes from Bergou et al. [93]. They define
a Kirchoff elastic rod model featuring bending and twisting energies, with the capacity
for intrinsic bending and twisting, and a fixed element length, enforced by a con-
straint but not assumed. A second order Newtonian equation of motion is used, with
Euler-integrated timesteps. The rod is constructed out of linear nodes and elements,
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Figure 1.15: Spline-based representation of elastic rod under strain using Theeten et
al.’s model [15]. Left-to-right: rest, stretching, twisting, bending.

represented by both the Frenet-Serret and Bishop frames, with the former being used
to represent the twisting of the rod, and the latter being a twist-free representation.
This model permits both anisotropy and inhomogeneity in the material parameters,
although bending about a single node is not possible.
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2.1 Formulation and Assumptions

How do you mathematically represent an elastic rod in three dimensions? This is per-
haps one of the few questions that does not torment modern-day elasticians. With few
notable exceptions (e.g. [14]), the modern-day conception of elastic rods is based on
framed curves. For any point on a three-dimensional curve, a frame exists which both
characterises the state of the curve at that point, and provides an orthonormal set of
vectors that function as a basis for mathematical operations at that point. Figure 2.2
shows how these curves, and their frames, will be represented in this thesis.

There are other questions regarding the formulation of the model with less easily-
defined answers. There is no single ‘do-everything’ rod model. Every model in the
literature is designed with a particular purpose, and facilitating that purpose inevitably
leads to compromises. At the same time, adding unnecessary complexity can hinder the
development process and increase the computational cost of the model. Which features
are the most relevant to biological rods, which are the easiest to implement, and which
distinguish this model from the hundreds of other elastic rod models out there?

Dynamical or structure prediction? As we have seen, the use of Kirchhoff
and Cosserat curves to study coiled-coils is widespread, but this has usually been for
an equilibrium structure prediction and not dynamic, non-equilibrium simulations [13],
[82]. This means that these methods cannot be re-used to study the dynamics of
Ndc80C or the kinetochore.

Macroscopic or microscopic? Most rod models in the literature are designed for
macroscopic rods, so thermal noise is not included in their dynamics. In addition, most
of those that are molecular structural biology length-scales are interested in structure
prediction, so do not incorporate any form of explicit thermal noise. Similarly, macro-
scopic models normally include mass and inertia [15] [93] [92], but the effects of inertia
are negligible when considering biological molecules submerged in a viscous fluid.

Contact and collision detection? Models designed for structure prediction nor-
mally have an explicit representation of the protein helices and coiled-coils [13], rather
than an implicit one, and often focus on forces between the two coils and finding the
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equilibrium conformation. Other self-contact models are built primarily for simulating
knots [92], so the focus is on resolution rather than speed. Representations of other
short-range interactions, such as the Lennard-Jones potential, are scarce.

L
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Figure 2.1: Degrees of freedom available to an elastic rod. Left: stretch. Mid: bend.
Right: twist.

How many degrees of freedom (Figure 2.1)? The most basic models only in-
clude bending stiffness [89]. For biological molecules such as Ndc80C, bending stiffness
is required, but it must also be anisotropic and inhomogeneous, in order to correctly
replicate the properties of the hinge region. Although the twisting of the rod is less
important to Ndc80C’s dynamics, the twisting of the rod will affect the axis about
which the rod bends, and so it must be represented as well.

Extensible or inextensible? Although, some important biopolymers ( microtu-
bules, for example) are effectively inextensible at this scale, this limit is not straight-
forward because the inextensibility constraint requires that the random forces must be
confined to space in which the system motion is constrained. Algorithms for achieving
this have been developed by Grassia and Hinch [94], Morse [95] and Liverpool [96]. Fur-
thermore, smaller biopolymers such as coiled-coils can be approximated as harmonic
springs, for small extensions [97].

Non-straight equilibrium? Many biological structures, including Ndc80C and
tubulin, feature intrinsically-bent equilibrium structures. However, the idea of ‘intrins-
ically bent equilibrium’ can be applied to all degrees of freedom. However, as twisting
is relative, it may be advantageous to set up systems so that the equilibrium is always
untwisted.

Implicit or explicit equations of motion? Many current algorithms favour

28



2.2 Definition of the Elastic Rod Model

implicit equations of motion in order to increase speed and numerical stability for stiff
rods [92] [91]. This approach can prove difficult for rods on this scale, as rods subject
to thermal noise have stochastic equations of motion, for which implicit solutions are
harder to obtain.

Implicit or explicit centreline? Some models favour an explicit representation
of the centreline as a sequence of nodes and elements, whilst others use an abstract,
reduced co-ordinate system representation [91]. These different approaches character-
ise the delicate balance between mathematical elegance, utility, complexity, and ease
of implementation. Ultimately, an explicit centreline allows for easier integration with
FFEA, particularly for the purposes of rod-blob interfaces and short-range interactions.

2.2 Definition of the Elastic Rod Model

The configuration of KOBRA rods is described in terms of the Frenet triad and Frenet-
Serret relations illustrated in Figure 2.1. Each rod is represented as a continuous
material curve. Each point on the curve has three orthonormal vectors associated with
it: the tangent vector, the normal vector, and the binormal vector (shown in Figure
2.2). This is therefore a directed curve.
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Figure 2.2: An example of a continuous framed curve. The tangent, l, and material
axes represented by the normal vector m and binormal vector n are shown at two
points on the curve.

Although the rod model presented in this chapter is derived from a Kirchoff model,
the discretisation and dynamics are different to most Kirchoff models. We opt for
an approach that favours a flexible parameterisation and increased computational effi-
ciency.

2.2.1 Construction and Notation

We construct a discretisation of the curve shown in Figure 2.2 as a sequence of extens-
ible straight rod segments connecting a set of discrete nodes (Figure 2.3). The nodes
are located at positions ri, where i ∈ {0, N−1}, so that there are N−1 segments, with
end-to-end vectors pi = ri+1 − ri, and the unit vector along the rod li = p̂i = pi/|pi|.

To represent the internal twisting of the rod, we define the material axes, mi and
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Figure 2.3: Discretisation of a continuous framed curve. The curve is constructed from
discrete segments pi that connect together nodes ri. Each segment has associated
material axes (mi and ni) and a tangent vector (li).

ni, to be perpendicular to li, such that ||li|| = ||mi|| = ||ni|| = 1 and li · mi =
mi · ni = ni · li = 0. The choice of initial direction of mi and ni is arbitrary except
that they must obey these constraints. However, these vectors are used to represent the
relative twisting of rod elements, and form the basis of a local co-ordinate system that
rotates with the rod. As the local material properties rotate with the rod, the direc-
tions of mi and ni are also used to define the locally anisotropic material properties. A
method to initialise a rod that is untwisted at equilibrium is provided in equation (3.4).

Finally, to describe rods with an arbitrary equilibrium state, we define equilibrium
values p̃i and m̃i, the configuration from which the rod is deformed.

This discretisation is based on the discretisation from Bergou et al. [93], but sub-
stantial modifications have been made in order to better support modelling of biological
molecules: the addition of extension energy, the removal of inertia, the addition of vis-
cous drag, the addition of thermal noise, changes in the bend energy formula to support
hinge regions, and changes to the twist energy formula to support arbitrary equilibrium
twisting. These differences will be discussed in greater detail in section 2.2.3.
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2.2.2 Parallel Transport

We use the concept of parallel transport to distinguish between changes in the orient-
ation of the material axes that arise from the curvature of the centre line and those
associated with twist about the centre line. The easiest way to find the twist between
two sets of material axes is via ‘parallel transport’ of the material axes of one element
onto the other.

For two unit vectors a and b we can use a specific form of Rodrigues’ rotation
formula (see equation (2.32)). [98] to construct a rotation matrix1 R that rotates a
onto b,

R(a, b) = I + [v]× + [v]2×
1

1 + c
, (2.1)

where
v = a× b (2.2)

c = a · b (2.3)

and

[v]× =


0 −v3 v2

v3 0 −v1

−v2 v1 0

 . (2.4)

To parallel transport the material axes of the ith segment onto the (i+ 1)th segment,
we construct the rotation matrix R, which rotates the normalised segment li onto the
normalised segment li+1 [99]. We then apply that matrix to the material axis mi to
obtain the vector m′i,

m′i = R(li, li+1) ·mi = P (mi, li, li+1). (2.5)

The process of parallel transport is illustrated in Figure 2.4, where m′i is the result
of the parallel transport of the material axis mi onto the pi+1th segment. This allows
the relative rotations of the material axes for element i and i+ 1 to be compared in a
manner that removes the bend between the elements.

1The uniqueness of this rotation matrix is not assured.
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mi

mi+1

m’i

pi pi+1

ri

ri+1

ri+2

Figure 2.4: Parallel transport of the material axis mi from the pith segment to m′i on
the pi+1th segment.

2.2.3 Elastic Energy of Deformation

We calculate the forces and torques on the rod from the gradients in the elastic energy
arising from deforming the rod away from its equilibrium state. This elastic energy is
composed of three components — extensional, torsional, and bending.

Extensional deformation

We assume that the extensional deformation is sufficiently small that extensional elastic
energy remains in the linear regime, which, for a coiled-coil, persists for extensions of
up to 20% [97]. Thus, the elastic energy of a single segment due to extension (Figure
2.5) is given by
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ri ri+1pi

ri ri+1pi

~ ~ ~

Figure 2.5: Changing the length of an element pi creates a stretching energy Estretch.
Note that the stretching energy is a property of an element, and that moving a node
results in two elements having different stretching energy (e.g. moving the ri+1th node
results in changes in the stretching energy from both the pith and the pi+1th node).

Estretch,i = 1
2ki(|pi| − |p̃i|)

2, (2.6)

where |pi| is the length of the ith segment and |p̃i| is its equilibrium length.

The value of the spring constant ki for the ith element can be written as

ki = κs,i
|p̃i|

, (2.7)

where κs,i = Y A, the product of the Young’s modulus Y and cross-sectional area A.
Note that κs,i is therefore a property of local molecular structure, and so is independent
of the rod discretisation, whereas the spring constant ki depends on the discretised
element length.
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Torsional deformation

ri

ri+1

pi
~ ~
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ri
ri+1

pi

�

mi-1

mi+1

mi+1

mi-1

mi
~
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Figure 2.6: The energy of torsional deformation is defined between two elements (about
a node). Therefore, applying twist to the material axes mi and ni will affect the
twisting energy about the rith and ri+1th nodes. The rod is normally not straight (as
shown here), so parallel transport (section 2.2.2) is used to ensure that both material
axis vectors are in the same basis.

To compute the torsional energy, we need to measure the degree of twist from one rod
segment to the next, as shown in Figure 2.6. We define an angle of rotation, ∆θi,
between the material frames of the rod segments i and i+ 1, such that

∆θi = arctan2
(
(mi+1 ×m′i) · li+1,m

′
i ·mi+1

)
, (2.8)

where mi+1 is the material axis of the (i+ 1)th segment, m′i is P (mi, lo, li+1), the
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material axis of the ith segment parallel transported (equation (4.9)) onto the (i+ 1)th
segment, and li+1 is the unit vector along the (i+1)th segment. We use the arctan2(y, x)
function, which returns a value of arctan

( y
x

)
, in the range −π to π by using the signs

of the parameters. This allows us to use non-zero equilibrium twist angles while still
retaining the correct potential.

Within the linear elastic regime, the torsional energy at node i arises from the
rotation between the material axes of the adjacent segments,

Etwist,i = βi
Li

(
mod

(
∆θi − ∆̃θi + π, 2π

)
− π

)2
. (2.9)

Here βi is the torsion constant (analogous to the stretching constant), ∆θi and ∆̃θi are
the angles between the material frames in the current and equilibrium configurations,
and

Li = |pi|+ |pi−1|
2 . (2.10)

Note that equation (2.9) does not account for the number of turns between two
elements being > 1, so the discretisation should be chosen so that ∆θ is confined to
the range −π < ∆θ < π. By choosing a periodic function in equation (2.9) we ensure
that the energy remains continuous.

Equation (2.9) differs from Bergou et al. [93], who assume that ∆̃θi will always be
zero, as the material axis is constructed to have ∆̃θi = 0 for each rod element. However,
for an intrinsically twisted rod, it is useful define ∆̃θi to be non-zero. If ∆̃θi 6= 0 then
the angles ∆θi and ∆̃θi must be signed, hence our use of the arctan2(y, x) function
above. In Bergou et al. [93], the twist energy is given as

Etwist,i = βi
Li

(∆θi)2 (2.11)

where β is the twist constant, Li is given in equation (2.10), and the values of ∆θ are
given by
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∆θi = cos−1(m′
i ·mi+1), (2.12)

which is the angle between one material frame and the next, but parallel transported as
to ignore the material curvature. This solution is more elegant and faster to compute,
but it produces incorrect results for values of ∆θ 6= 0, shown in Figure 2.7.

3 2 1 0 1 2 3
Twist angle (rad)

0

1

2

3

4

5

En
er

gy
 (u

ni
ts

 o
f 

)

Original potential
New potential

Figure 2.7: Comparison of the harmonic twist energy potentials about a single node
with ∆̃θ = 1

3π, for the old twist energy (Equation (2.11)) and the new twist energy
(Equation (2.9)).

The two energy formulae are identical when ∆̃θ = 0. However, the original poten-
tial is symmetric about ∆θ = 0, which produces a potential which incorrectly has two
minima and a lower maximum (see Figure 2.7). This is because the inverse cosine in
equation (2.12) results in an angle which is not signed, meaning that ∆θ−∆̃θ will have
the same value for both positive and negative values of ∆θ.
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Bergou et al. [93] avoided this problem by specifying that all rods should be para-
meterised such that, at equilibrium, ∆̃θi = 0. In some cases, it is useful to have non-
zero equilibrium values (e.g. when defining the bending stiffness matrix) to maintain
similar directions for the material axes of adjacent elements. A method for removing
intrinsically-twisted rods (‘rod unrolling’) will be described in section 3.2.

Bending deformation

To obtain the bending energy (Figure 2.8), we compute the curvature binormal, (kb)i,
a vector which defines the change in orientation between two segments due to bending:
(kb)i is orthogonal to both of the segments, with a magnitude proportional to the
tangent of half of the angle between them,

(kb)i = 2pi−1 × pi
|pi||pi−1|+ pi−1 · pi

, (2.13)

where pi and pi−1 are the ith and (i − 1)th segment vectors. This formula contains
a singularity at pi = −pi−1, which corresponds to maximum bending energy, so is
encountered very infrequently.
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~ ri
ri+1

pi~ ~
~ri-1

ri

ri+1

pi

ri-1

(kb)i

(kb)i

pi

pi-1

~

(kb)i-1 (kb)i+1

(kb)i-1
(kb)i+1

~
~

~

Figure 2.8: A bend about a node increases the length of the curvature binormal (kb)i
associated with that node. For an isotropic, untwisted rod, the bending energy is
proportional to the square of the curvature binormal. Note that the bending energy is
the property of a node, not of an element, and that moving a single node affects the
bending energy of that node, and the two adjacent nodes.

For a rod with an isotropic bending stiffness, the curvature binormal (kb)i alone
is sufficient to calculate the bending energy. However, for a rod with an anisotropic
bending stiffness, we need to resolve the components of bend with respect to the local
material axes.

In the algorithm of Bergou et al. [93], this information is encoded in a column
2-vector called the centreline curvature, ω.

ω(i, j) = ((kb)i · nj ,−(kb)i ·mj)T (2.14)

where mj and nj are the material axes of the jth segment, and (kb)i is the curvature
binormal about the ith node.

Assuming that the material properties of the rod are such that torque and curvature
are linearly related, the centreline curvature can be used to define the bending energy
similarly to the previous energies — as a quadratic potential centred about ω̃i, the
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equilibrium material curvature,

Ebend,i = 1
4L̃i

i∑
j=i−1

[
(ω(i, j)− ω̃(i, j))T B̃i(ω(i, j)− ω̃(i, j))

]
(2.15)

Where ω is the centreline curvature, Li is given in equation (2.10), ω̃ represents the
equilibrium curvature, and Bi is the bending stiffness. In general Bi is a positive def-
inite 2× 2 matrix to allow the stiffness to be a function of the direction of bend, such
as occurs in a hinge.

As written, equation (2.15) is an average over two bending energies, one in which the
curvature binormal (kb)i is projected into one material frame of the segment (j = i−1),
and a second in which it is projected into the material frame for segment j = i. If these
two material axes are in different directions, this will reduce the anisotropy of B. Such
averaging is undesirable if there is a local ‘hinge’ with strongly localised, anisotropic
flexibility.

To allow for the creation of an anisotropic hinge region at a single node, we need
to define a material axis at the node. We do this by defining an intermediate segment,
centred on this node, from a weighted average of the two segments on either side of
this node, called the mutual segment. Material axes from surrounding segments are
parallel transported onto this mutual segment. This allows us to have a hinge at a
single node, but since it comes at a higher computational cost, it is only used for curves
with anisotropic bending stiffness.

After computing (kb)i as per equation (2.13), we compute the value of a new, norm-
alised mutual segment centred on the node between the two original segments (Figure
2.9).

We define the unit vector of the mutual segment as

lm = Pm

|Pm|
, (2.16)

where Pm =
(
li−1
|pi−1|

+ li
|pi|

)
,
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and li and li−1 are the unit vectors of the segments on either side of the node. We
use an inverse weighting of element lengths in the average so that the orientation of
the mutual material frame is more affected by the shorter of the two adjacent elements
(whose centre is closer to the node).

mi

ri

ri+1

pi
ri-1

pi-1

lm
mi-1

Figure 2.9: A mutual rod segment lm about the ith node. The segment is weighted
more towards the ith node, to which it is closer.

Next, we form the mutual material axis at the node by parallel transporting the
material axes of the two adjacent elements onto the mutual segment,

m−i = P (mi−1, li−1, l
m), (2.17)

m+
i = P (mi, li, l

m), (2.18)

and then by averaging these two material axes, weighted according to inverse element
length, and then normalising to give (Figure 2.10)

mm = Mm

|Mm|
(2.19)

where Mm =
(
m−i
|pi−1|

+ m+
i

|pi|

)
.
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ri

mi mi
m

m

- +

Figure 2.10: A mutual material axis mm about the ith node. In this diagram, the
mutual segment is facing into the page. The mutual material axis is again weighted
toward the nearest node.

We now have a weighted average segment and weighted average material axis, valid
at a node, not a segment1 By projecting the curvature binormal into the components
of the material axes of the new mutual segment, we obtain the material curvature ω,
the amount of bending in the local material axis frame,

ωmi = ((kb)i · nm,−(kb)i ·mm)T , (2.20)

where nm = mm × lm, and (kb)i is the curvature binormal about the ith node.

From there, we can simply use the bend energy equation (equation (2.15)) from
before, but without the summation between the jth and ith segments,

Ebend,i = 1
2L̃i

[
(ωmi − ω̃mi )TBi(ωmi − ω̃mi )

]
, (2.21)

1Equations (2.16) and (2.19) both have singularities in the case where m′i−1 = m′i and p′i−1 = p′i.
The former corresponds to the previously-mentioned singularity in bend energy, the latter corresponds
to maximum twisting energy. Like the singularity in bending energy, then, they are rarely-observed.
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where L̃i is given by equation (2.10) evaluated for the equilibrium configuration,
and Bi is the bending stiffness matrix in the local material axis frame, a positive def-
inite 2× 2 matrix.

This formulation does not assume that pi−1 and pi are in similar directions, so it
can account for arbitrarily large bend angles about a single element.

2.2.4 Dynamical Equations

The changes to the configuration of a rod are defined by ∆ri, the changes of node
positions, and ∆θi, which determine the rotations of the material axes orientations
(mi). The translational motion of each node is given by a stochastic equation of the
form

∆ri = Mi · (Fi + fi) ∆t, (2.22)

where ∆t is the simulation timestep, Mi is the mobility tensor of the rod segment
in the fluid medium, Fi is the internal elastic force, and fi is the random force from
stochastic thermal noise. This equation assumes that the system is overdamped, so
that the inertia of the rod is negligible. We also neglect hydrodynamics, but include
a resistive (damping) force against a background fluid medium. This is therefore a
Brownian equation of motion.

For a general axisymmetric body, the mobility tensor will be anisotropic. However,
for simplicity we have approximated the mobility as being isotropic and equal to mo-
bility of a sphere of radius ai, equal to half the equilibrium length of each segment (see
equation (2.10) [100],

Mi = ζ−1
i I =⇒ ∆ri = ∆t

ζ
(Fi + fi) , (2.23)

where the mobility,

ζi = 6πµai (2.24)
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where µ is the dynamic viscosity of the medium and ai the radius of the sphere.

Similarly, for the rotational motion of the material axes,

∆θi = ∆t
ζθ

(τi + gi) , (2.25)

where gi is a random thermal torque, τi is the torque due to the internal elastic forces
(2.28), and ζθ is the corresponding friction constant for rotation. For the rotational
friction constant we use the rotational drag on cylinder of radius a and length |pi|,

ζθ = 8πµa2 · |pi|. (2.26)

It would be possible to include hydrodynamic interactions by replacing equation (2.22)
for each segment with a single equation for the entire rod with a single mobility mat-
rix including the hydrodynamic coupling between the elements. However, this would
result in replacing ζi in equation (2.30) with the inverse of the mobility tensor, which
is computationally more expensive. If the rod remains nearly straight, the effect of
hydrodynamic interactions can be approximated through a difference in the local mo-
bility parallel and perpendicular to the rod axis.

For a particular configuration of nodes and material axes, the forces acting on nodes
(Fi) and the torques acting on material axes (τi) can be determined from the partial
gradients of the energy:

Fi = ∂E

∂ri
, (2.27)

where Fi is the force on the ith node at ri due to the energy gradient, and

τi = ∂E

∂θi
li, (2.28)
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where τi is the torque resulting from the energy gradient of segment i, li is the
unit vector representing the axis of rotation, and the total internal energy, E =
Estretch + Etwist + Ebend, where Estretch, Etwist and Ebend are obtained by summing
the node and element contributions to stretch, twist and bend energies from Equations
(2.6), (2.9) and (2.21).

Due to the complexity of these formulae we compute the gradient numerically by
taking central numerical differences of the energy functions, i.e.

∂E

∂x
' ∆E

∆x = E(x+ ∆x)− E(x−∆x)
2∆x , (2.29)

where x is some co-ordinate (e.g. a component of node position r or material axis
rotation θ) in the system, and E(x) is the energy of the system x for a given value of
x. This means that, for each index i, we need to compute each of the three energies
twice (for x + ∆x and x−∆x) in each of the four degrees of freedom associated with
that index: x, y, z, and twist.

When a node is translated, or when a material axis is twisted, it changes the ener-
gies of the two nodes on either side of it. Figures 2.5, 2.6 and 2.8 display the affected
geometry in orange. Therefore, computing the gradient in energy for the translation
of node i requires information about a 5-node window of the rod between ri−2 and ri+2.

Using the drag given by equation (2.23), the force acting on each node from thermal
noise in a discrete timestep δt is given by the fluctuation dissipation theorem, [70]

fi =
√

24kBTζi
∆t ·R, (2.30)

where T is the temperature of the system, ζi the friction constant, ∆t the timestep,
kB is Boltzmann’s constant, and R is a random vector, where Rx, Ry and Rz are in-
dependently drawn from uniform distributions in the range −0.5 ≤ Rx,y,z ≤ 0.5, such
that 〈R〉 = 0 and 〈RiRj〉 = 1

12δij .
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Likewise, the rotational thermal torque is given by

gi =
√

24kBTζθ
∆t R (2.31)

Where T is the temperature of the system, ζθ is the torsional friction, ∆t is the
timestep, kb is Boltzmann’s constant, and R is a uniform random variable in the range
−0.5 ≤ R ≤ 0.5.

To apply the rotation ∆θi to the material axis, we use Rodrigues’ rotation formula
[98],

vrot = v cos ∆θ + (k × v) sin ∆θ + k(k · v)(1− cos ∆θ) (2.32)

where vrot is the resultant vector, ∆θi is the rotation angle, v is the original vector and
k is the axis of rotation. In this case, we would apply the rotation to the vector mi

about the axis li.

2.2.5 Material Axis Update

Displacing a node (which occurs when executing node movements, or when perturbing
nodes during numerical integration) affects not only the segments on either side of it,
but also the orientation of the material axes associated with those segments. We can
use parallel transport as described in section 2.2.2 to transport the material axis from
the previous (unperturbed) segment to the new (perturbed) one. For example, if we
move the node at position i, then the two elements pi and pi−1 will change, and so we
update the material axis mi and mi−1

m′i = P (mi, li, l
′
i) = R(li, l′i) ·mi (2.33)

m′i−1 = P (mi−1, li−1, l
′
i−1) = R(li−1, l

′
i−1) ·mi−1 (2.34)

Where m′ is the updated material axis, P is an application of parallel transport, m
is the unperturbed material axis, l is the (normalised) unperturbed segment, l′ is the
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(normalised) perturbed segment, andR is the rotation matrix defined in equation (2.1).

2.3 Algorithm Implementation

Biological systems such as the kinetochore are millions of atoms in size. The depolymer-
isation of spindle microtubules, one of the primary generators of force in this system,
occurs on timescales of seconds to minutes [101] [8]. It is therefore necessary to build
extremely fast and highly parallel algorithms capable of reaching the time (s or more)
and length (> 100nm) scales required to understand such processes.
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Figure 2.11: Example KOBRA rod rendered using the FFEA plugin for PyMOL [16].
Green cylinders represent rod elements/segments (p) and blue cylinders represent ma-
terial axes (m).

KOBRA (Figure 2.11) is implemented in C++ and is designed to run with a small
memory footprint and cache-optimised data structures. On startup, the memory needed
to store the rod structure is allocated in a series of large, contiguous blocks. This flat,
contiguous structure minimizes cache misses, which are a major source of performance
loss in numerical simulation algorithms. For the same reason, stack allocation is used
for all functionality after initialisation, keeping variables which are likely to be used
often as close to the CPU registers as possible. I/O is performed asynchronously. More
detailed information on the design of the software can be found in section C.
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The structure of the algorithm is as follows:

• Initialise the rod

– Read rod meta info

– Allocate memory

– Read structural data and convert to internal units (see section 2.3.3)

• For each timestep:

– For each i (OpenMP parallel):

∗ Get energies for all perturbations (x, y, z, twist) (section 2.2.3)

– For each i:

∗ Get thermal noise (section 2.2.4)

∗ Compute and apply dynamics, update node positions (section 2.2.4)

∗ Update material axes (section 2.2.5)

– If simulation is on a check timestep:

∗ Write to trajectory file

2.3.1 Performance

The most intensive task is the calculation of the forces from the gradient of the energy,
is parallel per-node using the OpenMP API, and takes around 96% of the program’s
runtime. This gives the program a serial fraction of 4%, although computing the dy-
namics in parallel is also possible. Performance and scaling are given in Figures 2.12
and 2.13. The simulation time per timestep is proportional to the number of elements
in the rod, and inversely proportional to number of processors.
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Figure 2.12: Weak scaling: single-thread performance scaling with number of elements,
running on an Intel Xeon E5-2670.
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Figure 2.13: Strong scaling: shared memory parallel scaling on a dual Intel Xeon E5-
2670 system, with a fixed rod length of 32 nodes.

2.3.2 Factors Determining Performance

400000 iterations of the KOBRA algorithm were profiled using gprof, a software pro-
filing tool. The performance of the algorithm is dominated by calculations of the twist
energy, bend energy, material axis updates. The results of this profiling are shown in
Figure 2.14.
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Figure 2.14: Results of profiling the KOBRA algorithm using gprof. This result only
pertains to the ‘lean’ version of algorithm, meaning the mutual material axis and peri-
odic twist energy are disabled. The first % value is the percentage of the runtime spent
inside that function, with the number in brackets excluding functions called by that
function.

A simple API allows for the manipulation of rods within the simulation and the
construction and analysis of rod structures and trajectories. The details of this API
are available as part of the official FFEA documentation at http://ffea.bitbucket.io.
Information for software developers wanting to improve KOBRA or add KOBRA to
their own programs can also be found in this documentation.

2.3.3 Numerical Precision

For a greater degree of cache-optimisation, internal values are specified as single-
precision (32-bit) floating point numbers. To preserve numerical accuracy, values are
converted to internal units (called ‘mesounits’) also used by FFEA [1]. The values of
these units are given in table 2.1.
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Dimension Symbol Unit Comment

Length l 1.7× 10−10 m C atom VdW radius
Energy E 4.142× 10−21 J kBT, T = 300K
Mass m 1.99× 10−26 C atom mass
Area 2.89× 10−20 m2 l2

Volume 4.913× 10−30 m3 l3

Force 2.44× 10−11 N E/l

Time 3.73× 10−13 s l × (m/E) 1
2

Pressure 8.431× 108 N/m2 E/l3

Table 2.1: Mesounits used internally in FFEA and KOBRA.

2.4 Validation

Testing and validation is an important and often-overlooked aspect of model-building
and implementation. Computer programs, even those created by huge teams at multi-
billion dollar corporations, are often buggy and barely work. How do we test that the
output of the program we have written matches exactly the algorithm we’ve designed?
How do we know if that algorithm can produce the correct physics?

One way is to design end-to-end tests for the emergent properties of the physical sys-
tems that are being simulated. These emergent properties are not explicitly included in
the algorithm or software implementation, but instead come as a natural consequence
of the physics that the KOBRA model represents. In software development, end-to-
end tests such as these are called integration tests, and the KOBRA software package
provides automated versions of these tests.

If the assumptions behind the model are incorrect, or if an error has been made
at any stage of the software implementation, these tests will fail. These tests describe
physical properties of the algorithm, not biological ones. Chapter 3 will explore the
validation of KOBRA in a biological context.
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2.4.1 Equipartition Theorem

The equipartition theorem states that the thermal energy of a system will be shared
equally between the different degrees of freedom in the system. This can be thought of
as a consequence of the maximisation of entropy in the system.

If the rod is intrinsically straight, and the bending modulus is isotropic and stiff
enough to avoid large, non-linear deformations, then the energies are quadratic, and
the average energy, per node/element and per degree of freedom, will be 1

2kBT , where
T is the temperature and kB is Boltzmann’s constant. We can write this as

1
2κ〈x

2〉 = 1
2kBT (2.35)

Where κ is the constant for any harmonic potential, x is the deformation (∆x,∆θ or
∆ω as in expressions for stretching, bending and twisting energy), T is the temperature
in Kelvin and kB is Boltzmann’s constant.

To correctly compute the expected equipartition energy, we must consider the num-
ber of degrees of freedom the system has. Table 2.2 shows the number of degrees of
freedom for a rod of N nodes and N − 1 segments.

Energy Number of D. O. F.

Stretch N-1
Bend 2(N-2)
Twist N-2

Table 2.2: Number of degrees of freedom for each energy.

The number of degrees of freedom associated with the stretch energy is simply N−1,
the number of elements. For twist, this is N − 2, the number of nodes which have ele-
ments on both sides of them (and thus which have twist energy between them). There
are double the number of degrees of bend (2(N −2)) as there are two independent axes
of bending for each node. Additionally, the entire rod can rotate and translate in six
degrees of freedom. These do not affect the energy, and so do not contribute to the
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equipartition sum. Thus, the total number of D.O.F. for equipartition is 4N − 7 out of
4N − 1 D.O.F. in total.

A test system, comprised of 10 elements, with a total equilibrium length of 100nm,
was simulated for 10µs. The parameters of the system are given in table E.1.

The constants are isotropic, homogeneous and relatively stiff, such that the degree
of bending is small. This ensures that these energies remain linear, assumed in equation
(2.35). We expect the thermal energy to be 1

2kBT = 2.07×10−21J . The mean energies
per degree of freedom from this trajectory are given in table 2.3.

D.O.F Energy

Stretch (2.11± 0.16)× 10−21J

Bend (2.16± 0.11)× 10−21J

Twist (2.06± 0.16)× 10−21J

Table 2.3: Average energies in each degree of freedom for equipartition test.

As the average energies are close to the equipartition value of 1
2kBT , this means that

the system is getting the correct force from thermal noise, and this force is creating the
correct energy in each degree of freedom. The values are on average slightly too large,
which may be due to nonlinear effects, which will be discussed more in section 3.2.2.
We can observe this in more detail by considering the distribution of bend angles, twist
angles and stretch amounts, rather than just the averages.

For a given degree of freedom x, with an associated spring constant κ, the energy
is E = 1

2kx
2 and x is Boltzmann distributed,

p(x) ∝ e
−E

kBT = exp
(
−1

2
k

kBT
x2
)

(2.36)

Where kB is Boltzmann’s constant, T is the temperature in Kelvin, the deformation
x could refer to stretch, bend, or twist (∆p, ∆θ or ∆Ω) and k is the associated constant
(κ,B or β).
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The normalized probability distributions predicted by equation (2.36) were com-
pared to measurements from KOBRA simulation trajectories. For each degree of free-
dom, we generated a histogram of observed variation in that degree of freedom, and
compared this to the probability distribution described in equation (2.36), using the
appropriate spring constant. The results are displayed in Figures 2.15, 2.16, 2.17 and
2.18.
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Figure 2.15: Distribution of stretch amounts (∆|pi|) for a sample simulation. The
expected distribution (equation (2.36)) is shown as a line. The histogram of measured
energies, with 100 bins, is shown in blue.

The distribution of stretch amounts (Figure 2.15) has a small amount of systematic
stretching. The 3-D nature of the system means that the ∆|pi| is not defined exactly
by equation (2.36).
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Figure 2.16: Distribution of twist amounts (∆θ) for a sample simulation. The expected
distribution (equation (2.36)) is shown as a line. The histogram of measured energies,
with 100 bins, is shown in green.

For bending, we evaluate this expression for both axes of bending, as these are
independent degrees of freedom:
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Figure 2.17: Distribution of bend amounts (∆ω1) for a sample simulation. The expected
distribution (equation (2.36)) is shown as a line. The histogram of measured energies,
with 100 bins, is shown in red.
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Figure 2.18: Distribution of bend amounts (∆ω2) for a sample simulation. The expected
distribution (equation (2.36)) is shown as a line. The histogram of measured energies,
with 100 bins, is shown in red.

2.4.2 Comparison with Polymer Chain Models

Like KOBRA, most polymer chain models represent long, thin objects as chains of
linear elements connected by nodes. The properties of polymer chains, such as their
persistence length, can be computed analytically from the elastic moduli of the rod, but
they can also be computed geometrically from the trajectories of the chains. Therefore,
we can use polymer chain statistics to compare analytical predictions with measured
values from KOBRA simulation trajectories. If the measured values are close to the
predicted ones, then the rod is behaving like a polymer chain.

The persistence length of a polymer chain is the length over which the orientation
of the elements in that chain becomes uncorrelated. Stiff polymer chains will have a
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long persistence length, flexible ones will have a short persistence length. Analytically,
the persistence length is given [102] by the expression

P = EI

kBT
= B

kBT
(2.37)

Where B = EI is the bending stiffness, the Young’s modulus multiplied by the mo-
ment of inertia for a cylinder, kB is Boltzmann’s constant, and T is the temperature
in Kelvin. For an isotropic rod, B is equal to the diagonal elements of the isotropic
bending stiffness matrix B.

In a worm-like chain, the rod elements cannot stretch or twist, and have very small
bend angles. If the rod behaves as a worm-like chain, then the persistence length pwlci

of element i can be measured

pwlci = 〈|p̃i|〉
2

〈acos(θi)〉2
(2.38)

where

θi = pi
|pi|
· pi+1
|pi+1|

(2.39)

where pi and pi+1 are rod elements.

In a freely-joined chain, inextensible elements are connected about nodes with fixed
bend angles, but the rod can be twisted freely. If we assume instead that the rod is a
freely-jointed chain, then

pfjci = 〈|p̃i|〉
−1

〈log(θi)〉
(2.40)

A KOBRA simulation was performed using the same parameters as section 2.4.1. The
measured and predicted persistence lengths are compared in Figure 2.19. The analytical
persistence length of the rod, calculated from the bending modulus, corresponds to the
measured persistence length under the assumption that the rod is a freely-jointed chain.
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Figure 2.19: Persistence length for a sample rod trajectory.

2.4.3 Buckling Under Torsional Strain

We have observed that KOBRA rods obey the equipartition theorem and the physics
of polymer chains. Because this model includes both bending and torsional strain, we
can also use it to predict the buckling properties of Euler beams. The experiments
corresponding to this qualitative validation can be performed in person, using a rope,
bungee cord, hair bobble or the cable for an electrical appliance.

1. An elastic rod which is straight at equilibrium is clamped (with respect to both
position and rotation) at both ends.

2. The element at one end of the rod is twisted away from equilibrium while the
other end remains clamped.

3. The rod independently starts to kink (‘hockling’) as a result of a balance between
the twisting and bending forces.
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For this validation, thermal noise is disabled and the two elements at the end of the
rod are fixed in place. Then, one an element at one end is twisted by π radians, and
then the system is equilibrated. A sufficient number of elements are used to obtain a
smooth curve. A comparison of the resulting KOBRA rod with a physical bungee cord
can be seen in Figures in 2.20 and 2.21.

Figure 2.20: Rod fixed at both ends, twisted at one end, and equilibrated, rendered in
PyMOL [16].

Figure 2.21: Rod (a bungee cord) fixed at both ends, twisted at one end, and equilib-
rated, in real life, by clammy human hands.

In twisting one end of the cord while keeping its position constant, a torsional strain
is introduced into the cord. If this torsional strain is distributed evenly through both
bending and twisting modes, the overall energy in the cord will be minimized. The
torsional stress is relieved by increasing the writhe of the rod. Note that Figure 2.20
shows a large but noncontacting kink. Accurate representations of larger kinks and
plectonemes are not possible without a self-contact model.
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Chapter 3

Parameterisation of KOBRA Simulations from
All-Atom Data
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3.1 Creation of an All-atom Ndc80C Model

In this chapter, we apply the general model for rod-like biomolecules described in
chapter 2 to the specific case of the Ndc80 protein complex (Ndc80C).

As described in section 1.2.5, Ndc80C is a long, flexible molecule comprised of two
coiled-coil sections joined by an unstructured loop. This molecule has both a non-
straight equilibrium shape and an inhomogeneous, anisotropic bending modulus, which
will allow us to test all of the features of KOBRA. A cartoon depiction of the Ndc80C
structure is shown in Figures 3.1 and 3.2. One of Ndc80Cs distinguishing features is the
presence of a molecular hinge in the centre of its coiled-coil region. This hinge allows
Ndc80C to enter highly kinked conformations which may be necessary in the transition
from side-on to end-on attachment. Much of the content of this chapter will be centred
around investigating the flexibility of Ndc80C and the degree of bending that this can
lead to.

A complete all-atom structure for Ndc80C is not available, so we will first construct
one using existing partial structures and protein structure prediction. Then, we will
extract coarse grained rod model parameters from the dynamics of a simulation of the
all-atom Ndc80C. Finally, we will consider metrics we can use to compare these models
to each other, and to experimental measurements, such as negative stain EM images
[18].

3.1 Creation of an All-atom Ndc80C Model

The Ndc80C protein complex is long, thin and contains disordered regions that are
highly flexible. Its flexibility means no crystallographic images of the entire protein
complex are available, as it does not form an ordered crystal. Consequently, a full
all-atom description of Ndc80C does not exist. To run an MD simulation of Ndc80C,
we need to construct a model of the structure by integrating information obtained from
experimental studies.
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3.1 Creation of an All-atom Ndc80C Model

Figure 3.1: Cartoon representation of the Bonsai Ndc80C protein complex rendered
in UCSF Chimera. Compare this to Figure 3.6 which contains the majority of the
coiled-coil region.

As a starting point, we use the so-called ‘Bonsai’ Ndc80C molecule [17] (2VE7) (Fig-
ure 3.1). This molecule contains both globular domains and a short coiled-coil region
85Å in length. However, most of the coiled-coil and the unstructured loop are removed.

We will need to combine different sources of information to construct a complete
all-atom representation of Ndc80C. For more information about the full Ndc80C struc-
ture, we turn to Ciferri et al. [17]. They provide the positions of cross-links between
the two coiled-coils and a prediction of the entire secondary structure by type: a long
coiled-coil with a small, unstructured loop at the centre. They also indicate the relative
residue numbers at which these features occur. Figure 3.2 shows the connectivity of
Ndc80C’s four sub-units (Ndc80 in blue, Spc24 in purple, Nuf2 in yellow and Spc25 in
green) and the positions and residue numbers of the cross-links.

The spatial parameters of the coiled-coil, such as the pitch, radius, crick angles and
φ Cα (angles describing the geometry of the residues and bonds), can be extracted from
the ‘Bonsai’ Ndc80C molecule. We can use this, combined with the protein sequence
[103] [104] and alignment information from Ciferri et al. [17], to construct a basic
model of the full-length Ndc80C coiled-coil. We use ISAMBARD, a software package
designed for modelling, analysis and parametric design of proteins [105], to generate
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Figure 3.2: Cartoon depiction of the Ndc80 protein complex [17]. The colours dis-
tinguish the four connected proteins in the complex (Ndc80 in blue, NUF2 in yellow,
and Spc24 and Spc25 in purple and green). The black lines denote cross-links at their
respective residue numbers.

a coiled-coil structure from the protein sequence of the four chains in Ndc80C, with
each coiled-coil being constructed from two chains, aligned by the residue numbers of
their cross-links. For more information, an annotated version of the script responsible
for this can be found in doi.org/10.1039/D0SM00491J under the name ndc80 build. In
brief, the process is:

• Load the Bonsai Ndc80C structure

• Identify which chains are Ndc80 and Nuf2 based on the residue sequence, remove
the globular domains and loop from the sequence and bonsai structure

• Use ISAMBARD to extract the parameters

• Align 2 sequences based on known adjacency of cross-links

• Using ISAMBARD, construct a new coiled-coil from the sequences with these
parameters

This method yields two all-atom structures, representing the coiled-coil region on either

66

doi.org/10.1039/D0SM00491J


3.1 Creation of an All-atom Ndc80C Model

side of the unstructured loop (but not the loop itself).

Ndc80 NUF2

12.2 -152.0
-16.0 -156.5
-10.5 -165.1
-43.1 138.1
-67.0 131.7
59.0 104.0

Table 3.1: Cα values for NUF2 and Ndc80 coiled-coils in Bonsai Ndc80C molecule.

This generated structure identifies the locations of side-chains, but they are not
explicitly represented on an all-atom level. We build side chains onto the coiled-coil
using SCWRL4, a protein side chain predictor [106] using SCWRL4’s default settings.

We then use the QUARK ab inito protein structure prediction server [107] to create
predictions of the structures in Ndc80C’s loop region from the residue sequence, also
using default settings. The results of these predictions can be found at bitbucket.org/

Robert-Welch/kobra-raw-data, in the file quark results.tar.bz2. These structures
were peptide-bonded together with the two coiled-coils created with ISAMBARD us-
ing UCSF Chimera [108]. The overall length of the generated Ndc80C, which does not
include the two globular domains, is 48nm. A breakdown of the predicted structure is
shown in Figure 3.3.

The resulting model was refined using ModRefiner [109], also at default settings,
and minimised using the YASARA minimisation server [110]. This brings the protein,
created with somewhat arbitrary bond angles, closer to its native state. The final struc-
ture comprises 10984 atoms and is 47Å in length.

Simulations were then performed using AMBER 2014. The ff14SB force field [111]
was used as this is AMBER’s primary protein model. For computational efficiency,
a Generalised Born Surface Area (GBSA) implicit solvent model was used. The sim-
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Figure 3.3: Different methodologies used to recreate the all-atom Ndc80C structure
(shown to scale).

ulations created a trajectory of 90 nanoseconds over the course of 62 days. A more
detailed look into the parameters used in AMBER can be found in table E.3, and the
full AMBER trajectories can be found in doi.org/10.1039/D0SM00491J.

3.2 Rod Parameter Extraction

3.2.1 Mapping All-atom Structures Onto Rods

To construct a rod model for Ndc80C, we need to obtain suitable values for the physical
parameters κs, β and B for each node and element. These parameters are obtained
from Ndc80C’s dynamics — we select rod parameters that reproduce the local fluctu-
ations in shape from the all-atom trajectory. There is no guarantee that reproducing
local fluctuations on an element-by-element basis will produce a system with identical
global dynamics — for example, specific interactions between groups of residues, such
as binding sites, are not accounted for. A comparison with global dynamics will there-
fore follow in the next section.

We first map the all-atom MD trajectory directly onto a coarse-grained trajectory
for an equivalent rod model. We define the position of nodes in this rod model by
averaging over the positions of small clusters of atoms.

rri = 1
kmax − kmin

kmax∑
k=kmin

rak (3.1)
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where rri is a rod node at index i, kmin and kmax are the indices denoting the edges
of the ith cluster, and rak is the position of the atom at index k. For a given value of
i, the values of kmin and kmax are minimum and maximum indices of atoms, denoting
the edges of that cluster. Using only small clusters means that the rod configuration
is not unnaturally smoothed during coarse-graining. The rod segments, as before, are
defined as end-to-end vectors such that pi = ri+1 − ri.

The backbone of the all-atom Ndc80C model was coarse-grained to 14 nodes from
2668 atoms. The optimal length for rod segments depends on the system being discret-
ised. It should be as coarse as possible, while being fine enough to capture information
about the implicit shape and dynamics of the molecule being modelled. In the case of
Ndc80C, the rod should be fine enough to resolve the molecular hinge, but each element
should be no shorter than a turn of the coiled-coil. At such a resolution, it would be
necessary to represent the coiled-coil explicitly using two rods, which is not possible
without a rod self-contact model.

Each node was averaged from a 10-atom wide cluster according to equation (3.1)
(see Figure 3.4). This number is also system-dependent, for Ndc80C it was chosen such
that there is more than a factor of 10 difference between number of atoms per rod
element and the number of atoms being used to set a node position.

Figure 3.4: To coarse-grain the atomistic Ndc80C trajectory, the co-ordinates of groups
of atoms are averaged according to clusters of atom indices.
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Having defined the nodes, we now need to define the material axis of each coarse-
grained segment in order to measure twist. One method for doing this is to first
calculate the vector qi between the opposite atoms in the two chains of the coiled-coil
(Figure 3.5):

qj =
rAj − rBj
|rAj − rBj |

, (3.2)

where rAj is the position of the jth atom in chain A, and rBj is the position of the atom
in chain B which is closest to rAj at equilibrium. In practice, for each rod we select 10
atom pairs which are located halfway between the atoms defining two nodes at the end
of the rod; we take the average qj from those atom pairs, as indicated in Figure 3.5.

mq,i

ri

Chain A

Chain B

Figure 3.5: Schematic view of the coiled-coil cross-section, showing how the material
axis is computed. The dashed lines are used to compute qi for each atom, which are
then averaged to mq, i. For clarity, only four atoms in each chain are depicted.

To ensure that the material axes are always normal to the elements, a material axis
mq,j is defined from the orthonormal projection of qi from the tangent of the element,
lj ,

mq,j = qj − (qj · lj)lj
|qj − (qj · lj)lj |

. (3.3)

The material axes of adjacent elements obtained from equation ( 3.3) may point in
quite different directions, and although the above equations for calculating deforma-
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tion energy permit this, it is practically better (e.g. when defining the bending stiffness
matrix) to maintain similar directions for the material axes of adjacent elements. The
material axes of two adjacent elements can be considered to be in the ‘same’ direction if
the material axis mi of element i, when parallel transported onto element i+ 1, points
in the direction of the material axis mi+1 of that element.

Consequently, we use the following procedure for calculation of material axes. We
begin in the equilibrium configuration of the atomistic model. In this equilibrium
configuration, we obtain the material axis m0 of the first element according to equation
(3.3). We then generate the material axis for all other rod elements in the equilibrium
configuration by parallel transport, by iterating along the rod.

m̃i = P
(
m̃i−1, l̃i−1, l̃i

)
. (3.4)

For each element i we can also calculate a candidate material axis mq,i from the local
atomistic positions according to equation (3.3). In the equilibrium configuration we
may compare the material axis mi obtained by parallel transport with the material
axis mq,i. These two vectors will in general differ by some rotation angle ∆̃θui , which
are stored. Then, during the subsequent dynamics of the MD trajectory, at any moment
we can generate the instantaneous mq,i according to equation (3.3), and calculate the
instantaneous material axis mi by rotating mq,i about the rod by signed angle ∆̃θui ,
using the Rodrigues rotation formula (equation (2.32)).

Using this method, the all-atom Ndc80C model containing 2668 atoms (top of Fig-
ure 3.6) was coarse-grained to a rod model comprised of 14 nodes (bottom of Fig-
ure 3.6). Each node was averaged from a 10-atom wide cluster according to equa-
tion (3.1) (see Figure 3.4). The Python script that builds this model is available at
doi.org/10.1039/D0SM00491J, and as part of the FFEA software package.

71

doi.org/10.1039/D0SM00491J


3.2 Rod Parameter Extraction

Figure 3.6: Top: Completed atomistic Ndc80C model after minimisation. Bottom:
simplified rod model showing equilibrium atomistic structure. The blue lines represent
the equilibrium orientation of the material axes, and their twisting indicates the coiled-
coil pitch. The radius displayed is arbitrary.

3.2.2 Calculating Rod Parameters

Having mapped the MD simulations onto an equivalent rod trajectory, our strategy for
model parameterisation is to select parameters for the rod elements and nodes such
that the local mean square fluctuations in bending, twisting and extension will match
those observed in the MD trajectory. From this trajectory, we therefore compute (for
each rod, or node, i) the mean square fluctuations in rod length 〈(|pi| − |p̃i|)2〉, and in
twisting angle 〈∆θ2

i 〉 where ∆θi is the difference between instantaneous twisting angle
and its equilibrium value.

Because the rod model obeys the equipartition theorem (section 2.4), we can use
the equipartition result to determine the probability distributions associated with the
parameters specifying the stretching, twisting and bending of the rod. The probability
distribution for the variable x in the potential V (x) due to thermal energy is the
Boltzmann

P (x) ∝ exp
(
−V (x)
kBT

)
. (3.5)

If we substitute the harmonic potential V (x) = 1
2kx

2, we can use the standard res-
ult, that for a normal distribution where P (x) ∝ exp

(
−x2

2δ2

)
, the variance 〈x2〉 = δ2.

Therefore
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P (x) ∝ exp
(
−kx2

2kBT

)
⇒ k = kBT

〈x2〉
. (3.6)

As an initial estimate for the model parameters, we note that the energies defined in
equations (2.6), (2.9) and (2.21) are all quadratic in the respective parameters. We
might therefore expect fluctuations to be distributed normally and the equipartition
theorem to apply (section (2.4)). This would result in initial estimates for the para-
meters as

ki = kBT

〈(|pi| − |p̃i|)2〉
(3.7)

βi = LikBT

2〈∆θ2
i 〉
. (3.8)

The same result can be used to compute the values of the elements of the B mat-
rix (equation (2.15)). In the case of anisotropic rods, the bending energy is formed
from the scalar product of the B matrix with the elements of the 2-vector ω. The
values of the ω 2-vector, representing the material curvature, will also be normally dis-
tributed about the equilibrium value, ω̃. This probability distribution can be written as

P (∆ωmi,α,∆ωmi,β) ∝ exp

 −1
2kBT · Li

· (∆ωmi,α∆ωmi,β) ·Bi ·

∆ωmi,α
∆ωmi,β

 (3.9)

Since bending is parameterised by a two-component vector ωmi (see equation (2.14)),
fluctuations in bending are parameterised by a covariance matrix for bending fluctu-
ations, for node i,

Ci,αβ = 〈∆ωmi,α∆ωmi,β〉 = kBT liB
−1
i,αβ (3.10)
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where ∆ωmi,α is the difference between the α component of the bending vector ωmi and
its time average value (where α = 1 or 2).

We therefore derive the following expression for the elements of B.

Bi = kBTLi ·C−1
i (3.11)

Note that B̃i is independent of the element length in a homogeneous rod. In equa-
tion (3.11), the angular fluctuations increase as the element length increases, so Ci
increases. But equation 3.12 is scaled by Li, which compensates for this. However, for
a hinge, the angular fluctuations are more or less fixed, independent of the length of
the elements on either side. Therefore, Ci is constant, but B̃i increases with Li. In this
method, this isn’t a problem, as we discretise the rod before we parameterise it.

The above results also neglect the three dimensional nature of the rod model dy-
namics, and the non-linear geometrical effect this has on the probability distributions
of rod model variables. A uniform density of states for the x-, y- and z-coordinates
of node positions does not equate to a uniform density of states for rod length and
bending co-ordinates.

As a result, the probability distributions for these variables are not exactly normally
distributed (one can think of this as an extra entropic contribution to the free energy of
fluctuations arising from the density of states in the space of the bending or rod length
co-ordinates). However, in equation (3.6), we assume that they are. This means that,
in going from (x, y, z) co-ordinates to co-ordinates in terms of ω, we over-estimate the
energy at large bend angles, and so over-estimate the values of B̃.

If we use equation (3.11) to estimate the bending stiffness matrix, then typically
the mean square fluctuations in the resulting rod model do not match those of the
original simulation. However, they are sufficiently close that an iterative scheme is able
to rapidly converge on the correct parameterisation. For a given node i, our aim is
to reproduce the degree of bending fluctuations C as measured in the all atom MD
simulations. Running a KOBRA model built using the bending energy matrixB′i, given
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by application of equation (3.11), will result in a trajectory with observed fluctuations
Cold
i which will in general be different from Ctarget

i (even after reducing statistical errors
by running a long trajectory). By considering the expected change in C from a small
change in B, we can obtain a new estimate for the bending energy matrix as

Bnew
i = kBTLi

(
Ctarget
i −Cold

i + kBTLi

Bold
i

)−1

. (3.12)

Where Bnew
i is the corrected value of Bi, kB is Boltzmann’s constant, T is the temper-

ature, Li is defined in equation (2.10), Ci is the C matrix for the original trajectory,
Cnew
i is the C matrix for the new trajectory, and Bold

i is the bending stiffness matrix
calculated for the original trajectory using equation (3.11).

A KOBRA simulation run using this new estimate at the bending energy matrix
will give bending fluctuations closer to the target value. If necessary, the iteration can
be repeated, but we have found that a single iteration is usually sufficient to satisfact-
orily reproduce the target bending fluctuations within the typical uncertainty produced
from statistical sampling of trajectories.

3.2.3 Parameterisation Validation

The method for computing B from an existing trajectory was validated against a tra-
jectory from a KOBRA rod with known values of B. A simulation with 9× 106 frames
recorded at intervals of 5ns was analysed. This length of trajectory is required, as the
method described in 3.2.2 cannot replicate the parameters needed to create a particular
set of conformations without a trajectory that features those conformations. The ref-
erence rod is anisotropic, so bends more in one axis than another, and inhomogeneous,
featuring a hinge in its centre. Figure 3.7 shows the results of this parameterisation.
The raw trajectories are available at doi.org/10.1039/D0SM00491J, and more informa-
tion on the simulation parameters used can be found in table E.4.
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Figure 3.7: ‘Recovered’ values of the B matrix computed from a simulation trajectory,
compared to the actual values given to the nodes in that trajectory. Here, the two lines
represent the maximum and minimum eigenvalues.

The method described in section 3.2.2 only works for rods with relatively small
values of ∆ω. Figure 3.7 shows the results of parameter recovery for a rod with typical

Bi values (

2.5× 10−28 0
0 3.2× 1028

), but extremely short elements (the rod contains

a total of 209 elements, and each element is 1.2nm in length).

For systems with larger elements, we recover the parameters iteratively. A KOBRA
simulation with 49 rod elements with a known Bi was run, and the fluctuations in
the bending angle were measured, giving the observed Ci. The parameters used for
this simulation can be found in table E.4, and the raw data can be found online at
doi.org/10.1039/D0SM00491J. Applying equation (3.11) results in the extracted values
of B′i shown on the left-hand side of Figure 3.8. Running a simulation with these ex-
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3.2 Rod Parameter Extraction

tracted parameters gives fluctuations C ′i, different to Ci. Iterating once using equation
(3.12) then gives the extracted values of B′ shown on the right-hand side of Figure 3.8.
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Figure 3.8: Maximum and minimum eigenvalues of the B matrix found using the
iterative parameterisation scheme, compared to known reference values. The left-hand
side shows the results of the parameterisation using equation (3.11). The right hand-
side shows the results after one iteration of parameter recovery using equation (3.12).

The values of B′i generated through such a parameterisation, applied to a molecu-
lar dynamics trajectory, can only represent the conformational space explored by the
molecule during that trajectory. If the trajectory is short, this may produce an error
as a result of undersampling.

To represent how this error scales with trajectory length, a KOBRA trajectory was
created with a rod with known values of Bi. For different fractions of the trajectory
— the entire trajectory, up to and including frame M - the value of B′i was calculated
using equation (3.12). Figure 3.9 shows how the RMSD between the actual values and
the recovered ones (the RMSE) decreases over time.

δB′i =

 1
M

M∑
j=1

|Bj
i −B

j,′
i |

Bj,′
i

2 1
2

(3.13)

Where δB′i is the fractional error in B′i, the recovered value of Bi. The values of δB′i
are averaged over the entire rod to produce Figure 3.9.
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Figure 3.9: RMSE of the B eigenvalues for different fractions of the trajectory, for
a test trajectory with known values of B. The very start of the trajectory has been
truncated to better show the scale.

Note that rod simulations are overdamped, so they explore conformational space
more slowly than a comparable all-atom simulation. This means that the timescales of
rod and all-atom simulation trajectories are not always directly comparable.

For values typical of coiled-coils, the other parameters (βi and ki) can be recovered
without iteration. Figures 3.10 and 3.11 show the recovery of inhomogeneous values of
βi, using equation (3.8) for a trajectory consisting of 50000 frames and totalling 50µs.
For this simulation, the parameters used can be found in table E.4, and the raw data
is available online at doi.org/10.1039/D0SM00491J.
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Figure 3.10: Twist recovery parameterisation for a rod with inhomogeneous twist para-
meters, compared to known values.
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Figure 3.11: Percentage error in the recovered value of β calculated for different frac-
tions of the trajectory length.

The recovery of κi is shown in Figure 3.12.
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Figure 3.12: Stretch recovery parameterisation for a rod with inhomogeneous stretch
parameters, compared to known values.

3.3 All-atom Parameterisation Results

Using the method described in section 3.2.2, and the molecular dynamics simulation
from section 3.1, we can acquire a set of rod parameters for Ndc80C. Two rod simu-
lations were run to provide a single iteration for parameter recovery. The simulation
parameters can be found in table E.4, and the raw data at doi.org/10.1039/D0SM00491J.
The average values of the recovered parameters for the entire molecule (including the
flexible hinge) are given in table 3.3, specified per unit length (see section 2.2.3 for an
example).
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3.3 All-atom Parameterisation Results

Parameter Recovered Value
κ (1.718± 0.017) · 10−11 N

B (5.15± 0.29) · 10−31 m4 · Pa
β (1.32± 0.07) · 10−29 Nm2

Table 3.2: Average values of rod parameters for Ndc80C. B is assumed to be isotropic
in this case, so the values quoted are the diagonal elements of the B matrix.

In addition to increasing its flexibility, Ndc80C’s hinge region means that it is
slightly more susceptible to bending in one axis than in the other. This hinge is localised
to a small region in the centre of Ndc80C, so we need to look at the parameters extracted
on a per-node basis.
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Figure 3.13: The eigenvalues of the bending energy matrix Bi for the rod calculated
from the atomistic Ndc80C trajectory. Here, the two lines represent the maximum and
minimum eigenvalues, not any particular axis.
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Figure 3.13 indicates the two eigenvalues of Bi as a function of the node number.
It shows a localised region of decreased stiffness between nodes 4 and 6 in the para-
meterised rod model, which corresponds to the unstructured loop region (the hinge) in
the atomistic model. This hinge is also observed in the negative stain EM imaging of
Ndc80C [18], which will be examined in more detail in section 3.4.1.

3.4 Comparison of KOBRA Dynamics With Atomistic
Molecular Dynamics and Experimental Data

The parameterisation from section 3.3 was used to create a KOBRA rod model and
run a simulation comprised of 100, 000 frames, with a timestep of 1 × 10−12s, writing
frames at 3000 step intervals, for a total simulation time of 300µs. This is almost three
orders of magnitude longer than the atomistic simulations, though these simulations
only ran for 24 hours on the same workstation.

3.4.1 Comparison of Molecular Kink Angles

Wang et al. [18] use negative stain EM to obtain 2D images of a variety of Ndc80C
conformers (Figure 3.14). They force the Ndc80C molecules to lie on a flat carbon
support, and measure the ‘kink angle’, defined as the angle between the two halves
of the molecule, before and after the unstructured loop. This provides a distribution
of angles, based on 83 observations, and so gives an experimental measurement of the
flexibility of Ndc80C.
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Figure 3.14: Negative stain EM images of Ndc80C [18]. The scale in the lower left is
50nm in length.
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Dynamics and Experimental Data

Figure 3.15: Snapshots from the Ndc80C rod trajectory rendered in PyMOL. Green
lines denote elements, blue lines denote material axes.

From both the KOBRA rod (Figure 3.15) and atomistic MD trajectories, the kink
angles can be measured using the end-to-end vectors pa and pb of the two halves of
the coiled-coil region (i.e. from one end of the coiled-coil to the loop/hinge region, and
then from the loop/hinge region to the far end of the coiled-coil).

θ = arccos
(
pa · pb
|pa||pb|

)
(3.14)

This angle is computed for each frame of the trajectory, then binned in increments of
10 degrees in order to preserve parity with the experimental data, and the resulting
distribution normalised.

85



3.4 Comparison of KOBRA Dynamics With Atomistic Molecular
Dynamics and Experimental Data

0 25 50 75 100 125 150 175
Kink angle ( )

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

No
rm

al
ize

d 
oc

cu
pa

nc
y

Experimental data
Atomistic MD with AMBER
Elastic rod simulation

Figure 3.16: Kink angles for experimental data, rod simulation and atomistic simula-
tion. Angles are given as absolute values. Errors are computed by finding |Deltaf(θ)|,
the difference in the occupancy for two halves of the trajectory.

The distribution of kink angles for the KOBRA rod and atomistic trajectories are
very similar (Figure 3.16). Since the distribution of bend angles at each node from
the MD trajectory was used to parameterise the KOBRA rod simulation this can be
interpreted as an indication of a successful parameterisation.

The distribution of the experimental angles retains the same general features. The
experimental distribution does not capture the initial maximum, as the resolution was
too low to resolve bend angles less than 30 degrees - these angles were all inserted into
a single bin. Both the atomistic and rod simulation find a broad maximum of bend
angles between 25 and 75 degrees centred on 50 degrees, which falls off rapidly for angles
above 100 degrees. The experimental data broadly replicates these features although
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the range of the bend angles is broader. It should also be noted that the experimental
distribution is constructed from only 83 samples, compared to 10,000 frames/3µs for
the rod trajectory and 50,000 frames/90ns for the atomistic trajectory.

3.4.2 Comparison of Principle Components

Although we have set the rod material parameters directly from the dynamics of the
all-atom rod, it does not follow that the two models will exhibit identical dynamics,
as the rod material parameters were obtained from local measurements, whereas the
eigenvalues are global properties of the simulation trajectory. Furthermore, the MD
simulation is still relatively short and may be undersampled. To understand which
types of large-scale motion are conserved from the all-atom simulation to the KOBRA
simulation, we can analyse the trajectories from the two simulations using principal
component analysis (PCA) [112].

PCA is a statistical method used to reduce the dimensionality of molecular dynamics
data sets, by identifying the principal eigenmodes of motion (the principle components)
that result from thermal (or other) fluctuations. Each eigenmode represents a different
structural deformation. The principal components are ordered from the largest to the
smallest value of the associated eigenvalue (and thus, amplitude of the component).
PCA was performed using the software package pyPcazip [113].
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Figure 3.17: Dot product matrix of the average principal component eigenvectors. The
values shown are normalised to the size ordering of the largest dot product.

Figure 3.17 shows the dot product matrix comparing the rod and all-atom simu-
lations. Each cell shows the dot product of the eigenvector of the rod mode with the
corresponding all-atom mode. A dot product close to one means that the eigenvectors
are highly correlated. The eigenvectors are sorted by eigenvalue size, so if the matrix
is diagonal, it also means that the relative magnitude of the various modes of bending
are in the same order. The highest correlation is between the first modes, which corres-
pond to bending about the hinge. Although diagonal elements of the matrix dominate,
there are some significant off-diagonal components, which could be evidence of mode
mixture, particularly between mode 3 and 4.

As KOBRA cannot capture the motions of individual atoms, any mode that relies
on these motions cannot be replicated. Also note that the accuracy of the principal
components is limited by the length of the trajectories and the amount of conform-
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ational space each one has explored. Finally, these eigenvectors only represent the
direction of the motion, not the magnitude, so Figure 3.17 is a better reflection of the
relative directions of the different components of the bending matrix than the actual
value of those components.

To observe the mode mixture and visualise the motion represented by the first few
modes of the PCA, we can create ‘PCA animations’, that show the range of motion for
each eigenvalue. The PCA animations are created using the following formula,

ranimi = ri + (λf)v (3.15)

where ranimi is the animated node, ri is the original node, λ is the eigenvalue for that
node, v the eigenvector, and f is a scalar between 0 and 1. The resulting figure shows
how the nodes oscillate within that principal component.
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Figure 3.18: Comparison between the principal components of both trajectories. Left:
original, all-atom trajectory, coarsened to 14 nodes. Right: rod simulation. Both
models were projected into a plane containing the end-to-end vectors of two halves of
the molecule. The principal components appear in decreasing order of size.

Figure 3.18 compares the range of motion exhibited in the first four principal com-
ponent eigenmodes obtained from the rod and the all-atom MD simulations. The first
mode shows a central hinge, with similar magnitudes of bending for the rod and atom-
istic model. The second and third all-atom modes show the fluctuation of two different
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coiled-coil regions. While the second and third principal components initially look dis-
similar, the dot product matrix suggests there is mixing between these modes. For
example, modes 1 and 2 of the atomistic trajectory show motion on opposite sides of
the hinge, whereas in the rod, this motion is distributed evenly between both modes.
For reference, when assessing correlations between eigenmodes from multiple all-atom
trajectories, these normally display a significantly smaller degree of diagonal correlation
between PCA eigenmodes from separate runs on the same model (see Figure A.2) than
is shown in Figures 3.17 and 3.18.

Together, Figures 3.17 and 3.18 indicate a strong correlation between the motions
involved in the atomistic MD simulation and the KOBRA rod trajectories. This level
of correlation is typical (and in fact good) for comparisons of PCA between similar
MD simulations, or between MD and coarse grained simulations. The reason the cor-
relation is not perfect is because the MD trajectories are too short to sample a large
number of global configurations (the large scale modes) of the molecule [114], so there
is a statistical sampling error. We have used local information, such as the variation
in local bend and twist angles, to parameterise the coarse grained rod model, rather
than the variation in global configurations. For short MD trajectories, matching the
local bend and twist variation does not necessarily translate to exactly matching the
(statistically limited) variations observed in global configurations.

3.4.3 Range of Motion of the Hinge

We can compute the root-mean-square displacement (RMSD) of our simulation tra-
jectories on a per-element basis. This gives us a profile of the rod’s flexibility. We can
use this metric to compare the relative flexibility of the rod and atomistic trajectories.

To compute the best-fit RMSD, we first fit the equilibrium structure to the traject-
ory using the iterative closest point algorithm described in section A. Then, the RMSD
of the node positions is calculated in the bioinformatics style [115].

RMSD(r, r̃) =

√√√√ 1
N

N∑
i=1
‖ri − r̃i‖2 (3.16)
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The results of the best-fit RMSD calculation for atomistic and KOBRA rod structures
are shown in Figure 3.19.
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Figure 3.19: Per-element best-fit RMSD for the atomistic and rod structures. Note:
the B matrix shown in Figure 3.13 is not a property of the nodes at the edge of the
rod, so number of nodes and node indexing differ between that figure and this one.

The equilibrium rod structure is effectively a straight line. If we assume that the
rod is bending about a single point, the per-element RMSD of the rod simulation is easy
to understand: the equilibrium structure will, on average, intersect the bent structure
more around nodes 3 and 10 (the minima on Figure 3.19) and will diverge more near
the ends.

A similar, but asymmetric profile is visible for the atomistic simulation. Although
flexibility of the two sides of the rod could be genuinely asymmetric, it’s also possible
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that the trajectory is undersampled. This could explain the lower RMSD at each end,
as it did not enter extreme enough bend angles, and also the asymmetry — one end
stayed straighter than the other, so equilibrium structure aligned to it preferentially.
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Chapter 4

Connecting Rods to Tetrahedra and
Kinetochore-MT Binding
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Chapter 3 saw the use of the KOBRA elastic rod model to investigate the dynamics of
coiled-coils. This chapter will extend that model, allowing it to simulate of coiled-coils
coupled to globular regions. In particular, we will return to NDC80c, this time includ-
ing the small globular domains at each end. Similar ‘dumbbell’ shapes are also found
in myosin, dynein and fibrinogen.

Fluctuating Finite Element Analysis (FFEA) was introduced in chapter 1 as a
coarse-grained algorithm for simulating globular proteins. We will now outline a method
for coupling KOBRA rods to tetrahedral FFEA elements in a way that is computa-
tionally inexpensive and allows for the construction of mesoscale systems, such as the
kinetochore.

Once this algorithm has been developed, we will construct a simplified lateral at-
tachment model (see section 1.2 for a description of lateral attachment) in order to
study the microtubule-binding behaviour of Ndc80C and how this behaviour as af-
fected by its cargo and the hinge region.

Some of the literature reviewed in chapter 1 briefly discusses coupling of elastic
rods to exterior objects. Pai et al. [90] consider the system to be a standard boundary
value problem and solve the equations with the assumption that the stress at one end
of rod is always known, and the position and orientation of the other end is always
known. These constraints are specific to their problem, and would be difficult to apply
to molecules such as Ndc80C.

Bergou et al. [93], upon which the model outlined in chapter 2 is based, use a
method based on the minimisation of the elastic energy, with the constraints enforced
using a manifold projection. This method requires the energy to be found iteratively,
and depends upon the kinetic energy of the rod, making it unsuitable for massless rod
simulations.

For KOBRA, we propose an algorithm which is simple to implement, with no modi-
fication to the existing design of KOBRA or FFEA, and computationally inexpensive,
able to run in linear time. After this model has been described and validated, we will
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use it to perform preliminary studies of Ndc80C bound to a microtubule.

4.1 Exchange of Forces

FFEA represents globular regions as 3D volumetric meshes constructed from linear
tetrahedra. Each mesh is referred to in the FFEA nomenclature as a ‘blob’. At the
surface, the faces and nodes of these tetrahedra can be considered to be either ‘surface
faces/nodes’ or ‘internal faces/nodes’. In this example, we will consider an element with
one surface face, three surface nodes, three internal faces and one internal node (also
called the ‘back’ node), as shown in Figure 4.1. This figure also indicates the notation
used for describing nodes and edges.

surface
facexr

e1

e2

e3

y3

y2

y1

x3

x1

x2

Figure 4.1: Notation to be used in describing a tetrahedron.

We wish to connect an FFEA element and a KOBRA rod together, such that forces
in every degree of freedom are transmitted through the connection. These forces are
mediated through the use of an intermediate rod element, called the ‘attachment ele-
ment’. This allows the rod to ‘see’ the tetrahedron as another rod element, and also
allows the tetrahedron’s nodes to experience forces as if they were rod nodes. This at-
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tachment will be described in terms of its three degrees of freedom - stretching, bending
and twisting. For each degree of freedom, we will need a new way to translate between
the geometry of the tetrahedron and that of the attachment element.

4.1.1 Attachment Node

rn-1rn-2 rn = rarn-3

Figure 4.2: The attachment node (ra) within the attachment tetrahedron (shown in
yellow).

When an attachment is created, the node at either the start or the end of the rod
becomes the ‘attachment node’. In these examples, the end node (rN ) is the attachment
node. This node is positioned at some prescribed point relative to the internal edges
of the tetrahedron, as illustrated in Figure 4.2. The attachment node ra is

ra =
3∑
i=0

wiei. (4.1)

Where ra is the attachment node, ei are the edges and wi are arbitrary weights. For
example, if w1, w2, w3 = [1

3 ,
1
3 ,

1
3 ], the attachment node lies at the centre of the tetra-

hedron’s face, opposite to the back node rb.
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4.1.2 Attachment Element

The attachment node only transmits stretch forces. To account for bending and twist-
ing, we define the attachment element pa (Figure 4.3) and attachment material axis
ma. In order to fix the rod direction in the tetrahedron, we first compute the inward
normal to the face of the tetrahedron, nface.

nface = y1 × y2
|y1 × y2|

(4.2)

Where y1 and y2 are two edges on the tetrahedron’s face (see Figure 4.1). To en-
sure that the attachment element is always pointing into the tetrahedron1 (toward the
tetrahedron’s centroid, C), we multiply pa by a direction factor d,

n′face = dnface (4.3)

where

d =

 1, if cpath > 0
−1, if cpath < 0

(4.4)

where cpath is defined to be

cpath = nface ·
(
ra −C
|ra −C|

)
(4.5)

1This is a detail specific to the FFEA implementation, which does not guarantee the ordering of
nodes in tetrahedra.
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pN-3 pN-2 pN-1 pa

rN-1rN-2 rN = rarN-3

Figure 4.3: Positioning of the attachment element relative to the tetrahedron face
(equations (4.2) and (4.3)).

For most purposes, the attachment element is of unit length. However, when cal-
culating the bend energy using the mutual element (see section 2.2.3), a unit-length
element would heavily weight the mutual element toward the attachment node. There-
fore, it is scaled such that

n′′face = n′face(2|ñ′face| − |n′face|) (4.6)

The length of the attachment element is scaled such that it gets shorter if the end ele-
ment gets longer, and vice-versa. The choice of scaling behaviour is arbitrary, but this
preserves approximately correct weighting behaviour with respect to the end element.

Setting the position of the attachment element like this means it is always pointing
directly out of the attachment face. In some systems, we may require it to point
out of the element at an angle. So, after the orientation of the attachment element
has been calculated, it can be rotated by three angles, α, β and γ, using the Tait-
Bryan convention in the following order: X1Z2Y3. Thus, following rotation matrix is
constructed:
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Ra =


cos(β) cos(γ) − sin(β) cos(β) sin(γ)

sin(α) sin(γ) + cos(α) cos(γ) sin(β) cos(α) cos(β) cos(α) sin(β) sin(γ)− cos( γ) sin(α)
cos(γ) sin(α) sin(β)− cos(α) sin(γ) cos(β) sin(α) cos(α) cos(γ) + sin(α) sin(β) sin(γ)


(4.7)

We then rotate n′face (or n′′face) by the rotation matrix Rp to acquire the final attach-
ment element pa.

pa = Rpn
′
face (4.8)

4.1.3 Attachment Material Axis

The attachment material axis is needed to represent the twisting of the blob relative
to the rod. Unlike the attachment node and element, this cannot be computed solely
from the current positions of the tetrahedron nodes. Instead, we obtain the rotation
matrix R between the original and current tetrahedron configurations, and apply that
rotation to the equilibrium material axis. This equilibrium material axis is obtained
by parallel transporting (section 2.2.2) the equilibrium material axis from the adjacent
element onto the equilibrium attachment element,

m̃a = P (m̃adj , l̃adj , l̃a) (4.9)

Where m̃a is the equilibrium attachment material axis, m̃adj is the adjacent equilib-
rium material axis (assuming the connection is at one end of the rod, this is either
i = 1 or i = n − 1), l̃a is the normalised adjacent element at equilibrium, l̃adj is the
normalised attachment element, and P is an application of parallel transport as defined
in equation (4.9).

To obtain R, we first compute the Jacobian matrix of the tetrahedron, which is the
transformation matrix from a reference tetrahedron with nodes at xr = (0, 0, 0), x1 =
(1, 0, 0), x2 = (0, 1, 0, and x3 = (0, 0, 1).
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4.1 Exchange of Forces

J =


x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0

 (4.10)

where J is the Jacobian, x, y and z are dimensions, and subscripts are tetrahedron
node indices. We can multiply the Jacobians for the current and equilibrium state of
the tetrahedron to get the deformation matrix which transforms from the equilibrium
to the current tetrahedron configuration,

Fe = (JJ̃−1)T (4.11)

where J is the Jacobian for the equilibrium configuration. The elements of this matrix
give us the displacement, rotation and deformation of elements of the tetrahedron. To
extract only the rotational component, we can perform a QR decomposition of the
matrix using the Gram-Schmidt algorithm [116].

F = QR (4.12)

This gives us two matrices. The orthogonal matrix Q defines the shape of the tetra-
hedron, while the triangular matrix R defines its orientation. R is the rotation matrix
that rotates the equilibrium tetrahedron onto the current one, so this rotation matrix
can also be used to rotate m̃a onto ma (Figure 4.4),

ma = Rm̃a (4.13)

When the end/attachment node position is updated, the attachment material axis is
forced to be perpendicular to the attachment element using the method described in
section 2.2.5.
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ra ra

ma

ma
~

~

Figure 4.4: Update of the material axis from the equilibrium configuration (m̃a and
r̃a) to the current one (ma and ra) as detailed in equations (4.10-4.1.3).

4.1.4 Attachment Energy

Energy type Mediated by

Stretch Attachment node
Bend Attachment element
Twist Attachment material axis

Table 4.1: Summary of the degrees of freedom in the rod-blob connection.

The KOBRA rod has now been extended to contain an extra element and material
axis, representing the connection to the tetrahedron. Additionally, the end node rn
is replaced by the attachment node ra, so the position of this node is determined by
the position of the connected tetrahedron, and therefore the blob is transmitting forces
onto the rod.

To resolve forces from the rod to the blob, we use a method similar to that described
in section 2.2.4. The nodes of the attachment tetrahedron now experience a gradient
in energy with respect to their position, from the rod that is connected to them,
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4.1 Exchange of Forces

Fi = ∂E

δxi
. (4.14)

If we compute this energy using the equations described in section 2.2.3, updating the
position of the rod elements as described in this chapter, and apply the resulting force
to the tetrahedron nodes, then the rod will transmit a force back onto the blob.

4.1.5 Implementation Details

Initialisation

For numerical stability at initialisation, these attachments must start at or close to equi-
librium. An attachment can be considered either ‘rod-to-blob’ or ‘blob-to-rod’. This
does not affect how forces are resolved in the connection, only how the attachment is
initialised.

Rod-to-blob attachments ignore the initial position and rotation of the blob. In-
stead, the blob is translated and rotated such that, at equilibrium, the attachment node
ra is at the end (rn) of the rod, the blob’s face normal is parallel to the attachment ele-
ment pa, and there is no twist from the attachment material axis, between pa and pn−1.

A blob-to-rod attachment will ignore the initial position of the rod, and trans-
late/rotate the rod such that, at equilibrium, the attachment element pa is parallel to
the face blob normal, the first node r0 is at the position of the attachment node ra and
there is no twist between the attachment material axis ma and the first material axis
m0.

To rotate the rod or blob, we use the method described in 2.2.2 to compute the
vector that rotates the adjacent rod element (p0 for blob-rod attachments, pn−1 for
rod-blob attachments) onto the current attachment element pa.

For a blob-to-rod attachment, the rod is then translated by the vector t, where

t = r0 − ra (4.15)
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For rod-to-blob attachments, the blob is translated by −t instead.

This initialisation step occurs for every attachment in the system. Each attachment
has an attachment priority value that determines whether it will be initialised before
or after other attachments.

Algorithm Steps

The steps taken in initialisation and one timestep are as follows:

• Initialisation

– Initialise attachments in order of priority (section 4.1.5)

– Position objects (and attachments) in simulation box

– Set initial values (e.g. J̃)

• Timestep

– Update blob boundary conditions, calculate nearest neighbours

– Reorientate attachment (sections 4.1.1 through 4.1.3)

– Set position of connected rod end node to attachment node

– For each node in the attachment tetrahedron (section 4.1.4):

∗ Permute node position

∗ Compute new attachment element

∗ Compute energy and force on node from rod

– Calculate blob forces (internal/external)

– Update blob positions

Unlike other algorithms, particularly those that make use of optimisation algorithms,
resolving a rod-bob connection happens in O(1) time, and multiple rod-blob connec-
tions scale in linear time. Multiple connections are independent and so the algorithm as
also embarrassingly parallel. The memory consumption is also negligible: a single extra
node, element and material axis. The downside of this method is that its numerical
stability depends upon the stability of the connected element — strong forces at the
connected element can cause the element to invert, or prevent the conjugate gradient
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4.2 Simulations of Larger MT-Kinetochore Systems

solver from converging. The easiest solution to this problem is to ensure that the size of
the connected element is fairly large. For typical rod parameterisations, such as those
discussed in chapter 3, the longest side should be no shorter than 14Å.

In the same vein as section 2.4, the correctness of this algorithm is supported by
a set of unit and end-to-end tests. These tests can be found in the Appendix, section
B.2.

4.2 Simulations of Larger MT-Kinetochore Systems

In this section, we will run some preliminary simulations to show the capabilities of
the rod-blob connections, examine how Ndc80C can form attachments to microtubules,
and study how these attachments are affected by the flexural stiffness of Ndc80C and
the presence of its cargo. This section will focus solely on lateral attachment, in which
Ndc80C binds to the side of a microtubule, pointing away from the microtubule surface
[117], which can be examined without a dynamic microtubule model.

4.2.1 Research Questions

Prior experimental research into Ndc80C and the kinetochore suggests a number of
open questions, into which simulations may provide insight.

Do stiffer Ndc80Cs bind preferentially? If stiffer, or straighter, Ndc80Cs bind
preferentially with microtubules [10] [118], we might expect to see this reflected in
the bend angle distributions of Ndc80C molecules bound to microtubules compared to
those which are not bound. However, we might also expect bound cargo to restrict the
possible bend angles that Ndc80C can take. Could it be that Ndc80Cs which are bound
to microtubules bend less because of their cargo, and not that less-bent Ndc80Cs bind
preferentially to microtubules?

Does the presence of cargo affect Ndc80C’s MT-binding affinity? The
inner kinetochore attaches to Ndc80C at the Spc24/Spc25 end, connecting it to chro-
mosomes by the centromere. The disparate Ndc80C complexes are all brought together
by a superstructure made from MIND complexes [5]. In understanding the dynamics
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4.2 Simulations of Larger MT-Kinetochore Systems

of Ndc80C, our primary concern is how the presence of this cargo can exert forces on
Ndc80C and affect its affinity to bind to the MT. There is some evidence that straight
Ndc80Cs adhere more easily, but this straightening may not be an intrinsic property
of Ndc80C, rather the result of tension applied by the MIND complex [119].

Effect of the flexible hinge on MT-binding As discussed in chapter 3, Ndc80C
contains a central flexible hinge that accounts for the wide range of conformations that
the molecule can take. The flexibility of Ndc80C can also regulate its ability to bind
and unbind from microtubules [10] [118]. It is therefore worth considering how the
flexible hinge might affect the profile of energies resulting from attractive forces at the
surface of the microtubule. In atomistic molecular dynamics, we are used to think-
ing of binding interactions as a product of the binding energy between two molecules.
However, the effective binding interaction between Ndc80C and the MT doesn’t just
depend only the specific interaction between the globular domains and the MT surface,
it also depends on the free energy of the entire Ndc80C molecule, and thus the hinge
parameters. Does the flexible hinge increase this binding affinity, or decrease it?

Does Ndc80C bind better in clusters? There is experimental evidence that
the attachment becomes more stable as the number of Ndc80C molecules increases,
with three being the minimum number to form a stable attachment [17] [43]. Would
increasing the number of Ndc80C molecules increase the number of binding events per
molecule?

Binding between Ndc80C’s unstructured tail and the DAM1 ring Ndc80C
has an unstructured tail, and there is some evidence that this greatly increases the bind-
ing affinity, not directly with the MT but with the DAM1 ring. We lack a DAM1 ring
model and a way to represent this loop — so this simulation would require atomistic
studies followed by a parameterisation based on point-point interactions or a rod model
that can support FFEA-style rod-surface interactions (see section 5.3 for a discussion
of this). A DAM1 ring model may prove necessary in the future as Ndc80C binds to
DAM1 during side-on attachment [120] [121].
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4.2 Simulations of Larger MT-Kinetochore Systems

4.2.2 Parameterisation

In order to address some of the above questions, we have set up a series of initial sim-
ulations designed to mimic attachment of the kinetochore complex to the microtubule.
The parameterisation of the system used in these simulations is based on low resolution
(4.3Å) structural information for laterally attached kinetochores (Figure 4.5). All-atom
structures cannot be recovered from this data, and different protein complexes within
the kinetochore are not easily distinguished from one another.

Figure 4.5: Three dimensional images of the kinetochore (pink) bound to a microtubule
(yellow) captured using electron tomography [6]. Scale bars are 100nm.

Given their resolution, the fact these tomographic images cannot be used to identify
specific protein components is expected. There is insufficient information to create
FFEA meshes and KOBRA rods directly. While it is clear that Ndc80C binds to the
MT and connects to a larger cargo, we will need to make certain assumptions about
how the system is laid out in order to set up a coupled FFEA/KOBRA simulation. We
assume that:

107



4.2 Simulations of Larger MT-Kinetochore Systems

1. Ndc80C begins perpendicular to the MT surface.

2. There are three Ndc80 complexes bound to the MT (this is the minimum number
than can be bound whilst retaining the correct chromosome segregation behaviour
[122]).

3. Ndc80C binds to the MT at binding sites separated by 8.5Å. The interatomic
potentials are parameterised using the attractive part of the 6-12 Lennard-Jones
potential [123],

Ui,j(r) = εi,j

[(
σi,j
r

)12
− 2

(
σi,j
r

)6
]

(4.16)

with parameters of σi,j (the equilibrium separation) = 1× 10−15m, and εi,j (the
depth of the potential well) = −1×10−10J . In previous simulations it was shown
that this affinity provides a reversible binding [124].

4. The structure of the inner kinetochore does not broadly affect the MT-binding
behaviour of Ndc80C, except that it imparts a viscous drag. We will represent
Ndc80C’s cargo as a sphere, mirroring in vitro nanobead experiments [125].
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4.2 Simulations of Larger MT-Kinetochore Systems

Figure 4.6: FFEA system depicting side-on MT attachment rendered in PyMOL. The
sphere radius is 50nm, the three Ndc80 complexes are parameterised as in chapter 3,
and the MT is parameterised as it is in [19].

Figure 4.6 shows the assembled KT-MT system. Three Ndc80 complexes, each
comprised of one rod and two small globular domains, are positioned above the surface
of the MT. The rod uses the parameterisation from chapter 3. The globular domains
are created from the ‘Bonsai’ Ndc80C structure [17] using the FFEA coarse-graining
method [1]. Rod-blob connections between the rod and globular domains are set up
using the alignment of the the ‘Bonsai’ structure as a guide. The Ndc80/Nuf2 end is
at the MT surface, while the Spc24/Spc25 ends are attached by harmonic restraints
(shown as grey lines) to a sphere. In Figure 4.6, the surface triangles for the meshes are
coloured according to their surface-surface interaction parameters. The red-coloured
triangles have a short-range Lennard-Jones-like attraction to other red-coloured tri-
angles, so are responsible for attracting the Ndc80C to the surface of the MT. The
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4.2 Simulations of Larger MT-Kinetochore Systems

parameters of this interaction are listed on earlier in this section, on page 108. The full
surface is shown in Figure E.1. Some of the other FFEA parameters are listed in table
E.5.

A set of simulations were performed using the system shown in Figure 4.6. A sum-
mary of these can be found in table 4.2.

Simulation MT Cargo Hinge

Control 3 3 3

No hinge 3 3 7

No cargo 3 7 3

No cargo, no MT 7 7 3

Table 4.2: Summary of the simulations performed using the Ndc80C-MT system shown
in Figure 4.6.

The ‘Control’ simulation is of exactly the system shown in Figure 4.6, containing
the microtubule, cargo, and a flexible Ndc80C parameterised as it was in chapter 3.
The ‘No hinge’ simulation removes Ndc80Cs flexible hinge, replacing it with a region
with average bending modulus parameters calculated from the rest of Ndc80C. The ‘No
cargo’ simulation removes the spherical cargo and harmonic restraints, but keeps the
rest of the system as shown in Figure 4.6. The ‘No cargo, no MT’ simulation contains
no MT or cargo, it features only a single Ndc80C molecule, a KOBRA rod attached to
two globular domains.

4.2.3 Preliminary Results

This section will discuss the results of the Ndc80C simulations and how they relate
to questions about Ndc80C’s MT-binding behaviour and the stability of the MT-KT
attachment. These are initial results, presented as an illustration of possible lines of
analysis using KOBRA.
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4.2 Simulations of Larger MT-Kinetochore Systems

Does the Presence of the MT and Cargo Restrict the Possible Conforma-
tions of Ndc80C?

If Ndc80C is bound at one or both ends, we might expect that to constrain its motion,
either through viscous drag (cargo) or steric repulsion (the MT), and restrict the range
of conformations that it explores. This might inform us of how the presence of the cargo
affects Ndc80C’s MT-binding ability, and whether the observed ‘stiffness’ of bound
microtubules might actually be a result of the tension stabilising the interaction, and
not vice-versa. To test this, we compare distributions of kink angles from the systems
listed in table 4.2 using the method described in section 3.4.1.
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Figure 4.7: A distribution of kink angles taken by three different systems. The kink
angles are computed using the method described in section 3.4.1. In simulations with
multiple Ndc80Cs, the mean bend angle is used.

Figure 4.7 compares the kink angles of three different systems, one with an Ndc80C
molecule on its own (No cargo, no MT), one in which three are attached to a microtu-
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bule (No cargo), and one in which three are attached to a microtubule with the spherical
cargo (Control). The motion of Ndc80C is restricted by its interactions with the mi-
crotubule, and even more constrained in the presence of cargo. There are two factors
behind this: first, binding Ndc80C means that the molecule is under more tension.
Second, the steric interactions with the microtubule restrict the motion of the globular
domain at that end. Do these factors affect Ndc80C’s MT-binding properties? To find
out, we can investigate MT-binding behaviour of Ndc80C more closely by looking at
the magnitude of the attractive surface interactions, and the role of Ndc80C’s flexible
hinge.

Effects of Bound Cargo and Tension

If bound cargo (and thus, tension) affect the MT-binding behaviour of Ndc80C, we
might expect to see this reflected in the energy of the short-range interactions between
the globular ends of Ndc80C and the MT surface. The existing trajectories were pro-
filed in order to observe these energies and develop a picture of Ndc80C’s ability to
diffuse and locate a binding site. We first compare these energies for two simulation
trajectories, ’Control’, with cargo, and ’No cargo’, without it.
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Figure 4.8: Van der Waals interaction energies between Ndc80C’s globular domains
and the MT surface as a function of time, comparing a trajectory with cargo (left) to
one without (right). Different colours represent different Ndc80C molecules.

112



4.2 Simulations of Larger MT-Kinetochore Systems

Figure 4.8 shows how the short-range interaction energies evolve throughout a tra-
jectory. The lines show the instantaneous total van der Waals interaction energy for
the three Ndc80C globular domains, each frame. A trough on this graph indicates that
Ndc80C came close to a binding site. The energy is calculated using the 6-12 potential
shown in equation (4.16).

The right-hand side of the plot shows a simulation with no bound cargo - the sphere,
normally bound to the Spc24/Spc25 end of Ndc80C, is not included. They both show
a similar number of binding events, though the one with cargo has slightly more. It’s
possible that the presence of cargo anchors the far end of Ndc80C in place, restrict-
ing the conformational space it can explore, but allowing it find a binding site more
easily. However, the interaction is not strong, and Ndc80C can unbind easily. This
can be observed in the second half of the ‘Control’ trajectory, as Ndc80C has drifted
away from the microtubule entirely. This suggests that, to form a stable attachment,
especially in the presence of tension, Ndc80C must interact more strongly with the MT
than other MT-binding proteins such as cytoplasmic dynein. Alternatively, more than
three Ndc80C molecules are required in order to form a stable attachment. The relative
lack of binding events and their uneven distribution also suggest that conformational
space is not well-sampled, even in a lengthy (1.8 µs) trajectory.

We can visualise the paths that Ndc80C’s globular domains take throughout the
trajectory by plotting the positions of their centroids in cylindrical co-ordinates, with
respect to the microtubule axis, for each frame in the trajectory.
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Figure 4.9: Trails of Ndc80C’s globular domains, represented in cylindrical co-ordinates,
the azimuthal angle φ and the height z. Each colour represents a different Ndc80C
molecule. The ‘No cargo’ system is on the left, ‘Control’ on the right.

Figure 4.9 compares the paths of Ndc80C’s globular domains for two simulations,
the control (right), and the simulation run with no cargo (left). The trajectories are
not far from being random walks, although clearly all three molecules show an affinity
for certain regions of the MT. The rightmost Ndc80C in the no cargo trajectory also
appears to find a different binding site. We can compare this interaction quantitatively
by looking at the third cylindrical co-ordinate, ρ, the radius, and how it is distributed
for the different trajectories.
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Figure 4.10: Distribution of radii of the Ndc80C Ndc80/NUF2 globular domain. The
radii are given in terms of the cylindrical co-ordinate ρ, the radius from the center of
the cylinder.

The cargo may affect the ability of the Ndc80C to move around the surface of the
MT (Figure 4.8), but it does not inhibit its ability to move radially (Figure 4.10), which
is almost identical with and without the cargo. The motion of Ndc80C in these traject-
ories is driven entirely by thermodynamics, but we might expect the cargo to inhibit the
motion due to kinetics more so than the diffusive motion. Real cellular environments
are densely-packed, there may be more to inhibit the motion of the kinetochore’s cargo
than just Stokes drag. Finally, conformational space may not be well-sampled, even in
a trajectory 1.8µs in length.
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Ndc80C’s Flexible Hinge

This section will focus on the Ndc80C molecule parameterised without a flexible hinge
(‘No hinge‘). This model has an identical structure to the hinged Ndc80C, but the
values of the B matrix at the hinge have been set to the average for the whole mo-
lecule. The surface-surface interaction energies from the resulting trajectory are shown
in Figure 4.11.
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Figure 4.11: Short-range (van der Waals) energy between Ndc80C’s globular domains
and the MT surface as a function of time, comparing a trajectory with a hinge (left) to
one without (right). Different colours once again represent different Ndc80C molecules.

The hinged and unhinged molecules show a similar number of binding events. How-
ever, the binding events for the unhinged Ndc80Cs are denser at the start of the tra-
jectory and become more sparse as it evolves. This could suggest that the hinge-free
Ndc80Cs are drifting away from the MT surface. It’s possible the motion of the cargo
dominates the position of the Ndc80Cs, and the force from the cargo’s motion —
without the hinge to mediate it — is stronger than the attraction from the binding
site. We can again investigate this more closely by looking at the radius of Ndc80C’s
globular domains from the microtubule.
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Figure 4.12: Distribution of radii of the Ndc80C Ndc80/NUF2 globular domain. The
radii are given in terms of the cylindrical co-ordinate φ, the radius from the center of
the cylinder.

Figure 4.12 shows the average radius of Ndc80C’s globular domains from the center
of the microtubule. The higher peak of the hinged molecule suggests a more stable
attachment. On average, the globular domains are farther from the MT without the
hinge. This reinforces the idea that the hinge allows Ndc80C to bind more easily to the
MT surface. The distribution of radii is altered far more radically than in Figure 4.10.
This suggests that the difference in Figure 4.11 is not necessarily due to forces exerted
by the cargo, and it may simply be that the flexible hinge allows Ndc80C to access the
binding site more easily. Does this correspond to an increase in conformational space,
across the MT’s surface, explored by the molecule?
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Figure 4.13: Trails of Ndc80C’s globular domains, represented in cylindrical co-
ordinates, the azimuthal angle φ and the height z. Each colour represents a different
Ndc80C molecule. Left: control. Right: no hinge.

Figure 4.13 shows the results of this comparison. The molecule with the hinge and
without the hinge do not stray any farther from their original positions. This would
suggest that the flexible hinge allows Ndc80C to stay bound while experiencing tensile
forces from its cargo, but it does not more easily allow it to find a binding site in the
first place.

4.2.4 Future Work

Although the scope of this investigation was limited, the results do point towards sev-
eral interesting research questions. Additionally, there are many unanswered questions
from the literature that were not considered when building these simulations. This is
partly due to the incomplete feature-set of KOBRA. Neither cluster binding nor the
DAM1 ring are represented. It is not yet possible to represent the physics present in
these systems using KOBRA, as it lacks a model of short-range interactions (such as
Lennard-Jones and steric interactions) between rods and rods, or rods and blobs (for a
discussion of these, see sections 5.2 and 5.3). Any emergent behaviour of densely-packed
Ndc80C is likely driven or affected by self-interaction and self-intersection — Ndc80Cs
becoming tangled together — and the results would not be meaningful without this.
Similarly, the DAM1 ring’s behaviour depends upon a combination of blob-blob and
rod-blob interactions, and would require a fully-modelled DAM1 ring and a careful
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parameterisation of Ndc80Cs unstructured tail.

As a follow-up the preliminary results shown here, we propose the following:

• Multiple repeat trajectories for all simulations. As discussed in section 3.4.2
of chapter 3, the conformational space of biological molecules is extremely large
[114], and a single simulation showing some binding behaviour (or the lack thereof)
is not enough to establish a pattern. More simulations would also allow us to ana-
lyse binding events via a histogram.

• A more thorough investigation of Ndc80C’s clustering behaviour. Varying the
number of Ndc80C molecules could affect the strength of the attachment [17]
[43]. This could be combined with an investigation into the MT parameters or
tension to produce a phase space diagram showing when MT-binding can occur.

• Parameterisation of Ndc80C’s tail. There is evidence [121] [120] that this tail
increases the binding affinity with the DAM1 ring. Simulations of this would
require atomistic studies of DAM1 and a tetrahedral DAM1 mesh, followed by
a parameterisation based on point-point interactions, or a rod model that can
support FFEA-style rod-surface interactions. We also may want to look at DAM1
next as Ndc80C does bind DAM1 in at some point during side-on attachment [39]
[47].

• The sphere in these simulations could be replaced with a more accurate model
of the inner kinetochore. This model could be created by combining data from
partial EM structures as was done in [47].

• The parameters of the short-range interaction could be investigated more thor-
oughly by varying the number of Ndc80Cs, the strength of the interaction, and
applying a force to the sphere to simulate the tension resulting from the inner kin-
etochore and cargo. This force would likely be between 2−10pN , the lower bound
is given by thermal noise; the upper bound is the magnitude of forces present in
molecular motors. FRET measurements estimate it to be of order 1.36 to 7.44pN
depending on the phase of the cell cycle [126]. Finally, note that the interaction
between Ndc80C and the MT (possibly through DAM1) is much stronger after
the transition to end-on attachment; side-on attachment should not be so stable
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that the transition to end-on attachment cannot take place.
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Chapter 5

Conclusion and Future Work
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5.1 Summary of Progress

In this chapter, we will summarise the progress that has been made so far, and discuss
ways to extend the model and the kinds of systems that these features could be used
to examine.

5.1 Summary of Progress

In chapter 2, we discussed the development of an elastic rod model that could be used
to represent slender biological macromolecules. This was based on work by Bergou
et al. [93], but heavily modified to include an extra degree of freedom (stretching),
bending about a single-element hinge, intrinsic twisting, and new dynamics incorpor-
ating stochastic thermal noise and viscous drag. As we have seen, biological elastic rod
models are nothing new, but KOBRA exists at a rarely-explored length scale between
all-atom molecular dynamics and models for filaments and fibrils with explicitly defined
radii, such as microtubules and actin. Its particular feature-set makes it ideal for sim-
ulating coiled-coils and stable alpha-helices at the mesoscale.

In chapter 3, we turned to examine Ndc80C on an all-atom scale. The creation of
this Ndc80C structure was informed by a combination of X-ray crystallography and
secondary structure prediction. We were also able to observe the role of the hinge
region in decreasing the stiffness of Ndc80C, which had previously been theorised. We
described a novel method to extract the rod parameters of Ndc80C from the magnitude
of the local fluctuations in the all-atom model, and how to incorporate these measure-
ments into a coarse-grained rod model. However, while this model was validated by
comparison with all-atom simulations and negative-stain EM, the length scale of the
simulations performed did not increase. While the timescales did increase, the accuracy
of the dynamics was still constrained by the timescale of the all-atom simulations.

In chapter 4, we extended the rod model include connections to tetrahedral meshes
such as those found in the FFEA algorithm, which can be used to create larger, more
complex mesoscale systems, such as the Ndc80C-MT system, created such a system,
and observed its MT-binding behaviour, and how it was affected by the presence of
cargo and the parameterisation of Ndc80C’s flexible hinge.
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5.2 Rod-rod Interactions

Although we have only examined Ndc80C, no aspect of the method described in this
thesis is specific to Ndc80C. KOBRA is currently being used to understand both SMC
complexes (Figure 5.1), involved in chromosome condensation [127], and Myosin-V, a
motor protein [128].

Figure 5.1: Parameterisation of the SMC complex [20] from all-atom (left) to KOBRA
(right) by Samantha Coffey. Rendered in PyMOL [16].

An integral part of the work undertaken in this project — and one that is of-
ten neglected, due to the time and effort it requires — is the development of robust,
well-engineered software, validated with unit and integration tests. In physics software,
unit and integration tests guarantee that the software works exactly like the algorithms
described in papers, theses and presentations. Low-quality software produces science
that can’t be tested or replicated. KOBRA includes a comprehensive set of unit and
integration tests, most of which are not described in the main text of this thesis, but
short summaries are available in section B. A discussion of the broader software engin-
eering principles behind KOBRA’s design can be found in section C. Other software
development work undertaken as part of this project includes an FFEA/KOBRA con-
tinuous integration server (also described in B), development of the FFEA website
(ffea.bitbucket.io), documentation for users and developers (ffea.readthedocs.io),
improvements to the FFEA PyMOL plugin for visualisation, and educational materials
for FFEA workshops.

5.2 Rod-rod Interactions

Generally speaking, the systems we have been studying have arrangements of rods that
are sparse and straight enough that they are not likely to self-intersect. In cases where
they do, the forces that would arise are not included in our algorithm, so we are making
the assumption that such forces are not important to the overall dynamics and func-
tion of the system. In many systems, this is not the case. For example, the end-on
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5.2 Rod-rod Interactions

yeast kinetochore system (section 1.2.2) is much more densely-packed, with micotu-
bules splaying outwards instead of abruptly ending. In the human kinetochore (section
1.2.3), Ndc80C interlocks with these splayed-out microtubules. Therefore, the transfer
of forces in these systems is either subject to or dependent entirely on collisions and
short-range interactions.

In simulations on this scale, there are two classes of forces we wish to represent:
steric repulsion, which penalises the overlap of objects, and forces that act at a dis-
tance, such as van der Waals attraction, charge and dipolar interactions. Therefore, it
is necessary to calculate both the distance between objects and the extent of their over-
lap. Normally, the van der Waals force is computed using the attractive part of a 6-12
Lennard-Jones potential. For steric repulsion, it is normally not possible to represent
the extreme hardness of the potential from the Pauli exclusion principle. FFEA uses a
softer steric repulsion force proportional to the overlapping volume of two tetrahedra,
so this is also the method we will examine in relation to KOBRA.

Detection and resolution of collisions between 3D objects is generally broken into
three steps. First, subdivision of space. Then, calculation of distance or volume over-
lap, then calculation of force.

A naive collision detection algorithm will scale as O(N2), where N is the number of
colliding objects in the system. Every time a new object is added, a collision test must
occur between it and every other object. To mitigate this, collision detection algorithms
subdivide space into cells, only computing collisions between adjacent cells. Normally
this comes in the form of either octrees1 or evenly-spaced cuboids, of which FFEA uses
the latter. In systems of highly variable density, octrees give better performance, but
the systems targeted by FFEA usually do not contain large voids.

The solution to the second problem, calculating the distance or volume intersection
between two objects, depends upon the geometric primitives used to represent the ob-
jects.

1An octree is a data structure in which space is recursively subdivided into cubes. Each level
of recursion subdivides one cube into eight. Octrees are particularly useful for representing three-
dimensional volumes of variable density, as fewer recursions can be used to represent less dense areas.
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5.2 Rod-rod Interactions

Figure 5.2: Shortest distance between two skew lines.

For example, KOBRA rod elements could be considered to be infinitely thin skew
lines (Figure 5.2), in which case the distance between them is analytically solvable [129],
and they have no volume, so cannot intersect. The shortest distance, d, between two
skew lines, is given by

d =
∣∣∣∣( pa|pa| × pb

|pb|

)
· (rb − ra)

∣∣∣∣ , (5.1)

where pa and pb are the elements, and ra and rb are the nodes. Hence, it would be
straightforward to introduce a soft interaction that depended on the distance between
rod elements.

If we consider the rod elements to have a non-zero volume, distances and volume
intersections are more difficult to compute. For example, we could consider the rods
to be a series of spheres distributed along the rod axis, whose intersection volume and
distance apart can be computed analytically. However, in order to prevent rods from
passing through one another, each rod element would need to be constructed from
many spheres, which would greatly increase the computational cost of collision detec-
tion, even if it saves time in resolving the collisions.
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5.2 Rod-rod Interactions

Figure 5.3: Elastic rods used to represent actin filaments in the MEDYAN cytoskeleton
model [21]. The excluded volume potential Uvolij is shown at the bottom.

In the MEDYAN cytoskeleton model [21] (Figure 5.3), actin filaments are represen-
ted as cylinders, and collisions are handled by an analytical excluded volume potential
given by the equation

Uvolij = Kvol

∫ 1

0

∫ 1

0

dsdt

|pi − pj |4
(5.2)

Where U is the energy resulting from the excluded volume, Kvol is a constant, and

p1
i = r1

i + t(r2
i − r1

i ) (5.3)

Where x are the node positions, with the subscripts i and j denoting which filament
the node belongs to, 1 and 2 denoting the index of the node within the rod, and t is a
parameter denoting the length of the element.

This double integral could be avoided by using capsules instead of cylinders. If we
enclose the rod elements by capsules with radius r, then any point on the surface of the
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5.2 Rod-rod Interactions

capsule is always a distance r away from the rod element. This means that distances
between capsules can be computed using a modified version of equation (5.1), the skew
line formula

d =
∣∣∣∣( pa|pa| × pb

|pb|

)
· (rb − ra −Ra −Rb)

∣∣∣∣ (5.4)

Where Ra and Rb are the radii of rod elements a and b.

This distance formula allows for the attractive part of the Lennard-Jones potential
to be computed easily. As this is a distance between rods and not between nodes, the
forces in question must be mapped back onto the rod nodes. The simplest solution is
to divide the forces evenly between the two adjacent nodes, but this could introduce
torque into the system. To keep the line of action for the forces the same, the following
formula can be used to compute the points ca and cb that form the line segment joining
the rod elements a and b,

ca = ra + (rb − ra) · npb
pa

|pa| · n
p
b

pa
|pa|

(5.5)

and

cb = rb + (ra − rb) · npa
pb
|pb| · n

p
a

pb
|pb|

(5.6)

where

nj = pj
|pj |
×
(
pa
|pa|
× pb
|pb|

)
. (5.7)

The forces on the rod nodes can then be linearly interpolated according to the nearest
points:

w1 = |c1 − ra1 |
|p1|

, w2 = |c1 − ra2 |
|p1|

(5.8)

127



5.3 Rod-blob Interactions

These skew line formulae actually find the closest point between two infinite lines. To
apply this to finite rod segments, we check to see if the points ca and cb lie upon pa
and pb [130]. If

p · (c− r1) > 0 (5.9)

and

p · (c− r1) < p2 (5.10)

then the point c lies on p. If not, the closest node (either r1 or r2) can be used instead.

If the result of equation (5.4) is negative, its value is an ‘intersection radius’ that
we can use to calculate the steric repulsion. The disadvantage of this method is that it
would create a much harder potential for interactions at the hemispherical caps of the
capsules — however, this is only a problem at the ends of rods, as within rods, the nth
rod element cannot collide with the n+1th or n−1th elements — interactions between
the those elements are already accounted or via bending stiffness of the rod. The
direction and magnitude of the repulsive force could then be computed by evaluating
∂ri
∂x , the change in intersection radius with respect to node position, just as the energy
due to internal rod forces is computed in section 2.2.4.

5.3 Rod-blob Interactions

Chapter 4 discuses the exchange of forces between rods and blobs made of FFEA
tetrahedra by anchoring them to one another, but this description of rod-blob interac-
tions does not include contact forces between the two. In FFEA, distance interactions
between blobs and blobs (called surface-surface interactions) are handled by a summa-
tion over short-range interactions (mostly from van der Waals forces) of points that lie
on those surfaces [1].

OLJp =
∑
S

∑
T

ASAT

NG∑
k=1

NG∑
l=1

WkWlψα (sk) fi (sk, tl) (5.11)

128



5.4 Other Features

Where s and t are points on two surfaces, f(s, t) is the force due to a point-point
short-range interaction, Op is the force vector formed from the external interaction, S
and T are the total number of pairs of triangular surface faces, ψ are the surface shape
functions, NG is the number of points for quadrature, Wk and WL are the weights for
the sums in the Gaussian quadrature, and As and At are the areas of the surfaces.

For distance interactions between rods and blobs, the same method could be ap-
plied, but this time using a single a summation over short-range interactions of points
that lie on the rod.

For steric repulsion, FFEA does not use the repulsive part of the Lennard-Jones po-
tential, for the reasons discussed in section 5.2. Instead, it applies a force proportional
to the volume intersection between two tetrahedra [131]. The volume overlap of two
tetrahedra is calculable analytically [132], but this is not the case for tetrahedra with
any rod primitive (e.g. cylinders, capsules). This computation could be substituted for
an ‘intersection depth’ similar to equation (5.4).

5.4 Other Features

A more complete rod connection system would allow for rods to connect to other rods,
to create networks of rods closer to polymers, and circular rods which can be used to
represent cyclic proteins or DNA plasmids.

The stability of rod-blob interactions could be improved further by the addition of
connections to multiple tetrahedra. The numerical stability of a rod-blob interaction is
determined by the stability of the connected tetrahedron, and forces that are too large
could cause that tetrahedron to invert, or cause the conjugate gradient solver for the
equation of motion to fail to converge. Connections to multiple elements, while not
necessarily physical, could increase the stability of the system, particularly for larger
systems in which larger forces are transmitted across rod-blob connections.
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5.5 Final Remarks

5.5 Final Remarks

The end goal of this project is to build a model with enough features to represent the
complete kinetochore/microtubule system, and other similar complexes. Currently, we
have only looked at side-on attachment, and only used a subset of the proteins involved
in this process. Neither the exact process of force transmission through DAM1 or the
role of kinesin have been studied in silico. Meanwhile, the simulation of human kineto-
chores will prove to be far more difficult and computationally expensive than yeast.

After four years and 13,312 lines of code, Ndc80C and the kinetochore are still filled
with secrets. The examination of these molecules at the mesoscale has raised many new
and interesting questions but has failed to address many of those that already existed.
In that sense, it is probably not correct to speculate on whether molecular biology will
ever ‘end’. Rather, biological processes can be understood at many different scales, at
many different levels of detail, and through many different disciplines. A mesoscale
representation of Ndc80C and the kinetochore is still very new, and experimental data
at this scale is sparse. This project, while it has not ‘solved’ the kinetochore, has helped
to bring our in silico understanding of it up to parity with experimental data.

Until the mid-00s, Moore’s law ensured the continual shrinking of transistors and
improvements to single-threaded CPU performance. Over the last 15 years, CPU and
GPU parallelism have allowed for increasingly parallel computations. One day, we
will also reach the limits of software parallelisation [133] [134], and will have to seek
out new technologies and computing paradigms. Computational biophysics, however,
should not let the speed and availability of computing power set the upper bound on
the size and complexity of molecular dynamics systems. We cannot not depend on the
exponential growth of computing speed to solve ever more difficult problems [31]. As
the systems studied in molecular biology become larger and more complex, we must
strive toward building and using more ambitious coarse-grained algorithms combined
with top-down parametrisations, toward a truly multiscale, multidisciplinary vision of
molecular biology, biophysics and biochemistry.
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Appendix A

FFEA Method Validation
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The KOBRA and FFEA algorithms were developed in tandem and are, in some ways,
one and three-dimensional manifestations of the same idea. In 2018 the FFEA software
publication [1] was released. This publication contained both a description and valid-
ation of the FFEA method, including a comparison of FFEA simulation trajectories
with all-atom molecular dynamics.

Two molecules were selected for comparison, Arfaptin and Xylanase. The former
is long and thin, the latter’s cross section and length are approximately equal. These
two molecules were converted into FFEA tetrahedral meshes. The resulting meshes are
shown in Figure A.1.

Figure A.1: All-atom cartoon vs FFEA tetrahedral mesh representations of test mo-
lecules Arfaptin (A) and Xylanase (B).

FFEA simulations of both were run with simulation parameters listed in table A.1.
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Parameter Arfaptin Xylanase

E 1GPa 1GPa
Poisson Ratio 0.35 0.35
Shear/Bulk/solvent viscosities µ = 1× 10−3Pa · s µ = 1× 10−3Pa · s
Runtime 100ns 760ns

Table A.1: FFEA simulation parameters for validation simulations.

These were compared against simulation trajectories from the MoDEL database
[135]. However, the MoDEL trajectories had differing starting positions and rotations
to the FFEA simulations. In order to create comparable trajectories, the iterative
closest point (ICP) algorithm [136] was used to align the starting positions of both
trajectories.

In the ICP algorithm, the average distance between points in two point clouds.

E(R, t) = 1
Np

Np∑
i=1
||xi −Rpi − t||2 (A.1)

is minimised. Here, R and t are the translation vector and rotation matrix, Np is the
number of points, i is the point index, and X and P are the two point sets

X = {x1, ..., xn} (A.2)

P = {p1, ..., pn} (A.3)

The positions of the atoms and FFEA nodes were used for points. Once the translation
vector and rotation matrix that aligned the FFEA blob onto the all-atom structure were
found for the first frame, they were applied to every subsequent frame. The principal
components of the two trajectories were then compared using the method described in
section 3.4.2. The results of this comparison are shown in Figure A.2.
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Figure A.2: Principal component dot product matrices for the FFEA and all-atom
trajectories of Arfaptin and Xylanase. The top row is a comparison between all-atom
and FFEA trajectories, the bottom row is a comparison between two halves of the
all-atom trajectories. The modes are ordered from 0 to 9, with 0 being the largest. A
perfectly-correlated matrix would be a blue diagonal line.

Neither molecule, for the all-atom simulation, shows a high degree of eigenspace
overlap between the first and second halves of the trajectory, suggesting that conform-
ational space is heavily undersampled. However, there is a degree of eigenspace overlap
for Arfaptin (an average dot product of 0.6) which is comparable to that between the
two halves of the all-atom trajectories. Xylanase performs less well (an average dot
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product of 0.4). This discrepancy is likely because the motion of Arfaptin is dominated
by fluctations about its long axis, which is well-represented by FFEA method, whereas
Xylanase is dominated by smaller-scale motion associated with its side chains and in-
ternal structure which FFEA does not represent. For an example of a more correlated
set of principal components, see Figure 3.17.
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Appendix B

Automated Tests
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This section will offer brief descriptions of the tests included with the software package
implementing the KOBRA algorithm.

Automated testing is a methodology that allows us to ensure that the results of
scientific software are reliable, reproducible, and correct. This thesis offers a description
of an algorithm which is also implemented in software. Using automated tests, we can
verify that

1. The software is a correct and error-free implementation of the algorithm described
in the text.

2. The algorithm produces the physics that we expect.

3. Future updates made to the software do not introduce errors into previously
tested part of the software (regressions).

These tests come in two varieties: unit and integration. Unit tests check the output
of the software at an atomic level - that a given mathematical function outputs the
correct values, for example. Some of the unit tests in KOBRA verify the output of
mathematical functions in C++ against values computed in Wolfram Mathematica or
Python. Some are less specific, testing the signs, dot and cross products of vectors that
should be pointing particular ways.

Integration tests, meanwhile, are ‘end-to-end’ tests that verify the output of the
entire program. They are much broader in scope, and can test the physics that the al-
gorithm is supposed to describe, as well as the correctness of the software. Integration
tests can also be used to check emergent properties of the algorithm - features that
have not been programmed in specifically, but which arise as a natural consequence of
the design of the physics being simulated. The equipartition and polymer chain tests
described in chapter 3 are an example of this.

These tests are built programmatically and are entirely automated. They are run
nightly by an FFEA continuous integration test server running Jenkins. Every night,
the server pulls the most recent version of the FFEA code from the development repos-
itory, runs all the tests, and creates a report. This process allows regressions (changes
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B.1 Unit Tests

which cause a test to stop working) to be spotted quickly, and ensures that updates
to the FFEA software do not cause any aspect of the software (or the physics) to stop
working. The details of failing tests also allow the bug to be found and fixed more easily.

The names of the tests (in bold) correspond to the test names used internally by
ctest, the test framework used by FFEA and KOBRA. To run these tests, compile
the FFEA software, and then run ctest from the FFEA build directory.

B.1 Unit Tests

arbitrary equilibrium bend and arbitrary equilibrium twist: For an intrinsic-
ally bent and intrinsically twisted rod, check the energies (equations (2.9) and (2.21))
against known values for a single conformation. The test will fail if the values do not
match.

bend test: for a set of exiting conformations, check that increasing the bend angle
will increase the bend energy (equation (2.21)). If Ebend < Ẽbend, the test will fail.

connection test: create a rod-blob interface to a single tetrahedron, at equilibrium,
and apply an arbitrary rotation matrix R to that tetrahedron. Update the interface
state, then apply the same rotation matrix to the interface element p̃a. If R · p̃a 6= pa,
the test will fail. This tests the portion of the algorithm described in sections 4.1.3,
4.1.2 and 4.1.1.

connection energy: create a rod-blob interface at a single tetrahedron. Compute the
energy at the interface. If Ẽa 6= 0 - the energy about the interface node is non-zero
at equilibrium - the test will fail. This tests the portion of the algorithm described in
section 4.1.5.

connection identify face: create a rod-blob interface on a sphere. Find the dot
product of the attachment element with the face edges. If pa · ∆xface 6= 0, the test
will fail. When a connection is initialised, the face nodes given are absolute, but the
rod-blob interface requires the node ids to be relative to the tetrahedron, so this test
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B.1 Unit Tests

will also fail if the face node indices cannot be identified.

connection orientation: this test will fail if the rod-blob connection crashes on ini-
tialisation.

parallel transport test: for an intrinsically straight rod at equilibrium, compute
Ẽtwist, the twist energy (equation (2.9)) at equilibrium. Then, move one node, and re-
compute the orientations of the rod elements and material axes (section 2.2.5). Then,
recompute the twist energy. The test will fail if the movement of a node introduces a
twist energy, e.g. if Etwist > 0.

recover normal: for a rod-blob interface at equilibrium with no rotation applied to
the attachment element pa, compute the orientation of the attachment element from
the equilibrium Jacobian of the tetrahedron (see equation (4.1.3)). Then, compute the
normal to the surface face of the tetrahedron, (x1 −x3)× (x2 −x3). The test will fail
if they are not equal.

rodrigues test: for a straight rod, perform a rodrigues rotation (equation (2.32)) of
the material axis by π radians. If m′ 6= −m, the test will fail.

test bend against mathematica and test mutual bend against mathematica:
for an arbitrary rod conformation, compute the bend energy Ebend about one node.
Compare it to a value computed by evaluating the bending energy formula in Wolfram
Mathematica. If they are not equal, the test will fail. There are two versions of this
test, using the normal (equation (2.15)) and mutual element (equation (2.21)) bending
energy formulae.

test bend for non-straight equilibrium: the same as the above test, but for a rod
with a non-straight equilibrium structure.

parallel transport test: for a rod with an arbitrary (and bent) conformation, parallel
transport (equation (4.9)) a material axis to its neighbouring element. If P (m1, l1, l2) ·
m2 6= 0, the test will fail.
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B.2 Integration Tests

translation and rotation test: initialise a rod and rotate the rod using the built-in
rod rotation methods. Then, apply the same rotation to a single element from the rod
in isolation. If the two elements are not equal, the test will fail. This tests the entire
rod translation and rotation functions used during initialisation.

twist bend independence: for a straight rod conformation, twist the material axes
(equation (2.32)) and compute the twist energy (equation (2.9)). Then compute the
bend energy (equation (2.21)). The test will fail if the bend energy Ebend 6= 0, or if the
twist energy Etwist = 0.

twist bend independence 2: this test is the same as parallel transport test, but
now, it computes the energies of the 5-node block used in the numerical integration,
rather than on a single node.

twisted stretch test: for a rod with a straight equilibrium, but a non-zero stretch
energy, apply a Rodrigues rotation (equation (2.32)) to one of the material axes. If
applying the twist has increased the stretch energy (equation (2.6)) of the rod, the test
will fail. This doesn’t just test the stretch energy, but also the normalisation of the
elements during energy calculations.

B.2 Integration Tests

The tests for polymer chain physics, equipartition and formation of hockles (section
2.4) are all examples of integration tests, and the equipartition test is present as an
automated test, named equipartition test.

B.2.1 Symmetry

If we compute the energy and dynamics of a structure which is symmetrical about one
axis, those energies and dynamics should also be symmetrical about that axis. In early
versions of KOBRA, a forward difference was used to compute the forces, instead of
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B.2 Integration Tests

the central difference (equation (2.2.4)), and this test was developed to compare the
two integration schemes.

Figure B.1: Starting structures for symmetry tests in each degree of freedom (stretch,
twist and bend).

The equilibrium structure for each trajectory is straight and untwisted. In each
symmetry test, the structure gradually relaxes back to equilibrium at T = 0. Partway
through this relaxation (after 10−11 seconds) the energies and dynamics are then tested
for symmetry.

The following tests are performed on the energies and dynamics of nodes 2 and 4.
Each test will fail if the equality in the equation is not true,

E2 = E4 (B.1)

∆r2,x = −∆r4,x (B.2)

where ∆ri,x is only the x-component of ∆r, which in this case is along the rod. Addi-
tionally, for node 3 (the central node), in the bending trajectory, the following test is
performed.

∆r3 · [0,−1, 0] = 1 (B.3)

For the stretching and twisting trajectories, the following test is performed instead,

∆r3 = 0 (B.4)
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B.2 Integration Tests

Finally, in the stretching trajectory, the following test is performed,

li · [1, 0, 0] = 1 (B.5)

This test can be addressed within the FFEA software package under the name sym-
metry test.

B.2.2 Connection propagation

The only real integration test that can be performed on a rod-blob connection is check-
ing to see if translations and rotations are preserved across the connection. These
tests are performed for each degree of freedom, and in each direction (blob-to-rod and
rod-to-blob) for a total of 6 tests.

Figure B.2: System used in the connection propagation test — a 10-element rod, 90nm
in length, connected to a tetrahedral sphere.

Before each test, the dot product between some arbitrary edge vector in the sphere
and the element at the far end of the rod is computed,

a = pend · y (B.6)
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B.2 Integration Tests

Each simulation trajectory is created at T = 0. Over the course of 50ns, one end
of the connection (the rod or the blob) is rotated by 1

2π radians. Then the system
is equilibrated for 850ns. At the end of the simulation, the dot product is computed
again. If a 6= a′, the test fails.

This test can be addressed within the FFEA software package under the name con-
nection propagation test.
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KOBRA Code Style
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The KOBRA algorithm is implemented in a combination of C++ and Python, and
can be found online via bitbucket at ffea.bitbucket.io. The three files implement-
ing KOBRA are rod math v9.cpp, rod structure.cpp and rod blob interface.cpp.
rod math contains all of the pure math functions, implementing the rod energies and
dynamics, while rod structure implements data structures, I/O and initialisation.
rod blob interface contains both the mathematical formulae and the data struc-
tures responsible for the rod-blob interface, the former in the first half of the file and
the latter in the second half.

The style conventions used in these files are as follows:

• The entire contents of each file are declared within the namespace ‘::rod’.

• Maths functions with single return values simply return values. Functions that
return multiple values or arrays have their return values initialised outside the
scope of the function and passed as parameters. In the function definition, an
empty macro (OUT) signifies where the parameters end and the return values
begin.

• Rod methods return *this to allow for method chaining.

• Human readable indexes are defined in rod math v9.h. x, y and z correspond to
the 0th, 1st and 2nd elements of an array, and any time they are used, they refer
to dimensions. im2, im1, i and ip1 refer to the indices of segments. Here, they
are given relative to the node at the beginning of the ith segment.

• Only single-precision floating point numbers are used where possible to allow for
easy GPU parallelisation in the future (and better performance).1

• The vec3d macro is used instead of a for loop for adding, subtracting, multiply-
ing and dividing 3-element arrays, which is extremely common throughout the
codebase.

• Memory for the rods is allocated on the heap at initialisation. Thereafter, heap
allocation is not used, all rod math work variables are allocated on the stack.

1There is one exception to this rule, a precise normalisation is used for the material axes in the
twist energy. This is due to a quirk of std::acos that occurs using FFEA’s default compiler settings.
If the program is compiled without -ffast-math, this can be safely replaced with a regular normalize.
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• If the static const debug nan is defined to be true, the program will dump inter-
mediate values to the console during runtime.

• The function not simulation destroying is used to check if values are equal to
NaN or inf. The program will be forcibly aborted if any values are NaN or inf.
FFEA’s compiler options do not permit testing for NaN or inf, so boost::math

is used instead. FFEA’s compiler options also do not permit aborting with
std::abort so less scrupulous methods are used.

• Data structures are kept as flat as possible. This reduction in indirection is an
intentional choice made for cache and memory optimisation.
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Roadmap for the KOBRA Code
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D.1 Python 2 to 3

Chapter 5 had some aspects of a summary and a conclusion, but it was mostly comprised
of a discussion on future KOBRA features and how they might be implemented. This
section complements that chapter, but this time looking at KOBRA from a software
engineering perspective. The proposals in this section are not suggestions for enhance-
ments or new features, instead they are the minimum that will have to be done to stave
off code rot and keep FFEA and KOBRA usable in the future. If you are working on
KOBRA (the code, not just the mathematics of it), then you might find this interest-
ing. If not, it can be safely ignored, like a dead body at an otherwise picturesque beach.

D.1 Python 2 to 3

In 2008, Python creator Guido van Rossum created a new programming language,
similar to his previous project, Python. This new language was, confusingly, called
Python, and was slightly better, but different enough that everybody would have to
rewrite their programs.

FFEAtools doesn’t run in Python 3. If Python 2 is first on the system path, it can
still run from the terminal. Even if distros stop providing Python 2, Anaconda have
pledged to support it for years to come. But a lot of applications are now treating Py-
thon 3 as the default, and it’s a fight to get them to even use Python 2. In particular,
cmake has this behaviour, which means that FFEA’s unit tests fail on new distros, as
cmake prioritises Python 3 even if Python 2 is first in the path. At some point, ffeatools
needs to be ported over to this new language. Again, I would recommend a progressive
approach: import from future, slowly change over print statements, checking that I/O
still works in Python 3 — I suspect that unicode strings will create a few regressions.
Ranges and integer division will probably break some functionality as well. All of the
KOBRA code should run in Python 3 — in fact, there’s a few small pieces of it that
only run in Python 3, because they depend on ISAMBARD.

Of all the housekeeping discussed in this section, migrating to Python 3 is probably
the most important. Not being able to run ffeatools or the tests will stop potential
users from even trying the software out.
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D.2 Visualisation

D.2 Visualisation

FFEA writes trajectories to text files — .traj and .rodtraj are their file extensions —
which are then read and interpreted by a plugin for PyMOL, a molecular dynamics
visualiser written in Python. This isn’t optimal for a few reasons. First, there are
standard file formats for most of the types of data that FFEA uses, but FFEA rolls its
own formats for every single type of data, which makes it inoperable with lots of other
tools1. Second of all, PyMOL isn’t a good fit for either FFEA or molecular dynamics.
It’s very slow, has a limited feature set compared to VMD, and FFEA piggybacks onto
PyMOL features that are buggy, incomplete, and definitely weren’t designed to be used
to load volumetric meshes.

For example, the way FFEA sends display lists of triangles to be drawn by PyMOL
is as follows: it reads in the data from a very large text file into a rabbit warren of
objects containing lists of objects containing lists of objects containing lists of NumPy
arrays, it serializes that data into PyMOL’s custom CGO format, then it sends the
CGO display list to PyMOL via PyMOL’s CGO API. This is impressively slow and
can use many gigabytes of memory to load a display list that would optimally be com-
prised of no more than a few hundred megabytes. It’s also liable to segfault PyMOL
and run out of memory while loading longer trajectories. PyMOL’s internal memory
management is such that it normally crashes or runs out of memory when loading more
than 100 objects. FFEA simulations routinely contain more than 100 objects. Even
worse, once those triangles (or cylinders, in the case of rods) are loaded into PyMOL,
there’s no API to interact with them. This is why the FFEA viewer has an option
to load ‘Supportive Fake Atoms’ onto objects - those atoms, positioned on nodes or
faces, can then be interacted with via PyMOL’s API or user interface. This is the only
way to interact with FFEA objects in PyMOL, even for trivial functions such as taking
measurements.

Another issue with FFEA’s current approach to visualisation is that all the initial-
isation code has to be duplicated. Even though the FFEA codebase is split down the
middle between Python and C++, there is no interface between the two. If FFEA

1With the exception of rodtraj, which is just a CSV file, a lot of these formats are also incredibly
hard to parse.
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D.2 Visualisation

was written in C, this would be easily achievable with ctypes, but C++ would require
quite a lot of glue code. This isn’t necessarily a bad thing, as the C++ and Python
have very different purposes and there’s little duplication of functionality outside of
basic I/O. For rods, having some duplication helped, as it allows for tests to compare
python versions of calculations to their C++ counterparts. However, this all falls apart
in initialisation. FFEA systems are stored as a collection of structure and parameter
files for individual objects, all referenced in a single .ffea script file, which describes how
these objects are positioned inside the simulation box. It’s a very elegant design, as
users can spawn multiple objects from a single structure file, and the software will write
separate trajectories for each instance. The problem is that the way FFEA positions
objects inside the simulation box is very complex and has a lot of quirks. I will list
some quirks now, for future reference.

• The center of the box isn’t at 0,0,0. It’s at 1
2w, 1

2h, 1
2d. Objects entering the

simulation box are positioned relative to this point, not 0,0,0.

• The dimensions of the simulation box are not stated in the .ffea file but are instead
determined by the vdw cutoff distance multiplied by the number of cells for the
nearest neighbour lookup table.

• The units for translations of objects are not SI units OR mesounits, they are
scaled with the scale factor for that object.

All of this happens the first time you run an FFEA simulation (in the FFEA execut-
able, written in C++) and the resulting positions of all the nodes are then written to
the trajectory files. This means that, if you’re preparing a simulation and want to see
what it looks like, the visualiser needs to be able to replicate all of this incredibly quirky
behaviour. KOBRA doesn’t do this, and not for lack of trying, but because that list of
quirks is far from complete. It’s like trying to float a <div> in Internet Explorer 6, there
is simply no telling where an object will end up. Instead, I would recommend writ-
ing a dummy frame to the trajectory and then loading in the system with the trajectory.

The main reason PyMOL was chosen was to allow FFEA to be loaded side-by-side
with PDB files or volumetric data. At the time, there weren’t many alternatives that
were extensible and had this functionality. I would not recommend trying to ‘fix’ or
‘improve’ the FFEA visualisation experience beyond a certain point, because you’re
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D.3 Selecting Optimal Parallelisation

always going to brush up against hard-coded limits in PyMOL. In a previous iteration
of this appendix, I had recommended rewriting FFEA to output Paraview-compatible
files, however, this approach also has some drawbacks. Paraview doesn’t have the
capacity to parse or render every type of FFEA data, which would neccessitate the
development of a FFEA ParaView extension - far more work than the FFEA PyMOL
viewer. ParaView’s ability to visualise molecular dyanmics data is extremely limited,
to the extent that it’s not really usable to compare FFEA and MD systems. Finally,
ParaView is not easy to learn, and it may present too steep a learning curve for many
in the molecular dynamics community.

D.3 Selecting Optimal Parallelisation

KOBRA has a single parallelisation mode — within-rod parallelisation, equivalent to
FFEA’s within-blob parallelisation. This means that, for a system with multiple rods,
the dynamics for each rod will be computed serially, and the dynamics of each node
and material axis are computed in parallel. This works fine for the systems described
in this thesis, but if the number of rods you have approaches the number of CPU cores
on the system, it might be better to parallelise between rods instead.

Currently, KOBRA always runs at the same parallelisation level as FFEA. This is
not always optimal. For example, say you have a rod of 14 nodes, and you wish to
run FFEA on 8 threads. KOBRA will run on 8 threads even though it would’ve run
faster on 7. It would be a worthwhile improvement to manually calculate the optimal
number of CPU threads to run KOBRA on and use this number if it is faster than the
total number of FFEA CPU threads.

Another note on parallelisation: KOBRA would parallelise very well on GPUs. I
would recommend either the newer versions of OpenMP or OpenACC. The big problem
would be getting FFEA to run on them, not KOBRA. FFEA’s parallelisation scheme
depends on a labyrinthine series of preprocessor macros, which have accumulated over
time and are in desperate need of refactoring.
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D.4 FFEA Collision Detection Data Structures

FFEA handles collisions by subdividing space into cuboids and checking for collisions
between each cuboid and its 27 nearest neighbours. This approach is best for systems
of uniform density, and while FFEA systems right now are on the sparse side, they’re
likely to get denser in the future. Unfortunately FFEA’s implementation of this al-
gorithm is messy, cache-thrashing, contains a huge amount of duplicated code, and
even though it’s heavily templated, is also deeply coupled to the data structures of
FFEA blobs. There’s no realistic way to drop KOBRA rods in there and make it work.
Adding a separate nearest neighbour lookup table but for rods might seem like unne-
cessary duplication, but a highly abstract collision detection system that’s completely
data-structure agonistic, would be a huge amount of work, and would introduce a huge
amount of complexity to a very performance-sensitive part of the code.

The way FFEA solves collisions is FFEA-specific, but the way it detects for colli-
sions is not. For each face, all that needs to be known is ‘what are the indices of other
faces in collision range’? That is a solved problem, and I would recommend using an
existing solution (of which you’ll find many on github) rather than creating a new one.

D.5 Structure Alignment Tools

FFEAtools contains a tool called node pdb align, which was written with the sole pur-
pose of aligning single FFEA objects with PDB files representing single molecules. This
tool will become less relevant in FFEA’s future as it doesn’t align rods, nor does it align
entire scripts, only individual blobs. For aligning rods to blobs, some extremely ba-
sic functionality is provided in the form of rod creator.get euler angles from pdb.
However, as the systems FFEA is used for get larger, correctly positioning objects
will only become more labour-intensive. node pdb align uses the iterative closest point
method, which is not ideal for individual objects, but would work better with large
systems of connected rods and blobs, although it is liable to get stuck in local minima
very easily. The importance of new structure alignment tools depends a lot on how
easy it is to implement graphical tools to position, rotate and connect objects - all of
which is currently done in scripts. Aligning objects with different topologies in 3-d
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space is not a solved problem, and the human brain is arguably better at it than any
hastily-written script. If possible, then, it should be left to brains.

D.6 Structure of ffeatools and Python Scripts

FFEAtools was originally created by some very talented programmers who had the pa-
tience for C++ but not the time. Therefore, FFEAtools, the FFEA initialisation and
analysis library, was written in Python out of necessity and not out of any particular
love for Python or desire to use its idioms. Traditionally, Python programs are pack-
aged with distutils into self-contained distributions which are installed with setuptools.
These distributions are installed into Python’s site-packages folder, dependencies are
resolved, and the Python package can run special code during installation. FFEAtools
did not initially do this. Instead, it dumped an array of Python files into a folder in
/opt and then added this folder to the system path. This approach has a number of
disadvantages, but chief among them is that the Python scripts can’t be structured
hierarchically like most python projects are, because individual Python scripts running
out of some arbitrary directory can’t do relative module imports like Python modules
can.

The only way to fix this is to restructure FFEAtools to be a normal Python dis-
tribution, and here a start has been made. You can indeed install FFEAtools using
setup.py, but it’s still a work in progress. There are some FFEAtools which are actu-
ally C binaries that are (poorly) wrapped. Many FFEAtools still use the script im-
ports (import FFEA thing) instead of the module imports (from FFEAtools.modules

import FFEA thing). There are still a few FFEAtools that don’t have code encap-
sulated into functions, run by looking at sys.argv and end by sys.exit. If you’re
working on the various tools in FFEAtools, please add support for the python mod-
ule installation as you go, and add deprecation warnings where appropriate. There
is some KOBRA functionality that requires the python module structure, because
FFEA rod.py was getting enormous and needed to be broken into sub-modules. The
only way to do that without polluting the system and python paths was to create a
sub-folder and use a relative import. In the future I would envisage the rest of the
ffeatools, which currently occupy a separate folder, be moved into subdirectories of the
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D.7 Periodic Boundary Conditions

modules folder, so that modules can import from them and reduce duplication. I would
also recommend separating out the rod loader, rod analysis, rod math and rod creator
python tools into their own files.

D.7 Periodic Boundary Conditions

KOBRA don’t support any boundary conditions, even hard wall boundary conditions.
This could be problematic for very large systems, particularly because it runs in singe-
precision. The extent of KOBRA’s stability with respect to systems a long way from
the origin has not been tested. FFEA does not handle periodic boundaries within ob-
jects, only between them, which could create problems in the long axis of rods, and also
for structures made from connected rods and blobs. Therefore, implementing periodic
boundaries for rods is an extremely dangerous manoeuvrer and should not be attemp-
ted, excepted by highly skilled and highly-paid research software engineers.

D.8 Caching of Results

One of the most obvious performance improvements in KOBRA would be the caching
of equilibrium values such as ∆ω and ∆θ. This could theoretically halve the amount
of time it takes to calculate the energies. However, implementing this introduces a lot
of state into the ffea rod object that previously wasn’t present. Updating the material
parameters or equilibrium state of the rod would also necessitate an update to these
cached values, and would therefore require the addition of getters, setters and private
data structures.

With cached values, an almost equally large but far easier performance gain would
be to replace the symmetric Euler method with an asymmetric one. This was a change
made while trying to improve the numerical stability of the algorithm, but ultimately
it didn’t do much to improve it, and ate up a lot of CPU cycles. It could be argued
that any optimisation of KOBRA is premature optimisation, because it’s much faster
than FFEA. Optimisation might become a more pertinent problem if someone wants
to implement KOBRA into their code.
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Simulation Parameters
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Constant Value

Element radius a 5nm
Dynamic viscosity µ 0.6913MPa · s [137]
Bending constant B 3 · 10−25 m4 · Pa
Twisting constant β 1.43 · 10−26 Nm2

Stretching constant κ 1 · 1011 N

Temperature 300K

Table E.1: Values of constants for the equipartition simulation in section 2.4.1 and
the polymer chain tests in section 2.4.2. All material constants are homogeneous, and
the bending stiffness is isotropic, with B being the diagonal elements of the bending
stiffness matrix B.

Constant Value

Element radius a 5nm
Dynamic viscosity µ 0.6913MPa · s [137]
Bending constant B 2 · 10−27 m4 · Pa
Twisting constant β 3 · 10−26 Nm2

Stretching constant κ 3 · 1011 N

Temperature 0K

Table E.2: Values of constants for buckling test in section 2.4.3. All material constants
are homogeneous, and the bending stiffness is isotropic, with B being the diagonal
elements of the bending stiffness matrix B.
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Minimising Heating Relaxing (1/2) Relaxing (2/2) MD

ntf 2 2 2 2
nt 2 2 2 2
ntb 0 0 0 0 0
cut 30 20 20 20 20
ntp 0
nstlim 40000 200000 200000
dt 0.00025 0.0005 0.001 0.002
tempi 0
temp0 300 300 300 300
ntt 1 1 1 1
restraint wt 150 70 10
imin 1 0 0 0 0
ntx 1 5 5 5
maxcyc 20000
ncyc 2500
igb 1 1 1 1 1
gbsa 1 1 1 1
ntr 0 1 1 1 0
saltcon 0.1 0.1 0.1 0.1 0.1
restraintmask @CA,C,O,N @CA,C,O,N @CA,C,O,N

Table E.3: AMBER parameters for molecular dynamics simulation of Ndc80C used in
Chapter 3.
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Simulation Section N Timestep Check Frames Radius β (Nm2) κ (N) B (m4 · Pa)

B recovery 3.2.3 209 5× 10−12 1000 2000 5× 109 4.7× 10−29 3.4× 10−11 ∼
Iterative B 3.2.3 53 5× 10−12 1000 4651 5× 109 4.7× 10−29 3.4× 10−11 ∼
Twist recovery 3.2.3 10 5× 10−11 20 50000 5× 109 ∼ 1× 10−11 1× 10−27

Stretch recovery 3.2.3 10 5× 10−11 20 50000 5× 109 5× 10−27 ∼ 1× 10−27

Ndc80C source 3.3 14 2× 10−15 500 50476 n/a n/a n/a n/a
Ndc80C iter0 3.3 14 1× 10−12 3000 100000 5× 109 ∼ ∼ ∼
Ndc80C iter1 3.3 14 1× 10−12 3000 100000 5× 109 ∼ ∼ ∼

Table E.4: KOBRA/FFEA parameters for FFEA simulations used in chapter 3. For
all simulations, the thermal energy kT was 4.11×10−21. For more information on these
simulations, raw data can be found at doi.org/10.1039/D0SM00491J and bitbucket.org/

Robert-Welch/kobra-raw-data.

Figure E.1: A closer look at the microtubule track used in the simulations in chapter
4. Binding sites (red) have an affinity to Ndc80C’s globular domains.
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Constant Value

Temperature 300K
Timestep 3× 10−13s

Check 2000
Stokes viscosity 1× 10−3Pa · s
Van der Waals cutoff distance 3.5× 10−8m

Spring constants 1.771× 10−4, 7.143× 10−5, 7.355× 10−5 N/m

Spring lengths 5.645× 10−9, 1.4× 10−8, 1.257× 10−8 m

Stokes radius (FFEA) 1.1295× 107 m

Mesh density (FFEA) 1× 1.53 kg/m3

Internal bulk viscosity 1.5× 10−3 Pa · s
Internal shear viscosity 1.5× 10−3 Pa · s
Internal shear modulus 5.5× 108 Pa

Internal bulk modulus 2.2× 109 Pa

Table E.5: Values of constants for the FFEA simulations performed in chapter 4. This
is not an exhaustive list, and rod parameters are not included (see section 3.3 for those).
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Walrus
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Figure F.1: FFEA walrus, drawn by A. Ghesquiere. Suggested names: Tet, FluFEA,
Meso-unit
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déplacements considérés indépendamment des causes qui peuvent les produire.
1840.

[99] Jur van den Berg (https://math.stackexchange.com/users/91768/jur-van-den
berg). Calculate Rotation Matrix to align Vector A to Vector B in 3d? URL
https://math.stackexchange.com/q/476311. Via Mathematics Stack Exchange.

176

https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/computer-simulations-of-polymer-chain-relaxation-via-brownian-motion/939902CEBD38EC6DB76B6ECD0DBD29EF
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/computer-simulations-of-polymer-chain-relaxation-via-brownian-motion/939902CEBD38EC6DB76B6ECD0DBD29EF
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/computer-simulations-of-polymer-chain-relaxation-via-brownian-motion/939902CEBD38EC6DB76B6ECD0DBD29EF
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/computer-simulations-of-polymer-chain-relaxation-via-brownian-motion/939902CEBD38EC6DB76B6ECD0DBD29EF
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471484237.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471484237.ch2
https://link.aps.org/doi/10.1103/PhysRevE.72.021805
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526676/
https://math.stackexchange.com/q/476311


BIBLIOGRAPHY

[100] PG Saffman. Brownian motion in thin sheets of viscous fluid. Journal of Fluid
Mechanics, 73(4):593–602, 1976.

[101] Ron Milo, Paul Jorgensen, Uri Moran, Griffin Weber, and Michael Springer.
BioNumbers—the database of key numbers in molecular and cell biology. Nucleic
Acids Research, 38(Database issue):D750–D753, January 2010. ISSN 0305-1048.
doi: 10.1093/nar/gkp889. URL https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC2808940/.

[102] L. D. Landau and E. M. Lifshitz. Chapter I - the Fundamental Principles of
Statistical Physics. In L.D. Landau and E.M. Lifshitz, editors, Statistical Physics
(Third Edition, Revised and Enlarged), pages 1 – 33. Butterworth-Heinemann,
Oxford, third edition, revised and enlarged edition, 1980. ISBN 978-0-08-057046-
4. doi: 10.1016/B978-0-08-057046-4.50008-7. URL https://www.sciencedirect.

com/science/article/pii/B9780080570464500087.

[103] Tae Yeon Yoo, Jeong-Mo Choi, William Conway, Che-Hang Yu, Rohit V. Pappu,
and Daniel J. Needleman. Data from: Measuring NDC80 binding reveals the mo-
lecular basis of tension-dependent kinetochore-microtubule attachments, 2019.
URL http://datadryad.org/stash/dataset/doi:10.5061/dryad.14rr125. type:
dataset.

[104] kinetochore protein Nuf2 [Homo sapiens] - Protein - NCBI, . URL https://www.

ncbi.nlm.nih.gov/protein/NP_113611.2.

[105] Christopher W Wood, Jack W Heal, Andrew R Thomson, Gail J Bartlett,
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