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Abstract

The neutron-deficient lead region contains the most well known examples of shape coexis-

tence, to this day. As a result, this part of the Segrè chart has been subject to extensive

laser spectroscopy studies. In this thesis, the results from the in-source laser spectroscopy

investigation of neutron-deficient Bi isotopes, taken at the ISOLDE, CERN facility, will be

presented.

During this experiment the hyperfine structures and isotope shifts of short lived α-

decaying states in 187−189,191Bi were measured with the changes in mean-square charge

radius and electromagnetic moments extracted for each nuclear state. These charge radii

values reveal that unlike the early interpretation that the 9/2− ground states are spherical

in the odd-A Bi nuclei, a trend towards a weakly deformed ground state was observed in

187,189,191Bi. This is in contrast to the ground states of the Tl isotopes, which follow the near

spherical trend of the Pb nuclei. The most spectacular result from this investigation was the

strong shape staggering observed between the high-spin and low-spin isomeric states of 188Bi.

This indicates that the low-spin isomer is much more deformed in shape in comparison to

both the high-spin isomer in 188Bi and the 9/2− ground states of the neighbouring isotopes

187,189Bi. This observation implies a large difference in the structure of states in odd-odd

and odd-A Bi nuclei near the N=104 midshell. This staggering effect between 188lsBi

and 187gs,188hs,189gsBi resembles the long known staggering seen in the mercury isotopes

181−185Hg, with both starting at the same neutron number (N=105). In 2018, Monte

Carlo Shell Model calculations were used to confirm the underlying proton and neutron

configurations responsible for the shape staggering in the Hg isotopes. It was found that the

shape staggering is correlated with the staggering in the shell-model states occupation. It is

thought that these configurations are also producing this staggering effect in the Bi chain.
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Chapter 1

Introduction

The atomic nucleus, being a many body quantum system, is a somewhat difficult object

to characterize. Amongst the multiple complications is the nuclear shape, a property of

paramount importance since it defines the potential which binds the nucleons housed within

it, thus also determining the half lives and decay modes of each nuclear state. The “magic”

numbers are the numbers of protons or neutrons needed to make a closed valence shell, akin

to electrons in an atom producing a noble gas. The initial postulation of a spherical shape

holds true only for nuclei which possess these “magic” numbers of protons and neutrons

(e.g. 16O with N ,Z=8 and 40Ca with N ,Z=20). However, there are exceptions to the rule

in singly magic nuclei (magic N or Z, but not both), including the island of inversion at

N=20 (32Mg), where due to intruder configurations appearing at low excitation energies, the

ground state becomes deformed [1]. Quadrupole deformation provides us with a measure of

the deformation of the nuclear charge distribution. Venturing further away from the magic

numbers, many nuclei have some level of quadrupole deformation, as can be seen in Fig. 1.1.
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Introduction

Figure 1.1: Ground state quadrupole deformation (shown with deformation parameter, β2)
of all nuclei below N=200, with black lines indicating major shell closure for protons and
neutrons. Figure taken from [2].

Besides nuclear deformation, is another phenomenon known as shape coexistence. This

effect, is the ability of different states with various shapes to exist at low excitation energies

within the same nucleus. This was first observed in 1956 in 16O [3], when a rotational band

was found. Since its initial discovery, shape coexistence has been observed in multiple regions

of the nuclear chart. A recent review in 2011 by Heyde and Wood coined it as occurring

in all except the lightest of nuclei as well as its understanding being one of the greatest

challenges for nuclear theorists to date [4].

This work in this document represents part of a long campaign of laser spectroscopy

studies at ISOLDE which aims to probe nuclear deformation and shape coexistence in and

around the Z=82 shell closure. To this day, this region of the nuclear chart displays the

largest array of shape coexistence [4, 5, 6]. The experiment, IS608, made use of the CERN

ISOLDE facility in 2016 and 2017, utilising α-decay tagged in-source laser spectroscopy.

The intent of this investigation was to measure the hyperfine structure and isotope shifts of

neutron-deficient Bi isotopes in order to determine their respective electromagnetic moments

14
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and change in mean-square charge radius. This thesis will present the results and outcomes

of this investigation.
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Chapter 2

Nuclear models

When one tries to model the nucleus, several fundamental difficulties arise. One of the major

obstacles being due to the nucleus being a complicated many-body quantum system, consisting

of protons and neutrons (collectively known as nucleons). Another major issue arises due to

the not yet fully understood nucleon-nucleon potential, and even for light nuclei, one needs to

consider many-body forces. These challenges have resulted in no theory to date being able to

describe the nuclear properties universally across the nuclear chart. Instead, one constructs

a nuclear model by selecting a simplified theory. If this theory can successfully describe some

nuclear properties, it can then be improved by adding additional terms. This section of the

thesis describes some of these well-known models as well as their impact on the field.

2.1 Liquid drop and droplet model

The Liquid Drop Model (LDM) is a macroscopic model used to describe multiple nuclear

properties. In this approach, the nucleus is considered to behave like an incompressible liquid

drop, with uniform nucleon density and a sharp radius given by:

r = r0A
1/3 (2.1)

where A is the number of nucleons and r0 is a constant derived from experimental data, typi-

cally given as 1.2 fm. A major outcome of the LDM was the reproduction of the experimental

trend in binding energies of nuclei, B(Z,N), when the Bethe-Weiszacker formula was produced

16



The spherical shell model Nuclear models

in 1935 [7]. The latter is used to calculate the binding energy of a nucleus and is given as:

B(Z,N) = avA− asA2/3 − ac
Z(Z − 1)

A1/3
− asym

(A− 2Z)2

A
+ δ(A,Z) (2.2)

This equation has 5 terms, the nuclear volume term (av), surface term (as), Coulomb term

(ac), symmetry term (asym) and the pairing term δ. The volume term accounts for the

attractive nature of the strong nuclear force which acts on both protons and neutrons. The

surface term is a correction for the volume term as the nucleons close to the surface have

less neighbouring nucleons, thus reducing the binding energy. The repulsive Coulomb force

further reduces the binding energy and the asymmetry term favours nuclei which have an

equal number of protons and neutrons in contrast to nuclei with a large proton-neutron

asymmetry. The pairing term adds to the binding energy for even-even nuclei, has no

contribution for odd-A nuclei, and reduces the binding energy for odd-odd isotopes.

The Droplet Model (DM) is a refinement to the LDM, with a fundamental modifica-

tion. In this model, the nucleon density distribution is no longer considered constant. As a

result, instead of a sharp boundary, there is a diffuse surface region at the edge of the nucleus

in which the nucleon densities reduce smoothly to zero [8]. It is important to note that both

the LDM and DM are macroscopic models. As such, calculations from these two models can

only reproduce with some precision global trends such as the binding energy of the nucleus.

In order for one to obtain a more detailed description of the nucleus, the introduction of the

shell correction is necessary. This is done in the nuclear shell model, which is discussed in

detail in section 2.2.

2.2 The spherical shell model

Just like an atom has electronic energy levels, nuclei display characteristics of a shell-like

structure for the ordering of their nucleons. Experimental evidence to support this was the

measured proton and neutron separation energies shown in Fig. 2.1. One can clearly see

that the two-proton (S2p) and two-neutron (S2n) separation energies increase steadily with

Z and N , respectively except for sharp drops which occur at the specific proton and neutron

numbers. These sharp discontinuities correspond to the filling of major shells, the so called

17



The spherical shell model Nuclear models

‘magic numbers’ (Z or N = 2, 8, 20, 28, 50, 82 and 126) which represent the filling of major

shells.

Figure 2.1: (Top) Two-proton separation energies of different isotones, with the lightest
isotope noted by its mass and element symbol. (Bottom) Two-neutron separation energies of
different sequences of isotopes. Figure taken from [9].

The first step in the development of the shell model was the choice of the potential which

binds the constituent nucleons. This potential is important as it determines the ordering of

the nucleon states, therefore defining properties such as electromagnetic moments and spin.

A good first approximation, is the Woods-Saxon potential VN (r), which is given by:

VN (r) =
−V0

1 + exp(
r − rsph

a
)

(2.3)

where V0 is the well depth (typically around 50 MeV), r is the distance from the centre of

the nucleus, rsph is the nuclear radius given by equation 2.1 and a is the nuclear diffuseness

with a typical value of a=0.524 fm. As the nucleons are fermions, they fill states within the

nucleus in accordance with the Pauli exclusion principle, meaning no two identical nucleons
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The spherical shell model Nuclear models

can occupy the same quantum state simultaneously. The states nucleons may occupy are

labelled by quantum numbers, nl, where n is an integer giving the order of the state with an

orbital angular momentum, l, which is an integer relating to the spectroscopic notation by:

l = 0, 1, 2, 3...s, p, d, f (2.4)

these states have a degeneracy 2(2l+1). The use of this Woods-Saxon potential produces the

magic numbers 2, 8 and 20, but the higher numbers are not reproduced. It was not until 1949

that it was shown that the addition of the spin-orbit potential produces the magic numbers

[10]. The spin-orbit potential, Vl·s, arises due to the coupling of the intrinsic spin of the

individual nucleon and its orbital angular momentum. Vl·s is defined as the derivative of the

nuclear potential:

Vl·s = −Vls
∂VN (r)

∂r
l · s (2.5)

where VN (r) is the Woods-Saxon potential, Vls is a strength constant and s is the intrinsic

angular momentum of each nucleon (s = 1/2). Due to the presence of the spin-orbit interac-

tion, states with l > 0 are split into two states, denoted by the total spin quantum number

,j, j = l + s. This gives the possible values of j as j = l + 1/2 and j = l − 1/2, of which the

former is lowered in energy and the latter is raised. Since the energy splitting between these

two levels is proportional to (2l + 1), a higher degree of splitting occurs for states with large

values of l. It is this splitting effect which results in the reordering of the states such that the

shell closures occur at the correct magic numbers. This can be seen in Fig. 2.2.
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n=0

n=1

n=2

n=3

n=4
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n=6

[2]

[8]

[20]

[50]

[82]

[126]

[28]

Figure 2.2: Single-particle energy levels. The states on the left are the solutions for a harmonic
oscillator potential and are labelled with the quantum number n. The states in the middle are
the solutions for a Woods-Saxon potential and are labelled with the n,l quantum numbers.
The levels on the right are for the Woods-Saxon plus the spin-orbit term and are labelled
with quantum numbers n,l,2j, reproducing the magic numbers, shown in blue. Figure taken
from [9].

However, in order to produce the total nuclear potential, two other additional terms are

required. Firstly, the centrifugal term, which accounts for the force the nucleons feel due

to their orbital motion, acting like a potential which keeps them away from the origin when

l > 0. It is written as:

Vcent(r) =
l(l + 1)~2

2mr2
(2.6)

with m being the reduced mass of the system. Lastly, due to the repulsive nature of the

Coulomb force, each proton experiences a Coulomb potential (Vcoul(r)). If we consider the

nucleus as a sphere of radius R, and charge Ze, we can approximate the Coulomb potential
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as:

Vcoul(r) =


Ze2

r , for r>R,

Ze2

2R

[
3− r2

R2

]
, for r<R,

(2.7)

Thus the total potential experienced by the protons can be written as:

Vtotal,protons = VN (r) + Vl•s(r) + Vcent(r) + Vcoul(r) (2.8)

and for neutrons:

Vtotal,neutrons = VN (r) + Vl•s(r) + Vcent(r) (2.9)

Fig. 2.3 shows the form of each of these individual components as well as the summed

potential for protons.

Figure 2.3: Plots of the Woods-Saxon(red), spin-orbit interaction (green), Coulomb (blue)
and Centrifugal (pink) potential terms from equation 2.7 and the combined potential (black
as a function of distance from the centre of the nucleus (r). Potentials are not to scale. Figure
taken from [11].
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2.3 The Nilsson model

The spherical shell model can describe many features of spherical nuclei. However, moving

away from the magic numbers, nuclei can possess some level of deformation and the spherical

shell model fails at reproducing the properties of such nuclei. By relaxing the constraint

on the nuclear shape, it is possible to describe the motion of single particles in a deformed

potential. The first example of such calculations was carried out by Nilsson in 1955 [12].

Since then, the Nilsson model has proven very successful at describing a large number of

deformed nuclei across the Segre chart.

The Nilsson model modifies the nuclear potential by introducing quadrupole deforma-

tion. Unlike spherical nuclei, the potential each nucleon experiences has a dependency upon

the orientation of the orbit. The degree of quadrupole deformation is determined from the

quadrupole deformation parameter, β2, given by:

β2 =
4

3

√
π

5

∆R

rsph
(2.10)

where ∆R is the difference between the semi-major and semi-minor axes and rsph is the radius

of a spherical liquid drop nucleus, determined using Eqn. 2.1. Nuclear shapes with β2 = 0,

β2 < 0 and β2 > 0 are known as spherical, oblate and prolate shapes as shown in figure 2.4.

Figure 2.4: Schematic representation of the different spheroidal geometries as a function of
the quadrupole deformation parameter, β2.

The magnitude and direction of the shift in the energy levels is dependent upon the

orientation of the orbit relative to the deformed core. Some orbits will have a greater overlap,

22



The Nilsson model Nuclear models

resulting in a stronger interaction and hence a reduction in the energy level due to the particle

being more tightly bound. In contrast, particles occupying states with a small overlap with

the core have a weaker interaction, and so are less tightly bound, resulting in an increase

in the energy of the orbit. Figs. 2.5 and 2.6 show the Nilsson diagrams for the region of

the nuclear chart where the Bi isotopes lie. These diagrams reveal the position of the single

particle energy levels with respect to the deformation parameter ε2. This parameter relates

to the β2 quadrupole deformation according to the equation:

β2 =

√
π

5

[
4

3
ε2 +

4

9
ε22 +

4

27
ε32 + ...

]
(2.11)

and is approximately equal to β2 for large deformations. In a spherical nucleus, the energy

levels of every single particle state have a degeneracy of 2j + 1. However, for a deformed

potential the energy levels are now dependent upon the orbit’s spatial orientation, resulting

in a degeneracy of 2. A Nilsson orbit is labelled with the following quantum numbers:

K [NnzΛ] (2.12)

where K is the projection of j along the symmetry axis, N is the principal quantum number

denoting the major shell, nz is the number of wavefunction nodes along the symmetry axis

and Λ is the angular momentum projection along the symmetry axis.

23



The Nilsson model Nuclear models

Figure 2.5: Nilsson model single particle energies for protons in nuclei in the vicinity of
Z=82, as a function of the deformation parameter, ε2. The solid and dashed lines correspond
to positive and negative parity states, respectively [13].
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Figure 2.6: Nilsson model single particle energies for neutrons in nuclei with 82<N<126, as a
function of the deformation parameter, ε2. The solid and dashed lines correspond to positive
and negative parity states, respectively [13].
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2.4 Probing nuclear structure

Knowledge of the structure of a given nucleus can be gained by measuring quantities such as

its electromagnetic moments and charge radius. In order to extract such measurements, we

rely on multiple nuclear properties. One of these is to observe the nucleus decaying. This

section summarises the different decay processes which can be used to measure the atomic

hyperfine structure.

Alpha decay

Alpha decay is the spontaneous emission of an 4
2He nucleus from a parent nucleus. The process

can be represented by the following equation:

A
ZXN →A−4

Z−2 X
′
N−2 +4

2 He, (2.13)

Alpha emission arises due to the repulsive Coulomb force. As the number of protons increases,

the Coulomb force increases with Z2, with the attractive nuclear force increasing linearly with

A. As a result, for heavier nuclei (typically A ≥150), the Coulomb force is stronger than the

nuclear force and so α decay is typically observed in heavier neutron deficient nuclei(β-decay

is a competing process, discussed in Section. 2.5). The α particle, due to its tightly bound

stable structure (doubly magic 4
2He nucleus), has a relatively small mass compared with the

mass of its separate constituents. This keeps the disintegration products as light as possible,

thus getting the largest possible release of kinetic energy. The total energy released in α

emission (Qα) is given by:

Qα = (mX −mX′ −mα)c2 = Eα + EX′ (2.14)

where mX and mX′ are the atomic masses of the parent and daughter nuclei respectively, mα

is the atomic mass of the α particle, Eα and EX′ are the kinetic energies of the α particle

and daughter nucleus respectively. α decay occurs only if Qα > 0. Using the conservation of

momentum and non-relativistic kinematics, the kinetic energy of the α particle can be written

in terms of Qα:

Eα =
Qα

1 +
mα

mX′

(2.15)

typically, the α particle carries 98% of the energy released (thus the recoil energy is not

entirely negligible). In addition to the requirement that Qα > 0, α decay also obeys angular
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momentum and parity selection rules. The α particle consists of two protons and two neutrons

all in 1s states with each of their spins coupling to zero. The spin of the α particle is therefore

zero, and the total angular momentum carried away by the α particle is purely orbital. The

range of values of orbital angular momentum of an α particle, lα from an initial nuclear state

Ii, to a final state If , is given by:

|Ii − If | ≤ lα ≤ Ii + If (2.16)

The change in parity associated with α decay is (−1)lα . The theory which accounted for the

systematics of the variation in Qα-value with half life was developed by George Gamow in 1928

[14]. This theory is based on the idea that the α particle ’preforms’ inside the nucleus, with an

energy of Qα. Fig. 2.7 shows the expected variation of the potential energy of the α particle

daughter nucleus system as a function of separation r. Quantum mechanically, it is possible

for the α particle to tunnel through the potential barrier. The barrier penetration probability

(P) is dependent upon the decay energy, Qα, the barrier height B and the thickness of the

barrier. The α particle bounces backwards and forwards inside the nucleus, colliding with the

barrier. The transition probability is then written as the product of the barrier penetration

probability (P) and frequency of collision with the barrier (f):

λ = f · P (2.17)

The values of half lives determined from the Gamow theory have qualitative agreement with

the experimental data, with experimental half lives typically being 10-100 times longer. This

so called “hindrance” is caused predominantly by the probability of the wavefunction of

the parent nucleus overlapping with the wavefunction representing both the α particle and

daughter nucleus. When there is no change in orbital angular momentum between the initial

and final nuclear states (lα = 0), the wavefunctions overlap. Such decays are referred to as

‘unhindered’. Changes in orbital angular momentum result in less overlap between the two

wavefunctions. These are ’unhindered’ decays, which have a lower transition probabilty.
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Figure 2.7: Relative potential energy of the α-particle, daughter-nucleus system as a function
of their separation, r. Inside the nuclear surface (r<R), the potential is represented by a
square well. Beyond the nuclear surface (r>R), only the coulomb repulsion operates. The α
particle tunnels through the Coulomb barrier.

2.5 Beta decay

The most common form of radioactive disintegration is β decay, which occurs in isotopes of all

elements. The term β decay encompasses three different mechanisms which are summarised

below:

β− : A
ZXN →A

Z+1 X
′
N−1 + e− + ν̄e

β+ : A
ZXN →A

Z−1 X
′
N+1 + e+ + νe

ε : A
ZXN →A

Z−1 X
′
N+1 + e+ + νe

(2.18)

The β− (β+) process involves the conversion of a neutron (proton) into a proton (neutron)

with the emission of an electron, e− (positron, e+). The total energy of the decay is shared

amongst the daughter nucleus (X’), the β particle (e− or e+) and the electron neutrino (ν̄e

or νe). The three body nature of these two types of decays means that unlike α or γ decay,

the β particles are emitted with a continuous distribution of energy.
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The electron capture process involves the nucleus uptaking an atomic electron, typi-

cally from one of the inner atomic orbitals, leaving a vacancy in this orbital. An electron in a

higher atomic orbital then deexcites itself into this corresponding vacancy. This deexcitation

results in the emission of an x-ray with energy equal to the energy difference between the

initial and final states of the deexcited electron. This x-ray has a label corresponding to the

orbital of the captured electron (K, L, M ... etc).

Just like α and γ decay, β decay also obeys angular momentum and parity selection

rules:

∆I = L+ S (2.19)

where ∆I is the change in nuclear spin, L is the angular momentum carried away by the

decay and S is the total coupled spin from the β particle and neutrino. Since the electron

and neutrino have intrinsic spin s=1/2, they can couple anti-parallel, giving S = 0 (Fermi

decay) or parallel, giving S = 1 (Gamow-Teller) decay. β-decay is further grouped into

two categories: ‘allowed’ and ‘forbidden’. Allowed decays have no change in parity (also no

change in parity for second-forbidden decays), therefore L = 0 and so ∆I = 0, 1. Forbidden

transitions have significantly lower transition probabilities in comparison to allowed decays.

There are multiple orders of forbidden transitions, with first order having L = 1, second

order L = 2, and so on. For a particular set of β decays, there is strong overlap between

the quantum mechanical wavefunction of the initial and final nuclear states, resulting in

significantly shorter half lives. Such decays are known as ‘superallowed’ β decays.

2.6 Gamma decay

Gamma decay is the emission of a photon as the nucleus de-excites from an initial excited state

to a final state. When excited states of a nucleus are populated, gamma rays almost always

follow. γ-rays typically range from a few keV up to 10 MeV, characteristic of the energy

difference between the nuclear states. The energy of the emitted photon (Eγ) is written as:

Eγ = Ei − Ef − TR (2.20)

where Ei and Ef are the energies of the initial and final nuclear states respectively and TR is

the recoiling nucleus’s kinetic energy. The nucleus recoils with an equal and opposite momen-
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tum that of the γ ray (Pγ). Taking this into account and using the relativistic relationship

Eγ = cPγ , TR can be expressed as:

TR =
E2
γ

2MRc2
(2.21)

where MR is the mass of the recoiling nucleus and c is the speed of light. This recoil energy

is typically negligible, amounting to a 10−5 correction which is typically much smaller than

the experimental uncertainty.

A γ decay can arise from either a electric (E) or magnetic multipole (M). Just like α

and β decay, γ emission also has spin and parity selection rules which are given as:

|Ii − If | ≤ L ≤ Ii + If

π(EL) = (−1)L,

or,

π(ML) = (−1)L+1

(2.22)

Where L is the angular momentum of the γ ray. The half life for an emission of a γ ray from

a nuclear state can be approximated using the Weisskopf estimates, shown in Table 2.1:

Table 2.1: Single particle Weisskopf estimates of half lives for γ transitions (corrected for
internal conversion). Values taken from [13].

Electric t1/2(s) Magnetic t1/2(s)

E1
6.76× 10−6

E3
γA

2/3
M1

2.20× 10−5

E3
γ

E2
9.52× 106

E5
γA

4/3
M2

3.10× 107

E5
γA

2/3

E3
2.04× 1019

E7
γA

2
M3

6.66× 1019

E7
γA

4/3

E4
6.50× 1031

E9
γA

8/3
M4

2.12× 1032

E9
γA

2

Internal conversion

Internal conversion is an electromagnetic process which competes with γ decay. In this case,

a photon is not emitted, instead, the electromagnetic multipole fields of the nucleus interact
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with the atomic electrons resulting in the emission of an electron from the atom. Unlike

β decay, this electron exists in an atomic orbital before this mechanism occurs, as opposed

to being created in the decay process. The electrons emitted in internal conversion have

quantised kinetic energies (Te) which can be deduced from the equation:

Te(K,L,M...) = Eγ − EB(K,L,M...) (2.23)

where EB is the binding energy of the electron which is dependent upon the atomic shell

which it originates from. Thus, internal conversion is only possible if Eγ > EB and EB is

different for each electron shell (K,L,M,...). This means that if K-shell emission is not possible,

internal conversion may still be possible via L- or M-shell emission. Similar to the electron

capture process, the conversion electron leaves a vacancy in the lower atomic orbital which

is subsequently filled by the deexcitation of an electron from a higher orbital and hence, the

emission of a characteristic x-ray. By measuring the number of conversion of electrons, or

x-rays, one can determine the total internal conversion coefficient, α, from the equation:

αtot =
λe
λγ

(2.24)

where λe and λe are the decay probabilities of the internal conversion process and the γ

transition, respectively. This gives the probability of internal conversion relative to γ decay.

The total decay probability, λt, can then be written as:

λt = λγ(1 + αtot) (2.25)

One can then define partial internal conversion coefficients representing the individual atomic

shells:

αtot = αK + αL + αM + ... (2.26)

To this end, the signature decay of a nucleus provides a means of particle identification.

As discussed in Chapter 3, energy gates can be applied to the α or γ decay peaks, allowing

for high selectivity and enabling the production of the hyperfine structure spectra necessary

to extract the nuclear properties produced in this work.
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Laser spectroscopy

Laser spectroscopy is an excellent tool for studying nuclear shape, size and electromagnetic

moments of ground and long-lived isomeric states. In particular, by measuring the isotope

shifts, one can determine the change in nuclear mean-squared charge radius between isotopes.

From measurements of the hyperfine structure, one can extract the nuclear spin, magnetic

dipole moment and spectroscopic electric quadrupole moment [15, 6, 16].

3.1 Isotope and isomer shifts

The shift of frequency of an atomic transition between two isotopes A and A′ is referred to

as the Isotope Shift (IS):

δνAA
′

is = νA − νA′ (3.1)

where ν is taken to be the centre of gravity (cg) of all hyperfine structure (hfs) components

of the optical line. In order to demonstrate how one can measure this shift, Fig. 3.1 shows

the shift between even-even Hg isotopes. In even-even nuclei, the spin of the ground state is

zero, therefore there is no coupling with the electron spin resulting in no hyperfine splitting.
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182Hg (N=102)

n1

n1 n1’ n1’’

Iions

n1’ n1’’

184Hg (N=104) 186Hg (N=106)

n2

n3

Laser wavelength

Figure 3.1: An example of IS for even-even Hg isotopes. A three-step laser scheme is used
with the first transition scanned in Narrow-Band (NB) mode to determine how the ionisation
efficiency varies with laser wavelength. From this one can determine the IS.

From scanning the first transition in the three-step laser scheme, one can measure the

shift in atomic transition frequency in these Hg isotopes with respect to the reference isotope.

The isotope shift can be written as the sum of two components [17]:

δνAA
′

is = δνAA
′

ms + δνAA
′

fs (3.2)

where δνAA
′

ms is the mass shift and δνAA
′

fs is the field shift.

The mass shift occurs due to a change in the total mass of the system when the

number of neutrons changes and can be expressed as:

δνAA
′

ms =
A′ −A
AA′

M (3.3)

where A′ and A are the atomic masses of the isotopes andM = MNMS+MSMS , whereMNMS

and MSMS are the normal mass shift (NMS) and specific mass shift (SMS) constants. The

SMS occurs due to electron-electron correlations in a multi-electron system and is calculated
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either theoretically or calibrated using experimental data. The NMS, which is equivalent to

the Bohr reduced mass correction [6], can be determined by the equation:

MNMS =
νme

mp
(3.4)

where ν is the transition frequency, me and mp are the mass of the electron and proton

respectively.

The field shift, δνAA
′

fs , is a result of the influence of the finite extension of the nuclear

charge distribution on the electronic binding energy [16]. It was shown, that the field shift is

sensitive to the changes in mean-squared charge radii between different nuclides. The field

shift is given by:

δνAA
′

fs = Fδ〈r2〉A,A′ (3.5)

where F is an electronic factor and δ〈r2〉A,A′ is the change in the mean-squared charge radius

between isotopes A and A’. Thus, combining the mass shift and field shift equations produces

a final expression for the total isotope shift:

δνAA
′

is =
A′ −A
AA′

M + Fδ〈r2〉A,A′ (3.6)

From this expression, once the M and F factors have been determined, measurements of the

isotope shift yield the change in the mean-squared charge radius between different isotopes.

Furthermore, for long-lived isomers in a given nucleus, the isomer shift can also be determined

(in this case, the mass shift is equal to zero). From this one can measure differences in

the mean-squared charge radius between different states of the same nucleus. Thus, laser

spectroscopy is a valuable tool in probing shape coexistence across the nuclear chart.

3.2 The hyperfine structure

The hyperfine structure (HFS) is a result of the coupling of the electronic spin J with nuclear

spin I, resulting in the splitting of the electronic energy levels into hyperfine sub levels, which

are identified by an operator, F :

F = I + J (3.7)

Figure 3.2 shows the scanning of the HFS of 179Hg.
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178Hg(I=0)               179Hg(I=7/2)

Frequency

Figure 3.2: A comparison between the HFS of an even-even (178Hg) and an odd-mass (179Hg)
Hg isotope. For the odd-mass case (on the right hand side), the spin of the nucleus is non-
zero, resulting in coupling of the angular momenta of the atomic electrons and the nucleus,
splitting the atomic energy levels into the hyperfine structure. The HFS spectra can be seen
for 179Hg, produced from scanning the 253.65nm transition.

Transitions between hyperfine levels are permitted if ∆F = 0,±1 with the exception of

transitions between states with F = 0. The energy shift in each level is given by [18]:

4 E/h =
K

2
a+

3K(K + 1)− 4I(I + 1)J(J + 1)

8I(2I − 1)J(2J − 1)
b (3.8)

where K = F (F + 1)− I(I + 1)− J(J + 1) and a and b are the hyperfine constants relating

to the nuclear magnetic dipole and electric quadrupole moments respectively. The parameter

a is given by:

a =
µBe
IJ

(3.9)

This term accounts for the interaction between the magnetic dipole moment, µ, of the nucleus

and the magnetic field, Be(0), produced at the site of the nucleus by the electrons. The

parameter b is given by:

b = eQs

〈d2Ve
dz2

〉
(3.10)

This term arises due to the interaction between the electric quadrupole moment of the nucleus,

Qs, and the electric field gradient,
〈
δ2Ve
δz2

〉
, produced by the atomic electrons.
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Magnetic dipole moment

The nuclear magnetic dipole moment arises primarily due to the orbital and spin angular

momenta of its constituent nucleons, with modifications arising due to effects such as core

polarization, which is when the unpaired nucleon polarizes the core resulting in deformation,

as well as the rotational motion of the nucleus. In the ground state of an even-even nucleus,

the pairing force favours the coupling of nucleons such that their orbital and spin angular

momentum couple to zero and as a result, paired nucleons do not contribute to the magnetic

moment and so the net magnetic dipole moment is zero. For an odd-mass nucleus, the total

magnetic dipole moment results predominantly from both the intrinsic spin of the valence

nucleon as well as its orbital angular momentum. Therefore, measurements of the magnetic

dipole moment can provide information on the single particle nature of the nucleus. For odd-

odd nuclei, both the unpaired proton and neutron contribute to the magnetic dipole moment

and so the total magnetic dipole moment of the nucleus can be deduced using the additivity

rule [19] (shown in Section. 8.4).

Electric Quadrupole moment

The electric quadrupole moment is dependent upon the distribution of charge within the

nucleus. For well deformed nuclei, one can use the measurement of the spectroscopic electric

quadrupole moment (Qs) to determine the static deformation parameter, 〈β2〉, via the strong

coupling projection formula:

Qs ∼=
I(2I − 1)

(I + 1)(2I + 3)

5Z〈r2sph〉√
5π

〈β2〉(1 + 0.36〈β2〉) (3.11)

where 〈r2sph〉 is the mean square charge radius of the nucleus if it were spherical. 〈r2sph〉 can

be determined using the Droplet Model [8, 20]. Specific application of these methods will be

described in Sections. 8.1, 8.4 and 8.8.
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Previous work in the lead region

The neutron-deficient lead region is considered as having the largest manifestation of shape

coexistence across the nuclear chart [4, 5, 6]. Within the microscopic shell model discussed in

Section 2.2, shape coexistence may arise from energetically favourable particle-hole excitations

across the shell gap. These excitations result in low lying intruder states of deformed nuclear

shape. This phenomenon of low energy shape coexistence, as well as the manifestation of

intruder states, will be discussed in Section 4.1.

4.1 Intruder states and low energy shape coexistence

Low energy shape coexistence is a phenomenon in which different configurations of protons

and neutrons form low energy eigenstates within the same nucleus, with differing nuclear

shapes. This effect was first discovered by Morinaga in 1956 [3] in 16O. In this nucleus, the

0+ ground state has a doubly-closed shell with a spherical shape. On top of the ground state

is the first excited 0+ state at 6.06 MeV, which has a different band structure, with a 2+

rotational state at 6.91 MeV. Since then, extensive studies have been carried out across the

Segre chart and a recent review by Heyde and Wood [4] comes to the conclusion that shape

coexistence occurs throughout the nuclear chart, as opposed to being a localised phenomenon.

The energy of intruder states in even-even nuclei, is given by the equation:

Eintr = 2(εjπ − εj′π)−∆Epair + ∆EM + ∆EQ (4.1)

taken from [21]. The first term, 2(εjπ− εj′π), accounts for the energy required to excite a pair

of protons across the shell gap. The second term, ∆Epair, is due to the pairing correlation.
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This is the energy gain arising from the coupling of particle (or hole) pairs to give spin zero.

The third term (∆EM ), is the monopole shift, which is the shift in the proton single-particle

energy, which is dependent on neutron number and can be either attractive or repulsive.

The final term, ∆EQ, is the energy gain due to the quadrupole interaction. The quadrupole

component breaks Iπ = 0+ proton-proton or neutron-neutron pairs into Iπ = 2+ pairs, an

effect known as core polarization, driving quadrupole deformation. This effect is largest when

the number of valence nucleons is maximal. Fig. 4.1 shows a schematic plot of these effects

against neutron number, N , between the two closed neutron shells: N=82 and N=126.

Figure 4.1: A schematic plot of 2+ excitation energy against neutron number showing the
unperturbed energy 2(εjπ−εj′π), the pairing energy ∆Epair, the monopole shift ∆EM and the
quadrupole energy gain ∆EQ,. The blue line represents the summation of all these different
effects. Figure taken from [4].

In Section 2.3, the Nilsson model was discussed. In this model, energies of the Nilsson
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orbitals have a strong dependence on the deformation. For example, if one considers the

9/2[505] proton Nilsson orbital shown in Fig. 2.5, the energy rapidly increases with decreasing

deformation parameter, oblate side ε2 (negative). In addition the 1/2[400] orbital increases

in energy below ε2 = 0. These two effects reduce the energy necessary to allow a particle-hole

excitation between the corresponding nuclear shell model states: π1h9/2 and π3s1/2. Hence,

the equivalence of the spherical shell model and deformed nilsson model, can explain the

emergence of shape coexistence for nuclei near Z=82 [22]. Perhaps the most famous example

in this region is the case of 186Pb, where three different 0+ states with spherical, oblate and

prolate shapes were found to lie within 1 MeV of each other as shown in Fig. 4.2 [23].

Figure 4.2: Calculated potential energy surface for 186Pb. The β2 parameter expresses the
elongation of the nucleus along the symmetry axis, whilst the γ parameter expresses the
degree of triaxiality in the deformation, such that γ = 0◦ corresponds to a prolate shape, and
γ = 60◦ represents that of an oblate nucleus. Figure taken from [23].

The uniqueness of the lead region can be attributed to three different effects. Firstly,

the proton energy gap of 3.9 MeV above the Z=82 shell closure favors a spherical shape in
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their ground state. However, this energy is small enough to allow particle-hole excitations

across the gap, producing valence proton particles and holes. Furthermore, a large valence

neutron space is present between magic number N=82 and N=126. The residual interaction

between valence protons and neutrons results in unusually low lying states of different shapes

competing with the ground state in the vicinity of this neutron midshell [23].

4.2 Laser spectroscopy studies in the lead region

Laser spectroscopy is one of the techniques which enables us to investigate cases of shape

coexistence in this region, via extraction of nuclear properties of the ground and isomeric

states of nuclei along an isotopic chain in a model independent way. The first example of

shape evolution within the lead region was discovered in 1972 by Bonn et al. [24], when a

drastic shape change was observed between the nuclei 187Hg and 185Hg using β-radiation

detection of optical pumping (β-RADOP). This is considered one of the most iconic

discoveries in nuclear structure physics over the past 60 years [5]. Shortly afterwards, γ-ray

spectroscopy revealed that this shape transition was not present in the even-mass neighbours

184,186Hg [25, 26]. Thus the picture became clear, these Hg isotopes were undergoing a shape

staggering between large and small deformations when moving between odd- and even-mass

nuclei. Thereafter in 1976, Bonn et al. was able to establish that the isotopes 181,183Hg

were also heavily deformed [27]. The development of laser spectroscopy paved the way for

measuring isotope shifts, hyperfine parameters and electromagnetic moments, but due to

the inability to investigate below A=181, the picture for the neutron deficient Hg isotopes

remained the same for over 30 years.

Over the past two decades, extensive laser spectroscopy studies have been carried out

in the lead region by the Windmill-RILIS-ISOLTRAP collaboration. Fig. 4.3 shows the

charge radii systematics of the ground states of isotopes in the vicinity of the Z=82 shell

closure as of 2019. The method of decay tagged in-source laser spectroscopy, used in

these studies, combines the high sensitivity of decay spectroscopy with the large efficiency

of in-source laser ionisation, enabling the measurement of very short-lived nuclei far from

stability. To this day, the highest sensitivity achieved using this method was the measurement

of 191Po, with an implantation rate of 0.01 ions/second [28].
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Figure 4.3: Ground state changes in mean-squared charge radii in the Pb region as of 2019.
The numbers in black represent the proton number for each isotopic chain. Data taken from
[29, 30, 31, 32, 33, 34, 35]

Between 2003 and 2014, the collaboration investigated the Tl, Pb, Po and At isotopic

chains. The Pb isotopes, with a full Z=82 shell closure, were determined to be spherical in

their ground state, including when crossing the N=104 neutron midshell [36]. On the other

hand, the Po isotopes, situated two protons above the Z=82 shell closure, were observed to

undergo a rapid onset of deformation upon approaching the neutron midshell [28, 37, 38].

The ground states of Tl isotopes, positioned one proton below the Z=82 shell closure,

follow the same spherical trend of the Pb isotopic chain, with slight deformation observed

in the Iπ = 9/2− isomers [34]. Lastly, the At isotopes revealed a strong deviation from the

charge radii systematics of the spherical Pb isotopes, interpreted as an onset of deformation,

resembling the behaviour of the Po isotopes [35]. 1

Since then, the collaboration has carried out in-source laser spectroscopy measure-

ments of Au, Hg and Bi isotopic chain. The Hg isotopes were measured in 2015, revealing

two crucial outcomes. Fig. 4.4 shows the measurements of the changes in mean-square

1In 2013-2017, the Fr isotopic chain was also investigated using Collinear Resonance Ionisation Spectroscopy
(CRIS), a technique allowing one to extract the quadrupole moment of these isotopes with much greater
accuracy [39, 40, 41, 42].
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charge radii for these Hg isotopes, with the solid straight line showing the trend seen for

spherical Pb nuclei [43].

Figure 4.4: Changes in mean-square charge radii as a function of mass number for isotopes
177−198Hg. Figure taken from [43]. The results from B. Marsh et al. in 2019 [43] are shown
in red with the previous results from Bonn et al. in 1972 [24] and G. Ulm et al. [44] shown
in blue. The ground (gs) and isomeric (is) states are represented by filled and open circles
respectively. The shapes of 190Hg and 181Hg are shown for comparison. The black line
represents the trend in the previously measured spherical lead nuclei.

Firstly, the shape staggering effect seen in 181−185Hg by Bonn et al. was reproduced.

Secondly, measurements were extended to below A=181. This revealed that this staggering

phenomenon ceases at 181Hg, with the lighter isotopes starting to approach near-spherical

trend observed in the heavier isotopes (A >186). These data also agree well with in-beam

spectroscopy measurements of even-even Hg isotopes [45, 46, 47], with systematics of excited

states shown in Fig. 4.5. The excitation energies of even-even 190−198Hg isotopes show a

constant behaviour associated with the weakly deformed oblate ground state. However, this

trend is somewhat distorted in the lighter mercury isotopes around neutron mid-shell at
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N=104 due to the intrusion of a strongly deformed prolate band. This band is built on

top of a deformed excited 0+2 state which arises from proton excitations across the Z=82

shell gap. Both the laser and in-beam spectroscopy studies provide strong evidence for shape

coexistence in the isotopes 181−185Hg. That is, within these nuclei, there are two states with

different nuclear shapes, coexisting at low energy. Furthermore, based on in-beam studies one

can see that the pattern of excited states in the lighter Hg isotopes e.g. 174Hg indicates that

its ground state becomes spherical again. This is expected when moving towards the next

neutron shell closure at N=82.

Figure 4.5: Excitation energy systematics for even-even neutron deficient Hg isotopes. Full
and hollow symbols are the level energies of the ground and excited state bands respectively.
Figure taken from [48].

Theoretical nuclear calculations allow one to probe the structure of these intruder states

in nuclei. Recently, Monte Carlo Shell Model (MCSM) calculations were performed on the

neutron deficient Hg isotopes [43], in order to further understanding of this shape staggering

phenomenon seen in these nuclei. Fig. 4.6 shows a comparison of the experimental charge

radii systematics, with that of the results of these MCSM calculations.
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Figure 4.6: Change in mean-square charge radius with respect to the ground state of 186Hg.
Red points are experimental data taken at ISOLDE. The blue (grey) shaded areas indicate
the extracted radii values corresponding to MCSM eigenstates labelled by their spin, parity
and energy level ordering with calculated magnetic moment in agreement (disagreement) with
the experimental value. Figure taken from [43].

Remarkable agreement with the experimental values was achieved. This enabled exami-

nation of the eigenstates in order to determine the underlying mechanism behind this shape

staggering phenomena. the most compelling discrepancy between the heavily deformed 1/2−

states in 181,183,185Hg and the near spherical even mass neighbouring isotopes is the occu-

pancy of two orbitals: the 1h9/2 proton orbital above the Z=82 shell closure and the 1i13/2

neutron midshell between N=82 and N=126. The deformed states exhibit large and con-

stant values of neutrons in the 1i13/2 orbit as well as a considerable promotion of 2-3 protons

across the Z=82 shell gap into the 1h9/2 orbit(see Figures 2c and 17 in Refs. [43] and [49],

respectively). This sudden reconfiguration of nucleons is a result of both the quadrupole and

monopole components of the nucleon-nucleon interaction. As discussed in section 2.3, the

monopole component and the quadrupole interaction lowers the binding energy. In this case,

the energy decrease is greater than the energy required to create the particle-hole excitations,

thus, the deformed state becomes the ground state. Such calculations are of great importance
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understanding any effects observed in the Pb region.
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Chapter 5

Previous work on Bi isotopes

As discussed in section 4.1, the manifestation of shape coexistence can be explained by the

occurrence of low lying intruder states in the shell model. In the neutron deficient odd-mass

Tl isotopes, the spherical 1/2+ ground state coexists with a low lying 9/2− intruder state. In

the case of the odd-mass Bi isotopes, these states are flipped: the 9/2− near spherical ground

state co-exists with a low lying 1/2+ intruder state. However, for both of these isotopic

chains, the intruder state is produced via the same mechanism: excitation of a proton across

the Z=82 shell gap, into the 1h9/2 orbital. Figure 5.1 shows the shell model diagram for both

these states in the odd-mass Bi and Tl isotopes.
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Figure 5.1: (a) Shell model diagram showing the orbitals occupied by the protons (red circles)
and the holes (hollow circles) for both the ground state (9/2−) and the intruder state (1/2+) of
odd-mass Bi isotopes. (b) Shell model diagram showing the orbitals occupied by the protons
for both the ground state (1/2+) and the intruder state (9/2−) of odd-mass Tl isotopes. In
both circumstances, the intruder state is produced via excitation of a proton across the Z=82
shell gap, shown by the arrows.

The ABi→A−4Tl α decay has proven an extremely useful tool for the identification of

the configurations of neutron deficient Bi nuclei. This is based on the fact that in odd-mass

187−195Bi isotopes, one typically observes unhindered (∆L = 0) πs−11/2 → πs−11/2 as well as

πh9/2 → πh9/2 α decays. Figure 5.2 shows the α-decay systematics of the odd-mass Bi

isotopes in the range 187−197Bi [50].
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Figure 5.2: Low energy systematics of odd-mass Bi and Tl isotopes and α-decay scheme of
Bi isotopes, showing the energies of each decay. The red and blue lines represent the energy
systematics of intruder states of the Bi and Tl isotopes, respectively. Figure taken from [50].

Figure 5.3 shows a comparison of the experimental excitation energies of the Bi and Tl

intruder states with respect to their corresponding ground states. For the Tl isotopes, the

parabolic dependence of excitation energy with minima close to the N=104 mid-shell is a well

established phenomenon [51].
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Figure 5.3: Experimental (open symbols with solid lines) and theoretical (filled symbols with
dashed lines) excitation energies of the low lying intruder states for both Bi and Tl isotopes
with respect to their ground states. Theoretical values were obtained from potential energy
surface (PES) calculations from [52], with experimental data taken from [50, 53, 54, 55]

From Fig. 5.3, below 191Bi, a strong deviation from the parabolic dependence of the Tl

isotopes is clearly observed in the Bi isotopic chain when approaching the N=104 midshell.

Extrapolation of this effect reveals that the 1/2+ intruder state in 185Bi becomes the ground

state, lying below the spherical 9/2− state. This is surprising and provides an indication that

the structure of this intruder state in 187,189Bi will differ from that of the heavier isotopes. This

point is further emphasised in the Potential Energy Surface (PES) calculations carried out

in Ref. [52] on odd-mass neutron deficient Bi isotopes in order to determine their underlying

structure. From these calculations a drastic change in nuclear shape is predicted. Fig. 5.4

shows the PES plots for these isotopes for both positive and negative parity states. These

plots reveal a multitude of low lying minima of different nuclear shapes, each with their

corresponding nuclear configuration. From these plots, two main conclusions can be drawn.

Firstly, for the negative parity states, the ground state minima are calculated as near spherical

with the β2 gradually increasing from 0.074 at 195Bi up to 0.09 at 187Bi. In the spherical shell

model approach, this state corresponds to the odd proton occupying the 1h9/2 spherical orbital
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above the Z=82 proton shell closure (shown Fig. 5.1). The slight prolate shape arises from the

polarisation effects of this valence proton. Experimentally, these states are known to exist

in 187−209Bi [52], see Fig. 5.2. For the positive parity states, moderately deformed oblate

minima were determined from these calculations, at γ = −60◦ with the β2 values gradually

increasing from 0.125 at N=112 up to β2 = 0.14 at the neutron midshell. In the language of

the spherical shell model approach, these minima arise from the excitation of a proton from

the closed shell into the 1h9/2 orbital, coupling with the odd proton in this state, leaving an

unpaired proton in the 3s1/2 level. The result is a π[2p− 1h] configuration.
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Figure 5.4: Potential-energy surfaces for the negative (a) and positive (b) parity states in the
isotopes 185−195Bi. Near spherical, oblate and prolate states are indicated by filled circles,
diamonds and stars, respectively. γ-soft minima are shown by shaded areas. Figure adapted
from [52].
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5.1 Bi laser spectroscopy studies

Fig. 5.5 shows the charge radii systematics for Bi isotopes before the work presented in this

thesis. The first laser spectroscopy measurements were carried out in 1995-1996 by Campbell

on the isotopes 202,203,204Bi et al. [56, 57]. In these studies, gas cell laser spectroscopy was

used at SUNY, Stony Brook to measure the isotope shifts of 202−204Bi. Five years later,

further laser spectroscopy measurements were carried out at ISOLDE in 2000 by Pearson et

al. [58]. In this investigation, gas cell laser spectroscopy was utilised again to measure the

isotope shifts and electromagnetic moments of the isotopes 205−210,212,213Bi. From this study,

the charge radii systematics appeared to follow the Pb trend, with the odd-even staggering

being identical to what was observed in the Pb isotopic chain.

Barzakh et al, 2016-2017

Pearson et al, 2000

Figure 5.5: Changes in mean-square charge radii for Bi isotopes. Full downward triangles
represent 9/2− ground states [31, 58], hollow triangles: 1/2+ intruder states [31]. Stars
show most recent measurements of ground state odd-A Bi nuclei [32]. Circle represent 10−

states [32] and upward triangles 3+ states [32]. The dotted lines represent the droplet model
prediction [8, 20] for different mean-square deformations. Figure taken from [32].

More recently in 2017, laser spectroscopy studies were carried out on Bi isotopes at the
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Investigation of Radioactive Isotopes on Synchrocyclotron facility (IRIS) in Petersburg [32,

31]. Data on neutron deficient isotopes were collected, with the changes in mean-squared

charge radius being obtained down to 189Bi. These data revealed a marked deviation from

the charge radii systematics of the Pb and Tl isotopic chains below 194Bi. This was interpreted

as an onset of quadrupole deformation. This onset of deformation in what was previously

believed to be a spherical 9/2− ground state in odd-mass Bi isotopes is a new phenomenon and

will be investigated in more detail in this work. Furthermore, a large isomer shift was observed

for the 1/2+ intruder states of 193,195,197Bi, indicating the presence of shape coexistence in

these isotopes. It is crucial that measurements are extended to 191mBi, as well as more

accurate data are obtained for 189g,191gBi. This will allow further investigation of the departure

of the intruder state excitation energy from the parabolic N dependence of the Tl isotopes.
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Chapter 6

Experimental methods to study Bi

isotopes

The results presented in this thesis are from experiments which took place at the Isotope

Separator OnLine DEvice (ISOLDE) facility at CERN (Geneva, Switzerland). ISOLDE is

located next to the Proton Synchrotron Booster (PSB), as shown in Fig. 6.1.

Figure 6.1: A schematic view of the CERN facility with ISOLDE shown in green, located
next to the PSB, shown in pink. Figure taken from [59].
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6.1 ISOLDE facility

ISOLDE is the CERN experimental hall for the production of radioactive ion beams using

the Isotope Separator On-Line (ISOL) technique [60]. The layout of the building is seen in

Fig. 6.2.

Figure 6.2: ISOLDE layout, showing the beam pathway from the GPS target. Figure adapted
from [61].

The facility makes use of the two mass separators which provide high-purity beams to a

number of different experiments. To this day, ISOLDE is capable of producing more than

1300 different isotopes across 73 different elements for experimental studies.

The Bi isotopes were produced by impinging a 1.4 GeV proton beam onto a uranium

carbide (UCx) target. The Bi isotopes were then ionised to a 1+ charge state using a

three step laser ionisation scheme, accelerated using an electrostatic potential and then

mass separated. The mass separated ion beam is then transferred to one of the detection

setups: The Windmill (WM), ISOLTRAP’s Multi-Reflection Time-Of-Flight Mass Separator

(MR-TOF-MS) or the ISOLDE Faraday Cup (FC). In Fig. 6.2, the path of the Bi ions is

shown for the case of using the WM setup. The choice of detection system is dependent upon

many factors including isotope half life, branching ratio, decay mode and beam intensity.
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The FC can be used in cases where the ion beam current is of the order of pA. The WM

was used to perform decay studies as well as measurements of HFS and isotopes shifts for

short lived alpha decaying isotopes, The ISOLTRAP MR-TOF-MS was used to measure

HFS and isotope shifts of longer lived/stable isotopes or in cases when there is large isobaric

contamination present. Fig. 6.3 gives a schematic overview of the beam production as

well as the three different detection setups. The following sections provide more detailed

descriptions of these individual stages.

Figure 6.3: Schematic diagram of the in-source resonance ionisation spectroscopy of the At
isotopes. This shows the proton beam impinging on the uranium carbide target, the resonant
ionisation using the RILIS lasers, the mass separation using the GPS dipole magnet as well
as the implantation into one of the three detection systems: the Faraday cup, the windmill
and the ISOLTRAP MR-TOF. Figure taken from [62].

6.2 Beam production

At the ISOLDE facility, a 1.4 GeV proton beam is delivered from the PSB. This beam

consists of pulses of 2.4 µs in length, with spacings of 1.2 seconds between them, providing

an average current of 2 µA. The beam is organised into a logical sequence known as a

supercycle (SC) which typically contains 35-40 proton pulses. These pulses are distributed
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across different facilities at CERN. During experiment, ISOLDE will receive around 25-50%

of these pulses depending on the isotope under investigation.

During the Bi experiments, the proton beam was impinged upon 50 g/cm2 UCx tar-

gets generating high energy collisions. These high energy collisions result in the production

of many isotopes via three different types of reactions, shown in Fig. 6.4.

200-220Z

Figure 6.4: Schematic diagram of the reaction mechanisms used to produce the different
isotopes at ISOLDE (red circles: protons, blue circles: neutrons).

The 3 mechanisms are:

·Fission The collision excites the target nucleus above the fission barrier. As a result, nuclear

fission occurs splitting the parent nucleus into two daughter nuclei and a number of

neutrons. This mechanism is useful for producing neutron rich nuclei.

·Fragmentation This type of reaction is useful for producing lighter nuclei such as 11Be.

The target nucleus breaks down into a light and a heavy nuclei and a number of free

nucleons with the heavy nucleus having a mass comparable to that of the target nucleus.

·Spallation This is the reaction used to produced the neutron deficient Bi nuclei. In spalla-

tion, firstly a relativistic proton collides with a target nucleus, exciting multiple nucleons
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to higher energy states. Then the nucleus de-excites itself by evaporating off tens of

nucleons.

The reaction products are neutralised and their remaining kinetic energy is absorbed by the

target. Extraction of nuclides occurs via thermal effusion and diffusion into the hot cavity

via the transfer line. The release time is reduced by heating the target, transfer line and hot

cavity to > 2300◦C. The neutral atoms may then be ionised within the hot cavity of the ion

source [63, 62].

6.3 RILIS

The resonant ionisation laser ion source (RILIS) [64] is the most commonly used ion source

at the ISOLDE facility, with over 50% of the experiments making use of it due to its high

efficiency and isobaric selectivity. RILIS is capable of producing ion beams for more than 35

different chemical elements. For each element a specific ionisation scheme is required [65, 66].

For Bi isotopes, three lasers are used to excite an atom from the ground state, through two

intermediate excited states, then to the continuum, leaving a 1+ charge state ion. After

ionisation, the ions are accelerated by a 30-60 kV electrostatic potential. The ion beam was

then mass separated before being delivered to one of the three experimental setups in the

ISOLDE hall.

To maximise ionisation efficiency, the pulsed laser must have a repetition rate of 10

kHz. This repetition rate ensures that every atom is exposed to a minimum of one pulse of

laser light, increasing the probability of an interaction between the laser’s photon and the

atom.
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Figure 6.5: The three step resonant ionisation scheme used to produce the Bi beam during
the IS608 experiment runs that took place in June 2016,2017 and 2018. The first laser step
was frequency scanned in order to produce the HFS spectra. Figure adapted from [67].

6.4 Mass Separation

The ISOLDE facility has two separators, each equipped with their own target: The General

Purpose Separator (GPS) and the High Resolution Separator (HRS). The GPS is the

smallest of the two separators with its centrepiece being a double focussing 70o magnet with

a bending radius of 1.5m, producing a mass resolving power of m/4m ∼ 2400 [68]. The

GPS allows selection of three ion beams within the mass range of ±15% from the central

mass allowing three different beams to go to three separate experimental setups in the hall.
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The HRS consists of two bending magnets which produce a mass resolving power of

m/4m ∼ 7− 8000. Unlike the GPS, the HRS has no switchyard for mass separation and so

only a single beam can be delivered to a single experimental setup in the hall.

A merging switchyard then feeds the HRS and GPS beam lines into the ISOLDE cen-

tral beam line. This beam line goes to the experimental hall, allowing the beam to be steered

to a number of different experimental stations where a user’s setup can be installed.

6.5 Photo-ion detection

For each isotope under investigation, the production yield, decay properties and levels of

isobaric contamination are all different. As a result, multiple methods of photo-ion detection

are required. The three different methods used for the Bi isotopes are described below.

Faraday Cup

The Faraday cup (FC) is typically used as a beam diagnostics tool for ion current measure-

ments. However, the FC was used to measure 209Bi as it is a stable isotope with a high

production yield. During a laser scan, the integration time of the FC is fixed for each laser

step and the average ion current measured, producing the HFS spectra.

Windmill Decay Station

For radioactive beams, their specific decay radiation can be used as an efficient and selective

means of photo-ion detection. The ISOLDE tape station, a device typically used for yield

measurements, can be used to measure β or γ radiation for isotopes with a half life longer

than 100ms [62]. For shorter lived isotopes, the KU-Leuven Windmill decay station was used

[69]. The ions were implanted into one of the ten carbon foils of 20µg/cm2 thickness and

6mm in diameter which were produced at the GSI laboratory [70]. These ten carbon foils

were mounted on a rotatable wheel. A diagram of the Windmill setup is shown in Fig. 6.6.

At the implantation position, there were two silicon detectors. One of these was an annular

detector, Si1, positioned 7mm upstream, with an active area of 450mm2 and a thickness of

300µm with a central hole of 6mm in diameter to allow passage of the beam. The second
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silicon detector, Si2, was a standard detector with an active area of 300mm2 and 300µm

thickness situated 4mm downstream of the foil. This gave a total detection efficiency of

34% at the implantation position [30]. After a fixed number of SC, the wheel is rotated and

the irradiated foil was moved between the second pair of silicon detectors. These were two

Passivated Implanted Planar Silicon (PIPS) detectors, named Si3 and Si4. This allowed the

measurement of α decays of long lived daughter products.

Figure 6.6: Model of the Windmill setup. Left: Position of the four silicon detectors (brown),
rotatable wheel (black), carbon foils (grey) and the Low-Energy Germanium detector (LEGe,
blue). The germanium detector positioned at a right angle to the beam is not shown in
this diagram. Right: Zoomed in view of the implantation site with α-particles (orange),
β/conversion electrons (blue), γ rays (green) and fission fragments (black) originating from
the nuclei implanted into the foil. Figure taken from [11].

Two Germanium detectors were placed outside the WM chamber in order to detect γ rays.

There was a low-energy planar germanium detector, named Ge1, situated directly behind Si2.

The second, Ge2, was situated 90 deg to the beam direction, to the side of the chamber.

ISOLTRAP’s MR-TOF-MS

At the ISOLDE facility, both mass separators have a mass resolving power sufficient to remove

neighbouring isotopes from the radioactive beam. However, one of the major difficulties for

many experiments at ISOL facilities is isobaric contamination. This can arise from the hot

environment of the ion source resulting in surface ionisation. In order to suppress these

isobars, one requires a mass resolving power of m/4m ∼104. To add to this, isotopes far from
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stability are constrained by a large decrease in production yield as well as a reduction in half-

life. This lowers the relative intensity ratio between the ions under study and the isobars. For

longer lived isotopes with no decay to measure and a large amount of isobaric contamination,

ISOLTRAP’s Multi-Reflection Time-Of-Flight Mass-Spectrometer (MR-TOF-MS) [71] was

used to measure the isotope shifts and the HFS.

Figure 6.7: Schematic diagram of ISOLTRAP’s Multi-Reflection Time-Of-Flight Mass Spec-
trometer. Figure taken from [71].

This device is shown in Fig. 6.7 and discussed in detail in [71]. ISOLTRAP’s MR-TOF-

MS consists of two electrostatic ion-optical mirrors, both 160 mm in length, surrounded by

shielding electrodes and separated by a 460 mm long cavity. Firstly, the mass separated ion

beam is bunched and cooled using the helium buffer gas filled Radio Frequency Quadrupole

(RFQ) cooler/buncher. The ions are then injected into the cavity at an energy of 3.2 keV [72],

where they are reflected back and forth between the mirrors, thousands of times, resulting

in a long time of flight. This separates the different ions according to their mass to charge

ratio, resulting in a mass resolving power of m/4m ≈ 105. This whole process typically

takes 30ms (in fast measurement cycle). Once the mass separation occurs, the isotope under

investigation was selected using a fast timing electrical deflector and the number of ions is

then measured using a multichannel plate detector.

6.6 Scanning the hyperfine structure

When scanning the hyperfine structure of the Bi isotopes using in-source resonance ionisation

spectroscopy, a three step laser ionisation scheme was chosen. In this scheme, a frequency

tripled Ti:Sa laser was scanned in a ’high resolution’ mode using a narrow-band (NB) laser

with a ≈ 1 GHz linewidth (before tripling). The laser/atom interaction region is in the hot

cavity (>2000 K), and so the thermal motion of the atoms gives rise to Doppler broadening,
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which further limits the resolution by an additional 1 GHz. The other transitions are fixed

in frequency and provided by broad-band (BB) lasers, which are tuned to give maximum

ionisation efficiency. These BB lasers have a linewidth of over 100 GHz, which is usually

larger than the IS or HFS effects. This allows all isotopes and isomers of a chosen element

to be ionised with equal efficiency.

The HFS is scanned in discrete steps. For a given step in a scan, the NB laser is

tuned to the desired frequency by the tilting of two etalons [73]. Once this frequency has

stabilised the implantation of the beam into one of the three detection setups commences

and the data acquisition begins, with the time of the laser step corresponding to the length

of data acquisition. The wavelength was recorded using two High Finesse/Angstrom WS/7

wavemeters installed in the RILIS laboratory [74]. Over the course of a step, the laser

frequency is continuously monitored and the average measurement is taken as the frequency.

At the end of each laser step, the laser was tuned to a new frequency. Whilst this occurs

the data acquisition prepares for the next step (for the Windmill, the wheel is rotated,

introducing a fresh foil at the implantation position). The start and stop of data acquisition

during a laser step, as well as the movement of the Windmill wheel in between the step, was

controlled using digital clocks which are synchronised with those from the CERN PSB via

an electronic logic system.

The neutron-deficient Bi isotopes below N=109 are short-lived and α-decaying, there-

fore the Windmill decay station was used to measure their HFS. During a laser scan,

measuring the number of α decays under the chosen α line provides a way of determining

ionisation efficiency across the scan. In this way, it is possible to measure the HFS of the

ground and isomeric states in a given isotope, provided they have different α-decay energies.

An example of this can be seen in the plot in Fig. 6.8, which shows the number of α counts

as a function of laser wavenumber for a scan of 191Bi. The HFS of the two isomers can be

investigated by gating on their individual α-decay energies.
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Figure 6.8: Surface plot of the 191g,mBi α-decay events measured in the windmill decay
station, against the laser wavenumber of the scanning laser. Two pairs of peaks can be seen
corresponding to the two characteristic α decays from the individual isomers. The difference
in the structure of these two pairs arises due to the difference in the structure of the two
nuclear isomers.

6.7 Windmill Data Acquisition

As discussed in the previous section, the WM wheel rotates after every laser step. During a

laser scan, the number of SCs per laser step is fixed throughout the scan. This number is

dependent on the half-life and production yield of the isotope under investigation.

The collection of data was performed using the Digital Gamma Finder (DGF), revi-

sion 4C, digital electronic modules from XIA [75]. Each module had 4 input channels and

an internal clock for processing and time stamping each ’event’. Each ’Event’ recorded in

the modules was given a number of stamps which were then used in the analysis of the

experimental data.

· Energy: Energy of the decay radiation detected is proportional to the size of the electronic

signal received by the module.

· Identification Stamp: States which module and channel the signal was received, allowing

identification of the event (i.e. a decay detected in the Si or Ge detectors or a time signal

from one of the internal clocks).
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· Time Stamp: Taken from the module’s internal clock, stating the time of the event to the

precision of 25ns.

During IS608, a total of 8 modules were used, 6 being utilised for the 6 different detectors.

For the remaining two cards, one of the cards recorded clock logic signals used to control and

synchronise the WM wheel rotation and the data acquisition. The start of a measurement

step of a HFS scan, a proton pulse being sent to ISOLDE, the end of DAQ, and the movement

of the WM wheel are all recorded by this. The other card was dedicated to a 100 Hz pulser.

This monitored the fractional dead time during data acquisition as well as the total live time

of each run. The IGOR software package by wavemetrics was used to ensure all the internal

clocks were synchronised as well as control the modules remotely [76]. To reduce dead time

from the readouts, a logic gate was used to synchronise the writing of the data from the

module buffers to the PC hard drive.
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Chapter 7

Results

This chapter presents the results from the laser spectroscopic studies of neutron-deficient Bi

isotopes. The HFS constants and isotope shifts of 187−189,191Bi will be shown, from which

the electromagnetic moments and changes in mean-square charge radius for each isotope (and

isomers) can be extracted. The data were taken during the IS608 experimental runs, by the

Windmill-RILIS-ISOLTRAP collaboration in June 2016 and June 2017 at the ISOLDE facilty,

CERN. The contribution of the author is online analysis during the experimental campaign

as well as the offline analysis, producing the final HFS spectra.

As discussed in Section. 6.3, RILIS ionizes the Bi atoms to a 1+ charge state using a three

step laser ionisation scheme shown in Fig. 7.1. The first step was excited using the frequency

tripled Ti:Sa laser operated in narrowband mode (linewidth of v0.8 GHz, before tripling).

The second step was performed using a broadband DMK MSS dye laser. A broadband solid

state Nd:YVO4 laser was employed for the final step. Further details of the RILIS laser system

can be found in Ref [64]. The atomic spectroscopy measurements of the different Bi isotopes

were performed by scanning the 6p3 4S3/2 −→ 6p27s 4P1/2 transition (λ=306.77 nm). For

a given laser frequency, the ionisation efficiency was determined using one of three different

ways: measuring the Radioactive Ion Beam (RIB) current using a Faraday cup, counting ions

using ISOLTRAP’s MR-ToF-MS or determining the number of α-decays using the Windmill

decay station.
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7.1 Expected HFS spectra

The right-hand side of Fig. 7.1 depicts a schematic view of the expected HFS of the ground

I =9/2 and excited I =1/2 states in 191Bi. The coupling of the nuclear spin I =9/2 with the

atomic spin, J, results in splitting into the hyperfine levels. As can be seen in Fig. 7.1, the

J=3/2 ground atomic state is split into 4 hyperfine levels of F=3,4,5 and 6, whilst the J=1/2

excited atomic state is split into 2 levels of F’=4 and 5. The blue arrows indicate allowed

transitions. Fig. 7.2 shows a HFS spectrum obtained for the I = 9/2− ground state of 191Bi.

The blue line shows what one would expect without Doppler broadening, with a spectral

resolution of v50 MHz. The red line shows the HFS spectrum when using an in-source laser

spectroscopy method, with a resolution of v3 GHz. The hyperfine parameters a and b used

in these fits were extracted from fits to the experimental data, which will be discussed in the

following sections.

The intensity of each hyperfine transition, IFiFj relative to the intensity of the unpertubed

electronic transition, IJiJj , is determined by:

IFiFf
IJiJf

= (2Fi + 1)(2Ff + 1)

Fi Ff 1

Jf Ji I


2

(7.1)

where the i and f subscripts denote the initial and final states, respectively, and {...} is a

Wigner 6-j symbol.
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Figure 7.1: The three-step laser ionisation scheme used for Bi atoms during the IS608 cam-
paign (left), and the hyperfine splitting resulting from the coupling of the atomic electron and
nuclear spins for both the I =9/2 and 1/2 states in 191Bi (right). The blue arrows indicate
the allowed transitions between the initial and final states of the scanned 306.77 nm laser
transition. The size of the hyperfine splitting is not to scale.
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Figure 7.2: HFS spectra for the ground state of isotope 191Bi. The red line shows what one
would expect when employing an in-source laser spectroscopy method, such as the one used
throughout the IS608 campaign, with a Doppler broadening of 850MHz. The blue line shows
the HFS spectrum expected without Doppler broadening. The hyperfine factors a and b used
to produce these two spectra were taken from the fitting results of 191Bi HFS spectra, which
will be discussed in the following sections.
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7.2 Calibration of silicon detectors of Windmill

During the online analysis, the silicon detectors were calibrated using the 241Am α source

[77]. Due to the Am source not accounting for the carbon foil thickness, this source was only

used for the initial calibration. In the offline analysis calibrations were carried out for every

laser scan using the α-decays from the Bi nuclei and their daughter isotopes. Figure 7.3 shows

the calibration results of the silicon detectors at implantation position (Si1 and Si2). This

calibration was performed using the α-decay energies of 191Bi [78].

y = 0.1845x + 11.27

χ2 = 0.777

y = 0.1903x + 15.88

χ2 = 1.07

Figure 7.3: Energy calibration for Si1 (blue) and Si2 (red) detectors. The α-decay energies
used are: 191Bi Eα= 6309(3), 6639(4) and 6871(3) keV [78]. The data were fitted with first
order polynomials.

7.3 Producing HFS from Windmill laser scans

In the case of the isotopes 187−189,191Bi, the HFS spectra were extracted by counting the

number of events under specific alpha lines measured by the Windmill decay station, for

each laser frequency step throughout the scan. After each scan, one can apply gates on the

characteristic α-decay of the isotope under investigation to produce the HFS spectra. Table.

7.1 shows the number of laser scans carried out for each isotope. This section details the
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Table 7.1: Details of the number of laser scans and the amount of laser steps per scan shown
for each Bi isotope investigated during the experimental campaign IS608. With the exception
of some laser scans of 188Bi, all other laser scans were carried out in 2016 using the HRS
separator.

Isotope Laser Scan No. Supercycles per step Number of laser steps

187Bi
Scan 1(2016, HRS)
Scan 2 (2016, HRS)
Scan 3 (2016, HRS)

6
6
6

26
44
45

188Bi

Scan 1 (2016, HRS)
Scan 2 (2016, HRS)
Scan 3 (2016, HRS)
Scan 4 (2016, HRS)
Scan 5 (2016, HRS)
Scan 6 (2017, GPS)
Scan 7 (2017, GPS)
Scan 8 (2017, GPS)
Scan 9 (2017, GPS)

1
2
4
3
3
3
5
5
4

119
123
60
74
123
65
65
54
39

189Bi

Scan 1 (2016, HRS)
Scan 2 (2016, HRS)
Scan 3 (2016, HRS)
Scan 4 (2016, HRS)

1
1
1
1

107
86
90
88

191Bi
Scan 1 (2016, HRS)
Scan 2 (2016, HRS)
Scan 3 (2016, HRS)

1
1
1

108
91
90

methods used to extract the final HFS spectra for each Bi isotope.

7.4 191Bi

In each decay scheme shown in this chapter unconfirmed (confirmed) spins of nuclear states

will be shown with brackets (no brackets). Throughout the text the brackets are omitted.

The α-decay scheme of 191Bi is shown in Fig. 7.4. Data were taken from Refs. [50, 79]. The

9/2− ground state decays by two branches, while the 1/2+ isomer state has a single decay at

6871 keV.
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191Bi

6309(3)

97.1(3)
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187Tl

125(13) ms

12.4(3) s

240

334

0

0

Figure 7.4: α-decay scheme for 191Bi. Shown are the α-decay energies (Eα) and relative
intensities (Iα). These values were taken from Refs. [50, 79].

Due to the high predicted yield (45000 ions/s) of 191Bi, measurements of the HFS were

attained using just three scans consisting of 1 supercycle per laser step. Additionally, there

is no α-decaying isobaric contamination at mass A=191, resulting in a pure 191Bi α decay

spectra.

Alpha decay spectra

Fig. 7.5 shows the resultant α-decay spectrum measured at the implantation position using

Si1 and Si2 during scan 1.
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Figure 7.5: α-decay spectrum from laser scan 1 of 191Bi measured at the implantation position
using Si1 and Si2. The peaks are labelled with their decay energies in keV, as well as the
spin and parity of the corresponding 191Bi states. The respective gating conditions used to
produce the HFS spectra are indicated by the vertical lines with colours matching the two
different states.

The 9/2− ground state is long lived and so its α decays will still be present after the 0.8 s

time interval required for the carbon foil to move to the decay position between Si3 and Si4.

Fig. 7.6 shows the energy spectra measured using Si3 and Si4 at the decay position in scan

1.
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Iπ=9/2-

6639 keV
Iπ=9/2-

Figure 7.6: α-decay spectrum from a laser scan of 191Bi measured at the decay position using
Si3 and Si4. The peaks are labelled with their decay energies in keV, as well as the spin and
parity of the 191Bi states. The energy gate used to produce the I=9/2 ground state decay
curve are indicated by the red vertical line.

Extraction of the HFS spectra

Energy gates were applied to the 6309 keV and 6639 keV α-decay peaks in Si1 and Si2 to

produce the 9/2− ground state HFS spectra and to the 6871 keV to determine the 1/2+

isomer state HFS spectra. Fig. 7.7 shows the HFS spectra for these two states produced from

scan 1.
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Figure 7.7: Extracted HFS as a function of laser wavenumber for scan 1 of 191Bi: (a) I =9/2
ground state and (b) I =1/2 isomer state. For the ground state, energy gates of 6279-6339
keV were applied to the 6309 keV and gates of 6609-6669 keV to the 6639 keV α-decay lines
measured using Si1 and Si2. For the isomer state, energy gates of 6841-6901 keV were applied
to the 6871 keV α-decay lines measured with Si1 and Si2.

Measuring half lives

From the data taken with the silicon detectors during a laser scan, it is possible to measure

the half lives (t1/2) of different states. Fig. 7.8 shows the time distribution of α decays

measured in Si3 and Si4 across every laser step in the leftmost peak of a hyperfine structure

of 191gBi during laser scan 1, with energy gates applied to both 6309 and 6639 keV lines of

the 9/2− ground state. The red lines indicate the start of each laserstep in the scan and black

data points show the α decays of the 9/2− ground state for each laserstep. Shifting the data

from each laser step to the movement of the WM wheel (corresponding to time=0) allowed

the half life to be measured from a decay curve using all α decays observed in Si3 and Si4.

Fig. 7.9 shows the extracted summed decay curve for the 9/2− ground state from scan 1. An

exponential fit was applied to extract t1/2, giving a value of 12.46(8) s, more precise than the

literature value of 12.4(3) s [78].
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Figure 7.8: The time distribution of events in the 6279-6339 and 6609-6669 keV gates for
α lines from the 9/2− ground state, collected at the decay position (Si3 and Si4) showing
the leftmost peak of the hyperfine structure of 191Bi. The black line shows the number of
measured α-decay events and the red lines indicate when the wheel of the Windmill was
rotated. The Windmill rotation period is 0.8 seconds, which is the time required introduce
the next foil.
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Figure 7.9: The extracted decay curve, for 191gBi, applying energy gates on α-decay events
measured at the decay position using Si3 and Si4. The time=0 indicates the movement of the
WM wheel (as shown by the red lines in Fig. 7.8), introducing the carbon foil to the decay
position, between Si3 and Si4. The data were fitted using an exponential function.
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7.5 189Bi

The α-decay scheme of 189Bi is shown in Fig. 7.10. Data were taken from Refs. [53, 80]. The

9/2− ground state decays by four branches, while the 1/2+ isomer state decays by three.

(11/2-)

(9/2-)

9/2-

(1/2+)
189gBi

189mBi

6671(2)

94.5(21)

6833(6)

1.3(6)

7294(6)

88(3)

185Tl

5.0 (4) ms

674(11) ms

1/2+

(1/2,3/2,5/2)

(3/2+)

6550(15)

1.2(9)

7115(4)

6(3)

7114(7)

12(3)

7020(7)

184

286
454

185

578

0

0

Figure 7.10: α-decay scheme for 189Bi. Shown are the α-decay energies (Eα) and relative
intensities (Iα) of each decay. These values were taken from Refs. [53, 80]

Fig. 7.11 shows the α-decay spectra produced from Si1 and Si2 during scan 3. The 9/2−

ground state had an expected yield of 2100 ions/s. As a result, measurements of this ground

state could be achieved using a low number supercycles per laser step and so measurements

were attained using 4 scans at 1 supercycle per laser step. Fig. 7.11 shows the α-decay spectra

produced from Si1 and Si2 during scan 3.
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Figure 7.11: α-decay spectrum from laser scan 3 of 189Bi measured at the implantation
position using Si1 and Si2. The peaks are labelled with their decay energies in keV, as well as
the spin and parity of the states of 189Bi. The respective gating conditions used to produce
the HFS spectra are indicated by the red vertical lines.

For the 9/2− ground state, a value for the half life could not be extracted due to continuous

implantation between proton pulses for every laser scan and the half life was too short to

measure using Si3 and Si4. The 9/2− ground state HFS was produced by applying gates to

the 6671 and 7115 keV peaks. Fig. 7.12 shows the HFS spectra for this state.
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Figure 7.12: Extracted HFS as a function of laser wavenumber for scan 3 of 189gBi. Energy
gates of 6641-6701 keV and 7085-7145 keV were applied to the 6671 keV and 7115 keV α-
decays measured using Si1 and Si2, respectively.

7.6 188Bi

A total of 9 laser scans of 188Bi were carried out, 5 in 2016 using the HRS, with the other 4

taking place in the 2017 experimental run using the GPS. Further details of each laser scan

can be found in Table. 7.1. Nuclear spectroscopy studies of 188Bi performed at the velocity

filter, SHIP at GSI revealed two long lived isomer states interpreted as a high spin isomer

Iπ = 10− with a π1h9/2 × ν1i13/2 configuration as well as tentatively assigning the second

isomer state as Iπ = 3+ with a π1h9/2 × ν3p3/2 configuration, based on the spin systematics

for heavier odd-odd Bi nuclei [81]. Such states are well established in the odd-odd Bi isotopes

190,192,194Bi [51]. However, some irregularities in the decay pattern of the low spin isomer of

188Bi were observed. Based on the data presented in this thesis, the high spin 10− isomer was

confirmed but the interpretation of the low spin state changed to Iπ = 1+, these data will be

presented in this section of the thesis. The α-decay scheme of 188Bi, which accounts for this
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work is shown in Fig. 7.13. The 10− high spin (hs) isomer state decays by four branches.

The 1+ low spin (ls) isomer state decays by three branches.
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1.4(5)

7232(10)
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60 (3) ms265(10) ms

2-

7302(5)

3.3(9)

6813(5)

91.2(12)

6992(5)

97.7(2)

6889(10)

0.33(10)

216

70.5

500

117.5

(7+)

320

(6+)

184m2Tl

(3+)

Figure 7.13: α-decay scheme for 188Bi. Shown are the α-decay energies (Eα) and relative
intensities (Iα) of each decay. These values were taken from Ref. [81].

Moreover, α-decay spectroscopy studies of 192At were carried out by Andreyev et al. at

the velocity filter SHIP. In this study, the observed α-decay pattern of 192At and differences

in the energies of the α-decay peaks was used to tentatively assign the low spin isomer in

188Bi as the ground state [82].

The predicted yield of hs isomer and ls ground states were 320 ions/s and 60 ions/s,

respectively. The HFS of both states was measured using Si1 and Si2 at the implantation

position. Fig. 7.14(a) and Fig. 7.14(b) show the α-decay spectra measured during laser

scans of 188Bi taken in 2016 (HRS) and 2017 (GPS), respectively. Along with the Bi isotopes,
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multiple Rn isotopes are also produced. This Rn gas can slowly diffuse through the ion

source and the beamline and into the WM decay station. The GPS has a shorter beamline

from the target to the WM than the HRS. This is reflected in these α-decay spectra, with

the GPS spectra showing α-decay peaks from 201−203,205,206Rn and no Rn peaks observed in

the HRS spectrum.
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Figure 7.14: A comparison of α-decay spectra measured in (a) 2016 (scan 4) and (b) 2017. The
large high energy tails seen on each α-decay peak in 2016 were a consequence of alpha-electron
summing from the high level of low energy β decays.

Fig. 7.15 is an zoomed-in part of Fig. 7.14, showing only the region of 188Bi α decays.

The HFS spectrum for the hs state was produced by applying energy gates of 6780-6840 keV

and energy gates of 7200-7400keV. For the Iπ = 1+ ground state, the HFS spectrum was

produced by applying energy gates of 6960-7020 keV. In 2016 (HRS), scans 4 and 5 were

carried out towards the end of the run. A consequence of this was a large amount of low

energy β decays from surface ionised 188Tl and isotopes produced in previous measurements,

which is evident in Fig. 7.14(a), producing a significant amount of alpha-electron summing,

producing high energy tails. This resulted in larger Full Width at Half Maximum (FWHM)

for each observed α-decay peak. The measured FWHM from the fits are shown in the top

right corner of both spectra in Fig. 7.15.
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Figure 7.15: A comparison of the 188Bi α-decay spectra from laser scans measured in (a) 2016
and (b) 2017. The large high energy tails present in 2016 resulted in a large number of counts
from the 10− isomer being present in the HFS spectra of the 1+ ground state. The pink lines
show Gaussian with exponential tail fits applied to the peaks to extract the FWHM for each
scan.

These high energy tails in scans 4 and 5 meant that the 6813 keV 10− α-decay peak

and 6992 keV 1+ α-decay peak were not well resolved. The ratio of number of α-decay

events between the hs isomer and ground state in all laser scans of 188Bi was determined as

3.74±0.35. This is largely due to the difference in half lives of 265(10)ms and 60(3)ms for the

hs isomer and ground state, respectively. The time taken for the Bi atoms to effuse out of the

target matrix and into the hot cavity results in more decay loss for the ground state before

reaching the Windmill Decay Station. In contrast, the α-decay spectroscopy study of 188Bi

by Andreyev et al. in 2003 at the velocity filter SHIP [81], resulted in an even production

of the hs isomer and ground state from the complete fusion evaporation reaction. At SHIP,

products recoil out of thin targets, and so nuclei produced from the reaction come out the

target and are implanted in the silicon detector in times of the order of µs. The α-decay

spectrum measured in this study is shown in Fig. 7.16.
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Figure 7.16: α-decay spectrum measured during the α-decay spectroscopy study of 188Bi at
the velocity filter SHIP by Andreyev et al. in 2003 [81]. Figure adapted from [81].

Figs. 7.17a,b show the HFS spectra extracted for hs isomer and ground states in 188Bi,

respectively, during a laser scan in 2016. The high energy tail in the 6813 keV 10− α decay

(shown in Fig. 7.15(a)) caused an increase in counts in the leftmost and middle hyperfine

structure peaks of the Iπ = 1+ HFS spectra. Thus, the additional experimental run was

carried out in 2017 in order to produce the correct HFS spectra for the ground state.
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1+ ground state HFS spectra – energy gates applied to the 6992 keV α decay

Figure 7.17: Extracted HFS as a function of laser wavenumber for a laser scan of (a) Iπ = 10−

isomer state and (b) Iπ = 1+ ground state of 188Bi, taken in 2016.

In 2017 (GPS), the low-energy background was considerably lower and so the high energy

tails were not present, as shown in Fig. 7.14b. As a result, both the 6813 keV 10− α-decay

peak and 6992 keV 1+ α decay were better resolved than in the 2016 (HRS) run, shown in Fig.

7.15a. Figs. 7.18a,b shows the HFS spectra extracted for 10− isomer state and 1+ ground

state in 188Bi, respectively, during a laser scan in 2017 (GPS). For the HFS spectra of the 1+

ground state, it is clear that the intensity of the leftmost hyperfine structure is significantly

reduced, along with a reduction in intensity of the central peak, in the 2017 laser scan, in

comparison to the scan taken in 2016.
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1+ ground state HFS spectra – energy gates applied to the 6992 keV α decay

Figure 7.18: Extracted HFS as a function of laser wavenumber for a laser scan of 188Bi (a)
10− isomer state and (b) 1+ ground state taken in 2017. The dashed black line shows the
extracted centroid from fits applied to each spectra.

Separation of isomers

In order to suppress the 10− isomer counts from the 1+ ground state HFS spectra seen in the

2016 experimental run, timing gates were applied after the arrival of each proton pulse. Fig.

7.19 shows the distribution of α-decay events after every proton pulse in laser scan 4 for both

the 10− (red) isomer and 1+ (blue) ground state. The difference in these time distributions

arises due to the differing half lives: 265(10) ms for the 10− isomer state and 60(3) ms for the

1+ ground state [81]. Therefore, timing conditions applied after the arrival of each proton

pulse was used to suppress the longer living 10− isomer state, with timing gates of 200, 300

and 400 ms applied after every proton pulse. Fig. 7.20 shows the change in the 1+ HFS

spectra with these different timing conditions. To add to this, the 6992 keV 1+ α decay has

almost the same energy as the 6995(15) keV 10− α decay, as shown in the decay scheme in

Fig. 7.13, but has a much lower intensity.
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Figure 7.19: The extracted decay curves for the hs isomer (red) and ls ground (blue) states
in 188Bi. Energy gates were applied to α-decay peaks measured at the implantation position
using Si1 and Si2. The maximum time of 2.4 seconds corresponds to the spacing between
proton pulses. Based on this spectra, appropriate time gates could then be applied to each
proton pulse in order to produce the cleaner ls HFS spectra.
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Figure 7.20: Extracted HFS as a function of laser wavenumber for a scan in 2016 of the 1+

ground state. Timing gates were applied after each proton pulse impact to suppress counts
arising from the hs isomer.
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To this end, applying these timing gates the HFS spectra of the ground state have only

two peaks, shifted from the hs HFS structures (shown in Fig. 7.18). The apparent presence

of a peak at 10862.37 cm−1 was only due to contamination from the hs isomer state.

7.7 187Bi

The α-decay scheme of 187Bi is shown in Fig. 7.21. Data were taken from Ref. [83]. The 9/2−

ground state decays by three branches, with the 1/2+ isomer state decaying by one branch.
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Figure 7.21: α-decay scheme for 187Bi. Shown are the α-decay energies (Eα) and relative
intensities (Iα) of each decay. These values were taken from Refs. [83].

Due to the low expected yield of 1.5 ions/s and the short half life of 38(3) ms [83], mea-

surements of the HFS of 9/2− state in 187Bi was attained using 3 laser scans at 6 supercycles

per laserstep. Fig. 7.22 shows the α-decay spectra produced from Si1 and Si2 during scan 2.
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Figure 7.22: α-decay spectrum from laser scan 2 of 187Bi measured at the implantation
position using Si1 and Si2. The peaks are labelled with their decay energies in keV, as well
as their corresponding parent isotope. The respective gating conditions used to produce the
9/2− HFS spectra are indicated by the blue vertical lines.

During the scans of 187Bi, there was a large amount of α-decaying isobaric contamination

from the isotopes 187Tl and 187Pb, as can be seen in Fig. 7.22. However, these do not

overlap with the energies of the α-decays from the 9/2− ground state of 187Bi. Due to the

low statistics, a broader energy gate of 6900-7700 keV (shown by the blue lines in Fig. 7.22)

was applied to the 7000, 7342 and 7612 keV α lines in order to produce as much statistics as

possible in the HFS spectra. Fig. 7.23 shows the HFS spectra for the 9/2− ground state.
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Figure 7.23: Extracted HFS as a function of laser wavenumber for scan 3 of 187Bi. For the
9/2− ground state, an energy gate of 6900-7700 keV was applied to the 7000, 7342 and 7612
keV α-decays measured using Si1 and Si2.
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Chapter 8

Fitting of the HFS spectra

Upon extraction of the HFS spectra for each Bi isotope, one applies fits to each spectra,

enabling extraction of the isotope shift (necessary to calculate the change in mean-square

charge radius) and the electromagnetic hyperfine parameters a and b (allowing determination

of both the magnetic dipole and electric quadrupole moment). This was performed by

developing a fitting code in ROOT [84], from this point forward referred to as the HFS fit

code. This code fitted the HFS spectra using Voigt profiles - a convolution of a Gaussian and

Lorentzian distribution, which account for the Doppler broadening in the hot cavity and the

laser linewidth, respectively. The intensity of each HFS component was determined using

the intensities, given by Equation. 7.1.
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Figure 8.1: Fitting of HFS spectra for all three laser scans of 191Bi I =9/2 (bottom panel) and
I =1/2 (top panel) states using the HFS fit code. The fit (using average values of hyperfine
constants a and b from all three scans) is shown by the pink lines, with the centre of gravity
of the HFS spectra shown by the vertical dashed red lines. The vertical blue lines represent
the centroid positions of each hyperfine transition, with their height proportional to their
theoretical intensities.

Fig. 8.1 shows the fitting of 191Bi, with fits applied to both the I =9/2 ground state

(bottom panel) and I =1/2 isomer state (top panel). When extracting parameters from the

HFS spectra, one must first convert from wavenumber to relative frequency. This was done

by subtracting the fundamental wavenumber of the scanning laser (10862.72 cm−1). In order

to account for possible wavemeter drift, reference scans were also carried out for 209Bi in

order to determine the frequency reference point, which averaged as ν209=1527(27) MHz.

The HFS fit code does not take into account the effects of laser saturation and polarization

during scanning. Modelling such effects is not trivial, however a simple model for saturation

is implemented in the Python package SATLAS [85]. This package is specifically developed

for analysis of laser spectroscopy data, accounting for laser saturation using the following

equation:

I(s) ∼= IS · exp
(
Iracah·s

Is
− 1
)

(8.1)
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Table 8.1: Comparison of my and Seliverstov-Barzakh fitting routines for the a and b electro-
magnetic hyperfine parameters as well as the isomer shift, δν, between the I =9/2 and I =1/2
states in 191Bi.

Fitting Procedure a(1/2) [MHz] a(9/2) [MHz] b(9/2) [MHz] δν [MHz]

HFS fit -1460(10) -410(3) -1116(340) 2594(93)
Seliverstov-Barzakh -1463(7) -407(1) -1023(65) 2629(49)

where IS = 2Flower + 1, Iracah =
IFiFf
IJiJf

is the intensity ratio given by the equation 7.1 and s

is the saturation parameter, varying from 0 (no laser saturation) to 1 (full laser saturation).

This package was used to verify the values obtained from the HFS fit code. Parallel to this

analysis, collaborators Anatoly Barzakh and Maxim Seliverstov from the St. Petersburg

Nuclear Physics Institute, Gatchina, also applied fits to these HFS spectra. They utilise

much more complex fitting procedures which implement all laser saturation and polarisation

effects by solving rate equations. Table. 8.1 shows a comparison of the extracted values

of the magnetic hyperfine parameters and isomer shift between the I = 9/2 ground and

I = 1/2 isomeric states of 191Bi from each fitting procedure. One can see that there is good

agreement between both procedures for the magnetic hyperfine parameter a, and isomer shift.

However, the values of the electric hyperfine parameter b have a large error. As a result, all

the final values presented in this section were calculated from the values extracted using the

Seliverstov-Barzakh procedure.

8.1 Changes in charge radii and deformation of the Bi nuclei

The isotope shifts relative to 209Bi from fits applied to the HFS data are shown in Table.

8.2, along with the calculated values of the change in mean-squared charge radius, δ〈r2〉A,209,

deduced using the Equation:

δνAA
′

is =
A′ −A
AA′

M + Fδ〈r2〉A,A′ (8.2)

discussed in Section 3. There are no atomic calculations for either the electronic F factor

or the Specific Mass Shift (SMS). The electronic factor was determined using charge radii

systematics for isotope pairs with N=124,126 and 122,124 for other elements in the Pb

region, giving a value of F=24.8(17) GHz/fm2 [31]. The SMS is typically negligible for an

s→p transition, so one can assume M = (1 ± 2)MNMS , a relation used in adjacent isotopic
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chains (see Refs. [44, 86, 87]).

The values of the root mean square quadrupole deformation parameter, 〈β2〉1/2, were

calculated using the equation:

〈r2〉 = 〈r2〉DM (1 +
5

4π
〈β2〉) (8.3)

where 〈r2〉DM is the charge radius deduced from the Droplet Model with zero deformation

[88, 20]. Values of 〈β2〉 where determined from the extracted values of δ〈r2〉 and setting the

mean-square deformation of 209Bi equal to that of the neighbouring isotope, 208Pb, such

that, 〈β2〉1/2209Bi
= 〈β2〉1/2208Pb

= 0.055(3) [89].

Table 8.2: Measured values of isotope shifts, δνA,209 and the corresponding calculated values
of changes in mean-square charge radii δ〈r2〉A,209, with the statistical errors given in round
brackets and systematic errors given in curly brackets. The respective 〈β2〉1/2 values are
also given, with the values determined from the framework of the Droplet Model, using the
Berdichevsky and Tondeur (BT) parameters [20].

A N I δνA,209 [MHz] δ〈r2〉A,209 [fm2] 〈β2〉1/2 [BT]

187 104 9/2 -22993(250) -0.916(74){64} 0.194(16)

188 105
1 -8368(160) -0.326(29){23} 0.287(25)
10 -23667(100) -0.944(9){66} 0.174(12)

189 106 9/2 -20823(50) -0.830(8){58} 0.186(13)

191 107
9/2 -19610(50) -0.782(7){55} 0.167(12)
1/2 -16979(50) -0.676(7){47} 0.192(14)

The extracted values of δ〈r2〉 are plotted in Fig. 8.2 as a function of mass number. For

comparison, the measurements from Barzakh et al. in 2016 [32, 31] and Pearson et al. in

2000 [58] are shown. The dashed black lines represent the DM predictions with constant

deformation [20, 88]. The error bars represent the statistical errors only from the fitting of

each HFS spectra.
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Literature
ground state
isomer state

This work
ground state, I=9/2
isomer state, I=1/2
188Bi, I=1
188Bi, I=10

Figure 8.2: Change in mean-square charge radii for the Bi isotopic chain relative to 209Bi, are
shown as a function of mass number. For ground states, the data from this work (pink circles)
and literature values [58, 32, 31] (black circles), are shown. For the isomeric states, this work
(pink, downward triangles) and Gatchina [31] (black, downward triangles), are plotted. The
values for the Iπ=10− and Iπ=1+ isomers in 188Bi are shown with blue and red triangles,
respectively. To guide the eye, the black line connects each ground state measurement. The
dashed black lines represent the DM predictions for the change in mean-square charge radius
for fixed deformations [20, 88].

The data plotted in Fig. 8.2 shows the change in mean-square charge radii for neutron-

deficient Bi nuclei. The charge radii of the 9/2− ground states of 189,191Bi were extracted

with a lower error than the previous values from Gatchina [32]. This provides confidence that

any systematic errors are accounted for. The light even-N Bi isotopes, 187,189,191Bi, follow

the same trend observed in the investigations carried out by Barzakh et al. in 2016 [32, 31],

with a marked deviation from sphericity which can be interpreted as the onset of quadrupole

deformation. At the same time, large shape staggering and shape coexistence is observed at

188Bi, where the ground state has a larger rms deformation than the neighbouring odd-A Bi

nuclei and the respective 10− isomer of 188Bi. While this is seen for several isotopes below

A=198, it is significantly greater for 188Bi.
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Gatchina
ground state

isomer state

This work
ground state, I=9/2

isomer state, I=1/2
188Bi, I=1
188Bi, I=10

Figure 8.3: Ground (circles) and isomeric (triangles) state quadrupole deformation parameters
as a function of neutron number for the light Bi isotopes from ISOLDE and Gatchina [32, 31].
These values were deduced by comparison of the measured δ〈r2〉 with predictions using the
DM [20, 88].

8.2 Comparison with neighbouring isotopic chains

Fig. 8.4 shows a comparison of the results of the Bi isotopic chain to the Tl and Pb chains.

In order to remove the effect of odd-even staggering, whereby the odd-N isotopes have a

smaller δ〈r2〉 than their even-N neighbouring isotopes, even-N and odd-N isotopes were plot-

ted separately. In order to remove the dependence on electronic factors, the values plotted

were δ〈r2〉N,126/δ〈r2〉124,122. The data for the Pb, Po and Tl chains were obtained from Refs.

[34, 29, 90, 91, 92, 93, 28].
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Figure 8.4: Comparison of the change in mean-square charge radii relative to the N=126
isotopes for the Po (blue), Pb (black), Bi (red) and Tl (green) isotopic chains.

Looking at Fig. 8.4, one can see that for N=112-126, the Bi isotopes follow the spherical

Pb trend, which is the case for both odd and even-N nuclei. However, in the case of even-N

Bi nuclei, there is a deviation from the Pb trend at N <112. This deviation is not as strong

as what is observed in the Po isotopes, in which this phenomenon occurs in both odd and

even N nuclei. In the odd-N isotopes, the large shape staggering effect observed at 188Bi

(N=105) was not observed in either the Tl or Pb isotopic chains.

8.3 Comparison with neutron-deficient Hg isotopes

Fig. 8.5 compares the changes in mean-squared charge radii for the neutron-deficient Hg and

Bi isotopes. One of the most interesting features seen is that the shape staggering between

187,188,189Bi resembles the staggering observed in the 181−185Hg [43], with both starting at the

same neutron number (N=105). As well as this, the isomer shift relative to the staggering

looks almost the same in both chains.

This may suggest that the same mechanism is involved in staggering in both isotopic
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chains. In Section 4.2, the MCSM calculations were discussed which reproduced the large

shape staggering effect seen in the Hg isotopes. These calculations highlighted the importance

of a higher occupancy of two specific orbitals: the neutron ν1i13/2 and proton π1h9/2 which

induces the large shape staggering effect. These MCSM calculations will soon be extended

to the lightest Bi isotopes 187−189Bi to further investigate the underlying mechanism behind

this shape staggering effect.

Hg ground state
185Hg isomer
Bi ground state, Gatchina

Bi ground state, ISOLDE

188Bi isomer, I=1
188Bi isomer, I=10

N=105

Figure 8.5: Comparison of the change in mean-square charge radii relative to the N=126
isotopes for the Hg (black) and Bi chain.

8.4 Magnetic dipole moments

The g-factor, g, of a nuclear state with spin I, is related to the magnetic dipole moment, µ,

by the equation:

g =
µ

I
(8.4)

The magnetic dipole moment is determined primarily by the unpaired nucleons. Thus, for

odd-A Bi nuclei, µ is defined by the unpaired proton. For odd-even nuclei with a single
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unpaired nucleon, the Schmidt values [94, 95], µs, are determined using:

µs = j
(
gl ± gs−gl

2l+1

)
µN (8.5)

where µN is the nuclear magneton, j = l ± 1/2 is the spin of the single particle state, gl is

the orbital g-factor, which has a value of 0(1) for a free neutron (proton) and gs is the spin

g-factor which has a value of -3.83µN and 5.59µN for neutrons and protons, respectively.

Another factor to consider is that protons and neutrons are bound within a nucleus,

thus not free particles. This is taken into account by quenching the g-factor using the

effective g-factor such that geff = ρgs, where ρ is the renormalization factor which has values

of 0.6-0.9 (calculations of µs for odd-A Bi nuclei in this work set ρ=0.6). This substitution

allows the determination of the magnetic moment with this effect factored in, µq. In the

following sections, the values of magnetic dipole moments extracted from the HFS spectra

will be directly compared with both µs and µq.

In odd-odd nuclei, the magnetic moment of both the unpaired proton and neutron

couple. One can use the additivity rule (single particle approximation) in order to deduce

the total magnetic moment of the nucleus using the equation [19]:

µ =
I

2

(
gπ + gν + (gπ − gν)

jπ(jπ + 1)− jν(jν + 1)

I(I + 1)

)
(8.6)

where j is the total angular momentum of the unpaired proton/neutron (subscripts π and ν

denote the proton and neutron, respectively). One can use the gπ values of neighbouring odd-

A Bi nuclei and gν values of adjacent odd-A Pb nuclei to determine the g-factors of odd-odd

Bi nuclei. The values extracted from the experimental data can then be compared with these

predicted values in order to determine the underlying configuration. The final experimental

values of µ were evaluated using the formula:

µA = µ209
IA
I209

aA(4S3/2)

a209(4S3/2)
(8.7)

where the subscript A denotes the atomic number of the isotope of interest. In this equa-

tion, the hyperfine structure anomaly for an atomic level without an unpaired s electron

is ignored [96]. The values of µ209 and a209(
4S3/2) were taken from [97] as 4.0900(15)µN

[98, 99] and -446.937(1) MHz [58], respectively. The extracted values of µ are presented in
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Table 8.3 and are plotted as a function of neutron number in Fig. 8.6. The values of µ for

187g,188hs,189g,191g,191mBi follow the smooth systematics for heavier Bi isotopes.

Table 8.3: The magnetic hyperfine parameters, a, extracted from fitting of the HFS spectra
and their corresponding magnetic moments for the Bi isotopes.

A N I a [MHz] µ [µN ]

187 104 9/2 -397.7(25) 3.64(2)

188 105
1 -489(25) 0.99(5)
10 -122.36(60) 2.49(1)

189 106 9/2 -400.83(20) 3.668(2)

191 107
9/2 -407(1) 3.72(1)
1/2 -1463(7) 1.49(1)

Mass number
187 189         191        193         195         197         199         201         203         205        207         209

Figure 8.6: Magnetic moments of different states in neutron-deficient Bi nuclei as a function
of neutron number, with the spin of each state labelled. Red data points indicate values from
the work presented and black data points are taken from Refs. [56, 58, 32, 31]. The black
and red lines represent a guide to the eye for the literature values and the data presented in
this work, respectively.
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8.5 Odd-A Bi nuclei

Fig. 8.7 shows a comparison between the values of µ for I =9/2 states in even-N Tl and Bi

isotopes. The black dashed line represents the value of µ(209Bi) = 4.0900(15)µN , used as a

reference point. This is due to 209Bi having a ground state configuration of a single π1h9/2

proton coupled to a 208Pb core. Therefore, this value is used to directly compare other

isotopes, with the same proton configuration. To add to this, the value of µ(209Bi) differs

significantly from both the calculated values of µq = 3.54µN and µs = 2.62µN (using ρ=0.6),

determined for a single proton in the 1h9/2 orbital. Actually, for a nucleus with a structure

of a single particle outside a doubly magic core, this is the largest difference in the whole

nuclear chart.

The origin of this difference was explained by Arima and Horie, as a result of admix-

ture of the 1p-1h spin-flip excitations to the ground state of 209Bi [95, 100], with the leading

role of ν1i11/2
⊗
ν1i−113/2 and π1h9/2

⊗
π1h−111/2 excitations. These excitations involve all

protons and neutrons in the π1h11/2 and ν1i13/2 orbitals, respectively. The high collectively

of these excitations results in a large modification to the value of µ.

The data plotted in Fig. 8.7 shows that the magnetic moments of the I =9/2 states

in 187,189,191Bi are in good agreement with the trend of the Tl and At isotopes. All three

isotopic chains start to deviate from µ(209Bi) at N=114. A reduction in neutron number

lowers the occupancy of the ν1i13/2, thus reducing the number of neutrons involved in the

core excitation. This results in the lowering of µ away from the reference value of µ(209Bi),

towards the values of both µs and µq.
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Figure 8.7: The values of µ for the I = 9/2 states in the Bi (red squares) [32, 31, 58], Tl
(black circles) [34, 101] and At (blue stars) [35] isotopic chains. The hollow symbols show the
results from this work, with solid symbols representing literature values. The dashed black
horizontal line displays the magnetic moment of 209Bi. The dashed red horizontal line shows
the calculated value of µq for the Iπ=9/2− state.

The magnetic moments for the I =1/2 states in neutron-deficient Bi nuclei are plotted

as a function of neutron number in Fig. 8.8 along with the magnetic moments of the Tl

isotopes. For the neutron-deficient Tl nuclei, this is the π(0p − 1h) spherical ground state,

possessing a π3s−11/2 configuration. The magnetic moment for the I =1/2 state in 191Bi is in

good agreement with the Tl systematics, and is also close to the calculated value µq=1.677µN

for the I =1/2 state. This indicates that this state is a π3s−11/2 intruder configuration, arising

from the excitation of a proton across the Z=82 shell gap, forming a π(1p− 1h) excitation.
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Figure 8.8: The values of µ for the I = 1/2 states in the Bi (red squares) [32, 31, 58] and Tl
(black triangles) [34, 101] isotopic chains. The hollow symbols represent the results from this
work, with solid symbols showing literature values. The dashed black horizontal line shows
the calculated value of µq for the Iπ=1/2+ state.

8.6 188Bi

The Iπ = 10− isomer state is well established in odd-odd Bi nuclei from N=125 all the way

down to at N=105 [31]. Fig. 8.9 shows the extracted values of µ for the Iπ = 10− isomer

states in odd-odd Tl [34], Fr [102] and Bi isotopes. For the heavier odd-odd Bi nuclei (N=119-

125) studied by Pearson et al. in 2000 [58], the magnetic moments were found to agree well

with the calculated µadd values (determined from Eqn. 8.6 using values of gν taken from

the magnetic dipole moments of the adjacent odd-A Pb nuclei). However, the measurements

by Barzakh et al. in 2017 show that this agreement falls off below N=111 (190,192,194Bi).

To restore agreement with µadd values, gν values from the magnetic dipole moments of the

Iπ = 13/2+ isomers in odd-A Po nuclei with comparable deformation were used. Details of

values used for 190,192,194Bi can be found in Ref. [31]. For 188Bi (δ〈β2〉1/2=0.17(1)), the value

used was µ = µ(195Po, Iπ = 13/2+) = −0.601µN . This modification of µadd values restores

good agreement for the lighter odd-odd Bi isotopes. This means that the structure of the

Iπ = 10− isomer state in 188Bi could possibly be a mixture of both spherical and deformed
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configurations, as in the Po nuclei [103]. This indicates that the 10− isomer in 188Bi has the

same π1h9/2 × ν1i13/2 configuration as in 190,192,194Bi.

Neutron number, N
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Figure 8.9: The values of µ for the I = 10 states in the Bi (red squares, open: this data,
closed: literature [32, 58]), Fr [102] (blue triangles) and Tl [34] (black circles). The dashed
line corresponds to µadd calculations using µN values taken from the magnetic moments of
adjacent odd-A Pb nuclei, with the solid red line utilising magnetic moments of Po nuclei
with similar deformation.

For the low spin isomer of 188Bi, the extracted value of the magnetic moment is

µ = 1.00(5)µN , not in agreement with the magnetic moments of the I =3 states in the

heavier odd-odd Bi nuclei 190,192,194Bi (µ(190Bi)=3.87(9)µN , µ(192Bi)=4.18(17)µN and

µ(194Bi)=4.186(99)µN from Ref. [32]).

8.7 188lsBi isomer spin assignment

As discussed in Section. 7.6, the interpretation of the low spin isomer of 188Bi was changed

from these data. This section of the thesis discusses the method used to determine the spin of

this state. In order to accurately extract the isotope shift and the electromagnetic hyperfine

parameters, exact knowledge of the nuclear spin is paramount. Extraction of the nuclear

spin represents a particular challenge when utilising in-source laser spectroscopy. This is

largely due to the Doppler broadening resulting in poor spectral resolution. Moreover, in
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Table 8.4: Comparison of experimental αexpt, and theoretical, αtheor values for the peak area
ratios of laser scans of the 188Bi low spin isomer. Based on this, the spin was changed from
the earlier suggestion of I=3 from Ref. [81], to I=1.

Nuclear Spin I : 1 2 3

αtheor 2.00 1.50 1.33
αexpt 2.01(9)

the presence of saturation spin assignment cannot be performed using simple comparisons of

goodness-of-fit for different spins.

In our experiment we did not resolve hyperfine components stemming from the differ-

ent atomic ground-state sublevels. Thus, typically, hfs spectra consisted of two peaks each of

them being the sum of the overlapping hyperfine components corresponding to the allowed

transitions from the ground-state sublevels to one of the excited-state sublevels (either

with total angular momentum Fhigh or Flow; see Fig. 7.2). In order to determine spin the

“integration method” was used [104]. This method is based on comparison of areas under

each resolved peak with theoretically predicted values (sum of the calculated intensities of

each hyperfine component which formed that peak) for different spin assumptions. The ratio

of areas under two peaks, formed by transitions to sublevels with Fhigh and Flow respectively,

αexpt, is compared with calculated value αtheor:

αtheor =

∑
F SF,F ′=5∑
F SF,F ′=4

(8.8)

Where S is the relative probability of a given hyperfine component, determined using Eqn.

7.1. It was shown that this ratio is weakly dependent on laser saturation and other distorting

effects on the spectrum shape [104]. Table 8.4 shows a comparison of the αexpt value obtained

as the weighted mean value from all the scans of the 188Bi low spin isomer, with the calculated

values of αtheor for different nuclear spins. One can clearly see good agreement of αexpt with

αtheor for I = 1 and incompatibility of other spin assignments with experiment.

107



Electric quadrupole moments Fitting of the HFS spectra

8.8 Electric quadrupole moments

The electric quadrupole moment, Qs,A of an isotope of atomic mass A was determined using

the relation:

Qs,A =
bA
b209

Qs,209 (8.9)

where b209=-305.067(2) MHz and Qs,209=-0.420(8) b are the reference values from measure-

ments of 209Bi [105, 106]. One can relate the calculated value of Qs to the quadrupole

deformation parameter, βQ using the relation:

Qs =
I · (2I − 1)

(I + 1)(2I + 3)
· 3Z√

5π
· r20 ·A2/3 · βQ · (1 +

1

7

√
20

π
βQ + ...) (8.10)

where r0=1.2 fm. It was important to compare the calculated values of βQ with the values

of βDM extracted from the isotope shift data using Eqn. 8.3. Table. 8.5 shows the extracted

values of Qs along with βQ and βDM for the Bi isotopes.

Table 8.5: The electric hyperfine parameters, b, extracted from fitting of the HFS spectra and
their corresponding electric quadrupole moments, Qs, and quadrupole deformation parameter,
βQ, (see Eqn. 8.10) for the Bi isotopes. Values of βDM ≡ 〈β2〉1/2 (see Eqn. 8.3) extracted
from the isotope shift data are also shown for comparison.

A N I b [MHz] Qs [b] βQ βDM
187 104 9/2 -912(400) 1.26(55) -0.08(3) 0.194(16)

188 105
1 619(273) 0.85(38) 0.29(13) 0.287(25)
10 -1218(300) -1.68(41) -0.08(2) 0.174(12)

189 106 9/2 -1160(14) -1.60(4) -0.098 (22) 0.186(13)

191 107 9/2 -1023(65) -1.41(9) -0.086(6) 0.192(14)

The ratio of Qs, to the N=126 isotope of the same chain, Qs,126 for 9/2− states in

even-N Fr, At and Bi isotopes and 8+ states in even-N Po are shown in Fig. 8.10. Using

this ratio removes dependence on the electric-field gradient calibration. Literature values for

Bi isotopes were taken from [32, 31, 58], Po data taken from [107], At data taken from [35]

and Fr data taken from [39, 40, 41, 42]. This investigation extends the Qs data for I = 9/2

states in Bi down to N=104, with measurements for 187,189,191Bi. Looking at Fig. 8.10 one

can see that in the region N=120-126, the Bi isotopes follow the same linear trend as the

other isotopic chains.

This linear increase in Qs for states with πhn9/2 configurations with increasing number
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of neutron holes in the N=126 shell has been observed in all isotopes up to the Ra isotopic

chain (Z=88). The high resolution measurements of the Fr isotopes using the Collinear

Resonance Ionisation Spectroscopy (CRIS) at ISOLDE, produced more precise values of Qs

therefore these measurements allow further testing of this phenomenon in the lead region. It

should be noted that the error bars for the Fr isotopes in Fig. 8.10 include the error from the

value of the reference isotope, Qs(
213Fr)=-0.14(2) b, taken from [108]. This is a much larger

percentage error than from the Bi reference isotope Qs(
209Bi)=-0.420(8) b [106] although

the Fr studies produced by CRIS experiments determined values of the electric hyperfine

constant, b, with errors of under 10% [42]. For the neutron-deficient Bi nuclei, a deviation

from the linear trend occurs at 193Bi (N=110). The dashed line represents a quadratic fit

applied to the Bi data in order to show this deviation. As discussed in Section 8.1 the I=9/2

ground state of even-N Bi nuclei shows a departure from the spherical trend of the Pb and

Tl isotopic chains at N=110 (as shown in Fig. 8.4). However, there are no data for 199,201Bi

and the significantly large errors prevent one being able to draw conclusions on the nature

of this deformation. Much greater spectral resolution is essential in order to more accurately

determine the values of Qs. Furthermore, all of the values of βQ were smaller than the

values of βDM calculated from the IS data. βDM should be larger than βQ as it includes the

dynamic deformation (zero-point vibration).
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Figure 8.10: The ratio of quadrupole moments below N=126 to the quadrupole moment of
a reference nuclide with N=126 for the I = 9/2 states in even-N Fr [39, 40, 41, 42] (blue
triangles), At [35] (black triangles) and Bi nuclei (solid red squares [32, 31, 58], hollow red
squares: this work). I = 8 states in even-N Po nuclei are also shown [107] (purple stars).
The dashed line represents a quadratic fit to the Bi values, as a guide to the eye.

For 188Bi, values of Qs for both the Iπ = 1+ ground and Iπ = 10− isomeric state, along

with their corresponding values of βQ are shown in Table. 8.5. One can clearly see that

the value of βQ for the Iπ = 10− isomer is smaller than βDM , extracted from the IS data.

However, there is good agreement between βQ and βDM for the Iπ = 1+ ground state. At

strong deformation, vibrations become small and the value of βDM is much closer to the βQ.

This good agreement therefore further reinforces the interpretation that the Iπ = 1+ ground

state is strongly deformed. The change in sign between the values of Qs in these two states in

188Bi indicates a possible change in nuclear shape from weakly oblate in both the Iπ = 10−

state, as well as in the ground states of the even-N neighbouring isotopes, 187,189Bi, to strongly

prolate in the Iπ = 1+ ground state.
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Chapter 9

Conclusion

This thesis presents the studies of 187−189,191Bi from the IS608 experimental campaign at

ISOLDE, CERN. Their respective isotope shifts, mean-square charge radius and electromag-

netic moments were extracted. The results indicate that for the odd-A Bi nuclei, a marked

deviation from the spherical trend of the Pb and Tl isotopic chains was observed in the

Iπ=9/2− ground states, interpreted as the onset of quadrupole deformation as the N=104

midshell is approached. A clear case of shape coexistence was observed in 191Bi with a large

difference in the charge radius of the Iπ=9/2− ground and Iπ=1/2+ isomeric states of this

isotope.

Analysis of the magnetic moments of I = 9/2 states in odd-A Bi nuclei revealed their

predominant single particle nature, owing to a π1h9/2 configuration. The I = 1/2 isomer

state in 191Bi has a magnetic moment similar to the I = 1/2 states in the heavier Bi nuclei

and the Tl isotopic chain. This indicates that this state in the even-N Bi isotopes has a

π3s−11/2 intruder configuration. Values of Qs were calculated for the Iπ = 9/2− ground states

of 187,189,191Bi. These data revealed a linear increase in Qs with increasing number of neutron

holes in the N=126 shell. However, more precise measurements are necessary in order to

further test the Qs systematics for the most neutron-deficient Bi nuclei.

The magnetic moments of the ground and isomeric states of the odd-odd nucleus, 188Bi were

also measured. The I = 10 isomer has a magnetic moment consistent with the states of the

same spin in heavier odd-odd Bi nuclei and At nuclei. µadd calculations were compared with

the extracted magnetic moments and the configuration [π1h9/2 × ν1i13/2]10− was assigned to
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this state. As for the Iπ=1+ state in 188Bi, the integration method fixed the spin of this state.

Values of Qs were also determined along with their corresponding values of βQ. For

the Iπ = 10− isomer state the value of βQ did not agree with the βDM value extracted

from the isotope shift data, which indicates the “soft” potential energy surface with large

contribution of the zero-point vibration to δ〈r2〉. However, for the Iπ = 1+ ground state

there is good agreement between the values of βQ and βDM , which additionally support the

strong prolate deformation. Comparison of extracted Qs values indicated a change in shape

from prolate in the ground state (Iπ = 1+) to presumably oblate in the isomer (Iπ = 10−).

The most interesting outcome in this investigation was the strong shape coexistence

between the 1+ ground and 10− isomer state in 188Bi. The ground state has a value of βDM

much larger than both the 10− isomer and the 9/2− ground states of the neighbouring odd-A

isotopes 187,189Bi. Moreover, this state is also much more deformed than the 1/2+ intruder

states in 191,193,195,197Bi, indicating a significant difference in the underlying structure of the

odd-odd and odd-A Bi nuclei. Furthermore, the shape staggering measured between the

ground states of 187,188,189Bi is very similar to the historically well known shape staggering

phenomenon observed in 181−185Hg, with both starting at the same neutron number (N=105).

This could suggest that the same mechanism is inducing this deformation.

9.1 Future work

In terms of the laser spectroscopy studies of the neutron deficient Bi nuclei, it would be

interesting to determine whether or not the shape staggering effect between odd-A and

odd-odd Bi nuclei persists in the same way as in the shape staggering observed in the Hg

isotopic chain. This would at least require measurement of the HFS of 186Bi. Due to low

production of this isotope at ISOLDE, it was not possible to measure it so far.

However, the upgrade of the ISOLDE facility in 2020 may increase production of this

isotope in the target enough to allow its measurement. This would certainly require extended

run times for each laser scan. This poses a challenge in terms of the fluctuation in the

number of protons as well as the stability of the lasers. Significant ion source development by
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RILIS and the target group in the future may reduce the release times of reaction products

from the target. These upgrades will make it possible to measure many more isotopes at

ISOLDE.

Recent Monte Carlo Shell Model (MCSM) calculations were carried out on the Hg

chain, reproducing the large shape staggering seen in the isotopes 181−185Hg. Good agree-

ment was noted for both the charge radii and electromagnetic moments for the odd-N nuclei.

The MCSM calculations are currently being extended to the Bi isotopes 187−191Bi to seek the

underlying reasons of the shape staggering at 188Bi and guide further experimental findings.

Furthermore, in 2019 γ-ray spectroscopy studies were carried out on 188Bi in order to observe

the bands built on top of both states. Analysis is underway and the results may help pin

down the configuration of both states.

For the Bi chain, the evaluated spectroscopic quadrupole moments have large uncer-

tainties due to the low resolution of the in-source laser spectroscopy method. The main

advantage of in-source laser spectroscopy is the high ionization efficiency which allows

investigation of isotopes with production rates as low as 1 atom per second. However, due

to the high temperature of the ion source, Doppler broadening typically dominates the

spectral resolution, resulting in large errors on the extracted values of Qs. Collinear laser

spectroscopy is an alternative method which has a spectral resolution 100-1000 times greater

than the in-source approach [109]. Recent developments of the Paul trap ISCOOL, a device

which cools and bunches the ion beam before its sent to CRIS, has lowered the sensitivity

down to 100 atoms per second under optimal conditions, although typically 10,000 atoms per

second is necessary [110]. More recently, laser spectroscopy studies were carried out using

CRIS at ISOLDE on the Fr isotopes, enabling extraction of the quadrupole moment with

reduced errors [42]. With the current production yields at ISOLDE, it would be possible

to use CRIS to measure the values of Qs of the isotopes 189,191Bi as well as remeasure the

ground states of 193,195,197Bi, previously determined by Barazkh et al. in 2016 [31]. These

measurements will provide information on the evolution of the quadrupole deformation in

odd-A Bi nuclei when approaching the N=104 midshell.
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