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Abstract

Anthropogenic alteration of rivers is ubiquitous and leads to fragmented
river systems that restrict the passage of aquatic fauna. There are consid-
erable efforts to facilitate unhindered migration through the installation of
fish passage facilities. However, recent assessments suggest upstream pas-
sage efficiencies of 42%, and suggest that only 3% of rivers in Great Britain
are fully connected. Decoding the behaviours that govern up-migrating fish
responses to flow fields has been dubbed a high research priority that would
allow for computational metrics of fish passage and a reduction in invas-
ive experiments. The aim of this project was to develop cellular automata
(CA), individual-based models (IBM), and computational fluid dynamic
(CFD) models to predict the trajectories of up-migrating fishes and sub-
sequently provide a method to computationally assess passage facilities.

Past work was critically assessed to determine: the appropriate CFD
approach to quantify the flow through various domains, the hydrodynamic
stimuli that influence fish responses, and the current state of fish path pre-
diction models and their applications and limitations.

Multiple 2D CA and IBMs were developed to predict the passage ef-
ficiency of various eel tile configurations for juvenile European eels (An-
guilla anguilla) using CFD-derived flow fields. Predictions compared well
to a published values (76% vs. 74%) and suggested passage efficiency was
highest for shallow slopes and low discharges. Results were extended to
define maximum pass lengths and incorporated into an easy-to-use graphic.

A 3D IBM, fishPy, was developed to predict up-migration trajectories
of brown trout (Salmo trutta) based fish responses to hydraulic stimuli.
Artificial hydrodynamic domains were created using CFD and used to verify
model function. A CFD model of a passage facility on the River Esk was
created based on collected bathymetry data, and compared well to measured
velocity data. The IBM was applied to the passage facility and compared
against measured passage metrics and fish trajectories.

Overall, 2D and 3D models of up-migrating fishes were successfully de-
veloped and compared well to measured data. Potential areas for further
research and development of the models are highlighted, including develop-
ment of additional species modules for the 3D IBM.
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SO Sensory Ovoid
SQD Sensory Query Distance
THS Total Hydraulic Strain
TI Turbulent Intensity
TKE Turbulence Kinetic Energy
UTM Universal Transverse Mercator
VOF Volume of Fluid
WFD Water Framework Directive
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burst Burst swimming speed of current individual.
burstTime Cumulative time spent at burst speed.
checkStuck Method of FEPM [see p.89].
createNeighours Method of used in each CA [see p.85].
col Current column of individual.
EEPM Exhaustion Elver Passage Model.
FEPM Fallback Elver Passage Model.
HEPM Heterogeneous Elver Passage Model.
history Location history of current individual.
id Identification number of current individual.
location Current location of current individual.
move Method used by each CA, modified between models [see p.85,89,90].
passable Method used by each CA, modified between models [see p.86,92].
pastColNumber Number of location sample to determine if an individual is “stuck”.
row Current row of individual.
SEPM Simple Elver Passage Model.
stuck Denotes whether current individual is “stuck”.
stuckIt Number of timesteps individual has spent “stuck”.
stuckItMax Maximum number of timesteps individual is allowed to be “stuck”.
timePerStep List of timeReq each timestep.
timeReq Time required to make a move.
threshold Distance that defines whether an individual is “stuck”.
velMag Magnitude of velocity at cell location.
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bodylength Total length of the individual.
calcHeading Function to calculate heading of the individual [section 4.6.8].
calcMoveMakeMove Function to execute final movement response [section 4.6.10].
colAvoidance Collision avoidance rule [section 4.6.5].
coordsCentroid Current location of the centre of the individual.
determineCreationLocation Function to determine creation locations of individuals.
deterReponse Function to determine response of an individual [section 4.6.10].
failed List of individuals that have failed to pass through the domain.
fishNum Total number of simulated fish.
fishTimestep Timestep used within fishPy.
followFlow Movement rule [section 4.6.1].
G3D Passability matrix [section 4.3.1].
heading Current directional heading of individual.
initiative Ordered list of movement order of individuals.
K3D Turbulence kinetic energy input data.
memory Memory bias rule [section 4.6.6].
minMaxEnergy Energy pathway selection rule [section 4.6.2].
nx, ny, nz Number of data points in x,y,z.
obAvoidance Obstacle avoidance rule [section 4.6.4].
passabilityThreshold Threshold defining the minimum value of passability.
passed List of individuals that have successfully passed through the domain.
sensoryRange Range of sensory length measured in bodylengths.
SQDx, SQDy, SQDz Sensory query distances in x,y,z.
randomWalk Random walk rule [section 4.6.3].
repulsionDist Distance threshold that triggers colAvoidance.
swimBurst,swimSust Burst and sustained swimming speeds of individual.
tkeAvoidance Turbulence avoidance rule [section 4.6.7].
Tmax Maximum fishTimestep

U3D, V3D, W3D Flow field input data in x,y,z.
x, y, z Current location of individual in x,y,z.
X3D, Y3D, Z3D Domain geometry input data in x,y,z.
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1.1 Statement of the Research Question

1.1 Statement of the Research Question

Globally, rivers are regulated and modified for a variety of purposes. Anthropogenic
alteration of rivers is implemented to control water levels, prevent sea water intrusion,
facilitate human navigation, power mills, and to allow abstraction [Fuller et al., 2015].
More recently, rivers have been modified to power hydroelectric facilities through the
construction of new structures or the retrofitting of existing ones. Historically, little
attention was given to the environmental and ecological effects of altering the natural
flow of rivers. This has led to a drastic decline in the populations of numerous aquatic
species [e.g. Nicola et al. 1996, Laffaille et al. 2005, Hall et al. 2012] and, in some
cases, the loss of entire species [Nilsson et al., 2005]. More recently, the impact of
anthropogenic alteration has been studied in an attempt to quantify and subsequently
better design hydraulic structures [e.g. Lucas and Frear 1997, Baras and Lucas 2001,
Russon et al. 2011, Gauld et al. 2013, Piper et al. 2017]. In 2000, the European Union
(EU) Water Framework Directive (WFD) came into force with the purpose of protecting
and restoring aquatic environments in EU member states. The WFD mandated that
all aquatic ecosystems must meet “good ecological status” by December 2015. This
deadline has since been extended after a review in 2012 predicted that 47% of waters
would not achieve this goal [European Commission, 2012].

A key proposed physical improvement is the requirement of unhindered longitud-
inal migration of aquatic species through the removal or easement of barriers to fish
migration and the removal or modification of engineering structures. Where removal
of hydraulic structures is impractical, barriers are eased through further anthropogenic
modifications in the form of additional hydraulic structures known as fish passes. These
are defined as in-stream structures designed to facilitate upstream migration of aquatic
fauna [Armstrong et al., 2010]. There are numerous designs of fish passes which can
be generally categorised as pool-type passes, slope-type passes, and lift-type passes.
Furthermore, there are also structures designed to ease only downstream movement,
including physical screens, surface bypasses, and bar racks [Noonan et al., 2012]. These
devices function by diverting fish towards safe downstream routes and away from tur-
bines. Numerous researchers have employed experiments to determine the efficiency
of different surface bypass and fish pass designs under different conditions and with
different techniques [Roscoe and Hinch, 2010, Foulds and Lucas, 2013].

There have been many experimental and computational studies on the quantifica-
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tion of fluid flow within a range of different fish pass designs [e.g. Khan 2006, Ferrari
et al. 2009, Andersson et al. 2012, Lindberg et al. 2013, Arenas et al. 2015]. Therefore,
the hydraulics of these designs are generally well understood. However, the ecological
efficiency of fish passes, defined as the number of successful passages divided by the
number of attempts, can currently only be determined experimentally. This requires
a large amount of time, resources, and is often invasive. Furthermore, it is difficult
to assess the success of a given passage facility as there is a distinct lack of recom-
mended performance criteria present in the literature [Silva et al., 2018] and ongoing
monitoring of installations is often cost prohibitive. This is compounded by a difficulty
in accurately measuring the number of attempts made by individuals that approached
the structure (failure rate). These difficulties in measuring ecological efficiencies make
the analysis of new fish pass designs costly and time-consuming. Furthermore, they
make swift design iterations (or optimisation) of fish passes impossible. It is therefore
unsurprising that fish pass efficiencies are consistently reported as low [Larinier and
Travade, 2002b, Oldani et al., 2007, Roscoe et al., 2011, Brown et al., 2013]. Moreover,
Noonan et al. [2012] found fish passage facilities had average upstream and downstream
passage efficiencies of 41.7% and 68.5%, respectively; drastically lower than the recom-
mendation of 90% to 100% made by Lucas and Baras [2008].

Defining and decoding the behavioural rules that govern up-migrating fish responses
to ecohydraulic flow fields, with particular consideration to attraction flows, would allow
for better design of passage facilities and has been dubbed a “high research priority”
by Silva et al. [2018]. Simulation of the movement decisions of up-migrating fauna
will give insight into fish migration pathways and potentially allow for more freedom
in the design and operation of fish passage facilities. Similarly, it has the potential to
allow for swift iterative design and optimisation of fish pass geometries to maximise
passage efficiencies. Furthermore, the use of a computational model of fish passage
would implement the governing principles of animal research: replacement, reduction,
and refinement; known as the 3Rs [Russell and Burch, 1992, Fenwick et al., 2009].
Specifically, reducing, and in some cases replacing, the need for animal experiments.
Multiple attempts have been made to computationally predict fish movements for a
variety of cases and using a variety of methods [Goodwin, 2004, Blank, 2008, Abdelaziz,
2013, Plymesser, 2014, Gao et al., 2016]. These studies are reviewed in detail in section
2.8. However, none of the models developed in these studies are capable of modelling
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the pathways of up-migrating fishes through a generalised domain. This makes them
inaccessible to practitioners and restricts the possibility of their wide-spread use.

1.2 Research Aim and Developmental Tool Principles

This research aims to address knowledge gaps in fish behaviour in anthropogenically
impacted rivers. In particular, this research aims to develop a functional software
tool to be used by practitioners to understand up-migrating fish behaviour in lowland
rivers. This tool will subsequently provide a method to assess the impact of ecohydraulic
environments such as weirs and fish passes on up-migrating fishes. This will be achieved
through the following objectives:

• Thorough review of literature to identify key hydrodynamic stimuli.

• Investigation of the applicability of agent-based modelling to predict juvenile eel
behaviour in ecohydraulic environments through the development and application
of simple 2D agent-based models.

• Application of the agent-based approach to develop an open-source tool to predict
upstream migration trajectories of brown trout, through decoding fish responses
to hydrodynamic stimuli into a behavioural ruleset.

• Individual verification of each behavioural rule through application of the tool to
artificial flow environments.

• Exploration of the sensitivity of predicted trajectories to model parameters.

• Application of the developed model through an ecohydraulic domain and com-
parisons of predicted brown trout pathways against measured fish track data.

For this software tool to be useful to practitioners it must adhere to a number of
developmental principles defined through an understanding of: the literature, client
requirements, and good data practice. These principles are outlined in table 1.1 and
act as drivers in developmental decisions throughout this research.
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Table 1.1: The development principles designed to guide the development of the soft-
ware tool.

No. Principle Description
1 Open source Developing the model using open-source software increases its access-

ibility and encourages its usage.
2 Transparent Transparency in the development and function of the tool increases

its accessibility and allows others to further develop the tool.
3 Generalised The tool needs to be applicable to any hydrodynamic environment

that the user wishes to consider.
4 Spatially 3D This ensures that the model does not limit the user and can assess

trajectories in all axes.
5 Self-

contained
The tool should function as a stand-alone tool with minimal software
dependencies.

6 Modular Developing the tool in a modular manner allows easy exploration of
separate behavioural rules as well as facilitate the future incorpora-
tion of other additional species.

7 Individual
Focus

The tool should focus on the passage and pathway of the individual;
i.e. micro-scale, rather than that of a population; i.e. macro-scale.

1.3 Thesis Structure

Chapter 2 presents a literature review including: a brief summary of British fish spe-
cies and their biology and conservation status, designs of typical fish pass facilities,
an overview of the Reynolds-Averaged Navier-Stokes approach to computational fluid
dynamics, the agent-based modelling approach, fish behaviour studies, and the current
state of fish path prediction models.

Chapter 3 presents a viability study of agent-based modelling and its application
to an ecohydraulic environment. In particular, this chapter considers the passage of
juvenile European eels ascending a purpose-built anguilliform pass in a variety of con-
figurations. Flow fields within each pass configuration are quantified using compu-
tational fluid dynamics. Passage efficiencies are predicted through the application of
multiple custom-built two dimensional agent-based models and the novel application of
established landscape connectivity metrics. Results are compared to published passage
efficiencies and the implications for eel pass design are discussed. Lastly, the results are
extended to consider theoretical maximum pass lengths, which are presented as charts
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aimed at assisting practitioners in developing improved designs.
Chapter 4 presents the development of a three dimensional, temporally discrete,

spatially continuous agent-based model to predict up-migration pathways of brown
trout. The model predicts vector-based trajectories of individual heterogeneous fish
based on their responses to stimuli within their local hydrodynamic environment. The
decoded behavioural ruleset is detailed along with the tool structure, required envir-
onmental inputs, and user defined parameters. This chapter also presents a model of
energy expenditure and a model of swim bladder buoyancy and their implementation
within the tool.

Chapter 5 presents the verification of each behavioural rule and the sensitivity of
predicted fish trajectories to tool parameters, in order to ensure tool functionality. Mul-
tiple artificial hydrodynamic environments, created and executed using computational
fluid dynamics, are developed and converted into appropriate inputs for the software
tool. A parameter sensitivity study is performed through the application of the tool to
each artificial environment for each behavioural rule and the discussion of the predicted
pathways.

Chapter 6 presents validation of the tool against measured velocity and fish track
data at a study-site on the River Esk, North Yorkshire. This chapter details the study
site and data collection methodology used to collect both geometric and velocity data.
The process of converting collected geometric data to a usable computational fluid
dynamics mesh is detailed along with the subsequent execution of the simulations to
quantify study site velocity fields. Simulated and measured velocity data are compared
to validate the computational fluid dynamics approach. Simulated fish pathways and
published, measured fish tracks are compared to validate the software tool.

Chapter 7 discusses the research findings including: the use of two dimensional
agent-based models and landscape connectivity metrics to passage of eels, the implica-
tions for eel pass design, the use of three dimensional agent-based models in predicting
up-migration pathways through a generalised domain, the implications and usage of
the software tool. It then presents limitations of the research, conclusions, and future
work.
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Literature Review
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2.1 Anthropogenic Alteration of the Fluvial Environment

This chapter discusses background theory and previous research required to understand
models of up-migrating fishes. This chapter begins with a brief introduction to the
causes and effects of river fragmentation, as well as common fish passage solutions
employed to ease barriers to migration. Section 2.3 presents a non-exhaustive list of
British fish species along with associated conservation statuses and migration types.
These sections are presented to provide context to the research question.

In order to accurately model the movement of fish, it is important to understand the
manner in which fish interact with their environment. Therefore, section 2.4 presents
a brief introduction to fish biokinetics and their mechanosensory system. Similarly, in
order to model the responses of fish to hydrodynamic cues, the fluvial environment that
the fish inhabit must be quantified. This is done through the using of computational
fluid dynamics (CFD), and therefore an introduction to CFD is presented in section
2.5. Cellular automata, individual-, and agent-based modelling approaches are used to
develop the models within this thesis and therefore an introduction to these are presen-
ted in section 2.6. Section 2.7 presents a review fish behaviour studies, and summarises
key identified hydraulic stimuli as well as observed responses to those stimuli. These
are used to inform the behavioural rulesets outlined throughout this thesis. The final
section of this chapter provides a thorough review of previous research in fish path
prediction.

2.1 Anthropogenic Alteration of the Fluvial Environment

Rivers are a fundamental part of the natural environment, play host to a vast range of
aquatic plants and animals, and are heavily relied upon by non-aquatic species through
the provision of ecosystems services [Costanza et al., 1997]. Anthropogenic alteration
of fluvial systems, sometimes referred to as river fragmentation, is ubiquitous in areas
populated by humans [Dynesius and Nilsson, 1994]. Recent assessments have suggested
that only 3.3% of rivers in Great Britain are fully connected, and only 1% of rivers in
Great Britain do not feature anthropogenic alteration [Jones et al., 2019]. Historic-
ally, river systems were modified to control water levels, facilitate human navigation,
power mills, or to permit abstraction. More recently, rivers have been exploited as a
green energy source through the building of new hydroelectric structures or through
retrofitting existing weirs. River alteration has severe ecological effects [i.e. van Puijen-
broek et al. 2019]. It provides barriers to the upstream and downstream movements of
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aquatic organisms and has been directly linked to declining populations and even the
loss of entire species [Nilsson et al., 2005]. In addition, it can change the local river
temperature, food availability, oxidation levels, and habitat access [Humborg et al.,
1997, Nilsson and Berggren, 2000, Alo and Turner, 2005]. However, in lowland British
rivers, weirs and the upstream and downstream reaches thereof provide significant niche
habitats that would otherwise display minimal streamwise and cross-stream variations
in velocities, depth, and substrate characteristics [i.e. Kröger et al. 2008]. The World
Commission on Dams [2000] report similar benefits at large dams, some of which have
been recognised as internationally important sites under the Ramsar Convention.

The European Union (EU) Water Framework Directive (WFD) mandates EU mem-
ber states to improve all aquatic ecosystems and allow for unhindered longitudinal mi-
gration of aquatic species. Unhindered migration can be achieved through the removal
or easement of barriers to fish migration. Examples of these are listed below.

• Weir and dam removal [Bednarek, 2001, Stanley and Doyle, 2003]. While the
removal of weirs and dams has the effect of easing fish migration, it has been
reported that there may be costly repercussions, such as the loss of niche habitats
and increased mortality in downstream aquatic communities [Stanley and Doyle,
2003]. Furthermore, it is often impractical to remove some barriers as they are
required for ecosystem services (i.e. water abstraction).

• Physical transportation of fish [Williams et al., 2005, Keefer et al., 2008]. There
has been some attempt to aid migration by manually transporting fish around
river fragmentation points. However, Keefer et al. [2008] found that this practice,
over a 1 to 3 year period, severely impaired adult orientation and homing abilities
compared to those left alone.

• Construction of fish passes [Clay, 1994, Cowx et al., 1998b]. Fish passes provide
a migration solution that does not affect the niche habitats formed by river frag-
mentation, does not impact ecosystem services, and does not have the biological
impact of hatchery programmes [Larinier and Marmulla, 2004]. For example,
Calles and Greenberg [2005] found that densities of brown trout yearlings up-
stream of two nature-like fish-ways increased after their construction compared
to control sites, which saw no change. The percent of fish successfully passing
the fish-way was reported as > 90%, but this metric only considers individuals
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recorded at the bottom of the pass. After accounting for the number of fish that
successfully located the pass (52%) the total efficiency of the fish-way is reduced
to 48% [Calles and Greenberg, 2005]. Therefore, while nature-like fish-ways are
beneficial to overcoming the fragmentation of rivers, the likelihood of successful
passage is limited by the ability of the fish to locate the pass.

It is also worth mentioning that, while not strictly a form of migration easement,
compensatory stocking is also used in many countries [see Ackefors et al. 1991, Eriksson
and Eriksson 1993, Wanke et al. 2016]. This involves rearing fish in hatcheries before
releasing them into the upper reaches of rivers. Literature suggests that hatchery-
reared salmonids are significantly outperformed by wild salmonids [Saloniemi et al.,
2004, Chittenden et al., 2008, Serrano et al., 2009] due to slower migration times,
näıve anti-predator relations, and higher lipid concentrations [Weber and Fausch, 2003,
Serrano et al., 2009].

2.2 Fish Pass Design

In ecological terms, a fish pass is a structure designed to facilitate the passage of fish
past obstructions [Larinier and Marmulla, 2004]. In hydraulic terms, a fish pass is
a structure designed to dissipate the kinetic energy of the flow [Kamula, 2001]. This
dissipation is vital to the function of the fish pass so as to ensure that the water velocity
is below the biokinetic capacity of the fish [Armstrong et al., 2010]. However, recent
thought suggests that considering only energy dissipation and mean velocities is too
simplistic and inefficient, and an understanding of turbulence within the pass is required
to adequately facilitate passage [Silva et al., 2018] This is discussed in section 2.7.

There are several critical controls on fish-way design including water depth, dis-
charge, length, gradient and velocity, all of which affect the species for which the pass
is most suitable [Armstrong et al., 2010]. Crucially, different species require different
hydraulic conditions, some of which are mutually exclusive [Larinier and Marmulla,
2004]. For this reason, practitioners are forced to design for particular species, the
result of which is commonly a bias towards economically important species such as
Atlantic salmon or other salmonidae [Noonan et al., 2012, Williams et al., 2012].

The hydraulic conditions (flow velocity, turbulence, etc.) within a fish-way are
intrinsic to its overall performance. However, the flow field downstream of the fish
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pass is also important as it influences the attraction of the fish to the entrance of the
fish-way, known as the “attraction flow” [Armstrong et al., 2010]. However, little has
been published to quantify the attraction flow [Gisen et al., 2016] and what guidelines
are available are ambiguous [Katopodis, 2005]. It has been suggested that the flow
rate, turbulence structure, velocity, and temporal and spatial derivatives of velocity at
the fish-way entrance affect the attraction flow [Coutant, 1998, Goodwin et al., 2014,
Burnett et al., 2016, Gisen et al., 2016]. Additionally, noise, scent, temperature, and
oxygenation have also been suggested to be relevant [Williams et al., 2012]. However,
little has been done to quantitatively isolate the influence of each, and many existing
international guidelines are inconsistent [Weichert et al., 2013].

Fish pass designs can be split into three categories [Armstrong et al., 2010]:

• Pool-type passes, figure 2.1. These designs split the vertical distance to be passed
into a series of pools of increasing height and are often augmented with notches,
slots, or orifices [Larinier and Marmulla, 2004].

• Baffle passes, figure 2.2. Baffle pass designs utilise a relatively steep slope divided
by various forms of baffle, down which water flows [Larinier and Marmulla, 2004].
The baffles are used to dissipate the kinetic energy of the water, reducing its
velocity and facilitating the passage of fish [Armstrong et al., 2010].

• Lift passes. Lift passes attract fish into a finite space which is then lifted the
required vertical distance where the fish are then released [Armstrong et al., 2010].
Since the primary focus of this project is British lowland rivers, lift passes will
not be considered, as they are designed for large scale dams [Deutscher Verband
für Wasserwirtschaft und Kulturbau, 1996].

2.2.1 Pool Passes

Pool-type passes are the oldest type of fish pass and have been used extensively across
Britain, mainland Europe, and North America [Larinier and Marmulla, 2004]. They
consist of a series of uniformly-spaced pools, with each pool slightly lower than the pool
immediately upstream creating a series of stepped pools, with a traverse between each
[Armstrong et al., 2010]. Each type of pool pass employs a slightly different design
of traverse, which alters the hydraulic environment and the way in which fish move
through the pass [see Maeno and Miyauchi 2001, Khan 2006, Liu et al. 2006, Quaresma
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and Pinheiro 2014]. Pool-type passes have the advantage of being low maintenance and
have the potential to be constructed with frequent, sharp changes of direction, allowing
flexibility in their installation [Armstrong et al., 2010]. Furthermore, each pool offers
the opportunity for migrants to rest between each energetic bout, therefore pool passes
are accessible for a variety of fish with differing swimming capacities [Larinier and
Marmulla, 2004]. Nevertheless, it is beneficial to minimise the total passage time as
increased passage time has been related to unsuccessful passage due to energy depletion
and exposure to predation [Caudill et al., 2007].

Pool and Traverse Passes

Pool and traverse-type passes, figure 2.1a, sometimes referred to as pool and weir passes,
consist of a series of traverses between pools of different heights. Simple over-falls are
used to connect pool to pool, through the formation of a nappe. These passes require
fish to travel in the nappe and are therefore unsuitable for benthic and some benthopela-
gic species, and favour species with greater swimming performance [Armstrong et al.,
2010]

Numerous experiments have been performed to study the flow structure of pool and
weir passes [e.g. Hayashida et al. 2000, Maeno and Miyauchi 2001, Ead et al. 2004,
Atsushi et al. 2008, Atsushi 2009, Abdelaziz et al. 2013, Duguay et al. 2017]. Abdelaziz
et al. [2013] performed 2D, width-averaged RANS simulations of a pool and traverse
pass, with the k–ε turbulence closure, and using a rectangular grid with a resolution
of 0.1 m [see section 2.5]. Abdelaziz et al. [2013] found that the flow field of each pool
was dominated by a region of up-welling near the downstream wall and a region of
down-welling at the upstream wall, leaving a region of low velocity in the centre of the
pool. The structure of the simulated flow field matched the experiments of Atsushi
[2009], however the simulations suggested the largest velocities were experienced close
to the upstream and downstream walls, whereas the experimental data shows that the
largest velocities appear in the nappe over each weir [Abdelaziz et al., 2013]. Duguay
et al. [2017] performed 3D RANS simulations of a pool and weir fish pass using the
k-ε turbulence closure within OpenFOAM and FLOW-3D, using the volume of fluid
method to track the free surface [see section 2.5]. Duguay et al. [2017] collected in situ
instantaneous 3D velocity data within a single pool of the pool and weir fish pass using
an acoustic Doppler velocimeter (ADV), with a sample frequency of 60Hz and collected
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(a)

(b)

Figure 2.1: Schematics of (a) a pool and traverse fishway and (b) a vertical slot fishway,
both adapted from Katopodis [1992]
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over a period of 180s. Duguay et al. [2017] found agreement between simulated and
measured velocity data, turbulence kinetic energy, and water surface levels, although
both models were unable to predict finer turbulence structures within the flow field.
These results suggest that a 2D RANS CFD approach is not sufficient to accurately
model the flow in a pool and traverse fish pass, but a 3D RANS CFD approach is
capable of accurately predicting the water surface height and the velocity field.

Vertical Slot

Vertical slot fish passes are similar to pool and traverse passes but employ one or
two vertical rectangular slots between pools [Armstrong et al. 2010; figure 2.1b]. This
forms a jet of water at the outlet of each slot, dissipating the kinetic energy of the
water through circulation around the axis perpendicular to the channel floor [Kamula,
2001]. The rectangular slots are often located off-centre and angled toward the centre
of the lower pool to ensure that the resulting jet thoroughly mixes in the lower pool
[see Rajaratnam et al. 1986, 1992]. Small baffles at the slot are sometimes used to
ensure mixing [Rodŕıguez et al., 2006]. Vertical slot fish passes have the advantage of
allowing passage at all parts of the water column, making them suitable for almost
all aquatic species including benthic species and invertebrates [Larinier and Travade,
2002a, Armstrong et al., 2010].

The hydraulics of vertical slot fish passes have been extensively studied experiment-
ally [Rajaratnam et al., 1986, 1988, 1992, Wu et al., 1999, Liu et al., 2006, Rodŕıguez
et al., 2006] and, more recently, numerically in both two [Cea et al., 2007, Bermúdez
et al., 2010, Chorda et al., 2010, Bombač et al., 2014, Gao et al., 2016, Quaranta et al.,
2016] and three dimensions [Khan, 2006, Heimerl et al., 2008, Barton et al., 2009, Mar-
riner et al., 2016]. Vertical slot fishways are thought to be tolerate large fluctuations
in upstream water level as the flow structure in each pool is approximately independ-
ent of the upstream flow depth [Kamula, 2001, Heimerl et al., 2008]. For this reason
a large number of numerical studies of vertical slot fish passes have employed a 2D,
depth-averaged formulation. However, it has been demonstrated that each pool in a
vertical slot fish pass has large regions of up-welling near the downstream slot and
large regions of down-welling at the upstream slot [Khan, 2006]. Furthermore, Barton
et al. [2009] found that the flow velocity through the slot is a function of the elevation,
and Khan [2006] found that eddies are formed around the horizontal axis within pools.
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These findings indicate that the velocity field within a vertical slot fish pass is strongly
three-dimensional, and that a 3D RANS CFD approach is capable of predicting the
hydraulics of the fish pass.

2.2.2 Baffle Passes

Baffle fish-ways are use relatively steep (≈ 20◦), straight slopes with baffles used to dis-
sipate the kinetic energy of the flow [Armstrong et al., 2010]. The principle of the baffle
passes is to dissipate the kinetic energy of the flow through causing secondary flows
and increasing turbulence through strategically positioned baffles [Larinier, 2002a].

With the exception of Larinier fish passes, there is a lack of studies to quantify the
hydraulics of baffle fish passes. Furthermore, there is a distinct lack of computational
investigations into the hydraulics of baffle fish-ways, likely due to their complex geomet-
ries and the associated complexities of CFD meshing. Unlike pool passes, baffle passes
offer no respite to migrants and therefore they must pass the entire structure in a single
attempt, making them better suited to stronger swimmers such as salmonidae [Larinier
and Marmulla, 2004]. This limits the maximum length of baffle-type fish passes unless
resting pools are introduced between lengths of pass [Larinier and Marmulla, 2004].
Additionally, baffle passes require a straight slope, meaning that they can only change
direction via a resting pool, limiting the viability of their installation.

Baffle passes can be split into three types:

• Bottom-baffle fish-ways. These fish passes have baffles attached only on the bot-
tom of the pass, which allows for wider fish-ways, giving versatility in discharge
[Larinier, 2002a]. However, they cannot withstand large variations in upstream
water level due to rapid increases in velocity with depth [Larinier, 2002a].

• Side-baffle fish-ways. These passes have baffles connected only to the sides of
the fish pass and have the advantage of being able to withstand large variations
in upstream water level and are the most efficient at kinetic energy dissipation
Larinier [2002a] . However, side-mounted baffles are very prone to blockage and
therefore require increased maintenance [Larinier, 2002a].

• Bottom- and side-baffle fish-ways. These passes have baffles placed on both the
sides of the fish-way and the floor, and can withstand greater variations in up-
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(a)

(b)

Figure 2.2: Schematics of two typical baffle/slope fish-ways. (a) Schematic of a Denil
fish-way adapted from Katopodis [1992]. (b) Schematic of an Alaskan Denil fish-way
from Beach [1984].
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stream water level compared to bottom baffle fish-ways, but are limited in size as
large baffles encroach on the swimming channel [Larinier, 2002a].

Denil Passes

The Denil fish pass (figure 2.2a) was originally developed by Denil [1909], and has sub-
sequently been further developed by McLeod and Nemenyi [1941], White and Nemenyi
[1942], and Fulton et al. [1953], among others. Within the fish pass are a series of sym-
metrical baffles attached to both the sides and bottom of the fishway and set at 45◦ to
the channel slope [Armstrong et al., 2010], which transfer energy from the flow to the
fish pass walls [Kamula, 2001]. Literature suggests that these fish passes are suitable for
migratory salmonids when installed at large gradients (i.e. ≥ 15%) and can be utilised
by coarse fish and lamprey by using shallower slopes (i.e. ≤ 15%) [Mallen-Cooper and
Stuart, 2007, Fish Counters In Action, 2008, Armstrong et al., 2010]. However, Noonan
et al. [2012] found in a recent review that Denil fish passes had the lowest aggregated
passage efficiencies. Furthermore, there is a distinct lack of experimental and numerical
quantification of flow within Denil passes in the literature.

Alaskan Denil

The Alaskan Denil fish pass, sometimes referred to as an Alaskan steeppass [Plymesser
and Cahoon 2017; figure 2.2b], is designed to be robust for installation in remote
areas [Carling and Dobson, 1992]. It was originally developed by Ziemer [1962] for
Pacific salmon in Alaska and features symmetric baffles, perpendicular to the channel
slope, and angled 60◦ toward the upstream direction [Larinier, 2002a]. This produces a
hydraulic structure that is more efficient at energy dissipation than the Denil fish pass
but is more likely to suffer from blockage [Larinier, 2002a]. Alaskan Denil fish-ways
are narrow due to the wall-mounted baffles, and are installed at relatively steep angles
(25-33% gradient) [Larinier, 2002a].

Plymesser [2014] and Plymesser and Cahoon [2017] performed 3D RANS simula-
tions of an Alaskan steeppass using FLOW3D, and using the k-ε RNG turbulent closure
and the VOF method to track free surface location [see section 2.5]. Plymesser [2014]
found that predicted velocities compared well to velocities collected via an electromag-
netic current meter (ECM), and water surface heights compared well to data measured
by Haro et al. [1999]. This result suggests a 3D RANS approach using the k–ε RNG
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turbulent closure and the VOF method is capable of accurately modelling the free
surface and velocity field within a baffle-type fish-way.

Larinier

Sometimes referred to as the super-active baffle fish-way, the Larinier fish pass was
originally developed by Larinier and Miralles [1981]. The pass uses a herringbone
pattern of small baffles attached only to the bottom of the channel [Larinier, 2002a].
The Larinier pass is wide and shallow when compared to other baffle passes; and, unlike
other baffles passes, the width of a Larinier pass is not limited by the hydraulic operation
of the pass, only by the conditions at the installation site [Larinier and Marmulla, 2004].
Therefore, multiple prefabricated units of baffles can be placed side-by-side to meet the
desired width, which can lead to very large attraction flows [Armstrong et al., 2010].
The hydraulics of Larinier fish passes have been studied experimentally, resulting in
specific baffle geometries to obtain the desired flow conditions [Larinier and Miralles,
1981, Larinier, 1992, Larinier et al., 1994, Larinier, 2002a]. Furthermore, there are
established relationships between the discharge per unit width (m2s−1) and the average
velocity in the pass for a given combination of installation angle and baffle size [see
Larinier 1992]. For example, for a gradient of 15%, 0.15m baffles, and a discharge per
unit width between 0.2m2s−1 and 1.3m2s−1, the velocity can be calculated based on
the work of Larinier [1992]:

c1q
2 + c2q + c3 (2.1)

where c1, c2, c3 are empirically derived constants equal to −0.0603, 0.7816, and 1.0424,
respectively.

2.2.3 Anguilliform Passes

In addition to pool passes and baffle passes, passes have also been designed to spe-
cifically aid the passage of eels (anguilliformes) (figure 2.3). Eels are catadromous [see
section 2.3] and thus it is essential for them to migrate upstream and downstream at
different life stages. However, eels cannot traverse vertical barriers that are greater than
50% of their body length [Cowx et al., 1998a]. Therefore, only larger adult eels can
successfully navigate conventional fish-ways, and only if the velocities are low enough
to facilitate passage. Eels are weak swimmers but can exploit boundary layers, crawl,
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Figure 2.3: Image of an in situ eel pass installed on a weir

and cling to surfaces [Solomon and Beach, 2004]. Eel passes provide a wetted substrate
on an inclined plane that provides purchase for eels to cling to and wriggle through
[Armstrong et al., 2010]. Historically, the substrates used were often cheap items and
fabric such as broom-heads [Environment Agency, 2011], trawl netting [Shotzberger
and Strait, 2002], garden netting, burlap [Jackman et al., 2009], and geotextile matting
[Environment Agency, 2011]. However, Voegtle and Larinier [2000] found that these
materials were too abrasive and caused passing eels to lose a considerable amount of
mucus. More recently, purpose-built synthetic substrates have become available that
use a series of small, more-or-less rigid, vertical cylinders or studs attached to a base
[i.e. Berry & Escott Engineering 2017, Milieu Inc. 2017, Terraqua Environmental Solu-
tions 2017; figure 2.4]. These passes have been shown to successfully increase passage
efficiency of eels and elvers from 0% to 67% when installed on a model Crump weir
[Vowles et al., 2015]. As eels are inclined to cling to substrates, eel passes can be
installed at large gradients, with successful passage recorded even at slopes of 45◦ [En-
vironment Agency, 2011]. Eels tend to congregate in areas with slow velocities and so
eel passes are commonly installed in these areas. Furthermore, it is necessary to ensure
that upstream velocities are low to ensure that eels are not washed back downstream
[Environment Agency, 2011]. Therefore, unlike other fish passes, eel passes do not re-
quire a substantial attraction flow and do not require large flow rates down the face of
the eel pass [Armstrong et al., 2010].
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Figure 2.4: CAD render of a typical Milieu eel pass segment from Environment Agency
[2011]

2.3 British Fish Species

The responses of fish to hydrodynamics and environmental cues are known to be species-
specific [i.e. Silva et al. 2016] . Furthermore, the efficiency of fish passes depends on
the species passing through the pass due to differences in size, biokinetic ability, and
mechanosensory ability [Armstrong et al., 2010]. This section details example fish
species that exist within British river systems to give context to the research question,
as well as technical language used throughout the work.

Fish migrate within the river environment to feed or spawn, or to take refuge [Lu-
cas and Baras, 2008]. Table A.1, located in Appendix A, gives a non-exhaustive list of
British freshwater fish species including their common name, taxonomic name, Inter-
national Union for Conservation of Nature (IUCN) Red List Status, family, migration
type, and habitation zone. The IUCN has categorised the conservation status of spe-
cies into nine categories ranging from least to most threatened: Not Evaluated (NE),
Data Deficient (DD), Least Concern (LC), Near Threatened (NT), Vulnerable (VU),
Endangered (EN), Critically Endangered (CR), Extinct in the Wild (EW), Extinct
(EX). The IUCN use the term “Threatened” to refer to any species classified as Vul-
nerable, Endangered, or Critically Endangered. Migration types are split into six cat-
egories: Anadromous, Amphidromous, Catadromous, Non-migratory, Oceanodromous,
and Potamodromous [Lucas and Baras, 2008]. Anadromous fish are born in freshwater
and migrate to sea where they live most of their life before migrating back to freshwa-
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ter to spawn [Brönmark et al., 2014]. Amphidromous fish are born in freshwater and
drift into the ocean as larvae, migrating back into freshwater to grow into adults and
spawn [Lucas and Baras, 2008]. Catadromous fish are born in the ocean and migrate
to freshwater, where they live most of their lives before migrating back to the ocean
to spawn [e.g Aarestrup et al. 2009]. Non-migratory fish spend all of their lives in the
same reach of a river; for example nest building fish, such as Grayling. Oceanodromous
fish migrate between different marine environments [Lucas and Baras, 2008]. Potamo-
dromous fish spend all of their lives in freshwater. However, they are known to locally
migrate over distances of the order of kilometres [e.g. Northcote 1997, Masters et al.
2002].

The section of the water column that the fish naturally inhabits is defined as “Zone”.
Demersal fish live and feed in the section of water just above the bed (benthic zone),
and are sometimes referred to as bottom feeders. Demersal fish are split into two
categories; benthic fish and benthopelagic fish. Benthic fish have negative buoyancy
and lie on the bottom without actively maintaining station. Benthopelagic fish have
neutral buoyancy. Pelagic fish live and feed in the pelagic zone, which encompasses
the water column from the surface to near the demersal zone but away from the coast.
Pelagic fish are not considered in this project as they do not venture inland at any time.
Pelagic-Neritic refers to those species that also venture into the neritic zone, which is
defined as relatively shallow coastal waters or river outflows.

2.4 Fish Biology

Fish interact with their environment in a manner that can be broken down into their
ability to move through the environment (biokinetic capabilities), and their ability to
perceive their environment through the mechanosensory system.

2.4.1 Fish Biokinetics

Fish locomotion is achieved through a combination of aerobic (red) muscles and an-
aerobic (white) muscles [Johnston, 1981]. The use of red muscles does not noticeably
fatigue fish, whereas the use of white muscles fatigues fish [Johnston, 1981]. The biokin-
etic capability of fish can be separated into three distinct categories: sustained swim-
ming, prolonged swimming, and burst swimming [Beamish, 1979]. Sustained swim-
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ming uses only red muscles [Johnston, 1981] and is defined as locomotion that can be
maintained for long periods of time (> 200 minutes) without muscular fatigue [Beam-
ish, 1979]. Prolonged swimming is defined as locomotion that can be maintained for
between 20 seconds and 200 minutes and will end in fatigue [Beamish, 1979]. Burst
swimming is defined as locomotion that can be maintained for short periods of time
(< 20 seconds), and encompasses the highest speeds attainable by the fish [Beamish,
1979]. Both prolonged and burst swimming modes use white muscles only [Johnston,
1981]. Biokinetic capabilities are species-specific and are also a function of fish body
length and local water temperature [Clough and Turnpenny, 2001].

2.4.2 Fish Mechanosensory System

Fish have a complex sensory system evolved to navigate hydraulic environments. Mont-
gomery et al. [1995] suggest that fish behaviour is mediated by a combination of all
available sensory information. All fish have two mechanosenory subsystems which allow
them to sense local hydrodynamics, the lateral line system and the inner ear [Mont-
gomery et al., 1995]. In addition to these organs, many fish have a swim bladder that
allows the fish to maintain near-neutral buoyancy [Lucas and Baras, 2000].

The lateral line is a sensory system that uses a series of neuromasts to detect water
motion and pressure gradients [Bleckmann and Zelick, 2009]. Dijkgraaf [1963] describes
the lateral line system as allowing fish to “touch at a distance” and Montgomery et al.
[1995] suggest that this distance may be up to a body length from the fish. Neuromasts
are sometimes referred to as “hair cell receptors”. They are made up of mechanosensory
hair cells which are sensitive to local water movements [Montgomery et al., 1995]. While
the patterns and exact number of neuromasts are species-specific, fish generally have
hundreds of neuromasts spread over their head, trunk, and tail [Montgomery et al.,
1995]. These neuromasts are split into superficial neuromasts on the surface of the
skin and sub-cutaneous “canal” neuromasts in fluid-filled canals connected to the skin
surface via pores [Dijkgraaf, 1963]. Studies have shown that the lateral line plays an
important role in predation [Janssen and Corcoran, 1993], and that the lateral line
directly links to the Mauthner cell, which controls the escape reflex of the fish [Zottoli
and Danielson, 1989]. The lateral line system has also been shown to play a significant
part in rheotaxis, which is the behavioural tendency for fish to orientate themselves so
that they are pointing upstream [Montgomery et al., 1997]. Rheotaxis is an important
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evolutionary trait as it minimises the effort required by the fish to hold position when
subjected to a current through drag reduction [Arnold, 1974]. Currents also carry both
food and olfactory information that is best interpreted by fish when facing upstream
[Montgomery et al., 1997].

The inner ear is formed from multiple otolithic end organs each of which contain
mechanoreceptive sensory hair cells, as in the neuromasts of the lateral line, coupled
with a specialised receptor surface known as the epithelia [Popper et al., 2005]. These
end organs serve as an inertial system whereby stimuli cause motion of the fish relative
to the otoliths due to the difference in densities between the two [Popper et al., 2003,
2005]. The relative motion of the fish body to each of the otoliths provides the fish with
a three-dimensional perception of the motion of its body [Braun and Coombs, 2000].
The inner ear also provides the fish with hearing and gravity perception [Paxton, 2000].

Some fish have an internal organ known as the swim bladder [Jones, 1951]. The
swim bladder is sensitive to hydrostatic pressure and can adjust its volume without
adding to the mass of the fish, allowing it to effectively function as a ballast [Brawn,
1962]. This gives fish the ability to modify their own specific gravity [Alexander, 1966],
allowing them to maintain near-neutral buoyancy [Lucas and Baras, 2000]. Therefore,
the swim bladder enables the fish to conserve energy through removing the need for any
active vertical force to be produced during rest and movement [Alexander, 1990]. The
filling and emptying of the swim bladder is species-specific [see Jones 1951, Alexander
1971, and Vogel 1994]. The blood tends to a gaseous equilibrium with the local water
through the exchange of gas in the gills [Randall and Daxboeck, 1984]. Generally, the
gas in the swim bladder is regulated through exposure to blood, where diffusion of gas
can occur between the two [Alexander, 1966]. The release of lactic acid by the adjacent
“gas gland” produces carbon dioxide, which fills the swim bladder [Alexander, 1966].
Some fish have pneumatic ducts and have been observed releasing gas bubbles during
ascent [Brawn, 1962]. The disadvantage of the swim bladder is that the filling and
emptying of the swim bladder is a slow process, unless expelling gas [Jones, 1951]. This
means that the swim bladder is ill-suited to rapid movements, such as in predation,
where the fish would have to actively move. Rapid movement in the vertical axis under
normal locomotion is unstable because, at its new depth, the fish would have to resist
the buoyancy force through compensatory movement of its fins until its density has
equalised through modification to the swim bladder [Jones, 1951].
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2.5 Computational Fluid Dynamic Modelling

Computational fluid dynamics has gained popularity in ecohydraulics and ecological en-
gineering in recent years in-line with the growing availability of computational resources
[Ingham and Ma, 2005]. This section outlines the fundamentals of computational fluid
dynamics (CFD) and describes the most popular approaches used in fish passage liter-
ature.

2.5.1 Fundamentals of Computational Fluid Dynamics

Fluid flow is modelled by applying a combination of Newton’s second law to fluid mo-
tion and the physical principle of mass conservation [Anderson, 1995]. The continuity
equation (2.2) stems from applying mass conservation to a finite fluid parcel, and states
that the mass flow into and out of the finite parcel must equal the mass accumulation
within the parcel [Pedlosky, 2013].

∂ρ

∂t
+ ∂ρuj

∂xj
= 0 (2.2)

where: ρ is the fluid density, uj (j = 1, 2, 3) are the components of the fluid velocity
vector, xj (j = 1, 2, 3) are the components of the Cartesian spatial vector, and t is time.

Applying Newton’s second law to fluid motion yields the Navier-Stokes equations
(2.3), which describe the motion of a compressible Newtonian fluid in time and space
[Anderson, 1995]. The equations state that the net force acting upon a finite fluid parcel
must equal the mass of the element multiplied by its acceleration [Pedlosky, 2013].

∂ρui
∂t

+ ∂ρuiuj
∂xj

= −∂p
∂xi

+ ∂

∂xj

(
µ∂ui
∂xj

)
+ ρFi (2.3)

where: ui,j (i, j = 1, 2, 3) are the components of the fluid velocity vector, xi,j (i, j =
1, 2, 3) are the components of the Cartesian spatial vector, the left hand side of the
equation describes the inertial forces, −∂p∂xi

describes pressure forces, ρFi describes ex-

ternal forces (i.e. gravity, Coriolis), and ∂
∂xj

(
µ∂ui
∂xj

)
describes the viscous forces, where

µ is the dynamic viscosity of the fluid.
This non-linear system of equations forms the basis of most computational fluid

dynamic (CFD) simulations [ANSYS, 2016]. This system is discretised using various
numerical approximations, wherein the domain through which the fluid flow is con-
sidered is divided into a finite number of regions [Blazek, 2015]. Therefore, the flow
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variations can be captured at each spatial point and each temporal step [Anderson,
1995].

For many fluid problems the Navier-Stokes equations can be simplified [Versteeg and
Malalasekera, 2007]. For hydraulic flows, the water can be assumed to be incompressible
(i.e. ∂ui

∂xi
= 0) [Ingham and Ma, 2005]. This leads to the incompressible Navier-Stokes

equation:

∂ui
∂t

+ ∂uiuj
∂xj

= −∂p
∂xi

1
ρ

+ ∂

∂xj

(
ν∂ui
∂xj

)
+ Fi (2.4)

where ν is the kinematic viscosity of the fluid.

2.5.2 Reynolds Averaged Navier-Stokes Equations

The Reynolds averaged Navier-Stokes (RANS) approach is the most widely used method
of computationally predicting fluid flow in ecological engineering and fish passage liter-
ature [see Andersson et al. 2012, Feurich et al. 2012, Kim et al. 2012, Abdelaziz et al.
2013, Bombač et al. 2014, Marriner et al. 2014, Plymesser 2014, Quaresma and Pinheiro
2014, Gao et al. 2016, Quaranta et al. 2016, Plymesser and Cahoon 2017, Stamou et al.
2018, Klopries and Schüttrumpf 2020]. Other approaches such as Large Eddy Simula-
tion (LES) [Sagaut, 2006] and Direct Numerical Simulation (DNS) [Moin and Mahesh,
1998] can yield higher accuracy. However, these methods are infrequently used within
ecological engineering due to their higher computational expense.

The RANS approach considers the time-averaging of the Navier-Stokes equations
[Anderson, 1995]. These equations are derived through Reynolds decomposition, which
assumes that the instantaneous flow parameters can be split into the mean and fluctu-
ating components, i.e. ui = ūi +u′i and p = p̄+ p′ [Ingham and Ma, 2005]. This results
in the RANS equations (2.5) and (2.6). This assumption requires the mean value to
be time-averaged over an interval which is large compared to the turbulent time scale
[Anderson, 1995].

∂ρ

∂t
+ ∂ρūi

∂xi
= 0 (2.5)

ρūj
∂ūi
∂xj

= ρF̄i + ∂

∂xj

(
− p̄δij + 2µS̄ij − ρu′iu′j

)
(2.6)
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where δij is the Kronecker delta; and Sij is the mean strain-rate tensor defined as:

S̄ij = 1
2

(
∂ūi
∂xj

+ ∂ūj
∂xi

)
(2.7)

The −ρu′iu′j term in the RANS equations denotes the Reynolds shear stresses due
to the fluctuating velocity field [Ingham and Ma, 2005]. This term contains additional
unknowns introduced through the averaging process and is a non-linear term which
requires additional modelling, termed a turbulence model, to close the equations [Ing-
ham and Ma, 2005]. There are many established turbulence models in the literature,
ranging from simplistic algebraic (zero-equation) models that do not solve additional
equations, to non-linear, multi-equation models [Chen, 1997]. The turbulence model
used is dependent upon the problem being solved and the computational expense that
the user can tolerate [Ingham and Ma, 2005]. The turbulence closure models most
commonly used in fish passage and ecological engineering literature are discussed in
section 2.5.3.

2.5.3 Turbulence Closure Models

This section describes the turbulence models that occur most frequently in ecohydraulic
and ecological engineering literature, namely the k–ε and k–ω models and their variants.
Each of these turbulence closure models are two-equation linear eddy viscosity models
that introduce and solve two additional transport equations to capture the turbulent
properties of the flow [Wilcox, 1993]. Eddy viscosity models, such as the k–ε and k–
ω models, solve for the eddy viscosity in order to satisfy the Boussinesq assumption
[Boussinesq, 1877, Wilcox, 1993]:

− ρu′iu′j = 2µtSij −
2
3ρkδij (2.8)

where µt is the eddy viscosity, k is the turbulent kinetic energy, δij is the Kronocker
delta, and Sij is the mean strain-rate tensor, defined in equation 2.7.

Standard k–ε Model

The standard k–ε model has seen fair usage in fish passage literature [e.g. Andersson
et al. 2012, Abdelaziz 2013, Quaranta et al. 2016]. The k–ε model represents eddy
viscosity through the turbulent kinetic energy, k, and the turbulent energy dissipation,
ε, governed by: [Launder and Spalding, 1974].
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µt = cµρ
k2

ε
(2.9)

where cµ is an empirical dimensionless constant; recommended as cµ = 0.09 [Versteeg
and Malalasekera, 2007].

The turbulent kinetic energy, k, and the turbulent energy dissipation, ε are obtained
through the introduction of two transport equations:

∂

∂t
(ρk) + ∂

∂xi
(ρkui) = ∂

∂xj

[(
µ+ µt

σk

)
∂k

∂xj

]
+Gk +Gb − ρε− YM + Sk (2.10)

∂

∂t
(ρε) + ∂

∂xi
(ρεui) = ∂

∂xj

[(
µ+ µt

σε

)
∂ε

∂xj

]
+ C1ε

ε

k
(Gk +Gb)− C2ερ

ε2

k
+ Sε (2.11)

where C1ε, C2ε, σk, and σε are empirical dimensionless constants with recommended
values of 1.44, 1.92, 1.0, and 1.3, respectively [Launder and Spalding, 1974]; Gk and
Gb represent the production of k due to the mean velocity gradients and buoyancy,
respectively [ANSYS, 2016]; YM represent the contribution of compressibility; and Sk

and Sε are user-defined source terms [ANSYS, 2016].
The k–ε closure offers robustness and reasonable accuracy for a manageable compu-

tational power. However, it suffers from an insensitivity to adverse pressure gradients
and boundary layer separation [ANSYS, 2016]. Furthermore, it can overestimate tur-
bulent viscosity due to the assumption that the turbulence fluctuations are isotropic,
which can result in delayed onset separation over smooth surfaces and under-prediction
of the size of the separation zone [Ingham and Ma, 2005]. Nevertheless, Quaranta et al.
[2016] found that the k–ε model performed well when applied to a vertical slot fishway
and compared favourably against measurements taken by Rajaratnam et al. [1986].
Similarly, Andersson et al. [2012] found that the k–ε model performed well in predict-
ing the velocity field within the tailrace channel and confluence area downstream of a
hydroelectric power plant, and compared well to ADCP data.

Re-Normalisation Group k–ε Model

The Re-Normalisation Group (RNG) k–ε model has seen significant usage in fish pas-
sage literature [e.g. Kim et al. 2012, Feurich et al. 2012, Plymesser 2014, Stamou et al.
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2018]. The RNG k–ε model was developed by Yakhot et al. [1992] through the re-
normalisation of the Navier-Stokes equations. This yields a refined form of the k–ε
model which includes a new transport equation for the turbulent energy dissipation, ε:

∂

∂t
(ρk) + ∂

∂xi
(ρkui) = ∂

∂xj

[(
µ+ µt

σk

)
∂k

∂xj

]
+Gk +Gb − ρε− YM + Sk (2.12)

∂

∂t
(ρε) + ∂

∂xi
(ρεui) = ∂

∂xj

[(
µ+ µt

σε

)
∂ε

∂xj

]
+C1ε

ε

k
(Gk +Gb)−C2ερ

ε2

k
−Rε+Sε (2.13)

where σk, σε, C1ε, and C2ε are explicitly derived constants equal to 0.7194, 0.7194,
1.42, and 1.68, respectively; and Rε is:

Rε =
Cµρη

3(1− η
η0

)
1 + βη3

ε2

k
(2.14)

where: η0 is an explicitly derived constant equal to 4.38, β is an empricially derived
constant equal to 0.012, η = Sk

ε , and S = (2SijSij)
1
2 [Yakhot et al., 1992].

The eddy viscosity is then calculated in the same manner as for the standard k–ε
model (2.9) but Cµ is explicitly derived using RNG theory and equal to 0.0845 [Yakhot
et al., 1992].

The RNG k–ε model has been shown to better predict the reattachement point of
flow over a backward facing step compared to the standard k–ε model [Speziale and
Thangam, 1992, Yakhot et al., 1992]. Furthermore, Stamou et al. [2018] found that
the RNG k–ε model was able to better predict the turbulence characteristics within
a vertical slot fishway compared to the standard k–ε model. Similarly, Quaresma and
Pinheiro [2014] found the RNG k–ε gave good agreement with both the Smagorinsky
LES Model and ADV measurements within a pool-type pass with submerged orifices.

k–ω Model

The k–ω model solves for the Reynolds shear stresses by solving for the turbulent kinetic
energy, k, and the specific dissipation rate, ω [see Wilcox 1993]. The eddy viscosity is
then determined through:

µt = α∗ρ
k

ω
(2.15)
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The coefficient α∗ is dependant on the version of k-ω in use [Ingham and Ma,
2005] and dampens the turbulent viscosity to create a low-Reynolds-number correction
[ANSYS, 2016]. The value of α∗ generally takes the form [ANSYS, 2016]:

α∗ = α∗∞

(α∗0 + Ret
Rk

1 + Ret
Rk

)
(2.16)

where Ret = ρk
µω , and Rk, α∗0, and α∗∞ are constants equal to 6.0, 0.024, and 1, respect-

ively [ANSYS, 2016].
The k-ω model solves for the turbulent kinetic energy, k, and the specific dissipation

rate, ω, through the introduction of two transport equations:

∂

∂t
(ρk) + ∂

∂xi
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∂xj

(
Γk

∂k

∂xj

)
+Gk − Yk + Sk (2.17)

∂

∂t
(ρω) + ∂

∂xi
(ρωui) = ∂

∂xj

(
Γω

∂ω

∂xj

)
+Gω − Yω + Somega (2.18)

where Yk and Yω are the turbulent dissipation of k and ω; Sk and Sω are user-defined
source terms, Γk and Γω are the effective diffusivity of k and ω defined by Γk = µ+ µt

σk

and Γω = µ + µt
σω

, respectively, where σk and σω are the turbulent Prandtl numbers
for k and ω and are constants equal to 2.0 [ANSYS, 2016], and Gk and Gω are the
production of k and ω defined by:

Gk = −ρu′iu′j
∂uj
∂xi

= µtS
2 (2.19)

Gω = α
ω

k
Gk (2.20)

where S is defined as in the k–ε model, and the coefficient α is given by:

α = α∞
α∗

(α0 + Ret
Rω

1 + Ret
Rω

)
(2.21)

where Rω, α∞ and α0 are constants equal to 2.95, 0.52, and 0.1̇, respectively [ANSYS,
2016].

The standard (Wilcox) k–ω model suffers from an over-sensitivity to the free stream
boundary condition, which can lead to significant variation in the predicted fluid flow
[Wilcox, 1988]. This is somewhat corrected in subsequent models [i.e. Wilcox 1993]
but still performs poorly in stagnation regions [Ingham and Ma, 2005].
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k–ω Shear Stress Transport Model

The k–ω Shear Stress Transport (SST) model combines the standard k–ω model with
the standard k–ε model [Menter, 1993, 1994] and has seen some success in fish passage
literature [e.g. Chorda et al. 2019, Klopries and Schüttrumpf 2020]. The model applies
the standard k–ω model to near-wall regions and applies the standard k–ε model to the
free shear layers [Ingham and Ma, 2005]. This is achieved through the implementation of
two blending functions, F1 and F2 [ANSYS, 2016]. These blending functions are applied
to the effective diffusitivites, Γk and Γω, the turbulence production of ω, Gω, and the
turbulence dissipation of ω, Yk [Menter, 1993]. Furthermore, an additional term, Dω

is introduced to the transport equation for ω which represents a cross-diffusion term
resulting from the blending of the two models [ANSYS, 2016].

This blending results in a robust turbulence closure model which overcomes the
insensitivity of the standard k–ε model to boundary layer separation and removes the
sensitivity of the standard k–ω model to the free stream [Ingham and Ma, 2005]. The
k–ω SST model is known to yield better results when applied to aerofoils and adverse
pressure gradient flows compared to the standard k–ε model and standard k–ω model
[Menter, 2009]. This model is popular in engineering and ecological problems due to its
increased accuracy and reliability over both the standard k–ε and standard k–ω models
and its manageable computational requirements [ANSYS, 2016]. Chorda et al. [2019]
found the k–ω SST model to give a good prediction of the free surface location and
velocity field within a vertical slot fish pass compared to optical and ADV measurements
taken by Tran et al. [2016]. Furthermore, when applied to the same mesh, Chorda et al.
[2019] found the k–ω SST model to give comparable results to the Smagorinsky LES
Model [see Smagorinsky 1963] while requiring 73% of the CPU time (128 versus 175
CPU hours per 1 second of flow time).

2.5.4 Approaches to Free Surface Modelling

Hydraulic fluid problems often consider the flow of water through a domain that also
contains air. Therefore, as both water and air are immiscible, there must exist a
sharp interface between the two fluids. This section introduces the most common
methods of free surface interface modelling in ecohydraulic literature, namely the rigid
lid approximation and the volume of fluid method.
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The Rigid Lid Approximation

The rigid lid approach assumes that the water-air interface can be modelled as a rigid
ceiling. This approach has found success in ecohydraulic literature [e.g. Kwan et al.
2011, Andersson et al. 2012, Marjoribanks et al. 2014, 2017]. Furthermore, Andersson
et al. [2013] found the rigid-lid approximation to give good predictions of the free surface
location for an emptying reserviour with a submerged outlet compared to measured
data. However, this approach is only valid if the deformation of the water surface is
less than 10% of the depth of the channel [Rodriguez et al., 2004] and is therefore not
suitable for assessing fish passes.

The Volume of Fluid Method

The Volume of Fluid (VOF) method [Hirt and Nichols, 1981] is one of the most estab-
lished techniques used to model hydraulic free surface flows and is the most commonly
used method in fish passage literature [e.g. Feurich et al. 2012, Kim et al. 2012, Mar-
riner et al. 2014, Quaresma and Pinheiro 2014, Stamou et al. 2018, Chorda et al. 2019].
The VOF method is based on an Eulerian mesh and introduces a volume fraction vari-
able, α, which is applied to each cell [Hirt and Nichols, 1981]. The VOF method then
solves fluid flow for two or more immiscible fluids by solving a single set of momentum
equations and tracking the volume fraction within each cell [Hirt and Nichols, 1981].
An α value of 0 denotes a cell containing only fluid1, commonly air; whereas an α

value of 1 denotes a cell containing only fluid2, commonly water [Hirt and Nichols,
1981]. The free surface must exist within cells with values between 0 and 1 and is
generally taken along the surface where the volume fraction is equal to 0.5 [Hirt and
Nichols, 1981]. Mathematically, this is expressed as:

α =


0, cell contains only fluid1

1, cell contains only fluid2

0 < α < 1, cell contains interface

(2.22)

The Volume of Fluid method introduces a new transport equation for the volume
fraction (2.23). The two immiscible fluids are considered as a single fluid throughout
the domain. The fluid properties for this single fluid are calculated for a given cell based
on weighted averages of the fluids present in the cell (2.24). Therefore the calculated
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properties are equal to each fluid in their respective regions and vary only across the
interface.

∂α

∂t
+ ∂αuj

∂xj
= 0 (2.23)

ρ = αρ1 + (1− α)ρ2 (2.24)

where: ρ is the cell fluid density; ρ1 is the density of fluid1; ρ2 is the density of
fluid2.

Gravity and surface tension effects at the interface are included with the ρF̄i term
of the RANS equations (2.6) when using the VOF method. The volume fraction can be
solved via either implicit or explicit formulation [ANSYS, 2016]. Explicit formulation
allows the fluid interface to be approximated using Geo-Reconstruct, a piece-wise linear
approach to representing the interface within a cell, which yields greater accuracy
compared to other interface interpolation schemes [see Hirt and Nichols 1981, Youngs
1982].

2.5.5 Turbulence Descriptors

Turbulence is an important phenomena that influences the behaviour of fish [e.g.
Coutant 1998, Silva et al. 2011, Tullos and Walter 2015, Piper et al. 2015, 2017, Quar-
anta et al. 2017; section 2.7]. Therefore it is important to understand how turbulence
can be quantified in order to model its influence on simulated fish decisions. There are
many parameters that can be used to quantify turbulence in space, known as turbu-
lence descriptors. This section defines the turbulence descriptors most commonly used
in fish passage literature.

Reynolds Number

The Reynolds Number, denoted Re, is a dimensionless number defined by the ratio
between inertial forces and viscous forces within a flow, equation (2.25) [Tansley and
Marshall, 2001]. The Reynolds number is indicative of the expected flow pattern within
a fluid flow and can be used to approximate the global turbulence level within a domain,
as opposed to the other turbulence descriptors in this section, which can define the local
turbulence level..
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Re = UL

ν
(2.25)

where U is the flow velocity; L is a turbulence length scale dependent upon the flow
geometry and often taken as flow depth for river applications [Bates et al., 2005], and
ν is the kinematic viscosity of the fluid.

Reynolds Shear Stress

A simple turbulence descriptor is the Reynolds shear stress (2.26), as it appears in the
RANS equations (2.6). This is appropriate due to the common usage of the RANS
approach in ecohydraulics [e.g. Quaranta et al. 2016, Stamou et al. 2018, Chorda et al.
2019, among others]. Physically, this term in a symmetric tensor which describes the
turbulent momentum fluxes in three dimensions [Wilcox, 1993].

τij = Rij = −ρu′iu′j (2.26)

Turbulence Kinetic Energy

Another turbulence descriptor is the turbulence kinetic energy, k, of a flow (2.27),
sometimes denoted as TKE, which describes the kinetic energy of turbulent fluctuations
per unit mass. This measure is useful due to the prevalence of k–ε and k–ω turbulence
closure models in fish passage literature, in which the TKE is already calculated.

k = 1
2

(
ū′2x + ū′2y + ū′2z

)
= 1

2u
′2
i (2.27)

Turbulent Intensity

The turbulent intensity, I, denotes the root-mean-square of the turbulent velocity fluc-
tuations divided by a reference velocity i.e. the Reynolds averaged mean velocity of
the flow:

I = u′

U
(2.28)

where u′ =
√

1
3u
′2
i =

√
2
3k and U =

√
U2
i .
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Turbulence Dissipation

Turbulence dissipation, ε, is the rate that the turbulence kinetic energy is dissipated
through conversion to internal thermal energy [Wilcox, 1993]. This is useful due to
the common usage of the k–ε and RNG k–ε turbulence closure models, in which ε is
already calculated.

ε = ν
∂u′i
∂xk

∂u′i
∂xk

(2.29)

Spatial Velocity Gradient Tensor

The spatial velocity gradient tensor describes the gradient of each component of the
fluid velocity with respect to changes in each spatial dimension, (2.30). The spatial
gradient of velocity is a description of the fluid shear stresses [Goodwin, 2004]. The
spatial velocity gradient tensor comprises the linear deformation, rotation, and angular
deformation experienced by the fluid [Nestler et al., 2008].

J = ∇u = ∂ui
∂xj

=


∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z

 (2.30)

Nestler et al. [2008] introduced a “total distortion metric” through the summation of
the absolute values of each spatial velocity gradient (2.31), termed the total hydraulic
strain. This summarised value provides an easily comparable value describing the
overall fluid shear at a point in space.

S =
∑∣∣∣∣∣∂ui∂xj

∣∣∣∣∣ =
∣∣∣∣∂ux∂x

∣∣∣∣+ ∣∣∣∣∂ux∂y
∣∣∣∣+ ∣∣∣∣∂ux∂z

∣∣∣∣+ ∣∣∣∣∂uy∂x
∣∣∣∣+∣∣∣∣∂uy∂y

∣∣∣∣+ ∣∣∣∣∂uy∂z
∣∣∣∣+ ∣∣∣∣∂uz∂z

∣∣∣∣+ ∣∣∣∣∂uz∂y
∣∣∣∣+ ∣∣∣∣∂uz∂z

∣∣∣∣
(2.31)

2.6 Agent-based Modelling

Agent-based modelling (ABM) is an adaptive, bottom-up approach to solving complex
phenomena, which has seen increasing popularity in recent decades [Tang and Bennett,
2010, Crooks and Heppenstall, 2012]. ABM considers the disaggregation of a system
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into multiple components (agents) each of which are given their own characteristics and
allowed to act autonomously and interact with each other [Crooks and Heppenstall,
2012]. It is thought that deconstructing a complex system in this way will allow the
behaviour of the entire system to emerge through the simpler agents [Macal and North,
2010]. This methodology lends itself to real world systems that can be characterised by
continuous changes in space and time, as agents are often allowed to act autonomously
in both space and time. Agent-based models have been used in ecology [Tang and
Bennett, 2010], transportation [Nourinejad and Roorda, 2016], engineering [Abebea
et al., 2016], economics [Fagiolo et al., 2007], government policy [Kremmydas, 2012],
and the social sciences [Conte and Paolucci, 2014].

2.6.1 General Formulation of Agent-Based Models

An agent-based model has two fundamental components: it must contain multiple
agents, and these agents must exist within an environment [Crooks and Heppenstall,
2012]. Agents are simple individuals that represent real-world entities. Agent behaviour
is controlled through a framework that determines a response to a given stimulus [Tang
and Bennett, 2010, Crooks and Heppenstall, 2012]. This framework means agents are
intrinsically autonomous entities; they can act and make decisions without external
direction [Macal and North, 2010].

Furthermore, agents generally have multiple internal properties which describe the
agent and its behaviours, figure 2.5. These properties can vary between agents and
therefore agents can display heterogeneity. An agent’s internal properties are referred
to as “agent attributes”. Macal and North [2010] identify a number of what they
consider essential characteristics of agents:

• An agent is wholly self-contained. Agents must be distinguishable from one
another and their attributes must be explicit.

• An agent must be autonomous. Agents must function independently within
the environment and in their interactions with other agents.

• An agent must have variable states. An agent is an adaptive entity and
therefore their internal states must be able to change to reflect the agent’s current
situation.
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(a) (b)

Figure 2.5: Representative structure of the function of an agent including a) UML
diagram of an agent with internal properties and methods, and b) A flow chart depicting
a simple decision framework. [After Tang and Bennett 2010].

• An agent is social. Agents must be capable of interactions with other agents
that will influence their behaviour.

An agent’s behaviours are the result of the agent’s various internal decision-making
processes, termed “agent methods” [Macal and North, 2010], which are based on fixed
or learned rules and driven by encountered stimuli.

Agents exist within an environment that defines the space in which agents can
operate and also dictates the flow of information, figure 2.6. Environments provide
stimuli to agents which cause behavioural responses [Grimm and Railsback, 2005].
Environments can be multi-dimensional depending on the system that is being modelled
[Tang and Bennett, 2010]. Similarly, environments can exist purely to provide the
spatial location of agents, or can provide a wealth of spatial information [Crooks and
Heppenstall, 2012]. Agents within an environment may be spatially explicit (i.e. have
a specific location) or can be spatially implicit (i.e. their exact location is irrelevant)

36



2.6 Agent-based Modelling

[Bian, 2003, Alam and Geller, 2012]. Environments can be either spatially continuous
or spatially discrete, depending on whether an object-based or grid-based approach is
used [Bian, 2003, Grimm and Railsback, 2005].

Figure 2.6: Schematic of agents and their environment; depicting the stimuli-response
relationship between an agent and their environment, as well as agent-agent interac-
tions.

As agent-based models are generally used to model real world dynamic systems,
environments are generally modelled as temporally discrete, with (typically uniform)
timesteps used to define the passage of time [Tang and Bennett, 2010]. The temporal
and spatial resolutions of the ABM must be appropriately chosen to accurately model
the dynamics of the real world system. Bennett and Tang [2006] suggested that the
Courant-Friedrichs-Lewy (CFL) criterion [Courant et al., 1967] is suitable to determine
the appropriate temporal resolution based on the movement rate of individuals per
timestep. The CFL criterion states that no parcel of information should move more
than the spatial resolution of the grid within a single timestep, (2.32).

|v|∆t ≤ ∆x (2.32)

where |v| is the velocity of the information parcel (or agent), ∆t is the temporal resol-
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ution, and ∆x is the spatial resolution.

Satisfying this relationship ensures the balance between the spatial and temporal
resolutions of the simulation; i.e. information does not travel faster through space than
time [Bennett and Tang, 2006]. This can be simplistically stated as “an agent should not
move more than the spatial resolution in a single timestep”. To satisfy this relationship,
either the spatial resolution must be fixed and the appropriate timestep selected, the
timestep fixed and the appropriate spatial resolution selected, or the agent velocity
artificially limited within a given timestep. If the maximum velocity of all agents is
known, selection of the spatial and temporal resolutions becomes trivial. However, if
the maximum velocity is unknown, selection of the temporal resolution becomes more
laborious.

At each timestep an agent may perceive a stimulus. This is formally defined as
an event and can be internal (change of an agent’s internal state) or external (change
in local environmental conditions) [Tang and Bennett, 2010]. Similarly, an event may
be caused by an internal stimulus (self-stimulating) or caused by an external stimulus,
such as the presence of a predator [Grimm and Railsback, 2005]. Events trigger the
activation of an agent’s internal rules, which determine the agent’s behaviour [Tang
and Bennett, 2010]. Depending on the complexity of an agent, multiple events may
occur in the same timestep, which can trigger multiple agent methods [e.g Goodwin
et al. 2006]. If multiple rules are simultaneously activated the agent may display all the
resulting behaviours, or some combination of the resulting behaviours [e.g. Bennett and
Tang 2006, Heppenstall et al. 2006, Gao et al. 2016]. However, if rules are implemented
within a hierarchical structure, some of the behaviours may overrule other behaviours
[e.g. Goodwin et al. 2006]. For example, if an animal is searching for food due to hunger
and encounters both prey and predator, the presence of the predator could overrule the
drive for food.

The environment also describes how the agents are connected to one another, termed
the model’s connectedness or the model’s topology [Tang and Bennett, 2010, Crooks
and Heppenstall, 2012]. The topology is important as it determines who can transfer
information to whom [Macal and North, 2010]. Models are generally implemented with
neighbourhood or adjacency rules, which control how agents interact with each other,
figure 2.7. Cellular Automata (CA) are a good example of the importance of neighbour-
hood rules. CA are a type of model closely related to ABM wherein the environment is
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(a) (b) (c)

Figure 2.7: Example neighbourhood topologies. (a) First order von Neumann neigh-
bourhood. Red denotes agent location, grey denotes neighbours. (b) First order Moore
neighbourhood. Red denotes agent location, grey denotes neighbours. (c) Network
topology. [After Iltanen 2012].

divided into regularly spaced cells on a grid or lattice [Crooks and Heppenstall, 2012].
Critically, CA do not use agents. Instead the cells within the environment, termed the
automata, are given a single internal state (or attribute) [Iltanen, 2012]. The locations
of the cells are constant but their internal states are determined by the state of one or
more of that state’s neighbours [Benenson and Torrens, 2004].

A good example of CA is Conway’s Game of Life [Gardner, 1970] wherein a cell lives
or dies (internal state 1 or 0, respectively) based on its number of living neighbours.
Too few living neighbours and the cell dies due to underpopulation; too many living
neighbours and the cell dies due to overpopulation [Gardner, 1970]. The model is for-
mulated as a two-dimensional uniform grid, where each cell has eight neighbours. This
is known as a Moore neighbourhood; specifically, it is a first order Moore Neighbour-
hood [Tang and Bennett, 2010], figure 2.7b. Other topologies include von Neumann
neighbourhoods wherein an agent has only 4 neighbours (figure 2.7a), and network-
based neighbourhoods wherein nodes are connected to one another either statically or
dynamically, figure 2.7c. Networks are used to define neighbourhoods in a more gen-
eral manner, and have been used to model social space rather than physical space [e.g.
Alam and Geller 2012].
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2.6.2 Advantages and Limitations of ABMs

Historically, dynamic systems (particularly ecological and geographical systems) have
been modelled using top-down approaches wherein variables are described with differ-
ential equations [Crooks and Heppenstall, 2012]. Agent-based modelling provides an
alternative bottom-up modelling approach, which offers some advantages over tradi-
tional approaches. Firstly, equation-based models are deterministic; meaning that for
given initial data the result will always be the same [Bernard et al., 1999]. In contrast,
agent-based models are inherently stochastic due to the adaptive, decision-making ca-
pacity of agents; therefore multiple futures are possible for the same initial condition
[Crooks and Heppenstall, 2012]. Furthermore, the interactions between agents can be
complex, non-linear, and discontinuous; therefore ABMs can be used to describe sys-
tems where traditional approaches would fail [Bonabeau, 2002]. Secondly, agent-based
modelling is a disaggregated approach to modelling a system, therefore it is possible
to design a heterogeneous population [Crooks and Heppenstall, 2012]. This allows for
atypical behaviours to be simulated alongside regular behaviours as well as interactions
between the two [Bonabeau, 2002]. This is in contrast to equation-based models which
tend to smooth out fluctuations, and therefore only capture averaged behaviour [Crooks
and Heppenstall, 2012].

Crooks and Heppenstall [2012] suggest that ABMs also have the advantage in that
they can often provide the user with an explanation of the result due to the bottom-
up approach. Similarly, Bonabeau [2002] suggests that agent-based models provide a
natural description of a system, which aids in the explanation of the resulting behaviour.
Bonabeau [2002] summarised the systems in which agent-based modelling offer the most
advantages over equation-based approaches:

1. Where aggregate behaviour cannot be clearly defined;

2. When the complexity of individual behaviour within the system is such that
formulation of equation-based models become intractable.;

3. When the system is more intuitively described by activities rather than processes;
and

4. When it is more appropriate to strategically apply stochasticity to the system
rather than arbitrarily applied as with equation-based approaches.
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Agent-based modelling is thus particularly well suited to the modelling of dynamic
systems that require flexibility in their solution. Furthermore, Crooks and Heppenstall
[2012] suggests that ABMs are best used when a certain level of the complexity of
the system under consideration is unknown and therefore understanding the system
requires exploration.

However, agent-based modelling has limitations which must be considered. Firstly,
the formulation of an ABM is a balance of abstraction: if too abstract, the model may
miss important factors or behaviour; if too detailed, the model will be over-constrained
and limited in its function [Crooks and Heppenstall, 2012]. Therefore subjective judge-
ment of the level of abstraction and the importance of variables is crucial to the for-
mulation of an agent-based models. Secondly, systems that describe the behaviour of
conscious entities have an inherent potential to be irrational [Bonabeau, 2002], which
can be difficult to quantify and justify [Crooks and Heppenstall, 2012]. Thirdly, val-
idation and calibration are challenging processes for agent-based models [see Crooks
et al. 2008, Ngo and See 2012]. There is some confusion in the literature over best
practices with respect to validation [see Kopec et al. 2010]. Ngo and See [2012] suggest
a four-step, standardised approach to ABM validation consisting of:

1. Face validation. This step considers qualitative assessment of the results and
poses the question: “do outputs match reality?” and is referred to as “conceptual
validation”.

2. Sensitivity analysis. This assesses the impact of each parameter on individual
behaviours as well as overall model outputs.

3. Calibration. This is the process of determining an appropriate range of values
for each parameter through tuning the model to fit real data (qualitatively or
quantitatively).

4. Output validation. This is the final step wherein model outputs are graphically
or statistically compared to a real dataset.

This approach provides a thorough process including both verification (steps one
and two) and validation (steps three and four), and leads to a fully realised model [Ngo
and See, 2012]. That being said, it has been suggested that “the validity of a model
should not be thought of as a binary event (i.e. a model cannot simply be classified as
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valid or invalid); a model can have a certain degree of validity” [Crooks and Heppenstall,
2012, p. 93]. Validation remains a difficult and open challenge [Lamperti et al., 2018],
exacerbated by a lack of access to high quality data [Crooks and Heppenstall, 2012].
Nevertheless, Crooks and Heppenstall [2012] state that “the fundamental motivation
for modelling arises from a lack of full access to data relating to a phenomenon of
interest. The development of agent-based models offers a means to increase the utility
of simulation models” [Crooks and Heppenstall, 2012, p. 98].

2.7 Fish Behaviour Studies

This section considers the wealth of literature that aims to determine the hydrodynamic
parameters that affect the movement decisions of various species of fish during upstream
migration, split into themes identified within the literature. However, there are many
conflicting conclusions within the literature, which may be attributed to differing fish
species, bodylengths, or the inherent randomness of animal decisions. In addition,
Lacey et al. [2012] suggest that these conflicting results are partly due to many authors
attributing behaviours to turbulence, but lacking quantification of turbulence. In re-
sponse, Lacey et al. [2012] introduced the “IPOS” framework to categorise turbulence
into: “Intensity”, “Periodicity”, “Orientation”, and “Scale”. However, this framework
has not been adopted by many and so the issue persists. Therefore, it is difficult to gain
insight into precisely which parameters correlate with specific fish behaviours. Further-
more, even if fish movement decisions are found to correlate with hydraulic parameters,
proving causation is challenging.

2.7.1 The Effect of Average Flow Velocity on Fish Behaviour

The local average velocity has been identified as a key parameter in determining the
behaviour of up-migrating fishes as it provides stimulation to the fish to allow for
rheotaxis, as well as providing directional information for migration [see section 2.4.1
and Montgomery et al. 1997]. Furthermore, a larger local average velocity downstream
of a fish pass, relative to the river flow, is important to ensure an “attraction flow”,
although quantification of “attraction flow” remains vague [Katopodis, 2005, Castro-
Santos et al., 2009].

The local flow field also generates hydrodynamic resistance on any up-migrating
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fish, dictating the energetic cost of movement [Quaranta et al., 2017]. Furthermore,
if the magnitude of the flow field is such that the energetic cost of up-migration is
consistently too high, individuals will fail due to fatigue [Quaranta et al., 2017]. Up-
migrating fishes are known to utilise lower velocity regions to shelter from high velocity
regions, known as “flow refuging”, thus temporarily lowering their energetic cost [Liao,
2007, Silva et al., 2011]. For example, Smith et al. [2005] found that juvenile rainbow
trout (Oncorhynchus mykiss) chose laboratory flume locations with average streamwise,
cross-stream, and vertical velocities lower than the average within the flume. Although
a subsequent study found the volitional density of juvenile rainbow trout within the
flume increased with increasing discharge, and hence mean velocity [Smith et al., 2006].

Up-migrating fishes have also been observed to lower their energetic cost through
pathway selection. Kane et al. [2000] found Chinook salmon (Oncorhynchus tshaw-
ytscha) and Coho salmon (Oncorhynchus kisutch) up-migrating through Alaskan cul-
verts consistently chose pathways that resulted in lower energy expenditure than the
average. This was expanded upon by Blank [2008] who demonstrated that measured
up-migrating fish paths through culverts closely matched calculated minimum energy
pathways determined using drag equations introduced by Webb [1971a,b, 1975] [see
section 2.8.1]. Furthermore, Silva et al. [2009] observed up-migrating Iberian barbel
(Luciobarbus bocagei; Cyprinidae family) through an indoor pool and orifice-type fish-
way and noted that individuals passing via the submerged orifices were observed to pass
close to the edges of the orifice, presumably to avoid the fastest velocities in the core of
the jet formed through the orifice. A subsequent study by Silva et al. [2010] identified
significant negative correlation between both time-to-pass and passage success, and
mean water velocity, and suggested that the larger velocities resulted in higher energy
expenditure and therefore increased failures due to fatigue.

Therefore, locally-larger fluid velocities are important to provide directional inform-
ation and attraction [Montgomery et al., 1997, Katopodis, 2005]. However, fish are also
attracted to locally-lower fluid velocities to minimise energetic costs [Kane et al., 2000,
Smith et al., 2005]. Therefore, it can be surmised that Salmonidae are attracted to
both locally-higher and locally-lower average velocities, dependent upon the fluid en-
vironment.
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2.7.2 The Effect of Turbulence on Fish Behaviour

Turbulence has been shown to play an important role in the path selection of fish [e.g.
Coutant 1998, Silva et al. 2011, Tullos and Walter 2015, Piper et al. 2015, 2017, Quar-
anta et al. 2017]. However, there are conflicting results on the effects of turbulence on
fish behaviour within the literature, which has been attributed to differences in tur-
bulence between studies [Lacey et al., 2012]. Furthermore, the response to turbulent
parameters is thought to be species-specific, size-specific, and dependent on the migra-
tion status of an individual; i.e. down-migrating Salmonidae have a different goal to
up-migrating fish of the same species and therefore are attracted/repelled to different
turbulence parameters [see Goodwin et al. 2014 vs. Gisen 2018].

The presence of turbulence has been shown to increase the energetic cost of loco-
motion [Liao, 2007], and, in extreme cases, can cause damage to the fish [Odeh et al.,
2002]. This extends to fish passes, where it has been shown that individuals are more
likely to fail passage if the turbulence energy in the pass is too high [Bermúdez et al.,
2010, Marriner et al., 2014]. Counter-intuitively, fish have also been shown to exploit
turbulence generated by structures or other fish to reduce locomotive costs [Hinch and
Rand, 2000, Liao et al., 2003].

Therefore, the precise quantification, or definition, of turbulence is significant in
the resultant attraction or repulsion [Liao, 2007]. Therefore, the following sections
categorise studies based on the turbulence descriptors used.

The Effect of Reynolds Shear Stress on Fish Behaviour

The Reynolds shear stress, τ , is a symmetric tensor that describes the turbulent mo-
mentum fluxes in three dimensions [Wilcox, 1993]. Smith et al. [2005] found that juven-
ile rainbow trout (Oncorhynchus mykiss) chose flume locations with lower-than-average
average τuv and τuw, computed using 3D, ADV-collected instantaneous velocities. Sim-
ilarly, Silva et al. [2010, 2011, 2012] found significant negative correlations between
the Reynolds shear stress and transit time and passage success for Iberian barbel (Lu-
ciobarbus bocagei; Cyprinidae family) through two configurations of an experimental,
full-scale pool-and-orifice-type fish-way, computed using 3D, ADV-collected instantan-
eous velocities. Duarte et al. [2012] studied the upstream passage of two neotropical
species of fish (Leporinus reinhardti and Pimelodus maculatus, families Anostomidae
and Pimelodidae, respectively) through a vertical slot fish-way, and found that both
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species chose pathways with near-zero Reynolds shear stress. These findings suggest
that up-migrating fishes select holding stations and migration pathways that minimise
exposure to Reynolds shear stress.

The Effect of Turbulence Kinetic Energy and Turbulence Intensity on Fish
Behaviour

The turbulence kinetic energy, k, is a measure of the mean kinetic energy of turbu-
lent fluctuations per unit mass, characterised by the root-mean-square of the velocity
fluctuations. The turbulence intensity, I, is a non-dimensionalised form the turbulence
kinetic energy and hence these turbulence descriptors are present together.

Smith et al. [2005, 2006] found that juvenile rainbow trout (Oncorhynchus mykiss)
chose flume locations with lower-than-average average k, computed using 3D, ADV-
collected instantaneous velocities. Similarly, Cotel et al. [2006] found that brown trout
(Salmo salar) chose locations with lower-than-average levels of I within the Maple river
in Michigan, calculated using ADV-collected instantaneous velocities. However, Cotel
et al. [2006] noted that individuals preferred to occupy lower sections of the water
column where one can assume shear is increased due to wall effects. This result sug-
gests that fish select regions where turbulence is reduced, but will expose themselves
to higher turbulence in order to move closer to the river bed, presumably to minimise
exposure to predation. Furthermore, Duarte et al. [2012] studied the upstream passage
of two neotropical species of fish (Leporinus reinhardti and Pimelodus maculatus, fam-
ilies Anostomidae and Pimelodidae, respectively) through a vertical slot fish-way, and
found that both species preferred pathways with “low to zero” k.

These results suggest that up-migrating fishes select holding stations and migra-
tion pathways that minimise exposure to k. However, Goettel et al. [2015] sought to
demonstrate that western blacknose dace (Rhinichthys obtusus, Cyprindae family) se-
lected pathways through a turbulent flume that minimised their exposure to turbulence
conditions (quantified by turbulence kinetic energy). However, qualitative comparis-
ons of contours of k and videography-measured fish paths indicated that fish did not
preferentially seek lower k, but rather chose pathways that with consistent levels of k,
i.e. between lower and upper thresholds, although the value of these thresholds was
not elucidated. This is similar to the findings of Gao et al. [2016] and Tan et al. [2018]
who found that trout (species not specified) and silver carp (Hypophthalmichthys mo-
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litrix) selected pathways through a vertical slot fish-way with k values between 0.1 and
0.35m2s−2, and 0.02 and 0.035m2s−2, respectively. These findings suggest that while
fishes may not explicitly seek to minimise k and I when selecting a pathway, they may
be repelled from regions of “high” or “low” k or I, although precise quantification of
these thresholds is challenging. Furthermore, Goettel et al. [2015] suggested that fish
use turbulence levels as a navigational guide, and are attracted to low spatial turbu-
lence gradients (i.e. ∂k

∂xi
) in order to minimise encounters with detrimental turbulence

conditions.
Silva et al. [2010, 2011] found significant negative correlations between k and I, and

the transit time of Iberian barbel (Luciobarbus bocagei; Cyprinidae family) through
an offset pool-and-orifice fish-way, computed using 3D, ADV-collected instantaneous
velocities. Furthermore, Silva et al. [2012] reported that all individuals spent a larger
percentage of time within “low turbulence” regions, characterised by lower-than-average
k and I, which may be due to the associated reduction in energetic costs. Silva et al.
[2012] also found that reducing the average water velocity within the pass by intro-
ducing a “deflector” downstream of each orifice, caused an increase in the average
and maximum k and I values and resulted in a significant reduction in passage effi-
ciency (69.5% to 35%). This demonstrates that average velocity alone does not control
passage, and that velocity fluctuations, characterised by turbulence kinetic energy or
turbulence intensity are significant factors.

2.7.3 Fish Preference for High Velocity or High Turbulence

One can surmise from the literature discussed thus far that fish are both attracted to
and repelled by relatively large velocities, and both attracted to and repelled by high
turbulence levels, depending upon the local hydraulic environment. There are limited
studies that assess the interaction between velocity and turbulence, and fewer still that
quantify fish preference between high velocity and high turbulence. Those that are
available are discussed in this section.

Smith et al. [2005] assessed the volitional density of two size classes, large (average
length 90mm) and small (average length 44mm), of juvenile rainbow trout (Onco-
rhynchus mykiss) when given the choice between a high velocity channel or a high tur-
bulence channel, for a range of discharges (0.026, 0.048, 0.066, 0.083, and 0.111m3s−1).
Smith et al. [2005] quantified turbulence within each channel using k and τ , computed
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Table 2.1: Measured hydraulic parameters within the low-velocity, high-turbulence
channel for each discharge treatment, taken from Smith et al. [2005].

Discharge
(m3s−1)

k (m2s−2)
×10−3

τuv (Pa) τuw (Pa) ū (ms−1)

0.026 1.128 11.67 13.97 0.0501
0.048 2.718 21.54 26.84 0.0725
0.066 5.566 67.96 52.41 0.0976
0.083 7.641 105.66 70.82 0.1217
0.111 14.666 314.19 98.76 0.1685

using 3D, ADV-collected instantaneous velocities, tables 2.1 and 2.2.
Smith et al. [2005] found no significant difference in volitional density of either

size class for the lowest discharge (0.026m3s−1), and found that increasing discharge to
0.048m3s−1 and 0.066m3s−1 led to a significantly higher density of large fish within the
high-velocity, low-turbulence channel, but no significant difference in the choice of the
small fish was found. At a discharge of 0.083m3s−1, significantly more large fish chose
the high-velocity channel and significantly more small fish chose the high-turbulence
channel; whereas at the highest discharge value (0.111m3s−1) no significant difference
between either group was reported [Smith et al., 2005].

The results indicated that both groups had a preference for the high-velocity channel
until the mean velocity in the channel overcame a threshold, after which individuals
then opted for the high-turbulence channel [Smith et al., 2005]. This velocity threshold
reportedly occurred at approximately 0.24ms−1 (≈ 5.5BLs−1) for the small group and
at approximately 0.40ms−1 (≈ 4.4BLs−1) for the large group, reflecting the stronger
swimming ability of the larger fish.

Goettel et al. [2015] observed the pathways selected by 49 western blacknose dace
(Rhinichthys obtusus, Cyprindae family), with an average bodylength of 65mm, through
a turbulent flume for three discharges: 0.0029, 0.0034, 0.0043m3s−1. Goettel et al.
[2015] quantified turbulence within the flume using k and τ , computed using 3D, ADV-
collected instantaneous velocities, and reported that the average and maxima of both
turbulence descriptors increased with increasing discharge.

Goettel et al. [2015] reported that all fish preferentially chose to move to regions
where k and τ were similar to their current location (±10% of current value) for all
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Table 2.2: Measured hydraulic parameters within the high-velocity, low-turbulence
channel for each discharge treatment, taken from Smith et al. [2005].

Discharge
(m3s−1)

k (m2s−2)
×10−3

τuv (Pa) τuw (Pa) ū (ms−1)

0.026 0.158 1.07 0.67 0.1201
0.048 0.291 3.27 1.94 0.1717
0.066 0.407 3.44 2.01 0.2474
0.083 0.599 6.86 3.37 0.2965
0.111 0.966 7.29 5.02 0.4037

discharge treatments, despite these locations representing only ≈ 31% of the total
available movement locations. Goettel et al. [2015] found that fish tended to selected
pathways that skirted the edges of the regions of highest k, τ , and u, but chose to
enter regions of high k and τ in order to minimise their exposure to high velocities
(> 0.14ms−1, > 2.2BLs−1). This suggests that high relative levels of k, τ , and u

are repulsive to fish, but fish prioritise avoidance of high u. This finding agrees with
findings of Smith et al. [2005] at higher discharges but is conflicting for lower discharges
even when velocities are expressed as a function of bodylength, which suggests that
avoidance prioritisation is dependent upon the magnitudes of the hydraulic parameters
and that upper velocity thresholds are species-specific. Goettel et al. [2015] concluded
that fish selected pathways based on upper and lower thresholds of k and τ , regardless
of discharge, but did not elucidate the values of these turbulence thresholds.

2.7.4 Summary of Hydraulic Effects on Fish Behaviour

The local average velocity has been shown to be a key parameter for the selection
of up-migration pathways in fishes, as it provides rheotaxis stimulation, directional
information [Montgomery et al., 1997], and determines the hydrodynamic resistance
fishes must overcome Quaranta et al. [2017]. Therefore, exposure to larger velocit-
ies increases drag, passage time, and fatigue, resulting in a higher chance of failure
[Quaranta et al., 2017].

Literature has shown that fish prefer lower local velocities in order to reduce ener-
getic costs [Kane et al., 2000, Smith et al., 2005, 2006, Liao, 2007, Blank, 2008, Silva
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et al., 2009, 2011], but also require large local velocities to provide “attraction flow”
and navigational information [Katopodis, 2005, Castro-Santos et al., 2009, Armstrong
et al., 2010]. Therefore, the velocity magnitude preference of a passing fish is likely
dependent on the local fluid environment, although precise quantification is not elu-
cidated. Furthermore, it is likely that the definitions of “low” and “high” velocity are
species-, and bodylength-specific.

High relative turbulence has been shown to increase the energetic cost of locomotion
[Liao, 2007], increases the liklihood of failed passage through fish passes [Bermúdez
et al., 2010, Marriner et al., 2014] and, in extreme cases, can cause damage to the
fish [Odeh et al., 2002]. The Reynolds shear stress, τ , has been shown to be useful in
predicting passage success through a pool-and-weir fish-way [Silva et al., 2010, 2011,
2012] and a vertical slot fish-way [Duarte et al., 2012], and that fish tend to avoid
regions of high relative τ [Goettel et al., 2015]. Literature has shown that turbulence
kinetic energy, k, and turbulence intensity, I, can be used as predictors for volitional
density [Smith et al., 2005, 2006, Cotel et al., 2006, Silva et al., 2012], and that fishes
avoid regions of high relative k and I [Duarte et al., 2012, Goettel et al., 2015, Gao
et al., 2016, Tan et al., 2018]. Furthermore, Goettel et al. [2015] found that passing
fish did not strictly minimise their exposure to k, and τ , but selected pathways that
minimised their spatial gradients (i.e. ∂k

∂xi
or ∂τ

∂xi
).

In summary, fish have been shown to minimise energy expenditure by selecting
pathways with lower local velocities, however larger relative velocities are required to
provide directional information and attraction. Fish are repelled from high relative k, τ ,
and u, where the thresholds are species-, and bodylength-specific, and dependent upon
the local hydraulics. Therefore, fish pathway selection is a trade-off between exposure
to high local turbulence, and exposure to high local velocity. The findings of Goettel
et al. [2015] suggest that, while high relative levels of k, τ , and u are repulsive, fish
prioritise avoidance of high u, over k or τ . However, the findings of Smith et al. [2005]
suggest the reverse; i.e. fish prioritise avoidance of high k and τ , over avoidance of high
u. The results discussed here only show correlations between movement decisions and
fluid flow parameters, as proving causation is challenging. Nevertheless, the literature
discussed in this section provides the foundations for pathway prediction models, which
have the potential to reveal behavioural patterns.
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2.8 Fish Path Prediction

Predicting the movement of individuals and their responses to hydrodynamic cues is
essential to determining a computational metric of fish passes, which can then be used
to assess fish pass designs without the need for physical experimentation. This section
considers the computational models that have been developed to predict fish trajectories
through in-stream structures.

2.8.1 The work of Blank [2008], Abdelaziz [2013], and Plymesser
[2014]: The Energy Expenditure Approach

This section presents literature which considers fish path selection using a concept
of minimum energy pathways. It has been suggested that natural selection will fa-
vour animals that move efficiently [Shepard et al., 2013]. This efficiency is evident
in many forms including physiological [Tucker et al., 1970], biomechanical [Dickinson
et al., 2000], and behavioural [Pyke, 1984, Wall et al., 2006, Nathan et al., 2008].
Moreover, the quantification of energy expenditures in space, via the creation of “en-
ergy landscapes” has been demonstrated to aid in understanding volitional movement
and spatial distributions of imperial cormorants (Phalacrocorax atriceps) when assum-
ing efficient movements [Wilson et al., 2012]. Similarly, Kerr et al. [2016] suggest that
space usage for brown trout (Salmo trutta) is dictated by a need to minimise the costs
of swimming and McElroy et al. [2012] found that pallid sturgeon (Scaphirhynchus al-
bus) consistently chose pathways with lower than average energy costs. Blank [2008],
Abdelaziz [2013] and Plymesser [2014] applied these approaches of energy expenditure
quantification and energy conservation to predict fish pathways by assuming fish tend
to minimise their energy expenditure (i.e. take the path of least resistance).

Blank [2008] developed a model of energy expenditure of cutthroat trout (Onco-
rhynchus clarkii) through culverts. This was done through observation of the paths
taken by approximately 322 captured cutthroat trout through a culvert relative to
markers placed along the culvert side walls [Blank, 2008]. The flow in the culvert was
then quantified using 3D CFD and validated using 3D ADV measurements [Blank,
2008]. The energy expended along each measured fish path was then quantified by
balancing propulsive and drag forces, a method proposed by Vogel [1994]. Blank [2008]
extended the analysis by creating an algorithm that selects a fish path node by node
with a requirement to always movement upstream, and with multiple random starting
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points. This was used to determine minimum and maximum energy paths by selecting
nodes with the corresponding minimum or maximum velocity values. The calculated
minimum energy path coincided with a large number of the observed fish movements.
The quantification of minimum energy paths for different fish-ways can be combined
with biokinetic data for different fish species and used to determine which fish-ways are
most suitable for which species.

Abdelaziz [2013] developed a numerical model for simulating fish movements based
on a framework that combines random-walk movements with the minimum energy
expenditure concept, as used by Blank [2008]. The model employs a discrete particle-
based method to simulate individual fish. Hydraulic data was obtained through 3D
CFD using the standard k–ε closure and the VOF method [Abdelaziz, 2013]. The
model makes use of the sensory ovoid as used by Goodwin et al. [2006] to define the local
sensing range of an individual [Abdelaziz, 2013]. The model also includes a “turbulence
check” step before assessing velocities at upstream nodes, which applies a turbulence
avoidance model when the turbulence is deemed “high”. Abdelaziz [2013] assume that
the velocity gradient is directly indicative of the turbulence level and therefore uses
this value as a proxy. This assumption is weakly justified and risks oversimplification
of a complex environment. The turbulence avoidance model weights the probability of
the individual’s movement to heavily bias regions with lower values of turbulence and
continues the bias for a fixed number of decisions (named the “forget-time-period”)
after encountering turbulence above the threshold. The turbulence threshold and the
forget-time-period are calibrated to match measured observations. Abdelaziz [2013]
then applied a moving average filter to the final predicted fish path to smooth the
output which better matched measured data. Abdelaziz [2013] validated the predicted
paths using the fish paths observed by Blank [2008]. The energy expenditure was then
calculated for the final, smoothed fish path using the method outlined by Blank [2008].
Note that the Blank [2008] and Abdelaziz [2013] models do not include any measure of
fatigue or available fish energy.

Plymesser [2014] expanded on the work of Blank [2008] by developing a model of
energy expenditure of American Shad (Alosa sapidissima) moving through an Alaskan
Denil fish pass, and included two measures of fatigue. Plymesser [2014] performed 3D
CFD simulations of a full-scale Alaskan Denil fishway using the RNG k–ε turbulent
closure and VOF method. Simulations were validated using time-averaged 3D velocity
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data measured in a full scale experimental Alaskan Denil fish pass using an ADV with a
frequency of 25 Hz, sampled over a two minute interval [Plymesser, 2014]. The improved
model included two calculations of fatigue as functions of swim speed. Fatigue was
determined first using the prolonged fish swimming mode. It was also calculated using
a “percentage fatigue” value at each time step, as described by Castro-Santos [2006],
which allowed switching between swimming modes. These two models of fatigue were
calibrated against measured fish paths collected by Haro et al. [1999]. The models were
bidirectionally validated, although the second model better conformed to the measured
fish paths.

The Blank [2008], Abdelaziz [2013] and Plymesser [2014] models can be used to
predict fish pathways by assuming the fish will only follow a path of a certain energy
expenditure (i.e. minimum energy path). However, these models do not consider the
direct influence of hydrodynamic and environmental cues on fish behaviour, which may
be important in accurately predicting the movement of fish and the probability of fish
locating the pass in a timely manner.

2.8.2 The work of Goodwin [2004] and Goodwin et al. [2006, 2014]:
The Numerical Fish Surrogate Model

Goodwin [2004] developed an Eulerian-Lagrangian Agent-based Method (ELAM) model,
termed the Numerical Fish Surrogate (NFS), to predict the movement of out-migrating
(down-migrating) juvenile salmon at large hydropower dams in the Pacific Northwest,
USA. The model was subsequently developed further by Goodwin et al. [2006, 2014].
The NFS model is based on the Strain-Velocity-Pressure (SVP) hypothesis, introduced
by Goodwin [2004], which assumes that the downstream navigation of migrants is
principally based on three metrics of the predominant hydrodynamics of the river:
logarithmically-scaled local hydraulic strain (scaled with respect to the acclimatised
ambient strain), the local time-averaged flow velocity, and the local hydrostatic pres-
sure. It is assumed that individuals have preferences of strain, velocity, and pressure,
with upper and lower limits, although the limits are not discussed [Goodwin et al.,
2014]. The speed of movement of an individual increases with exposure to strains close
to the upper limit, and is bound by the swimming capability of the individual [Goodwin
et al., 2014]. Goodwin [2004] suggests that the authenticity of the SVP hypothesis is
supported by various fish behaviour observations, although neither verification, valida-
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tion, nor calibration are explicitly stated. The SVP hypothesis covers each of the main
hydrodynamic stimuli perceived by the mechanosensory system of the fish: hydraulic
strain is sensed by canal neuromasts, velocity is sensed through superficial neuromasts,
and hydrostatic pressure is sensed through the swim bladder. An individual assesses
the local hydrodynamic gradients and moves to a new location based on its defined
preferences using a biased correlated random walk [Goodwin et al., 2014]. The indi-
vidual is able to move to any point in 3D space and is not limited to mesh points, i.e.
spatially continuous [Goodwin et al., 2014]. The range of the local hydrodynamics that
can be assessed is a function of the body length of an individual [Goodwin et al., 2014].
Goodwin [2004] introduced the sensory ovoid and sensory query distance (SQD) which
defines the hydrodynamic detection range, and thus the nodes within the environment
that an individual considers before making a movement decision. This is based on
the sensing distance of the lateral line organ and is hence based on fish body length,
typically 2 to 3 times the body length of the individual Goodwin [2004].

The NFS model requires spatially-distributed velocity, pressure, and their gradients.
The ELAM model has been used exclusively with the Unsteady, Unstructured RANS
(U2RANS) CFD code, developed by Lai [2000]. However, due to its use of contravariant
space to interpolate data, the NFS requires data to be on structured grids although
the conversion between grids and any potential loss of data is not discussed [Goodwin
et al., 2014]. The U2RANS code uses the k–ε turbulence model to solve for Reynolds
stress [Jones and Launder, 1972]. The NFS model is computed in serial with the CFD,
therefore the two codes are not coupled [Goodwin et al., 2014]. This means that any
effect that the fish have on the flow field is not modelled. None of the literature that
uses the NFS model discuss grid independence studies and instead opt to validate
CFD results against measured data [see Goodwin 2004, Goodwin et al. 2006, Weber
et al. 2006, Nestler et al. 2008, Goodwin et al. 2014]. The U2RANS approach solves
for transient (unsteady) flow, but it is not clear whether the output flow fields are
averaged prior to applying the NFS model or whether the model is applied directly to
the unsteady data [Goodwin et al., 2006]. If the former, Goodwin et al. [2006] neglect
to discuss the temporal-averaging process and pseudo-steady state assumption. If the
latter, Goodwin et al. [2006] neglect to discuss the potential temporal-dependency of the
fish paths or sensitivity to the duration and temporal resolution of the unsteady data.
Moreover, none of the related literature discuss any verification or sensitivity of the
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NFS model to any of the parameters, threshold values, or flow field inputs. Therefore,
the capability of the model to accurately and precisely predict fish pathways is not
clear.

Weber et al. [2006] used the NFS model to evaluate the performance of alternative
designs of juvenile downstream fish passage facilities, reporting that the model was able
to identify which designs performed best. However, it is worth noting that these results
were not validated with experimental data as the authors assumed the NFS model was
reliable. Furthermore, the NFS model does not consider any environmental cues such
as light or temperature, and does not offer any justification for these omissions. The
model is also not publicly available, meaning that practitioners are unable to use the
model to better design fish passage structures, and results can not be independently
verified. Furthermore, the model is not designed for predicting upstream fish passage,
nor has it been applied to a lowland river system, and is therefore does not meet the
criteria that this project aims to fulfil.

2.8.3 The Gao et al. [2016] Model

Gao et al. [2016] developed an agent-based model to simulate the upstream movement of
individual fish through a typical vertical slot fish pass. The flow field in the fish-way was
quantified using a 2D depth-averaged numerical model using the Reynolds-Averaged
Navier-Stokes (RANS) equations with the two-equation k–ε turbulent closure [Gao
et al., 2016]. However previous results [see section 2.2.1] suggest that the flow structure
in vertical slot fish-ways are 3D therefore 2D simulations will produce incorrect or
incomplete results. Furthermore, the resulting flow fields are not validated against any
measured data, which brings into question their reliability.

The trajectories of two trout of unspecified species, as collected by Rodriguez et al.
[2011], were overlain over outputted time-averaged contours of velocity magnitude,
velocity field, turbulence kinetic energy, turbulent eddy dissipation, and strain rate.
Gao et al. [2016] found that the trajectory of neither individual correlated with the
mean velocity magnitude or mean velocity field. However, the trajectories show that
both fish avoid regions in which the turbulent kinetic energy exceeds 0.35 m2s−2 or is
less than 0.1 m2s−2. Gao et al. [2016] found no correlation between fish movements
and the turbulent eddy dissipation, and crucially no correlation between fish movement
and hydraulic strain, which is in direct opposition to the findings of Goodwin et al.

54



2.8 Fish Path Prediction

[2006]. This suggests that the hydrodynamic preferences are species-specific or life-
stage-specific (i.e. migrating downstream versus migrating upstream).

The model developed by Gao et al. [2016] evaluates the turbulence kinetic energy
in each local cell and the cell with the preferred value is selected. If two cells are
equally appealing, the most upstream cell will be selected [Gao et al., 2016]. This can
be thought of as a way to simulate rheotaxis in the individual. Therefore, assuming
acceptable values of turbulence kinetic energy, the individual will always move upstream
and only fall back downstream if unacceptable hydrodynamics are detected. Although
the implication of “fallback” behaviour is not discussed, nor is the severity of the
fallback justified [Gao et al., 2016]. The model assumes a constant fish velocity of
1 ms−1 and therefore does not account for energy expenditure or burst swimming
capabilities [Gao et al., 2016]. The constant fish velocity is noted as being “close to
observed movements”, however it is not explicitly validated against any measured data.
Furthermore, it is questionable to use a constant fish speed in a turbulent environment
with largely fluctuating velocities. The model developed by Gao et al. [2016] is based
on the measured trajectories of two trout. This brings into question the validity of the
results given the small sample size. This is compounded when considering the difference
in the two measured fish paths [see Rodriguez et al. [2011]]. Gao et al. [2016] performed
2D depth-averaged CFD simulations whereas literature suggests that the hydraulics of
vertical slot fish-ways are not independent of depth [Khan, 2006, Barton et al., 2009,
Marriner et al., 2014]. Furthermore, Gao et al. [2016] cite the turbulence kinetic energy
as one of the main drivers for their model, although the vertical velocity component
is neglected. Therefore, the correlation of the fish trajectories and turbulent kinetic
energy may vary significantly when simulated in 3D. This would not be surprising
as it has been shown that vertical slot fish-ways experience regions of up-welling and
down-welling, which would induce significant vertical strain components [Khan 2006;
see section 2.2.1].

2.8.4 The work of Gisen [2018]: The ELAM-de Model

Gisen [2018] modified the NFS model based on the work of Goodwin et al. [2014]
to create a model of upstream directed fish migration termed the ELAM-de model.
The ELAM-de model is based upon the same model framework as used in the NFS
and therefore is spatially-continuous and makes use of the sensory ovoid assumption
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[Goodwin et al., 2014, Gisen, 2018]. However, the ELAM-de model contains a new
three-behaviour ruleset derived from flume-based movement data of brown trout, and
is validated and calibrated against these data [Gisen, 2018]. Furthermore, a measure of
motivation versus fatigue is implemented within the model, which defines whether an
individual moves, holds station, or drifts [Gisen, 2018]. These motivation and fatigue
values are determined based on the “spatial stagnation” of an individual; i.e. the longer
an individual moves for the greater the fatigue value and the lesser the motivation value
[Gisen, 2018]. The rate of change of fatigue and motivation is determined through
coefficients, the value of which are not discussed, nor subject to sensitivity analyses
[Gisen, 2018].

The ELAM-de model was developed to accept fluid flow data on unstructured poly-
hedral meshes output by OpenFOAM and is therefore dependent upon the use of this
software to create input data [Gisen, 2018]. The openFOAM tools blockMesh and
snappyHexMesh were used to generate meshes and transient simulations were executed
using interFoam with the k–ω SST turbulence model [Gisen, 2018]. No investigation
of mesh-dependency was presented however Gisen [2018] validates the results against
measured ADV data. As with the NFS model, it is unclear whether the output flow
fields are temporally-averaged prior to being used as model inputs or whether the
ELAM-de model accepts unsteady data. If the former, Gisen [2018] neglects to dis-
cuss the temporal-averaging process and pseudo-steady state assumption. If the latter,
Gisen [2018] neglects to discuss the potential temporal-dependency of the fish paths or
sensitivity to the duration and temporal resolution of the unsteady data. Furthermore,
Gisen [2018] reported that output fish trajectories were sensitive to the OpenFOAM
version, chosen OpenFOAM libaries, and OpenFOAM compiler version [Gisen, 2018].
However, Gisen [2018] did not give reasoning, nor recommendations on “correct” ver-
sions to use. Furthermore, the ELAM-de model makes use of 3D unstructured meshes,
but Gisen [2018] does not discuss the interpolation scheme used to determine environ-
mental data at arbitrary spatial locations, which is complex for unstructured data.

2.8.5 The Tan et al. [2018] Model

Tan et al. [2018] presented a 2D agent-based model to predict upstream migration path-
ways of silver carp (Hypophthalmichthys molitrix) through a laboratory-based vertical
slot fish-way. Tan et al. [2018] collected fish trajectory data via videography, using a
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uniform reference grid of 25 cells (5x5) attached to the bed of each pool of the vertical
slot fish-way. Furthermore, water velocity data were collected in a single pool using
an ADV, and assumed to be representative of every pool [Tan et al., 2018]. Tan et al.
[2018] found fish spent most time in cells with TKE values of 0.02 − 0.035m2s−2, ve-
locity magnitude (denoted V by Tan et al. 2018) of 0.16 − 0.4ms−1, and strain rates
(SR) of 1.8 − 4.0s−1. It is not clear if the velocity considered is a component or the
velocity magnitude.

Flow field data were created through the execution of 3D CFD using the RANS
approach with the RNG k–ε turbulence closure, although the interface capturing scheme
is not discussed [Tan et al., 2018]. The Tan et al. [2018] model was developed to
compute 2D fish movements and therefore Tan et al. [2018] extracted data along an
xy-plane, assumed to be horizontal to the bed. It is unclear whether these data were
instantaneous or temporally averaged, or taken at a given depth or depth-averaged. It
is curious that Tan et al. [2018] selected to compute 2D flow fields given that the flow
structure in vertical slot fishways are thought to be 3D and feature regions of strong
up-welling and down-welling [see section 2.2.1 and Khan 2006].

The Tan et al. [2018] model makes use of the sensory ovoid concept introduced by
Goodwin [2004], although, as the model is 2D, it is referred to as the sensory circle. The
Tan et al. [2018] model assesses the fitness (termed the “comprehensive probability”) of
each mesh cell along the boundary of the sensory circle. In each mesh cell, for each of
the three hydraulic parameters (TKE, V, SR), the Tan et al. [2018] model determines
a metric based on a Gaussian probability distribution weighted with the difference
between the actual and “ideal” hydraulic parameter, where the “ideal” is assumed to
be the range stated earlier, equation 2.33. The fitness is then determined as a weighted
average of these metrics, equation 2.34, biasing towards the known (global) upstream
direction. The Tan et al. [2018] model therefore requires a priori knowledge of the
global upstream direction, and is only applicable to environments in which the velocity
field is predominately in a single direction.

f(xi) = 1√
2σs

e
− (xi−µsi)

2

2σ2
s (2.33)

F =
n∑
i=1

Wif(xi) (2.34)

where f(xi) is the “probability” of stimuli i, xi is actual value of stimulus i, µsi is the
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preferred value of stimulus i, F is “comprehensive probability” (fitness) of the cell, Wi

is the weighting of stimulus, i, and the sum of W is 1.
An individual then moves towards the cell with the largest fitness, with a con-

stant velocity (although this value is not explicitly stated). The values of the fitness
weightings are stated (WTKE = 0.412,WV = 0.391,WSR = 0.197) but no validation,
justification, nor calibration is discussed; although Tan et al. [2018] state that the model
was calibrated against 10% of the collected fish paths. Furthermore, the outputs of the
Tan et al. [2018] model were validated against the remaining 90% of measured fish
paths and shown qualitatively to compare favourably.

2.8.6 The work of Zielinski et al. [2018], Gilmanov et al. [2019], and
Finger et al. [2020]

Zielinski et al. [2018] developed a 3D agent-based model to predict pathways of up-
migrating fish based on path selection to minimise energetic cost. The Zielinski et al.
[2018] model assumes individuals only move upstream (implicit rheotaxis) and uses the
percentage fatigue model, developed by Castro-Santos [2005], as a proxy for energy
expenditure (as used by Plymesser 2014). Swimming performance parameters for each
individual are assigned randomly from distributions of swim speed-fatigue time curves,
normalised by the body length of the individual Zielinski et al. [2018]. The Zielinski
et al. [2018] model is spatially-discrete and therefore fish were constrained to CFD mesh
nodes. At each timestep fish move to their neighbouring upstream node that results in
the lowest increase in fatigue, which is determined randomly in cases where the lowest
increase in fatigue is shared between nodes. The increase in fatigue is calculated as
[Zielinski et al., 2018]:

∆F =


∆t
T × 100%, Ures ≥ Usus

0, Ures ≤ Usus
(2.35)

where ∆F is the percentage fatigue increase, ∆t is the time required to swim to the
selected node calculated as ∆t = l

Ug
, l is the distance between nodes, Ug is the optimal

ground speed of the individual, T is the endurance of the fish, Ures is the resultant
water velocity that the fish must overcome.

Interestingly, Zielinski et al. [2018] chose to modify the velocity field within the
model each timestep by selecting velocities at each node from normal distributions
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constructed from the mean velocities (U, V,W ) and using the velocity fluctuations
(u′, v′, w′) as the standard deviations. This stochastically adds turbulence to the model
rather than attempt to explicitly capture behavioural responses to turbulence.

Zielinski et al. [2018] subsequently applied the model to a typical lock-and-dam on
the Mississippi River. The flow field was quantified 3D unsteady flow field data using
CFD with a transient RANS approach, using the standard k–ε turbulence closure,
employing unstructured tetrahedral meshing, and using the rigid-lid approximation
[Zielinski et al., 2018]. The result was considered pseudo-steady once the difference
between instantaneous velocity fluctuations about the mean were an order of magnitude
less than the mean [Zielinski et al., 2018]. No mesh dependency investigation was
undertaken, however the CFD was qualitatively validated against velocity data collected
via ADCP [Zielinski et al., 2018].

Zielinski et al. [2018] calculated passage metrics for silver carp (Hypophthalmichthys
molitrix), bighead carp (Hypophthalmichthys nobilis), and lake sturgeon (Acipenser
fulvescens), but did not compare these to measured passage efficiencies and therefore
the success of the model is unclear. Zielinski et al. [2018] did not perform any validation
of the model against measured fish paths nor bulk fish passage metrics and therefore
confidence in the results is lacking. Furthermore, Zielinski et al. [2018] reported that
the flow field had to be artificially modified through the creation of false-boundaries
in areas where no upstream pathway was available, such as downstream of the sluice
gates, due to the tendency for fish to become “stuck”. This modification suggests
that the model neglects the issue of fish being able to adequately locate passages and
not become confused by in-stream barriers, and likely artificially inflates the predicted
passage efficiency.

Zielinski et al. [2018] carried out a brief sensitivity analysis and found that passage
efficiency was significantly decreased when maximum percentage fatigue was lowered
from 100% to 50%, but was insensitive when increased to 200%. This suggests passage
was limited by the structure rather than the capacity of the fish. Zielinski et al. [2018]
also found that using a static velocity field did not significantly change the overall
passage efficiency, suggesting this additional feature was not necessary.

Gilmanov et al. [2019] later modified the model to allow fish to move between mesh
nodes in smaller steps, rather than moving between nodes in one movement. However,
at each timestep, fish could still only assess the percentage fatigue increase at mesh
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nodes, and therefore the model cannot be considered as spatially continuous. However,
this adaptation allows a fish to change its direction more frequently and therefore
update its minimum fatigue algorithm more frequently, and was found to result in
smoother fish paths and increased passage efficiencies compared to the original model
[Gilmanov et al., 2019]. This modification allow eases the dependency of the model
upon the computational mesh, but does not entirely remove it. However, as with the
original model, validation of the results was not discussed and therefore the legitimacy
of the model is unclear.

Finger et al. [2020] applied the fish fatigue model to a Lock and Dam located on
the Upper Mississippi River, Hastings, Minnesota, USA. Finger et al. [2020] tagged and
tracked 112 Common carp (Cyprinus carpio) through the domain and compared meas-
ured and predicted data. Finger et al. [2020] quantified the flow field at the study site for
discharges of 1274 and 1727m3s−1, representing the flow conditions experienced by the
tagged carp, following the methodology used by Zielinski et al. [2018]. The fish fatigue
model [Zielinski et al., 2018, Gilmanov et al., 2019] was then applied to each velocity
field using ten groups of 500 fish randomly seeded downstream of the lock-and-dam.
Finger et al. [2020] reported passage efficiencies of 0% and 2% for the tagged fish and
virtual fish at a discharge of 1274m3s−1, respectively; and 6% and 30% for the tagged
fish and virtual fish at a discharge of 1727m3s−1, respectively. While demonstrating
agreement at the lower discharge level, the results suggest the model overestimates the
passage efficiency for the higher discharge level. This overestimation suggests that min-
imum energy pathways are insufficient to capture the aggregate behaviour of common
carp. Furthermore, it is possible that the real carp became followed local minimum
energy pathways but became confused in areas where no upstream pathway was avail-
able, something that the fatigue model artificially suppresses. Lastly, the sensitivity of
the model to the number of agents was no explored, and therefore it is possible that
the model may require more agents to capture bulk behaviours, particularly given the
size of the domain.

2.8.7 Summary of Published Fish Path Prediction Models

This section has summarised the current approaches to modelling fish pathways in
the literature, and has demonstrated that this is an active field of research. Available
approaches range from the simpler work of Blank [2008], Abdelaziz [2013], Plymesser
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[2014], Gao et al. [2016] through to the more advanced models of Goodwin et al. [2014],
Gisen [2018], Zielinski et al. [2018]. However, there are many differences and similarities
between approaches that are briefly highlighted here:

• Each model features a different behavioural ruleset, but all of them can be sum-
marised as a combination of attraction to some hydrodynamic parameters, and
repulsion from others.

• Each model explicitly uses the local water velocity as a stimulus, with the ex-
ception of the Gao et al. [2016] model which implicitly uses local water velocity
in the form of implied rheotaxis. This demonstrates the importance of the local
water velocity as a stimulus.

• Implicit rheotaxis is a theme in many of the models due to its simplistic nature
[i.e. Blank 2008, Abdelaziz 2013, Plymesser 2014, Gao et al. 2016, Tan et al.
2018]. However, this approach limits the utility of the model by assuming that the
domain has a single dominant flow direction, and assumes that, at any arbitrary
point in space or time, a passing fish has this information.

• Blank [2008], Abdelaziz [2013], Plymesser [2014], Zielinski et al. [2018] each found
success in the use of the concept of minimum energy expenditure with different
energy quantification metrics. This demonstrates the utility of a minimum energy
approach.

• Each model uses turbulence as a stimulus, with the exception of Blank [2008]
and Plymesser [2014]. Tan et al. [2018] and Gao et al. [2016] use TKE as their
turbulence descriptor, Goodwin et al. [2014] and Gisen [2018] use the spatial
acceleration gradient, Abdelaziz [2013] uses the spatial velocity gradient, and
Zielinski et al. [2018] implemented turbulence stochastically via a temporally-
varying velocity field based on computed velocity fluctuations.

• Gilmanov et al. [2019] demonstrated that spatially-continuous modelling is more
complex and computationally expensive versus spatially-discrete modelling, but
yielded greater accuracy.

• Arguably the most advanced model is that of Goodwin et al. [2014], which is
unique in that there’s a large wealth of tracking and flow field data available to
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calibrate and validate the model, and it has been in development for nearly two
decades. The Goodwin et al. [2014] model considers down-migrating salmonidae
and therefore it not suitable to determining up-migration pathways. Gisen [2018]
utilised the framework of the Goodwin et al. [2014] model and developed a new
motivation/fatigue ruleset to model up-migrating salmonidae. However, Gisen
[2018] developed the model to work only with OpenFOAM, reducing the utility
of the model, and reported that output fish trajectories were sensitive to the Open-
FOAM version. Furthermore, there’s a comparatively small amount of tracking
and flow field data available with which to develop, calibrate, and validate against
for up-migrating salmonidae.

• The majority of the models neglect to present sensitivity investigations, or calibra-
tion data, and where presented they are often incomplete, reflecting the associated
difficulties with validation of agent-based models [see Crooks et al. 2008, Ngo and
See 2012].

• The majority of the models implement behaviour based on behavioural thresholds
or limits to define fish preferences of hydraulic parameters, but many neglect to
explicit state threshold values nor subject these thresholds to sensitivity analyses.

Details of the specific approaches, functions, and findings of each model are dis-
cussed within the relevant chapter discussions later in this work. It is summarised
that, while there are multiple established models in the literature, none of the current
approaches are sufficient to fulfil the aims and objectives of this work. The development
and open source distribution of such a model would enable engineers and practitioners
globally to computationally assess fish pass structures and their placement; which would
result in more efficient designs, better connected river systems, and be well aligned with
the EU WFD.
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Chapter 3

A Viability Study of European Eels Ascending
Eel Tiles, using 2D Agent-Based Models and
Landscape Ecology Metrics
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3.1 Introduction

Chapter 1 outlined the developmental principles for this research, section 1.2. This
chapter develops multiple cellular automata (CA) models and a single agent-based
model (ABM) to assess the viability of this approach to modelling upstream passage of
fish. Specifically, it considers the quantification of the passage efficiency, or connectivity,
of an anguilliform fish pass with passing juvenile European eels. The velocity field
within each pass is quantified using CFD. The passage efficiency is assessed through
the development of multiple custom-built CA and ABMs as well as through employing
several existing metrics originally developed to assess landscape connectivity.

The European eel (Anguilla anguilla) is a catadromous species, and therefore must
migrate upstream as a part of their life cycle. They are born in the Sargasso Sea
and transported as larvae along the Gulf Stream arriving on the Atlantic coast of
Europe after a 9 month journey [van Ginneken and Maes, 2005]. On arrival, the larvae
metamorphose into elvers and begin to migrate upriver [Tesch, 2004] where they can
live for up to 50 years before migrating back to the Sargasso Sea to spawn [Poole and
Reynolds, 1998]. Recruitment of elvers across Europe has suffered a 95% reduction since
the early 1980s and has been officially listed as a critically endangered species on the
International Union for Conservation of Nature (IUCN) Red List since 2014 [Moriarty,
1986, 1996, Jacoby and Gollock, 2014]. This decline has been partly attributed to the
reduced connectivity of hydrosystems across Europe due to an increase in the number
of in-stream barriers, particularly to the upstream migration of elver [Moriarty and
Dekker, 1997, Feunteun, 2002]. Common fish passage solutions, such as the Larinier
pass or vertical slot fish-ways are inefficient and inappropriate for the upstream passage
of European eels [Knights and White, 1998, Feunteun, 2002] due to their low swimming
performance and their inability to jump out of the water [Solomon and Beach, 2004].

Anguilliform-specific passage facilities have been developed to compliment common
fish passage solutions. Anguilliform-specific fish passes make use of the tendency for
eels to utilise lower velocity regions near-bed, and have been shown to be effective in
enabling their passage [Briand et al., 2005, Piper et al., 2012, Vowles et al., 2015].
These eel passes are comprised of relatively steep ascent ramps that provide a wetted
substrate designed to facilitate eel passage [Porcher, 2002]. Historically, the substrates
used were often cheap, robust items such as rocks, aggregates, branches [Knights and
White, 1998], trawl netting [Shotzberger and Strait, 2002], burlap [Jackman et al.,
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Figure 3.1: Typical eel tile produced by Berry & Escott [Berry & Escott Engineering,
2017].

2009], and geotextile matting [Knights and White, 1998, Environment Agency, 2011].
However these materials were found to be too abrasive and caused passing eels to lose
a considerable amount of their protective mucus [Voegtle and Larinier, 2000]. The
mucus layer protects the fish from abrasion and invading pathogens [Archer, 1979].
Furthermore, it helps to maintain the fish’s osmotic and ionic integrity by regulating
the influx and efflux of water and salt between the fish and the surrounding water. Loss
of this layer may result in the death of the fish [Archer, 1979].

In more recent times, purpose-built, synthetic substrates have become available,
figure 3.1. These use a series of small, more-or-less rigid, vertical cylinders or studs
attached to a base to reduce the energy of the flow and provide the substrate for eels to
pass [i.e. Milieu Inc. 2017, Berry & Escott Engineering 2017, Terraqua Environmental
Solutions 2017]. These are generally available as modular “tiles” which can be placed
beside one another to create cost-effective passes of varying geometry. This type of
purpose-built “eel tile” is considered throughout this chapter.

3.1.1 Vowles et al. [2015]: A Case Study

Vowles et al. [2015] considered the passage efficiency of elver over a model crump weir
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with and without the installation of an eel pass constructed from dual-density, studded
Berry & Escott eel tiles [Berry & Escott Engineering, 2017]. These tiles feature 50mm
high studs of two different tapered diameters and centre-to-centre spacings: 14.8mm
at the base tapering to 11.7mm at the top, with a centre-to-centre spacing of 45.45mm
and 29.6mm at the base tapering to 23.4mm at the top, with a centre-to-centre spacing
of 83.3mm. The dual density of studs is designed to allow for the passage of different
sizes of eels, as smaller eels may struggle to pass the faster velocities present between
the large studs, and larger eels cannot fit between the smaller studs. The tiles used
in the experiments were 0.3 m wide and featured an approximately 2:1 ratio of large
studs to small studs.

A model crump weir was placed within an open channel flume. The flume measured
12m long, 0.3m wide, and 0.4m deep. The crump weir measured 0.25m tall and 0.3m
wide with an upstream angle of 26.6◦ and a downstream angle of 11.5◦, resulting in
a downstream face of length 1.25m. Experiments were conducted for two cases; the
control, where the eel tiles were not present; and the treatment, where the eel tiles were
installed. During the treatment case, the eel tiles covered the full width of the weir,
with each stud density occupying an equal amount of space.

A constant discharge of 1.0×10−3m3s−1 was reported, which equates to a discharge
per unit width of 3.33×10−3m2s−1 [Vowles et al., 2015]. This discharge has significant
uncertainty since the mean inflow velocity was reported to be 8.0± 6.1mms−1, which
yields a discharge per unit width of 2.22×10−3±1.70×10−3m2s−1 [Vowles et al., 2015].
Water velocities were measured upstream and downstream of the weir using an electro-
magnetic flow meter, reportedly at 60% water depth [Vowles et al., 2015]. Furthermore,
velocities on the downstream face were measured using the flow meter for the control
case but use of the flow meter was obstructed in the treatment, therefore average flow
velocities in the pass were measured by recording the time taken for 5 mL of India ink
to flow down the downstream face [Vowles et al., 2015]. Table 3.1 shows the reported
mean velocities for the modified and treatment cases upstream, within, and downstream
of the pass.

Mean water velocity decreased upstream and increased downstream of the weir in
the treatment case compared to the control case. Furthermore, the average water velo-
city on the face of the weir decreased during the treatment case. However, the velocity
measurements are presented with error bars which vary from approximately 60% up to
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Table 3.1: Measured velocities upstream, downstream, and on the face of a crump weir
with and without the applied eel tile as reported by Vowles et al. [2015]

Case Upstream Downstream Within the Pass
Control 0.0103± 0.0064 0.0711± 0.0884 0.574± 0.173

Treatment 0.0080± 0.0061 0.1000± 0.0952 0.347*

* No error given.

124% of the presented value, and therefore their reliability should be questioned. Fur-
thermore, measuring the average velocity in through the pass using the transit time of
India ink is unreliable, particularly as the authors neglect to detail the pathway taken
by the ink. Therefore, it is unclear whether the reported value pertains to the velocity
through the large studs, small studs, or some combination of both.

It is worth discussing these velocities in terms of the passing elvers. Clough and
Turnpenny [2001] suggest that an elver measuring 0.072 m has a maximum burst speed
of 0.47 ms−1. Therefore, the average velocity given for the control case (0.574 ms−1)
suggests that the flow is too fast for any of the passing elvers, who would be overcome
by the encountered water. The average velocity given for the treatment case (0.347
ms−1) is less than this critical velocity and thus suggests that passage is possible.

Vowles et al. [2015] conducted 10 trials, each of 10 minutes length, for each of the
two test cases. Trials were conducted during daylight hours in May of 2013. Each
trial considered the upstream movement of a group of 30 elver released 2.2 metres
downstream of the weir crest (approximately 1 metre downstream of the downstream
end of the weir). Mean elver length was reported as 71.73 ± 3.87 mm, based on length
measurements of 10% of the total population. Each group was allowed to acclimatise to
the flume water temperature (21.8 ± 0.96◦C) for a minimum of 1 hour before the start
of the trial, and were removed from the flume at the end of each trial. An individual
fish was used in one trial only.

Vowles et al. [2015] defined the passage efficiency as the number of successes divided
by the total number of attempts. The authors found that, during the control case, the
mean number of attempts and successes were 30.4 (±13.0) and 0.0, respectively. During
the treatment case, the mean number of attempts and successes were 29.9 (±6.1) and
20.0 (±4.6). Therefore, the mean passage efficiencies were 0% and 67% for the control
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and treatment cases, respectively. Furthermore, the authors found that more elver
successfully passed the smaller, denser studs; with passage efficiencies of 58.7% and
41.3% for the small and large studs, respectively. Therefore, either the elver had an
increased attraction to the hydraulics of the smaller studs, the elver found the hydraulics
of the smaller studs easier to overcome, or some mixture of both. The hydraulics of an
eel tile is not quantified in the literature, and therefore one can only presume that the
average velocity in the smaller, denser studs is less than that of the larger studs.

The work done by Vowles et al. [2015] suggests that the installation of eel tiles to
existing crump weirs may increase connectivity of hydro-systems. However, the geo-
metry of in-stream barriers vary largely and one cannot presume that the installation of
eel tiles to other structures would give similar results. Furthermore, the work gives rise
to the question of appropriate installation angles for eel passes. Solomon and Beach
[2004] describe anguilliform-specific passage solutions as a trade off between restrict-
ing water velocities to a comfortable range for ascending eels (i.e. shallow installation
angle), versus restricting the overall length of the pass (i.e. steep installation angle);
particularly at in-stream barriers with large hydraulic heads. In practice, the install-
ation angles of eel passes vary massively, ranging from 12◦ up to 60◦ [Solomon and
Beach, 2004]. In theory, a pass should be installed at the steepest angle possible while
not hindering movement. However, there is little literature which assess the passage
efficiency of an eel pass and even less which consider the how the installation angle af-
fects the passage efficiency. Current guidance for installation angles mostly arise from
the observations of practitioners and the recommendations of manufacturers; which
one could argue are not fully justifiable, repeatable, free from bias, nor empirically
sound. Therefore, eel passes are complex structures and it is unlikely that a single pass
geometry would be appropriate for all scenarios. Therefore, more work is required to
understand how the geometry of the eel pass and the age range of the expected eels
affects the passage efficiency.

3.1.2 Chapter Aim

This chapter aims to elucidate the effect of installation angle and discharge on the
passage efficiency of an eel pass constructed of Berry & Escott eel tiles [Berry & Escott
Engineering, 2017] for a range of lengths of elver. Furthermore, this chapter aims to
demonstrate the potential for simple cellular automate and agent-based models to be
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applied to model passage in complex ecohydraulic domains. This is achieved through
the following objectives:

• Use a three dimensional free surface CFD modelling approach to quantify the
velocity field within multiple eel pass configurations, using installation angles of
8◦, 11◦, 14◦, 17◦, and 20◦ and discharges per unit width of 1.67×10−3m2s−1,
3.33̇×10−3m2s−1, and 5.0×10−3m2s−1.

• Development of multiple cellular automata and agent-based models to assess up-
stream passage of elvers.

• Application of developed models and established landscape connectivity metrics
to each eel pass configuration.

3.2 Quantifying the Near-Substrate Velocity Field of a
Typical Eel Pass

Successful passage of hydraulic structures is governed in part by the velocity field that
exists within the hydraulic domain. If too high, ascending fauna may be unable to
overcome the water velocity and fail to pass. Therefore it is important when modelling
passage to quantify the pass hydraulics. This section outlines the methodology used to
quantify the velocity field of each pass configuration.

3.2.1 Computational Fluid Dynamics Methodology

A 3D CFD model was constructed using ANSYS Fluent version 17.2. In order to
simplify the CFD model, only the smaller studs were simulated and it was assumed
that the larger studs had a negligible effect on the velocity field of the smaller studs.
The smaller studs were chosen as these were found by Vowles et al. [2015] to be favoured
by passing elver. As the hydraulics of these eel tile have not been investigated in the
literature, it is difficult to understand ratio of water flowing between the smaller studs,
compared to the larger studs. In this study, we assume that the flow rate ratio is
approximately equal to the ratio of stud spacings (45 mm vs 83 mm), and therefore
it is assumed that the flow is split 83:45 in favour of the larger studs. Furthermore,
symmetry boundary conditions are used to reduce the domain to approximately one
third of the original width of the small studs.
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Figure 3.2: (a) Isometric view of the CFD domain. Cyan/light grey denotes no-slip
boundary condition, magenta/dark grey denotes symmetry boundary condition and
black denotes pressure outlet boundary condition and (b) magnified planform view
highlighting the unstructured tetrahedral mesh and grid refinement near studs and
walls. Water flows in the positive x direction.

Meshing was performed using ANSYS Meshing where an unstructured tetrahed-
ral mesh approach was employed due to the geometry of the domain. The resulting
mesh features approximately 906000 cells with average and maximum cell characteristic
lengths of 1.5mm and 7mm, respectively. Inflation layers were applied to the bed and
to each stud. Each inflation layer consisted of 5 sub-layers which increased in size by a
factor of 1.2 times the previous sub-layer (specified growth rate of 1.2). This ensured an
increase in cell density close to the bed and the studs and ensured a smooth transition
between the boundary (0.4mm cells) and the main flow (1.0mm cells). Water entered
the domain through a velocity inlet positioned upstream of the eel tile and leaves the
domain through a pressure outlet located downstream of the pass. The bed of the pass
is defined at y = 0. Symmetry boundary conditions are applied in the cross-stream
direction. All other boundaries are defined as walls with the no-slip boundary condition
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and a roughness of 0.
The simulations were performed using the unsteady, incompressible, Reynolds Av-

eraged Navier-Stokes (RANS) equations [see section 2.5.2]. Turbulence was modelled
using the k–ω SST model. This was chosen as it is known to accurately capture flow
separation over smooth surfaces, particularly compared to all forms of the k–ε model
[Menter, 1993, ANSYS, 2016]. The SIMPLE pressure-velocity coupling scheme is used
[Patankar and Spalding, 1972]. The free surface location is approximated using the
volume of fluid (VOF) method with Piecewise Linear Interface Construction (PLIC)
interface capturing scheme [see section 2.5.4], and the free surface is assumed to exist
along the surface α = 0.5. This approach was chosen as Ducrocq et al. [2017] found that
the combination of the k–ω SST model and the VOF method gave good predictions of
the free surface and the velocity field around a semi-submerged cylinder compared with
optical measurements and particle tracking velocimetry. Similarly, Chorda et al. [2019]
simulated the flow across a steep-sloped ramp covered with staggered, semi-submerged
cylinders using the combination of the k–ω SST model and the VOF method. Chorda
et al. [2019] found that the k–ω SST model was able to accurately predict the mean
free surface location and the mean velocity field compared to optical and ADV meas-
urements [taken by Cassan et al. 2014 and Tran et al. 2016, respectively].

Second order upwind discretisation of momentum, turbulence kinetic energy, and
specific dissipation rate are used. A constant timestep ∆t = 0.0005 seconds is used.
A maximum limit of 100 iterations per time step is imposed. The convergence criteria
for the non-dimensional residuals of ux, uy, and uz, turbulent kinetic energy, k, and
specific turbulence dissipation rate, ω is defined as 10−5. Assuming an average velocity
through the pass of 0.35ms−1, as reported by Vowles et al. [2015]; a residence time of
approximately 4 seconds was calculated. Therefore, a total flow time of 10 seconds is
defined to allow the flow to become pseudo-steady and give sufficient time for temporal
averaging. A gravity term is applied to the model with components in both the x

and y directions to define the installation angle. A parametric study is undertaken
using installation angles of 8◦, 11◦, 14◦, 17◦, and 20◦ and discharges per unit width of
1.67×10−3m2s−1, 3.33̇×10−3m2s−1, and 5.0×10−3m2s−1 for a total of configurations of
eel pass, including the case as used by Vowles et al. [2015]. This allows for comparison
to published experimental data and the exploration of the effect of installation angle
and flow rate on passage efficiency.
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3.2.2 Mesh Independence Study: Eel Tiles

A mesh independence study was undertaken for the eel tile installed at 11◦ with a
discharge per unit width of 3.33̇×10−3m2s−1. An unstructured tetrahedral meshing
approach was employed for three densities of mesh; coarse, medium, and fine, table 3.2.

Table 3.2: Approximate mesh resolutions used for eel tile mesh independence study.

Mesh Number of Elements
Coarse ≈ 650, 000
Medium ≈ 906, 000
Fine ≈ 1, 300, 000

Fluid flow was modelled using the approach outlined in section 3.2.1 with a reduced
timestep size of ∆t = 0.0002 seconds due to the increased mesh resolution. Solu-
tions were analysed over a vertical sampling line located in the centre of the pass (i.e.
z = 0.0225m) and exactly between the final and penultimate studs (i.e. x = 1.17m).
Temporally-averaged velocity magnitude was used to evaluate the three meshes, fig-
ure 3.3. The medium and fine meshes agree well whereas the coarse mesh severely
under-predicts the near-bed water velocity. This result suggests that the medium mesh
accurately resolved the velocity field, and therefore is appropriate to use for further
studies.

3.2.3 Results of the CFD

Figure 3.4 shows the free location after 10 seconds of flow time with contours of stream-
wise velocity, u, for an eel pass installed at 11◦ with a discharge per unit width of 3.33
×10−3m2s−1. The results show that the streamwise velocity was reduced in regions
that contain studs, i.e. the studs reduce the flow velocity.

The results are as expected for a turbulent flow through a series of semi-submerged
vertical cylinders and show that the streamwise velocity was reduced in regions that
contain studs and stagnation points are scene on the upstream face of each stud, figure
3.4. Therefore the studs succeeded in reducing the flow velocity and hence the energy
of the flow. Furthermore, the flow converges and accelerates between studs, causing
peaks in the streamwise velocity. This is corroborated by figure 3.5b, which shows
the streamwise-averaged streamwise velocity peaks at approximately 0.37ms−1 at the
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Figure 3.3: Height versus temporally-averaged velocity magnitude over a vertical
sampling line located at x = 1.17m, z = 0.0225 m, black dashed line denotes aver-
age water surface located at y = 5.3 mm.

quarter and three-quarter width locations, coinciding with the absence of studs, and
decreases to a minimum of approximately 0.26ms−1 in stud locations, coinciding with
the no-slip boundary condition. The spacing between studs is such that there is strong
interaction between wakes and the proceeding stud, so there is insufficient time or space
for a Kármán vortex street to develop [Moulinec et al., 2004, Tong et al., 2014]. The
average streamwise velocity (0.299ms−1) compares well to the value reported by Vowles
et al. [2015] (0.347ms−1). However, the authors measured this value using the transit
time of 5 mL of India ink to flow through the pass, a method of questionable accuracy.
Furthermore, the authors do not discuss the pathway taken by the ink, and therefore
it is impossible to know if their reported velocity is for the small studs, large studs, or
some combination of both.

For the Vowles et al. [2015] case, the simulated flow field yields Reynolds numbers
of 1740 or 4550 using the mean flow depth and the stud diameter as the length scale,
respectively. Therefore the flow is fully turbulent [Moulinec et al., 2004, Tong et al.,
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Figure 3.4: (a) Isometric, (b) magnified isometric and (c) plan views of the pass with
an installation angle of 11◦ and a discharge per unit width of 3.33×10−3m2s−1, with
overlain free surface after 10.0 s of flow time. The free surface is overlain with contours
of velocity magnitude at the free surface; the velocity contour scale is consistent across
the three views. The domain has been cropped to increase ease of viewing. Water flows
in the positive x direction.

74



3.2 Quantifying the Near-Substrate Velocity Field of a Typical Eel Pass

(a) (b)

Figure 3.5: a) Streamwise-averaged free surface height, ¯ysurf , and b) Streamwise-
averaged streamwise water velocity, ū against cross-stream location for the eel pass
configuration as used by Vowles et al. [2015]; temporally averaged between 8s and 10s
of flow time.

2014]. Furthermore, the simulated flow is fully turbulent for all eel pass configurations,
with Reynolds numbers ranging from 660 or 2320 for the 8◦, 1.67̇×10−3m2s−1 case to
3070 or 5800 for the 20◦, 5.0×10−3m2s−1 case using the mean flow depth and stud
diameter as the length scale, respectively.

Figure 3.5a shows the streamwise-averaged free surface height against the cross-
stream location. The free surface is high at the boundary z = 0 and decreases to
a minimum at a quarter of the pass width, before increasing back to a peak at the
centreline of the pass; i.e. z = max(z)/2. Similar results are seen from the centreline to
the border z = max(z). These peaks and troughs in the free surface height correspond
to the average presence and absence of studs, respectively, across the width of the pass.
For example, there are a greater number of studs along the streamwise centreline of the
pass, which causes the free surface height to increase. The symmetry in free surface
height is expected due to the symmetry of the pass geometry, and gives confidence to
the results. The average free surface height within the pass was approximately 5.58
mm, compared to 5 mm, reported by Vowles et al. [2015]. The methodology used by
Vowles et al. [2015] is not discussed and therefore a comparison of results is difficult.
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3.3 Measures of Connectivity

3.3.1 Preparing the Data for Connectivity Assessment

Once the simulations were completed, the near-substrate velocity field was extracted
from each resulting dataset, in order to prepare the data for use with both the landscape
connectivity metrics and the CA and IBM. As the landscape connectivity metrics can
only assess temporally-independent, spatially two dimensional data, the CA and IBM
were built such that they made use of the same input dataset. This was done to ease
comparison and to simplify the model development.

In order to reduce the velocity field to spatially two dimensional, a plane parallel
to the bed of the eel pass was extracted from the domain for each configuration. This
plane was taken at 3 mm from the bed as this was found to have the highest near-bed
velocities and therefore represents a worse case scenario for the up-migrating elver. The
extracted two dimensional velocity fields were then temporally averaged across a time
period of 2 seconds from 8 to 10 seconds of flow time, inclusively. These values were
chosen as it was identified that the flow had become pseudo-steady at 8 seconds in all
configurations. Increasing the temporal resolution and the duration over the data are
averaged would benefit the accuracy of the results, however this was infeasible due to
digital storage constraints. Finally, each of the datasets were mirrored in the cross-
stream direction to approximately match the width of the domain to the width of the
small stud area of the pass used by Vowles et al. [2015].

Each of the spatially two dimensional, temporally-averaged velocity fields were then
converted to regularly spaced, uniform grids of 0.5mm through the use of triangulation-
based linear interpolation. Classified versions of each of these datasets were then created
by assessing the velocity in each cell and classifying them in three categories: “passable”,
“impassable”, and “boundary”. A passable cell is defined as a cell wherein the velocity
is less than a critical value, which is dependant upon the size of elver being considered.
An impassable cell is defined as a cell wherein the velocity is above this threshold. A
boundary cell is defined as a cell without a velocity that elver can never physically
pass through, such as the studs of the domain. The velocity thresholds are determined
based on the burst speed of elver of different sizes at a water temperature of 21.8◦C
during the spring, given by the SWIMIT program developed by Clough and Turnpenny
[2001]. The burst speed was chosen as this is the maximum velocity at which the fish
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Figure 3.6: Graph of burst speed against elver length. Data taken from SWIMIT for
a water temperature of 21.8◦C during spring [Clough and Turnpenny, 2001]. Dotted
lines show 10 and 90% confidence intervals. Solid line shows mean value.

can swim and therefore represents their best chance of successfully migrating through
the domain. Figure 3.6 shows the determined burst speed against elver length as given
by SWIMIT. Six different sizes of elver were considered; 0.05, 0.06, 0.07, 0.08, 0.09,
and 0.1 m. This range was chosen as it encompasses the largest and smallest length
of immigrating elvers recorded at an example European coastal region, Den Oever in
Holland [Deelder, 1984]. The result is a “binary map” of the domain that shows which
cells a given elver can pass [see figure 3.7 for example binary maps]. These binary maps
constituent a simplistic proxy for the “landscape mosaic” approach as conventionally
used in landscape ecology [see Noss 1991 or Forman 2014]. The 10%, 50%, and 90%
confidence intervals were extracted from SWIMIT for each elver bodylength and used
to classify the datasets. Therefore 18 binary maps were considered for each of the 15
configurations of eel pass, resulting in a total of 270 classified domains. The binary
maps for other eel pass installations and for the 10% and 90% burst swimming speed
confidence intervals are presented in Appendix B.

3.3.2 Landscape Connectivity Metrics

Landscape connectivity metrics are quantitative tools using by ecologists to assess
the spatial patterns of heterogeneous environments over a number of scales; partic-
ularly when considering anthropogenic activities that may disrupt ecological processes
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Figure 3.7: Example binary maps for an eel pass installed at 17◦ with a discharge per
unit width of 5.0×10−3m2s−1 for all elver lengths, using the mean burst swimming
speed. Axes denote pixels. White denotes passable cells, black denotes boundary cells,
and red denote impassable cells. Elver lengths denoted on the left hand side.
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[Turner, 1989, Gustafson, 1998]. These metrics are applied to spatially two dimensional
“landscape mosaics”, which consist of multiple habitat (or patch) types. The quantific-
ation of landscape-level patterns is important as it is generally accepted that ecological
processes are linked to ecological patterns at coarse spatial scales. Landscape metrics
are well integrated into land management and decision making frameworks [Turner,
1989, Gustafson, 1998, Rudnick et al., 2012].

The patterns found in landscapes are dependent upon the scale at which the land-
scape is represented [Gergel and Turner, 2017]. Therefore, it is important to ensure
that the landscapes to be assessed are of a scale representative of the perspective of
the target species. Generally, landscape connectivity metrics are used to study large
areas, however there is no reason that these metrics are any less applicable to the scale
of domain considered here; provided that the resolution of the spatial discretisation is
sufficiently high.

In landscape ecology, the term “connectivity” can refer to structural connectivity,
which considers only the physical landscape; and functional connectivity, which con-
siders the effects of the physical landscape on the movement of organisms. In other
words, structural connectivity is landscape-specific whereas the functional connectivity
is both landscape- and species-specific [Gergel and Turner, 2017]. Herein, only struc-
tural connectivity metrics are considered. However, the landscape is defined such that
each patch is species-dependent; i.e. passable or impassable. Therefore the results
obtained are dependent on both the landscape (pass geometry) as well as the target
species, and can therefore be thought of as measures of functional connectivity.

It is envisaged that while each of the landscape ecology metrics assesses the ag-
gregation of a landscape, the results can be used as proxies for the connectivity, or
passability, of a fish pass domain. For example, a pass domain with a high aggregation
of passable cells denotes an overall high passability, or a pass with a high measure of
disconnectedness denotes a low overall passability.

Six established landscape connectivity metrics were used to assess the connectiv-
ity of each of the resulting binary maps, with three defined patch types: “passable”,
“impassable”, and “boundary”. Assessments were performed through the use of the
FRAGSTATS v4.2 spatial analysis software package [McGarigal et al., 2012]. The met-
rics employed are: Number of Passable Patches (NPP), Percentage of Like Adjacencies
(PLADJ), Patch Cohesion Index (COHESION), Contagion (CONTAG), Landscape Division
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Index (DIVISION), and Splitting Index (SPLIT). The CONTAG metric was computed us-
ing passable and impassable patches and excluding the boundary patches; whereas each
of the other metrics were computed using only the passable patches.

When considering landscape connectivity metrics, it is important to note the neigh-
bourhood rules used. FRAGSTATS allows the users to select either a first order von
Neumann neighbourhood or a first order Moore neighbourhood [see section 2.6.1]. Lim-
iting each of the calculations to only 4 neighbours (von Neumann) will fail to capture
patch aggregation that relies on diagonal adjacencies. This is overcome by the use of
an 8 neighbour neighbourhood (Moore). Both are valid approaches but one must note
and be consistent regarding which neighbourhood definition is used. In this study, only
first order Moore neighbourhoods (8 neighbours) are considered.

Three of the six metrics; PLADJ, COHESION, and CONTAG, quantify the connected-
ness of an environment. For example, an environment consisting of larger, aggregated
patches will result in a larger connectedness. The PLADJ metric (3.1) considers the
number of pixel edges of the focal cell type, i, that border other pixels of the same type
as a fraction of all pixel edges of the focal type [Gardner and O’Neill, 1991]. This value
ranges from 0%, when there are no two cells of the focal patch type bordering each
other; to 100%, when the entire domain consists solely of the focal patch type. The
PLADJ metric quantifies only the spatial distribution of patches and does not consider
their interconnectivity [McGarigal, 2015].

PLADJ = 100


m∑
i=1

gii

m∑
i=1

m∑
k=1

gik

 (3.1)

where: gii is the number of cell edges shared by pixels of patch type i based on the
double count method; gik is the number of cell edges shared by pixels of types i and k

based on the double count method; and m is the number of patch types present in the
domain.

The COHESION metric (3.2) is an extension of the PLADJ metric but considers the
summation of the perimeters of each patch divided by the summation of the area-
weighted perimeters of each patch [Schumaker, 1996]. The COHESION value tends to 0
as the number of pixels of the focal type decreases and becomes less connected. The
COHESION metric considers only the spatial distribution of patches and does not consider
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their interconnectivity.

COHESION = 100
( √

Z√
Z − 1

)1−

m∑
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n∑
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p∗ij
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j=1

p∗ij

√
a∗ij

 (3.2)

where: p∗ij is the perimeter of patch ij in terms of the number of pixel edges; a∗ij is the
area of patch ij in terms of the number of pixels; Z is the total number of pixels in the
domain, excluding boundary cells.

The CONTAG metric (3.3) was first introduced by O’neill et al. [1988] and sub-
sequently corrected by Li and Reynolds [1993]. It quantifies the extent to which patch
types are aggregated as a percentage of the maximum possible aggregation. It can be
thought of as the product of two probabilities. Firstly, the probability that a randomly
chosen pixel belongs to patch type i; and secondly the probability that a pixel of patch
type i has a neighbour of patch type k. This metric not only quantifies the spatial
distribution of patches within the landscape, but also captures their interconnectiv-
ity. The CONTAG metric is widely used in landscape ecology due to its straightforward
nature [McGarigal, 2015] and its ability to capture the aggregation of categorical maps
effectively [Turner, 1989].

CONTAG = 100


1 +

m∑
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m∑
k=1

Pi gik
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k=1
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 ln

Pi gik
m∑
k=1

gik


2 lnm


(3.3)

where: Pi is the proportion of the domain belonging to patch type i; gik is the number
of edges between pixels of patch type i and k, using the double count method; and m

is the number of patch types in the domain excluding the boundary.
The other three landscape metrics used in this study; NPP, DIVISION, and SPLIT,

quantify the disconnectedness of an environment. For example, an environment con-
sisting of many small, fragmented patches will result in a large disconnectedness. The
NPP metric is the simplest of the landscape connectivity metrics, and counts the raw
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number of passable patches within a given domain (3.4). An environment featuring
no passable patches is by definition impossible to pass. However, one can assume an
environment featuring a large number of passable patches represents a highly fractured
landscape and would therefore have a low connectivity. Therefore, a well connected
domain will likely have a low NPP value, but must be greater than 0. However, that is
not to say that all low NPP values represent well connected environments.

NPP = ni (3.4)

where: ni is the number of patches in the landscape of patch type i (in this case, only
the passable patches are considered).

The DIVISION and SPLIT metrics were both introduced by Jaeger [2000] and are
strongly linked. The DIVISION metric is defined as the probability that two randomly
chosen pixels are not located in the same non-dissected area. The SPLIT metric is
defined as the number of patches resulting from dividing the landscape into patches of
equal size such that the new landscape configuration has a DIVISION value equal to the
original landscape configuration [see Jaeger [2000]]. These two metrics conventionally
quantify the graininess of the environment; that is, the frequency of fine-grained patches
versus coarse-grained patches. The DIVISION metric is bound between 0 and unity. It is
reduced to 0 when the environment consists of a single patch, and reaches its maximum
of 1 when every pixel belongs to a separate patch. The SPLIT metric is bound to a
minimum of 1, which occurs when the landscape consists of a single patch. The upper
bound is equal to the square of the total number of cells, i.e. Z2, which occurs when
every cell belongs to a different patch.

DIVISION = 1−
m∑
i=1

n∑
j=1

(
aij
A

)2
(3.5)

SPLIT = A2

m∑
i=1

n∑
j=1

a2
ij

(3.6)

where: aij is the area of patch ij; A is the total area of the landscape.
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Figure 3.8: Flowchart detailing the basic underlying structure used by each of the
CA/IB models to describe upstream passage of elver through a typical eel pass.
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3.3.3 Development of Cellular Automata and Agent-based Models

Four models of increasing complexity were developed to model the upstream passage
of elvers through the classified domains outlined in section 3.3.1. All four of the models
are built in Python 3.6, and each are freely available from the University of Leeds Data
Repository [Padgett and Thomas, 2019]. Each of the models measure the passability
of an eel pass using the same basic structure, and output the number of successful and
unsuccessful passage attempts. The first three models (denoted SEPM, FEPM, and EEPM)
are cellular automata models, whereas the fourth model, HEPM, is an agent-based model.
In all cases elvers are created at the downstream-most end of the domain and move
upstream through the domain based on model-specific rulesets. As each of the models
build on the previous model; this section will outline the basic structure shared by all
the models and then subsequently highlight the differences between each of the models
and their rulesets. The basic structure of each of the models is outlined in figure 3.8.
The first agent-based model, the Simple Elver Passage Model SEPM, is the most simple
and has no additional functionality and therefore functions as below.

Simple Elver Passage Model (SEPM)

Firstly, the environment in which the agents operate is defined by importing the clas-
sified domains. These domains are then preprocessed to ensure that the boundaries
describing the stud locations are correct and to encase the domain in a continuous
boundary to ensure no agents attempt to leave the domain. Secondly, the creation area
for the agents is defined as all rows in the downstream-most column. This ensures a con-

Table 3.3: Basic agent (elver) attributes used by all four of the elver passage CA/IB
models.

Attribute Description
id Identification number.
row Current row. Integer. Updated every timestep.
col Current column. Integer. Updated every timestep.
location Current location, defined by row and column. Updated every

timestep.
history Array of location history for the agent. Updated every timestep.

Used to output agent trajectory.

84



3.3 Measures of Connectivity

sistent streamwise starting point for all agents. Agents (elvers) are defined as a python
class with a number of class variables (agent attributes), which describe the properties
of the specific agent; and class methods (agent methods), which govern the behaviour
of the agent. The basic agent attributes and methods are given in tables 3.3 and 3.4,
respectively, along with a short description of each. Elvers are assumed to occupy only
one cell at any one time and move one cell per timestep. Furthermore, the each of the
agent-based models assume an inherent motivation to pass the domain. Therefore all
of the following models can be thought of as a number of separate passage attempts
by individual elvers. Fishes are known to acquire knowledge from each other through
social learning, which can include migration and route selection [Brown and Laland,
2003]. However, it is difficult to quantify learned behaviours within a CA framework
and therefore, to simplify model development, none of the elver passage models include
any form of agent-agent interactions. Implementation of social learning between fishes
in agent-based models remains unexplored in the literature, and therefore the model
implications of this assumption are not clear.

Table 3.4: Basic agent (elver) methods used by all four of the eel CA/IB models.

Method Description
createNeighbours This method creates a list of the agent’s neighbours using a first

order Moore neighbourhood. It also compiles three lists of the
passable upstream neighbours, passable cross-stream neighbours,
and passable downstream neighbours. These are calculated us-
ing the neighbour method, passable and are stored as agent at-
tributes. These lists are overwritten each time this method is
executed.

move This method selects a neighbour to move to based on the lists of
passable neighbours; prioritising upstream neighbours, then cross-
stream neighbours, then downstream neighbours.

Similarly, neighbours are defined as a separate python class whose attributes and
methods are given in table 3.5. On the surface it may seem unnecessary to define neigh-
bours in this manner as the passability of a cell could instead be directly interrogated
by the elvers. However, by defining the neighbours as a class of their own, methods and
attributes can be assigned to each neighbour which allows for more complex interac-
tions. This is explored further in subsequent models. Furthermore, neighbours defined
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in this manner can be easily created and deleted as required.

Table 3.5: Basic neighbour attributes and methods used the eel CA/IB models.

Attribute/method Description
id Identification number.
row Row. Integer.
col Column. Integer.
location Location, defined by row and column.
passable This method determines if the neighbour is passable by interrog-

ating the data value at the neighbours location within the en-
vironment matrix. If this value is equal to 10, the neighbour is
passable; else it is impassable.

Once each component of the model is defined, a simulation can be initialised. In
its most basic form the initialisation creates a user-defined number of elvers within the
domain. The spawn area is defined at the downstream-most column of the domain;
wherein each agent is allocated a random row upon creation. Random values are
handled using the random python module which uses the Mersenne Twister to produce
pseudo-random numbers with a periodicity of 219937−1 [see Matsumoto and Nishimura
[1998] for details of Mersenne Twister algorithm].

After the model has been initialised, the main loop is executed. This loop runs
until all of the elvers have passed the domain or until a maximum number of timesteps
is reached. At each timestep, each elver in the domain is sequentially selected and
allowed to move once based on their surroundings using the methods outlined in table
3.4. As the landscape connectivity metrics use a first order Moore neighbourhood, it
is sensible to use the same neighbourhood rule in the agent-based models. Therefore
elver assess the passability of their 8 neighbours and may potentially move diagonally.
Figure 3.9 shows an example of an agent moving through a domain. An elver is said
to have successfully passed the domain once it passes column 25. This was chosen as
velocities were consistently low in this region and therefore posed little resistance to
the passing fish.

While simplistic, the SEPM was seen to adequately model the upstream movement
of the agents through a given domain, as designed. However, during operation it was
observed that agents could get “stuck” within the domain upon encountering regions of
impassable cells. Figure 3.10 shows a diagram depicting an elver becoming stuck with
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Figure 3.9: Diagram depicting example movement of an elver through a domain. The
elver is represented by the blue circle. White cells are passable; red cells are impassable;
grey cells are boundary.

a domain. This occurs due to the prioritisation of upstream cells. It was thought that
in practice a passing elver would move back downstream upon encountering a high
velocity region; rather than attempt to pass ad infinitum. The second agent-based
model was created to incorporate this “fallback” behaviour.

Fallback Elver Passage Model (FEPM)

Fallback behaviour was implemented through the addition of multiple new attributes
and methods, outlined in table 3.6. At every timestep, after an agent has moved,
the checkStuck method is executed. This method assesses a number of past locations
defined by pastColsNumber, and compares the column values (i.e. streamwise location).
If the difference between the maximum and minimum column values is found to be
less than threshold, the agent is deemed to be stuck. If the agent is found to be
stuck, the stuck attribute is modified to reflect this and the stuckIt attribute is
reset to zero. Furthermore, the move method is altered to switch the neighbourhood
movement priorities if the stuck attribute is True; causing the agent to prioritise
moving downstream, then cross-stream, then upstream. Each time the move method is
executed whilst stuck = True, the counter, stuckIt, is increased. Once this counter
reaches stuckItMax, the agent is assumed to no longer be stuck (stuck = False),
and hence the movement priorities are reverted. The FEPM introduces several new
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Figure 3.10: Diagram depicting example case of an elver becoming stuck with a region
of impassable cells. The elver is represented by the blue circle. White cells are passable;
red cells are impassable; grey cells are boundary.

variables which define the function of the checkStuck method. As these are user
defined variables, a sensitivity study was carried out to ensure the results were not
overly dependent on the value of these variables [see section 3.3.4].

This methodology effectively allows an elver to make an additional attempt to
pass the domain once it becomes stuck. This means that agents no longer fail due to
becoming caught in small regions of impassable cells or obstacles. However, if no clear
path is present, the agent will still fail. Furthermore, FEPM did not adequately account
for exhaustion; i.e. unless the maximum number of cell-to-cell moves was exceeded,
an agent would continue to make passage attempts ad infinitum. Similarly, while fall
back behaviour has been observed in eels and elver [Bolland, 2018], in was ultimately
decided that the implementation of fallback within the model was not reflective of real
behaviour. This is because an elver exposed to velocities above its burst speed (i.e an
impassable cell) would be overcome by the momentum of the water and subsequently
washed downstream, rather than make a conscious decision to retreat a set distant
[Bolland, 2018].
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Table 3.6: Additional/modified agent attributes and methods used in by the FEPM.

Attribute Description
stuck Boolean denoting whether or not the agent is defined as “stuck”.
stuckIt Count of the number of timesteps that the agent has been “stuck”.
StuckItMax Maximum number of timesteps an agent is allowed to be “stuck”

before reverting to normal behaviour.
pastColsNumber Number of previous timesteps over which to sample location data.
threshold The threshold distance that defines whether an agent is “stuck”.

Must be greater than 2 and less than pastColsNumber.
checkStuck This method checks whether the agent is stuck by assessing the

agent’s location over a past number of timesteps (controlled by
pastColsNumber). If the range of streamwise locations (i.e. oc-
cupied columns) is less than threshold, the agent is defined as
“stuck”.

move This method is modified to first operate differently in the case that
stuck = True. In this case, the movement priorities are reversed,
i.e. prioritising downstream neighbours, then cross-stream, then
upstream neighbours.

Exhaustion Elver Passage Model (EEPM)

The third agent-based model removed the fallback behaviour implemented in FEPM

and instead implemented a model of exhaustion. This exhaustion metric is based
on the assumption that each elver is travelling at its burst speed and hence can only
maintain its speed for a maximum of 20s [Clough and Turnpenny, 2001]. New attributes
and methods were introduced to model the exhaustion, table 3.7. Crucially, upon
importing the classified domain, the velocity magnitude map is also imported. This
allowed neighbours to be assigned temporally-averaged velocities interpolated at the
neighbours location. The move method is modified to calculate the relative speed of
the agent based on its value of burst and the destination neighbour’s value of velMag.
Rather than average across the velocity at the current location and the velocity at
the destination, it was decided that only the velocity magnitude of the destination
was to be used to calculate the relative velocity. This was chosen as it simplified the
required calculations and it is assumed that the velocities at the current location and
the destination are approximately equal, which is acceptable as long as the resolution
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Table 3.7: Additional agent attributes used in by the EEPM.

Class Attribute Description
elver burst Burst speed of the agent.
elver timeReq Time required to make a move, based on the relative speed

and distance covered.
elver timePerStep List of timeReq values at each step.
elver burstTime Cumulative time spent travelling at burst speed.
neighbour velMag Magnitude of the temporally-averaged velocity interpolated

at the cell location.
elver move Modified to calculate relative speed of the individual based

on its burst speed and local velocity. Relative speed and
distance covered during the move are used to calculate the
time required to make the move, which is then totalled and
stored. This value is used to define when the individual
becomes exhausted.

of the spatial discretisation is sufficiently high. The time required for the agent to
make its move, timeReq, is calculated based on the relative speed of the agent and the
distance moved. A cumulative total of the time taken, denoted burstTime is calculated
and stored. If this value exceeds 20s, the agent is considered to have become exhausted
and hence fails to pass the domain.

While EEPM does not solve the issue of the elver becoming “stuck” near impassable
regions, it does adequately model their eventual exhaustion. This is reflective of the
elver being overcome by the momentum of the water and being washed downstream,
although it does not capture their subsequent passage attempt. However, if one were
to instead view the model as a number of individual passage attempts rather than a
number of individual elvers, implementation of fallback behaviour becomes unnecessary.

Heterogeneous Elver Passage Model (HEPM)

All three of the cellular automata models presented to this point have assumed that
each agent has exactly the same burst speed, e.g. the population is homogeneous. This
is not representative of reality due to the natural variation of the ability of organisms.
Therefore the fourth model, HEPM, builds on the EEPM and overcomes this assumption
of a homogeneous population by assigning a burst swimming speed to each elver upon
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Figure 3.11: Histogram displaying the inverse lognormal distribution describing the
range of burst swimming speeds for an elver of length of 0.07 m swimming in spring
with a water temperature of 21.8◦C, extracted from SWIMIT [Clough and Turnpenny,
2001], using 50 discrete bins.

creation within the domain. In order to determine the distribution of burst swim
speeds, the data presented in the SWIMIT program [Clough and Turnpenny, 2001] were
extracted. An inverse lognormal distribution, figure 3.11, was found to fit the extracted
burst speed data for each length of elver. This distribution was used to randomly assign
a burst speed to each elver upon creation, thus creating a heterogeneous population of
elvers, better capturing the natural variation of swimming abilities within a population
of elver of a given length.

This new functionality makes the pre-classified domains redundant as the passability
of a given cell is now dependent upon the ability of the approaching elver and therefore
must be calculated within the simulation. Therefore the HEPM instead requires the full
velocity map as an input, examples of which are given in appendix B. Table 3.8 gives
the modified attributes and methods used by HEPM.

3.3.4 Sensitivity Analyses of the Agent-based Models

Each of the four agent-based models rely on user-defined variables which may affect
the results of each model. It is therefore important to understand the sensitivity of
the results to each of the variables and ensure that the results are not significantly
altered due to variable values. Figure 3.12a shows the relationship between the success
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Table 3.8: Additional/modified agent attributes and methods used by the HEPM.

Class Method Description
elver burst Now assigned a burst speed from an inverse log-normal dis-

tribution for the size of elver considered.
neighbour passable This method is updated and requires an input of the burst

of the current elver, and compares this to the velMag value
of the cell, if velMag is less than burst, the cell is passable.

percentage of 0.07m elver through a given pass and the number of agents used in each
simulation (solved using HEPM). It shows that the success percentage generally increased
with increasing number of agents but levels off when the number of agents reaches 1000.
More agents will result in a longer run time, and therefore 1000 agents are used for
each simulation as this is the smallest value that does not significantly influence the
results.

Figure 3.12b shows the relationship between the success percentage for 0.07m elver
passing the same pass and the maximum number of timesteps allowed (solved using
HEPM, with 1000 agents). It shows that if the timesteps are limited to 2000, 0% of
the agents successful pass the domain. This is because the minimum required num-
ber of steps to pass is approximately equal to the length of the domain in terms of
pixels (2700). Furthermore, the success percentage became approximately constant
after 10000 timesteps. Therefore, 10000 timesteps are used for all simulations. It is
worth noting that for EEPM and HEPM, if all agents were to pass or fail before the max-
imum number of timesteps is reached, the simulation will end early. Therefore, there
is no disadvantage to setting the maximum number of timesteps much higher than
required. However, when considering SEPM and FEPM, the simulation only finishes once
either the maximum number of timesteps is reached or all agents pass as there is no
failure mechanic implemented.

The FEPM relies on 3 additional variables that control the initiation of the fallback
behaviour: stuckItMax, pastColNumber, and threshold. The effect of varying these
parameters are shown in figures 3.13a, 3.13b, and 3.13c, respectively. The success
percentage is seen to firstly increase with increasing values of stuckItmax until a value
of 50 where it begins to decrease. At low values of stuckItMax agents aren’t given
enough time moves to effectively fallback. However at higher values, agents are forced
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(a) (b)

Figure 3.12: Success percentage for the passage of elver of length 0.07m through an eel
pass inclined at 11◦ with a discharge per unit width of 3.33̇×10−3m2s−1, solved using
the HEPM. a) Sensitivity to number of agents (using 10000 timesteps). b) Sensitivity to
number of timesteps (using 1000 agents).

to fallback for too many moves. This result suggest that a value of between 30 and
50 is appropriate and doesn’t artificially reduce the number of successful passages. A
value of 30 is used in all FEPM simulations. The success percentage is approximately
independent of pastColsNumber. A value of 20 is used in all FEPM simulations. The
successful passage of agents is heavily dependent on the value of threshold, particularly
relative to the value of pastColsNumber. The larger the threshold value, the more
likely the individual is falsely classified as “stuck”. This is shown by the sharp decline
in success percentage for threshold values larger than 10. A threshold value of 2 is
used in all FEPM simulations.

3.4 Validation of Connectivity Metrics

This section considers the comparison between each of the proposed metrics with the
work of Vowles et al. [2015]. Vowles et al. [2015] assessed the passage of elver of
bodylength 0.07173 ± 0.00387m through an eel pass installed at an angle of 11◦ to
the horizontal, and with a discharge per unit width of 3.33̇×10−3m2s−1. The authors
reported an average of 29.9 ± 6.1 passage attempts per trial, with a corresponding
average of 20.0±4.6 successful passages per trial. This gives a resulting average passage
efficiency of 66.89%. Note that each trial was conducted with 30 agents and therefore
the success percentage was 66.67%.
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(a) (b) (c)

Figure 3.13: Success percentage for the passage of elver of length 0.07m (mean
burst speed) through an eel pass inclined at 17◦ with a discharge per unit width
of 5.0×10−3m2s−1, solved using the FEPM. a) Sensitivity to the maximum number
of timesteps the agent is “stuck” before reverting to normal behaviour stuckItMax.
b) Sensitivity to number of previous timesteps over which to sample location data,
pastColsNumber c) Sensitivity to the threshold defining whether an individual is
stuck, using a stuckItMax of 30 and pastColsNumber of 20.

Vowles et al. [2015] also report that elvers found more success with ascending the
small studs compared to the large studs. The authors reported an average of 12.3±3.47
attempts per trial and an average of 8.3 ± 2.6 successful passes per trial for elvers
ascending the large studs. Furthermore, the authors reported an average of 14.1± 4.86
attempts per trial and an average of 11.7 ± 2.9 successful passes per trial for those
ascending the small studs. This suggests individual passage efficiencies for the large
and small studs of 67.48% and 82.98%, respectively. However, Vowles et al. [2015] also
report 3.5± 1.65 attempts per trial up the “centre” of the pass; with no corresponding
successful passes. Given the geometry of the pass, these attempts must be attributed
to either the small studs or the large studs, and it is therefore curious that the authors
would instead choose to attribute them to the “centre” of the pass. If one were to
instead evenly distribute these additional attempts to the large and small studs, the
average attempts per trial become 14.05 and 15.85, respectively. This results in reduced
passage efficiencies of 59.07% and 73.82% for the large and small studs, respectively.

This study considers only the quantification of the flow field through the small
studs and therefore, it is apt to compare each of the connectivity metrics to the reported
passage efficiency for the small studs, rather than for the entire eel pass. Table 3.9 shows
the calculated connectivity measures for 0.07 m elvers passing the eel tile using the flow
rate and installation angle used by Vowles et al. [2015]. For clarity in comparison, the
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three measures of the disconnectedness of the domain have been converted to percentage
connectedness. Note that (1−DIVISION)×100 is mathematically identical to ( 1

SPLIT)×
100. Furthermore, note that the formulation of the HEPM means that it is inherently
creating a heterogeneous population of agents and therefore is not limited to using the
10, 50, or 90% burst speed values.

Table 3.9: Results of each connectivity metric for an eel pass inclined at 11◦ with a
discharge per unit width of 3.33̇×10−3m2s−1 for passing elver of size 0.07 m, for the
10%, 50%, and 90% burst swim speed values.

Burst Speed Percentiles
Connectivity Measure 10% 50% 90%
PLADJ (%) 98.28 98.28 84.41
COHESION (%) 100.00 100.00 98.83
CONTAG (%) 100.00 99.96 21.86
NPP (%) 1 4 1598
DIVISION (%) 0.29 0.29 0.94
SPLIT (%) 1.41 1.41 16.68
( 1

NPP)× 100 (%) 100.00 25.00 0.06
(1− DIVISION)× 100 (%) 71.16 71.16 5.99
( 1

SPLIT)× 100 (%) 71.16 71.16 5.99
SEPM (%) 100.00 100.00 0.00
FEPM (%) 100.00 100.00 0.00
EEPM (%) 100.00 100.00 0.00
HEPM (%) 75.50

Vowles et al. [2015] (%) 73.82

Table 3.9 shows that none of the landscape connectedness metrics score the domain
with a value comparable to the findings of Vowles et al. [2015], and neither does the
modified NPP metric. The modified version of both the DIVISION and SPLIT metrics
offer a value of 71.16% for the 50% burst swim speed, which is fairly comparable to
the value found by Vowles et al. [2015]. It was expected that this value would increase
for the 10% burst swim speed, but this is not the case, even though the theoretical
upper bound of both metrics is 100%. This raises some question of the reliability of
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this metric. This result is also seen for the PLADJ metric. However, with the exception
of those cases, each of the landscape connectivity metrics generally show the correct
trend of increasing connectivity with increasing burst swim speed.

The SEPM, FEPM, and EEPM suggest 100% of individuals with the top 10% and 50%
burst speeds could pass, whereas those with a burst speed equal to the top 90% could not
pass at all. This suggests that, assuming a heterogeneous population with a Gaussian
distribution of burst swim speeds, between 50% and 90% of the population would be
able to pass, which agrees with the experimental data. This is further indicated by the
result of the HEPM, which shows that 75.50% of a heterogeneous population of 0.07m
elvers successfully passed the domain. Note that this is using the inverse lognormal
distribution shown in figure 3.11. This value compares well to the average value of
73.82% found by Vowles et al. [2015], and gives confidence in the ability of the HEPM in
predicting passage success.

When comparing these results, one must consider that the elver populations used by
Vowles et al. [2015] are on average larger (0.07173m) than those using in the simulations
(0.07m), and are not uniform in size (standard deviation of 0.00387m) unlike those used
in the simulations. Furthermore, the size distribution of elver used in the experiments
was not published, and therefore it is difficult to understand the exact burst swimming
capabilities of those elvers. It is also worth considering that the individuals used in
the simulations are programmed to have an inherent motivation to navigate upstream;
whereas the same cannot be said for individuals in reality. It is unfortunate that
more data are not available for comparison and validation of the models and metrics
presented here, as this would give more confidence in the validity of the metrics. This
highlights the lack of experimental data published in the literature and the significant
need for more.

Comparisons between the published data and the outputs of the 10 connectivity
measures presented here suggest that the HEPM adequately predicts the percentage of
successful passages through the domain as used by Vowles et al. [2015]. This metric
is therefore used to explore the passage efficiency of the eel pass geometry for other
installation angles and flow rates. Furthermore, each of the other metrics are also
applied to the new domains to understand their behaviour and compare the results
to those of the HEPM and it is theorised that these connectivity measures may afford
simplistic proxies for the passability of a domain after some degree of calibration or
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modification.

3.5 Eel Tile Connectivity Results

This section outlines the results of applying the 6 landscape connectivity metrics and the
3 cellular automata to each of the 270 binary maps. For clarity, only the results found
for the mean burst swimming speeds are shown. Results for the 90% and 10% confidence
intervals of the burst swimming speed can be found in Appendix B. Furthermore, due
to the formulation of the agent-based model, HEPM, it is not necessary to apply it to
the binary maps as the agent population is heterogeneous. Therefore, HEPM is applied
only to the 90 pre-classified velocity maps.

3.5.1 Landscape Connectivity Results

Figures 3.14, 3.15, and 3.16 show the 6 landscape connectivity metrics for a range of
passing elver sizes and for a range of pass installation angles for discharges per unit
width of 1.67̇×10−3m2s−1, 3.33̇×10−3m2s−1, and 5.0×10−3m2s−1, respectively. These
results shown are obtained using only the mean burst swimming speeds for each elver
length. The 3 measures of connectedness; PLADJ, COHESION, and CONTAG, each decrease
with increasing installation angle and increase with increasing elver bodylength for
all discharges (figures 3.14a, 3.14b, 3.14c, 3.15a, 3.15b, 3.15c, 3.16a, 3.16b, and 3.16c).
Similarly, the 3 measures of disconnectedness; NPP, DIVISION, and SPLIT, each increase
with increasing installation angle and decrease with increasing elver bodylength for all
discharges (figures 3.14d, 3.14e, 3.14f, 3.15d, 3.15e, 3.15f, 3.16d, 3.16e, and 3.16f).
Furthermore, all connectedness metrics decreased with increasing flow rate and all
disconnectedness metrics increased with increasing flow rate. These results show that
the landscape connectivity metrics succeed in capturing the correct general trends with
regards to increasing elver size, flow rate, and installation angle.

There are however some anomalous results. Figures 3.16a and 3.16c show that, for
a discharge per unit width of 5.0×10−3m2s−1, the least connected landscape is for the
case of an installation angle of 17◦ and a passing elver size of 0.05 m, rather than an
installation angle of 20◦. Similarly, figure 3.16d shows that the installation angle of 17◦

is found to have a higher number of passable patches for passing 0.05 m elver than an
installation angle of 20◦, suggesting it is more fragmented.
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(a) (b) (c)

(d) (e) (f)

Figure 3.14: Six landscape connectivity metrics applied to an eel pass for five installa-
tion angles using a) PLADJ, b) COHESION, c) CONTAG, d) NPP, e) DIVISION, and f) SPLIT.
Results shown are for a discharge per unit width of 1.67̇×10−3m2s−1 and for a range
of passing elver sizes, using only the mean burst swimming speeds.

(a) (b) (c)

(d) (e) (f)

Figure 3.15: Six landscape connectivity metrics applied to an eel pass for five installa-
tion angles using a) PLADJ, b) COHESION, c) CONTAG, d) NPP, e) DIVISION, and f) SPLIT.
Results shown are for a discharge per unit width of 3.33̇×10−3m2s−1 and for a range
of passing elver sizes, using only the mean burst swimming speeds.
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(a) (b) (c)

(d) (e) (f)

Figure 3.16: Six landscape connectivity metrics applied to an eel pass for five installa-
tion angles using a) PLADJ, b) COHESION, c) CONTAG, d) NPP, e) DIVISION, and f) SPLIT.
Results shown are for a discharge per unit width of 5.0×10−3m2s−1 and for a range of
passing elver sizes, using only the mean burst swimming speeds.

3.5.2 Results of Agent-based Models

Figures 3.17, 3.18, and 3.19 show the resulting passage successes for each configuration
of eel tile for passing elvers using the mean burst speeds for each length between 0.05
and 0.1 m using SEPM, FEPM, and EEPM, respectively. The results show that each model
successfully captures the expected general trends; i.e. passage success increases with
increasing elver length, decreasing flow rate, and decreasing installation angle. However,
there are a number of unexpected results, such as that shown by figure 3.17a, which
suggests that for an elver of 0.05 m, an installation angle of 14◦ is more passable than
one installed at 11◦. Similarly, figure 3.17c suggests an installation angle of 11◦ is more
easily passed than one of 8◦ for an elver length of 0.05 m. Figure 3.20 shows the results
of the passability of each configuration of eel tile for elver between 0.05 and 0.1 m

solved using the HEPM. These results also display the same general trends as shown in
the previous figures.
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(a) (b) (c)

Figure 3.17: Results of the SEPM applied to 5 installation angles for the passage of elver
between 0.05 and 0.1 m using only the mean burst swimming speeds, for discharges
per unit width of a) 1.67̇×10−3m2s−1, b) 3.33̇×10−3m2s−1, and c) 5.0×10−3m2s−1.

(a) (b) (c)

Figure 3.18: Results of the FEPM applied to five installation angles for the passage of
elver between 0.05 and 0.1 m using only the mean burst swimming speeds, for discharges
per unit width of a) 1.67̇×10−3m2s−1, b) 3.33̇×10−3m2s−1, and c) 5.0×10−3m2s−1.

(a) (b) (c)

Figure 3.19: Results of the EEPM applied to five installation angles for the passage of
elver between 0.05 and 0.1 m using only the mean burst swimming speeds, for discharges
per unit width of a) 1.67̇×10−3m2s−1, b) 3.33̇×10−3m2s−1, and c) 5.0×10−3m2s−1.
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(a) (b) (c)

Figure 3.20: Results of the HEPM applied to five installation angles for the passage of
elver between 0.05 and 0.1 m, for discharges per unit width of a) 1.67̇×10−3m2s−1, b)
3.33̇×10−3m2s−1, and c) 5.0×10−3m2s−1.

3.6 Discussion

This study is the first to attempt to computationally assess the upstream passability of
eel tiles for juvenile European eels. The results of the CFD show agreement with mean
velocities and flow depths reported by Vowles et al. [2015] and therefore show promise
in simulating the flow patterns through eel tiles. No previous studies have quantified
the detailed flow fields within eel tiles and therefore it is difficult to thoroughly val-
idate small-scale flow features. However, the k–ω SST model has been shown to give
good predictions of the free surface location and velocity field around a series of semi-
submerged cylinders [Ducrocq et al., 2017, Chorda et al., 2019]. More accurate results
could be produced using Reynolds stress models, LES, or DNS [see Benhamadouche
and Laurence 2003] but these models introduce significant computational cost and as-
sociated convergence issues [Ingham and Ma, 2005] and this level of complexity is not
required as eels and elvers react to larger-scale flow structures [Piper et al., 2012, 2015].
Furthermore, the influence of any finer-scale turbulent structures yielded by the more
complex models would be dampened by the temporal averaging required to create input
datasets for the CA and agent-based models.

Two dimensional planes parallel to the bed offset at a distance of 3 mm were
extracted from the computed velocity fields for each configuration of eel pass. This
was done as the landscape connectivity metrics are only applicable to spatially two
dimensional data. This also simplified the development of the cellular automata and
agent-based models. Furthermore, the extracted spatially two dimensional velocity
fields were temporally-averaged over a 2 second time period from 8 to 10 seconds
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of flow time. As no previous studies have quantified the detailed flow fields within
eel tiles, it is difficult to know whether this time period is sufficient to capture the
unsteady features of the flow. However, this time period was chosen to maximum the
time over which the data were averaged, but was limited by computational restrictions
and digital storage restrictions. The resulting velocity fields are simple representations
of the complex fluid flow within an eel pass. However, they allow for the assessment of
passage efficiencies using relatively simple metrics and without requiring the use of live
animals. Extending the domains to spatially 3D and transient would better represent
the fluid environment within the domain, but would vastly increase the complexity of
the CFD, cellular automata and agent-based models, and would restrict the usage of
the landscape ecology metrics.

The work presented in this chapter investigates the influence of discharge per unit
width, installation angle, and fish length on the passage efficiency of eel tiles and
suggests that passability decreases for increasing discharge and installation angle; a
result which corroborates previous research [Solomon and Beach, 2004]. This result is
expected as the ability to successfully pass is intrinsically-linked to the water velocity
within the pass, which increases with flow rate and installation angle. This result
provides some evidence that all the metrics are performing sensibly.

3.6.1 Discussion of Landscape Metrics

The landscape connectivity metrics all show the expected general trends; e.g. increasing
connectivity for increasing elver length, decreasing installation angle, and decreasing
flow rate. However, it is unlikely that the metrics in their current state offer any prac-
tical results that can be used by practitioners. Furthermore, each of the landscape
connectivity metrics suffer from an inability to assess whether a given domain contains
a fully connected pathway from the downstream-most end to the upstream end. This is
due to the fact that the landscape metrics are by definition assessing the aggregation of
the passable regions, and do not consider pathways. This can be somewhat combated
by dividing the chosen connectivity metric by the corresponding NPP value, as we can
assume that low values of NPP reflect a less fractured domain and therefore a greater
chance of a continuous pathway through the domain. Furthermore, each of the land-
scape metrics are very sensitive to the defined swimming ability for the given size used
to create the classified domains. This could be overcome by assessing multiple classified
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domains for any given elver length, where each domain is classified relative to a percent-
age of the range of the minimum and maximum burst swimming ability for the chosen
elver length. A weighted average of these can be calculated based on the frequency of
occurrence of the given burst swim ability within a heterogeneous population. This is
beyond the scope of this work but does highlight the potential for landscape ecology
metrics to be used as simplistic proxies, particularly if they can be calibrated against
experimental data. This is not explored here as the available experimental data are not
sufficient to adequately calibrate any of the landscape metrics.

3.6.2 Discussion of Cellular Automata and Agent-based Models

The SEPM over-predicted the passage efficiency for the Vowles et al. [2015] case, but did
succeed in demonstrating realistic trends for the passage of elvers over all configurations
of eel pass (figure 3.17). However, there are a number of unexpected results which
suggest that higher installation angles provide a more easily passed domain [see figure
3.17a and 3.17c]. These results are likely a flaw with the SEPM methodology rather
than a realistic result or a flaw in the CFD methodology as they are not reflected in the
results of any of the other models. A comparison between SEPM and FEPM shows that the
passability increases for all configurations and elver lengths when the agents are allowed
to fallback and make multiple attempts [see figures 3.17 and 3.18]. However, the rule
is heavily dependent on the values of pastColNumber, threshold, and stuckItMax

each of which, while investigated in a sensitivity analysis, are difficult to justify from
an ecological perspective. Furthermore, it is thought that in reality, if an elver became
stuck during an ascent within an eel pass, it is likely to be washed downstream and
out of the pass and then begin again at the downstream-most end of the pass [Bolland,
2018]. Therefore, the FEPM attempts to model an unnecessary behaviour, resulting in
an artificial increase in the passage efficiency of each pass configuration. In comparing
SEPM to EEPM it is seen that, for all pass configurations and elver lengths, the passability
decreases when the exhaustion model is implemented. For example, the SEPM predicted
a passage efficiency of 78.5% for elver of 0.06 m navigating an eel pass installed at
17◦ with a discharge per unit width of 3.33̇×10−3m2s−1, figure 3.17b, whereas this the
EEPM predicts a value of 0% for the same case. This suggests that even with relatively
shallow installation angles (17◦) and a relatively short length of pass (1.25 m), elvers
are becoming exhausted due to the water velocities that they encounter within the
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pass. This demonstrates the importance of passage duration and length in controlling
passage efficiency and supports the statement of Solomon and Beach, 2004, p. 12 that
“...we must take account not just of maximum swimming speed, but also of the ability
to maintain certain swimming speeds for long enough to ascend a pass that may be
many metres in length”.

The SEPM, FEPM, and EEPM are very sensitive to the defined swimming ability of
the agents used to classify the domains. Each of these agent-based models simulate
an homogeneous population of elvers. This results in polarised results (i.e. close to
zero or close to 100% successful passages) since it is likely that it one automaton can
pass, all can pass and vice versa. This is overcome by the formulation of HEPM which
captures the natural variation in the swimming performance of elvers of the same length,
i.e. introduces heterogeneity. A comparison of the results of the EEPM and the HEPM

shows that introducing the heterogeneous population produces consistently less extreme
results for all elver lengths and configurations. Furthermore, the HEPM produces a result
within 2.5% of that found by Vowles et al. [2015], which gives confidence to the findings.
It would be interesting to compare the results of the HEPM against experimental data
for other installation angles and discharges, but this is not possible due to a lack of
experimental data.

A comparison of figures 3.20a and 3.20b shows that the HEPM predicts that for install-
ation angles of 11◦ and 14◦, reducing the discharge per unit width from 3.33̇×10−3m2s−1

to 1.67̇×10−3m2s−1 creates a marginally less passable domain for all lengths of elvers.
However this is not found to be true for the other 3 installation angles, figure 3.21.
These results may be indicative of an insufficient time period over which the CFD
results were temporally-averaged, which could be overcome through averaging over a
longer time period.

The cellular automata and agent-based models are limited as none of them account
for many other factors important in successful passage such as predation within the pass
or the ability for elver to locate the pass within a timely manner [Environment Agency,
2011]. Furthermore, each of the models assume all elvers are inherently motivated
to ascend the pass; a variable which is difficult to quantify in practice. Furthermore,
as the considered elver are less than 0.1 m in length, it is possible that they could
exhibit climbing behaviour within the pass [Legault, 1988]. Similarly, eels of all sizes
are known to exhibit crawling behaviour to utilise low velocity regions, allowing for
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(a) (b)

Figure 3.21: Comparison of passage efficiency through an eel pass installed at a) 14◦

and b) 17◦ over a range of elver bodylengths (m) and flow rates per unit width (m2s−1).
Solved using the HEPM.

respite from the main flow. However, Vowles et al. [2015] reported that while they
expected to see these behaviours, elvers opted not to do this and instead attempted
to ascend the eel tiles as quickly as possible using their burst swimming capabilities.
Therefore, climbing was not implemented in any of the models. However, this remains
an avenue for research, but is not considered in this work. Podgorniak et al. [2015a,b]
suggest that, during climbing, cognitive processes are more important in the passage of
obstacle by eels than metabolic capacities. Similarly, Podgorniak et al. [2016] suggested
that climbing elver display inherent “personality types”, and that those that displayed
the best climbing ability tended to be of a more aggressive “personality”. Therefore,
if climbing behaviour were to be added to the model, an implementation of variable
motivation may be necessary, such as that used by Gisen 2018, which could be a
function of additional heterogeneity in the form of random, inherent “personalities” or
an “aggression” factor.

Regardless of these limitations, the results show that the CA and AB models are
better measures of passability than the landscape connectivity metrics, due in part to
their inherent ability to overcome the issue of finding a continuous pathway through the
domain. Furthermore, the results presented herein show that even the simple cellular
automata models are able to output realistic data and trends and the ABM (HEPM)
results compare favourably to the result found by Vowles et al. [2015]. This suggests
that, even given their limitations and simplistic formulation, 2D cellular automata and
agent-based models are well-suited to assessing the passage efficiency of fish passes.
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3.6.3 Theoretical Maximum Passage Lengths

Although each eel tile configuration considered in this chapter are of equal length
(1.25m), it is possible to estimate the maximum length of pass possible for an individual
to successfully ascend for each configuration. This is done by using the time taken to
ascend the 1.25 metre pass of the given configuration and the knowledge that the burst
speed of an individual can only be maintained for 20 seconds. In addition, one must
assume that the flow velocities and depths do not vary significantly along the pass.

The results of the HEPM are summarised within graphs of pass length against install-
ation angle for three lengths of elvers; 0.05m, 0.07m, and 0.09m, figure 3.22. These
data are presented in the hopes of assisting practitioners with developing improved eel
pass designs. For example, for a given eel pass installation angle and a chosen passage
efficiency, a practitioner can select a pass length and read off the maximum permissible
discharge per unit width that elvers of the target length can tolerate. Furthermore,
for a length of eel pass and a chosen installation angle, a practitioner can estimate the
likely passage efficiencies resulting from an imposed range of discharges per unit width
or flow depths at the eel pass entrance. It is worth noting however, that given elvers
are able to employ climbing when it is not possible for them to ascend a pass using
anguilliform swimming alone, the passage efficiencies presented here are conservative
estimates. Conversely, the burst swimming speeds of elvers utilised in this chapter
are extracted from the SWIMIT software using the “spring” seasonal setting, which
was found to yield values approximately twice that of the “summer/autumn” setting
[Clough and Turnpenny, 2001]. This suggests that these estimated passage efficiencies
will be significantly lower during summer and autumn. Furthermore, the effect of tem-
perature on the burst swimming speed of elvers is not clear in the literature. Lee et al.
[2003] found that the burst swimming speed of sockeye salmon (Oncorhynchus nerka)
against temperature follows an “inverted-U-shape”, where the burst speed increased
with temperature to a maximum at approximately 16◦C, followed by a steady decline.
Therefore, this suggests that the simplistic seasonal setting available within SWIMIT
may not be sufficient to accurately capture the role of temperature in determining
passage efficiency.
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3.6 Discussion

3.6.4 Comparison to Current Guidelines

Although the models herein are simple their outputs compare well to experimental data.
Extending the models to other eel tile configurations give insight into the installation
of eel tiles, which can be compared to current guidelines. Guidance on the design and
implementation of eel and elver passes in the UK is provided by Solomon and Beach
[2004]. The authors note that the installation angle of a pass depends upon the chosen
pass substrate, and ranges from 10◦ to 55◦. However, they do not recommend specific
angles for each substrate [Solomon and Beach, 2004]. Some examples of successful pas-
sages are presented, including some installed between 40◦ and 52◦. However, only the
raw number of successful passages is reported, rather than a measure of the efficiency,
meaning that the passes may not be as successful as they seem. This lack of data is
likely due to the impracticality of accurately measuring failed passages. Furthermore,
the bodylengths of the passing eels are not divulged and therefore comparisons to the
results found in this study aren’t appropriate. The results found in this study show
that for all bodylengths and flow rates, the success percentage decreases with increasing
installation angle. Interestingly, for an angle of 20◦, the HEPM suggests a passage effi-
ciency of less than 15% for 0.05 m elver, regardless of discharge, which one can assume
will only decrease further with increasing angle.

Solomon and Beach [2004] also suggest that the appropriate length of an eel pass is
entirely governed by the hydraulic head that must be overcome and the chosen install-
ation angle. Furthermore, the authors note that resting places are often incorporated
into passes, but no investigations studying their effectiveness were identified [Solomon
and Beach, 2004]. The exhaustion of the passing eels is not explicitly discussed. How-
ever, in the agent-based models, the exhaustion of passing elvers significantly reduces
the number of successful passages for all configuration of pass [see figures 3.17 and
3.19]. This would only be exacerbated by an increase in pass length for similar flow
rates and installation angles as the passing eels would have to combat potentially higher
velocities over a prolonged time period. Therefore the length of a pass, or at the very
least the length of pass between two resting pools, should be governed in part by the
swimming ability of the passing eels. Furthermore, as the swimming ability of eels is
intrinsically linked to their bodylength, the design of an eel pass should be dictated by
the bodylength (and hence life-stage) of the target eels. The life-stage of the expected
up-migrating eels is related to the geographical location of the pass and its proximity
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3.7 Conclusion

to the ocean.
These considerations are not currently covered by UK guidance. It is proposed that

current UK guidance should be modified to explicitly refer to the expected minimum
bodylength (earliest life-stage) of the passing eels when discussing installation angle
of passes. Additionally, the exhaustion of passing eels should be explicitly considered
when discussing both installation angle and pass length. Furthermore, more work is
needed to understand the impact of installation angle, flow rate, and length on the
passage efficiency of eel passes for a range of eel bodylengths.

3.7 Conclusion

The work presented in this chapter has succeeded in computationally assessing the
velocity fields in a variety of configurations of eel pass, consisting of eel tiles manu-
factured by Berry & Escott Engineering [2017]. Furthermore, the effects of varying
installation angle and flow rate on the passage efficiency of each pass configuration
was explored through the use of landscape connectivity metrics and custom cellular
automata and agent-based models. All metrics showed realistic results with passage
efficiency decreasing due to the increase in velocity resulting from increased installation
angle and discharge. The landscape connectivity metrics succeeded in capturing gen-
eral trends in passage efficiency, but all compared relatively poorly against the Vowles
et al. [2015] result with the possible exception of (1−DIVISION)×100. All of the land-
scape connectivity metrics suffered from an inability to discern between a pass with a
fully passable pathway from inlet to outlet, and one without. The cellular automata
and agent-based models inherently overcome this problem. Each of the four models
produced realistic trends, such as decreasing passage with increasing discharge, with
the more complex HEPM comparing very well to the available experimental data for the
configuration used by Vowles et al. [2015].

This chapter has shown that landscape ecology metrics, when coupled with CFD,
have the potential to be used as simple proxies of passability, but require significant
modification and calibration such as that suggested in section 3.6.1; which is severely
limited by a lack of experimental data. The work presented here also shows that ap-
plying even simple cellular automata and agent-based models to complex ecohydraulic
systems can result in realistic behaviours and trends. Furthermore, the HEPM, the most
complex of the models presented, was able to predict successful passage to within 2.5%
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3.7 Conclusion

of experimental data. This result was achieved as each model was tailored to this exact
domain and target species. This methodology is evidently capable of yielding accurate
results. However, it does not meet the overall aim of this research, outlined by the
principles given in section 1.2, namely the development of a generalised tool for prac-
titioners to assess passage efficiencies [see table 3.10]. To achieve this, the model must
not be tailored to a specific problem geometry, nor hard-coded for a specific species. In
addition, it should be extended to be spatially 3D in order to ensure it can be applied
to any ecohydaulic domain.
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3.7 Conclusion

Table 3.10: A comparison of the eel CA/IB models and the established tool develop-
mental principles.

No. Principle Achieved
1 Open source Each of the agent-based models were built using Py-

thon 3.6 and are freely downloadable from the University
of Leeds Data Repository [Padgett and Thomas, 2019].
Each model requires an input velocity field in the form
of an ascii file and is therefore not limited to a specific
CFD software.

2 Transparent The work presented herein is published in Royal Soci-
ety Open Science [Padgett et al., 2020] and the associ-
ated data from the paper; including the simulated flow
fields, the HEPM, and the FEPM, are openly available from
the University of Leeds Data Repository [Padgett and
Thomas, 2019]

3 Generalised Each of the agent-based models described in this chapter
are built specifically for the flow fields presented herein.
Therefore none of the models are generalised.

4 Spatially 3D As the models require on input 2D flow fields, movement
in depth in not considered. Therefore, none of the models
are spatially 3D.

5 Self-contained Each of the models are built solely within Python 3.6 and
do not require any additional software. Furthermore, the
only required Python packages are: numpy, random, and
csv.

6 Modular The HEPM is the only ABM presented herein which models
elver as a Python class in their own right. This partially
covers the modular requirement as further classes could
be added to introduce other species to the code. How-
ever, the code would still require extensive modification
as elvers are assumed to be the passing species in the
definition of various other parameters.

7 Individual Focus The HEPM is the only ABM presented herein which in-
cludes any amount of heterogeneity within the popula-
tion.
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Chapter 4

Development of fishPy, A Three Dimensional
Agent-based Model for the Upstream Movement
of Salmonidae
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4.1 Introduction

4.1 Introduction

The work in chapter 3 demonstrated the potential of cellular automata and agent-based
models applied to up-migrating juvenile eels through a specific ecohydraulic environ-
ment. In order to address all of the outlined tool principles these models need to be
extended to a generalised tool. However, this is difficult for cellular automata and
individual based models due to their simplicity and focus on populations rather than
individuals (macroscale versus microscale). Therefore, a new model is required, which
models each individual as this will allow for a complex ruleset, more agent autonomy
and heterogeneity, and a true decision-making framework. To validate such a model
requires data on the movement of individual fish, with a high spatio-temporal resolu-
tion. Data of this type and quality are sparse across species, but non-existent for eels.
Therefore, the current chapter and subsequent chapters consider a different species.

The salmonid family are commercially significant. Furthermore, salmonidae are
anadromous and therefore their successful up-migration is vital to their sustained pop-
ulation. This makes them a family of interest. Due to this, various studies have been
undertaken to understand their biology and lifecycle [e.g. Mills 1989, Crisp 2008, and
Quinn 2018]. Although sparse, data exists on the trajectory of individual salmonids,
particularly brown trout (Salmo trutta) [e.g. Rodriguez et al. 2011 and Dodd et al.
2018]. Together, this means agent-based modelling is a viable approach to understand-
ing the up-migration pathways for this species. There are multiple agent-based models
of fish in the literature, including the well-established NFS model [Goodwin et al.,
2014]. However, there is currently no model in the literature which meets the aim of
this work, and therefore there remains a gap in the literature [see section 2.8].

This chapter presents the development of an open-source model to predict the up-
migration pathways of brown trout (Salmo trutta), due to availability of validation
data. The model predicts vector-based trajectories of individual, heterogeneous fish in
continuous three-dimensional space, based on individual responses to stimuli from their
local environment. The hydrodynamic environment in which agents exist is defined by
multiple three-dimensional matrices defining all a priori data fields, such as velocity,
pressure, and geometric data. These matrices are populated through the execution
and subsequent interpolation of three-dimensional computational fluid dynamics. It is
hoped that the model will enable practitioners and designers to optimise fish passage
facilities and reduce the need for invasive physical experiments.
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4.2 Potential Hydraulic Stimuli

4.1.1 Chapter Aim

The aim of this chapter is to develop an open-source agent-based model to predict
upstream migration trajectories of brown trout, henceforth referred to as fishPy. This
model is developed with significant consideration of the developmental tool principles,
outlined in section 1.2. The model considers the response of an individual to hy-
drodynamic stimuli, and how these responses can be decoded into a ruleset. This is
achieved through a number of objectives outlined below:

• Application of the agent-based modelling approach to predicting fish trajectories.
This is broken down into the following steps:

– Determination of key hydrodynamic stimuli through a thorough review of
the literature;

– Determination of the approach to representing the environment;

– Definition of key attributes for representing an individual as an agent;

– Determination of the model structure by combining the agent and environ-
ment representations; and

– Determination of maximum timestep.

• Creation of a model to understand energy expenditure of each individual.

• Creation of a model to understand the effect of the swim bladder on the trajectory
of an individual.

• Determination of a behavioural ruleset based on defined key hydrodynamic stim-
uli.

4.2 Potential Hydraulic Stimuli

As discussed in section 2.7, there have been many studies on the effects of hydrodynamic
stimuli on fish behaviour. The key hydrodynamic stimuli, their impact, and the study
sources are summarised in table 4.1, along with the relevant fishPy rule and subsection
corresponding to each stimulus.

In addition to the stimuli outlined in table 4.1, Duarte et al. [2012] suggest move-
ment choices of neotropical fishes (Leporinus reinhardti and Pimelodus maculatus)
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4.3 Agent-based Approach to Modelling Fish Behaviour

through a vertical slot fish-way strongly correlate to the local Reynolds shear stress.
Duarte et al. [2012] found that both species preferred regions of “low to zero” Reynolds
shear stress. However, a definition of “low to zero” is not given by Duarte et al. [2012].
A similar study for salmonidae was not found, although Odeh et al. [2002] reported that
Reynolds shear stress value above 50 Nm−2 can cause injury to migrating salmonidae.
Interesting Duarte et al. [2012] also note that the movement choices of both species
of neotropical fish, coincide with regions of “low to zero” streamwise and cross-stream
velocity fluctuations. One can also assume that these regions also feature “low to zero”
turbulence kinetic energy, given its definition [see section 2.5.5]. Therefore, Reynolds
shear stress is not explicitly included in the fishPy model, but rather implicitly in-
cluded through the inclusion of the velocity fluctuations within the turbulence kinetic
energy, as well as inclusion of the spatial velocity gradients within the minMaxEnergy

rule.

4.3 Agent-based Approach to Modelling Fish Behaviour

An agent-based model has two constituent components; agents and an environment
[Macal and North, 2010]. Agents are heterogeneous, autonomous entities capable of
collecting and processing information and subsequently capable of making and execut-
ing decisions. Therefore, fishPy is developed with an emphasis on modelling from the
point of view of the individual in question. Agents exist within an environment that
provides data to the agent and with which the agents can interact [Crooks and Heppen-
stall, 2012]. In fishPy, the model is formulated with individual fish representing the
model agents. These individuals interact with each other as well as their environment.
In fishPy, the environment is represented as a spatially three-dimensional discrete grid
where each grid point contains local hydraulic and environmental information.

Any fauna existing within a hydrodynamic environment exerts a force upon the
environment during locomotion; thereby changing the hydrodynamic environment with
every movement [Montgomery et al., 1995]. It was decided that fishPy would not be
coupled with CFD; i.e. the codes would execute serially. This means that the fish
have no effect upon the hydrodynamic environment. This drastically simplifies the
development of the model and does not limit its usage to a single software, solver, or
turbulence model. Furthermore, this decision allows the required environment to be
constructed using experimental data in place of a CFD output.
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4.3 Agent-based Approach to Modelling Fish Behaviour

4.3.1 Representing the Environment

Within fishPy, the environment is represented as a spatially three-dimensional dis-
crete grid where each grid point contains local hydraulic and environmental inform-
ation. These hydraulic and environmental parameters are required user inputs. The
required variables are listed in table 4.2. As fishPy is executed independently, the
environment data can come from any source; i.e. any solver, any turbulence model,
or even experimental methods. This is done for flexibility of the user. Similarly, the
model does not prescribe a spatial resolution of the input environment data. This is
done to allow greater freedom to the user. However, the user should be aware that,
much like any model, the models outputs rely upon its inputs. That is to say that a
poor quality input will produce a poor quality output. A study of the dependence of
simulated fish trajectories on the grid resolution of the environment is given in section
5.5.

Figure 4.1: Schematic depicting 2D flow over an object, demonstrating the formulation
of the G3D matrix, denoted by the overlain grey grid. The red and green areas denote
the boundary and air, respectively, which fish can never enter and therefore G3D = 0 for
these nodes. The blue area denotes the water and therefore G3D = 1 for these nodes.

The geometry of the domain is handled by the “passability” matrix, termed G3D,
figure 4.1. This matrix is a series of Boolean values that describes whether the corres-
ponding spatial node is passable (value = 1) or impassable (value = 0) to an individual.
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4.3 Agent-based Approach to Modelling Fish Behaviour

For example, a node that exists above the free surface (i.e. α < 0.5 if VOF is used)
would be impassable. Similarly, a node outside of the domain would be impassable.
This method allows for domains with complex geometries to be modelled simply.

Table 4.2: Required environment inputs for fishPy.

Name Information Format Units
sp Spatial resolution Float m

nx Num. of points (X) Integer n/a
ny Num. of points (Y) Integer n/a
nz Num. of points (Z) Integer n/a
X3D Location (X) Matrix [nx,ny,nz], float m

Y3D Location (Y) Matrix [nx,ny,nz], float m

Z3D Location (Z) Matrix [nx,ny,nz], float m

U3D Avg. Velocity (X) Matrix [nx,ny,nz], float ms−1

V3D Avg. Velocity (Y) Matrix [nx,ny,nz], float ms−1

W3D Avg. Velocity (Z) Matrix [nx,ny,nz], float ms−1

P3D Avg. Pressure Matrix [nx,ny,nz], float Pa

K3D Turbulence Kinetic Energy Matrix [nx,ny,nz], float m2s−2

G3D Geometric Data Matrix [nx,ny,nz], Boolean n/a

Hydrodynamic fauna exist within a temporally-dependent environment wherein
their local hydrodynamics are constantly varying. However, fishPy is built only to
function with temporally-averaged environment data. This is to simplify the model
and its input requirements, and to avoid the possibility of temporally-dependent fish
trajectories; where individuals perform differently depending on their start time. Sim-
ilarly, a temporally-varying environment would introduce issues of temporal resolution
dependency. Furthermore, the required total time for the input environment data would
depend upon the passage time of the slowest individual. Therefore, investigations would
require a certain amount of guesswork to determine the total time and temporal res-
olution required for the desired domain. Therefore, a core assumption of this work
is that a temporal changes in the hydraulic passage environment are not significant
to influencing fish behaviour and that a temporally-averaged hydraulic environment
provides sufficient information to determine fish movement decisions. This assumption
is significant but necessary, due to the complications outlined above, and is an area of
research which could be pursued in the future, but is outside the scope of this work.
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4.3 Agent-based Approach to Modelling Fish Behaviour

4.3.2 Representing Fish as Agents

Within fishPy, individual fish are represented as agents. These are self-contained,
heterogeneous, autonomous entities that interact with their environment and make
decisions based on internal rules. In this work, these agents have a number of in-
ternal states, or attributes, which define them, table 4.3. Individuals are assigned
attributes upon creation. Some attributes vary throughout the simulation, such as
location and heading; whereas others are fixed throughout, such as bodylength. Many
of these attributes rely upon user inputs, therefore the required non-environment user
inputs are detailed in table 4.4. Simulated trajectory dependency on fishTimestep

and sensoryRange are given in section 5.5.
The fishNum variable is used to define the size of the simulated population. The

bodylength mean and bodylength deviation variables define the normal distribution
of bodylengths for the population. Upon creation, each individual is assigned a number
of attributes. Firstly, it is given an identification number. It is then assigned a location,
which defines x,y,z, and coordsCentroid. The method used to determine where an
individual is created is discussed in section 4.3.4. The initial heading of the individual
is calculated as the opposite direction to the local velocity vector at the location the
individual is created. This is done to simulate rheotaxis. The heading in subsequent
timesteps is defined following the method in section 4.6.8.

Each individual is also assigned a bodylength randomly taken from the normal
distribution of the bodylengths of the population. The bodywidth and bodyheight of
the individual are calculated based on the work of Tonkin et al. [2013], equations 4.1
and 4.2, respectively. These values are used to model the physical size of the individual.

W = 0.08571× L+ 1.42885× 10−3 (4.1)

H = 0.21875× L− 1.875× 10−3 (4.2)

where: W is the bodywidth of the individual inm; L is the bodylength of the individual
in m; and H is the bodyheight of the individual in m.

The wetted area (or surface area) of the individual is calculated based on the work
of Haefner and Bowen [2002], equation 4.3. This value is used to estimate the drag
experienced by the individual, discussed in section 4.4.

As = αLβ (4.3)
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where: As is the wetted area of the individual in m; and α and β are empirically derived
constants equal to 0.465 and 2.11, respectively.

Lastly, the individual is assigned a mass based on the work of Milewski and Brown
[1994], equation 4.4. Milewski and Brown [1994] report that the relationship is accept-
able for brown trout of length > 150mm. This value is used to approximate buoyancy
effects, discussed in section 4.5.

M = 10−4.867+2.96 logL (4.4)

where: M is the mass of the fish in grams; and L is the bodylength of the fish in mm.

As individuals are not infinitesimal points, it is important to model their physical
size. Once the bodylength, bodywidth, and bodyheight of the individual are calcu-
lated the full physical extent of the individual is calculated, figure 4.2. This is done
by determining the location of the extent of the individual in each direction, mod-
elled in the fish axis. Specifically, the bodylength, bodywidth, and bodyheight are
used to determine the location of the extent of each individual in each axis, denoted
coordsNose, coordsTail, coordsLeft, coordsRight, coordsTop, and coordsBottom.
The fish axis is defined by its heading, where coordsCentroid represented the axis
origin, positive x is the heading direction, positive y is the left (port) side of the in-
dividual, and positive z is upwards. The sensory ovoid for the individual, originally
introduced by Goodwin [2004], is then defined based on the sensoryRange and the
bodylength. The ovoid is defined by the sensory query distances: SQDx, SQDy, and
SQDz, which denote the distance over which the individual can detect hydrodynamic
information in the x,y, and z directions in the fish axis. In fishPy, SQDx and SQDy are
defined as bodylength×sensoryRange, where the sensoryRange is set to 1.0 [see sec-
tion 5.5.3]. An individual’s sensory perception is weaker above and below itself, which
is reflected in SQDz which is defined as 0.25×bodylength×sensoryRange. The extent
of the sensory ovoid of an individual is shown in figure 4.2. A sensitivity analysis of
fish trajectories to sensoryRange is given in section 5.5.3.

Each individual is assigned a burst swimming speed, swimBurst, and a sustained
swimming speed, swimSust, based on its bodylength. These are calculated based on
the work of Scruton et al. [1998], Clough and Turnpenny [2001], and Peake [2008];
equations 4.5 and 4.6 [see figure 4.3]. These empirically-derived equations are based
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Table 4.3: Agent attributes assigned to each individual upon creation within fishPy.

Attribute Description Units
id Identification number n/a
x x location of centroid of the individual. m

y y location of centroid of the individual. m

z z location of centroid of the individual. m

coordsCentroid
Coordinates of the centroid of the individual
- defined as [x,y,z]

m

bodylength Total length of the individual m

bodywidth Total width of the individual m

bodyheight Total height of the individual m

mass Mass of the individual kg

SQDx
Sensory query distance in the x direction
using the fish axis.

m

SQDy
Sensory query distance in the y direction
using the fish axis.

m

SQDz
Sensory query distance in the z direction
using the fish axis

m

swimBurst Burst swimming speed ms−1

swimSust Sustained swimming speed ms−1

wettedArea Measure of the surface area of the fish m2

heading Direction that the fish is pointing Unit vector.

movementWeights Weightings of behaviours
List of
percentages.

coordsNose
Coordinates of the individual’s nose - i.e. the
extent of the fish in positive x in the fish axis.

m

coordsTail
Coordinates of the individual’s tail - i.e. the
extent of the fish in negative x in the fish axis.

m

coordsLeft
Coordinates of the individual’s left side - i.e. the
extent of the fish in positive y in the fish axis.

m

coordsRight
Coordinates of the individual’s right side - i.e. the
extent of the fish in negative y in the fish axis.

m

coordsTop
Coordinates of the individual’s top - i.e. the
extent of the fish in positive z in the fish axis.

m

coordsBottom
Coordinates of the individual’s bottom - i.e. the
extent of the fish in negative z in the fish axis.

m
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Figure 4.2: Schematic of an example virtual fish, denoted in yellow, showing a planform
and side view. The centroid is denoted in red. Physical nodes are denoted in blue.
Sensory ovoid nodes are denoted in green. Sensory ovoid midpoint nodes are denoted
in orange. Obstacle avoidance nodes are denoted in pink. Fish axis denoted in each
case.
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Table 4.4: Required non-environment inputs for fishPy

Name Format Default value Units
fishTimestep Float 0.1 s

Tmax Integer n/a n/a
fishNum Integer n/a n/a
sensoryRange Float 1.0 bodylengths
repulsionDist Float max(bodylengths)/2 m

bodylength mean Float n/a m

bodylength deviation Float n/a m

spawnZoneXmin Float n/a m

creationZoneXmax Float n/a m

creationZoneYmin Float n/a m

creationZoneYmax Float n/a m

creationZoneZmin Float n/a m

creationZoneZmax Float n/a m

targetZoneXmin Float n/a m

targetZoneXmax Float n/a m

targetZoneYmin Float n/a m

targetZoneYmax Float n/a m

targetZoneZmin Float n/a m

targetZoneZmax Float n/a m

on eight research studies of brown trout swimming speeds for a mean length of 0.161m
(range: 0.05m to 0.35m) and a mean water temperature of 8.3◦C (range: 5.0◦C to
15.0◦C). As swimming performance versus temperature has been shown to follow an
“inverted-U-shape” [see Lee et al. 2003], it follows that equations 4.6 and 4.5 are only
applicable for temperatures between 5.0◦C and 15.0◦C.

swimBurst = 0.305 + 6.1L− 0.05742 (4.5)

swimSust = 4.8L+ 0.02T (4.6)

where: L is the bodylength of the individual in m; and T is the water temperature in
◦C, taken as 10◦C in all calculations.
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Figure 4.3: Burst swimming and sustained swimming speeds against fish bodylength.
Calculated based on the work of Scruton et al. [1998], Clough and Turnpenny [2001],
Peake [2008], equations 4.5 and 4.6.

4.3.3 Axis Transformations

The behavioural ruleset of each individual is based within Lagrangian space and the
environment is represented in Eulerian space. Therefore, it is important to convert
between the global axis; determined by the environmental data, and the axis of each
individual, dubbed the fish axis. This is done by assuming that the x direction in the fish
axis, dubbed x′, is defined by the heading of the individual. Furthermore, it is defined
that the z′ axis must always be the closest axis to z (i.e. the individual must always
been angled less than 45◦ to the global horizontal axis), and the roll of the individual
is zero in relation to the global axis. These three criteria are sufficient to define a new
axis based on any heading direction. These assumptions are appropriate given that
the model is applied to natural river systems where variations in the z direction are
not significant. Implementation of this axis system, while computationally inexpensive,
imposes a limit that the input environmental data must have its negative z direction
aligned with the direction of gravity.

4.3.4 The Structure of fishPy

Figure 4.4 details the general structure and function of fishPy. The code can be
thought of as four separate sections or stages. These are: the problem definition, the
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initialisation, the main loop, and the outputs. The problem definition stage includes
the user defining all user inputs. These include the required environment data, table
4.2, and the required non-environment data, table 4.4.

In the initialisation phase, the model sequentially creates individuals up to the
value of fishNum. Upon creation, each individual is assigned a number of attributes,
as described in section 4.3.2. Each individual is also placed within the creationZone,
a bounding box defined by the user [see table 4.4]. This creationZone must exist
entirely inside the domain. Individuals are randomly placed within the domain via the
determineCreationLocation function, which randomly picks an x,y, and z location
within the creationZone, using the random.uniform function in Python. This location
is assessed based on the G3D matrix to ensure it is an acceptable location. If the
location is unacceptable, the process is repeated for that individual a maximum of
10 times, before moving on to the next individual. If fish-fish interaction is enabled
(i.e. colAvoidance is enabled) individuals are placed ensuring they are not within
repulsionDist from any other individual. If the creationZone is not large enough to
accommodate the entire population, the code will place as many as it can, warn the
user that the entire population will not be simulated, then execute.

The user must also define the region in which fish are understood as having suc-
cessful “passed” the domain. This region is named the targetZone and is defined as
a bounding box [see table 4.4]. If an individual enters this box they are considered
to have passed through the domain and are removed from the simulation. They are
subsequently added to the list, passed, which defines successful individuals. At the end
of each timestep the failCheck function is executed to check whether the current in-
dividual has failed. This is assessed based on two criteria; firstly, whether the averaged
velocity magnitude is zero, and secondly, whether the individual has moved outside of
the bounds of the domain as represented by G3D. If either of these criteria are met, the
individual is deemed to have failed and is subsequently moved to the failed list.

The main loop runs until either all fish have passed or failed, noted by their existence
within the passed and failed lists, or until a maximum number of timesteps, Tmax, is
reached. The latter condition is included only to ensure the code fails gracefully, and
generally Tmax should be defined large enough so as to not affect fish trajectories. At
each main loop timestep, each fish makes a single movement in an order defined by the
initiative list. This list is determined at each timestep based on the distances moved
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Figure 4.4: Flowchart denoting the general structure and function of fishPy. Note
that passed and failed refer to Python lists of the individuals that have successfully
passed the domain and failed to pass the domain, respectively.
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by each individual in the previous timestep. During the first timestep, the initiative

list is defined as the list of individuals in the order they are created. Each individual
moves based on the result of their behavioural ruleset, discussed in section 4.6.

The environment within fishPy is represented by spatially discrete data. However,
individuals are free to move in a spatially continuous manner (i.e. between nodes). This
was done to allow additional freedom to individuals and to mitigate against the use of
larger spatial resolutions in the environment data. To accomplish this fishPy uses a
three-dimensional linear grid-based interpolation scheme RegularGridInterpolator,
a part of the scipy Python package. This allows an individual to query the value of
any environmental variable at any point in three-dimensional space. This interpolation
is also used to determine the passability value for any location in the domain from the
G3D matrix. This means at some locations the passability will be between 0 and 1.
Therefore a threshold value (passabilityThreshold) was required to determine what
value of G3D denoted the interface between passable and impassable regions. The value
of passabilityThreshold was varied between 0.5 and 0.01. Larger values resulted in
a reduction in the near-wall geometry, which triggered individuals to avoid walls due
to an artefact of the passabilityThreshold value rather than due to a behavioural
rule. This artefact was reduced with decreasing values of passabilityThreshold, and
was eliminated at a value of 0.1. Therefore, the passabilityThreshold was set to 0.1.
Any location with a passability greater than this threshold is classed as passable, and
any location with a passability less than this threshold is classed as impassable.

After a response is determined, the individual’s internal states, such as location and
heading, are updated. The method used to calculate the heading is discussed in section
4.6.8. After each individual has moved a number of metrics are calculated including
the current time taken, the cumulative energy expended, and the total distance moved.
The method used to calculate the energy expended is detailed in section 4.4. Once all
individuals have either passed or failed, or Tmax has been reached, the simulation ends
and passage metrics as well as the movement history of each individual are written to
file.

4.3.5 Temporal Sensitivity & Maximum Decision Timestep

The timestep defines the jump between discrete time points within the simulation. The
larger the timestep the smaller the computation expense for a given time period. How-
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Table 4.5: Calculated maximum decision timesteps (fishTimestep) for a number of
example cases within fishPy.

bodylength (m) swimSust (ms−1) min(|U|) (ms−1) max(fishTimestep) (s)

0.15 0.92
0.0 0.245
0.2 0.313

0.25 1.40
0.0 0.268
0.2 0.313

0.5 2.60
0.0 0.288
0.2 0.313

0.75 3.80
0.0 0.296
0.2 0.313

1.0 5.0
0.0 0.300
0.2 0.313

ever, decreasing the timestep will increase the accuracy of the simulation. Therefore,
there is a trade-of between accuracy and computational expense. The model framework
is defined such that it is straightforward to vary the timestep size. This enables a study
of the sensitivity of the model to the timestep [see section 5.5], and also enables any
future users to modify the tool to fit their requirements. Furthermore, a timestep max-
imum is imposed to ensure environmental information is not overlooked. An individual
moving within any domain can sense all environmental data within their sensory ovoid.
If the individual were to move far enough in a single timestep that the new sensory
ovoid does not overlap the original sensory ovoid (in Eulerian space), some information
has been neglected. This can cause individuals to move through objects or otherwise
miss potentially important environmental data. This is a form of the CFL criterion as
discussed in section 2.6.1. Therefore an individual should be limited in its movement
via imposing a maximum limit on the decision timestep.

This maximum is calculated for the case of an individual moving at its sustained
speed (swimSust) with an opposing fluid velocity equal to the minimum velocity mag-
nitude within the wetted domain. This case represents the largest ground speed of an
individual in a single timestep, assuming that it is moving upstream, and therefore rep-
resents the largest distance moved in a single timestep. One may think that the burst
speed (swimBurst) should be considered, however, within fishPy an individual only
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opts to move at burst speed if the local velocity is greater than its sustained swimming
speed, resulting in an overall smaller Eulerian distance moved. If the maximum speed
multiplied by the decision timestep causes the individual to move such that it’s new
centroid is outside of its previous sensory ovoid, then the timestep must be reduced.
Furthermore, if a population of individuals is used, the bodylength and swimSust of
the largest individual must be used. This can be expressed mathematically as equation
4.7.

max(fishTimestep) < TSL

(swimSust−min |U|) (4.7)

where: TSL is the total sensing length of the largest individual in the population, equal
to bodylength

2 + SQDx.

Table 4.5 shows some example maximum decision timesteps for a variety of sizes
of individuals. Interestingly, as the swimSust value scales with the bodylength of
an individual, the maximum timestep remains roughly constant for a given minimum
velocity magnitude, within the domain. If the fishTimestep is defined as greater than
this value, fishPy will continue to execute but the user may suffer from stability issues
or unnatural movements.

The definition of the maximum decision timestep is done to ensure stability and
the flow of information within the model. It does not suggest that the model is in-
sensitive to the timestep if the timestep is less than the maximum. It is impractical
to quantify the temporal sensitivity of the model for a general case as sensitivity to
the timestep will depend upon the flow field and geometry considered. Therefore, a
timestep sensitivity study, such as that presented in section 5.5, should be undertaken
to ensure independence of the results for a given case.

4.4 Modelling Energy Expenditure

Quantification of the energy expended by up-migrating individuals is considered in this
section. Many species of salmon cease feeding before commencing migration and rely
on stored energy for all movements [Khan, 2006]. This means that an up-migrating in-
dividual has a finite amount of energy which must last the entire duration of migration.
Therefore quantification and reduction of the energy required to pass through anthropo-
genic facilities is important in ensuring unhindered longitudinal migration. The energy
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expended by each individual is modelled using the method detailed by Khan [2006] and
subsequently by Blank [2008]. The method assumes that the main force acting upon
an individual is hydrodynamic drag. Therefore the energy expended by an individual
can be expressed as the culminated drag force that is experienced by the individual.
An equation for the drag force is derived from boundary layer theory and is analogous
to the conventional drag equation [Behlke, 1991, Vogel, 1994], equation 4.8.

F = 1
2CdρAS(Uw −Uf )2 (4.8)

where: Cd is the fish drag coefficient; ρ is the water density; AS is the wetted area of
the fish; Uw is the local water velocity; Uf is the fish velocity.

The drag coefficient, Cd, can be described as in equation 4.9, where Cf is the
frictional component of the drag coefficient.

Cd ≈ 1.2Cf (4.9)

where, for turbulent flows, the frictional component can be described as:

Cf = 0.074Re−0.2 (4.10)

where the local Reynolds number for the individual is:

Re =
ρ
(
Uw −Uf

)
L

µ
(4.11)

where: L is the individual’s bodylength; ρ is the density of water; and µ is the kin-
ematic viscosity of water.

The energy expenditure of an individual can then be calculated as

E =
∫ S

0
|F | dS (4.12)

Where S is the fish path.

In terms of code implementation, the energy equation, (4.12), is discretised and the
drag force is calculated for each timestep. Assuming that the water density, ρ, and the
wetted surface area of the individual, AS , are constant, the following equation can be
written for the energy expended per timestep, i:

Ei = αρAS

n∑
i=1

(
Uw,i −Uf,i)2Re−0.2

i ∆di (4.13)
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Where Ei is the energy expended by the individual during timestep i; α is a constant
equal to 0.0444; Uw,i is the velocity of the water during timestep i; Uf,i is the indi-
vidual’s velocity during timestep i; Rei is the local Reynolds number in timestep i, and
∆di is the distance travelled in timestep i.

It is difficult to verify that this methodology accurately calculates the energy expen-
ded by an individual. Furthermore, only the wetted area As is a function of the species
considered. This is questionable as it is known that swimming type, such as anguilli-
form or subcarangiform, have varying levels of efficiency and required effort, naturally
resulting in a change in energy expended over similar distances. Similarly, the local
water temperature is known to affect the energy expenditure, and is not considered
within equation 4.12. However, the methodology outlined here may not provide an ex-
act number but does provides an analogous metric, used to compare between different
pathways taken by an individual.

4.5 Modelling the Swim Bladder

As discussed in section 2.4.2, most fish have swim bladders which allows individuals to
modify their density. This regulates the buoyancy of the individual, reducing its energy
expenditure by reducing the need for a vertical component of the swimming vector. An
investigation into modelling of the swim bladder was undertaken based on the work
of Alexander [1966] and Strand et al. [2005]. This modelling process is detailed in
appendix C. This approach was extended to determine the exact volume of the swim
bladder at a snapshot in time, based on current and previous depths. However, a simple
model of the swim bladder was implemented in fishPy to determine the significance
of the swim bladder in upstream river migrations, rather than the vertical marine
migrations considered by Strand et al. [2005]. The simple model assumed the volume
of the swim bladder was constant and determined upon creation based on the initial
depth of the individual. The buoyancy experienced by the individual was calculated
at each timestep. These buoyancy values were tracked over the course of multiple
trajectories and found to never exceed 1× 10−9 N . This meant that trajectories were
near-independent of the swim bladder influence and so it was decided that complex
modelling of the swim bladder volume was unnecessary.

A simple model of the swim bladder is implemented within fishPy to demonstrate
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the negligible effect of buoyancy; facilitating future development of the code, such as
future species models or the application of fishPy to marine datasets. The fishPy

implementation of the swim bladder is:

1. Upon creation an individual is assigned a swim bladder volume. This volume is
determined as the required volume to ensure neutral buoyancy at the creation
depth of individual.

2. At each timestep the buoyancy is calculated based on equation C.2, located in
appendix C.

3. The resultant movement vector is then determined and applied to the individual.

This function demonstrates the negligible buoyancy forces over the time-scales con-
sidered within fishPy (i.e. O(1.0) seconds). Crucially, the swim bladder is implemented
with static volume; therefore neither passive nor active gas transfer processes are mod-
elled. This means that an individual always tends towards the depth at which it was
created.

4.6 Behavioural Ruleset

This section details the behavioural ruleset that governs the movement decisions of
each individual. The ruleset is defined in a modular manner with no dependencies
between rules. This allows individual rules to be turned on or off without affecting the
output of other rules. The formulation of each rule is based on a thorough literature
review. This is summarised in table 4.1 which cross references key literature findings
with each behavioural rule. Furthermore, vision is known to play a key part in the
navigation of fish [Liao, 2007] but is not explicitly implemented within fishPy, as
hydraulic stimuli are the focus. However, vision is implicitly implemented within some
of the housekeeping rules such as collision avoidance, covered in section 4.6.9. Each rule
outputs a movement direction (unit vector). These outputs are used to determine the
final behavioural response, detailed in section 4.6.10. Furthermore, sensitivity studies
for a number of the parameters introduced in this section are presented in chapter 5.
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4.6.1 Rule 1: followFlow

Rule 1, followFlow, forms the basis of an individual’s attempt to move upstream. The
rule determines the local upstream direction based on the local bulk flow, allowing for
simulation of rheotaxis and fundamental upstream movement. This is achieved through
sampling U ,V , and W at the 6 nodes that make up the physical representation of the
individual as well as at the 12 sensory ovoid nodes [see figure 4.2]. These are then
averaged to determine the average velocity direction, local to the individual, which is
assumed to be representative of the inverse of the local upstream direction. The spatial
averaging of the local velocities is weighted based on the magnitude of the velocities, i.e.
faster flows have more influence over the determined velocity direction. This is done to
effectively reduce the influence of any secondary or tertiary flows in the local area, as
these an not representative of the local bulk flow. This is not to say that secondary or
tertiary flows are insignificant, but that they are not considered within this rule, and
instead considered within sections 4.6.2 and 4.6.7.

The velocity magnitudes across the physical representation nodes are also averaged
to determine the velocity that the individual must overcome. This rule then returns a
unit vector in the opposite direction to the average local velocity direction as well as
the average velocity magnitude. This rule results in the individual moving upstream
without any requirement for knowledge of the geometry of the domain in question.
Furthermore, this rule does not rely on flow in a certain axis, as long as the negative z
direction of the input environmental domain aligns with gravity.

4.6.2 Rule 2: minMaxEnergy

Rule 2, minMaxEnergy, takes inspiration from the work of Blank [2008], Abdelaziz
[2013], and Plymesser [2014] by implementing a minimum energy selection process.
However, as discussed in section 2.8.1, modelling the local minimum energy pathway
requires knowledge of the entire flow field and, more importantly, is insufficient when
considering domains with flow reversal, stagnation, or recirculation zones. Conversely,
literature also suggests that up-migrating salmonids are attracted to high flows [Banks,
1969, Lundqvist et al., 2008, Thorstad et al., 2008]. Therefore, this rule includes cases
in which the individual’s preference is switched between searching for the minimum
energy path, searching for the maximum energy path, and not actively searching for
either. This captures the different behaviours undertaken based on the individual’s
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surroundings. It is theorised that, when exposed to a simple flow field, an individual
will search for the minimum energy pathway, i.e. search for lower velocity magnitudes.
If the individual experiences a sufficiently large lateral negative fluid shear; i.e. the
rate of change of the fluid velocity in the local hydrodynamic environment, it will
cease seeking the minimum velocity region. It is theorised that a large negative fluid
shear denotes the presence of high turbulence, and that continuing to search for lower
velocity regions will tend the individual into the turbulence. Use of the fluid shear
value is inspired by the work of Goodwin [2004], Goodwin et al. [2006] and Nestler
et al. [2008].

Figure 4.5: Flowchart denoting the structure of the minMaxEnergy rule.

If the local average velocity magnitude or fluid shear are found to be below an ad-
ditional threshold, or the individual senses the presence of an obstacle, the individual
will switch to seeking maximum velocities. The presence of an obstacle is determined
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by querying the output of obAvoidance [section 4.6.4]. This is done as these events
represent a hydrodynamic environment that are detrimental to the individuals passage
(i.e. stagnation or high turbulence regions). This is aligned with the findings of Smith
et al. [2005] and Smith et al. [2006], who found that brown trout consistently chose
faster, lower turbulence regions opposed to slower, higher turbulence regions [“turbu-
lence” defined by Smith et al. [2005] as increased u′, v′, w′, TKE, and τ ; see section
2.7.2]. Regions of stagnating flow are detrimental as it is important for the individual
to be exposed to relatively significant flow velocities to determine the correct upstream
direction, in line with the known requirement for an “attraction flow” often referred
to in policy documents and literature [see section 2.7.1]. Therefore if, when seeking
lower velocities, the average velocity magnitude becomes suitably low, the individual
will cease searching for lower velocity regions.

The default behavioural case considers the individual searching for the local min-
imum energy pathway, figure 4.5. If the individual encounters a velocity magnitude
less than minEnergyThreshold or a lateral fluid shear less than gradThesholdMin,
the case is switched and the individual ceases searching for the local minimum energy
pathway. Moreover, if the individual encounters an obstacle, a velocity magnitude less
than maxEnergyThreshold or a lateral fluid shear less than gradThresholdMax, the
case is switched and the individual will begin searching for the local maximum en-
ergy pathway; i.e. larger local velocities. To limit constant reversion back and forth
between the three states, a counter is included so that when an individual encounters
an event triggering a search for higher velocities, the individual will search for higher
velocities for a minimum number of timesteps before accepting a change in behaviour,
effectively dampening sharp changes in behaviour. The minimum number of timesteps
between case switches is controlled by the minEnergyItMax variable, which is defined
as minEnergyTimeMax

fishTimestep ; where minEnergyTimeMax = 2.0s. Therefore, at its most frequent,
the behavioural case for a given individual can switch once every two seconds. As
with many behavioural parameters, it is difficult to determine an exact expression for
minEnergyTimeMax and therefore, sensitivity to this value could be determined in future
work.

Individuals assess the velocity at eight nodes that describe the region of the sensory
ovoid in front of the individual. As the heading direction is controlled by the known
“extended local” upstream direction, considering only the region in front of the indi-
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Figure 4.6: Scatter plot showing 1000 example points (orange) generated by the
randomWalk function from an initial location, shown in blue. These points, in reference
to the initial location, describe the resulting movement direction.

vidual removes the option for an individual to move backwards, even if this location
would present an attractive option. This is important as movement backwards is un-
likely to constitute the minimum energy pathway. Once the eight nodes are assessed,
the location of the minimum (or maximum) velocity magnitude is determined and the
unit vector describing the direction of this node is calculated. This unit vector is then
returned as the output of the rule. The sensitivity of the model to the values of the
thresholds discussed in this chapter are explored in section 5.5.1.

4.6.3 Rule 3: randomWalk

Random walk theory is a classical method used to study motion. First studied by
Brown [1828], and subsequently by Einstein [1905], Pearson [1905], and Rayleigh [1905].
Random walk theory has since been explored and applied to a multitude of animal types
[see Codling et al. 2008 for a thorough review].

Random walk theory is applied to individuals within fishPy. This introduces
stochasticism to the model, aids in capturing the fickle nature of decision-making, and
can represent processes not explicitly modelled [Grimm and Railsback, 2005, Gisen,
2018]. An uncorrelated, biased random walk is used by individuals. The function ran-
domly selects two variables; a yaw angle, φ, and a pitch angle, θ; using the python
random package. The pitch angle is limited to allow for maximum pitch magnitude of
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10 degrees (0.175 radians), to eliminate unnatural vertical movements. This limitation
is in rough agreement with the maximum angle of natural riverine slopes. These two
angles describe a point in three dimensional space (using a nominal radius of 1), which
is used to define a unit vector direction from the current location to the point [see
figure 4.6]. This unit vector is returned as the behavioural output denoting the biased
random walk; noting that the magnitude of the movement is handled after the direction
is established.

4.6.4 Rule 4: obAvoidance

This rule adds additional obstacle avoidance abilities to each individual. This is done
by assessing the passability (G3D) of five locations in front of the individual, named
“query points”, to search for obstacles. These query points exist within the sensory
ovoid and are shown by figure 4.2.

The individual interrogates the G3D matrix at each query point and stores the cor-
responding value. If all of the query points are found to be impassible, the location
of each of the query points are temporally moved closer to the individual (by a factor
of 0.67). This reduction step is executed a maximum of 10 times, after which fur-
ther reductions were found to have negligible impact. After querying the points, and
determining at least one passable point, the average location of the passable points is
calculated. A unit vector describing the direction towards the average passable location
is determined. If all query points are impassable or all query points are passable, the
unit vector is reduced to zero to indicate the individual’s lack of preference.

4.6.5 Rule 5: colAvoidance

This rule ensures no two individuals occupy the same physical space. Individuals assess
the Euclidean distance between their own centroid and the centroid location of all
other individuals in the domain. If any individual is within repulsionDist of the
active individual, the unit vector describing the direction is calculated and stored. The
average direction of influencing individuals is calculated and a unit vector describing
the opposite direction is given as the output.

Due to using this methodology, if an individual is flanked equally by other indi-
viduals on either side, and those individuals are within repulsionDist and therefore
activate the collision avoidance behaviour, the colAvoidance rule will result in a zero
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magnitude unit vector output for the middle individual. Whereas, the results will
move the left-most individual more to the left, and the right-most individual more to
the right.

It was decided to include this behaviour as a defined behavioural rule in its own
right, rather than include it within the housekeeping functions. This decision was
made as the foundation of the behaviour (and its implementation) lend themselves to
modelling schooling behaviour, which is expected to be required for other species in
the future of the fishPy model. However, this is not required for brown trout.

4.6.6 Rule 6: memory

This rule models the individual’s memory of the main velocity direction. It is thought
that trout migrating upstream would not make harsh changes in direction over small
time periods. This thinking forms the basis of this behavioural rule, which gives influ-
ence to the previous movement direction in the current timestep. This has the effect of
increasing an individual’s tendency to continually move in the same direction, rather
than relying significantly on the current local hydrodynamic environment. With each
execution of followFlow, the local velocity unit vector, averaged over the sensory
ovoid, is calculated. This value denotes the local flow direction and is stored within an
array of directions representing the memory of the individual. The length of this array,
denoted numMemory, is determined as:

numMemory = memoryTime
fishTimestep

(4.14)

where memoryTime is the time period of which the individual “remembers”, the
value of this variable is explored in section 5.4.6. This array is then averaged over to
determine the individual’s perception of the average upstream direction. Therefore,
at each timestep, the memory rule outputs the average upstream direction that the
individual remembers.

4.6.7 Rule 7: tkeAvoidance

Rule 7 takes inspiration from the work of Gao et al. [2016] and Smith et al. [2005] and
considers the preference of an individual to avoid regions of high turbulence kinetic
energy. Smith et al. [2005] suggest that brown trout choose regions with low relative
TKE, whereas Gao et al. [2016] suggests they opt for regions with a tke within the
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range of 0.1 to 0.35m2s−2 (or Jkg−1). This rule uses a formulation of both by selecting
a pathway that minimises local turbulence kinetic energy but only if the individual
senses a value above 0.35m2s−2.

The rule functions in a manner similar to the minMaxEnergy rule. If the local
turbulence kinetic energy exceeds 0.35 m2s−2, the individual assesses the TKE at 8
nodes that describe the region of the sensory ovoid in front of the individual. This
ensures that the individual does not move backwards, as it is assumed that theheading

represents the upstream direction. Once the 8 nodes are assessed, the location of the
minimum turbulence kinetic energy is determined and the unit vector describing the
direction of this node is calculated. This unit vector is then returned as the rule output.

4.6.8 Calculation of the heading

Upon creation an individual’s heading is calculated as the opposite direction to the
local average velocity vector without any memory influence as the memory array only
contains the upstream direction at the current timestep. In future timesteps the head-
ing is calculated based on the current local upstream direction (weighting 1.0), the up-
stream direction from memory (weighing 1.5), and the direction moved in that timestep
(weighting 0.5). This tends the individual to point its nose upstream, simulating rheo-
taxis. This is done to ensure that an individual’s heading in a given timestep is not
dominated by the local velocity direction, as this can cause harsh, unnatural changes
in heading.

4.6.9 Housekeeping

In addition to the described novel behavioural ruleset, there are a number of additional
functions which have been grouped together with the term “housekeeping” rules. These
ensure code functionality. They are not described in detail as they are not associated
with fish behaviour but ensure that the physics of the system are not compromised.
This includes a calculation of buoyancy forces based on the work of Alexander [1966],
Strand et al. [2005], detailed in section 4.5. It also includes collision avoidance measures
for walls, and functions to ensure individuals don’t enter dry cells.
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4.6.10 Determining a Behavioural Response

Once the behavioural rules have been executed for the given individual, the output
of each behavioural rule are compiled into the runResults array. It is important to
note that each element of this array contains a direction for the individual to move in
rather than a vector. A behavioural response is then determined via a weighted average
of these results, where the weighting is controlled by the movementWeights array, an
example of which is given in equation 4.15. After averaging, the result is then converted
to a unit vector to maintain its representation of direction. The movementWeights array
contains the weight applied to the output of each behaviour rule, and is calculated for
each individual upon creation. At creation, the movementWeights array is given by
equation 4.15.

movementWeights = [0.2, 0.1, 0.05, 0.15, 0.2, 0.2, 0.1] (4.15)

where movementWeights[N ] represents the weighting applied to the output of rule N ,
and the sum of movementWeights = 1.

During each timestep, the weighting for the minMaxEnergy rule can vary. This is
done to give more influence to the search for the local maximum energy path, as this is
an escape behaviour, equation 4.16. If the individual is searching for the local minimum
energy path, the weighting is set to 0.1. If the individual is not actively seeking, the
weighting is set to zero. If the individual is searching for the maximum energy path,
the weighting is set to 0.5 − 0.1(fishTimestep × minEnergyIt). This gives a large
influence to the rule upon first switching to searching for larger velocities to model the
importance of moving away from potentially dangerous situations. This influence then
slowly reduces as the danger subsides, equation 4.16. This formulation is akin to the
repulsion behaviour in the NFS model [Goodwin et al., 2014]. As the weighting of the
minMaxEnergy rule can vary, the movementWeights array is re-normalised within each
timestep to ensure that the weightings sum to 1.0 [see i.e. figure 4.7].

Wenergy =


0.1, if seeking min. energy

0.5− 0.1(minEnergyIt∆t), if seeking max. energy

0.0, otherwise

(4.16)

where WminManEnergy is the weighting assigned to the output of the minMaxEnergy rule,
minEnergyIt is the number of timesteps since the behavioural case switch, and ∆t is
the fishTimestep.
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Figure 4.7: Visualisation of the distribution of the movementWeights array for five
cases

Once a direction is determined, the actual movement of the individual is handled
by the calcMoveMakeMove function. The speed that the individual moves at depends
upon the local average velocity magnitude (AvgMagVel) that the individual must over-
come. If this value is above the swimSust of the individual, the individual switches to
swimming at burst speed (swimBurst), but otherwise opts to use its sustained speed.
Furthermore, if AvgMagVel is more than the swimBurst of the individual, then the
speed of the individual is set to zero and the individual is considered to be retreat-
ing. Mathematically, this is expressed as equation 4.17. This effectively represents
the individual succumbing to the water velocity and retreating downstream. This re-
treat (or fallback) behaviour continues for a number of timesteps controlled by the
fallbackItMax variable. This is mathematically equal to setting the weighting of each
rule to zero.

S =


0.0, if AvgMagVel ≥ swimBurst

swimBurst, if swimSust ≤ AvgMagVel ≤ swimBurst

swimSust, otherwise

(4.17)

where: S is the individual’s speed for the current timestep; and AvgMagVel is the velo-
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city magnitude averaged across the individual’s physical nodes.

The actual movement is then defined as the summation of the move directions multi-
plied by the individual’s speed and the averaged velocity vector of the local water which
must be overcome. This is then multiplied by the decision timestep. Mathematically,
this is expressed as equation 4.18.

moveVector = ((moveDirection× S) + avgVecVel)× fishTimestep (4.18)

As the direction of the movement of the individual is based upon the unit vector of
the weighted average of the runResults array, it is possible for this average to result in
a direction dominated by unnatural vertical movement. This happens in cases where
the outputs of two rules effectively cancel each other out in x and/or y. These cases
are rare but are caught by an exception function. This function checks to see if the
averaged runResults direction is dominated by vertical movement. If this is the case,
the z component is set to zero and a new unit vector is determined.

4.7 Discussion on the Development of fishPy

This chapter has summarised the development, structure, and function of fishPy and
has detailed the specific ruleset used to predict pathways taken by up-migrating brown
trout. This section presents a discussion on the development of fishPy. Firstly, de-
cisions, assumptions, and simplifications made during the model development are dis-
cussed. Secondly, model uncertainties and limitations are discussed. In both cases, the
model is discussed in comparison to other published models.

4.7.1 Discussion on Agent-based Modelling Approach for Determin-
ing Up-migration Pathways

Agent-based modelling is well suited to determining up-migration pathways in fish,
evidenced by multiple established models in the literature. This is due to its inherent
formulation of agents and environment and its emphasis on the individual rather than
the population. This section discusses the decisions, simplifications, and assumptions
made during the development of the model.
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Discussion on Temporally-dependent Flow and Coupling to Computational
Fluid Dynamics

Literature suggests that fish react to hydrodynamic stimuli collected from their local
environment. However, it is unclear whether fish react to temporally-averaged values
(i.e. mean velocity, Ū) or instantaneous or fluctuating values (i.e. ui or u′), or some
combination of both. It was decided in the early stages of this work that fishPy

would only consider temporally-averaged environmental data. This was done as the
inclusion of temporally-dependent data would drastically increase the complexity of
the model. Furthermore, due to the novelty of the research, it was unclear whether
this increase in complexity would produce significantly different results. None of the
established models of fish passage prediction utilise temporally-dependent flow fields.
Furthermore, Zielinski et al. [2018] implemented stochastic velocity fluctuations within
their model, but found insignificant differences in over passage efficiencies compared to
using a static flow field. The inclusion of temporally-dependent data would, for better
or worse, result in temporally-dependent fish pathways. That is to say that resulting
trajectories would depend upon the exact start time of the individual in relation to the
start time of the environment data, and therefore passage success metrics may also be
temporally-dependent. The sensitivity of the model and its metrics to this would be-
come domain-dependent and significantly difficult to quantify. Moreover, the required
duration of the temporally-dependent environment data would be difficult to quantify
without knowing in advance the time required for an individual to pass the domain.
This issue could be overcome by coupling the fish path prediction code to the computa-
tional fluid dynamics code. This was considered in the early stages of the research but
ultimately decided against due to the increased complexity, resultant software (CFD)
dependencies, user unfriendliness, and drastic increases to computational and time ex-
penses for each simulation. Furthermore, uncoupled code allows for the environmental
input data to be collected experimentally rather than limit the input to CFD results,
expanding the utility and usefulness of the model top practitioners. The inclusion of
temporally-dependent data has not been sufficiently considered in the literature and is
therefore a possible avenue for further research but is beyond the scope of this work.
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Discussion on Spatially Continuous Model Formulation

Unlike the cellular automata and individual-based models developed and presented
within chapter 3, fishPy is spatially continuous. That is to say that, while the envir-
onmental input data is discrete, individuals are free to move continuously within the
environment rather than limited to moving between mesh nodes. It was thought that
while this decision increased the complexity of the model, it would allow fish greater
freedom within a given domain and reduce the dependence of trajectories to the input
grid. However, this is difficult to quantify and therefore it is difficult to know if the
increased complexity was necessary. Although, Gilmanov et al. [2019] found a spatially
continuous formulation of the Zielinski et al. [2018] model resulted in greater accuracy
compared to the original spatially discrete model. This spatially continuous formulation
of fishPy was achieved through using RegularGridInterpolator, a three-dimensional
linear grid-based interpolation scheme within the scipy Python package. The spatially
continuous formulation of fishPy coupled with the RegularGridInterpolator func-
tion allowed for full usage of the sensory ovoid in determining fish behaviour, wherein
points located on the surface of the ovoid are queried for data rather than using the
closest node approximation used by Gao et al. [2016]. However, this could be improved
by sampling data along continuous lines rather than using discrete points, or sampling
over the entire surface of the ovoid, thus producing better spatial averages. Sampling
over the entire surface of the sensory ovoid has not been considered in the literature and
is a possible avenue for further research, however it was deemed too computationally
demanding and therefore was not considered in this work.

Discussion on Ruleset Definition and Decision Framework

The rules were developed based on a thorough literature review [see sections 2.7, 2.8,
and 4.2] and were implemented in a modular, transparent manner. The rules simulate a
combination of rheotaxis, energy pathway selection, obstacle avoidance, and turbulence
avoidance.

Adequate simulation of rheotaxis has been shown to be significant in the literature
[see section 2.8 and Montgomery et al. 1997]. This significance is increased for fishPy

due to the developmental principle of creating a generalised model; i.e. a model that can
be applied to any domain [see table 1.1 in section 1.2]. The explicit calculation of the
upstream water direction, coupled with the conversion between global and individual
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axes, implemented in fishPy allows the model to be applied to any domain. This is
in contrast with many of the established models which can only be applied to domains
where the flow is dominated by flow in the positive x direction or a global upstream
direction is known to individuals a priori, severely limiting their usefulness [i.e. Blank
2008, Abdelaziz 2013, Plymesser 2014, Gao et al. 2016, Tan et al. 2018, Zielinski et al.
2018].

Goodwin et al. [2014] and subsequently Gisen [2018] limit random movements within
the NFS and ELAM-de models, respectively. In particular, both impose limits of 20◦ in
the horizontal direction and 10◦ in the vertical. It was found during the development of
fishPy that no horizontal limitation was required, but that a limit of 10◦ in the vertical
within the randomWalk rule gave qualitatively better results compared to observations
of fish movements.

The concept of the minimum energy pathway is not in itself novel [i.e. Blank
2008, Abdelaziz 2013, Plymesser 2014, Zielinski et al. 2018]. However, Goodwin et al.
[2014], and subsequently Gisen [2018] have demonstrated that attraction to larger ve-
locities and accelerations (which represent the maximum energy pathway) can assist in
predicting fish paths. Gisen [2018] suggested that simple energy savings rules are gen-
erally unsuitable to predicting upstream migration. However, Abdelaziz [2013] demon-
strated that the minimum energy concept can predict upstream pathways of salmonidae
through a culvert and compared well to measured data. Therefore, fishPy implements
the minimum energy concept instead under the assumption that sometimes fish select
the path of least resistance to conserve energy, such as when traversing a channel or
culvert [see Abdelaziz 2013], but at other times selecting higher energy routes is more
beneficial. Therefore, fishPy assumes that an individual actively switches between
seeking lower velocities, not actively seeking, and seeking larger velocities [see sec-
tion 4.6.2]. Switching between behavioural cases is controlled by thresholds of velocity
magnitude as well as spatial velocity gradients (i.e fluid strain), based on the work of
Goodwin et al. [2014]. This approach is novel and combines the minimum energy path-
way concept with attraction to larger velocities and repulsion from large fluid strains
used by Goodwin et al. [2014] and the biasing towards large accelerations used by Gisen
[2018].

Gao et al. [2016] and Tan et al. [2018] have shown that, within a vertical slot fishway,
the TKE can be indicative of route selection by trout and carp, respectively. Therefore,
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fishPy includes a turbulence avoidance rule [see section 4.6.7] using the threshold value
defined by Gao et al. [2016]. It is not clear whether this threshold value is appropriate
in all cases, however, no other studies offer a different point of view. However, the
validity of this rule is discussed more in later chapters.

While it is known that each hydrodynamic stimuli affects fish behaviour [see section
4.2], the difficulty in determining the specific influence of each is significant. For this
reason, the final behavioural response of each individual, each timestep, is determined
through a weighted averaged of the outputs of each rule [see section 4.6.10]. The weight-
ings are controlled by the movementWeights array, which allows for easy modification
to the influence of each rule, and therefore lends itself to calibration against experi-
mental data. This approach is similar to that of Tan et al. [2018] who use a weighted
average to determine location fitnesses. Gisen [2018] determines a behaviour based on
a motivation/fatigue measure which is a function of distance moved over time; whereas
fishPy, like most other models, assumes an inherent, constant motivation to migrate
upstream, which Castro-Santos and Haro [2010] note is well-justified for salmonidae.

Discussion on Modelling from the Perspective of the Individual

Throughout the development of the model, the emphasis has been placed on under-
standing and modelling from the perspective of the individual. In some ways, this can
limit prediction of pathways. For example, for a given domain, one could calculate
the exact minimum energy pathway that successfully passes the domain. This would
reveal the optimal route through the domain, but in reality would require a fish to have
prior knowledge of the entire domain and its flow field. Therefore the sensory ovoid
concept introduced by Goodwin [2004] is of vital importance and ensures proper sens-
ory perception. Although it is known to be linked to the bodylength of the individual
[Montgomery et al., 1995, Goodwin et al., 2006], exact quantification of the size of the
sensory ovoid is difficult.

Discussion of Timestepping within fishPy

In an agent-based model, the timestep can generally be defined in one of two ways.
The first is to prescribe a constant explicit timestep such as that used by Goodwin
et al. [2014], Gao et al. [2016], Gisen [2018] and Tan et al. [2018]. The second is to use
a varying implicit timestep such as that used in the elver passage models described in
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chapter 3, wherein fish move a predetermined distance per step. This approach is also
used by Abdelaziz [2013] and Zielinski et al. [2018]. Both are valid approaches, but
a constant explicit timestep lends itself to a spatially-continuous model, whereas an
implicit timestep lends itself to a spatially-discrete model. Therefore, fishPy handles
timestepping using a constant explicit timestep.

The disadvantage of using a constant explicit timestep is that, to ensure model
stability, a maximum timestep size is required [see section 4.3.5]. Within fishPy,
this is a function of the lowest water velocity magnitude within the domain, which is
assumed to coincide with the highest ground speed of an individual. However, this
formulation could unnecessarily limit the timestep in regions of faster flow where fish
are moving at a lesser ground speed. This could be overcome by varying the timestep
and defining local timestep maxima. In theory this would reduce computational cost by
reducing the necessary number of timesteps. However, it would increase the complexity
of the code and could result in asynchronous movements between individuals. Another
option to reduce computational expense is by setting a timestep maximum based on
the average water velocity magnitude in the domain and then implementing a sub-
timestep in regions where the ground speed exceeds a threshold determined by the
maximum timestep value. This would reduce the overall maximum timestep and only
solve smaller timesteps when required. A similar process is suggested by Goodwin
et al. [2014] but not implemented. This approach was considered but decided against
as the computational expense of a constant timestep within fishPy was deemed small
enough.

4.7.2 Discussion on Limitations and Uncertainties of fishPy

Predicting behaviour using agent-based models is challenging due to the the inherent
random and irrational nature of behaviour and decision-making [Bonabeau, 2002]. Fur-
thermore, behaviour is often difficult to quantify and justify [Crooks and Heppenstall,
2012]. This is no different for fishPy, and therefore it is important to both verify model
functionality and compare predictions to published data, addressed in chapters 5 and
6, respectively. Similarly, it is difficult to justify the threshold values used within many
of the rules implemented within fishPy, and many of the published models give very
little justification for the thresholds used. For example, it is likely that many threshold
values are related to the bodylength of the individual, due to its role in determining
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the swim speeds of the individual. However, this is not implemented as it is diffi-
cult to quantify and is not entirely covered within the literature. This lack of specific
data within the literature is likely due to the difficulties associated with experiment-
ally defining the behavioural reactions to exact values of hydrodynamic parameters,
compounded by the significant task of proving causation rather than correlation. With
the exception of tkeAvoidance, which takes its threshold value from the work of Gao
et al. [2016], each threshold is value is determined through sensitivity analyses and
qualitative assessments, addressed in chapter 5.

The fishPy model has a number of limitations. Firstly, the model has limited het-
erogeneity within its agents as an individual of a given bodylength will always have
the same sustained and burst speeds. However, it was shown in chapter 3 that het-
erogeneity within the swim speed was important to capture the dynamics of the entire
population. However, this is partially overcome within fishPy through using a popula-
tion of individuals which are assigned bodylengths from a distribution. This indirectly
assigns a distribution of swim speeds. Swim speed distributions, such as that used
by the HEPM within chapter 3, could be implemented in the future but they are not
considered in the present work. Secondly, fish within fishPy may not leave the wa-
ter (defined as α ≥ 0.5 within the VOF formulation). However, brown trout with
bodylengths ≤ 150mm and ≥ 150mm have been shown to be able to leap vertical gaps
up to 33 cm and 40 cm, respectively [Holthe et al., 2005]. Therefore, it is likely that
fishPy will underestimate passage efficiencies through domains where leaping is bene-
ficial, such as across low-head weirs or through some types of fish passes. To implement
leaping in fishPy, momentum conservation, gravity, species- and bodylength-specific
leaping abilities, and a new formulation of the passability matrix (G3D) would also need
to be implemented, vastly increasing the complexity of the model. Leaping could be
implemented in the future but they are not considered in the present work. Lastly,
there are a number of non-hydrodynamic stimuli that are known to affect behavioural
responses in fish but are not considered in fishPy such as predator-prey relationships,
noise, scent, temperature, and oxygenation [see chapter 2]. These are not implemented
in fishPy as the model considers only hydrodynamic stimuli. However, due to the
modular formulation of fishPy, additional environmental data (i.e. light, water tem-
perature) could easily be added to the model in future versions, allowing for new rules
determining responses to these new stimuli.
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4.7.3 Conclusion to the Development of fishPy

This chapter has detailed the development of fishPy. In particular, the seven beha-
vioural rules that constitute the governing ruleset. Each rule outputs a unit vector,
which is then input into a decision making function. This ultimately determines the
behavioural response of an individual. The behavioural rules are:

• Rule 1: followFlow. Move in the opposite direction to the determined local
average velocity vector, weighted with velocity magnitudes to bias towards larger
magnitudes.

• Rule 2: minMaxEnergy. Contains three distinct behavioural cases:

– a) Seek the local minimum energy pathway - i.e. bias movement direction
towards locally minimum velocities.

– b) Have no energy preference if local hydrodynamic environment is already
preferable.

– c) Seek the local maximum energy pathway - i.e. bias movement direction
towards locally maximum velocities, which represents the bulk of the flow.

• Rule 3: randomWalk. Move in a random direction, limited to 10◦ in vertical
direction.

• Rule 4: obAvoidance. Bias movement vector in opposite direction to any estab-
lished obstacles.

• Rule 5: colAvoidance. Move in the opposite direction to any other individuals
within repulsionDist.

• Rule 6: memory. Move in the opposite direction to the spatially averaged local
velocity vector, temporally-averaged across the memory of the individual.

• Rule 7: turbulence. Bias movement away from turbulent areas, where a turbu-
lent region is defined as TKE > threshold.

The developmental tool principles, introduced in section 1.2, were consulted through-
out the development of the fishPy tool. These principles have ensured good practice
and a focus on the end user and open-source nature of the tool, in line with client

149



4.7 Discussion on the Development of fishPy

expectations. The principles are reiterated in table 4.6, along with how they are con-
sidered within the development of the fishPy tool.
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Table 4.6: A comparison of the fishPy tool against the established developmental tool
principles.

No. Principle Achieved
1 Open

source
The fishPy tool was programmed in Python 3.6, and has been
developed to work with OpenFOAM and Paraview. However, the
pre-processing required for a fishPy input is currently achieved
within MATLAB. The fishPy tool and the MATLAB pre-
processor script are available from University of Leeds Data Re-
pository [Padgett, 2020].

2 Transparent Development, verification, sensitivity analyses, and an application
of the fishPy tool are included in this work. Furthermore, the
codes are openly available from University of Leeds Data Repos-
itory [Padgett, 2020].

3 Generalised The fishPy code is almost entirely generalised; with the only re-
quirement that the global z axis of the user input dataset is parallel
to the gravity direction.

4 Spatially
3D

The fishPy model is spatially three dimensional.

5 Self-
contained

Built in Python 3.6 and has no other dependencies.

6 Modular The fishPy tool is developed in a modular manner, with the spe-
cies contained within a class. This facilitates expansion of the code
to include other classes (species) with their own behavioural rules.

7 Individual
Focus

The fishPy tool treats each simulated fish as an individual and
features heterogeneity within the population of fish. Furthermore,
the sensing of all environmental data and the behavioural rules
are executed from the point of view of the individual, and make
no assumptions of outside knowledge.
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Verification and Sensitivity Analyses of fishPy
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5.1 Introduction

The previous chapter detailed the approach, structure, and behavioural ruleset of
fishPy. The fishPy tool is developed with emphasis on the outlined developmental
tool principles [see table 1.1 in chapter 1]. Therefore, in line with the transparency
principle, this chapter details the verification of the function of fishPy on a rule-by-
rule basis. Verification is intrinsic to the development of a model[Crooks et al., 2008],
yet very few of the published fish path prediction models present any verification pro-
cesses or results [see section 2.8]. However, verification is considered part of the greatest
challenge of agent-based modelling [Crooks et al., 2008]. This chapter also details the
sensitivity of predicted fish trajectories to various model parameters. Sensitivity ana-
lyses evaluate one chosen parameter at a time, in isolation, and assess how changing
this parameter affects model outputs and in some cases model stability. All of the
published fish path prediction models use prescribed parameters to govern fish beha-
viour and define the environment. However, only Goodwin et al. [2014], Gisen [2018]
and Zielinski et al. [2018] present any consideration for sensitivity of predicted fish
trajectories to any defined parameter or threshold.

Verification and sensitivity analyses were enabled through the design and execution
of a variety of CFD verification datasets. These verification datasets are hypothetical
fluid environments and are not based on real systems; they exist ensure that the fishPy

model is functioning as expected and to assess model sensitivity. As such their accuracy
is not explored, nor are they compared to experimental data.

5.1.1 Aim

The aim of this chapter is to perform verification of each behavioural rule described in
chapter 4 to ensure that each rule is functioning as intended. Furthermore, this chapter
also aims to perform a number of sensitivity analyses to explore and understand the
dependency of model outputs on the value of key parameters.

This is achieved through the following objectives:

• Development and execution of a number of CFD verification datasets, tailored
specifically to the verification of each rule.

• Application of a modified fishPy to each verification domain to verify each be-
havioural rule separately.
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• Execution of a number of sensitivity analyses of key parameters:

– minMaxEnergy parameters

– Decision timestep

– Sensory range

– Interpolated spatial resolution

5.2 Verification Domains

In order to verify the behavioural ruleset, multiple verification datasets were created.
Each of these were created using openFOAM 4.1, and are detailed in this section. These
domains are simple geometries designed as test beds for fishPy. Therefore, the CFD
results are not validated, nor is the dependency of the results on the mesh explored.
Each of these CFD datasets presents a unique hydrodynamic environment tailored to
testing the functionality of each rule. The behavioural rules are:

• Rule 1: followFlow. Move in the opposite direction to the determined local
average velocity vector, weighted with velocity magnitudes to bias towards larger
magnitudes.

• Rule 2: minMaxEnergy. Seek local minimum or maximum energy pathway,
or have no preference, depending on local hydraulics (behaviour controlled by
minMaxEnergy parameters).

• Rule 3: randomWalk. Move in a random direction, limited to 10◦ in vertical
direction.

• Rule 4: obAvoidance. Bias movement vector in opposite direction to any estab-
lished obstacles.

• Rule 5: colAvoidance. Move in the opposite direction to any other individuals
within repulsionDist.

• Rule 6: memory. Move in the opposite direction to the spatially averaged local
velocity vector, temporally-averaged across the memory of the individual.

• Rule 7: turbulence. Bias movement away from turbulent areas, where a turbu-
lent region is defined as TKE > threshold.
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The first dataset, veriSetA, considers flow in a straight channel with a para-
bolic velocity profile, and was designed to verify the followFlow rule and to test
the minMaxEnergy rule when biasing towards the local minimum energy pathway. The
second dataset, veriSetB, considers flow in a straight channel featuring an obstacle,
which constricts the flow and causes a wake region downstream of the obstacle. Two
additional datasets were created, veriSetB2 and veriSetB3, which are variations on
veriSetB and consider a larger and smaller obstacle, respectively. These were designed
to verify the obAvoidance and turbAvoidance rules, and to test the minMaxEnergy

rule when biasing towards the local maximum energy pathway. The third dataset,
veriSetC, considered flow around a cylinder within a straight channel, and was de-
signed to verify the obAvoidance rule. No specific dataset was designed to test the
colAvoidance and randomWalk rules as these can be verified using any domain.

5.2.1 Verification Domain 1: veriSetA

The first verification dataset, termed veriSetA, considers water flowing through an
open channel; 32m long, 4m wide, and 4m deep, figure 5.1. This domain was created
as a simple example hydrodynamic environment that a virtual fish would need to pass.
The geometry was created and meshed using the blockMesh utility within openFOAM
with a regular uniform grid of hexahedral elements with a spatial resolution of 0.1m,
resulting in a mesh size of approximately 500000 cells. A figure showing the mesh is
included in appendix D.

The volume of fluid method is used, which is implemented using the interFoam

solver within openFOAM. Furthermore, a transient RANS approach was employed
with the k–ω SST closure used [see section 2.5.3]. Residual tolerances were taken as
1× 10−8 for all cases. Second order numerical schemes are used in all cases, table 5.1.
Gravity is set to 9.81 ms−2 and acts in the negative z direction. Values of ω and k at
the inlet were selected based on equations 5.1 and 5.2, [Menter, 1993].

U∞
L

< ω < 10U∞
L

(5.1)

where U∞ is the expected freestream velocity (ms−1), and L is the length scale for the
domain (m).

10−5 U
2
∞

ReL
< k < 0.1 U

2
∞

ReL
(5.2)
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Figure 5.1: Schematic of the veriSetA domain. Inlet, outlet, and atmospheric outlet
are labelled. Surfaces without labels are no slip walls.

where ReL is the Reynolds number using the length scale, L.

Water was patched into the domain at time T = 0, at a height of z = 1m. Water
entered the domain through the inlet, located at x = 0m, with a defined streamwise
velocity profile, equation 5.3. The inlet spanned the entire channel width and extended
between 0m ≤ z ≤ 1m. This resulted in a parabolic velocity profile with a maximum
of 1.0 ms−1 at the centre of the channel, falling to a minimum of 0.2 ms−1 at the
near-wall channel sides. This parabolic profile was used as veriSetA was designed to
verify the followFlow rule and to test the minMaxEnergy rule when biasing towards
the local minimum energy pathway. This velocity profile is conducive to verification of
minMaxEnergy as the minimum energy pathway was easily identified (i.e. near-wall).

U = 1.0− 0.2(y − 2.0)2 ms−1 (5.3)

Water and air could leave the domain through either the downstream outlet or via
the atmospheric outlet along the top of the domain. Furthermore, only air could enter
from these locations if required for mass continuity. A weir (height, z = 1m) is placed
at the downstream end of the domain (x = 30m) to control the downstream water
level. The simulation was executed for 150s of flow time. The initial timestep was set
to 0.05s and was automatically varied to ensure stability (following the CFL condition)
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Table 5.1: Details of CFD schemes and parameters used throughout all verification
domains.

Name Type Accuracy
Interface Capturing Scheme Volume of Fluid -
Pressure-Velocity Coupling PIMPLE* -
Timestep Scheme Crank Nicolson Second Order
Gradient Scheme Gauss Linear Second Order
Divergence Scheme Gauss Linear Second Order
Laplacian Scheme Gauss Linear Second Order

*PIMPLE is a combination of the PISO and SIMPLE algorithms.

using the adjustTimestep function in openFOAM.
The velocity and water surface heights were monitored along a vertical line located

at x = 20m, y = 2m, which spanned the total height of the domain. Cross-stream and
vertical velocities were found to be near-zero and therefore the streamwise velocity com-
ponent dominated. After 120 seconds of flow time, the streamwise velocity profile along
this line entered into a psuedo-steady state wherein the maximum velocity along the
line began to oscillate between 0.69 and 0.76 ms−1, with a time period of approximately
12 s, figure 5.2. Furthemore, the water surface location varied negligibly with time,
between 1.595 and 1.6 m. Throughout these oscillations, the velocity profile maintained
approximately the same shape, wherein the streamwise velocity rapidly increased to a
maximum at a height of approximately 0.25 m. The velocity then decreased to a value
of approximately 0.5 ms−1 at the water surface (z ≈ 1.6m), and then subsequently
decreased further to approximately zero at the atmospheric outlet (z = 4m). In order
to create a domain which could be input into fishPy, the results were temporally av-
eraged across 30 seconds of flow time; from 120 to 150 s, using a temporal resolution of
1 s. A comparison of the velocity profile of the temporally averaged result at x = 20m
and the velocity profile at T = 150s, x = 20m shows minimal differences, figure 5.3.
This, coupled with the small variations seen between T = 120 to 150s, suggests the
temporally averaged results are representative of the flow in the channel.

The temporally-averaged free surface location exists at approximately z = 1.6m,
figure 5.4, and is approximately independent of x upstream of the weir, figure 5.5. This
increase in the free surface height compared to the initial state is due to the influence
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Figure 5.2: Streamwise velocity profiles over a vertical line located at x = 20m, y = 2m
within the veriSetA domain extracted for timesteps between 120s and 150s of flow
time, inclusive, with a temporal resolution of 1s.

(a) (b)

Figure 5.3: Streamwise velocity profiles on the plane x = 20m within veriSetA for a)
T = 150s and b) temporally averaged from 120 to 150s, inclusive. Data were extracted
along vertical and horizontal lines spaced 0.5m apart.
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Figure 5.4: Temporally averaged isosurface at α = 0.5 with contours of temporally
averaged streamwise velocity. Colourbar fixed between 0 and 1 ms−1 for clarity. No
negative streamwise velocities exist within the channel. Flow moves in the positive x
direction. Gravitational acceleration acts in the negative z direction.

of the weir, restricting flow rate out of the domain. The velocity profile at the surface is
parabolic, with a maximum existing at the centre and minima existing at either side of
the channel, figure 5.4. This is corroborated by figures 5.5 and 5.6, which show that the
velocity profile is parabolic throughout the domain. This parabolic profile is strongest
close to the inlet and reduces with increasing x due to energy lost to the surrounding
water; particularly due to the water that exists above the inlet, figures 5.5 and 5.6.

Data downstream of the weir is discarded before preparing the domain for use with
fishPy [see section 5.3], as the weir was included purely to determine the water height
within the channel. This verification dataset provides a simple domain for testing of
fishPy as the velocity field is dominated by Ux at all locations, meaning that no recir-
culation zones exist. A modified version of veriSetA was created, termed veriSetAK in
order to verify the tkeAvoidance rule. This domain is a copy of the final, temporally-
averaged veriSetA domain, with a modified turbulence kinetic energy field. Within the
new veriSetAK domain, the artificial TKE is set to maxima of 0.9m2s−2 along either
cross-stream wall, and decrease linearly to a value of 0.0m2s−2 along the centreline
(y = 2m). This is not the output of a computational fluid dynamic simulation and is
an artificial domain created solely to verify the function of the tkeAvoidance rule.
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(a) (b)

(c) (d)

Figure 5.5: View looking upstream at yz planes taken at a) x = 1m; b) x = 10m; c)
x = 19m; and d) x = 28m. Each plane is contoured with Ux and the black lines denote
the free surface location in each case. All presented data are temporally-averaged.

Figure 5.6: Planform view of the veriSetA domain, with contours of temporally-
averaged Ux extracted along the xy plane z = 0.5m. Contour values are fixed between
0 and 1 ms−1 for clarity. No negative streamwise velocities exist within the channel.
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Figure 5.7: Schematic of the veriSetB domain. Inlet, outlet, and atmospheric outlet
are labelled. Surfaces without labels are no slip walls. Flow moves in the positive x
direction. Gravitational acceleration acts in the negative z direction.

5.2.2 Verification Domain 2: veriSetB, veriSetB2, and veriSetB3

The second verification dataset takes on three distinct forms, named veriSetB, veriSetB2,
and veriSetB3. Each considers a similar open channel domain; 32 metres long, 5
metres wide, and 4 metres deep, figure 5.7. However, each of these domains feature
a blockage approximately 5m downstream of the inlet. The blockages are present on
one side of the channel (negative y) and extend through the entire domain in z and
1m in x. The veriSetB domain considers a blockage which extends 2 metres into the
channel in y. The veriSetB2 and veriSetB3 domains consider blockages which extend
3m and 1m into the channel in y, respectively. The veriSetB domain was created to
demonstrate the ability of an individual to navigate an obstacle and the turbulence it
produces. Furthermore, the veriSetB2 and veriSetB3 variants were created to ensure
that parameters used in behavioural rules were not over-fitted to a single obstacle size
or turbulent wake, particularly for the minMaxEnergy rule.

In each case, the geometry was created and meshed using the blockMesh utility
within openFOAM with a regular, uniform grid of hexhedral elements with a spatial
resolution of 0.1m, resulting in a mesh sizes of approximately 650000 cells. As in
veriSetA, water could exit the domain via either the downstream outlet or via the
atmospheric outlet along the top of the channel. However, water entered the domain
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with a constant vertical velocity, Uz = 0.5 as the inlet was moved to the XY plane,
figure 5.7. Water was patched into the domain at T = 0s at a constant height of
z = 1m. The same CFD approach employed in solving veriSetA was used to solve the
veriSetB, veriSetB2, and veriSetB3 domains [see table 5.1].

For the veriSetB domain, streamwise velocity and water surface height were mon-
itored along vertical lines located at x = 6.5m, y = 3m and x = 8m, y = 2.5m. These
monitor lines were chosen as it was assumed temporal variations would be greatest in
this region due to the wake of the obstacle. After 120 s of flow time, the streamwise
velocity profile along the line located at x = 6.5m, y = 3m was seen to vary little with
additional flow time, figure 5.8a. The water surface at this location was 1.465m and
found to be independent of time after T = 120s. The velocity profile along the line
located at x = 8m, y = 2.5m, was seen to enter into a pseudo-steady state wherein,
while maintaining the same shape, the maximum velocity began to oscillate between
a maximum of 0.41ms−1 and a minimum of 0.37ms−1, with a time period of approx-
imately 10s, figure 5.8b. The water surface at x = 8m, y = 2.5m was found to be
1.460m and did not vary with time after T = 120s. The streamwise velocity along an
xy plane located at z = 0.5m was also monitored and seen to vary little with time with
the exception of the region nearest the weir [see appendix D for figures]. However, this
region is of little importance compared to the region containing the obstacle. There-
fore, given that little variation was seen throughout most of the veriSetB domain, the
results were averaged from T = 120 to 150s to create an appropriate input for fishPy,
which was assumed to be representative of the flow in the channel.

The temporally-averaged data show that the velocity in veriSetB is independent
of y until approximately 2m upstream of the obstacle (negative y), at which point
Ux decreases, and Uy and Uz increase in the region directly upstream of the obstacle,
figure 5.9. Furthermore, the obstacle introduces a constriction in the channel resulting
in an increase in Ux. The free surface is located at approximately z = 1.5m and
is independent of x upstream of the weir. A large recirculation zone is present in the
wake of the obstacle. An additional recirculation region is present near the downstream
weir and is located at a higher vertical location, figure 5.9. These recirculation zones
are significant for adequate verification of the fishPy model as recirculation zones
and their associated turbulence are known to disorientate passing individuals and are
subsequently avoided by fish.
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(a) (b)

Figure 5.8: Streamwise velocity profiles along vertical lines located at a) x = 6.5m, y =
3m and b) x = 8m, y = 2.5m within the veriSetB domain for timesteps between 120s
and 150s of flow time, inclusive, with a temporal resolution of 1s.

Figure 5.9: 3D view of the veriSetB domain with streamlines contoured with Ux. Note
the negative lower bound on the legend, denoting regions of reversed flow. All presented
data are temporally-averaged.
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For the veriSetB2 domain, streamwise velocity and cross-stream velocity were mon-
itored along horizontal lines located at x = 8m, z = 0.5m and x = 9m, z = 1m. These
monitor lines were chosen as it was assumed temporal variations would be greatest in
this region due to the wake of the obstacle. After 120s of flow time, streamwise velo-
cities along both lines were seen to vary negligibly with time, figure 5.10. Cross-stream
velocity profiles were found to be less stable, but were a small in comparison to the
streamwise velocity and maintained the same profile throughout the 30s period, figure
5.11. These velocity fluctuations represent the increased turbulence present within the
wake of the obstacle. As with veriSetB, the streamwise velocity along an xy plane
located at z = 0.5m within the veriSetB2 domain was monitored [see appendix D for
figures] and found to vary little with time. Therefore, given that little variation was
seen throughout the domain, the results were averaged from T = 120 to 150s to create
an input for fishPy, which was assumed to be representative of the flow in the channel.

For the veriSetB3 domain, streamwise velocity and cross-stream velocity were mon-
itored along horizontal lines located at x = 8m, z = 0.5m and x = 9m, z = 1m. These
monitor lines were chosen as it was assumed temporal variations would be greatest in
this region due to the wake of the obstacle. Streamwise velocities were seen to vary
little with increasing time, figure 5.12. The cross-stream velocity profile was found to
be less stable, entering into an oscillation immediately downstream of the obstacle in
both monitor lines [see figure 5.13, width ≈ 4.5m]. This oscillation was larger closer
to the obstacle where it moved between a minimum of −0.08ms−1 to a maximum of
0.04ms−1 with a time period of approximately 20s, figure 5.13a. The strength of the
oscillation reduced with distance from the obstacle where it moved between a minimum
of −0.05ms−1 to a maximum of 0.01ms−1 with the same time period. The streamwise
velocity along an xy plane located at z = 0.5m within the veriSetB3 domain was
also monitored [see appendix D for figures] and was found to vary little with time.
Therefore, given that little variation was seen throughout the domain, the results were
averaged from T = 120 to 150s to create an input for fishPy, which is assumed to be
representative of the flow in the channel.

In each veriSetB variant domain, the streamwise velocity dominated the flow field.
Increasing the size of the obstacle resulted in an increase in the velocity near the obstacle
as the flow became more constricted, figure 5.14. The recirculation zones produced in
the wake of the obstacles scaled with the size of the obstacle, figure 5.14.
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(a) (b)

Figure 5.10: Streamwise velocity profiles along horizontal lines located at a) x =
8.0m, y = 0.5m and b) x = 9.0m, y = 1.0m within the veriSetB2 domain for timesteps
between 120 and 150 s of flow time, inclusive, with a temporal resolution of 1 s.

(a) (b)

Figure 5.11: Cross-stream velocity profiles along horizontal lines located at a) x =
8.0m, y = 0.5m and b) x = 9.0m, y = 1.0m within the veriSetB2 domain for timesteps
between 120 and 150 s of flow time, inclusive, with a temporal resolution of 1 s.
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(a) (b)

Figure 5.12: Streamwise velocity profiles along horizontal lines located at a) x =
8.0m, y = 0.5m and b) x = 9.0m, y = 1.0m within the veriSetB3 domain for timesteps
between 120 and 150 s of flow time, inclusive, with a temporal resolution of 1 s.

(a) (b)

Figure 5.13: Cross-stream velocity profiles along horizontal lines located at a) x =
8.0m, y = 0.5m and b) x = 9.0m, y = 1.0m within the veriSetB3 domain for timesteps
between 120 and 150 s of flow time, inclusive, with a temporal resolution of 1 s.
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(a)

(b)

(c)

Figure 5.14: Planform views of the a) veriSetB domain, b) veriSetB2 domain, and c)
veriSetB3 domain; with overlain contours of temporally averaged Ux taken at a plane
z = 0.5m in each case. Note the different contour scale in each case.
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5.2.3 Verification Domain 3: veriSetC

The third verification dataset, veriSetC, considers an open channel measuring 30m
long, 5m wide, and 4m deep. This domain features a vertical cylinder of diameter 2m
placed in the centre of the channel approximately 5m downstream of the inlet, figure
5.15. This dataset features a similar hydrodynamic environment to that of veriSetB,
with an heterogeneous velocity field and an increased level of turbulence in the region
downstream of the obstacle. The geometry was meshed using the snappyHexMesh utility
within openFOAM, with an initial blockMesh with a spatial resolution of 0.25m. Three
levels of surface refinement was specified around the obstacle to ensure the increased
velocity and turbulence near the obstacle was effectively captured. Similarly, two levels
of region refinement was specified to any cell within 0.75m of the obstacle surface, and
one level of region refinement was specified to cells within 1.5m of the obstacle surface.
In snappyHexMesh, refinement is implemented by selecting cells that intersect the given
surface .stl file, or are within the specified region, in 3D space and splitting them into
two equal halves in each axis (i.e. one cell is split into 8 equal cells), repeated for
each level of surface refinement. This cell refinement ensured a smooth transition in
cell size between the far field and close to the obstacle surface. The resulting mesh
is a mixture of hexahedral, polyhedral, and prismatic cells and a total mesh size of
approximately 700000 cells. The same parabolic velocity profile was specified at the
inlet as was used in veriSetA (equation 5.3). The same CFD methodology employed
in solving veriSetA was used to solve the veriSetC domain [see table 5.1].

The velocity was monitored along a horizontal monitor line located at x = 8m, z =
0.5m. This line was chosen as water velocities were greatest in the near-bed region and
it was expected that velocity variations would be largest in this area due to the wake
of the obstacle. The streamwise velocity profile maintained the same shape throughout
the sampled time period with two approximately-equal maxima located either side of
the centre of the channel (approximately y = 2m, andy = 4m) and fell to zero at the
boundaries on either side [see figure 5.16a]. The cross-stream velocity profile maintained
the same shape throughout the sampled time period, figure 5.16b. The cross-stream
velocities either side of the centreline of the channel were approximately equal and
opposite with both sides featuring maxima of ≈ 0.2ms−1 towards the centre of the
channel, figure 5.16b. Therefore, given that little variation was seen throughout the
domain, the results were averaged from T = 120 to 150s to create an appropriate input
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Figure 5.15: Schematic of the veriSetC domain. The inlet, outlets are labelled. The
obstacle is also labelled. Surfaces without labels are no slip walls. Flow moves in the
positive x direction. Gravitational acceleration acts in the negative z direction.

(a) (b)

Figure 5.16: Velocity profiles along the horizontal monitor line located at x = 8.0m, z =
0.5m within the veriSetC domain for a) streamwise velocity, and b) cross-stream ve-
locity for timesteps between 120 and 150 s of flow time, inclusive, with a temporal
resolution of 1 s.
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for fishPy, which is assumed to be representative of the flow in the channel.
Figure 5.17 shows that the presence of the obstacle causes a stagnation zone im-

mediately upstream of the obstacle with an associated increase in free surface height.
Furthermore, similarly to veriSetB, the presence of the obstacle constricts the flow
resulting in acceleration either side of the obstacle, which results in an increase in local
velocity, figure 5.17. A wake is created immediately downstream of the obstacle with
an associated reduction in the free surface height, figure 5.17. The recirculation seen
within the wake is smaller and weaker than that of veriSetB.

(a)

(b)

Figure 5.17: a) Side view and b) 3D view of the veriSetC domain. Streamlines are
created at horizontal lines at x = 0.5m, and z = 0.5m and 1.0m, contoured with the Ux
restricted to between 0 and 1.0 ms−1 for clarity. Data are temporally-averaged from
120 to 150s of flow time.
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5.3 Preparing the Datasets for fishPy

Once the verification simulations were completed, the datasets required additional
modification in order to prepare them for use with the fishPy code. As fishPy re-
quires spatially uniform grids in the form of multiple three dimensional matrices, it
was necessary to interpolate the resulting flow fields. A custom MATLAB script was
written to import a .csv file of temporally-averaged flow results and then output the
required three dimensional matrices. This was done by first using the meshgrid func-
tion within MATLAB to create a regular gridded mesh of the bounding box. Each of
the variables were then interpolated onto the regular grid. The geometry matrix, G3D,
was then created by looping through each point and interrogating whether the point
was within the polyhedron defining the domain using the function inpolyhedron. This
function required an .stl file to define the polyhedral domain, which was supplied by the
surfaceMeshTriangulate utility within OpenFOAM. This MATLAB script is avail-
able from the University of Leeds Data Repository, [Padgett, 2020].

5.4 Verification of Behavioural Ruleset

This section presents calculated trout trajectories through the verification datasets.
Verification is handled on a rule-by-rule basis. In the following subsections, each rule is
considered individually and the parameters and agent attributes used are denoted for
each case. Both the results and the discussion are presented together for each rule.

5.4.1 Verification of Rule 1: followFlow

The followFlow rule forms the basis of the movement of an individual. The rule uses
local hydraulic information to determine the local upstream direction and then moves
the individual in that direction. Two test cases were used to verify the successful
function of this rule. First, a single individual was created along the centreline of
the veriSetA domain at mid-depth near the downstream boundary of the domain
(coordinates [25.0m, 2.0m, 0.5m]). This location was chosen to eliminate the impact of
the downstream weir on the local hydrodynamic environment. The individual moved
based only on the output of the followFlow rule. The following parameters were used
to verify the followFlow rule: fishTimestep was set to 0.5s, Tmax was set to 1000,
sensoryRange was set to 1. Furthermore, the bodylength mean was set to 0.15m, and
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bodylength deviation was set to 0m, effectively ensuring that any created individual
was of length 0.15m. It was expected that the individual would move in the direction
against the average local velocity, which in the veriSetA domain is dominated by flow
in the positive x direction. Figure 5.18a shows that, with only the followFlow rule
enabled, the individual moves in a straight line through the domain in the negative x
direction. This is expected as Ux completely dominates the velocity field throughout
the domain.

(a)

(b)

Figure 5.18: Planform view of calculated fish trajectories through the a) veriSetA and
b) veriSetB domain with overlain contours of Ux, extracted along the z = 0.4m plane.
The individuals were created at a) [25.0m, 2.0m, 0.5m] and b) [25.0m, 2.5m, 0.5m]
(black) and [11.5m, 0.15m, 0.4m] (white). All individuals moved based on the output
of the followFlow rule only.

Second, two individuals were created within the veriSetB domain at mid-depth, one
along the centreline of the domain near the downstream boundary ([25.0m, 2.5m, 0.5m]),
and the other created within the wake of the obstacle ([11.5m, 0.15m, 0.4m]). It can be
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seen that an individual is capable of successfully navigating the obstacle and its wake, if
created at [25.0m, 2.5m, 0.5m], denoted in black, figure 5.18b. However, the individual
created within the wake region of the obstacle (denoted in white, [11.5, 0.15, 0.4m])
becomes trapped within the recirculation zone. This is an unnatural movement, and
shows that this rule alone, while working as intended, does not capture real fish move-
ments.

5.4.2 Verification of Rule 2: minMaxEnergy

The minMaxEnergy rule biases the movement of an individual towards either the min-
imum or maximum local energy pathway, or neither, based on the current preference
of the individual. By default, an individual will search for the local minimum en-
ergy path (i.e. tend towards lower velocities). However, upon encountering an aver-
age velocity magnitude less than minEnergyThreshold or a local fluid shear less than
gradThresholdMin, the individual will switch to having no energy preference. Further-
more, upon encountering an average velocity magnitude less than maxEnergyThreshold,
a local fluid shear less than gradThresholdMax, or an obstacle, the individual will
switch to searching for the maximum energy pathway [see figure 4.5, section 4.6.2].

To verify the function of the minMaxEnergy rule two cases were investigated. First, a
single individual was created near the centreline of the veriSetA domain at mid-depth
near the downstream boundary of the domain (coordinates [25.0m, 2.5m, 0.5m]). The
individual moved based only on the output of the followFlow and minMaxEnergy rules.
The individual was not created along the centreline, as the velocity profile in the channel
is symmetrical in y and therefore an individual exactly in the centre will have equal and
opposite attraction to the lower velocities on both sides of the channel, which will cancel
each other out. For verifying the minMaxEnergy rule; fishTimestep was set to 0.5s,
Tmax was set to 1000, sensoryRange was set to 1. Furthermore, the bodylength mean

was set to 0.15m, and bodylength deviation was set to 0m, effectively ensuring any
created individual was of length 0.15m. Furthermore, minEnergyThreshold was set
to 0.2ms−1, maxEnergyThreshold was set to 0.05ms−1, gradThresholdMin was set to
−0.35s−1, and gradThresholdMax was set to−1.25s−1 [see section 5.5.1 for a sensitivity
analysis of the minMaxEnergy parameters]. It was expected that an individual following
the followFlow and minMaxEnergy rules in a simple domain dominated by flow in a
single direction, such as veriSetA, will move upstream, tending towards the lower

173



5.4 Verification of Behavioural Ruleset

(a)

(b)

Figure 5.19: a) Planform view of a calculated fish trajectory through the veriSetA

domain with overlain contours of Ux, extracted along the z = 0.4m plane. The fish
was created at [25.0m, 2.5m, 0.5m] and moved in accordance with the followFlow and
minMaxEnergy rules. b) Planform view of a calculated fish trajectory through the
veriSetB domain with overlain contours of Ux, taken at a plane z = 0.4m. The fish
was created at [25.0m, 2.5m, 0.5m] and moved in accordance with the followFlow and
minMaxEnergy rules. The individual’s energy search preference changes throughout
the trajectory first starting with minimum energy (teal), then maximum energy (pink),
then returning to minimum energy (black).

velocities near the walls of the channel. Invoking the minMaxEnergy rule caused an
individual passing the veriSetA domain to tend to one side of the channel, figure
5.19a, compared to using only the followFlow rule, figure 5.18a. This is due to the
individual seeking lower velocities. Once a sufficiently low velocity region had been
located, the individual switches to neither searching for a minima nor a maxima. The
individual is then seen switching between searching for the minimum energy path and
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not searching while close to the channel wall; as, when not searching, the followFlow

rule naturally causes the individual to move back into faster velocities, figure 5.19a.
Second, a single individual was along the centreline of the veriSetB domain at mid-

depth near the downstream boundary of the domain (coordinates [25.0m, 2.5m, 0.5m]).
The individual moved based only on the output of the followFlow and minMaxEnergy

rules. It was expected that the individual would tend to lower velocities near the
side of the channel (i.e. y < 2.5m), but would avoid the wake of the obstacle due to
the associated fluid shear. Enabling the minMaxEnergy rule on the individual moving
through the veriSetB domain caused the individual to tend towards the wake region
due to its average velocity being lower than that of the bulk flow [shown in teal in figure
5.19b]. As the individual tended towards the low velocity wake region, the individual
switched to searching for maximum velocities [shown in pink in figure 5.19b]. This is
expected as the local fluid shear dropped below gradThresholdMax. The individual
operates in this mode for a number of timesteps (≥minEnergyItMax) before successfully
navigating the obstacle and reverting back to searching for the local minimum energy
path [shown in black in figure 5.19b]. This is expected as none of the thresholds
were triggered upstream of the obstacle. In this example, the local hydrodynamic
environment changes quickly causing the individual to forgo the case of not searching
for either minimum or maximum velocity. These results show that in both test cases
the minMaxEnergy rule is functioning as intended.

5.4.3 Verification of Rule 3: randomWalk

The randomWalk rule is a simple but important addition to the ruleset as it adds
stochasticity. To verify the function of this rule, four fish of bodylength 0.15m were cre-
ated along the centreline of the veriSetA domain at mid-depth ([25.0m, 2.0m, 0.5m]).
Each of the four fish moved based only on the output of the randomWalk rule. For
verifying the randomWalk rule, fishTimestep was set to 0.5s, Tmax was set to 1000,
sensoryRange was set to 1. Further verification was carried out by creating an indi-
vidual within the veriSetB domain, off-centre and at mid-depth ([25.0m, 3.0m, 0.5m]).
This rule returns a random direction each timestep and does not influence swim speed.
Therefore, it is expected that each fish will move randomly within each timestep, but
overall will follow the local water direction. In each verification case, fish were seen
to move approximately with the local water velocity direction (i.e. positive x), with

175



5.4 Verification of Behavioural Ruleset

(a)

(b)

Figure 5.20: Top down views of calculated fish trajectories moving through a) the
veriSetA domain, and b) the veriSetB domain. Both with overlain contours of
Ux taken at planes z = 0.3m. In both cases, the individuals were created at
[25.0m, 2.0m, 0.5m] and moved based only on the randomWalk rule.

random perturbations within each timestep, until each individual left the domain via
the downstream outlet, figure 5.20. This is the expected result as the individual has
an equal chance of moving in each direction. Therefore if it is present within a velocity
field dominated by a single component of velocity, it will always eventually move in the
direction of flow.

5.4.4 Verification of Rule 4: obAvoidance

The obstacle avoidance rule is used to determine whether an obstacle is present in
front of the individual. This is used in the minMaxEnergy rule as a trigger to switch
the energy seeking case of the individual. However, it is also used to directly tend the
individual away from an obstacle.
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Figure 5.21: Planform view of two calculated fish trajectories moving through the
veriSetC domain. Both trajectories originate at [6.15m, 2.5m, 0.4m], denoted by the
white square. Black points denote the trajectory calculated with the followFlow

and minMaxEnergy rules. Green points denote the trajectory calculated with the
followFlow, minMaxEnergy, and obAvoidance rules. For clarity, no velocity field is
included.

To verify the obAvoidance rule, two fish were created within the veriSetC domain
along the centreline, immediately downstream of the obstacle ([6.15m, 2.5m, 0.4m]).
This location was selected to ensure that the obstacle was within the sensory ovoid
of each individual and therefore the obAvoidance rule would be activated. For veri-
fying the obAvoidance rule; fishTimestep was set to 0.5s, Tmax was set to 1000,
sensoryRange was set to 1. Furthermore, the bodylength mean was set to 0.15m, and
bodylength deviation was set to 0m, effectively ensuring any created individual was
of length 0.15m. Without the obAvoidance rule, the individual was seen to slowly and
inefficiently passes the obstacle when compared to with the obAvoidance rule enabled,
figure 5.21.

5.4.5 Verification of Rule 5: colAvoidance

The colAvoidance rule ensures that individuals do not occupy the same space. For
verifying the colAvoidance rule, fishTimestep was set to 0.5s, Tmax was set to 1000,
sensoryRange was set to 1. Furthermore, the bodylength mean was set to 0.15m,
and bodylength deviation was set to 0m. The repulsionDist is a function of
the maximum bodylength of the simulated population [see table 4.4], and was cal-
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culated as 0.075m. To verify the colAvoidance rule, two individuals were created
near the centreline of the veriSetA domain at mid-depth within 0.05m of each other
([25.0m, 2.5m, 0.5m] and [25.0m, 2.55m, 0.5m]). This ensured that the colAvoidance

rule was triggered.

(a)

(b)

Figure 5.22: Cropped views of two individuals moving through the veriSetA domain
with overlain contours of Ux, taken at a plane z = 0.4m. Both fish use the followFlow

and minEnergy rules without (a) and with (b) the colAvoidance rule. In both cases
the two fish were created at [25.0m, 2.5m, 0.5m] and [25.0m, 2.55m, 0.5m], denoted by
the large white squares.

The test case was first executed using the followFlow and minEnergy rules. Figure
5.22a showed that, without the colAvoidance rule, the simulated fish occupied the
same space. The test case was then executed using the followFlow, minEnergy, and
colAvoidance rules, figure 5.22b. Activating the colAvoidance rule caused the first
simulated fish, determined via the initative list [denoted in white in figure 5.22b]
to immediately moved away from the other fish in the domain. The colAvoidance

rule of the second simulated fish [denoted in black in figure 5.22b] does not trigger as
the Euclidean distance between the two fish in already greater than repulsionDist.
Therefore, inclusion of the colAvoidance rule was seen to successfully push the two fish
away from each other, figure 5.22. This showed that the rule was working as expected.
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5.4.6 Verification of Rule 6: memory

The memory rule influences the movement of an individual at the current timestep based
on past knowledge of the local water velocity direction. An individual remembers the
average local upstream direction for a period of time equal to the memoryTime variable.
Setting this value to zero effectively disables the rule. For verifying the memory rule,
fishTimeStep was set to 0.5s, Tmax was set to 1000, sensoryRange was set to 1.
Furthermore, the bodylength mean was set to 0.15m, and bodylength deviation was
set to 0m.

To verify the memory rule, two test cases were considered. First, three individuals
were created within the veriSetA domain at mid-depth ([25.0m, 1.5m, 0.4m]), and
allowed to move based on the outputs of the followFlow, minMaxEnergy, and memory

rules. The first fish, denoted in blue in figure 5.23, was assigned a memoryTime of 0s.
The second fish, denoted in pink, was assigned a memory time of 10s. The third fish,
denoted in orange, was assigned a memoryTime of 20s. It was expected that activation
of the memory rule would result in smaller changes to the initial heading. Enabling the
memory rule was seen to increase the tendency for an individual to continue in its current
direction rather than deviate, figure 5.23. Furthermore, increasing the memoryTime from
10s to 20s was not found to cause a significant difference in individuals moving through
veriSetA, figure 5.23.

Second, three individuals were created along the centreline of the veriSetB domain
at mid-depth ([25.0m, 2.5m, 0.5m]), and allowed to move based on the outputs of the
followFlow, minMaxEnergy, and memory rules. The first fish, denoted in black in figure
5.24, was assigned a memoryTime of 0s. The second fish, denoted in yellow, was assigned
a memoryTime of 20s. The third fish, denoted in blue, was assigned a memoryTime of
40s. The fourth fish, denoted in pink, was assigned a memoryTime of 60s. Without
the memory rule the individual successfully passed the domain, but the route taken
features a number of sharp changes of direction, figure 5.24. Enabling the memory

rule eliminated these sharp changes in direction by giving influence to the upstream
direction sensed over previous timesteps. In contrast to figure 5.23, increasing the
memoryTime value above 20s altered the pathway. This is due to a change in the point
at which the individual is triggered to search for the local maximum energy pathway,
rather than directly due to the influence of the output of the memory rule. The results
show that the memory rule functions as intended. However, it is unclear whether there
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is a globally optimal value of memoryTime, and therefore this parameter may need to be
used as a calibration parameter against measured fish track data in future applications
of the fishPy model.

Figure 5.23: Planform view of three individuals, created at [25.0m, 1.5m, 0.4m], moving
through the veriSetA domain with overlain contours of Ux, extracted along the xy
plane z = 0.35m. Each fish used the followFlow, minEnergy, and memory rules with
memoryTime values of: 0s, denoted by blue; 10s, denoted by pink; and 20s denoted by
orange.

Figure 5.24: Planform view of four individuals, created at [25.0m, 2.5m, 0.5m], moving
through the veriSetB domain with overlain contours of Ux, extracted along the xy
plane z = 0.4m. Each fish used the followFlow, minEnergy, and memory rules with
memoryTime values of: 0s, denoted by black; 20s, denoted by yellow; 40s denoted by
blue; and 60s, denoted by pink.
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5.4.7 Verification of Rule 7: tkeAvoidance

The tkeAvoidance rule repels individuals away from high values of turbulence kin-
etic energy, TKE. This rule only triggers if the individual senses a TKE value above
0.35 m2s−2, based on the findings of Gao et al. [2016] and Tan et al. [2018]. For veri-
fying the tkeAvoidance rule, fishTimeStep was set to 0.5s, Tmax was set to 1000,
sensoryRange was set to 1. Furthermore, the bodylength mean was set to 0.15m, and
bodylength deviation was set to 0m.

To verify the tkeAvoidance rule, two individuals were created within a high TKE
region of the verisetAK domain at mid-depth ([25.0m, 3.0m, 0.5m]). The first fish, de-
noted in black in figure 5.25, moved based on the output of the followFlow rule.
The second fish, denoted in red, moved based on the output of followFlow and
tkeAvoidance rules. It was expected that enabling the tkeAvoidance rule would
result in the fish actively avoiding high TKE regions of the domain. Without the
tkeAvoidance rule, the individual moved in an approximately straight line due to the
domination of the velocity field by Ux, figure 5.25. Enabling the tkeAvoidance rule led
the individual to move towards the centre of the channel where the TKE eventually fell
below the threshold value, and the tkeAvoidance rule ceased to be triggered, figure
5.25. This shows that the tkeAvoidance rule functions as intended.

Figure 5.25: Planform view of the trajectories of two individuals moving through the
veriSetAK domain with overlain contours of TKE, extracted from the xy plane z =
0.4m. Both fish were created at [25.0m, 3.0m, 0.5m]. Black denotes the individual with
only the followFlow rule enabled. Red denotes the individual with the followFlow

and tkeAvoidance rules enabled.
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5.5 Sensitivity Analyses

This section explores the sensitivity of calculated fish trajectories to the minMaxEnergy

thresholds, decision timestep, the individual sensory range, and the environment grid
density. To allow for repeatability and ensure a like-for-like comparison between in-
dividuals, fishPy was executed using all rules with the exception of randomWalk and
colAvoidance and the trigger to switch between burst speed and sustained swim speed
was disabled. Furthermore, bodylength mean was set to 0.15m, bodylength deviation

was set to 0.0m, fishTimestep was set to 0.25s, Tmax was set to 5000, and sensoryRange

was set to 1.0 throughout the sensitivity analyses except where the parameter is the
subject of the study or where otherwise noted.

5.5.1 Sensitivity of minMaxEnergy Parameters

The minMaxEnergy rule relies on four thresholds that act as triggers to switch the beha-
vioural case of the individual. No data are available to derive values for these thresholds
therefore a sensitivity study is presented to understand the ranges of values for these
four thresholds. The default behavioural case considers the individual searching for
the local minimum energy pathway. If the individual encounters a velocity magnitude
less than minEnergyThreshold or a lateral fluid shear less than gradThresholdMin,
the case is switched and the individual ceases searching for the local minimum en-
ergy pathway. Moreover, if the individual encounters a velocity magnitude less than
maxEnergyThreshold or a lateral fluid shear less than gradThresholdMax, the case is
switched and the individual will begin searching for the local maximum energy pathway.
The presence of an obstacle also acts as a trigger to switch an individual to searching
for the maximum energy pathway. This trigger is turned off in the following analyses.
In order to ensure functionality, the thresholds must satisfy the following inequalities:

minEnergyThreshold > maxEnergyThreshold

gradThresholdMin > gradThresholdMax

In all cases, three individuals were considered. These individuals were created
in specific locations in each domain: [25.0m, 2.5m, 0.5m], [25.0m, 4.5m, 0.4m], and
[25.0m, 1.0m, 0.5m]. In the veriSetA domain individuals were created at [25.0m, 2.5m, 0.5m],
[25.0m, 3.5m, 0.4m], and [25.0m, 1.0m, 0.5m] due to the narrower channel featured in
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this domain. The timestep was fixed at 0.25s for the duration of the minMaxEnergy sens-
itivity study, the bodylength mean was set to 0.35m, and the bodylength deviation

was set to 0.0m. Where multiple individuals are presented in the same domain, they are
identified by their initial location in terms of the domain channel looking downstream;
left, centre, and right. In order to ensure clarity, only the trajectories of individuals
that demonstrate key results are shown. Many trajectories corroborated the conclusions
drawn from other simulations and therefore are not presented. Multiple domains and
creation locations were considered to ensure that the thresholds were not over-fitted to
particular scenarios.

Velocity Magnitude Thresholds

The velocity magnitude thresholds were assessed independently to the lateral fluid shear
thresholds. This was done by setting both shear thresholds to large negative number
(−109) to effectively disable them. The minEnergyThreshold was considered first, and
therefore the maxEnergyThreshold was set to a negative number to disable it. The
minEnergyThreshold determines the velocity at which the individual switches from
having a preference for lower local velocities to not having a preference. This threshold
represents the velocity at which the individual gains only a small benefit from searching
for lower velocities. A range of minEnergyThreshold value were assessed from 0.1 to
0.5 ms−1.

A higher value of minEnergyThreshold causes the behavioural switch, from seeking
the local minimum energy pathway to not seeking, to occur earlier as the individual
tends towards the wall, figure 5.26a. In both cases of individuals moving through the
veriSetA domain, only a value of 0.4ms−1 consistently allowed individuals to success-
fully pass. This was due to early triggering of the behavioural switch that resulted
in the individual avoiding the near-zero velocity regions found upstream in veriSetA,
rather than specific avoidance behaviour. Decreasing the threshold value resulted in
later triggering of the behavioural switch, resulting in the individual becoming trapped
in the near-zero velocity regions found upstream in veriSetA, figure 5.26b. This illo-
gical behaviour occurs due to the individual being unable to determine the upstream
direction due to the near-zero local velocity magnitude. Applying a value greater than
0.4ms−1 would effectively eliminate the case of seeking the local minimum energy path-
way. Therefore, this constitutes the upper limit of the threshold range for this test case.
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(a)

(b)

Figure 5.26: Sensitivity of the minMaxEnergy rule to the maxEnergyThreshold para-
meter; assessed on 0.35m individuals moving through the veriSetA domain with over-
lain contours of Ux, taken at a plane z = 0.4m. Fish used only the followFlow and
minMaxEnergy rules. The individuals were created at a) [25.0m, 1.0m, 0.5m], and b)
[25.0m, 2.5m, 0.5m]; with the following minEnergyThreshold values: 0.1ms−1 (red),
0.2ms−1 (green), 0.3ms−1 (blue), 0.4ms−1 (black).

When the veriSetB domain is considered, all values of minEnergyThreshold res-
ults in the individual becoming confused and trapped within the recirculation region
downstream of the obstacle, figure 5.27. A value of 0.4ms−1 resulted in a successful
passage, but the individual was considerably delayed by the obstacle. This result was
expected as the combination of the followFlow and minMaxEnergy rules, with only
the minEnergyThreshold gives the individual only the option of moving in the local
upstream direction and/or seek lower local velocities. Therefore, if an individual enters
a recirculation zone, it has no behavioural option to allow it to escape.

The lower limit of the minEnergyThreshold range is 0.0ms−1, because the velocity
magnitude cannot be negative. However, since the maxEnergyThreshold must be less
than the minEnergyThreshold, a value of 0.4ms−1 was chosen as this allowed successful
passage through veriSetA and veriSetB and allowed for the exploration of a range
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Figure 5.27: Sensitivity of the minMaxEnergy rule to the minEnergyThreshold para-
meter; assessed on 0.35m individuals moving through the veriSetB domain with
overlain contours of Ux, taken at a plane z = 0.4m. Only the followFlow and
minMaxEnergy rules were enabled. The individuals were created at [25.0m, 1.0m, 0.5m];
with the following minEnergyThreshold values: 0.1ms−1 (red), 0.2ms−1 (green),
0.3ms−1 (blue), 0.4ms−1 (black).

of maxEnergyThreshold values. The maxEnergyThreshold was then considered over a
range from 0.01 to 0.15 ms−1.

The addition of the maxEnergyThreshold gives an individual a behavioural ability
to avoid near-zero velocity magnitude regions. Sensitivity analysis of maxEnergyThreshold

using veriSetA shows that a value of 0.01ms−1 is too low and results in the individual
becoming trapped in the near-zero velocity regions, figure 5.28a. However, values of
0.05 and 0.1ms−1 resulted in successful passage.

The addition of the maxEnergyThreshold parameter has no impact on individuals
moving through veriSetB, all of which fail in a manner similar to only using the
minEnergyThreshold [compare figures 5.27 and 5.28b]. This suggests that switching
of the behavioural case using the local velocity magnitude is likely to be only successful
for simple domains dominated by the Ux component of velocity, such as veriSetA.
However, when applied to a more complex domain such as veriSetB, which features
large spatial changes in velocity, controlling behaviour based solely on the local velocity
magnitude is insufficient.

This limitation is due to the velocity magnitude lacking directional and gradient
information, and therefore is insufficient to quantitatively capture flow recirculation
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zones. This could be overcome by instead using the Ux and Uy components of flow,
but this encroaches on the developmental principle of a generalised model [see tables
1.1 and 4.6 in chapters 1 and 4, respectively]. Therefore, it was decided that spatial
gradients of velocity (i.e. fluid shear) would be explored as an additional trigger to
switch behavioural cases, as is used in the NFS model [Goodwin et al., 2014].

(a)

(b)

Figure 5.28: Sensitivity of the minMaxEnergy rule to the maxEnergyThreshold para-
meter; assessed on 0.35m individuals moving through the a) veriSetA domain and
b) veriSetB domain with overlain contours of Ux, extract along the xy plane z =
0.4m. Only the followFlow and minMaxEnergy rules were enabled. The individu-
als were created at a) [25.0m, 2.5m, 0.5m] and b) [25.0m, 1.0m, 0.5m]. The following
maxEnergyThreshold values were used in each case: 0.01ms−1 (red), 0.05ms−1 (green),
0.1ms−1 (blue). The result for a maxEnergyThreshold value of 0.15ms−1 is not shown
as it coincides with the result for a value of 0.1ms−1.

Lateral Fluid Shear Thresholds

The sensitivity of the predicted fish trajectories to the fluid shear thresholds was as-
sessed. To do this, both velocity thresholds were effectively disabled by setting them
to negative numbers, since the velocity magnitude cannot be less than zero. The
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gradThresholdMin value was considered first, and the gradThresholdMax value was
thus set to a large negative number (−109) to effectively disable it. The simulation
used only the followFlow and minMaxEnergy rules. A range of gradThresholdMin

values were considered from −0.7s−1 to 0.0s−1. Decreasing gradThresholdMin from
−0.3s−1 to −0.7s−1 delayed the transition from preferring the local minimum energy
to having no preference, figure 5.29. A value of −0.7s−1 results in a severe delay
to the transition, resulting in the individual moving through the veriSetB domain
becoming trapped inside the recirculation regions downstream of the obstacle, fig-
ure 5.29a. Furthermore, a value of −0.2s−1 results in the transition occurring so
early for the individual in the veriSetA domain, that the individual never seeks the
minimum energy pathway, figure 5.29b. This gives an appropriate range of values
between −0.7s−1 and −0.2s−1. A value of gradThresholdMin was required to as-
sess the threshold range for gradThresholdMax, therefore a value of −0.35s−1 was
chosen to enable further sensitivity tests as this value lies within the established ac-
ceptable range. The gradThresholdMax value was considered over a range from −2.5
to −0.5s−1, noting that it must be < −0.35s−1. Furthermore, there must be a
region between gradThresholdMin and gradThresholdMax to facilitate the behavi-
oural case of an individual not having an energy pathway preference. Decreasing the
value of gradThresholdMax delayed the transition between behavioural cases. How-
ever, whereas gradThresholdMin delayed the transition between preferring for the
local minimum energy pathway and having no preference, gradThresholdMax delayed
the transition between having no preference and preferring the local maximum energy
pathway, figure 5.30. A threshold value ≤ −1.0s−1 had little effect on the trajector-
ies through veriSetA, figure 5.30a. Setting the threshold to a value of −0.5s−1 for
passage through veriSetB resulted in early triggering of the behavioural switch, and
likely denoted an over-sensitivity to the lateral fluid shear, figures 5.30b and 5.30c.
Decreasing gradThresholdMax to −1.0s−1 and −1.75s−1 resulted in triggering of the
behavioural switch to a preference for larger velocities closer to the obstacle, which res-
ulted in smoother, more efficiency trajectories that successfully navigated the obstacle,
figures 5.30b and 5.30c. However, decreasing to a value of −2.5s−1 caused the switch
to occur particularly late, causing the individual to move back downstream before re-
verting to moving upstream again, with very harsh changes of direction, figure 5.30b.
This trajectory also featured significant changes in vertical height, whereas none of the
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other trajectories vary significantly in z. This suggests that a value of −2.5s−1 is too
low and renders the individual under-sensitive to the lateral fluid shear. Therefore, the
acceptable range for the gradThresholdMax parameter was determined to be between
−1.0s−1 and −1.75s−1. A value of −1.25s−1 was selected, as this lies in the estab-
lished acceptable range. The results presented herein show that the recirculation zone
featured in veriSetB can be avoided through using lateral fluid shear as the trigger
to control the switching of energy searching behaviour from seeking minimum energy
pathways to seeking maximum energy pathways.

(a)

(b)

Figure 5.29: Sensitivity of the minMaxEnergy rule to the gradThresholdMin parameter;
assessed on 0.35m individuals moving through the a) veriSetB and b) veriSetA do-
mains both with overlain contours of Ux, extracted along the xy plane at a) z = 0.4m
and b) z = 0.3m. Only the followFlow and minMaxEnergy rules were enabled. In
each case, the individuals are created at [25.0m, 2.5m, 0.5m]. The gradThresholdMin

values are a) -0.3s−1 (yellow), -0.4s−1 (orange), -0.5s−1 (light red), -0.6s−1 (dark red),
and -0.7s−1 (black) and b) -0.2s−1 (red), -0.3s−1 (green), and -0.4s−1 (blue).
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(a)

(b)

(c)

Figure 5.30: Sensitivity of the minMaxEnergy rule to the gradThresholdMax parameter;
assessed on 0.35m individuals moving through the a) veriSetA domain with overlain
contours of Ux at z = 0.3m, and b),c) veriSetB domains with overlain contours of
Ux, taken at a plane z = 0.4m. Only the followFlow and minMaxEnergy rules en-
abled. In both a) and c) the individuals are created at [25.0m, 2.5m, 0.5m]. In b) the
individual was created at [25.0m, 1.0m, 0.5m]. The gradThresholdMax values are a)
-1.0s−1 (red), -1.25s−1 (green), -1.5s−1 (blue), and -1.75s−1 (black), b),c) -0.5s−1 (red),
-1.0s−1 (green), -1.75s−1 (blue), and -2.5s−1 (black).
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Combination of Velocity Magnitude and Fluid Shear Thresholds

Chosen thresholds were tested all together on the following domains: veriSetA, veriSetB,
veriSetB2, veriSetB3. This was done to ensure that the chosen threshold values
were appropriate and not over-fitted to a given domain, obstacle size, creation loca-
tion, or a combination of these. Three individuals were created at [25.0m, 2.5m, 0.5m],
[25.0m, 4.5m, 0.4m], and [25.0m, 1.0m, 0.5m] within each domain ([25.0m, 3.5m, 0.4m]
in veriSetA rather than [25.0m, 4.5m, 0.4m]). The final selected thresholds are:

• minEnergyThreshold = 0.4ms−1

• maxEnergyThreshold = 0.05ms−1

• gradThresholdMin = −0.35s−1

• gradThresholdMax = −1.25s−1

Applying the followFlow rule and the full minMaxEnergy rule to the veriSetA

domain shows that, regardless of initial placement, individuals were able to successfully
navigate through the domain, figure 5.31a. In particular, each of the individuals moved
towards, or stayed near, the walls, showing that some timesteps were spent searching
for the local minimum energy pathway. However, the individual created in the centre
of the channel ceased searching for the minimum energy pathway earlier than the
other individuals, figure 5.31a. This switch in behaviour was due to the lateral shear
experienced by the individual and the fact that lateral shear is calculated based on the
heading of the individual. This explains why the right individual did not behave in
the same way, at the same point, as the centre individual, figure 5.31a. Applying the
same rules to individuals moving through the veriSetB domain also yielded successful
passages in all cases, figure 5.31b. All individuals successfully avoided the recirculation
region downstream of the obstacle, figure 5.31b.

In order to test the validity of the chosen threshold values and ensure that they were
not over-fitted to a single domain, the minMaxEnergy parameters were also applied to
two different domains, veriSetB2 and veriSetB3, which had not been used in the
calibration of the parameters. The same methodology and parameters were applied to
individuals in the veriSetB2 and veriSetB3 domains, figures 5.31c and 5.31d. In both
cases, all three individuals passed successfully.

When applied to the veriSetB2 domain, the left individual followed a simple path-
way directly upstream and successfully passed the obstacle, figure 5.31c. The trajectory
of the centre individual approximately followed the edge of the recirculation zone down-
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(a)

(b)

(c)

(d)

Figure 5.31: Planform view of trajectories of three individuals through the a) veriSetA,
b) veriSetB, c) veriSetB2, d) veriSetB3 domains with overlain contours of Ux, ex-
tracted along the xy plane for a) z = 0.3m and b,c,d) z = 0.4m. Only the followFlow

and minMaxEnergy rules were enabled.
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stream of the obstacle and passed close to the obstacle, figure 5.31c. Furthermore, the
right individual, created within the recirculation zone, immediately moved downstream
due to the local velocity vector pointing in approximately the positive x direction; i.e.
the local upstream direction was not representative of the global upstream direction,
figure 5.31c. The right individual also immediately began seeking higher velocities due
to the local fluid shear, causing the individual to move towards the centre of the chan-
nel. After approximately 3 timesteps, the right individual left the recirculation zone,
continued to seek higher velocities, reassessed the local upstream direction, and began
to move in the correct direction to pass the domain, figure 5.31c. The right individual
then consistently moved upstream, approximately along the edge of the recirculation
zone downstream of the obstacle, and then successfully passed the domain, figure 5.31c.
When applied to the veriSetB3 domain, the left and centre individuals tended to the
left side of the channel (positive y) while seeking lower velocities, and both success-
fully passed the domain. The right individual immediately moved usptream and moved
along the edge of the recirculation zone downstream of the obstacle, and successfully
passed the domain. These results give confidence to the values of the minMaxEnergy

thresholds, and show that the rule parameters are not over-fitted to specific hydro-
dynamic domains.

5.5.2 Sensitivity to the Decision Timestep

The user-defined decision timestep (fishTimestep) controls the temporal discretisation
and therefore controls the distance moved by an individual within each timestep as well
as the frequency at which an individual samples its local environment. As discussed in
section 4.3.5, the decision timestep has a theoretical maximum value that ensures that
an individual does not ignore relevant environmental data. Although, exceeding this
maximum value does not result in failure, it will affect results and potentially cause
model instabilities and unnatural behaviour.

The fishPy model was applied to the veriSetA and veriSetB domains for a variety
of decision timesteps ranging from 0.05s to 2.0s, figure 5.32. The bodylength was set
to 0.15m for all simulations. Application of equation 4.7 suggests that the theoretical
maximum timestep value for the veriSetA and veriSetB domains are 0.32s and 0.25s
respectively. The calculated trajectories through veriSetA show near independence to
the decision timestep, figure 5.32d. However, as the timestep is increased, the calculated
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(a)

(b)

(c)

(d)

Figure 5.32: Calculated fish trajectories through a), b), and c) the veriSetB domain
with overlain contours of Ux at z = 0.5m and d) the veriSetA domain with over-
lain contours of Ux at z = 0.4m. Decision timestep is varied with values of: 0.05s
(Red), 0.1s (Yellow), 0.25s (Orange), 0.5s (Light Green), 0.75s (Dark Green), 1.0s
(Light Blue), 2.0s (Dark Blue). Individuals were created at a) [25.0m, 1.5m, 0.6m], b)
[25.0m, 0.5m, 0.6m], c) [25.0m, 3.5m, 0.6m], and d) [25.0m, 2.5m, 0.45m].
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trajectories through veriSetB become progressively “noisier”, figures 5.32a and 5.32c.
However, for these two results, the trajectories still follow the same pathway before en-
countering the obstacle. For individuals created within low velocity magnitude regions,
increasing the timestep causes an increase to the curvature of the initial trajectories
due to the decrease in the sampling frequency, figure 5.32b. Furthermore, increasing
the timestep above 0.75s caused large deviations from the other trajectories and severe
unnatural movements in the first timesteps, figure 5.32b (see trajectory for timestep
= 2s). These unnatural movements seen in the trajectory for timestep = 2s caused
the individual to move into high velocity regions where it struggled to overcome the
local velocity, figure 5.32b. After encountering the obstacle present in veriSetB, the
trajectories diverge in all cases. This is likely caused by a combination of the change in
sampling frequency, the increased velocity shear in the region adjacent to the obstacle,
and the formulation of the memory rule, discussed in section 5.6.

5.5.3 Sensitivity to the Sensory Range

Throughout development of the fishPy model, the sensoryRange value was set to 1.0
bodylength, as it is suggested that it is a function of bodylength, but the exact value
is unclear [see Goodwin et al. 2014 and Montgomery et al. 1997]. As noted in section
4.7.1, the sensory ovoid is significant to modelling from the perspective of the individual,
but exact quantification of the size of the sensory ovoid is challenging. This section
considers the sensitivity of the predicted trajectories to the sensoryRange value.

To investigate the sensitivity of predicted fish trajectories to the sensoryRange, two
test cases were explored. First, an individual was created near the downstream bound-
ary of the veriSetB domain near the centreline and at mid-depth ([27.0m, 2.0m, 0.45m]),
figure 5.33a. The sensoryRange for this individual was varied from 0.5 to 2.0. It
was found that the trajectories varied negligibly with the sensoryRange, figure 5.33a.
Second, an individual was created within the wake region downstream of the obstacle
within the veriSetB domain ([26.0m, 1.0m, 0.3m]), figure 5.33b. The sensoryRange of
this individual was varied between 0.0 and 2.0, where a value of 0.0 effectively disabled
the sensory ovoid. The results showed that, for a sensoryRange ≥ 0.5, the trajectories
showed the same general pathway, figure 5.33b. However, disabling the sensory ovoid
(sensoryRange = 0.0) caused the individual to move downstream and fail to pass the
domain after 1000 timesteps, figure 5.33b. This demonstrates the significance of the
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sensory ovoid to enable individuals to sample environmental data within their extended
local area.

(a)

(b)

Figure 5.33: Planform views of calculated fish trajectories for individuals moving
through the veriSetB domain with overlain contours of Ux extracted along the xy

plane at a) z = 0.4m and b) z = 0.2m. Fish created at a) [27.0m, 2.0m, 0.45m] and b)
[26.0m, 1.0m, 0.3m], with values of sensory range measured in bodylengths: 0.0 (black),
0.5 (red), 1.0 (yellow), 1.5 (green), 2.0 (blue).

5.5.4 Spatial Resolution Sensitivity

Owing to the spatially continuous nature of the model and the interpolation functions
used, the fishPy model requires a uniform, hexahedral, 3D mesh containing all envir-
onmental data. Therefore, CFD (or measured) data need to be preprocessed before
they can be input into fishPy [see section 5.3]. During preprocessing, the spatial res-
olution for the new 3D matrices is determined. This section considers the dependency
of fishPy to the selected spatial resolution. Note that this resolution refers to the
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Figure 5.34: An individual, created at [27.0m, 3.0m, 0.4m], moving through the
veriSetA domain with overlain contours of Ux, extracted along the xy plane z = 0.3m
with varying spatial resolutions of: 0.05m (red), 0.1m (blue), 0.2m (green), 0.4m (or-
ange), 0.5m (white), and 1.0m (yellow).

Figure 5.35: An individual, created at [27.0m, 2.0m, 0.4m], moving through the
veriSetB domain with overlain contours of Ux extracted along the xy plane z = 0.4m
with varying spatial resolutions of: 0.05m (red), 0.1m (blue), 0.2m (green), 0.4m (or-
ange), 0.5m (white), and 1.0m (yellow).

interpolated grids of the same underlying CFD simulation and does not consider any
modification to the CFD mesh.

The sensitivity of fishPy to the spatial resolution was investigated by interpolating
the CFD results of flow through the veriSetA and veriSetB domains onto regular grids
of varying spatial resolution. These grids were then input into the fishPy model. In
the first case, the trajectory of an individual created at [27.0m, 3.0m, 0.4m] within
the veriSetA domain was predicted using each spatial resolution, figure 5.34. The
trajectories show that larger resolutions dampened the effect of the minMaxEnergy

rule when seeking the minimum energy route, figure 5.34. In the second case, the
trajectory of an individual created at [27.0m, 2.0m, 0.4m] within the veriSetB domain
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was predicted using each spatial resolution, figure 5.35. The trajectories show little
variation between spatial resolutions of 0.05 and 0.1m, figure 5.35. Above a value of
0.1m the individual begins searching for the local maximum energy pathway at later
points, resulting in different trajectories. However, each trajectory between 0.05m and
0.5m have approximately the same form. A spatial resolution of 1.0m resulted in a
vastly different trajectory, figure 5.35.

Variations in trajectories through both domains are likely due to a loss of geo-
metry and near-boundary velocity data due to the spatial interpolation, which assumes
a spatially-linear variation between grid points. This results in two unwanted beha-
viours. First, the interpolated velocity was less than the actual velocity causing the
individual to cease seeking the minimum energy pathway earlier. Secondly, the passab-
ility value in the G3D matrix is smoothed causing the boundary between passable and
impassable locations to move further from the wall [passabilityThreshold= 0.1; see
section 4.3.4]. Predicted trajectories through both domains can be seen to tend towards
a particular path with increasing spatial resolution (i.e. the smallest differences in tra-
jectories are seen between spatial resolutions of 0.05m and 0.1m). This result suggests
that increasing the spatial resolution of a given domain decreases the sensitivity of the
predicted trajectories to the spatial resolution. Therefore, the highest possible spa-
tial resolution should be used within practical limitations of time and computational
resources.

5.6 Discussion of Model Verification and Sensitivity Ana-
lyses

This chapter has shown the development of a number of verification datasets as well as
the process and results of applying each rule of the fishPy model to these datasets. The
verification datasets are produced in order to test that each individual rule works as
intended and to facilitate studies on the sensitivity of the model to various parameters
and therefore the CFD results are not validated.

5.6.1 Discussion of Verification of Behavioural Rules

This chapter has applied each rule to the developed verification datasets and shown
that each rule is functioning as intended. Due to the fact that verification is integral to
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the development of any piece of software, the verification work presented in this chapter
was carried out in parallel the work presented in chapter 4. Each section of code that
was written was immediately verified to ensure correct formulation and function.

The result of the verification process for each behavioural rule are:

• Rule 1: followFlow - Individuals were found to move in the opposite direction
to the local velocity direction.

• Rule 2: minMaxEnergy -

– a) Individuals moved with bias towards regions of smaller velocity when
seeking local minimum energy pathway.

– b) Individual moved without bias when neither seeking the local minimum
or maximum energy pathway.

– c) Individuals moved with bias towards regions of larger velocity when seek-
ing local maximum energy pathway.

• Rule 3: randomWalk - Individuals moved in random patterns, limited to 10◦ in the
vertical, and ultimately left the domain after being pushed by the local velocity
vector.

• Rule 4: obAvoidance - Individuals efficiently and actively avoided obstacles when
they were detected.

• Rule 5: colAvoidance - Individuals within proximity to other individuals, moved
away from each other until out of the range defined by repulsionDist.

• Rule 6: memory - Individuals biased movements towards the direction of the aver-
age upstream direction detected over previous timesteps, resulting in a reduction
in sensitivity to variations in the local velocity direction.

• Rule 7: tkeAvoidance - Individuals moved with bias against regions with TKE
values above tkeThreshold.

The verification process for the followFlow, randomWalk, obAvoidance, colAvoidance,
memory, and tkeAvoidance rules was simple due to the simple formulation of the rules.
For example, the followFlow rule should move an individual in the local upstream
direction, which should be a straight, on-axis line when applied to a domain where the
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velocity field is dominated by a single component of velocity (i.e. veriSetA). Verific-
ation of the minMaxEnergy rule was more difficult due to the complexity of the rule;
i.e. the rule contains three behavioural cases with five triggers. Verification of this rule
required interrogation of each domain and each trajectory to determine fluid shear val-
ues, velocity magnitudes, and obstacle data to ensure each threshold was appropriately
triggered and the corresponding behavioural case was activated.

5.6.2 Discussion of Sensitivity Analyses

This section discusses each of the sensitivity analyses carried out within this chapter.

Discussion of Sensitivity to minMaxEnergy Thresholds

The minMaxEnergy rule is complex, containing three distinct behavioural cases con-
trolled by four threshold values. This chapter has presented an investigation in the
value of each of these thresholds, and identified that the following values consistently
produce qualitatively agreeable trajectories through veriSetA, veriSetB, veriSetB2,
and veriSetB3:

• minEnergyThreshold = 0.4ms−1

• maxEnergyThreshold = 0.05ms−1

• gradThresholdMin = −0.35s−1

• gradThresholdMax = −1.25s−1

These sensitivity studies demonstrated that using only the velocity magnitude
thresholds (minEnergyThreshold and maxEnergyThreshold) was sufficient for an in-
dividual to navigate the veriSetA domain, but insufficient for passage of the veriSetB

domain [see figures 5.27 and 5.28]. This was due to the inability to determine flow
direction from velocity magnitude, and therefore individuals became trapped within
recirculation zones, wherein they follow the local flow indefinitely. This limitation
could be mitigated against by using the horizontal components of flow (i.e. Ux or Uy),
but this requires a priori knowledge of the global upstream direction and would en-
croach on the developmental principle of a generalised model and would severely limit
the utility of fishPy [see table 1.1 in chapter 1].

The sensitivity studies also showed that it was possible for an individual to success-
fully pass both the veriSetA and veriSetB domains using only the spatial velocity
gradient thresholds [see figure 5.30]. However, regions of near-zero velocity flow can
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be detrimental to up-migrating salmonidae, since exposure to relatively significant flow
velocities (i.e. attraction flow) is required to determine the upstream direction [see sec-
tion 2.7]. Furthermore, both food and olfactory information are transported by fluid
flow within rivers and therefore it is beneficial for up-migrating fish to locate themselves
within the bulk flow to collect this information. A comparison of predicted trajector-
ies using a combination of velocity magnitude and fluid shear thresholds against using
only the velocity magnitude thresholds or only the fluid shear thresholds, shows that
using all four thresholds led to more qualitatively agreeable results, figures 5.31, 5.30,
and 5.28. Therefore, the inclusion of all four thresholds is important as each threshold
controls the attraction and repulsion from different hydraulic information.

Discussion of Sensitivity to the Decision Timestep

In chapter 4, the theoretical maximum fishTimestep was determined based on model
stability criteria and the CFL criterion. Within section 5.5.2, the sensitivity of pre-
dicted trajectories to the fishTimestep was investigated. The results demonstrated
that the predicted trajectories through the veriSetB domain were sensitive to the
fishTimestep, even when less than the maximum theoretical value, figure 5.32. Con-
versely, the predicted trajectories through the veriSetA domain were independent of
the fishTimestep, figure 5.32d. The spatial velocity gradients in the veriSetA do-
main were small when compared to the veriSetB domain. Therefore, the frequency
at which an individual can sample the environment and make movement decisions (i.e.
fishTimestep) must be smaller when considering the veriSetB domain, due to the
increased spatial variation of the environmental data. This suggests that, much like the
maximum theoretical fishTimestep, the required fishTimestep to ensure independ-
ence of predicted pathways depends upon the domain being investigated. In particular,
it depends upon the minimum velocity in the domain and the spatial velocity gradients.
It is interesting that neither Goodwin et al. [2014], Gao et al. [2016], nor Tan et al.
[2018] consider sensitivity to the timestep and instead choose unjustified, constant val-
ues of 2s, 1s, and 0.3s, respectively. Gisen [2018] briefly mentioned sensitivity of the
ELAM-de model to the timestep and concluded that the model is near-independent
of the chosen timestep. However, Gisen [2018] did not present any sensitivity testing
methodology or results and therefore it is difficult to have confidence in this conclusion.
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Discussion of Sensitivity to the Sensory Range

A study was undertaken to determine the sensitivity of the predicted fish paths against
varying sensory ranges of individuals. This study revealed that varying the sensory
range of a 0.3m individual from 0.5 to 4.0 (measured in bodylengths) did not signific-
antly alter the predicted paths through the veriSetA and veriSetB domains, figure
5.33. This could be due to the spatial averaging processes within fishPy, although it
is a surprising result given the complex, spatially-varying fluid environment within the
veriSetB domain. This is an interesting result as there is no clear agreement on the
size of the sensory ovoid within the literature. For example, Goodwin et al. [2014] used
a randomly varying sensory range between 6.0 and 10.0 bodylengths. Whereas Gao
et al. [2016] and Tan et al. [2018] used randomly varying values between 1 to 1.5, and 1
to 1.75 bodylengths, respectively. Zielinski et al. [2018] used a value of 0.5 bodylengths,
which was doubled in coarse mesh regions, and Gilmanov et al. [2019] used a value of
2.0 bodylengths. However, disabling the sensory ovoid by setting the sensoryRange

to zero, resulted in the individual moving downstream and failing to pass the domain
within 1000 timesteps, , figure 5.33b. These results suggest that, while trajectories are
near-independent to the size of the sensory ovoid, the existence of the sensory ovoid
is significant and crucial for enabling individuals to sample the environment, make
informed decisions, and escape from undesirable flow regions.

Discussion of Sensitivity to the Spatial Resolution

A study on the sensitivity of predicted fish paths to the spatial resolution of the envir-
onment data was undertaken. The results showed that the predicted trajectory through
the veriSetA domain varied little when the spatial resolution was varied between 0.05m
and 0.2m, figure 5.34. However, when the spatial resolution was increased above 0.2m,
the trajectories tended towards the centre of the channel rather than the edges, figure
5.34. This is likely due to a loss of geometry and near-boundary velocity data due
to the spatial interpolation, which assumes a spatially-linear variation between grid
points. Predicted trajectories through the veriSetB domain showed little variation
between spatial resolutions of 0.05m and 0.1m, but increasing to 0.2m, 0.4m, and
0.5m caused individuals to seek local maximum energy pathways earlier, figure 5.35.
A spatial resolution of 1.0m resulted in a vastly different trajectory compared to finer
resolutions, suggesting that the hydraulics were not accurately represented, figure 5.35.
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It is likely that the required spatial resolution of the interpolated environment data
is dependent upon the spatial variation of the pre-interpolated data and the complex-
ity of the domain geometry. For example, domains with more complex geometries will
require finer spatial resolutions to ensure the geometry is accurately captured. Simil-
arly, hydrodynamic environments with large variations in environment data (such as
large spatial velocity gradients) will require finer spatial resolutions to capture these
variations. Interestingly, none of the established fish path prediction models consider
any dependency upon the resolution of the environmental data used.

It is interesting that the threshold for variation in trajectories occurred at roughly
0.2m in each domain, despite their differences in hydraulics and geometry. Given
that trajectories are dependent upon the ability for an individual to sense surrounding
hydraulic data, and the sensory ovoid of the individual is a function of the bodylength;
it is possible that there is an interaction between the spatial resolution of the input
data required to ensure independence, and the minimum bodylength of the individuals
considered. For example, smaller fish may require finer mesh resolutions, due to their
reduced sensory ovoid, to adequately sense spatial variations in environmental data.

Limitations of Sensitivity Analyses

The sensitivity studies undertaken in this chapter are not without limitation. Firstly,
there are limited data in the literature that can be used to compare, contrast, or
validate threshold values against. This is due to the significant difficulties involved in
experimentally determining behavioural responses to hydraulic variables, which remains
an area of active research. Due to this, in each sensitivity analysis, appropriate ranges
are identified for each parameter as well as the exact values used. Secondly, variations
in bodylength are not considered within any of the sensitivity analyses, and it is unclear
whether these parameters are sensitive to the bodylength of each individual. In the case
of the minMaxEnergy rule, it is possible that the velocity and fluid shear thresholds that
control the switch between behavioural cases are a function of bodylength. For example,
smaller fish may be more sensitive to relatively high velocities compared to larger
fish, due to the difference in swimming ability. However, the thresholds that define
the behavioural switch to seeking higher velocities depend more upon repulsion from
both turbulent regions and low velocity regions and therefore likely depend less on the
swimming ability of the individual. Moreover, regardless of bodylength or swimming
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ability, fish have been found to prefer higher velocity regions to higher turbulence
regions [Smith et al., 2005, 2006].

The sensitivity studies presented in this chapter consider key fishPy parameters,
but is non-exhaustive. However, of the established fish path prediction models in the
literature [see Blank 2008, Abdelaziz 2013, Plymesser 2014, Goodwin et al. 2014, Gao
et al. 2016, Gisen 2018, Tan et al. 2018, Zielinski et al. 2018, Gilmanov et al. 2019,
Finger et al. 2020], only Gisen [2018] considered any form of model sensitivity. Yet the
sensitivity studies presented by Gisen [2018] lack context, methodology, or thorough
results, although calibration of some parameters against flume studies was undertaken.
Therefore, it is challenging to compare the sensitivity studies undertaken herein with
any of the published fish path prediction models in the literature.

5.7 Conclusion

This chapter has presented work towards the aim outlined in section 5.1.1. First, the
development and execution of five OpenFOAM CFD simulations to create six verific-
ation datasets was presented. Each dataset was solved using the interFoam solver
within OpenFoam, using the k-ω SST turbulence closure model. Each of the verifica-
tion datasets contained varying hydraulic environments, particularly with respect to the
spatial-variations of the velocity fields. These variations in hydraulics ensured that the
verification and sensitivity analyses were not over-fitted to a specific hydrodynamic do-
main. Second, each behavioural rule within fishPy was verified using multiple verifica-
tion domains. Verification was undertaken independently of other rules where possible.
Each rule was successfully verified, ensuring that they are functioning as intended.
Third, a number of sensitivity analyses were performed to understand the depend-
ency of fishPy-predicted trajectories to: minMaxEnergy parameters, fishTimestep,
sensoryRange, and the spatial resolution of the environmental input.

The sensitivity analysis of the minMaxEnergy thresholds demonstrated that using
thresholds of both velocity magnitude and fluid shear resulted in more qualitatively
agreeable results than using thresholds of only one hydraulic parameter. The sensitivity
analysis of the timestep suggests that the required timestep should be small (O0.1s)
and is dependent upon the domain. This finding does not agree with the constant
timestep formulation of Goodwin et al. [2014] and Gao et al. [2016]. Furthermore,
domain-dependency of the timestep is not considered within any of the publish fish
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path prediction models. The sensitivity study of the sensoryRange showed that, while
the predicted trajectories were near-independent of the sensoryRange, disabling the
sensory ovoid (sensoryRange = 0.0) resulted in the individual failing to pass.
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Chapter 6

Application of the fishPy model: Ruswarp Weir
Case Study
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6.1 Introduction

Chapter 3 demonstrated how agent-based modelling can be applied to ecohydraulic
problems. Furthermore, chapters 4 and 5 have described the development and verific-
ation of the fishPy tool. This chapter considers the application of the fishPy tool to
a newly created hydraulic domain to assess fish trajectories, fish passage metrics, and
to facilitate comparisons with measured fish track data.

The application of the fishPy tool facilitates the validation of the outputs of the
model. Validation of agent-based models is important to achieve a fully realised model
and understand its function [Ngo and See, 2012]. For example, Heppenstall et al.
[2006] developed a hybrid agent-based model of petrol prices across the county of West
Yorkshire, initialised with real data. Heppenstall et al. [2006] found that the model
reproduced the spatial patterns of the real market and was successful in predicting
the prices and profitability of individual retailers over a number of years. However,
validation is a challenging process [see Ngo and See 2012 and Crooks et al. 2008] and
Crooks and Heppenstall [2012] stated that a model should not be considered as valid
or invalid, but instead be viewed as having a certain degree of validity.

The validation process considers a comparison of simulated outputs to measured
data. In the context of the fishPy model, this requires a comparison of predicted and
measured brown trout trajectories. Many experimental studies use passive integrated
transponder (PIT) tags together with reader antennas [see Gibbons and Andrews 2004]
to track the movements of fish [e.g. Castro-Santos et al. 1996, Peterson and Neville
2019, and Kammerlander et al. 2020]. This method collects binary present/absent
data which allows for macro-scale metrics such as passage efficiency, but does not
elucidate the precise pathway selected by an individual (micro-scale); i.e. the spatio-
temporal resolution of the technique is insufficient. Dodd et al. [2018] utilised acoustic
measurement systems to collect spatial data of individual sea trout (anadromous Salmo
trutta) approaching and passing Ruswarp Weir; located on the River Esk. These spatial
data were a mixture of 2D fish tracks (depth not measured) and binary present/absent
data depending upon the number of acoustic receivers within range. This methodology
yielded a higher spatio-temporal resolution compared to the use of PIT tags. This
trajectory dataset has not yet been published, although findings using the dataset have
been published [Dodd et al., 2018]. However for the purposes of this study, Dodd
[2019] kindly shared this dataset with the author. Ruswarp Weir, henceforth the study
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site, features a number of complexities important in the modelling procedure which are
described in detail in section 6.2.

Securing this dataset meant that predicted fish paths and bulk passage metrics
could be compared against measured bulk passage data as well as individual measured
fish paths. To calculate simulated trajectories, the fishPy model required a dataset
quantifying the hydrodynamic environment at the study site. This chapter details the
collection and post-processing of the required data at the study site, the subsequent
development of the CFD model to provide high resolution environment data, the valid-
ation of the CFD model, and finally the application of the fishPy tool to the Ruswarp
domain.

6.1.1 Aim

The aim of this chapter is to apply the fishPy tool to Ruswarp Weir to enable compar-
isons of predicted and measured fish tracks using the Dodd et al. [2018] dataset. This
aim is achieved through the following objectives:

• Collection, assessment, and unification of topographic bathymetry and hydraulic
data at the study site.

• Development, execution, and validation of computational fluid dynamics simula-
tions of two flow conditions at the study site.

• Application of fishPy to the study site to predict fish pathways and bulk passage
metrics, and subsequent comparisons against the Dodd et al. [2018] dataset.

6.2 Study Site

The River Esk rises upstream of Westerdale, and flows for approximately 45 km through
Eskdale, until draining into the North Sea at Whitby, figure 6.1. Ruswarp Weir lies
on the River Esk, approximately 1.6km upstream of Whitby and marks the tidal limit.
The broad-crested weir at Ruswarp was originally constructed to divert water through a
now inactive mill, and is 270m long and positioned oblique to the river at approximately
a 15◦ angle, figure 6.1. The River Esk is approximately 50 m wide as it approaches
Ruswarp Weir. The weir features three fish passage facilities: a smolt pass at the
downstream-most point on the weir, a diagonal V notch baulk pass in the centre of the
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weir, and a Larinier pass at the upstream-most point on the weir. The Larinier pass
features 150mm baffles, an installation angle of 8.53◦ (15% gradient), and is co-located
with a low-head Archimedes screw hydropower turbine. This hydropower facility is
licensed to abstract a maximum of 4.0m3s−1 and is not allowed to function when the
river level is below 3.492 metres above ordnance datum (mAOD) or the discharge is less
than 0.92m3s−1 [Dodd et al., 2018]. This ensures sufficient water flow through both
fish passes at low flow. For reference, the weir crest is located at 3.555 mAOD.

Figure 6.1: Schematic of Ruswarp Weir on the Yorkshire Esk, including location of
the Larinier fish pass, baulk pass, hydropower scheme, and smolt pass. Asterisks de-
note terrestrial laser scanner locations. Red squares denote approximate monitor line
locations used in section 6.3.3. Figure modified from Dodd et al. [2018].

6.2.1 The Study of Dodd et al. [2018]

Dodd et al. [2018] used acoustic telemetry to quantify the performance of a co-located
Larinier fish pass located at Ruswarp Weir, and to understand the effect of hydro-
power operation of fish passage. Dodd et al. [2018] used electrofishing to catch 131 sea
trout (anadromous Salmo trutta) between the 24th of September 2013 and the 23rd of
November 2015. Fish were caught approximately 0.5km downstream of Ruswarp Weir,
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surgically implanted with acoustic tags (Model 795LG; Hydroacoustic Technology Inc.,
Seattle, USA), and transported approximately 1.5 km downstream of Ruswarp Weir
where they were released. The acoustic tags, together with an array of river-bank-
mounted hydrophones, enabled the collection of two dimensional fish locations (i.e. no
depth data). The temporal resolution of the data varied between ≈ 1.6s and ≈ 10.1s.
A single hydrophone was placed downstream of the release location, another was placed
approximately 30m downstream of Ruswarp Weir, and seven were placed immediately
downstream of the Larinier fish pass. A further three hydrophones were placed up-
stream of the weir. The Larinier fish pass and baulk pass were open throughout the
study, and the smolt pass was closed throughout the study. River discharge was ob-
tained from the Environment Agency gauge F2902, River Esk at Briggswath which is
located 1.6km upstream of Ruswarp Weir, and the through-turbine flow rate, obtained
from Whitby Esk Energy, at 15 minute intervals throughout the study period. Further-
more, water levels were monitored at 5 minute intervals at the Environment Agency
gauge E71024 at Whitby Harbour.

Dodd et al. [2018] reported that 84 of the 131 fish approached Ruswarp Weir, with
a median of 6 approaches each. A total of 61 fish ascended the weir, with 53 passing
via the fish pass. This gave an impediment passage efficiency of 72.6% and a fish pass
efficiency of 63.1%. Dodd et al. [2018] recorded significant variation in river discharge
throughout the study from 0.44m3s−1 to 88.00m3s−1. These discharge values show that
the weir is subject to flood conditions and overtopping of the weir is possible. Tidal
variations, together with these discharge variations, caused the downstream river level
to vary from 1.68 to 4.24 mAOD throughout the study. Dodd et al. [2018] reported that
fish ascended the Larinier fish pass when the river discharge was between 1.65m3s−1

and 31.00m3s−1, and that no significant difference in discharge was seen between when
fish successfully ascended the Larinier fish pass (median discharge 6.22m3s−1) and
when fish approached but did not ascend (median discharge 6.48m3s−1). Dodd et al.
[2018] reported that over half of the approaches to the Larinier fish pass occurred when
the downstream river level was between 2.00 and 2.19 mAOD. No fish approached the
Larinier fish pass when the flow was below the lower limit for hydropower operation
(3.492 mAOD and 0.92m3s−1). The data collected by Dodd et al. [2018] were kindly
provided to the author including: measured fish tracks, downstream water levels, river
discharges, hydropower discharges, and lengths and weights of tagged fish.
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Dodd et al. [2018] reported that the Archimedes screw hydropower turbine was
active for 76% of the study period and fish ascended the co-located Larinier fish pass
across the operating range of the hydropower turbine (0.11 − 3.83m3s−1), as well as
when the hydropower turbine was inactive. Furthermore, Dodd et al. [2018] reported
that the through-turbine flow rate had little influence over the probability of successful
passage through the Larinier fish pass. Since modelling of an Archimedes screw turbine
is complex and computationally challenging, it was decided that fish tracks measured
while the turbine was active would be discarded. Furthermore, tracks measured during
flood conditions, where discharge was in excess of 500% of the average, were discounted.
This left a total of 60 fish tracks measured for 15 tagged sea trout to compare against
the predicted outputs. Data on the tagged individuals and specific tracks are given in
tables E.3, E.4, E.5, and E.6 in Appendix E, and are discussed later in this chapter.

6.2.2 Environmental Data

Since Dodd et al. [2018] did not collect high resolution bathymetry and hydraulic flow
data, fieldwork was undertaken between the 10th and 13th of September 2018. This
period coincided with the largest Spring tide of 2018, which afforded the advantage
that the dry bed area was maximised at low tide. Further data were also collected
on the 4th of April 2019. The corresponding river discharge and stage data from
the Environment Agency gauge 27902, River Esk at Briggswath were provided by the
Environment Agency [Lindsay, 2019]. Furthermore, upstream and downstream river
levels at the weir were provided by Whitby Esk Energy [Ford, 2019]. These data showed
that the river discharge varied from 0.46 to 0.86m3s−1, with an average of 0.57m3s−1,
and the downstream river level varied from approximately 1.75 to 3.35 mAOD.

Permission from the Environment Agency was obtained to close the Larinier fish
pass, the smolt pass, and the hydropower scheme throughout data collection. This
meant that the only flow across the weir was through the baulk pass. This was done
to reduce the downstream water level as much as possible to aid in collecting bathy-
metry data. Since the environmental conditions during the fieldwork were different to
those reported by Dodd et al. [2018], the collected data were used to parametrise and
validate a CFD model of the same environmental conditions before its application to
the conditions reported by Dodd et al. [2018].
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6.2.3 Data Collection Methodology

Data collection was divided into two components. The first considered the collection
of topography of the subaerial regions of the study site using LIDAR. The LIDAR
system was unable to penetrate water and therefore, to maximise the area that could
be measured, the fish pass was closed on arrival to minimise the downstream water
level. It was not possible to reduce the upstream water level by an amount that would
allow for collection of the upstream bathymetry using the LIDAR system. Thus a
second component was included to collect subaqueous bathymetry and velocity data
using an Acoustic Doppler Current Profiler (ADCP) mounted underneath a remote-
controlled boat. The two datasets were coupled through the use of real-time kinetic
Global Positioning System data. This section details the data collection methodology
and the extensive manipulation and filtering processes employed, which is summarised
in figure 6.2.

Collection and Post-Processing of Real-time Kinematic Global Positioning
System Data

Leica Geosystems 1200 real-time kinematic (RTK) Global Positional System (GPS)
surveying instrument was used to collect three dimensional positions of 107 key points
across the weir. In particular, data were collected around and within the fish pass and
baulk pass, along the upper and lower limits of the weir face, and at five targets spaced
across the weir face.

All base data were post-processed using Geo Office version 7 [Leica Geosystems,
2020]. Simultaneous same-satellite observations collected at publicly accessible refer-
ence stations and local base stations were combined during post-processing. In order to
accomplish this task, precise satellite ephemeris and reference station data were down-
loaded from NASA [NASA, 2020] and the Ordnance Survey, respectively [Ordnance Sur-
vey, 2020]. Data from publicly accessible reference stations at Catterick (ID:CATT),
Scarborough (ID:SCAU) and Yearsley (ID:YEAL) were used. During baseline post-
processing, three-dimensional vectors were computed between reference sites and local
base stations; triangulation yielded highly accurate three-dimensional coordinates of
the local base stations. For the two base stations occupied during surveys, Geo Office
estimated standard deviations in the X-, Y- and Z-coordinates of ±0.0001m, ±0.0001m
and ±0.0001m, respectively.
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Figure 6.2: Flowchart outlining the parallel data collection process, post-processing,
and subsequent creation of the final point cloud through the integration of the TLS,
ADCP, and RTK GPS data.

After post-processing, all GPS coordinates were projected from the WGS84 coordin-
ate system to the Universal Transverse Mercator Zone 30 North coordinate system and
ellipsoidal heights were converted to altitudes by subtracting geoid heights computed
by the HSYNTH WGS84 tool created by the National Geospatial-Intelligence Agency
[NGA, 2020]. In addition, it was found that there was an offset of 0.883m between
estimated altitudes and Ordnance Datum Newlyn.

Collection and Post-Processing of Terrestrial Laser Scanner Data

A Topcon GLS-2000 terrestrial laser scanner was used to collect three dimensional point
data of the dry bed and surrounding geometry [see Hohenthal et al. 2011]. Thorough
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manual removal of flora was undertaken around the study site prior to data collection to
reduce the required post-processing. Throughout data collection: the camera resolution
was set to high (2560 x 1920 pixels), the laser resolution was set to 3.1mm at a range of
10m and the “detail” mode was selected, pulse selection was set to “last” to maximise
the laser penetration of the water surface and any vegetation. Three separate scanning
locations were used to ensure full coverage of the weir face and downstream dry bed
[denoted by the asterisks in figure 6.1]. Individual laser scans each had their own local
coordinate system and thus need to be subject to a five variable (three translation and
two rotation) coordinate transfer. To compute this transform for each laser scan, the
position of five targets distributed over a range of three dimensional positions were
surveyed using the Leica RTK GPS.

Data from five separate laser scans and the location data of the five targets were
imported into TopCon ScanMaster 3.06. For scans that could see the targets, the tie
point registration method was used to compute the 3D coordinate transformation to
shift the local scans into UTM coordinate system. For the scan position that could not
see the targets, the occupy and backsight method was used. Outliers were removed
from the data within ScanMaster 3.06. The data were then imported into CloudCom-
pare v2.9.1, where vegetation on the weir face was filtered using a Cloth Simulation
Filter [see Zhang et al. 2016]. Optimal settings were determined through trial and error
by assessing the numbers of points removed and most accurate identification of veget-
ation as opposed to the weir face or river banks. In particular, “Relief” with “Slope
processing” was enabled, with a cloth resolution of 0.5m and a classification threshold
of 0.2m.

Collection and Post-Processing of Acoustic Doppler Current Profiler Data

A SonTek RiverSurveyor M9 [SonTek, 2011] mounted underneath a remote-controlled
ARCboat [HR Wallingford, 2020] was used to collect bathymetry and hydraulic data
upstream of the weir. The SonTek RiverSurveyer M9 is an acoustic Doppler current
profiler (ADCP) that uses four acoustic beams to evaluate three dimensional velocity
data and five acoustic beams to measure bathymetry. Velocity data are measured in up
to 128 equally- spaced bins through the acoustic beam. This results in an instantaneous
three dimensional velocity profile along a vertical line from the probe to the bed. The
SonTek RiverSurveyor M9 has a measurement resolution of 0.001ms−1 and 0.001m for
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Table 6.1: Acoustic Doppler current profiler data quality categories based on measure-
ment parameters

Quality Category NVS HDOP Q in

A ≥ 6 ≤ 3 4
B ≥ 6 > 3 3
C ≥ 6 ≤ 3 -
D ≥ 6 > 3 -

velocity and depth measurements, respectively [SonTek, 2011]. Similarly, the SonTek
RiverSurveyor M9 has a reported accuracy of ±0.002ms−1 (or 0.25%) and ±0.001m
(or 1%) for velocity and depth measurements, respectively [SonTek, 2011]. The M9
is fitted with an on-board compass and two-axis tilt sensor to enable computation of
the x,y,z location of the sample bins. The ARCboat is also equipped with an on-
board GPS, which gave spatial locations and facilitated integration with the other
geospatial datasets. The compass and tilt sensor required daily calibration, achieved
through manual simulation of roll, pitch, and yaw movements. Measurements were
taken along a series of transects, spaced approximately 5m apart, upstream of the weir.
Transects were repeated three times to lessen the impact of noise in the data. The
ARCboat was moved at slow speeds to ensure high quality measurements [SonTek,
2011]. Furthermore, measurements were taken along three additional streamwise lines
to compliment the transects.

Measured ADCP data were exported to a modified version of the Velocity Mapping
Toolbox [Parsons et al., 2013] that permitted export of bathymetry computed using all
ADCP beams together with the central depth-sounding transceiver. These data were
categorised based on their assessed quality using multiple parameters: the number of
visible satellites (NVS), the Horizontal Dilution of Precision (HDOP), and the internal
“Quality” value (Q in). An HDOP value of 4 to 6 represents the minimum level ap-
propriate for discharge measurements, whereas an HDOP value ≤ 3 represents excellent
quality [SonTek, 2011]. The Q in value is defined as: zero denotes a lack of GPS data,
one denotes a non-differential GPS signal, two denotes a differential GPS signal (sub-
metre accurate), and four denotes a full RTK GPS signal (accurate to 30 mm or less)
[SonTek, 2011]. The quality categories used to process the ADCP data are defined in
table 6.1.
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All category C and D data were discarded. All category A data were retained.
Category B data were retained only if surrounding data points were category A and no
significant changes in xy location were observed. 80.8% of measurement data points
were retained (66347 out of 82123 data points). Measured depths were then conver-
ted to altitudes through reference to upstream water surface elevations and Ordnance
Datum, provided by Whitby Esk Energy. These upstream water surface elevations were
linearly interpolated to determine elevations at the exact collection time of each ADCP
measurement.

Creation and Post-Processing of Point Cloud Data

Processed sub-aerial elevation data collected via LIDAR and processed subaqueous
elevation data collected via ADCP were imported into CloudCompare and merged
to create a single point cloud dataset. These were then compared to the measured
GPS point data, collected around key features of the weir, to ensure accuracy, and
then subsequently merged. This resulted in a point cloud of approximately 6.3 million
points. To reduce the point cloud to a more manageable size, the sub sample tool
within CloudCompare was used to select the points with a minimum spacing of 0.1m
between data points. The final processed point cloud was then exported as a .las file
and as a .csv file.

6.3 Computational Fluid Dynamics of Ruswarp Case Study

Two computational fluid dynamics simulations were developed. The first, named
valSet, simulated the flow conditions during the present fieldwork. This case allows
for direct comparisons of velocity measurements between the CFD and the collected
ADCP data, providing some evidence of the validity of the use of CFD on the geo-
metry. The second, named fishSet, simulated the flow for the conditions under which
the Dodd et al. [2018] fish tracks were measured. This dataset is designed to be used
as an input to the fishPy model to predict the fish pathways.

For each case, a separate CFD mesh was required. This was due to the fish pass
being closed during the fieldwork, yet open during the collection of fish tracks. Further-
more, the implementation of the downstream boundary condition, detailed in section
6.3.2, required a separate CFD mesh for each.
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6.3.1 Creation of the Computational Fluid Dynamics Meshes

In order to create computational fluid dynamic simulations of the study site, the geo-
metric data was first converted into a high quality CFD mesh. This was a laborious
and complex process. Furthermore, no published methodology or protocol detailing
the conversion from TLS data to CFD mesh was found. Therefore, to aid future re-
searchers, the method used is thoroughly detailed within this section. The methodology
briefly consisted of the following steps:

1. Creation of the .tin file.

2. Creation of the initial .stl file.

3. Quality control of the .stl file.

4. Preparation of the manifold surface file for openFOAM.

5. Creation of CFD mesh.

Creation of the .tin File

The final point cloud, exported in both .las and .csv file formats, was converted into a
.tin file. This was done using las2tin, a tool which is part of the LAStools suite [Isen-
burg, 2019]. The las2tin tool is designed to read in TLS point cloud data and create
a .tin through incremental Delaunay triangulation based on the work of Bowyer [1981]
and Watson [1981]. Thus, regions of the domain that did not contain surveyed points,
were filled using linear interpolation between surveyed points. This is an appropriate
approach for natural river channels since elevation gradients are low, with slopes up to
the angle of repose [e.g. Nicholas et al. 2012].

Creation of the Initial .stl File

The newly created .tin file was then imported into MATLAB using the dlmread func-
tion. As all position data was in UTM coordinates, the resultant origin location was
approximately 6 × 106 m from the nearest data in the point cloud. A new coordinate
system was developed by subtracting the minimum position value in each axis from
the position vectors. termed the UTM RUS coordinate system. This translated the origin
of the new domain to the southwest corner of the original domain. The .tin and .csv
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files were then converted into a surface file using a combination of the MATLAB func-
tions surf2solid [Holcombe, 2014], stlwrite [Holcombe, 2018], and geom3d [Legland,
2019]. This resulted in a large .stl file of the entire Ruswarp domain [see figures 6.3a
and 6.4a, for selected regions].

Quality Control of the .stl File

The initial .stl file was imported into Blender, where it was thoroughly interrogated
using the 3D Print Toolbox Add-on for Blender [Blender Foundation, 2019]. This
included identification and rectification of intersecting faces, zero area faces, zero length
edges, non-flat faces, thin faces, sharp faces, and holes within the surface. This also
identified issues with the initial geometry that had to be rectified. Specifically, sections
of the bed between measured points were in-filled by linearly interpolating data from
the surrounding area. This was particularly necessary along the upstream bed since
the only measured elevations were from the ADCP data collected along transects at 5m
intervals. Additionally, the weir face was particularly rough, likely due to the presence
of flora in the original point cloud. Therefore, any remaining influence of flora on the
surface file was reduced by smoothing the surface to simplify CFD meshing. Finally,
the fish pass and baulk pass were rebuilt using the GPS locations measured with the
Leica Geosystems 1200 and from photographs taken during the fieldwork. In particular,
the crest heights of the baulk pass, fish pass, and weir were corrected based on known
and collected data.

The CFD meshing process employed later required a manifold surface. Therefore, a
lid was constructed to cover the domain, and the river banks were extended vertically
to connect to the lid. This lid was chosen to be 4m above the highest point in the
domain, as it was decided that this was far enough away from the expected free surface
to not impact upon the flow. The 3D Print Toolbox Add-On was then used to identify
non-manifold edges to aid in ensuring that the .stl file was completely manifold. Before
and after views of the surface file are shown in figures 6.3 and 6.4.

Preparation of Surface File for OpenFOAM

The valSet and fishSet domains feature some fundamental geometric differences be-
cause the downstream boundary condition (downstream water height) was implemented
through the creation of an artificial weir at the downstream end of the surface file for
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(a)

(b)

Figure 6.3: Annotated planform view of the baulk pass within the .stl file a) before and
b) after extensive cleaning, smoothing, and interpolation.
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(a)

(b)

Figure 6.4: Annotated view looking up the fish pass within the .stl file a) before and
b) after extensive cleaning, smoothing, and interpolation.
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each of the two flow conditions, detailed in section 6.3.2. Therefore, the .stl file was
duplicated to create separate surface files for each flow case.

The snappyHexMesh tool within OpenFOAM requires an input of a manifold ASCII
.stl file of the entire domain. It also requires multiple additional ASCII .stl files which
define each boundary condition and each cell refinement region (i.e. for inflation layers).
This was done in Blender by duplicating the final .stl and then subsequently sectioning
the surface into the required regions.

Creation of CFD Mesh

The manifold ASCII .stl file and the sectioned ASCII .stl files were used as inputs util-
ising openFOAM v4.1 and the blockMesh and snappyHexMesh tools. The blockMesh

tool was used to create a three dimensional hexahedral mesh within the bounding box
that encompassed the manifold surface. This bounding box mesh provided the starting
point for the snappyHexMesh tool, and was required to feature elements with an aspect
ratio of 1. This is known as the background mesh and featured approximately 300,000
cells with a cell characteristic length of roughly 1m. The meshing algorithm then incre-
mentally refined the background mesh by splitting hexahedral cells that were intersected
by the input surface files into 8 (2n; where n is the number of spatial dimensions) new
hexahedral cells of equal size. The amount of refinement (cell splitting) is determined
by the level associated with each refinementSurface within snappyHexMeshDict.
For each flow condition, the level was set to 2 for the full manifold surface, with an
additional level for both the fish pass and baulk pass. This was done to ensure ac-
curate modelling of the passes, as these control the movement of water from above the
weir to below the weir.

Once the desired refinement had taken place, unnecessary cells were automatically
removed. This was done by removing regions that were either inside or outside of the
manifold surface. This is controlled by the locationInMesh variable; if the specified
point was inside the manifold surface, any regions outside the manifold surface were
removed and vice versa. Cells were retained if ≥ 50% of their volume was within
the desired region. The mesh was then smoothed to remove the resultant jagged cell
edges at the intersection with the input surfaces. This was done within the meshing
algorithm by incrementally moving cell vertices onto the surface of the manifold surface.
The mesh quality was tracked to ensure that moving a cell vertex did not compromise
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Table 6.2: Defined snappyHexMesh quality parameters for mesh generation for both
Ruswarp flow cases.

Control Value Description
maxNonOrtho 45 Maximum non-orthogonality allowed (de-

grees).
maxBoundarySkewness 10 Maximum skewness allowed.
maxInternalSkewness 4 Maximum skewness allowed.
maxConcave 60 Maximum concaveness allowed (degrees).
minVol 10−9 Minimum cell volume.
minTetQuality 10−30 Minimum quality of tetrahedral cells from

cell decomposition.
minArea 10−6 Minimum cell face area.
minTwist 0.02 Minimum cell face twist.
minDeterminant 0.001 Minimum normalised cell determinant.

mesh quality. The snapping process is controlled by the nSmoothPatch, tolerance,
nSolveIter, and nRelaxIer variables within snappyHexMeshDict. The nSmoothPatch

variable controls the number of smoothing iterations undertaken before attempting to
move cell vertices. The tolerance variable defines the maximum distance for a cell
vertex to be attracted to a surface. This is defined with units of local maximum edge
length. The nSolveIter variable defines the number of mesh displacement relaxation
iterations undertaken. The nRelaxIter variable defines the maximum number of snap
relaxation iterations. After trial and error, the following snapping controls were used for
each flow condition: nSmoothPatch was set to 5, tolerance was set to 2, nSolveIter

was set to 30, and nRelaxIter was set to 5.
Once the mesh snapping process was complete, the snappyHexMesh tool allowed for

additional mesh layers to be applied. These were specified by the input sectioned .stl
files. In each flow condition, inflation layers were applied to both the fish pass and the
baulk pass. The expansionRatio was set 1.2. The finalLayerThickness variable,
which describes the size of the final layer cell relative to the nearest undistorted, non-
layer cell, was set to 0.4. Similarly, the minThickness variable, which describes the
smallest acceptable cell thickness relative to the nearest undistorted, non-layer cell, was
set to 0.05. The mesh quality requirements were defined as given in table 6.2. The final
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meshes for the valSet and fishSet domains contain approximately 5.2 million and 4.7
million elements, respectively. The possibility of applying additional mesh layers to the
entire bed was investigated but it was found that this would drastically increase the
size of the mesh due to the large scale of the domain (≈ 200m by ≈ 60m by ≈ 10m).

6.3.2 Computational Fluid Dynamics Methodology

Solver Settings

A RANS approach was used to model the flow under both environmental conditions.
Both the fishSet and valSet domains are large and time-dependent, making solving
them, even with a RANS approach, challenging. Therefore, more complex modelling
approaches such as LES or DNS were not considered due to their increased complexity,
time requirements, and computational demands. Furthermore, it was doubtful that
the additional complexities would affect the outputs of the fishPy tool, due to the
spatio-temporal resolution of the tool and the spatial-averaging of data undertaken by
individuals.

The Reynolds numbers for the fishSet and valSet were estimated using equation
2.25, using the expected bulk velocity and the maximum expected flow depth, and were
found to be 19000 and 12500, respectively. This demonstrated the need for turbulence
modelling within the computational fluid dynamics approach. The interFoam solver
within OpenFOAM v4.1 was used. This solver makes use of the Volume of Fluid
(VOF) method [see section 2.5.4]. Second order numerical schemes were used and
residual tolerances were set to 10−8. The gravitational acceleration vector was applied
to the domain in the negative z direction (vertically downwards). Values of ω and k at
the inlet were chosen based on equations 6.1 and 6.2 [Menter, 1993]. The freestream
velocity, U∞ was estimated at 0.5 ms−1. The turbulence intensity was estimated at
10%, which is acceptable for moderately turbulent domains (e.g. Jensen 2007). This
gave initial k and ω values of approximately 0.01 m2s−2 and 0.006 s−1 for each flow
case.

k = 3
2(U∞I)2 (6.1)

Where: U∞ is the freestream velocity; and I is the turbulence intensity.
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ω =
√
k

L
(6.2)

Where L is the turbulence length scale.

Boundary Conditions & Initial Conditions

A river discharge and downstream river level were required to implement meaningful
boundary conditions for each CFD model. For the fishSet, these were taken as average
values over the time period that the selected measured fish were active. This resulted
in a value of 2.58 mAOD and 2.41m3s−1. For the valSet, the upstream boundary
condition was taken as the average fish discharge across the window of time that the
ADCP measurements were taken, giving a value of 0.648 m3s−1. As all ADCP meas-
urements were taken upstream, the downstream boundary condition was unimportant
as the flow across the weir was supercritical. Therefore, a downstream river level of
1.63 mAOD was selected as this was within the range present during fieldwork.

To model the inflow discharge entering the domain without specifying a flow depth, a
velocity inlet was created along an xy plane. This meant that water entered the domain
in the positive z direction, and therefore the upstream flow depth was determined solely
by the mass balance of the water entering through the inlet versus the water passing
down the baulk and fish passes. The upstream discharge conditions for fishSet and
valSet were 2.41m3s−1 and 0.648m3s−1, respectively. These equated to inlet velocities
of 0.045ms−1 and 0.0108ms−1, respectively. Both cases also featured an atmospheric
outlet along the top of the domain, which allowed air to enter and exit the domain. The
remaining walls were defined with a no-slip boundary condition. As the baffles within
the fish pass were not modelled, the roughness value within the pass was inflated using
the nutkRoughWallFunction boundary condition. This was done to simulate the effect
of the baffles by slowing the water within the pass.

The boundary condition at the downstream-most end of the domain was imple-
mented to ensure that downstream water height was equal to the measured data. The
measured downstream water heights were 2.58 and 1.63 mAOD for the fishSet and
valSet, respectively. This boundary condition was implemented through the creation
of an artificial broad-crested weir at the downstream end of the surface file for each
of the two flow conditions, as the VOF methodology is known to accurately capture
flow heights over broad-crested weirs [Sarker and Rhodes, 2004]. The heights of each
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of these artificial weirs were calculated using the known downstream water level and
the weir equation for a broad-crested weir, equation 6.3 [Swamee, 1988]. Application
of equation 6.3 yielded a depth over the crest of the weir, but did not elucidate the
required weir height. Therefore, the minimum weir height required to ensure critical
depth was calculated using equation 6.4, which is formulated as a balance of energy.

Q = CBH
3
2 (6.3)

where: Q is the discharge (m3s−1; C is the weir coefficient, estimated as 1.7 m0.5s−1,
B is the crest width of the weir (m), and H is the vertical distance from the weir crest
to the water surface (m).

p = y1 + v2
1

2g − y2 −
v2

2
2g (6.4)

where: y1 is the flow depth upstream of the artificial weir (m), v2
1

2g is the velocity
head upstream of the artificial weir (m), y2 is the flow depth on the artificial weir
where critical depth is achieved (m), v

2
2

2g is the velocity head on the artificial weir where
critical depth is achieved (m), and p is the required minimum height of the weir from
the bed (m).

The velocity upstream of the artificial weir was calculated based on the continuity
equation:

v1 = Q

By1
(6.5)

The critical depth over the weir,y2, was calculated using:

y2 =
( Q2

gB2
) 1

3 (6.6)

Lastly, the critical velocity was determined using:

v2 = Q

By2
= √gy2 (6.7)

This analysis showed that the fishSet and valSet cases required minimum artificial
weir heights of 1.54 and 0.70 metres above the bed, respectively. These values equated
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Table 6.3: Inlet and outlet boundary conditions for each Ruswarp flow case.

Parameter valSet fishSet

Required discharge (m3s−1) 0.648 2.41
Prescribed inlet velocity (ms−1) 0.0108 0.045
Downstream water level (mAOD) 1.63 2.58
Prescribed artificial weir height (mAOD) 1.48 2.24

to 2.24 and 1.56 mAOD, respectively. The values yielded for H were then summed
with the artificial weir heights to give the original downstream water levels; 2.58 and
1.63 mAOD. These artificial weirs were constructed within each domain and an xy

plane was constructed immediately downstream of the artificial weir which was defined
as a pressure outlet with a gauge pressure of 0Pa. This combination of artificial weir
and pressure outlet meant that the downstream water height was controlled by the
hydraulics of the artificial weir and any fluid overtopping the artificial weir would leave
the domain via the outlet. The boundary conditions are summarised in table 6.3. Initial
water surface elevation was set equal to 3.5 mAOD across the entire domain using the
setFields tool. Patching different water surface elevations upstream and downstream
of the weir was explored but difficult due to the geometry of the domain. Although
this resulted in initial water levels downstream of the weir being anomalously high, this
water soon drained over the artificial weir used to control the downstream water level.

Computational Requirements

In both simulated cases, it was noted that the velocities at the inlet were low relative
to the size of the domain (O(0.01 ms−1)). Given the geometry of the study site and
assuming this order of magnitude represented the entire domain, this meant that the
residence time for a fluid parcel entering the domain at T = 0 was in the range of
15000 to 25000s. This range of values may be an overestimate since fluid accelerates as
it transitions from subcritical to critical conditions as it descends over the weir. In both
simulated cases, the flow was simulated for 30000s of flow time to ensure the simulations
reached a pseudo-steady state. The timestep was controlled by the adaptiveTimestep

function within openFOAM, which varied the timestep to ensure that the CFL criterion
was met.
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Table 6.4: Locations of four vertical monitor lines within the valSet and fishSet

domains.

Line [x, y] location (m) Description
ML1 [77.0, 125.0] Upstream of the weir, in the centre of the river.
ML2 [85.0, 75.0] Within the pool downstream of the Larinier fish pass.
ML3 [132.0, 159.0] Immediately upstream of the baulk pass.
ML4 [160.0, 158.0] Immediately downstream of the baulk pass.

Each case was run on the University of Hull HPC facility, VIPER [University of
Hull, 2020]. For each case, 32 computational nodes were used, totalling 896 processor
cores and 768 GB of RAM. Despite the available computational power, both simulations
took between 20 and 30 days of run time to solve to 30000s of flow time. Each case
was then run for an additional 180s of flow time, sampling at 0.5s intervals. These
additional 361 timesteps were used to determine whether the results from both cases
had reached a pseudo-steady state.

6.3.3 Convergence of valSet and fishSet to Pseudo-steady States

To enable the results from the valSet case to be validated against field-measured
velocity data and to enable the results from the fishSet case to be input into the
fishPy tool so that it could be compared against the measured fish tracks of Dodd
et al. [2018], the final valSet and fishSet domains must be temporally-averaged. The
residence time was calculated to define the minimum flow time that must be simulated
to ensure that the inlet affects the outlet. However, due to the required temporal-
averaging, it is important to ensure that the results have reached a pseudo-steady state.
This was accomplished by tracking the flow parameters along four vertical monitor lines
strategically located within the domain [see table 6.4 and denoted by the red squares
in figure 6.1]. These locations were chosen as they are diverse and represent areas
where the largest fluctuations were expected. Pressure and three-component velocity
were monitored along each line. Instantaneous three-component velocities as well as
velocity magnitudes were tracked at 0.1m intervals throughout the depth of water along
each monitor lines; examples can be found in appendix E.

The depth-averaged velocity magnitudes of water (i.e. α ≥ 0.5) at each of the
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four monitor line locations within the valSet domain against flow time from 30000 to
30180 s are shown in figure 6.5. These results show that for ML1, within the valSet

domain, the average velocity magnitude was approximately 0.037ms−1, and varied
negligibly with time, figure 6.5a. This is expected as ML1 is located within the bulk
of the flow, upstream of the weir, and therefore significant velocity fluctuations were
not expected. Depth-averaged velocity magnitudes for ML2, located within the pool
downstream of the Larinier fish pass in the valSet domain, varied with time from
approximately 0.039ms−1 to 0.046ms−1, with a mean value of 0.043ms−1, figure 6.5b.
The depth-averaged velocity magnitude for ML3, located at the top of the baulk pass
in the valSet domain, ranged from approximately 0.047ms−1 to 0.053ms−1, with a
mean value of 0.049ms−1, figure 6.5c. At the downstream end of the baulk pass within
the valSet domain, ML4, the depth-averaged velocity magnitudes varied from approx-
imately 0.073ms−1 to 0.086ms−1, with a mean value of 0.08ms−1, figure 6.5d.

The depth-averaged velocity magnitudes of water at each of the four monitor line
locations within the fishSet domain against flow time from 30000 to 30180 s are shown
in figure 6.6. These results for ML1 within the fishSet domain show that the average
velocity magnitude was approximately 0.066ms−1, and varied negligibly with time,
figure 6.6a. Depth-averaged velocity magnitude for ML2 within the fishSet domain
varied with time from approximately 0.04ms−15 to 0.057ms−1, with a mean value of
0.051ms−1, figure 6.6b. The velocity fluctuations at ML2 within the fishSet domain
are greater than those at the same location within the valSet domain due to the
open Larinier fish pass within the fishSet domain, figures 6.5b and 6.6b. The depth-
averaged velocity magnitude at the top of the baulk pass within the fishSet domain
(ML3) varied between 0.130ms−1 and 0.134ms−1 with a mean value of 0.132ms−1, figure
6.6c. The depth-averaged velocity magnitude at the bottom of the baulk pass within
the fishSet domain (ML4) varied between 0.0655ms−1 and 0.0690ms−1 with a mean
value of 0.0676ms−1, figure 6.6d.

Temporal fluctuations of depth-averaged velocity magnitudes at ML1 were consist-
ently smaller than those at ML2, ML3, or ML4 for both datasets. Within the valSet

domain, the fluctuations immediately downstream of the baulk pass were the most sig-
nificant. Conversely, within the fishSet domain, the fluctuations immediately down-
stream of the Larinier fish pass were the most significant. However, for each monitor
line in each domain, temporal variations in depth-averaged velocity magnitude were
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(a) (b)

(c) (d)

Figure 6.5: Depth-averaged velocity magnitude of water against flow time for four
vertical monitor lines within the valSet domain located at a) [77.0m, 125.0m], b)
[85.0m, 75.0m], c) [132.0m, 159.0m], and d) [160.0m, 158.0m] compared against the
mean values.

consistently within 10% of the mean value, figures 6.5 and 6.6. Furthermore, the res-
ults suggest no temporal-dependency of flow magnitudes at any of the monitor locations
within either domain, figures 6.5 and 6.6. Therefore, these results demonstrate that
the mean values are an appropriate representation of the flow.

The flow data from 30000 to 30180 s of flow time were temporally-averaged, with a
temporal resolution of 0.5 s, to enable the results from the valSet case to be validated
against field-measured velocity data and to enable the results from the fishSet case
to be input into the fishPy tool so that it could be validated against the measured fish
tracks of Dodd et al. [2018].
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(a) (b)

(c) (d)

Figure 6.6: Depth-averaged velocity magnitude of water against flow time for four
vertical monitor lines within the fishSet domain located at a) [77.0m, 125.0m], b)
[85.0m, 75.0m], c) [132.0m, 159.0m], and d) [160.0m, 158.0m] compared against the
mean values.

6.3.4 Mesh Independence of valSet and fishSet

As discussed in section 6.3.2, the computational requirements for solving both the
valSet and fishSet cases was significant. This was due to the physical size of the
domain, the size of the computational mesh, the large residence time, and the higher
velocities present within either pass that decreased the allowable timestep size to satisfy
the CFL condition. The creation of a finer mesh was computationally challenging. Fur-
thermore, an attempt was made but, despite the available computational power, solving
the simulation on a finer mesh required an impractical amount of time. Therefore, due
to these challenges, confidence in the results is instead drawn from the validation of
the valSet against measured data (covered in section 6.3.5).
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Figure 6.7: Planform view of the valSet domain with an overlain isosurface (α = 0.5)
depicting the free surface within the domain, coloured pale blue. Measurement transects
are overlain, contoured with the absolute difference in measured and predicted velocity
magnitudes.

6.3.5 Computational Fluid Dynamics Results: valSet Case

This section details the results of the computational fluid dynamic simulation for the
valSet case. Firstly, the downstream water level was found to be within 0.02m of
the measured data (2.32%). This gives confidence to the use of the artificial broad
crested weir to control the downstream water level. The downstream water level was
sufficiently low that gravel bars were revealed downstream of the island, which were
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observed during fieldwork, figure 6.7. This gives confidence to the simulated results, the
collected bathymetry, and the construction of the domain. The average water velocity
magnitude in the domain was 0.0432ms−1. Water underwent significant acceleration
through the baulk pass with a velocity magnitude maximum of 3.1575ms−1. The
upstream water level remained below the weir crest height throughout, and therefore
water only moved across the weir via the baulk pass (no over-topping). A vector plot
of the temporally-averaged flow within the domain is presented in appendix E.

The velocities at each measured location within each of the 49 filtered transects were
extracted from the temporally-averaged valSet dataset, which were then compared to
the measured values. The measurement locations of each transect corresponded to
simulated data with predicted α values greater than 0.5%, i.e. beneath the predicted
water level. This gives confidence to the locations of the measured data and to the
processing of the TLS data and subsequent creation of the CFD mesh. The predicted
velocity magnitudes compared well with the measured data for the valSet case, figure
6.7. The measured data were seen to be noisy and therefore were filtered by removing
data points more than 2 standard deviations from the transect mean. Measured and
simulated transect-averaged velocity magnitudes are given in tables E.1 and E.2 in
appendix E. The percentage errors tended towards infinity due to the proximity of
measured and predicted data to 0.0 ms−1, see i.e. figure 6.8. However, for all 49
filtered transects, the majority of the predicted velocities were within 0.03ms−1 of the
measured velocity magnitudes, figure 6.7. Measured and predicted U , V , and velocity
magnitude data along six example transects, shown in figure 6.7, were extracted, depth-
averaged, and compared, figures 6.8, 6.9, 6.10, 6.11, 6.12, 6.13. Note that the hydraulic
variables are plotted against distance from the transect starting locations along the
West bank of the river (negative x in figure 6.7).

231



6.3 Computational Fluid Dynamics of Ruswarp Case Study

Figure 6.8: Comparison of depth-averaged U , V , and velocity magnitude of measured
and simulated data for each measurement point along transect A, shown in figure 6.7.
Transect means for each hydraulic variable are also shown.

Figure 6.9: Comparison of depth-averaged U , V , and velocity magnitude of measured
and simulated data for each measurement point along transect B, shown in figure 6.7.
Transect means for each hydraulic variable are also shown.

Figure 6.10: Comparison of depth-averaged U , V , and velocity magnitude of measured
and simulated data for each measurement point along transect C, shown in figure 6.7.
Transect means for each hydraulic variable are also shown.
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Figure 6.11: Comparison of depth-averaged U , V , and velocity magnitude of measured
and simulated data for each measurement point along transect D, shown in figure 6.7.
Transect means for each hydraulic variable are also shown.

Figure 6.12: Comparison of depth-averaged U , V , and velocity magnitude of measured
and simulated data for each measurement point along transect E, shown in figure 6.7.
Transect means for each hydraulic variable are also shown.

Figure 6.13: Comparison of depth-averaged U , V , and velocity magnitude of measured
and simulated data for each measurement point along transect F, shown in figure 6.7.
Transect means for each hydraulic variable are also shown.
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A comparison of the frequency distributions of the measured three-component velo-
cities and velocity magnitudes against the CFD results extracted along all 49 transects
show good agreement, figure 6.14. A comparison of the distribution of U in the meas-
ured and predicted data show good agreement in the average value and the overall
distribution of data, figure 6.14a. The CFD results suggest a narrower distribution of
V values compared to the measured data, but show good agreement in the average val-
ues, figure 6.14b. A comparison of the W distributions for the measured and predicted
data shows that the average predicted W value was approximately zero compared to
the wider distribution and larger, positive average value seen in the measured data,
figure 6.14c.

(a) (b)

(c) (d)

Figure 6.14: Graphs of frequency of occurrence against a) U , b) V , c) W , and d)
velocity magnitude for measured and simulated data at each measurement location
across all transects.
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6.3.6 Computational Fluid Dynamics Results: fishSet Case

This section details the results of the computational fluid dynamic simulation for the
fishSet case. First, the downstream water level was found to be within 0.02m of
the measured data (1.30%). Second, the average water velocity magnitude within the
domain was 0.08661ms−1, figure 6.15. Third, water accelerated to a maximum of
2.4151ms−1 within the baulk pass. Fourth, a discharge of approximately 0.81m3s−1

was calculated immediately upstream of the Larinier pass, which accelerated to a max-
imum of 4.2250ms−1 within the Larinier pass, with an average velocity magnitude of
1.4652ms−1. Lastly, the upstream water level remained below the weir crest through-
out, and therefore water only moved across the weir via the baulk pass and the Larinier
fish pass, figure 6.15. A vector plot of the temporally-averaged flow within the domain
is presented in appendix E.

Figure 6.15: Planform view of the fishSet domain with an overlain isosurface of
α = 0.5 denoting the free surface location and contoured with velocity magnitude,
limited 0.0ms−1 and 1.0ms−1 for clarity.
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6.3.7 Discussion of the Computational Fluid Dynamic Simulations at
the Ruswarp Study Site

Discussion of the Data Collection & Geometry Construction Processes

The process of collecting bathymetry and converting the measured geometric data into
an adequate CFD mesh was laborious and complex. The process presented in this
chapter covers only the last attempt. Many other methods and software were used and
each resulted in either unusable meshes or impractical computational requirements to
produce the mesh.

A TLS system and an ADCP system were used, coupled with RTK GPS, to capture
subaerial and subaqueous topography of the study site. The TLS system allowed for
the collection of high resolution (≈ 0.1m) geometric data of the study site. However,
this approach had a number of limitations. Firstly, the TLS was unable to penetrate
water, and therefore the dry bed area was maximised by closing the Larinier fish pass
and hydropower scheme upon arrival at the study site. Furthermore, the ADCP system
was used to collect subaqueous topography in regions inaccessible to the TLS, such as
upstream of the weir. Secondly, the TLS required line of sight for measurements, and
therefore scans were taken from three different scanning locations to maximise the vis-
ible regions of the study site, to ensure redundancy, and to ensure the accuracy of the
scans. These limitations meant that the TLS and ADCP were unable to capture topo-
graphic data within either the baulk pass or the Larinier fish pass. To overcome this,
the baulk pass and Larinier pass were rebuilt within Blender using the TLS data, the
RTK GPS data points, photographs taken of the study site, and engineering drawings
of the Larinier fish pass. The geometry of these passes, particularly respective crest
heights, were significant as they controlled the follow of water across the weir.

These limitations also meant that no TLS data were available for the wetted sur-
faces of the domain, i.e. the river bed upstream and downstream of the weir. Upstream
of the weir, bathymetry data were collected via ADCP along transects spaced approx-
imately 5m apart, which enabled the upstream bed to be approximated using linear
interpolation between the measured ADCP data. Wetted areas downstream of the weir
were similarly approximated using linear interpolation between the measured TLS data.
It was assumed that the river bed would be relatively smooth and therefore Gaussian
smoothing was employed within Blender to remove sharp changes in the surface normal
direction of the interpolated beds. It is possible that wood or other debris could have
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been present on the river bed and would not be captured within this methodology.
Therefore, there is some uncertainty associated with the bed topography, although this
is not thought to be significant.

An additional option for modelling the study site would have been to collect flow
rate, depth, and velocity data over the crest of the baulk pass and the fish pass. These
data would allow for the modelling of only the section of the study site downstream of
the weir by using two separate inlets: one at the top of each pass. This would vastly
reduce the residence time, physical size, and subsequently the mesh size of the fluid
domain. However, this approach would require collection of velocity data downstream
of the weir in order to validate the CFD approach, which would increase the complexity
of data collection due to the limited space and water depths downstream of the weir.
This approach was not employed in the current study and it was impossible to determine
the ratio of flow down each pass from the available data.

Discussion of the CFD Methodology & Results

In both the valSet and fishSet cases the downstream water levels were found to be
within 0.02m of the average measured levels, equating to 2.32% and 1.30%, respect-
ively. This result gives confidence to the implementation of the downstream boundary
condition, the inlet condition, and the accuracy of both fish pass geometries. Further-
more, free surface results of the valSet case showed no over-topping of the weir and
revealed downstream gravel bars, which are both results that reflect the conditions
seen during data collection. The baffles of the Larinier fish pass were not modelled
within either simulation, therefore it is likely that the peak velocities seen within the
simulated pass are an overestimate. Furthermore, as the Larinier fish pass was closed
throughout data collection, it was not possible to collect any data within or downstream
of the fish pass to validate against. However, an approximate discharge of 0.81m3s−1

was calculated immediately upstream of the Larinier fish pass, which results in an ap-
proximate discharge per unit width of 0.443m2s−1. Application of equation 2.1 for this
discharge per unit width yields a predicted average through-pass velocity of 1.379ms−1.
Therefore, the CFD-derived, average velocity magnitude within the Larinier fish pass
of 1.4652ms−1 compares well to empirical prediction of 1.379ms−1.

Predicted velocity magnitudes and three-component velocities of the valSet case
compared well to the measured ADCP data [see figures 6.7 and 6.14]. Calculated per-

237



6.3 Computational Fluid Dynamics of Ruswarp Case Study

centage errors tended to infinity due to the proximity of measured and predicted data
to 0.0ms−1, however absolute errors were less than 0.03ms−1 for the majority of meas-
urement locations, figure 6.7. The largest differences between measured and predicted
data occurred near the inlet and close to the upstream entrance to the baulk pass, fig-
ure 6.7. This is likely due to the implementation of the upstream boundary condition
(i.e. water entering the domain in the positive z direction), which may not accurately
emulate the velocity profile in the upstream-most region of the domain. However, pre-
dicted data agreed well with measured data in the middle regions of the domain [i.e.
figures 6.9, 6.10, and 6.11], and therefore it can be surmised that the impact of the
inlet boundary condition reduced as water progressed through the domain and became
fully developed. Larger errors immediately upstream of the baulk pass are thought to
be due to the large velocities and spatial velocity gradients in the region caused by the
entrance to the baulk pass, which meant that small differences in location (due to GPS
and/or interpolation errors) can cause large differences in velocity. Additionally, this
region may be more acutely affected by temporal variations in the flow, not captured
by the temporally-averaged CFD.

Filtered depth-averaged measured U , V , and velocity magnitude data were par-
ticularly noisy compared to the corresponding predicted data, figures 6.8, 6.9, 6.10,
6.11, 6.12, 6.13. However, the measured data are instantaneous whereas the predicted
data are temporally-averaged, and therefore the smoother appearance of the predicted
data was expected. Predicted transect-averaged U and V data did not always com-
pare well to the corresponding measured data, although predicted transect-averaged
velocity magnitudes consistently compared well (within 0.01ms−1) [see tables E.1 and
E.2 in appendix E]. This suggests possible errors in coordinate conversions causing a
small misalignment in the x and y axes, which would result in weaker comparisons
of U and V but would not affect comparisons of velocity magnitude. Furthermore,
although SonTek [2011] reported ADCP accuracies of 0.002ms−1 (or 0.25%), Rennie
[2008] found an average ADCP velocity error of 0.22 ± 0.18ms−1 (mean ± standard
deviation) when applied to a 6km river reach featuring velocities between 0.0ms−1

and 3.0ms−1 (corresponding to ≈ 1.3 to 13.3% of maximum velocity). It is not clear
from the work of Rennie [2008] exactly how the error scales with measured velocity,
although Rennie [2008] reported that the error increased with distance from the ADCP
(i.e. deeper profiles result in increased error).
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Comparisons of the frequency distributions of all measured and predicted U , V , W ,
and velocity magnitude data showed good agreement, figure 6.14, particularly in velo-
city magnitude. A comparison of the W distributions for the measured and predicted
data, figure 6.14c, shows that the average predicted W value was approximately zero
compared to the wider distribution and positive average value seen in the measured
data. This may be due to the presence of waves in the measured data which were seen
at the study site. These waves were likely caused by the moored boats [see figure 6.1],
wind shear, or the Arc-Boat itself. Wind shear and the moored boats were not meas-
ured nor modelled and therefore their affect on the data collected is not quantified. It is
possible that both of these factors may have influenced the river flow. However, given
the dominance of U and V within the domain, small changes in W are not significant
to the overall velocity field. Furthermore, given that the predicted data are temporally-
averaged, it is possible that these small variations in W may have been averaged out
within the CFD data.

The boundary conditions used within the CFD were averages throughout the field-
work and the average time of measured fish passage, for the valSet and fishSet cases,
respectively. Throughout the fieldwork the upstream river discharge was naturally vary-
ing (0.46m3s−1 to 0.86m3s−1, with an average of 0.57m3s−1). The fish pass was closed
upon arrival each day during the fieldwork, and the hydropower was disabled through-
out, which meant the capacity for flow across the weir was significantly reduced. Even
though the discharges were low, this meant that the upstream water level was slowly
rising throughout the fieldwork. The exact river discharge for each measured transect
is not known and therefore the averaged conditions used in the CFD models may not
reflect the exact conditions for a given measured data point, although the differences
are not thought to be significant.

In summary, downstream water levels compared well to averaged measure levels in
both cases. Furthermore, the average velocity magnitude within the Larinier pass in
the fishSet case compared well to analytical predictions. Despite the limitations of the
study, predicted velocity data compared well to measured data, particularly velocity
magnitudes. Errors were largest near the inlet and are attributed to the implementation
of the inlet boundary condition which was not fully developed and introduced a vertical
component to the flow. The dissimilarities near the baulk pass inlet may be due to
differences in the bed topography, greater spatial velocity gradients, or larger temporal
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variation. For all transects, measured instantaneous data were noisy compared to
temporally-averaged predicted data. Comparisons of overall distributions of predicted
velocities for all measured data points showed good agreement against measured data.

The chapter has so far detailed the collection of high resolution (≈ 0.1m) subaerial
and subaqueous topography of the study site, as well as instantaneous three-component
velocities measured along 49 transects. This was achieved through the use of a TLS
system and an ADCP system coupled with RTK GPS. These collected data were post-
processed to produce a point cloud with an approximate spatial resolution of 0.1m. This
post-processed data was then converted to a manifold surface representing the entire
study site through a combination of LAStools, MATLAB, and Blender. This man-
ifold surface was converted to a computational mesh using the OpenFOAM function
snappyHexMesh. Simulations were executed using the interFoam solver within Open-
FOAM and using the VIPER HPC facility [University of Hull, 2020]. Despite the lim-
itations of the data collection and geometry construction, the computationally-derived
flow fields of the valSet case compared favourably to the measured instantaneous velo-
city data. In addition, a second environment case, fishSet, has been developed which
is representative of the average flow field present during the study of Dodd et al. [2018],
which enables the application of fishPy and subsequent comparisons of predicted and
measured fish tracks.

6.4 Application of fishPy to the fishSet Dataset

This section considers the application of the fishPy tool to the fishSet dataset in or-
der to predict up-migration pathways of brown trout. These predicted trajectories were
then compared to the Dodd et al. [2018] dataset. The fishSet dataset was prepared
for use with the fishPy tool using the custom MATLAB script detailed in section 5.3.
This process was computationally intensive due to the size of the domain relative to the
spatial resolution, and therefore required use of the VIPER HPC facility [University
of Hull, 2020]. The MATLAB script was run on one computational node containing
28 processor cores and 24 GB of RAM. Additional computational nodes could not be
used due to parallelisation issues and licensing restrictions. The temporally-averaged
fishSet data were interpolated onto a 3D, regular grid with a specified spatial res-
olution of 0.25m. This spatial resolution represents the finest spatial resolution that
was practically attainable throughout the domain. The following sections consider the
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application of fishPy to the Ruswarp dataset, and is split into three cases:

• Case A - This case considers the creation of individuals at the downstream-most
end of the domain and their subsequent movement through the domain. This case
is used to demonstrate the applicability and generalised form of the fishPy tool
by applying the tool to a dataset not used during the development of the tool.
Furthermore, this case is used to predict the attraction efficiency of the Larinier
pass.

• Case B - This case considers the creation of individuals both immediately down-
stream of the Larinier fish pass and at the downstream-most end of the domain,
and is used to investigate the applicability of the fishPy tool when applied to a
fish pass facility. Furthermore, this case is used to predict the passage efficiency
of the Larinier pass.

• Case C - This case considers a comparison of the predicted pathways versus
selected measured pathways.

6.4.1 Results of fishPy applied to Ruswarp: Case A

The fishPy tool was applied to the fishSet dataset to predict the trajectories of
five individuals created at the downstream-most end of the domain. The bounding
box described by [161.0m,141.0m,0.0m] and [163.0m,164.0m,4.0m] was used to define
the creationZone. The targetZone was defined as the pool downstream of the Lar-
inier fish pass, defined by the bounding box described by [74.0m, 70.0m, 0.0m] and
[90.0m, 86.0m, 3.0m]. The fishTimestep was set to 0.05s, and Tmax was set to 5000.
The bodylength mean was set to 0.3m and the bodylength deviation was set to
0.05m. This range of bodylengths represented the smallest length of the fish measured
by Dodd et al. [2018] and is assumed to represent the worse swimming performance of
up-migrating brown trout at the site.

All individuals successfully moved from the creationZone to the targetZone and
therefore successfully passed the domain, figure 6.16. The time taken ranged from 1534
to 6617 timesteps (76.7s to 330.85s). None of the individuals approached the baulk
pass, and instead opted to approach the Larinier fish pass. While these trajectories are
not explicitly compared against measured data, none of the predicted tracks show any
obvious unnatural motions, such as significant movement in the downstream direction
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or movement into dry cells. No modifications were made to fishPy before applying
it to the fishSet dataset, which was not used during the development of the tool.
This demonstrates the successful generalisation of the tool and gives confidence to the
prescribed rules and model parameters.

Figure 6.16: Top down view of the fishSet dataset overlain with an isosurface of
α = 0.5, denoting the free surface location with contours of velocity magnitude limited
to 2.0ms−1 for clarity. The trajectories of five virtual individuals are overlain. The
creationZone is shown in magenta and the targetZone is shown in yellow.

The fishPy tool was then used to predict the attraction efficiency of the Larinier fish
pass. This was done by assessing the trajectories of 1000 individuals. The targetZone

and creationZone remained as previously defined. The fishTimestep was set to
0.05s, and Tmax was set to 5000. The bodylength mean and bodylength deviation

were set to 0.532m and 0.0578m, respectively, to mirror the bodylength distribution of
the selected Dodd et al. [2018] data. The colAvoidance rule was disabled, which meant
there were no fish-fish interactions modelled. An individual that passed the domain
was deemed to have successfully located the Larinier fish pass. All 1000 individuals
successfully passed the domain, suggesting an attraction efficiency of the Larinier fish
pass of 100%, which compares favourably to the value of 96% reported by Dodd et al.
[2018].
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6.4.2 Results of fishPy applied to Ruswarp: Case B

Case B considers the predicted passage of five individuals through the Larinier fish
pass, after it was found in case A that each simulated individual chose to approach the
Larinier fish pass. The targetZone defined for Case A was moved to upstream of the
weir (defined by [0.0m, 40.0m, 0.0m] and [70.0m, 120.0m, 10.0m]). The creationZone

remained defined as the bounding box described by [161.0m, 141.0m, 0.0m] and [163.0m,
164.0m, 4.0m]. The fishTimestep was set to 0.05s and Tmax was set to 1000. The
bodylength mean was set to 0.8m and the bodylength deviation was set to 0.00m.
This bodylength distribution gave increased swimSust and swimBurst values, ensuring
that passage through the Larinier pass was not limited by the swimming capacity of
the individuals.

The predicted trajectories show that all the individuals moved within the Larinier
pass, but none successfully ascended the pass in the given time, figure 6.17. Further
increasing the value of Tmax did not result in successful passage. The swimming ability
of individuals was known to not limit passage, therefore it was thought that the spatial
resolution of the domain was too coarse to allow for passage. A new domain was created
with a higher spatial resolution, termed the fishSetLFP domain [see section 5.3]. This
was done by cutting the original temporally-averaged CFD results to consider only the
area immediately surrounding the Larinier fish pass. This drastically reduced the size
of the domain and allowed for a spatial resolution of 0.05m.

The fishPy tool was applied to the fishSetLFP datset to predict the trajectories
of five individuals through the Larinier fish pass. The targetZone was defined as the
bounding box described by [60.0m, 50.0m, 0.0m] and [71.0m, 62.0m, 10.0m], which lies
immediately upstream of the Larinier fish pass. The creationZone was defined as
the bounding box described by [76.0m, 66.0m, 2.0m] and [77.5m,67.5m,3.0m], which
lies immediately downstream of the Larinier fish pass. The fishTimestep was set
to 0.05s, and Tmax was set to 5000. The bodylength mean was set to 0.8m and the
bodylength deviation was set to 0.00m. The predicted trajectories show that each
individual successfully passed through the Larinier fish pass when the fishPy tool was
applied to the fishSetLFP domain, figure 6.18. This result demonstrates that the more
intricate geometry and more spatially-varying flow field of the Larinier fish pass required
an increased spatial resolution during the interpolation step to accurately capture the
flow.
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Figure 6.17: Planform view of the fishSet dataset overlain with an isosurface of α =
0.5, denoting the free surface location with contours of velocity magnitude limited to
2.0ms−1 for clarity. Predicted trajectories of five individuals are shown, determined
by applying fishPy to the fishSet dataset. The creationZone is shown in pink, the
targetZone is shown in yellow.

Figure 6.18: Planform view of the fishSet dataset overlain with an isosurface of α =
0.5, denoting the free surface location with contours of velocity magnitude limited to
2.0ms−1 for clarity. Predicted trajectories of five individuals are shown, determined by
applying fishPy to the fishSetLFP dataset. The creationZone is shown in pink, the
targetZone is shown in yellow.
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Applying the fishPy tool to the fishSet and fishSetLFP datasets in series al-
lowed for a prediction of movements through the entire study site. This was demon-
strated by determining the trajectory of a single individual of bodylength 0.8m, created
at [169.0m,160.0m,1.0m], moving through the fishSet dataset. Once the individual
reached the downstream end of the Larinier fish pass, the location was saved and
used as the starting location for an additional simulation using the fishSetLFP data-
set. The combined predicted trajectory is shown in figure 6.19. These results further
demonstrate the successful generalisation of the tool and give more confidence to the
prescribed rules and model parameters.

The creation of the fishSetLFP dataset allowed for an approximation of the pas-
sage efficiency of the Larinier fish pass for the specific hydraulic condition modelled in
the CFD. To achieve this, the fishPy tool was applied to the fishSetLFP dataset to
assess the passage attempts of 1000 individuals. The targetZone and creationZone

remained as previously defined, immediately upstream and downstream of the Lar-
inier fish pass. The fishTimestep was set to 0.05s, and Tmax was set to 5000. The
bodylength mean and bodylength deviation were set to 0.532m and 0.0578m, re-
spectively, to mirror the bodylength distribution of the selected Dodd et al. [2018] data.
All rules were enabled with the exception of the colAvoidance rule, which meant there
were no agent-agent interactions modelled.

A total of 750 individuals successfully passed the domain within the given time,
resulting in a passage efficiency of 75.0%. This result suggests that a motivated indi-
vidual within the selected bodylength distribution that has found the Larinier fish pass
had an 75% chance of successfully passing for the modelled hydraulic condition. In
comparison, Dodd et al. [2018] reported a passage efficiency of 65% (n = 53/81) for the
Larinier fish pass. However, Dodd et al. [2018] determined this value using data across
the entire study period and therefore it includes passage attempts made over a range of
river discharges, downstream water levels, and with a range of hydropower operating
parameters. Whereas the value determined by fishPy considers only a single hydraulic
environment. Therefore, while these passage efficiencies cannot be directly compared,
their similarities give confidence to the fishPy tool.
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(a)

(b)

Figure 6.19: a) Full, and b) zoomed in planform views of the fishSet domain overlain
with an isosurface of α = 0.5, denoting the free surface location with contours of velocity
magnitude limited to 2.0ms−1 for clarity. The total predicted trajectory of a single 0.8m
individual is shown. The creation location of the individual is denoted by the white
square. The orange line denotes the trajectory predicted using the fishSet dataset,
which ends at the black square. The green line denotes the trajectory predicted using
the fishSetLFP dataset, beginning at the black square. The successful end location of
the individual is denoted by the pink square.
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6.4.3 Results of fishPy applied to Ruswarp: Case C

This case considers an explicit comparison of fishPy-predicted fish trajectories against
the measured fish tracks collected by Dodd et al. [2018]. However, this is included for
completeness and it is not suggested that the fishPy tool predicts individual beha-
viours, but rather aggregate behaviours.

As discussed in section 6.2.1, Dodd et al. [2018] provided measured data of 84 sea
trout (anadromous Salmo trutta) broken down into each approach of each individual,
totalling approximately 500 fish tracks. As the fishSet represented the study site fluid
environment without the hydropower activated, only fish tracks with a hydropower dis-
charge of zero were considered. Furthermore, tracks measured during flood conditions,
where discharge was in excess of 500% of the average, were discounted. This left a
total of 68 fish tracks measured for 17 tagged sea trout to compare against the pre-
dicted outputs [see tables E.3 in Appendix E]. These fish tracks were provided in the
OSGB1936 coordinate system and were converted to the UTM RUS coordinate system via
a custom written python script. Coordinate system conversions were handled using the
convertbng and utm python packages [see Hugel 2020 and Bieniek 2020, respectively].
The track IDs, start and end locations, start and end times, number of measurement
points, average downstream water level, and average river discharge for each track are
given in tables E.4, E.5, and E.6 in Appendix E. The temporal resolution of the track
measurements varied between ≈ 1.6s and ≈ 10.1s, and the time period of each track
varied from 3s to ≈ 1920s.

The three longest measured fish tracks are shown in figure 6.20 to serve as an
example. As the measured tracks were two dimensional (i.e. no measured depth), the
tracks are presented at approximately mid-depth. Tracks 2612 02 and 2689 09, denoted
in red and yellow respectively, show two individuals that make multiple attempts to
ascend the Larinier pass before instead retreating downstream. Track 2661 15, denoted
in green, shows an individual that maintained station within a small section of the
domain and made no attempt to pass within the measured track (> 30 minutes). Track
2612 02 suggests that, while attempting to ascend the Larinier fish pass, the individual
moves out of the domain. It is assumed that these measurements are erroneous and due
to the acoustic spikes and decreasing accuracy of the measurements as the individual
moves further from the hydrophones placed downstream of the Larinier pass.

The fishPy tool was applied to the fishSet dataset for each of the measured tracks,
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Figure 6.20: Planform view of the Ruswarp study site geometry with overlain water
surface location coloured blue, and with multiple overlain two dimensional fish tracks,
each coloured individually. The start location of each track is denoted in white, and
the end locations are denoted by the large coloured squares. Lines are drawn between
discrete measurement points to portray the order of locations and the direction of
travel.

specifying the initial location and bodylength of each tagged individual. Figures 6.21
and 6.22 show two example comparisons between measured and predicted fish tracks.
In each case, 10 individuals were simulated to demonstrate the variability in predicted
paths. Each virtual individual was created at the same initial xy location as the cor-
responding tagged individual, but evenly spaced in z throughout the water column
due to the lack of measured z location. Track 2661 15 denotes an individual with an
associated length of 0.42m, mass of 0.75kg, and an initial location of [89.35m, 73.73m].
The track shows that the individual holds station within a small space throughout
the track, before moving approximately 1.5m downstream, before the measured track
ends, figure 6.21. Conversely, the predicted tracks for the virtual individuals of the
same length and starting at the same initial xy location, immediately move upstream,
attracted to the large flows immediately downstream of the Larinier fish pass. The
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predicted paths shows the majority of the virtual individuals entering the Larinier pass
and, subsequently, the targetZone where the track ends, figure 6.21. However, one
virtual individual, denoted in orange, took a less direct route into the Larinier pass due
to the recirculation at the base of the Larinier pass which initially repelled the indi-
vidual. A comparison of these tracks suggests that the tagged individual was either not
motivated to migrate at this particular time or could not locate the pass. Although the
individual displays little in the way of exploratory behaviour which would be expected
if it were searching for the pass.

Figure 6.21: Planform view of the Ruswarp study site geometry with overlain water
surface location denoted in blue. Track 2661 15 is denoted in red, and the end location
of the track is denoted by the large red square. The predicted fish tracks are denoted
in various colours, with the targetZone denoted by the large green square. The white
square denotes the initial location of both tracks.

Track 2668 06 shows an individual with an associated length of 0.42m, mass of
0.75kg and an initial location of [88.53m, 73.99m], figure 6.22. This track shows the
individual moving towards the downstream-end of the Larinier pass indirectly, before
making an unsuccessful passage attempt, figure 6.22. The virtual individuals, created
at the same initial xy location and evenly spaced in z, immediately moved towards
the Larinier pass and began passage attempts wherein each individual moved into
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Figure 6.22: Planform view of the Ruswarp study site geometry with overlain water
surface location denoted in blue. Track 2668 06 is denoted in red, and the end location
of the track is denoted by the large red square. The predicted fish tracks are denoted
in various colours, with the targetZone denoted by the large yellow square. The white
square denotes the initial location of both tracks.

the targetZone where their track ends, figure 6.22. Although, the predicted tracks
suggest more direct paths to the Larinier pass, they compare well to the measured
track, and qualitatively appear as smoother, averaged versions of the measured track.
Track 2668 06 also suggests that the tagged individual moves out of the domain near
the beginning of the track. This could be due to the interpolation of the measured
geometric data during the creation of the CFD domain, or due to the accuracy of the
measurement technique employed by Dodd et al. [2018].

6.5 Discussion on the Application of fishPy to Ruswarp
Weir

The previous sections have presented a number of cases of the fishPy tool applied to
the fishSet dataset, representative of the Ruswarp study site. Case A demonstrated
that the fishPy tool can be applied to a previously unseen dataset and yield sensible,
qualitatively agreeable results. Case A also demonstrated the use of the fishPy tool
to predict the ability of individuals to find a fish pass within a river reach. Setting
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the fishPy bodylength distribution to that of the Dodd et al. [2018] data yielded an
attraction efficiency of the Larinier fish pass of 100%, compared to 96% reported by
Dodd et al. [2018]. This result is unsurprising given the oblique nature of the weir
and the strategic positioning of the Larinier pass at the upstream-most point of the
weir. Furthermore, the small discrepancy between predicted and measured values is
very likely due to environmental factors not captured within the fishPy model, such
as predation by grey seals, which is known to have occurred at the study site [Dodd,
2019]. Interestingly, this result also suggests that the baulk pass had an attraction
efficiency of 0%. Dodd et al. [2018] did not quantify the attraction or passage efficiency
of the baulk pass and therefore comparisons cannot be made. The results of case A
show the successful generalisation of the fishPy tool and its applicability to domains
representative of river reaches rather than the flume-based domains as seen in chapter
5, and give confidence to the prescribed rules and model parameters.

Case B demonstrated the importance of the spatial resolution of the input hydraulic
dataset. A spatial resolution of 0.25m suggested that five 0.8m individuals, while
attracted to the Larinier fish pass and able to overcome the water velocities within
the pass, were unable to ascend. Increasing the spatial resolution to 0.05m while
retaining all other model parameters, resulted in successful passage of all five individuals
through the Larinier fish pass. Increasing the spatial resolution increased the required
computational power to create the domain and to execute the fishPy tool, and therefore
only a small region of the original fishSet domain could be re-interpolated onto the
higher resolution fishSetLFP domain.

Case B also demonstrated the use of the fishPy tool to approximate the pas-
sage efficiency of the Larinier fish pass for the specific hydraulic condition modelled
within the fishSet CFD simulation, using the fishSetLFP dataset. Setting the fishPy

bodylength distribution to that of the Dodd et al. [2018] data yielded a passage effi-
ciency of 75.0%, compared to 65% reported by Dodd et al. [2018]. There are a number
of differences between the methods of determining these two passage efficiencies. First,
the Dodd et al. [2018] value was determined using data from their entire study period
and therefore it includes passage attempts made over a range of river discharges (1.59
to 41.50m3s−1), downstream water levels (1.68 to 4.24 mAOD), and with a range of
hydropower operating parameters (0.00 to 3.83m3s−1). The values yielded from fishPy

considered only a single hydraulic case where the hydropower turbine was inoperative
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(0.00m3s−1), the river discharge was 2.41m3s−1, and the downstream water level was
2.58 mAOD. Second, the fishPy tools utilises an implicit motivation, discussed more
in section 6.5.1. This formulation has the effect of overestimating the number of pas-
sage attempts, and subsequently the passage efficiency, by neglecting individuals that
are not immediately motivated to migrate. Conversely, one can assume that the Dodd
et al. [2018] dataset is representative of the full spectrum motivation within the pop-
ulation. Third, Dodd et al. [2018] suggest that it is possible that the 27% of fish that
approached the Larinier fish pass but did not ascend could have been predated upon or
caught by fishermen. Neither of these factors are considered within the fishPy model,
which may act to inflate the predicted passage efficiency. Lastly, there are a number of
environmental factors not considered within the fishPy model such temperature, time
of day, scent, and light/shade which are inherent to the Dodd et al. [2018] dataset,
and which may play a role in expediting or delaying passage [see section 6.5.1]. There-
fore, while these passage efficiencies cannot be directly compared, their similarities give
confidence to the fishPy tool.

Case C considered explicit comparisons between fishPy-predicted fish tracks and
the measured tracks of Dodd et al. [2018]. A comparison to track 2661 15 showed
distinct differences in measured and predicted tracks, figure 6.21. Namely, the measured
track made no attempt to pass the Larinier pass and, within the measured time period
(> 30 minutes), made no move towards the Larinier pass. This suggested that either
the tagged individual could not locate the pass, although it does not display searching
behaviour, or it was not motivated to attempt to pass. Conversely, 9 of the 10 virtual
individuals immediately moved to the base of the Larinier pass, before entering and
making an attempt to pass. One of the virtual individuals moved towards the base of
the Larinier pass and was initially repelled by the recirculation region downstream of
the pass, causing it to move towards the bank before making a passage attempt. The
predicted trajectories of the virtual individuals demonstrate the variability in predicted
tracks due to the heterogeneity within the population and the stochastic nature of
the model. A comparison to track 2668 06 showed that both the tagged and virtual
individuals moved towards the base of the Larinier pass, although the virtual individuals
took more direct paths, regardless of initial depth, figure 6.22. It is challenging to
determine the exact reason for the indirect path of the tagged individual. A comparison
of the predicted tracks and track 2668 06 suggests that the fishPy model predicts
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aggregate and/or averaged trajectories, figure 6.22. This is demonstrable in the distinct
differences apparent in explicit comparisons compared to the agreeable predictions of
bulk passage metrics.

6.5.1 Limitations of the Application of the fishPy model to Ruswarp
Weir

Discussion on Motivation & Environmental Cues in Migration

The fishPy model, like the majority of fish path prediction models, assumes an inher-
ent, persistent motivation of fish to migrate upstream. Although Castro-Santos and
Haro [2010] suggest that this approach is well-justified for salmonidae, consideration
of fish track 2661 15 shows an individual choosing to hold station immediately down-
stream of the Larinier fish pass for in excess of 30 minutes, figure 6.20. This is in
contrast to the corresponding predicted fish paths, which suggests immediate move-
ment towards the base of the Larinier fish pass followed by successful passage, figure
6.21. It is not clear why this tagged individual (fish no. 2661) chose to hold station im-
mediately downstream of the pass when model predictions suggest that the individual
would have been able to successfully ascend. This suggests that the tagged individual
was not motivated to ascend, and instead was waiting for an additional stimulus to
trigger the motivation to migrate.

It is possible that motivation for river-scale migration is governed by exposure to
environmental stimuli such as scent or temperature, rather than purely hydraulic stim-
uli. For example, light level is known to influence the initiation of large-scale migratory
activities [Binder et al., 2011]. However, Dodd et al. [2018] found that time of day (and
hence light level) was not a significant factor in the number of attempts or the number
of successful passages. Similarly, Binder et al. [2011] state that temperature influences
the onset of spawning migrations, particularly when the migration is short in duration.
It is unclear if temperature played a role within the Dodd et al. [2018] study as it was
not monitored. Furthermore, there is little literature on the role of water temperature
on river-scale migratory activities. Moreover, while correlations between many envir-
onmental triggers and large-scale migration initiation have been identified [see Binder
et al. 2011], they are not well-understood at river-scale. Furthermore, exact causa-
tion is difficult to determine due to the high inter-correlation between environmental
triggers (i.e. light level and temperature). This ambiguity makes fine-scale predic-
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tions of fish behaviour challenging. Nevertheless, the modular nature of the fishPy

model and its combination with CFD facilitates easy expansion of environmental data
inputs to include static stimuli such as light/shade, as well as computationally-derived
spatially-varying data such as temperature, salinity, or chemical tracers.

Discussion on Spatial Resolution Requirements for the Application of the
fishPy model to Ruswarp Weir

As discussed in chapter 5, the spatial resolution required to appropriately capture
spatial variations of data within a given domain is dependent upon the spatial variations
of the original data and the complexity of the domain geometry. This is evident in the
work presented in this chapter. Applying the fishPy tool to the fishSet dataset
(0.25m spatial resolution) yielded a Larinier passage efficiency of 0%. Conversely,
applying the tool to the fishSetLFP dataset (0.05m spatial resolution) yielded a value
of 75%. These differences in fishPy-predicted passage efficiencies between the fishSet

and the fishSetLFP datasets highlight the importance of the spatial resolution of the
interpolated data.

The fishPy tool requires input data in the form of regular, uniform, 3D matrices
due to the spatially-continuous formulation of the model and the interpolation schemes
used. This restriction meant that the application of the fishPy tool to the Ruswarp
domain was computationally challenging due to the large scale, complex geometry, and
large spatial variations in the hydrodynamic fields. The limiting factor in computation
of the interpolated data is the calculation of the G3D matrix using the inpolyhedron

function within MATLAB [see section 5.3]. This computation was parallelised using
one VIPER HPC node consisting of 28 processor cores [see University of Hull 2020] and
took approximately 12 days to complete. Further parallelisation of this process was not
possible due to licensing restrictions. For these reasons it was not practical to inter-
polate the entire domain at a spatial resolution higher than 0.25m. However, although
higher spatial interpolation around the Larinier fish pass (0.05m) had a marked affect
on predicted trajectories, similar effects are not expected within the rest of the domain
due to the comparatively small spatial variations in hydraulic data and comparatively
simple geometry.
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Discussion on the Use of the Dodd et al. [2018] Dataset for Comparisons
Against fishPy-Predicted Trajectories

The Dodd et al. [2018] dataset was originally collected to quantify passage efficiency
at the study site and its sensitivity to hydropower operation, rather than to measure
microscale movements of individuals. While the Dodd et al. [2018] dataset was not
conceived for use with the fishPy tool, the retroactive use of this data within this
study was pursued as the Dodd et al. [2018] dataset represented the highest quality
dataset available for this study.

Explicit comparisons between predicted and measured fish tracks were challenging
for various reasons. First, comparisons were complicated by the inherent motivation
assumed within the fishPy model, discussed in section 6.5.1. Second, the accuracy and
spatial dimensionality of the Dodd et al. [2018] study was limited by the number of hy-
drophones within range of a given individual. Therefore, due to the impractical number
of hydrophones required for 3D measurements throughout the domain, the Dodd et al.
[2018] study did not monitor depth for tagged individuals. However, fishPy-predicted
trajectories were seen to be dependent upon the initial depth of the individual during
comparisons against track 2661 15. Additionally, 2D measurements were only taken
immediately downstream of the Larinier pass, which limited comparisons to a small
section of the domain. Successful passage through the Larinier pass was determined
solely by a single binary present/absent hydrophone placed immediately upstream of
the Larinier fish pass. This facilitated comparisons between measured and predicted
bulk passage metrics, but did not provide sufficient data for comparisons of fish paths
through the Larinier pass.

The Dodd et al. [2018] dataset was collected in the field. Field-based collection of
data has the advantage of being the closest approximation to realism. For example,
field-based monitoring of fish captures environmental stimuli such as predation, tem-
perature, scent, and salinity, all of which would be challenging within a laboratory.
However, field-based experiments can increase the complexity of data collection, and
reduce the scale over which data collection is attainable. Furthermore, field-based study
increases the complexity of CFD modelling required to generate appropriate inputs for
the application of the fishPy tool. In contrast, laboratory-, or flume-, based studies fa-
cilitate greater control over experimental processes and data collection methodologies,
and can reduce the complexity of CFD modelling via the use of regular geometries.
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While not available for consideration within this study, the use of flume-based meas-
ured fish tracks would facilitate the use of videometry to measure and compute 3D fish
tracks with O(0.1)m spatial resolution and O(0.1)s temporal resolution [e.g. Butail
and Paley 2012, Rodriguez et al. 2011, 2015, or Detert et al. 2018]. The application of
videometry to the collection of fish tracks is a recent development that has only been
successfully applied to low turbidity, moderately calm, flume-based flows. Application
of this technique to a flume-based Larinier pass would be challenging due to the asso-
ciated air entrainment and turbulence, but would remove some of the environmental
stimuli not considered within the fishPy model and allow for fine-scale comparisons of
fish movements. Furthermore, such a dataset would facilitate calibration of the fishPy

tool to fit the measured fish tracks. Therefore, as the use of videometry in the collec-
tion of fish tracks develops and datasets become available, the fishPy tool should be
applied to one such dataset to further assess the validity of the model.

6.6 Conclusion

The work presented in this chapter has demonstrated the successful application of
the fishPy tool to a newly created hydraulic dataset representing the Ruswarp weir
study site. The work described herein has shown the data collection, assessment, and
unification processes, CFD mesh creation processes, and subsequent development and
execution of CFD simulations to create the hydraulic dataset of Ruswarp Weir for two
hydraulic cases. Resulting velocity fields for the validation case (valSet) compared
favourably to measured ADCP data. The fishPy tool was applied to the Ruswarp
domain and used to predict individual fish tracks based on the size and initial loca-
tion of tagged fish. Predicted fish trajectories compared fairly well to measured tracks,
but highlighted the need for further understanding of river-scale migration motivation
within diadromous fish species. The fishPy tool was used to predict two bulk metrics
of the Larinier fish pass within the domain: the attraction efficiency and the passage ef-
ficiency, using a population of 1000 individuals. Both predicted bulk metrics compared
favourably with the values reported by Dodd et al. [2018] (attraction efficiency 100% vs
96%, passage efficiency 75% vs 65%). The work herein considered only comparisons for
a single hydraulic condition of a river reach. However, now that the fishPy model has
been developed, it can be applied to other hydraulic conditions and other river reaches
in future studies. Trajectories predicted using the fishPy model could be compared
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to other published models of up-migration [i.e. Gao et al. 2016, Gisen 2018, Zielin-
ski et al. 2018]. Fine-scale comparisons of predicted and measured fish tracks could
be facilitated through the use of flume-based videometry, which would enable 3D spa-
tial tracking of individuals, reduce CFD modelling complexity, increase the obtainable
spatial interpolation resolution, and allow for greater control over hydraulic conditions.
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7.1 Individual-based Modelling for the Assessment of Pas-
sage Efficiencies for Up-Migrating Fauna

Anthropogenic alteration of rivers is ubiquitous and leads to fragmented river systems
that restrict the passage of aquatic fauna [Nilsson et al., 2005]. Current policy mandates
unhindered longitudinal migration of aquatic species through the installation of fish
passage facilities or, where practical, the total removal of barriers [Armstrong et al.,
2010, European Commission, 2012]. However, fish pass efficiencies are consistently
reported as low [Roscoe et al., 2011, Brown et al., 2013]. Furthermore, there is a
distinct lack of recommended performance criteria in the literature and the current
methodology to assess fish passage facilities is cost-prohibitive, time- and resource-
intensive, and often invasive [Silva et al., 2018].

It was hypothesised that the ecological efficiency of fish passage facilities could
be computationally-assessed through the development and application of agent-based
models of up-migrating fish behaviour. The passage efficiency of juvenile European eels
(Anguilla anguilla) through various configurations of eel tiles was assessed through the
development of multiple 2D CA and IBMs. The trajectories of up-migrating brown
trout (Salmo trutta) through 3D domains was assessed through the development of the
fishPy tool, and its subsequent application to a real-world ecohydraulic domain.

7.1.1 Predicting the Upstream Passage of Juvenile European Eels
through Eel Tiles

The work presented in chapter 3 is the first to computationally assess the passability
of eel tiles for up-migrating juvenile European eels (Anguilla anguilla). The European
eel is a catadromous species and therefore up- and down-migration are integral to
their survival. Furthermore, the recruitment of elvers across Europe is down 95%
compared to levels seen in the early 1980s [Moriarty, 1996], resulting in IUCN Red
list status [Jacoby and Gollock, 2014]. Recently, purpose-built anguilliform-specific
passage facilities have been developed but independent assessment of their performance
is lacking in the literature.
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Development of Computational Metrics of Elver Passability

The work presented in chapter 3 considered various computational metrics to determine
passability. These can be grouped in landscape connectivity metrics, cellular automata,
and individual-based models. No previous studies of the application of landscape con-
nectivity metrics or the use of CA for fish passage were found in the literature. Each
metric relied upon 2D temporally-independent flow fields of the eel tile and on the
critical burst speed of the passing elvers.

Three-dimensional flow fields were computationally determined for a range of dis-
charges and installation angles using CFD with the unsteady, incompressible, Reynolds
Averaged Navier-Stokes (RANS) equations , the VOF methodology, and using the k–ω
SST turbulence closure. This methodology yielded results agreeable with those re-
ported by Vowles et al. [2015]. The validated results were then temporally-averaged
and 2D flow fields were extracted. This approach to obtaining 2D flow fields had a
larger computational expense compare to using 2D, steady simulations [e.g. Gao et al.
2016, Tan et al. 2018] but yielded greater accuracy due to the inclusion of 3D flow
features and a deeper understanding of the temporal-dependency of the flow. The use
of Reynolds stress models, LES, or DNS could have yielded more accurate results [see
Benhamadouche and Laurence 2003], but this level of complexity is not necessary as
elvers have been shown to react to larger-scale flow structures [Piper et al., 2012, 2015].
Furthermore, various ABMs in the literature have demonstrated the utility of using
the RANS approach to generate flow field inputs [i.e. Goodwin et al. 2014, Gisen 2018,
Zielinski et al. 2018, Finger et al. 2020].

The critical burst speeds for the passing elvers were extracted from the SWIM-
IT programme [Clough and Turnpenny, 2001]. Use of the critical burst speed over a
variable swim speed, such as that used by Goodwin et al. [2014] or Gisen [2018], or a
static sustained swim speed, such as that used by Gao et al. [2016] or Tan et al. [2018],
was crucial in implementing exhaustion, and the subsequent calculation of theoretical
maximum passable pass lengths. However, use of the critical burst speed was only
practical due to observations by Vowles et al. [2015] of passing elvers opting to ascend
the pass as quickly as possible. If this was not the case, or the models were applied
to domains were passing elvers chose a different approach, modelling exhaustion would
require implementation of discrete fatigue increments, akin to that used by Zielinski
et al. [2018].
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Outcomes of the Computational Metrics for Elver Passability

The landscape connectivity metrics were able to predict trends within passage efficien-
cies for different configurations of eel tile. However, they offered little practical results
to accurately determine passage efficiencies. Modifications to the landscape connectiv-
ity metrics may yield more accurate results but, given the scarcity of data with which
to calibrate and the utility of individual-based models, further use of the landscape
connectivity metrics for fish passage is not recommended.

The CA (SEPM, FEPM, and EEPM) correctly predicted trends within passage efficiencies
for different configurations of eel tile, but suffered from polarised results due to their
usage of an homogeneous population of elvers. The HEPM overcame this issue through
the use of a heterogeneous population, and compared well to the results of Vowles et al.
[2015] (75.50% vs. 73.82%). Comparisons to the wider literature is difficult, as no other
computational assessment of anguilliform-specific passage facilities is available in the
literature.

Current UK guidance for eel tile-type passes suggests installation angles up to 45◦

are appropriate [Environment Agency, 2011]. Results of the HEPM show that passage
efficiency reduced significantly with increasing installation angle, resulting in less than
40% passage efficiency for all but the largest populations for an angle of 20◦. This result
is well below the recommended threshold of 90% made by Lucas and Baras [2008].
Furthermore, the significance of passing eel size and discharge are not considered in
current policy, but are demonstrated in the results of this work. For example, the
maximum allowable installation angle to facilitate a passage efficiency of 75% reduces
considerably with increasing discharge per unit width and decreasing elver length, table
7.1.

Application of the HEPM yielded a time to ascend the 1.25m pass for each elver,
which was used to determine theoretical maximum passage lengths through assuming
the velocity field was not significantly dependent on passage length and that passing
elver became exhausted after 20s, figure 3.22. These results demonstrate the significant
of pass length in facilitating adequate passage efficiency. However, current guidance
suggests that the pass length is only a function of the surrounding geometry (i.e. the
hydraulic head that must be overcome).

It is curious that none of these topics appear in current guidance [Environment
Agency, 2011] yet are discussed in-depth in previous guidance that has since been
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Table 7.1: Installation angle required to allow for a 75% passage efficiency for each
discharge per unit width, Q. Calculated based on the results of the HEPM. Note that
a denotes a case for which the passage efficiency was never determined to be < 75%,
regardless of the installation angle, and b denotes cases for which the passage efficiency
was never determined to be ≥ 75%, regardless of the installation angle.

Req. Installation Angle (◦) for Q =
Elver
Length (m)

1.67̇×10−3m2s−1 3.33̇×10−3m2s−1 5.0×10−3m2s−1

0.05 ≤12.7 ≤9.3 < 8.0b

0.06 ≤14.1 ≤11.0 < 8.0b

0.07 ≤15.3 ≤14.8 < 8.0b

0.08 ≤16.4 ≤15.9 ≤12.0
0.09 ≤18.9 ≤17.6 ≤15.1
0.1 > 20.0a ≤19.7 ≤17.2

withdrawn [Solomon and Beach, 2004]. It is therefore recommended that policy is
updated as a matter of urgency to reconsider the compounding effects of installation
angle, expected eel length, pass length, and installation angle on passage efficiency.
This could be achieved through the inclusion of results such as figure 3.22 and table
7.1, which provide immediate, simple resources for practitioners. This is of particular
importance as current guidance unfairly biases against smaller eel sizes, which [Solomon
and Beach, 2004, p 18] previously suggested were “first priority, as the stock of the whole
catchment is dependent upon them”.

7.1.2 Predicting Trajectories of Up-Migrating Brown Trout

The work presented in chapter 4 detailed the development, structure, and function of
the fishPy tool. In addition, the work presented in chapter 5 detailed verification of
the fishPy code and sensitivity studies of selected parameters. A number of develop-
ment principles were outlined in the early stages of this research and have guided the
development of the software tool [table 1.1, chapter 1].

The work presented in chapter 6 detailed the collection and filtering of high resolu-
tion velocity and bathymetry data for a real world ecohydraulic domain, the develop-
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ment and execution of CFD simulations of the domain, the application of the fishPy

tool to the new dataset, and a comparison of the predicted passages to published meas-
ured fish tracks.

Development of the fishPy Model

The fishPy tool is a three-dimensional, spatially-continuous, temporally-discrete individual-
based model, which predicts up-migration pathways of brown trout through computa-
tion of fish responses to hydraulic stimuli. The fishPy model combines high spatial
(O(0.1)m) and temporal (O(0.1)s) resolutions. The underlying ruleset that governs the
fishPy tool is a novel combination of rheotaxis, energy pathway selection, obstacle
avoidance, and turbulence avoidance, and assumes an inherent, persistent motivation
to migrate. This ruleset was developed based on a thorough literature review and was
implemented in a modular manner to facilitate future expansion of the model.

Adequate simulation of rheotaxis is shown to be significant in the literature, and
has increased significance due to the spatially-continuous, generalised formulation of the
fishPy model, which facilitates its application to any domain. This model formulation
is novel compared to the other published up-migration fish path prediction models.

The fishPy tool uses a combination of biasing towards locally slower velocities and
biasing towards locally faster velocities, dependent upon the local flow environment
(minMaxEnergy rule). The behavioural case is determined by the local velocity mag-
nitude and fluid strain, inspired by the work of Goodwin et al. [2014]. This is a novel
formulation which combines the concept of the minimum energy pathway as used by
Blank [2008], Abdelaziz [2013], Plymesser [2014], Zielinski et al. [2018] and Gilmanov
et al. [2019], and the concept of attraction flow used in the ecology community [see
Armstrong et al. 2010] and within the ELAM-de model [Gisen, 2018].

Outcomes of the Application of the fishPy Model

The work presented in chapter 6 showed that, when applied to the CFD-derived flow
fields used to represent Ruswarp Weir, the fishPy model was able to accurately predict
the attraction efficiency (100% vs. 96%) and passage efficiency (75% vs. 65%) of the
Larinier fish pass compared to published, measured data. This finding gives confidence
to the data collection and filtering processes, CFD methodology, and to the novel
formulation and behavioural ruleset of the fishPy model. Furthermore, unlike all
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Table 7.2: Resulting behaviours emergent from usage of the minMaxEnergy rule within
fishPy.

Predicted Behaviour Supporting Literature
Attraction to lower velocities such as near-wall regions. Larinier [2002b], Blank

[2008]
Obstacle avoidance through attraction to high velocity
streamlines round obstacles

Dabiri [2017]

A preference for high velocity regions over high turbulence
regions, where turbulence is quantified using fluid shear.

Smith et al. [2005, 2006],
Nestler et al. [2008]

Attraction to higher velocity flows (i.e. bulk flow) Lundqvist et al. [2008],
Thorstad et al. [2008], Arm-
strong et al. [2010]

published models in the literature [i.e. Goodwin et al. 2014, Gisen 2018, or Zielinski
et al. 2018; see section 2.8], the fishPy model is able to yield accurate results when
applied to previously-unseen, generalised domains without domain-specific calibration.
Eliminating the need for domain-specific calibration vastly increases the utility of the
tool and its ease-of-use, increasing its accessibility to practitioners.

The results presented in chapters 5 and 6 demonstrate the utility of the fishPy rule-
set, which depends significantly on the energy pathway selection rule, minMaxEnergy.
This rule is novel in its formulation and is the result of a synthesis of theories from the
literature. Use of this rule results in a multitude of behaviours depending upon the
extended local fluid velocity magnitude and fluid shear, which correlate to behaviours
identified in the literature, table 7.2. This shows that, while simple energy saving rules
are not sufficient [Gisen, 2018], an energy pathway selection rule is able to reproduce
observed fish behaviours using only the local velocity field, as turbulence is quantified
using the fluid shear (i.e. the spatial velocity gradient), which implicitly includes the
Reynolds shear stress.

Work presented in chapter 5 demonstrated the sensitivity of predicted fish tracks to
the spatial resolution of the input data and the chosen timestep. However, implement-
ing a maximum timestep based upon the established CFL criterion was found to not be
sufficient to eliminate spatial and temporal dependencies. Furthermore, the required
spatial resolution was found to be dependent upon the domain geometry, the spatial
variation of the flow field, and the smallest bodylength of the simulated population, and
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Figure 7.1: Schematic showing an outline of the proposed wider decision-making frame-
work. This framework could be used to computationally assess and compare hydraulic,
ecological, economic, and aesthetic factors when designing fish passage facilities. The
location of the fishPy model is highlighted within the model.

the required temporal resolution was found to be dependent upon the minimum velocity
in the domain and the spatial velocity gradients. The significance of these dependencies
was demonstrated in the results presented in chapter 6. Therefore, it is recommended
that the highest possible spatial resolution should be used within practical limitations
of time and computational resources, and a spatial resolution dependency study may
be required when the fishPy model is applied to new domains. Interestingly, no other
model in the literature considers model sensitivity to spatial resolution or to temporal
resolution over differing domains.

The fishPy tool facilitates a policy-driven, computational metric which can be
used to computationally assess fish passage at existing or future hydraulic sites. With
additional development, the fishPy tool can be incorporated into a wider decision-
making framework to computationally assess the hydraulic, ecological, economic, and
aesthetic factors of different designs of in-stream structures such as fish passes, i.e.
figure 7.1. This framework could include a cost/benefit analysis to assess and optimise
designs based on a number of criteria, for example: successful fish passage, power
generation of hydropower facilities, flood capacity, installation costs, or fish habitat
availability. This framework would provide a tangible, practical tool for practitioners
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and the wider ecological community, aid in the reduction of invasive experiments, and
provide a foundation for new, firm guidance from policy-makers on the design and
installation of future fish passage facilities.

7.1.3 Limitations & Future Work

Future Work in Predicting Eel Passage

The HEPM has shown to be able to produce accurate predictions of passage efficiency
through an eel tile for a single combination of discharge per unit width, installation
angle, pass length, and elver size. As more experimental data become available, the
HEPM should be further validated to ensure its validity when applied to other configur-
ations of eel tile.

The HEPM is spatially-2D and considers only temporally-independent data. There-
fore, the model could be further developed into a spatially-3D formulation, which may
allow passing elver to exploit additional route options through the domain. However, it
is unclear if the increased complexity of transitioning to a fully 3D model would yield
greater results given the tendency for passing elver to remain near the bed throughout
passage.

The HEPM could be expanded to consider temporally-varying data, which would
facilitate the use of velocity fluctuations within the model and potentially allow passing
elver to exploit lower velocity regions, particularly if coupled with the implementation
of resting behaviours. This would enable the model to be used on more complex
eel passes with larger velocity fluctuations and more complex geometry. However,
the introduction of temporally-varying inputs is likely to result in temporally-varying
outputs, which drastically increase the complexity of the interpretation of the results.

The HEPM considers a single behavioural type where an individual uses their burst
swimming ability to rapidly ascend the pass in one attempt. However, while not seen
in the study of Vowles et al. [2015], elvers are known to exhibit crawling and climbing
behaviour as well as rest during a passage attempt [Legault, 1988]. Therefore, the HEPM

could be further developed to consider these additional behavioural cases. Podgorniak
et al. [2015a,b] suggest that cognitive processes have more influence than metabolic
ability for climbing elvers. Furthermore, Podgorniak et al. [2016] suggest that climbing
elvers display inherent personality types, which determine how aggressive the indi-
vidual is, and that those that displayed the best climbing ability tended to have more
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aggressive personalities. Therefore, if climbing behaviour was implemented, an inher-
ent “aggression factor” could be developed to give the model further heterogeneity and
control climbing behaviour.

The HEPM considered only the pass geometry and therefore the influence of the
upstream and downstream reaches of the wider domain is not considered. However,
the ability for passing elvers to locate the pass within a timely manner is known to be
important in successful passage [Environment Agency, 2011]. Therefore, the HEPM could
be applied to wider domains which consider the pass geometry in situ, rather than the
pass in isolation, which would facilitate quantification of the attraction efficiency of a
given anguilliform pass.

Future Development of fishPy

The fishPy tool has shown to be able to produce qualitatively sensible predictions
of fish trajectories through various artificial domains with differing geometries and
flow fields, and accurately predict the attraction efficiency and passage efficiency of a
Larinier pass. However, as more experimental data become available, the fishPy tool
should be further applied to new flume- and field-based datasets to ensure its validity
and applicability to generalised domains.

The modular nature of the fishPy tool facilitates development of new species “mod-
ules” that contain new species-specific attributes and behavioural rules. Implementa-
tion of new species modules will increase the utility of the fishPy tool, allow for the
parallel computation of fish pathways for multiple fish species, and allow for inter-
species interactions such as predation to be modelled. The modular nature of the
fishPy model means that future species modules could be added to a “species library”
and future researchers could utilise only those species required. This would vastly in-
crease the utility of the fishPy tool and aid in the reduction of resource-intensive,
invasive experiments.

The fishPy tool considers only hydraulic stimuli when predicting fish behaviour.
However, environmental stimuli such as light level, temperature, salinity, and scent
have all been shown to correlate to behavioural patterns. In particular, light level and
temperature have both been identified as stimuli correlated to the onset of large-scale
migratory movements [Binder et al., 2011]. Therefore, additional environment data
could be added to the model along with additional rules to capture these additional
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facets of behavioural responses. Furthermore, modelling of these environmental stimuli
may elucidate the drivers for motivation at river-scale, which remains unanswered in the
literature. This would facilitate the expansion of fishPy to incorporate non-salmonidae
species, where the assumption of an inherent, persistent motivation to migrate upstream
is no longer justified.

The fishPy tool depend significantly on the formulation of the minMaxEnergy rule
and the thresholds used for switching between behavioural cases. Within chapter 5,
the thresholds were estimated based on numerous sensitivity analyses within multiple
artificial domains. However, high spatio-temporal resolution (O(0.1m),O(0.1s)) exper-
imental data were not available to validate the minMaxEnergy rule, nor its parameters.
Future development should centre on comprehensive validation and calibration of the
minMaxEnergy rule. This could be achieved through the development of a flume-based
testing framework, utilising state-of-the-art three-dimensional videometry to produce
the required high spatio-temporal resolution fish tracks (O(0.1m),O(0.1s)). Further-
more, ADV or PIV instrumentation should be used to collect accurate velocity data
(O(0.001ms−1) with a high spatial resolution (O(0.1m)) within the flume. This testing
framework would facilitate observations of brown trout, and other species, through do-
mains of varying geometry, through the installation of structures within the domain.
In particular, observations of brown trout moving through flume-based versions of the
artificial domains developed throughout chapter 5 would facilitate the validation and
calibration of the minMaxEnergy rule. Once calibration of the parameters for a single
size of individual is completed, a subsequent investigation into the relationship between
the minMaxEnergy thresholds and the bodylength of the individual should be performed
to understand the potential sensitivity of the model.

7.2 Conclusion

The work presented herein has detailed the development and application of multiple
cellular automata and individual-based models to predict the up-migration pathways
of British fish through lowland rivers, including:

• An investigation into the applicability of agent-based modelling to predict the
passage efficiency of up-migrating juvenile European eels through eel tiles.

• The development of the fishPy software tool to predict the up-migration path-
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ways of brown trout based on fish responses to hydraulic stimuli.

• The rule-by-rule verification of the fishPy tool using purpose-built, artificial,
CFD-derived flow fields.

• Sensitivity studies on a number of key model parameters to determine appropriate
parameter ranges and quantified model dependencies.

• Application of the fishPy tool to a real ecohydraulic domain with comparisons
between predicted fish trajectories with measured bulk passage metrics.
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Detert, M., Schütz, C., and Czerny, R. (2018). Development and tests of a 3D fish-
tracking videometry system for an experimental flume. In River Flow 2018-Ninth
International Conference on Fluvial Hydraulics, volume 40, page 03018. EDP Sci-
ences.

Deutscher Verband für Wasserwirtschaft und Kulturbau (1996). Fish Passes: Design,
Dimensions and monitoring. Food and Agriculture Organization of the United Na-
tions, Rome.

Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M., Kram, R., and Lehman, S.
(2000). How animals move: an integrative view. science, 288(5463):100–106.

Dijkgraaf, S. (1963). The functioning and significance of the lateral-line organs. Biolo-
gical Reviews, 38(1):51–105.

Dodd, J. (2019). Fish tracking dataset for brown trout migration through Ruswarp
weir. Personal communication.

Dodd, J. R., Bolland, J. D., Hateley, J., Cowx, I. G., Walton, S. E., Cattaneo, M. E.,
and Noble, R. A. (2018). Upstream passage of adult sea trout (Salmo trutta) at a
low-head weir with an archimedean screw hydropower turbine and co-located fish
pass. Marine and Freshwater Research, 69(12):1822–1833.

Duarte, B. A. d. F., Ramos, I. C. R., et al. (2012). Reynolds shear-stress and velocity:
positive biological response of neotropical fishes to hydraulic parameters in a vertical
slot fishway. Neotropical Ichthyology, 10(4):813–819.

Ducrocq, T., Cassan, L., Chorda, J., and Roux, H. (2017). Flow and drag force around
a free surface piercing cylinder for environmental applications. Environmental Fluid
Mechanics, 17(4):629–645.

278



REFERENCES

Duguay, J., Lacey, R., and Gaucher, J. (2017). A case study of a pool and weir fishway
modeled with openfoam and flow-3d. Ecological Engineering, 103:31–42.

Dynesius, M. and Nilsson, C. (1994). Fragmentation and flow regulation of river systems
in the Northern third of the world. Science, 266(5186):753–762.

Ead, S., Katopodis, C., Sikora, G., and Rajaratnam, N. (2004). Flow regimes and struc-
ture in pool and weir fishways. Journal of environmental engineering and science,
3(5):379–390.
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bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der physik,
322(8):549–560.

Environment Agency (2011). Elver and eel passes: A guide to the design and imple-
mentation of passage solutions at weirs, tidal gates and sluices. Environment Agency
RND report. UK Government Publishing House, London.

Eriksson, T. and Eriksson, L.-O. (1993). Biological interactions of natural and enhanced
stocks of salmon: The status of wild and hatchery propagated Swedish salmon stocks
after 40 years of hatchery releases in the Baltic rivers. Fisheries Research, 18(1):147
– 159.

European Commission (2012). Report from the Commission to the European Par-
liament and the Council on the Implementation of the Water Framework Directive
(2000/60/EC). Brussels, EU.

Fagiolo, G., Moneta, A., and Windrum, P. (2007). A critical guide to empirical val-
idation of agent-based models in economics: Methodologies, procedures, and open
problems. Computational Economics, 30(3):195–226.

Fenwick, N., Griffin, G., and Gauthier, C. (2009). The welfare of animals used in
science: How the ”Three Rs” ethic guides improvements. The Canadian Veterinary
Journal, 50(5):523–530.

Ferrari, G. E., Politano, M., and Weber, L. (2009). Numerical simulation of free surface
flows on a fish bypass. Computers & Fluids, 38(5):997–1002.

279



REFERENCES

Feunteun, E. (2002). Management and restoration of European eel population (Anguilla
anguilla): An impossible bargain. Ecological Engineering, 18(5):575–591.

Feurich, R., Boubée, J., and Olsen, N. R. B. (2012). Improvement of fish passage in
culverts using CFD. Ecological Engineering, 47:1–8.

Finger, J. S., Riesgraf, A. T., Zielinski, D. P., and Sorensen, P. W. (2020). Monitor-
ing upstream fish passage through a Mississippi River lock and dam reveals species
differences in lock chamber usage and supports a fish passage model which describes
velocity-dependent passage through spillway gates. River Research and Applications,
36(1):36–46.

Fish Counters In Action (2008). Sea Lamprey swims through a fish pass. Accessed
18th January 2017. Available at https://www.youtube.com/watch?v=oKEPoy9Fp60.

Ford, M. (2019). Upstream and downstream river levels at Ruswarp Weir. Personal
Communication. [25/04/2019].

Forman, R. (2014). Land Mosaics: The ecology of landscapes and regions (1995).
Springer.

Foulds, W. L. and Lucas, M. C. (2013). Extreme inefficiency of two conventional,
technical fishways used by European river lamprey (Lampetra fluviatilis). Ecological
Engineering, 58:423–433.

Froese, R. and Pauly, D. (2019). FishBase version 12/2019. Internet Database. Access-
ible at www.fishbase.org.

Fuller, M. R., Doyle, M. W., and Strayer, D. L. (2015). Causes and consequences
of habitat fragmentation in river networks. Annals of the New York Academy of
Sciences, 1355(1):31–51.

Fulton, L. A., Gangmark, H. A., and Bair, S. H. (1953). Trial of Denil-type fish ladder
on Pacific salmon, volume 99. US Department of the Interior, Fish and Wildlife
Service.

Gao, Z., Andersson, H. I., Dai, H., Jiang, F., and Zhao, L. (2016). A new Eulerian-
Lagrangian Agent Method to model fish paths in a vertical slot fishway. Ecological
Engineering, 88:217–225.

280

https://www.youtube.com/watch?v=oKEPoy9Fp60
www.fishbase.org


REFERENCES

Gardner, M. (1970). Mathematical games - the fantastic combinations of john conway’s
new solitaire game ”life”. Scientific American, 223.

Gardner, R. H. and O’Neill, R. V. (1991). Pattern, process, and predictability: the use
of neutral models for landscape analysis. Ecological Studies, 82:289–307.

Gauld, N., Campbell, R., and Lucas, M. (2013). Reduced flow impacts salmonid smolt
emigration in a river with low-head weirs. Science of the total environment, 458:435–
443.

Gergel, S. E. and Turner, M. G. (2017). Learning landscape ecology: a practical guide
to concepts and techniques. Springer.

Gibbons, W. J. and Andrews, K. M. (2004). PIT tagging: simple technology at its
best. Bioscience, 54(5):447–454.

Gilmanov, A., Zielinski, D., Voller, V., and Sorensen, P. (2019). The effect of modi-
fying a CFD-AB approach on fish passage through a model hydraulic dam. Water,
11(9):1776.

Gisen, D. (2018). Modeling upstream fish migration in small-scale using the Eulerian-
Lagrangian-Agent method (elam). PhD Thesis.

Gisen, D. C., Weichert, R. B., and Nestler, J. M. (2016). Optimizing attraction flow
for upstream fish passage at a hydropower dam employing 3-D Detached-Eddy Sim-
ulation. Ecological Engineering, 100:344–353.

Goettel, M. T., Atkinson, J. F., and Bennett, S. J. (2015). Behavior of western
blacknose dace in a turbulence modified flow field. Ecological Engineering, 74:230–
240.

Goodwin, R. A. (2004). Hydrodynamics and juvenile salmon movement behaviour at
lower granite dam: Decoding the relationship using 3-D space-time (Celagent IBM)
simulation. Unpublished PhD Thesis. Cornell University, Ithaca, NY.

Goodwin, R. A., Nestler, J. M., Anderson, J. J., Weber, L. J., and Loucks, D. P. (2006).
Forecasting 3-D fish movement behavior using a Eulerian–Lagrangian–agent method
(ELAM). Ecological Modelling, 192(1):197–223.

281



REFERENCES

Goodwin, R. A., Politano, M., Garvin, J. W., Nestler, J. M., Hay, D., Anderson, J. J.,
Weber, L. J., Dimperio, E., Smith, D. L., and Timko, M. (2014). Fish navigation
of large dams emerges from their modulation of flow field experience. Proceedings of
the National Academy of Sciences, 111(14):5277–5282.

Grimm, V. and Railsback, S. F. (2005). Individual-based modeling and ecology,
volume 8. Princeton University Press.

Gustafson, E. J. (1998). Quantifying landscape spatial pattern: what is the state of
the art? Ecosystems, 1(2):143–156.

Haefner, J. W. and Bowen, M. D. (2002). Physical-based model of fish movement in
fish extraction facilities. Ecological Modelling, 152(2):227–245.

Hall, C. J., Jordaan, A., and Frisk, M. G. (2012). Centuries of anadromous forage
fish loss: consequences for ecosystem connectivity and productivity. BioScience,
62(8):723–731.

Harden Jones, F. R. and Scholes, P. (1985). Gas secretion and resorption in the
swimbladder of the cod gadus morhua. Journal of Comparative Physiology B,
155(3):319–331.

Haro, A., Odeh, M., Castro-Santos, T., and Noreika, J. (1999). Effect of slope and
headpond on passage of American shad and blueback herring through simple Denil
and deepened Alaska steeppass fishways. North American Journal of Fisheries Man-
agement, 19(1):51–58.

Hayashida, K., Honda, T., Kayaba, Y., and Shimatani, Y. (2000). The characteristic of
the plunging flow and the streaming flow in the pool-weir-fishway and the swimming
behaviour of Leuciscus Hakonensis. Environmental Systems Research, 28:333–338.

Heimerl, S., Hagmeyer, M., and Echteler, C. (2008). Numerical flow simulation of
pool-type fishways: New ways with well-known tools. Hydrobiologia, 609(1):189.

Heppenstall, A., Evans, A., and Birkin, M. (2006). Using hybrid agent-based systems
to model spatially-influenced retail markets. Journal of Artificial Societies and Social
Simulation, 9(3).

282



REFERENCES

Hinch, S. G. and Rand, P. S. (2000). Optimal swimming speeds and forward-assisted
propulsion: energy-conserving behaviours of upriver-migrating adult salmon. Cana-
dian Journal of Fisheries and Aquatic Sciences, 57(12):2470–2478.

Hirt, C. and Nichols, B. (1981). Volume of fluid (VOF) method for the dynamics of
free boundaries. Journal of Computational Physics, 39(1):201 – 225.
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B.1 Supplementary Binary Maps

B.1 Supplementary Binary Maps

This section presents additional binary maps for each configuration of eel pass for elver
between 0.05 and 0.1 m bodylength for the 10%, 50%, and 90% burst swimming speed
confidence intervals.

Figure B.1: Binary maps for an eel pass installed at 8◦ with a discharge per unit width
of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean burst
swimming speed.
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B.1 Supplementary Binary Maps

Figure B.2: Binary maps for an eel pass installed at 11◦ with a discharge per unit width
of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean burst
swimming speed.

Figure B.3: Binary maps for an eel pass installed at 14◦ with a discharge per unit width
of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean burst
swimming speed.
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B.1 Supplementary Binary Maps

Figure B.4: Binary maps for an eel pass installed at 17◦ with a discharge per unit width
of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean burst
swimming speed.

Figure B.5: Binary maps for an eel pass installed at 20◦ with a discharge per unit width
of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean burst
swimming speed.
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B.1 Supplementary Binary Maps

Figure B.6: Binary maps for an eel pass installed at 8◦ with a discharge per unit width
of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean burst
swimming speed.

Figure B.7: Binary maps for an eel pass installed at 11◦ with a discharge per unit width
of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean burst
swimming speed.
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B.1 Supplementary Binary Maps

Figure B.8: Binary maps for an eel pass installed at 14◦ with a discharge per unit width
of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean burst
swimming speed.

Figure B.9: Binary maps for an eel pass installed at 17◦ with a discharge per unit width
of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean burst
swimming speed.
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B.1 Supplementary Binary Maps

Figure B.10: Binary maps for an eel pass installed at 20◦ with a discharge per unit
width of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean
burst swimming speed.

Figure B.11: Binary maps for an eel pass installed at 8◦ with a discharge per unit width
of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean burst
swimming speed.
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B.1 Supplementary Binary Maps

Figure B.12: Binary maps for an eel pass installed at 11◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean
burst swimming speed.

Figure B.13: Binary maps for an eel pass installed at 14◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean
burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.14: Binary maps for an eel pass installed at 17◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean
burst swimming speed.

Figure B.15: Binary maps for an eel pass installed at 20◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the mean
burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.16: Binary maps for an eel pass installed at 8◦ with a discharge per unit
width of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.

Figure B.17: Binary maps for an eel pass installed at 11◦ with a discharge per unit
width of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.18: Binary maps for an eel pass installed at 14◦ with a discharge per unit
width of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.

Figure B.19: Binary maps for an eel pass installed at 17◦ with a discharge per unit
width of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.20: Binary maps for an eel pass installed at 20◦ with a discharge per unit
width of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.

Figure B.21: Binary maps for an eel pass installed at 8◦ with a discharge per unit
width of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.22: Binary maps for an eel pass installed at 11◦ with a discharge per unit
width of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.

Figure B.23: Binary maps for an eel pass installed at 14◦ with a discharge per unit
width of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.24: Binary maps for an eel pass installed at 17◦ with a discharge per unit
width of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.

Figure B.25: Binary maps for an eel pass installed at 20◦ with a discharge per unit
width of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.26: Binary maps for an eel pass installed at 8◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.

Figure B.27: Binary maps for an eel pass installed at 11◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.28: Binary maps for an eel pass installed at 14◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.

Figure B.29: Binary maps for an eel pass installed at 17◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.30: Binary maps for an eel pass installed at 20◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 10%
confidence interval of the burst swimming speed.

Figure B.31: Binary maps for an eel pass installed at 8◦ with a discharge per unit
width of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.32: Binary maps for an eel pass installed at 11◦ with a discharge per unit
width of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.

Figure B.33: Binary maps for an eel pass installed at 14◦ with a discharge per unit
width of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.34: Binary maps for an eel pass installed at 17◦ with a discharge per unit
width of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.

Figure B.35: Binary maps for an eel pass installed at 20◦ with a discharge per unit
width of 1.67̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.36: Binary maps for an eel pass installed at 8◦ with a discharge per unit
width of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.

Figure B.37: Binary maps for an eel pass installed at 11◦ with a discharge per unit
width of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.38: Binary maps for an eel pass installed at 14◦ with a discharge per unit
width of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.

Figure B.39: Binary maps for an eel pass installed at 17◦ with a discharge per unit
width of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.40: Binary maps for an eel pass installed at 20◦ with a discharge per unit
width of 3.33̇×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.

Figure B.41: Binary maps for an eel pass installed at 8◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.42: Binary maps for an eel pass installed at 11◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.

Figure B.43: Binary maps for an eel pass installed at 14◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.
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B.1 Supplementary Binary Maps

Figure B.44: Binary maps for an eel pass installed at 17◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.

Figure B.45: Binary maps for an eel pass installed at 20◦ with a discharge per unit
width of 5.0×10−3m2s−1 for elver between 0.05 and 0.1 m bodylength, using the 90%
confidence interval of the burst swimming speed.

330



B.2 Supplementary Velocity Maps

B.2 Supplementary Velocity Maps

This section presents the velocity maps created for each configuration of eel pass, used
as inputs to the HEPM.

Figure B.46: Velocity maps for an eel pass with a discharge per unit width of
1.67̇×10−3m2s−1 for installation angles ranging between 8◦ and 20◦.
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B.2 Supplementary Velocity Maps

Figure B.47: Velocity maps for an eel pass with a discharge per unit width of
3.33̇×10−3m2s−1 for installation angles ranging between 8◦ and 20◦.

Figure B.48: Velocity maps for an eel pass with a discharge per unit width of
5.0×10−3m2s−1 for installation angles ranging between 8◦ and 20◦.
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B.3 Supplementary Landscape Connectivity Results

B.3 Supplementary Landscape Connectivity Results

This section presents additional results of the landscape connectivity metrics applied
to the binary maps for the 10% and 90% confidence intervals of the burst swimming
speeds for all lengths of elvers and all configurations of eel pass.

(a) (b) (c)

(d) (e) (f)

Figure B.49: Six landscape connectivity metrics applied to an eel pass for 5 installation
angles using a) PLADJ, b) COHESION, c) CONTAG, d) NPP, e) DIVISION, and f) SPLIT.
Results shown are for a discharge per unit width of 1.67̇×10−3m2s−1 and for elver
between 0.05 and 0.1 m bodylength, using the 10% confidence interval of the burst
swimming speeds.
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B.3 Supplementary Landscape Connectivity Results

(a) (b) (c)

(d) (e) (f)

Figure B.50: Six landscape connectivity metrics applied to an eel pass for 5 installation
angles using a) PLADJ, b) COHESION, c) CONTAG, d) NPP, e) DIVISION, and f) SPLIT.
Results shown are for a discharge per unit width of 3.33̇×10−3m2s−1 and for elver
between 0.05 and 0.1 m bodylength, using the 10% confidence interval of the burst
swimming speeds.

(a) (b) (c)

(d) (e) (f)

Figure B.51: Six landscape connectivity metrics applied to an eel pass for 5 installation
angles using a) PLADJ, b) COHESION, c) CONTAG, d) NPP, e) DIVISION, and f) SPLIT.
Results shown are for a discharge per unit width of 5.0×10−3m2s−1 and for elver
between 0.05 and 0.1 m bodylength, using the 10% confidence interval of the burst
swimming speeds.
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B.3 Supplementary Landscape Connectivity Results

(a) (b) (c)

(d) (e) (f)

Figure B.52: Six landscape connectivity metrics applied to an eel pass for 5 installation
angles using a) PLADJ, b) COHESION, c) CONTAG, d) NPP, e) DIVISION, and f) SPLIT.
Results shown are for a discharge per unit width of 1.67̇×10−3m2s−1 and for elver
between 0.05 and 0.1 m bodylength, using the 90% confidence interval of the burst
swimming speeds.

(a) (b) (c)

(d) (e) (f)

Figure B.53: Six landscape connectivity metrics applied to an eel pass for 5 installation
angles using a) PLADJ, b) COHESION, c) CONTAG, d) NPP, e) DIVISION, and f) SPLIT.
Results shown are for a discharge per unit width of 3.33̇×10−3m2s−1 and for elver
between 0.05 and 0.1 m bodylength, using the 90% confidence interval of the burst
swimming speeds.
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B.3 Supplementary Landscape Connectivity Results

(a) (b) (c)

(d) (e) (f)

Figure B.54: Six landscape connectivity metrics applied to an eel pass for 5 installation
angles using a) PLADJ, b) COHESION, c) CONTAG, d) NPP, e) DIVISION, and f) SPLIT.
Results shown are for a discharge per unit width of 5.0×10−3m2s−1 and for elver
between 0.05 and 0.1 m bodylength, using the 90% confidence interval of the burst
swimming speeds.
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B.4 Supplementary Cellular Automata Results

B.4 Supplementary Cellular Automata Results

(a) (b) (c)

Figure B.55: Results of the SEPM applied to each eel pass configuration for the passage
of elver between 0.05 and 0.1 m using the 10% confidence interval of the burst swimming
speed, for discharges per unit width of a)1.67̇×10−3m2s−1, b) 3.33̇×10−3m2s−1, and
c) 5.0×10−3m2s−1.

(a) (b) (c)

Figure B.56: Results of the EEPM applied to each eel pass configuration for the passage
of elver between 0.05 and 0.1 m using the 10% confidence interval of the burst swimming
speed, for discharges per unit width of a)1.67̇×10−3m2s−1, b) 3.33̇×10−3m2s−1, and
c) 5.0×10−3m2s−1.

(a) (b) (c)

Figure B.57: Results of the FEPM applied to each eel pass configuration for the passage
of elver between 0.05 and 0.1 m using the 10% confidence interval of the burst swimming
speed, for discharges per unit width of a)1.67̇×10−3m2s−1, b) 3.33̇×10−3m2s−1, and
c) 5.0×10−3m2s−1.
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B.4 Supplementary Cellular Automata Results

(a) (b) (c)

Figure B.58: Results of the SEPM applied to each eel pass configuration for the passage
of elver between 0.05 and 0.1 m using the 90% confidence interval of the burst swimming
speed, for discharges per unit width of a)1.67̇×10−3m2s−1, b) 3.33̇×10−3m2s−1, and
c) 5.0×10−3m2s−1.

(a) (b) (c)

Figure B.59: Results of the EEPM applied to each eel pass configuration for the passage
of elver between 0.05 and 0.1 m using the 90% confidence interval of the burst swimming
speed, for discharges per unit width of a)1.67̇×10−3m2s−1, b) 3.33̇×10−3m2s−1, and
c) 5.0×10−3m2s−1.

(a) (b) (c)

Figure B.60: Results of the FEPM applied to each eel pass configuration for the passage
of elver between 0.05 and 0.1 m using the 90% confidence interval of the burst swimming
speed, for discharges per unit width of a)1.67̇×10−3m2s−1, b) 3.33̇×10−3m2s−1, and
c) 5.0×10−3m2s−1.
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C.1 Supplementary Data for Modelling the Swim Bladder

C.1 Supplementary Data for Modelling the Swim Bladder

This section presents the modelling of the swim bladder based on the work of Alexander
[1966] and Strand et al. [2005]. Although complex modelling of the swim bladder was
not included in fishPy, details of the Strand et al. [2005] method are included hereinfor
prudence. This is done to aid future users who may wish to further develop the model
to incorporate full modelling of the swim bladder in order to predict vertical migrations,
such as that detailed by Strand et al. [2005]. Similarly, the simple implementation of
the swim bladder was retained within fishPy to demonstrate the negligible effect of
buoyancy. This is in line with the developmental principles of transparency and code
modularity, and facilitates development of future species modules and application of
fishPy to marine datasets.

The Strand et al. [2005] approach calculates the buoyancy as a function of the
actual volume of the individual’s swim bladder compared to the volume required for
neutral buoyancy. The volume required to cause the individual to be neutrally buoyant
is calculated using Archimedes’ principle, equation C.1.

Vn =
M(1− ρw

ρf
)

ρw
(C.1)

Where Vn is the neutral swim bladder volume in m−3; M is the mass of the individual
in kg; ρw is the density of the water in kgm−3; and ρf is the density of the individual
in kgm−3.

Strand et al. [2005] based their calculation on Atlantic cod (Gadus morhua), and
used a ρf value of 1081 kgm−3, taken from Harden Jones and Scholes [1985]. Similar
values for brown trout could not be found in the literature. The authors stipulate that
if the actual swim bladder volume, Vs, differs from the neutral volume, Vn, a buoyancy
force, B, will be experienced by the individual, equation C.2.

B = (Vs − Vn)ρwg (C.2)

This approach would allow for the calculation of the buoyancy force at any timestep
but requires an additional equation to model the change in volume of the swim bladder
over time, ∂Vs

∂t . Strand et al. [2005] suggest that this value can be calculated as a
balance of leakage, secretion, and absorption of gases through the swim bladder wall,

340



C.1 Supplementary Data for Modelling the Swim Bladder

equation C.3.
∂Vs
∂t

= ∂VLeakage
∂t

+ ∂VSecretion
∂t

+ ∂VAbsorption
∂t

(C.3)

The passive leakage of gases out of the swim bladder is due to constant diffusion
across its walls, and is a function of the surface area of the swim bladder which is
estimated to be a perfect ellipsoid [Strand et al., 2005]. However, x-rays of swim
bladders have revealed that while this is not the case, it is a close approximation [Ona,
1990]. The rate of leakage, with units mols−1, is given by equation C.4. As the rate
of leakage is a function of the pressure differential, it depends upon the depth of the
individual compared to its previous depth.

∂VLeakage
∂t

= GSs(P − P0)
RT

(C.4)

Where: G is the oxygen conductance of the swim bladder wall with unitsm3O2m
−2atm−1s−1;

Ss is the surface area of the swim bladder in m2 (equation C.5); P is the pressure cur-
rently experienced by the individual; P0 is the original pressure, both in Pa; R is the
universal gas constant; and T is the temperature in K.

Ss = 2πb2
(

1 + (a/b) arcsin(e)
e

)
(C.5)

Where a is the polar radius of the bladder in m; b is the equatorial radius of the bladder
in m; and e is the eccentricity of the swim bladder (given by C.6).

e = 2

√
1− b2

a2 (C.6)

For a known length to width ratio, a
b ; b can be expressed as in equation C.7.

b =
(3Vs(ab )2

4π

) 1
3

(C.7)

The buoyancy of the individual is regulated via the rates of absorption and secretion.
If an individual would like to ascend, it will increase its rate of absorption. Conversely, if
the individual would like to descend, it will increase its rate of secretion. The maximum
rates of secretion and absorption are presented by Strand et al. [2005], equations C.8
and C.9.

∂VSecretion
∂t

|max = CoutCreteO2aReffP0
RTδO2

(C.8)

341



C.1 Supplementary Data for Modelling the Swim Bladder

Table C.1: Parameters used by Strand et al. [2005] to model the swim bladder variance
of Atlantic cod (Gadus morhua) with respect to time.

Variable Description Value Units
Cout Cardiac output - -
Coval Fraction of Cout to oval 0.25 -
Crete Fraction of Cout to rete 0.1 -
Reff Rete Efficiency* 0.2 -
O2a O2 content of arterial blood by volume 0.1 -
O2sol Solubility of O2 0.04 m3O2m

3blood−1atm−1

δ02 Fraction of oxygen in gas 0.63 -
G Oxygen conductance 1.5× 10−9 m3O2m

−2atm−1s−1

∆Hb Fraction of haemoglobin available for O2 0.15 -
a
b Length-width ratio of bladder 10 -

*Taken for Anguilla anguilla.

Where: Cout is the cardiac output with units m3s−1; Crete is the percentage of Cout
diverted to the rete; O2a is the volume fraction of O2 in the blood; Reff is the efficiency
of the rete; δO2 is the fraction of oxygen in the secreted gases.

∂VAbsorption
∂t

|max = CoutCovalP0
RT

(
O2sol(P − P0)

δO2
+O2a∆Hb

)
(C.9)

Where Coval is the fraction of the cardiac output that flows through the oval; O2sol

is the solubility of oxygen, with units m3 O2 m
−3 blood atm−1; ∆Hb is the fraction of

available haemoglobin binding sites within the gas gland; and all other variables are as
previously defined.

Using the data of Strand et al. [2005] (table C.1) the leakage, secretion, and ab-
sorption rates are calculated for depths of 1 and 10 metres. The surface area of the
swim bladder, assuming a ratio a

b = 10, can be reduced to equation C.10.

Ss = 8.218834V 2/3
s (C.10)
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Figure D.1: Schematic of the veriSetA domain showing the regular mesh employed.
Inlet, outlet, and atmospheric outlet are labelled. Surfaces without labels are no slip
walls.

344



(a)

(b)

(c)

(d)

Figure D.2: Contours of streamwise velocity taken along an xy plane at z = 0.5m
within the veriSetB domain for a) T = 120s, b) T = 130s, c) T = 140s, d) T = 150s
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(a)

(b)

(c)

(d)

Figure D.3: Contours of streamwise velocity taken along an xy plane at z = 0.5m
within the veriSetB2 domain for a) T = 120s, b) T = 130s, c) T = 140s, d) T = 150s
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(a)

(b)

(c)

(d)

Figure D.4: Contours of streamwise velocity taken along an xy plane at z = 0.5m
within the veriSetB3 domain for a) T = 120s, b) T = 130s, c) T = 140s, d) T = 150s
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Appendix E

Supplementary Data for the Application of the
fishPy model to Ruswarp Weir
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Figure E.9: Planform view of the valSet domain with overlain vectors displayed over
the isosurface α = 0.5, which denotes the free surface. The vectors are equally scaled
due to the overwhelming dominance of the flow velocity within the baulk pass compared
to the bulk flow. Vectors are coloured with velocity magnitude, limited to a maximum
of 0.3ms−1 for clarity.
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Table E.1: Transect-averaged velocity magnitudes of measured and predicted data
(Table 1/2)

Transect
Number

Transect-averaged measured
velocity magnitude (ms−1)

Transect-averaged predicted
velocity magnitude (ms−1)

Note

10 0.0580 0.0414
11 0.0556 0.0523
12 0.0524 0.0523 Transect B
13 0.0524 0.0357
14 0.0520 0.0427
15 0.0471 0.0525
16 0.0547 0.0330
17 0.0518 0.0377
18 0.0547 0.0347
19 0.0566 0.0493
20 0.0546 0.0419
21 0.0502 0.0361
22 0.0461 0.0432 Transect C
23 0.0550 0.0379
24 0.0530 0.0380
25 0.0711 0.0431
26 0.0682 0.0399
27 0.0570 0.0374
28 0.0777 0.0312
29 0.0618 0.0547 Transect D
30 0.0662 0.0396
31 0.0634 0.0452
32 0.0633 0.0629
33 0.0662 0.0462
34 0.0692 0.0648
35 0.0540 0.0514
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Table E.2: Transect-averaged velocity magnitudes of measured and predicted data
Table (2/2)

Transect
Number

Transect-averaged measured
velocity magnitude (ms−1)

Transect-averaged predicted
velocity magnitude (ms−1)

Note

36 0.0895 0.0520
37 0.0842 0.0894
38 0.0795 0.0678
39 0.0670 0.0731
40 0.0684 0.0541
41 0.0579 0.0645 Transect E
42 0.0692 0.1011
43 0.0706 0.1311
44 0.0723 0.0757
45 0.0581 0.0869
46 0.0659 0.0827
47 0.0455 0.0766
49 0.0249 0.0521
50 0.0719 0.0570
51 0.0657 0.0303 Transect F
52 0.0645 0.0504
53 0.0564 0.0589
54 0.0646 0.0598 Transect A
55 0.0812 0.0722
56 0.0654 0.0621
57 0.0621 0.0740
58 0.0760 0.0311
59 0.0595 0.0395
60 0.0665 0.0416
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Figure E.10: Planform view of the fishSet domain with overlain vectors displayed
over the isosurface α = 0.5, which denotes the free surface. The vectors are equally
scaled due to the overwhelming dominance of the flow velocity within the baulk pass
compared to the bulk flow. Vectors are coloured with velocity magnitude, limited to a
maximum of 0.3ms−1 for clarity.
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Table E.3: Selected tagged fish data provided by Dodd [2019].

Fish ID Tag ID Sex Length (mm) Mass (kg)
1 2013 2563 F 650 3.075
2 2013 2640 M 540 1.3
3 2013 2654 M 550 1.8
4 2013 2668 F 420 0.75
5 2013 2689 M 620 2.15
6 2013 2738 F 460 0.95
8 2014 2535 F 530 1.55
9 2014 2542 F 520 1.425
10 2014 2612 F 540 1.7
11 2014 2654 M 550 1.875
12 2014 2661 F 420 0.75
13 2014 2689 F 530 1.35
14 2014 2731 M 530 1.25
15 2014 2752 M 590 1.75
16 2014 2794 F 540 1.5
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