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Abstract

Understanding the effect warming has on ice sheets is vital for accurate projections of
climate change. A better understanding of how the Antarctic ice sheets have changed
size and shape in the past would allow us to improve our predictions of how they
may adapt in the future; this is of particular relevance in predicting future global sea
level changes. This research makes use of previous reconstructions of the ice sheets,
ice core data and Bayesian methods to create a model of the Antarctic ice sheet at
the Last Glacial Maximum (LGM). We do this by finding the relationship between

the ice sheet shape and water isotope values.

We developed a prior model which describes the variation between a set of ice sheet
reconstructions at the LGM. A set of ice sheet shapes formed using this model was
determined by a consultation with experts and run through the general circulation
model HadCM3, providing us with paired data sets of ice sheet shapes and water
isotope estimates. The relationship between ice sheet shape and water isotopes is
explored using a Gaussian process emulator of HadCMa3, building a statistical distri-
bution describing the shape of the ice sheets given the isotope values outputted by
the climate model. We then use MCMC to sample from the posterior distribution of
the ice sheet shape and attempt to find a shape that creates isotopic values match-
ing as closely as possible to the observations collected from ice cores. This allows
us to quantify the uncertainty in the shape and incorporate expert beliefs about the
Antarctic ice sheet during this time period. Our results suggests that the AIS may

have been thicker at the LGM that previous reconstructions predict.



i

Acknowledgements

Firstly I'd like to thank my supervisors: Richard Wilkinson, Caitlin Buck, Louise
Sime and Julie Jones. Somehow having four people supervising me was never any-
thing less than a pleasure. Having such a group of people to turn to for their expertise
and help made the last four years much easier than they could otherwise have been.

Thank you for somehow managing to never give contradictory advice.

Thank you to Max, Irene, Kira and everyone else at the British Antarctic Survey
who helped me as I came to grips with climatology, your patience and guidance
were truly appreciated. My thanks to Louise Sime, Nick Golledge and Boer de Bas
who provided me with the ice sheet reconstructions used in Chapter 3, and to the
National Snow & Ice Data Center (https://nsidc.org/), where I accessed the ice core
data used in Chapter 5.

This project would never have happened without the funding and assistance from
the Grantham Centre for Sustainable Futures. Such interdisciplinary work as this
often falls down the cracks of traditional funding institutes; thank you to everyone

at the centre for your support throughout the years.

To Sonette and Robbie, for the copious amounts of wine we have shared these last
four years as you listened to my ramblings. To all of my other friends, both in
Sheffield and other places, for welcome distractions and vital encouragement. To my
mum, dad, Mike, and Dan, for always believing in me and assuring me that I could

be anything I want in life - sorry that that has turned out to be a perpetual student.



AlS:
AP:
EAIS:
GCM:
GP:

HadCMa3:

IPCC:
Ka BP:
LGM:
LOOCV:
PC(A):
PI:

SVD:

il

Abbreviations

Antarctic Ice Sheets

Antarctic Peninsula

East Antarctic Ice Sheet

General Circulation Model

Gaussian Process

Hadley Centre Coupled Model - version 3
Intergovernmental Panel on Climate Change
Thousands of Years Before Present

Last Glacial Maximum

Leave-One-Out Cross-Validation
Principal Component (Analysis)

Pre Industrial

Singular Value Decomposition



v

a; € R7008

y; € RY
zeR?

Zobs

/
obs

B € RS

01
T1

T2

X e R7008><40
VA c R47><5
7' =[1 Z

zh =11 Zos

Symbol List

principal components, often called loadings, found using null space

method and used in our prior model, i = 1,...,5

vector of 9180 anomalies at ice core sites from HadCM3 output, i = 1, ..., 10
the prior model variables

vector of z values that would create the 580 observations from the ice cores

matrix used as part of the linear model component of the calibration model

linear model parameters for calibration model

ice sheet shape output by the prior model

row mean of the collection of ice sheet reconstructions
HadCM3 model standard deviation

isotope measurement standard deviation

spatial standard deviation between HadCM3 and ice core sites

space that the 6'**0O HadCM3 output describes

vector of elevation values at an ice core site in HadCM3 simulations
number of HadCM3 simulations

number of ice core sites being modelled

vector space in which we define ice sheet shape

Collection of ice sheet reconstructions

set of z; values used to make orographies included in HadCM3 simulations

matrix used as part of the linear model component of the calibration model
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Chapter 1

Introduction

Acceleration of ice flow and retreat in Antarctica, which has the po-
tential to lead to sea level rise of several metres within a few centuries,
. may be the onset of an irreversible ice sheet instability. Uncertainty
related to the onset of ice sheet instability arises from limited observa-
tions, inadequate model representation of ice sheet processes, and limited
understanding of the complex interactions between the atmosphere, ocean

and the ice sheet.

IPCC Special Report on the Ocean and Cryosphere
in a Changing Climate, 2019
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A better understanding of the historic changes that have occurred in ice sheet shapes
has become increasingly relevant as the consequences of man made climate change
becomes more apparent. Ice sheets are defined as a mass of glacial ice larger than
50,000 km?. Currently ice sheets are only present in Antarctica and Greenland;
however, during the last glacial period (115,000 - 11,700 Ka BP), ice sheets existed
in Europe and both Americas. A rise in global sea levels of 1m, primarily due to
melting ice sheets, is considered likely by 2100. Uncertainty in the amount of sea rise
is mostly determined by lack of knowledge about the possible contributions from ice
sheets, particularly those in Antarctica (Portner et al., [2019)). As ice mass loss across
the continent has increased in recent years (IMBIE, 2018), the need to understand
the contributions the Antarctic ice sheets (AIS) have made in the past to global sea
levels is more apparent. A map of Antarctica can be seen in Figure [I.I} showing
the location of the East Antarctic ice sheet (EAIS) and the West Antarctic ice sheet

(WALIS), as well as other key geographical features.

Reconstructions of past ice sheet shapes have been produced by many authors in
order to understand the state of the planet’s climate at different time periods: |Peltier
(1994), Briggs et al. (2014) and Whitehouse et al| (2012)) among others. We are
interested in the shape of the Antarctic ice sheet at the Last Glacial Maximum
(~21Ka BP; LGM), the point of maximum ice sheet extent in the last glacial period
(Clark et al., 2009). The LGM and the shape of ice sheets are both points of interest
in palaeo-climatology; by understanding the deglaciation process in Antarctica, we
can more fully understand the effect of external forcing on Antarctic and other ice
sheets (Briggs et al., [2014). External forcings are a climate forcing agent outside of

the climate system itself, such as solar or orbital variations.
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Figure 1.1: A map of Antarctica showing the major geographic landmarks, from

|Abrahamsen| (|2012|).
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Further motivation for investigating the LGM is given in 2.1.1] including the issue
of “missing ice" and its contribution to changes in sea level. However, it should be
stated that quantifying our own ice sheet reconstructions in this thesis into ice sheet
volume is beyond the scope of this work; due to the statistical nature of our models,
we will be analysing the shape and size of the ice sheet, but are unable to give an
estimate of how much ice our reconstructions hold. As our method models only
surface elevation, we are unable to take into account the underlying bedrock, and

thus cannot find an estimate for ice volume.

Building ice sheet reconstructions often relies on the use of climate models as simu-
lators for the planet during the period of interest. However, simulators can be very
expensive to run, and the number of simulations you can achieve is severely limited.
The model we wish to use is HadCM3, an isotope-enabled coupled General Circula-
tion Model (GCM), created by the Met Office in 1999 (Met-Office, 2016) and used
frequently by the climatology community, including in the latest IPCC Assessment
Report (Stocker et al., [2013). It should be stated that this work is not intended as a
review or critique of HadCMS3, or a test of how well it simulates the climate. Indeed,
such work would be a thesis in itself. Here, we are not trying to fix HadCM3, or
understand it, but rather use it as a key tool in our methods. We intend to im-
prove understanding about the AIS by applying a Bayesian framework to ice sheet
modelling. The computational cost of running HadCM3 means we must turn to a
statistical method that has become an increasingly useful tool in palaeoclimatology,

an emulator.

Emulators are cheaper, faster models that approximate the simulator. This allows

us to learn about the relationship between the input and output of interest, using
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a set of observations from our simulator and treating the emulator as a ‘black box’
(Kennedy and O’Hagan|, 2001]). We can then learn more about the process in question
without being reliant on a slow and expensive simulator. Here we will be working
with Gaussian process emulators, which models the outputs as a Gaussian process

on the space determined by the inputs.

1.1 Bayesian framework

A Bayesian approach to statistical inference describes all uncertainties with prob-
ability distributions, and tells us how to update our initial uncertainty (our prior
distribution) in light of data and a model (giving us our posterior distribution).
Mathematically given a data point, z, some parameter # and a statistical model
p(z|0) s.t.

x ~ p(z|0),

if we have prior distribution for 6
0 ~ p(0)

then given a sample

X = [z1, .0, )

the posterior distribution p(6|X) can be calculated

p(01X) o< p(X|0)p(0).
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p(6) is known as the prior distribution, representing our beliefs about the parameter
of interest, 0. p(X|0) is the likelihood function, representing how likely X is under
the model if € is the parameter, and p(f|X) is the posterior distribution, an updated

distribution for # given the information found from X and the model.

Applying this to a palaeo-climatological context, we are interested in the shape of the
AIS at the LGM, which we will denote as 6. Previous ice sheet reconstructions are
used to form a prior distribution of the ice sheet shape, p(f). The observations we
have are in the form of water isotope ratios from ice cores. A description of how these
are calculated can be found in Section [2.2.1] Isotope data are an example of proxy
data: preserved physical characteristics of past climate that can stand in for direct
measurement. The arguments for the use of such proxy data are strong: by analysing
preserved analogues, past climates can be used to understand future climate change
and assess climate models’ validity (Salzmann et al.; 2009). An emulator of HadCM3
will be used to find the relationship between ice sheet shape and our proxy data,
allowing us to calculate the distribution p(X|¢). We can then combine these to find
the posterior distribution, and from that predict the distribution of the "true" ice

sheet shape, 0.

In the next chapter, we give a review of the literature as well as motivation for our
work. By considering the issues with modelling Antarctica, past work on reconstruct-
ing climates with proxy data, and current Bayesian methods used in palacoclimatol-
ogy, we show that there is a real need for further incorporation of statistical thinking

in ice sheet modelling and climatology in general.



Chapter 2

Motivation and Literature Review

Modelling the Earth’s climate is reliant on knowledge of both the internal and ex-
ternal forcings, accurate initial and boundary conditions, and can be aided by a long
record of observations. Understanding past changes in climate can reduce uncertain-
ties around predictions of future changes. In climate modelling, initial conditions are
starting values for variables such as wind, temperature and moisture, whilst bound-
ary conditions are values decided on by a modeller for variables such as solar radiation
intensity. Weather is largely dependent on initial conditions, whilst climate, a longer

time scale, is dependent on these boundary conditions.

Focus is often placed on the higher latitudes as changes in polar ice caps have an
effect on global sea levels and ocean circulation (Bracegirdle and Stephenson) 2012)).

A knowledge of what is happening at the poles is therefore necessary in order to

7
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understand what may occur both regionally and globally. An important aspect of
this is the amount of ice present in the ice sheets. In order to analyse how ice sheets
have changed over millennia, accurate reconstructions of past shapes are required.
However, knowledge of the change of ice sheet margins is limited, which inhibits our

ability to reconstruct the extent of the ice sheets (Haywood et al., [2016)).

When analysing the climate in Antarctica, specific issues arise, from the short time-
scale of the data to the scarcity of measurements over vast regions of the continent,
and the particularly variable nature of the climate itself (Fogt et al. (2016), Hay-
wood et al.| (2016]), Schneider et al. (2006)). The use of more advanced statistical
techniques, using the data we do have in new ways, could offer a way to work around

these issues and result in a more detailed and accurate climate model.

In this chapter, we look at the existing literature to motivate this project. The
importance of the Antarctic Ice Sheets (AIS) and the relevance of the Last Glacial
Maximum (LGM) is discussed, and the use of Bayesian methodology in the palaeo-

climatology community is reviewed.

2.1 Data Issues in Antarctica

Here we consider the issues in relation to studying Antarctica’s climate in various

forms, as well as ice sheet mass change.
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A major issue when it comes to modelling the Antarctic climate is the short time-
scale of data. Measurements were not collected until the 1950s when stations were
set up on the continent; data that spanned the entire landmass were not available
until satellites were launched in 1979. At least 30 years of data are required to under-
stand a climate, although a longer record is required if the climate is going through
a period of rapid change (Notz, 2015). Having such a short record in Antarctica
makes it incredibly difficult to detect changes in the region and understand what
effect climate change is having on the continent. With barely forty years of climate
data, it is difficult to characterise the natural variability of Antarctica, or to sig-
nificantly recognise an anthropogenic contribution (Jones et al., 2016). With such
little information available, climatologists cannot draw accurate conclusions on any
potential changes in the region; this lack of observations means the Antarctic climate

is the least understood on Earth (Fogt et al., 2016).

The lack of observations in the region is especially problematic as even more data
is needed for Antarctica compared to other regions due its large natural climatic
variability. Trends often cannot be definitively attributed to any external forcing, as
changes in the climate can still be shown to be within the expected range of internal
variability. Natural variability is also difficult to estimate with such a short record.
This means that until recently it was not possible to detect any effect that climate
change may be having on the region. The analysis conducted by Abram et al.| (2013))
of ice melt on the Antarctic Peninsula concluded that although there was warming
across the continent throughout the last century, it was “not unprecedented in the
context of natural climate variability” [pg. 409]. Similarly, Turner et al.| (2016]) found
that changes in the continents climate could not be associated with global climate

change, but rather reflect the extreme natural internal variability of the region. More
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recently, |Clem et al.| (2020)) concluded that the affects of anthropogenic warming over

Antarctica has been obscured by decadal variability throughout this century.

Antarctica, at 14 million km?, is twice as large as Australia. Studies at research
stations are conducted at single locations and therefore cannot represent the condi-
tions of the whole continent. This is apparent when analysing a specific time period.
Regions will display leads and lags in a trend; the period, for instance, of maximum
ice coverage or minimum temperature will not be the same for the whole of the land
mass (Haywood et al., 2016|). When observed as a whole therefore, any warming ef-
fects often average out as some regions experience changes that others do not. There
is clear evidence of warming in the AP; Schneider et al| (2006) showed that some
of the strongest warming on the planet during the last half century occurred there.
However, they concluded that it was difficult to give any context to this change due
to the short instrumental records. Turner et al. (2016) also found an absence of
significant warming in the last two decades due to the extreme natural variability,
although the more recent work of Screen et al. (2018) did state that human influence
was detectable in the region. It is clear that more data must be incorporated some-
how into models in order to learn more about the changes in climate and to assess

whether they are outside of natural variability.

Our interest lies in the changes in ice sheet mass. A motivation for looking at past
time periods is to better understand changes in the present day ice sheets. [IMBIE
(2018) have found a cumulative mass change in the ice sheets between 1992 and
2017, although they recognise these estimates become more uncertain as the area

of each ice sheet region increases. Although WAIS and AP definitely decreased in
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size during this period by —159 4= 26 Gt yr~! and —20 & 15 Gt yr~! respectively,
their study concluded that the mass change of the EAIS was 5 + 46 Gt yr~!. This
large uncertainty shows how difficult it is to accurately model the AIS. Studies of
recent mass change such as this one are conducted through the use of satellites and
short term data; when past ice sheet shapes are measured, we are reliant on other

methods.

There are numerous issues with the data collected so far in Antarctica. The size of
the continent as well as the large variability in its climate means we require more
data than other parts of the globe in order to accurately model it. The short record

of data available means this is difficult to do.

2.1.1 Past Ice Sheet Shapes

Extensive work has already been done reconstructing past ice sheet shapes or other
climate variables with the use of climate models (Holloway et al., 2016|). The methods
of both Werner et al.| (2018) and Domingo et al.| (2020) are similar to our own,
using previous reconstructions, GCMs and proxy data to reduce uncertainty around
ice sheets at two different time periods. These papers highlight the importance of
better understanding past changes in global ice sheets, and demonstrate the role that
statisticians can play in this research area; we believe we can build on these methods
by incorporating expert judgement, and taking a more detailed approach to building

a prior model.
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As discussed in Malmierca-Vallet et al.| (2018), understanding how ice sheets respond
to changes in climate is fundamental to predicting more accurately how high latitudes
will react to increases in greenhouse gases. These regions often act as amplifiers, with
the poles experiencing some of the clearest evidence of global warming. Extensive
modelling of past ice sheets shapes is critical to improve predictions of global sea

level rise, as the change in ice sheet volume is directly linked to sea level changes.

The LGM is of particular interest due to the uncertainty around the ice sheet shapes
during this period, causing an issue of “missing ice”. |Simms et al.| (2019)) studied the
LGM sea-level budget, as current estimates of sea-level rise after the LGM are not
balanced by the amount of ice believed to have melted since then. They found that
this amounts to a shortfall of 15.6 £ 9.6m of global sea-level rise. It would seem that
the contributions of one or more ice sheets has been underestimated; as the extent of
the AIS is relatively unconstrained during this time period, this is historically where
the missing ice is believed to have been. Reducing uncertainty around the WAIS and
EAIS at this time period is therefore of great relevance; if the AIS has lost more ice
mass than scientists have previously predicted up to the present day, this may mean

it is more responsive to changes in the climate.

As described in [Whitehouse et al.| (2012), several LGM reconstructions have been
published, all with a large range in amplitude and distribution of ice mass. This
variation between reconstructions is due to the range of methods and data used
to constrain the models, and suggests that the errors in the models are large. An
overview of the methods used to build the collected published reconstructions we

use in our research can be found in Chapter [3] This thesis develops a Bayesian
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approach that models this uncertainty, highlighting where the reconstructions agree
and disagree with one another, give us an opportunity to reduce this uncertainty,
and use the prior knowledge offered by existing reconstructions to better constrain

estimates of the AIS.

Previous reconstructions of the AIS can vary greatly. Given the importance in un-
derstanding the ice sheets at the LGM in the context of present day and future sea
level rise, it is important that the uncertainties within and between existing ice sheet
reconstructions are better understood, and a better understanding of the AIS at the

LGM is obtained.

2.2 Reconstructing Climates with Proxy Data

As discussed in Section [2.1.1] past ice sheet reconstructions are built with a com-
bination of proxy data and climate models, and they play an important role in our
own methodology. We are reliant on the use of proxy data in order to model differ-
ent parts of Antarctica’s climate before observational data is available, both for the

previous centuries and much longer time periods.

There have been many calls for the incorporation of proxy data into climate models
over Antarctica; this would help solve the issue of a lack of data as well as providing
information about past climates when the environment was similar to current or near-

future conditions. |Jones et al.| (2016]) believed that the use of such data would help to
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progress understanding of the Antarctic climate, as well as improve proxy modelling
such as with water isotopes. The use of water isotopes in palaeo-climatology research
is discussed in more detail in Section [2.2.1] The use of samples such as ice cores,
moss banks and tree rings in modelling is becoming more common, having been used
by |Abram et al.| (2013)), Thomas et al. (2009) and Schneider et al.| (2006 amongst

others in order to model past Antarctic climate systems.

The use of proxy data sources allows us to learn more about past conditions, such as
surface air temperature. Examples of this for the recent past includes /Abram et al.
(2013)), who used deuterium isotopes (6D, one of the two stable isotopes of hydrogen;
isotopes are defined more fully in Section as a proxy for mean annual tem-
perature to reconstruct snow melt during the twentieth century, and concluded that
warming is now present over the West Antarctic Ice Sheet. |Schneider et al.| (2006)
also used 6D, as well as oxygen-18 (§'80) ice core records, to reconstruct the mean
surface temperature over Antarctica. They support the use of proxy data, stating
that because the physical processes underpinning their variability is well understood,
there is a strong advantage for using isotopic records. By normalising the records to
cover 1800-1983, combining the ice cores by a weighted average and calibrating the

reconstruction they found proof of long-term warming over the continent.

Whether warming is present solely in small regions has also been studied with the
use of proxy data. Thomas et al| (2009) used a 150 year isotope record as a proxy
for temperature and found that the warming reported by Schneider et al. (2006) was
not a local phenomenon, but was part of a warming trend over the whole region

going back to 1900, and that these trends are stronger than the range of natural
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variability. [Thomas et al.| (2013) went further and created a 308-year record 1702-
2010 of climate variability in West Antarctica using 0D from an ice core drilled on the
West Antarctic coast. Although they found statistically significant warming in the
area since 1957, they also discovered similar warming and cooling trends throughout
the record. They found that warming had not yet left the natural range of climate

variability for the region.

The papers above have focused on reconstructing the timelines of past centuries using
proxy data. |Cuffey et al.| (2016), [Holloway et al. (2016 and D’Andrilli et al.| (2017)
all used proxy data to create records of Antarctic climate over much longer time
periods, going back to the LGM. |Cuffey et al. (2016)) reconstructed the temperature
history over West Antarctica from the LGM to present day using water isotopes
and temperature readings in boreholes. They commented that understanding the
transition from glacial to interglacial is important, as it allows us to learn how forcings
such as a rise in atmospheric CO, effects the climate. |D’Andrilli et al.| (2017)) created
a record of organic matter from a West Antarctic ice core dating back to the LGM.
This allowed them to improve their understanding of the influence that organisms
have on climate change. Although focusing on different aspects of climate, they all
show the importance of such data to provide information on the nature of Antarctica
through time. Without the use of these data sources, we would know little about

how the AIS responds to glacial and interglacial periods.

These papers all showcase the benefits of incorporating proxy records in to the eval-
uation of the Antarctic climate. We can extend climate records and compare recent

warming with past trends, yet these papers show that having more data is not all
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that is needed; the way the data is used is also important. Although proxy data and
models have been brought together through data assimilation, that is not the point
of this thesis. We instead wish to use a novel Bayesian approach that will combine

proxy data and climate models to better model the ice sheets.

2.2.1 The Use of Water Isotopes in Palaeo-climate Recon-

struction

As mentioned in [I.1], we will be making use of proxy data in the form of stable water
isotopes found in ice cores. Water isotopes have long been viewed as an essential
tool for palaeo-climate research. As stated in Haywood et al.| (2016), they have been
used to estimate palaecotemperatures and consequently ice volume, and have become

the “multitool of palaeoceanographic inquest” |pg. 4.

Jouzel et al| (2013) explains in detail the way water isotopes are used in climatology
and what we can learn from them. Water is mostly formed of H,'O, with tiny
amounts being isotopic molecules Hy'*O, Hy'"O and HD!*O. The distribution of
these molecules varies both spatially and temporally in the atmosphere depending
on climatological parameters. Most notably there is a “linear relationship between
annual values of D and 680 and the annual mean temperature ... at middle and

high latitudes” [pg. 7469], where

6 = (Rsampte — Rsavow )/ Rsarow
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with Rsampie and Rgaprow the isotopic ratios of the sample and the Vienna Standard
Mean Ocean Water. 6D and 6'80 are also linearly related to each other along the
Meteoric Water Line (MWL, the relationship between hydrogen and oxygen isotope
ratio in water). We use the paper Sime et al. (2009) to define the “deuterium excess

parameter”, or d-excess, as d = 6D - 7.85 x 00, which is sensitive to differences

between data and the MWL.

This formula has been used to reconstruct past climates from water archives. In
Antarctica and Greenland, §D and §'80 have been measured to calculate temperature
change at the drilling site (Jouzel et al., |2013). Comparison with d-excess has then
allowed a reconstruction of conditions at the ocean surface. More recently 7O-

excess has been developed, providing new information about oceanic sources due to

differences between 670 and §'80 (Landais et al., [2008)).

As shown here, water isotopes can play a key part in ice sheet reconstruction.
Through their use, we can look back further than observational data would allow,
and estimate how the ice sheets have transitioned from glacial to interglacial peri-
ods. However, there must be careful consideration to ensure the data are used as

effectively as possible. Further details of the ice cores we use in this work are given

in Section (.2l
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2.3 Bayesian methods in palaeo-climatology

Work has already been done on learning about past ice sheet shapes through sta-
tistical analysis. The work of |Chang et al.| (2016b)), Chang et al. (2016a)), Chang
et al.| (2014a) and |Chang et al| (2014b) are good examples of the techniques used.
In Chang et al.| (2016b)), the most recent paper, they generate projections of the
change in ice volume in the West Antarctic Ice Sheet (WAIS) using both modern-
and palaeo-observations. Here we use the word observations in the statistical sense,
not geographical. Throughout this thesis, ice core data will be referred to as observa-
tions despite them not adhering to the geographic definition in order to differentiate

it from any synthetic data either from HadCM3 or simulated ourselves.

Chang et al.| (2016b)) encourage the use of a combination of proxy and observational
data; the use of solely modern observations may not lead to well-constrained pro-
jections, as they lack information on long-term parameters. Data that only covers
the last 60 years or so will not accurately estimate the parameters in climate models
that represent any long-term changes or trends; palaeo-data is clearly needed for
this purpose. As they go on to say, “studies using heuristic approaches suggest that
utilising information from palaco-data can reduce uncertainties in these long-term
behaviour related parameters” [pg. 3|. Through a use of emulation and calibration,

their results are less uncertain than those using solely modern data.

Their method consists of two steps: emulation and calibration. They use the PSU3D-

ICE model, run with 625 different settings for the four parameters of interest, with
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each model simulation starting at 40Ka BP and spun up to 5,000 years in to the
future. Due to computational and inferential challenges, the dimensions of model
output are reduced through PCA. A Gaussian process emulator is constructed for
each principal component to be used, giving an approximation to this model output.
Information from these emulators is then combined with observations to infer input
parameters for the model. A simulated example shows that this method can recover
true parameters with little uncertainty, and provides information on parameter in-
teractions. Projections are also constrained better when using real data, with the

probability of unrealistic events occurring reduced.

There are some caveats to this method which the authors recognise. The atmospheric
conditions used are very simple, assuming a linear increase in temperature over 150
years before remaining constant. More detailed scenarios need to be considered for
warming, and the grid size used is also very coarse. They conclude that further work
should focus on reducing the size of the latitude and longitude cells, although this

will make the emulation runs more expensive.

The work in [Domingo et al.| (2020) gives even more motivation for our work. Using
a similar approach to us, they used PCA to reduce a set of reconstructions to com-
ponents describing the Greenland Ice Sheet during the Last Interglacial. A set of
orographies were submitted as part of a set of simulations in HadCM3, and emula-
tion and history matching were used to identify orographies that match proxy data
observations. Their results show that this method of data-model comparison has
great potential, although it also shows the importance of well-constrained ice core

records.
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As computational power has increased, statistical methods have become more appli-
cable for palaeo-climatology. Starting with Parnell (2005) and Kopp et al.| (2009),
Gaussian processes have become a useful tool when analysing climates in past time
periods. A detailed description of GP emulators is given in Chapter 5] By focusing
on the LGM, a more recent time period, we build on the work of Domingo et al.
(2020) by demonstrating this data-model comparison method when more ice core
records are available. The breadth of time that the LGM took place in means the
dating errors in these ice cores are relatively low and hopefully will result in a reduced

uncertainty around the AIS shape.

2.4 Summary of chapter

Understanding the past size and shape of the Antarctic ice sheets is imperative to
understand how they will respond to future warm climates. The LGM is an important
time period to study due to the uncertainty around global ice sheets and the “missing
ice” problem. By reducing uncertainty around the AIS during this period and giving
more certain estimations of where this missing ice may have been, we can better
constrain the contribution Antarctica has made to rising sea levels up to present

day.

The literature shows a clear need to incorporate more proxy data into climate mod-
elling. It also shows that the application of statistical techniques already widely
used in other areas could allow us to learn more from the data than current meth-

ods are capable of. With the increasingly recognised need for the incorporation of
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more advanced statistical techniques in palaeo-climatology, interdisciplinary research
is slowly becoming the norm. We aim to show that a thorough and informed way of

combining Bayesian methodology, climate modelling and proxy data is possible.

In the next chapter, we use previous reconstructions of the AIS at the LGM to build
a statistical model describing the variations between these reconstructions. This will
model our prior beliefs of the AIS, showing which parts of the ice sheet reconstruction

are most uncertain, and will be the first stage of our Bayesian framework.
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Chapter 3

Building The Prior Model

We wish to create a prior model of the shape of the Antarctic ice sheets at the
LGM. This will be a statistical model that outputs synthetic ice sheet shapes, with
no physical laws underlying it. A sample of these shapes will be chosen through
consultation with experts and run through HadCM3 to provide us with estimated

water isotope ratio values.

To ensure our prior model is as informative as possible, we incorporate expert knowl-
edge about the ice sheets at the LGM. We conducted a literature review to collect
reconstructions of the ice sheets. This led to a set of forty ice sheet shapes from
Peltier| (2004), Argus et al.| (2014)), Whitehouse et al. (2012), Briggs et al. (2014)),
Pollard and DeConto| (2009), |Golledge et al.| (2012)), (Golledge et al.| (2013)), Bentley

23
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et al.| (2014)) and [de Boer et al.| (2017), which will be used to create a prior distribu-
tion over the space of possible shapes. We can use these shapes to describe a vector
space of possible shapes. The sum of two vectors in the space of shapes, and the

multiplication of a vector by a scalar, remains in this vector space.

We want to keep the number of variables in our prior distribution to as few as
possible; using the collected reconstructions in their original form is unwise as a
model with forty variables would be too computationally expensive. We also want
to have variables that are orthogonal to each other, so that they describe different
directions of the vector space. As many of these ice sheet reconstructions are made
using the same data and models, they are not uncorrelated and must be transformed.

We wish to do this whilst retaining as much information, or variance, as possible.

From a statistical viewpoint, our method is as follows: we wish to find a shape
y € RY*73_ where

yij = height at latitude;, longitude;.

R which is the dimensions of the HadCM3 latitude/longitude grid, is a vector
space. The ice sheet shapes live within a subspace S. We use the reconstructions

from the literature to define

S = span{ Xy, ..., X4}

where X; is a matrix describing the ice sheet reconstruction. dim(S) = 40, mean-

ing we would need forty coordinates to describe a shape in S. This is too many
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dimensions, so we aim to find a compact way to describe shapes in S, i.e. find S s.t.
S = span{a,...,a;} for some k < 40, such that S~ 8.

To find these basis vectors a;, we use principal component analysis (Jolliffe, [1986)).

There are some drawbacks to the method. By defining the space our prior model will
lie in by the collection of ice sheet reconstructions, we are discarding any ice sheet
shapes that lie outside of this space. We are therefore reliant on these reconstructions
being plausible estimates of the ice sheets at the LGM, and anything they do not

describe being implausible.

In this chapter, we use a variation on principal component analysis to build a prior
model of the Antarctic Ice Sheets at the LGM. We discuss the various methods
considered, and the checks used to decide on the number of variables to be included

in our model.

3.1 Principal Component Analysis

Principal component analysis (PCA) provides us with a statistical transformation of
multivariate data. Given a data set with n observations of p variables it finds a new
set of n uncorrelated observations in the new variables, the principal components.

These describe the variation in the data ordered by how much of this variation they
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describe; the first principal component describes the direction of the largest amount
of variation, the second principal component describes the direction of the second
largest amount and so on. The first k£ < p principal components are then chosen to
represent the data, allowing us to reduce the number of dimensions whilst discarding

a minimal amount of variation.

Here, our data is in the form of forty 96 x 73 matrices, which is the dimensions of the
HadCM3 latitude/longitude grid; each grid cell represents an area of 3.75° x 2.5°.
We reshape the ice sheet shapes into a single matrix of dimension 7008 x 40 and treat
the 7008 latitude/longitude grid cells as “observations” in each of the forty ice sheet

reconstructions, which are our “variables”. We therefore have n = 7008 and p = 40.

In algebraic terms the process is: given our data set
X = [X, ..., Xy] € R7008x40

with row mean p € R™%, which we remove before performing the analysis to centre

the data, empirical covariance matrix for all forty shapes
S0 = XXT € R7008X7008

where
1

X=X- (EXl)lT
is the centred matrix, and X; = (21, ..., Ti7008), Wwe want to find a set of vectors
ai, € R™%8 such that
Y =ATX, A=(a,.. a;) (1)
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where Y € R¥*%0 is a matrix of independent, uncorrelated vectors describing X.

Geometrically, Y = af X is the projection of X on to a new basis described by ay.
Values of Y give the coordinates of each observation along the set of vectors ay,

where aj, are the principal components.

3.1.1 The first principal component

The first principal component is defined to be the vector a; € R where the
projection al X, for some single random vector X, has maximal variance subject to

the normalising constraint afa; = 1. We therefore wish to maximise
Var(alTX) = a,lTZ40a1. (2)

We use a Lagrange multiplier to find the maximum value of this, taking into account
the normalising constraint. A Lagrange multiplier is a method of finding the local
minima and maxima of a function, f(xz), for some variable x and given a set of
constraints, g(x) = 0. Assuming the function and constraints all have continuous

first derivatives, a Lagrange multiplier A is introduced giving a Lagrange function:

L(x) = f(x) — Ag(x).
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A stationary point of the Lagrange function is then found through differentiation.

The function we wish to maximise when performing PCA is
L(a,) = alYya, — Mala, —1).

We need to maximise L with respect to a; and A. Differentiating with respect to A

and setting the result to zero gives
ala, —1=0

which is the normalising constraint. Differentiating with respect to a; gives

oL
_— = 22400,1 — 2)\0/1
8&1

Setting this to 0, we find

(240 — )J)al =0= 240011 = )\al.

A is therefore an eigenvalue of ¥49. Y40 is a 7008 x 7008 covariance matrix and has
39 eigenvalues A1, Ao, ..., A3, having lost a degree of freedom due to centring the
data, all of which are non-negative as Y4 is positive semidefinite. Assuming the

eigenvalues are distinct, we have A\ > Ay > ... > A39 > 0.
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Returning to Equation [2, we have

Var(a X) = al Y a,
=al\la,

=\

As we want to maximise Var(a! X), we choose A to be \;, the largest eigenvalue of

Y40. Therefore, a, is the eigenvector corresponding to the largest eigenvalue.

3.1.2 The second principal component

The second principal component, as, is also found using a Lagrange multiplier with

the additional constraint that X” a, be uncorrelated with X7 a;. This means setting
052400,1 =0

However, since Y40a; = A\ja; we can instead use the constraint agal = 0. This

means that as and a; should be orthogonal.

This requires two Lagrange multipliers, giving us
L(as) = a3 Syas — Majas — 1) — aaja.

Differentiating with respect to the Lagrange multipliers and a, then gives

oL

a:()iagaq:l,
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oL
9 0= aya, =0
and
oL
— =0=2Yy0ay — 2)\ay — aa; = 0. (3)
8@2

Premultiplying by a?, this becomes
2a’ Y a; — 2)alay — aala, = 0. (4)
alYa, = alYyay, since Yy is a real symmetric matrix. This means
ar{24002 = a§E4ga1 = ag)\a,l = )\agal =0,

as ap is an eigenvector of 4. Thus the first component of Equation (3| is zero.
The second component also equals zero due to the constraint that a; and as be
orthogonal to each other. As a’a; = 1 we find that @ = 0. Equation [3| therefore
becomes (340— Al )as = 0, S0 as is the eigenvector with the second largest eigenvalue,

2.

Continuing this method, we find that the 5" principal component is the eigenvector

corresponding to the j* largest eigenvalue.

3.2 Reconstruction Errors

Once we have decided on a set of principal components, it is important that they

accurately represent the original data. We check this by reconstructing the data



3.3. PERFORMING PCA ON ICE SHEET RECONSTRUCTIONS 31

using the new projection Y found with Equation [I} This is done by calculating
AY + =X,

where A is the matrix of k eigenvectors a; and X is the reconstruction of X. To

check the accuracy of X = [X1, ..., X,,], the root mean square error is found with

Using all of the principal components would give a value of 0, as no information has
been discarded. If some of the components have been discarded, we try to keep R

as small as possible subject to k£ not being too large.

3.3 Performing PCA on Ice Sheet Reconstructions

We try two methods to create a prior model using the collected ice sheet reconstruc-
tions. For Method 1, we perform PCA on all forty shapes together and form the prior
model out of subsets of these principal components. We build a linear model using
the first four, five and six of the principal components, discarding 13.98%, 9.70% and
3.98% of the variation respectively. A screeplot of the forty principal components is
in Figure 3.1} we can see that after the first six, the amount of variance each compo-
nent represents becomes negligible. The other thirty-four principal components are

not used; we treat them as if they represent noise in the data. We are limited in how
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Figure 3.1: A screeplot of the eigenvalues of the principal components from method
1, showing the decrease in the amount of variance each component represents. After
the sixth, the amount of variance each subsequent component represents is negligible.

many principal components we can use by the number of simulations we will be able
to run in HadCM3; using the rule of needing to run ten simulations for each variable
in the model if using a GP emulator (Loeppky et al., |2009), we cannot have more

than six in our prior model.

However, not all reconstructions are equally widely used by the climatology commu-
nity. The first four ice sheet shapes we collected are data-based reconstructions and

widely favoured by the palaco-climatology community when running climate models.
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These are ICE5G (Peltier], 2004), ICE6G (Argus et al) 2014), W12A (Whitehouse
et al} [2012) and GLAC-1D (Briggs et all, [2014); plots of them can be seen in Figure

and an overview of the methods used to build them can be seen in Table[3.1l The
other thirty six shapes come from ice sheet model output. These are
DeContol (2009), (Golledge et al.| (2012), Golledge et al.| (2013), Bentley et al.| (2014)
and |de Boer et al,| (2017); they are plotted in Figure and summarised in Table
32l When these come from the same model, particularly in |de Boer et al] (2017),

the resulting shapes will be strongly related to one another. Given this we want
to explore approaches that ensure they do not carry the same weight as the other
shapes. PCA describes variation in the data, but we want to prioritise the variation
described by ICE5G, ICE6G, W12A and GLAC-1D. If we use all forty together, then
they are treated equally. We calculated the RMSE with reconstructions of the forty
collected ice sheet shapes; the values can be seen in Tables [3.3] and Whilst
this method gives low reconstruction errors, some of the largest errors are for the four
shapes that we wish to have most influence on the prior model. We therefore want
to find a method of constructing basis vectors that would emphasise these shapes

compared to the other thirty-six ice sheet reconstructions.
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(a) Ice sheet reconstruction ICE5G from (b) Ice sheet reconstruction ICE6G from
(2004). ‘Argus et al| (2014).
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(c) Ice sheet reconstruction W12A from (d) Ice sheet reconstruction GLAC-1D
‘Whitehouse et al.| (2012). from Briggs et al.| (2014).

Figure 3.2: The first four ice sheet reconstructions from |[Peltier (2004)), Argus et al.|
(2014)), Whitehouse et al| (2012) and Briggs et al. (2014).




Methodology Resolution |Domain |References
ICE-5G  |Refinement of ICE-4G. Coral histories in Barbados|3.75° x 2.5° | Global Peltier| (2004)
used to construct relative sea level history, then tuned
with other data from the west Pacific. Ice sheet thick-
ness inferred from glacial isostasy with mathematical
models.
ICE-6G | Adjusted ICE-5G with new GPS observations and ice|1° x 1° Global Argus et al
core records. Ice loss removed from East Antarctica (2014)
due to lack of constraints on plateau.
WI12A Combined proxy data with a mathematical ice sheet |0.5° x 0.5° | Antarctica|[Whitehouse
model. Boundary conditions found using proxy data (below et al.|(2012)
or models. Regions with little or no data estimated 60°)
by relating to areas with many observations.
GLAC-1D |Glacial systems model (GSM) used to build a re-|1° x 0.5° |Global Briggs et al.

construction. The GSM was run, providing a data
ensemble, which was then constrained with observa-
tional data and filtered to rule out unlikely results.

(2014)

Table 3.1: A summary of four of the ice sheet reconstructions to be used in this project.
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(g) Ice sheet reconstruction from (h) Ice sheet reconstruction from
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et al.| (2017). et al.| (2017).
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Figure 3.3: The thirty-six ice sheet reconstructions used to create the second set of
principal components. These are from [Pollard and DeConto (2009), Golledge et al.|
(2012), |Golledge et al. (2013), Bentley et al.| (2014) and |de Boer et al. (2017).




Methodology Resolution Domain References

Combined ice sheet/ice shelf | 40km x 40km Antarctica (below 55°) Pollard and DeConto
model with new treatment of (2009)

grounding-line dynamics and ice-

shelf butressing

Numerical ice-sheet model, using | 50km x 50km Antarctica (below 56°) Golledge et al.|(2012)

terrestrial and marine geological
data for constraints

Combine interpretations of ice
sheet model results with geolog-
ical data

100km x 100km

Antarctica (below 55°)

Golledge et al.|(2013)

Synthesis of geological and glacio-
logical datasets to determine po-
sition of grounding-line and ice
sheet upper surface

150km x 150km

Antarctica (below 55°)

Bentley et al.| (2014)

Climate model snapshots forced
with different orbital forcing sce-
narios

400km x 400km

Antarctica (below 54°)

de Boer et al.|(2017)

Table 3.2: A summary of the thirty-six “other” ice sheet reconstructions to be used in this project.

SNOLLONHLSNODHY LHHHS HOI NO VOd ONINHOAHHd €€

ey



44 CHAPTER 3. BUILDING THE PRIOR MODEL

Therefore, for Method 2 we split our data into two subsets. The first subset contains
the four ice sheet shapes that we wish to be most influential on our prior model. The
second set contains the other thirty-six shapes, whose information we will incorporate
once we have found variables from the first set. PCA is applied to the first subset
of ice sheet shapes to keep the reconstruction errors as small as possible. This gives
four principal components that represent 50.45%, 34.48%, 9.23% and 5.84% of the
variation in those data alone. The last of these is discarded, as it only represents a
small proportion of the data. The first three principal components, which we call
A = [ay, ay, asl, collectively contain 94.16% of the variation in these four shapes and

will be used to build the prior model.

The three principal components from this first set of ice sheet shapes are shown in
Figure The first principal component represents the contrasts between patches
in the WAIS and the rest of the continent. The second component compares the
centre of the continent with the coast and the third contrasts patches throughout

Antarctica.

We now attempt to make variables from the second set of 36 ice sheet reconstructions.
The variation of these shapes needs to be added into the prior model in the form of
at least one vector that is orthogonal to the principal components in A. We need
to take the original three principal components into account when creating further
basis vectors as we do not want to represent the same variation in the data twice in
our prior model. In Method 2, we try to find a way of performing PCA whilst taking

into account the set A.

In mathematical terms, we have three orthogonal vectors a, a, and a; € R™%, the
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(a) The first principal component of the (b) The second principal component of
subset of four ice sheet shapes. the subset of four ice sheet shapes.
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(c) The third principal component of the subset of four ice sheet shapes.

Figure 3.4: The first three principal components for the subset of four ice sheet
shapes as defined by |[Peltier| (2004)), |Argus et al. (2014)), Whitehouse et al,| (2012)
and Briggs et al.| (2014). These components are the first three basis vectors for our
prior model.
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principal components from the first four ice sheet reconstructions, and a data set
X3 € R™98X36 containing the other thirty-six ice sheet reconstructions. We wish to

find a vector, a4, that describes the variation in X34 such that
as L aj,a;, a3

and maximises the variance of the projection al X3s. We therefore want to choose

R?OOBX 7008

a, that maximises Var(al X35) = al Y35a4, where Mzg € is the empirical

covariance matrix of Xsg, with the constraint that ala, = ala, = alas; = 0. We
add in a normalising constraint, alas = 1 and try the Lagrange function again to

find a,. We now wish to maximise the function
L(ay) = afzgﬁa4 — )x(a4Ta4 —-1)— aa4Ta1 — ﬁafag — 7a4Ta3.

Differentiating with respect to the Lagrange multipliers A\, «, § and ~ gives the

constraints. Differentiating with respect to a4 gives

oL

— = 22360'4 — 2)\0,4 —oaa; — ﬁag — yas.
0a4

We wish to find the value of a, for which this is equal to zero. We also want to find

the values of the Lagrange multipliers. By premultiplying by af, we find
2a1T236a4 - 2)\aipa4 - aafal - 5a{a2 - 'yaipag =0.

Unlike when performing PCA, the first component is not equal to zero as a; is not
an eigenvector of ¥35. We therefore have a = 2alYs¢a,. By similarly premultiplying

by af, al and al we find that 8 = 2al¥s5a4, v = 2al Ts6ay and A = 2al Sseay.
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This gives us the equation
T T T T
2360'4 —ay 2360’40'4 — a; 2360’40'1 — Qy 2360’40'2 — Qg 2360’40'3 = O, (5)

which we must solve for ay.

3.3.1 The Newton-Raphson Method

We now need to find the value of a4 for which Equation [5| holds. We first try this
using the Newton-Raphson method, which finds successively better approximations
to the roots of a vector-valued function, & : f(x) = 0 for some variable . The
method starts with the function f, its derivative Vf € RP*? if dim f(x) = p, and

an initial estimate xy. The better approximation, x;, is found with

@y =z — (Vf(mo)) " o).

This process is repeated as

Lpt1 = Lp — (Vf(wn>)71f(wn)

until a root has been found.



48 CHAPTER 3. BUILDING THE PRIOR MODEL

A 3-D toy example

To show how the Newton-Raphson method works, we use a 3-D toy example. We

have a variance matrix

3 0 0
X1=10 01 0
0 0 0.1

whose first eigenvector is
al = (1 0 0).

We wish to find a new vector, ay from our second variance matrix

21 0
Yo=1|1 2 0
0 0 0.1

that is orthogonal to a; and maximises agZQag. The first eigenvalue of ¥, is
(1,1,0)T, which is not orthogonal to a;. We therefore use Newton-Raphson to find

the vector that solves
EQGQ — agEQGQG;Q — 0?220204 =0.
We find the derivative of this:

2[22 — 2(220,2)0,5 — (0,31220,2)[ — (Egal)a{]
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and run the function

an = Qp_1 — (vf(an—l))_lf(an—l)

a hundred times. This gives a new vector

a2T=(0 1 0),

which is the y-axis. This is the direction we would expect ay to take, as a; is the

xr-axis and Xy has nearly all variation in the x and y directions.

Applying to our own data

We now try this method on our own data. In order to find the derivative of Equa-
tion [5, we use the summation convention (Einstein, [1916). When an index variable
appears twice in a single term and is a free variable, it implies summation of that

term over all the values of the index. This means that

n

Y= g CiL; = C1T1 + Coxg + ... + Ccprxy,
i=1

can be simplified to

Yy = CT;.
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We differentiate each component of 88—(54 = f(a4) individually with respect to a4. The

derivative of the first component of Equation [5|is

9(236,ij@45)
SO — S i30m = Sasim:
where
1 if j=m,
5jm — j
0 if j#m.

The derivative of the second component is

a(Cl4lc Z36,kj a'4ja'4i)
(9a4m

= Ol 236,k @4 Qi + Q423361 OmjQai ~+ Q23361 Ba0im,
= 336,m; Q4 Qi + Qa; 236 fem Qi + Qak 236 k; @a; Oinny -
The derivative of the third component is

3(01k236,kja4j01i)
aa'4m

= a1k236,kj5jmali
= a1k236,kmali-

We get similar results for the last two components, Sas and yas. Putting these

components together we get:

Vf(a,4) = 2236 — 2[(03;23604)1 — (2360’4)03; + (a4TX336)Ta4T] — 2(011236)110/2111
— 2(a2236)Tag — 2(a3236)Ta§
= 2[236 — 2(2360'4)03; — (CLZEgGChL)I) — (Egﬁal)a? — (2360’2)0'5 — (2360/3)0,?;].
(6)
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However, when we try to use the Newton-Raphson method on Equations 5] and [6] it
proves too computationally expensive to find the inverse of V f(ay) € R78x7008 qye
to the size of our data set. We therefore try another method to find V f(a4)™!, so

that we can run the Newton-Raphson method.

3.3.2 The LU Decomposition

The LU decomposition factors a matrix into a lower triangular matrix, L, and an
upper triangular matrix, U. It is then easy to find the inverse of the matrix. Set
Z =V f(a4), the matrix to be decomposed, and z = (V f(a4))~", the inverse we wish

to calculate. Performing the LU decomposition gives
LU = Z,

SO
Zz=LUz=LUz) =1,

where I is the n x n identity matrix. We have n? equations; to solve these, we use

forward and back substitution. Starting with

Ly =1,

where y = Uz, we can use forward substitution to find

1

ylzma
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i—1
1

bi=1- [1 - Zlijyj}
(23 jzl

for i = 2,...,n. We can then solve

Uz=y
for x using back substitution. This gives

Yn

Zpn = )
Unn

Zi = ul |:yz - Z uijzj:|

j=it+1
for i = n—1,...,1. We can now try the Newton-Raphson method, replacing (V f(a4)) !
with z. However, trying this proves again to be too computationally expensive due

to the size of our dataset.

A 3-D toy example

Applying the LU decomposition to the 3-D example, we find the upper and lower

triangular matrices of V f(ayg), where al = (1,0,0), are

130 -12 0 0
L=fo 10 U= 2 F 0
00 1 0 0 -38
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We can then use the R commands “forwardsolve" and “backsolve" to find the inverse.
This gives
0 0.5 0
—0.25 —1.5 0
0 0 —0.2632

We can check this is accurate as finding the inverse in this example is computationally

very cheap. Using the “solve" command, we find

0 0.5 0
(Vf(ag) ™ =|-025 —15 0
0 0 —0.2632

Using the newly found z instead of (V f(ag))™!, we run the Newton-Raphson func-

tion. Again, we find the new vector is al = (0,1,0).

3.3.3 The nullspace method

The Newton-Raphson method has proved too computationally expensive because of
the size of our dataset. We therefore need to find a different way of finding basis vec-
tors other than solving Equation [5] The optimisation problem that we wish to solve
is a quadratically constrained quadratic program (QCQP), an optimisation problem
where both the objective function and the constraints are quadratic functions. These
have the form

minimize fy(z)
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for some variable x, subject to f;(x) <0 foralli=1,...m

where f; : R” — R has the form
fi(z) =" P4 ¢l x + ;.

This is simple to solve if Py is positive semi-definite (Basu et al., 2017). However,
our function is defined as

minimize — a4X3Q4

subject to

ala,=1, ala;,=0, i=123.

Our problem is non-convex as Fj, in this case is negative semi-definite, and it is
therefore not trivial to solve. An added difficulty is the size of our data set, which
means we want to avoid doing too much numerical work. However, we can solve the

problem by considering the vector space that A describes.

The condition ATa, = 0 is equivalent to saying a4 € null(AT) = B, where B is the
nullspace of A. The nullspace is the set of all vectors v which satisfies ATv = 0,
forming a subset of R”. We can write any inner product space as the direct sum of
the nullspace of a linear operator and its compliment. This means that we can write
R"=A® At = A® B. Thus a4 € B as ay = > w;b; = Bw where B = [by, ..., by]

for some vector w € R*. The problem then becomes:
maximise w! BT Y5 Bw

subject to w!BTBw = wlw =1,
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as

BB =1,

since the b; are orthonormal. As Y35 = X36X3T6 and BTY34B = BTXgﬁXgéB =
(XIB) X1, B, this is now our original eigenvalue problem from equation [2, We can
solve this by setting w to the eigenvectors of XX B, which we can find with the
singular value decomposition (SVD). This is the factorisation of a matrix. For anxp
matrix M, the SVD factorises it into the form UXV” where U is an orthonormal
n X n matrix, ¥ is a diagonal n x n matrix containing the eigenvalues of M, and V

is a p x n matrix. The right singular vectors, the columns of V, are eigenvectors of

M.

We perform the singular value decomposition on XZ; B and take the first three vectors
in V as w. We then multiply them by B to find the new basis vectors. These are
orthogonal to A, the matrix of the first three basis vectors, and are orthonormal.
We now have a set of six vectors: three principal components that describe the four
main ice sheet reconstructions and three basis vectors that describe the other thirty-
six shapes. However, incorporating more basis vectors into our model adds in more
dimensions for us to work in, and we only have a limited number of simulations we
can run through HadCM3 to explore this model space. We therefore must consider

how many of the new basis vectors to incorporate in to our prior model.

The three new basis vectors are plotted in Figure [3.5, The first vector describes
variation between the Eastern plateau and the rest of the continent. The second

vector represents variation between patches in the East and West and the rest of
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Antarctica. The third vector shows contrasts between the coast and a patch in the

West, with emphasis over an area next to the peninsula.

A 3-D toy example

We apply the nullspace method to our 3D example. We simulate two data sets of
multivariate normally distributed variables: X, with distribution A/(0,3;), and X,

with distribution N (0, X3). In R code, our exact steps are

Z1 = matrix(c(3, 0, 0, 0, 0.1, 0, 0, 0, 0.1), ncol=3)
datal = mvtnorm: :rmvnorm(10000, rep(0, 3), Z1)

Z2 = matrix(c(2, 1, 0, 1, 2, 0, 0, 0, 0.1), ncol=3)
data2 = mvtnorm: :rmvnorm(10000, rep(0, 3), Z2)

We know our first eigenvector of ¥ is

a1:<1 0 O)-
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We find its nullspace using the R command Null

and multiply this with X,. We use the SVD to find eigenvectors of X7, and

multiply this with the set of nullspace vectors b.

al

c(1,0,0)

bl

MASS: :Null(al)

Y = svd(data2%x*%b1) $v
a2 = b1%*%Y

Our new eigenvector is

azI(O 1 0>-

We then reconstruct our data and find the root mean square errors; these are all very
close to zero. For reference, the code to do the reconstruction and find the errors is

as follows:

A = cbind(al,a2)
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data = rbind(datal,data2)
datarecon = data%*%A%*%t (A)
rmse <- sqrt(rowMeans((data-datarecon)A\2)).

This is a problem that we have not found elsewhere, and believe we have created a

novel solution. Our approach is new, and may be of use in other areas.

3.4 Comparing two variable reduction approaches

We wish to compare the two methods we have used to find basis vectors and see which
gives the most accurate reconstruction of the forty shapes, looking in particular at
the errors for the first four shapes. We also wish to see how much the accuracy of
the methods increase when we use four, five or six basis vectors in our model, as
we want our prior model to have as few variables as possible without discarding too
much information from the data. We are limited in how many shapes from our model
we can run through the climate model HadCMS3, so we require our basis to have as
few dimensions as possible or risk not representing the entire basis with our set of

simulations.

We compare the methods by calculating the Root Mean Square Error (RMSE) of the

reconstructed shapes. We calculate the difference between ice sheet shapes and the
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(a) The first basis vector for the thirty-six (b) The second basis vector for the thirty-
model-based ice sheet shapes. six model-based ice sheet shapes.
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(c) The third basis vector for the thirty-six model-based ice sheet shapes.

Figure 3.5: The three basis vectors found for the thirty-six model-based ice sheet
shapes (Pollard and DeConto| (2009), |Golledge et al.| (2012)), |Golledge et al.| (2013),
Bentley et al| (2014) and de Boer et al. (2017)), using the null space method (see
Section 3.3). We must consider carefully how many of these to incorporate into our
prior model.

0.155
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reconstructions using the basis vectors created using the two different methods. We
also compare how much the errors decrease when using four, five or six basis vectors

for each of the two methods.

Tables[3.3] 3.4 and [3.5] show the RMSE values for the forty collected ice sheet shapes.
We wish to compare the errors for each shape, with emphasis on having smaller errors
for the subset of four ice sheet reconstructions that we consider most important in

influencing our prior model.

When four basis vectors are used, method 2 has much smaller errors for the shapes
from [Peltier| (2004), |Argus et al.| (2014)) and Whitehouse et al. (2012) than method
1. The error for Briggs et al. (2014)) is about the same for both methods. For the
other thirty-six shapes, the errors are similar between both methods apart from the
shape from |[Pollard and DeConto (2009), where method 1 has a much smaller error

than method 2.

When five basis vectors are used, the error in method 1 for Whitehouse et al.| (2012)
is now much smaller than method 2. The errors for the first two shapes remain
smaller for method 2 than method 1, and the error for the fourth shape is still
similar between both of the methods. Method 3 now gives a much smaller error for
the shape from |Pollard and DeConto| (2009), and the other thirty-five shapes have

similar error sizes.

For six basis vectors, the errors for the first four shapes are almost identical to using

five basis vectors for method 2, whilst method 1 has large decreases for three of the
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first four. Whitehouse et al.| (2012)) and Briggs et al. (2014) both now have smaller
errors for method 1 than the other method. Errors for the other thirty-six shapes are
quite varied between the two methods; Pollard and DeConto| (2009)) is almost three
times smaller in method 2 than in method 1. As there is little difference between five
and six variables for the most important shapes in method 2, it is decided that the
prior model will not include the sixth basis vector. This is due to the limited number
of simulations we can run through HadCM3; with five prior variables instead of six,

we can run fifty simulations to thoroughly test our model rather than sixty.

The average RMSE was also considered for both methods; the values can be seen in
the final rows of Tables [3.3] 3.4 and [3.5] Method 1 has the smallest mean errors;
this is to be expected, as PCA on all forty shapes would find the optimal scenario
overall. We performed the other method wanting our basis vectors to be particularly
accurate reconstructing the first four shapes, and have sacrificed accuracy for the
other shapes in order to obtain this. The average loss of accuracy is minimal, so we
decide to use the basis vectors from our second method. The errors for all methods
and all scenarios have been small; given the average height of the Antarctic ice sheet
reconstructions is around 2300m, the errors we have calculated suggest that our

variables are very accurate at reconstructing the collection of ice sheet shapes.
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Shape Method 1 | Method 2
|Peltier| 2004D 13.07 1.42
\Argus et al. (2014) 12.85 6.07
‘Whitehouse et al. (2012) 55.98 35.63
Briggs et al.| (2014) 43.23 44.21
Pollard and DeConto (2009) 40.23 62.86
Golledge et al.| (2012 24.95 23.69
Golledge et al.| (2013 21.81 23.36
Bentley et al.| (2014 35.70 38.19
de Boer et al.| (2017 7.43 8.80
de Boer et al.| (2017 6.27 6.90
de Boer et al.| (2017 8.62 8.92
de Boer et al.| (2017 9.01 9.68
de Boer et al.| (2017 6.35 6.62
de Boer et al.| (2017 9.12 9.26
de Boer et al.| (2017 8.25 8.55
de Boer et al. (2017 12.29 13.43
de Boer et al.| (2017 13.10 16.51
de Boer et al.| (2017 12.13 15.07
de Boer et al.| (2017 8.24 9.38
de Boer et al.| (2017 6.11 6.77
de Boer et al. (2017 10.66 13.14
de Boer et al.| (2017 13.30 14.67
de Boer et al.| (2017 6.19 6.26
de Boer et al.| (2017 9.31 9.51
de Boer et al.| (2017 7.65 8.93
de Boer et al.| (2017 6.34 6.98
de Boer et al.| (2017 9.24 9.47
de Boer et al.| (2017 9.64 10.43
de Boer et al.| (2017 6.73 6.87
de Boer et al.| (2017 9.23 9.38
de Boer et al.| (2017 8.46 8.81
de Boer et al.| (2017 12.25 13.42
de Boer et al.| (2017 10.07 13.01
de Boer et al.| (2017 11.89 14.86
de Boer et al.| (2017 7.99 8.85
de Boer et al.| (2017 6.07 6.62
de Boer et al. (2017 10.37 12.79
de Boer et al.| (2017 13.87 15.19
de Boer et al.| (2017 7.16 7.25
de Boer et al.| (2017 9.83 10.08
Average RMSE 13.52 14.05

Table 3.3: The RMSE for each of the forty collected ice sheet shapes when using
four basis vectors. We wish to prioritise reducing the errors for the first four shapes.



3.4. COMPARING TWO VARIABLE REDUCTION APPROACHES 63

Shape Method 1 | Method 2
|Peltier| 2004D 12.87 1.38
\Argus et al. (2014) 9.44 5.89
Whitehouse et al. (2012) 2.07 34.53
Briggs et al.| (2014) 38.75 42.85
Pollard and DeConto (2009) 24.01 18.46
Golledge et al.| (2012 24.51 22.19
Golledge et al.| (2013 21.67 23.20
Bentley et al.| (2014 34.37 33.63
de Boer et al.| (2017 7.42 8.34
de Boer et al. (2017 6.27 6.74
de Boer et al.| (2017 8.31 8.84
de Boer et al.| (2017 8.68 8.81
de Boer et al.| (2017 6.35 6.27
de Boer et al.| (2017 9.09 9.21
de Boer et al.| (2017 7.86 8.20
de Boer et al.| (2017 12.09 12.65
de Boer et al.| (2017 12.54 13.35
de Boer et al.| (2017 11.44 11.83
de Boer et al.| (2017 8.23 9.15
de Boer et al.| (2017 6.10 6.54
de Boer et al. (2017 10.28 9.71
de Boer et al.| (2017 12.63 12.09
de Boer et al.| (2017 6.15 6.29
de Boer et al.| (2017 9.29 9.43
de Boer et al.| (2017 7.64 8.56
de Boer et al. (2017 6.34 6.83
de Boer et al.| (2017 8.87 9.25
de Boer et al.| (2017 9.27 9.34
de Boer et al.| (2017 6.72 6.74
de Boer et al.| (2017 9.21 9.35
de Boer et al.| (2017 8.08 8.44
de Boer et al.| (2017 12.06 12.61
de Boer et al.| (2017 9.84 10.84
de Boer et al.| (2017 11.17 11.62
de Boer et al.| (2017 7.96 8.78
de Boer et al.| (2017 6.07 6.50
de Boer et al.| (2017 10.02 941
de Boer et al.| (2017 13.09 12.58
de Boer et al.| (2017 7.15 7.24
de Boer et al.| (2017 9.79 9.73
Average RMSE 11.34 11.93

Table 3.4: The RMSE of the forty collected ice sheet shapes when using five basis
vectors. We wish to prioritise reducing the errors for the first four shapes.
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Shape Method 1 | Method 2
|Peltier| 2004D 10.85 1.38
\Argus et al. (2014) 4.02 5.89
|Whitehouse et al.| (]2012[) 2.04 34.53
Briggs et al.| (2014) 10.73 42.85
Pollard and DeConto (2009) 18.75 6.26
Golledge et al.| (2012 19.26 22.14
Golledge et al.| (2013 21.52 23.20
Bentley et al.| (2014 32.86 22.10
de Boer et al.| (2017 7.37 7.44
de Boer et al.| (2017 5.92 6.72
de Boer et al.| (2017 8.02 8.83
de Boer et al.| (2017 7.97 8.41
de Boer et al.| (2017 5.98 6.16
de Boer et al.| (2017 8.93 8.02
de Boer et al.| (2017 7.82 6.42
de Boer et al. (2017 12.09 7.88
de Boer et al.| (2017 12.45 7.14
de Boer et al.| (2017 11.28 8.10
de Boer et al.| (2017 7.92 7.67
de Boer et al.| (2017 6.04 6.37
de Boer et al. (2017 8.98 8.66
de Boer et al.| (2017 11.51 11.82
de Boer et al.| (2017 6.02 5.87
de Boer et al.| (2017 9.01 7.99
de Boer et al.| (2017 7.53 7.69
de Boer et al.| (2017 5.97 6.79
de Boer et al.| (2017 8.30 9.25
de Boer et al.| (2017 8.43 8.81
de Boer et al.| (2017 6.56 6.55
de Boer et al.| (2017 9.07 8.09
de Boer et al.| (2017 8.05 6.51
de Boer et al.| (2017 12.06 7.92
de Boer et al.| (2017 9.84 6.59
de Boer et al.| (2017 11.05 7.87
de Boer et al.| (2017 7.56 8.11
de Boer et al.| (2017 5.98 6.39
de Boer et al. (2017 8.63 8.68
de Boer et al.| (2017 2.05 12.18
de Boer et al.| (2017 7.15 6.99
de Boer et al.| (2017 9.18 8.72
Average RMSE 9.89 10.22

Table 3.5: The RMSE of the forty collected ice sheet shapes when using six basis
vectors. We wish to prioritise reducing the errors for the first four shapes.
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3.5 Building the Prior Model

The basis vectors can now be used to build the prior model. We use a simple linear

model of the form
0 = z1a1 + nas + 23a3 + 2404 + 2505 + W,

where 8 € R™% is ice sheet shape, the a; € R are the basis vectors and p € R
is the mean ice sheet shape from the forty collected reconstructions. We need a set
of scalars, z € R%, that will control how much of each basis vector contributes to the
synthetic outputted ice sheet shapes. Using these z, we want our model to be able
to reconstruct the forty ice sheet shapes used to create the variables, as we want our
model to output sensible estimates of the size and shape of the ice sheets. As the
a; are the first ¢ columns of V| we set z to be a combination of U and ¥. However,
as we performed the SVD on the two sets of ice sheet shapes separately we need to

construct a new U ourselves. We have
X =UxvT,

where X is our set of ice sheet shapes, V' is the matrix of our five basis vectors and

Y the diagonal matrix of their corresponding eigenvalues. From this we find

US = XV = Xpro
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where X,,,,; is the data projected through V. We then have
U= X2 "

We thus set z = (X, 71).

After normalising the z;’s to lie between [—1,1], we plot histograms of them to
consider what distribution to give them. These can be seen in Figure [3.6] Although
they appear to have a peak and tails that would suggest a Gaussian distribution,
this seems less suited when we consider where the errors for the four most significant
shapes lie on the plots. The four most important shapes are outliers or spread out
uniformly for z1, 2o and z3. If we took a Gaussian distribution, then these important
ice sheet shapes would be treated as unlikely scenarios. We therefore set each of the
z;’s to a uniform distribution over [—1,1]. This would make every ice sheet shape

equally likely to occur so none of our collected shapes are disregarded.

3.6 Summary of Chapter

In this chapter, we have used a collection of ice sheet reconstructions to build a prior
model describing the variation within the Antarctic ice sheets at the LGM. By devel-
oping a new form of Principal Component Analysis that allows us to prioritise one set
of data over another, we have modified this method to better suit our requirements

and create a model that is influenced by the most widely accepted existing ice sheet
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reconstructions. The next stage of this research is to run a set of outputs from this
prior model through the general circulation model HadCM3. In the next chapter,

we describe the process of expert elicitation to decide on this set of ice sheet shapes.

There are some limitations to this approach. By using published reconstructions of
the ice sheets to describe the vector space our shapes will lie in, we are automatically
rejecting any shapes outside of this space. We therefore are assuming that these
reconstructions describe all plausible shapes of the ice sheets at the LGM, and any

shapes not in this subspace are implausible.

We have had to limit the number of prior model variables to five; this is to ensure
we do not have too many dimensions to explore when running simulations through
HadCM3. However, this means we have had to discard some variation within the
data. Although we have calculated the RMSE values to check we are not throwing
away too much information about the ice sheet shapes, inevitably some has been

lost.
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Figure 3.6: Histograms of the scalars, z, for the five basis vectors in our prior model.
The points represent the subset of four ice sheet reconstructions that we consider
most important in our analysis. They are spread out or are outliers in most of the
histograms; this suggests a Gaussian distribution would not be a good fit for z.



Chapter 4

Elicitation of Ice Sheet Shapes

As described in Chapter [3] we have a prior model, built using a set of forty ice
sheet reconstructions, that outputs synthetic ice sheet shapes. We now wish to use
this model to create a set of synthetic ice sheet shapes to run through the global
circulation model HadCM3. This will provide us with a set of input and output data
with which we can build a Gaussian process emulator of HadCM3, allowing us to
run MCMC in order to sample the posterior distribution of the ice sheet shape at
the LGM. The shapes we choose to input are therefore important. We must consider
which set of shapes would cover the space defined by our prior model evenly, to
ensure important areas are not underrepresented in our HadCM3 simulations. The
expense of running HadCM3 is also an important motive in considering which ice
sheet shapes to input. The model is both financially and computationally expensive

to run, taking twenty-four hours on the remote access super computer Archer to

69
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simulate approximately twenty years model time. As we wish to run each of our
simulations for sixty years, we are limited in how many we can input into HadCM3.
Any simulations run through HadCM3 containing implausible LGM ice sheet shapes
would be a waste of time and resources. We must therefore ensure that all ice
sheet shapes we run are plausible for the LGM, as well as that they span the range
of possible prior shapes so that they embody the uncertainty our model describes

about the ice sheet at the LGM.

Mathematically, we wish to model f : S — D, where S is the space the prior model
describes and D is the space described by the isotope values that HadCM3 outputs.
A good design of S is usually a space filling design (Pronzato and Miiller, 2012).

We have already incorporated some expert judgements when we used a collection of
ice sheet reconstructions to create variables for our prior models. This has allowed
us to better represent uncertainty about the shape of the ice sheets at the LGM,
giving us a more informed model. We therefore wish to consult with experts on
which shapes should be used as input for HadCM3 and incorporate their beliefs into
our decision-making process. A consultation was organised with ice modellers and
LGM experts at the British Antarctic Survey, with their judgements to be used to

help determine which shapes to input into the climate model.

Elicitation is an important tool when wishing to draw on expert judgements, and can
play a vital role when making decisions on complex problems (O’Hagan et al.l | 2006),
Chapter 1). Statisticians are often called on to work in a variety of different fields;

often these are areas that they have no experience in. In these cases, a consultation
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with experts is essential to understand what is needed. Here, we have little knowledge
of what the Antarctic ice sheets looked like at the LGM so we are reliant on a

consultation with experts to decide on our set of synthetic ice sheets.

An expert elicitation is of particular use when performing Bayesian analysis (O’Hagan
et al., 2006, Chapter 1). When building a prior distribution, it is often useful to
incorporate judgements from experts in that particular area as eliciting these opinions
about parameters in the distribution can allow us to reduce uncertainty about them.
This is an especially important stage when building a subjective prior. If there is

limited data, the prior can be very influential on the results.

There is a wide range of literature on expert elicitation; both Dias et al. (2018)) and
EFSA| (2014) give an overview of the process. |Johnson et al| (2010) demonstrates
the use of upper and lower extremes to build probability distributions describing an
experts belief; however, it is reliant on the participants having sufficient knowledge
of probability and statistics. |Albert et al. (2012)) shows the importance of building
informative priors for parameters that have few observations to provide information.
They also discuss how to effectively combine multiple expert judgements, modelling
both the consensus and diversity of opinions. Garthwaite et al. (2005) gives a thor-
ough overview of elicitation, motivating the use of the technique and the need to
continue further research. All of these papers are good examples of the usefulness
of a formal elicitation process, and consider the various biases and other challenges
inherent in such a focus. In this project, a more informal procedure was necessary

to engage experts and model their beliefs in an easily interpretable format.

In this chapter, we describe the process of eliciting expert opinions with reference to
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O’Hagan et al.| (2006). In section we consider how to prepare for an elicitation
meeting. Section explains the process of conducting a meeting. Section
describes the follow up to an elicitation meeting and using the collected judgements.

Throughout the sections, we describe our own process of expert elicitation.

4.1 Preparation

A great deal of preparation is required to have a successful elicitation process. The
style of elicitation must first be decided on. This consists of two main decisions: the
first is whether to consult with a single or multiple experts. Both of these options
have their pros and cons (O’Hagan et al., 2006, Chapter 2). Having multiple judge-
ments can lead to a more informed prior and it is therefore often better to consult
with multiple experts. It is also rare that one person has all of the expertise required.
By meeting with multiple people, their beliefs can be aggregated so that the future
analysis is as informed as possible. However, meeting with multiple experts can be
extremely time-consuming, particularly if you are doing so individually. Meeting
with a single expert can be the most appropriate choice if there is a time constraint.
If using multiple experts, we must also decide whether to gather their opinions indi-
vidually or as a group. Having to consult many different experts takes a long time,
but it can often lead to more detailed judgements and allows us to concentrate on
their area of expertise. However, meeting in a group allows experts to discuss things
amongst themselves and come to a consensus on a question. It also can lead to

discussion on points not already raised, and introduce new concepts to the analysis.
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The second decision is whether to conduct the elicitation through face-to-face in-
terviews or a survey or questionnaire for the expert(s) to fill out themselves. A
questionnaire is a low-cost approach to conducting an elicitation, and means each
expert is provided with the exact same questions and information. An interview,
however, allows the facilitator to make sure the experts understand what is being

asked of them and amend later questions based on earlier answers.

When considering our own situation, we decided the best approach was a group inter-
view with multiple experts. The people we were consulting were from a wide range of
expertise (Robert Arthernﬂ, Richard Hindmarsh E|, Dominic HodgsonEL Robert Mul-
Vaneyﬁ and James Smith@, which we thought would benefit our research a great deal
more than a single expert. The group meeting was partly due to time constraints,
but also because we hoped meeting the experts at the same time would lead to a
more collaborative response to our questions. Our own limited knowledge of the
research area meant that sitting in on a discussion between these experts would be
a valuable learning experience as well. The experts we consulted with were chosen

by my supervisor, Louise Sime (BAS).

Careful thought was put in to what we wanted to achieve from the elicitation process
for the current project. The amount of time available to explain the project and ask
for advice was short, so it was important to decide beforehand the most effective

way of explaining this work and to consider what to seek advice on. Our preparation

Tce sheet modeller, rart@bas.ac.uk

2(laciologist, rcah@bas.ac.uk

3Sedimentologist, daho@bas.ac.uk

4Science leader of the Ice Dynamics and Palaecoclimate team, rmu@bas.ac.uk
5Sedimentologist, jaas@bas.ac.uk
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took two forms: building an interactive version of the prior model to help convey
what we were trying to do, and creating a list of specific points on which we wished

to gather opinions.

4.1.1 The Interactive Model

Interactive plots and tools are an effective way of communicating methods or research
to a group of people with a wide and differing range of expertise (McInerny et al.
2014). Often during the elicitation process we must explain a method that the
experts have no knowledge or experience of. A visual or interactive tool can be a way
of explaining methodology concisely; spending too much of the meeting explaining

the research takes time away from gathering judgements.

Before we could consult the experts on which synthetic ice sheet shapes to run
through HadCM3, we had to explain our project and how the prior model had been
built. We were consulting with scientists with a broad range of expertise, and it was
important that we present the prior model in a form that they could all understand
and visualise easily. We therefore produced a visual version of the model with an
interactive element rather than focusing on the statistical nature of the model. Using
matplotlib in python, we built a plot of the prior model that could be manipulated
with a set of sliders. A screenshot of this is shown in Figure [{.I] Each slider
controls one of the five variables in the model. These sliders set the value of each

z;, determining how much of the five basis vectors contributes to the ice sheet shape
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plotted above. By moving the sliders, we can see how the prior model is influenced

by each variable and create new ice sheet shapes.

The z;’s were scaled and given a uniform distribution between [-1,1], as described in
Section . However, for the elicitation process it was decided to expand this to [-3,3|
to ensure that we included as many potential ice sheet shapes as possible. Although
we believed these limits would be shortened a great deal during the elicitation process,
we wished to start with an overly large range of values to ensure that no feasible ice
sheet shapes were being excluded before we met with our group of experts. One of
the main aims of our meeting was therefore to agree on new minimum and maximum

values for each of the five uniform distributions.

4.1.2 Planning the Elicitation Meeting

It is essential to plan what to cover in the elicitation meeting, as well as specifically
what judgements to gather from the experts. Time is often a factor when deciding
how much can be achieved; people who are well regarded in their fields are often busy.
Finding a time well suited to a group of experts can prove difficult so the meeting
must be used efficiently. In particular, if they come from varied backgrounds they
may require different parts of your research to be explained in more detail to them.

This must be factored in to the agenda of the meeting.

Our meeting was limited to an hour. To keep time spent explaining our project to a

minimum, we wrote a summary of the project and shared it with the attendees the
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Figure 4.1: The prior model in an interactive plot. The sliders below the plot control
the five variables in our model, creating synthetic ice sheet shapes that will be run
through the global climate model HadCM3. The numbers on the right of the sliders
show what values the z; are currently taking. Here, they are set at 0 and only the
mean shape is being plotted.

day before the meeting. This was a page long and described the motivation for the
work, the shapes collected from the literature and the prior model. It ended with

the following questions that we wanted them to answer

e Does our prior model capture a plausible range of ice sheet shapes?

e Are we including only ice sheet shapes that are plausible for the LGM? Are
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there any that seem implausible?

e Are there shapes that are plausible but not included in our forty reconstruc-

tions?

e Where are you most uncertain about the extent and nature of the LGM ice
sheet? Where are you most certain? The variation in our statistical model is

plotted in Figure [4.2] does this match with your beliefs?

e We currently assume all ice sheet shapes are equally likely to occur. Could you
rule out ice sheet shapes as unlikely, and suggest a set of shapes that are more

likely?

These questions were written after deciding on the plan for the meeting. We would
explain the aims of the research and show them the interactive plot, inviting them to
play around with it themselves. This would allow them to answer the questions above

by seeing which values of the sliders produced plausible and implausible shapes.

4.2 Conducting the Meeting

Although the meeting was carefully planned, we also prepared to be flexible about

what was discussed. Although it can be frustrating, when experts choose to discuss
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Figure 4.2: A plot of the standard deviation within our model. It shows that there
is more variation in the WAIS than the EAIS.

a topic that the facilitator had not considered beforehand we can sometimes learn
something important that would not otherwise come to light. This can lead to the
incorporation of new ideas and techniques in to the resulting research. However, if
the discussion moves too far off track it is important to bring it back round to the

agenda as it is important that time is not wasted.

Several things were learnt through conducting our meeting. Having experts with
different backgrounds in the room made it difficult to focus on our specified aims. In
particular, explaining the statistical work behind the model to physical geographers
took time as they were asking about underlying physical models they believed we
should be using. Explaining the synthetic nature of the variables in our model

proved difficult, and a lot of questions on the presumed underlying bedrock and other
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such things had to be fielded. The differences between the original reconstructions
collected and our statistical model had to be explained, all of which took up a large
portion of the allotted hour. We therefore had to lower our expectations on what
could be covered in the time left of our meeting. The experts often focused on areas
we had not previously considered, making it awkward to ask them to move on to
the areas we wanted them to focus on. A longer meeting would have given us more
opportunities to discuss the areas we were interested in, but the experts we consulted

with were limited in how much time they could meet with us for.

Feedback gathered from meetings can be disheartening. It is important to use elici-
tation methods that are as simple as possible, but it may prove in the meeting that
an even simpler task is required to gather judgements effectively. The interactive
model was rejected by the experts due to the limited time they had available to
consider the project. Although we only had five variables in the model, this was
still judged as too many for them to review in detail. The feedback we were given
from one expert was that there were too many “corners” in the model space that
they would need to assess before they could give an informed opinion on the output.
They also often critiqued the steep edges the model sometimes created in the ice
sheet, wanting to smooth them out somehow. Finding limits for the z;’s, one of the
aims of our meeting, had to be done after the meeting had finished in a one-on-one

review with my supervisor, Louise, who was present.

Some useful feedback was received, however. The paper by Bentley et al.| (2014) had
a maximum grounding line limit, which described their estimate of the maximum ice

sheet extent. The experts we consulted recommended we use this to constrain the



80 CHAPTER 4. ELICITATION OF ICE SHEET SHAPES

prior ice sheets. There was also discussion on creating a limit on maximum ice sheet
thickness from the original collection of ice sheet reconstructions, which could not be
explored due to the time limits in the meeting. They agreed with the plot in Figure
[4.2] as correctly representing where the most uncertainty was over Antarctica during
the LGM; they seemed more unsure about the characteristics of the West Antarctic

ice sheet.

The meeting concluded with the experts agreeing to take part in a second elicitation
process to be conducted remotely. This would involve a much simpler approach, and

would focus on deciding which shapes to input to HadCM3.

4.3 The Second Elicitation Process

At the end of the elicitation meeting we agreed that I would put together a set of
shapes for the experts to review; these would have the Bentley et al.| (2014)) grounding
line limit plotted over it to act as a constraint and be within the new z; limits agreed
with Louise. It was decided to create a set of eighty shapes as this was the most we
felt we could ask the experts to assess thoroughly, given that this was a voluntary
exercise. We would then ask them to recommend a third of the total to be discarded
before submitting the rest to HadCM3, leaving us with around fifty simulations to

run.

The z; constraints agreed with Louise were added to the prior model. These ranges

were z = [~0.5,0.5], 25 = [—0.3,0.75], 23 = [~0.6,0.6], 2z = [~0.55,0.5] and z5 =
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[—1,1.2]. A maxi-min Latin hypercube (Joseph and Hung, 2008)) within these ranges
was then used to find a design of z; values that spanned the whole space described by
this model. We chose this method becasue this draws a sample from a set of variables
with uniform distributions, maximising the minimum distance between design points.
This ensures that the design points are distributed as evenly as possible across the
model space. A pairs plot of this design is shown in Figure 4.3} we can see that the
points are scattered evenly in each plot, showing that no area is unrepresented in

our design.

This design of z; values was used to create eighty shapes; these can be seen in the
Appendix. The shapes were shared with the five experts we had consulted with at the
elicitation meeting, each of whom was given an individual spreadsheet to complete
with their comments on each shape and their recommendations. It was decided
to conduct this elicitation stage on an individual basis in order to collect unbiased
opinions and prevent anchoring (O’Hagan et al., 2006, Chapter 3); had one person
shared their opinions before the others there would be a strong possibility that the

other experts would base their judgements on what had already been shared.

Two of the experts reviewed the shapes and returned the files to me; it proved difficult
once we were acting remotely to encourage the experts to continue to engage in the
process. The two suggested designs we did receive are shown in Figure One of
the experts who reviewed the ice sheet shapes recommended rejecting over sixty of
them, stating that a recurring issue was that the shapes extended past the ice extent
limit imposed by Bentley et al.| (2014)). The coarseness of the longitude/latitude
grid used by HadCM3 was a possible cause of this. The grid used by HadCM3 is
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3.75° x 2.5° longitude/latitude, whilst the grounding line from Bentley et al.| (2014])
was on a much finer scale. This meant it was difficult to create shapes for HadCM3
input that followed the grounding line exactly; although the ice sheet was usually
only a few metres above sea level when it overlapped slightly with this constraint
the expert systematically rejected these shapes. The other expert who engaged in
the second elicitation process recommended running fifty-one of the ice sheet shapes

through HadCMa3.

The final design was decided on by combining these judgements. If one or both of
them approved of a shape, it was run through HadCM3. If they both rejected or
were unsure of it, it was discarded. This produced a set of forty-nine shapes to be
run through the climate model. A pairs plot of the final design is in Figure [4.5] It

covers the whole of the basis fairly well, with few parts not represented.

4.4 Summary of Chapter

Expert elicitation is a useful process for creating informative prior distributions,
thus helping to determine the direction of research. It is particularly useful when
performing research in an area about which the statisticians have little knowledge;
consulting with experts in that field ensures research is as informed and impactful

as possible.

Although often a long process that requires a great deal of thought and planning,

the outcomes of an elicitation process can ensure that the research is focused on
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Figure 4.3: The 2D projects of the design of 80 shapes we created after the first
round of expert elicitation. The points cover the entire basis evenly.

relevant and important facets of the subject area. A certain amount of flexibility
is required to run an effective elicitation process as new thoughts and ideas will be
suggested throughout. Whether to incorporate these or disregard them takes careful

consideration.

We performed an informal elicitation of expert opinions on plausible Antarctic ice

sheet shapes at the LGM. From this we set constraints on our prior variables, z;, and
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then created a design of ice sheet shapes for a second elicitation process.

Although a useful process, our elicitations could certainly have been improved. Our
first elicitation process was hampered by time constraints. By only having an hour
to discuss our project with the experts, we were unable to discuss every point that
we had wanted to cover. It also proved difficult to encourage the experts to engage
in the second elicitation process remotely, which meant that a certain amount of
pragmatic compromises had to be used to incorporate judgements and to proceed

with the elicitation.

Following this process we now have an informed design of shapes to run through
HadCMa3. In the next chapter, we discuss running HadCM3 and using the output to

build a Gaussian process emulator of the climate model.
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Figure 4.4: The two designs we received after the second round of expert elicitation.
There is some agreement between the two experts, though the first discarded a lot
more shapes and therefore has left gaps in the space we are trying to cover.
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Figure 4.5: The final design we made by combining the two sets of designs that the
experts recommended. The five dimensional basis that the variables describe is well
covered by our design.



Chapter 5

Building The Emulator

Having agreed on a design of forty-nine ice sheet shapes in Chapter [d, we now wish to
run the GCM, HadCM3. This will provide us with a set of §'*0 simulations paired
with the synthetic orographies. From this, we can attempt to build a Gaussian
process emulator of HadCM3 that will allow us to emulate the GCM and explore the
relationship between ice sheet shape and 6'¥0 without incurring the costs associated
with HadCM3. We can then use this emulator along with the prior model described
in Chapter [3| to sample from the posterior distribution of the ice sheet shape and
reduce uncertainty about the ice sheet at the LGM.

The motivations for building the emulator have already been described in Chapter
[ HadCM3 is very slow to run, simulating approximately twenty years a day. As we

must allow time for the model to spin up and require several decades to simulate a

87
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climate observation, we must run each simulation for sixty years and therefore require
several days to complete each simulation. We cannot run all simulations at once,
as we have a limit of running sixteen simulations simultaneously on Archer, the UK
National Supercomputer Service. Running a model on an HPC is a time consuming
and difficult process, adding more motivation to limit the number of simulations we
create. Since Archer also costs a great deal to run; we are reliant on a limited number
of HPC credits to run HadCM3 (allocated by the British Antarctic Survey) and so
can only afford a small number of simulations. We therefore cannot use HadCM3 to
sample the posterior distribution, as we cannot run it the thousands of times required
to create a large enough sample. Instead we rely on a Gaussian process emulator
which will use the five prior variables as inputs and output 6**0O anomalies. This will
allow us to model the relationship between ice sheet shape and water isotopes more
cheaply than HadCM3, so that later it can then be used as part of the calibration
model; MCMC can then be used to sample from the posterior distribution of the ice

sheet shape, reducing the uncertainty around it.

In this chapter, we describe the process of running HadCM3, comparing the output
of the GCM to the collected ice core data and building Gaussian process emulators

at each ice core site.

5.1 Running HadCM3

The global circulation model we use in this analysis is the Hadley Centre Coupled

Model Version 3 (HadCM3), a UK Met Office isotope-enabled coupled atmosphere-
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ocean GCM. Motivation for using this model can be found in Chapter[I A descrip-
tion of how isotopes are implemented in HadCM3 can be found in (Tindall et al.

(2009).

From the elicitation process described in Chapter [ we created forty-nine orography
files describing plausible Antarctic ice sheet shapes at the LGM. We ran control LGM
simulations with these orography files attached through the BlueCrystal supercom-
puter at the University of Bristol to activate the isotopes. Ten of them failed to run;
we attempted to fix this by rounding all values in the orography files to the nearest
integer, which fixed eight of them. Two of them continued to refuse to run, resulting
in us having forty-seven simulations. We built forty-seven simulation files in PUMA
with control LGM GHG values and orbital forcing, and starting conditions from the
BlueCrystal simulations. These were then inputted into HadCM3 and ran for 60

years each.

5.1.1 Issues with HadCM3

We faced several issues when running HadCM3. Some of these we were able to solve;
others had to be worked around. The first has previously been mentioned: two of
the simulations would not run through the BlueCrystal supercomputer. Due to time

constraints, we had to discard these and proceed with forty-seven simulations.

Jobs crashed frequently due to a fault in HadCM3 that created negative pressure

values. There was no way of working around it, so jobs had to be continually resub-
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mitted and spun up past the point where it crashed. This increased the amount of

time it took to finish running the simulations.

Twenty-six of the simulations had corrupted November files for one of the sixty
simulated years. We could not find a cause for this. It was decided to remove the
whole corresponding year so as to avoid any seasonal bias caused if we had removed

just the corrupted month.

5.1.2 Processing Scripts

Once the simulations were finished, we ran the output through post-processing scripts
on Jasmin, a scientific data analysis environment administered by the Centre for
Environmental Data Analysis (CEDA). The code for these can be seen in Appendix
. These converted the model output into climate variables including §'*0O, the
oxygen isotope estimates that we will be using in our analysis. The first ten years of
the data were treated as spin-up time, the time for which it took for the variables in
the model to reach a steady state, leaving us with fifty years of simulated data. We

have both monthly, annual, and a fifty year average of the climate variables.

Before we performed an exploratory data analysis, we transformed our HadCM3
output into anomalies, the difference between our output and a pre-industrial control
simulation. This was to remove any underlying climate biases HadCM3 may have

(Domingo et al., 2020). We used a pre-industrial simulation to create 6’0 anomalies
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from our HadCM3 output. We compared these anomalies to observations from ice
core anomalies, which we created from the observed data by subtracting the average
5180 value of the last one thousand years from the LGM value, the average of the

values dated either side of 21Ka BP.

5.2 Exploratory Data Analysis

Before we began building our Gaussian process emulator, we compared our §'%0
anomalies to the ice core data to check how well HadCM3 simulated values close
to the observations. The locations of the ice core sites that we used are shown in
Figure[5.1] They are Byrd (Blunier and Brook, 2001)), Mount Moulton (Popp), 2008),
Siple Dome (WAIS Divide Project Members et al.| (2013) and Brook et al.| (2005))
and WDC (WAIS Divide Project Members et al.| (2013)) and Steig et al.| (2013))
in the West Antarctic ice sheet, and EDC (Jouzel et al) [2013), EDML
\Community Members et al., 2006), Fuji Dome (Kawamura et al., 2007), Talos Dome
(Stenni et al. 2011)), Taylor Dome (Grootes et al| (1999), [Steig et al| (2000)) and

Vostok (Petit et al., |1999) in the East Antarctic ice sheet. The two points in grey

are Berkner and Fletcher. These ice cores are yet to be published. We include them
here as we intend to use them as test sites for our emulator and posterior distribution

when they are in the public domain.
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Figure 5.1: The locations of ice core drilling sites that we intend to use in this
research. The two grey points, Berkner and Fletcher, are sites that have yet to
publish their data. We hope to use these as test sites once we have access to the ice
core data.
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5.2.1 Comparing simulations of WAIS and EAIS

We compared the HadCM3 output to the ice core observations to see if we had
successfully simulated the 6'**0 anomalies, using the latitude/longitude grid cell in
our HadCM3 simulations corresponding to the location of the ice core site as a
comparison. We plotted the HadCM3 §'80 anomalies against the change in elevation
at that grid point to see if there is an obvious relationship between 60 and ice sheet
size. Change in elevation is found by subtracting a pre-industrial orography from
each of the ice sheet shapes we ran through HadCM3, so we can see how each ice
sheet shape from our design differs to our pre-industrial control orography, and how
this has affected the corresponding §'®0 anomaly values. We then add in a line
corresponding to the ice core observation to see if our simulations are close to this

value.

We can see in Figures[5.2|and [5.3]that there is a difference in how similar the HadCM3
output is to the ice core observations for the two ice sheets. The water isotope
values in the West Antarctic ice sheet have been simulated well by HadCM3, with
the 680 anomalies all close to the observations from the ice cores. The isotopes
in the East Antarctic ice sheet have not been simulated well. The exception is
Taylor Dome, suggesting that close to where the ice sheets meet, we have simulated
plausible orographies. We check how well we have modelled both ice sheets by
plotting pairs plots of the two groups of ice core sites. We can see again, in Figures
and [5.5] that the HadCM3 simulations have produced §'¥0 anomalies that are
close to the observations in the West Antarctic ice sheet but failed to simulate low

enough values in the East Antarctic ice sheet. For this reason, we decide to focus
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on building emulators for the West Antarctic ice core sites, and will incorporate the

East Antarctic ice core sites later.

5.3 Gaussian Process Emulation

Gaussian process emulation is used to predict the response of a complex and ex-
pensive simulator using a limited number of inputs and outputs from the simulator
(Chang et al.l 2014b)). Here, we wish to emulate HadCM3, focusing on the response
of 60 anomalies to changes in the shape of the Antarctic ice sheets at the LGM.

A Bayesian framework for GP emulation is described in detail in Kennedy and
O’Hagan (2001). A simulator is run on n design points zi, ... ,z, € R¥ giving
outputs 1, ..., ¥y, € R. The emulator interpolates the y; values, allowing us to

predict the simulator output at any input value.

A Gaussian process emulator is defined as a probability distribution f(-) where f(z)
is normally distributed for all z € Z. The distribution has mean function m(-) where
m(z) = E[f(z)] and covariance function k(-,-) where k(z, 2') = cov[f(z), f(2')]. We
therefore have

f(z) ~ N(m(z), k(z, 2')).
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Figure 5.2: Plots of §'®0 anomalies against elevation anomalies for the four ice core
sites from the West Antarctic ice sheet. The red lines represent the anomaly from
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Figure 5.3: Plots of 6'®O anomalies against elevation anomalies for the six ice core
sites from the East Antarctic ice sheet. The red lines represent the anomaly from the
corresponding ice core. HadCM3 appears to have struggled to simulate 680 values
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Figure 5.4: Pairs plots of §'*0 anomalies at the four West Antarctic ice core sites
with error bars two standard deviations in length. The blue points are the output
from HadCM3 simulations; the red lines are the observations from ice cores. The red
lines cross in the same region as the simulations are plotted, with many of the error
bars overlapping the observation, showing that HadCM3 has successfully produced
580 anomalies close to the observations at the LGM.
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Figure 5.5: Pairs plots of §'80 anomalies at the six East Antarctic ice core sites with
error bars two standard deviations in length. The blue points are the output from
HadCMa3 simulations; the red lines are the observations from ice cores. The red lines
cross at much lower points than where the simulations are plotted and few of the
error bars overlap the observation; HadCM3 has not produced §'¥0 anomalies close

to the LGM observations.
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5.3.1 Choosing a kernel function

Our choice of covariance function, or kernel, determines how well the GP emulates the
simulator. The most common kernel choice, which we use throughout this chapter,
is the radial base function (RBF) kernel, also known as the exponentiated quadratic

or squared exponential kernel. The RBF kernel has a Gaussian form defined as

o YT (e
k(zi,zé)zazexp{ (= 2)2(% zl)}, i=1,..d
P;

2 is a variance hyperparameter, p; is the lengthscale for each of the d dimen-

where «
sions. The lengthscale controls the decay in correlation when the distance between

the input points increases.

We also experimented with other covariance functions, including linear, Matern 3/2
and Matern 5/2, but these did not give a better fit and so we chose to use the most
commonly used kernel. Plots of emulators with these other kernels (for the Byrd ice
core site) can be seen in Figure ; we can see they do not give a better fit than
the RBF. We also tried as incorporating elevation as an extra variable for our model.

However, there was no improvement in the emulator so we removed this addition.

5.3.2 Building our emulator

In this chapter, we use the Python package GPy and the maximum likelihood method

to find the values of our hyperparameters «, p from our kernel function, and o2, our
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nugget term, the variance term representing noise in the data. In the next chapter,

we explain how to do it in a Bayesian sense, using MCMC.

1-D elevation example

As we can see in Figures [5.2] and there is a clear correlation between change in
elevation and 40 anomalies. We therefore started with a 1-D example, using the
elevation anomalies as input points and §'80 anomalies as output points. We run
the model

y,E e R a,p,o0? €R,

y ~ N(m(E), K(E|a, p) + 0%z, 2,)

for an ice core site, where E is a vector of elevation anomalies for each of the HadCM3
simulations and ¥ is a vector of the corresponding §'80 anomalies, o2 is the nugget

term and 0, ., is defined as

1 if i=j,
0 if i#j.

6Zi7zj =

The nugget term allows the emulator to create non-deterministic predictions, even
at the input points. This allows us to more closely emulate the climate system that
HadCM3 is simulating; even using our 50-year averaged §'80 output, simulations
with equivalent inputs would give different output values. This adds more difficulty
to the process, as there is irreducible noise in the data that we cannot emulate

perfectly due to the temporal and spatial averaging of the data we are working with.
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Figure 5.6: The elevation-only emulator for the Byrd ice core site. Our large length-
scale has created a very smooth function. We can also see there is little noise within
our data; the majority of the points are within the shaded confidence interval.

A discussion of the fixed variance terms that we consider due to these and other

possible errors is given in Section

The emulator for the Byrd ice core site is plotted in Figure We have a large
lengthscale (p = 2311.14m), which results in a very smooth function. Our variance
term is large (o = 190.27), but the nugget term is small (¢ = 2.02), suggesting our

training data has little noise in it.

We perform leave-one-out cross validation (LOOCV) for the elevation only emulators
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for all four West Antarctic ice core sites to test how well the emulators predict
the observations. Results can be seen in Figure [5.7, where the red points are the
observations and the blue points are the corresponding predicted values. We also
report the RMSEs for each emulator, all of which are fairly small, suggesting that
our emulators are matching HadCM3 well, although the error bars in Figure all
of length two standard deviations, suggest there is a large amount of uncertainty in

these emulators.

Including the prior variables

What we are interested in is the relationship between our prior model variables and
the 680 anomalies. Figure has also shown only using elevation as an input leads
to emulators with large variance terms. We therefore built emulators at each of the
four West Antarctic ice core sites using the prior model values as input points. We
store the prior model values used to build the orographies in our HadCM3 simulations

in a matrix Z € R*7%3,

Each emulator is defined as
ZeRTS 4y eRY, a,po’eER

y ~ N(m(Z), K(Z], p) + 070z, 2,).

The values of the three hyperparameters for each of the emulators can be seen in

Table[5.1] The lengthscales here are smaller than the lengthscale in our 1D example,
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Figure 5.7: Comparison of HadCM3 simulated §'®0O anomalies (in red) against leave-
one-out cross validation predictions of our GP emulators (in blue, with error bars
of length two standard deviations included) when using elevation as our input data.
We can see that although most of our predictions are within two standard deviations
of the simulations, the size of the error bars shows that there is a great deal of
uncertainty in our 1D emulators.
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Variance («) Lengthscale (p) Nugget term (o)
Byrd 113.76 3.00 0.61
Mount Moulton 249.71 7.01 1.05
Siple 222.10 3.23 1.38
WDC 245.83 6.67 0.82

Table 5.1: ML estimates for the variance, lengthscale and nugget term parameters for
the emulators at the four West Antarctic ice core sites. We can see the lengthscales
are much smaller than the 1D example emulator, meaning points far from each other
in the sample space have large covariance terms.

creating functions with small covariance terms for points far away in the sample

space. The variance terms are fairly large, allowing the function to vary a great deal.

We run leave-one-out cross validation (LOOCYV) again on these emulators, the results
of which are in Figure [5.8] These emulators are matching the HadCM3 output well,
with predictions very close to the observations. We also report the RMSEs for each
emulator, all of which are smaller than the RMSEs in Section [5.3.2] suggesting an
improvement in the performance of our emulators when working in higher dimensions.
The nugget term is representing a large component of the uncertainty; with values
around one, that means the smallest possible 95% confidence interval is width four,
assuming there is no emulator uncertainty. As the 6'*O anomalies from our HadCM3
simulations vary by approximately 410, the nugget term is an important part of our

emulator.

We also plot in Figure predictions against observations with error bars, of both
one and two standard deviations in length, and the y = x line to see how closely
predictions match observations. We can see that the majority of the two standard

deviation error bars cross the y = x line. We also calculate the percentage of our
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Figure 5.8: Comparison of HadCM3 simulated §'®0O anomalies (in red) against leave-
one-out cross validation predictions of our GP emulators (in blue) when using our
prior variables as input data for the emulator at the four WAIS sites. The RMSE
for each site is also included as a legend. We can see that using the five prior vari-
ables rather than the elevation has produced emulators that are better at predicting

HadCM3.
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Within 66% CI  Within 95% CI
Byrd 79% 91%
Mount Moulton 87% 96%
Siple 87% 94%
WDC 83% 94%

Table 5.2: A table showing the percentage of predictions from the emulators at the
four WALIS ice core sites within 66% and 95% confidence intervals of the HadCM3
data.

predictions within 66% and 95% confidence intervals of our observations, shown in
Table We can see that the majority of our predictions are within two standard

deviations of the observations.

5.4 Incorporating the EAIS sites

We now look at building emulators for the six ice core sites in the EAIS, using
the same methods described in Section [5.3.2] Figures [5.11] and show that our
emulator is working well; the predictions are all close to the true values and the
RMSEs are small, suggesting HadCM3 is being well emulated. Although the set of
ice sheet shapes we submitted to HadCM3 may have had lower elevation than the
true LGM shape, our emulator is able to simulate HadCM3 well enough to model

the isotope anomalies in the EAIS as well as it models anomalies in the WAIS.
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Figure 5.9: Observations vs. predictions, with error bars included, for the 5D emula-
tor at the four WAIS sites. The blue error bars are of length one standard deviation,
whilst green represents two standard deviations. We can see that for all sites the
majority of the green error bars cross this line, suggesting that our emulators are
predicting HadCM3 output well.
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Figure 5.10: Comparison of HadCM3 simulated §'®0 anomalies (in red) against
leave-one-out cross validation predictions of our 5D GP emulators (in blue) when
using three different kernel functions for the Byrd ice core site. We can see that none
of them fit as well as the RBF function, with all RMSE values larger than those in

Figure
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Figure 5.11: Comparison of HadCM3 simulated §'®0 anomalies (in red) against
leave-one-out cross validation predictions of our GP emulators (in blue) when using
our prior variables as input data for the emulator at the six EAIS sites. The RMSE
for each site is also included as a legend. Again the emulators seem to be predicting
HadCM3 well.



110 CHAPTER 5. BUILDING THE EMULATOR

10 3
8 21
1<
6
2 g 0<
o o
3 4 q S -1
o el
GJ 4
a 24 a -2
0 P -3
-4 4
_2,
5
2 0 2 a 6 8 10 5 4 3 52 a1 o 1 2 3
Observations Observations
(a) EDC. (b) EDML.
3 6
2 4
4
1
0 0
S 07 S 24
ko] S
8 -1 8
a a
0+
_2 4
_3 - 5
_4 4
I 1 2 3 Y 0 2 4 6
Observations Observations
(c) Fuji. (d) Talos.
4- 61
2 4
v wn
§ 0 5
kS S 2
el el
L -2 ¢ L
o a
0—
—4
—6 1 -2
B B I T R
Observations Observations
(e) Taylor. (f) Vostok.

Figure 5.12: Observations vs. predictions, with error bars included, for the emulator
at the six EAIS sites. The blue error bars are of length one standard deviation,
whilst green represents two standard deviations. We can see that for all sites the
majority of the error bars cross this line, suggesting that our emulators are predicting
HadCM3 output well.
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5.4.1 Using an Anisotropic Kernel

After testing the emulator with an isotropic kernel, that is a kernel where the length-
scale is fixed for each dimension, we test an anisotropic kernel to see if having different
lengthscales for each dimension helps the fit. Details on this function and the rea-
sons behind it are given in Section [6.5.3] Figures and show that the fit is
improved when we use an anisotropic function, with the RMSE values smaller for all

ice core sites.

5.5 Summary of chapter

Gaussian process emulation is a useful method when working with expensive simu-
lators. It allows us to approximate the simulator in a fraction of the time, allowing

us to more extensively explore this system.

In this chapter we have used our prior model variables and HadCM3 output to build
a Gaussian process emulator of HadCM3. This has emulated the relationship that
HadCM3 models between orography and §'80, allowing us to see the effects that
a change in ice sheet shape has on the isotope values. The tests we have run on
our emulators suggests that they are modelling HadCM3 well, as well as producing
50 anomalies close to the observations we have from ice cores. In Chapter @, we
calibrate our model, combining the prior model from Chapter 3| with our emulators

to sample from the posterior distribution of the ice sheet shape at the LGM.
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Figure 5.13: Comparison of HadCM3 simulated §'®0 anomalies (in red) against
leave-one-out cross validation predictions of our GP emulators (in blue) when an
anisotropic kernel is used in our 5D emulators for the four WAIS sites. We can see
that the fit is now improved, and the RMSE are all smaller than the emulator with
an isotropic kernel.
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Figure 5.14: Comparison of HadCM3 simulated §'®0 anomalies (in red) against
leave-one-out cross validation predictions of our GP emulators (in blue) when an
anisotropic kernel is used in our 5D emulators for the six EAIS sites. Again there
is an improvement in the fit and the RMSE, although less so than for the WAIS
emulators.
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Chapter 6

Calibration of the Model

In the previous chapter, we successfully built a GP emulator of the GCM HadCM3
and are now able to emulate the relationship between ice sheet orographies and §'%0
anomalies that HadCM3 describes. In this chapter we will use this emulator, and
the prior model built in Chapter [3, to sample from the posterior distributions of our
five prior variables, allowing us to create ice sheet shapes based on the observations
collected from ice cores. We describe the processes of calibrating our model using
Markov Chain Monte Carlo (MCMC), testing our model, and performing sensitivity

analyses. Geographical interpretations of our results are given in Chapter [7]

115
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6.1 Markov Chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) is a method of sampling from a probability
distribution by drawing a series of correlated samples that will converge to the target
distribution (Geyer} 1992)). This is done when it is too difficult to sample from the

distribution directly.

We wish to simulate values {z1,x9,...} of a random variable x ~ p(z). We do this
by constructing a Markov Chain (MC) x4 ~ q(+|z¢). By accepting or rejecting x4, 1
according to an acceptance ratio, we simulate a MC that has p(x) as its stationary
distribution. There are many methods available to perform MCMC; here, we use No-
U-Turn Sampler (NUTS), (Hoffman and Gelman|, 2011), a variant of Hamiltonian
Monte Carlo (HMC).

6.1.1 Hamiltonian Monte Carlo (HMC)

Hamiltonian Monte Carlo (HMC) is an MCMC algorithm that converges more quickly
than other algorithms such as Gibbs sampling or Metropolis-Hastings. Although
these other methods are simpler, the behaviour of the random walk can be affected
by the sensitivity of correlated parameters. We are especially hampered when work-
ing in high dimensions, as there is a much larger space for the random walk to

explore.
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The auxiliary variables in HMC, such as step size and number of steps, help the
chains converge more quickly to the target distribution by proposing moves to new
points in the sample space that have a high probability of acceptance. This means

that shorter chains are can be used to approximate the distribution.

In this chapter, all of our MCMC is performed in the computer language Stan, which
can be called from R or Python and performs MCMC. Initially we used MCMC to
sample from the posterior distributions of our prior variables by calibrating just our
prior model before then incorporating our GP emulator, in order to check first if our

model could be sampled from successfully.

6.2 1D model

Initially we used a model that was intentionally simple, with elevation as the only
parameter to describe 680 anomalies. As demonstrated by Figures and [5.3]
there is a clear linear relationship between these two variables. We started with a
linear emulator for one ice core site and ran MCMC assuming that the relationship

between the §'¥0 anomalies and elevation was
yeRY, E eRY™2? BeR?) o €R

where

E' = (1 E)u
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contains the elevation values as well as a column of ones to model an intercept
parameter,

B ~ N(0,100), oy ~Inv_Gamma(l,1)
ylE', B~ N(E'B, o)
Yobs ™~ N( (lybsﬁv Tl2>

b = (1 Eobs)

obs

where y represents the 6'*0O anomalies from the HadCM3 simulations, 3 are linear
model parameters and o, is the standard deviation HadCM3 model error. 8 and o,
are given uninformative prior distributions so that we can see what we learn from
our data alone. ¥, is the ice core observation; we generate possible elevation values,
E s, for this observation using the posterior samples of 3, with a measurement error
71. We set 7 = 0.5 from the results of [Keller et al.| (2018]). We sample four chains,

each 5000 samples in length.

We appear to learn a lot about how elevation affected 680 anomalies; Figure
shows posterior predictive distribution of B and elevation against 6'*0O anomalies.
The horizontal blue line is the ice core 680 observation from the Byrd ice core, with
measurement error 7, = 0.5%0 plotted on each side as dashed lines. The vertical
blue lines represent values of F,, generated elevation estimates corresponding to
Yobs- The estimates of elevation are all within the range required to simulate the
080 anomaly. We can see that all generated values of elevation are within the
range of what the model should predict given the uncertainty around the ice core

observation.
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Figure 6.1: Output from our 1D model in Section The points are the values from
our HadCM3 simulations. The black lines are some of the models made using the
sample values of 3 from the MCMC runs, with the red line representing the mean
values of the linear model. The horizontal blue line is the ice core observation from
the Byrd ice core, with measurement error of 0.5%0 plotted on each side as dashed
lines. The vertical blue lines are F,, simulated elevation (m) values that correspond
to the ice core observation, 1.
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6.3 Using all five prior variables

Although there is a clear relationship between elevation and §**0O anomalies, we are
interested in how the prior model variables affect the isotopic values. By sampling
from the posterior distributions of the z;, the prior variables described in Chapter
[B) we hope to create plausible LGM ice sheet shapes with less uncertainty. The z;

are the five variables we created using our null space variant of PCA, as described

in Section 3.3.3

We start by modelling a single ice core site at a time to see how well our model is

working. Given the discussion in [5.2.1] we focus on the WALIS sites initially.

Our prior model was of the form:
0 =p+ za; + 2005 + 2303 + 2404 + 2505

where
e 0 is ice sheet shape.

e a;, j = 1,...,5 are the five principal components of the collected reconstruc-
tions. a1, as and as are made from the four most “important” shapes whilst

a4 and as are from the other thirty-six shapes.

e o is the mean shape of the forty ice sheet reconstructions.
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e z;, j = 1,...,5 are prior variables which determine how much of each of the

principal components contributes to the synthetic ice sheet shape 6.

We have two data sets, the input and output data from our HadCM3 simulations.
Z is a 47 x 5 matrix of the prior model variable values used to build the orographies
used in our 47 HadCM3 simulations; more details of this can be found in Chapter [4]
y is a vector of length 47, containing the simulated 580 anomalies from HadCMS3 at
the latitude /longitude grid cell corresponding to an ice core site. We firstly transform
our input data to

Z7'=(1 2)

where Z’ contains the prior variable values as well as a column of ones to model an

intercept parameter. For a single ice core site we use the model
yeRY, Z RS BeR® o €R,

B~ N(0,100), o ~Inv_Gamma(l,1),
ylZ',B ~N(Z'B,07), (1)
yObS|Z(/)bs/6 ~ N(Z(/)bs/67 7-12)

B and o, are given uninformative prior distributions with fairly wide variances to
not bias the model output. Z,, are possible values of Z, generated using posterior

samples of (3.

The trace plots in Figure shows that the chains have converged for each of the

five prior variables. Figure shows that the prior and posterior distributions of
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the prior variables z,s are very similar, suggesting that the output from HadCMa3 is
not contributing much information to the posterior distribution. We are not learning
much about our prior variables with this model. Learning anything about the poste-
rior distribution is proving very difficult, as through our current method we are trying
to learn about a five-dimensional space, the prior model, using a single observation,
an ice core site. We therefore build a multivariate model that uses all four WAIS ice
core sites at the same time. This allows us to learn about the ice sheet shape from

four points instead of one, hopefully producing an updated posterior distribution.

6.4 The multivariate model for the WAIS ice core

sites

Our model is similar to the one described in [6.3] The input data, Z’, remains the
same, but the output y is now multivariate. It describes the distribution of each y;

using the values of Z as:
y, €RY 7' e RY™C B, eR° oy €R,

Bi ~ N(0,100), o1; ~ Inv_Gamma(l,1), (2)
yilZ'.Bi ~ N(Z'By,014), i=1,...4,

generating a different 3; for each ice core site.
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Figure 6.2: Trace plot of Z,s, generated using posterior samples of 3.
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We use the observations of 810 anomalies from ice cores to sample from the posterior
distributions of the z;, finding values that would create ice sheet shapes corresponding

to the 680 anomalies. We also include in the model

Zops € R?, 25 ~ N(0,diag(0.5,0.5,0.6,0.5,1))

r / 6
Zobs = (1 zObS)? Zobs € R

yobs,i‘zobsaﬁ ~ N(z(/)bsﬁh T), 1= 1, ...,4,

where y,s; is the anomaly at each ice core site ¢ and 7 is a fixed error. We wish
to learn more about z.,, the ‘true’ values of the prior variables that would create
an ice sheet shape that gives 6**O anomalies matching Yobs,i- Zobs are sampled from
their prior distributions, decided upon in Section when limits were given to
the prior variables, as are the 3;, and used along with the model above to sample
from their posterior distributions. For now, the standard deviation is set to just
the measurement error 771 = 0.5%0. From this we can find the marginal posterior

distributions

Zobs) /61. ’ Yy, Z7 Yobs,i-

Finally, we generate predictions of Ypred|Yy, Z, Yobs, what the §*O anomalies should
be at each ice core site given the sampled posterior distributions of z.s, and 3;.

These are found with samples from MCMC,

/
Ypred,i = zobsﬂi .

We can then compare the distribution of y,,.q to the value yus, which would show if
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our model is simulating accurate values of §'*0O anomalies.

6.4.1 Comparing model output to linear regression

Before we incorporate the GP emulator or EAIS sites, we check our model by com-
paring the output with a linear model of the data. This is done by building a linear
model

y=27b+e

with some linear coefficients, b and residual error e. We can then compare the values
of these coefficients to the posterior distributions of 3; to see if our model is producing

sensible values. The coefficients of the linear model are

—-8.06 —1.02 —6.48 —-2.69 —1.66 2.04
—3.45 485 181 —-326 0.05 —-045
751 =271 =877 089 0.00 -1.33
—6.16 142 —1.56 —-0.86 —5.61 0.79

oo
Il

(6.1)

We compare this to samples of the posterior mean of 3

—8.04 —-1.00 —6.46 —-2.66 —1.66 2.03

—-3.45 481 182 =322 0.03 -0.44
—7.52 =270 —=8.72 087 0.01 —-1.32
_—6.17 141 —-154 —-0.87 =559 0.79 |

and see that they closely match. This suggests that our model is sampling correctly.
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6.5 Incorporating the Gaussian process emulator

We now incorporate the Gaussian process emulator into our model. Whilst in Chap-
ter [5| we discussed finding values of our hyperparameters using the maximum like-
lihood method in the Python package GPy. Here, we describe in detail how this is

done in a Bayesian sense using MCMC.

As mentioned in [6.1.1], we use the Stan language to sample from our posterior dis-
tribution using MCMC. Stan is an open-source software built to code probability
models, make predictions and use posterior analysis to evaluate results, performing
MCMC with the use of the No-U-Turn Sampler (Hoffman and Gelman, [2011)). Here
we discuss the form our Gaussian process emulator takes in Stan, using some simple

examples for illustrative purposes.

The full model for a Gaussian process with normal outcome, y € R¥ with inputs

Z € RV*P for finite N and D, is
p,Q,01 € R?

p ~ Inv_Gamma(5,5),
a~N(0,1),

o1 ~ Inv_Gamma(l, 1),

D
-1
K(Zla,p)i; = a® exp {2—p2 Z(zi,d - Zj,d)2}7

d=1
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f~MVN(m(Z),K(Z)a,p)),
y ~N(f,07),

where p is the lengthscale parameter and « is the variance parameter, o; is the
variance of the emulator and K is the kernel described in [5.3] f is a function

Yn = f(z,) with a multivariate Gaussian distribution.

6.5.1 1-D example

We use a 1-D example to demonstrate how the model described in [6.4] works. Using
the function

f(z) = z +sin(z) + N(0,1),

plotted in Figure 6.4, we generate data
z1,y € RY

z1 ~ U[0,10], &%~ N(0,1),

Y =z + Sin(21> + 0'27 (2)

where o is a noise term. We also sample test data, z,s, taking values between 0 and

10, as data for which we want our model to simulate corresponding ys.

We combine z; and z, in to one input vector, z. We create a covariance function

with a squared exponential kernel for z, with a ~ A(0,1) and p ~ Inv_ Gamma(5, 5)
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f(2)

Figure 6.4: The function we are attempting to sample from with the example in

Section m
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as hyperparameters. To be computationally efficient, we find the Cholesky decom-
position of K(z|a, p). This is the lower triangular matrix Lx such that LxLL = K.

Taking a standard normal variate
n~N(Q0,1), neR",
where N is the length of vector z. If we set

f=Lgn

then
f~N(0,LgLy)

to find test points
y1 ~ N(f[1: NI]JO-Q)u

where N; is the length of z;, and generate training points
Yobs = N(f[(N1 +1) : (N1 + No)],0%)

where Ny is the length of z,,.

We plot the generated quatities, y.»s in Figure , with the data points (z1, y1)
plotted over. Our model seems to have been sampled correctly; we can see that z;
and y; constrain the variance of the model; areas of the model space with no input

or output data have more uncertainty than areas with clusters of data.
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Figure 6.5: Generated quatities from our 1D example described in Section [6.5.1]
Samples from the model are plotted as dashed lines, with data points (21, y;) repre-
sented as white dots.
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6.5.2 1-D inverse example

We now run the same model, this time generating z.,s values for some known obser-
vation y.ps. This is what we will do in our full model, as we have ice core observations

and want to sample prior input values that would create those isotope values.

We create a parameter z,s, given a Gaussian distribution. We calculate the covari-
ance function, K(z|«, p), and find the Cholesky decomposition Lx. We sample from

the model with y; and y.,s combined

y ~ N(f,0),

and calculate

Yprea = N(fIN1 + 1, 0]),

values of y given the estimates of z,,s our model has produced. Figure illustrates
what we are attempting to do here. The black curve shows the function we are
attempting to sample from. The red horizontal line is a possible observation, Yops,
with the corresponding z.,s shown as a vertical red line. The posterior density of

Zobs 18 plotted as a blue density curve.

We plot samples of y that our model generated in Figure [6.7) with points (z1,y:) in-
cluded. We then plot y,q as horizontal lines with y,, in red, and the corresponding
Zops estimates as vertical lines. We can see the model is quite accurately inferring

the values z,s could take that would give the value .
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f(2)

Figure 6.6: The function we are attempting to sample from with our model in Section
6.5.2, with a possible y,s represented as a horizontal red line, the corresponding z.ps
as a vertical red line, and the density of z,s shown as a blue density plot.
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10

Figure 6.7: Model output from our 1D inverse example in Section . Samples of
the model Equation [2| in Section are plotted as grey lines, with data (z1,y;)
plotted as points. We plot samples of y,,.q as horizontal black lines, with our ob-
servation y,ps represented by the red line. Samples of 2, corresponding to Yy eq are
represented by the vertical black lines.
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6.5.3 Automatic Relevance Determination

As we have multivariate inputs z; € R, we fit a scale parameter p, for each dimension

d to generalise the covariance function

|
Z— sz—zjd 2}.

2
—1 Pad

l\DI»—t

K (2|, p,0)y; = a’eap{ —

This allows us to model the lengthscale parameters for each of the five dimensions in
our model and see the relevance of the corresponding model parameters through the
values of the p, (Sandhu et al. 2017), as well as creating a more flexible model that
will allow us to predict better. We consider the prior and posterior distributions of
pa when analysing our hyperparameters in to see if any of our prior variables

are more relevant to the model than others.

6.6 Applying to the ice core data

Our model takes a similar multivariate approach to the examples above, in Sections

6.5.1]and [6.5.2] z; is our prior data, Z, a Ny = 47 x 5 matrix of prior variable values.

y1 is the corresponding 47 x N, matrix of HadCM3 6O anomalies, where N, is the
number of ice core sites we are modelling. vy is a vector of length N, containing
the 680 anomalies from ice cores. We aim to find a vector of length D, z.,, that
with our model would create values close to y,s. We then generate ypeq, the 650

anomalies created by inputting 2z, into our model.
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We add in a fixed standard deviation term for y,,.q that represents the measure-
ment error of the ice cores, 7, and the spatial variance between modelling a lati-
tude/longitude grid cell from HadCM3 and the location of the ice core site, 7. We
considered an error for the dating process, as the measurements are at different dates
in each ice core. However, as the LGM was a very broad period, with most global
ice sheets in equilibrium for several thousand years (Clark et al., [2009), we decided
that this was unnecessary. If modelling time periods with more rapid changes, such
as the deglaciation period up to 10 Ka BP, then a dating error would be necessary.
We give a value of 71 = 0.5%0 for the measurement error, and a value of 7 = 2.5%0
for the spatial error from looking at the standard deviation between HadCM3 model

grid cells surrounding the cell containing the ice core site.

Including the prior model in our emulator, we have for each of the Ny ice core sites

z RIS 4 = Yl cpes

Zobs Yobs

N
I

B eR® o}, eR"
Bi ~N(0,100) of; ~Inv_Gamma(l,1)
a® ~N(0,1) pg~ Inv_Gamma(5,5)
f~MVN(0,K(Z*|a? pg)) d=1,..5

Yl ~N(Z'Bi+ fof,+ 1 +73) i=1,...,No (3)
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We then generate
Ypredi = N(Z(/)bsﬁi + f[Nl + 1]7 O-ii + 7—12 + 7—22)7 (4)

Zops having the same prior distributions as in Section using the posterior sample

Zops tO create 6180 values close to Yops.

6.6.1 Modelling combined and separate ice sheets

Due to the discrepancies we saw between the HadCM3 output and the ice core
observations in the EAIS as described in Chapter 5], we focused on the WAIS initially
before incorporating the EAIS into the model. We can then compare how well we
model the ice sheets, together and separately. This allows us to see whether either
ice sheet is influencing results more than the other, and how modelling all ice core
sites together affects the posterior distributions of both z.s and yp.q. We run three
versions of our model: one for the four west ice core sites, one for the six EAIS ice core
sites, and one with all ten ice core sites together. We compare how modelling the ice
cores in regions and as a group affects the prediction of §'**O anomalies by plotting
densities of y,q for all three models, with the ice core observation superimposed.
Figure shows how well the model estimates §'*0 anomalies for models for the
WAIS, EAIS and all ice core sites. We can see that when the sites are separated by
ice sheet, the model generates §'*0O anomalies well. When all sites are combined, it

struggles with some sites both in the WAIS and EAIS.
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Figure 6.8: Comparing the generated densities of y,..¢ When modelling all ice core
sites vs modelling them in two groups. The black lines are the densities of y,,.q when
modelling all ice core sites. The red densities are from modelling the EAIS and WAIS
ice core sites separately. The vertical red lines are the observed §'*O anomalies. We
can see that there is a discrepancy between our model and the ice core observations
when modelling the WAIS and EAIS sites together. The densities of the 6O values
at the Mount Moulton, EDML and Taylor sites are all peaking further away from
the observations.
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6.6.2 Checking hyperparameters

We check the nugget term of the emulator, o;. If this was very large then the
emulator is not reducing uncertainty for the posterior distribution of the ice sheet
shape, and is not useful in our model. As we can see in Figure [6.9] which shows the
densities of the emulator nugget terms, the emulator variance at each ice core site is

peaking at values less than one, which is reassuringly small.

For our model with a lengthscale parameter for each dimension, we check the prior
and posterior distributions of them to see if anything is learned. Plots of this are
shown in Figure We can see that the posterior closely follows the prior dis-
tribution Inv_ Gamma(5,5), suggesting little has been learnt about the lengthscale
parameters from this process. The similarity in the values of all five lengthscale
parameters also suggests that the five prior variables are all equally relevant to the

model.

We now see how much is learned about the five prior variables through this process.
We plot histograms of the prior distribution of z,s with their posteriors superimposed
to compare how much we have learned. These are plotted in Figure [6.11] When the
ice core sites are modelled separately, there is some divergence between the prior
and posterior distributions of z,s. When the sites are combined into one model,
there is a much clearer difference between the prior and posterior distributions. We
therefore choose to continue our analysis using ice core sites from both ice core sheets
simultaneously. What this means in a geographical sense is discussed in Chapter [7]

where all three models are again assessed.
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Figure 6.9: Emulator nugget term, o, at each of the ice core sites. We can see the
variance at the ice core sites are small, mostly peaking at values less than one.
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Figure 6.10: Histograms of the posterior distributions of the length scale parameters,
pa d =1,....5, with their prior distributions superimposed in red. We can see that
little is learned about the lengthscales, and none of the prior variables appears to
have a significantly larger value, suggesting they are all equally relevant to the model.
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Figure 6.11: Histograms of prior distributions of z,,, with the posterior distributions
overlaid when modelling EAIS (green), WAIS (blue) and all (red) ice core sites. The
red density curves show that when modelling all ice core sites at once there is a
clearer difference between the prior and posterior distributions of z,,s - more so than
when modelling the ice sheets separately, particularly for the WAIS.
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6.7 Analysing model output

We make a pairs plot to look at the correlation between the posterior samples of
the five prior variables. This can be seen in Figure We add in the points that
reconstruct the four most ‘important’ shapes (ICE5G (Peltier, 2004), ICE6G (Argus
et al) 2014), W12A (Whitehouse et al. 2012) and GLAC-1D (Briggs et al., 2014))),
discussed in Section [3.3 to see where they lie in the posterior sample. In some
cases they are in the centre of the sample, suggesting that our model has created a
sample similar to these values. For other variables they are outliers, with ICE5SG at
the opposite end of the axis to the other three and the posterior sample plotted in
between. This suggests our model is sampling values of z; in the space in between

values that would reconstruct the four ‘important’ shapes.

6.7.1 Sensitivity analysis

We now perform a sensitivity analysis of our model to analyse the source of any

uncertainties.

We test our full model by increasing and decreasing the prior variance of the five
variables in our prior model. z,,, are the values we wish to simulate which would pro-
duce 580 anomalies close to the ice core observations through our model. Originally
we had

Zops ~ MVN(0,diag(0.5,0.5,0.6,0.5,1)).
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Figure 6.12: Pairs plot of posterior samples with the values for the first four ‘impor-
tant’ shapes added in. ICE5G is in red, ICE6G is in blue, W12A is in green and
GLAC-1D is in magenta. We can see that often they are grouped in the simulated
values, or spread out. When the ‘important’ shapes are outliers, the simulated values
appear in between.
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We firstly shrink the standard deviation to
Zops ~ MVN (0, diag(0.05, 0.05, 0.06, 0.05,0.1)).

We compare our posterior distributions of this version of z,s and the corresponding
Yprea to the distributions of z,s and y,eq in Section m These are shown in
Figures [6.13]and [6.14] The posteriors of z,s peak at the same points but the spread
of the sample is clearly affected by the prior standard deviation. §'*O anomalies are
generally generated close to the observations, although shrinking z, has affected

some ice core sites.

We then increase the prior standard deviation of z., to
Zops ~ N(0,diag(5, 5,6, 5,10)),

We compare our posterior distributions of this version of z,, and the corresponding
Ypred- These are in Figures and [6.16] The posterior distributions of z,s are very
different to the priors, as well as the previous posteriors. The y,,.q distributions

however are now being sampled much closer to the observed values.

We vary the size of the fixed standard deviation to see how much this is affecting
the predictions of the ice core sites. Figure m shows the densities of y,,.q when we
reduce the fixed standard deviation, 7 = 71 + 7o, where 7y is measurement error for
the isotopes and 7y is spatial error for HadCM3. We tested with 7 = 1 and 7 = 5,
compared to our chosen value of 7 = 3. We can see that when the fixed variance

is changed, there is little difference in the y,..q densities, suggesting that the fixed
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Figure 6.13: Histograms of the prior distributions of z,,, when the prior standard
deviation is shrunken by a scale of 10, with the density curve of the posterior distri-
butions overlaid in red. The densities of the posteriors are peaking at a similar point
to the distributions in Figure but the spread is much smaller.
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Figure 6.14: The distributions of y,..q (black curves), with the ice core observations
shown in red, when the prior standard deviation of z,,, is shrunken by a scale of 10.
Some of the ice core sites are clearly affected by the change, comparing this to Figure
[6.8] We can see that the Byrd, EDC, Talos and Vostok sites now have densities of
580 values peaking further away from the ice core observations.
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Figure 6.15: Histograms of the prior distributions of 2, when the prior standard
deviation is increased by a scale of 10, with the density curve of the posterior dis-
tributions overlaid in red. The posterior distributions have been updated a lot from
the priors, displaying a much different mean and variance.
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Figure 6.16: The distributions of y,..q (black curves), with the ice core observations
shown in red, when the standard deviation of z,, is increased by a scale of 10. We
can see the Mount Moulton, EDML and Taylor sites all have discrepancies compared
to the distributions in Figure [6.8]
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errors are not affecting our models’ capabilities of generating ice core anomalies close

to our observations.

6.8 Testing the model

We test the ability of the model incorporating all ice core sites to recover prior
variable values from §'80 anomalies. We do this in a series of ways: simulating
psuedo data and using this as input data, output data and observations, setting one
of our HadCM3 simulations as our observations and attempting to recover the input
values, and removing the data for an ice core site and seeing how well the model can

predict its observations.

6.8.1 Pseudo data

We simulate synthetic data with which to test our model by sampling from the
distributions of the z,.s and running these values through the HadCM3 emulators
built for the ten ice core sites, providing us with synthetic §'*0O anomalies. We then
use this as input for our model, setting one of the synthetic sets of §'80 anomalies as
Yobs- We want to test how well the model predicts values of z,,s when we know what
the ‘true’ values are. We plot the results in Figures and [6.19] and can see that

the posterior distributions of z.,, have updated a lot from the priors and are close
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Figure 6.17: The densities of y,..q at the ice core sites when the fixed variance is
varied. The blue line is when 7 = 1, green is the standard 7 = 3 and purple is 7 = 5.

The red vertical lines represent the ice core observations.
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to the actual values. The model is also producing generated quantities for y,,.q that
are close to the synthetic 680 anomalies we created. This suggests that our model
is capable of recovering prior variable values needed to calculate 80 close to known

values.

6.8.2 Recovering a HadCM3 simulation

We remove one of the HadCM3 climate simulations, so that we now have N; = 46.
We then set this simulation as our y,s, and generate values of z,s and compare
them to the known prior values. The posterior distributions of z,,, and generated
distributions of y,,eq can be seen in Figures and . We can see that our model
is recovering the 680 simulations and prior variable values well; the histograms of
the prior variables in Figure [6.20] are all peaking around the z values used to create
the orography used in the missing HadCM3 simulation. Similarly, Figure shows

that the 6180 are all peaking around the values from the missing HadCM3 simulation.

We check with a second simulation to see if our model is capable of recovering more
simulations. We can see in Figures and that our model is doing a good
job at recovering the ‘true’ values of z.,s and ., with the posterior distributions
of the variables all peaking close to the observations. We also compare the ice
sheet shape that our model recovers to the one we submitted as part of a HadCM3
simulation. Figures and show the differences between the orographies

used in the HadCM3 simulations and the shapes our model recovered. We can see
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Figure 6.18: Histograms of the posterior distributions of z,s, with density curves
of the prior distributions superimposed over them, when using synthetic data. The
true values of the synthetic z;’s are added as red vertical lines.
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Figure 6.19: The distributions of y,,.q when using synthetic data, with the synthetic
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our model has produced an accurate first simulation; the second shape recovered is

slightly larger than the original orography in places.

6.8.3 Recovering an ice core site

We further test the model incorporating all ice core sites by trying to recover an ice
core site. We wish to see if, by modelling only nine of the sites, we can create %0
anomalies close to the ice core observation at the missing ice core site. We do this
by removing the observation from Equation [3, so that we are not learning anything
about it from the input and output data. We then use Equation 4 to generate §'%0
anomalies for the missing ice core site and compare it to the observed value. A
histogram of the missing ice core site, Vostok, is in Figure [6.26] we can see that the
distribution of y,,.q for the missing ice core observation is peaking close to the true
value. However, the range of values is extremely large; as the 3;’s were given vague
priors with standard deviation of 100, we can see that the model has not updated
much from these. Further tests using other ice core sites showed that this applied
to sites in both ice sheets; the model struggled to recover an unknown site based on

the sampling of the other nine.

6.9 Summary of Chapter

We have calibrated our model and successfully sampled from the posterior distribu-

tions of our prior variables. Generated distributions of the ice core observations, as
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Figure 6.20: Histograms of the posterior distributions of z.,s, with density curves of
the prior distributions superimposed over them, when trying to recover a HadCM3
simulation. The true values of the synthetic z;’s are added on as red vertical lines.
We can see the posterior distributions are very different to the priors, and are parking
close to the observations.
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Figure 6.21: The distributions of y,,.q when recovering a HadCM3 simulation with
the synthetic observations added on as red vertical lines.
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Figure 6.22: Histograms of the posterior distributions of z,s, with density curves
of the prior distributions superimposed over them, when trying to recover a second
HadCM3 simulation. The true values of the synthetic z;’s are added on as red vertical
lines.
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Figure 6.23: The distributions of y,,.q When recovering a second HadCM3 simulation
with the synthetic observations added on as red vertical lines.
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Figure 6.24: The difference between an orography used in a HadCM3 simulation and
the shape our model recovered. We can see the model has created a shape slightly
smaller than the orography we were attempting to recover.
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Figure 6.25: The difference between a second orography used in HadCM3 and the
shape our model recovered. We can see that the model has been less successful
this time, creating an ice sheet shape thicker than the original one we attempted to
recover.
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Figure 6.26: The histogram of generated values of the recovered ice core site. The
ice core observation is plotted over as a red vertical line. The distribution of Y, eq
does not appear to have been adjusted much from the prior distributions of the
hyperparameters, suggesting our model struggles to recover an ice core site from the
other nine.
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well as the sensitivity analysis and model tests we have run, suggest that our model
is working well, with the distributions of y,,.q centred around the observations, and

inflated variances little affecting results.

In the next chapter, we discuss the geographical interpretations of our results, and
analyse the ice sheet orographies our model has produced and how they differ from

the reconstructions used to construct our prior model.
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Chapter 7

(Geographical Interpretations

In this chapter, we look into the geographical interpretations of the results discussed
in Chapter [6] The sampled posterior distributions of the prior variables are used in
our prior ice sheet shape model to create sets of LGM AIS orographies, we compare
these shapes as well as the variance in each set. We consider how different our

estimates are to the ice sheet reconstructions used to build our prior model.

7.1 Posterior shapes

We use the samples of the posterior distributions of z,,s to create posterior ice sheet

shapes and consider how plausible the shapes are, both when modelling the ice core

165
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sites as two separate regions or combined. Figures and shows the mean pos-
terior shape from the three models. Modelling just the WAIS ice core sites produces
an ice sheet reconstruction with a large extent but low elevation. When modelling
just the EAIS ice core sites, the ice sheet reconstruction is noticeably thicker, but
drops off much more quickly over the Ronne and Ross ice shelves (see Figure for
the location of these). When all AIS sites are modelled simultaneously, we can see
the heightened elevation in the EAIS remains, along with the discrepancies over the

ice shelves, whilst the WAIS is smoothed out.

Figure shows the difference between the mean posterior shape when modelling
all sites, and the mean posterior shapes when modelling sites as two sets. We can
see that the reconstructions for all sites and EAIS sites are very similar, whilst the
posterior shape created from just WAIS sites has more obvious differences in both
negative and positive differences in elevation. This would suggest the ice core sites in
the EAIS are heavily influencing the AIS model; given the issues with our HadCM3
simulations concerning the EAIS, discussed in Section and Figure this may
raise questions over the plausibility of the ice sheet shapes that our models create.
Due to the difficulties matching with proxy data, our emulators for the EAIS ice
core sites are extrapolating a long way from our simulations. This makes it harder
to trust in the results for the EAIS; the sparsity of data and the size of the ice sheet
makes it difficult to model the EAIS as a whole.

Figures [7.4] and show the standard deviation of the posterior reconstructions.
Modelling all ice core sites simultaneously greatly reduces the standard deviation in

our reconstructions; modelling sites in each ice sheet separately appears to result in a
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great deal of uncertainty in the other ice sheet. One of our aims in this thesis was to
reduce uncertainty around the AIS at the LGM; comparing the standard deviation
of the posterior ice sheet shapes from our models to Figure we can see there is

a lot less variance in our posterior shapes compared to the prior model.

Sets of ice sheet reconstructions from the three models are in Figures[7.6] [7.7 and [7.8]
We can see the reconstructions produced when modelling just the WAIS sites have
lower elevation, although the ice sheets are smoother. When modelling the EAIS
sites, or all sites combined, there are discrepancies in the ice sheet reconstructions,
particularly over the Ronne and Ross ice shelves. Our model is statistical and has
discarded the underlying physics of previous reconstructions; this means that it is
difficult to prevent small implausibilities in our posterior shapes such as holes in the
ice shelves. As such, the posterior ice sheet shapes that our models produce would
be best used as suggestions for the presence of ice at the LGM, and demonstrations
of where there is most uncertainty in predictions, rather than as a precise orography

estimate.

7.2 Comparing our orographies to previous recon-

structions

We compare our posterior shapes to four of the ice sheet reconstructions used to
build our prior model, ICE-5G (Peltier, 2004), ICE-6G (Argus et al., 2014), W12A
(Whitehouse et al., [2012)), and GLAC-1D (Briggs et al) [2014)). These are the four
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(a) The mean posterior ice sheet reconstruction when modelling the WAIS ice core sites.
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(b) The mean posterior ice sheet reconstruction when modelling the EAIS ice core sites.

Figure 7.1: The mean posterior ice sheet reconstructions when modelling WAIS
and EAIS ice core sites separately. We can see that using the EAIS ice core sites
produces a mean reconstruction with more extreme high and low values. The mean
reconstruction from the WAIS ice core sites is smoother.
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Figure 7.2: The mean posterior ice sheet reconstruction when modelling all ice core
sites.
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Figure 7.3: The difference between the mean posterior reconstruction of the model
using all sites, and the models separating sites into EAIS (left plot) and WAIS (right
plot). We can see that the mean reconstruction created from just WAIS ice core sites
leads to an ice sheet shape of more extreme values than using all sites together.
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(a) The standard deviation of the posterior ice sheet reconstructions when modelling the
WALIS ice core sites.
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(b) The standard deviation of the posterior ice sheet reconstructions when modelling the
EAIS ice core sites.

Figure 7.4: The standard deviation of the posterior ice sheet reconstructions when
modelling WAIS and EAIS ice core sites separately.
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Figure 7.5: The standard deviation of the posterior ice sheet reconstructions when
modelling all ice core sites.
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Figure 7.6: Posterior shapes from modelling the WAIS ice core sites.
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Figure 7.7: Posterior shapes from modelling the EAIS ice core sites.
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Figure 7.8: Posterior shapes from modelling all of the ice core sites.
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reconstructions used in the first round of PCA, as described in Section 3.3, This
allows us to see where the posterior reconstructions disagree with the original ice
sheet reconstructions. We cannot compare our posterior ice sheet shapes to all proxy
evidence or reconstructions, as that is beyond the scope of this work. We compare our
results to the four reconstructions we originally started with to give some examples

of how our method differs to previous work.

We can see in Figures [7.9] and that all models, whether incorporating only
WAIS, EAIS, or all ice core sites, produce ice sheets with a lower elevation than
ICE-5G. This is not unexpected, as ICE-5G has a much thicker Antarctic ice sheet

than later models due to updated methodologies, as described in |Argus et al.| (2014).

Our model also has a lower coastal region than ICE-6G, and when modelling the
EAIS ice core sites, there are obvious differences over the Ronne and Ross ice shelves.
Despite this, our model using all sites is producing shapes with a higher elevation
over the EAIS than the reconstructions used in our prior model, suggesting this is
where some of the "missing ice", described in and previously unaccounted for

in other ice sheet reconstructions, may be found.

Looking at Table we can see that modelling all ice core sites at once produces
the ice sheets with highest mean elevation. Although still smaller than ICE-5G, the
average shape from our model is a lot larger than the other three reconstructions.
Due to the lack of physical modelling underlying our ice sheet shapes, we are unable

to give an estimate of the ice volume or area that our posterior shapes hold. This
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Modelling WAIS sites Modelling EAIS sites Modelling all sites
ICE-5G -214673.99 -134678.46 -107646.68
ICE-6G -16260.46 63735.07 90766.84
WI12A 46272.65 126268.18 153299.95
GLAC-1D 40381.59 120377.12 147408.89

Table 7.1: Total difference in the mean elevation (m) of the posterior reconstructions
when modelling WAIS, EAIS or all ice core sites, and four of the original ice sheet
reconstructions.

means we cannot judge the sea level contribution of our posterior ice sheet shapes,

as that would be beyond the remit of this thesis.

There is much to consider when comparing the two methods of finding posterior
ice sheet shapes, modelling the ice core sites altogether or in two separate groups.
Modelling all sites combined results in a mean posterior shape with higher elevation
and less uncertainty than the models using WAIS and EAIS ice core sites separately.
We can also see in Figure[6.1T]that this model gives posterior distributions that differ
more from the prior distributions of z,,, suggesting that we are learning more about
the distributions of z,, and the AIS at the LGM when modelling all ice core sites
together. Although there is a slight discrepancy in the generated distributions of
Yprea compared to the distributions when the ice core sites are modelled separately
as EAIS and WAIS sites, as can be seen in Figure [6.8, the differences are small.
The model incorporating all ice core sites therefore seems to give the better estimate
of the AIS at the LGM, giving an approximate ice sheet shape and elevation with

reduced uncertainty.
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Figure 7.9: The difference between the posterior mean shape our model creates
when using the WAIS ice core sites and the four ice sheet reconstructions used in the
first PCA. Clockwise they are ICE-5G (Peltier} [2004), ICE-6G (Argus et all [2014)),
GLAC-1D (Briggs et al),[2014) and W12A (Whitehouse et al, [2012).
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Figure 7.10: The difference between the posterior mean shape our model creates
when using the EAIS ice core sites and the four ice sheet reconstructions used in the
first PCA. Clockwise they are ICE-5G (Peltier} [2004), ICE-6G (Argus et all [2014)),
GLAC-1D (Briggs et al), [2014) and W12A (Whitehouse et al, [2012).
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Figure 7.11: The difference between the posterior mean shape our model creates
when using all ice core sites and the four ice sheet reconstructions used in the first
PCA. CClockwise they are ICE-5G (Peltier] 2004), ICE-6G (Argus et all [2014),
GLAC-1D (Briggs et al), [2014) and W12A (Whitehouse et al, [2012).
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7.3 Summary of Chapter

We have shown that our model produces ice sheet shapes with less uncertainty than
previous reconstructions by considering Figures [7.4] and 1.2 We can see that
our posterior ice sheet shapes have less uncertainty than the set of ice sheet recon-
structions we used to build the prior model. Although not as large as ICE-5G, our
mean posterior shapes are larger than previous reconstructions, accounting for some
of the "missing ice" at the LGM. Due to the statistical nature of our model, we are
unable to give an estimate of the contribution our posterior reconstructions make to
global sea level rise; this would be an area of interest in future work. Despite issues
modelling the EAIS resulting from our HadCM3 simulations, we believe a model
using all ice core sites together gives the best reconstruction of the AIS at the LGM,

estimating the shape with reduced uncertainty.
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Chapter 8

Conclusions

We have demonstrated the success our method has at modelling the relationship
between the AIS orography at the LGM and §'®*O anomalies from ice cores, and
considered the geographical interpretations of these results including the posterior
ice sheet shapes that our methods have produced. Here we discuss our findings, and
consider some issues and further work. Several items of interest are beyond the remit

of this thesis but would be of interest for future research.

183



184 CHAPTER 8. CONCLUSIONS

8.1 Discussion

8.1.1 Scientific Findings

Our methods have produced ice sheets with less variance than our prior model and
reduced the uncertainty around the AIS at the LGM. Our method of course relies on
the previous reconstructions all being plausible for the LGM, and the model space
they describe containing all possible shapes. We are therefore reliant on the belief
that this model space does not exclude the "true" ice sheet shape, as that would
make it impossible for our model to recover it. Posterior samples (Figure show
that we are taking values of the prior variables in the model space around our four
"important" reconstructions ICE-5G (Peltier, 2004), ICE-6G (Argus et al., [2014),
W12A (Whitehouse et al., |2012), and GLAC-1D (Briggs et al., [2014). These are
the four reconstructions used in the first round of PCA, as described in Section [3.3]
Our model is built on the variance within and between these reconstructions; we are
dependent on the prior beliefs of the modellers who created these reconstructions

being accurate.

Our posterior ice sheet shapes are larger than the majority of the previous recon-
structions. An exception is ICE-5G, which is recognised by the palaeoclimatological
community to have a larger ice mass at Antarctica than is currently accepted (Peltier,
et al., 2015). This increase in size in our estimates confirms the widely held belief
that at least some of the "missing ice" at the LGM can be found in the AIS (Simms

et all [2019). Although we are not able to give an estimate of the ice volume and
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corresponding sea level contribution from our posterior shapes, unlike previous re-
constructions, we have provided estimates of where this ice may be, and the standard
deviation within our model in Figure[7.5] Such uncertainty statements may point to
directions for future modelling and/or observational work that could allow further

refinement of the estimates.

8.1.2 Statistical Findings

We have created a novel approach to weighted PCA, as described in Section [3.3.3]
This allows the use of data when there is an obvious split in the relevance or impor-
tance of sources or variables. It also allows for the incorporation of more data at a
later date, and can assist in ranking data by prior beliefs about its influence on the
subject of interest, and the use of related but unequal data sets. Situations such as
our are not exclusive to the climatology community, and this weighted PCA method

is applicable to many other areas.

We have demonstrated a way of combining prior knowledge, expert elicitation, GP
emulation and Bayesian inference to model the uncertainty around aspects of the
palaeoclimate. Building on the previous work of [Domingo et al.| (2020, we have
refined how the prior model was built and the process of selecting a set of orographies
to input into HadCM3. We have shown the success of building an emulator of a
climate model, which gives the possibility of future uses in other aspects of statistical
analysis of climatology. We chose a relatively stable and recent time period - the

LGM was a very broad event; conditions changed very slowly, allowing us to disregard
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any dating errors in the isotopes as described in [6.6] The stable nature of the time
period meant we could model it statistically. If applying this method to a less stable
period, when ice sheets were more in flux and the climate changing more quickly,

then further uncertainties would have to be incorporated in to the calibration model.

8.2 Future Work

The orographies we chose to input into HadCM3 appear to have been too low to
create isotope values similar to ice core observations for the ice cores from the EAIS,
as can be seen in Figure [5.3] Whether this was due to a model discrepancy within
HadCM3, or an error in our elicitation process, is difficult to tell. Any future at-
tempt to replicate this method should check the choices of orographies before running
simulations on HadCM3, whether through a more detailed or rigorous expert elici-
tation process, or by staggering the simulations so that there can be a preliminary
exploratory data analysis of an initial set of simulations, with adjustments made

according to early results.

There appear to be discrepancies over the Ronne and Ross ice shelves in our posterior
shapes, as discussed in Chapter []} We did not have the time or resources to investi-
gate the causes of this. It occurred when the EAIS ice core sites were incorporated
into our calibration model, so may be a consequence of the §'80 simulations from

HadCM3 not matching the ice core observations.
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We have created a statistical model, having discarded the underlying physical models
of the ice sheet reconstructions. As a result, our model can output implausible ice
sheet shapes; a future collaboration with ice sheet modellers and climatologists could
provide further constraints on our model to improve output. In particular, the edges
of the ice sheets that our model creates require smoothing. The coarseness of the
HadCM3 latitude/longitude grid and the lack of physics in our model means it is
hard to control where the ice sheet cuts off in our output, resulting in shapes that are
jagged and unrealistic, with occasional holes where the ice sheet thins. This means
our posterior ice sheet shapes can only be viewed as guides for the location of ice,
rather than a precise map of the AIS at the LGM. Our conclusions in Chapter [7]

have therefore been on elevation rather than exact orographies.

Further testing with another GCM could allows us to understand better any biases
inherent in HadCM3 and that we may not have been able to remove from our model
(Domingo et al., 2020). The possible model discrepancy causing our difficulties with
modelling the EAIS could then be further investigated, along with any other errors
our choice of GCM has created. As discussed in Section the EAIS ice core sites
appear to heavily influence our model despite the difficulties we have encountered.
If carrying out a similar approach in the future, carefully constraining the GCM
simulations or choosing a time period with more available proxy data could avoid this
issue. More data, whether from ice cores or otherwise, would mean less extrapolation
over the ice sheet would take place in our model. However, we are hampered by the
nature of proxy data collection, as we cannot control when, how or where such data
is collected. Particularly for the EAIS, the rate of accumulation of data is slow, and

collection is difficult due to the inhospitable conditions.
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As already stated, it is beyond the remit of this work to give an estimate of sea
level contribution from our posterior ice sheet shapes. A conversion from our eleva-
tion estimates to ice volume would be useful to see how much of the "missing ice”
at the LGM is placed in Antarctica by our method, and would contribute to the

understanding of how the AIS has reacted to the changing climate.

In summary, the methods proposed in this thesis could be applied easily to any
time period or climate variable given that there is adequate proxy data and prior
knowledge. Indeed they could be used for any application that has expert beliefs,
a complex simulator that is too computationally expensive to run numerous times,
and a set of observations with which to compare emulator output. Furthermore, in
developing our suite of models and methods we have tackled some problems, and
provided tools, that are likely to be relevant to others working within and beyond

climate science.
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A Design of eighty shapes from elicitation.
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B Post-processing scripts for HadCM3 output.

B.1 data process Plrun.py

#!/usr/bin/env python2.7

Author: Max Holloway, Date: Oct 2016
Use: Date processing script using iris to extract variables from
individual UM .pp files (using STASH codes) and merge into single time

series cube and save as monthly time series in ’expID’/monthly directory

H OH O H H H

script use; python /home/users/mholloway/python/data_process.py experiment_name

import sys

import os

exec (open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts/
startup.py’) .read())
exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts/
my_defs.py’) .read())

exec (open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts
/my_cmaps.py’) .read())

exec (open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts
/my_plots.py’) .read())

data_root=’/Volumes/shared/wilkinson_uql/User/smql5fet’
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= O#F OH O HF OH H O OH O HF O OH OHF OH OH OH OH OH OH OH O H OH O H OH OH OH H H H

get variable stash codes

pd files:

water_sublimation_flux_in_timestep m01s03i231
Evaporation flux from open sea m01s03i232
air_pressure_at_sea_level m01s16i222
air_temperature / (K) m01s03i236
precipitation_flux / (kg m-2 s-1) m01s05i216
relative_humidity / (%) m01s03i245
sea_ice_area_fraction / (1) m01s00i031
sea_ice_thickness / (m) m01s00i032
snowfall_amount / (kg m-2) m01s00i023
specific_humidity / (1) m01s03i237
surface_air_pressure / (Pa) m01s00i001
surface_temperature / (K) m01s00i024

surface_upward_latent_heat_flux / (W m-2) m01s03i234

surface_upward_sensible_heat_flux / (W m-2) m01s03i217

toa_incoming_shortwave_flux / (W m-2) m01s01i207
toa_outgoing_longwave_flux / (W m-2) m01s02i205
toa_outgoing_shortwave_flux / (W m-2) m01s01i208
wind speed m01s031230

y_wind m01s031226

x_wind m01s031225

3D fields - pc files

air_temperature / (K) m01s16i203
geopotential_height / (m) m01s16i202
relative_humidity / (%) mO01s16i204

207
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# specific_humidity m01s151226

# x_wind / (m s-1) m01s15i201

# y_wind / (m s-1) m01s15i202

#

# pd_name_list=[’water_sublimation_flux’,’evap_flux,air_pressure_at_sea_level’,
’air_temperature’, \

# ’precipitation_flux’,’relative_humidity’,’sea_ice_area_fraction’,
’sea_ice_thickness’,’snowfall_amount’, \

# ’specific_humidity’,’surface_air_pressure’,’surface_temperature’,
’surface_upward_latent_heat_flux’, \

# ’surface_upward_sensible_heat_flux’,’toa_incoming_shortwave_flux’,’
toa_outgoing_longwave_flux’, \

# >toa_outgoing_shortwave_flux’,’wind_speed’,’y_wind’,’x_wind’]

# pass experiment to be processed
expID=str(sys.argv[1]) # ’xluba’

print( "Processing experiment", expID)

pd_stash_list=[’m01s03i231°,°m01s03i232°,°’m01s16i222°,°m01s031236°,’m01s05i216°,’
m01s03i245°, \
’'m01s001031°’,°’m01s001032”,’m01s001023”,’m01s031237’,°m01s001001’,
’'m01s001024°, \
’'m01s01i207°,°m01s021205°,°m01s01i208’,’m01s031230’,’m01s031226°,
'm01s031225°]



B. POST-PROCESSING SCRIPTS FOR HADCM3 OUTPUT. 209

for VAR in range(len(pd_stash_list)):
#filename = iris.sample_data_path(’’+data_root+’/’+expID+’/pcpd/’
+expID+’a@pdx*’)
filename = ’’+data_root+’/’+expID+’/’+expID+’a.pd*’
#print (filename)
stash_constraint = iris.AttributeConstraint
(STASH=str(pd_stash_list[VAR]))
#if os.path.getsize(filename) > O:
cube = iris.load_cube(filename, stash_constraint)
cube_name = cube[-1].standard_name
if cube[-1].standard_name == None:
cube_name = cube[-1].long_name

print( "saving", str(cube_name))

print( str(cube_name), ": start date =", str(cube.coord(’time’) [0]))
print( str(cube_name), ": end date =", str(cube.coord(’time’)[-1]))
iris.save(cube, ’’+data_root+’/’+expID+’/monthly/’+expID+’.°

+str(cube_name)+’

.monthly.nc’)#, netcdf_format="NETCDF3_CLASSIC")

# Isotopes in precipitation are in STASH code 338 -
levels of the field corrospond as

follows:

# O=large scale rain 160

# l1=large scale rain 18o
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2=large scale rain deuterium
3=large scale snow 160
4=large scale snow 180
b=large scale snow deuterium
6=convective rain 160
7=convective rain 180
8=convective rain deuterium
9=convective snow 160

10=convective snow 180

= O H# O #F= O H O H#H= O H OH= O H O H H

l11=convective snow deuterium

filename = ’’+data_root+’/’+expID+’/’+expID+’a.pc*’

stash_constraint = iris.AttributeConstraint (STASH="m01s00i338’)
precip_isotopes = iris.load(filename, stash_constraint)
iris.save(precip_isotopes, ’’+data_root+’/’+expID+’/monthly/’+expID+’.

precip_isotopes.monthly.nc’)

isotopes = [’d160_lsrain’,’d180_lsrain’,’d2H_lsrain’,’d160_lssnow’,’d180_lssnow’,
’d2H_lssnow’,\
’d160_cnrain’,’d180_cnrain’,’d2H_cnrain’, >d160_cnsnow’,’d180_cnsnow’,
’d2H_cnsnow’] # Define strings to hold different isotope species

(ordered as above)

for typ in range(len(isotopes)):

locals() [isotopes[typ]] = precip_isotopes[typ]
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H2016 d160_1lsrain + d160_cnrain + d160_lssnow + d160_cnsnow

H2018

d180_1lsrain + d180_cnrain + d180_lssnow + d180_cnsnow
d180=((((H2018/H2016) /Rsmow018) -1)*1000) # OXYGEN-18
d180.data[d180.data > 100] = N.nan

d180.data[d180.data < -100] = N.nan
d180.data=N.ma.masked_invalid(d180.data)
d180.var_name,d180.long_name = u’d180’,u’d180’ # change cube name
print("d180")

iris.save(d180, ’’+data_root+’/’+expID+’/monthly/’+expID+’.d180.monthly.nc’)

H2 = d2H_lsrain + d2H_cnrain + d2H_lssnow + d2H_cnsnow
d2H=((((H2/H2016) /RvsmowD) -1)*1000) # DEUTERIUM

d2H.data[d2H.data > 100] = N.nan

d2H.data[d2H.data < -1000] = N.nan

d2H.data=N.ma.masked_invalid(d2H.data)

d2H.var_name,d2H.long_name = u’deuterium’,u’deuterium’ # change cube name
print ("deuterium")

iris.save(d2H, ’’+data_root+’/’+expID+’/monthly/’+expID+’.deuterium.monthly.nc’)

B.2 data process.py

#!/usr/bin/env python2.7
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# Author: Max Holloway, Date: Oct 2016

# Use: Date processing script using iris to extract variables from

# individual UM .pp files (using STASH codes) and merge into single time

# series cube and save as monthly time series in ’expID’/monthly directory

# script use; python /home/users/mholloway/python/data_process.py experiment_name

import sys
import os
exec(open(’/Users/fionaturner/Documents/HADCM3-output/startup.py’) .read())
exec(open(’/Users/fionaturner/Documents/HADCM3-output/my_defs.py’) .read())
exec(open(’/Users/fionaturner/Documents/HADCM3-output/my_cmaps.py’) .read())
exec(open(’/Users/fionaturner/Documents/HADCM3-output/my_plots.py’) .read())

data_root=’/Volumes/shared/wilkinson_uql/User/smql5fet’

get variable stash codes

pd files:

water_sublimation_flux_in_timestep m01s03i231
Evaporation flux from open sea m01s03i232
air_pressure_at_sea_level m01s16i222
air_temperature / (K) m01s03i236
precipitation_flux / (kg m-2 s-1) m01s05i216
relative_humidity / (%) m01s03i245
sea_ice_area_fraction / (1) m01s00i031
sea_ice_thickness / (m) m01s00i032

snowfall_amount / (kg m-2) m01s00i023

= O#F OH O HF O OH O H OH O H OH H OH O H

specific_humidity / (1) m01s03i237
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surface_air_pressure / (Pa) m01s00i001
surface_temperature / (K) m01s00i024
surface_upward_latent_heat_flux / (W m-2) m01s03i234
surface_upward_sensible_heat_flux / (W m-2) m01s03i217
toa_incoming_shortwave_flux / (W m-2) m01s01i207
toa_outgoing_longwave_flux / (W m-2) m01s02i205
toa_outgoing_shortwave_flux / (W m-2) m01s01i208

wind speed m01s031230

y_wind m01s031226

#

#

#

#

#

#

#

#

#

# x_wind m01s03i225
# 3D fields - pc files

# air_temperature / (K) m01s16i203

# geopotential_height / (m) m01s16i202

# relative_humidity / (%) m01s16i1204

# specific_humidity mO01s151226

# x_wind / (m s-1) m01s15i201

# y_wind / (m s-1) m01s15i202

#

# pd_name_list=[’water_sublimation_flux’,’evap_flux,air_pressure_at_sea_level’,
’air_temperature’, \

# ’precipitation_flux’,’relative_humidity’,’sea_ice_area_fraction’,
’sea_ice_thickness’,’snowfall_amount’, \

# ’specific_humidity’,’surface_air_pressure’,’surface_temperature’,
’surface_upward_latent_heat_flux’, \

# ’surface_upward_sensible_heat_flux’,’toa_incoming_shortwave_flux’,

>toa_outgoing_longwave_flux’, \
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>toa_outgoing_shortwave_flux’,’wind_speed’,’y_wind’,’x_wind’]

# pass experiment to be processed

expID=str(sys.argv[1]) # ’xluba’

print( "Processing experiment", expID)

pd_stash_list=[’m01s03i231°,°m01s03i232’,°m01s161222,°m01s031236°,°m01s05i216°,

'm01s031245°, \

for VAR

'm01s00i031”, ’m01s00i032”, >’m01s0010237,°m01s03i237’, ’m01s00i001°,
’'m01s001024°, \

'm01s01i207°, ’m01s02i205°, >’m01s01i2087,°m01s03i230’, *m01s03i226°
'm01s03i225°]

in range(len(pd_stash_list)):

#filename = iris.sample_data_path(’’+data_root+’/’+expID+’/pcpd/’+expID+
’a@pd*’)

filename = ’’+data_root+’/’+expID+’/pcpd/’+expID+’a@pdx*’

#print (filename)

stash_constraint = iris.AttributeConstraint (STASH=
str(pd_stash_list[VAR]))

#if os.path.getsize(filename) > O:

cube = iris.load_cube(filename, stash_constraint)

cube_name = cube[-1].standard_name

if cube[-1].standard_name == None:



B. POST-PROCESSING SCRIPTS FOR HADCM3 OUTPUT. 215

cube_name = cube[-1].long_name

print( "saving", str(cube_name))

print( str(cube_name), ": start date =", str(cube.coord(’time’) [0]))
print( str(cube_name), ": end date =", str(cube.coord(’time’)[-1]))
iris.save(cube, ’’+data_root+’/’+expID+’/monthly/’+expID+’.

>+str (cube_name)+’ .monthly.nc’)#, netcdf_format="NETCDF3_CLASSIC")

# Isotopes in precipitation are in STASH code 338 - levels of the field
corrospond as follows:

# O=large scale rain 160

# l=large scale rain 180

# 2=large scale rain deuterium
# 3=large scale snow 160

# 4=large scale snow 180

# b=large scale snow deuterium
# 6=convective rain 160

# T7=convective rain 18o

# 8=convective rain deuterium

# 9=convective snow 160

# 10=convective snow 180

#

l11=convective snow deuterium

filename = ’’+data_root+’/’+expID+’/pcpd/’+expID+’a@pcx*’

stash_constraint = iris.AttributeConstraint (STASH="m01s001338’)
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precip_isotopes = iris.load(filename, stash_constraint)
iris.save(precip_isotopes, ’’+data_root+’/’+expID+’/monthly/’+expID+

> .precip_isotopes.monthly.nc’)

isotopes = [’d160_lsrain’,’d180_lsrain’,’d2H_lsrain’,’d160_lssnow’,’d180_lssnow’,
’d2H_1ssnow’,\
’d160_cnrain’,’d180_cnrain’,’d2H_cnrain’, >d160_cnsnow’,’d180_cnsnow’,
>d2H_cnsnow’ ]

# Define strings to hold different isotope species (ordered as above)

for typ in range(len(isotopes)):

locals() [isotopes[typ]] = precip_isotopes[typ]

H2016

d160_lsrain + d160_cnrain + d160_lssnow + d160_cnsnow

H2018 d180_1lsrain + d180_cnrain + d180_lssnow + d180_cnsnow
d180=((((H2018/H2016) /Rsmow(018)-1)*1000) # OXYGEN-18
d180.data[d180.data > 100] = N.nan

d180.data[d180.data < -100] = N.nan
d180.data=N.ma.masked_invalid(d180.data)
d180.var_name,d180.long_name = u’d180’,u’d180’ # change cube name
print ("d180")

iris.save(d180, ’’+data_root+’/’+expID+’/monthly/’+expID+’.d180.monthly.nc’)

H2 = d2H_lsrain + d2H_cnrain + d2H_lssnow + d2H_cnsnow
d2H=((((H2/H2016) /RvsmowD) -1)*1000) # DEUTERIUM
d2H.data[d2H.data > 100] = N.nan
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d2H.data[d2H.data < -1000] = N.nan

d2H.data=N.ma.masked_invalid(d2H.data)

d2H.var_name,d2H.long_name = u’deuterium’,u’deuterium’ # change cube name
print ("deuterium")

iris.save(d2H, ’’+data_root+’/’+expID+’/monthly/’+expID+’.deuterium.monthly.nc’)

B.3 my cmaps.py

# CUSTOM COLOURMAPS

#execfile(’custom_cmaps.py’)

import matplotlib.colors as mcol
g s s s
## GLOBALS

##
COLOR1

"#2CT722F° #green

COLOR2 = ’#8C201E’ #red

COLOR3 = ’#224E73’ #purple

COLOR4 = ’#DEA00O’ #yellow

COLOR5 = ’#078CT7A’ #cyan

COLOR6 = ’#EE1904° #lighter red
COLOR7 = °*#32AE1C’ # lighter green

COLDARKGREEN = ’*#007D1C’
COLDARKRED = ’#A61000°
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COLDARKBLUE = ’#015666°

COLDARKYELLQOW ’#A65100°

COLLIGHTGREEN ’#38E05D’

COLLIGHTRED = ’#FF5240°
COLLIGHTBLUE = ’#37B6CE’
COLLIGHTYELLOW = ’#FF9D40’

COLDARKGREEN = ’*#007D1C’
COLDARKRED = ’#9F0025°
COLDARKPURPLE = °’#42036F’
COLDARKBLUE = ’#06266F°

COLDARKYELLQOW *#A66F00°

COLGREEN = °#1AD644°
COLRED = ’#D61A1A°
COLPURPLE

*#D61AAC?
COLBLUE = °’#1A4ED6’

COLYELLOW ’#E4EB2F’

COLLIGHTGREEN = ’#38E05D’
COLLIGHTRED = ’#B12D4C’
COLLIGHTBLUE = ’#4671D5’°

COLLIGHTYELLOW *#FFBF40°

COLLIGHTPURPLE *#963FDb°
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COLLIST!1 = mcol.LinearSegmentedColormap.from_list(’hagcolors’, [COLDARKGREEN,
COLDARKRED, COLDARKPURPLE, COLDARKBLUE, COLDARKYELLOW])

COLLIST2 = mcol.LinearSegmentedColormap.from_list(’hagcolors’, [COLDARKPURPLE,
COLDARKBLUE, °’White’, ’White’, COLDARKYELLOW, COLDARKRED])

COLLIST3 = mcol.LinearSegmentedColormap.from_list(’hagcolors’, [COLDARKPURPLE,
COLDARKBLUE, ’White’, COLDARKYELLOW, COLDARKRED])

COLMAP1 = mpl.colors.LinearSegmentedColormap.from_list(
’COLMAP17,
[COLLIGHTGREEN, COLDARKGREEN , COLDARKGREEN ,
’White’, COLLIGHTRED, COLLIGHTRED,
COLLIGHTPURPLE ], N=200)

COLMAP2 = mpl.colors.LinearSegmentedColormap.from_list(
’COLMAP1’,
[COLLIGHTGREEN, COLDARKGREEN, ’White’, COLDARKRED, COLLIGHTRED], N=200)

#name=’hess’,’milagro’

#°GC’,’GC_DISCRETE’, ’wigner_cmap’

COLDARKBLUE = ’#015666°
COLLIGHTBLUE = ’#37B6CE’
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COLDARKBLUE = ’#06266F’
COLBLUE = °#1A4ED6’°
COLLIGHTBLUE = °’#4671D5’

COLDARKGREEN = ’#007D1C’

COLLIGHTGREEN = ’#38E05D’

COLDARKGREEN = ’#007D1C’

COLGREEN = °’#1AD644°

COLLIGHTGREEN = ’#38E05D’

COLDARKYELLOW *#A65100°

COLLIGHTYELLOW = °#FF9D40’
COLDARKYELLOW = ’#A66F00°
COLYELLOW = °’#E4EB2F’

COLLIGHTYELLOW = °#FFBF40’

COLDARKRED = ’#A61000°
COLLIGHTRED = ’#FF5240°
COLDARKRED = ’#9F0025°
COLRED = ’#D61A1A°

COLLIGHTRED = °’#B12D4C’°

COLDARKPURPLE = ’#42036F°
COLPURPLE = ’#D61AAC’
COLLIGHTPURPLE = °#963FD5’
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COLLIST!1 = mcol.LinearSegmentedColormap.from_list(’hagcolors’, [COLDARKBLUE,
COLBLUE, COLLIGHTBLUE, *White’,’White’ ,#COLDARKGREEN, COLLIGHTGREEN,
#COLDARKGREEN , COLGREEN, COLLIGHTGREEN, COLLIGHTYELLOW,
COLYELLOW, COLDARKYELLOW, COLLIGHTRED, COLRED , COLDARKRED,
COLLIGHTPURPLE#,COLDARKPURPLE

D)

COLLIST2 = mcol.LinearSegmentedColormap.from_list(’hagcolors’, [COLDARKBLUE,
COLBLUE, COLLIGHTBLUE, *White’,’White’ ,#COLDARKGREEN, COLLIGHTGREEN,
#COLDARKGREEN , COLGREEN, COLLIGHTGREEN, COLLIGHTYELLOW,
COLYELLOW, COLDARKYELLOW, COLLIGHTPURPLE, COLLIGHTRED, COLRED,
COLDARKRED, #, COLDARKPURPLE

1

COLLIST3 = mcol.LinearSegmentedColormap.from_list(

‘colors?’, [

’MidnightBlue’,’Navy’,’CornflowerBlue’, ’DarkSlateBlue’,’SlateBlue’,
’MediumSlateBlue’,’MediumBlue’,’RoyalBlue’,’Blue’, ’DodgerBlue’,
’DeepSkyBlue’, ’SkyBlue’,’LightSkyBlue’,’SteelBlue’, ’LightSteelBlue’,
’LightBlue’,’PowderBlue’,’DarkTurquoise’,’MediumTurquoise’,
’Turquoise’,’Cyan’,’LightCyan’,

’White’,’White’,’White’,’White’,’White’,’White’,’White’,’White’,

’LightYellow’,’Yellow’,’Gold’,’Goldenrod’, ’DarkGoldenrod’,

’SandyBrown’,’Tan’,’Chocolate’, ’Firebrick’, ’Brown’,

’DarkSalmon’,’Salmon’,’LightSalmon’, ’Orange’,’DarkOrange’,’Coral’,

’LightCoral’,’Tomato’,’0OrangeRed’, ’Red’,
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’Violet’#,’Plum’,’0rchid’, ’Medium0Orchid’, ’DarkOrchid’, ’DarkViolet’,
’BlueViolet’,’Purple’, ’MediumPurple’
1

COLLIST4 = mcol.LinearSegmentedColormap.from_list(
>colors’, [
’MidnightBlue’,’Navy’,#’CornflowerBlue’,#’DarkSlateBlue’,’SlateBlue’,
’MediumSlateBlue’ ,#’MediumBlue’ ,#’RoyalBlue’,
’Blue’ ,#’DodgerBlue’ ,#
’DeepSkyBlue’ ,#’SkyBlue’ ,#’LightSkyBlue’ ,#’SteelBlue’,’LightSteelBlue’,
#’LightBlue’,
#’PowderBlue’ ,#’DarkTurquoise’, ’MediumTurquoise’ ,#’Turquoise’,
’Cyan’ ,#’LightCyan’,
’White’,’White’ ,#’LightYellow’,
’Yellow’,’Gold’,’0Orange’ ,#’SandyBrown’,
’Goldenrod’,’DarkGoldenrod’ ,#’Tan’,
’Chocolate’ ,#’Brown’ ,#’DarkSalmon’, ’Salmon’,’LightSalmon’ ,#’DarkOrange’,
#’Coral’, ’LightCoral’,#’Tomato’,#’0OrangeRed’,
’OrangeRed’ ,#’Tomato’,
’Red’, ’Firebrick’,#’Violet’#,’Plum’,’0rchid’, ’MediumOrchid’, ’DarkOrchid’
’DarkViolet’#, ’BlueViolet’, ’Purple’, ’MediumPurple’
1

COLLIST5 = mcol.LinearSegmentedColormap.from_list(
>colors’, [

’MidnightBlue’ ,#’Navy’,#’CornflowerBlue’ ,#’DarkSlateBlue’,’SlateBlue’,
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’MediumSlateBlue’,

’MediumBlue’ ,#’RoyalBlue’,

’Blue’, ’DodgerBlue’ ,#’DeepSkyBlue’,

’SkyBlue’,’LightSkyBlue’ ,#’SteelBlue’,’LightSteelBlue’,’LightBlue’,
’PowderBlue’ ,#

’DarkTurquoise’, ’MediumTurquoise’,’Turquoise’,

’Cyan’ ,#’LightCyan’,

’White’,’White’,’White’,’white’,
’LightYellow’,’Yellow’,’Gold’,’Goldenrod’ ,#’DarkGoldenrod’,
’Orange’, ’DarkOrange’,’SandyBrown’ ,#’Tan’,
’Chocolate’,’Firebrick’,’Brown’ ,#’DarkSalmon’,’Salmon’,’LightSalmon’,
#’Coral’,

’LightCoral’,

’Tomato’, ’OrangeRed’,’Red’,

’Violet’#,’Plum’,’0rchid’, ’Medium0Orchid’, ’DarkOrchid’
,’DarkViolet’#, ’BlueViolet’, ’Purple’, ’MediumPurple’

1

# colormap for absolute T

red = N.array([O, O, O, 10, O, O, O, 60, 72, 127, 155, 221, 229, 239, 228, 205,
161, 116, 77]1) / 256.

green = N.array([0, O, 66, 144, 170, 191, 206, 209, 224, 255, 255, 242, 235,
190, 128, 72, 33, 29, 30]) / 256.

blue = N.array([128, 255, 255, 255, 255, 255, 209, 204, 208, 212, 250, 243,

99, 63, 39, 27, 22, 29, 27]) / 256.
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my_colormap0 = N.array([red, green, blue]).T

# colormap for T anomalies

red = N.array([O, O, O, 10, O, 60, 72, 221, 255,255, 250, 255, 229, 239, 228,
205, 161, 116, 77]) / 256.

green = N.array([0, 0, 66, 144, 191, 209, 255, 242, 255,255, 250, 255, 215,
190, 128, 72, 33, 29, 30]) / 256.

blue = N.array([128, 255, 255, 255, 255, 204, 250, 243, 255, 255, 210, 0, 99,
63, 39, 27, 22, 29, 27]) / 256.

my_colormap = N.array([red, green, blue]).T

B.4 my defs.py

RvsmowD=155.76e-6; #\’b10.05 x 10-6 [P. Fritz and J.Ch. Fontes, Handbook of
Environmental Isotope Geochemistry, Vol. 1, pp. 1-19 (1980)].
#http://deuterium.nist.gov/standards.html

Rsmow018=0.0020052; #ratio of 018/016 from http://epswww.unm.edu/facstaff/

zsharp/bio2.htm

def oxygenl18_iris(d160_lsrain,d160_cnrain,d160_lssnow,d160_cnsnow,d180_lsrain,
d180_cnrain,d180_lssnow,d180_cnsnow) :
’’’Calculates d180 from 160/180 1ls/cn rain/snow’’’

H2016 d160_1lsrain + d160_cnrain + d160_lssnow + d160_cnsnow

H2018

d180_1lsrain + d180_cnrain + d180_lssnow + d180_cnsnow

d180=((((H2018/H2016) /Rsmow(018) -1)*1000)
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d180.data=N.ma.masked_invalid(d180.data)

return d180[:,-1,:,:]

def deu_iris(d16_lsrain,d16_cnrain,d16_lssnow,d16_cnsnow,d02_lsrain,d02_cnrain,
d02_1lssnow,d02_cnsnow) :

>?2Calculates deuterium from 160/02H ls/cn rain/snow’’’

H2016 = d16_lsrain + d16_cnrain + d16_lssnow + d16_cnsnow

H2 = d02_lsrain + d02_cnrain + d02_lssnow + d02_cnsnow

d2H=((((H2/H2016) /RvsmowD) -1) *1000)

d2H.data=N.ma.masked_invalid(d2H.data)

return d2H[:,-1,:,:]

def month2annpw(precip, isotope):
years = N.zeros([(len(precip[:])//12),len(precip[0,:]),len(precip[0,0,:]1)]1)
k=0 #counter variable to index array
for i in range (0, (len(precip[:]1)//12)):
isoyr=isotope.datalk:k+12,:,:]
preyr=precip[k:k+12,:,:]
A=isoyr.reshape(12, len(isoyr[0,:])*len(isoyr[0,0,:]))
B=preyr.reshape(12, len(preyr[0,:])*len(preyr[0,0,:]1))
tyrsum=N.zeros(len(A[0,:]))
for xy in range(len(A[0,:])):
tyrsum[xy] = (N.sum(B[:,xyl*A[:,xy]))/sum(B[:,xy],0)#(N.sum(preyr))

tyrsum=N.ma.masked_invalid(tyrsum)

tyrgrid=tyrsum.reshape(len(isoyr[0,:]),len(isoyr[0,0,:1))
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def

def

#reshape back to (x,y)
years([i,:,:]=tyrgrid #add the summed year to the output array

k=k+12 #add ’12 months’ #month2ann=years

years=isotope[-(len(years)) :]+years-isotope[-(len(years)) :]
# convert back to iris cube

return years[:]

precip_weight (precip, isotope):
tyrgrid = N.zeros([len(precip[0,:]),len(precip[0,0,:]1)]1)
A=isotope.data.reshape(len(isotope.datal:]),
len(isotope.datal0,:])*len(isotope.datal0,0,:]1))
B=precip.reshape(len(precipl[:]), len(precip[0,:])*len(precip[0,0,:]))
tyrsum=N.zeros(len(A[0,:]))
for xy in range(len(A[0,:])):

tyrsum[xy] = (N.sum(B[:,xyl*A[:,xy]))/sum(B[:,xy],0)#(N.sum(preyr))

tyrsum=N.ma.masked_invalid(tyrsum)
tyrgrid=tyrsum.reshape(len(isotope.datal[0,:]),len(isotope.datal0,0,:]))
#reshape back to (x,y)

tyrgrid=isotope[-1]+tyrgrid-isotope[-1] # convert back to iris cube
tyrgrid.data=N.ma.masked_invalid(tyrgrid.data)

return tyrgrid[:]

load_d180(expID, expName,tlen):

"""load precip weighted d180 - averaged over last 30 years"""
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print( str(expName), ": load precip weighted d180 and d180ann -
averaged over last", str(tlen), "years")

# HadCM3 precipitation --------————--——
cube = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+’.

precip_mm_srf.monthly.nc’)

hp = cube[0]

hp = hp[-tlen:,-1,:,:]
hp.data=N.ma.masked_invalid(hp.data)
neutron = [’16°,702°,°18’]
raintype = [’lsrain’,’lssnow’,’cnrain’,’cnsnow’]
for i in range(len(neutron)):
neu = neutron[i]
for j in range(len(raintype)):
typ = raintypelj]
cube = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+
’.isotope’+neu+
>_’+typ+’ _mm_srf.monthly.nc’)
locals() ["d"+str(neutron[i] )+"_"+str(raintypel[j])] = cube[0]
# OXYGEN-18 ----om oo
d180 = oxygenl18_iris(d16_lsrain,d16_cnrain,d16_lssnow,d16_cnsnow,d18_lsrain,
d18_cnrain,d18_lssnow,d18_cnsnow)
d180 = d180[-tlen:,:, ]
# calculate precip weighted d180
d180Pi = precip_weight (hp.data, d180)
d180Pi.data[d180Pi.data > 100] = N.nan
d180Pi.data[d180Pi.data < -100] = N.nan
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d180Pi.data=N.ma.masked_invalid(d180Pi.data)

return d180Pi, month2annpw(hp.data, d180)

def earth_cube(cube):
’?2sorts out coordinates to refer to earth
(needed for area weighting stuff)’’’;
cs = iris.coord_systems.GeogCS(6371229) #define geographic coord system with
radius of Earth
for ¢ in [’latitude’, ’longitude’]: #modify lat and lon coords to use cs
cube. coord(c) .guess_bounds ()

cube.coord(c) .coord_system=cs

def movingaverage(interval, window_size):
window = N.ones(int(window_size))/float(window_size)

return N.convolve(interval, window, ’same’)

def assign_model_txy(var,lat_data,lon_data,lat_model,lon_model):
model_coresites = N.zeros([len(var[:]),len(lat_data)l)
for core_site in range(len(lat_data)):

lat_datal[core_site]

lati

loni lon_datal[core_site]

index1,grid_lat = min(enumerate(lat_model), key=lambda x:
abs(x[1]-(1lati)))
index2,grid_lon = min(enumerate(lon_model), key=lambda x:
abs(x[1]-(loni)))

model_coresites[:,core_site] = var[:,index1,index2]
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def

def

def

return model_coresites

define_ann(var):

’?’create month time coord’’’
iris.coord_categorisation.add_year(var, ’time’, name=’year’)
year = var.coord(’year’)

ann_mean = var.aggregated_by([’year’], iris.analysis.MEAN)
print( repr(ann_mean))

return year, ann_mean

define_annt(var):

’?’create month time coord’’’
iris.coord_categorisation.add_year(var, ’t’, name=’year’)
year = var.coord(’year’)

ann_mean = var.aggregated_by([’year’], iris.analysis.MEAN)
print( repr(ann_mean))

return year, ann_mean

define_month(var) :

’>?’create month time coord’’’
iris.coord_categorisation.add_month(var, ’time’, name=’month’)
month = var.coord(’month’)

month_mean = var.aggregated_by([’month’], iris.analysis.MEAN)
print ( repr(month_mean))

return month, month_mean
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B.5 my plots.py

def basmap_ais_plot(var,lat,lon,levels,colormap):
1on0=180
vmin,vmax=levels.min(),levels.max()
fig = plt.figure(figsize=(5,5))#cm2inch(9.5), cm2inch(23)))
ax = fig.add_subplot(111)
plt.tight_layout(pad=1)
fig.subplots_adjust(bottom=0.15)
var,lonsout = mpl_toolkits.basemap.shiftgrid(lonO, var.data, lon.points,
start=False, cyclic=360.0)
var,lonsout = mpl_toolkits.basemap.addcyclic(var, lonsout)
map = Basemap(projection=’spaeqd’,boundinglat=-55,lon_0=180,resolution=’1")
map.drawcoastlines(color = ’grey’)
map.drawparallels(N.arange(-80.,81.,20.), color=’grey’)
map.drawmeridians(N.arange(-180.,181.,20.), color=’grey’)
map . drawmapboundary (fill_color=’white’)
x,y = map(*N.meshgrid(lonsout,lat.points))
contour_result = map.contourf(x,y,var, levels, cmap=colormap,
extend=’both’)
ax.annotate(’A’, xy=(0, 1), xycoords=’axes fraction’,weight=’bold’,
fontsize=10,xytext=(5, -5), textcoords=’offset points’,ha=’left’, va=’top’)
plti_ax = plt.gca()
left, bottom, width, height = pltl_ax.get_position().bounds

first_plot_left = pltl_ax.get_position() .bounds[0]
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width = left - first_plot_left + width

colorbar_axes = fig.add_axes([first_plot_left, bottom - 0.06, width, 0.03])
cbar = plt.colorbar(contour_result, colorbar_axes, orientation= ’horizontal’)
cbar.set_label (u’$\u2030$°’)

cbar.ax.tick_params(labelsize=8)

def basmap_gis_plot(var,lat,lon,levels,colormap):
1on0=180
vmin,vmax=levels.min(),levels.max()
fig = plt.figure(figsize=(5,5))#cm2inch(9.5), cm2inch(23)))
ax = fig.add_subplot(111)
plt.tight_layout (pad=1)
fig.subplots_adjust(bottom=0.15)
var,lonsout = mpl_toolkits.basemap.shiftgrid(lonO, var.data, lon.points,
start=False, cyclic=360.0)
var,lonsout = mpl_toolkits.basemap.addcyclic(var, lonsout)
m = Basemap(width=4000000,height=4000000,resolution="1’,projection=’eqdc’,
lat_1=50.,lat_2=80,lat_0=70,lon_0=-20.)
m.drawcoastlines(color = ’grey’)
m.drawparallels(N.arange(-80.,81.,20.))
m.drawmeridians(N.arange(-180.,181.,20.))
x,y = m(*N.meshgrid(lonsout,lat.points))
contour_result = m.contourf(x,y,var, levels=levels, cmap=colormap,
extend=’both’)
ax.annotate(’A’, xy=(0, 1), xycoords=’axes fraction’,weight=’bold’,

fontsize=10,xytext=(5, -5), textcoords=’offset points’,ha=’left’, va=’top’)
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plti_ax = plt.gca()

left, bottom, width, height = pltl_ax.get_position() .bounds

first_plot_left = pltl_ax.get_position().bounds[0]

width = left - first_plot_left + width

colorbar_axes = fig.add_axes([first_plot_left, bottom - 0.06, width, 0.03])
cbar = plt.colorbar(contour_result, colorbar_axes, orientation= ’horizontal’)
cbar.set_label (u’$\u2030$°’)

cbar.ax.tick_params(labelsize=8)

def basmap_gis_plot2(var,lat,lon,levels,colormap):
1lon0=180
lat_0=73.; lon_0=-40.
vmin,vmax=levels.min(),levels.max()
fig = plt.figure(figsize=(5,5))#cm2inch(9.5), cm2inch(23)))
ax = fig.add_subplot(111)
plt.tight_layout(pad=1)
fig.subplots_adjust(bottom=0.15)
var,lonsout = mpl_toolkits.basemap.shiftgrid(lonO, var.data, lon.points,
start=False, cyclic=360.0)
var,lonsout = mpl_toolkits.basemap.addcyclic(var, lonsout)
m = Basemap(projection=’ortho’,lat_O=lat_0,lon_0=lon_0,resolution=None)
width = m.urcrnrx - m.llcrnrx
height = m.urcrnry - m.llcranry
coef = 0.25
width = widthx*coef

height = height*coef
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def

m = Basemap(projection=’ortho’,lon_0=lon_0,lat_0=lat_0,resolution=’1",
llcrnrx=-0.5*width,llcrnry=-0.5%height,urcrnrx=0.5*width,urcrnry=0.5%height)
m.drawcoastlines(color = ’grey’)

m.drawcountries()

m.drawparallels(np.arange(-90.,120.,30.))
m.drawmeridians(np.arange(0.,360.,60.))
m.drawmapboundary ()

x,y = m(*N.meshgrid(lonsout,lat.points))

contour_result = m.contourf(x,y,var,levels,cmap=colormap, extend=’both’)
ax.annotate(’A’, xy=(0, 1), xycoords=’axes fraction’,weight=’bold’,
fontsize=10,xytext=(5, -5), textcoords=’offset points’,ha=’left’, va=’top’)
plti_ax = plt.gca()

left, bottom, width, height = pltl_ax.get_position().bounds
first_plot_left = pltl_ax.get_position() .bounds[0]

width = left - first_plot_left + width

colorbar_axes = fig.add_axes([first_plot_left, bottom - 0.06, width, 0.03])

cbar = plt.colorbar(contour_result, colorbar_axes, orientation= ’horizontal’)

cbar.set_label (u’$\u2030%$°’)

cbar.ax.tick_params(labelsize=8)

plt_smoothed_timeseries(var,varsmo,color,cutoff):
almost_black = ’#262626°

fig = plt.figure(figsize=(8,5))#cm2inch(10), cm2inch(15)))
#(cm2inch(11.5), cm2inch(9.5)))#(8, 8))

ax = fig.add_subplot(1,1,1)

plt.tight_layout ()



234

xii=N.arange(len(var))
plt.plot(xiil[cutoff:-cutoff],varsmo[cutoff:-cutoff],c=color,linewidth=1.5)
plt.scatter(xii,var,marker=’0’,edgecolor=color,c=color,alpha=0.1)
ax.annotate(’A’, xy=(0, 1), xycoords=’axes fraction’,weight=’bold’,
fontsize=10,xytext=(5, -5), textcoords=’offset points’,ha=’left’, va=’top’)

plt.gca() .set_xlim(xmax=xii.max(),xmin=xii.min())

B.6 process annual.py

#!/usr/bin/env python2.7

Author: Max Holloway, Date (last modified): Mar 2017

Use: Date processing script using iris to load (processed) monthly time

#

#

# series files (created using ’data_process.py’ and stored in

# ’expID’/monthly directory), annual mean data and save new cube in
# ’expID’/annual directory.

# script use; python /home/users/mholloway/python/process_annual.py

experiment_name

import sys

exec (open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts
/startup.py’) .read())
exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts

/my_defs.py’) .read())
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exec (open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts
/my_cmaps.py’) .read())
exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts

/my_plots.py’) .read())

data_root=’/Volumes/shared/wilkinson_uql/User/smql5fet’
expID=str(sys.argv[1]) # pass experiment to be processed

print ("Processing experiment", expID)

variables=[’sea_ice_area_fraction’,’air_pressure_at_sea_level’,
’air_temperature’,’precipitation_flux’,’surface_air_pressure’,\

’surface_temperature’,’wind_speed’,’y_wind’,’x_wind’]

climatology_months=50%12 # calculate annual mean climatologies over final

50 years

for VAR in range(len(variables)): # Calculate and save annual mean variables
"""calculate annual mean values"""
cube = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+’.
>+variables[VAR]+’ .monthly.nc’)
cube_name = cube[-1].standard_name
print("calculate annual mean", str(cube_name), "for final",
climatology_months/12, "years")
yr, cube_ann = define_ann(cube[0] [-climatology_months:])
#locals() [str(cube_name)] = cube[0]

locals() [str(cube_name)+’_ann’] = cube_ann
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iris.save(cube_ann, ’’+data_root+’/’+expID+’/annual/’+expID+’.’+cube_name+’

.annual.nc’)

#climatology_months=50%12
IS0=[’d180’°,’deuterium’]
pf = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+’.precipitation_flux.
monthly.nc”’)
# Load Precipitation
for II in range(len(IS0)): # Calculate and save precip-weighted and
annual mean isotopes
cube = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+’.’+ISO[II]+’.
monthly.nc’)
if len(cube[0] .data) < len(pf[0].data): # check that precip and isotopes are
the same length
print("do final time coords match?")
print (pf [0] [-1len(cube[0] .data):].coord(’time’) [-1] == cube[0].
coord(’time’) [-1])
# check that last time coords match
precip=pf [0] [-1len(cube[0] .data):].copy() # align time coords and
remove extra dt’s
else:
precip=pf [0] .copy ()
print("calculate precipitation-weighted and annual mean", str(ISO[II]),
"for final", climatology_months/12, "years")

isotope_cube = cubel[0].copy()
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yr, cube_ann = define_ann(isotope_cube.copy()) # define annual time coords
to pass

to annual mean isotope cubes

print("calculate climatology over final", climatology_months/12, "years")
isoPi = precip_weight (precip[-climatology_months:].data, cubel[0]
[-climatology_months:])

isoPi.units = None # remove precip units from isotope cube
isoPi.var_name,isoPi.long_name = str(ISO[II]),str(ISO[II])

# change cube name

locals() [ISO[II]+"_Pi"] = isoPi # allocate variable for dxs calculation
iso_ann = month2annpw(precip[-climatology_months:].data, cube[0]
[-climatology_months:])

isoANN = cube_ann[-len(iso_ann.data):].copy()

# hack time units from months into years!

isoANN.data = iso_ann.data # hack time units from months into years!
isoANN.units = None # remove precip units from isotope cube
isoANN.var_name,isoANN.long_name = str(ISO[II]),str(ISO[II])

# change cube name

locals() [ISO[II]+"_ann"] = isoANN # allocate variable for dxs calculation
iris.save(isoPi, ’’+data_root+’/’+expID+’/annual/’+expID+’.°+ISO[II]+’
_pw.climate.nc’)

iris.save(isoANN, ’’+data_root+’/’+expID+’/annual/’+expID+’.°+ISO[II]+’

_pw.annual.nc’)

print( "calculate precipitation-weighted and annual mean d-excess")

dxs_Pw = deuterium_Pi[:] - 8*d180_Pi[:] # (Dansgaard,1964)
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dxs_Pw.var_name,dxs_Pw.long_name = u’deuterium-excess’,u’deuterium-excess’

# change cube name

iris.save(dxs_Pw, ’’+data_root+’/’+expID+’/annual/’+expID+’.dxs_pw.climate.nc’)
dxs_ann = deuterium_ann[:] - 8+d180_ann[:]

dxs_ann.var_name,dxs_ann.long_name = u’deuterium-excess’,u’deuterium-excess’

# change cube name

iris.save(dxs_ann, ’’+data_root+’/’+expID+’/annual/’+expID+’.dxs_pw.annual.nc’)

B.7 process monthly means.py

#!/usr/bin/env python2.7

# Author: Max Holloway, Date (last modified): Mar 2017

# Use: Date processing script using iris to load (processed) monthly time

# series files (created using ’data_process.py’ and stored in

# ’expID’/monthly directory), monthly mean data (to generate cube of size

# t=12) and save new cube in ’expID’/monthly directory.

# script use; python /home/users/mholloway/python/process_monthly_means.py

experiment_name

import sys
exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts
/startup.py’) .read())

exec (open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts
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/my_defs.py’).read())
exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts
/my_cmaps.py’) .read())
exec (open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts

/my_plots.py’) .read())

data_root=’/Volumes/shared/wilkinson_uql/User/smql5fet’
expID=str(sys.argv[1]) # pass experiment to be processed

print( "Processing experiment", expID)

climatology=b0*12 # final 50 years used for monthly mean climatologies
variables=[’sea_ice_area_fraction’,’air_pressure_at_sea_level’,
’air_temperature’,’precipitation_flux’,’surface_air_pressure’,\

>surface_temperature’,’wind_speed’,’y_wind’,’x_wind’,’d180’,’deuterium’]

for VAR in range(len(variables)): # Calculate and save monthly averages
"""calculate monthly mean values"""
cube = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+’.
>+variables[VAR]+’ .monthly.nc’)
cube_name = variables[VAR]
print( "calculate monthly mean", str(cube_name), "over final",
climatology/12, "years")
month, cube_month = define_month(cube[0] [-climatology:])
iris.save(cube_month, ’’+data_root+’/’+expID+’/monthly/’+expID+’.

+str(cube_name)+’ .month_mean.nc’)
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## when doing it for d180 and deuterium, must first run
# iris.FUTURE.netcdf_promote = True
# iris.FUTURE.netcdf_no_unlimited = True

## then remember to change file name in directory before running again

#iris .FUTURE.netcdf_promote = True

#iris .FUTURE.netcdf_no_unlimited = True

#cube = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+’.’+variables[9]+’
.monthly.nc’)

#cube_name = cube[-1].standard_name

#print( "calculate monthly mean", str(cube_name), "over final", climatology/12,
"years")

#month, cube_month = define_month(cube[0] [-climatology:])
#iris.save(cube_month, ’’+data_root+’/’+expID+’/monthly/’+expID+’.’

+str(cube_name)+’ .month_mean.nc’)

B.8 startup.py

#!/usr/bin/env python2.7
#execfile (’Documents/HADCM3-output/startup.py’)
import os

import sys
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import time

import matplotlib as mpl

import mpl_toolkits

#mpl.use (’Qt4Agg’)

#mpl.use(’gtkagg’)

import matplotlib.pyplot as plt
import matplotlib.mlab as mlab

import numpy as N

import scipy.io.netcdf as S

from scipy.io.netcdf import NetCDFFile
import scipy as sp

from scipy import interpolate

from scipy import stats

import mpl_toolkits.basemap as bm
from mpl_toolkits.basemap import Basemap
import matplotlib.font_manager as fm
from pylab import *

from matplotlib.colors import LogNorm
import netCDF4

from netCDF4 import Dataset

import iris

import iris.plot as iplt

import iris.quickplot as qgplt

import iris.analysis.cartography

import iris.coord_categorisation

241
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#import iris.cube.Cube.interpolate()
import cartopy.crs as ccrs

import cartopy.feature as cfeature

data_root=’/Volumes/shared/wilkinson_uql/User/smql5fet’
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