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Abstract

Understanding the effect warming has on ice sheets is vital for accurate projections of

climate change. A better understanding of how the Antarctic ice sheets have changed

size and shape in the past would allow us to improve our predictions of how they

may adapt in the future; this is of particular relevance in predicting future global sea

level changes. This research makes use of previous reconstructions of the ice sheets,

ice core data and Bayesian methods to create a model of the Antarctic ice sheet at

the Last Glacial Maximum (LGM). We do this by finding the relationship between

the ice sheet shape and water isotope values.

We developed a prior model which describes the variation between a set of ice sheet

reconstructions at the LGM. A set of ice sheet shapes formed using this model was

determined by a consultation with experts and run through the general circulation

model HadCM3, providing us with paired data sets of ice sheet shapes and water

isotope estimates. The relationship between ice sheet shape and water isotopes is

explored using a Gaussian process emulator of HadCM3, building a statistical distri-

bution describing the shape of the ice sheets given the isotope values outputted by

the climate model. We then use MCMC to sample from the posterior distribution of

the ice sheet shape and attempt to find a shape that creates isotopic values match-

ing as closely as possible to the observations collected from ice cores. This allows

us to quantify the uncertainty in the shape and incorporate expert beliefs about the

Antarctic ice sheet during this time period. Our results suggests that the AIS may

have been thicker at the LGM that previous reconstructions predict.



ii

Acknowledgements

Firstly I’d like to thank my supervisors: Richard Wilkinson, Caitlin Buck, Louise

Sime and Julie Jones. Somehow having four people supervising me was never any-

thing less than a pleasure. Having such a group of people to turn to for their expertise

and help made the last four years much easier than they could otherwise have been.

Thank you for somehow managing to never give contradictory advice.

Thank you to Max, Irene, Kira and everyone else at the British Antarctic Survey

who helped me as I came to grips with climatology, your patience and guidance

were truly appreciated. My thanks to Louise Sime, Nick Golledge and Boer de Bas

who provided me with the ice sheet reconstructions used in Chapter 3, and to the

National Snow & Ice Data Center (https://nsidc.org/), where I accessed the ice core

data used in Chapter 5.

This project would never have happened without the funding and assistance from

the Grantham Centre for Sustainable Futures. Such interdisciplinary work as this

often falls down the cracks of traditional funding institutes; thank you to everyone

at the centre for your support throughout the years.

To Sonette and Robbie, for the copious amounts of wine we have shared these last

four years as you listened to my ramblings. To all of my other friends, both in

Sheffield and other places, for welcome distractions and vital encouragement. To my

mum, dad, Mike, and Dan, for always believing in me and assuring me that I could

be anything I want in life - sorry that that has turned out to be a perpetual student.



iii

Abbreviations

AIS: Antarctic Ice Sheets

AP: Antarctic Peninsula

EAIS: East Antarctic Ice Sheet

GCM: General Circulation Model

GP: Gaussian Process

HadCM3: Hadley Centre Coupled Model - version 3

IPCC: Intergovernmental Panel on Climate Change

Ka BP: Thousands of Years Before Present

LGM: Last Glacial Maximum

LOOCV: Leave-One-Out Cross-Validation

PC(A): Principal Component (Analysis)

PI: Pre Industrial

SVD: Singular Value Decomposition



iv

Symbol List

ai ∈ R7008 principal components, often called loadings, found using null space

method and used in our prior model, i = 1, ..., 5

yi ∈ R47 vector of δ18O anomalies at ice core sites from HadCM3 output, i = 1, ..., 10

z ∈ R5 the prior model variables

zobs vector of z values that would create the δ18O observations from the ice cores

z′obs = [1 zobs] matrix used as part of the linear model component of the calibration model

β ∈ R6 linear model parameters for calibration model

θ ice sheet shape output by the prior model

µ row mean of the collection of ice sheet reconstructions

σ1 HadCM3 model standard deviation

τ1 isotope measurement standard deviation

τ2 spatial standard deviation between HadCM3 and ice core sites

D space that the δ18O HadCM3 output describes

E ∈ R47 vector of elevation values at an ice core site in HadCM3 simulations

N1 number of HadCM3 simulations

N2 number of ice core sites being modelled

S vector space in which we define ice sheet shape

X ∈ R7008×40 Collection of ice sheet reconstructions

Z ∈ R47×5 set of zi values used to make orographies included in HadCM3 simulations

Z ′ = [1 Z] matrix used as part of the linear model component of the calibration model



Contents

1 Introduction 1

1.1 Bayesian framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Motivation and Literature Review 7

2.1 Data Issues in Antarctica . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Past Ice Sheet Shapes . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Reconstructing Climates with Proxy Data . . . . . . . . . . . . . . . 13

2.2.1 The Use of Water Isotopes in Palaeo-climate Reconstruction . 16

2.3 Bayesian methods in palaeo-climatology . . . . . . . . . . . . . . . . 18

2.4 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Building The Prior Model 23

3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 The first principal component . . . . . . . . . . . . . . . . . . 27

3.1.2 The second principal component . . . . . . . . . . . . . . . . . 29

3.2 Reconstruction Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Performing PCA on Ice Sheet Reconstructions . . . . . . . . . . . . . 31

3.3.1 The Newton-Raphson Method . . . . . . . . . . . . . . . . . . 47

v



vi CONTENTS

3.3.2 The LU Decomposition . . . . . . . . . . . . . . . . . . . . . . 51

3.3.3 The nullspace method . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Comparing two variable reduction approaches . . . . . . . . . . . . . 58

3.5 Building the Prior Model . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Summary of Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Elicitation of Ice Sheet Shapes 69

4.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 The Interactive Model . . . . . . . . . . . . . . . . . . . . . . 74

4.1.2 Planning the Elicitation Meeting . . . . . . . . . . . . . . . . 75

4.2 Conducting the Meeting . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 The Second Elicitation Process . . . . . . . . . . . . . . . . . . . . . 80

4.4 Summary of Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Building The Emulator 87

5.1 Running HadCM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1 Issues with HadCM3 . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.2 Processing Scripts . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Comparing simulations of WAIS and EAIS . . . . . . . . . . . 93

5.3 Gaussian Process Emulation . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Choosing a kernel function . . . . . . . . . . . . . . . . . . . . 99

5.3.2 Building our emulator . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Incorporating the EAIS sites . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Using an Anisotropic Kernel . . . . . . . . . . . . . . . . . . . 111

5.5 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



CONTENTS vii

6 Calibration of the Model 115

6.1 Markov Chain Monte Carlo methods . . . . . . . . . . . . . . . . . . 116

6.1.1 Hamiltonian Monte Carlo (HMC) . . . . . . . . . . . . . . . . 116

6.2 1D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Using all five prior variables . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 The multivariate model for the WAIS ice core sites . . . . . . . . . . 122

6.4.1 Comparing model output to linear regression . . . . . . . . . . 126

6.5 Incorporating the Gaussian process emulator . . . . . . . . . . . . . . 127

6.5.1 1-D example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5.2 1-D inverse example . . . . . . . . . . . . . . . . . . . . . . . 132

6.5.3 Automatic Relevance Determination . . . . . . . . . . . . . . 135

6.6 Applying to the ice core data . . . . . . . . . . . . . . . . . . . . . . 135

6.6.1 Modelling combined and separate ice sheets . . . . . . . . . . 137

6.6.2 Checking hyperparameters . . . . . . . . . . . . . . . . . . . . 139

6.7 Analysing model output . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.7.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 143

6.8 Testing the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.8.1 Pseudo data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.8.2 Recovering a HadCM3 simulation . . . . . . . . . . . . . . . . 152

6.8.3 Recovering an ice core site . . . . . . . . . . . . . . . . . . . . 155

6.9 Summary of Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 Geographical Interpretations 165

7.1 Posterior shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2 Comparing our orographies to previous reconstructions . . . . . . . . 167

7.3 Summary of Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 181



viii CONTENTS

8 Conclusions 183

8.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.1.1 Scientific Findings . . . . . . . . . . . . . . . . . . . . . . . . 184

8.1.2 Statistical Findings . . . . . . . . . . . . . . . . . . . . . . . . 185

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Appendices 189

A Design of eighty shapes from elicitation. . . . . . . . . . . . . . . . . 192

B Post-processing scripts for HadCM3 output. . . . . . . . . . . . . . . 206

B.1 data_process_PIrun.py . . . . . . . . . . . . . . . . . . . . . 206

B.2 data_process.py . . . . . . . . . . . . . . . . . . . . . . . . . 211

B.3 my_cmaps.py . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B.4 my_defs.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

B.5 my_plots.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

B.6 process_annual.py . . . . . . . . . . . . . . . . . . . . . . . . 234

B.7 process_monthly_means.py . . . . . . . . . . . . . . . . . . . 238

B.8 startup.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240



Chapter 1

Introduction

Acceleration of ice flow and retreat in Antarctica, which has the po-

tential to lead to sea level rise of several metres within a few centuries,

... may be the onset of an irreversible ice sheet instability. Uncertainty

related to the onset of ice sheet instability arises from limited observa-

tions, inadequate model representation of ice sheet processes, and limited

understanding of the complex interactions between the atmosphere, ocean

and the ice sheet.

IPCC Special Report on the Ocean and Cryosphere

in a Changing Climate, 2019
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A better understanding of the historic changes that have occurred in ice sheet shapes

has become increasingly relevant as the consequences of man made climate change

becomes more apparent. Ice sheets are defined as a mass of glacial ice larger than

50,000 km2. Currently ice sheets are only present in Antarctica and Greenland;

however, during the last glacial period (115,000 - 11,700 Ka BP), ice sheets existed

in Europe and both Americas. A rise in global sea levels of 1m, primarily due to

melting ice sheets, is considered likely by 2100. Uncertainty in the amount of sea rise

is mostly determined by lack of knowledge about the possible contributions from ice

sheets, particularly those in Antarctica (Pörtner et al., 2019). As ice mass loss across

the continent has increased in recent years (IMBIE, 2018), the need to understand

the contributions the Antarctic ice sheets (AIS) have made in the past to global sea

levels is more apparent. A map of Antarctica can be seen in Figure 1.1, showing

the location of the East Antarctic ice sheet (EAIS) and the West Antarctic ice sheet

(WAIS), as well as other key geographical features.

Reconstructions of past ice sheet shapes have been produced by many authors in

order to understand the state of the planet’s climate at different time periods: Peltier

(1994), Briggs et al. (2014) and Whitehouse et al. (2012) among others. We are

interested in the shape of the Antarctic ice sheet at the Last Glacial Maximum

(∼21Ka BP; LGM), the point of maximum ice sheet extent in the last glacial period

(Clark et al., 2009). The LGM and the shape of ice sheets are both points of interest

in palaeo-climatology; by understanding the deglaciation process in Antarctica, we

can more fully understand the effect of external forcing on Antarctic and other ice

sheets (Briggs et al., 2014). External forcings are a climate forcing agent outside of

the climate system itself, such as solar or orbital variations.
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Figure 1.1: A map of Antarctica showing the major geographic landmarks, from
Abrahamsen (2012).
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Further motivation for investigating the LGM is given in 2.1.1, including the issue

of “missing ice" and its contribution to changes in sea level. However, it should be

stated that quantifying our own ice sheet reconstructions in this thesis into ice sheet

volume is beyond the scope of this work; due to the statistical nature of our models,

we will be analysing the shape and size of the ice sheet, but are unable to give an

estimate of how much ice our reconstructions hold. As our method models only

surface elevation, we are unable to take into account the underlying bedrock, and

thus cannot find an estimate for ice volume.

Building ice sheet reconstructions often relies on the use of climate models as simu-

lators for the planet during the period of interest. However, simulators can be very

expensive to run, and the number of simulations you can achieve is severely limited.

The model we wish to use is HadCM3, an isotope-enabled coupled General Circula-

tion Model (GCM), created by the Met Office in 1999 (Met-Office, 2016) and used

frequently by the climatology community, including in the latest IPCC Assessment

Report (Stocker et al., 2013). It should be stated that this work is not intended as a

review or critique of HadCM3, or a test of how well it simulates the climate. Indeed,

such work would be a thesis in itself. Here, we are not trying to fix HadCM3, or

understand it, but rather use it as a key tool in our methods. We intend to im-

prove understanding about the AIS by applying a Bayesian framework to ice sheet

modelling. The computational cost of running HadCM3 means we must turn to a

statistical method that has become an increasingly useful tool in palaeoclimatology,

an emulator.

Emulators are cheaper, faster models that approximate the simulator. This allows

us to learn about the relationship between the input and output of interest, using



1.1. BAYESIAN FRAMEWORK 5

a set of observations from our simulator and treating the emulator as a ‘black box’

(Kennedy and O’Hagan, 2001). We can then learn more about the process in question

without being reliant on a slow and expensive simulator. Here we will be working

with Gaussian process emulators, which models the outputs as a Gaussian process

on the space determined by the inputs.

1.1 Bayesian framework

A Bayesian approach to statistical inference describes all uncertainties with prob-

ability distributions, and tells us how to update our initial uncertainty (our prior

distribution) in light of data and a model (giving us our posterior distribution).

Mathematically given a data point, x, some parameter θ and a statistical model

p(x|θ) s.t.

x ∼ p(x|θ),

if we have prior distribution for θ

θ ∼ p(θ)

then given a sample

X = [x1, ..., xn]

the posterior distribution p(θ|X) can be calculated

p(θ|X) ∝ p(X|θ)p(θ).
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p(θ) is known as the prior distribution, representing our beliefs about the parameter

of interest, θ. p(X|θ) is the likelihood function, representing how likely X is under

the model if θ is the parameter, and p(θ|X) is the posterior distribution, an updated

distribution for θ given the information found from X and the model.

Applying this to a palaeo-climatological context, we are interested in the shape of the

AIS at the LGM, which we will denote as θ. Previous ice sheet reconstructions are

used to form a prior distribution of the ice sheet shape, p(θ). The observations we

have are in the form of water isotope ratios from ice cores. A description of how these

are calculated can be found in Section 2.2.1. Isotope data are an example of proxy

data: preserved physical characteristics of past climate that can stand in for direct

measurement. The arguments for the use of such proxy data are strong: by analysing

preserved analogues, past climates can be used to understand future climate change

and assess climate models’ validity (Salzmann et al., 2009). An emulator of HadCM3

will be used to find the relationship between ice sheet shape and our proxy data,

allowing us to calculate the distribution p(X|θ). We can then combine these to find

the posterior distribution, and from that predict the distribution of the "true" ice

sheet shape, θ̂.

In the next chapter, we give a review of the literature as well as motivation for our

work. By considering the issues with modelling Antarctica, past work on reconstruct-

ing climates with proxy data, and current Bayesian methods used in palaeoclimatol-

ogy, we show that there is a real need for further incorporation of statistical thinking

in ice sheet modelling and climatology in general.



Chapter 2

Motivation and Literature Review

Modelling the Earth’s climate is reliant on knowledge of both the internal and ex-

ternal forcings, accurate initial and boundary conditions, and can be aided by a long

record of observations. Understanding past changes in climate can reduce uncertain-

ties around predictions of future changes. In climate modelling, initial conditions are

starting values for variables such as wind, temperature and moisture, whilst bound-

ary conditions are values decided on by a modeller for variables such as solar radiation

intensity. Weather is largely dependent on initial conditions, whilst climate, a longer

time scale, is dependent on these boundary conditions.

Focus is often placed on the higher latitudes as changes in polar ice caps have an

effect on global sea levels and ocean circulation (Bracegirdle and Stephenson, 2012).

A knowledge of what is happening at the poles is therefore necessary in order to

7
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understand what may occur both regionally and globally. An important aspect of

this is the amount of ice present in the ice sheets. In order to analyse how ice sheets

have changed over millennia, accurate reconstructions of past shapes are required.

However, knowledge of the change of ice sheet margins is limited, which inhibits our

ability to reconstruct the extent of the ice sheets (Haywood et al., 2016).

When analysing the climate in Antarctica, specific issues arise, from the short time-

scale of the data to the scarcity of measurements over vast regions of the continent,

and the particularly variable nature of the climate itself (Fogt et al. (2016), Hay-

wood et al. (2016), Schneider et al. (2006)). The use of more advanced statistical

techniques, using the data we do have in new ways, could offer a way to work around

these issues and result in a more detailed and accurate climate model.

In this chapter, we look at the existing literature to motivate this project. The

importance of the Antarctic Ice Sheets (AIS) and the relevance of the Last Glacial

Maximum (LGM) is discussed, and the use of Bayesian methodology in the palaeo-

climatology community is reviewed.

2.1 Data Issues in Antarctica

Here we consider the issues in relation to studying Antarctica’s climate in various

forms, as well as ice sheet mass change.
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A major issue when it comes to modelling the Antarctic climate is the short time-

scale of data. Measurements were not collected until the 1950s when stations were

set up on the continent; data that spanned the entire landmass were not available

until satellites were launched in 1979. At least 30 years of data are required to under-

stand a climate, although a longer record is required if the climate is going through

a period of rapid change (Notz, 2015). Having such a short record in Antarctica

makes it incredibly difficult to detect changes in the region and understand what

effect climate change is having on the continent. With barely forty years of climate

data, it is difficult to characterise the natural variability of Antarctica, or to sig-

nificantly recognise an anthropogenic contribution (Jones et al., 2016). With such

little information available, climatologists cannot draw accurate conclusions on any

potential changes in the region; this lack of observations means the Antarctic climate

is the least understood on Earth (Fogt et al., 2016).

The lack of observations in the region is especially problematic as even more data

is needed for Antarctica compared to other regions due its large natural climatic

variability. Trends often cannot be definitively attributed to any external forcing, as

changes in the climate can still be shown to be within the expected range of internal

variability. Natural variability is also difficult to estimate with such a short record.

This means that until recently it was not possible to detect any effect that climate

change may be having on the region. The analysis conducted by Abram et al. (2013)

of ice melt on the Antarctic Peninsula concluded that although there was warming

across the continent throughout the last century, it was “not unprecedented in the

context of natural climate variability” [pg. 409]. Similarly, Turner et al. (2016) found

that changes in the continents climate could not be associated with global climate

change, but rather reflect the extreme natural internal variability of the region. More



10 CHAPTER 2. MOTIVATION AND LITERATURE REVIEW

recently, Clem et al. (2020) concluded that the affects of anthropogenic warming over

Antarctica has been obscured by decadal variability throughout this century.

Antarctica, at 14 million km2, is twice as large as Australia. Studies at research

stations are conducted at single locations and therefore cannot represent the condi-

tions of the whole continent. This is apparent when analysing a specific time period.

Regions will display leads and lags in a trend; the period, for instance, of maximum

ice coverage or minimum temperature will not be the same for the whole of the land

mass (Haywood et al., 2016). When observed as a whole therefore, any warming ef-

fects often average out as some regions experience changes that others do not. There

is clear evidence of warming in the AP; Schneider et al. (2006) showed that some

of the strongest warming on the planet during the last half century occurred there.

However, they concluded that it was difficult to give any context to this change due

to the short instrumental records. Turner et al. (2016) also found an absence of

significant warming in the last two decades due to the extreme natural variability,

although the more recent work of Screen et al. (2018) did state that human influence

was detectable in the region. It is clear that more data must be incorporated some-

how into models in order to learn more about the changes in climate and to assess

whether they are outside of natural variability.

Our interest lies in the changes in ice sheet mass. A motivation for looking at past

time periods is to better understand changes in the present day ice sheets. IMBIE

(2018) have found a cumulative mass change in the ice sheets between 1992 and

2017, although they recognise these estimates become more uncertain as the area

of each ice sheet region increases. Although WAIS and AP definitely decreased in
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size during this period by −159 ± 26 Gt yr−1 and −20 ± 15 Gt yr−1 respectively,

their study concluded that the mass change of the EAIS was 5 ± 46 Gt yr−1. This

large uncertainty shows how difficult it is to accurately model the AIS. Studies of

recent mass change such as this one are conducted through the use of satellites and

short term data; when past ice sheet shapes are measured, we are reliant on other

methods.

There are numerous issues with the data collected so far in Antarctica. The size of

the continent as well as the large variability in its climate means we require more

data than other parts of the globe in order to accurately model it. The short record

of data available means this is difficult to do.

2.1.1 Past Ice Sheet Shapes

Extensive work has already been done reconstructing past ice sheet shapes or other

climate variables with the use of climate models (Holloway et al., 2016). The methods

of both Werner et al. (2018) and Domingo et al. (2020) are similar to our own,

using previous reconstructions, GCMs and proxy data to reduce uncertainty around

ice sheets at two different time periods. These papers highlight the importance of

better understanding past changes in global ice sheets, and demonstrate the role that

statisticians can play in this research area; we believe we can build on these methods

by incorporating expert judgement, and taking a more detailed approach to building

a prior model.
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As discussed in Malmierca-Vallet et al. (2018), understanding how ice sheets respond

to changes in climate is fundamental to predicting more accurately how high latitudes

will react to increases in greenhouse gases. These regions often act as amplifiers, with

the poles experiencing some of the clearest evidence of global warming. Extensive

modelling of past ice sheets shapes is critical to improve predictions of global sea

level rise, as the change in ice sheet volume is directly linked to sea level changes.

The LGM is of particular interest due to the uncertainty around the ice sheet shapes

during this period, causing an issue of “missing ice”. Simms et al. (2019) studied the

LGM sea-level budget, as current estimates of sea-level rise after the LGM are not

balanced by the amount of ice believed to have melted since then. They found that

this amounts to a shortfall of 15.6± 9.6m of global sea-level rise. It would seem that

the contributions of one or more ice sheets has been underestimated; as the extent of

the AIS is relatively unconstrained during this time period, this is historically where

the missing ice is believed to have been. Reducing uncertainty around the WAIS and

EAIS at this time period is therefore of great relevance; if the AIS has lost more ice

mass than scientists have previously predicted up to the present day, this may mean

it is more responsive to changes in the climate.

As described in Whitehouse et al. (2012), several LGM reconstructions have been

published, all with a large range in amplitude and distribution of ice mass. This

variation between reconstructions is due to the range of methods and data used

to constrain the models, and suggests that the errors in the models are large. An

overview of the methods used to build the collected published reconstructions we

use in our research can be found in Chapter 3. This thesis develops a Bayesian
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approach that models this uncertainty, highlighting where the reconstructions agree

and disagree with one another, give us an opportunity to reduce this uncertainty,

and use the prior knowledge offered by existing reconstructions to better constrain

estimates of the AIS.

Previous reconstructions of the AIS can vary greatly. Given the importance in un-

derstanding the ice sheets at the LGM in the context of present day and future sea

level rise, it is important that the uncertainties within and between existing ice sheet

reconstructions are better understood, and a better understanding of the AIS at the

LGM is obtained.

2.2 Reconstructing Climates with Proxy Data

As discussed in Section 2.1.1, past ice sheet reconstructions are built with a com-

bination of proxy data and climate models, and they play an important role in our

own methodology. We are reliant on the use of proxy data in order to model differ-

ent parts of Antarctica’s climate before observational data is available, both for the

previous centuries and much longer time periods.

There have been many calls for the incorporation of proxy data into climate models

over Antarctica; this would help solve the issue of a lack of data as well as providing

information about past climates when the environment was similar to current or near-

future conditions. Jones et al. (2016) believed that the use of such data would help to
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progress understanding of the Antarctic climate, as well as improve proxy modelling

such as with water isotopes. The use of water isotopes in palaeo-climatology research

is discussed in more detail in Section 2.2.1. The use of samples such as ice cores,

moss banks and tree rings in modelling is becoming more common, having been used

by Abram et al. (2013), Thomas et al. (2009) and Schneider et al. (2006) amongst

others in order to model past Antarctic climate systems.

The use of proxy data sources allows us to learn more about past conditions, such as

surface air temperature. Examples of this for the recent past includes Abram et al.

(2013), who used deuterium isotopes (δD, one of the two stable isotopes of hydrogen;

isotopes are defined more fully in Section 2.2.1) as a proxy for mean annual tem-

perature to reconstruct snow melt during the twentieth century, and concluded that

warming is now present over the West Antarctic Ice Sheet. Schneider et al. (2006)

also used δD, as well as oxygen-18 (δ18O) ice core records, to reconstruct the mean

surface temperature over Antarctica. They support the use of proxy data, stating

that because the physical processes underpinning their variability is well understood,

there is a strong advantage for using isotopic records. By normalising the records to

cover 1800-1983, combining the ice cores by a weighted average and calibrating the

reconstruction they found proof of long-term warming over the continent.

Whether warming is present solely in small regions has also been studied with the

use of proxy data. Thomas et al. (2009) used a 150 year isotope record as a proxy

for temperature and found that the warming reported by Schneider et al. (2006) was

not a local phenomenon, but was part of a warming trend over the whole region

going back to 1900, and that these trends are stronger than the range of natural
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variability. Thomas et al. (2013) went further and created a 308-year record 1702-

2010 of climate variability in West Antarctica using δD from an ice core drilled on the

West Antarctic coast. Although they found statistically significant warming in the

area since 1957, they also discovered similar warming and cooling trends throughout

the record. They found that warming had not yet left the natural range of climate

variability for the region.

The papers above have focused on reconstructing the timelines of past centuries using

proxy data. Cuffey et al. (2016), Holloway et al. (2016) and D’Andrilli et al. (2017)

all used proxy data to create records of Antarctic climate over much longer time

periods, going back to the LGM. Cuffey et al. (2016) reconstructed the temperature

history over West Antarctica from the LGM to present day using water isotopes

and temperature readings in boreholes. They commented that understanding the

transition from glacial to interglacial is important, as it allows us to learn how forcings

such as a rise in atmospheric CO2 effects the climate. D’Andrilli et al. (2017) created

a record of organic matter from a West Antarctic ice core dating back to the LGM.

This allowed them to improve their understanding of the influence that organisms

have on climate change. Although focusing on different aspects of climate, they all

show the importance of such data to provide information on the nature of Antarctica

through time. Without the use of these data sources, we would know little about

how the AIS responds to glacial and interglacial periods.

These papers all showcase the benefits of incorporating proxy records in to the eval-

uation of the Antarctic climate. We can extend climate records and compare recent

warming with past trends, yet these papers show that having more data is not all



16 CHAPTER 2. MOTIVATION AND LITERATURE REVIEW

that is needed; the way the data is used is also important. Although proxy data and

models have been brought together through data assimilation, that is not the point

of this thesis. We instead wish to use a novel Bayesian approach that will combine

proxy data and climate models to better model the ice sheets.

2.2.1 The Use of Water Isotopes in Palaeo-climate Recon-

struction

As mentioned in 1.1, we will be making use of proxy data in the form of stable water

isotopes found in ice cores. Water isotopes have long been viewed as an essential

tool for palaeo-climate research. As stated in Haywood et al. (2016), they have been

used to estimate palaeotemperatures and consequently ice volume, and have become

the “multitool of palaeoceanographic inquest” [pg. 4].

Jouzel et al. (2013) explains in detail the way water isotopes are used in climatology

and what we can learn from them. Water is mostly formed of H2
16O, with tiny

amounts being isotopic molecules H2
18O, H2

17O and HD16O. The distribution of

these molecules varies both spatially and temporally in the atmosphere depending

on climatological parameters. Most notably there is a “linear relationship between

annual values of δD and δ18O and the annual mean temperature ... at middle and

high latitudes” [pg. 7469], where

δ = (Rsample −RSMOW )/RSMOW
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with Rsample and RSMOW the isotopic ratios of the sample and the Vienna Standard

Mean Ocean Water. δD and δ18O are also linearly related to each other along the

Meteoric Water Line (MWL, the relationship between hydrogen and oxygen isotope

ratio in water). We use the paper Sime et al. (2009) to define the “deuterium excess

parameter”, or d-excess, as d = δD - 7.85 × δ18O, which is sensitive to differences

between data and the MWL.

This formula has been used to reconstruct past climates from water archives. In

Antarctica and Greenland, δD and δ18O have been measured to calculate temperature

change at the drilling site (Jouzel et al., 2013). Comparison with d-excess has then

allowed a reconstruction of conditions at the ocean surface. More recently 17O-

excess has been developed, providing new information about oceanic sources due to

differences between δ17O and δ18O (Landais et al., 2008).

As shown here, water isotopes can play a key part in ice sheet reconstruction.

Through their use, we can look back further than observational data would allow,

and estimate how the ice sheets have transitioned from glacial to interglacial peri-

ods. However, there must be careful consideration to ensure the data are used as

effectively as possible. Further details of the ice cores we use in this work are given

in Section 5.2.
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2.3 Bayesian methods in palaeo-climatology

Work has already been done on learning about past ice sheet shapes through sta-

tistical analysis. The work of Chang et al. (2016b), Chang et al. (2016a), Chang

et al. (2014a) and Chang et al. (2014b) are good examples of the techniques used.

In Chang et al. (2016b), the most recent paper, they generate projections of the

change in ice volume in the West Antarctic Ice Sheet (WAIS) using both modern-

and palaeo-observations. Here we use the word observations in the statistical sense,

not geographical. Throughout this thesis, ice core data will be referred to as observa-

tions despite them not adhering to the geographic definition in order to differentiate

it from any synthetic data either from HadCM3 or simulated ourselves.

Chang et al. (2016b) encourage the use of a combination of proxy and observational

data; the use of solely modern observations may not lead to well-constrained pro-

jections, as they lack information on long-term parameters. Data that only covers

the last 60 years or so will not accurately estimate the parameters in climate models

that represent any long-term changes or trends; palaeo-data is clearly needed for

this purpose. As they go on to say, “studies using heuristic approaches suggest that

utilising information from palaeo-data can reduce uncertainties in these long-term

behaviour related parameters” [pg. 3]. Through a use of emulation and calibration,

their results are less uncertain than those using solely modern data.

Their method consists of two steps: emulation and calibration. They use the PSU3D-

ICE model, run with 625 different settings for the four parameters of interest, with
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each model simulation starting at 40Ka BP and spun up to 5,000 years in to the

future. Due to computational and inferential challenges, the dimensions of model

output are reduced through PCA. A Gaussian process emulator is constructed for

each principal component to be used, giving an approximation to this model output.

Information from these emulators is then combined with observations to infer input

parameters for the model. A simulated example shows that this method can recover

true parameters with little uncertainty, and provides information on parameter in-

teractions. Projections are also constrained better when using real data, with the

probability of unrealistic events occurring reduced.

There are some caveats to this method which the authors recognise. The atmospheric

conditions used are very simple, assuming a linear increase in temperature over 150

years before remaining constant. More detailed scenarios need to be considered for

warming, and the grid size used is also very coarse. They conclude that further work

should focus on reducing the size of the latitude and longitude cells, although this

will make the emulation runs more expensive.

The work in Domingo et al. (2020) gives even more motivation for our work. Using

a similar approach to us, they used PCA to reduce a set of reconstructions to com-

ponents describing the Greenland Ice Sheet during the Last Interglacial. A set of

orographies were submitted as part of a set of simulations in HadCM3, and emula-

tion and history matching were used to identify orographies that match proxy data

observations. Their results show that this method of data-model comparison has

great potential, although it also shows the importance of well-constrained ice core

records.
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As computational power has increased, statistical methods have become more appli-

cable for palaeo-climatology. Starting with Parnell (2005) and Kopp et al. (2009),

Gaussian processes have become a useful tool when analysing climates in past time

periods. A detailed description of GP emulators is given in Chapter 5. By focusing

on the LGM, a more recent time period, we build on the work of Domingo et al.

(2020) by demonstrating this data-model comparison method when more ice core

records are available. The breadth of time that the LGM took place in means the

dating errors in these ice cores are relatively low and hopefully will result in a reduced

uncertainty around the AIS shape.

2.4 Summary of chapter

Understanding the past size and shape of the Antarctic ice sheets is imperative to

understand how they will respond to future warm climates. The LGM is an important

time period to study due to the uncertainty around global ice sheets and the “missing

ice” problem. By reducing uncertainty around the AIS during this period and giving

more certain estimations of where this missing ice may have been, we can better

constrain the contribution Antarctica has made to rising sea levels up to present

day.

The literature shows a clear need to incorporate more proxy data into climate mod-

elling. It also shows that the application of statistical techniques already widely

used in other areas could allow us to learn more from the data than current meth-

ods are capable of. With the increasingly recognised need for the incorporation of
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more advanced statistical techniques in palaeo-climatology, interdisciplinary research

is slowly becoming the norm. We aim to show that a thorough and informed way of

combining Bayesian methodology, climate modelling and proxy data is possible.

In the next chapter, we use previous reconstructions of the AIS at the LGM to build

a statistical model describing the variations between these reconstructions. This will

model our prior beliefs of the AIS, showing which parts of the ice sheet reconstruction

are most uncertain, and will be the first stage of our Bayesian framework.
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Chapter 3

Building The Prior Model

We wish to create a prior model of the shape of the Antarctic ice sheets at the

LGM. This will be a statistical model that outputs synthetic ice sheet shapes, with

no physical laws underlying it. A sample of these shapes will be chosen through

consultation with experts and run through HadCM3 to provide us with estimated

water isotope ratio values.

To ensure our prior model is as informative as possible, we incorporate expert knowl-

edge about the ice sheets at the LGM. We conducted a literature review to collect

reconstructions of the ice sheets. This led to a set of forty ice sheet shapes from

Peltier (2004), Argus et al. (2014), Whitehouse et al. (2012), Briggs et al. (2014),

Pollard and DeConto (2009), Golledge et al. (2012), Golledge et al. (2013), Bentley

23
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et al. (2014) and de Boer et al. (2017), which will be used to create a prior distribu-

tion over the space of possible shapes. We can use these shapes to describe a vector

space of possible shapes. The sum of two vectors in the space of shapes, and the

multiplication of a vector by a scalar, remains in this vector space.

We want to keep the number of variables in our prior distribution to as few as

possible; using the collected reconstructions in their original form is unwise as a

model with forty variables would be too computationally expensive. We also want

to have variables that are orthogonal to each other, so that they describe different

directions of the vector space. As many of these ice sheet reconstructions are made

using the same data and models, they are not uncorrelated and must be transformed.

We wish to do this whilst retaining as much information, or variance, as possible.

From a statistical viewpoint, our method is as follows: we wish to find a shape

y ∈ R96×73, where

yij = height at latitudei, longitudej.

R96×73, which is the dimensions of the HadCM3 latitude/longitude grid, is a vector

space. The ice sheet shapes live within a subspace S. We use the reconstructions

from the literature to define

S = span{X1, ..., X40}.

where Xi is a matrix describing the ice sheet reconstruction. dim(S) = 40, mean-

ing we would need forty coordinates to describe a shape in S. This is too many
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dimensions, so we aim to find a compact way to describe shapes in S, i.e. find Ŝ s.t.

Ŝ = span{a1, ...,ak} for some k < 40, such that Ŝ ' S.

To find these basis vectors ai, we use principal component analysis (Jolliffe, 1986).

There are some drawbacks to the method. By defining the space our prior model will

lie in by the collection of ice sheet reconstructions, we are discarding any ice sheet

shapes that lie outside of this space. We are therefore reliant on these reconstructions

being plausible estimates of the ice sheets at the LGM, and anything they do not

describe being implausible.

In this chapter, we use a variation on principal component analysis to build a prior

model of the Antarctic Ice Sheets at the LGM. We discuss the various methods

considered, and the checks used to decide on the number of variables to be included

in our model.

3.1 Principal Component Analysis

Principal component analysis (PCA) provides us with a statistical transformation of

multivariate data. Given a data set with n observations of p variables it finds a new

set of n uncorrelated observations in the new variables, the principal components.

These describe the variation in the data ordered by how much of this variation they
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describe; the first principal component describes the direction of the largest amount

of variation, the second principal component describes the direction of the second

largest amount and so on. The first k < p principal components are then chosen to

represent the data, allowing us to reduce the number of dimensions whilst discarding

a minimal amount of variation.

Here, our data is in the form of forty 96×73 matrices, which is the dimensions of the

HadCM3 latitude/longitude grid; each grid cell represents an area of 3.75◦ × 2.5◦.

We reshape the ice sheet shapes into a single matrix of dimension 7008×40 and treat

the 7008 latitude/longitude grid cells as “observations” in each of the forty ice sheet

reconstructions, which are our “variables”. We therefore have n = 7008 and p = 40.

In algebraic terms the process is: given our data set

X = [X1, ...,X40] ∈ R7008×40

with row mean µ ∈ R7008, which we remove before performing the analysis to centre

the data, empirical covariance matrix for all forty shapes

Σ40 = X̂X̂T ∈ R7008×7008,

where

X̂ = X − (
1

n
X1)1T

is the centred matrix, and Xi = (xi1, ..., xi7008), we want to find a set of vectors

ak ∈ R7008 such that

Y = ATX, A = (a1, ...,ak) (1)
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where Y ∈ Rk×40 is a matrix of independent, uncorrelated vectors describing X.

Geometrically, Y = aT
kX is the projection of X on to a new basis described by ak.

Values of Y give the coordinates of each observation along the set of vectors ak,

where ak are the principal components.

3.1.1 The first principal component

The first principal component is defined to be the vector a1 ∈ R7008 where the

projection aT
1X, for some single random vector X, has maximal variance subject to

the normalising constraint aT
1 a1 = 1. We therefore wish to maximise

Var(aT
1X) = aT

1 Σ40a1. (2)

We use a Lagrange multiplier to find the maximum value of this, taking into account

the normalising constraint. A Lagrange multiplier is a method of finding the local

minima and maxima of a function, f(x), for some variable x and given a set of

constraints, g(x) = 0. Assuming the function and constraints all have continuous

first derivatives, a Lagrange multiplier λ is introduced giving a Lagrange function:

L(x) = f(x)− λg(x).
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A stationary point of the Lagrange function is then found through differentiation.

The function we wish to maximise when performing PCA is

L(a1) = aT
1 Σ40a1 − λ(aT

1 a1 − 1).

We need to maximise L with respect to a1 and λ. Differentiating with respect to λ

and setting the result to zero gives

aT
1 a1 − 1 = 0

which is the normalising constraint. Differentiating with respect to a1 gives

∂L

∂a1

= 2Σ40a1 − 2λa1.

Setting this to 0, we find

(Σ40 − λI)a1 = 0⇒ Σ40a1 = λa1.

λ is therefore an eigenvalue of Σ40. Σ40 is a 7008× 7008 covariance matrix and has

39 eigenvalues λ1, λ2, ..., λ39, having lost a degree of freedom due to centring the

data, all of which are non-negative as Σ40 is positive semidefinite. Assuming the

eigenvalues are distinct, we have λ1 ≥ λ2 ≥ ... ≥ λ39 ≥ 0.
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Returning to Equation 2, we have

Var(aT
1X) = aT

1 Σ40a1

= aT
1 λIa1

= λ.

As we want to maximise Var(aT
1X), we choose λ to be λ1, the largest eigenvalue of

Σ40. Therefore, a1 is the eigenvector corresponding to the largest eigenvalue.

3.1.2 The second principal component

The second principal component, a2, is also found using a Lagrange multiplier with

the additional constraint that XTa2 be uncorrelated with XTa1. This means setting

aT
2 Σ40a1 = 0

However, since Σ40a1 = λ1a1 we can instead use the constraint aT
2 a1 = 0. This

means that a2 and a1 should be orthogonal.

This requires two Lagrange multipliers, giving us

L(a2) = aT
2 Σ40a2 − λ(aT

2 a2 − 1)− αaT
2 a1.

Differentiating with respect to the Lagrange multipliers and a2 then gives

∂L

∂λ
= 0⇒ aT

2 a2 = 1,
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∂L

∂α
= 0⇒ aT

2 a1 = 0

and
∂L

∂a2

= 0⇒ 2Σ40a2 − 2λa2 − αa1 = 0. (3)

Premultiplying by aT
1 , this becomes

2aT
1 Σ40a2 − 2λaT

1 a2 − αaT
1 a1 = 0. (4)

aT
1 Σ40a2 = aT

2 Σ40a1, since Σ40 is a real symmetric matrix. This means

aT
1 Σ40a2 = aT

2 Σ40a1 = aT
2 λa1 = λaT

2 a1 = 0,

as a1 is an eigenvector of Σ40. Thus the first component of Equation 3 is zero.

The second component also equals zero due to the constraint that a1 and a2 be

orthogonal to each other. As aT
1 a1 = 1 we find that α = 0. Equation 3 therefore

becomes (Σ40−λI)a2 = 0, so a2 is the eigenvector with the second largest eigenvalue,

λ2.

Continuing this method, we find that the jth principal component is the eigenvector

corresponding to the jth largest eigenvalue.

3.2 Reconstruction Errors

Once we have decided on a set of principal components, it is important that they

accurately represent the original data. We check this by reconstructing the data



3.3. PERFORMING PCA ON ICE SHEET RECONSTRUCTIONS 31

using the new projection Y found with Equation 1. This is done by calculating

AY + µ = X̂,

where A is the matrix of k eigenvectors ak and X̂ is the reconstruction of X. To

check the accuracy of X̂ = [X̂1, ..., X̂n], the root mean square error is found with

R =

√√√√ 1

n

n∑
i=1

(X̂i −Xi)2, n = 40.

Using all of the principal components would give a value of 0, as no information has

been discarded. If some of the components have been discarded, we try to keep R

as small as possible subject to k not being too large.

3.3 Performing PCA on Ice Sheet Reconstructions

We try two methods to create a prior model using the collected ice sheet reconstruc-

tions. For Method 1, we perform PCA on all forty shapes together and form the prior

model out of subsets of these principal components. We build a linear model using

the first four, five and six of the principal components, discarding 13.98%, 9.70% and

3.98% of the variation respectively. A screeplot of the forty principal components is

in Figure 3.1; we can see that after the first six, the amount of variance each compo-

nent represents becomes negligible. The other thirty-four principal components are

not used; we treat them as if they represent noise in the data. We are limited in how
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Figure 3.1: A screeplot of the eigenvalues of the principal components from method
1, showing the decrease in the amount of variance each component represents. After
the sixth, the amount of variance each subsequent component represents is negligible.

many principal components we can use by the number of simulations we will be able

to run in HadCM3; using the rule of needing to run ten simulations for each variable

in the model if using a GP emulator (Loeppky et al., 2009), we cannot have more

than six in our prior model.

However, not all reconstructions are equally widely used by the climatology commu-

nity. The first four ice sheet shapes we collected are data-based reconstructions and

widely favoured by the palaeo-climatology community when running climate models.
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These are ICE5G (Peltier, 2004), ICE6G (Argus et al., 2014), W12A (Whitehouse

et al., 2012) and GLAC-1D (Briggs et al., 2014); plots of them can be seen in Figure

3.2 and an overview of the methods used to build them can be seen in Table 3.1. The

other thirty six shapes come from ice sheet model output. These are Pollard and

DeConto (2009), Golledge et al. (2012), Golledge et al. (2013), Bentley et al. (2014)

and de Boer et al. (2017); they are plotted in Figure 3.3 and summarised in Table

3.2. When these come from the same model, particularly in de Boer et al. (2017),

the resulting shapes will be strongly related to one another. Given this we want

to explore approaches that ensure they do not carry the same weight as the other

shapes. PCA describes variation in the data, but we want to prioritise the variation

described by ICE5G, ICE6G, W12A and GLAC-1D. If we use all forty together, then

they are treated equally. We calculated the RMSE with reconstructions of the forty

collected ice sheet shapes; the values can be seen in Tables 3.3, 3.4 and 3.5. Whilst

this method gives low reconstruction errors, some of the largest errors are for the four

shapes that we wish to have most influence on the prior model. We therefore want

to find a method of constructing basis vectors that would emphasise these shapes

compared to the other thirty-six ice sheet reconstructions.
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(a) Ice sheet reconstruction ICE5G from
Peltier (2004).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(b) Ice sheet reconstruction ICE6G from
Argus et al. (2014).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(c) Ice sheet reconstruction W12A from
Whitehouse et al. (2012).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(d) Ice sheet reconstruction GLAC-1D
from Briggs et al. (2014).

Figure 3.2: The first four ice sheet reconstructions from Peltier (2004), Argus et al.
(2014), Whitehouse et al. (2012) and Briggs et al. (2014).
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Methodology Resolution Domain References
ICE-5G Refinement of ICE-4G. Coral histories in Barbados

used to construct relative sea level history, then tuned
with other data from the west Pacific. Ice sheet thick-
ness inferred from glacial isostasy with mathematical
models.

3.75◦×2.5◦ Global Peltier (2004)

ICE-6G Adjusted ICE-5G with new GPS observations and ice
core records. Ice loss removed from East Antarctica
due to lack of constraints on plateau.

1◦ × 1◦ Global Argus et al.
(2014)

W12A Combined proxy data with a mathematical ice sheet
model. Boundary conditions found using proxy data
or models. Regions with little or no data estimated
by relating to areas with many observations.

0.5◦ × 0.5◦ Antarctica
(below
60◦)

Whitehouse
et al. (2012)

GLAC-1D Glacial systems model (GSM) used to build a re-
construction. The GSM was run, providing a data
ensemble, which was then constrained with observa-
tional data and filtered to rule out unlikely results.

1◦ × 0.5◦ Global Briggs et al.
(2014)

Table 3.1: A summary of four of the ice sheet reconstructions to be used in this project.
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(a) Ice sheet reconstruction from Pollard
and DeConto (2009).
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(b) Ice sheet reconstruction from
Golledge et al. (2012).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(c) Ice sheet reconstruction from
Golledge et al. (2013).
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(d) Ice sheet reconstruction from Bentley
et al. (2014).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(e) Ice sheet reconstruction from de Boer
et al. (2017).
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m

(f) Ice sheet reconstruction from de Boer
et al. (2017).
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(g) Ice sheet reconstruction from de Boer
et al. (2017).
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(h) Ice sheet reconstruction from de Boer
et al. (2017).
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m

(i) Ice sheet reconstruction from de Boer
et al. (2017).
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(j) Ice sheet reconstruction from de Boer
et al. (2017).
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(k) Ice sheet reconstruction from de Boer
et al. (2017).
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m

(l) Ice sheet reconstruction from de Boer
et al. (2017).
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(m) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(n) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(o) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(p) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(q) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(r) Ice sheet reconstruction from de Boer
et al. (2017).
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(s) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(t) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(u) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(v) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(w) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(x) Ice sheet reconstruction from de Boer
et al. (2017).
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(y) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(z) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(aa) Ice sheet reconstruction from
de Boer et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(ab) Ice sheet reconstruction from
de Boer et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(ac) Ice sheet reconstruction from
de Boer et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(ad) Ice sheet reconstruction from
de Boer et al. (2017).
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m

(ae) Ice sheet reconstruction from
de Boer et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(af) Ice sheet reconstruction from
de Boer et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(ag) Ice sheet reconstruction from
de Boer et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(ah) Ice sheet reconstruction from
de Boer et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(ai) Ice sheet reconstruction from de Boer
et al. (2017).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
m

(aj) Ice sheet reconstruction from
de Boer et al. (2017).

Figure 3.3: The thirty-six ice sheet reconstructions used to create the second set of
principal components. These are from Pollard and DeConto (2009), Golledge et al.
(2012), Golledge et al. (2013), Bentley et al. (2014) and de Boer et al. (2017).
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Methodology Resolution Domain References
Combined ice sheet/ice shelf
model with new treatment of
grounding-line dynamics and ice-
shelf butressing

40km × 40km Antarctica (below 55◦) Pollard and DeConto
(2009)

Numerical ice-sheet model, using
terrestrial and marine geological
data for constraints

50km × 50km Antarctica (below 56◦) Golledge et al. (2012)

Combine interpretations of ice
sheet model results with geolog-
ical data

100km × 100km Antarctica (below 55◦) Golledge et al. (2013)

Synthesis of geological and glacio-
logical datasets to determine po-
sition of grounding-line and ice
sheet upper surface

150km × 150km Antarctica (below 55◦) Bentley et al. (2014)

Climate model snapshots forced
with different orbital forcing sce-
narios

400km × 400km Antarctica (below 54◦) de Boer et al. (2017)

Table 3.2: A summary of the thirty-six “other” ice sheet reconstructions to be used in this project.
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Therefore, for Method 2 we split our data into two subsets. The first subset contains

the four ice sheet shapes that we wish to be most influential on our prior model. The

second set contains the other thirty-six shapes, whose information we will incorporate

once we have found variables from the first set. PCA is applied to the first subset

of ice sheet shapes to keep the reconstruction errors as small as possible. This gives

four principal components that represent 50.45%, 34.48%, 9.23% and 5.84% of the

variation in those data alone. The last of these is discarded, as it only represents a

small proportion of the data. The first three principal components, which we call

A = [a1,a2,a3], collectively contain 94.16% of the variation in these four shapes and

will be used to build the prior model.

The three principal components from this first set of ice sheet shapes are shown in

Figure 3.4. The first principal component represents the contrasts between patches

in the WAIS and the rest of the continent. The second component compares the

centre of the continent with the coast and the third contrasts patches throughout

Antarctica.

We now attempt to make variables from the second set of 36 ice sheet reconstructions.

The variation of these shapes needs to be added into the prior model in the form of

at least one vector that is orthogonal to the principal components in A. We need

to take the original three principal components into account when creating further

basis vectors as we do not want to represent the same variation in the data twice in

our prior model. In Method 2, we try to find a way of performing PCA whilst taking

into account the set A.

In mathematical terms, we have three orthogonal vectors a1, a2 and a3 ∈ R7008, the
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0.14 0.09 0.04 0.01 0.06 0.11

(a) The first principal component of the
subset of four ice sheet shapes.

0.14 0.09 0.04 0.01 0.06 0.11

(b) The second principal component of
the subset of four ice sheet shapes.

0.195 0.145 0.095 0.045 0.005 0.055 0.105 0.155 0.205

(c) The third principal component of the subset of four ice sheet shapes.

Figure 3.4: The first three principal components for the subset of four ice sheet
shapes as defined by Peltier (2004), Argus et al. (2014), Whitehouse et al. (2012)
and Briggs et al. (2014). These components are the first three basis vectors for our
prior model.
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principal components from the first four ice sheet reconstructions, and a data set

X36 ∈ R7008×36, containing the other thirty-six ice sheet reconstructions. We wish to

find a vector, a4, that describes the variation in X36 such that

a4 ⊥ a1,a2,a3

and maximises the variance of the projection aT
4X36. We therefore want to choose

a4 that maximises Var(aT
4X36) = aT

4 Σ36a4, where Σ36 ∈ R7008×7008 is the empirical

covariance matrix of X36, with the constraint that aT
4 a1 = aT

4 a2 = aT
4 a3 = 0. We

add in a normalising constraint, aT
4 a4 = 1 and try the Lagrange function again to

find a4. We now wish to maximise the function

L(a4) = aT
4 Σ36a4 − λ(aT

4 a4 − 1)− αaT
4 a1 − βaT

4 a2 − γaT
4 a3.

Differentiating with respect to the Lagrange multipliers λ, α, β and γ gives the

constraints. Differentiating with respect to a4 gives

∂L

∂a4

= 2Σ36a4 − 2λa4 − αa1 − βa2 − γa3.

We wish to find the value of a4 for which this is equal to zero. We also want to find

the values of the Lagrange multipliers. By premultiplying by aT
1 , we find

2aT
1 Σ36a4 − 2λaT

1 a4 − αaT
1 a1 − βaT

1 a2 − γaT
1 a3 = 0.

Unlike when performing PCA, the first component is not equal to zero as a1 is not

an eigenvector of Σ36. We therefore have α = 2aT
1 Σ36a4. By similarly premultiplying

by aT
2 , aT

3 and aT
4 we find that β = 2aT

2 Σ36a4, γ = 2aT
3 Σ36a4 and λ = 2aT

4 Σ36a4.
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This gives us the equation

Σ36a4 − aT
4 Σ36a4a4 − aT

1 Σ36a4a1 − aT
2 Σ36a4a2 − aT

3 Σ36a4a3 = 0, (5)

which we must solve for a4.

3.3.1 The Newton-Raphson Method

We now need to find the value of a4 for which Equation 5 holds. We first try this

using the Newton-Raphson method, which finds successively better approximations

to the roots of a vector-valued function, x : f(x) = 0 for some variable x. The

method starts with the function f , its derivative ∇f ∈ Rp×p if dimf(x) = p, and

an initial estimate x0. The better approximation, x1, is found with

x1 = x0 − (∇f(x0))
−1f(x0).

This process is repeated as

xn+1 = xn − (∇f(xn))−1f(xn)

until a root has been found.
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A 3-D toy example

To show how the Newton-Raphson method works, we use a 3-D toy example. We

have a variance matrix

Σ1 =


3 0 0

0 0.1 0

0 0 0.1


whose first eigenvector is

aT
1 =

(
1 0 0

)
.

We wish to find a new vector, a2 from our second variance matrix

Σ2 =


2 1 0

1 2 0

0 0 0.1


that is orthogonal to a1 and maximises aT

2 Σ2a2. The first eigenvalue of Σ2 is

(1, 1, 0)T , which is not orthogonal to a1. We therefore use Newton-Raphson to find

the vector that solves

Σ2a2 − aT
2 Σ2a2a2 − aT

1 Σ2a2a1 = 0.

We find the derivative of this:

2[Σ2 − 2(Σ2a2)a
T
2 − (aT

2 Σ2a2)I − (Σ2a1)a
T
1 ]
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and run the function

an = an−1 − (∇f(an−1))
−1f(an−1)

a hundred times. This gives a new vector

aT
2 =

(
0 1 0

)
,

which is the y-axis. This is the direction we would expect a2 to take, as a1 is the

x-axis and Σ2 has nearly all variation in the x and y directions.

Applying to our own data

We now try this method on our own data. In order to find the derivative of Equa-

tion 5, we use the summation convention (Einstein, 1916). When an index variable

appears twice in a single term and is a free variable, it implies summation of that

term over all the values of the index. This means that

y =
n∑

i=1

cixi = c1x1 + c2x2 + ...+ cnxn

can be simplified to

y = cixi.
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We differentiate each component of ∂L
∂a4

= f(a4) individually with respect to a4. The

derivative of the first component of Equation 5 is

∂(Σ36,ija4j)

∂a4m

= Σ36,ijδjm = Σ36,im,

where

δjm =

 1 if j = m,

0 if j 6= m.

The derivative of the second component is

∂(a4kΣ36,kja4ja4i)

∂a4m

= δkmΣ36,kja4ja4i + a4kΣ36,kjδmja4i + a4kΣ36,kja4jδim

= Σ36,mja4ja4i + a4kΣ36,kma4i + a4kΣ36,kja4jδim.

The derivative of the third component is

∂(a1kΣ36,kja4ja1i)

∂a4m

= a1kΣ36,kjδjma1i

= a1kΣ36,kma1i.

We get similar results for the last two components, βa2 and γa3. Putting these

components together we get:

∇f(a4) = 2Σ36 − 2[(aT
4 Σ36a4)I − (Σ36a4)a

T
4 + (aT

4 Σ36)
TaT

4 ]− 2(a1Σ36)
TaT

1

− 2(a2Σ36)
TaT

2 − 2(a3Σ36)
TaT

3

= 2[Σ36 − 2(Σ36a4)a
T
4 − (aT

4 Σ36a4)I)− (Σ36a1)a
T
1 − (Σ36a2)a

T
2 − (Σ36a3)a

T
3 ].

(6)
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However, when we try to use the Newton-Raphson method on Equations 5 and 6, it

proves too computationally expensive to find the inverse of ∇f(a4) ∈ R7008×7008 due

to the size of our data set. We therefore try another method to find ∇f(a4)
−1, so

that we can run the Newton-Raphson method.

3.3.2 The LU Decomposition

The LU decomposition factors a matrix into a lower triangular matrix, L, and an

upper triangular matrix, U . It is then easy to find the inverse of the matrix. Set

Z = ∇f(a4), the matrix to be decomposed, and z = (∇f(a4))
−1, the inverse we wish

to calculate. Performing the LU decomposition gives

LU = Z,

so

Zz = LUz = L(Uz) = I,

where I is the n × n identity matrix. We have n2 equations; to solve these, we use

forward and back substitution. Starting with

Ly = I,

where y = Ux, we can use forward substitution to find

y1 =
1

l11
,
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yi =
1

lii

[
1−

i−1∑
j=1

lijyj

]
for i = 2, ..., n. We can then solve

Uz = y

for x using back substitution. This gives

zn =
yn
unn

,

zi =
1

uii

[
yi −

n∑
j=i+1

uijzj

]
for i = n−1, ..., 1. We can now try the Newton-Raphson method, replacing (∇f(a4))

−1

with z. However, trying this proves again to be too computationally expensive due

to the size of our dataset.

A 3-D toy example

Applying the LU decomposition to the 3-D example, we find the upper and lower

triangular matrices of ∇f(a0), where aT
0 = (1, 0, 0), are

L =


1 1

3
0

0 1 0

0 0 1

 U =


−12 0 0

2 −2
3

0

0 0 −3.8

 .
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We can then use the R commands “forwardsolve" and “backsolve" to find the inverse.

This gives 
0 0.5 0

−0.25 −1.5 0

0 0 −0.2632

 .

We can check this is accurate as finding the inverse in this example is computationally

very cheap. Using the “solve" command, we find

(∇f(a0))
−1 =


0 0.5 0

−0.25 −1.5 0

0 0 −0.2632

 .

Using the newly found x instead of (∇f(a0))
−1, we run the Newton-Raphson func-

tion. Again, we find the new vector is aT
2 = (0, 1, 0).

3.3.3 The nullspace method

The Newton-Raphson method has proved too computationally expensive because of

the size of our dataset. We therefore need to find a different way of finding basis vec-

tors other than solving Equation 5. The optimisation problem that we wish to solve

is a quadratically constrained quadratic program (QCQP), an optimisation problem

where both the objective function and the constraints are quadratic functions. These

have the form

minimize f0(x)
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for some variable x, subject to fi(x) ≤ 0 for all i = 1, ...,m

where fi : Rn → R has the form

fi(x) = xTPix+ qTi x+ ri.

This is simple to solve if P0 is positive semi-definite (Basu et al., 2017). However,

our function is defined as

minimize − a4Σ36a4

subject to

aT
4 a4 = 1, aT

i a4 = 0, i = 1, 2, 3.

Our problem is non-convex as P0 in this case is negative semi-definite, and it is

therefore not trivial to solve. An added difficulty is the size of our data set, which

means we want to avoid doing too much numerical work. However, we can solve the

problem by considering the vector space that A describes.

The condition ATa4 = 0 is equivalent to saying a4 ∈ null(AT ) ≡ B, where B is the

nullspace of A. The nullspace is the set of all vectors v which satisfies ATv = 0,

forming a subset of Rn. We can write any inner product space as the direct sum of

the nullspace of a linear operator and its compliment. This means that we can write

Rn = A⊕ A⊥ = A⊕ B. Thus a4 ∈ B as a4 =
∑
wibi = Bw where B = [b1, ..., bk]

for some vector w ∈ Rk. The problem then becomes:

maximise wTBTΣ36Bw

subject to wTBTBw = wTw = 1,
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as

BTB = I,

since the bi are orthonormal. As Σ36 = X36X
T
36 and BTΣ36B = BTX36X

T
36B =

(XT
36B)XT

36B, this is now our original eigenvalue problem from equation 2. We can

solve this by setting w to the eigenvectors of XT
36B, which we can find with the

singular value decomposition (SVD). This is the factorisation of a matrix. For a n×p

matrix M , the SVD factorises it into the form UΣV T where U is an orthonormal

n× n matrix, Σ is a diagonal n× n matrix containing the eigenvalues of M , and V

is a p × n matrix. The right singular vectors, the columns of V, are eigenvectors of

M .

We perform the singular value decomposition onXT
36B and take the first three vectors

in V as w. We then multiply them by B to find the new basis vectors. These are

orthogonal to A, the matrix of the first three basis vectors, and are orthonormal.

We now have a set of six vectors: three principal components that describe the four

main ice sheet reconstructions and three basis vectors that describe the other thirty-

six shapes. However, incorporating more basis vectors into our model adds in more

dimensions for us to work in, and we only have a limited number of simulations we

can run through HadCM3 to explore this model space. We therefore must consider

how many of the new basis vectors to incorporate in to our prior model.

The three new basis vectors are plotted in Figure 3.5. The first vector describes

variation between the Eastern plateau and the rest of the continent. The second

vector represents variation between patches in the East and West and the rest of
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Antarctica. The third vector shows contrasts between the coast and a patch in the

West, with emphasis over an area next to the peninsula.

A 3-D toy example

We apply the nullspace method to our 3D example. We simulate two data sets of

multivariate normally distributed variables: X1, with distribution N (0,Σ1), and X2

with distribution N (0,Σ2). In R code, our exact steps are

Z1 = matrix(c(3, 0, 0, 0, 0.1, 0, 0, 0, 0.1), ncol=3)

data1 = mvtnorm::rmvnorm(10000, rep(0, 3), Z1)

Z2 = matrix(c(2, 1, 0, 1, 2, 0, 0, 0, 0.1), ncol=3)

data2 = mvtnorm::rmvnorm(10000, rep(0, 3), Z2)

We know our first eigenvector of Σ1 is

a1 =
(

1 0 0
)
.
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We find its nullspace using the R command Null

b =


0 0

1 0

0 1

 ,

and multiply this with X2. We use the SVD to find eigenvectors of XT
2 Σ2, and

multiply this with the set of nullspace vectors b.

a1 = c(1,0,0)

b1 = MASS::Null(a1)

Y = svd(data2%*%b1)$v

a2 = b1%*%Y

Our new eigenvector is

a2 =
(

0 1 0
)
.

We then reconstruct our data and find the root mean square errors; these are all very

close to zero. For reference, the code to do the reconstruction and find the errors is

as follows:

A = cbind(a1,a2)
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data = rbind(data1,data2)

datarecon = data%*%A%*%t(A)

rmse <- sqrt(rowMeans((data-datarecon)∧2)).

This is a problem that we have not found elsewhere, and believe we have created a

novel solution. Our approach is new, and may be of use in other areas.

3.4 Comparing two variable reduction approaches

We wish to compare the two methods we have used to find basis vectors and see which

gives the most accurate reconstruction of the forty shapes, looking in particular at

the errors for the first four shapes. We also wish to see how much the accuracy of

the methods increase when we use four, five or six basis vectors in our model, as

we want our prior model to have as few variables as possible without discarding too

much information from the data. We are limited in how many shapes from our model

we can run through the climate model HadCM3, so we require our basis to have as

few dimensions as possible or risk not representing the entire basis with our set of

simulations.

We compare the methods by calculating the Root Mean Square Error (RMSE) of the

reconstructed shapes. We calculate the difference between ice sheet shapes and the
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0.14 0.09 0.04 0.01 0.06 0.11

(a) The first basis vector for the thirty-six
model-based ice sheet shapes.

0.145 0.095 0.045 0.005 0.055 0.105 0.155

(b) The second basis vector for the thirty-
six model-based ice sheet shapes.

0.21 0.16 0.11 0.06 0.01 0.04 0.09 0.14 0.19

(c) The third basis vector for the thirty-six model-based ice sheet shapes.

Figure 3.5: The three basis vectors found for the thirty-six model-based ice sheet
shapes (Pollard and DeConto (2009), Golledge et al. (2012), Golledge et al. (2013),
Bentley et al. (2014) and de Boer et al. (2017)), using the null space method (see
Section 3.3). We must consider carefully how many of these to incorporate into our
prior model.
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reconstructions using the basis vectors created using the two different methods. We

also compare how much the errors decrease when using four, five or six basis vectors

for each of the two methods.

Tables 3.3, 3.4 and 3.5 show the RMSE values for the forty collected ice sheet shapes.

We wish to compare the errors for each shape, with emphasis on having smaller errors

for the subset of four ice sheet reconstructions that we consider most important in

influencing our prior model.

When four basis vectors are used, method 2 has much smaller errors for the shapes

from Peltier (2004), Argus et al. (2014) and Whitehouse et al. (2012) than method

1. The error for Briggs et al. (2014) is about the same for both methods. For the

other thirty-six shapes, the errors are similar between both methods apart from the

shape from Pollard and DeConto (2009), where method 1 has a much smaller error

than method 2.

When five basis vectors are used, the error in method 1 for Whitehouse et al. (2012)

is now much smaller than method 2. The errors for the first two shapes remain

smaller for method 2 than method 1, and the error for the fourth shape is still

similar between both of the methods. Method 3 now gives a much smaller error for

the shape from Pollard and DeConto (2009), and the other thirty-five shapes have

similar error sizes.

For six basis vectors, the errors for the first four shapes are almost identical to using

five basis vectors for method 2, whilst method 1 has large decreases for three of the
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first four. Whitehouse et al. (2012) and Briggs et al. (2014) both now have smaller

errors for method 1 than the other method. Errors for the other thirty-six shapes are

quite varied between the two methods; Pollard and DeConto (2009) is almost three

times smaller in method 2 than in method 1. As there is little difference between five

and six variables for the most important shapes in method 2, it is decided that the

prior model will not include the sixth basis vector. This is due to the limited number

of simulations we can run through HadCM3; with five prior variables instead of six,

we can run fifty simulations to thoroughly test our model rather than sixty.

The average RMSE was also considered for both methods; the values can be seen in

the final rows of Tables 3.3, 3.4 and 3.5. Method 1 has the smallest mean errors;

this is to be expected, as PCA on all forty shapes would find the optimal scenario

overall. We performed the other method wanting our basis vectors to be particularly

accurate reconstructing the first four shapes, and have sacrificed accuracy for the

other shapes in order to obtain this. The average loss of accuracy is minimal, so we

decide to use the basis vectors from our second method. The errors for all methods

and all scenarios have been small; given the average height of the Antarctic ice sheet

reconstructions is around 2300m, the errors we have calculated suggest that our

variables are very accurate at reconstructing the collection of ice sheet shapes.
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Shape Method 1 Method 2
Peltier (2004) 13.07 1.42

Argus et al. (2014) 12.85 6.07
Whitehouse et al. (2012) 55.98 35.63

Briggs et al. (2014) 43.23 44.21
Pollard and DeConto (2009) 40.23 62.86

Golledge et al. (2012) 24.95 23.69
Golledge et al. (2013) 21.81 23.36
Bentley et al. (2014) 35.70 38.19
de Boer et al. (2017) 7.43 8.80
de Boer et al. (2017) 6.27 6.90
de Boer et al. (2017) 8.62 8.92
de Boer et al. (2017) 9.01 9.68
de Boer et al. (2017) 6.35 6.62
de Boer et al. (2017) 9.12 9.26
de Boer et al. (2017) 8.25 8.55
de Boer et al. (2017) 12.29 13.43
de Boer et al. (2017) 13.10 16.51
de Boer et al. (2017) 12.13 15.07
de Boer et al. (2017) 8.24 9.38
de Boer et al. (2017) 6.11 6.77
de Boer et al. (2017) 10.66 13.14
de Boer et al. (2017) 13.30 14.67
de Boer et al. (2017) 6.19 6.26
de Boer et al. (2017) 9.31 9.51
de Boer et al. (2017) 7.65 8.93
de Boer et al. (2017) 6.34 6.98
de Boer et al. (2017) 9.24 9.47
de Boer et al. (2017) 9.64 10.43
de Boer et al. (2017) 6.73 6.87
de Boer et al. (2017) 9.23 9.38
de Boer et al. (2017) 8.46 8.81
de Boer et al. (2017) 12.25 13.42
de Boer et al. (2017) 10.07 13.01
de Boer et al. (2017) 11.89 14.86
de Boer et al. (2017) 7.99 8.85
de Boer et al. (2017) 6.07 6.62
de Boer et al. (2017) 10.37 12.79
de Boer et al. (2017) 13.87 15.19
de Boer et al. (2017) 7.16 7.25
de Boer et al. (2017) 9.83 10.08

Average RMSE 13.52 14.05

Table 3.3: The RMSE for each of the forty collected ice sheet shapes when using
four basis vectors. We wish to prioritise reducing the errors for the first four shapes.
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Shape Method 1 Method 2
Peltier (2004) 12.87 1.38

Argus et al. (2014) 9.44 5.89
Whitehouse et al. (2012) 2.07 34.53

Briggs et al. (2014) 38.75 42.85
Pollard and DeConto (2009) 24.01 18.46

Golledge et al. (2012) 24.51 22.19
Golledge et al. (2013) 21.67 23.20
Bentley et al. (2014) 34.37 33.63
de Boer et al. (2017) 7.42 8.34
de Boer et al. (2017) 6.27 6.74
de Boer et al. (2017) 8.31 8.84
de Boer et al. (2017) 8.68 8.81
de Boer et al. (2017) 6.35 6.27
de Boer et al. (2017) 9.09 9.21
de Boer et al. (2017) 7.86 8.20
de Boer et al. (2017) 12.09 12.65
de Boer et al. (2017) 12.54 13.35
de Boer et al. (2017) 11.44 11.83
de Boer et al. (2017) 8.23 9.15
de Boer et al. (2017) 6.10 6.54
de Boer et al. (2017) 10.28 9.71
de Boer et al. (2017) 12.63 12.09
de Boer et al. (2017) 6.15 6.29
de Boer et al. (2017) 9.29 9.43
de Boer et al. (2017) 7.64 8.56
de Boer et al. (2017) 6.34 6.83
de Boer et al. (2017) 8.87 9.25
de Boer et al. (2017) 9.27 9.34
de Boer et al. (2017) 6.72 6.74
de Boer et al. (2017) 9.21 9.35
de Boer et al. (2017) 8.08 8.44
de Boer et al. (2017) 12.06 12.61
de Boer et al. (2017) 9.84 10.84
de Boer et al. (2017) 11.17 11.62
de Boer et al. (2017) 7.96 8.78
de Boer et al. (2017) 6.07 6.50
de Boer et al. (2017) 10.02 9.41
de Boer et al. (2017) 13.09 12.58
de Boer et al. (2017) 7.15 7.24
de Boer et al. (2017) 9.79 9.73

Average RMSE 11.34 11.93

Table 3.4: The RMSE of the forty collected ice sheet shapes when using five basis
vectors. We wish to prioritise reducing the errors for the first four shapes.



64 CHAPTER 3. BUILDING THE PRIOR MODEL

Shape Method 1 Method 2
Peltier (2004) 10.85 1.38

Argus et al. (2014) 4.02 5.89
Whitehouse et al. (2012) 2.04 34.53

Briggs et al. (2014) 10.73 42.85
Pollard and DeConto (2009) 18.75 6.26

Golledge et al. (2012) 19.26 22.14
Golledge et al. (2013) 21.52 23.20
Bentley et al. (2014) 32.86 22.10
de Boer et al. (2017) 7.37 7.44
de Boer et al. (2017) 5.92 6.72
de Boer et al. (2017) 8.02 8.83
de Boer et al. (2017) 7.97 8.41
de Boer et al. (2017) 5.98 6.16
de Boer et al. (2017) 8.93 8.02
de Boer et al. (2017) 7.82 6.42
de Boer et al. (2017) 12.09 7.88
de Boer et al. (2017) 12.45 7.14
de Boer et al. (2017) 11.28 8.10
de Boer et al. (2017) 7.92 7.67
de Boer et al. (2017) 6.04 6.37
de Boer et al. (2017) 8.98 8.66
de Boer et al. (2017) 11.51 11.82
de Boer et al. (2017) 6.02 5.87
de Boer et al. (2017) 9.01 7.99
de Boer et al. (2017) 7.53 7.69
de Boer et al. (2017) 5.97 6.79
de Boer et al. (2017) 8.30 9.25
de Boer et al. (2017) 8.43 8.81
de Boer et al. (2017) 6.56 6.55
de Boer et al. (2017) 9.07 8.09
de Boer et al. (2017) 8.05 6.51
de Boer et al. (2017) 12.06 7.92
de Boer et al. (2017) 9.84 6.59
de Boer et al. (2017) 11.05 7.87
de Boer et al. (2017) 7.56 8.11
de Boer et al. (2017) 5.98 6.39
de Boer et al. (2017) 8.63 8.68
de Boer et al. (2017) 2.05 12.18
de Boer et al. (2017) 7.15 6.99
de Boer et al. (2017) 9.18 8.72

Average RMSE 9.89 10.22

Table 3.5: The RMSE of the forty collected ice sheet shapes when using six basis
vectors. We wish to prioritise reducing the errors for the first four shapes.
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3.5 Building the Prior Model

The basis vectors can now be used to build the prior model. We use a simple linear

model of the form

θ = z1a1 + z2a2 + z3a3 + z4a4 + z5a5 + µ,

where θ ∈ R7008 is ice sheet shape, the ai ∈ R7008 are the basis vectors and µ ∈ R7008

is the mean ice sheet shape from the forty collected reconstructions. We need a set

of scalars, z ∈ R5, that will control how much of each basis vector contributes to the

synthetic outputted ice sheet shapes. Using these z, we want our model to be able

to reconstruct the forty ice sheet shapes used to create the variables, as we want our

model to output sensible estimates of the size and shape of the ice sheets. As the

ai are the first i columns of V , we set z to be a combination of U and Σ. However,

as we performed the SVD on the two sets of ice sheet shapes separately we need to

construct a new U ourselves. We have

X = UΣV T ,

where X is our set of ice sheet shapes, V is the matrix of our five basis vectors and

Σ the diagonal matrix of their corresponding eigenvalues. From this we find

UΣ = XV = Xproj
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where Xproj is the data projected through V . We then have

U = XprojΣ
−1.

We thus set z = (XprojΣ
−1).

After normalising the zi’s to lie between [−1, 1], we plot histograms of them to

consider what distribution to give them. These can be seen in Figure 3.6. Although

they appear to have a peak and tails that would suggest a Gaussian distribution,

this seems less suited when we consider where the errors for the four most significant

shapes lie on the plots. The four most important shapes are outliers or spread out

uniformly for z1, z2 and z3. If we took a Gaussian distribution, then these important

ice sheet shapes would be treated as unlikely scenarios. We therefore set each of the

zi’s to a uniform distribution over [−1, 1]. This would make every ice sheet shape

equally likely to occur so none of our collected shapes are disregarded.

3.6 Summary of Chapter

In this chapter, we have used a collection of ice sheet reconstructions to build a prior

model describing the variation within the Antarctic ice sheets at the LGM. By devel-

oping a new form of Principal Component Analysis that allows us to prioritise one set

of data over another, we have modified this method to better suit our requirements

and create a model that is influenced by the most widely accepted existing ice sheet
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reconstructions. The next stage of this research is to run a set of outputs from this

prior model through the general circulation model HadCM3. In the next chapter,

we describe the process of expert elicitation to decide on this set of ice sheet shapes.

There are some limitations to this approach. By using published reconstructions of

the ice sheets to describe the vector space our shapes will lie in, we are automatically

rejecting any shapes outside of this space. We therefore are assuming that these

reconstructions describe all plausible shapes of the ice sheets at the LGM, and any

shapes not in this subspace are implausible.

We have had to limit the number of prior model variables to five; this is to ensure

we do not have too many dimensions to explore when running simulations through

HadCM3. However, this means we have had to discard some variation within the

data. Although we have calculated the RMSE values to check we are not throwing

away too much information about the ice sheet shapes, inevitably some has been

lost.
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(a) Histogram of z1. (b) Histogram of z2.

(c) Histogram of z3. (d) Histogram of z4.

(e) Histogram of z5.

Figure 3.6: Histograms of the scalars, z, for the five basis vectors in our prior model.
The points represent the subset of four ice sheet reconstructions that we consider
most important in our analysis. They are spread out or are outliers in most of the
histograms; this suggests a Gaussian distribution would not be a good fit for z.



Chapter 4

Elicitation of Ice Sheet Shapes

As described in Chapter 3, we have a prior model, built using a set of forty ice

sheet reconstructions, that outputs synthetic ice sheet shapes. We now wish to use

this model to create a set of synthetic ice sheet shapes to run through the global

circulation model HadCM3. This will provide us with a set of input and output data

with which we can build a Gaussian process emulator of HadCM3, allowing us to

run MCMC in order to sample the posterior distribution of the ice sheet shape at

the LGM. The shapes we choose to input are therefore important. We must consider

which set of shapes would cover the space defined by our prior model evenly, to

ensure important areas are not underrepresented in our HadCM3 simulations. The

expense of running HadCM3 is also an important motive in considering which ice

sheet shapes to input. The model is both financially and computationally expensive

to run, taking twenty-four hours on the remote access super computer Archer to

69
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simulate approximately twenty years model time. As we wish to run each of our

simulations for sixty years, we are limited in how many we can input into HadCM3.

Any simulations run through HadCM3 containing implausible LGM ice sheet shapes

would be a waste of time and resources. We must therefore ensure that all ice

sheet shapes we run are plausible for the LGM, as well as that they span the range

of possible prior shapes so that they embody the uncertainty our model describes

about the ice sheet at the LGM.

Mathematically, we wish to model f : S → D, where S is the space the prior model

describes and D is the space described by the isotope values that HadCM3 outputs.

A good design of S is usually a space filling design (Pronzato and Müller, 2012).

We have already incorporated some expert judgements when we used a collection of

ice sheet reconstructions to create variables for our prior models. This has allowed

us to better represent uncertainty about the shape of the ice sheets at the LGM,

giving us a more informed model. We therefore wish to consult with experts on

which shapes should be used as input for HadCM3 and incorporate their beliefs into

our decision-making process. A consultation was organised with ice modellers and

LGM experts at the British Antarctic Survey, with their judgements to be used to

help determine which shapes to input into the climate model.

Elicitation is an important tool when wishing to draw on expert judgements, and can

play a vital role when making decisions on complex problems (O’Hagan et al., 2006,

Chapter 1). Statisticians are often called on to work in a variety of different fields;

often these are areas that they have no experience in. In these cases, a consultation
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with experts is essential to understand what is needed. Here, we have little knowledge

of what the Antarctic ice sheets looked like at the LGM so we are reliant on a

consultation with experts to decide on our set of synthetic ice sheets.

An expert elicitation is of particular use when performing Bayesian analysis (O’Hagan

et al., 2006, Chapter 1). When building a prior distribution, it is often useful to

incorporate judgements from experts in that particular area as eliciting these opinions

about parameters in the distribution can allow us to reduce uncertainty about them.

This is an especially important stage when building a subjective prior. If there is

limited data, the prior can be very influential on the results.

There is a wide range of literature on expert elicitation; both Dias et al. (2018) and

EFSA (2014) give an overview of the process. Johnson et al. (2010) demonstrates

the use of upper and lower extremes to build probability distributions describing an

experts belief; however, it is reliant on the participants having sufficient knowledge

of probability and statistics. Albert et al. (2012) shows the importance of building

informative priors for parameters that have few observations to provide information.

They also discuss how to effectively combine multiple expert judgements, modelling

both the consensus and diversity of opinions. Garthwaite et al. (2005) gives a thor-

ough overview of elicitation, motivating the use of the technique and the need to

continue further research. All of these papers are good examples of the usefulness

of a formal elicitation process, and consider the various biases and other challenges

inherent in such a focus. In this project, a more informal procedure was necessary

to engage experts and model their beliefs in an easily interpretable format.

In this chapter, we describe the process of eliciting expert opinions with reference to
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O’Hagan et al. (2006). In section 4.1, we consider how to prepare for an elicitation

meeting. Section 4.2 explains the process of conducting a meeting. Section 4.3

describes the follow up to an elicitation meeting and using the collected judgements.

Throughout the sections, we describe our own process of expert elicitation.

4.1 Preparation

A great deal of preparation is required to have a successful elicitation process. The

style of elicitation must first be decided on. This consists of two main decisions: the

first is whether to consult with a single or multiple experts. Both of these options

have their pros and cons (O’Hagan et al., 2006, Chapter 2). Having multiple judge-

ments can lead to a more informed prior and it is therefore often better to consult

with multiple experts. It is also rare that one person has all of the expertise required.

By meeting with multiple people, their beliefs can be aggregated so that the future

analysis is as informed as possible. However, meeting with multiple experts can be

extremely time-consuming, particularly if you are doing so individually. Meeting

with a single expert can be the most appropriate choice if there is a time constraint.

If using multiple experts, we must also decide whether to gather their opinions indi-

vidually or as a group. Having to consult many different experts takes a long time,

but it can often lead to more detailed judgements and allows us to concentrate on

their area of expertise. However, meeting in a group allows experts to discuss things

amongst themselves and come to a consensus on a question. It also can lead to

discussion on points not already raised, and introduce new concepts to the analysis.
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The second decision is whether to conduct the elicitation through face-to-face in-

terviews or a survey or questionnaire for the expert(s) to fill out themselves. A

questionnaire is a low-cost approach to conducting an elicitation, and means each

expert is provided with the exact same questions and information. An interview,

however, allows the facilitator to make sure the experts understand what is being

asked of them and amend later questions based on earlier answers.

When considering our own situation, we decided the best approach was a group inter-

view with multiple experts. The people we were consulting were from a wide range of

expertise (Robert Arthern1, Richard Hindmarsh 2, Dominic Hodgson3, Robert Mul-

vaney4 and James Smith5), which we thought would benefit our research a great deal

more than a single expert. The group meeting was partly due to time constraints,

but also because we hoped meeting the experts at the same time would lead to a

more collaborative response to our questions. Our own limited knowledge of the

research area meant that sitting in on a discussion between these experts would be

a valuable learning experience as well. The experts we consulted with were chosen

by my supervisor, Louise Sime (BAS).

Careful thought was put in to what we wanted to achieve from the elicitation process

for the current project. The amount of time available to explain the project and ask

for advice was short, so it was important to decide beforehand the most effective

way of explaining this work and to consider what to seek advice on. Our preparation
1Ice sheet modeller, rart@bas.ac.uk
2Glaciologist, rcah@bas.ac.uk
3Sedimentologist, daho@bas.ac.uk
4Science leader of the Ice Dynamics and Palaeoclimate team, rmu@bas.ac.uk
5Sedimentologist, jaas@bas.ac.uk
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took two forms: building an interactive version of the prior model to help convey

what we were trying to do, and creating a list of specific points on which we wished

to gather opinions.

4.1.1 The Interactive Model

Interactive plots and tools are an effective way of communicating methods or research

to a group of people with a wide and differing range of expertise (McInerny et al.,

2014). Often during the elicitation process we must explain a method that the

experts have no knowledge or experience of. A visual or interactive tool can be a way

of explaining methodology concisely; spending too much of the meeting explaining

the research takes time away from gathering judgements.

Before we could consult the experts on which synthetic ice sheet shapes to run

through HadCM3, we had to explain our project and how the prior model had been

built. We were consulting with scientists with a broad range of expertise, and it was

important that we present the prior model in a form that they could all understand

and visualise easily. We therefore produced a visual version of the model with an

interactive element rather than focusing on the statistical nature of the model. Using

matplotlib in python, we built a plot of the prior model that could be manipulated

with a set of sliders. A screenshot of this is shown in Figure 4.1. Each slider

controls one of the five variables in the model. These sliders set the value of each

zi, determining how much of the five basis vectors contributes to the ice sheet shape



4.1. PREPARATION 75

plotted above. By moving the sliders, we can see how the prior model is influenced

by each variable and create new ice sheet shapes.

The zi’s were scaled and given a uniform distribution between [-1,1], as described in

Section 3.5. However, for the elicitation process it was decided to expand this to [-3,3]

to ensure that we included as many potential ice sheet shapes as possible. Although

we believed these limits would be shortened a great deal during the elicitation process,

we wished to start with an overly large range of values to ensure that no feasible ice

sheet shapes were being excluded before we met with our group of experts. One of

the main aims of our meeting was therefore to agree on new minimum and maximum

values for each of the five uniform distributions.

4.1.2 Planning the Elicitation Meeting

It is essential to plan what to cover in the elicitation meeting, as well as specifically

what judgements to gather from the experts. Time is often a factor when deciding

how much can be achieved; people who are well regarded in their fields are often busy.

Finding a time well suited to a group of experts can prove difficult so the meeting

must be used efficiently. In particular, if they come from varied backgrounds they

may require different parts of your research to be explained in more detail to them.

This must be factored in to the agenda of the meeting.

Our meeting was limited to an hour. To keep time spent explaining our project to a

minimum, we wrote a summary of the project and shared it with the attendees the
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a1 0.00
a2 0.00
a3 0.00
a4 0.00
a5 0.00

0 500 1000 1500 2000 2500 3000 3500 4000
m

Figure 4.1: The prior model in an interactive plot. The sliders below the plot control
the five variables in our model, creating synthetic ice sheet shapes that will be run
through the global climate model HadCM3. The numbers on the right of the sliders
show what values the zi are currently taking. Here, they are set at 0 and only the
mean shape is being plotted.

day before the meeting. This was a page long and described the motivation for the

work, the shapes collected from the literature and the prior model. It ended with

the following questions that we wanted them to answer

• Does our prior model capture a plausible range of ice sheet shapes?

• Are we including only ice sheet shapes that are plausible for the LGM? Are
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there any that seem implausible?

• Are there shapes that are plausible but not included in our forty reconstruc-

tions?

• Where are you most uncertain about the extent and nature of the LGM ice

sheet? Where are you most certain? The variation in our statistical model is

plotted in Figure 4.2, does this match with your beliefs?

• We currently assume all ice sheet shapes are equally likely to occur. Could you

rule out ice sheet shapes as unlikely, and suggest a set of shapes that are more

likely?

These questions were written after deciding on the plan for the meeting. We would

explain the aims of the research and show them the interactive plot, inviting them to

play around with it themselves. This would allow them to answer the questions above

by seeing which values of the sliders produced plausible and implausible shapes.

4.2 Conducting the Meeting

Although the meeting was carefully planned, we also prepared to be flexible about

what was discussed. Although it can be frustrating, when experts choose to discuss
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0 600 1200 1800 2400 3000 3600 4200
m

Figure 4.2: A plot of the standard deviation within our model. It shows that there
is more variation in the WAIS than the EAIS.

a topic that the facilitator had not considered beforehand we can sometimes learn

something important that would not otherwise come to light. This can lead to the

incorporation of new ideas and techniques in to the resulting research. However, if

the discussion moves too far off track it is important to bring it back round to the

agenda as it is important that time is not wasted.

Several things were learnt through conducting our meeting. Having experts with

different backgrounds in the room made it difficult to focus on our specified aims. In

particular, explaining the statistical work behind the model to physical geographers

took time as they were asking about underlying physical models they believed we

should be using. Explaining the synthetic nature of the variables in our model

proved difficult, and a lot of questions on the presumed underlying bedrock and other
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such things had to be fielded. The differences between the original reconstructions

collected and our statistical model had to be explained, all of which took up a large

portion of the allotted hour. We therefore had to lower our expectations on what

could be covered in the time left of our meeting. The experts often focused on areas

we had not previously considered, making it awkward to ask them to move on to

the areas we wanted them to focus on. A longer meeting would have given us more

opportunities to discuss the areas we were interested in, but the experts we consulted

with were limited in how much time they could meet with us for.

Feedback gathered from meetings can be disheartening. It is important to use elici-

tation methods that are as simple as possible, but it may prove in the meeting that

an even simpler task is required to gather judgements effectively. The interactive

model was rejected by the experts due to the limited time they had available to

consider the project. Although we only had five variables in the model, this was

still judged as too many for them to review in detail. The feedback we were given

from one expert was that there were too many “corners” in the model space that

they would need to assess before they could give an informed opinion on the output.

They also often critiqued the steep edges the model sometimes created in the ice

sheet, wanting to smooth them out somehow. Finding limits for the zi’s, one of the

aims of our meeting, had to be done after the meeting had finished in a one-on-one

review with my supervisor, Louise, who was present.

Some useful feedback was received, however. The paper by Bentley et al. (2014) had

a maximum grounding line limit, which described their estimate of the maximum ice

sheet extent. The experts we consulted recommended we use this to constrain the
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prior ice sheets. There was also discussion on creating a limit on maximum ice sheet

thickness from the original collection of ice sheet reconstructions, which could not be

explored due to the time limits in the meeting. They agreed with the plot in Figure

4.2 as correctly representing where the most uncertainty was over Antarctica during

the LGM; they seemed more unsure about the characteristics of the West Antarctic

ice sheet.

The meeting concluded with the experts agreeing to take part in a second elicitation

process to be conducted remotely. This would involve a much simpler approach, and

would focus on deciding which shapes to input to HadCM3.

4.3 The Second Elicitation Process

At the end of the elicitation meeting we agreed that I would put together a set of

shapes for the experts to review; these would have the Bentley et al. (2014) grounding

line limit plotted over it to act as a constraint and be within the new zi limits agreed

with Louise. It was decided to create a set of eighty shapes as this was the most we

felt we could ask the experts to assess thoroughly, given that this was a voluntary

exercise. We would then ask them to recommend a third of the total to be discarded

before submitting the rest to HadCM3, leaving us with around fifty simulations to

run.

The zi constraints agreed with Louise were added to the prior model. These ranges

were z1 = [−0.5, 0.5], z2 = [−0.3, 0.75], z3 = [−0.6, 0.6], z4 = [−0.55, 0.5] and z5 =
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[−1, 1.2]. A maxi-min Latin hypercube (Joseph and Hung, 2008) within these ranges

was then used to find a design of zi values that spanned the whole space described by

this model. We chose this method becasue this draws a sample from a set of variables

with uniform distributions, maximising the minimum distance between design points.

This ensures that the design points are distributed as evenly as possible across the

model space. A pairs plot of this design is shown in Figure 4.3; we can see that the

points are scattered evenly in each plot, showing that no area is unrepresented in

our design.

This design of zi values was used to create eighty shapes; these can be seen in the

Appendix. The shapes were shared with the five experts we had consulted with at the

elicitation meeting, each of whom was given an individual spreadsheet to complete

with their comments on each shape and their recommendations. It was decided

to conduct this elicitation stage on an individual basis in order to collect unbiased

opinions and prevent anchoring (O’Hagan et al., 2006, Chapter 3); had one person

shared their opinions before the others there would be a strong possibility that the

other experts would base their judgements on what had already been shared.

Two of the experts reviewed the shapes and returned the files to me; it proved difficult

once we were acting remotely to encourage the experts to continue to engage in the

process. The two suggested designs we did receive are shown in Figure 4.4. One of

the experts who reviewed the ice sheet shapes recommended rejecting over sixty of

them, stating that a recurring issue was that the shapes extended past the ice extent

limit imposed by Bentley et al. (2014). The coarseness of the longitude/latitude

grid used by HadCM3 was a possible cause of this. The grid used by HadCM3 is
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3.75◦ × 2.5◦ longitude/latitude, whilst the grounding line from Bentley et al. (2014)

was on a much finer scale. This meant it was difficult to create shapes for HadCM3

input that followed the grounding line exactly; although the ice sheet was usually

only a few metres above sea level when it overlapped slightly with this constraint

the expert systematically rejected these shapes. The other expert who engaged in

the second elicitation process recommended running fifty-one of the ice sheet shapes

through HadCM3.

The final design was decided on by combining these judgements. If one or both of

them approved of a shape, it was run through HadCM3. If they both rejected or

were unsure of it, it was discarded. This produced a set of forty-nine shapes to be

run through the climate model. A pairs plot of the final design is in Figure 4.5. It

covers the whole of the basis fairly well, with few parts not represented.

4.4 Summary of Chapter

Expert elicitation is a useful process for creating informative prior distributions,

thus helping to determine the direction of research. It is particularly useful when

performing research in an area about which the statisticians have little knowledge;

consulting with experts in that field ensures research is as informed and impactful

as possible.

Although often a long process that requires a great deal of thought and planning,

the outcomes of an elicitation process can ensure that the research is focused on
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Figure 4.3: The 2D projects of the design of 80 shapes we created after the first
round of expert elicitation. The points cover the entire basis evenly.

relevant and important facets of the subject area. A certain amount of flexibility

is required to run an effective elicitation process as new thoughts and ideas will be

suggested throughout. Whether to incorporate these or disregard them takes careful

consideration.

We performed an informal elicitation of expert opinions on plausible Antarctic ice

sheet shapes at the LGM. From this we set constraints on our prior variables, zi, and
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then created a design of ice sheet shapes for a second elicitation process.

Although a useful process, our elicitations could certainly have been improved. Our

first elicitation process was hampered by time constraints. By only having an hour

to discuss our project with the experts, we were unable to discuss every point that

we had wanted to cover. It also proved difficult to encourage the experts to engage

in the second elicitation process remotely, which meant that a certain amount of

pragmatic compromises had to be used to incorporate judgements and to proceed

with the elicitation.

Following this process we now have an informed design of shapes to run through

HadCM3. In the next chapter, we discuss running HadCM3 and using the output to

build a Gaussian process emulator of the climate model.
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(a)

(b)

Figure 4.4: The two designs we received after the second round of expert elicitation.
There is some agreement between the two experts, though the first discarded a lot
more shapes and therefore has left gaps in the space we are trying to cover.
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Figure 4.5: The final design we made by combining the two sets of designs that the
experts recommended. The five dimensional basis that the variables describe is well
covered by our design.



Chapter 5

Building The Emulator

Having agreed on a design of forty-nine ice sheet shapes in Chapter 4, we now wish to

run the GCM, HadCM3. This will provide us with a set of δ18O simulations paired

with the synthetic orographies. From this, we can attempt to build a Gaussian

process emulator of HadCM3 that will allow us to emulate the GCM and explore the

relationship between ice sheet shape and δ18O without incurring the costs associated

with HadCM3. We can then use this emulator along with the prior model described

in Chapter 3 to sample from the posterior distribution of the ice sheet shape and

reduce uncertainty about the ice sheet at the LGM.

The motivations for building the emulator have already been described in Chapter

4. HadCM3 is very slow to run, simulating approximately twenty years a day. As we

must allow time for the model to spin up and require several decades to simulate a

87
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climate observation, we must run each simulation for sixty years and therefore require

several days to complete each simulation. We cannot run all simulations at once,

as we have a limit of running sixteen simulations simultaneously on Archer, the UK

National Supercomputer Service. Running a model on an HPC is a time consuming

and difficult process, adding more motivation to limit the number of simulations we

create. Since Archer also costs a great deal to run; we are reliant on a limited number

of HPC credits to run HadCM3 (allocated by the British Antarctic Survey) and so

can only afford a small number of simulations. We therefore cannot use HadCM3 to

sample the posterior distribution, as we cannot run it the thousands of times required

to create a large enough sample. Instead we rely on a Gaussian process emulator

which will use the five prior variables as inputs and output δ18O anomalies. This will

allow us to model the relationship between ice sheet shape and water isotopes more

cheaply than HadCM3, so that later it can then be used as part of the calibration

model; MCMC can then be used to sample from the posterior distribution of the ice

sheet shape, reducing the uncertainty around it.

In this chapter, we describe the process of running HadCM3, comparing the output

of the GCM to the collected ice core data and building Gaussian process emulators

at each ice core site.

5.1 Running HadCM3

The global circulation model we use in this analysis is the Hadley Centre Coupled

Model Version 3 (HadCM3), a UK Met Office isotope-enabled coupled atmosphere-
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ocean GCM. Motivation for using this model can be found in Chapter 1. A descrip-

tion of how isotopes are implemented in HadCM3 can be found in Tindall et al.

(2009).

From the elicitation process described in Chapter 4, we created forty-nine orography

files describing plausible Antarctic ice sheet shapes at the LGM. We ran control LGM

simulations with these orography files attached through the BlueCrystal supercom-

puter at the University of Bristol to activate the isotopes. Ten of them failed to run;

we attempted to fix this by rounding all values in the orography files to the nearest

integer, which fixed eight of them. Two of them continued to refuse to run, resulting

in us having forty-seven simulations. We built forty-seven simulation files in PUMA

with control LGM GHG values and orbital forcing, and starting conditions from the

BlueCrystal simulations. These were then inputted into HadCM3 and ran for 60

years each.

5.1.1 Issues with HadCM3

We faced several issues when running HadCM3. Some of these we were able to solve;

others had to be worked around. The first has previously been mentioned: two of

the simulations would not run through the BlueCrystal supercomputer. Due to time

constraints, we had to discard these and proceed with forty-seven simulations.

Jobs crashed frequently due to a fault in HadCM3 that created negative pressure

values. There was no way of working around it, so jobs had to be continually resub-
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mitted and spun up past the point where it crashed. This increased the amount of

time it took to finish running the simulations.

Twenty-six of the simulations had corrupted November files for one of the sixty

simulated years. We could not find a cause for this. It was decided to remove the

whole corresponding year so as to avoid any seasonal bias caused if we had removed

just the corrupted month.

5.1.2 Processing Scripts

Once the simulations were finished, we ran the output through post-processing scripts

on Jasmin, a scientific data analysis environment administered by the Centre for

Environmental Data Analysis (CEDA). The code for these can be seen in Appendix

B. These converted the model output into climate variables including δ18O, the

oxygen isotope estimates that we will be using in our analysis. The first ten years of

the data were treated as spin-up time, the time for which it took for the variables in

the model to reach a steady state, leaving us with fifty years of simulated data. We

have both monthly, annual, and a fifty year average of the climate variables.

Before we performed an exploratory data analysis, we transformed our HadCM3

output into anomalies, the difference between our output and a pre-industrial control

simulation. This was to remove any underlying climate biases HadCM3 may have

(Domingo et al., 2020). We used a pre-industrial simulation to create δ18O anomalies
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from our HadCM3 output. We compared these anomalies to observations from ice

core anomalies, which we created from the observed data by subtracting the average

δ18O value of the last one thousand years from the LGM value, the average of the

values dated either side of 21Ka BP.

5.2 Exploratory Data Analysis

Before we began building our Gaussian process emulator, we compared our δ18O

anomalies to the ice core data to check how well HadCM3 simulated values close

to the observations. The locations of the ice core sites that we used are shown in

Figure 5.1. They are Byrd (Blunier and Brook, 2001), Mount Moulton (Popp, 2008),

Siple Dome (WAIS Divide Project Members et al. (2013) and Brook et al. (2005))

and WDC (WAIS Divide Project Members et al. (2013) and Steig et al. (2013))

in the West Antarctic ice sheet, and EDC (Jouzel et al., 2013), EDML (EPICA

Community Members et al., 2006), Fuji Dome (Kawamura et al., 2007), Talos Dome

(Stenni et al., 2011), Taylor Dome (Grootes et al. (1999), Steig et al. (2000)) and

Vostok (Petit et al., 1999) in the East Antarctic ice sheet. The two points in grey

are Berkner and Fletcher. These ice cores are yet to be published. We include them

here as we intend to use them as test sites for our emulator and posterior distribution

when they are in the public domain.
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Byrd

Dome Fuji

EDC

EDML

Mount Moulton
Siple Dome

Talos Dome
Taylor Dome

VostokWDC

Berkner

Fletcher

Figure 5.1: The locations of ice core drilling sites that we intend to use in this
research. The two grey points, Berkner and Fletcher, are sites that have yet to
publish their data. We hope to use these as test sites once we have access to the ice
core data.
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5.2.1 Comparing simulations of WAIS and EAIS

We compared the HadCM3 output to the ice core observations to see if we had

successfully simulated the δ18O anomalies, using the latitude/longitude grid cell in

our HadCM3 simulations corresponding to the location of the ice core site as a

comparison. We plotted the HadCM3 δ18O anomalies against the change in elevation

at that grid point to see if there is an obvious relationship between δ18O and ice sheet

size. Change in elevation is found by subtracting a pre-industrial orography from

each of the ice sheet shapes we ran through HadCM3, so we can see how each ice

sheet shape from our design differs to our pre-industrial control orography, and how

this has affected the corresponding δ18O anomaly values. We then add in a line

corresponding to the ice core observation to see if our simulations are close to this

value.

We can see in Figures 5.2 and 5.3 that there is a difference in how similar the HadCM3

output is to the ice core observations for the two ice sheets. The water isotope

values in the West Antarctic ice sheet have been simulated well by HadCM3, with

the δ18O anomalies all close to the observations from the ice cores. The isotopes

in the East Antarctic ice sheet have not been simulated well. The exception is

Taylor Dome, suggesting that close to where the ice sheets meet, we have simulated

plausible orographies. We check how well we have modelled both ice sheets by

plotting pairs plots of the two groups of ice core sites. We can see again, in Figures

5.4 and 5.5, that the HadCM3 simulations have produced δ18O anomalies that are

close to the observations in the West Antarctic ice sheet but failed to simulate low

enough values in the East Antarctic ice sheet. For this reason, we decide to focus
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on building emulators for the West Antarctic ice core sites, and will incorporate the

East Antarctic ice core sites later.

5.3 Gaussian Process Emulation

Gaussian process emulation is used to predict the response of a complex and ex-

pensive simulator using a limited number of inputs and outputs from the simulator

(Chang et al., 2014b). Here, we wish to emulate HadCM3, focusing on the response

of δ18O anomalies to changes in the shape of the Antarctic ice sheets at the LGM.

A Bayesian framework for GP emulation is described in detail in Kennedy and

O’Hagan (2001). A simulator is run on n design points z1, ... ,zn ∈ Rk, giving

outputs y1, ..., yn ∈ R. The emulator interpolates the yi values, allowing us to

predict the simulator output at any input value.

A Gaussian process emulator is defined as a probability distribution f(·) where f(z)

is normally distributed for all z ∈ Z. The distribution has mean function m(·) where

m(z) = E[f(z)] and covariance function k(·, ·) where k(z, z′) = cov[f(z), f(z′)]. We

therefore have

f(z) ∼ N (m(z), k(z, z′)).
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Figure 5.2: Plots of δ18O anomalies against elevation anomalies for the four ice core
sites from the West Antarctic ice sheet. The red lines represent the anomaly from
the corresponding ice core; at all four sites HadCM3 appears to have simulated the
δ18O anomalies close to the observation, suggesting that the ice sheet shapes we are
considering are close to the true shape at the LGM.
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Figure 5.3: Plots of δ18O anomalies against elevation anomalies for the six ice core
sites from the East Antarctic ice sheet. The red lines represent the anomaly from the
corresponding ice core. HadCM3 appears to have struggled to simulate δ18O values
close to the ice core observations. These plots suggest it may be because the ice sheet
shapes we created from the prior model do not have high enough elevation across
the EAIS. The only exception is the Taylor Dome ice core, suggesting that close to
the where the two ice sheets meet, the East Antarctic ice sheet was well modelled.
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Figure 5.4: Pairs plots of δ18O anomalies at the four West Antarctic ice core sites
with error bars two standard deviations in length. The blue points are the output
from HadCM3 simulations; the red lines are the observations from ice cores. The red
lines cross in the same region as the simulations are plotted, with many of the error
bars overlapping the observation, showing that HadCM3 has successfully produced
δ18O anomalies close to the observations at the LGM.
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Figure 5.5: Pairs plots of δ18O anomalies at the six East Antarctic ice core sites with
error bars two standard deviations in length. The blue points are the output from
HadCM3 simulations; the red lines are the observations from ice cores. The red lines
cross at much lower points than where the simulations are plotted and few of the
error bars overlap the observation; HadCM3 has not produced δ18O anomalies close
to the LGM observations.
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5.3.1 Choosing a kernel function

Our choice of covariance function, or kernel, determines how well the GP emulates the

simulator. The most common kernel choice, which we use throughout this chapter,

is the radial base function (RBF) kernel, also known as the exponentiated quadratic

or squared exponential kernel. The RBF kernel has a Gaussian form defined as

k(zi, z
′
i) = α2exp

{−(zi − z′i)T (zi − z′i)
2ρ2i

}
, i = 1, ..., d,

where α2 is a variance hyperparameter, ρi is the lengthscale for each of the d dimen-

sions. The lengthscale controls the decay in correlation when the distance between

the input points increases.

We also experimented with other covariance functions, including linear, Matern 3/2

and Matern 5/2, but these did not give a better fit and so we chose to use the most

commonly used kernel. Plots of emulators with these other kernels (for the Byrd ice

core site) can be seen in Figure 5.10; we can see they do not give a better fit than

the RBF. We also tried as incorporating elevation as an extra variable for our model.

However, there was no improvement in the emulator so we removed this addition.

5.3.2 Building our emulator

In this chapter, we use the Python package GPy and the maximum likelihood method

to find the values of our hyperparameters α, ρ from our kernel function, and σ2, our



100 CHAPTER 5. BUILDING THE EMULATOR

nugget term, the variance term representing noise in the data. In the next chapter,

we explain how to do it in a Bayesian sense, using MCMC.

1-D elevation example

As we can see in Figures 5.2 and 5.3, there is a clear correlation between change in

elevation and δ18O anomalies. We therefore started with a 1-D example, using the

elevation anomalies as input points and δ18O anomalies as output points. We run

the model

y, E ∈ R47, α, ρ, σ2 ∈ R,

y ∼ N (m(E), K(E|α, ρ) + σ2δzi,zj)

for an ice core site, where E is a vector of elevation anomalies for each of the HadCM3

simulations and y is a vector of the corresponding δ18O anomalies, σ2 is the nugget

term and δzi,zj is defined as

δzi,zj =

 1 if i = j,

0 if i 6= j.

The nugget term allows the emulator to create non-deterministic predictions, even

at the input points. This allows us to more closely emulate the climate system that

HadCM3 is simulating; even using our 50-year averaged δ18O output, simulations

with equivalent inputs would give different output values. This adds more difficulty

to the process, as there is irreducible noise in the data that we cannot emulate

perfectly due to the temporal and spatial averaging of the data we are working with.
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Figure 5.6: The elevation-only emulator for the Byrd ice core site. Our large length-
scale has created a very smooth function. We can also see there is little noise within
our data; the majority of the points are within the shaded confidence interval.

A discussion of the fixed variance terms that we consider due to these and other

possible errors is given in Section 6.6.

The emulator for the Byrd ice core site is plotted in Figure 5.6. We have a large

lengthscale (ρ = 2311.14m), which results in a very smooth function. Our variance

term is large (α2 = 190.27), but the nugget term is small (σ2 = 2.02), suggesting our

training data has little noise in it.

We perform leave-one-out cross validation (LOOCV) for the elevation only emulators
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for all four West Antarctic ice core sites to test how well the emulators predict

the observations. Results can be seen in Figure 5.7, where the red points are the

observations and the blue points are the corresponding predicted values. We also

report the RMSEs for each emulator, all of which are fairly small, suggesting that

our emulators are matching HadCM3 well, although the error bars in Figure 5.7, all

of length two standard deviations, suggest there is a large amount of uncertainty in

these emulators.

Including the prior variables

What we are interested in is the relationship between our prior model variables and

the δ18O anomalies. Figure 5.7 has also shown only using elevation as an input leads

to emulators with large variance terms. We therefore built emulators at each of the

four West Antarctic ice core sites using the prior model values as input points. We

store the prior model values used to build the orographies in our HadCM3 simulations

in a matrix Z ∈ R47×5.

Each emulator is defined as

Z ∈ R47×5, y ∈ R47, α, ρ, σ2 ∈ R

y ∼ N (m(Z), K(Z|α, ρ) + σ2δzi,zj).

The values of the three hyperparameters for each of the emulators can be seen in

Table 5.1. The lengthscales here are smaller than the lengthscale in our 1D example,
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Figure 5.7: Comparison of HadCM3 simulated δ18O anomalies (in red) against leave-
one-out cross validation predictions of our GP emulators (in blue, with error bars
of length two standard deviations included) when using elevation as our input data.
We can see that although most of our predictions are within two standard deviations
of the simulations, the size of the error bars shows that there is a great deal of
uncertainty in our 1D emulators.
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Variance (α) Lengthscale (ρ) Nugget term (σ)
Byrd 113.76 3.00 0.61

Mount Moulton 249.71 7.01 1.05
Siple 222.10 3.23 1.38
WDC 245.83 6.67 0.82

Table 5.1: ML estimates for the variance, lengthscale and nugget term parameters for
the emulators at the four West Antarctic ice core sites. We can see the lengthscales
are much smaller than the 1D example emulator, meaning points far from each other
in the sample space have large covariance terms.

creating functions with small covariance terms for points far away in the sample

space. The variance terms are fairly large, allowing the function to vary a great deal.

We run leave-one-out cross validation (LOOCV) again on these emulators, the results

of which are in Figure 5.8. These emulators are matching the HadCM3 output well,

with predictions very close to the observations. We also report the RMSEs for each

emulator, all of which are smaller than the RMSEs in Section 5.3.2, suggesting an

improvement in the performance of our emulators when working in higher dimensions.

The nugget term is representing a large component of the uncertainty; with values

around one, that means the smallest possible 95% confidence interval is width four,

assuming there is no emulator uncertainty. As the δ18O anomalies from our HadCM3

simulations vary by approximately ±10, the nugget term is an important part of our

emulator.

We also plot in Figure 5.9 predictions against observations with error bars, of both

one and two standard deviations in length, and the y = x line to see how closely

predictions match observations. We can see that the majority of the two standard

deviation error bars cross the y = x line. We also calculate the percentage of our
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Figure 5.8: Comparison of HadCM3 simulated δ18O anomalies (in red) against leave-
one-out cross validation predictions of our GP emulators (in blue) when using our
prior variables as input data for the emulator at the four WAIS sites. The RMSE
for each site is also included as a legend. We can see that using the five prior vari-
ables rather than the elevation has produced emulators that are better at predicting
HadCM3.
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Within 66% CI Within 95% CI
Byrd 79% 91%

Mount Moulton 87% 96%
Siple 87% 94%
WDC 83% 94%

Table 5.2: A table showing the percentage of predictions from the emulators at the
four WAIS ice core sites within 66% and 95% confidence intervals of the HadCM3
data.

predictions within 66% and 95% confidence intervals of our observations, shown in

Table 5.2. We can see that the majority of our predictions are within two standard

deviations of the observations.

5.4 Incorporating the EAIS sites

We now look at building emulators for the six ice core sites in the EAIS, using

the same methods described in Section 5.3.2. Figures 5.11 and 5.12 show that our

emulator is working well; the predictions are all close to the true values and the

RMSEs are small, suggesting HadCM3 is being well emulated. Although the set of

ice sheet shapes we submitted to HadCM3 may have had lower elevation than the

true LGM shape, our emulator is able to simulate HadCM3 well enough to model

the isotope anomalies in the EAIS as well as it models anomalies in the WAIS.
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Figure 5.9: Observations vs. predictions, with error bars included, for the 5D emula-
tor at the four WAIS sites. The blue error bars are of length one standard deviation,
whilst green represents two standard deviations. We can see that for all sites the
majority of the green error bars cross this line, suggesting that our emulators are
predicting HadCM3 output well.
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Figure 5.10: Comparison of HadCM3 simulated δ18O anomalies (in red) against
leave-one-out cross validation predictions of our 5D GP emulators (in blue) when
using three different kernel functions for the Byrd ice core site. We can see that none
of them fit as well as the RBF function, with all RMSE values larger than those in
Figure 5.8.
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Figure 5.11: Comparison of HadCM3 simulated δ18O anomalies (in red) against
leave-one-out cross validation predictions of our GP emulators (in blue) when using
our prior variables as input data for the emulator at the six EAIS sites. The RMSE
for each site is also included as a legend. Again the emulators seem to be predicting
HadCM3 well.
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Figure 5.12: Observations vs. predictions, with error bars included, for the emulator
at the six EAIS sites. The blue error bars are of length one standard deviation,
whilst green represents two standard deviations. We can see that for all sites the
majority of the error bars cross this line, suggesting that our emulators are predicting
HadCM3 output well.
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5.4.1 Using an Anisotropic Kernel

After testing the emulator with an isotropic kernel, that is a kernel where the length-

scale is fixed for each dimension, we test an anisotropic kernel to see if having different

lengthscales for each dimension helps the fit. Details on this function and the rea-

sons behind it are given in Section 6.5.3. Figures 5.13 and 5.14 show that the fit is

improved when we use an anisotropic function, with the RMSE values smaller for all

ice core sites.

5.5 Summary of chapter

Gaussian process emulation is a useful method when working with expensive simu-

lators. It allows us to approximate the simulator in a fraction of the time, allowing

us to more extensively explore this system.

In this chapter we have used our prior model variables and HadCM3 output to build

a Gaussian process emulator of HadCM3. This has emulated the relationship that

HadCM3 models between orography and δ18O, allowing us to see the effects that

a change in ice sheet shape has on the isotope values. The tests we have run on

our emulators suggests that they are modelling HadCM3 well, as well as producing

δ18O anomalies close to the observations we have from ice cores. In Chapter 6, we

calibrate our model, combining the prior model from Chapter 3 with our emulators

to sample from the posterior distribution of the ice sheet shape at the LGM.
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Figure 5.13: Comparison of HadCM3 simulated δ18O anomalies (in red) against
leave-one-out cross validation predictions of our GP emulators (in blue) when an
anisotropic kernel is used in our 5D emulators for the four WAIS sites. We can see
that the fit is now improved, and the RMSE are all smaller than the emulator with
an isotropic kernel.
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Figure 5.14: Comparison of HadCM3 simulated δ18O anomalies (in red) against
leave-one-out cross validation predictions of our GP emulators (in blue) when an
anisotropic kernel is used in our 5D emulators for the six EAIS sites. Again there
is an improvement in the fit and the RMSE, although less so than for the WAIS
emulators.
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Chapter 6

Calibration of the Model

In the previous chapter, we successfully built a GP emulator of the GCM HadCM3

and are now able to emulate the relationship between ice sheet orographies and δ18O

anomalies that HadCM3 describes. In this chapter we will use this emulator, and

the prior model built in Chapter 3, to sample from the posterior distributions of our

five prior variables, allowing us to create ice sheet shapes based on the observations

collected from ice cores. We describe the processes of calibrating our model using

Markov Chain Monte Carlo (MCMC), testing our model, and performing sensitivity

analyses. Geographical interpretations of our results are given in Chapter 7.

115
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6.1 Markov Chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) is a method of sampling from a probability

distribution by drawing a series of correlated samples that will converge to the target

distribution (Geyer, 1992). This is done when it is too difficult to sample from the

distribution directly.

We wish to simulate values {x1, x2, ...} of a random variable x ∼ p(x). We do this

by constructing a Markov Chain (MC) xt+1 ∼ q(·|xt). By accepting or rejecting xt+1

according to an acceptance ratio, we simulate a MC that has p(x) as its stationary

distribution. There are many methods available to perform MCMC; here, we use No-

U-Turn Sampler (NUTS), (Hoffman and Gelman, 2011), a variant of Hamiltonian

Monte Carlo (HMC).

6.1.1 Hamiltonian Monte Carlo (HMC)

Hamiltonian Monte Carlo (HMC) is an MCMC algorithm that converges more quickly

than other algorithms such as Gibbs sampling or Metropolis-Hastings. Although

these other methods are simpler, the behaviour of the random walk can be affected

by the sensitivity of correlated parameters. We are especially hampered when work-

ing in high dimensions, as there is a much larger space for the random walk to

explore.
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The auxiliary variables in HMC, such as step size and number of steps, help the

chains converge more quickly to the target distribution by proposing moves to new

points in the sample space that have a high probability of acceptance. This means

that shorter chains are can be used to approximate the distribution.

In this chapter, all of our MCMC is performed in the computer language Stan, which

can be called from R or Python and performs MCMC. Initially we used MCMC to

sample from the posterior distributions of our prior variables by calibrating just our

prior model before then incorporating our GP emulator, in order to check first if our

model could be sampled from successfully.

6.2 1D model

Initially we used a model that was intentionally simple, with elevation as the only

parameter to describe δ18O anomalies. As demonstrated by Figures 5.2 and 5.3,

there is a clear linear relationship between these two variables. We started with a

linear emulator for one ice core site and ran MCMC assuming that the relationship

between the δ18O anomalies and elevation was

y ∈ R47, E ′ ∈ R47×2, β ∈ R2, σ1 ∈ R

where

E ′ = (1 E),
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contains the elevation values as well as a column of ones to model an intercept

parameter,

β ∼ N (0, 100), σ1 ∼ Inv_Gamma(1, 1)

y|E ′,β ∼ N (E ′β, σ2
1)

yobs ∼ N (E ′obsβ, τ
2
1 )

E ′obs = (1 Eobs)

where y represents the δ18O anomalies from the HadCM3 simulations, β are linear

model parameters and σ1 is the standard deviation HadCM3 model error. β and σ1

are given uninformative prior distributions so that we can see what we learn from

our data alone. yobs is the ice core observation; we generate possible elevation values,

Eobs, for this observation using the posterior samples of β, with a measurement error

τ1. We set τ1 = 0.5 from the results of Keller et al. (2018). We sample four chains,

each 5000 samples in length.

We appear to learn a lot about how elevation affected δ18O anomalies; Figure 6.1

shows posterior predictive distribution of β and elevation against δ18O anomalies.

The horizontal blue line is the ice core δ18O observation from the Byrd ice core, with

measurement error τ1 = 0.5%� plotted on each side as dashed lines. The vertical

blue lines represent values of Eobs, generated elevation estimates corresponding to

yobs. The estimates of elevation are all within the range required to simulate the

δ18O anomaly. We can see that all generated values of elevation are within the

range of what the model should predict given the uncertainty around the ice core

observation.
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Figure 6.1: Output from our 1D model in Section 6.2. The points are the values from
our HadCM3 simulations. The black lines are some of the models made using the
sample values of β from the MCMC runs, with the red line representing the mean
values of the linear model. The horizontal blue line is the ice core observation from
the Byrd ice core, with measurement error of 0.5%� plotted on each side as dashed
lines. The vertical blue lines are Eobs, simulated elevation (m) values that correspond
to the ice core observation, yobs.
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6.3 Using all five prior variables

Although there is a clear relationship between elevation and δ18O anomalies, we are

interested in how the prior model variables affect the isotopic values. By sampling

from the posterior distributions of the zi, the prior variables described in Chapter

3, we hope to create plausible LGM ice sheet shapes with less uncertainty. The zi

are the five variables we created using our null space variant of PCA, as described

in Section 3.3.3.

We start by modelling a single ice core site at a time to see how well our model is

working. Given the discussion in 5.2.1, we focus on the WAIS sites initially.

Our prior model was of the form:

θ = µ+ z1a1 + z2a2 + z3a3 + z4a4 + z5a5

where

• θ is ice sheet shape.

• aj, j = 1, ..., 5 are the five principal components of the collected reconstruc-

tions. a1, a2 and a3 are made from the four most “important” shapes whilst

a4 and a5 are from the other thirty-six shapes.

• µ is the mean shape of the forty ice sheet reconstructions.
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• zj, j = 1, ..., 5 are prior variables which determine how much of each of the

principal components contributes to the synthetic ice sheet shape θ.

We have two data sets, the input and output data from our HadCM3 simulations.

Z is a 47× 5 matrix of the prior model variable values used to build the orographies

used in our 47 HadCM3 simulations; more details of this can be found in Chapter 4.

y is a vector of length 47, containing the simulated δ18O anomalies from HadCM3 at

the latitude/longitude grid cell corresponding to an ice core site. We firstly transform

our input data to

Z ′ = (1 Z)

where Z ′ contains the prior variable values as well as a column of ones to model an

intercept parameter. For a single ice core site we use the model

y ∈ R47, Z ′ ∈ R47×6, β ∈ R6, σ1 ∈ R,

β ∼ N (0, 100), σ1 ∼ Inv_Gamma(1, 1),

y|Z ′,β ∼ N (Z ′β, σ2
1), (1)

yobs|Z ′obsβ ∼ N (Z ′obsβ, τ
2
1 ).

β and σ1 are given uninformative prior distributions with fairly wide variances to

not bias the model output. Zobs are possible values of Z, generated using posterior

samples of β.

The trace plots in Figure 6.2 shows that the chains have converged for each of the

five prior variables. Figure 6.3 shows that the prior and posterior distributions of
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the prior variables zobs are very similar, suggesting that the output from HadCM3 is

not contributing much information to the posterior distribution. We are not learning

much about our prior variables with this model. Learning anything about the poste-

rior distribution is proving very difficult, as through our current method we are trying

to learn about a five-dimensional space, the prior model, using a single observation,

an ice core site. We therefore build a multivariate model that uses all four WAIS ice

core sites at the same time. This allows us to learn about the ice sheet shape from

four points instead of one, hopefully producing an updated posterior distribution.

6.4 The multivariate model for the WAIS ice core

sites

Our model is similar to the one described in 6.3. The input data, Z ′, remains the

same, but the output y is now multivariate. It describes the distribution of each yi

using the values of Z as:

yi ∈ R47, Z ′ ∈ R47×6, βi ∈ R6, σ1,i ∈ R,

βi ∼ N (0, 100), σ1,i ∼ Inv_Gamma(1, 1), (2)

yi|Z ′,βi ∼ N (Z ′βi, σ1,i), i = 1, ..., 4,

generating a different βi for each ice core site.
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Figure 6.2: Trace plot of Zobs, generated using posterior samples of β.
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Figure 6.3: Histograms of the posterior distributions for Zobs from model 1 in Section
6.3, with density curves of the prior distributions included for comparison. They
are very similar, suggesting the distributions have not been updated much by the
information from the HadCM3 simulations.
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We use the observations of δ18O anomalies from ice cores to sample from the posterior

distributions of the zj, finding values that would create ice sheet shapes corresponding

to the δ18O anomalies. We also include in the model

zobs ∈ R5, zobs ∼ N (0, diag(0.5, 0.5, 0.6, 0.5, 1))

z′obs = (1 zobs), z′obs ∈ R6

yobs,i|zobs,β ∼ N (z′obsβi, τ), i = 1, ..., 4,

where yobs,i is the anomaly at each ice core site i and τ is a fixed error. We wish

to learn more about zobs, the ‘true’ values of the prior variables that would create

an ice sheet shape that gives δ18O anomalies matching yobs,i. zobs are sampled from

their prior distributions, decided upon in Section 4.2 when limits were given to

the prior variables, as are the βi, and used along with the model above to sample

from their posterior distributions. For now, the standard deviation is set to just

the measurement error τ1 = 0.5%�. From this we can find the marginal posterior

distributions

zobs,βi | y, Z,yobs,i.

Finally, we generate predictions of ypred|y, Z,yobs, what the δ18O anomalies should

be at each ice core site given the sampled posterior distributions of zobs, and βi.

These are found with samples from MCMC,

ypred,i = z′obsβi.

We can then compare the distribution of ypred to the value yobs, which would show if
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our model is simulating accurate values of δ18O anomalies.

6.4.1 Comparing model output to linear regression

Before we incorporate the GP emulator or EAIS sites, we check our model by com-

paring the output with a linear model of the data. This is done by building a linear

model

y = Z ′b+ ε

with some linear coefficients, b and residual error ε. We can then compare the values

of these coefficients to the posterior distributions of βi to see if our model is producing

sensible values. The coefficients of the linear model are

b̂ =


−8.06 −1.02 −6.48 −2.69 −1.66 2.04

−3.45 4.85 1.81 −3.26 0.05 −0.45

−7.51 −2.71 −8.77 0.89 0.00 −1.33

−6.16 1.42 −1.56 −0.86 −5.61 0.79

 . (6.1)

We compare this to samples of the posterior mean of β

β =


−8.04 −1.00 −6.46 −2.66 −1.66 2.03

−3.45 4.81 1.82 −3.22 0.03 −0.44

−7.52 −2.70 −8.72 0.87 0.01 −1.32

−6.17 1.41 −1.54 −0.87 −5.59 0.79

 (6.2)

and see that they closely match. This suggests that our model is sampling correctly.
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6.5 Incorporating the Gaussian process emulator

We now incorporate the Gaussian process emulator into our model. Whilst in Chap-

ter 5 we discussed finding values of our hyperparameters using the maximum like-

lihood method in the Python package GPy. Here, we describe in detail how this is

done in a Bayesian sense using MCMC.

As mentioned in 6.1.1, we use the Stan language to sample from our posterior dis-

tribution using MCMC. Stan is an open-source software built to code probability

models, make predictions and use posterior analysis to evaluate results, performing

MCMC with the use of the No-U-Turn Sampler (Hoffman and Gelman, 2011). Here

we discuss the form our Gaussian process emulator takes in Stan, using some simple

examples for illustrative purposes.

The full model for a Gaussian process with normal outcome, y ∈ RN , with inputs

Z ∈ RN×D for finite N and D, is

ρ, α, σ1 ∈ R,

ρ ∼ Inv_Gamma(5, 5),

α ∼ N (0, 1),

σ1 ∼ Inv_Gamma(1, 1),

K(Z|α, ρ)i,j = α2 exp
{−1

2ρ2

D∑
d=1

(zi,d − zj,d)2
}
,
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f ∼MVN(m(Z), K(Z|α, ρ)),

y ∼ N (f , σ2
1),

where ρ is the lengthscale parameter and α is the variance parameter, σ1 is the

variance of the emulator and K is the kernel described in 5.3. f is a function

yn = f(zn) with a multivariate Gaussian distribution.

6.5.1 1-D example

We use a 1-D example to demonstrate how the model described in 6.4 works. Using

the function

f(z) = z + sin(z) +N (0, 1),

plotted in Figure 6.4, we generate data

z1,y1 ∈ R10

z1 ∼ U [0, 10], σ2 ∼ N (0, 1),

y1 = z1 + sin(z1) + σ2, (2)

where σ is a noise term. We also sample test data, zobs, taking values between 0 and

10, as data for which we want our model to simulate corresponding yobs.

We combine z1 and zobs in to one input vector, z. We create a covariance function

with a squared exponential kernel for z, with α ∼ N (0, 1) and ρ ∼ Inv_Gamma(5, 5)
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Figure 6.4: The function we are attempting to sample from with the example in
Section 6.5.1.
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as hyperparameters. To be computationally efficient, we find the Cholesky decom-

position of K(z|α, ρ). This is the lower triangular matrix LK such that LKL
T
K = K.

Taking a standard normal variate

η ∼ N (0, 1), η ∈ RN ,

where N is the length of vector z. If we set

f = LKη

then

f ∼ N (0, LKL
T
K)

to find test points

y1 ∼ N (f [1 : N1], σ
2),

where N1 is the length of z1, and generate training points

yobs = N (f [(N1 + 1) : (N1 +N2)], σ
2)

where N2 is the length of zobs.

We plot the generated quatities, yobs in Figure 6.5, with the data points (z1, y1)

plotted over. Our model seems to have been sampled correctly; we can see that z1

and y1 constrain the variance of the model; areas of the model space with no input

or output data have more uncertainty than areas with clusters of data.
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Figure 6.5: Generated quatities from our 1D example described in Section 6.5.1.
Samples from the model are plotted as dashed lines, with data points (z1,y1) repre-
sented as white dots.
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6.5.2 1-D inverse example

We now run the same model, this time generating zobs values for some known obser-

vation yobs. This is what we will do in our full model, as we have ice core observations

and want to sample prior input values that would create those isotope values.

We create a parameter zobs, given a Gaussian distribution. We calculate the covari-

ance function, K(z|α, ρ), and find the Cholesky decomposition LK . We sample from

the model with y1 and yobs combined

y ∼ N (f, σ),

and calculate

ypred = N (f [N1 + 1, σ]),

values of y given the estimates of zobs our model has produced. Figure 6.6 illustrates

what we are attempting to do here. The black curve shows the function we are

attempting to sample from. The red horizontal line is a possible observation, yobs,

with the corresponding zobs shown as a vertical red line. The posterior density of

zobs is plotted as a blue density curve.

We plot samples of y that our model generated in Figure 6.7, with points (z1,y1) in-

cluded. We then plot ypred as horizontal lines with yobs in red, and the corresponding

zobs estimates as vertical lines. We can see the model is quite accurately inferring

the values zobs could take that would give the value yobs.
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Figure 6.6: The function we are attempting to sample from with our model in Section
6.5.2, with a possible yobs represented as a horizontal red line, the corresponding zobs
as a vertical red line, and the density of zobs shown as a blue density plot.
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Figure 6.7: Model output from our 1D inverse example in Section 6.5.2. Samples of
the model Equation 2 in Section 6.5.1 are plotted as grey lines, with data (z1,y1)
plotted as points. We plot samples of ypred as horizontal black lines, with our ob-
servation yobs represented by the red line. Samples of zobs corresponding to ypred are
represented by the vertical black lines.
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6.5.3 Automatic Relevance Determination

As we have multivariate inputs zi ∈ RD, we fit a scale parameter ρd for each dimension

d to generalise the covariance function

K(z|α, ρ, σ)ij = α2exp
{
− 1

2

D∑
d=1

1

ρ2d
(zi,d − zj,d)2

}
.

This allows us to model the lengthscale parameters for each of the five dimensions in

our model and see the relevance of the corresponding model parameters through the

values of the ρd (Sandhu et al., 2017), as well as creating a more flexible model that

will allow us to predict better. We consider the prior and posterior distributions of

ρd when analysing our hyperparameters in 6.6.2 to see if any of our prior variables

are more relevant to the model than others.

6.6 Applying to the ice core data

Our model takes a similar multivariate approach to the examples above, in Sections

6.5.1 and 6.5.2. z1 is our prior data, Z, a N1 = 47×5 matrix of prior variable values.

y1 is the corresponding 47×N2 matrix of HadCM3 δ18O anomalies, where N2 is the

number of ice core sites we are modelling. yobs is a vector of length N2 containing

the δ18O anomalies from ice cores. We aim to find a vector of length D, zobs, that

with our model would create values close to yobs. We then generate ypred, the δ18O

anomalies created by inputting zobs into our model.
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We add in a fixed standard deviation term for ypred that represents the measure-

ment error of the ice cores, τ1, and the spatial variance between modelling a lati-

tude/longitude grid cell from HadCM3 and the location of the ice core site, τ2. We

considered an error for the dating process, as the measurements are at different dates

in each ice core. However, as the LGM was a very broad period, with most global

ice sheets in equilibrium for several thousand years (Clark et al., 2009), we decided

that this was unnecessary. If modelling time periods with more rapid changes, such

as the deglaciation period up to 10 Ka BP, then a dating error would be necessary.

We give a value of τ1 = 0.5%� for the measurement error, and a value of τ2 = 2.5%�

for the spatial error from looking at the standard deviation between HadCM3 model

grid cells surrounding the cell containing the ice core site.

Including the prior model in our emulator, we have for each of the N2 ice core sites

Z∗ =

 Z

zobs

 ∈ R48×5 yi =

 y1
yobs

 ∈ R48

βi ∈ R6 σ2
1,i ∈ R+

βi ∼ N (0, 100) σ2
1,i ∼ Inv_Gamma(1, 1)

α2 ∼ N (0, 1) ρd ∼ Inv_Gamma(5, 5)

f ∼MVN(0, K(Z∗|α2, ρd)) d = 1, ..., 5

yi|· ∼ N (Z ′βi + f, σ2
1,i + τ 21 + τ 22 ) i = 1, ..., N2. (3)
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We then generate

ypred,i = N (z′obsβi + f [N1 + 1], σ2
1,i + τ 21 + τ 22 ), (4)

zobs having the same prior distributions as in Section 6.4, using the posterior sample

zobs to create δ18O values close to yobs.

6.6.1 Modelling combined and separate ice sheets

Due to the discrepancies we saw between the HadCM3 output and the ice core

observations in the EAIS as described in Chapter 5, we focused on the WAIS initially

before incorporating the EAIS into the model. We can then compare how well we

model the ice sheets, together and separately. This allows us to see whether either

ice sheet is influencing results more than the other, and how modelling all ice core

sites together affects the posterior distributions of both zobs and ypred. We run three

versions of our model: one for the four west ice core sites, one for the six EAIS ice core

sites, and one with all ten ice core sites together. We compare how modelling the ice

cores in regions and as a group affects the prediction of δ18O anomalies by plotting

densities of ypred for all three models, with the ice core observation superimposed.

Figure 6.8 shows how well the model estimates δ18O anomalies for models for the

WAIS, EAIS and all ice core sites. We can see that when the sites are separated by

ice sheet, the model generates δ18O anomalies well. When all sites are combined, it

struggles with some sites both in the WAIS and EAIS.
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Figure 6.8: Comparing the generated densities of ypred when modelling all ice core
sites vs modelling them in two groups. The black lines are the densities of ypred when
modelling all ice core sites. The red densities are from modelling the EAIS and WAIS
ice core sites separately. The vertical red lines are the observed δ18O anomalies. We
can see that there is a discrepancy between our model and the ice core observations
when modelling the WAIS and EAIS sites together. The densities of the δ18O values
at the Mount Moulton, EDML and Taylor sites are all peaking further away from
the observations.
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6.6.2 Checking hyperparameters

We check the nugget term of the emulator, σ1. If this was very large then the

emulator is not reducing uncertainty for the posterior distribution of the ice sheet

shape, and is not useful in our model. As we can see in Figure 6.9, which shows the

densities of the emulator nugget terms, the emulator variance at each ice core site is

peaking at values less than one, which is reassuringly small.

For our model with a lengthscale parameter for each dimension, we check the prior

and posterior distributions of them to see if anything is learned. Plots of this are

shown in Figure 6.10. We can see that the posterior closely follows the prior dis-

tribution Inv_Gamma(5,5), suggesting little has been learnt about the lengthscale

parameters from this process. The similarity in the values of all five lengthscale

parameters also suggests that the five prior variables are all equally relevant to the

model.

We now see how much is learned about the five prior variables through this process.

We plot histograms of the prior distribution of zobs with their posteriors superimposed

to compare how much we have learned. These are plotted in Figure 6.11. When the

ice core sites are modelled separately, there is some divergence between the prior

and posterior distributions of zobs. When the sites are combined into one model,

there is a much clearer difference between the prior and posterior distributions. We

therefore choose to continue our analysis using ice core sites from both ice core sheets

simultaneously. What this means in a geographical sense is discussed in Chapter 7,

where all three models are again assessed.
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Figure 6.9: Emulator nugget term, σ1, at each of the ice core sites. We can see the
variance at the ice core sites are small, mostly peaking at values less than one.
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Figure 6.10: Histograms of the posterior distributions of the length scale parameters,
ρd d = 1, ..., 5, with their prior distributions superimposed in red. We can see that
little is learned about the lengthscales, and none of the prior variables appears to
have a significantly larger value, suggesting they are all equally relevant to the model.
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Figure 6.11: Histograms of prior distributions of zobs, with the posterior distributions
overlaid when modelling EAIS (green), WAIS (blue) and all (red) ice core sites. The
red density curves show that when modelling all ice core sites at once there is a
clearer difference between the prior and posterior distributions of zobs - more so than
when modelling the ice sheets separately, particularly for the WAIS.
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6.7 Analysing model output

We make a pairs plot to look at the correlation between the posterior samples of

the five prior variables. This can be seen in Figure 6.12. We add in the points that

reconstruct the four most ‘important’ shapes (ICE5G (Peltier, 2004), ICE6G (Argus

et al., 2014), W12A (Whitehouse et al., 2012) and GLAC-1D (Briggs et al., 2014)),

discussed in Section 3.3, to see where they lie in the posterior sample. In some

cases they are in the centre of the sample, suggesting that our model has created a

sample similar to these values. For other variables they are outliers, with ICE5G at

the opposite end of the axis to the other three and the posterior sample plotted in

between. This suggests our model is sampling values of zi in the space in between

values that would reconstruct the four ‘important’ shapes.

6.7.1 Sensitivity analysis

We now perform a sensitivity analysis of our model to analyse the source of any

uncertainties.

We test our full model by increasing and decreasing the prior variance of the five

variables in our prior model. zobs are the values we wish to simulate which would pro-

duce δ18O anomalies close to the ice core observations through our model. Originally

we had

zobs ∼MVN (0, diag(0.5, 0.5, 0.6, 0.5, 1)).
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Figure 6.12: Pairs plot of posterior samples with the values for the first four ‘impor-
tant’ shapes added in. ICE5G is in red, ICE6G is in blue, W12A is in green and
GLAC-1D is in magenta. We can see that often they are grouped in the simulated
values, or spread out. When the ‘important’ shapes are outliers, the simulated values
appear in between.
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We firstly shrink the standard deviation to

zobs ∼MVN (0, diag(0.05, 0.05, 0.06, 0.05, 0.1)).

We compare our posterior distributions of this version of zobs and the corresponding

ypred to the distributions of zobs and ypred in Section 6.6.1. These are shown in

Figures 6.13 and 6.14. The posteriors of zobs peak at the same points but the spread

of the sample is clearly affected by the prior standard deviation. δ18O anomalies are

generally generated close to the observations, although shrinking zobs has affected

some ice core sites.

We then increase the prior standard deviation of zobs to

zobs ∼ N (0, diag(5, 5, 6, 5, 10)),

We compare our posterior distributions of this version of zobs and the corresponding

ypred. These are in Figures 6.15 and 6.16. The posterior distributions of zobs are very

different to the priors, as well as the previous posteriors. The ypred distributions

however are now being sampled much closer to the observed values.

We vary the size of the fixed standard deviation to see how much this is affecting

the predictions of the ice core sites. Figure 6.17 shows the densities of ypred when we

reduce the fixed standard deviation, τ = τ1 + τ2, where τ1 is measurement error for

the isotopes and τ2 is spatial error for HadCM3. We tested with τ = 1 and τ = 5,

compared to our chosen value of τ = 3. We can see that when the fixed variance

is changed, there is little difference in the ypred densities, suggesting that the fixed
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Figure 6.13: Histograms of the prior distributions of zobs when the prior standard
deviation is shrunken by a scale of 10, with the density curve of the posterior distri-
butions overlaid in red. The densities of the posteriors are peaking at a similar point
to the distributions in Figure 6.11, but the spread is much smaller.
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Figure 6.14: The distributions of ypred (black curves), with the ice core observations
shown in red, when the prior standard deviation of zobs is shrunken by a scale of 10.
Some of the ice core sites are clearly affected by the change, comparing this to Figure
6.8. We can see that the Byrd, EDC, Talos and Vostok sites now have densities of
δ18O values peaking further away from the ice core observations.
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Figure 6.15: Histograms of the prior distributions of zobs when the prior standard
deviation is increased by a scale of 10, with the density curve of the posterior dis-
tributions overlaid in red. The posterior distributions have been updated a lot from
the priors, displaying a much different mean and variance.
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Figure 6.16: The distributions of ypred (black curves), with the ice core observations
shown in red, when the standard deviation of zobs is increased by a scale of 10. We
can see the Mount Moulton, EDML and Taylor sites all have discrepancies compared
to the distributions in Figure 6.8.
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errors are not affecting our models’ capabilities of generating ice core anomalies close

to our observations.

6.8 Testing the model

We test the ability of the model incorporating all ice core sites to recover prior

variable values from δ18O anomalies. We do this in a series of ways: simulating

psuedo data and using this as input data, output data and observations, setting one

of our HadCM3 simulations as our observations and attempting to recover the input

values, and removing the data for an ice core site and seeing how well the model can

predict its observations.

6.8.1 Pseudo data

We simulate synthetic data with which to test our model by sampling from the

distributions of the zobss and running these values through the HadCM3 emulators

built for the ten ice core sites, providing us with synthetic δ18O anomalies. We then

use this as input for our model, setting one of the synthetic sets of δ18O anomalies as

yobs. We want to test how well the model predicts values of zobs when we know what

the ‘true’ values are. We plot the results in Figures 6.18 and 6.19, and can see that

the posterior distributions of zobs have updated a lot from the priors and are close
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Figure 6.17: The densities of ypred at the ice core sites when the fixed variance is
varied. The blue line is when τ = 1, green is the standard τ = 3 and purple is τ = 5.
The red vertical lines represent the ice core observations.



152 CHAPTER 6. CALIBRATION OF THE MODEL

to the actual values. The model is also producing generated quantities for ypred that

are close to the synthetic δ18O anomalies we created. This suggests that our model

is capable of recovering prior variable values needed to calculate δ18O close to known

values.

6.8.2 Recovering a HadCM3 simulation

We remove one of the HadCM3 climate simulations, so that we now have N1 = 46.

We then set this simulation as our yobs, and generate values of zobs and compare

them to the known prior values. The posterior distributions of zobs and generated

distributions of ypred can be seen in Figures 6.20 and 6.21. We can see that our model

is recovering the δ18O simulations and prior variable values well; the histograms of

the prior variables in Figure 6.20 are all peaking around the z values used to create

the orography used in the missing HadCM3 simulation. Similarly, Figure 6.21 shows

that the δ18O are all peaking around the values from the missing HadCM3 simulation.

We check with a second simulation to see if our model is capable of recovering more

simulations. We can see in Figures 6.22 and 6.23 that our model is doing a good

job at recovering the ‘true’ values of zobs and yobs, with the posterior distributions

of the variables all peaking close to the observations. We also compare the ice

sheet shape that our model recovers to the one we submitted as part of a HadCM3

simulation. Figures 6.24 and 6.25 show the differences between the orographies

used in the HadCM3 simulations and the shapes our model recovered. We can see
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Figure 6.18: Histograms of the posterior distributions of zobs, with density curves
of the prior distributions superimposed over them, when using synthetic data. The
true values of the synthetic zi’s are added as red vertical lines.
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Figure 6.19: The distributions of ypred when using synthetic data, with the synthetic
observations added as red vertical lines.
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our model has produced an accurate first simulation; the second shape recovered is

slightly larger than the original orography in places.

6.8.3 Recovering an ice core site

We further test the model incorporating all ice core sites by trying to recover an ice

core site. We wish to see if, by modelling only nine of the sites, we can create δ18O

anomalies close to the ice core observation at the missing ice core site. We do this

by removing the observation from Equation 3, so that we are not learning anything

about it from the input and output data. We then use Equation 4 to generate δ18O

anomalies for the missing ice core site and compare it to the observed value. A

histogram of the missing ice core site, Vostok, is in Figure 6.26; we can see that the

distribution of ypred for the missing ice core observation is peaking close to the true

value. However, the range of values is extremely large; as the βi’s were given vague

priors with standard deviation of 100, we can see that the model has not updated

much from these. Further tests using other ice core sites showed that this applied

to sites in both ice sheets; the model struggled to recover an unknown site based on

the sampling of the other nine.

6.9 Summary of Chapter

We have calibrated our model and successfully sampled from the posterior distribu-

tions of our prior variables. Generated distributions of the ice core observations, as
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Figure 6.20: Histograms of the posterior distributions of zobs, with density curves of
the prior distributions superimposed over them, when trying to recover a HadCM3
simulation. The true values of the synthetic zi’s are added on as red vertical lines.
We can see the posterior distributions are very different to the priors, and are parking
close to the observations.
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Figure 6.21: The distributions of ypred when recovering a HadCM3 simulation with
the synthetic observations added on as red vertical lines.
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Figure 6.22: Histograms of the posterior distributions of zobs, with density curves
of the prior distributions superimposed over them, when trying to recover a second
HadCM3 simulation. The true values of the synthetic zi’s are added on as red vertical
lines.
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Figure 6.23: The distributions of ypred when recovering a second HadCM3 simulation
with the synthetic observations added on as red vertical lines.
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800 600 400 200 0 200 400 600

Figure 6.24: The difference between an orography used in a HadCM3 simulation and
the shape our model recovered. We can see the model has created a shape slightly
smaller than the orography we were attempting to recover.



6.9. SUMMARY OF CHAPTER 161
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Figure 6.25: The difference between a second orography used in HadCM3 and the
shape our model recovered. We can see that the model has been less successful
this time, creating an ice sheet shape thicker than the original one we attempted to
recover.
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Figure 6.26: The histogram of generated values of the recovered ice core site. The
ice core observation is plotted over as a red vertical line. The distribution of ypred
does not appear to have been adjusted much from the prior distributions of the
hyperparameters, suggesting our model struggles to recover an ice core site from the
other nine.
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well as the sensitivity analysis and model tests we have run, suggest that our model

is working well, with the distributions of ypred centred around the observations, and

inflated variances little affecting results.

In the next chapter, we discuss the geographical interpretations of our results, and

analyse the ice sheet orographies our model has produced and how they differ from

the reconstructions used to construct our prior model.
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Chapter 7

Geographical Interpretations

In this chapter, we look into the geographical interpretations of the results discussed

in Chapter 6. The sampled posterior distributions of the prior variables are used in

our prior ice sheet shape model to create sets of LGM AIS orographies, we compare

these shapes as well as the variance in each set. We consider how different our

estimates are to the ice sheet reconstructions used to build our prior model.

7.1 Posterior shapes

We use the samples of the posterior distributions of zobs to create posterior ice sheet

shapes and consider how plausible the shapes are, both when modelling the ice core

165
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sites as two separate regions or combined. Figures 7.1 and 7.2 shows the mean pos-

terior shape from the three models. Modelling just the WAIS ice core sites produces

an ice sheet reconstruction with a large extent but low elevation. When modelling

just the EAIS ice core sites, the ice sheet reconstruction is noticeably thicker, but

drops off much more quickly over the Ronne and Ross ice shelves (see Figure 1.1 for

the location of these). When all AIS sites are modelled simultaneously, we can see

the heightened elevation in the EAIS remains, along with the discrepancies over the

ice shelves, whilst the WAIS is smoothed out.

Figure 7.3 shows the difference between the mean posterior shape when modelling

all sites, and the mean posterior shapes when modelling sites as two sets. We can

see that the reconstructions for all sites and EAIS sites are very similar, whilst the

posterior shape created from just WAIS sites has more obvious differences in both

negative and positive differences in elevation. This would suggest the ice core sites in

the EAIS are heavily influencing the AIS model; given the issues with our HadCM3

simulations concerning the EAIS, discussed in Section 5.2.1 and Figure 5.3 this may

raise questions over the plausibility of the ice sheet shapes that our models create.

Due to the difficulties matching with proxy data, our emulators for the EAIS ice

core sites are extrapolating a long way from our simulations. This makes it harder

to trust in the results for the EAIS; the sparsity of data and the size of the ice sheet

makes it difficult to model the EAIS as a whole.

Figures 7.4 and 7.5 show the standard deviation of the posterior reconstructions.

Modelling all ice core sites simultaneously greatly reduces the standard deviation in

our reconstructions; modelling sites in each ice sheet separately appears to result in a
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great deal of uncertainty in the other ice sheet. One of our aims in this thesis was to

reduce uncertainty around the AIS at the LGM; comparing the standard deviation

of the posterior ice sheet shapes from our models to Figure 4.2, we can see there is

a lot less variance in our posterior shapes compared to the prior model.

Sets of ice sheet reconstructions from the three models are in Figures 7.6, 7.7 and 7.8.

We can see the reconstructions produced when modelling just the WAIS sites have

lower elevation, although the ice sheets are smoother. When modelling the EAIS

sites, or all sites combined, there are discrepancies in the ice sheet reconstructions,

particularly over the Ronne and Ross ice shelves. Our model is statistical and has

discarded the underlying physics of previous reconstructions; this means that it is

difficult to prevent small implausibilities in our posterior shapes such as holes in the

ice shelves. As such, the posterior ice sheet shapes that our models produce would

be best used as suggestions for the presence of ice at the LGM, and demonstrations

of where there is most uncertainty in predictions, rather than as a precise orography

estimate.

7.2 Comparing our orographies to previous recon-

structions

We compare our posterior shapes to four of the ice sheet reconstructions used to

build our prior model, ICE-5G (Peltier, 2004), ICE-6G (Argus et al., 2014), W12A

(Whitehouse et al., 2012), and GLAC-1D (Briggs et al., 2014). These are the four
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630 0 630 1260 1890 2520 3150 3780 4410 5040

(a) The mean posterior ice sheet reconstruction when modelling the WAIS ice core sites.

630 0 630 1260 1890 2520 3150 3780 4410 5040

(b) The mean posterior ice sheet reconstruction when modelling the EAIS ice core sites.

Figure 7.1: The mean posterior ice sheet reconstructions when modelling WAIS
and EAIS ice core sites separately. We can see that using the EAIS ice core sites
produces a mean reconstruction with more extreme high and low values. The mean
reconstruction from the WAIS ice core sites is smoother.
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m

Figure 7.2: The mean posterior ice sheet reconstruction when modelling all ice core
sites.
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Figure 7.3: The difference between the mean posterior reconstruction of the model
using all sites, and the models separating sites into EAIS (left plot) and WAIS (right
plot). We can see that the mean reconstruction created from just WAIS ice core sites
leads to an ice sheet shape of more extreme values than using all sites together.
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(a) The standard deviation of the posterior ice sheet reconstructions when modelling the
WAIS ice core sites.

0 100 200 300 400 500 600 700 800

(b) The standard deviation of the posterior ice sheet reconstructions when modelling the
EAIS ice core sites.

Figure 7.4: The standard deviation of the posterior ice sheet reconstructions when
modelling WAIS and EAIS ice core sites separately.



172 CHAPTER 7. GEOGRAPHICAL INTERPRETATIONS

0 100 200 300 400 500 600 700 800
m

Figure 7.5: The standard deviation of the posterior ice sheet reconstructions when
modelling all ice core sites.
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(c)
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(e)

630 0 630 1260 1890 2520 3150 3780 4410 5040

(f)

Figure 7.6: Posterior shapes from modelling the WAIS ice core sites.
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Figure 7.7: Posterior shapes from modelling the EAIS ice core sites.
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Figure 7.8: Posterior shapes from modelling all of the ice core sites.
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reconstructions used in the first round of PCA, as described in Section 3.3. This

allows us to see where the posterior reconstructions disagree with the original ice

sheet reconstructions. We cannot compare our posterior ice sheet shapes to all proxy

evidence or reconstructions, as that is beyond the scope of this work. We compare our

results to the four reconstructions we originally started with to give some examples

of how our method differs to previous work.

We can see in Figures 7.9, 7.10 and 7.11 that all models, whether incorporating only

WAIS, EAIS, or all ice core sites, produce ice sheets with a lower elevation than

ICE-5G. This is not unexpected, as ICE-5G has a much thicker Antarctic ice sheet

than later models due to updated methodologies, as described in Argus et al. (2014).

Our model also has a lower coastal region than ICE-6G, and when modelling the

EAIS ice core sites, there are obvious differences over the Ronne and Ross ice shelves.

Despite this, our model using all sites is producing shapes with a higher elevation

over the EAIS than the reconstructions used in our prior model, suggesting this is

where some of the "missing ice", described in 2.1.1 and previously unaccounted for

in other ice sheet reconstructions, may be found.

Looking at Table 7.1 we can see that modelling all ice core sites at once produces

the ice sheets with highest mean elevation. Although still smaller than ICE-5G, the

average shape from our model is a lot larger than the other three reconstructions.

Due to the lack of physical modelling underlying our ice sheet shapes, we are unable

to give an estimate of the ice volume or area that our posterior shapes hold. This
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Modelling WAIS sites Modelling EAIS sites Modelling all sites
ICE-5G -214673.99 -134678.46 -107646.68
ICE-6G -16260.46 63735.07 90766.84
W12A 46272.65 126268.18 153299.95

GLAC-1D 40381.59 120377.12 147408.89

Table 7.1: Total difference in the mean elevation (m) of the posterior reconstructions
when modelling WAIS, EAIS or all ice core sites, and four of the original ice sheet
reconstructions.

means we cannot judge the sea level contribution of our posterior ice sheet shapes,

as that would be beyond the remit of this thesis.

There is much to consider when comparing the two methods of finding posterior

ice sheet shapes, modelling the ice core sites altogether or in two separate groups.

Modelling all sites combined results in a mean posterior shape with higher elevation

and less uncertainty than the models using WAIS and EAIS ice core sites separately.

We can also see in Figure 6.11 that this model gives posterior distributions that differ

more from the prior distributions of zobs, suggesting that we are learning more about

the distributions of zobs and the AIS at the LGM when modelling all ice core sites

together. Although there is a slight discrepancy in the generated distributions of

ypred compared to the distributions when the ice core sites are modelled separately

as EAIS and WAIS sites, as can be seen in Figure 6.8, the differences are small.

The model incorporating all ice core sites therefore seems to give the better estimate

of the AIS at the LGM, giving an approximate ice sheet shape and elevation with

reduced uncertainty.
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Figure 7.9: The difference between the posterior mean shape our model creates
when using the WAIS ice core sites and the four ice sheet reconstructions used in the
first PCA. Clockwise they are ICE-5G (Peltier, 2004), ICE-6G (Argus et al., 2014),
GLAC-1D (Briggs et al., 2014) and W12A (Whitehouse et al., 2012).
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Figure 7.10: The difference between the posterior mean shape our model creates
when using the EAIS ice core sites and the four ice sheet reconstructions used in the
first PCA. Clockwise they are ICE-5G (Peltier, 2004), ICE-6G (Argus et al., 2014),
GLAC-1D (Briggs et al., 2014) and W12A (Whitehouse et al., 2012).
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Figure 7.11: The difference between the posterior mean shape our model creates
when using all ice core sites and the four ice sheet reconstructions used in the first
PCA. CClockwise they are ICE-5G (Peltier, 2004), ICE-6G (Argus et al., 2014),
GLAC-1D (Briggs et al., 2014) and W12A (Whitehouse et al., 2012).
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7.3 Summary of Chapter

We have shown that our model produces ice sheet shapes with less uncertainty than

previous reconstructions by considering Figures 7.4, 7.5 and 4.2. We can see that

our posterior ice sheet shapes have less uncertainty than the set of ice sheet recon-

structions we used to build the prior model. Although not as large as ICE-5G, our

mean posterior shapes are larger than previous reconstructions, accounting for some

of the "missing ice" at the LGM. Due to the statistical nature of our model, we are

unable to give an estimate of the contribution our posterior reconstructions make to

global sea level rise; this would be an area of interest in future work. Despite issues

modelling the EAIS resulting from our HadCM3 simulations, we believe a model

using all ice core sites together gives the best reconstruction of the AIS at the LGM,

estimating the shape with reduced uncertainty.
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Chapter 8

Conclusions

We have demonstrated the success our method has at modelling the relationship

between the AIS orography at the LGM and δ18O anomalies from ice cores, and

considered the geographical interpretations of these results including the posterior

ice sheet shapes that our methods have produced. Here we discuss our findings, and

consider some issues and further work. Several items of interest are beyond the remit

of this thesis but would be of interest for future research.

183
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8.1 Discussion

8.1.1 Scientific Findings

Our methods have produced ice sheets with less variance than our prior model and

reduced the uncertainty around the AIS at the LGM. Our method of course relies on

the previous reconstructions all being plausible for the LGM, and the model space

they describe containing all possible shapes. We are therefore reliant on the belief

that this model space does not exclude the "true" ice sheet shape, as that would

make it impossible for our model to recover it. Posterior samples (Figure 6.12) show

that we are taking values of the prior variables in the model space around our four

"important" reconstructions ICE-5G (Peltier, 2004), ICE-6G (Argus et al., 2014),

W12A (Whitehouse et al., 2012), and GLAC-1D (Briggs et al., 2014). These are

the four reconstructions used in the first round of PCA, as described in Section 3.3.

Our model is built on the variance within and between these reconstructions; we are

dependent on the prior beliefs of the modellers who created these reconstructions

being accurate.

Our posterior ice sheet shapes are larger than the majority of the previous recon-

structions. An exception is ICE-5G, which is recognised by the palaeoclimatological

community to have a larger ice mass at Antarctica than is currently accepted (Peltier

et al., 2015). This increase in size in our estimates confirms the widely held belief

that at least some of the "missing ice" at the LGM can be found in the AIS (Simms

et al., 2019). Although we are not able to give an estimate of the ice volume and
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corresponding sea level contribution from our posterior shapes, unlike previous re-

constructions, we have provided estimates of where this ice may be, and the standard

deviation within our model in Figure 7.5. Such uncertainty statements may point to

directions for future modelling and/or observational work that could allow further

refinement of the estimates.

8.1.2 Statistical Findings

We have created a novel approach to weighted PCA, as described in Section 3.3.3.

This allows the use of data when there is an obvious split in the relevance or impor-

tance of sources or variables. It also allows for the incorporation of more data at a

later date, and can assist in ranking data by prior beliefs about its influence on the

subject of interest, and the use of related but unequal data sets. Situations such as

our are not exclusive to the climatology community, and this weighted PCA method

is applicable to many other areas.

We have demonstrated a way of combining prior knowledge, expert elicitation, GP

emulation and Bayesian inference to model the uncertainty around aspects of the

palaeoclimate. Building on the previous work of Domingo et al. (2020), we have

refined how the prior model was built and the process of selecting a set of orographies

to input into HadCM3. We have shown the success of building an emulator of a

climate model, which gives the possibility of future uses in other aspects of statistical

analysis of climatology. We chose a relatively stable and recent time period - the

LGM was a very broad event; conditions changed very slowly, allowing us to disregard
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any dating errors in the isotopes as described in 6.6. The stable nature of the time

period meant we could model it statistically. If applying this method to a less stable

period, when ice sheets were more in flux and the climate changing more quickly,

then further uncertainties would have to be incorporated in to the calibration model.

8.2 Future Work

The orographies we chose to input into HadCM3 appear to have been too low to

create isotope values similar to ice core observations for the ice cores from the EAIS,

as can be seen in Figure 5.3. Whether this was due to a model discrepancy within

HadCM3, or an error in our elicitation process, is difficult to tell. Any future at-

tempt to replicate this method should check the choices of orographies before running

simulations on HadCM3, whether through a more detailed or rigorous expert elici-

tation process, or by staggering the simulations so that there can be a preliminary

exploratory data analysis of an initial set of simulations, with adjustments made

according to early results.

There appear to be discrepancies over the Ronne and Ross ice shelves in our posterior

shapes, as discussed in Chapter 7. We did not have the time or resources to investi-

gate the causes of this. It occurred when the EAIS ice core sites were incorporated

into our calibration model, so may be a consequence of the δ18O simulations from

HadCM3 not matching the ice core observations.
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We have created a statistical model, having discarded the underlying physical models

of the ice sheet reconstructions. As a result, our model can output implausible ice

sheet shapes; a future collaboration with ice sheet modellers and climatologists could

provide further constraints on our model to improve output. In particular, the edges

of the ice sheets that our model creates require smoothing. The coarseness of the

HadCM3 latitude/longitude grid and the lack of physics in our model means it is

hard to control where the ice sheet cuts off in our output, resulting in shapes that are

jagged and unrealistic, with occasional holes where the ice sheet thins. This means

our posterior ice sheet shapes can only be viewed as guides for the location of ice,

rather than a precise map of the AIS at the LGM. Our conclusions in Chapter 7

have therefore been on elevation rather than exact orographies.

Further testing with another GCM could allows us to understand better any biases

inherent in HadCM3 and that we may not have been able to remove from our model

(Domingo et al., 2020). The possible model discrepancy causing our difficulties with

modelling the EAIS could then be further investigated, along with any other errors

our choice of GCM has created. As discussed in Section 7.1, the EAIS ice core sites

appear to heavily influence our model despite the difficulties we have encountered.

If carrying out a similar approach in the future, carefully constraining the GCM

simulations or choosing a time period with more available proxy data could avoid this

issue. More data, whether from ice cores or otherwise, would mean less extrapolation

over the ice sheet would take place in our model. However, we are hampered by the

nature of proxy data collection, as we cannot control when, how or where such data

is collected. Particularly for the EAIS, the rate of accumulation of data is slow, and

collection is difficult due to the inhospitable conditions.
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As already stated, it is beyond the remit of this work to give an estimate of sea

level contribution from our posterior ice sheet shapes. A conversion from our eleva-

tion estimates to ice volume would be useful to see how much of the "missing ice”

at the LGM is placed in Antarctica by our method, and would contribute to the

understanding of how the AIS has reacted to the changing climate.

In summary, the methods proposed in this thesis could be applied easily to any

time period or climate variable given that there is adequate proxy data and prior

knowledge. Indeed they could be used for any application that has expert beliefs,

a complex simulator that is too computationally expensive to run numerous times,

and a set of observations with which to compare emulator output. Furthermore, in

developing our suite of models and methods we have tackled some problems, and

provided tools, that are likely to be relevant to others working within and beyond

climate science.
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A Design of eighty shapes from elicitation.
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B Post-processing scripts for HadCM3 output.

B.1 data_process_PIrun.py

#!/usr/bin/env python2.7

# --------------------------------------------------------------------------

# Author: Max Holloway, Date: Oct 2016

# Use: Date processing script using iris to extract variables from

# individual UM .pp files (using STASH codes) and merge into single time

# series cube and save as monthly time series in ’expID’/monthly directory

# script use; python /home/users/mholloway/python/data_process.py experiment_name

# --------------------------------------------------------------------------

import sys

import os

exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts/

startup.py’).read())

exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts/

my_defs.py’).read())

exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts

/my_cmaps.py’).read())

exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts

/my_plots.py’).read())

data_root=’/Volumes/shared/wilkinson_uq1/User/smq15fet’

# ---------------------------------------------------------------------
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# get variable stash codes

# pd files:

# water_sublimation_flux_in_timestep m01s03i231

# Evaporation flux from open sea m01s03i232

# air_pressure_at_sea_level m01s16i222

# air_temperature / (K) m01s03i236

# precipitation_flux / (kg m-2 s-1) m01s05i216

# relative_humidity / (%) m01s03i245

# sea_ice_area_fraction / (1) m01s00i031

# sea_ice_thickness / (m) m01s00i032

# snowfall_amount / (kg m-2) m01s00i023

# specific_humidity / (1) m01s03i237

# surface_air_pressure / (Pa) m01s00i001

# surface_temperature / (K) m01s00i024

# surface_upward_latent_heat_flux / (W m-2) m01s03i234

# surface_upward_sensible_heat_flux / (W m-2) m01s03i217

# toa_incoming_shortwave_flux / (W m-2) m01s01i207

# toa_outgoing_longwave_flux / (W m-2) m01s02i205

# toa_outgoing_shortwave_flux / (W m-2) m01s01i208

# wind speed m01s03i230

# y_wind m01s03i226

# x_wind m01s03i225

# 3D fields - pc files

# air_temperature / (K) m01s16i203

# geopotential_height / (m) m01s16i202

# relative_humidity / (%) m01s16i204
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# specific_humidity m01s15i226

# x_wind / (m s-1) m01s15i201

# y_wind / (m s-1) m01s15i202

#

# pd_name_list=[’water_sublimation_flux’,’evap_flux,air_pressure_at_sea_level’,

’air_temperature’, \

# ’precipitation_flux’,’relative_humidity’,’sea_ice_area_fraction’,

’sea_ice_thickness’,’snowfall_amount’, \

# ’specific_humidity’,’surface_air_pressure’,’surface_temperature’,

’surface_upward_latent_heat_flux’, \

# ’surface_upward_sensible_heat_flux’,’toa_incoming_shortwave_flux’,’

toa_outgoing_longwave_flux’, \

# ’toa_outgoing_shortwave_flux’,’wind_speed’,’y_wind’,’x_wind’]

#

# ---------------------------------------------------------------------

# pass experiment to be processed

expID=str(sys.argv[1]) # ’xluba’

print( "Processing experiment", expID)

pd_stash_list=[’m01s03i231’,’m01s03i232’,’m01s16i222’,’m01s03i236’,’m01s05i216’,’

m01s03i245’, \

’m01s00i031’,’m01s00i032’,’m01s00i023’,’m01s03i237’,’m01s00i001’,

’m01s00i024’, \

’m01s01i207’,’m01s02i205’,’m01s01i208’,’m01s03i230’,’m01s03i226’,

’m01s03i225’]
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for VAR in range(len(pd_stash_list)):

#filename = iris.sample_data_path(’’+data_root+’/’+expID+’/pcpd/’

+expID+’a@pd*’)

filename = ’’+data_root+’/’+expID+’/’+expID+’a.pd*’

#print(filename)

stash_constraint = iris.AttributeConstraint

(STASH=str(pd_stash_list[VAR]))

#if os.path.getsize(filename) > 0:

cube = iris.load_cube(filename, stash_constraint)

cube_name = cube[-1].standard_name

if cube[-1].standard_name == None:

cube_name = cube[-1].long_name

print( "saving", str(cube_name))

print( str(cube_name), ": start date =", str(cube.coord(’time’)[0]))

print( str(cube_name), ": end date =", str(cube.coord(’time’)[-1]))

iris.save(cube, ’’+data_root+’/’+expID+’/monthly/’+expID+’.’

+str(cube_name)+’

.monthly.nc’)#, netcdf_format="NETCDF3_CLASSIC")

# ---------------------------------------------------------------------

# Isotopes in precipitation are in STASH code 338 -

levels of the field corrospond as

follows:

# 0=large scale rain 16o

# 1=large scale rain 18o
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# 2=large scale rain deuterium

# 3=large scale snow 16o

# 4=large scale snow 18o

# 5=large scale snow deuterium

# 6=convective rain 16o

# 7=convective rain 18o

# 8=convective rain deuterium

# 9=convective snow 16o

# 10=convective snow 18o

# 11=convective snow deuterium

# ---------------------------------------------------------------------

filename = ’’+data_root+’/’+expID+’/’+expID+’a.pc*’

stash_constraint = iris.AttributeConstraint(STASH=’m01s00i338’)

precip_isotopes = iris.load(filename, stash_constraint)

iris.save(precip_isotopes, ’’+data_root+’/’+expID+’/monthly/’+expID+’.

precip_isotopes.monthly.nc’)

isotopes = [’d16O_lsrain’,’d18O_lsrain’,’d2H_lsrain’,’d16O_lssnow’,’d18O_lssnow’,

’d2H_lssnow’,\

’d16O_cnrain’,’d18O_cnrain’,’d2H_cnrain’,’d16O_cnsnow’,’d18O_cnsnow’,

’d2H_cnsnow’] # Define strings to hold different isotope species

(ordered as above)

for typ in range(len(isotopes)):

locals()[isotopes[typ]] = precip_isotopes[typ]
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H2O16 = d16O_lsrain + d16O_cnrain + d16O_lssnow + d16O_cnsnow

H2O18 = d18O_lsrain + d18O_cnrain + d18O_lssnow + d18O_cnsnow

d18O=((((H2O18/H2O16)/RsmowO18)-1)*1000) # OXYGEN-18

d18O.data[d18O.data > 100] = N.nan

d18O.data[d18O.data < -100] = N.nan

d18O.data=N.ma.masked_invalid(d18O.data)

d18O.var_name,d18O.long_name = u’d18O’,u’d18O’ # change cube name

print("d18O")

iris.save(d18O, ’’+data_root+’/’+expID+’/monthly/’+expID+’.d18O.monthly.nc’)

H2 = d2H_lsrain + d2H_cnrain + d2H_lssnow + d2H_cnsnow

d2H=((((H2/H2O16)/RvsmowD)-1)*1000) # DEUTERIUM

d2H.data[d2H.data > 100] = N.nan

d2H.data[d2H.data < -1000] = N.nan

d2H.data=N.ma.masked_invalid(d2H.data)

d2H.var_name,d2H.long_name = u’deuterium’,u’deuterium’ # change cube name

print("deuterium")

iris.save(d2H, ’’+data_root+’/’+expID+’/monthly/’+expID+’.deuterium.monthly.nc’)

B.2 data_process.py

#!/usr/bin/env python2.7

# --------------------------------------------------------------------------
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# Author: Max Holloway, Date: Oct 2016

# Use: Date processing script using iris to extract variables from

# individual UM .pp files (using STASH codes) and merge into single time

# series cube and save as monthly time series in ’expID’/monthly directory

# script use; python /home/users/mholloway/python/data_process.py experiment_name

# --------------------------------------------------------------------------

import sys

import os

exec(open(’/Users/fionaturner/Documents/HADCM3-output/startup.py’).read())

exec(open(’/Users/fionaturner/Documents/HADCM3-output/my_defs.py’).read())

exec(open(’/Users/fionaturner/Documents/HADCM3-output/my_cmaps.py’).read())

exec(open(’/Users/fionaturner/Documents/HADCM3-output/my_plots.py’).read())

data_root=’/Volumes/shared/wilkinson_uq1/User/smq15fet’

# ---------------------------------------------------------------------

# get variable stash codes

# pd files:

# water_sublimation_flux_in_timestep m01s03i231

# Evaporation flux from open sea m01s03i232

# air_pressure_at_sea_level m01s16i222

# air_temperature / (K) m01s03i236

# precipitation_flux / (kg m-2 s-1) m01s05i216

# relative_humidity / (%) m01s03i245

# sea_ice_area_fraction / (1) m01s00i031

# sea_ice_thickness / (m) m01s00i032

# snowfall_amount / (kg m-2) m01s00i023

# specific_humidity / (1) m01s03i237
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# surface_air_pressure / (Pa) m01s00i001

# surface_temperature / (K) m01s00i024

# surface_upward_latent_heat_flux / (W m-2) m01s03i234

# surface_upward_sensible_heat_flux / (W m-2) m01s03i217

# toa_incoming_shortwave_flux / (W m-2) m01s01i207

# toa_outgoing_longwave_flux / (W m-2) m01s02i205

# toa_outgoing_shortwave_flux / (W m-2) m01s01i208

# wind speed m01s03i230

# y_wind m01s03i226

# x_wind m01s03i225

# 3D fields - pc files

# air_temperature / (K) m01s16i203

# geopotential_height / (m) m01s16i202

# relative_humidity / (%) m01s16i204

# specific_humidity m01s15i226

# x_wind / (m s-1) m01s15i201

# y_wind / (m s-1) m01s15i202

#

# pd_name_list=[’water_sublimation_flux’,’evap_flux,air_pressure_at_sea_level’,

’air_temperature’, \

# ’precipitation_flux’,’relative_humidity’,’sea_ice_area_fraction’,

’sea_ice_thickness’,’snowfall_amount’, \

# ’specific_humidity’,’surface_air_pressure’,’surface_temperature’,

’surface_upward_latent_heat_flux’, \

# ’surface_upward_sensible_heat_flux’,’toa_incoming_shortwave_flux’,

’toa_outgoing_longwave_flux’, \
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# ’toa_outgoing_shortwave_flux’,’wind_speed’,’y_wind’,’x_wind’]

#

# ---------------------------------------------------------------------

# pass experiment to be processed

expID=str(sys.argv[1]) # ’xluba’

print( "Processing experiment", expID)

pd_stash_list=[’m01s03i231’,’m01s03i232’,’m01s16i222’,’m01s03i236’,’m01s05i216’,

’m01s03i245’, \

’m01s00i031’,’m01s00i032’,’m01s00i023’,’m01s03i237’,’m01s00i001’,

’m01s00i024’, \

’m01s01i207’,’m01s02i205’,’m01s01i208’,’m01s03i230’,’m01s03i226’,

’m01s03i225’]

for VAR in range(len(pd_stash_list)):

#filename = iris.sample_data_path(’’+data_root+’/’+expID+’/pcpd/’+expID+

’a@pd*’)

filename = ’’+data_root+’/’+expID+’/pcpd/’+expID+’a@pd*’

#print(filename)

stash_constraint = iris.AttributeConstraint(STASH=

str(pd_stash_list[VAR]))

#if os.path.getsize(filename) > 0:

cube = iris.load_cube(filename, stash_constraint)

cube_name = cube[-1].standard_name

if cube[-1].standard_name == None:
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cube_name = cube[-1].long_name

print( "saving", str(cube_name))

print( str(cube_name), ": start date =", str(cube.coord(’time’)[0]))

print( str(cube_name), ": end date =", str(cube.coord(’time’)[-1]))

iris.save(cube, ’’+data_root+’/’+expID+’/monthly/’+expID+’.

’+str(cube_name)+’.monthly.nc’)#, netcdf_format="NETCDF3_CLASSIC")

# ---------------------------------------------------------------------

# Isotopes in precipitation are in STASH code 338 - levels of the field

corrospond as follows:

# 0=large scale rain 16o

# 1=large scale rain 18o

# 2=large scale rain deuterium

# 3=large scale snow 16o

# 4=large scale snow 18o

# 5=large scale snow deuterium

# 6=convective rain 16o

# 7=convective rain 18o

# 8=convective rain deuterium

# 9=convective snow 16o

# 10=convective snow 18o

# 11=convective snow deuterium

# ---------------------------------------------------------------------

filename = ’’+data_root+’/’+expID+’/pcpd/’+expID+’a@pc*’

stash_constraint = iris.AttributeConstraint(STASH=’m01s00i338’)



216

precip_isotopes = iris.load(filename, stash_constraint)

iris.save(precip_isotopes, ’’+data_root+’/’+expID+’/monthly/’+expID+

’.precip_isotopes.monthly.nc’)

isotopes = [’d16O_lsrain’,’d18O_lsrain’,’d2H_lsrain’,’d16O_lssnow’,’d18O_lssnow’,

’d2H_lssnow’,\

’d16O_cnrain’,’d18O_cnrain’,’d2H_cnrain’,’d16O_cnsnow’,’d18O_cnsnow’,

’d2H_cnsnow’]

# Define strings to hold different isotope species (ordered as above)

for typ in range(len(isotopes)):

locals()[isotopes[typ]] = precip_isotopes[typ]

H2O16 = d16O_lsrain + d16O_cnrain + d16O_lssnow + d16O_cnsnow

H2O18 = d18O_lsrain + d18O_cnrain + d18O_lssnow + d18O_cnsnow

d18O=((((H2O18/H2O16)/RsmowO18)-1)*1000) # OXYGEN-18

d18O.data[d18O.data > 100] = N.nan

d18O.data[d18O.data < -100] = N.nan

d18O.data=N.ma.masked_invalid(d18O.data)

d18O.var_name,d18O.long_name = u’d18O’,u’d18O’ # change cube name

print("d18O")

iris.save(d18O, ’’+data_root+’/’+expID+’/monthly/’+expID+’.d18O.monthly.nc’)

H2 = d2H_lsrain + d2H_cnrain + d2H_lssnow + d2H_cnsnow

d2H=((((H2/H2O16)/RvsmowD)-1)*1000) # DEUTERIUM

d2H.data[d2H.data > 100] = N.nan
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d2H.data[d2H.data < -1000] = N.nan

d2H.data=N.ma.masked_invalid(d2H.data)

d2H.var_name,d2H.long_name = u’deuterium’,u’deuterium’ # change cube name

print("deuterium")

iris.save(d2H, ’’+data_root+’/’+expID+’/monthly/’+expID+’.deuterium.monthly.nc’)

B.3 my_cmaps.py

# CUSTOM COLOURMAPS

#execfile(’custom_cmaps.py’)

import matplotlib.colors as mcol

################################################################################

## GLOBALS

##

COLOR1 = ’#2C722F’ #green

COLOR2 = ’#8C201E’ #red

COLOR3 = ’#224E73’ #purple

COLOR4 = ’#DEA000’ #yellow

COLOR5 = ’#078C7A’ #cyan

COLOR6 = ’#EE1904’ #lighter red

COLOR7 = ’#32AE1C’ # lighter green

COLDARKGREEN = ’#007D1C’

COLDARKRED = ’#A61000’
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COLDARKBLUE = ’#015666’

COLDARKYELLOW = ’#A65100’

COLLIGHTGREEN = ’#38E05D’

COLLIGHTRED = ’#FF5240’

COLLIGHTBLUE = ’#37B6CE’

COLLIGHTYELLOW = ’#FF9D40’

COLDARKGREEN = ’#007D1C’

COLDARKRED = ’#9F0025’

COLDARKPURPLE = ’#42036F’

COLDARKBLUE = ’#06266F’

COLDARKYELLOW = ’#A66F00’

COLGREEN = ’#1AD644’

COLRED = ’#D61A1A’

COLPURPLE = ’#D61AAC’

COLBLUE = ’#1A4ED6’

COLYELLOW = ’#E4EB2F’

COLLIGHTGREEN = ’#38E05D’

COLLIGHTRED = ’#B12D4C’

COLLIGHTBLUE = ’#4671D5’

COLLIGHTYELLOW = ’#FFBF40’

COLLIGHTPURPLE = ’#963FD5’
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COLLIST1 = mcol.LinearSegmentedColormap.from_list(’hagcolors’, [COLDARKGREEN,

COLDARKRED, COLDARKPURPLE, COLDARKBLUE, COLDARKYELLOW])

COLLIST2 = mcol.LinearSegmentedColormap.from_list(’hagcolors’, [COLDARKPURPLE,

COLDARKBLUE, ’White’, ’White’, COLDARKYELLOW, COLDARKRED])

COLLIST3 = mcol.LinearSegmentedColormap.from_list(’hagcolors’, [COLDARKPURPLE,

COLDARKBLUE, ’White’, COLDARKYELLOW, COLDARKRED])

COLMAP1 = mpl.colors.LinearSegmentedColormap.from_list(

’COLMAP1’,

[COLLIGHTGREEN, COLDARKGREEN , COLDARKGREEN ,

’White’, COLLIGHTRED, COLLIGHTRED,

COLLIGHTPURPLE ], N=200)

COLMAP2 = mpl.colors.LinearSegmentedColormap.from_list(

’COLMAP1’,

[COLLIGHTGREEN, COLDARKGREEN, ’White’, COLDARKRED, COLLIGHTRED], N=200)

#name=’hess’,’milagro’

#’GC’,’GC_DISCRETE’,’wigner_cmap’

# ------------------------------

COLDARKBLUE = ’#015666’

COLLIGHTBLUE = ’#37B6CE’
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COLDARKBLUE = ’#06266F’

COLBLUE = ’#1A4ED6’

COLLIGHTBLUE = ’#4671D5’

COLDARKGREEN = ’#007D1C’

COLLIGHTGREEN = ’#38E05D’

COLDARKGREEN = ’#007D1C’

COLGREEN = ’#1AD644’

COLLIGHTGREEN = ’#38E05D’

COLDARKYELLOW = ’#A65100’

COLLIGHTYELLOW = ’#FF9D40’

COLDARKYELLOW = ’#A66F00’

COLYELLOW = ’#E4EB2F’

COLLIGHTYELLOW = ’#FFBF40’

COLDARKRED = ’#A61000’

COLLIGHTRED = ’#FF5240’

COLDARKRED = ’#9F0025’

COLRED = ’#D61A1A’

COLLIGHTRED = ’#B12D4C’

COLDARKPURPLE = ’#42036F’

COLPURPLE = ’#D61AAC’

COLLIGHTPURPLE = ’#963FD5’
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COLLIST1 = mcol.LinearSegmentedColormap.from_list(’hagcolors’, [COLDARKBLUE,

COLBLUE,COLLIGHTBLUE,’White’,’White’,#COLDARKGREEN,COLLIGHTGREEN,

#COLDARKGREEN,COLGREEN,COLLIGHTGREEN,COLLIGHTYELLOW,

COLYELLOW,COLDARKYELLOW,COLLIGHTRED,COLRED,COLDARKRED,

COLLIGHTPURPLE#,COLDARKPURPLE

])

COLLIST2 = mcol.LinearSegmentedColormap.from_list(’hagcolors’, [COLDARKBLUE,

COLBLUE,COLLIGHTBLUE,’White’,’White’,#COLDARKGREEN,COLLIGHTGREEN,

#COLDARKGREEN,COLGREEN,COLLIGHTGREEN,COLLIGHTYELLOW,

COLYELLOW,COLDARKYELLOW,COLLIGHTPURPLE,COLLIGHTRED,COLRED,

COLDARKRED,#,COLDARKPURPLE

])

COLLIST3 = mcol.LinearSegmentedColormap.from_list(

’colors’, [

’MidnightBlue’,’Navy’,’CornflowerBlue’,’DarkSlateBlue’,’SlateBlue’,

’MediumSlateBlue’,’MediumBlue’,’RoyalBlue’,’Blue’,’DodgerBlue’,

’DeepSkyBlue’,’SkyBlue’,’LightSkyBlue’,’SteelBlue’,’LightSteelBlue’,

’LightBlue’,’PowderBlue’,’DarkTurquoise’,’MediumTurquoise’,

’Turquoise’,’Cyan’,’LightCyan’,

’White’,’White’,’White’,’White’,’White’,’White’,’White’,’White’,

’LightYellow’,’Yellow’,’Gold’,’Goldenrod’,’DarkGoldenrod’,

’SandyBrown’,’Tan’,’Chocolate’,’Firebrick’,’Brown’,

’DarkSalmon’,’Salmon’,’LightSalmon’,’Orange’,’DarkOrange’,’Coral’,

’LightCoral’,’Tomato’,’OrangeRed’,’Red’,
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’Violet’#,’Plum’,’Orchid’,’MediumOrchid’,’DarkOrchid’,’DarkViolet’,

’BlueViolet’,’Purple’,’MediumPurple’

])

COLLIST4 = mcol.LinearSegmentedColormap.from_list(

’colors’, [

’MidnightBlue’,’Navy’,#’CornflowerBlue’,#’DarkSlateBlue’,’SlateBlue’,

’MediumSlateBlue’,#’MediumBlue’,#’RoyalBlue’,

’Blue’,#’DodgerBlue’,#

’DeepSkyBlue’,#’SkyBlue’,#’LightSkyBlue’,#’SteelBlue’,’LightSteelBlue’,

#’LightBlue’,

#’PowderBlue’,#’DarkTurquoise’,’MediumTurquoise’,#’Turquoise’,

’Cyan’,#’LightCyan’,

’White’,’White’,#’LightYellow’,

’Yellow’,’Gold’,’Orange’,#’SandyBrown’,

’Goldenrod’,’DarkGoldenrod’,#’Tan’,

’Chocolate’,#’Brown’,#’DarkSalmon’,’Salmon’,’LightSalmon’,#’DarkOrange’,

#’Coral’, ’LightCoral’,#’Tomato’,#’OrangeRed’,

’OrangeRed’,#’Tomato’,

’Red’,’Firebrick’,#’Violet’#,’Plum’,’Orchid’,’MediumOrchid’,’DarkOrchid’

’DarkViolet’#,’BlueViolet’,’Purple’,’MediumPurple’

])

COLLIST5 = mcol.LinearSegmentedColormap.from_list(

’colors’, [

’MidnightBlue’,#’Navy’,#’CornflowerBlue’,#’DarkSlateBlue’,’SlateBlue’,
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’MediumSlateBlue’,

’MediumBlue’,#’RoyalBlue’,

’Blue’,’DodgerBlue’,#’DeepSkyBlue’,

’SkyBlue’,’LightSkyBlue’,#’SteelBlue’,’LightSteelBlue’,’LightBlue’,

’PowderBlue’,#

’DarkTurquoise’,’MediumTurquoise’,’Turquoise’,

’Cyan’,#’LightCyan’,

’White’,’White’,’White’,’white’,

’LightYellow’,’Yellow’,’Gold’,’Goldenrod’,#’DarkGoldenrod’,

’Orange’,’DarkOrange’,’SandyBrown’,#’Tan’,

’Chocolate’,’Firebrick’,’Brown’,#’DarkSalmon’,’Salmon’,’LightSalmon’,

#’Coral’,

’LightCoral’,

’Tomato’,’OrangeRed’,’Red’,

’Violet’#,’Plum’,’Orchid’,’MediumOrchid’,’DarkOrchid’

,’DarkViolet’#,’BlueViolet’,’Purple’,’MediumPurple’

])

# colormap for absolute T

red = N.array([0, 0, 0, 10, 0, 0, 0, 60, 72, 127, 155, 221, 229, 239, 228, 205,

161, 116, 77]) / 256.

green = N.array([0, 0, 66, 144, 170, 191, 206, 209, 224, 255, 255, 242, 235,

190, 128, 72, 33, 29, 30]) / 256.

blue = N.array([128, 255, 255, 255, 255, 255, 209, 204, 208, 212, 250, 243,

99, 63, 39, 27, 22, 29, 27]) / 256.
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my_colormap0 = N.array([red, green, blue]).T

# colormap for T anomalies

red = N.array([0, 0, 0, 10, 0, 60, 72, 221, 255,255, 250, 255, 229, 239, 228,

205, 161, 116, 77]) / 256.

green = N.array([0, 0, 66, 144, 191, 209, 255, 242, 255,255, 250, 255, 215,

190, 128, 72, 33, 29, 30]) / 256.

blue = N.array([128, 255, 255, 255, 255, 204, 250, 243, 255, 255, 210, 0, 99,

63, 39, 27, 22, 29, 27]) / 256.

my_colormap = N.array([red, green, blue]).T

B.4 my_defs.py

RvsmowD=155.76e-6; #\’b10.05 x 10-6 [P. Fritz and J.Ch. Fontes, Handbook of

Environmental Isotope Geochemistry, Vol. 1, pp. 1-19 (1980)].

#http://deuterium.nist.gov/standards.html

RsmowO18=0.0020052; #ratio of 018/O16 from http://epswww.unm.edu/facstaff/

zsharp/bio2.htm

def oxygen18_iris(d16O_lsrain,d16O_cnrain,d16O_lssnow,d16O_cnsnow,d18O_lsrain,

d18O_cnrain,d18O_lssnow,d18O_cnsnow):

’’’Calculates d18O from 16O/18O ls/cn rain/snow’’’

H2O16 = d16O_lsrain + d16O_cnrain + d16O_lssnow + d16O_cnsnow

H2O18 = d18O_lsrain + d18O_cnrain + d18O_lssnow + d18O_cnsnow

d18O=((((H2O18/H2O16)/RsmowO18)-1)*1000)
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d18O.data=N.ma.masked_invalid(d18O.data)

return d18O[:,-1,:,:]

def deu_iris(d16_lsrain,d16_cnrain,d16_lssnow,d16_cnsnow,d02_lsrain,d02_cnrain,

d02_lssnow,d02_cnsnow):

’’’Calculates deuterium from 16O/02H ls/cn rain/snow’’’

H2O16 = d16_lsrain + d16_cnrain + d16_lssnow + d16_cnsnow

H2 = d02_lsrain + d02_cnrain + d02_lssnow + d02_cnsnow

d2H=((((H2/H2O16)/RvsmowD)-1)*1000)

d2H.data=N.ma.masked_invalid(d2H.data)

return d2H[:,-1,:,:]

def month2annpw(precip, isotope):

years = N.zeros([(len(precip[:])//12),len(precip[0,:]),len(precip[0,0,:])])

k=0 #counter variable to index array

for i in range (0,(len(precip[:])//12)):

isoyr=isotope.data[k:k+12,:,:]

preyr=precip[k:k+12,:,:]

A=isoyr.reshape(12, len(isoyr[0,:])*len(isoyr[0,0,:]))

B=preyr.reshape(12, len(preyr[0,:])*len(preyr[0,0,:]))

tyrsum=N.zeros(len(A[0,:]))

for xy in range(len(A[0,:])):

tyrsum[xy] = (N.sum(B[:,xy]*A[:,xy]))/sum(B[:,xy],0)#(N.sum(preyr))

tyrsum=N.ma.masked_invalid(tyrsum)

tyrgrid=tyrsum.reshape(len(isoyr[0,:]),len(isoyr[0,0,:]))
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#reshape back to (x,y)

years[i,:,:]=tyrgrid #add the summed year to the output array

k=k+12 #add ’12 months’ #month2ann=years

years=isotope[-(len(years)):]+years-isotope[-(len(years)):]

# convert back to iris cube

return years[:]

def precip_weight(precip, isotope):

tyrgrid = N.zeros([len(precip[0,:]),len(precip[0,0,:])])

A=isotope.data.reshape(len(isotope.data[:]),

len(isotope.data[0,:])*len(isotope.data[0,0,:]))

B=precip.reshape(len(precip[:]), len(precip[0,:])*len(precip[0,0,:]))

tyrsum=N.zeros(len(A[0,:]))

for xy in range(len(A[0,:])):

tyrsum[xy] = (N.sum(B[:,xy]*A[:,xy]))/sum(B[:,xy],0)#(N.sum(preyr))

tyrsum=N.ma.masked_invalid(tyrsum)

tyrgrid=tyrsum.reshape(len(isotope.data[0,:]),len(isotope.data[0,0,:]))

#reshape back to (x,y)

tyrgrid=isotope[-1]+tyrgrid-isotope[-1] # convert back to iris cube

tyrgrid.data=N.ma.masked_invalid(tyrgrid.data)

return tyrgrid[:]

def load_d18O(expID, expName,tlen):

"""load precip weighted d18O - averaged over last 30 years"""
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print( str(expName), ": load precip weighted d18O and d18Oann -

averaged over last", str(tlen), "years")

# HadCM3 precipitation -------------------------------------------------

cube = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+’.

precip_mm_srf.monthly.nc’)

hp = cube[0]

hp = hp[-tlen:,-1,:,:]

hp.data=N.ma.masked_invalid(hp.data)

neutron = [’16’,’02’,’18’]

raintype = [’lsrain’,’lssnow’,’cnrain’,’cnsnow’]

for i in range(len(neutron)):

neu = neutron[i]

for j in range(len(raintype)):

typ = raintype[j]

cube = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+

’.isotope’+neu+

’_’+typ+’_mm_srf.monthly.nc’)

locals()["d"+str(neutron[i])+"_"+str(raintype[j])] = cube[0]

# OXYGEN-18 ------------------------------------------------------------

d18O = oxygen18_iris(d16_lsrain,d16_cnrain,d16_lssnow,d16_cnsnow,d18_lsrain,

d18_cnrain,d18_lssnow,d18_cnsnow)

d18O = d18O[-tlen:,:,:]

# calculate precip weighted d18O

d18OPi = precip_weight(hp.data, d18O)

d18OPi.data[d18OPi.data > 100] = N.nan

d18OPi.data[d18OPi.data < -100] = N.nan



228

d18OPi.data=N.ma.masked_invalid(d18OPi.data)

return d18OPi, month2annpw(hp.data, d18O)

def earth_cube(cube):

’’’sorts out coordinates to refer to earth

(needed for area weighting stuff)’’’;

cs = iris.coord_systems.GeogCS(6371229) #define geographic coord system with

radius of Earth

for c in [’latitude’, ’longitude’]: #modify lat and lon coords to use cs

cube.coord(c).guess_bounds()

cube.coord(c).coord_system=cs

def movingaverage(interval, window_size):

window = N.ones(int(window_size))/float(window_size)

return N.convolve(interval, window, ’same’)

def assign_model_txy(var,lat_data,lon_data,lat_model,lon_model):

model_coresites = N.zeros([len(var[:]),len(lat_data)])

for core_site in range(len(lat_data)):

lati = lat_data[core_site]

loni = lon_data[core_site]

index1,grid_lat = min(enumerate(lat_model), key=lambda x:

abs(x[1]-(lati)))

index2,grid_lon = min(enumerate(lon_model), key=lambda x:

abs(x[1]-(loni)))

model_coresites[:,core_site] = var[:,index1,index2]
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return model_coresites

def define_ann(var):

’’’create month time coord’’’

iris.coord_categorisation.add_year(var, ’time’, name=’year’)

year = var.coord(’year’)

ann_mean = var.aggregated_by([’year’], iris.analysis.MEAN)

print( repr(ann_mean))

return year, ann_mean

def define_annt(var):

’’’create month time coord’’’

iris.coord_categorisation.add_year(var, ’t’, name=’year’)

year = var.coord(’year’)

ann_mean = var.aggregated_by([’year’], iris.analysis.MEAN)

print( repr(ann_mean))

return year, ann_mean

def define_month(var):

’’’create month time coord’’’

iris.coord_categorisation.add_month(var, ’time’, name=’month’)

month = var.coord(’month’)

month_mean = var.aggregated_by([’month’], iris.analysis.MEAN)

print( repr(month_mean))

return month, month_mean
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B.5 my_plots.py

def basmap_ais_plot(var,lat,lon,levels,colormap):

lon0=180

vmin,vmax=levels.min(),levels.max()

fig = plt.figure(figsize=(5,5))#cm2inch(9.5), cm2inch(23)))

ax = fig.add_subplot(111)

plt.tight_layout(pad=1)

fig.subplots_adjust(bottom=0.15)

var,lonsout = mpl_toolkits.basemap.shiftgrid(lon0, var.data, lon.points,

start=False, cyclic=360.0)

var,lonsout = mpl_toolkits.basemap.addcyclic(var, lonsout)

map = Basemap(projection=’spaeqd’,boundinglat=-55,lon_0=180,resolution=’l’)

map.drawcoastlines(color = ’grey’)

map.drawparallels(N.arange(-80.,81.,20.), color=’grey’)

map.drawmeridians(N.arange(-180.,181.,20.), color=’grey’)

map.drawmapboundary(fill_color=’white’)

x,y = map(*N.meshgrid(lonsout,lat.points))

contour_result = map.contourf(x,y,var, levels, cmap=colormap,

extend=’both’)

ax.annotate(’A’, xy=(0, 1), xycoords=’axes fraction’,weight=’bold’,

fontsize=10,xytext=(5, -5), textcoords=’offset points’,ha=’left’, va=’top’)

plt1_ax = plt.gca()

left, bottom, width, height = plt1_ax.get_position().bounds

first_plot_left = plt1_ax.get_position().bounds[0]
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width = left - first_plot_left + width

colorbar_axes = fig.add_axes([first_plot_left, bottom - 0.06, width, 0.03])

cbar = plt.colorbar(contour_result, colorbar_axes, orientation= ’horizontal’)

cbar.set_label(u’$\u2030$’)

cbar.ax.tick_params(labelsize=8)

def basmap_gis_plot(var,lat,lon,levels,colormap):

lon0=180

vmin,vmax=levels.min(),levels.max()

fig = plt.figure(figsize=(5,5))#cm2inch(9.5), cm2inch(23)))

ax = fig.add_subplot(111)

plt.tight_layout(pad=1)

fig.subplots_adjust(bottom=0.15)

var,lonsout = mpl_toolkits.basemap.shiftgrid(lon0, var.data, lon.points,

start=False, cyclic=360.0)

var,lonsout = mpl_toolkits.basemap.addcyclic(var, lonsout)

m = Basemap(width=4000000,height=4000000,resolution=’l’,projection=’eqdc’,

lat_1=50.,lat_2=80,lat_0=70,lon_0=-20.)

m.drawcoastlines(color = ’grey’)

m.drawparallels(N.arange(-80.,81.,20.))

m.drawmeridians(N.arange(-180.,181.,20.))

x,y = m(*N.meshgrid(lonsout,lat.points))

contour_result = m.contourf(x,y,var, levels=levels, cmap=colormap,

extend=’both’)

ax.annotate(’A’, xy=(0, 1), xycoords=’axes fraction’,weight=’bold’,

fontsize=10,xytext=(5, -5), textcoords=’offset points’,ha=’left’, va=’top’)
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plt1_ax = plt.gca()

left, bottom, width, height = plt1_ax.get_position().bounds

first_plot_left = plt1_ax.get_position().bounds[0]

width = left - first_plot_left + width

colorbar_axes = fig.add_axes([first_plot_left, bottom - 0.06, width, 0.03])

cbar = plt.colorbar(contour_result, colorbar_axes, orientation= ’horizontal’)

cbar.set_label(u’$\u2030$’)

cbar.ax.tick_params(labelsize=8)

def basmap_gis_plot2(var,lat,lon,levels,colormap):

lon0=180

lat_0=73.; lon_0=-40.

vmin,vmax=levels.min(),levels.max()

fig = plt.figure(figsize=(5,5))#cm2inch(9.5), cm2inch(23)))

ax = fig.add_subplot(111)

plt.tight_layout(pad=1)

fig.subplots_adjust(bottom=0.15)

var,lonsout = mpl_toolkits.basemap.shiftgrid(lon0, var.data, lon.points,

start=False, cyclic=360.0)

var,lonsout = mpl_toolkits.basemap.addcyclic(var, lonsout)

m = Basemap(projection=’ortho’,lat_0=lat_0,lon_0=lon_0,resolution=None)

width = m.urcrnrx - m.llcrnrx

height = m.urcrnry - m.llcrnry

coef = 0.25

width = width*coef

height = height*coef
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m = Basemap(projection=’ortho’,lon_0=lon_0,lat_0=lat_0,resolution=’l’,

llcrnrx=-0.5*width,llcrnry=-0.5*height,urcrnrx=0.5*width,urcrnry=0.5*height)

m.drawcoastlines(color = ’grey’)

m.drawcountries()

m.drawparallels(np.arange(-90.,120.,30.))

m.drawmeridians(np.arange(0.,360.,60.))

m.drawmapboundary()

x,y = m(*N.meshgrid(lonsout,lat.points))

contour_result = m.contourf(x,y,var,levels,cmap=colormap, extend=’both’)

ax.annotate(’A’, xy=(0, 1), xycoords=’axes fraction’,weight=’bold’,

fontsize=10,xytext=(5, -5), textcoords=’offset points’,ha=’left’, va=’top’)

plt1_ax = plt.gca()

left, bottom, width, height = plt1_ax.get_position().bounds

first_plot_left = plt1_ax.get_position().bounds[0]

width = left - first_plot_left + width

colorbar_axes = fig.add_axes([first_plot_left, bottom - 0.06, width, 0.03])

cbar = plt.colorbar(contour_result, colorbar_axes, orientation= ’horizontal’)

cbar.set_label(u’$\u2030$’)

cbar.ax.tick_params(labelsize=8)

def plt_smoothed_timeseries(var,varsmo,color,cutoff):

almost_black = ’#262626’

fig = plt.figure(figsize=(8,5))#cm2inch(10), cm2inch(15)))

#(cm2inch(11.5), cm2inch(9.5)))#(8, 8))

ax = fig.add_subplot(1,1,1)

plt.tight_layout()



234

xii=N.arange(len(var))

plt.plot(xii[cutoff:-cutoff],varsmo[cutoff:-cutoff],c=color,linewidth=1.5)

plt.scatter(xii,var,marker=’o’,edgecolor=color,c=color,alpha=0.1)

ax.annotate(’A’, xy=(0, 1), xycoords=’axes fraction’,weight=’bold’,

fontsize=10,xytext=(5, -5), textcoords=’offset points’,ha=’left’, va=’top’)

plt.gca().set_xlim(xmax=xii.max(),xmin=xii.min())

B.6 process_annual.py

#!/usr/bin/env python2.7

# --------------------------------------------------------------------------

# Author: Max Holloway, Date (last modified): Mar 2017

# Use: Date processing script using iris to load (processed) monthly time

# series files (created using ’data_process.py’ and stored in

# ’expID’/monthly directory), annual mean data and save new cube in

# ’expID’/annual directory.

# script use; python /home/users/mholloway/python/process_annual.py

experiment_name

# --------------------------------------------------------------------------

import sys

exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts

/startup.py’).read())

exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts

/my_defs.py’).read())
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exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts

/my_cmaps.py’).read())

exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts

/my_plots.py’).read())

data_root=’/Volumes/shared/wilkinson_uq1/User/smq15fet’

expID=str(sys.argv[1]) # pass experiment to be processed

print("Processing experiment", expID)

# ---------------------------------------------------------------------

variables=[’sea_ice_area_fraction’,’air_pressure_at_sea_level’,

’air_temperature’,’precipitation_flux’,’surface_air_pressure’,\

’surface_temperature’,’wind_speed’,’y_wind’,’x_wind’]

climatology_months=50*12 # calculate annual mean climatologies over final

50 years

for VAR in range(len(variables)): # Calculate and save annual mean variables

"""calculate annual mean values"""

cube = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+’.

’+variables[VAR]+’.monthly.nc’)

cube_name = cube[-1].standard_name

print("calculate annual mean", str(cube_name), "for final",

climatology_months/12, "years")

yr, cube_ann = define_ann(cube[0][-climatology_months:])

#locals()[str(cube_name)] = cube[0]

locals()[str(cube_name)+’_ann’] = cube_ann
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iris.save(cube_ann, ’’+data_root+’/’+expID+’/annual/’+expID+’.’+cube_name+’

.annual.nc’)

# ---------------------------------------------------------------------

#climatology_months=50*12

ISO=[’d18O’,’deuterium’]

pf = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+’.precipitation_flux.

monthly.nc’)

# Load Precipitation

for II in range(len(ISO)): # Calculate and save precip-weighted and

annual mean isotopes

cube = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+’.’+ISO[II]+’.

monthly.nc’)

if len(cube[0].data) < len(pf[0].data): # check that precip and isotopes are

the same length

print("do final time coords match?")

print(pf[0][-len(cube[0].data):].coord(’time’)[-1] == cube[0].

coord(’time’)[-1])

# check that last time coords match

precip=pf[0][-len(cube[0].data):].copy() # align time coords and

remove extra dt’s

else:

precip=pf[0].copy()

print("calculate precipitation-weighted and annual mean", str(ISO[II]),

"for final", climatology_months/12, "years")

isotope_cube = cube[0].copy()
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yr, cube_ann = define_ann(isotope_cube.copy()) # define annual time coords

to pass

to annual mean isotope cubes

print("calculate climatology over final", climatology_months/12, "years")

isoPi = precip_weight(precip[-climatology_months:].data, cube[0]

[-climatology_months:])

isoPi.units = None # remove precip units from isotope cube

isoPi.var_name,isoPi.long_name = str(ISO[II]),str(ISO[II])

# change cube name

locals()[ISO[II]+"_Pi"] = isoPi # allocate variable for dxs calculation

iso_ann = month2annpw(precip[-climatology_months:].data, cube[0]

[-climatology_months:])

isoANN = cube_ann[-len(iso_ann.data):].copy()

# hack time units from months into years!

isoANN.data = iso_ann.data # hack time units from months into years!

isoANN.units = None # remove precip units from isotope cube

isoANN.var_name,isoANN.long_name = str(ISO[II]),str(ISO[II])

# change cube name

locals()[ISO[II]+"_ann"] = isoANN # allocate variable for dxs calculation

iris.save(isoPi, ’’+data_root+’/’+expID+’/annual/’+expID+’.’+ISO[II]+’

_pw.climate.nc’)

iris.save(isoANN, ’’+data_root+’/’+expID+’/annual/’+expID+’.’+ISO[II]+’

_pw.annual.nc’)

print( "calculate precipitation-weighted and annual mean d-excess")

dxs_Pw = deuterium_Pi[:] - 8*d18O_Pi[:] # (Dansgaard,1964)
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dxs_Pw.var_name,dxs_Pw.long_name = u’deuterium-excess’,u’deuterium-excess’

# change cube name

iris.save(dxs_Pw, ’’+data_root+’/’+expID+’/annual/’+expID+’.dxs_pw.climate.nc’)

dxs_ann = deuterium_ann[:] - 8*d18O_ann[:]

dxs_ann.var_name,dxs_ann.long_name = u’deuterium-excess’,u’deuterium-excess’

# change cube name

iris.save(dxs_ann, ’’+data_root+’/’+expID+’/annual/’+expID+’.dxs_pw.annual.nc’)

B.7 process_monthly_means.py

#!/usr/bin/env python2.7

# --------------------------------------------------------------------------

# Author: Max Holloway, Date (last modified): Mar 2017

# Use: Date processing script using iris to load (processed) monthly time

# series files (created using ’data_process.py’ and stored in

# ’expID’/monthly directory), monthly mean data (to generate cube of size

# t=12) and save new cube in ’expID’/monthly directory.

# script use; python /home/users/mholloway/python/process_monthly_means.py

experiment_name

# --------------------------------------------------------------------------

import sys

exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts

/startup.py’).read())

exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts
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/my_defs.py’).read())

exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts

/my_cmaps.py’).read())

exec(open(’/Users/fionaturner/Documents/HADCM3-output/Post-processing-scripts

/my_plots.py’).read())

data_root=’/Volumes/shared/wilkinson_uq1/User/smq15fet’

expID=str(sys.argv[1]) # pass experiment to be processed

print( "Processing experiment", expID)

# ---------------------------------------------------------------------

climatology=50*12 # final 50 years used for monthly mean climatologies

variables=[’sea_ice_area_fraction’,’air_pressure_at_sea_level’,

’air_temperature’,’precipitation_flux’,’surface_air_pressure’,\

’surface_temperature’,’wind_speed’,’y_wind’,’x_wind’,’d18O’,’deuterium’]

for VAR in range(len(variables)): # Calculate and save monthly averages

"""calculate monthly mean values"""

cube = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+’.

’+variables[VAR]+’.monthly.nc’)

cube_name = variables[VAR]

print( "calculate monthly mean", str(cube_name), "over final",

climatology/12, "years")

month, cube_month = define_month(cube[0][-climatology:])

iris.save(cube_month, ’’+data_root+’/’+expID+’/monthly/’+expID+’.

’+str(cube_name)+’.month_mean.nc’)
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## when doing it for d18O and deuterium, must first run

# iris.FUTURE.netcdf_promote = True

# iris.FUTURE.netcdf_no_unlimited = True

## then remember to change file name in directory before running again

#iris.FUTURE.netcdf_promote = True

#iris.FUTURE.netcdf_no_unlimited = True

#cube = iris.load(’’+data_root+’/’+expID+’/monthly/’+expID+’.’+variables[9]+’

.monthly.nc’)

#cube_name = cube[-1].standard_name

#print( "calculate monthly mean", str(cube_name), "over final", climatology/12,

"years")

#month, cube_month = define_month(cube[0][-climatology:])

#iris.save(cube_month, ’’+data_root+’/’+expID+’/monthly/’+expID+’.’

+str(cube_name)+’.month_mean.nc’)

B.8 startup.py

#!/usr/bin/env python2.7

#execfile(’Documents/HADCM3-output/startup.py’)

import os

import sys
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import time

import matplotlib as mpl

import mpl_toolkits

#mpl.use(’Qt4Agg’)

#mpl.use(’gtkagg’)

import matplotlib.pyplot as plt

import matplotlib.mlab as mlab

import numpy as N

import scipy.io.netcdf as S

from scipy.io.netcdf import NetCDFFile

import scipy as sp

from scipy import interpolate

from scipy import stats

import mpl_toolkits.basemap as bm

from mpl_toolkits.basemap import Basemap

import matplotlib.font_manager as fm

from pylab import *

from matplotlib.colors import LogNorm

import netCDF4

from netCDF4 import Dataset

import iris

import iris.plot as iplt

import iris.quickplot as qplt

import iris.analysis.cartography

import iris.coord_categorisation
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#import iris.cube.Cube.interpolate()

import cartopy.crs as ccrs

import cartopy.feature as cfeature

data_root=’/Volumes/shared/wilkinson_uq1/User/smq15fet’
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