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Abstract

Amyotrophic Lateral Sclerosis (ALS) is the most common type of motor neurone

disease (MND), which affects the motor neurones that control the voluntary skeletal

muscles. ALS patients with bulbar involvement experience weaknesses in muscles

that control speech, swallowing, and breathing. Recent attempts in using Electrical

Impedance (EI) techniques have shown promising results for early diagnosis of the

bulbar involvement of the ALS disease.

A non-invasive, handheld EIM device is being developed as a potential biomarker

for ALS bulbar involvement by a group in Sheffield. The device has a novel electrode

configuration setting that employs a combination of eight electrodes used on both

surfaces of the tongue to obtain the spectral EI measurements. This thesis proposes

analysis of the acquired data using machine learning and system identification meth-

ods. The aim is to find patterns in data to assess bulbar dysfunction for diagnosis, and

longitudinal assessment of the disease.

A data specific outlier removal algorithm was implemented as part of preliminary

data analysis, and electrode configurations that did not comply with the EI charac-

teristics of the tongue muscle along the full spectrum are eliminated. Classification

of the patients and healthy volunteers demonstrated that the novel electrode con-

figurations were capable of differentiating the two groups. Classification using the

feature selection method not only gave better accuracy, but also revealed the most

discriminatory frequency combination for disease diagnosis. Impedance data was

modeled with an Integrated Fractional-Order Transfer Function. A model selection

scheme over the model space was employed to avoid underestimation, overestima-

tion, and over-parametrization. Estimated parameters were used to identify disease

related patterns. Analysis shows the device’s capacity to diagnose the disease and the

non-parametric data classification has shown better accuracies than the parametric

data classification.
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Chapter 1

Introduction

Amyotrophic lateral sclerosis (ALS) is a type of neurodegenerative disease that

causes muscle weakness. It is the most common form of motor neurone disease

(MND) [1]. ALS is caused by progressive degeneration and loss of the motor neu-

rones in both the brain (Upper Motor Neurones) and the spinal cord (Lower Motor

Neurones). Symptoms include weakness of muscles that control limbs, speech, and

swallowing. If the disease starts with difficulties in speech and swallowing, which are

also known as bulbar features, the disease is called bulbar onset ALS [2]. The vast ma-

jority of the patients (around 80%) develop bulbar involvement, and they experience

difficulties in swallowing which can cause aspiration. As a result bulbar involvement

is associated with a poor prognosis. There are few tests available for the detection

of bulbar involvement, either at the early or later stages of the disease [3], however

there is still a need for a reliable biomarker for diagnosis and prognosis. With a reli-

able clinical device for detecting the disease, intervention is possible for drug trials

and improving patient’s quality of life.

The standard clinical investigation for ALS is needle electromyography (EMG)

[4, 5]. This test is invasive and sometimes painful, particularly when examining the

tongue, which is the most often tested bulbar muscle with EMG [6]. Recent advances

with Electrical Impedance Myography (EIM), pioneered by Dr. Seward Rutkove have

1



Introduction 2

shown that the non-invasive Electrical Impedance (EI) devices can be used to detect

the disease [7, 8, 9, 10]. Numerous studies using EIM have been carried out in order

to determine the disease’s association to age and gender [11], muscle anisotropy [12],

and the relevant frequencies [13, 14]. However, further investigation is required to

detect the bulbar involvement and its progression using EIM.

This chapter begins with the motivation of the project, followed by aims and ob-

jectives in Section 1.2. The overview of the thesis outlines the rest of the chapters and

the publication with relevance to this thesis is given in Section 1.4.

1.1 Motivation

The EIM technique consists of applying high frequency and low intensity Alter-

nating Current (AC) with two electrodes (≈ 5µA) and measuring the output voltage

with the same [15] or two other electrodes [16]. The data obtained from EIM devices

is in complex numbers form, which represents the resistive and reactive character-

istics of the tissue. The studies generally employ either resistance, reactance or the

phase angle of the EI readings , to investigate the disease affect on the tissue com-

position [17, 18]. The phase angle is a product of the relation between the resistance

and reactance. Most of the analysis confirmed the effectiveness of the phase angle in

detecting disease-related patterns [13, 19, 20, 21].

Diagnosis [20, 14, 22] or longitudinal studies [19] using single-frequency mea-

surements have returned reproducible results and show the technique’s capability to

detect disease measurements for clinical trials. Focus on a single-frequency limits the

EIM’s capacity to investigate the disease-related frequencies and spectral patterns.

Moreover, the methods to compare the diseased tissue measurements to the healthy

ones are simple statistical methods with mean and confidence interval [19, 17, 20],

coefficient of variation [8] or the coefficient of determination [18] which may be in-



Introduction 3

sufficient to find disease-specific patterns in data.

Different electrode settings and positioning are employed for measurements of

both limbs and tongue [10, 8, 23, 16, 24] to investigate the disease effect on the anisotropic

characteristics of the muscles [25]. Studies have shown that surface measurements

(2-dimensional) are useful [26, 27, 28, 8, 29], however, due to the complex muscle

structure of the tongue, it is essential to take measurements in cross-sectional plane

(3-dimensional) to fully understand the disease’s effect.

A non-invasive EIM method facilitates taking measurements quickly without pain

or discomfort to the patients with the capacity to detect the muscle deterioration on

both limb [10, 8] and tongue muscles [26, 27, 30, 25]. The technique is presented

as a potential biomarker for ALS research, a disease for which there are still no val-

idated biomarkers of bulbar onset. Quantitative assessment of the bulbar dysfunc-

tion with the EIM technique would help improve the diagnosis for the detection of

the disease with clinical tests. Early identification could promote proactive clini-

cal care rather than reactive care once the symptoms are established. EIM devices

could serve as a longitudinal clinical assessment tool for drug trials and develop-

ment. The hand-held, non-invasive EIM device developed by a group of researchers

in Sheffield records measurements of the tongue with the 2-dimensional (2D) and

3-dimensional (3D) arrangement of the electrodes along the frequency spectrum.

Analysis of new devices requires careful selection of methods. This thesis aimed at

investigating the multi-dimensional data using machine learning methods to find

disease-specific patterns for diagnosis and longitudinal analysis. It is also aimed to

model the EI characteristics of the tissues using system identification methods.
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1.2 Aims and Objectives

This thesis aims to find disease-specific patterns using machine learning and sys-

tem identification methods for clinical diagnosis and longitudinal analysis of ALS

disease with EIM data. According to the aims of the framework, the objectives of

the project are given as follows:

• Data Driven Disease Diagnosis: Early diagnosis of diseases is a fundamental

research problem in both engineering and medical fields. Classification is a

commonly used machine learning method for diagnostic purposes [31, 32]. Su-

pervised learning is a type of classification used to differentiate diseased and

healthy individuals from a data set with known labels. The Sheffield device

has multiple electrode configuration settings and takes measurements along

the frequency spectrum to obtain the multi-dimensional characteristics of the

diseased tissue. The aim is to find disease-related frequencies and electrode

settings from the acquired data by using supervised classification algorithms

together with feature selection method.

• Data Driven Modeling: The measurements are taken non-invasively from the

surface of the tongue. The epithelial layer on both surfaces, muscle, and con-

nective tissue between the muscle layers have an impact on EI readings. The

device uncertainties, together with the different layers of tissues, make it chal-

lenging to model the system at a cellular level. The EIM measurements are con-

sidered as an input-output black box system (see Section 4.2) in order to build

a mathematical model of the data over the spectra. The model is expected to

give a spectral description of the underlying conditions. Classification using

the model parameters would also help understand the model parameters role

on the disease diagnosis.
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• Longitudinal Analysis for Disease Progression: Disease progression has been

a difficult problem for ALS studies due to the lack of a proper and convenient

clinical prognostics biomarker. In this project, the patients have undergone the

clinical measurements every three months for a longitudinal assessment of the

disease. One challenge faced while studying longitudinal analysis is that the

disease affects patients in different pace. Another challenge comes from the

intervention for reducing the saliva effect [33]. The frequencies (features) with

the most discriminatory information will be used in the analysis to find their

role in longitudinal studies

1.3 Overview of the Thesis

The structure of this thesis is summarised as follows:

• Chapter 2: Electrical Impedance Data starts with brief information of the stud-

ies that gave rise to the Electrical Impedance technique. The type of data ob-

tained from the devices is given with the introduction of the circuitry modeling

of the cells. The EIM devices and related studies are presented as part of the

literature review. The Sheffield EIM device, the data acquisition process, and

patient groups used in this project is introduced in the following section. Data

preprocessing of the raw EIM data is then given at the end of the chapter with

an outlier detection algorithm developed for this data.

• Chapter 3: Non-Parametric Data Classification For Disease Diagnosis And Lon-

gitudinal Analysis implements the supervised classification for disease diag-

nosis. Different dimensionality reduction methods are focused upon, feature

extraction and feature selection. The feature selection method together with

Pareto Dominance aimed at finding the best performing frequency combina-

tions. Longitudinal analysis is carried out with the selected features (frequen-
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cies) for each electrode configuration.

• Chapter 4: Data Driven Modeling of EIM Measurements introduces the integral

fractional order transfer function modeling of the EIM data.

• Chapter 5: Parameter Estimation and Model Selection presents the statistical

and non-statistical algorithms used to estimate the parameters of the model.

A model space from simplest to most complicated models is created, and a

model selection scheme is applied based on the results of one of the estimation

method.

• Chapter 6: Parametric Data Classification For Disease Diagnosis And Longi-

tudinal Analysis repeats the classification using the EIM model parameters as

features and compares the results to the non-parametric data classification.

Longitudinal analysis is completed using the model parameters.

• Chapter 7: Conclusion and Future Work gives an essence of the chapters and

makes conclusions based on the results. A future direction to the research

problems is also presented.

1.4 Publications

J. J. Alix, H. E. McDonough, B. Sonbas, S. J. French, D. G. Rao, V. Kadirkamanathan,

C. J. McDermott, T. J. Healey, and P. J. Shaw, “Multi-dimensional electrical impedance

myography of the tongue as a potential biomarker for amyotrophic lateral scle-

rosis,” Clinical Neurophysiology, vol. 131, no. 4, pp. 799–808, 2020.



Chapter 2

Electrical Impedance Data

Electrical Impedance (EI) is widely used measurement to assess biological tis-

sues, and a variety of techniques have been developed such as EI Tomography, EI

Spectroscopy, EI Myography, EI Mammography, EI Cardiography for measuring the

EI data from the heart, muscles, brain, lungs, liver, for diagnosis and prognosis of

diseases from cancer to heart conditions [34, 35, 36, 37, 38, 39]. One advantage that

comes from using the EI is that the electrodes are connected to the tissue surface

non-invasively. The measurements are in complex impedance form (see Section 2.2)

over a range of frequencies. The use of the data in analysis with statistical, machine

learning, and system identification methods help finding hidden patterns to reveal

information related to diseases. The focus of the electrical impedance data analysis

in this project is obtained from the tongue muscle of patients with ALS and healthy

volunteers.

This chapter provides an overview of the key concepts of EI data, literature on EIM

for ALS disease and details of the EIM data used in this research. Section 2.1 intro-

duces the early concepts of electrical impedance data in the analysis of biological tis-

sues. Section 2.2 covers electrical circuit based modeling which is an essential aspect

of the electrical impedance studies. These techniques form the basis for developing

the EIM devices as a biomarker for detecting ALS disease. Section 2.3 is a review on

7
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ALS clinical testing, EIM data obtained from diseased muscles, frequencies, disease

relation to age-gender and the longitudinal studies. Section 2.4 introduces the Multi-

dimensional EIM Device, developed through a collaboration between the University

of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust. Section 2.5 is

dedicated to the preliminary analysis of EIM data with a data-specific outlier detec-

tion algorithm.

2.1 Bioelectrical Impedance

Electricity has been used in biomedical research for hundreds of years with early

documented records going back to late 18th century with Galvani’s frog test [40, 41]. It

was followed by Vigouroux’s studies to relate the electrical impedance measurements

to diseases in the late 19th century [42]. In modern day biomedical studies, the use

of electrical impedance varies from the analysis of blood cells [43] to the diagnosis of

disease using single or multi-frequency EI measurements [34, 35, 36, 37, 38, 39].

Nyboer, in 1959 discovered that it is possible to use the volumetric relationship

of resistance and conductance of the body to estimate the total body water (TBW).

He used a 50 kHz frequency for his analysis [44, 45]. However, it was pointed out

later that the single-frequency measurements are not sufficient for accurate esti-

mation due to the non-uniformity of the human body. Thomasset in 1962 worked

on this problem and expanded single frequency studies into multi-frequency level

[46, 45]. He discovered the extracellular fluid characteristics at low frequencies. Fol-

lowing studies have shown that once the frequency is high enough to penetrate the

cell membranes, it is possible to differentiate the extracellular and intracellular flu-

ids [45]. These results lead to examining the tissues at the cellular and organelle level.

The complex impedance is characterized by the cell and organelle membrane while

real impedance is characterized by the extracellular and intracellular fluids of cells
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and organelles. The EI measurement analysis uses this relation to investigate the un-

derlying reasons for the deformation of the cell mass and fluids.

The simple idea behind the bioelectrical impedance is the human body is com-

posed of 55−60% fluids that give the resistance characteristics and 40-45% solids that

give the reactance characteristics to the impedance measurements. At a cellular level,

the resistance behavior can be rationalized with the resistivity of the fluid to the flow

of electrical current, and the reactance behavior can be rationalized with the shape

of the cell membrane, which has two layers called the lipid bilayers. These layers look

like the plates of a capacitor; hence the membranes return the capacitive reactance

in the presence of an Alternating Current (AC). Capacitance causes the current to be

shifted in time and results in a phase difference. The phase is expected to vary be-

tween 0° to −90° in an electrical impedance with capacitive reactance. Some studies

employed the phase value [14, 47, 27] or resistance and reactance values [15, 48] or

both complex components [28, 49, 50, 25], depending on the nature of the research.

2.2 Circuitry Modeling of the Bioelectrical Impedance

Data

Human body acts like an electrical circuit; when an alternating electrical current

is applied, it returns a sinusoidal voltage reading. According to the Ohm’s Law the

proportion of the output voltage amplitude at a certain frequency (V ) to the current

at a certain frequency (I ) returns a complex impedance reading when the signals are

represented in the complex form arising from the phase shift.

Z = |V |e j (ωt+ΘV )

|I |e j (ωt+ΘI )
(Ω) = |V |

|I | e j (ΘV −ΘI )(Ω) (2.2.1)
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whereΘ=ΘV −ΘI . The real number of the impedance comes from the resistance (R)

and the imaginary number comes from the capacitive reactance (X );

R = R 0° (2.2.2)

X = 1

jωC
= 1

ωC
Θ° (2.2.3)

where C represents capacitance (F ) and R represents resistance (Ω). The reactance

readings of the biological tissues comes only from the capacitive reactance since the

effect of the inductive reactance is infinitesimal compared to the capacitive reactance

[51], therefore, for future references, the reactance refers to the capacitive reactance.

Impedance representation can be both used in cartesian and polar coordinates with

complex forms.

Z = R + jX (2.2.4)

|Z | Θ= |Z |e jΘ (2.2.5)

Z, R, X, |Z |, Θ are commonly used symbols for impedance, resistance, reactance,

magnitude and phase respectively. For the Cartesian coordinate representation, the

real unit resistance is placed on the x-axes and the imaginary unit reactance is placed

on the y-axes. With Pythagoras theorem, the impedance magnitude and phase are

calculated as follows:

|Z | =
√

R2 +X 2 (2.2.6)

Θ= tan−1 X

R
(2.2.7)

These basic laws and equations form the basis of the EIM data analysis. As men-

tioned earlier, the human body acts like an electrical circuit, and cells, cell mem-

branes, cellular fluids are the components of the electrical circuit. In the literature,
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the cellular level electrical circuit representation of the impedance readings is given

in two forms; simple 3-Element model [52] and a more advanced 5-Element model

[53]. The 3-Element model captures the cell membrane, intracellular and extracellu-

lar fluids, and in the 5-Element model, in addition to these, the model captures the

organelle fluids and organelle membranes. Circuitry representation with compari-

son to the cell compartments illustrated in Figure 2.1;

Figure 2.1: Simple 3-Element [52] and advanced 5-Element [53] cellular circuit model. Re is
the resistance from extracellular fluids, Ri is the resistance from intracellular fluids, Ro is the
resistance from organelle fluids, Xc is the reactance from cell membrane, Xo is the reactance
from organelle membrane.

These circuitry elements were useful in researches related to muscular disease

with data obtained by the EIM devices [53, 54, 55] on different muscle group of in-

terest. Studies also employed the Cole-Cole equations and Cole-Cole (Nyquist) plots

that were introduced by K.S. Cole and R.H. Cole in 1941 [56] to interpret the impedance

values of the tissues over the frequency spectrum [55, 57, 58, 59]. The plot is a prod-

uct of Cole-Cole equations, and data points over the frequency spectrum are plot-

ted on a semi-circle on the Cartesian coordinate. The real values (resistance) given

in X-coordinate, and the imaginary values (reactance) is given in Y-coordinate. The
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frequency components converted into the logarithmic scale; are the points over the

semi-circle.

Figure 2.2: Electrical Impedance Spectrum visualisation with Cole-Cole plot (Nyquist plot)
in complex domain [52]

The plots show the resistance and reactance changes along the frequency spec-

trum. It is assumed that at low frequencies, the current cannot go through the cell

membrane and travels through the low resistivity path, which is the extracellular

fluids between the cells and therefore returns high resistance readings [60, 44, 45].

As the frequency increases, the alternating current (AC) penetrates through the cell

membranes, and the cell membranes act like a capacitor with its bilipid cell mem-

branes [61, 62, 63, 45]. When the opposition to the AC is increased with the capaci-

tive effect, a delay in time for the output voltage creates the phase angle (See Equa-

tion 2.2.3). The peak of the semi-circle in the Cole-Cole plot is called the critical fre-

quency, where the reactance value reaches its highest value. The capacitance effect

of the cells reduces as the frequency increases after the peak point, because the AC

at high frequencies pierces through the cells. At this point, the resistance increases

further due to the combination of intracellular and extracellular fluids.
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Studies have employed the Cole-Cole plots to represent the electrical impedance

over the frequency spectrum [64, 65, 66]. Some examples of these studies include

disease-specific modeling with electrical impedance measurements [53], analysis of

impedance characteristics of tissues [67, 68, 69], and progression analysis of the dis-

ease over time [70].

2.3 Electrical Impedance Myography

Bioelectrical impedance principles presented in Section 2.1 form the basis of elec-

trical impedance technology. From single frequency [71] or painful needle electrodes

[72] to advanced imaging devices [73], the electrical impedance technique is used to

study neuromuscular diseases [74, 75, 76, 36]. EIM is the name of the technique that

evaluates muscle or groups of muscles at a frequency spectrum. It can also be re-

ferred to as Electrical Impedance Spectroscopy in the sense that it is the EI that is

applied to the muscles along the spectrum. It is widely used in studies for the diag-

nosis and assessment of the progression of neuromuscular diseases. In these types

of diseases, the degeneration in the neurons that controls the motor function of the

body results in muscle weaknesses [77]. Diagnosis and progression assessment is of

great importance for early intervention and development of treatment for these dis-

eases.

The EIM devices became popular after it was released as a potential biomarker for

amyotrophic lateral sclerosis (ALS) disease, pioneered by Dr. Seward Rutkove from

Harvard University [7, 78, 79, 19]. This technique has the potential for being an al-

ternative to needle electromyography devices with its capacity to perform measure-

ments on patients non-invasively [80]. There are different probe designs particular

to the muscle group it is applied to, such as measurement of the muscle groups for

bulbar involvement [30], and limb weaknesses [81]. The two electrode non-invasive
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design [15] has shown promise for capturing the electrical impedance characteris-

tics of the muscle. However, because the two electrodes are used both for applying

the AC and measuring the output voltage, measurement errors are inevitable [82].

Four electrodes (also known as tetrapolar) probes overcome these errors by applying

the AC with two electrodes and measuring the voltage with the other two electrodes

across the muscle or muscle groups. The tetrapolar design avoids polarization ef-

fects and skin contact error [82]. Four electrode designs inspired the flexible [47]

and rotational [83] electrode configurations that aim to deal with the anisotropy lim-

itations of muscle measurements. Electrode sizes and array configuration plays an

essential role in impedance measurements [84, 85]. Measurement of the small mus-

cle groups highlighted the importance of electrode probes sizes [28]. A proposal was

made for the regulation of electrodes [86] to improve the reliability of the technique

as a biomarker and compare EIM studies.

2.3.1 ALS Biomarkers

The delay in diagnosis may cause a shorter life span or hardship to the patient due

to lack of interventions to improve the quality of life and life span. Therefore, studies

are focused on clinical diagnostic tests that are reliable and easy to perform. The EI

Escorial Revised [87] and the Awaji-Shima Criteria [88] are clinical tools to standard-

ize the inclusion criteria, with former being related to the clinical examinations and

latter being related to both clinical and electromyography (EMG) examinations. As

the name suggests, EMG devices measure either the skeletal muscle’s electrical activ-

ity with surface electrodes (non-invasive) [89] or the nerve that controls the particular

muscle with needles (invasive) [90]. Magnetic Resonance Imaging (MRI) is used not

as a diagnostic test but as a test to rule out other conditions [3], so that the diagno-

sis is focused more on the ALS disease. The clinician may advise muscle biopsy or

blood and urine tests for eliminating diseases varying from myasthenia gravis (MG)
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to spinal muscular dystrophy [3, 91, 92]. Patients’ medical records and family history

are taken as part of the clinical assessment in order to consider the environmental

and genetic factors [93]. Respiratory tests may be necessary to check the bulbar in-

volvement [94]. Tongue strength assessment [95] is another clinical test; however,

it is inaccurate due to its dependency on patient effort. The ALS functional rating

scale-revised (ALSFRS-R) might not reflect the underlying progression of disease due

to medical interventions that ease the disease effects [33, 96].

2.3.2 Disease-Related Muscle Groups

There are more than 600 names for different skeletal muscles in the human body,

and these muscles are made out of three different muscle fibers, that are: cardiac

muscle fiber, skeletal muscle fiber, and smooth muscle fiber [97]. The limb muscles

play an important role in the movement, skeletal support, and the spinal cord motor

neurons that control them. The skeletal muscle fiber that exists on limbs are layers of

clustered muscle fibers. These muscle fibers are called myocytes, and they are elon-

gated multinuclear cells that vary in length from 1 mm to 30 cm. When the AC is

applied to the muscle tissue, the current will return different voltage readings depen-

dent on the frequency. The AC chooses the least resistive path along the muscle fibers

rather than across the muscle fibers [98], and the dependence on the muscle fiber

direction is called the anisotropic property of the muscles [99]. The mathematical

modeling of the limb muscles with EI data may be simpler due to its more simplistic

anisotropic characteristics [98].

The tongue muscles play an important role in swallowing, breathing, chewing,

and speech, and four different cranial nerves (the hypoglossal nerve, the facial nerve,

the glossopharyngeal nerve, the vagus nerve) control these factors. Tongue muscles

are made of two muscle fibers; these are skeletal and smooth muscle fibers [100].

The muscles are classified with where they are originated, either within or outside
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the tongue as intrinsic and extrinsic muscle fibers, respectively [101]. The intrinsic

muscle fibers are layered in different directions, and they are named after their ori-

entation, which is a superior longitudinal, inferior longitudinal, transverse, and ver-

tical. Extrinsic muscles, unlike intrinsic muscles, are attached to the tongue, but they

are originated from outside the tongue. These muscles help protruding-retracting,

elevating-depressing the tongue, and they are named after where they are originated

from; that are genio-glossus, hyo-glossus, stylo-glossus, and palato-glossus [100].

The muscle fibers in many parts of the tongue interweave, and this means that the

anisotropic structure is more sophisticated than limb muscle groups.

EIM studies focused on different muscle groups [28, 49]. The limb muscle studies

expanded on developing EIM devices with different types of electrode configurations

or orientations such as the rotational EIM [99], electronically reconfigurable elec-

trode array EIM [29] and other configurations by rotating the direction of the elec-

trode array [47, 15, 48, 102, 103, 104] in order to investigate the anisotropic character-

istics of the muscles. The motivation behind different electrode configurations is that

the disease-related atrophy affects the anisotropy of the muscle [37]. Moreover, the

impedance characteristics of different diseases show different anisotropic atrophies

[83, 85].

ALS is known to change the tongue muscle structures and tongue thickness [105].

The bulbar involvement related studies mostly focused on the measurement of the

tongue EI [26, 27, 25]. The electrodes are placed on the tongue in order to take the

measurements. Studies also showed that a proper electrode array size is important to

reduce the gag reflexes of the patients [26, 27]. The muscles evaluated using electri-

cal impedance readings at 50kHz has shown the disease effects on contraction state

[106]. This implies that the muscles that are active when the tongue is inside or out-

side of the mouth are different, and the relation between the intraoral and extraoral

measurements is an important research matter that needs to be investigated.
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2.3.3 EIM Frequencies

ElM devices rely on the injection of alternating current (AC) rather than the di-

rect current (DC) to measure the impedance characteristics of the muscles in order

to prevent polarization, therefore avoid tissue damages. AC reverses in direction pe-

riodically, and the waveform for biological tissues is usually a sine wave. The period

in which the sine wave completes one cycle determines the frequency of the wave.

This is determined by the number of cycles completed in one second. The unit is

Hertz (Hz), which is equal to the cycles per second.

Research suggests that the frequency spectrum for biological tissue measurements

can be divided into three bands; α,β,γ [107, 108] (see Figure 2.3). The α band is the

frequencies below 100 Hz, and the γ band is the frequencies above 1GHz [107, 108].

The β band frequency readings of the tissues return impedance values with high re-

sistance at the lower end [109]. Once the AC can penetrate through the cell mem-

branes, impedance readings are affected by the intracellular fluids and organelles at

the higher end of the β band (around 1MHz) [109]. Figure 2.3 illustrates the electrical

impedance characteristics of muscle cells over the frequency range.

Early studies showed that the estimation of body composition gives the most ac-

curate results at 50 kHz. Nyboer first proposed the hypothesis in 1959 [44, 52]. In

this study, healthy skeletal muscle showed a peak in reactance values at this partic-

ular frequency. This knowledge led to studying different muscle groups with EIM at

50kHz [14, 49, 55, 74, 98]. Later studies on tongue muscle suggested that the phase

values at 100kHz also show promise for the diagnosis of ALS with EIM [30]. High

reactance readings are captured at the critical frequency (See Figure 2.2) at the β

band where the reactance readings are maximal due to AC penetrating the cell mem-

branes. The critical frequency may be different for diseased patients and volunteer

subjects, considering the nature of the disease. With this in mind, ALS data analysis
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Figure 2.3: Electrical Impedance characteristics of biological tissues along the frequency
spectrum with representative visualisation of cell-frequency relation [110]. Important fre-
quencies for ALS studies (50kHz, 100kHz) and frequencies that gives the relation in cell fig-
ures (1kHz, 10kHz, 1MHz) are noted on x-axis and Impedance readings are on y-axis.

with multi-frequency EIM devices may capture valuable patterns on the spectral data

rather than relying on a single frequency measurements [37, 111]. Another study on

the contracted and relaxed skeletal muscle analysis with multi-frequency EIM tech-

nique [50] demonstrated that the biochemical activity of diseased muscle (as a result

of force generated in the contracted muscle) is different to the healthy muscle. Re-

sults show that the relaxed muscle phase is lower than the contracted muscle phase

at the frequency spectrum up to 2.5 kHz. At 2.5 kHz, both the relaxed and contracted

muscle phase drops down to a minimum.

2.3.4 Age and Gender-Related Studies

ALS is categorized dependent on the background of the disease; whether it is ge-

netic (familial) or not (sporadic). Depending on the background, the disease age-

onset range is different, with 58 to 63 for sporadic and 47 to 52 is familial [112].

According to the statistics of ALS research from Europe, the disease is also gender-
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biased, with most cases occurring in males [113]. These statistics suggest that the

disease may be age and gender-biased.

A study has shown that the EIM mean phase readings of the limb muscles have

dropped for older patients [11]. The study’s reliability is questionable since the mus-

cle composition of the patients in their youth is unknown. Another study compared

two age groups: 19-50 and 60-85; mean phase readings did not show a difference be-

tween the groups; however, when looking at the resistance and reactance readings, a

difference was more noticeable [114]. The same study also showed that the resistance

and reactance readings revealed information towards gender differences. A com-

prehensive multi-frequency EIM study for different diseases that affects the muscle

aimed at finding gender and age-related patterns, considering all impedance ele-

ments (resistance, reactance, magnitude, and phase) [111]. The results have shown

random age and gender related changes for the healthy and diseased subjects using

resistance, reactance and magnitude values, however, the changes were more visi-

ble using phase values. Another 50kHz EIM study on the tongue showed that the

patients have smaller phase values and higher resistance values [8]. In this study, it

is shown that age and gender factors did not play an important role in tongue mea-

surements. Shellikeri et al. (2015) [26] inferred that age-related differences could be

detected only over the age of 80 years old for bulbar involvement. With the contro-

versies among the studies, it is not easy to conclude what effects age and gender have

on the disease and whether or not it could be detected with EIM devices.

2.3.5 Longitudinal Analysis

The life span of the patients from the diagnosis date to the death varies depending

on the bulbar involvement. Diagnosis to death time could be anywhere between 20

months to 4 years, and around 10% of the patients survive up to 10 years [115, 3,

116, 117, 118]. In extreme cases, patients can live up to 55 years which is a known
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case of cosmologist Stephen Hawking, whom was diagnosed in 1963 [119]. With this

variation in the life span, it is difficult to infer results from the longitudinal data for

prognostics. ALS Functional Rating Scale-Revised (ALSFRS-R) [120, 121, 122, 123] is

a 12-item questionnaire used by clinicians to assess disease progression, but it could

be a biased assessment due to dependence on the patient’s answers. Therefore, it

is important to employ devices in clinical tests that can measure physical data and

estimate the progression of the disease.

There are studies that observe the disease over a period of time in order to detect

disease related changes [118, 124, 125, 126, 127]. A longitudinal study conducted with

an EIM device for ALS compared the phase values from six and twelve months after

diagnosis [8]. The study recorded a decrease in the mean phase and an increase in

the steepness of phase slope as the disease progresses.

Production of affordable devices that are suitable for the use in inexperienced

carers is important in longitudinal analysis. These devices may help anticipate the

right time to intervene with respiratory and feeding devices in order to extend the

patient’s life as well as improve the quality of life. Collecting data for the progression

analysis may also help improve the clinical testings for ALS sub-groups.

2.4 Multi-dimensional Electrical Impedance Myography

Device

The EIM devices with different electrode sizes and orientation that uses different

frequency spectrums, to study different muscle groups, showed that the EI is a reli-

able measure for identifying the muscular diseases, including ALS [111, 36, 30]. The

optimal frequency-electrode combination is still unknown. Most studies focused on

the limbs, but the disease is fatal when it is bulbar onset and once it paralyses the

muscles that make you breath. The device design focuses on capturing the tongue’s
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EI characteristics from the surface measurements. However, the tongue’s anisotropic

characteristics have the most complicated muscle fiber arrangement, and the mus-

cle fibers are mashed in longitudinal, transverse, and vertical directions [128, 129].

The previous studies of the tongue with 2D surface electrodes may not be sensitive

enough to detect ALS bulbar involvement due to the anisotropic muscle structures,

that would require more comprehensive measurements. Therefore the tongue organ

requires measurement with more sophisticated electrode designs than those surface

electrodes.

A group in Sheffield University Teaching Hospital designed a novel EIM device

with the motivation to create an EIM device that is user and patient-friendly, and

that can detect the ALS bulbar involvement, whether it is a bulbar onset or once the

disease spread to the bulbar muscles. Dr. James J. Alix, a National Institute for Health

Research clinical lecturer in neurophysiology and specialty registrar in clinical neu-

rophysiology, coined the idea and Dr. Jamie Healey, a senior medical physicist with

many years of experience in the development of impedance devices, designed the

device. This comprehensive device has all the features that the EIM tongue research

was interested in: that are multi-frequency measurements, multi-dimensional elec-

trode configurations to investigate the disease effect on the anisotropic character-

istics of the muscles, and data collection for longitudinal analysis. The device is

patient-friendly, in that it reduced the gag reflexes caused by the big electrodes, and

it is user friendly with high interrater and intrarater reliability [130].

The device is assembled with two hinged arms. A stop prevents the excess com-

pression on the tongue and maintains the inter-electrode distances. At the end of

each arm, there is an array with four gold electrodes. Electrodes are placed at 5mm

distances with each other to form the corners of a cube with eight electrodes on two

arms. The tetrapolar measurement idea is adopted in order to avoid electrode polar-

ization. The two electrodes inject the AC at 5µA, and the other two electrodes read
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Figure 2.4: Design of device for measuring tongue impedance. Four electrodes placed on
the upper and lower plates. Current injected from the two red electrodes and the voltage
measured from the other two blue electrodes (see Table 2.1). The figures are plotted by Dr.
Jamie Healey.

the output voltage across the fourteen frequencies while the other four electrodes are

inactive. The injected current is below the threshold of electricity sensation; which

makes the device non-invasive and painless. There are four settings of electrode con-

figuration to obtain the surface measurements (2-dimensional (2D) measurements),

and eight settings of electrode configuration to obtain cross-sectional measurements

(3-dimensional (3D) measurements). The 3D measurements are designed to capture

the anisotropic characteristics of the disease. This novel set is hypothesized to reveal

more information about the disease effect on muscle EI characteristics.

The electrode array is handheld, lightweight, and wireless. At the end of each

measurement recording, the impedance readings for each electrode configuration is

visually inspected on custom software. This inspection enabled researchers to dis-

card impractical data as a result of unwanted circumstances such as patient move-

ment during measurements. The measurements were then repeated for reliability

analysis. Measurements are downloaded into the computer via Bluetooth and sorted

into a .csv file. EI readings in the complex form are converted to polar readings (see

Equations 2.2.6, 2.2.7) with custom software. Test-retest reliability of 3D and 2D elec-

trode configurations intraclass correlation (0.86 and 0.81 respectively), was consis-

tent across visits for patients and volunteers [130]. The inter and intra-rater reliabili-
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Electrode
Names

TPA
(2D)

TML
(2D)

BPA
(2D)

BML
(2D)

Electrode
Figures

Current
Injection

E2-E0 E6-E0 E3-E1 E7-E1

Voltage
Sensing

E4-E6 E4-E2 E5-E7 E5-E3

Electrode
Names

LPA
(3D)

LIS
(3D)

RPA
(3D)

RIS
(3D)

II
(3D)

IM
(3D)

SS
(3D)

SM
(3D)

Electrode
Figures

Current
Injection

E4-E6 E6-E7 E2-E0 E0-E1 E4-E7 E4-E2 E5-E6 E5-E3

Voltage
Sensing

E5-E7 E4-E5 E3-E1 E2-E3 E2-E1 E7-E1 E3-E0 E6-E0

Table 2.1: 2-dimensional (2D) and 3-dimensional (3D) electrode configurations on repre-
sentative tongue figure with current injection electrodes (red) and voltage sensing electrodes
(blue) specified. 2D current electrodes and voltage sensing electrodes placed on same sur-
face. 3D current electrodes and voltage sensing electrodes placed on opposing surfaces. Elec-
trode names are initialized (please see Section 2.4.3). The electrode keys are obtained from
Figure 2.4. The tongue figures are plotted by Dr. Jamie Healey.

ties (with intraclass correlation of 0.788 and 0.854 respectively) proved that the device

is reliable for both experienced and inexperienced hands [130].

The device measures the EI readings in 14 frequencies, starting with ≈ 76H z that

is in the α region, and the frequencies follow a doubling sequence with ≈ 76H z ∗2 j

where jε{0,1,2, ...,13}. The frequencies from ≈ 152H z to 625kH z are in the β region.

The data in raw form can reveal important frequency or frequency groups for the dis-

ease with machine learning methods. Modeling the data in full frequency spectrum

may help explore the frequencies between ≈ 76H z to 625kH z. This spectrum would

help investigate previously researched single and multi frequency bands.
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2.4.1 Tongue Measurements

The bespoke handheld device ensures a fixed distance between the plates in order

to measure a similar volume of tongue for each electrode configuration [130]. It does

not cause gag reflexes to the patients with its small electrode array arrangements.

In order to investigate the tongue EI characteristics with all perspectives from the

literature, a comprehensive measurement setting is designed to measure different

tongue placements for 2D and 3D electrode configurations on the multi-frequency

device.

The measurement procedure starts with activating the handheld device with an

on/off button. The device is then linked to the computer to record the measure-

ments. Calibration and cleaning was ensured before each recording in order to avoid

measurement errors. Once the device is placed on the tongue, a ≈ 5µA current is

injected via the excitation electrodes. The device has been safety tested with stan-

dard international protocols for medical devices (ISO 13485) and with British Stan-

dards Institution guidelines (N606012-10). Different muscle groups are used when

the tongue is protruded and retracted. Therefore patients were asked to sit upright

and first protrude their tongue. In this position, the electrodes are placed on the

centre, left and right sides of the tongue subsequently. The sensor configuration

automatically activates to measure all twelve directions at one contact. The device

beeped after each measurement is finished (about 10 to 30 seconds) to inform the

observer to change the position of the device on the tongue. The same measure-

ments are repeated when the tongue was retracted. This is equal to the recording

of the each twelve electrode configurations six times which means measuring same

muscle group in 72 different aspects. The measurements are repeated once more

with the same observer or a different observer to calculate the intra or inter-rater re-

liability of the device. For each electrode configuration, each frequency is measured
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eight times, and this is repeated until the standard deviation of the last set of eight

measurements is less than 10% of the mean value of the eight measurements.

2.4.2 Patients and Data Collection

Patients were selected for data collection from the Sheffield ALS clinic between

years 2015 and 2018. The inclusion criteria comprise the patients with a possible,

probable, or definite ALS from the Ajwani Criteria [88], or patients with bulbar pathol-

ogy from EMG examinations. Patients or volunteers with oral infection and diseases,

tongue injury, tongue EMG appointment within a week, implanted medical electri-

cal devices were excluded. The medical records of the patients include information

regarding gender, age, site of disease onset, duration of symptoms, level of diagnos-

tic certainty, ALS functional rating scale (ALSFR-S), tongue strength testing, clinical

saliva score, and speech tests. ALS patients were assessed at three-month intervals

for a period of up to a twelve months duration. Volunteers aged 40 or older were

recruited from a local advertisement given in the Department of Clinical Neurophys-

iology, Royal Hallamshire Hospital, and the Sheffield Institute for Translational Neu-

roscience. Healthy patients were assessed twice at six-month intervals.

The study was approved by the National Research Ethics Service Committee York-

shire & The Humber- South Yorkshire, and was approved by STH Trust Research and

Development (Research Ethics Committee reference: 15/YH/0121, Integrated Re-

search Application System project ID: 160983). Informed consent was obtained from

the participants before recordings were undertaken. All the subjects were given the

right to withdraw from the studies at any time. Each subject was given a code and the

collected data was stored electronically and on paper with subject information kept

in confidentiality.

Fourty-one ALS patients (22 men, 19 women) and thirty healthy volunteers (14

men, 16 women; mean age 56) were recruited. The age criteria were compatible with
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the statistics obtained from the ALS patient population in order to match the ages of

the patients and volunteers to avoid any conflict of results [130]. At baseline, three

patients were unable to perform the EIM recordings due to the severity of their dis-

ease. Seventeen patients had the bulbar-onset disease, twenty-four had the limb-

onset disease.

2.4.3 Multi-dimensional Electrical Impedance Myography Data

The multi-dimensional data with 2D and 3D electrode configuration settings and

different tongue placement is recorded into a .csv data file extension from the de-

vice to the computer via bluetooth. Python 2.7 and 3.4 programming language with

Pandas library is used to read the data file.

Thirty-eight patients and thirty volunteers completed twelve electrode configura-

tions with six tongue placements at fourteen frequencies within three months and six

moths of intervals. However, some recordings were not completed or not recorded

due to errors in measurements. Each patients and volunteers completed different

number of visits (varying from 1 to 6) in each electrode configuration. The full names

of the electrode configurations come from the electrodes used in the configurations.

The electrode configurations and the tongue placements are initialized as follows;

Tongue Location: Center = C, Left = L, Right = R

Tongue Position: Intra-Oral = I, Extra-Oral = E

2D Electrode Configurations:

• Top-Posterior-Anterior = TPA

• Top-Medial-Lateral = TML

• Bottom-Posterior-Anterior = BPA

• Bottom-Medial-Lateral = BML
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3D Electrode Configurations:

• Left-Posterior-Anterior = LPA

• Left-Inferior-Superior = LIS

• Right-Posterior-Anterior = RPA

• Right-Inferior-Superior = RIS

• Infant-Infant = II

• Infant-Medial-Lateral = IM

• Supant-Supant = SS

• Supant-Medial-Lateral = SM

2.5 Data Preprocessing

Statistics are essential in biomedical data analysis because they help to explain

the variability and randomness in the data. It also helps with the decision making of

new data within a confidence interval. In medical studies, statistics are used to dif-

ferentiate between healthy and patient groups [19, 17, 20], used to to ascertain how

effective a medication is against disease [131, 132], used to investigate the life ex-

pectancy of different genders with underlying conditions and many other researches

[113, 133, 134, 135].

It is important to have a visual inspection of the data before applying a statis-

tical method. The data is in the frequency domain. The seventy-two clinical tests

for different patients can be pooled in order to study the statistical properties of the

frequencies. Below, the box and whisker plot of data along the frequencies for real

and imaginary impedance is given. This illustration contains information of the fre-

quency components in terms of quartiles. Quartiles, as the names indicate, are the

25% intervals of the data. The first quartile is the lower quartile data up to 25%; the

second quartile is the 50% of the data, the middle point of the distribution (also called
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the median), and the third quartile is the upper quartile 75% of the data. The same

method can be applied with the percentile statistics by setting the lower limit and

upper limit to the confidence intervals with percentile values, where the 50% value is

the median of the distribution.

Figure 2.5: Box-Whisker plot for complex impedance along the frequency spectrum. The
box shows the interquartile range with lower quartile (25%), upper quartile (75%) and the
median (50%). Whiskers show the minimum and maximum points of the data and without
the outliers. The plots proves the data distribution is skewed.

There are four moments in descriptive statistics. The first moment is called the

mean that helps to understand the average outcome of a measurement. The second

moment called the variance, which shows how much the data is spread. The third

moment is called the skewness that helps to understand the distribution type of the

data, and the fourth is called kurtosis [136]. If a data is normally distributed, then the

normal distribution statistics with mean µ (Equation (2.5.1)) and standard deviation

σ (Equation (2.5.2)) around the mean (µ±σ) would be suitable. The box and whisker

plots with the quartiles indicate the existence of the skewness of the distribution,

therefore the median (50% percentile) and median absolute deviation (MAD) (Equa-
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tion (2.5.3)) around the median value (M ± M AD) [137] is a more robust statistical

measure for representing the data. For a univariate data set: Xi = X1, X2, ..., Xn ;

µ= 1

n

n∑
i=1

Xi = X1 +X2 + ...+Xn

n
(2.5.1)

σ=
√∑n

i=1(Xi −µ)

n −1
(2.5.2)

M AD = medi an(|Xi −medi an(X )|) (2.5.3)

2.5.1 Outlier Detection

EIM data collected and stored into the .csv file from the device is in raw form.

This means the saved data may contain some unwanted recordings or data that does

not fit within the confidence intervals of the distribution of the whole population.

Removal of the unwanted and outlier data preliminary data analysis is essential. Vi-

sual inspection of the raw data from the whole population by graphical representa-

tions may be informative. Once the unwanted data and outliers that conceals the

true patterns are removed, the remaining data will be investigated further for finding

discriminatory information of the healthy volunteers and patients.

The data is stored in complex impedance form. Prior to outlier removal, if a data

set with negative resistance readings at any frequency is detected, the entire spec-

trum data is removed from the analysis. This is the first step in the outlier removal

algorithm. The negative resistance is considered erroneous due to the biological na-

ture of the data. There are two recordings of most measurements. The outlier and

unwanted data removal are applied to the whole dataset; however, only the first avail-

able run is used in future analysis. If the initial run was removed from the analysis by

the unwanted and outlier removal algorithm, then the second available run was used.
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Algorithm 1 Unwanted and outlier data removal along the frequency spectrum

Input: Data set D : D i ( fl ) = {R i ( fl ), Z i ( fl )}, for measurements i , iε{1,2, ...,n} and
frequencies fl , lε{1,2, ...,14}, with R i ( fl ) = [R i ( f1),R i ( f2), ...,R i ( f14)] and

Magnitude Z i ( fl ) = [Z i ( f1), Z i ( f2), ..., Z i ( f14)];

Output: Outliers removed data set D̃ : D̃k ( fl ), for measurements k,kε{1,2, ...,K };

// Remove negative resistances

1: φ= {} (create empty set of outliers)

2: for i ←− 1 to total number of measurements n do

3: for l ←− 1 to total number of frequencies 14 do

4: if R i ( fl ) < 0 (resistance is negative at frequency ( fl ) for measurement i then

5: φ{φ,D i ( fl )} (include full spectral measurement i into outlier set φ

6: end if

7: end for

8: end for

9: D = D −φ (creates new dataset by removing data in outlier set φ from original data set)

// Detecting and removing outliers along the spectrum for each electrode configuration

10: for c ←− 1 to total number of electrode configurations in Dc ( fl ) = {Rc ( fl ), Zc ( fl )} do

11: Qa[Zc ( fl )] = quantile of variable Zc ( fl ) with pdf of p[Zc ( fl )] along

frequency spectrum ( fl ) where a = 1,2,3 represents lower, median and upper

quartiles respectively in each electrode configurations

12: for kc ←− to total number of measurements Kc at each electrode configuration c

in Dc ( fl ) do

13: J kc
c =

√
1

14

∑14
l=1

(
Z kc

c ( fl )−Q2[Zc ( fl )]

Q3[Zc ( fl )]−Q1[Zc ( fl )]

)2

calculate the RMSD of each (robust scaled)

full spectral measurements

14: end for

15: Qc1 [Jc ],Qc3 [Jc ], MC [Jc ] = lower quartile, upper quartile and MedCouple if variable [Jc ]

with pdf of p[Jc ] for each electrode configuration respectively

16: Tc =Qc3 [Jc ]+3∗ (Qc3 [Jc ]−Qc1 [Jc ])∗e4∗MC [Jc ]

17: for kc ←− kcε{Jc } the measurements kc at each electrode configuration c do

18: if J kc
c >= Tc (RMSD greater than threshold) then

19: φ= {φ,Dc
kc ( fl )} (include measurement kc into outlier set)

20: end if

21: end for

22: end for

23: D̃ = D −φ (creates final dataset by removing data in outlier set φ from previous negative

resistance removed data set
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The resistance and reactance measurements that make up the real and imagi-

nary parts of the complex impedance are converted into the polar form as magnitude

(Equation 2.2.6) and phase (Equation 2.2.7). From the equations, one can see that

the calculated magnitude values are more sensitive to the measurement errors (with

the squared sum of real and imaginary parts) than calculated phase values (where

the proportion of the real and imaginary values tend to cancels out); therefore out-

lier detection is carried out based on the magnitude |Z | values. Outlier detection is

performed using the entire spectral data in order to accept or discard the full set of

patient/volunteer measurements. Such a procedure requires ensuring that signifi-

cant variations at individual frequencies, with potentially useful biomarker informa-

tion, are not excluded owing to the small population size in our analysis. Each of the

seventy-two tests (six tongue placements for each twelve electrode configurations)

has its own impedance characteristics along the spectrum. With the observed spec-

tral patterns showing distinct differences for each electrode configuration, the outlier

detection was carried out separately for the different configurations.

Statistical analysis has shown that the data is non-normally distributed; therefore,

in the Outlier Detection Algorithm, median and quartiles are preferred since these

measures are not affected by the extremely low or extremely high values [138]. Fea-

ture scaling is another important pre-processing step in data analysis for data with

widely varying features (in this instance frequencies). Impedance data has a high

amplitude in low frequencies, and low amplitude in high frequencies and scaling is

used to normalize data in different frequencies so that they contribute equally in the

analysis. Robust scaling is an appropriate method for this non-normally distributed

data [139].

High dimensional data is difficult to interpret. Root Mean Squared Deviation

(RMSD) is a method to reduce the measurements into a single value along the fre-

quency spectrum for easier interpretation of the statistical distribution of the data
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set. The skewed distribution observed from the RMSD calculations suggests the use

of Medcouple, which is a robust statistics measure that is more sensitive to the out-

liers [140]. This is, however, applied as a one-sided test owing to RMSD being a mea-

sure of difference. The outlier detection algorithm is broadly described in pseudo-

code, indicating the key steps in Algorithm 1 with respect to the methods justified

above. The algorithm applied to data returned the results in Figure 2.6. The given

Figure is for one of the six tongue placement figures that shows the outlier data was

successfully removed from the raw data, and the processed data is ready for further

analysis without the risk of outlier impact.

Figure 2.6: Outlier removal algorithm result for twelve electrode configurations on Right-
Intraoral placement

2.5.2 Preliminary Selection of Electrode Configurations

Seventy-two test settings were studied as part of the preliminary data analysis. In

early analysis of the project, a closer examination of four of the 3D electrode config-
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urations shows that the electrical impedance measurements have a random shape,

whereas the other electrode configurations seem to share a similar pattern among

them along the frequency spectrum. Figure 2.7 is an example plot of the Center-

Intraoral placement that shows this dissimilarity of the pattern. It is assumed that

the electrode configurations with a random pattern may not reveal useful informa-

tion for disease diagnosis, and it would be difficult to find a common mathematical

representation for the tests. Moreover, these electrode configurations were not re-

producible [130]. For this reason, the following chapters use four of the 2D electrode

configurations: [TPA, TML, BPA, BML] and 3D electrode configurations: [LIS, RIS, II,

SS].

Figure 2.7: Outlier removed data for twelve electrode configurations on Center-Intraoral
placement

This leaves us with the eight electrode configuration for six different tongue place-

ments, which makes up to forty-eight clinical tests of the EIM device. Later in the

project, concerns were raised about the left and right tongue location measurements.
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The accuracy of the placement, particularly how close the electrodes might be to the

edge of the tissue was identified as a potential problem. If the electrodes are close

to the edge, the measurements could have a volume effect, i.e. less tongue tissue for

current flow. However, centre measurements are not affected with this source of er-

ror. Therefore left and right placements are also removed from the future analysis in

this project.

Figure 2.8: Center-Intraoral and Center-Extraoral phase median along the spectrum for
comparing the healthy volunteers and patients to visually identify the disease’s effect on In-
traoral and Extraoral measurements. The number of patients and volunteers involved in me-
dian statistics are noted in the legend, given in each axis.

Analysis on skeletal muscles has shown the contracted and protruded muscles

present different impedance characteristics along the frequency spectrum [50]. As

explained in Section 2.3.2 different tongue muscles are activated when the tongue

is retracted and protruded. Intra-oral and extra-oral measurements are taken in or-

der to analyse the deterioration of the muscle in different muscle groups. Figure 2.8

shows the median values of the intra-oral and extra-oral measurements which ap-

pear as random for the different electrode configurations. Moreover, the Table 2.2
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shows that the number of extra-oral measurements are much lower than the intra-

oral measurements, which verified that obtaining extra-oral measurements are rela-

tively difficult. For the reasons presented above, the chapters following contain anal-

ysis on centre intra-oral with four 2D electrode configurations and four 3D electrode

configurations.

Visit Placement TPA TML BPA BML LIS RIS II SS

1
E

v=27
p=21

v=26
p=22

v=26
p=17

v=29
p=15

v=26
p=21

v=23
p=14

v=26
p=20

v=30
p=23

I
v=27
p=33

v=28
p=32

v=24
p=18

v=25
p=18

v=27
p=22

v=25
p=26

v=27
p=29

v=30
p=34

2
E

v=17
p=10

v=18
p=10

v=18
p=10

v=19
p=9

v=17
p=8

v=17
p=8

v=18
p=12

v=22
p=14

I
v=21
v=23

v=20
p=23

v=19
p=14

v=19
p=18

v=19
p=21

v=18
p=18

v=20
p=23

v=23
p=26

3
E

p=8
p=10

v=7
p=10

v=8
p=9

v=8
p=9

v=6
p=7

v=6
p=8

v=6
p=11

v=8
p=12

I
v=9
p=17

v=9
p=20

v=9
p=9

v=9
p=15

v=9
p=12

v=8
p=13

v=9
p=17

v=9
p=20

4
E p=8 p=9 p=9 p=7 p=9 p=8 p=10 p=10
I p=17 p=19 p=10 p=9 p=11 p=10 p=14 p=18

5
E p=2 p=2 p=2 p=2 p=2 p=2 p=2 p=2
I p=9 p=9 p=4 p=7 p=7 p=4 p=9 p=10

6
E — — — — — — — —
I p=1 p=1 p=1 p=1 p=1 p=1 p=1 p=1

Table 2.2: Electrical Impedance phase data recorded for Centre Intraoral and Centre Extrao-
ral measurements in each visits. Volunteers only have the first three measurements.



Chapter 3

Non-Parametric Data Classification

For Disease Diagnosis And

Longitudinal Analysis

Clinical assessments are carried out by a medical team to evaluate the symptoms

for diagnosis, in order to ensure patients receive the correct medical treatment. In

this sense, the clinical assessments are a decision making tool for classifying the pa-

tient as diseased or healthy. The clinical assessment for diagnosis is the first step to

treatment. Diagnosis starts with taking patient’s clinical history and follows up with

a series of appropriate physical and medical tests. Testing may involve using a medi-

cal device that measures the patients vital statistics, and creates a data pool to use in

data analysis for diagnostic purposes.

Machine learning belongs to the family of artificial intelligence approaches and

offers a wide variety of algorithms that can be used for cost-effective, automated di-

agnostic decision making of high-dimensional large datasets. Machine learning al-

gorithms are capable of learning from observed data and applying it to the new data

to make predictions. Machine learning methods are widely used in medicine for vari-

36
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ous reasons such as diagnosis of the diseases [141, 142, 143], tracking the progression

of the diseases [144, 145], or detecting impacts of the medicines used for treatment

[146].

This project employs machine learning algorithms for the classification of pa-

tients and healthy volunteers data obtained from the novel Sheffield EIM device for

investigating its potential for diagnosing the ALS bulbar involvement in the early

stages. This chapter is presented in four main sections. Section 3.1 explains the steps

to implement supervised classification. Different dimensionality reduction methods,

cross-validation methods, and the two most common classification algorithms with

classification evaluation metrics are discussed in this section. Section 3.2 focuses on

non-parametric data classification using feature extraction and compares the clas-

sification algorithms. Section 3.3 focuses on non-parametric data classification ap-

proach with a feature selection algorithm. The classification algorithm that gave bet-

ter discriminability in the section 3.2 is employed in this section. Pareto dominance

is applied to the classification results with feature selection in the selection of the

effective frequencies for each electrode configuration. Section 3.4 presents the longi-

tudinal analysis with the selected frequencies for each electrode configuration. From

herein and in the following chapters, the term clinical test and electrode configura-

tion are used interchangeably. The phase readings are used in the classification anal-

ysis due to their capability in detecting the disease changes from EIM measurements

[8, 30, 78]

3.1 Supervised Classification

Supervised classification is one of the three types of classification methods in ma-

chine learning. Supervised means that the algorithm learns from the labeled training

data to develop a prediction model to which the new test data will fit. There are es-
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sential steps to follow, and there are several different options used in each step that

requires careful selection of appropriate methods for accurate classification of the la-

beled data. In machine learning, no one algorithm stands out in its ability to classify,

but some algorithms are more widely used than the others.

The data obtained from the device was in raw form, and therefore a data pre-

processing step (see Section 2.5) is essential in order to remove the outliers before

classification. Dimensionality reduction is another step that removes unwanted and

irrelevant information for greater accuracy, when mining data to find hidden pat-

terns, especially for high dimensional data. The classification algorithms separate

the data into a testing set and a training set, and use the selected/extracted features

to obtain a model with the training data to evaluate it on the testing data.

The number of patients and volunteers recorded in each electrode configuration

are different because some of the recordings were either faulty or removed from the

preprocessing. Moreover, each electrode configuration aims at detecting disease ef-

fects on the different muscle groups. For this reason, each of electrode configuration

is analysed separately in order to select the most informative electrode configura-

tions paired with most discriminative frequency combinations. It is expected that

the different electrode configurations will identify the different frequencies that are

relevant to detect the disease effects on the anisotropic characteristics of the tongue.

3.1.1 Dimensionality Reduction

In Multi-Frequency EIM, impedance elements are measured at a range of fre-

quencies to model the impedance characteristics of the tissue over the spectrum.

This is creating a high dimensional data [147], which makes it challenging to per-

form computationally cost-effective classification. Moreover, high dimensional data

causes a phenomenon called the curse of dimensionality, which is a result of the

sparseness of the data in the high dimensional space, particularly with a low number
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of data samples. Another challenge may arise from the overfitting, which is caused by

using all features that create a model particular to that training data set, and this may

lead to the poor fitting of the new data. For these reasons, dimensionality reduction

is important for removing irrelevant and unnecessary features from the dataset that

may obscure the discriminatory patterns.

There are methods used to reduce the high dimensional data into lower dimen-

sions to outline the data by only considering the most important features. Two ways

of reducing the dimension of the original dataset can be summarised as, feature ex-

traction and feature selection. Feature extraction projects the features onto a new

space with linear and non-linear methods to maximize the variability obtained by

each feature. Feature selection is done either manually (if features are known to have

discriminatory information according to the previous studies) or automatically with

algorithms to create feature combinations and select the best performing feature set.

Both feature selection [148, 149, 150] and feature extraction [151, 152, 153] are widely

used in medical data analysis.

Feature Extraction

Feature extraction is used to reduce the dimensionality by performing a linear

or non-linear transformation on the data [154, 155]. The most commonly used fea-

ture extraction method is a linear method called the Principal Component Analysis

(PCA). PCA is preferred above others for its convenience in its simplicity as well as

its widespread applicability [50, 156]. In PCA, the data is projected onto a lower-

dimensional space with high variance features. The distribution characteristics and

the feature labels are disregarded (unsupervised). In Linear Discriminant Analysis

(LDA), the distributions of the features are labeled (supervised) and assumed to have

a normal distribution. Factor Analysis (FA) is concerned about extracting latent vari-

ables of the data.
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In PCA, the mean values of each feature are calculated to find the centre of the

data in the high dimensional space. Then the centre of the data is moved to the ori-

gin of the high dimensional space, i.e., [0,0,0, ...]; this is called the mean centering.

Next, a line that has the minimum distances to the data points is fitted through the

origin. This first line is called the first Principal Component (PC1). The unit vector

obtained from PC1 contains information on how much each feature contributes to

the variation; it is called the Eigenvector for PC1 and the method is called the Eigen-

vector decomposition. The next Principal Component (PC2) is the best fitting line

that goes through the origin and is orthogonal to PC1. The PC3 is the best fitting

line that goes through the origin and is orthogonal to PC1 and PC2. The process is

repeated to find all principal components where the number of PCs is equal to the

number of features. The percentile values of the variation can be calculated from the

Eigenvalues, and this can then be plotted on a scree plot to select the number of PC’s.

Mathematically, the above can be described as follows; consider the data given as

follows:

X =



x11 x12 x13 . . . x1l

x21 x22 x23 . . . x2l

...
...

...
. . .

...

xn1 xn2 xn3 . . . xnl

 (3.1.1)

where d is the dimension and n is the number of measurement. The covariance ma-

trix of the data is:

∑
l×l =



σ2
11 σ2

12 σ2
13 . . . σ2

1l

σ2
21 σ2

22 σ2
23 . . . σ2

2l
...

...
...

. . .
...

σ2
l1 σ2

l2 σ2
l3 . . . σ2

l l

 (3.1.2)

with

σ2
j k = 1

n −1

l∑
i=1, j=1

(xi j −µ j )(xi k −µk ) (3.1.3)
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where µ j and µk are the mean values, the σ2
kk is the variances and the σ2

j k is the

covariance of the variables. Eigenvalues and eigenvectors can be calculated with the

covariance matrix as follows; ∑
v =λv (3.1.4)

where the covariance matrix
∑

in l × l form is multiplied with eigenvector v in l ×1

form into scalar eigenvalues λ and eigenvectors. The sorted eigenvalues in descend-

ing order could be scaled into having percent based explanation, which is known as

explained variance.

Feature Selection

Feature selection is useful in applications where the selected features can re-

veal some underlying characteristics of the problems or of the data. It could be

done in two ways: one way is to perform manual feature selection and combine

them with the classification algorithm if the analyst is familiar with the data fea-

tures, another way is to use algorithms or visual tools to select relevant features. For

low dimensional data, it is easier to combine features and plot one, two, or three-

dimensional graphs for visual inspection of the discriminatory properties of the fea-

tures. Heatmaps are also used for visual inspection of the correlation of features with

each other. However, in high dimensional datasets, where the user has little to no

knowledge about the background of the dataset, it is best to perform feature selec-

tion programmatically. In its most basic form, all features in the feature space are

used to create feature combinations, and these combinations are then used in the

classification algorithm to select the best performing feature subsets. In the litera-

ture, there are three classes of methods for selecting the best feature combination:

wrappers, filters, and embedded methods.

- Wrapper: This class of methods considers all possible feature combinations,

and performs an exhaustive search. Consider a dataset with l features; all pos-
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sible combinations of features makes up to 2l −1 different subsets. In the wrap-

per method, all subsets are used with the classification algorithm separately

and result obtained with the evaluation metrics compared for selecting the fea-

ture subset with the highest classification score.

- Filter: This class of methods uses a more direct approach by selecting variables

with proxy measures to eliminate the least interesting variables and then fitting

the model. It is computationally more efficient than the wrapper method; how-

ever, it may not find the best performing feature subset for the dataset because

of the elimination step. Several algorithms are available in the literature for

implementing this method [157, 158, 159, 160].

- Embedded: This class of methods combines both filters and wrappers for the

benefits of the filter’s computational ease and the wrapper’s exhaustive search.

It adds and deletes best and worst features in each iteration, and requires man-

ual input of the number of iterations, which could be a disadvantage for the

method. LASSO algorithm is one of the examples for implementing this method

[161].

3.1.2 Cross Validation

Model validation is important when the data set is used both for training and

testing. It will give insight into how the classifier model will perform in predicting

the new (unseen) data [162]. Cross-validation is useful in avoiding overfitting since it

uses the training and test datasets with random splits repeatedly. The repetition is an

important part of the procedure in order to reduce variability of scores in each test

set.

A method called leave-p-out cross-validation (LpO CV) uses p number of data

points from the whole dataset as test data, while the rest of the data is used as training
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data. The procedure repeats until every possible subset of the p data points is used

as the test data point. The averaged result from each test gives the performance of

the model. Leave-one-out cross-validation (LOO CV) is a special case of LpO CV in

that the p-value is equal to one [163].

Other two cross-validation are the Holdout method and the n-fold method. In

the holdout method, the data is divided into training and test sets with a random

number of data points in each sets. In n-fold cross-validation, the data set will be

shuffled in order to split data into n groups randomly. The training data consist of

(n −1)/n fraction of the data, and the remaining 1/n fraction of the data is used as

the validation (test) set. The procedure will repeat n times using different training

and test sets in each repetition. The repetition will allow each data to be used in both

training (n −1 times) and test (n times) sets. The score of each repetition is averaged

to summarize the overall performance of the classification model. When n is equal

to the number of data points, the method is equivalent to the LOO method [164].

3.1.3 Classification Algorithms

Classification is both a machine learning and statistics task that is used to classify

different populations by extracting patterns that have discriminatory information in

a dataset. In machine learning, the classification is used together with dimension-

ality reduction, cross-validation, and evaluation metrics in order to find the optimal

classifier model for a dataset. The aim of performing classification in this project is

to find the useful frequencies and best performing electrode configurations that will

help with the diagnosis of the bulbar involvement of ALS with the Sheffield EIM de-

vice with novel electrode configurations. In order to do that, it is important to find

a suitable classification algorithm and evaluation metric particular to the type of the

analysis.

There are a large number of algorithms available in machine learning, and there
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is no clear favorite. For this reason, it is crucial to carefully select a classification al-

gorithm that suits well to the dataset and the goals of the research problems. Most

of the classification algorithms are categorized as linear classifiers, and the name

comes from the linear functions used in these algorithms. Among the linear clas-

sifiers, Fisher’s Linear Discriminant, Logistic Regression, Naive Bayes Classifiers are

some of the most commonly known. Support Vector Machines (this refers to Sup-

port Vector Classifier (SVC) in this work) and a kernel estimation method k-Nearest

Neighbour (k-NN) are the interest of this research. This is due to the popularity of

both methods and the appropriateness of the algorithms to the dataset. In the fol-

lowing sections, these two algorithms will be further detailed, and they will then be

employed in Section 3.2 for performance comparison.

Support Vector Classifiers

Figure 3.1: A 2D SVC hyperplane with support
vectors and margins.

Support Vector Machines (SVM)

is a supervised machine learning al-

gorithm that is used for many pur-

poses, including classification, re-

gression, outlier detection. Support

Vector Classifier (SVC) is the SVM al-

gorithm used to perform classifica-

tion. Support Vector Classifiers have

been used in medical diagnosis stud-

ies from cancer researches [165, 166]

to electrical impedance studies [167].

Support Vector Classifiers starts

with mapping each data in the training dataset into the high dimensional feature

space with selected features. It draws a line between the classes in this plane with
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a maximum distance (called the hyperplane) that ensures a good class separation.

The hyperplane has l −1 dimensions with a dataset with l dimensions where l is the

number of features after dimensionality reduction where necessary. The hyperplane

can be written as a linear problem in its simplest form that makes the classifier a

linear classifier. There are other kernel functions for separating the data to perform

non-linear classification, but for a simplified explanation of the hyperplanes, a linear

example is used in Figure 3.1. The linear relation can be expressed as:

−→ω .−→x −b = 0 (3.1.5)

with −→ω normal vector and −→x is the set of data points. The hard margins created to

separate classes from each other with −→ω .−→x −b = v border belongs to volunteer class

and −→ω .−→x −b = p border belongs to patient class. The points at the borders are called

the support vectors that help identify the borders of the hyperplane.

k-Nearest Neighbours

k-Nearest Neighbours (k-NN) is a frequently used classification algorithm in med-

ical studies [168, 169, 170]. k-Nearest Neighbours is a classification algorithm that

works only with labels and features. It is a supervised, non-parametric and a lazy

learning algorithm [171]. It is a supervised algorithm because it learns from the la-

belled input data to estimate the label or class of the newly introduced unlabelled

data. It is a lazy learning (or instance based) algorithm because it does not have a

training step and the nearest neighbour in terms of feature similarities is searched

from the whole data set each time for each prediction. It is non-parametric because

it does not rely on data distribution assumptions, which makes it more practical for

real-world applications.
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Figure 3.2: A 2D k-NN plot depicting the effects
of different number of neighbours.

As the name suggests, k is the

number of nearest neighbours that

the algorithm tries to get votes from

[172]. When a new data is in-

troduced to the trained data space,

a distance metric is used to calcu-

late the distance to determine the

k closest neighbours [172]. Differ-

ent distance metrics can be used

in the distance calculation that are

Manhattan (L1 norm), Euclidean (L2

norm), Chebyshev (maximum dis-

tance), Minkowski, and Mahalanobis. Votes from the surrounding neighbours are

calculated, and the data point is labeled as the same label that has the highest votes

amongst the nearest neighbour data points. This shows that the number of neigh-

bours, k is a crucial factor for labeling the new data point. The number of neigh-

bours should not be too small in order to avoid bias towards closest data points, and

it should not be too high in order to avoid the costly label selection process.

There are two metrics to focus on when using a k-NN algorithm, that is the dis-

tance metric and k, the number of neighbours. It is important to know that the num-

ber of neighbours should be odd for two-class classification because if it is an even

number, the number of closest neighbors may be the same, and therefore a decision

could not be made. If the number of the nearest neighbour is high, the selection is

less biased and less vulnerable to noise; however, the boundaries become less flexi-

ble, especially for datasets with a small number of data points.
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3.1.4 Classification Results Evaluation

Classifier performance measurement is an essential part of comparing different

methods to select the one that performs best for the purpose of the research. Both

classifier and the evaluation metric depends on the nature of the study. For instance,

this study employs supervised classification in order to identify the electrode con-

figurations and the frequencies that shows the most discrimination between the pa-

tients and volunteers. This statement also means that the patients should be identi-

fied correctly, while a false alarm is avoided in the clinical assessments.

Positive Test Negative test

Disease Present
True Positive

(Hit)

False Negative

(Miss)

(Type II Error)

Disease Absent

False Positive

(False Alarm)

(Type I Error)

True Negative

(Correct Rejection)

Table 3.1: Confusion Matrix with four components; True Positive (TP) for correctly iden-
tified patients, True Negative (TN) for correctly identified healthy volunteers, False Positive
(FP) for for volunteers identified as patient, False Negative (FN) for patients identified as vol-
unteers.

One way to score the classification results for disease diagnosis is to calculate the

confusion matrix that returns the proportion of accurately and inaccurately detected

healthy volunteers and patients [173]. A confusion matrix (also called the error ma-

trix) for a two-class classification problem has four components; two of them are the

correctly identified classes, and two of them are the number of incorrectly identi-

fied classes. From these four numbers, several evaluation metrics can be calculated.

Disease diagnosis studies mostly focus on the three out of all metrics, which are sen-
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sitivity, specificity, and accuracy. The confusion matrix and a short description of

evaluation metrics obtained from the confusion matrix components are presented

below for two-class classification with healthy and diseased individuals.

From Table 3.1, the True Positive (TP), True Negative (TN), False Positive (FP),

False Negative (FN), Positive (P = TP + FN), Negative (N = TN + FP) values help to

calculate the following evaluation metrics;

Accuracy is a balanced representation of the Sensitivity and Specificity. It is the

accuracy of how well the classifier can identify classes correctly. It is calculated

as follows;
T P +T N

T P +T N +F P +F N
(3.1.6)

Sensitivity is the sensitivity towards detecting the patients correctly. Also known

as True Positive Rate (TPR), hit rate, recall is calculated as follows;

T PR = T P

T P +F N
= 1−F N R (3.1.7)

Specificity is the specificity towards detecting the healthy individuals correctly.

Also known as True Negative Rate (TNR), is calculated as follows;

T N R = T N

T N +F P
= 1−F PR (3.1.8)

Other Confusion Matrix Metrics:

– Precision (Positive Predictive Value): PPV = T P
T P+F P

– Negative Predictive Value: N PV = T N
T N+F N

– False Negative Rate (miss rate): F N R = F N
F N+T P = 1−T PR

– False Positive Rate (fall-out rate): F PR = F P
F P+T N = 1−T N R



Classification 49

– F1 Score: 2∗ PPV ∗T PR
PPV +T PR = 2∗T P

2∗T P+F P+F N

– Matthews Correlation Coefficient: MCC = T P∗T N−F P∗F Np
(T P+F P )(T P+F N )(T N+F P )(T N+F N )

3.2 Non-Parametric Data Classification Using Feature Ex-

traction

Early diagnosis of patients without evidence of the bulbar involvement is impor-

tant. From a machine learning perspective, classification of data that is collected

from diseased and healthy individuals could help with diagnosing the disease in the

early stages. Careful selection of methods is key to achieving the most accurate re-

sults in identifying the disease clinically with the EIM technique. In this section, the

aim is to select methods that will help most accurately identify bulbar involvement

of ALS disease on patients with EI data obtained from the Sheffield EIM device.

The classification requires the dimensionality reduction prior to implementing

the algorithm. Commonly used feature extraction with PCA is implemented on EI

data, and extracted features are tested on two different classification algorithms, namely

k-NN and SVC. The results evaluation is validated with both exhaustive and non-

exhaustive cross-validation methods, namely LOO and n-fold CV.

3.2.1 Preprocessing

The feature extraction method PCA is an orthogonal linear transformation that

uses data points in its original feature space and projects it onto a new feature space

where the maximum variance is preserved with the first few PC. Steps followed to

obtain the first few PCs are listed below.

- Feature Scaling: Scaling normalizes the features into a range so that they all

contribute the same amount to the calculations. Some of the most used scal-
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ing methods are Standard Scaling, Robust Scaling, and Min-Max Scaling. Stan-

dard scaling uses mean and standard deviation moments of the normal distri-

bution; therefore, it is not suitable for our dataset (see Section 2.5). Min-Max

scaling subtracts the minimum value of the distribution from all data and di-

vides them into the difference between the minimum and maximum values.

Robust scaling uses 25% (Q1), 50% (Q2 = median), and 75% (Q3) for a more

robust scaling of the features in a skewed data distribution like our data (see

Section 2.5).

Standard Scaling Robust Scaling Min-Max Scaling

x−x̄
σ

x−Q2

Q3−Q1

x−mi n(x)
max(x)−mi n(x)

Table 3.2: Standard, Robust and Min-Max scaling equations comparison.

- Explained Variance: An important step of feature extraction is to select how

many components are necessary to explain enough variation on data for good

discrimination between groups with the minimum number of components.

Explained variance (cumulative variance) is a visual tool plotted using the same

rational as a scree plot, with an ascending percentage on the y-axis and com-

ponent number on the x-axis. This visual tool will help identify the percentage

of the explained variance, coupled with the number of principal components.

An explained variance plot with selected principal components is plotted in

Figure 3.3 using the phase readings of the EI measurements. There are no rules

on the amount of variation that should be included in the classification; how-

ever, principal components that add up to above 90% is usually considered a

good choice for differentiating the classes [174]. In this dataset, the electrode

configurations have commonly shown a single number of principal compo-

nents that exceed 90% variation between classes. For this reason, dimension-
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ality was successfully reduced from fourteen into a maximum of four for all

electrode configurations.

Figure 3.3: Explained Variance plot obtained with phase values. The electrode config-
urations exceed 90% variance with four principal components.

- Feature Projection: The first two principal components in Figure 3.4 have shown

a ≈ 72% to ≈ 87% variation among the electrode configurations between the

classes. A plot of the data in two-dimensions with first and second principal

components on x-axis and y-axis respectively may give insight into how well

the classification accuracy is. An example plot of this first two principal com-

ponents is given in Figure 3.4.

The preprocessing analysis has shown that the dimensionality of the data is

reduced successfully using feature extraction. However, it is not possible to

isolate which frequencies are essential to reduce the dimensionality. In this

study, the frequencies that give better discrimination are considered an impor-

tant research question as much as the electrode configurations that give better

discrimination.
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Figure 3.4: An example plot for first two Principal Components. The number of vol-
unteers and patients are noted in each subfigure. The explained variance from each
principal components are noted on axis labels. The electrode configuration initials are
noted on the top of each axis.

3.2.2 Support Vector Classifier

Support Vector Classifiers avoid overfitting with high dimensional data, are memory-

efficient with support vectors, and are versatile with built-in or custom made kernel
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functions. The real-world data problems may not have a linear separation of mea-

sured features, and in order to separate non-linear data in high dimensional space,

and to find the hyperplanes for a good separation of classes, one can use different

kernel functions. Computer programming languages like Matlab and Python have

libraries that help with implementing SVC for various research questions. There are

three built-in kernel functions used with Python’s SVC library, which are linear, poly-

nomial and radial basis function.

Kernel functions k(−→xi ,−→x j ) transforms the non-linearly separable feature space into

a linearly separable feature space using scalar products of pairs of data vectors (−→xi ), (−→x j )

to fit the hyperplane. The linear kernel function is defined as k(−→xi ,−→x j ) = (−→xi .−→x j ),

polynomial kernel function is defined as k(−→xi ,−→x j ) = (−→xi .−→x j + 1)d where the d value

is user defined degree of the polynomial and the radial basis function is defined as

k(−→xi ,−→x j ) = e−γ||−→xi−−→x j ||2 with γ being a positive user defined influence of a single train-

ing data point in the feature space.

The results were plotted using heatmaps with the classification accuracy metric,

computed from the confusion matrix to determine the diagnostic accuracy of the de-

vice. The same visual inspection on the heatmap is done for sensitivity and specificity

metrics of the classification, and the conclusions presented at the end persist.

Figure 3.5 shows the summary performance of the classification with SVC. Firstly,

different kernel methods were used for comparing the results obtained for each elec-

trode configuration, and on average, the poly kernel has lower and sigmoid kernel

has higher accuracy results. Secondly, the 3D electrode configurations gives better

accuracies compared to the 2D electrode configurations. Thirdly, electrode configu-

rations seem to have similar accuracy results with a different number of n for cross-

validation. It is also visible that 2-fold and LOO CV does not give good classification

accuracies. However, there is no single good parameter set to satisfy the best classifi-

cation accuracy for all electrode configurations.



Classification 54

Figure 3.5: Classification accuracy results heatmap for different electrode configurations
and different classifier design parameters with SVC.

3.2.3 k-Nearest Neighbour Classifier

k-Nearest Neighbours algorithm uses the training data points with the extracted

features and class labels to calculate the k-nearest neighbours of a single test data

point each time to assign the data point to the class of the closest neighbours. In this

framework, the algorithm requires two user inputs that would affect the classification

accuracy; that is, the k value for the nearest neighbours and the distance metric to

calculate the distances to the closest neighbours. Due to a low number of data points,

and the concerns related to even number of neighbours discussed under k-Nearest

Neighbours title, k = 3 and k = 5 nearest neighbours together with commonly used
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L1 (Manhattan) and L2 (Euclidean) distance metrics were tested with both LOO and

n-fold cross-validation to select the optimal parameters for the user input variables.

The value of n varies from a minimum of n = 2 to a maximum of most commonly

used n = 10 fold.

Figure 3.6: Classification accuracy results heatmap for different electrode configurations
and different classifier design parameters with k-NN.

Figure 3.6 shows the summary performance of the classification with k-NN. Firstly,

higher accuracies are achieved by the 3D electrode configurations [RIS, II, SS]. This

shows that the 3D electrode configurations are able to identify the disease degener-
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ation effects on tongue muscles better. Secondly, different neighbours; k = 3,5 used

with different distance metrics; Manhattan (L1 Norm) and Euclidean (L2 Norm) were

combined (such as k = 3 with L1, k = 3 with L2, k = 5 with L1, k = 5 with L2) to cal-

culate the nearest neighbours. There is no particular set of parameters that have a

better accuracy pattern for all electrode configurations, and therefore, it is not pos-

sible to say that one of the combinations of k-neighbours and distance metric gives

more accurate results for the classification. Moreover, the classification using k-NN

overall has better accuracies than classification using SVC.

3.3 Non-Parametric Data Classification Using Feature Se-

lection

In the analysis in Section 3.2 the dimensionality of the data was reduced down

to four Principal Components while preserving the 90% variance in the data. How-

ever, the information on the individual frequencies that gives good discriminability

of the volunteers and patients were not obtained with this dimensionality reduction

method. One of the critical research questions of the ALS studies is to find the fre-

quencies that give the most discriminatory information of the two groups (see Sec-

tion 2.3.3). For that reason, to reduce the dimensionality of the data for computa-

tional efficiency and to remove redundant and irrelevant frequencies from the clas-

sification analysis, as well as obtaining the discriminatory frequencies, feature selec-

tion is considered here.

This section introduces the classification with the feature selection based dimen-

sionality reduction for identifying the discriminatory frequencies for each electrode

configuration. Pareto dominance was used to select the best performing frequency

combination among all possible combinations. This section also looks into the cor-

rectly and incorrectly identified patients and healthy volunteers utilizing all electrode
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configurations on the disease diagnosis with majority voting method.

3.3.1 Feature Selection with Wrapper Method

Differentiating between patients and healthy volunteers might not necessarily re-

quire the whole impedance spectrum, with some frequencies being redundant or

irrelevant [175]. For this reason, dimensionality reduction is essential in order to

reduce the computational complexity of the learning process associated with high

dimensional data. In real-world data applications, useful features cannot be hand-

picked due to unknown structures in the data. The identification of important fre-

quencies is a feature selection problem with dimensionality reduction. Feature se-

lection reduces the computational cost of classification, simplifies data for easier in-

terpretation, reduces overfitting, and helps to avoid the curse of dimensionality and

improve classification accuracy [176].

The two main steps in feature selection are subset generation and subset evalua-

tion. There are three main subset evaluation algorithms for feature selection: wrap-

pers, filters, and hybrids (embedded) [177]. In this study, the wrapper algorithm was

employed, which, although computationally expensive, is the most reliable among

all three [157]. It trains and tests the model for each new subset with the learning

algorithm and selects the best subset depending on their performances.

There are several subset generation algorithms to choose the subset for a wrapper

algorithm, including the genetic algorithm, simulated annealing, and several com-

plete or heuristic search methods [178]. Subset generation is carried out by the eval-

uation of each possible subset, which requires 2l − 1 repetitions of the subset eval-

uation algorithm. This is referred to as a complete (or exhaustive) search. Some

other widely used heuristic algorithms for subset searches include greedy backward

elimination or forward selection [176] and genetic algorithms [157]. In this study,

a fourteen-dimensional search will only cost 214–1 repetitions of the selected sub-
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set evaluation and will give a complete understanding of all feature combinations.

Therefore, a complete search with the wrapper evaluation algorithm is suitable for

our purpose.

3.3.2 k-NN Classifier with n-Fold Cross Validation

The two classification algorithms were compared in Section 3.2; k-NN and SVC.

The SVC has performed better with a sigmoid kernel for all electrode configurations;

however, when it was compared to the k-NN, SVC has shown lower classification ac-

curacies overall. For that reason, this section considers using k-NN for further anal-

ysis. Classification with k-NN has shown that the 3D electrode configurations [RIS,

II, SS] performed better than other electrode configurations with all of the parameter

combinations. The heatmap also has shown that there is no single common param-

eter combination that is best for all electrode configurations. Therefore the choice of

the parameters are selected as; k=3 with L2 norm and 4-fold cross-validation for this

dataset.

The wrapper method, with an exhaustive search for feature selection, created a

list of 16383 (214 − 1) accuracy, sensitivity, and specificity results for each electrode

configuration. The choice of useful frequency combination must not be reliant on

a single performance metric like accuracy. For this reason, the Pareto Dominance

method is considered for the selection of best-performing frequencies for each elec-

trode configuration. The results are presented in the following section.

3.3.3 Pareto Dominance for Selecting Disease-Specific Frequencies

Classification with feature selection returned 214−1 classification scores for each

electrode configuration. The ranking of these results is necessary in order to find the

best performance of each electrode configuration with their selected features.
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Figure 3.7: All sensitivity and specificity results obtained form the frequency subsets are
given (blue stars) to show the variability of the classification results. Solutions on Pareto front
(blue line) cannot be bettered in both the sensitivity and specificity by any other solution.
The selected results (red points) are noted for each electrode configurations.

Electrode configurations were evaluated by their sensitivity and specificities, us-

ing a multi-objective optimization method called the Pareto ranking [179]. The ro-

bustness of classification accuracy depends on sensitivity and specificity and hence

it is important to identify the subsets of frequencies that are important for both good

sensitivity and specificity. By choosing the sensitivity and specificity values as two
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objective functions, the performance of each configuration can be mapped into this

objective space. A Pareto optimal solution in the objective space is one that is not

bettered by another solution in both the sensitivity and specificity. Such Pareto op-

timal solutions define the Pareto front, and all solutions that are not on the Pareto

front are not optimal solutions to the classification task.

Electrode
Configurations

Features
(Frequencies)

Accuracy Sensitivity Specificity

TPA
(2D)

f1, f11, f12, f13 76.7% 69.7% 85.2%

TML
(2D)

f2, f5, f6, f7, f8,
f10, f11, f13

85.0% 75.0% 96.4%

BPA
(2D)

f1, f2, f3, f5, f9,
f12, f13, f14

85.7% 77.8% 91.7%

BML
(2D)

f1, f3, f4, f8,
f12, f14

86.0% 66.7% 100.0%

LIS
(3D)

f1, f3, f4, f6, f9,
f10, f11, f14

87.8% 81.8% 92.6%

RIS
(3D)

f2, f3, f4, f8, f9,
f10, f11, f12

92.2% 88.5% 96.0%

II
(3D)

f1, f2, f5, f10,
f12, f13

85.7% 82.8% 88.9%

SS
(3D)

f6, f7, f8, f13,
f14

81.3% 76.5% 86.7%

Table 3.3: Selected frequencies for each electrode configurations with accuracy, sensitivity,
and specificity values.The frequencies are represented as [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
f12, f13, f14] which is [76.29395, 152.5879, 305.1758, 610.3516, 1220.703, 2441.406, 4882.813,
9765.625, 19531.25, 39062.5, 78125, 156250, 312500, 625000] Hz respectively.

In this work, the solutions on the Pareto front were ranked with descending speci-

ficities to form a ranked list of electrode configurations. This is because it is more

important to avoid misdiagnosing healthy volunteers as diseased in clinical assess-

ments. The choice of evaluating the results with the best accuracy, sensitivity, or

specificity usually depends on the type of medical tests and the concept of the study.

Given the different feature subsets for each electrode configuration, similar feature
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configurations may appear on the Pareto front. Only the highest-ranked solution

with the minimum number of features for each electrode configuration is retained in

the list to avoid the inclusion of redundant features.

Selected sensitivity-specificity pairs are indicated in Figure 3.7 in red. The results

show that the electrode configurations are achieving the highest specificity (TPR) of

100% and the highest sensitivity (TNR) of 88.5%. Table 3.3 summarizes the chosen

results for each configuration with the identified frequencies.

3.3.4 Diagnosis Using Multiple Electrode Configurations

Electrode configurations achieve sensitivities varying between ≈ 70% to ≈ 89%

and specificities varying between ≈ 85% to 100%. These results indicates that the

electrode configurations are highly capable of avoiding misdiagnosis and also ca-

pable of detecting the disease. It also means that some of the patients and healthy

volunteers are misclassified in some of the electrode configurations. All the measure-

ments are taken with a single placement of the device at the center of the tongue with

intra-oral placement. Across all electrode configurations, measurements give more

comprehensive measurement of the characteristics of the tongue to make a better

diagnostic decisions. Therefore the diagnosis method should employ all electrode

configurations with the outcome of the analysis given in Table 3.4. The majority vot-

ing method was used to combine the outcomes from all the electrode configurations.

Table 3.4 is presented for volunteers and patients diagnostics ratio for all elec-

trode configurations. There are eight electrode configurations available, but mea-

surements are not captured in some of the electrode configurations for some patients

and volunteers. The ratio represents the proportion of the number of electrode con-

figurations that correctly identified the patient/volunteer to the total number of elec-

trode configurations that the measurement was performed. The blue colours repre-

sent the low ratios, where less than or equal to 50% of the electrode configurations
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correctly identified the patient/volunteer. Converting red and blue color codes into

confusion matrix table, true positives and true negatives are represented with red

colour where false positives and false negatives are represented with blue colour.

Patient Rate Patient Rate Patient Rate Patient Rate
p001 8/8 p012 4/8 p023 6/8 p034 5/6
p002 5/8 p013 5/7 p024 6/8 p035 8/8
p003 6/6 p015 0/1 p026 3/5 p036 6/6
p004 5/8 p016 3/4 p027 1/1 p037 3/8
p006 6/6 p017 0/0 p028 1/1 p038 8/8
p007 3/5 p018 5/5 p029 2/4 p039 4/4
p008 5/7 p019 1/1 p030 3/3 p040 2/3
p009 5/8 p020 5/5 p031 5/6 p041 7/8
p010 5/5 p021 6/8 p032 5/5 Blue Red
p011 3/8 p022 5/8 p033 4/4 Low High
Volunteer Rate Volunteer Rate Volunteer Rate Volunteer Rate
v001 8/8 v009 3/3 v017 8/8 v025 8/8
v002 7/7 v010 7/7 v018 6/7 v026 5/8
v003 8/8 v011 4/4 v019 8/8 v027 7/7
v004 8/8 v012 7/8 v020 7/8 v028 8/8
v005 8/8 v013 8/8 v021 3/4 v029 8/8
v006 7/8 v014 7/8 v022 2/4 v030 3/5
v007 4/6 v015 8/8 v023 8/8 Blue Red
v008 7/8 v016 8/8 v024 6/7 Low High

Table 3.4: Diagnosis outcomes across all electrode configurations. For each individual re-
sults are provided as a ratio of the number of configurations in which the correct classification
was made to the total number of configurations that were included in the analysis. The red
color indicates where the majority outcomes showed correct diagnosis while the blue indi-
cates the alternative.

The results show that only five of the patients and one healthy volunteer was mis-

diagnosed based on the 50% rule. In confusion matrix, this translates to true positive

value of 32, true negative value of 29, false positive value of 1 and false negative value

of 5. This is equivalent to 86% sensitivity, 96.7% specificity, and 91.0% accuracy. The

results have similar scores to the best performing 3D electrode configuration [RIS],

but the scores are higher than the rest of the electrode configurations. The results are
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also more reliable in comparison to depending on the analysis from a single electrode

configuration.

3.4 Longitudinal Analysis Using Selected Features

In order to examine the relationship between patient symptoms and the EIM

measurements, classification with feature selection followed by Pareto ranking was

undertaken. The selected frequencies for each electrode configurations are employed

in the longitudinal analysis to examine whether the EIM can detect the change over

time.

Figure 3.8: Percent change between baseline and 6th month visits for volunteers and pa-
tients in each electrode configurations to find the electrode configurations that can detect
the patient EIM change.

The measurements with the EIM device are taken with three months intervals for

patients and six months intervals for volunteers. In order to make the intervals equal,

patients’ baseline and sixth-month visits are used in the analysis. Phase angle values

in the new feature space for each electrode configuration were then summarized with
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a single score for ease of interpretation by calculating the L2 (Euclidean) norm for

each visit per patient and healthy volunteers. The percentile change between the

baseline visit L2 norm and the sixth-month visit L2 norm is an appropriate choice to

detect the changes for the two groups.

Figure 3.8 presents the swarm plots of the percentile change in the L2 norm be-

tween visits. The results indicate that it is difficult to detect the longitudinal changes

for patients with EIM readings. Only the [RIS] electrode configuration appeared to

show some discrimination between volunteers and patients compared to the other

electrode configuration. Further results are reported in [130].

Patient
Baseline

Score

6th
Month
Score

Patient
Baseline

Score

6th
Month
Score

Patient
Baseline

Score

6th
Month
Score

p001 4 3 p020 9 10 p033 12 8
p003 9 10 p021 8 3 p035 1 1
p004 12 11 p022 8 10 p037 10 10
p008 7 6 p023 9 10 p038 12 11
p009 10 10 p024 9 8 p039 3 1
p013 9 9 p026 12 11 p040 12 12
p016 8 10 p028 7 8 p041 12 12
p017 10 7 p029 11 11 blue green red
p019 8 10 p030 10 8 Stable Increase Decrease

Table 3.5: Total bulbar subscores of the ALSFRS of each patient for baseline and 6th Month
visits.

Clinically, the longitudinal disease progression is usually carried out from the bul-

bar score. Table 3.5 shows the total bulbar subscores of the ALSFRS of each patient in

each visit. It was expected that there will be a drop in the bulbar scores as the disease

progresses; however, some of the patient’s bulbar scores are unchanged, and some

even had an increase in bulbar subscore. A few of the patients have shown mild re-

duction, and just three patients have shown severe reduction on the tongue bulbar

score. This provides a hint that the tongue structure for the majority of patients have

not changed over the six months, showing the difficulty of the longitudinal data anal-
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ysis.

3.5 Chapter Conclusion

In this chapter, the classification of healthy volunteers and ALS patients using

novel Sheffield EIM device’s phase readings was proposed. Two of the popular clas-

sification methods, k-NN and SVC were compared with feature extraction. Feature

selection was implemented with k-NN classification, and the best performing fre-

quency subset for each electrode configuration was selected after a Pareto Domi-

nance analysis. Diagnosis with multiple electrode configurations was implemented.

Longitudinal analysis was completed in the new feature space formed from every

electrode configuration.

Dimensionality reduction with feature extraction was implemented using PCA.

Preprocessing analysis has shown that all electrode configurations have above 90%

variability with only four PC. The projection of the first two PCs in two-dimensional

space has revealed that there is discriminatory information between the two groups.

Classification using the four PCs with SVC algorithm has determined that the 3D elec-

trode configurations perform better compared to the 2D electrode configurations. k-

NN classification has achieved better accuracies than the SVC and confirmed that the

3D electrode configurations perform better compared to the 2D electrode configura-

tions. Overall accuracies were varied among the different electrode configurations,

reaching up to 80%. Classification with feature extraction showed sufficient discrim-

inability of groups with EIM data.

Dimensionality reduction with feature selection is implemented using the ex-

haustive feature subset search and k-NN classification algorithm. Pareto dominance

is investigated for the selection of the best performing frequency subsets. The 3D

electrode configuration [RIS] gave the most accurate results among all. The diagnos-
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tic ability of the device is improved with diagnosis using multiple electrode config-

urations. A sensitivity of 86.5%, a specificity of 97.7% is achieved using all electrode

configurations.

Longitudinal analysis was completed using the new feature subset for each elec-

trode configuration obtained by the feature selection. Results have shown that the

3D electrode configuration [RIS] performed better than the rest of the electrode con-

figurations in detecting the percentile change of the EIM phase readings.



Chapter 4

Data Driven Modeling of Electrical

Impedance Myography Measurements

Advances in technology facilitated the collection and storage of large amounts

of data obtained from experimental sources. Growing computational efficiencies

helped improve methods that serve as tools to mathematically model the observa-

tions in order to relate it to real-world applications. Data-driven modeling (DDM)

benefits from the advantages of the computational advances to model the obtained

data without any prior knowledge on the governing physical laws of the data source

or experimental settings.

Data-driven modeling has been the focus of the studies where there is little or no

knowledge about the mathematical or physical principles that describe the systems’

characteristics. The models that are hypothesized by the physical laws and existing

mathematical equations often use simplifications and idealizations that do not cap-

ture the relevant complexity in the actual system. This can lead to a bias in the model

that is chosen to represent the system. As opposed to knowledge-based modeling,

DDM tries to create mathematical models that are unbiased, and that can provide

the flexibility to finding new patterns and mathematical laws from the observations.

67
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In DDM, firstly, a model choice is made based on some assumptions and the mea-

surement data that is available from the system. And secondly, a model estimation

is performed by defining a loss function to quantify the fit of the model to the data.

Some models can be used to give the required flexibility while also retaining some

physical interpretability.

The previous chapter focused on machine learning methods to tackle difficult,

high-dimensional data problems with limited input-output readings to find patterns

relevant to the research question. This chapter focuses on the DDM with unknown

system dynamics for identifying model related parameters that may have a physical

meaning. Relating the EIM data to the physiology of the tongue through mathemati-

cal models is challenging. Some electrical circuit models have been proposed in the

literature, but they lack the flexibility that may be required to fit to the data. The

model structure that is chosen here belongs to a form that can include some of the

electrical circuit representations. These are introduced in the following sections.

4.1 Selecting A Model Structure For The EIM Data

Model construction from the observed data has applications in industry [180] and

natural sciences [181]. System Identification is a field of research within control sys-

tems engineering that tries to build a proxy mathematical model from observed in-

put/output data. It is a method of model reduction by selecting models with only the

dominant characteristics that describe the system. Compared to modeling imple-

mented by using machine learning methods in the previous chapter, System Iden-

tification has been around longer [182, 183]. For a successful system identification

implementation, there are steps to follow. First, identify the model structure and

parametrize the model that is relevant to the data based on the assumptions made

about the system. Second, infer a system description that summarizes the data con-
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cerning the model, complexity levels, and underlying principles. Third, select al-

gorithms that are suitable for estimating the numerical parameters of the model.

Fourth and last, validate the model on new data. The steps to a system model identi-

fication process are given in the following diagram:

Figure 4.1: System Identification diagram to represent the steps for identification process.

The selected model and the cost function, together with the data, contribute to

the estimation of the parameters. It is important to remember one fact that the ’Na-

ture is simple’ [184], and the model complexity should be assessed in order to ob-

tain the model that best represents the system without the redundant and irrelevant

parameters. Moreover, reducing model complexity will reduce the computational

complexity. However, the balance between the model complexity and the fit should

be carefully analysed. For this reason, a model space consisting of different model

orders is essential. There are model selection schemes that trade off the improved

model fit while penalizing the model complexity.

Systems can be described either non-parametrically or by a parametric model

with linear or nonlinear representations. The essential characteristics of a model can

be summarized by parameters that make the model a parametric model. Parameters



Modeling 70

with a linear relation between them make the model linear in parameters. Real-life

models are nonlinear; however, if a linearized representation can sufficiently approx-

imate the system characteristics, then the system will be represented with a linear

model. This approach will reduce the model complexity and computational cost.

System identification is mostly built around the linear models, but nonlinear system

identification is an open and growing field [185]. The objective of using a loss (cost)

function is to evaluate the model’s performance and thereby to estimate the optimal

parameters giving best fit.

Systems are represented with block diagrams to show the input-output relation.

These diagrams are a useful tool for the construction of the model with simpler build-

ing blocks. The diagrams’ complexity depends on whether the system is measured in

a well-controlled environment with each variable known to affect the output(s). The

diagrams are named with the grey colour scale. As the shades of grey get darker and

lighter, the background knowledge or the knowledge on the experimental setup gets

darker and lighter. Modeling with the white box models requires complete under-

standing and background knowledge of the system from which the observations were

obtained. The model has applications in literature [186]; however, it is not widely

used since it is not possible to understand the whole system and know its physical

laws from the basic principles. Therefore, grey box models are used to overcome

the complicated structuring of the white-box models. The grey shade comes from

the modeling with some unknown parameters or unidentified relationships between

the variables. With the grey-box model, the observer has some idea about the actual

model but not the entire settings of the experiments. Grey-box models are a more

realistic model structure where the observer can depict the model with some of the

straightforward physical laws of the experiment settings. There are different shades

of grey, described by L. Ljung, in his summary of system identification methods and

directions for future works [184]. These shades are; off-white, smoke-grey, steel-grey,
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slate-grey models in which the examples and works are more focused on the nonlin-

ear system identification. The darkest shade of grey, the black box is the most flexible

model. It is dependent on the inputs/outputs of the system without knowledge of

how the system works.

The data obtained from the EIM device is a frequency response data that will draw

our focus on frequency domain parametric linear system identification. Since there

is a need to select the model structure and parameters, the black-box model will be

used for the flexibility required for modeling the data and to extract the underlying

structures of the ALS disease. The parametrized transfer function form permits the

use of identified parameters to classify the patients and volunteers for the diagnosis

of the disease.

4.2 Black Box Transfer Function Model

The literature suggest that the electrical circuitry representation of the cell at-

tributes with 3-element [52] or 5-element [53] models could help represent the bio-

electrical impedance data [187, 188, 189]. The 3-element model consists of the cell

wall mass Xc that acts as reactance, intracellular Ri , and extracellular Re fluid that

act as resistances. In 5-element model, in addition to these 3-elements, there are or-

ganelle resistance Ro and reactance Xo . In simple terms, the measurement process

consists of applying a non-invasive alternating current to the tissue and recording

the output voltage. Ohm’s Law states that the proportion of the current and voltage

returns the impedance readings. In these terms, the suggested circuitries in the liter-

ature rely on the physical model of a cell; however, the tissue level observations have

a more complicated structure than a single cell. In a sample tissue that is measured

with electrical impedance spectroscopy, there are influences of the layers of tissue

with different components such as connective tissue, muscle tissue, nervous tissue,
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and fat tissue. Moreover, the attachment of the electrodes to the tissue will have ad-

ditional influences on the measurement. Modeling such complex systems with very

little knowledge of the effects of these components is insufficient. Therefore, model-

ing the tissue without relying on the background information will give the freedom

necessary to identify the disease characteristics with the parameters.

Figure 4.2: Black Box model representation of the system.

Linear black-box models described with the input u(s) and output y(s) is given as

follows;

A(s)y(s) = B(s)

D(s)
u(s)+ C (s)

F (s)
e(s) (4.2.1)

This model is a representation for both the deterministic and stochastic parts of a sys-

tem. There are parameters used to describe the input-output characteristics as well

as the error characteristics. Using all parameters in this representation is computa-

tionally expensive, and it may not best represent the system. For this reason, reduced

complexity models are available. Transfer function models are used to describe the
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deterministic part of the system as

y(s) = B(s)

D(s)
u(s) (4.2.2)

In Control Systems Engineering, the proportion of the output-input of a linear

time-invariant system in mathematical function form is called its transfer function.

For frequency domain data, the transfer functions are represented in s domain with

Laplace transform. The visualization of the bioelectrical impedance system’s transfer

function is possible using the independent frequencies and the dependent impedance

output in a Bode plot or a Cole-Cole plot. Bode plots with its magnitude and phase

values are useful in representing the impedance readings in polar form, and Cole-

Cole plots are useful in representing the impedance in complex form. The transfer

functions are given in a mathematical form of rational polynomials with numerator

and denominator functions. The roots of the polynomial function in the numera-

tor give the zeros, and those in the denominator give the poles. A transfer function

model in the Laplace domain (s-domain) is as follows;

M(s) = N (s)

D(s)
(4.2.3)

where order of polynomial N(s) is less than or equal to the order of polynomial D(s).

The s-domain model can be related to the frequency response function of the system

where s = jω where ω= 2π f and the frequency response function is given by

M( jω) = N ( jω)

D( jω)
(4.2.4)

A linear black-box transfer function with an unknown number of poles and ze-

ros allows for the type of flexibility necessary for selecting a suitable mathematical

structure for the Electrical Impedance measurement from the tongue. The estima-
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tion process in terms of black-box modeling includes exploration of different com-

plexity models and selection of a suitable model that best represent the data. The

aim is to find the set of poles and zeros that would best represent the disease charac-

teristics while a good fit to the data is obtained.

4.3 Rational Polynomial Transfer Function Model

Transfer functions can be formulated in polynomial and factorized form. The first

approach to formulating the linear frequency response data transfer function is given

in the following general form as;

Mnp ,nz (s) = N0 +N1s +N2s2 + ...+Nnz snz

D0 +D1s +D2s2 + ...+Dnp snp
(4.3.1)

The electrical impedance data are in the form of R(ωl )+ j X (ωl ) with s = jω, where

l = 1,2, ...14. The order of poles and zeros nz ≤ np , and the order of the system is de-

termined by the order of the poles where np < 14. The D0 coefficient is constrained

to be 1, D0 = 1, to ensure that the mathematical model has the uniqueness. The poly-

nomial functions in the numerator and denominator are solved after complex com-

ponents are separated and the difference between the data real and imaginary part

(given by R(ωl )+ j X (ωl )) with the model real and imaginary part from Mnp ,nz ( jωl )

is minimized. The following section shows the steps for converting the equation into

naive least squares for a closed form solution, which is one of the most common

estimator for linear systems. With naive least squares, the parameter vector θ is esti-

mated by minimizing the sum squared error.
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4.4 Naive Least Squares Estimation

Following the Transfer Function Equation 4.3.1, we have;

Mnp ,nz (s)+Mnp ,nz (s)(D1s +D2s2 + ...+Dnp snp ) = (N0 +N1s + ...+Nnz snz ) (4.4.1)

In matrix form;

Mnp ,nz (s)+Mnp ,nz (s)
[

D1 D2 ... Dnp

]


s

s2

...

snp

=
[

N0 N1 ... Nnz

]


1

s

...

snz

 (4.4.2)

For calculating the real and imaginary roots, s = jωl , with ωl = 2π fl is an array from

the frequencies with l = 1,2, ...,L and L = 14



s0

s1

s2

s3

s4

s5

s6

s7

...



=



1

jω

−ω2

− jω3

ω4

jω5

−ω6

− jω7

...



=



1

ω

ω2

ω3

ω4

ω5

ω6

ω7

...



¯



1

j

−1

− j

1

j

−1

− j

...



(4.4.3)

From Equation 4.4.3, the even roots are imaginary and odd roots are real. This helps
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formulate the numerator and denominator values as follows;

N r eal
even = NE =

[
N0 N2 N4 ...

]
, N i mag

od d = NO =
[

N1 N3 N5 ...
]

,

Dr eal
even = DE =

[
D2 D4 D6 ...

]
,D i mag

od d = DO =
[

D1 D3 D5 ...
] (4.4.4)

and

qNE =



ω0

ω2

ω4

ω6

...


¯



1

−1

1

−1

...


, qNO =



ω1

ω3

ω7

ω9

...


¯



j

− j

j

− j

...


, qDE =



ω2

ω4

ω6

ω8

...


¯



1

−1

1

−1

...


, qDO =



ω1

ω3

ω7

ω9

...


¯



j

− j

j

− j

...


(4.4.5)

From Equations 4.4.4 and 4.4.5

[
D1 D2 ... Dnp

]


ω

ω2

...

ωnp

= DE qDE + j DO qDO

[
N0 N1 ... Nnz

]


1

ω

...

ωnz

= NE qNE + j NO qNO

(4.4.6)

Leaving Mnp ,nz (s) alone on the left hand side, and inserting Equation 4.4.6 in Equa-

tion 4.4.2 :

Yr + j Yx = NE qNE + j NO qNO −DE qDE (Yr + j Yx )− j DO qDO (Yr + j Yx ) (4.4.7)
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Therefore, the real part (Yr ) and imaginary part (Yx) from the model output is calcu-

lated as follows;

Yr =
[

qNE −qDE ∗Yr qDO ∗Yx

]


NE

DE

DO

 , Yx =
[

qNO −qDE ∗Yx qDO ∗Yr

]


NO

DE

DO

 (4.4.8)

In matrix form;

Yr

Yx

=
qNE 0 −qDE ∗Yr qDO ∗Yx

0 qNO −qDE ∗Yx qDO ∗Yr




NE

NO

DE

DO

 (4.4.9)

Y = Xθ (4.4.10)

where Y is output, X is information matrix and θ is the parameters. Coefficients in

the transfer function can be obtained in closed form from naive least squares with

θ̃ = (X T X )−1X T Y (4.4.11)

Inserting Equation 4.4.11 into 4.4.10, we get:

Ỹ = X θ̃ (4.4.12)

The coefficients can then be mapped into the frequency response function form

to obtain the model representation. The naive least squares estimation provides a
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mathematically convenient form of model identification. However, the direct imple-

mentation of the estimator resulted in a model with unstable poles and non-minimum

phase zeros. The main contributing factor appeared to be the choice of frequencies

that increased in log-scale.

4.5 Factorized Transfer Function Model

The closed-form linear least-squares approach formulated in the polynomial trans-

fer function has shown that the numerical issues that arise from the frequency data

should be addressed. The factorized transfer function is a simpler and numerically

stable form that aims to resolve the numerical instability problem. This form only al-

lows for real poles and zeros. Magnitude plots, in particular, are useful in determining

the number of poles and zeros of the impedance data.

Figure 4.3: Bode Diagram for one impedance data set, given with Magnitude and Phase
response plots.
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The magnitude response of one data set in full spectrum is shown in Figure 4.3 for

a visual inspection. When the numerator of the transfer function approaches to zero,

then the frequency point approaches a zero point; in Bode plot magnitude response,

this will add a slope of +20dB/dec. When the denominator approaches to zero, then

the frequency point approaches to a pole point; in Bode plot magnitude response,

this will add a slope of -20dB/dec. From this perspective, a transfer function equation

with varying poles and zeros in factorized form is given as follows;

Mnp ,nz (s) = K

∏nz
iz=0(s + ziz )∏np

ip=0(s +pip )
(4.5.1)

where K is the gain, s = jωl is the frequency inputs of the observation, ziz and pip are

the zeros and poles respectively.

4.5.1 Integral Fractional Order Transfer Function

The integer-order transfer function in the factorized form in Equation 4.5.1 will

help obtain the poles and zeros directly from the denominator and numerator. In

Figure 4.3, it is visible that the slopes at the high frequency spectrum are smaller

than ±20dB/dec, and in order to capture these slopes that may reveal important

information relating to the data, the order of s in Equation 4.5.1 needs to be revised.

Representing systems by fractional order rather than with integer order has proven

to be useful in real world applications [190]. In Cole-Cole plots, fractional powers

have been used to identify the models from EI data [191]. Fractional powers have

been proven to be useful in modeling the tissue level biological electrical impedance

measurements [192, 193, 194, 195]. Looking into the mathematical function in Equa-

tion 4.5.1, the ±20dB/dec slope is a result of computing the poles and zeros with

integer-order. One method to achieve a lower than ±20dB/dec slope is by the choice

of the order of s being less than 1. Replacing the integer orders of the poles and ze-
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ros with the fractional-order may improve the fit to the system’s anomalous behavior.

Fractional order systems can be formulated in two different ways; commensurate or-

der, where αp1 = αp2 = ... = αip = αz1 = αz2 = ... = αiz ≡ α and noncommensurate

order where αp1 6= αp2 6= ... 6= αip 6= αz1 6= αz2 6= ... 6= αiz in Equation 4.5.2 [196]. In

this project, the commensurate fractional order transfer function is chosen because

of the limited amount of impedance data that is available to fit the model.

Mαnp nz (s) = K

∏nz
iz=0(sα+ ziz )∏np

ip=0(sα+pip )
(4.5.2)

There is also a gentle slope that appears at the low frequency of the magnitude

plot. From a physical point of view, in cell level measurements, the identical cells

would be expected to have the same model, but in tissue level, there are different

cells in the system. In this data, they can be used to explain the integration effect

and the process of cell continuum approximation respectively. In literature, there are

examples of this integration effect coming from the electrode-tissue interface model

[197]. This effect may also come from the tissue layers of the tongue. An epithelial

layer on top of tongue may cause interference that needs to be taken into account.

Epithelial acting like a capacitance could also explain modeling of M0(s) = 1
sα0 inte-

gration. In order to account for the gentle slope that appears at the low frequency

of the magnitude plot, a different fractional order of an integrator is chosen to rep-

resent that part. Schematically this can be shown via two separate processes, one

associated with tongue, and the other fractional integration potentially associated

with he measurement process.

The second block M0(s) on the block diagram above represents the fractional in-

tegration that may come from instrument process or some other affect on the mea-

surements and the first block Mα1np nz (s) represents the tongue process. This series

block diagram returns the Equation (4.5.3) for the integral fractional order transfer
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Mα1np nz (s) = K
∏nz

iz=0(sα1+ziz )∏np
ip=0(sα1+pip )

Tongue Process

M0(s) = 1
sα0

Integration

Figure 4.4: Series black-box model for combining the instrument measurement model and
the transfer function model of the tissue.

function used here.

Mαnp nz (s) = K
1

sα0

∏nz
iz=0(sα1 + ziz )∏np

ip=0(sα1 +pip )
(4.5.3)

4.5.2 Integral Fractional Order Transfer Function Parameters From

Polar Components

In this section, the calculations will be explained by partitioning the Equation

4.5.3. These calculations are used in the estimation process and it explains how the

parameters of the integral fractional order transfer function is obtained. Consider

one pole fractional order system:

D(s,α1, p1) = 1

sα1 +p1
(4.5.4)

where s = jωl and Tp1 = 1
p1

is the equivalent of the time constant and the equation

becomes:

D(ωl ,α1, p1) = 1

Tp1 ( jωl )α1 +1
(4.5.5)

For ( jωl )α1 =ωα1
l e j π2α1 where e j π2α1 = cos(π2α1)+ j sin(π2α1), we get:

D(ωl ,α1, p1) = 1

Tp1ω
α1
l cos(π2α1)+ j Tp1ω

α1
l sin(π2α1)+1

(4.5.6)
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For Magnitude

|D(ωl ,α1, p1)| = 1√
T 2

p1
ω

2α1
l +2∗Tp1ω

α1
l cos(π2α1)+1

(4.5.7)

and Phase

6 D(ωl ,α1, p1) = tan−1

( −Tp1ω
α1
l sin(π2α1)

Tp1ω
α1
l cos(π2α1)+1

)
(4.5.8)

The transfer function part associated with the zeros can be calculated the same

way:

|N (ωl ,α1, z1)| =
√

T 2
z1
ω

2α1
l +2∗Tz1ω

α1
l cos(

π

2
α1)+1 (4.5.9)

and Phase

6 N (ωl ,α1, z1) = tan−1

( −Tz1ω
α1
l sin(π2α1)

Tz1ω
α1
l cos(π2α1)+1

)
(4.5.10)

Same way, the fractional integration D(s,α0) = 1
sα0 Magnitude and Phase is;

|D(ωl ,α0)| =ωα0 (4.5.11)

6 D(ωl ,α0) = −π∗α0

2
(4.5.12)
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The equations above returns the magnitude and phase of the whole model is as

follows;

|Mαnp nz (ωl )| = K

∏nz
iz=0 |N (ωl ,α1, ziz )|

|D(ωl ,α0)|∏np

ip=0 |D(ωl ,α1, pip )|
(4.5.13)

6 Mαnp nz ( jωl ) = 6 D(ωl ,α0)+
nz∑

iz=0

6 N (ωl ,α1, ziz )−
np∑

ip=0

6 D(ωl ,α1, pip ) (4.5.14)

These formulas permit us to calculate the gain and phase of fractional order trans-

fer functions of varying model orders.

4.6 Chapter Conclusion

In this chapter, the aim was to create a generic model with sufficient flexibility for

identifying an appropriate model structure that can fit the observed impedance data.

The model based approach was to consider a transfer function model to represent

the underlying tongue impedance characteristics. The transfer function model with

the choice of polynomial form combined with the naive least squares estimation did

not yield satisfactory results. In fact it showed numerical instability in the calculation

of the parameters even though a numerically stable version had been proposed in the

literature, they had been applied to linearly varying frequencies and did not provide

an adequate solution for the problem considered here. A more restricted transfer

function model with real valued poles and zeros were considered. A parametrization

that was linear in the log scale was considered as a means to overcome the numerical

instability. However this model also could not account for specific patterns in the

impedance data, most notably the slope at the low frequency end. The final choice of

the model was the fractional transfer function form. Following chapter will present

the results to model parameter estimation and model selection schemes using the

final choice of model.



Chapter 5

Parameter Estimation and Model

Selection

In the previous chapter, the first challenge of DDM, choosing a suitable model

structure for EIM tongue data was addressed. In this chapter, the focus is on the es-

timation of the model parameters. In knowledge-based modeling, it may be possible

to obtain the parameters from the experimental setup or background information;

however, in data-driven modeling, the parameters are estimated from the chosen

model and the observed data.

The modeling process presented in Section 4.3 has shown that the linear opti-

mization methods are incapable of calculating stable poles and zeros. For this rea-

son, this chapter considers the estimation of parameters with nonlinear optimization

algorithms in an iterative search scheme. Among several optimization algorithms,

three commonly used ones are: exhaustive search [198], metaheuristic algorithms

[199, 200] and probabilistic methods [201]. Section 5.1 compares three algorithms;

each belonging to one of these families for parameter estimation of the tongue EIM

data model.

Model complexity selection is the last step in identifying a suitable model for the

84
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observed data. The Integral Fractional Order Transfer Function model described in

Section 4.5.2 is flexible for creating a model space with a set of candidate models

from simplest to most complex form. A model selection criteria will be used to select

a model from the model space to represent the system in its optimal form. In this

framework, modeling is a type of dimensionality reduction that aims at selecting a

model that represents the system in its simplest form. Section 5.2, compares two of

the commonly used model selection criteria. The parameters of the selected model

will be considered the features of the data that may have disease-related patterns.

5.1 Parameter Estimation

The model parameters that return values for the gain, poles, and zeros, which

may contain discriminatory information between the healthy volunteers and pa-

tients, require reliable parameter estimation methods. There are conventional meth-

ods that are easy to implement, but they suffer from finding solutions that are not the

global optimum. For linear optimization, the global optimum is reached when the

optimal solution is obtained. In contrast, nonlinear optimization may have several

local optimum among all other optimal solutions. In computational biology, there

are examples of using Markov Chain Monte Carlo as a probabilistic approach and

Genetic Algorithm as a heuristic method to find the best set of parameters while fit-

ting the model to the observed data [202].

The fitting process incorporates a cost function to find parameters that mini-

mizes the error between the model and the observed data. In optimization problems,

the cost function is a part of the process for estimating the model parameters com-

monly in an iterative scheme. The observed impedance data and the model output is

given in complex form with R(ωl )+ j X (ωl ) and R̃(ωl )+ j X̃ (ωl ) respectively. Consider

parametrized model given in Equation 4.5.3: Mαnp nz , we can write the function that
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minimizes the Mean Squared Error (MSE) between the observations and the model

as;

Jαnp nz (θ, Mαnp nz ) = 1

L

L∑
l=1

[(R(ωl )− R̃(ωl ))2 + (X (ωl )− X̃ (ωl ))2] (5.1.1)

with

θ̃(Mαnp nz ) = argmin
θ

Jαnp nz (θ, Mαnp nz ) (5.1.2)

where α,np ,nz represents fractional order, poles and zeros parameters respec-

tively. θ̃(Mαnp nz ) is the parameters that minimizes the error between the model and

the observed data.

The parameters associated with the pole and zero locations will be changing in

logarithmic scale, because the frequencies are increasing in a logarithmic scale. Hence

the parameters have to be modeled as linearly varying in the logarithmic space. Pa-

rameters related to gain, fractional orders, poles and zeros are given as θ ∈ [θK , θα0 ,

θα1 ,θpip
,θziz

] where ip = 0, ...,np and iz = 0, ...,nz .

5.1.1 Grid Search

Grid Search algorithm is widely used for its simplicity and convenience to find

an optimal solution to a given function. As the name suggests, the search space is

divided into grids of given intervals, and each point on the grid is searched to find the

parameters that gives the minimum error. The algorithm is implemented iteratively,

and in each search, the size of grid interval is reduced. Grid search is an exhaustive

search, with the flexibility of selecting the grid sizes, intervals and iterations. The

algorithm is suitable for nonlinear parameter optimization problems.

In this project, Grid search is used to test the general model and model complexity

while reaching to an optimal solution for the nonlinear parameter estimation. This

method is considered simple and easy to implement to obtain a first cut model for the

tongue EIM data. This section presents the algorithm implemented for this dataset
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and the results of the model fit.

Algorithm

Grid Search algorithm requires parameter interval, grid sizes, model, cost func-

tion, data, and the number of iterations. The EIM data is measured in frequencies

that vary between≈ 76H z to 625kH z; this range is important for identifying the poles

and zeros search interval. The poles and zeros have an inverse relation with the pa-

rameters (see Section 4.5.2), and the frequencies range between [101,106]. In order to

keep the range larger to identify the poles and zeros in a more flexible search space

and considering the inverse relation, the search interval for the poles and zeros are

set to be [10−9,100]. The value of gain K is likely to be indicative of the value ofω= 100

assuming that the poles and zeros are placed much further than this frequency. Since

the value of the magnitude around this frequency ranges between ≈ 0 and ≈ 200, the

search space for K is set to be [10−2,103]. To capture the slowly decaying/rising slopes

in the magnitude plots, the fractional order parameters of the integration blocks (see

Figure 4.4) are searched over the region [10−4,100].

Step sizes are also a critical user-defined variable, which affects the grid sizes.

Step size is set to 10; this means that each search space is going to be divided into 10

grids. A stopping criteria is defined to terminate the algorithm as the model fit is im-

proved. The stopping criteria will avoid unnecessary iterations once the appropriate

grid resolution is reached. The pseudo-code for the Grid Search method is given in

Algorithm 2.

Results

The results of the Grid Search Algorithm applied to one of the patient’s data is

presented in Figure 5.1 and the parameters are given in Table 5.1. The poles, zeros,

gain, and fractional-order results are presented with the parameters θ. The imple-
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Algorithm 2 Grid Search for estimating gain, fractional orders, poles and zeros with
Integral Fractional Order Transfer Function

Input: Angular frequency: ωl = j 2π fl

Complex Resistance and Reactance data: R(ωl )+ j X (ωl )

Model: Mαnp nz (s) = K 1
sα0

∏nz
iz=0(sα1+ziz )∏np

ip=0(sα1+pip )

Parameters: θ ∈ [θK ,θα0 ,θα1 ,θpip
,θziz

]

Search intervals: Sθ = SθK xSθα0
xSθα1

xSθpip
xSθpiz

,

for SθK = [−2,3], Sθα0
= [−4,0], Sθα1

= [−4,0], Sθpip
= [−9,0], Sθziz

= [−9,0]

Step Size = G = 10

Stopping Criteria = δ = 0.1: If the error does not improve more than the stopping

criteria, the algorithm terminates

Output: Estimated Resistance and Reactance: R̃(ωl ), X̃ (ωl )

Parameters: θ̃ ∈ [θ̃K , θ̃α0 , θ̃α1 , θ̃pip
, θ̃ziz

]

Initialize: SθKl ow
,SθKhi g h

= [-2,3]; Sθα0low
,Sθα0hi g h

= [-4,0]; Sθα1l ow
,Sθα1hi g h

= [-4,0];

Sθpip low
,Sθpip hi g h

= [-9,0]; Sθziz low
,Sθziz hi g h

= [-9,0];

∆K =
SθKhi g h

−SθKl ow

G ; ∆α0 =
Sθα0hi g h

−Sθα0l ow

G ; ∆α1 =
Sθα1hi g h

−Sθα1low

G ;

∆pip
=

Sθpip hi g h
−Sθpip low

G ; ∆ziz
=

Sθzi hi g h
−Sθzi l ow

G

while Jα,np ,nz (θ̃, Mαnp nz )[t ]− Jαnp nz (θ̃, Mαnp nz )[t −1] > δ do

for K within range [SθKlow
−SθKhi g h

] do

for p1 within range [Sθp1l ow
−Sθp1hi g h

] do

... number of for loops depends on the number of poles

for z1 within range [Sθz1l ow
−Sθz1hi g h

] do

... number of for loops depends on the number of zeros

for α0 within range [Sθα0low
−Sθα0hi g h

] do

for α1 within range [Sθα1low
−Sθα1hi g h

] do

Calculate Jαnp nz (θ̃, Mαnp nz )[t ] cost function in Equation 5.1.1

if Jαnp nz (θ̃, Mαnp nz )[t ]− Jαnp nz (θ̃, Mαnp nz )[t −1] < δ then

return R̃(ωl )+ j X̃ (ωl )

else Recalculate the grid sizes from the new grid intervals

end if

end for

end for

end for

end for

end for

end while
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mentation process deals with several problems. One problem arises when the num-

ber of parameters increases, the computational cost increases exponentially, and to

compensate for this, the number of iterations that are needed to reach an optimal

solution also increases. Most importantly, the algorithm is able to find an optimal

solution; however, this is not guaranteed to be a global optimum.

Figure 5.1: Model fit for one example data. The four model fit are plotted: 1-zero 1-pole,
1-zero 2-pole, 2-zero 2-pole, 1-zero 3-pole.

θα0 θα1 θK θip θiz

Mα11 -2.16 -0.04 2.30 -2.81 -9.90
Mα21 -3.17 -0.08 2.30 -2.61, -3.19 -3.51
Mα22 -4.99 -0.08 2.29 -2.61, -3.26 -3.88, -3.88
Mα31 -1.64 -0.17 2.39 -2.41, -2.41, -3.72 -6.60

Table 5.1: Model fit transfer functions with poles and zeros for Figure 5.1

As the model complexity increases, we will be looking into estimating parameters
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with Grid Search with a grid of g equally spaced values and the number of param-

eters of nθ making up to (g +1)nθ search space of possible combinations of param-

eters. This search space causes a high computational cost and therefore makes the

method intractable for complex models. For this reason the analysis investigated the

alternatives to grid search especially algorithms that can find global optimum with

metaheuristic methods such as Genetic Algorithm and probabilistic methods such

as Markov Chain Monte Carlo.

5.1.2 Genetic Algorithm

Genetic Algorithm is a widely used global optimization method in parameter es-

timation for nonlinear optimization problems [203]. The algorithm is inspired by the

survival of the fittest process in Darwin’s evolution theory, and it is a member of the

evolutionary algorithms family [204]. The algorithm selects the best-fitted parame-

ter sets and mates them to create offsprings for the next generation. This is iterated

through generations until a stopping condition is met and the final parameter set is

then selected from the best fit model of the last iteration. In this respect, the number

of iterations plays an essential role in reaching the fittest parameter set (elitist strat-

egy). This section presents the details of the algorithm, and the results obtained from

the implementation of the algorithm to the EIM data. A modification to this algo-

rithm is also suggested.

Algorithm

The algorithmic steps are derived from the genetic splicing in nature, and each

term has an equivalent term to the model parameter estimation. Figure 5.2 illustrates

the steps of the algorithm in a flow diagram, and the terms are expanded within the

subfigures. In further detailing the relationship of the terms to the model estima-

tion, the chromosome is the parameter set, the gene is the individual parameters in
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a parameter set, the population is the collection of chromosomes created with the

random values selected within the interval of each parameter. The fitness of each

chromosome is the quality of the model fit to data and is calculated with Equation

5.1.1. A number of best-fitted chromosomes are selected and placed into a mating

pool. In the mating process, the selected parents in the mating pool are employed

for crossover and mutation of the genes. The offsprings are created as a result of

crossover and mutation, and new offsprings are created in each iteration (genera-

tion). When the set number of iterations are reached the last offspring is selected as

a final parameter set.

Figure 5.2: Genetic Algorithm flow chart with population, gene, chromosome terms and
crossover types.

Fine-tuning of the variants for the GA has resulted in selecting the population size

of 10000, a mating pool of 1000. There are different types of crossover in this algo-

rithm; single point, two-point, and random. Single point crossover is implemented

by dividing the chromosome into two and swapping the two parts between the par-
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ents. Two-point crossover (or multi-point) is implemented by dividing the chromo-

some into three (or more) and swapping these parts between the parents. For a ran-

dom crossover, the genes are crossed over randomly, without following a pattern. In

this implementation, random crossover is used. The mutation is the process of alter-

ing the offsprings with random values; hence, a safety measure is taken to keep the

parameters within range by checking whether the parameter is exceeding the initial

limits.

Results

The parameters of the models are estimated using the Genetic Algorithm de-

scribed above by minimizing the error function Jαnp nz (θ, Mαnp nz ) given in Equation

5.1.2. Search intervals were used according to 2 with respect to the discussion given

in Section 5.1.1. Results for different models are presented in Figure 5.3 and the pa-

rameters are given in Table 5.2. The results indicate that as the model complexity

increases (as the number of poles and zeros increase), the error reduces. However,

for the 3-pole 1-zero model, the error appears to increase as the model has difficulty

fitting the data at high frequencies. The θα1 is close to zero for most models which

indicates there is no fractional order associated with the poles and zeros. Parameters

shared from models of different complexity have similar values which suggests that

the estimation is reliable.

The advantage of the Genetic algorithm over the conventional algorithms is that

it creates a population of the fittest parameter sets and creates generations based

on this pool rather than creating a single solution in each iteration. This helps with

approaching the global minimum while avoiding the local minimum problem. How-

ever, each parameter’s final values are the single best solution and that does not give

information on the uncertainty of estimated parameters.
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Figure 5.3: Model fit for one example data. The five model fit with different complexities are
plotted: 1-zero 1-pole, 1-zero 2-pole, 2-zero 2-pole, 1-zero 3-pole, 2-zero 3-pole.

θα0 θα1 θK θip θiz

Mα11 -2.18 -0.002 1.98 -2.98 -4.18
Mα21 -3.61 -0.003 1.97 -2.96, -7.31 -4.25
Mα22 -4.17 -0.015 1.97 -3.01, -3.23 -3.59, -3.86
Mα31 -3.70 -0.005 1.96 -2.95, -6.90, -7.12 -4.29
Mα32 -3.08 -0.005 1.96 -3.12, -3.24, -6.85 -3.57, -3.94

Table 5.2: Model fit transfer functions with poles and zeros for Figure 5.3

Frequency-Related Weighting Factor

The magnitude of frequency response function in Figure 4.3, measurements at

the high frequency data have low magnitude relative to the rest of the data, and these

measurements may be more informative compared to the rest of the measurements

as this region is in the β band (see Section 2.3.3). Moreover, the model fit results in
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Figure 5.3 has shown that the models have difficulty fitting to high frequency data.

Applying weighting to the measurements in this band may help provide a better fit

to this part of the data. For this reason, the weighting factors are calculated from the

data as follows;

µR = 1∑L
l=1(R(ωl ))

(5.1.3)

µX = 1∑L
l=1(X (ωl ))

(5.1.4)

W (ωl ) = log10ωl∑L
l=1(log10ωl )

(5.1.5)

where µR and µX have an inverse relation with the mean values of resistance and

reactance readings of the whole data along the spectrum respectively. W (ωl ) has the

property of 0 < W (ωl ) < 1 and
∑L

l=1 W (ωl ) = 1. The weights of the resistance and

reactance are calculated from the combination of these values as;

WR (ωl ) =µR ∗W (ωl ) (5.1.6)

WX (ωl ) =µX ∗W (ωl ) (5.1.7)

Figure 5.4: Frequency-related weighting factors for resistance and reactance.
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The weightings WR (ωl ) and WX (ωl ) are given in Figure 5.4. The reason for differ-

ent weightings used for resistance and reactance is because the range of resistance

and reactance are different. The purpose of using µR and µX is to get a balance be-

tween resistance and reactance readings as the order of resistance is greater than

order of reactance. The idea behind the frequency-related weighting is to sensitize

the high frequency to capture poles and zeros from the model. From the above equa-

tions, the weighted cost function is calculated as follows;

JW (θ) =
L∑

l=1
[WR (ωl )∗ (R(ωl )− �R(ωl ))2 +WX (ωl )∗ (X (ωl )− �X (ωl ))2] (5.1.8)

Figure 5.5: Frequency-related weighted 2-zero, 3-pole model fit for one example data with
parameters θα0 =−3.42, θα1 =−0.004, θK = 1.96, θip =−3.22,−3.28,−7.29, θiz =−3.84,−3.91.
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The fit results are presented on one dataset with resistance and reactance. Com-

pared to the unweighted fit presented in page 92 from genetic algorithm results, the

weighting has not improved the fit. In fact it reduced the variations in magnitude

needed by the model at the higher frequencies. The weighting is not taken any fur-

ther for this research because the important poles and zeros that have disease-related

patterns are unknown and likely located at the high frequency data. These details

may be captured with a better model estimation instead of a weighted estimation

approach.

5.1.3 Markov Chain Monte Carlo

Genetic Algorithms have many advantages over conventional methods. For ex-

ample, the mutation stage helps with expanding the search space for exploring nearby

options to reach an optimal solution and is applicable to a wide range of optimiza-

tion problems. On the contrary, the number of iterations and population size may

result in difficulty in convergence. Moreover, the obtained parameters in Genetic Al-

gorithms are single best results that do not show the estimation uncertainty.

Bayesian inference represents the unknown model parameters θ with a posterior

probability distribution. This distribution captures the uncertainties in the model.

The estimation of the posterior distribution of the model requires integration over

the multiple parameters. This calculation may be easy for simple models, but as the

model complexity increases, the computational complexity increases. Markov Chain

Monte Carlo (MCMC) is a class of algorithms that can provide a solution to the com-

plex models that requires integration over multiple parameters.

MCMC method refers to the memory-less stochastic process that uses random

samples from a conditional posterior distribution to calculate the model output with

the given input and parameter space. One of the advantages of the method comes

from its computational convenience, where the next estimation process with the ran-
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domly chosen parameters does not rely on past information, and it only depends on

the current settings. The process of the next estimation, depending on the current

state, is called the Markov Chain, and the process of repetitive random sampling is

called the Monte Carlo. The following sections introduce the algorithm used to esti-

mate the parameters of the model and the estimation results.

Algorithm

The implementation of the MCMC method is made possible with various algo-

rithms. Some of the commonly used ones are the Metropolis-Hastings (MH) algo-

rithm, Gibbs Sampler, and Hamiltonian [205, 206]. MH algorithm is the simplest

one that relies on the accept/reject principle. Hamiltonian (aka Hybrid) is compu-

tationally more expensive but more efficient considering the large jumps between

the steps, generates fewer rejection samples, and therefore converges to the poste-

rior distribution faster [206]. In Gibbs Sampling, the parameter space is split into its

parameters, and each parameter is sampled separately, while the rest of the samples

remain fixed to their current values. In most references, in its simplest form, Gibbs

Sampling is considered a particular case of the MH algorithm [207]. This similar-

ity is due to the same random walk rules applied to the Gibbs Sampling. The only

difference comes from the sampling of each parameter in turn in a cycle within the

parameter space and the conditional posterior distribution caused by this cycle.

The initialization step of the MH algorithm requires a parameter distribution.

This distribution comes from the assumption made based on the visual inspection of

the data set. Initial values for the parameters (also known as proposal distribution or

a transition model) are selected from this distribution. The current state parameters

return a model fit error. Another set of parameters are drawn from the distribution

and will be used to calculate the model fit error for this set. The comparison of the

current state’s errors and the new random state helps decide which set of parameters
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become the next state. If the error of the proposed set is higher than the current state,

then the proposed set is rejected, else the proposed set is accepted as the new current

state. The algorithm will repeat proposing a new set of parameters from the current

distribution until the specified number of iterations are completed. The resulting

chain provides the distribution for the parameters. The algorithm steps can be ex-

pressed in terms of Bayesian Inference, and the following mathematical expressions

show this relation. In Bayesian Inference;

P (θ/D) = P (D/θ)P (θ)

P (D)
(5.1.9)

where; P (θ/D) is the posterior distribution that we wish to compute, P (D/θ) is the

likelihood, P (θ) is the prior and P (D) is the evidence. The selection process of the

new set of parameters involves taking the proportion of the new and current poste-

rior distribution. The proportion is given by:

P (θ′/D)

P (θ/D)
=

P (D/θ′)∗P (θ′)
P (D)

P (D/θ)∗P (θ)
P (D)

(5.1.10)

that cancels out the evidence P (D). Canceling the evidence in this proportion is one

of the convenience that comes from the MCMC methods because the evidence term

involves the integration over the parameter space, and as the model complexity in-

creases, the computational complexity of the evidence term increases. The propor-

tion expresses that if the likelihood of the new proposal is higher than the current,

the proposal P (θ′/D) is accepted, else it is rejected. The likelihood of each proposed

sample of parameters is calculated by a function f . Including function f into the

Eq.(5.1.10) returns;
P (D/θ′)∗P (θ′)
P (D/θ)∗P (θ)

=
∏n

i f (di /θ′)∗P (θ′)∏n
i f (di /θ)∗P (θ)

(5.1.11)
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Results

The uncertainty in data is not considered in methods like Genetic Algorithm, and

Grid search. The uncertainty may arise from the lack of knowledge of the physical

background knowledge of the system or noise in the measurement process. The re-

sults of an MCMC algorithm returns the model parameters with the underlying un-

certainty.

One data set from [C I RIS] electrode configuration and patient p039 is used for

estimation of model parameters using MCMC. From Bayesian Inference, the poste-

rior density for the probability distribution of the parameter values is calculated with

the likelihood and the prior information about the assumptions made on the visual

inspection on the parameters. Search intervals were used according to Algotihm 2

with respect to the discussion given in Section 5.1.1. In the implementation, the iter-

ations will repeat the process until the desired number of realizations is completed.

The results are presented after considering the burnin of the chain. Burnin in MCMC

is used to remove the first part of the chain, where the samples has not been drawn

from the stationary posterior distribution. The burnin considered a wrong term for

the MCMC in many resources [208] [209] since it is a memoryless random walk. How-

ever, as long as the chain is not infinite, the approximation at the beginning of the

chain will have an adverse effect on the distribution and therefore needs to be re-

moved for the samples to be more associated with the real distribution. There are

no real rules to select this value; therefore, selecting samples only from the last por-

tion of the iteration to represent the whole distribution is reasonable. The output

results present the model parameters’ statistical properties and the credible interval

of the model to represent the model uncertainty. The distribution of the parame-

ters after the burnin iterations are removed, are given in Figure 5.6a. In this figure

it is shown that the parameters related to the gain K , fractional order α1, pole and

zero p2, z1 are clearly identified however there are ambiguities in parameters related
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to pole p1 and fractional order α0. In Figure 5.6b, the correlation between the pa-

rameters is plotted from the chain results in order to see if there is any correlation

between two parameters. A high correlation between the two parameters may mean

that one parameter may be determined from the paired parameter, and this is unde-

sired because it shows that the correlating parameters are unnecessary. A correlation

is visible between α1 and p1 parameters for this model.

The Figure 5.7 shows the credible and prediction intervals for Mα21 model. The

uncertainty of the parameters obtained from the chain is reflected in the credible in-

tervals. The prediction intervals represent the parameter uncertainty, together with

the observation uncertainty, to depict the future predictions. The results of the cred-

ible intervals are compared to another model in order to see the effects of the param-

eter uncertainty on the model uncertainty. As seen in the Mα21 model, the credible

interval is high in the high frequency data, and this uncertainty is reduced in the

Mα32 model. This indicate that the appropriate model complexity may reduce the

uncertainty in the high frequency data.

Figure 5.7: 2-pole 1-zero model fit, credible and prediction intervals for one example data.
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(a) (b)

Figure 5.6: MCMC chain results with (a) Parameter density plot obtained from the
chain after burnin is removed and (b) Pairwise parameter correlation plot to detect
the correlation between pairs of parameters.

Figure 5.8: 3-pole 2-zero model fit, credible and prediction intervals for one example data.
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5.2 Model Selection

Black-box modeling deals with several uncertainties, such as the observation noise,

the construction of the model, the model parameters, or the initialization of the

parameter space. A model selection procedure is essential to avoid overfitting and

under-fitting that comes from these uncertainties. Section 4.5 on estimation has

shown that the fractional-order transfer function model is suitable for this data. It

is essential to acknowledge that increasing the model complexity may improve the

model fit; however, complex models tend to capture noise, whereas simpler models

tend to capture essential characteristics of the data. For this reason, a model space

consisted of several candidate fractional-order transfer function model is used in the

model selection procedure.

Visual inspection suggested the physical background of the EIS data can be ex-

plained with a minimum of one pole, one zero, and the fractional parameters as

well as the gain for the measurement and the instrument processes. However, the

appropriate model complexity cannot be found without a full investigation of all

model orders. The Mα00 model has only the fractional integration part of the sys-

tem together with gain, given in K
sαo with two parameters related to K ,α0. The model

Mα10 = K
sαo∗(sα1+p1) with four parameters related to K ,α0,α1, p1. Here we can con-

clude that the models with minimum of one pole has the parameter space dimension

of nθ = np +nz +3 and the model order with no poles and zeros has the dimension

of no = 2. The input-output data is has 14 data points and model parameters cannot

exceed this number in order to avoid both the overfitting and over-parametrization.

The model with np = 5,nz = 5, we have parameter space with the size of 13. The fifth

order model Mα55 helps explore full fifth order model space, however higher-order

model spaces will exceed the number of data points. The estimated models will start

from Mα00 and the maximum number of parameters will be achieved in Mα55. The
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anticipated model space with candidate model is Mαip iz = [Mα00, Mα10, Mα11, Mα20,

Mα21, Mα22, Mα30, Mα31, Mα32, Mα33, Mα40, Mα41, Mα42, Mα43, Mα44, Mα50,

Mα51, Mα52, Mα53, Mα54, Mα55]. Here the ip is the number of poles and determines

the model order, and iz is the number of zeros. The model space has models with

the number of poles greater than or equal to the number of zeros np ≥ nz models for

proper systems. The number of parameters for the chosen models are nMαip iz
= [2,4,

5,5,6,7,6,7,8,9,7,8,9,10,11,8,9,10,11,12,13].

5.2.1 Akaike Information Criterion

Akaike Information Criterion (AIC) is one of the most commonly used model se-

lection method. The method is designed to make a trade off between the goodness

of model and the simplicity of the model. This means that the model is useful for

dealing with two of the model selection problems; overfitting and underfitting. The

method does that by calculating a value for each model with the following equation;

AICMαnp nz
= 2nθ−2ln(L) (5.2.1)

where nθ is the number of the parameter in the parameter space of that particular

model and L is the likelihood function for the same model [210]. The equation in-

dicates a reward for the goodness of fit with the likelihood function and a penalty

for the number of parameters. For this reason, the AIC model selection is more about

the quality of the model relative to the quality of the other models in the model space.

Figure 5.9 compares the models for all electrode configurations from the Genetic Al-

gorithm results.
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Figure 5.9: AIC model selection for all electrode configurations. The models are represented
with np ,nz such as 21 is np = 2 and nz = 1 for model Mα21.

Figure 5.9 is converted to a rank based table in order to select the best performing

models. For this table, the models are ranked for each electrode configuration, with

the smallest AIC value having the lowest rank. The ranks are then averaged for each

model and the new rank is identified. Table 5.3 gives this new rank in the last col-

umn and indicates that Mα11, Mα21, Mα22, Mα31, Mα32 models has the minimum AIC

values, with Mα11 model having the top rank and the Mα21, Mα22 models having the

same rank value. The models with no zeros has the highest AIC values that puts them
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lowest in the ranking, which is expected considering the frequency response function

given in Figure 4.3. For this reason, in order to make a conclusion on the discrimina-

tory characteristics of the parameters, the models with best ranked AIC values will be

considered for further analysis.

BPA BML TPA TML LIS RIS II SS
AVG.

SCORE
NEW
RANK

00 16 16 19 17 17 18 16 16 16.9 17
10 17 17 16 16 16 16 17 17 16.5 16
11 3 2 1 1 2 1 1 1 1.5 1
20 18 18 17 18 18 17 18 18 17.8 18
21 4 4 2 2 4 2 2 2 2.8 2
22 1 3 3 4 1 3 3 4 2.8 2
30 19 19 18 19 19 19 19 19 18.9 19
31 5 5 4 3 5 4 4 3 4.1 4
32 2 8 5 5 3 5 6 5 4.9 5
33 6 12 7 7 10 7 8 6 7.9 8
40 20 20 20 20 20 20 20 20 20 20
41 7 11 6 6 6 6 5 7 6.8 6
42 8 1 8 8 9 9 9 8 7.5 7
43 10 9 10 10 12 8 7 9 9.4 9
44 11 6 13 12 7 12 12 10 10.4 10
50 21 21 21 21 21 21 21 21 21 21
51 12 14 9 9 11 10 11 11 10.9 12
52 9 13 11 11 8 11 10 12 10.6 11
53 14 7 12 13 13 13 13 13 12.3 13
54 13 15 14 15 14 14 14 14 14.1 14
55 15 10 15 14 15 15 15 15 14.3 15

Table 5.3: AIC model selection rank based table for all electrode configurations.

5.2.2 Bayesian information criterion

Bayesian information criterion (BIC) is another commonly used model selection

method that penalizes the model complexity more heavily than the AIC. This means

that more complex models will have a higher BIC;

B ICMαnp nz
= log(N )nθ−2ln(L) (5.2.2)
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where L is the likelihood function, nθ is the number of parameters in model [210].

Compared to AIC, the penalty value is 2nθ for AIC and log(N )nθ for BIC where N

is the number of data points. This indicates that the BIC method penalizes model

complexity dependent on the number of data points. The Figure 5.10 compares the

models for [RIS] electrode configuration from the Genetic Algorithm results.

Figure 5.10: BIC model selection for all electrode configurations. The models are repre-
sented with np ,nz such as 21 is np = 2 and nz = 1 for model Mα21.

The Figure 5.10 is converted to a rank based table in order to select the best per-
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forming models. The Table 5.4 indicates that Mα11, Mα21, Mα22, Mα31, Mα32 models

has the minimum BIC values, with Mα11 model having the top rank. The models with

best ranked BIC values will be considered in further analysis. These results agrees

with AIC results except BML electrode configuration which shows the minimum BIC

value at Mα42 model while the overall ranking is around 8 for other electrode con-

figurations. Moreover, models Mα00, Mα10 and Mα44, Mα51 changes in ranking due to

extra penalty applied by BIC for number of parameters.

BPA BML TPA TML LIS RIS II SS
AVG.

SCORE
NEW
RANK

00 16 15 18 16 16 17 16 16 16.3 16
10 17 17 16 17 17 16 17 17 16.8 17
11 1 2 1 1 1 1 1 1 1.1 1
20 18 18 17 18 18 18 18 18 17.9 18
21 4 4 2 2 3 2 2 2 2.6 2
22 2 3 3 4 2 3 3 4 3 3
30 19 19 19 19 19 19 19 19 19 19
31 5 5 4 3 5 4 4 3 4.1 4
32 3 6 5 5 4 5 6 5 4.9 5
33 7 10 7 7 10 7 7 6 7.6 8
40 20 20 20 20 20 20 20 20 20 20
41 6 7 6 6 6 6 5 7 6.1 6
42 8 1 8 8 7 8 8 8 7 7
43 10 11 10 10 12 9 9 9 10 9
44 12 8 13 12 9 12 12 11 11.1 12
50 21 21 21 21 21 21 21 21 21 21
51 11 13 9 9 11 10 10 10 10.4 10
52 9 12 11 11 8 11 11 12 10.6 11
53 13 9 12 13 13 13 13 13 12.4 13
54 14 16 14 15 14 14 14 14 14.4 14
55 15 14 15 14 15 15 15 15 14.8 15

Table 5.4: BIC model selection rank based table for all electrode configurations.
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5.3 Chapter Conclusion

This chapter aimed at estimating model parameters given in general model in

Equation 4.5.3 and selecting a suitable model that can represent the tongue EIM data

along the spectrum. The chapter is divided into two main section in order to present

the analysis results for parameter estimation and model selection. The key reason for

doing the modeling of the tongue EIM data is, if a fairly good fit captures the param-

eters correctly, the model has the potential to link to the electrical characteristics of

the muscle to the model parameters.

Section 5.1 presents three different algorithms that are widely used for parame-

ter estimation. A grid search algorithm is employed to get an estimate of the simple

models. This method is convenient in its easy implementation and exhaustive search

processes. Results have shown that the method has the disadvantage of approximat-

ing to a local minimum value. The method also struggles with the increased compu-

tational cost with the increased model complexity. Genetic Algorithms are capable

of reducing the computational complexity as the model complexity increases. The

method is inspired by nature’s survival of the fittest hypothesis. This method also has

the capacity to approximate the global optimum with the mutation embedded in the

algorithm that allows searching nearby optimal solutions as opposed to Grid Search.

The algorithm results have shown the efficiency of the estimation of the model pa-

rameters. A frequency-related weighting factor is implemented due to the increased

error of the fit in the high frequency region. However, the weighted estimation idea

was abandoned due to the ambiguity of the importance of poles and zeros that may

give better discriminatory information for the volunteers and patients. Markov Chain

Monte Carlo method is also used to show the estimation uncertainty rather than a

single best solution for each parameter. Results have shown that as the model com-

plexity is increased, the credible intervals at the higher frequency end narrows down.
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Section 5.2 is prepared to select a suitable model from the model space that avoids

under or over parametrization. This is because an overcomplicated model with a bet-

ter fit is not necessarily a good model if the model parameters do not show disease-

related patterns. The selected model is going to be used in the classification of the

patients and healthy volunteers to see the discriminatory capability of the parame-

ters in the selected model.



Chapter 6

Parametric Data Classification For

Disease Diagnosis and Longitudinal

Analysis

Chapters 4 and 5 focused on modeling the EIM data taken from the tongue to

identify the effects of the ALS disease on the muscle structure using model parame-

ters. It is assumed that the electrical impedance measurements capture the changes

of the muscle structure, where the coupling of the resistance and reactance influ-

ences the location of the poles and zeros of a transfer function model. The data has

been carefully analysed in Chapter 4, and an integral fractional order transfer func-

tion model was deemed. This model was proven to be ideal with the estimation and

model selection of the parameters. Chapter 5 has addressed the parameter estima-

tion and model selection of this fractional order transfer function model.

The optimal models over the spectra obtained after a model selection scheme in

Section 5.2 are expected to exhibit a complete representation of the tissue’s impedance

characteristic. The models capture the essential characteristics of the tissue with its

fractional order, poles, zeros, and gain parameters. These parameters of the candi-

110



Model Classification 111

date models are going to be used as the data features, and classification methods will

be employed to obtain the prediction accuracies for each of the electrode configura-

tions. From the selected candidate models, the best performing model, according to

the classification accuracies, is going to be used for the longitudinal analysis.

This chapter is similar to Chapter 3 in the sense that both chapters are focused

on disease diagnosis and longitudinal analysis of the ALS bulbar involvement from

the EIM data. One main difference is that Chapter 3 focused on selecting the most

informative frequencies by using the frequencies as the data features. In contrast,

this chapter focuses on the whole spectrum by using the selected model parameters

as the data features.

6.1 Parameter Correlograms

Correlograms are the plots that show the relationship between the pairs of param-

eters and the distribution of each parameter. Distribution on the correlogram shows

each of the parameter’s capacity to discriminate between the patients and healthy

volunteers. Scatter plots on the correlogram shows the variation across the pairs of

parameters between the patients and healthy volunteers. The correlograms in this

chapter are plotted to see the discriminability of each parameter and pairs of param-

eters in the classification task. The plots are also useful for visualizing the parameter

correlation to check pole-zero cancellation (where pole-zero is on the x=y line). Pole-

zero cancellation means there are extra poles and zeros in the model to represent the

data. Figure 6.1 is an example plot of [RIS] electrode configuration and Mα22 model

that shows the correlation of the parameters as well as the discriminability of the pa-

tients and healthy volunteers.
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Figure 6.1: Correlogram for electrode configuration [RIS] and model Mα22.

Figure 6.1 represents all electrode configurations, and the conclusion made for

this figure matches with the rest of the electrode configurations. Other models also

have similar characteristics to the model given in the above figure. The distributions

indicate that the gain and fractional orders do not contribute to the discrimination

between the patients and healthy volunteers. Poles and zeros show more discrim-

inability between the two groups. The gain and fractional orders are important pa-

rameters to fit the model to the data; however, the generic tongue-related param-

eters are the poles and zeros that contributes to the cutoff of the magnitude of the
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data. Scatter plots show significant overlap with some ability for classification and

it is possible that the full dimensional features may show better discriminability that

can be captured by the classification process. The following sections present the re-

sults to classification with different models and classifiers to find a suitable classifier

and model for representing the data.

6.2 Supervised Classification

The supervised classification implemented in this chapter employs the features

(model parameters) generated with the Genetic Algorithm for the selected models.

The two classification algorithms, k-Nearest Neighbours and Support Vector Classi-

fiers used in Chapter 3 will be used in this chapter to compare the results of different

models for different classifiers. Classification results are expected to show the joint

variations of the model parameters.

6.2.1 Support Vector Classifier

The Support Vector Classifier used in Chapter 3 has shown that different kernel

methods and various values for n variable in n-fold cross-validation do not have

much effect on the classification accuracy. It was also shown that the sigmoid ker-

nel returned better discrimination between the classes. 4-fold cross-validation with

sigmoid kernel is used as classifier parameters according to the results shown in Sec-

tion 3.2.2. The features are scaled with robust scaling as part of the preprocessing so

that each feature contributes proportionally. As discussed under Feature Selection ti-

tle, it is possible to perform manual future selection as part of dimensionality reduc-

tion. The manual feature selection is possible in this section by using the knowledge

and familiarity with the features (model parameters). The following sections contain

analysis with classification using a full parameter set as well as analysis excluding
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some of the common parameters in the parameter set.

Classification Using Full Parameter Set

The full parameter set obtained from Genetic Algorithm results is used as the fea-

tures of the data set. The classification results for all electrode configurations and

selected models (see Section 5.2.2) are given as a heatmap for comparison.

Figure 6.2: Support Vector Classifier results for selected models and all electrode configura-
tions using full parameter set.

Figure 6.2 shows that the overall classification accuracies are low compared to the

non-parametric classification results. The models with two zeros, namely Mα22 and

Mα32, show higher accuracy than the rest of the models. It is visible that three of the

3D electrode configurations; [LIS, RIS, SS] and one of the 2D electrode configuration;

[BPA] has higher accuracies compared to the rest of the electrode configurations with

Mα22 and Mα32 models. This confirms the hypothesis that the 3D electrode configu-

rations capture disease-related characteristics better than 2D surface electrode con-

figurations.
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Classification Using Poles, Zeros And Gain Parameters

The fractional-order in the model is used to capture the slow decline and in-

creases on the slopes in the impedance spectrum because of the location of poles and

zeros. This section investigates whether the fractional orders contribute to the dis-

crimination of healthy volunteers and patients. The classification results for all elec-

trode configurations and selected models (see Section 5.2.2) are given as a heatmap

for comparison.

Figure 6.3: Support Vector Classifier results for selected models and all electrode configura-
tions using gain, pole and zero parameters.

Figure 6.3 shows that the overall classification accuracy is higher than the classi-

fication results with the full parameter set. This result indicates that the fractional

orders are not contributing to discriminating the two groups. There is an overall

increase in classification with M22 model, but this increase does not apply to Mα32

model. Two of the 2D electrode configurations [BPA, BML] and three of the 3D elec-

trode configurations [LIS, RIS, SS] with Mα22 model performed better compared to
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the rest of the electrode configurations.

Classification Using Poles And Zeros Parameters

The gain value in the model determines where the magnitude value starts in the

frequency response function. This section investigates whether the low frequency (

at 76H z) impedance reading contributes to the discrimination of the healthy volun-

teers and patients. Both the fractional-order α and the gain are removed from the

feature space. The classification results for all electrode configurations and selected

models (see Section 5.2.2) are given as a heatmap for comparison.

Figure 6.4: Support Vector Classifier results for selected models and all electrode configura-
tions using pole and zero parameters.

Figure 6.4 shows that the overall classification accuracies are higher compared to

the classification results with features that contain gain value. This is an indication

of measurement captured with the first frequency not contributing to discriminating

between the two groups. This could be due to this particular frequency impedance

belonging in the low-frequency band (see Section 2.3.3). There is an overall increase
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in classification with Mα22 model, but this increase does not apply to Mα32 model.

Two of the 2D electrode configurations [BPA, BML] and three of the 3D electrode con-

figurations [LIS, RIS, SS] with Mα22 model performed better compared to the rest of

the electrode configurations.

6.2.2 k-Nearest Neighbour Classifier

k-Nearest Neighbour Classifier used in Chapter 3 has shown that different dis-

tance metrics, various values for k,n variables in k-nearest neighbours and n-fold

cross validation does not have much effect on the variations of the results. Due to the

results in Section 3.2.3, the classification used in this chapter have 3-nearest neigh-

bours for k-value, 4-fold cross-validation for n-value. The features are scaled with

robust scaling as part of the preprocessing so that each feature contributes propor-

tionally. The Euclidean distance metric is used for calculation of the object’s distance

with scaled features to the neighbours in the classifier. The features will be selected

with a similar approach to the classification with support vector classifier.

Classification Using Full Parameter Set

The full parameter set obtained from Genetic Algorithm results is used as the fea-

tures of the data set. The classification results for all electrode configurations and

selected models (see Section 5.2.2) are given as a heatmap below for comparison.

Figure 6.5 shows that the overall classification accuracies are low compared to

the non-parametric classification results. The model with two-zeros and two-poles,

namely Mα22 shows the higher accuracies compared to the rest of the models. This

result is similar to that observed in SVC using full parameter set results. It is visible

that three of the 3D electrode configurations; [LIS, RIS, II] and one of the 2D electrode

configurations; [BPA] has higher accuracies compared to the rest of the electrode

configurations with Mα22 model. This confirms the hypothesis that the 3D electrode
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configurations perform better in detecting the disease. Comparing the overall results

as well as the Mα22 results to SVC classifier performance, the k-NN classifier achieves

better accuracies, and therefore, k-NN classifier results will be used for further anal-

ysis.

Figure 6.5: k-Nearest Neighbour Classifier results for selected models and all electrode con-
figurations using full parameter set.

Classification Using Poles, Zeros And Gain Parameters

Similar to the analysis in classification using poles, zeros and gain parameters for

SVC, this section investigates whether the slopes in the impedance spectrum because

of the location of poles and zeros contribute to discrimination between the healthy

volunteers and patients. The classification results for all electrode configurations and

selected models (see Section 5.2.2) are given as a heatmap for comparison.

Figure 6.6 shows that the overall classification accuracies are not improved com-

pared to the classification results with the full parameter set. Two of the 2D electrode

configurations [BPA, BML] and three of the 3D electrode configurations [LIS, RIS, SS]

with Mα22 model performed better compared to the rest of the electrode configura-
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tions.

Figure 6.6: k-Nearest Neighbour Classifier results for selected models and all electrode con-
figurations using gain, pole and zero parameters.

Classification Using Poles And Zeros Parameters

Similar to the analysis in classification using poles and zeros parameters for SVC,

this section investigates whether the low frequency ( at 76H z) impedance measure-

ment contributes to the discrimination between the healthy volunteers and patients.

Both the fractional-order α and the gain are removed from the feature space. The

classification results for all electrode configurations and selected models (see Sec-

tion 5.2.2) are given as a heatmap for comparison.

Figure 6.7 shows that the overall classification accuracies are higher compared to

the classification results with features that contain the full parameter set and features

that contain gain value. There is an overall increase in classification with Mα32 model,

but this increase does not apply to Mα22 model.
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Figure 6.7: k-Nearest Neighbour Classifier results for selected models and all electrode con-
figurations using pole and zero parameters.

The above analysis shows that the k-NN classifier is able to capture the discrim-

inatory characteristics of the disease better than the support vector classifier. The

heatmaps also confirm an overall increase in accuracy results when using only the

poles and zeros parameters. However, the classification results for Mα22 model does

not change significantly compared to the other results with different feature spaces.

Considering the overall increase in classification accuracies with feature space us-

ing only poles and zeros, and better performance of Mα22 model, k-NN classification

with Mα22 model will be used for subsequent analysis.

6.3 Parametric and Non-Parametric Classification Re-

sults Comparison

In this section we provide a comparison between parametric and nonparametric

classification. The performances of the parametric and non-parametric classifica-
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tion are presented in Table 6.1.

Electrode

Configurations

Non-Parametric

Classification

Parametric

Classification

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

TPA (2D) 76.6 % 69.7 % 85.2 % 55.7 % 48.5 % 64.3 %

TML (2D) 85.0 % 75.0 % 96.4 % 55.9 % 71.9 % 37.0 %

BPA (2D) 85.7 % 77.8 % 91.7 % 83.7 % 83.3 % 84.0 %

BML (2D) 86.0 % 66.7 % 100.0 % 63.6.4 % 47.4 % 76.0 %

LIS (3D) 87.8 % 81.8 % 92.6 % 78.7 % 59.1 % 96.0 %

RIS (3D) 92.2 % 88.5 % 96.0 % 60.0 % 58.8 % 66.7 %

II (3D) 85.7 % 82.8 % 88.9 % 65.5 % 65.5 % 65.4 %

SS (3D) 81.3 % 76.5 % 86.7 % 63.1 % 71.4 % 53.3 %

Table 6.1: Parametric and Non-parametric classification results comparison using 3-Nearest
Neighbour classifier.

The classification accuracies for the parametric model is lower than that of non-

parametric model. Appropriate dimensionality reductions applied to non-parametric

data prior to classification, whereas the dimensionality reduction is achieved with

modeling in parametric classification. The results are different from each other be-

cause the non-parametric classification has less constraints in features since the fea-

tures are obtained directly from individual frequency measurement, whereas the fea-

tures are restricted to the models’ parameters with parametric classification. The key

difference between the two classification is that the features used in non-parametric

classification is less interpretable whereas the features used in parametric classifica-

tion has information relevant to the properties associated with muscle.

Results indicate that the electrode configurations have lower accuracy, sensitivity,

and specificity with parametric classification. The classifier improved the sensitivity
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results for [BPA] electrode configuration. Three of the 3D electrode configurations

[LIS, RIS, II] and one of the 2D electrode configuration [BPA] has better accuracy re-

sults than the rest of the electrode configurations. The classifier significantly dropped

the[TML] electrode configuration in detecting both healthy volunteers and patients.

6.4 Diagnosis Using Multiple Electrode Configurations

Disease diagnosis in Section 3.3.4 employed results from the non-parametric clas-

sification using multiple electrode configurations. This section considers employing

Mα22 model parameter classification results to improve classification reliability and

accuracy by combining all electrode configurations.

Table 6.2 is presented for volunteers and patients diagnostics ratio for all elec-

trode configurations. The majority voting method was used to combine the out-

comes from all the electrode configurations. There are eight electrode configurations

available, but measurements were not captured in some of the electrode configura-

tions for some patients and volunteers. The ratio represents the proportion of the

number of electrode configurations that correctly identified the patient/volunteer to

the total number of electrode configurations that measurements were obtained. The

blue colours represent the low ratios, where 50% or less of the electrode configura-

tions correctly identified the patient/volunteer.

The results show that 7 volunteers and 9 patients scored worse and p011, p029,

v022 scored better compared to the non-parametric results. Blue colours are con-

sidered misdiagnosed, and red colours are considered the correct diagnosis. This

means that the blue colors in patient group return False Negative Rate and volunteer

group return False Positive Rate. Similarly, red colours in patient group return True

Positive Rate and volunteer group return True Negative Rate. In confusion matrix,

this table translates to true positive rate of 23, true negative rate of 23, false positive
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rate of 7 and false negative rate of 12. Converting these values from confusion ma-

trix (see Equations 3.1.6, 3.1.7, 3.1.8), the sensitivity value is 67.6% and the specificity

value is 76.7%, which returns an accuracy value of 71.6% is obtained. The combined

electrode configuration classification scores are higher than single electrode config-

urations: [TPA, TML, BML, RIS, II, SS].

Patient Rate Patient Rate Patient Rate Patient Rate
p001 5/8 p012 4/8 p023 3/8 p034 3/6
p002 6/8 p013 5/7 p024 6/8 p035 4/8
p003 5/6 p015 0/1 p026 1/5 p036 5/6
p004 6/8 p016 3/4 p027 0/1 p037 2/8
p006 4/6 p017 0/0 p028 1/1 p038 5/8
p007 3/5 p018 4/5 p029 4/4 p039 3/4
p008 5/7 p019 1/1 p030 3/3 p040 1/3
p009 6/8 p020 4/5 p031 4/6 p041 5/8
p010 2/5 p021 5/8 p032 4/5 Blue Red
p011 5/8 p022 4/8 p033 2/4 Low High
Volunteer Rate Volunteer Rate Volunteer Rate Volunteer Rate
v001 5/8 v009 3/3 v017 6/8 v025 2/8
v002 4/7 v010 7/7 v018 4/7 v026 8/8
v003 6/8 v011 1/4 v019 5/8 v027 4/7
v004 5/8 v012 5/8 v020 7/8 v028 4/8
v005 7/8 v013 4/8 v021 2/4 v029 6/8
v006 5/8 v014 6/8 v022 3/4 v030 2/5
v007 4/6 v015 7/8 v023 8/8 Blue Red
v008 4/8 v016 6/8 v024 4/7 Low High

Table 6.2: Diagnosis using all electrode configurations.

6.5 Longitudinal Analysis Using Selected Model

Model parameter based classification has shown promising results for detecting

disease with the highest accuracy of 83.7% with electrode configuration [BPA] and

accuracy of 71.6% with all electrode configurations combined. Chapter 3 considered

using the selected frequencies with Phase angle data to show the efficiency of the
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obtained data for longitudinal analysis. The longitudinal analysis is studied to show

whether the EIM data can reveal disease-related changes in muscle structures as the

disease progresses. As explained in Section 3.4, in order to make the measurement

intervals equal for both healthy volunteers and patients, two measurements with six

months intervals are used in the analysis. The selected model parameters with poles

and zeros are used with parametric longitudinal analysis instead of phase readings at

selected frequencies with non-parametric longitudinal analysis. The selected model

parameter values were summarized with a single score for ease of interpretation by

calculating the L2 (Euclidean) norm for each visit per patient and healthy volun-

teers. The parameters were normalized with robust scaling prior to calculating the

L2 norm. The percentile change between the two visit’s L2 norm is calculated and

presented in Figure 6.8 with swarm plots. The results indicate that it is difficult to de-

tect the longitudinal changes for patients with EIM readings from model parameters.

Figure 6.8: Percent change between baseline and 6th month visits for volunteers and pa-
tients in each electrode configurations to detect the patient EIM change with model param-
eters; poles and zeros.
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6.6 Chapter Conclusion

Modeling of EIM data with integral fractional-order transfer function has shown

that models; Mα11, Mα21, Mα22, Mα31, Mα32 have a good fit for the data. The selected

models were employed for classification analysis in this chapter. Parameter correl-

ograms were plotted in order to identify the pole-zero cancellation, variation across

the pairs of parameter as well as the discriminatory characteristics of each parameter

with distribution plots. The idea behind plotting the correlograms is that if there is a

visible separation between the two group in these plots, then a proper classifier may

be able to separate in higher dimensions. Overall, poles and zeros has shown better

discriminatory characteristics in distribution plots.

Parametric classification employed the two commonly used classifiers, that are

the k-Nearest Neighbour and the Support Vector Classifiers. A subset of parame-

ters were chosen to evaluate a classifier in the reduced dimensionality space. Fa-

miliarity with features enabled the selection of features from the classification re-

sults. Support Vector Classifier has shown that the classification using poles and ze-

ros has shown better discrimination than using full parameter space or parameter

space that contains the gain parameter. Results also show that the Mα22 and Mα32

models have shown better discrimination than the rest of the selected models in the

previous chapter. Similar conclusions were obtained from the analysis with k-NN

classifier. Moreover, the k-NN classifier distinguished the two groups better than the

SVC. For this reason, further analysis is produced using the k-NN classifier and the

Mα22 model.

The parametric classification is different from non-parametric classification in

that the features are the parameters of the model and not the raw data points from

the full frequency spectrum. This means that the non-parametric approach has less

constraints and is likely to find better discriminatory information. However, non-
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parametric approach may not reveal any properties associated with the muscles in

the way that the parametric approach does with poles and zeros.

Diagnosis using all electrode configurations has shown good discriminability be-

tween the two groups with a sensitivity of 67.6% and a specificity of 76.7%, which

returns an accuracy of 71.6%. The results show that the model parameters, poles

and zeros have some ability to discriminate between volunteers and patients. Longi-

tudinal analyses were produced using the selected model parameters. Longitudinal

analysis did not show any detectability of disease progression.



Chapter 7

Conclusions

Early stage diagnosis of bulbar disease in ALS is a challenging task. Discovery of

EIM as a biomarker of motor neuron disease has opened new possibilities in the di-

agnosis and assessment of this disease. The development of EIM devices for accurate

and reliable assessment has received considerable attention in recent years. The suc-

cess of data obtained from such devices is highly dependent on the careful selection

of methods for data analysis.

Statistical analysis of the data obtained from patients with EIM devices revealed

fundamental aspects relating to the disease effect on the muscle tissue’s electrical

properties [36]. Various frequency electrical signals with different electrode config-

urations were tested in data acquisition. The overall conclusion of these researches

indicates that there is still a need for more advanced analysis for detecting useful

frequency characteristics associated with the disease and suitable electrode configu-

ration associated with muscle anisotropy.

The Sheffield team has designed an EIM device that takes measurements along

the desired frequency range (in both α and β regions) to measure the tongue mus-

cles. The tongue comprises a complex muscle structure. Electrical properties of the

muscle structure gives different electrical characteristics of the muscles (anisotropic

characteristics). In order to capture the anisotropy, different electrode configurations

127
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are necessary. For this reason, the device is designed to capture the tongue’s electrical

impedance characteristics with both 2D and 3D electrode configurations. Analysis of

such high dimensional data was addressed in this dissertation.

7.1 Summary and Conclusions

The Sheffield device obtained measurements from both the patients with bulbar

involvement and healthy volunteers. Measurements were taken from the left, right,

and centre, when the tongue is relaxed and protruded, to investigate the electrical

impedance characteristics of the contracted and relaxed tongue muscles. The pre-

liminary analysis comprises the outlier detection of the raw data and the identifi-

cation of the reliable measurements. A data specific outlier removal algorithm suc-

cessfully removed the outliers along the spectrum. Further visual inspection pointed

out the inconsistency of four of the 2D electrode configurations, and these electrode

configurations were removed from further analysis. Concerns were raised about the

tissue volume captured with the hinged arms, which may affect the reliability of the

measurements. For this reason, further analysis was completed using only the centre

measurements. The contracted and relaxed muscle electrical impedance character-

istics were analysed using phase values of the impedance spectra, and the two con-

ditions did not show any discernible difference. For the reasons mentioned above,

four 2D and four 3D electrode configurations in center location when the tongue

is relaxed were used in further analysis. Removing the unwanted and unnecessary

data brought the seventy-two (three locations ∗ two tongue postures ∗ twelve elec-

trode configurations) measurements down to eight electrode configuration measure-

ments, which emphasize the importance of the preliminary analysis.

As part of first objective of the project, classification methods were compared,

and a suitable classifier was used with both the feature extraction and feature selec-
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tion for dimensionally reduced classification. Classification with feature extraction

has shown the device’s diagnostic capacity. However, dimensionality reduction using

feature extraction failed to answer one of the important research questions of this

project: a consistent set of frequencies that have a better capacity to discriminate

between volunteers and patients. Classification was applied to each electrode con-

figurations separately because different electrode configurations measure different

muscle groups. The results have shown that different frequency subsets show more

discrimination between the two groups with different electrode configurations. This

result relates to the anisotropic characteristics of the muscle groups. Diagnosis using

3D electrode configurations were more successful compared to 2D electrode config-

urations. Analysis was continued by combining the classification results of all elec-

trode configurations to validate the existence of disease without relying on a single

electrode configuration. As part of third objective of the project, longitudinal analy-

sis was followed with the selected frequencies for each electrode configuration. Due

to the course of the disease (see Section 2.3.5) and the medical interventions admin-

istered to ease disease-related difficulties, the findings did not support the device’s

capacity to serve as a tool to detect disease change over time.

As part of second objective of the project, data-driven modeling was studied to

find the disease-related characteristics from the electrical impedance data with model

parameters. The first attempt to model the data with closed-form linear least-squares

approach had numerical issues, and an integral fractional-order transfer function

was proposed to deal with these issues. In this model, the slow-decaying and in-

creasing slopes of impedance spectral function were captured with fractional orders,

and an integral pole with different fractional-order was used to represent the mea-

surement process. The tongue measurements were represented with the gain, poles,

and zeros. Parameter estimation was implemented using three different algorithms,

from the most straightforward Grid Search Algorithm to nature-inspired Genetic Al-



Conclusions 130

gorithm and Bayesian Inference related Markov Chain Monte Carlo Algorithm. A

model space was proposed with respect to the data, and suitable models were se-

lected with model selection schemes. Selected models were used to implement para-

metric data classification in the last chapter. Selection of features with interpretabil-

ity was employed in order to identify the model parameters that provide the most

discriminatory information. Compared to non-parametric data classification accu-

racies were lower. As part of third objective of the project, longitudinal analysis was

followed with the model and parameters selected by the classification. The conclu-

sion was similar to Chapter 3 that the findings did not support the device’s capacity

to serve as a tool to detect disease change over time.

In conclusion, the device has shown a good diagnostic capacity for ALS disease

bulbar involvement. Useful frequencies and electrode configurations were identified

and it was shown that the 3D electrode configurations outperformed the 2D elec-

trode configurations. The results indicate that the widely used surface electrodes in

ALS researches were less discriminatory than the multi-dimensional electrodes de-

veloped by the Sheffield team for investigating the anisotropy characteristics. Para-

metric modeling of such data has never been done in ALS research to date to the

author’s knowledge. The transfer function modeling of the data will enable interpre-

tation of the impedance characteristic changes in a more holistic way.

7.2 Future Work

Detection of ALS disease with electrical impedance data has taken a new direc-

tion in this dissertation. Statistical methods used to date are replaced with more ad-

vanced machine learning and data modeling studies. Classification using machine

learning methods has shown better discrimination between healthy and diseased in-

dividuals. Generic transfer function modeling of the data replaced the 3 and 5 el-
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ement cell electrical circuit models. Machine learning methods using the param-

eterized model have shown that the selected model can detect diseased data. The

research also encouraged further analysis of this study field. These analyses are out-

lined as follows:

• The classification analysis given in Chapter 3 has shown results related to clas-

sification using machine learning methods. The dimensionality reduction is

handled with two methods, one related to feature extraction and the other re-

lated to feature selection. The results produced with feature extraction em-

ployed PCA, which is a linear method. The alternative results may be obtained

with nonlinear methods and compared to the presented results. The feature

selection is achieved using an exhaustive search wrapper method, and the use-

ful frequencies are selected after employing Pareto Dominance. The alterna-

tive non-exhaustive hybrid (embedded) method may be employed in order to

reduce computational complexity.

• The amount of data used for this research is limited to the measurements ob-

tained with the new Sheffield EIM data. Further analysis may be repeated with

more data obtained with this device to confirm the reliability of outlier detec-

tion, classification, and modeling analysis.

• Longitudinal analysis suggested in Chapter 3 and repeated in Chapter 6 used

the L2 norm percentile change of phase data. Results have shown that the de-

vices capacity to detect the disease change over time remains an open question

with the current methods to address this particular issue to make a more clear

conclusion. This is due to varying change of health status of patients. Further

analysis may be repeated with patients with increased disease severity. The

study is open to new methods for analysis.

• The model proposed in Chapter 4 is capable of dealing with numerical insta-
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bilities. However, the model is in the factorized form that does not allow for

complex poles and zeros in the transfer function model. The capacity of com-

plex roots for improving the model fit and detection of disease-related charac-

teristics could be further investigated.

• The model selection schemes employed in Chapter 5 are related to the analysis

obtained from Genetic Algorithm results. A section on Markov Chain Monte

Carlo for parameter estimation is proposed in this chapter in order to show the

advances of this method. The MCMC results can be produced to use a different

model selection scheme called the Bayesian Model Selection.

The impedance spectroscopy based ALS disease diagnosis is entering an excit-

ing area and this thesis is taking the first step towards providing a set of methods to

facilitate this journey.
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