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Abstract 

Sialylation is a common post-translational modification involving the addition of 

sialic acid to glycoprotein chains. Sialic acid within the Fc fragment of IgG 

molecules can influence binding to Fc receptors. In rheumatoid arthritis (RA) and 

other autoimmune conditions, in disease specific auto-antibodies, Fc fragment 

sialylation is reduced compared to total IgG. Furthermore, plasmablasts from 

patients with RA display reduced cell surface sialylation compared to cells from 

healthy donors. Factors which determine B-cell surface sialylation and 

consequences of altered sialylation are not well understood. α2,6-sialylation was 

measured in B-cells isolated from healthy donors (HD), patients with pre-RA 

(PRA) or early RA (ERA) using SNA lectin flow cytometry. Sialylation and markers 

of activation were measured at baseline or following stimulation with TLR ligands 

or anti-IgM/G ± CD40L; treatment with neuraminidase (Neu) to digest sialic acid; 

or culture with serum from HD or patients with ERA. B-cells were differentiated to 

plasma cells in vitro and sialylation measured at each stage of differentiation. 

Furthermore, Neu activity in serum was measured by fluorescent assay. 

Sialylation was confirmed to be decreased in patients with ERA and PRA at 

baseline compared with HD B-cells. Upon stimulation with TLR ligands, sialylation 

was increased in HD cells but not cells from patients with ERA or PRA. 

Differentiated cells showed an initial increase in sialylation before decreasing in 

terminally differentiated cells. Exposure to serum in culture led to reduced B-cell 

sialylation and Neu activity was highest in serum from patients with ERA. 

Exposure to serum in culture as well as direct treatment with Neu led to reduced 

B-cell activation potential. These results suggest that B-cell sialylation influences 

activation and function, and control of surface sialylation may be disrupted in RA. 
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Chapter 1  

General Introduction 

1.1  Rheumatoid Arthritis Pathogenesis 

1.1.1 General Background 

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which 

comprises chronic, usually symmetrical inflammation in the joints, and leads to 

destruction of synovial tissue and underlying bone erosion. It has a prevalence of 

around 0.5 - 1% in the majority of North American and European populations 

studied1, with women affected around three times more often than men2. If joint 

inflammation is not effectively controlled, it can result in pain, loss of function in 

affected joints and associated severe disability3. The global burden of RA - 

measured by disability-adjusted life years - has increased over the last two 

decades despite earlier diagnosis and more effective treatment strategies. This 

is likely attributable to an increase in ageing populations4,5. Nevertheless, this 

highlights the continued importance of preventing disease progression. Biologic 

disease modifying anti-rheumatic drugs (bDMARDs), introduced over 20 years 

ago, are highly effective at suppressing inflammation. These treatments have 

revolutionised outcomes in RA6. However, response is not universal, and a trial 

and error approach to choice of therapy means a clinically meaningful proportion 

of patients require cycling through several drugs and develop poorer outcomes7. 

Although drug free remission may be achievable in a proportion, there are no 

clear therapeutic approaches which permanently halt disease progression, nor 

are there any effective primary preventative measures, emphasising the need for 

continued research into events during the onset of disease, with a view to 

informing future drug targets. 

1.1.2 Clinical Features of Rheumatoid Arthritis 

Clinical features of RA include pain and swelling in the joints, as well as extra-

articular features which can affect the skin, eyes, lungs, gastrointestinal tract and 

vascular system8. Importantly, patients with RA have around a 1.5 - 2 fold 
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increased risk of developing cardiovascular pathology, increasing mortality in 

patients with RA compared with the general population9. The increased risk of 

cardiovascular pathology is thought to be linked to chronic, systemic inflammation 

increasing the risk of atherosclerosis10. 

The clinical presentation of RA can be widely variable between patients. Patients 

typically present with pain and swelling in the joints which is usually symmetrical. 

Inflammation commonly occurs in the proximal joints of the hands and feet, as 

well as the wrists and knees. Some patients may also present with other 

symptoms such as palindromic onset inflammation or mono/oligo large joint 

articular inflammation. In addition, more constitutional symptoms such as malaise 

and fatigue are common11.  

A combination of factors, including laboratory parameters and clinical 

observations as well as the overall health of the patient, aid in the diagnosis of 

RA and in judging disease severity12. Disease activity is often measured using 

the Disease Activity Score 28 (DAS28) which takes into account swelling across 

28 joints, measures of systemic inflammation including C-reactive protein (CRP), 

Erythrocyte Sedimentation Rate (ESR) and the patient’s general health, which is 

reported via a questionnaire completed by the patient12. Response to treatment 

may be measured using the European League Against Rheumatism (EULAR) 

response criteria which takes into account the change in DAS28 following 

treatment and overall disease activity state, to determine if a patient is a good, 

moderate or non-responder to a particular therapy13. In treating RA, the aim is to 

achieve a period of sustained remission or at least low diseases activity, where 

the patient is relatively asymptomatic and measures of disease activity such as 

inflammatory markers are low. Clinicians adopt a “treat to target” approach where 

a target disease activity state (remission or low disease activity) is set for each 

patient and drug treatment is escalated, and patients are switched to new 

therapies if a sufficient decrease in disease activity (and the target disease 

activity) is achieved14. 

1.1.3 Environmental Factors Which Contribute to the Development 

of Rheumatoid Arthritis 

The aetiology of RA is complex and multifactorial. It is widely thought that several 

environmental factors may contribute to disease initiation in combination with 
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genetic factors. The most widely studied environmental factors thought to 

contribute to RA aetiology are smoking and periodontal disease. Smoking is a 

well-established risk factor for the development of RA, with the risk increasing by 

2 fold in male smokers vs non-smokers, and by 1.3 in female smokers15.  

There are a number of mechanisms by which smoking may influence RA 

pathogenesis, including the induction of oxidative stress, apoptosis, 

inflammation, production of autoantibodies and epigenetic changes16. 

Studies have shown that smoking can increase expression of citrullinated 

peptides in the lungs, which is associated with an increase in expression of 

peptidylarginine deiminase (PAD) 2, which catalyses the conversion of arginine 

to citrulline17. Anti-citrullinated peptide antibodies (ACPA) can be detected in 

around 60-80% of patients with RA18 and are thought to play an important role in 

the onset and prognosis of the disease. Smoking has been associated with 

autoantibody positivity in RA, however a recent study suggested that smoking is 

not specifically associated with the development of ACPA, but rather with the 

development of multiple autoantibodies, including an antibody to the Fc fragment 

of IgG – rheumatoid factor (RF)19. 

It has also been shown that exposure to smoke during the development of 

disease worsens inflammation by promoting T-helper (Th) 17 cell differentiation 

via the transcription factor aryl hydrocarbon receptor (AHR). The ligand for AHR, 

polycyclic aromatic hydrocarbons, are common environmental pollutants which 

can also be found in cigarette smoke20. Despite this, smoking was not found to 

be associated with the development of RA in RF- ACPA- patients21, and no 

association has been found between ACPA and smoking in RF- patients22.  

Periodontal disease has also been shown to have a strong link to RA. The 

diseases have a similar pathogenesis, which includes inflammation in response 

to citrullinated peptides, driven by the production of inflammatory cytokines 

including tumour necrosis factor (TNF) and Interleukin – (IL) 6. The majority of 

periodontal disease is caused by a combination of 3 bacteria, which multiply in 

healthy tissue and outcompete healthy oral bacteria. One of the bacterial species 

which leads to disease, porphorymonas gingivalis has been found to express 

porphorymonas gingivalis peptidylarginine deiminase (PPAD). This bacterial 
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PAD leads to citrullination of peptides, which is thought to lead to the production 

of autoantibodies and destruction of tissues within the oral cavity23. The 

prevalence of RA in patients with periodontitis is higher than in healthy 

individuals, and vice versa. It has been suggested that generation of a response 

to citrullinated peptides in oral tissues may lead to the production of ACPA which 

contributes to joint destruction in RA24. 

There is also evidence to suggest that in the gut of some patients with RA there 

is an increase in citrullinated peptides which may trigger the generation of 

ACPAs25.This, in combination with the strong body of evidence which supports 

the link between RA and periodontitis, as well as the increase in citrullination in 

the lung tissue induced by damage caused by smoking, suggest that increased 

citrullination at one or more mucosal site may lead to the initial development of 

autoimmunity and the presence of APCAs, long before the onset of symptomatic 

joint inflammation and clinical presentation. It is thought that the development of 

ACPA due to increased citrullination at mucosal sites may represent the first hit 

of the “two-hit” hypothesis for the aetiology of RA, however, the second hit which 

leads to the development of joint inflammation after the appearance of ACPA is 

not yet well understood24. Intestinal dysbiosis has also been suggested as a 

potential mechanism for triggering the onset of RA, however the exact 

mechanism of this is unclear26. 

1.1.4 Genetic Factors Which Contribute to the Development of 

Rheumatoid Arthritis 

There are several genetic factors which may contribute to the development of 

RA. Heritability is estimated to be around 60% based on twin studies27,28. 

However, a more recent study found that although the risk of developing disease 

was higher in those with an affected first degree relative, environmental triggers 

and/or epigenetic events may play a more significant role29. Association with 

class II human leukocyte antigen (HLA) is thought to account for around 11% of 

overall genetic susceptibility30. Certain HLA-DRB1 alleles which contain the 

shared epitope (SE), a common 5 amino acid sequence at positions 70-74, are 

thought to convey predisposition to ACPA positive RA31. The SE has been linked 

to the development of ACPA, as HLA-DRB1 alleles with the shared epitope have 

a higher affinity for citrullinated peptides32. This leads to the strong presentation 
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of citrullinated peptides to T-cells, which can then stimulate production of ACPAs 

via co-stimulation of autoreactive B-cells. ACPA can be detected in the blood long 

before the onset of disease, and can be present in many individuals who never 

go on to develop RA. It is thought that the presence of the shared epitope may 

contribute to the development of RA in ACPA+ individuals. There is also a strong 

risk of developing RA associated with smoking and presence of the SE21. 

There have been a number of single nucleotide polymorphisms which have been 

reported to be associated with RA. Of these, PTPN22 R620W - a gain of function 

missense variant - is the most widely reported33, and it has been shown to be 

associated with RA risk in Caucasian but not Asian populations34. PTPN22 

encodes a protein tyrosine phosphatase which is a negative regulator of T and 

B-cell receptor signalling. The variant allele associated with RA leads to 

decreased responsiveness to antigen stimulation35, and impaired induction of 

PTPN22 leads to increased PAD activity and hyper-citrullination of PBMCs36. 

PTPN22 R620W has also been associated with impaired regulatory functions of 

Treg cells37, and decreased signalling via toll-like receptor (TLR) 7 in 

plasmacytoid dendritic cells38. Taken together this evidence suggests that the 

PTPN22 R620W variant may contribute to several stages of the RA disease 

pathogenesis. Genome wide association studies have identified several other 

gene loci which may also be associated with RA pathogenesis, including IL-23R, 

PADI4, TRAF1, CTLA-4, IRF5 and numerous others30. 

1.1.5 Contribution of innate immune cells to pathology in 

Rheumatoid Arthritis 

The precise causes of joint-specific inflammation in RA, are not yet well 

understood, however the process of inflammation and joint destruction has been 

well described. Once inflammation is triggered in the joint, cells of both the innate 

and adaptive immune system begin to infiltrate the joint tissues, driven by 

chemokine gradients produced by cells in inflamed tissues. Innate immune cells 

such as monocytes/macrophages, neutrophils and dendritic cells play a key role 

in orchestrating and propagating chronic autoimmune inflammation within the 

joints, by producing factors which promote inflammation and activate cells of the 

adaptive immune system to drive autoimmunity.  
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1.1.5.1 Fibroblast-like Synoviocytes 

The intimal lining layer of a healthy synovium is made up of 2-3 layers of 

specialised fibroblast-like synoviocytes (FLS) and synovial macrophage-like 

synovial cells39. During inflammation, the sublining layer is thickened and is 

mainly populated by invading T and B-lymphocytes. The intimal lining layer 

increases in thickness to around 10-20 cells. The macrophage-like cells become 

highly activated and produce numerous inflammatory mediators, which can in 

turn activate FLS. Activated FLS produce their own combination of inflammatory 

mediators – mainly IL-6 and matrix metalloproteinases (MMPs), perpetuating 

synovial inflammation and recruiting more inflammatory cells to the joint40. A 

section of invasive synovial tissue called the pannus is formed, made up of FLS, 

macrophages and neutrophils. At the pannus/cartilage interface, osteoclasts 

become activated and begin to resorb bone, while FLS produce MMPs which 

begin to break down cartilage41 (Figure 1.1). 

1.1.5.2 Neutrophils 

As well as having potent cytotoxic activity, neutrophils are thought to play an 

important role in orchestrating synovial inflammation in RA. When activated they 

can release an array of molecules which lead to damage in synovial tissues 

including reactive oxygen species (ROS), cytokines and chemokines as well as 

granule proteins, which can activate other immune cells41. They are also able to 

act as antigen presenting cells, leading to the activation of T-cells in the joints42. 

Neutrophils isolated from the blood of patients with RA have a more active 

phenotype than cells from healthy donors, and they are primed to produce ROS43. 

In the RA synovium, neutrophils can be activated by immune complexes (ICs) 

formed of autoantibodies, which bind Fc receptors on the neutrophil surface and 

trigger degranulation, releasing granule proteins and promoting cartilage 

destruction41.  
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Figure 1.1 Synovial inflammation in Rheumatoid Arthritis 

(A) In a healthy, non-inflamed joint, the joint capsule is protected by the synovial lining layer. The 
intimal lining layer is made up of 1-2 rows of FLS and macrophage-like synoviocytes, which 
produce synovial fluid to lubricate the joint. The surface of the bone is protected by articular 
cartilage and there is a balance between bone resorption and bone building to maintain 
homeostasis. (B) In the inflamed joint, the intimal lining layer becomes thickened, and activated 
immune cells infiltrate the joint space. These can produce inflammatory mediators which active 
FLS and macrophage-like synoviocytes and lead to the formation of invasive pannus tissue. Cells 
in the pannus stimulate osteoclast differentiation and activation, leading to destruction of the 
cartilage and bone. This figure was created using templates from Servier Medical Art which are 
licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com.  
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1.1.5.3 Dendritic cells 

One of the main functions of dendritic cells (DCs) is to act as antigen presenting 

cells (APCs), therefore, in RA they may be involved in presenting self-peptides to 

adaptive immune cells such as T and B-cells in the lymph nodes and promoting 

autoimmunity44. Additionally, DCs produce cytokines, and in RA they have been 

shown to produce increased levels of IL-6 and IL-23, which can promote 

inflammation and promote T-cell differentiation to highly inflammatory Th17 cells 

respectively45. DCs in RA have also been shown to produce more CXCL8, which 

may promote leukocyte migration into the inflamed synovium, propagating 

inflammation46. 

1.1.5.4 Monocytes and macrophages 

Circulating monocytes in RA may be recruited to the synovium by chemokines 

produced by FLS47. Monocytes in RA are skewed towards the intermediate 

phenotype, with upregulated expression of CD14 and CD16. These intermediate 

monocytes produce inflammatory cytokines such as TNF, IL-1 and IL-6 within the 

synovium in RA, and are primed to differentiate to highly inflammatory M1 

macrophages. M1 macrophages also produce high levels of TNF, IL-1, IL-6, IL-

23 and ROS, which can drive the inflammatory response within the synovium48. 

Although both infiltrating monocytes and tissue resident macrophages are 

thought to be able to play a role in promoting synovial inflammation, treatment 

with anti-TNF therapy has been shown to rapidly reduce infiltrating monocytes, 

suggesting that they may play a more critical role in driving synovitis49. Circulating 

monocytes and tissue resident macrophages are also the precursors to 

osteoclasts. IL-17 produced by Th17 cells can promote upregulation of receptor 

activator of nuclear factor kappa-Β ligand (RANKL) and differentiation to 

osteoclasts, which promote bone resorption in the inflamed joint50. Osteoclasts 

can bind to the surface of the bone and release factors which dissolve calcium 

and break down the bone matrix. Bone erosions are a common radiographic 

feature of RA, in which sections of cortical and adjacent trabecular bone are lost 

in joints affected by synovitis. The presence of bone erosions in RA indicates the 

severity of disease and is a predictor of poor functional prognosis51. 
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1.1.6 Role of T-helper cells in the pathogenesis of rheumatoid 

arthritis 

CD4+ Th cells are thought to play an important role in driving inflammation in RA. 

The association between RA and HLA-DRB1 is such that HLA-DRB1 major 

histocompatibility complex (MHC) class II molecules with the SE have a higher 

affinity for citrullinated peptides32, leading to the presentation of these peptides 

and activation of autoreactive T-cells. Activated T-cells then provide co-

stimulation for autoreactive B-cells with a cognate receptor, thereby leading to 

the production of autoantibodies to citrullinated peptides. Th cells in the RA 

synovium have been found to express characteristics of both Th1 and Th2 

phenotypes, producing Interferon-gamma (INFγ), and IL-4, IL-5 and IL-13 

respectively52. However a large proportion of T-cells in the inflamed synovium are 

though to adopt a Th17 cell phenotype53. Large infiltrates of T and B-cells as well 

as formation of tertiary lymphoid structures are a common feature of the inflamed 

synovial joint in RA. Establishing tertiary lymphoid structures induces local 

production of autoantibodies, propagating inflammation in surrounding tissues54. 

A role for CD8+ cytotoxic T-cells in promoting inflammation in RA has been 

suggested, but is not yet well understood55. 

Regulatory T-cells (Treg) generally promote tolerance to autoantigens, by 

suppressing activation of Th cells by production of IL-10 and expression of 

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), an inhibitory co-receptor 

for Th cells56. However, in RA this mechanism of tolerance may be disrupted. It 

is thought that high levels of TNF in the RA synovium can block the suppressive 

action of Tregs57. Further to this, differentiation to Tregs is initiated in the 

periphery by transforming growth factor beta (TGF-β), however, if IL-1β and IL-6 

are also present cells differentiate to inflammatory Th17 cells. It has been 

suggested that the balance between Treg and Th17 may be shifted in favour of 

Th17 cells in RA, due to higher production of IL-1β and IL-656. It has also been 

reported that effector cells in RA may be less susceptible to inhibition mediated 

by Tregs58.  
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1.1.7 IL-17 and Th17 cells in RA 

In recent times, Th17 cells have been reported to play an important role in a 

number of autoimmune diseases. Th17 cells are potent inducers of inflammation, 

and in autoimmune disease, they drive the recruitment of inflammatory cells to 

diseased tissues and promote tissue inflammation59. In RA, Th17 cells have been 

found in the blood of patients with RA60, and cytokines associated with Th17 cells 

have been found to be increased in the serum of patients with RA61. Production 

of Th17-associated cytokines in RA has been associated with inducing the 

production of inflammatory cytokines in synovial fibroblasts62, stimulating 

production of MMPs60 and the activation of osteoclasts61. All of these features 

can promote inflammation and destruction of tissues within affected joints in RA.  

1.1.8 Role of Cytokines in RA 

The important role played cytokine networks in driving the pathogenesis in RA is 

demonstrated by the clinical successes of targeted anti-cytokine therapies – in 

particular, those targeting TNF and IL-6. Anti-TNF therapy likely proves to be 

particularly effective at limiting inflammation in RA due to the wide-ranging effects 

of TNF. It is involved in numerous inflammatory processes, including leukocyte 

activation, adhesion and migration, chemokine expression, stromal cell activation 

and osteoclast function (via RANKL)63. Anti-IL-6 therapy has also shown great 

clinical benefits. IL-6 has similar functions to TNF in the synovium, as well as 

driving the acute phase response.  

Several other cytokines have been shown to play a role in driving the 

pathogenesis of RA, but have had less success clinically, these include IL-1, 

interferon (IFN) and granulocyte-monocyte colony-stimulating factor (GM-CSF). 

IL-1 promotes inflammation in the joints by upregulating production of other 

cytokines, including TNF. Considering the lack of clinical efficacy of anti-IL-1 

therapeutics, it is possible that the pro-inflammatory roles of IL-1 may be 

secondary to the effects of TNF64,65.  

IFN is widely known for its antiviral effects, however it has also been shown to be 

involved in various other immune pathways including activation of T-cells and 

dendritic cells; and in the upregulation of MHC66. In RA, patients have been 

shown to have upregulated expression of genes induced by Type I IFN67 – known 
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as the IFN signature. However, IFN signature has not been found to be correlated 

with clinical parameters in RA68. Since a large proportion of the effects of type I 

IFNs are anti-inflammatory, IFNβ was trialled as a therapeutic agent in RA, but 

this trial was largely unsuccessful – showing no clinical benefit69. 

GM-CSF is able to mediate effector function in macrophages, neutrophils and 

DCs by promoting differentiation to inflammatory phenotypes of these cells, 

driving cytokine production and activation63.The potential roles of GM-CSF in RA 

and its potential as a therapeutic target, are currently being explored70,71, with 

initial results suggesting that GM-CSF inhibition may be of therapeutic benefit in 

RA71.  

1.2 B-cell Development and Immunoglobulin Production 

1.2.1 General B-cell Development 

B-cells play an important role in both the onset and dissemination of inflammation 

in RA. As well as producing inflammatory cytokines and potentially activating 

autoreactive T-cells, they can produce autoantibodies which can be detected long 

before the onset of symptomatic inflammation, and contribute to inflammation in 

the joints. B-cells originate in the bone marrow, where they undergo several 

stages of development before entering the circulation as transitional B-cells. 

Naïve transitional B-cells circulate between tissues and lymph nodes via the 

blood, and upon encountering their cognate antigen in the lymph nodes they can 

undergo differentiation to either long-lived memory B-cells or plasmablasts. 

Development of B-cells and their expansive repertoire of antibody specificity is a 

complex process which will be discussed in brief below (summarised in Figure 

1.2).
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Figure 1.2 B-cell development pathway 

B-cells are differentiated from haematopoietic stem cells in the bone marrow which become common lymphoid progenitor cells then are committed to B-
cell lineage in the pro-B stage where cells express a number of B-cell lineage markers. IgH chains undergo recombination of V,D and J regions and 
successful rearrangements are displayed on the cell surface during the large pre-B-cell stage, associated with surrogate light chains as a pre-BCR. Pre-
BCRs are downregulated, allelic exclusion occurs and during the small pre-B stage, IgL chains undergo recombination of V and J regions. Successful 
recombination leads to transcription and translation of complete IgM protein and display on the cell surface as the BCR on immature B-cells. This figure 
was created using templates from Servier Medical Art which are licensed under a Creative Commons Attribution 3.0 Unported License; 
https://smart.servier.com.
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1.2.2 Development of Pro-B-cells 

B-cells begin life as multipotent stem cells in the bone marrow, in which the 

immunoglobulin (Ig) gene loci is in a germline configuration. Rearrangement of 

the gene loci, or recombination, is initiated by recombination activation gene 

(RAG) 1 and RAG2. These enzymes create breaks in the DNA strand within 

segments then the cleaved ends are joined by another set of proteins which repair 

the breaks in the strand – creating a new sequence72. In the common lymphoid 

progenitor stage, gene rearrangement is initiated in the immunoglobulin heavy 

chain locus (IgH) by RAG proteins. 

First, one distal (D) and one joining (J) segment are brought together, with 

intervening DNA deleted. Following D to J recombination, one of the variable (V) 

gene segments is joined with the DJ unit, with remaining V and D segments which 

lie between being deleted. This gives rise to a rearranged VDJ exon. The 

constant (C) region of the IgH locus is separated from the VDJ region by distal J 

segments and a J-C intron. Following VDJ recombination, the IgH gene is 

transcribed, producing a primary transcript of the rearranged VDJ segment and 

Cµ exons. Through splicing, joining DNA and subsequent regions of Cµ are 

removed. If the mRNA produced shows a productive rearrangement of VDJ, the 

µ protein is translated and synthesised73,74.  

1.2.3 Pre-BCR expression and signalling 

Cells with a productive Igµ gene rearrangement have differentiated from the pro-

B stage to the pre-B stage and the Igµ protein is expressed on the cell surface in 

association with surrogate light chain proteins, and signalling subunits Igα and 

Igβ to form the pre-B-cell receptor (pre-BCR)73. Unlike the light chains of 

complete BCRs, surrogate light chains are germline encoded invariant proteins 

expressed in all pre-B-cells. Expression of the pre-BCR is an important 

checkpoint for B-cell development75. 

Signalling via the pre-BCR leads to downregulation of surrogate light chain 

expression and then termination of pre-BCR expression and initiation of 

immunoglobulin light chain (IgL) gene rearrangement. Pre-BCR signalling also 
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prevents VDJ recombination in the second IgH allele – to ensure only BCRs of 

the same specificity are expressed on each B-cell, a process called allelic 

exclusion76.  

1.2.4 Development of Immature B-cells 

Following the pre-B-cell stage, IgL chains are rearranged (involving only V and J 

recombination), starting with the κ chain. If the κ chain is productively rearranged, 

the κ light chain protein is produced and associates with the Igµ chain to form a 

complete IgM protein. If the κ rearrangement is unproductive, then the λ chain is 

rearranged and this may also associate with the Igµ protein77. The completed IgM 

protein can then be expressed on the cell surface of immature B-cells. The 

immature B-cell stage is the first checkpoint for B-cell tolerance, as cells which 

express IgM which strongly bind self-peptides within the bone marrow undergo 

apoptosis or receptor editing78. Cells which do not respond to self-peptides are 

released from the bone marrow as naïve transitional B-cells77. 

1.2.5 B-cell maturation in the spleen 

Immature cells which exit the bone marrow are first trafficked to the spleen where 

they encounter self-antigens. Cells which respond to self-antigens may undergo 

a further round of receptor editing, distinct from initial stages of BCR 

development79; they may also undergo apoptosis in some cases or be rendered 

anergic to prevent autoreactive cells from circulating. The process of selection 

and receptor editing is thought to be dependent on BCR signalling within the 

spleen80. Cells which exit the spleen following selection are now classed as 

mature naïve B-cells which are able to respond to antigen stimulation, and these 

cells circulate between tissues and lymph nodes. 

1.2.6 Antibody Structure and Function 

As discussed, mature B-cells express Ig protein on the cell surface in the form of 

the BCR. Mature B-cells can also produce a soluble form of the Ig molecule, for 

opsonisation of the target antigen. The most abundant class of antibody in the 

serum is immunoglobulin G (IgG) which is a glycoprotein molecule comprised of 

two identical paired heavy and light chains held together by disulphide bonds81 

(Figure 1.3). Each chain contains a variable domain and at least one constant 

domain. The light chains of IgG contain one constant domain, whereas the heavy 
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chains have 3 constant domains. As well as IgG, there are four other classes of 

Ig, IgM, IgA, IgE and IgG, which share the same basic structure with variations in 

the heavy chain constant region which determines their differing effector 

functions82 (Ig isotype structure and function summarised in Figure 1.3). 

The antigen binding regions of the IgG molecule are formed by the variable 

domains of each heavy and light chain. A high degree of variability in the antigen 

binding region can be achieved through VDJ rearrangement which occurs during 

B-cell development. Further mutations which increase specificity and affinity 

occur during germinal centre reactions following B-cell activation. The variable 

regions and one constant region of each chain form the fragment of antigen 

binding (Fab) and the remaining constant domains of the heavy chain form the 

fragment crystallisable (Fc)82. The function of Ig in serum is to bind to its cognate 

antigen. Antibody binding can lead to the formation of ICs or opsonisation of the 

surface of a particular cell or organism the antigen is expressed on. Immune 

complex formation on a cell or pathogen surface can lead to clearance by 

phagocytes, activation of the complement cascade or activation of an 

inflammatory response. The Fc region of the antibody molecule can bind a group 

of receptors called Fc gamma receptors (FcγRs) which are present on the surface 

of immune cells and can either promote or inhibit inflammatory activity83.  

There are several structural determinants of IgG which have been shown to be 

associated with autoimmunity, including enrichment of Ig heavy chain gene 

segment V4-34 (IGH4-34)84, increased length of the complementarity-

determining region 3 (CDR3) region in the heavy chain85 and N-linked glycan 

glycosylation patterns, which will be discussed later in this chapter. Enriched 

IGH4-34 and lengthened CDR3 regions have also been associated with dominant 

B-cell clones found in synovial tissues in patients with RA86.  
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Figure 1.3 Structure of immunoglobulins 

The basic structure of IgG, IgM, IgA, IgE and IgD is shown, with key features of IgG structure 
highlighted. The IgG molecule is a biantennary structure which is arranged in a “Y” formation and 
consists of four chains, two identical heavy and two light chains held together by disulphide bonds. 
The variable region forms the antigen binding domain and variability is achieved through rounds 
of somatic mutation. The Fc region binds IgG Fc receptors and determines its effector function. 
The glycan at Asn297 is an important determinant of Fc receptor binding.  
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1.3 B-cell activation and the Germinal Centre Reaction 

1.3.1 B-cell Circulation 

Mature-naïve B-cells which circulate between tissues and lymph nodes, driven 

by chemokine gradients, can be activated when they meet their cognate antigen 

in the lymph nodes. B-cells enter the lymph node via high endothelial venules 

(HEV) – highly specialised endothelium which allows the cells to pass into the 

lymph node via the circulatory system87. HEVs of the lymph nodes express 

CXCL13, which is essential for B-cell transport into the lymph nodes via its ligand 

CXCR5 which is expressed on the B-cell surface88.  

1.3.2 B-cell Activation in the Lymph Nodes 

Whilst in the lymph nodes, B-cells may be activated by soluble antigen, or by 

antigen presented by dendritic cells. Lymph nodes are organised into B-cell 

follicles and T-cell zones. B-cell antigen capture occurs within the follicles, where 

antigen is displayed by dendritic cells. BCR engagement induces antigen uptake, 

processing and presentation via MHC II89. Activated B-cells upregulate CCR7 

and downregulate CXCR5, which enables migration to the border of the T-cell 

zone, drawn by an increasing gradient of CCR7 ligands CCL19 and CCL2190. 

Within the T-cell zone, naïve T-cells are activated by antigen presented by 

dendritic cells via T-cell receptor engagement. Activated T-cells then upregulate 

CXCR5 and down-regulate CCR7, allowing them to migrate towards the follicle. 

Activated T-cells also upregulate expression of CD40L – a co-stimulatory 

molecule which binds CD40 expressed on B-cells91.  

In the T-cell zone a small amount of activated T cells differentiate to follicular 

helper T-cells (Tfh). In the early stages of Tfh differentiation, IL-6 produced by 

dendritic cells is key in upregulating the transcription factor B-cell lymphoma 6 

protein (BCL-6), a major regulator of germinal centre formation and maintenance 

in B-cells. BCL-6 drives the upregulation of CXCR5 which allows Tfh cell 

migration into the follicle92. Inducible co-stimulator (ICOS) is also important for 

the polarisation of Tfh from naïve Th cells, and is induced by ICOS-ligand 

(ICOSL), expressed by B-cells at the border of the T-cell zone and follicle93. 
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At the border between the follicle and the T-cell zone, activated T and B-cells 

meet. T-cells are able to recognise antigen presented by B-cell MHC II and the 

cells form an immunological synapse. During the T and B-cell interaction, CD40L 

expressed by T-cells binds CD40 on B-cells, stimulating B-cell activation and 

contributing to induction of B-cell proliferation, a small degree of isotype switching 

and differentiation to short-lived plasmablasts. A small number of B-cells which 

are activated by T-cells at the border of the follicle will also migrate back into the 

follicle to form a germinal centre (GC) reaction94. 

1.3.3 Germinal centre independent B-cell activation 

B-cells which undergo a degree of isotype switching and differentiation to 

plasmablasts within the T-cell zone are thought to be important for the early 

stages of the humoral immune response. It is likely that these cells are short-lived 

and are not able to migrate to sites such as the bone marrow in order to become 

long-lived plasma cells95. There is also evidence that some B-cells may be able 

to directly differentiate into memory B-cells, foregoing the germinal centre 

reaction. In mouse models, these cells have been shown to be induced by strong 

CD40 stimuli, and express memory B-cell markers CD38 and GL7, however they 

do not express CD73 – a marker thought to be induced by upregulation of AID 

during somatic hypermutation96. In humans there is no clear marker which may 

delineate GC and non-GC memory B-cells, but they are thought to be within the 

CD27- memory cell population97. 

1.3.4 Germinal centre formation and maintenance 

After the initial interaction with T-cells at the border of the follicle, a select few 

activated B-cells move towards the centre of the follicle and begin to rapidly 

divide. These cells form the basis of the densely packed dark zone of the germinal 

centre where cells undergo several rounds of mutations and division to improve 

antigen specificity. Surrounding the dark zone is the light zone, which comprises 

of blasts which have migrated from the dark zone, a network of follicular dendritic 

cells (fDCs), macrophages and Tfh cells98.  

The transcriptional repressor BCL-6 is essential for the induction of the germinal 

centre reaction and is expressed by both GC B-cells and Tfh cells99. MEF2B, and 

IRF4 are also upregulated in GC B-cells, and they are thought to play a role in 
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the induction of BCL-698. BCL-6 is able to repress BLIMP-1, which is key for 

differentiation to plasmablasts, thus preventing GC B-cells from differentiating 

during proliferation in the dark zone100.  

1.3.5 Class switch recombination 

During the germinal centre reaction, B-cells undergo rounds of somatic 

hypermutation (SHM) to increase the affinity of the BCR for antigen, and class 

switch recombination (CSR) to promote the production of the most appropriate 

class of Ig, dependent on the antigen. CSR is in part determined by T-cell 

cytokines in the lymph node, in response to a particular antigen. CD40 ligation in 

combination with IL-4 leads to the induction of activation induced deaminase 

(AID)101. Each Ig isotype is encoded for by a different exon cluster in the Ig H 

constant region locus CH
102. The sequence of the Ig C gene contains a switch 

region upstream of the isotype determining exon clusters. AID induces 

deamination of deoxycytosines to form deoxyuracils, forming U:G mispairings103 

in both the region of the current Ig isotype and the downstream desired Ig isotype. 

The processing of deoxyuracils leads to double stranded DNA breaks in both of 

these regions. The intervening DNA of the switch region is then deleted during 

transcription, bringing the downstream CH isotype region adjacent to the VDJ 

region, resulting in the production of a new Ig isotype with the same V region as 

the original molecule104. 

1.3.6 Somatic hypermutation 

Somatic hypermutation is the process of diversifying antibody variable regions. 

Single nucleotide point mutations are introduced into the Ig V regions in a 

stepwise manner, primarily driven by AID105. AID induces deamination of 

deoxycytodine to form deoxyuridine, forming U:G mispairings103. The mispairing 

can result in C to T or G to A transition mutations during DNA replication or the 

removal of uracil to create an abasic site - leading to further mutations during 

replication. Furthermore, the mispairing may be recognised by mismatch repair 

machinery Msh2/Msh6, triggering excision and re-synthesis of a section of DNA. 

This is a highly error prone process which therefore spreads the mutations to 

surrounding base pairs106. Following somatic hypermutation within the dark zone, 

cells will migrate to the light zone, where B-cells with the most favourable 
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mutations – i.e. increased antibody specificity - will be selected, either for further 

rounds of somatic mutation, or differentiation to plasmablasts or memory cells. 

1.3.7 Selection following class switch recombination and somatic 

hypermutation. 

When B-cells enter the light zone they encounter antigen displayed by fDCs. 

Antigen can then be taken up via the BCR and presented on the surface via MHC 

II. Efficiency of antigen presentation is dependent on the affinity of the BCR for 

the antigen. Efficient antigen presentation is crucial for strengthening and 

prolonging the interaction between B-cells and Tfh cells in the light zone, 

therefore those with the strongest BCR affinity, and most efficient antigen 

presentation will provoke the strongest interaction98. Signals provided via Tfh 

cells induce B-cell re-circulation into the dark zone, so they may undergo further 

rounds of mutation, and eventually commitment to plasma cell precursors or 

memory B-cells. B-cell interaction with Tfh cells promotes upregulation of CD40L, 

ICOSL, IL-4 and IL-21 in Tfh cells, which stimulate B-cells to migrate back into 

the dark zone, or differentiate depending on the nature and strength of the 

signal93. B-cells which bind antigen insufficiently, and therefore do not receive 

signals from Tfh cells undergo apoptosis. Cells which are selected positively may 

also undergo CSR before recirculating into the dark zone for further rounds of 

SHM, or they may directly differentiate into plasma cell precursors or memory B-

cells98. 

1.3.8 B-cell differentiation to plasmablasts and memory cells 

The fate of germinal centre B-cells is determined following selection of clones 

with the highest affinity for antigen after several rounds of mutation. Cells either 

differentiate to plasmablasts - the precursors to plasma cells, or to memory B-

cells94. Long lived plasma cells survive in bone marrow niches and are able to 

produce large quantities of antibodies for several years following activation. 

Memory cells circulate between tissues and the blood and are primed to initiate 

a rapid recall antigen response, upon stimulation with their cognate antigen. In 

order for cells to become plasmablasts, they must downregulate expression of 

BCL-6 and Pax-5. Downregulation of BCL-6 allows for BLIMP-1 upregulation, 

which is key in plasmablasts differentiation100. IRF4, a transcriptional activator is 

also induced. Together IRF4 and BLIMP-1 induce expression of XBP1, which is 
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required in plasmablasts to account for their secretory ability107. It is thought that 

perhaps cells which express lower levels of IRF4 become long-lived memory B-

cells and those with higher expression are able to differentiate to plasmablasts. 

Signals which may determine expression of IRF4 and control the fate of GC B-

cells are not currently well understood108. 

1.3.9 Ectopic Lymphoid Structures 

Although the majority of germinal centre reactions are confined to the lymph 

nodes, it has also been described that ectopic lymphoid structures (ELS) can 

form in the target tissues of a number of autoimmune diseases. These structures 

provide in situ class switching and affinity maturation, contributing to the 

production of autoreactive B-cells in the target tissues54. Within the lymph node 

Tfh cells drive formation of isotype switched, antigen specific B-cells, however a 

recent study has shown that this process is not directly dependent on Tfh cells 

specifically, and is most likely driven solely by CD40/CD154 (CD40L) signalling 

between B-cells and Th cells. This provides support for the notion that isotype 

switched B-cells may be generated in the periphery, outwith the Tfh-rich 

environment of the lymph node109. It was found that in RA, B-cells isolated from 

synovial tissues with ELS present contained IgV genes which targeted 

citrullinated neutrophil extracellular trap (NET) proteins. This suggests a 

preference for autoantigens in B-cells derived from ELS110, which may be a 

contributing factor for the maintenance of autoimmune inflammation in the joints.  

Studies of influenza infections in murine lungs have revealed that following 

infection, a subset of B-cells persist in the lungs – dubbed resident memory B-

cells, which are thought to be generated by early antigen exposure in the lungs 

and these cells do not recirculate111. Further to this it has been described that 

persistence of germinal centres for influenza viruses in the lungs contributes to 

cross reactive immunity112. This may support the theory of antigen cross-reactivity 

caused by infection or damage due to smoking in the lung leading to the 

development and persistence of autoreactive B-cells. 
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1.4 Breakdown of B-cell Tolerance and Development of 

Autoimmunity in Rheumatoid Arthritis 

1.4.1 B-cell Tolerance Checkpoints 

There are several points at which B-cell tolerance is monitored, and where cells 

which react to self-peptides are deleted or undergo receptor editing, both centrally 

and in the periphery. A breakdown in these key tolerance mechanisms is an 

important factor in the development of autoimmunity, and is likely to play a role in 

the production of autoantibodies in RA. 

Since the process of B-cell antibody repertoire generation is a result of random 

gene rearrangements, antibody specificities for “self” peptides are generated as 

a result. Therefore, to maintain tolerance and prevent autoimmunity, there has to 

be several “checkpoints”, during which self-reactive cells are filtered out, 

preventing them from initiating an autoimmune response.  

The first checkpoint occurs centrally within the bone marrow after rearrangement 

of the V-D and J genes of Igµ and expression of the pre-BCR. Cells which have 

an antigen receptor specific for self-peptides either undergo apoptosis or receptor 

editing, depending on the strength of the signal. High affinity binding to self-

antigen leads to receptor editing where RAG genes are reactivated and V and J 

regions are rearranged. If receptor editing fails and the cell still receives a signal 

from binding self-peptides then the cell undergoes apoptosis77. Lower affinity 

reactions lead to a weaker signal via the antigen receptor and induces anergy, 

by lowering expression of antigen receptor and blocking signalling. Cells which 

have been negatively selected through this process exit the bone marrow and 

traffic to the spleen, where they undergo a further tolerance checkpoint, where 

binding strongly to self-antigens can induce anergy or apoptosis113. Negatively 

selected mature naïve B-cells can then enter the blood and begin to circulate 

between tissues and lymph nodes. In the periphery, B-cell tolerance is thought to 

be dependent on CD40/CD40L interactions. It is also thought that Tregs play a 

role in maintaining peripheral tolerance, by downregulating T-cell activation in the 

periphery via co-inhibitory molecules and production of anti-inflammatory 

cytokines114.  
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1.4.2 Breakdown of B-cell Tolerance in Rheumatoid Arthritis 

There is some evidence that in patients with RA, there is a failure in tolerance 

checkpoints which allows autoreactive cells to escape detection and deletion, 

even prior to the induction of disease specific autoimmune responses115. It was 

found that in RA, autoreactive cells were not removed by tolerance checkpoints 

and that between 30 and 52% of mature B-cells displayed autoreactivity – 

compared with 20% in healthy individuals116. 

It is likely that the breakdown in RA of B-cell tolerance is linked to an inherent 

genetic defect rather than a consequence of inflammation, as it was shown that 

numbers of autoreactive B-cells did not change despite decreased inflammation 

following treatment with methotrexate and anti-TNF therapies117.  

Additionally, B-cells from patients with RA appear to have extended Igκ chains 

containing 11 or more amino acids in the CDR3 regions, which is thought to be 

related to the production of autoantibodies116. This is likely mediated by addition 

of non-template nucleotides by terminal deoxynucleotidyl transferase (TdT). TdT 

is downregulated by pre-BCR expression, so it is hypothesised that defective 

signalling in the pre-BCR in RA may lead to continued expression of TdT and the 

generation of longer amino acid sequences in CDR3115,118. 

1.4.3 Rheumatoid Factor 

Several antibodies have been identified which are thought to play a role in RA 

pathogenesis. The first to be identified was rheumatoid factor (RF)119, which is an 

autoantibody directed against the Fc portion of IgG120 and is produced by B-cells 

in lymphoid follicles and GCs. Physiologically, IgM RF is transiently produced in 

response to B-cell activation by invading microbes. RF binds to IgG on the 

microbe surface, forming ICs and thereby increasing the rate of clearance by 

phagocytes121. There are several infectious agents which have been shown to be 

associated with RA, and it is possible that during infection, formation of ICs may 

trigger the production of RF64. The presence of RF in the serum has also been 

found to be strongly associated with smoking19. Unlike in healthy individuals, RF 

produced in RA has shown evidence of affinity maturation and class switching to 

IgG RF, potentially increasing the affinity for IgG122. In patients with RA, it is likely 

that formation of ICs in the synovial fluid and synovial tissue, when high affinity 
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RF binds to ACPA120, worsens inflammation. IgM-RF bound to ACPA was shown 

to enhance the ability of ACPA to stimulate cytokine production in 

macrophages123. RF+ B-cells also activate ACPA-specific T-cells by presenting 

peptides derived from antigen-Ig ICs124.  

1.4.4 Anti-Citrullinated Peptide Antibodies 

ACPAs are another important autoantibody in RA, and they bind antigens 

containing the amino acid citrulline. Citrullination is a post-translational 

modification which converts arginine to citrulline, mediated by peptidyl-arginine 

deiminase enzymes125. Citrullination is a cellular response to stress and is 

induced in the lung through smoking and in the oral cavity by bacteria that cause 

periodontitis – key environmental factors associated with RA125. 

HLA-DRB1 alleles containing the SE convey particular susceptibility to ACPA+ 

RA126. Major Histocompatibility Complex (MHC) class II molecules containing the 

SE bind citrullinated peptide antigens with a higher affinity than control HLA 

alleles126. Citrullinated antigens presented by APCs lead to the activation of 

autoreactive B and T-cells – and the production of ACPAs by plasma cells127. 

Citrullinated proteins have been found to be increased in the inflamed RA 

synovium and B-cells isolated from synovial tissue can produce ACPAs in vitro128. 

It has been hypothesised that HLA-SE may present joint-specific peptides - 

leading to an inflammatory response in the synovium129. 

Although there is an increase in the citrullination of peptides within the joints in 

RA, this is not exclusive to RA and there is also an increase in citrullination within 

non-RA inflamed joints. ACPA is highly specific for RA however, so it suggests 

an aberrant response to the presence of citrullinated peptides in RA130. ACPA 

can often be detected in the serum of patients with RA a median of around 5 

years before the onset of clinically relevant joint inflammation131. A subset of 

ACPA+ individuals may remain asymptomatic indefinitely. However, a proportion 

will develop general musculoskeletal symptoms or arthralgia – so-called Pre-RA, 

which may then progress to meet the criteria for diagnosis of RA. Around 30% of 

ACPA+ individuals with Pre-RA go on to be diagnosed with RA within 12 

months132. Factors which determine and drive the development of RA in ACPA+ 

individuals are not well understood. Nor is it fully understood whether ACPAs 
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contribute to the onset of disease or if they are present as a consequence of early 

disease processes. 

In established disease, ACPA antibodies may contribute to pathology in RA via a 

number of different pathways – via Fc receptor binding, complement activation or 

stimulation of NETosis within the joint 129. ACPA deposition within the joints likely 

promotes synovial inflammation by activating immune cells to produce cytokines, 

which in turn activate and recruit further immune cells, propagating synovial 

inflammation133. ACPA undergoes limited avidity maturation which mostly takes 

place before the onset of disease, producing low avidity antibodies134. Further to 

this, patients with ACPAs of lower avidity have increased risk of joint 

destruction129, suggesting this may also contribute to pathology. 

1.4.5 Contribution of ACPA to bone loss in RA 

Bone loss, and changes to bone metabolism can also be detected in otherwise 

asymptomatic individuals who are ACPA+ without the presence of synovial 

inflammation, suggesting that ACPA-mediated bone loss is not a direct 

consequence of inflammation, but rather a direct consequence of ACPA- 

stimulated osteoclastogenesis135,136. 

It has been found that antibodies against citrullinated proteins are able to bind 

directly to osteoclasts, promoting bone resorptive activity125. Citrullination is 

required for the differentiation of osteoclasts, and specific PAD enzymes are 

upregulated at different stages during differentiation from monocytes, possibly 

facilitating ACPA binding137. It has also been shown recently that ACPAs are able 

to induce dendritic cell trans-differentiation to osteoclasts, mediated by IL-8, 

further driving bone destruction in ACPA+ individuals138. 

Results published in 2016 suggested that ACPA molecules can also enhance 

osteoclast differentiation via IL-8-mediated upregulation of PADs137. It was also 

reported that ACPA may contribute to the induction of pain in the joints in RA 

independent of inflammation, via osteoclast production of CXCL1 and IL-8 which 

may target nociceptors in the joint139. These results must be interpreted with 

caution however, as the authors later reported their antibodies were not specific 

for citrullinated peptides140,141. Despite this, there may yet be a further mechanism 

of antibody mediated osteoclastogenesis, independent to recognition of 
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citrullinated targets. Independent to Fc receptor binding, Fab fragments of the 

antibodies used experimentally were also able to induce osteoclast activation137. 

Further to this, one study which examined specific characteristics of autoreactive 

B-cells in RA found that amphiregulin (AREG) signalling was upregulated, which 

is thought to stimulate osteoclastogenesis in combination with ACPAs142. It was 

also found that expression of IL-15RA was enriched in ACPA+ cells compared to 

ACPA- B-cells from patients with RA142. Genetic variations in IL-15 have also 

been associated with increased osteoclastogenesis and joint destruction in 

RA143. This evidence suggests that ACPA+ B-cells undergo specific phenotypic 

changes, enabling them to promote autoimmune inflammation and joint 

destruction in RA. 

1.4.6 Seronegative disease and seropositive disease pathotypes  

Although up to two thirds of patients with RA test positive for ACPA and/or RF144, 

there is a subset of RA patients in which neither antibody can be detected – so-

called seronegative RA. It is possible that some of these patients may have 

autoantibody specificities which are not picked up by widely used tests. However, 

there is also some evidence to suggest a distinct disease pathogenesis in 

seronegative RA, potentially due to differing roles for T-cells in pathogenesis. 

Studies have shown that there was less incidence of ectopic lymphoid structures 

in seronegative patient synovial tissues, however T-cell numbers were similar, 

suggesting less of a role for autoantigens in driving synovial inflammation145. 

Further to this, links have been drawn between seronegative disease and IL-6 

signalling via STAT3 pathways, which suggest a stronger response to IL-6 may 

occur in seronegative patients, potentially driving inflammation146. It is also known 

that heritability is reduced in cases of seronegative RA, however there is still a 

link to the SE and seronegative disease147. Smoking appears to be a less 

important risk factor for seronegative disease, despite its strong links to 

seropositive disease148, possibly suggesting an alternative pathway for the 

induction of inflammation. It has also been suggested that cases of seronegative 

RA may be better classified using mechanistic characteristics, to include auto-

inflammatory diseases which share certain similarities with RA149. 

RA is known to be an extremely heterogeneous disease, and even within the 

seropositive disease group, it has been suggested that distinct phenotypes may 
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exist, based on patterns of synovial inflammation. One study used expression of 

serum biomarkers - CXCL13 and ICAM-1 - to classify patients into groups based 

on the dominant cells in synovial infiltrates. Patients with a high baseline CXCL13, 

classed as lymphoid phenotype, with a stronger presence of lymphoid cells in 

infiltrates, showed a better response to anti-IL-6 therapy than ICAM-1 high 

“myeloid” patients whose infiltrates were dominated by myeloid cells, and vice 

versa150. Further investigations on the classification of patients into distinct 

groups based on synovial infiltrate and mechanisms of inflammation may help to 

achieve more informed targeted treatment regimens in future. 

1.4.7 Further autoantibodies to post-translational modifications 

As mentioned previously, it is thought that a proportion of ACPA-RF- patients with 

RA may have disease driven by other antibodies which are not picked up by 

conventional testing. Several other classes of autoantibodies have been 

identified in such patients’ serum, which are thought to play a role in driving 

pathogenesis. One of the most widely reported classifications is anti-

carbamylated protein antibodies (Anti-CarP). Carbamylation is a spontaneous 

reaction between a primary amine or free sulfhydryl group with cyanate, 

converting lysine residues to homocitrulline. Cyanate exists in equilibrium with 

urea in the body, therefore under normal conditions the levels of cyanate are 

inadequate for extensive carbamylation. However, during inflammation, the 

enzyme myeloperoxidase is released by neutrophils which converts thiocyanate 

to cyanate, increasing its availability to react with lysine residues151. 

Carbamylated peptides were shown to be able to induce arthritis and the 

production of autoantibodies in mice152. Anti-CarP antibodies were also detected 

in the serum of a number of patients with RA, which appeared to predict a more 

aggressive diseases phenotype in ACPA- individuals153. 

Antibodies against PAD4 have also been detected in RA patients154. It is thought 

that PAD4 can undergo auto-citrullination, leading to the development of anti-

PAD4 antibodies. These antibodies have been shown to be able to stimulate 

PAD4 activity155, potentially increasing citrullination of other peptides. Some 

studies have also shown that antibodies to anti-acetylated vimentin can be 

detected in patients with RA and may also contribute to the disease process156. 

Several other types of autoantibodies have also been identified as potential 
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contributors to pathology in RA, these include Anti-BRAF, Anti-RA-33, Anti-

oxidised protein, Anti-malondialdehyde and anti-malondialdehyde acetaldehyde 

antibodies154. 

1.4.8 Further roles of B-cells in RA pathogenesis 

As well as contributing to disease via the production of autoantibodies, 

autoreactive B-cells may also have further roles in perpetuating synovial 

inflammation. This may occur via inflammatory cytokine production or via antigen 

presentation and the activation of autoreactive T-cells124. One study which 

profiled the transcriptome of ACPA+ B-cells in RA found that beyond production 

of autoantibodies, they also produced AREG, which could activate FLS142. B-cells 

in RA have also been shown to produce RANKL, which can also stimulate 

osteoclast differentiation157. Production of autoantibodies as well as their roles in 

promoting inflammation in the joints makes B-cells key players in driving RA 

pathogenesis. Further understanding of the development of auto-reactivity in B-

cells in RA is likely to reveal potential targets for therapy, and further 

understanding their role could help guide use of current therapeutics, with a more 

targeted approach.  

1.5 Sialic Acids 

1.5.1 Sialic Acid Structure 

Sialic acids are a group of around 40 derivatives of a 9-carbon sugar – neuraminic 

acid. A common structural feature is an amino group at carbon 5 and a carboxyl 

group at carbon 1 which gives the molecule a negative charge. The amino group 

on the molecule is usually acetylated which gives rise to N-acetylneuraminic acid 

(Neu5Ac) – the most common form of sialic acid (SA), and the molecule which is 

being referred to in the remainder of this report where SA is referenced158 (Figure 

1.4). 

1.5.2 Sialic Acid Synthesis and Transport 

SAs are synthesised in the cytosol from UDP-GlcNAc which is first converted to 

ManNAc, then phosphorylated to form ManNAc-6-P by the enzyme GNE. 

Neu5Ac is produced by condensation and dephosphorylation reactions catalysed 
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by Neu5Ac 9-phosphate synthase and Neu5Ac-9-phosphate phosphatase 

respectively159. 

SAs are then transported to the nucleus and activated by cytosine 5’-

monophosphate N-acetylneuraminic acid synthetase to form cytosine 5’-

monophosphate (CMP) Neu5Ac, which is transported to the Golgi apparatus 

where glycoconjugates are synthesised160 (Figure 1.5). 

1.5.3 Sialyltransferase Enzymes 

One measure of SA diversity comes from different α-linkages which can be 

formed between the C-2 of SA and the underlying glycan structures, most 

commonly with the C-3 or C-6 on galactose or C-6 on N-acetylgalactosamine 

residues159. These distinct linkages are formed by specific sialyltransferase 

enzymes, which catalyse the addition of SA to galactose residues. The enzyme 

which catalyses the addition of SA to C-6 on galactose is beta-galactoside alpha 

2,6 sialyltransferase 1 (ST6Gal1). α2,6-SA is the most widely studied SA linkage, 

and is thought to have the most relevance in pathologies. 

ST6Gal1 is a type II membrane glycoprotein found mainly within the membrane 

of the Golgi apparatus. It consists of a single short NH2 terminal transmembrane 

domain which tethers the enzyme within the membrane, a COOH-terminal 

catalytic domain facing the Golgi lumen and a stem domain which connects the 

two161-163. ST6Gal1 activity involves SA residues being transferred from the 

substrate, CMP-SA, to type 2 galactose residues, which are found as free 

disaccharides or as a terminal N-acteyllactosamine units of N- or O-linked glycan 

structures163. 

Although predominantly a Golgi membrane bound protein, free ST6Gal1 can also 

be found in plasma. ST6Gal1 is expressed abundantly in the liver by hepatocytes, 

where it can be cleaved by β-site amyloid precursor protein-cleaving enzyme-1 

and secreted by the cell164. ST6Gal1 is thought to be upregulated in hepatocytes 

as part of the acute phase response, and this leads to an increase in secreted 

ST6Gal1165. The function of upregulated ST6Gal1 is likely to increase sialylation 

of acute phase proteins to protect them from clearance by liver asialoglycoprotein 

receptors166.   
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Figure 1.4 Sialic acid structure 

Chemical structure of Neu5Ac sialic acid. 9 carbon molecule with an amino group at carbon 5 and 
a carboxyl group at carbon 1 which gives the molecules its negative charge, playing a part in SA 
masking/inhibitory functions. 
 
 

 

Figure 1.5 Sialic acid transport and sialyltransferase activity 

SA is synthesised in the cytoplasm from UDP-GlcNAc (A). SA is then translocates to the nucleus 
where it is picked up by carrier molecule CMP (B). CMP-SA exits the nucleus and is transported 
to the Golgi apparatus (C) where ST6Gal1 catalyses the addition of SA to a Gal moiety on a 
glycoprotein chain (D). Sialylated glycans are then packaged for transport and may be secreted 
from the cell or delivered to the cell surface (E). This figure was created using templates from 
Servier Medical Art which are licensed under a Creative Commons Attribution 3.0 Unported 
License; https://smart.servier.com.  
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 Serum concentrations of plasma glycosyltransferases which have been released 

from cells, can vary according to age, and are found to be increased in children 

and those over 80 compared to individuals aged 18-80167. Some studies have 

shown that an increase in soluble ST6Gal1 has an effect on the α2,6-sialylation 

of secreted glycoproteins, but not of cell surface glycoproteins166. However, a 

study of haematopoietic stem cell differentiation suggested that ST6Gal1 

secreted by the liver was a negative regulator of haematopoiesis using a mouse 

model with liver-specific ST6Gal1 knockdown. This regulation is thought to be 

driven by soluble ST6Gal1 sialylation of haematopoietic stem cell surface 

glycans168. 

1.5.4 Neuraminidases 

Neuraminidases (also called sialidases) are a group of enzymes which carry out 

cleavage of SA residues from glycoprotein chains. Neuraminidases are glycoside 

hydrolase enzymes and they cleave glycosidic bonds within neuraminic acids. 

They are expressed by a wide range of organisms, playing a notable role in virus 

entry into cells – making them an attractive target for anti-viral drugs such as 

oseltamivir169. There are four mammalian neuraminidases which have been 

identified – neuraminidase-1-4. Neuraminidase-1 (NEU1) is universally 

expressed by all tissues, and is found within lysosomes. However it has also been 

shown to associate with the plasma membrane, and can exist free in the 

serum170. 

1.5.5 Functions of Sialic Acid 

Terminal SA residues on glycan chains may contribute to glycoprotein biological 

function either by forming or masking glycan recognition sites162. SAs are also 

able to inhibit cell-cell interactions in a nonspecific manner due to their negative 

charge171. Sialylated glycoproteins have an increased half-life in the serum as 

they are protected from clearance by the liver via asialoglycoprotein receptors166. 

Sialylated glycoproteins on the cell surface can also protect cells from being 

removed from circulation, as SA masks ligands from detection by liver 

macrophages. In particular, erythrocyte surface proteins are heavily sialylated 

when the cell is first generated, then sialylation is lost as the cell ages or is 

damaged, thus allowing them to be removed from circulation172.  
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Sialylated cell-surface glycoproteins also have an important role in mediating 

cellular interactions, including cell-cell adhesion and migration of cells into 

tissues. In the vascular endothelium, a key step in the initiation of inflammation is 

monocyte adhesion and transmigration, which is driven by glycoprotein receptors 

selectins and integrins173. Integrin function is heavily dependent on α2,6-

sialylation and hyposialylation of monocyte integrins can lead to increased 

adhesion to vessel walls and in increase in endothelial transmigration174. 

Therefore, during vessel wall inflammation, monocyte surface sialylation is 

downregulated. 

1.5.6 Sialic Acid Receptors 

α2,6 sialylation also plays an important role in the regulation of immune cell 

activity. Sialic acid binding immunoglobulin-like lectins (Siglecs) are immune 

receptors which recognise sialylated glycans, and are present mostly on innate 

immune cells. There have been 15 distinct Siglecs identified in humans, the 

majority of which contain an immunoreceptor tyrosine based inhibitory motif 

(ITIM)175, which function to negatively regulate immune cell activation176. An 

exception to this is Siglec-1 or sialoadhesin, which lacks ITIMs but contains 17 

Ig-like domains177. It is expressed on macrophages and is thought to be involved 

in the uptake of sialylated antigens. Most Siglecs are “masked” on the cell 

surface, meaning they are ligated by SA molecules expressed on neighbouring 

receptors, and are therefore prevented from interacting in a trans manner with 

sialylated proteins in the extracellular environment and with other cells177,178. 

Sialoadhesin however is “unmasked” which is thought to allow its interaction with 

sialylated antigens and promote their uptake. Siglecs mainly function to recognise 

self-associated ligands, playing a role in maintaining self-tolerance179. 

1.5.7 Regulation of B-cell activation by CD22 

α2,6-SA is the ligand for CD22, a Siglec which is expressed exclusively in B-cells. 

It is thought to act as a negative regulator of B-cell signalling, by recognising self-

antigens and preventing B-cell over-activation and autoimmune reactivity180. 

Following BCR crosslinking, CD22 is rapidly phosphorylated, mediated by SHP-

1176, which has an attenuating effect on calcium signalling181,182. On the surface 

of resting B-cells, CD22 molecules are thought to exist as multimers, as 

neighbouring CD22 molecules carry CD22 ligands, meaning the molecules are 
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ligated in a cis manner183. CD22 ligands are abundant on the surface of B-cells 

and it is thought that this may limit the capacity of CD22 for trans signalling, 

however in certain situations, CD22 may be ligated by sialylated proteins of other 

cells during interactions or by free sialylated glycoproteins176.  

It is thought that following B-cell stimulation with anti-IgM to cross-link the BCR 

and CD40 ligand to provide a co-stimulatory signal, CD22 becomes unmasked 

and therefore becomes more available to receive trans signals184. However, 

simultaneous stimulation of the BCR and CD22 by a sialylated antigen may lead 

to suppression of BCR signalling180, and interactions with cells which display 

sialylated proteins may also inhibit B-cell activation182.  

ST6Gal1 is responsible for the production of Sia6LacNAc – which is the 

predominant ligand for CD22. Mice which lack ST6Gal1 are viable but are 

severely immunodeficient, have decreased levels of circulating IgM and 

decreased expression of CD22. Mice also showed a deficient response to BCR 

stimulation, however in the presence of IL-4, response was close to wild type 

cells185. ST6Gal1 and CD22 double knockout mice also showed a reduced 

response to BCR stimulation and had a lack of circulating B-cells and IgM186. 

However, early B-cell development in the bone marrow was not found to be 

affected. B-cell homing to bone marrow was deficient in ST6Gal1 knockouts and 

double-knockout mice, suggesting that homing may be determined by CD22-

sialylation glycoprotein interactions186. 

It is also thought that CD22 may help to distinguish between self and non-self – 

as ligands for CD22 are generally only displayed on mammalian cells, and 

stimulation of B-cells with antigens displaying ligands for CD22 can lead to 

induction of anergy187. It is also thought that signalling via TLRs regulates the 

development of autoimmunity in combination with BCR signalling188. CD22 is also 

thought to play a role in TLR signalling, since B-cells from CD22-deficient mice 

exhibit hyperproliferation in response to TLR stimulation189. Therefore CD22 may 

help to downregulate B-cell responses to antigens which trigger both BCR and 

TLR signalling. 

Currently, no convincing links have been found between CD22 polymorphisms in 

humans and autoimmune disease176. Despite this, there has been some 
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evidence which suggests that CD22 may be downregulated in B-cells in patients 

with rheumatoid arthritis, in B-cells which express CD5 – a marker associated 

with the production of autoantibodies190. Further study of CD22 and ST6Gal1 

expression in human B-cells is required to further understand the link between 

dysregulated B-cell activation and the development of autoimmunity. 

1.5.8 Sialylation in Pathology 

As discussed previously, α2,6 sialylation has a wide range of functions which vary 

between cell and tissue type. Sialylated glycans are involved in various processes 

related to cell-cell interactions and cell activation, therefore, aberrant ST6Gal1 

activity and a change in regulation of α2,6 sialylation can contribute a number of 

pathologic states, particularly inflammatory states and carcinogenesis. 

1.5.8.1 ST6Gal1 in cardiovascular pathology 

ST6Gal1 is known to play a role in several aspects of cardiovascular pathology. 

Recently, ST6Gal1 has been shown to have a role in driving atherosclerotic 

plaque formation. It was found that ST6Gal1 was downregulated in endothelial 

tissues during lesion development, leading to decreased sialylation of integrins. 

This facilitated monocyte transendothelial migration into the vessel wall, 

propagating vessel inflammation191. Patients with acute coronary syndrome also 

showed reduced endothelial cell expression of ST6Gal1 mRNA compared to 

controls, supporting its role in promoting vessel inflammation173. Some studies 

also suggest that a reduction in serum SA could predict the onset of 

cardiovascular pathology, however natural variations due to age, race, gender 

etc. complicate its use as a biomarker192. 

Hyposialylation of low-density lipoproteins has also been associated with its 

increased rate of accumulation in patients with atherosclerosis193, however this 

may be counteracted by an increased rate of clearance of hyposialylated 

proteins192. It has also been suggested that hyposialylation of erythrocytes and 

platelets may contribute to thrombotic plaque formation, but the power of this over 

the effect of increased clearance from circulation is yet to be confirmed192. There 

is also evidence for a susceptibility loci in ST6Gal1 for coronary artery disease194. 

1.5.8.2 ST6Gal1 in cancer 
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Sialylation and ST6Gal1 expression has been shown to be altered in a number 

of different cancers, and changes to the glycocalyx have been reported to have 

varying effects on tumour cell behaviours, dependent on the tissue type. There a 

number of mechanisms by which altering ST6Gal1 expression may contribute to 

tumour progression, invasion, chemoresistance and immune evasion195. These 

include a decrease in complement binding by increasing sialylation, the 

introduction of xenosialylation with non-human sialic acid from food sources 

triggering antibody production and a low-grade tumorigenic inflammation, and the 

increase of sialyloglycans to engage inhibitory receptors and avoid immune cell 

activation179. 

In numerous tumour types, increased sialylation has been associated with 

invasiveness, survival, and cell proliferation. In cervical cancer cells, for example, 

ST6Gal1 knockdown not only decreased cell proliferation and invasiveness, but 

also increased sensitivity of the cells to chemotherapeutics196. Manipulation of 

epidermal growth factor receptor has also been shown to promote cell survival 

and resistance to therapy197,198.  

A link between ST6Gal1 expression and activation of the PI3K/Akt pathway has 

also been suggested as a possible mechanism of promoting cell survival and 

inhibiting apoptosis199. ST6Gal1 has been found to be over-expressed in prostate 

cancer tissues, and it promotes proliferation, migration and invasiveness, 

mediated by the PI3K/Akt/GSK-3β/β-catenin signalling pathway200. 

Overexpression of ST6Gal1 has also been shown to be associated with the 

development of multi-drug resistance in leukemic cells, mediated by PI3K/Akt 

signalling201. Furthermore, ST6Gal1 has been found to be a target for MicroRNA-

199a, which is a negative regulator of the PI3K/Akt signalling pathway202.  

ST6Gal1 has also been shown to play a role in cell survival in growth factor 

deprived conditions. Cells overexpressing ST6Gal1 upregulated pAkt in response 

to serum starvation and were resistant to apoptosis. Cyclin D2 was also 

upregulated by ST6Gal1 in serum starved conditions, which prevented cells from 

entering cell cycle arrest. These results suggested ST6Gal1 has a role in 

protecting cell proliferative activity, to promote cell survival in cytotoxic 

conditions203. 
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The role of ST6Gal1 in tumour cells is diverse however, and it has been shown 

that in bladder cancers, downregulation of ST6Gal1 is associated with a more 

invasive phenotype204. A study of ST6Gal1 expression in colorectal carcinomas 

also found it to be increased in non-metastatic tumours compared to metastatic 

tumours205. 

Regarding control of ST6Gal1 expression in tumour cells, one study linked 

ST6Gal1 expression in prostate cancer to androgen signalling. Transcription of 

ST6Gal1 mRNA was found to be increased when prostate cells were stimulated 

by androgens. However, this was not coupled with an increase in surface SA 

expression206. In pancreatic ductal adenocarcinoma, which is known to be 

associated with high fructose intake, it has been shown that in vitro, exposure of 

pancreatic ductal adenocarcinoma cells to fructose increases their metastatic 

potential, in part by upregulating ST6Gal1207. It was also found that exposure to 

IL-1β in culture increased the level of α2,6-sialylation in pancreatic ductal 

adenocarcinoma cells208.The important and diverse role of ST6Gal1 in cancers 

makes it a popular target for research and evidence is constantly evolving. 

Potential for targeting sialylation with therapies is also currently being 

investigated. 

1.6 Sialylation in B-cells and Autoimmunity 

1.6.1 Roles for B-cell Surface Sialylation 

As well as playing an important role in many aspects of inflammation, 

dysregulated sialylation is also known to play a part in the development and 

propagation of autoimmunity. Sialylation of the B-cell surface plays a role in 

determining B-cell activation as described previously, and may be linked to the 

development of autoreactive cells. Antibody sialylation has been widely studied 

in a number of autoimmune diseases and is widely thought to be a crucial part of 

promoting autoimmune inflammation once self-tolerance is broken down.  

It has been described that treating resting B-cells with neuraminidase leads to an 

increase in their capacity to present antigen to T-cells. This observation was 

dubbed the neuraminidase effect209. However, it is not clear if the mechanism of 

increased antigen presentation capability is directly linked to expression of 

surface SA, since blocking the activity of LFA-1 inhibited T-B cell interactions in 
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neuraminidase treated but not lipopolysaccharide (LPS) treated cells210, 

suggesting instead that SA on the cell surface may have an impact on the 

interaction of T and B cells only. These experiments did not confirm that SA 

expression was reduced in cells stimulated with LPS, nor in cells activated via the 

BCR. In murine splenic B-cells, it was found that activating B-cells with anti-IgM 

leads to a downregulation of SA, whereas stimulation with anti-CD40 did not. It 

was also found that SA on the cell surface blocked access to co-stimulatory 

ligands, offering a possible explanation for the neuraminidase effect211. The same 

group also described an increase in B-cell activation induced by culture in media 

alone for 24 hrs211. Taken together, this data shows that B-cell surface sialylation 

likely plays a role in determining cell function, however further study is required 

to further understand the consequences of altered sialylation in pathology. 

1.6.2 Antibody Sialylation 

All five classes of antibody molecule contain several sites for glycosylation within 

the Fab and Fc fragments, and dependent on the structure and placement of the 

glycan, they may play a role in antibody function212. The functions of glycans in 

IgG molecules have been the most widely studied, and there is a large body of 

evidence which suggests sialylation of glycans within the Fc fragment of the 

molecule help determine its effector function.  

The N-linked glycan at position Asn-297 on the heavy chain near the hinge region 

in the Fc fragment has a bi-antennary structure consisting of N-

acetylglucosamine and mannose residues with varying amounts of terminal 

galactose and core fucose moieties213. The most common glycoforms of IgG can 

be categorised according to number of terminal galactose moieties - IgG-G2 has 

two (16% of total in healthy subjects), IgG-G1 only one (35%) and IgG-G0 has no 

galactose moieties (20-35%)214. Since α2,6 sialylation is dependent on the 

presence of galactose, absence of galactose equates to absence of SA 

residues163 (Figure 1.6). Sialylation of Fc glycans, as well as the presence or lack 

of core fucose molecules contributes to determining the affinity of IgG for 

FcγRs215-218 and the ability to bind complement219-221.  
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Figure 1.6 Structure of IgG N-linked glycans 

Basic structure of biantennary glycan found at Asn297 in the Fc fragment of IgG near the hinge 
region. Basic structure contains mannose (Man) and N-acetylglucosamine (GlcNAc) residues with 
variable addition (shown in blue) of Fucose (Fuc), bisecting GlcNAc, galactose (Gal) and terminal 
sialic acid (SA) residues. IgG-G0 contain no glactose, IgG-G1 and G2 contain one or two Gal and 
sIgG contans two Gal and at least one SA residue.  
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Asialylated glycoforms of IgG bind to activating FcγRs – FcγRI, FcγRIIA, FcγRIIC, 

FcγRIIIA, and FcγRIIIB, which are expressed on innate immune cells, with 

varying affinity83 and promote inflammatory activity by increasing phagocytosis, 

cytokine production and antibody dependent cellular cytotoxicity (ADCC)222 

However, the presence of SA leads to an increase in affinity for inhibitory FcγRs- 

FcγRIIB, CD23 and DC-SIGN. The presence of SA results in a more closed 

conformation – exposing more binding sites for the inhibitory receptors 217.  

Sialylated IgG binding to DC-SIGN on regulatory myeloid cells induces 

production of IL-33 - expanding basophils, which produce IL-4. This promotes the 

upregulation of inhibitory receptor FcγRIIB – increasing the activation threshold 

of effector Mϕ to ICs 218. Sialylated IgG in ICs also bind to CD23 expressed on B 

cells, upregulating FcγRIIB expression and elevating the threshold for BCR 

signalling216 (summarised in Figure 1.7). The absence of fucose moieties in IgG 

leads to higher affinity for FcγRIIIA, which enhances ADCC and monocyte/Mϕ 

activation 215. 

Intravenous immunoglobulin (IVIG) is a treatment sometimes used in patients 

with autoimmune disease, which can decrease inflammation223. The positive 

effects of IVIG treatment on autoimmunity have long been thought to be linked to 

the isoforms of IgG with higher Fc sialylation224. It has been suggested that CD22 

binding sialylated isoforms of IgG during IVIG treatment may contribute to B-cell 

suppression and induction of apoptosis225. Increased Fc glycan sialylation can 

also be manipulated to increase serum half-life of biologic drugs226.  

1.6.3 Disruptions in Antibody Sialylation in autoimmunity 

It was first described in 1985 that patients with RA had a shift in glycosylation and 

that their IgG contained lower amounts of galactose than healthy control IgG. It 

was then confirmed that ACPA IgG Fc glycans contained less SA than non-ACPA 

IgG from the same patient227. Reduced sialylation of disease specific 

autoantibodies can also be seen in systemic lupus erythematosus, inflammatory 

bowel disease, multiple sclerosis, myasthenia gravis, Sjogren’s syndrome and a 

number of other autoimmune conditions228.
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Figure 1.7 IgG Fc receptors and the impact of IgG sialylation 

(A) IgG which lacks sialylation of Fc glycans has a higher affinity for activating FcγRs FcγRI, FcγRIIIA, FcγRIIA, FcγRIIC and FcγRIIIB. Binding these 
receptors on APCs and effector cells leads to upregulated phagocytosis, cytokine release and increased ADCC. (B) IgG with sialylated Fc glycans has a 
higher affinity for inhibitory FcγRs FcγRIIB, CD23 and DC-SIGN. Binding FcγRIIB inhibits ITAM-initiated activation increasing the activation threshold of 
innate immune cells to ICs, and inducing apoptosis in B-cells with low affinity BCRs. DC-SIGN binding induces production of IL-33 - expanding basophils, 
which produce IL-4. This promotes the upregulation of inhibitory type I receptor FcγRIIB – increasing the activation threshold of effector cells to ICs. CD23 
binding in B-cells also upregulates FcγRIIB expression. This figure was created using templates from Servier Medical Art which are licensed under a 
Creative Commons Attribution 3.0 Unported License; https://smart.servier.com. 
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As discussed previously, asialylated IgG molecules bind with higher affinity to 

activating receptors than inhibitory receptors, giving them a more inflammatory 

phenotype. Further to this, asialylated ACPA was found to be able to enhance 

osteoclastogenesis, whereas sialylated ACPA did not, suggesting desialylation 

may be responsible for the direct role of ACPA in promoting bone loss125. 

Additionally, mice with collagen-induced arthritis treated with an SA precursor to 

induce ACPA sialylation showed a less severe disease phenotype than 

controls229  

There is also some emerging evidence that not only is ACPA Fc sialylation 

disturbed, Fab fragment sialylation is also altered. Fab sialylation has been found 

to be increased in ACPA IgG, in glycans located near the antigen binding 

region230. It is thought that Fab sialylation occurs during the many rounds of 

somatic hypermutation that ACPA B-cells undergo during germinal centre 

reactions231,232.  

The exact mechanisms which control sialylation of Fab or Fc glycans in RA are 

not fully understood, there is however some evidence of factors which may 

influence IgG sialylation in autoimmunity. It was described that IgG sialylation 

was reduced when B-cells were activated via the TLR9 ligand cytidine-

phosphate-guanosine (CpG) and stimulated with IL-21 and IFN-γ233. More 

recently it has also been shown that sialylation of Fc glycans was increased, as 

was expression of ST6Gal1 when antibody producing cells were treated with 

oestrogen. Treatment of post-menopausal women with oestrogen was also able 

to increase Fc glycan sialylation, suggesting a protective role for oestrogen in 

preventing autoimmunity234.  

Recently it has also been described that the IL-17/IL-23 axis may influence the 

Fc sialylation of ACPA antibodies, since IL-21/IL-22 produced by Th17 cells was 

shown to downregulate B-cell expression of ST6Gal1 and reduced IgG Fc 

sialylation in mice. It was also found that when measuring expression of sialylated 

proteins of the B-cell surface, a decrease in sialylation can be seen in patients 

with RA and ACPA+ individuals in the at-risk group for developing RA235. 

Detection of reduced sialylation on the cell surface was also correlated with 
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progression to RA from an asymptomatic autoimmune inflammatory state235,236, 

suggesting that changes to sialylation may correlate with the onset of 

autoimmune pathology in ACPA+ individuals. It is thought that measuring the 

surface sialylation may give an indication of overall sialyltransferase activity, 

however the decrease observed does not account for increased sialylation of Fab 

glycans. It is possible therefore that there may be changes to B-cell surface 

sialylated proteins in RA, independent of changes to antibody sialylation. 

Although studies have shown how certain cytokines can affect IgG 

sialylation233,235, little is known about the regulation of SA on cell surface proteins. 

1.7 Current Strategies for the Treatment of Rheumatoid 

Arthritis 

1.7.1 Treat to Target Approach 

The introduction of biologic drugs has revolutionised the treatment of RA. Several 

drugs which target multiple mechanisms of inflammation have been successful in 

reducing disease activity for many patients. However, there is still a number of 

patients for whom these drugs are not effective, and the disease progresses 

despite multiple drug interventions. The usual first line of treatment in RA is with 

conventional synthetic diseases modifying anti-rheumatic drugs which include 

methotrexate, leflunomide and sulfasalazine, which provide broad 

immunosuppression through various mechanisms, in combination with 

glucocorticoids. If this treatment strategy is unsuccessful, the next line of defence 

is biological DMARDS (bDMARDs). 

1.7.2 Biological DMARDs 

Several therapies targeting cytokines have been trialled in the treatment of RA, 

and several show promising results. In particular, therapeutic agents targeting 

TNF have proven to be effective in reducing inflammation in RA. There are 

several drugs on the market which block the action of TNF. Anti-TNF agents 

adalimumab, certolizumab and etanercept bind to TNF in the serum and prevent 

it from binding its receptor237.  
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Another strategy which has delivered success in the treatment of RA is anti-IL-6 

therapies. Antibodies to the IL-6 receptor in both its soluble and surface-bound 

forms such as sarilumab and tocilizumab prevent IL-6 from binding the receptor. 

Sirukumab binds IL-6 directly, blocking its interaction with soluble and surface 

bound IL-6R238.  

Other anti-cytokine therapies which have shown success in treating other 

autoimmune conditions have also been trialled in RA, including anti-IL-1β and 

anti-IL-17. Anti-IL-1β agent anakinra has proven only moderately effective in 

treating RA239, with one study finding it no more effective than methotrexate 

monotherapy in early stage RA240. The lack of efficacious response possibly 

indicates a less dominant role for IL-1β in RA pathogenesis. Similarly, anti-IL-17 

therapy such as secukinumab targets IL-17A directly, and has been successful 

in treating patients with psoriasis and psoriatic arthritis, but is less effective in 

treating patients with RA7. This may also indicate that the impact of IL-17 cells 

may be secondary to other inflammatory processes or that the role of IL-17 in RA 

is more diverse. 

Other biologic drugs which target T-cell co-stimulation have also been used to 

treat RA. Abatacept is a fusion protein which combines the Fc region of IgG1 and 

CTLA-4241. The drug binds to B7, which is the ligand for CD28, a T-cell co-

stimulatory molecule, and prevents T-cell co-activation via APCs242. In RA, 

abatacept has been shown to be effective in reducing synovitis, with a relatively 

low rate of adverse events, and is indicated for the treatment of patients who are 

bDMARD naïve, or who have failed treatment with anti-TNF therapy241. Finally, 

the recent introduction of small molecule inhibitors such as toficitinib and 

barcitinib that target the JAK/STAT signalling pathway, which is involved in 

several cytokine signalling pathways, is proving to be effective in treating RA in 

patients with RA across the disease stages, including those that are refractory to 

treatment with other bDMARDs243. 

1.7.3 B-cell Depletion Therapy 

B-cell depletion therapy has shown particular success in treating patients with RA 

and as with other therapeutic approaches, has demonstrated benefit in a 

proportion of patients refractory to treatment with other DMARDs, including anti-

TNF therapies244. B-cells are depleted via rituximab – a monoclonal chimeric 
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antibody to CD20, a B-cell surface marker. Rituximab binds to CD20 on the B-

cell surface and can induce B-cell death via activation of the complement 

cascade, or via antibody dependent cellular cytotoxicity245. Despite its success 

there are a number of patients who, following B-cell repopulation, have a relapse 

in disease activity and inflammation. After the first infusion of rituximab, B-cells 

are found to be variably depleted, and those with incomplete depletion are less 

likely to respond well to treatment than those who achieve complete depletion 

after the first infusion246.  

B-cell repopulation of the blood tends to occur at around 8 months following 

treatment. The first subset of B-cells to return are thought to be immature B-cells, 

followed by naïve mature cells, then memory cells, however memory cells have 

been found to be reduced in the blood of patients with RA for up to two years 

following rituximab treatment247. Disease relapse was associated with increased 

numbers of returning memory B-cells in some patients248. 

Treatment with rituximab leads to a reduction in the levels of serum 

immunoglobulins, however one study showed that levels did not decrease below 

the normal range249, this suggests that its therapeutic benefits may be related to 

B-cell functions other than antibody production. Rituximab treatment has also 

been shown to decrease the population of Th17 cells in the synovial tissue250, 

suggesting B-cells promote Th17 differentiation in the synovium, possibly through 

production of IL-6 and the presentation of autoreactive antigens. Depletion of B-

cells with rituximab also led to improved endothelial function and reduced 

systemic inflammation – which may reduce the cardiovascular risk251. 

Despite successes of treatment, the rate of relapse is high, and it has been shown 

that B-cell depletion is not enough to “reset” B-cell tolerance.  In patients with type 

I diabetes, relative frequency of autoreactive B-cells was unaltered following 

treatment, suggesting a possible mechanism of relapse following complete 

depletion in this and other autoimmune diseases252. 

One possible contributing factor to the return of inflammation following B-cell 

depletion may include the survival of ACPA+ B-cells which reside within synovial 

tissues253. Synovial tissue in RA also harbours dominant B-cell clones which are 
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not found in the blood86, providing a potential survival niche for dominant clones 

that may propagate autoimmunity following treatment with rituximab. 

1.7.4 Sialylation and Response to Therapy 

The changes in IgG sialylation which occur in RA have been shown to be 

reversible, as treatment with tumour necrosis factor inhibitors, methotrexate or 

both lead to an increase in galactosylation, associated with clinical 

response254,255. Sialylation may also have an influence on how well patients 

respond to treatment. In many cancers chemosensitivity is largely dependent on 

surface sialylation, and the same may be true in the treatment of RA. Research 

of the glycosylation profile of immune cells in RA and how this may affect the 

efficacy of treatment is lacking. However, it is hypothesised that sialylation may 

play a role in the efficacy of rituximab treatment. A study has shown that the 

sialylation of the Fc receptor on innate immune cells which recognises the 

rituximab antibody on the B-cell surface determines the affinity of the rituximab-

Fc receptor interaction, and found that large sialylated glycan chains interfered 

with binding256. Since the efficacy of rituximab depends on its binding to the B-

cell surface, it is hypothesised that glycoproteins on the B-cell surface may also 

interfere with rituximab binding and affect response to therapy.   
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1.8 Hypotheses 

- Decreased sialylation is a feature of autoimmunity that contributes to the 

onset of inflammation in RA. 

- Sialylation of surface proteins is reduced in peripheral B-cells in patients 

with RA and pre-RA. 

- Decreased surface sialylation in RA influences B-cell function. 

- Changes to B-cell sialylation are induced by B-cell intrinsic and extrinsic 

factors which may be altered in RA. 

- B-cell sialylation may play a role in determining response to depletion by 

rituximab in RA. 
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1.9 Aims and Objectives 

1.9.1 Aims 

- To investigate factors which influence B-cell surface molecule sialylation 

- To determine the functional consequences of reduced B-cell sialylation in 

patients with RA 

1.9.2 Objectives 

- To confirm that sialylation is reduced in resting B-cells in patients with RA 

and pre-RA compared to cells from healthy donors 

- To measure the impact of B-cell activation, via mitogens and cytokines, on 

B-cell sialylation 

- To compare response to mitogens and cytokines in cells from healthy 

donors and patients with RA 

- To investigate factors which may alter B-cell sialylation in patients with RA 

- To investigate the consequences of reduced sialylation on B-cell activation 

and antibody production activation in vitro 

- To investigate the impact of B-cell sialylation on efficacy of in vitro B-cell 

depletion by rituximab.
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Chapter 2  

Methods 

2.1  Healthy Donors and Patient Cohorts 

2.1.1 Patient and healthy donor samples 

Samples of up to 50ml of peripheral blood were collected by venepuncture from 

a pool of healthy donors (n=27). Samples of up to 30ml of peripheral blood were 

collected by venepuncture from the cohort of patients attending Chapel Allerton 

Hospital for treatment (Leeds Teaching Hospitals Trust). The patient cohort was 

divided between two main categories. The first, Pre-RA, consists of patients 

whose serum is ACPA+ and who have musculoskeletal symptoms but do not 

meet the criteria for diagnosis with RA (based on 2010 EULAR/ACR criteria257 

(PRA, n=12). The second were those with biologic-naïve early RA (ERA, n=41), 

with a symptom duration of less than 12 months. For certain experiments, the 

ERA group was also sub-divided into two groups - newly diagnosed (samples 

taken upon first clinic attendance), treatment naïve patients – new early RA (N-

ERA, n=18) and biologic-naïve (± csDMARD treatment according to local 

protocol) patients attending clinic following initial diagnosis, but with a symptom 

duration of less than 12 months – later early RA (L-ERA, n=23). Unless stated 

otherwise in the text, patients with RA in the ERA group were a mixture of 

individuals with newly diagnosed or later early RA. Patient and healthy donor 

characteristics are summarised in (Table 2.1). 

2.1.2 Ethics 

All healthy volunteers and patients gave informed consent, with ethical approval 

for healthy donors and patients with early RA (RADAR) and pre-RA (NHS-CCP) 

obtained from West Yorkshire Research Ethics Committee REC references: 

[09/H1307/98] and [17/YH/0177] respectively.   
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Table 2.1 Summary of patient and healthy donor characteristics 

Samples were collected from healthy donors and from ACPA+ individuals with generalised 
rheumatic symptoms (Pre-RA) or patients with bDMARD-naïve early RA (symptom duration <12 
months) (ERA). ERA patients were further divided into two categories – newly diagnosed patients 
(sample collected at first clinic visit) (N-ERA) and later bDMARD-naïve early RA (± csDMARD 
treatment, sample taken within 12 months of symptom onset) (L-ERA). DAS28 was calculated 
using the DAS28-CRP calculator found at https://www.das-
score.nl/das28/DAScalculators/dasculators.html. Data displayed shows mean with standard 
deviation. N numbers in brackets indicate the number of patients for which clinical data was 
available for each parameter.  

HD Pre-RA ERA

ERA

N-ERA L-ERA

n 27 12 41 18 23

Age

(years)

42.4  10.9 53.3  13.4 56.5  11.6 54.9  12.0 57.8  11.0

% Male 44.0 9.1 19.5 16.7 21.7

DAS28-CRP NA 1.79  0.85

(n=11)

3.93  1.40

(n=8)

4.66  0.66

(n=6)

1.74  0.35

(n=2)

% ACPA+ NA 100.0

(n=12)

83.3

(n=24)

92.3

(n=11)

72.7

(n=13)

% RF+ NA 27.3

(n=11)

60.9

(n=23)

54.5

(n=13)

66.7

(n=10)
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2.2 Sample Processing 

2.2.1 Isolation of Peripheral Blood Mononuclear Cells from Blood 

Peripheral blood was collected in 9 ml EDTA tubes from healthy donors and 

patients. In the majority of cases samples were processed shortly after collection 

(within 1 hr), though some cases necessitated storage at room temperature for 

up to 24 hrs following collection. 

To isolate peripheral blood mononuclear cells (PBMCs), blood was diluted 1:1 in 

sterile phosphate buffered saline (PBS), then layered on top of 14 ml 

Lymphoprep™ density gradient medium in SepMate™ tubes (both Stemcell 

Technologies Inc.). Tubes were centrifuged for 10 mins (20 mins for samples 

more than 12 hrs old) at 1200 x g at room temperature. After centrifugation, cell 

fraction containing PBMCs was poured into a fresh tube, then washed once with 

PBS by centrifugation at 500 x g for 8 mins. Supernatant was then removed and 

cell pellet re-suspended in 10 ml red cell lysis buffer (155mM NH4Cl, 12 mM 

NaHCO3, 0.1 mM ETDA) and incubated protected from light for at least 10 mins 

to lyse contaminating erythrocytes. Cells were then washed once in 10 ml cold 

PBS then counted using trypan blue exclusion. 

2.2.2 Isolation of B-cells from Peripheral Blood Mononuclear Cells 

B-cells were isolated from PBMCs using the Pan B-cell Enrichment Kit (Stemcell 

Technologies Inc.). Cells were isolated largely following the manufacturer’s 

protocol. Briefly, PBMCs were suspended in autoMACS Running Buffer + 5% 

bovine serum albumin (BSA) Stock Solution (cell isolation buffer, both Miltenyi 

Biotech) at 5x107 cells/ml. Cells were then incubated for 10 mins at room 

temperature with B-cell enrichment antibody cocktail at 50 µl/ml cell suspension. 

75 µl/ml cell suspension of magnetic beads were then added and incubated with 

cells for 5 mins at room temperature. Following incubation tubes were place into 

an EasySep magnet (Stemcell Technologies Inc.), and incubated for 5 mins, then 

supernatants poured into a fresh tube. Enriched B-cells were washed once in 

PBS then counted using trypan blue exclusion. Two further methods of B-cell 

isolation were tested – Pan B-cell Isolation kit (Miltenyi Biotech) and 

RosetteSep™ Human B-cell Isolation Kit (Stemcell Technologies Inc.), however 

the method using the Stemcell Technologies Pan B-cell Enrichment kit proved to 
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be most suitable and delivered the highest B-cell purity for smaller starting cell 

numbers (results not shown). 

2.2.3 Isolation of T-cells from Peripheral Blood Mononuclear Cells 

T-cells were isolated from PBMCs via positive selection by CD4 microbeads 

(Miltenyi Biotech). Following counting, PBMCs were washed once in cell isolation 

buffer. Supernatant was then completely removed and cells were re-suspended 

in buffer at 12.5x107 cells/ml. 20 µl of CD4 microbeads was then added and the 

suspension incubated in the fridge for 15-20 mins. 1 ml buffer per 1x107 cells was 

then added and the cells centrifuged at 300 x g for 10 mins. Supernatant was 

then removed and cells re-suspended in 500 µl buffer. 

MS columns (Miltenyi Biotech) were used to isolate positively labelled T-cells, 

and to prepare for cell separation, columns were placed within a magnetic field 

(OctoMACS magnet, Miltenyi Biotech), then washed with 500 µl buffer, by 

allowing it to drip completely through the column into a waste tube. Labelled cell 

suspension was then added directly into the column well, and flow through 

containing unlabelled cells collected in a new tube. Column was then washed 3 

times with 500 µl buffer, each time allowing liquid to completely flow through 

before the next wash was added. 

After the third wash column was removed from magnet and placed into a fresh 

tube. 1ml buffer was added and the plunger depressed to release labelled CD4+ 

T-cells. T-cells were then counted using trypan blue exclusion, then CD4+ T cells 

and unlabelled cells washed by centrifugation at 500 x g for 5 mins. In some 

cases unlabelled fraction was then used for negative isolation of B-cells in cases 

where both T-cells and B-cells were required from the same donor. 

2.3  Cell Culture 

2.3.1 Cell Culture conditions 

PBMCs or isolated T-cells and B-cells were cultured in RPMI (Gibco) containing 

10% foetal bovine serum (FBS) (Gibco), 2% L-glutamine (Fisher Scientific Ltd.) 

and 2% penicillin + streptomycin (Gibco) in suspension unless stated otherwise. 

Mixed PBMC populations were cultured at 2.5-5x106 cells/ml and B-cells at 1x106 
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cells/ml unless stated otherwise. Cells were cultured in 96 well plates (200 µl/well) 

or 24 well plates (1 ml/well). 

2.3.2 B-cell Activation Experiments 

Isolated B-cells from healthy donor or patients with RA were cultured at 1x106 

cells/ml in RPMI supplemented with either 1 µg/ml Type B CpG 

oligodeoxynucleotides (ODN) (Alpha Diagnostics), 5 µg/ml F(ab’)2 Anti-IgM/IgG 

(F(ab’)2) (Jackson ImmunoResearch Europe Ltd.) 1 µg/ml R848 (InvivoGen), 2 

µg/ml soluble CD40L (BioLegend, Inc.) or a combination of more than one stimuli. 

Type B CpG ODN was used since these have been shown to produce a strong 

activation signal in B-cells258. F(ab’)2 were used for stimulation of B-cells since 

the antibodies are modified to contain only Fab fragments – to prevent inhibitory 

stimulation of B-cells via FcγRIIB. For dose response experiments, three 

concentrations of each stimuli were tested. For CpG and R848 1 µg/ml, 2 µg/ml 

or 5 µg/ml. For F(ab’)2 5 µg/ml, 10 µg/ml or 15 µg/ml and for CD40L, 2 µg/ml, 5 

µg/ml or 10 µg/ml. Cells were incubated for up to 72 hrs at 37°C, 5% CO2 in round-

bottom 96 well plates. 

2.3.3 B-cell Cytokine Stimulations 

Isolated B-cells from healthy donors or patients with RA were cultured at 1x106 

cells/ml in RPMI supplemented with IL-4, IL-6, TNF, IL-17, IL-23 at 5, 20 or 50 

ng/ml (Peprotech, Inc.). In some cases media was also supplemented with 5 

µg/ml F(ab’)2 and 2 µg/ml CD40L. Cells were incubated for up to 48 hrs at 37°C, 

5% CO2 in round-bottom 96 well plates. 

2.3.4 Neuraminidase Treatment of B-cells 

To digest SA from the B-cell surface, cells were incubated with 100 mU of the 

enzyme Neuraminidase (Sigma-Aldrich Co.) for 4 or 18 hrs at 37°C in RPMI 

(1x106 cells/ml). Cells were then washed in fresh RPMI before being re-

suspended at 1x106 cell/ml. Following this either 1 µg/ml CpG or 5 µg/ml F(ab’)2 

+ 2 µg/ml CD40L was added and cells were cultured for 24 hrs at 37°C, 5% CO2 

in round-bottom 96 well plates. 
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2.3.5 T and B-cell Co-stimulation Assays 

PBMCs isolated from healthy donor blood were suspended in RPMI at 5x105 

cells/ml. T-cells were activated using Dynabeads™ Human T Activator 

CD3/CD28 (Invitrogen). Beads were used at a 2:1 cells to beads ratio, and were 

suspended in a stock solution at 4x107 beads/ml. Therefore, 6 µl beads were 

required per well of PBMCs. Required volume of beads was added to 1 ml PBS 

in a 1.5 ml Eppendorf, mixed well and placed into a DynaMag™-2 (Invitrogen) for 

1 min then buffer removed. Tube was then removed from the magnet and beads 

re-suspended in the same volume of media as original volume of beads. 6 µl 

washed beads were then added to each well containing 5x105 PBMCs in 1 ml 

RPMI. To activate B-cells concurrently, 5 µg/ml F(ab’)2 and 2 µg/ml CD40L or 1 

µg/ml CpG was also added to certain wells. Cells were then incubated for 24 hrs 

at 37°C, 5% CO2. 

To remove beads from cell suspensions before staining for flow cytometry, cells 

+ beads were harvested from culture plates and transferred to Eppendorf tubes 

then placed in magnet for 1 min. The cell suspension was then transferred to 

FACS tubes for staining. 

2.3.6 CD40L blocking experiment 

T-cells and B-cells isolated from peripheral blood were re-suspended at 2x106 

cells/ml and 1x106 cells/ml in RPMI respectively.100 µl of each cell suspension 

was then combined in 4 wells of 96 well plate. CD3/CD28 beads were washed 

and 5 µl beads added to 2 wells (1:1 beads:T-cell ratio). To block CD40/CD40L 

mediated T-B-cell activation anti-CD40L (CD154, monoclonal, mouse anti-

human, 24-31, eBioscience, Invitrogen) was added at 2 µg/ml. T and B-cell co-

cultures were incubated for 24 hrs at 37°C, 5% CO2. Following 24 hrs of 

incubation, cell suspensions were placed within magnetic field to remove beads 

as described above. 

2.3.7 In vitro differentiation of B-cells to plasma cells  

To generate a pure population of plasma cells from B-cells in vitro, various 

cytokines and mitogens were added to drive B-cell activation and differentiation 

over a period of 13 days (described previously259, and summarised in Figure 2.1). 
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B-cells were first isolated from 50 ml peripheral blood from healthy donors and 

patients with RA as described earlier (Section 2.2.2). 

Prior to isolation of B-cells from PBMCs, an aliquot of gamma irradiated CD40L 

expressing L-cells was defrosted in a water bath, then washed twice in IMDM 

media (Gibco), being careful to completely remove supernatant between washes. 

Cells were then suspended at ~2x104 cells/ml and added to 1-2 24-well plates in 

1 ml volume and allowed to attach for 6-18 hrs prior to use. 

Day 0: On day 0, B-cells were either isolated from freshly collected peripheral 

blood, or from PBMCs isolated from peripheral blood the day before and stored 

at 4°C in media overnight. Isolated B-cells were then suspended at 5x105 cells/ml 

in IMDM supplemented with Glutamax (Gibco) + 10% heat inactivated FBS 

(Gibco). Supernatant was removed from wells containing CD40L L-cells and 

replaced with 500 µl IMDM supplemented with 40u/ml IL-2, 100ng/ml IL-21 

(Peprotech) and 4µg/ml F(ab’)2. 500 µl cell suspension was then added to wells 

to give a final cell suspension of 2.5x105 cells/ml and cytokine/mitogen 

concentrations of 20 u/ml IL-2, 50 ng/ml IL-21, and 2 µg/ml F(ab’)2. Plates were 

then incubated for 3 days at 37°C, 5% CO2. Cytokines and mitogens which are 

added to B-cell cultures to induce differentiation are summarised in Table 2.2. 

Day 3: After 3 days in culture, B-cells were aspirated from CD40L L-cell-

containing wells and counted by trypan blue exclusion. Cells were then washed 

and re-suspended in media supplemented with Lipid Mixture 1 and MEM Amino 

Acids Solution (Sigma-Aldrich Co., both at a final concentration of 1X) plus 20 

u/ml IL-2 and 50 ng/ml IL-21 at 1x105 cells/ml. Up to 40 ml cell suspension was 

added to T75 culture flasks or added to 24 well plates at 1 ml/well. 

Day 6: At day 6, cells were washed and re-suspend at 5x105cells/ml in media 

supplemented with Lipid Mixture 1 and MEM Amino Acids Solution plus 50 ng/ml 

IL-21, 10 ng/ml IL-6 and 100 u/ml IFNα (Peprotech) at 1x106 cells/ml and cultured 

in 24 well plates. Every 3.5 days 50% of the media from each well was removed 

and replaced with fresh media + cytokines.  
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Figure 2.1 In vitro plasma cell differentiation workflow 

B-cells isolated from peripheral blood are first cultured with IL-2, IL-21, F(ab’)2 and CD40L 
expressing fibroblasts to activate cells. At day 3 activated B-cells are cultured with IL-2 and IL-21 
and CD40L stimuli is removed to induce differentiation to plasmablasts. At day 6, plasmablasts 
are then cultured with IL-21, IL-6 and IFNα to induce plasma cell differentiation. At Day 13 a pure 
population of plasma cells is achieved. 
 
 

Table 2.2 Summary of cytokines and mitogens used for in vitro B-cell differentiation 

 

  

CD40L cells +IL-2 

+ IL-21 + BCR 

crosslinking

IL-2 + IL-21 IL-21 + IL-6 + IFNα

Day 0 Day 3 Day 6 Day 13

B-cells Activated B-cells Plasmablasts Plasma Cells

Time-Point Media

Supplements

Day 0

20 u/ml IL-2

500 ng/ml IL-21

2 µg/ml F(ab’)2

Day 3

20 u/ml IL-2

50 ng/ml IL-21

5 µl/ml Lipids

20 µl/ml Amino Acids

Day 6

50 ng/ml IL-21

10 ng/ml IL-6

100 u/ml IFNα

5 µl/ml Lipids

20 µl/ml Amino Acids

Day 13 

Onwards

10 ng/ml IL-6

100 u/ml IFNα

5 µl/ml Lipids

20 µl/ml Amino Acids
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Day 13 onwards: at day 13 50% of media was removed and replaced with fresh 

media plus 10 ng/ml IL-6 and 100 u/ml IFNα. Following this, every 3.5 days 50% 

of the media from each well was removed and replaced with fresh cytokine 

supplemented media. 

On days 0, 3, 6 and 13 an aliquot of cells were reserved and stained for flow 

cytometry (1x105 cells/test) and another prepared for RNA extraction and gene 

expression analysis by RT-qPCR (2x105/sample). 

Under certain conditions, media was also supplemented with 20 ng/ml TNF or IL-

6 between days 0 and 3. Where relevant, IMDM media was also prepared with 

only 5% FBS and supplemented with 5% serum isolated from a healthy donor or 

a patient with RA, between days 0 and 3. For certain conditions, F(ab’)2 

stimulation was substituted with 1μg/ml TLR ligands CpG and R848. For each 

sample, and each treatment condition, 1 ml supernatant was collected at days 6, 

10 and 13, then stored at -20°C for later analysis by IgM quantification ELISA 

(Section 2.8). 

2.4  Flow Cytometry 

2.4.1 Viability Stain 

Cells were prepared for staining by washing in DPBS (Gibco), either from culture 

medium or PBS directly following isolation from blood. To allow for distinction 

between viable and non-viable cells during analysis, cells were first stained with 

FV780 a fixable viability dye which exhibits 10-20 fold higher staining in non-

viable permeable cells (BD Bioscience). Cells (2x105-2x106 depending on 

application) were suspended in 200 µl DPBS containing 1:2000 FV780 and 

incubated for 10-15 mins at room temperature or 15-30 mins at 4°C. Cells were 

then washed twice (for each wash cells were centrifuged at 500 x g for 5 mins at 

4°C unless otherwise stated). 

2.4.2 SNA Lectin Staining 

Following viability dye staining, samples of PBMCs collected from patients and 

healthy donors for surface sialylation study were stained with biotinylated 

sambucus nigra lectin (SNA) (bSNA, Vector Laboratories). Cells from B-cell 

activation studies and plasma cell differentiations were stained with FITC 
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conjugated SNA (fSNA, Vector Laboratories). Cells were suspended in 100 µl 

DPBS then SNA added at 1:400 (5 µg/ml). Cells were incubated at 4°C for 15 

mins then washed twice in autoMACSTM Running Buffer (MACS buffer, Miltenyi 

Biotech).  

2.4.3 Antibody stain for resting B-cell surface sialylation study 

Samples of PBMCs collected from patients and healthy donors for surface 

sialylation study were then suspended in 100 µl staining buffer 1 (50% Brilliant 

Stain Buffer (BD Bioscience) and 50% Blocking buffer (50 µl human IgG 

(Invitrogen), 50 µl Mouse IgG (Sigma) + 900 µl MACS buffer).  

Cells were then stained with CD19 BV421, CD27 PE-Cy7, CD38 BV605, CD3 

APC-Cy7, CD14 APC-Cy7 and CD45 FITC, for 20 mins at 4°C (See Table 2.3 for 

details of antibodies used for flow cytometry). Cells were then washed twice in 

MACS buffer then re-suspended in 100µl. PE-Streptavidin (BioLegend) was 

added at 0.2µg/ml and incubated for 15mins at 4°C. Cells were then washed twice 

in MACS buffer then re-suspended in 100µl 3% Formaldehyde (CytoFix, BD 

Biosciences) diluted 1:1 in PBS and incubated for 15mins to fix cells. After fixing 

cells were washed once then re-suspended in 400µl MACS buffer and stored at 

4°C for up to 7 days before analysis. 

2.4.4 B-cell Activation Assays 

Cells from B-cell activation assays were stained with FV 780, SNA FITC then re-

suspended in 100µl staining buffer (50% MACS buffer + 50% blocking buffer) and 

stained with CD19 BV421, and either CD69 PE + CD80 PE/PE-Cy7 + CD86 APC 

for 20mins. Cells were then washed twice and fixed if not being analysed same 

day as described previously, or re-suspended in 150 µl MACS buffer for 

immediate analysis. 

2.4.5 B-cell Differentiation Assays 

Cells from B-cell differentiation assays were stained with FV 780, SNA FITC then 

re-suspended in 100µl staining buffer 1 and stained with CD19 BV421, CD20 PE, 

CD27 PE-Cy7 CD38 BV605 and CD138 APC for 20mins. Cells were then washed 

twice and fixed if not being analysed same day as described previously, or re-

suspended in 200µl MACS buffer for immediate analysis.  
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Table 2.3 Antibodies used for flow cytometry 

 

  

Target Fluorochrome Clone Manufacturer Concentration

CD19 BV421 HIB19 BioLegend 1 µg/ml

CD20 eFlour 450 2H7 eBioscience 0.02 µg/ml

CD20 PE 2H7 Thermo Fisher 0.0024 µg/ml

CD27 PE-Cy7 M-T271 BD Bioscience 20 µl/ml

CD38 BV605 HB7 BD Bioscience 20 µl/ml

CD45 FITC HI30 BD Bioscience 100 µl/ml

CD69 PE FN50 BioLegend 1 µg/ml

CD69 BUV395 FN50 BD Bioscience 20 µl/ml

CD80 PE/PE-Cy7 2D10 BioLegend 4 µg/ml

CD86 APC BU63 BioLegend 2 µg/ml

CD138 APC 44F9 Miltenyi Biotech 20 µl/ml

HLA-DR FITC G46-6 BD Bioscience 100 µl/ml
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2.4.6 Analysis on CytoFlex S / CytoFlex LX 

All flow cytometry experiments were analysed using either the CytoFlex S 

(Beckman Coulter, Inc.) with a 4 laser configuration – 375 nm near UV, 405 nm 

Violet, 488 nm Blue and 63 3nm Red, or the Cytoflex LX (Beckman Coulter, Inc.) 

with a 6 laser configuration – 355 nm UV, 405 nm Violet, 488 nm Blue, 560nm 

Yellow-Green, 633nm Red and 800 nm Infrared. Thresholds were set to exclude 

small particulate debris, and up to 500000 events were collected during analysis 

depending on application. Gates were set using fluorescence minus one (FMO) 

controls to determine positive staining populations. 

In order to calculate compensation required to account for bleeding of one 

fluorescent channel into another, prior to analysis of samples, comp beads (BD 

Bioscience) were suspended in 200µl MACS buffer (one drop of positive and one 

drop of negative control) and stained with antibodies used in each experiment. 

Beads were then incubated on ice for 20mins then washed once in MACS buffer. 

For analysis, 10000 events were captured for each set of beads and automatic 

compensation applied (calculated by CytExpert 2.3 (Beckman Coulter, Inc.)). 

Compensation matrices were calculated separately for each machine due to 

differences in laser and filter configurations. 

2.4.7 Flow Cytometry Data Analysis 

All flow cytometry data collected by either the CytoFlex S or CytoFlex LX was 

analysed using CytExpert 2.3 software. FlowJo (BD Bioscience) was also used 

in some cases to analyse data and produce some histograms and overlays for 

figures. Compensation was applied in CytExpert using the compensation matrix 

feature. In all cases, single cells were selected by excluding doublets by plotting 

FSC-A with FSC-H. Cells were then further gated based on size and granularity 

using FSC-A with SSC-A to identify lymphocyte populations, or based on staining 

with FV780 and SSC-A to identify live lymphocytes. Depending on application 

cells were then gated on expression of B-cell lineage markers, then mean 

fluorescence intensity (MFI) of fSNA, bSNA + streptavidin-PE or activation 

markers CD69 PE, CD80 PE-Cy7 or CD86 APC measured using statistics 

function (Figure 2.2).
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Figure 2.2 Gating strategy for selection of B-cells and B-cell subsets 

Single cells are first selected based on size (A), cells were then gated based on forward/side scatter (B) or on expression of CD45 and side scatter to 
select lymphocytes (C). Dead cells were then excluded based on expression of FV780 vs side scatter, then lineage markers were used to select for total 
B-cells (B) or B-cell subsets (C). CD19+CD27- naïve B-cells, CD19+CD27+ memory B-cells and CD19+CD27+CD38++ plasmablasts were selected based 
on FMO controls (D). SNA binding was then measured in subsets using MFI of SNA-FITC or PE when using biotinylated SNA with PE streptavidin (E).
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2.5  Gene Expression Studies 

2.5.1 RNA Extraction 

RNA was extracted from cells using the Direct-zolTM RNA Microprep kit (Zymo 

Research). Cells were harvested from cultures and washed twice in 1 ml PBS. 

Cells were then re-suspended in 300µl (>1x105 cells) or 100µl (≤1x105 cells) 

TriZol (Thermo Fisher). For extended storage, samples were stored at -80°C or 

kept on ice for immediate extraction. 

RNA was then extracted according to the manufacturer protocol. Briefly, an equal 

volume of 100% ethanol was added to each sample and passed through a 

column, flow through was discarded then the column washed with RNA wash 

buffer (Zymo Research). Columns were then treated with DNase I to remove 

contaminating genomic DNA and then the column washed and RNA eluted in 10 

µl Nuclease-free water. RNA concentrations were measured using the NanoDrop 

Spectrophotometer (Thermo Fisher) and stored at -80°C for extended storage, or 

kept on ice for further application. 

2.5.2 cDNA Synthesis 

cDNA was synthesised from RNA by Reverse Transcription (RT). The RT 

reaction was prepared with reagents from High Capacity cDNA Reverse 

Transcription Kit with RNase (Applied Biosystems). RNA was first normalised to 

the lowest RNA concentration value being used in the experiment by dilution in 

Nuclease-free water. A master mix was then made, containing all reagents from 

the RT kit (Table 2.4) 10 µl master mix was then added to 10 µl diluted RNA in 

0.2 ml PCR tubes, reaction mixtures mixed well then centrifuged briefly. 

Reactions were then placed in thermal cycler (TC-512, Techne) and RT reaction 

run as specified by the kit manufacturer (Table 2.5). Following RT reaction cDNA 

was stored at 4°C for up to 3 days or at -20°C for extended storage. 

2.5.3 RT-qPCR 

To examine B-cell expression of genes related to sialylation at baseline, or in 

response to stimuli – quantitative reverse transcription polymerase chain reaction 
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(RT-qPCR) was used to determine expression relative to a reference gene. cDNA 

samples from B-cells were analysed for expression of NEU1 and ST6Gal relative 

to expression of HPRT1 or PPP6C. 96 or 384 well PCR plates containing 10 or 5 

µl reactions respectively, were used with all samples run in duplicate for each 

target and housekeeping gene. Housekeeping genes HPRT1 and PPP6C were 

selected due to their relatively stable and ubiquitous expression across B-cell 

subsets during activation260,261. Before loading plates, master mixes were made 

up containing a Taqman assay mixture (Thermo Fisher Scientific) – either HPRT1 

(Hs99999909_m1), PPP6C (Hs00254827_m1) ST6Gal1 (Hs00949382_m1) or 

NEU1 (Hs00166421_m1), Luna Universal qPCR Probe Master Mix (New 

England Biolabs) and nuclease-free water (Table 2.6). 8 or 4 µl master mix was 

then added to each well, followed by 2 or 1 µl cDNA. Plates were run and Ct 

values recorded on QuantStudio 5 or QuantStudio 7 Real Time PCR System 

(Applied Biosystems), for 96 and 384 well plates respectively. 

2.5.4 qPCR Data Analysis 

Ct values obtained from RT-qPCR were used to calculate ΔCt values for each 

sample in each target gene by first calculating the mean Ct of repeats, then by 

applying the following equation ΔCt = 2^(Ct Reference – Ct Target).  
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Table 2.4 RT Reaction Mixture 

 

 

 

Table 2.5 RT Reaction Protocol 

 

 

 

Table 2.6 RT-qPCR Reaction Mixture 

 

  

Reagent Volume/reaction (µl)

RT Buffer 2

dNTPs 0.8

RT Random Primers 2

Multiscribe Reverse Transcriptase 1

RNase Inhibitor 1

Nuclease-Free Water 3.2

Phase 1 Phase 2 Phase 3 Phase 4

Time (mins) 10 120 5 ∞

Temp ( C) 25 37 85 4

Reagent
Volume/

10 µl Reaction (µl)

Volume/

5 µl Reaction (µl)

Master Mix 5 2.5

Probe 0.5 0.25

Water 2.5 1.25
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2.6 Rituximab B-cell Killing Assay 

To determine the effects of neuraminidase (Neu) treatment on B-cell 

susceptibility to killing by rituximab, and in vitro rituximab B-cell killing assay was 

performed based on a previously described assay262. 1x106 B-cells isolated from 

healthy donors were first treated for 1 hr ± 100 mU Neu. B-cells were then washed 

and stained in 500 µl CFSE (Biolegend) diluted 1:1000 in PBS (5 µM). Cells were 

incubated with CFSE for 15 mins at 37°C, then an equal volume of FBS was 

added and reaction was incubated for a further 5 mins at room temperature 

protected from light. Cells were then washed twice in media at re-suspended at 

1x106 cells/ml then 50 µl cell suspension added to a 96 well plate. Wells were 

then topped up to 200 µl volume with either media alone, 50% media + 50% 

healthy donor serum, media containing 9x106 cells/ml PBMCs isolated from the 

same donor ± 50% healthy donor serum. Rituximab (Truxima, Celltrion 

Healthcare) was then added to half of the wells at 10 µg/ml and the reaction was 

incubated at 37°C for 4 hrs. Cells were then washed twice in PBS and stained 

with FV780 as described previously then fixed prior to analysis on the CytoFlex 

S. Percentage of viable CFSE-stained B-cells following rituximab was calculated, 

using Precision Count BeadsTM (Biolegend) to produce an accurate count of B-

cells within each population. 

2.7 Serum Neuraminidase Assay 

Activity of neuraminidase in serum was determined using the AmplexTM Red 

Neuraminidase (Sialidase) Assay Kit (Thermo Fisher Scientific). Serum was 

collected from healthy donors and patients with RA in red-top serum collection 

tubes which were allowed to sit at room temperature for at least 30 mins to allow 

blood to coagulate, then centrifuged at 1200 x g for 10 mins and serum 

supernatant aspirated away from clot. Samples were stored at -80°C prior to 

analysis. Serum neuraminidase activity was measured using the kit, following the 

manufacturer’s protocol. Briefly, serum was diluted to 30% in reaction buffer (from 

kit) and added to wells of 96 well flat-bottom plate. A 2X solution of Amplex red 

was then added to wells in equal volumes to serum (1X final concentration). The 

reaction was then incubated at 37°C, and absorbance was measured at 560 nm 

using the CytationTM 5 (Biotek Instruments, Inc.) plate reader after 30, 60, 90 and 

120 mins. Absorbance, which indicates increasing neuraminidase activity, for 



66 
 

 

each sample was calculated by subtracting the absorbance measurement from 

blank wells, removing background absorbance levels. 

2.8 IgM quantification ELISA 

IgM produced by B-cells during differentiation was measured using the Human 

IgM ELISA Quantitation Set (Bethyl Laboratories, Inc.). IgM in the culture 

supernatants were measured following the kit protocol. Briefly, 96 well plates 

(Nunc MaxiSorp C bottom well Modules & Frame, Bethyl Laboratories, Inc.) were 

coated with anti-IgM antibody diluted 1:100 in ELISA coating buffer (Bethyl 

Laboratories, Inc.) by incubating at room temperature for 1 hr. Plates were then 

washed and blocked with blocking solution (Bethyl Laboratories, Inc.) for 30 mins 

at room temperature or overnight at 4°C. Samples of supernatant were then 

diluted 1 in 50 or 1 in 500 in sample diluent (Bethyl Laboratories, Inc.) then added 

to the plate and incubated for 1 hr at room temperature. Samples were analysed 

in duplicate, as were standard dilutions containing 0 – 1000 ng/ml IgM from 

human reference serum (Bethyl Laboratories, Inc.). The plate was then washed 

and then incubated for 1 hr with the HRP detection antibody, before the last wash 

then the addition of TMB substrate (Bethyl Laboratories, Inc.) which was 

incubated for up to 15 mins protected from light. After 15 mins the stop solution 

was added then the fluorescence measured within 30 mins. Fluorescence was 

measured using the CytationTM 5 (Biotek Instruments, Inc.) plate reader at 450 

nm. For each plate, a standard curve was calculated using GraphPad Prism v7 

from the standard dilutions. Concentrations in the supernatants were then 

interpolated based on the standard curves. 

2.9  Statistics 

All statistical tests were carried out using features of GraphPad Prism v7. ANOVA 

with additional tests for multiple comparisons were used to compare samples in 

stimulation experiments. When multiple conditions were compared with an 

unstimulated sample Dunnett’s multiple comparisons test was selected. When 

comparisons were relevant between treatment conditions as well as in relation to 

unstimulated cells, Tukey’s multiple comparisons test was selected. When 

unpaired samples were compared across patient or healthy donor cohorts, 

Sidak’s multiple comparisons tests were used. Paired t tests were used to 

analyse data with only one variable. Where sialylation – measured as PE or FITC 
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MFI - was the desired output of experiments, data is presented as fold change in 

relation to unstimulated or healthy donor samples. Data is presented in this way 

to avoid bias introduced by MFI measurements taken across several different 

biological repeats which may have taken place over a number days. MFI 

measurements in human primary cells were found to be highly variable, and fold 

change allowed for easier visualisation of trends in the data.





69 
 

 

Chapter 3  

Investigating B-cell sialylation, and the impact of B-cell 

activation in rheumatoid arthritis. 

3.1 Introduction 

Sialic acids are involved in a range of biological processes, and can perform 

multiple functions in glycan chains, including forming or masking receptors and 

binding sites162. The arrangement of SA in glycoproteins can also determine the 

outcome of receptor-ligand binding. As discussed in Chapter 1, in relation to 

humoral immunity, isoforms of IgG with reduced or absent sialylation of N-linked 

Fc glycans have a higher affinity for activating Fc receptors, which promote 

immune cell activation222. Isoforms with sialylated Fc glycans have a higher 

affinity for inhibitory receptors – which increase cell activation thresholds217. 

Reduced Fc glycan sialylation is a common feature of autoimmune diseases, 

including in ACPA IgG in RA, and is thought to contribute to increased 

autoimmune inflammatory activity228. Further to this well-established feature of 

ACPA IgG, it has been recently described that ACPA IgG also contains increased 

quantities of sialylated Fab glycans230. The sialylated Fab glycans are added 

during rounds of somatic hypermutation, suggesting they add a selection 

advantage for ACPA antibodies, however the exact consequences of increased 

ACPA Fab sialylation are not yet fully understood231,232. 

Additionally, recent research has shown that expression of α2,6 SA on the 

surface of plasmablasts – the precursors to plasma cells – is reduced in patients 

with RA and in patients with asymptomatic autoimmunity in the pre-clinical stage 

of disease235. Surface sialylation was measured as a substitute for directly 

measuring IgG sialylation, to indicate overall sialyltransferase activity in 

plasmablasts. The observation that sialylation is reduced on the cell surface is 

intriguing, considering the discord between Fc and Fab sialylation activity. It was 

therefore hypothesised that in RA there is downregulated expression of SA on 

the B-cell surface, independent to changes to Ig sialylation, and that this 

downregulation may be important for the progression of asymptomatic 

autoimmunity to chronic inflammation.  
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Expression of surface SA is likely to have an important impact on B-cell function, 

due to its wide ranging effects, and due to the presence of numerous receptors 

for sialylated ligands. However, it is currently unclear how sialyltransferase 

activity, and surface sialylation are regulated in B-cells. To understand how B-cell 

sialylation may be dysregulated in disease, it was first important to understand 

how sialylation is regulated in cells from healthy individuals. Firstly, the impact of 

B-cell activation status on sialylation was considered. The two mechanisms of B-

cell activation considered were via BCR crosslinking and via TLR ligation. Since 

the fate of the cell following activation is dependent on the type of stimulus it 

receives, it was hypothesised that mode of activation may lead to variances in 

surface sialylation. The focus of the work in this chapter was to evaluate the 

impact of signalling via TLRs and the BCR plus co-stimulatory molecules on B-

cell sialylation. 

When B-cells encounter their cognate antigen in vivo, BCR engagement triggers 

endocytosis of the receptor and the antigen, which is then processed and 

displayed on MHC class II molecules on the B-cell surface and is presented to 

activated T-cells in the lymph node263. An immune synapse is formed between B 

and T-cells and a co-stimulatory signal from CD40L on the T-cell surface is 

delivered to the B-cell – a requirement for full B-cell activation. Activation of B-

cells by these T-cell dependent (TD) antigens leads to proliferation and 

differentiation of some B-cells to short lived antibody secreting cells (ASCs), with 

some cells migrating towards the B-cell follicle to undergo CSR and SHM to 

produce long lived memory B-cells and plasma cells264. To emulate this 

interaction in vivo, cells will be stimulated with antibodies to surface bound IgM/G 

molecules along with soluble CD40L to simulate BCR activation T-cell co-

stimulation.  

When B-cells encounter antigens which activate the BCR and are also able to 

activate TLRs, they begin to proliferate and differentiate to short-lived ASCs, 

foregoing the need for a second signal from T-cells – these are so-called T-cell 

independent (TI) antigens264. B-cells express a number of TLRs, including 1, 6, 

7, 9 and 10265. TLR7 recognises single-stranded RNA and can be activated in 

vitro using the compound resiquimod or R848266. TLR9 recognises unmethylated 

CpG dinucleotides in bacterial or viral DNA267. Both TLR7 and TLR9 are 

endosomal receptors and they signal via MyD88 to activate B-cells, inducing 
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cytokine and antibody production, and promoting cell survival268. R848 and CpG 

were added to cultures to stimulate B-cells via TLR pathways, to examine the 

changes to sialylation induced by different pathways of activation. BCR and TLR 

signalling pathways are summarised in Figure 3.1. 

In order to measure B-cell surface expression of sialic acid, plant lectins were 

utilised in flow cytometry analyses. Lectins can be detected by flow cytometers, 

either by direct fluorochrome conjugation or by using biotin and streptavidin 

secondary stains. Lectins produced by SNA preferentially bind to α2,6 SA269, 

which is the most widely studied form of SA linkage, and the one which appears 

to have the most clinical relevance in autoimmunity. As a result, α2,6 sialylation 

was the main focus of this chapter. However, the impact of B-cell activation on 

α2,3 SA expression was also briefly explored. Lectins from Maackia amurensis 

(MAA) were used to study α2,3 sialylation270.As well as directly measuring the 

expression of SA on the B-cell surface, mRNA expression of ST6Gal1 - the 

sialyltransferase which adds α2,6 linked SA to galactose molecules, and NEU1 - 

the sialidase which preferentially cleaves α2,6 SA from glycan chains, was 

measured by RT-qPCR. 

  



72 
 

 

 

Figure 3.1 Summary of signalling pathways utilised by the BCR and TLRs 7/9 

BCR crosslinking by antigen recognition triggers the recruitment of Lck/Yes-related novel protein 
tyrosine kinase (Lyn) to the CD79 intracellular ITAM domains. Phosphorylated ITAMs recruit and 
phosphorylate spleen tyrosine kinase (Syk), Bruton’s tyrosine kinase (Btk) or B-lymphoid tyrosine 
kinase (Blk), which can in turn phosphorylate adaptor molecules B-cell linker protein (BLNK), B-
cell adaptor for phosphoinositide 3-kinase (BCAP) and B-cell scaffold protein with Ankyrin repeats 
(BANK1), which can facilitate activation of several divergent pathways including 
phosphoinositide-specific C phospholipase gamma 2 (PLCγ2), phosphatidylinositol-4,5-
bisphosphate 3-kinase (PI3K), mitogen-activated kinase (MAPK) and nuclear factor kappa-light-
chain-enhancer of activated B-cells (NFκB). Activation of NFκB and MAPK pathways leads to 
further activation of transcription factors which determine functional outcomes, triggering antibody 
production, cytokine production, cell cycle entry and promoting cell survival. Engagement of 
TLR7/9 by single stranded RNA or unmethylated CpG dinucleotides respectively, leads to 
recruitment of myeloid differentiation primary response gene 88 (MyD88). MyD88 recruitment 
leads to the formation of the Myddsome complex, which is comprised of MyD88, interleukin-1 
receptor-associated kinase (IRAK) 4 and 1, and then recruitment of TNF receptor-associated 
kinase 6 (TRAF6) occurs. TRAF6 associates with TGFβ-activated kinase 1 (TAK1) which 
autophosphorylates and activated the MAPK or NFκB signalling pathways. MyD88 recruitment 
can also activate dedicator of cytokinesis 8 (DOCK8), which can lead to initiation of signal 
transducer and activator of transcription 3 (STAT3) via kinases Lyn and Syk. Figure adapted from 
Suthers and Sarantopolous, 2017268.  
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3.2  Results 

3.2.1 Measuring B-cell surface α2,6-sialylation by flow cytometry 

Lectins produced by the SNA plant preferentially bind α2,6-SA. SNA lectin can 

therefore be used to detect α2,6 SA in a mix of glycoproteins or on the surface of 

cells269. The use of fluorophore conjugated SNA lectin, or biotinylated lectin in 

combination with streptavidin, allows SA on the cell surface to be measured by 

flow cytometry. Both SNA-fluorescein (fSNA) and biotinylated SNA (bSNA) were 

optimised for use in further flow cytometry applications. bSNA was used in 

combination with streptavidin-PE for detection. 

3.2.1.1 Optimisation of SNA lectin staining for flow cytometry by titration 

and neuraminidase digestion of sialic acid 

Using lectins for flow cytometry presents a unique set of challenges for 

optimisation, including the titration of staining concentrations and establishing a 

valid negative control. A conventional titration to optimise staining, where staining 

index is calculated using MFI of negative and positive populations, cannot be 

performed since SA is expressed on the surface of all cells, making it difficult to 

establish a negative population. Therefore, in order to achieve the best signal to 

allow identification of positive and negative populations, four concentrations of 

SNA lectin were tested and the lowest concentration with an acceptable signal 

relative to unstained cells was selected for further experiments (Figure 3.2). A 

concentration of 5 µg/ml was selected as the optimal value for staining with both 

bSNA and fSNA for subsequent experiments. 

Isotype controls can be used in conventional flow cytometry to confirm the binding 

specificity of an antibody and indicate the level of off-target binding. For SNA 

lectin staining, to confirm the SNA lectin was binding specifically to SA on the cell 

surface, cells were treated - prior to staining - with Neuraminidase (Neu) to digest 

SA. PBMCs from healthy donors (HD) were treated for 18 hrs with 100 mU Neu 

at 37°C then washed and stained with 5 µg/ml bSNA and streptavidin-PE. 

Treatment with Neu produced a clear decrease in PE signal – confirming the SA 

binding specificity and sensitivity (Figure 3.2C). Since streptavidin-PE was used 

as a secondary stain to determine surface sialylation, it was important to 

determine the degree of non-specific binding of streptavidin-PE. Cells were 
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stained with streptavidin-PE with/without prior staining with bSNA or left 

unstained. A small amount of background staining was detected in the sample 

stained with streptavidin-PE only, leading to the implementation of a further wash 

step prior to analysis and following staining with streptavidin-PE (Figure 3.2D). 

3.2.1.2 Off target lectin binding can impact strength of signal in flow 

cytometry 

Since SNA lectin can bind SA on any protein, using SNA lectin to stain cells as 

well as using conventional flow antibodies to determine B-cell surface markers, 

introduced a potential source of off-target binding. Furthermore, a blocking buffer 

containing 5% human and 5% mouse serum was used to saturate B-cell Fc 

receptors and avoid non-specific binding of antibodies, introducing further sites 

for SNA off-target binding. Therefore, the order in which SNA lectin and 

antibodies - as well as blocking buffer - should be added to cells during staining 

also had to be taken into consideration. To determine the impact of SNA binding 

to antibody molecules on the readout, five staining protocols were tested: 1. 

Blocking buffer first, then a mixed cocktail of antibodies and fSNA second; 2. 

Blocking buffer first, then fSNA second and antibody cocktail third; 3. Blocking 

buffer first, then antibody cocktail second, fSNA third; 4. fSNA first, then blocking 

buffer second and antibody cocktail third; 5. fSNA first, then antibody cocktail 

mixed with blocking buffer second (Figure 3.3C). It was found that the blocking 

buffer interfered with fSNA binding and reduced the fSNA signal (Figure 3.3). It 

was also found that staining cells with antibodies prior to fSNA led to an increased 

fSNA signal – suggesting fSNA was binding to SA on the antibody molecules. It 

was therefore determined that SNA lectin should be added prior to the addition 

of blocking buffer and staining with conventional flow antibodies. 

3.2.2 Expression of surface α2,6-sialic acid in resting B-cells from 

patients with rheumatoid arthritis and healthy donors 

Since a previous report showed that plasmablasts from patients with RA have 

reduced expression of SA on the cell surface, as measured by flow cytometry235, 

it was important to first validate these results in patients from the Leeds cohort. 

Reduction in surface sialylation was also previously described in patients with 

“pre-RA” (PRA) who test positive for ACPA ± RF but have no specific clinical 

evidence of RA, suggesting that a reduction in plasmablast or B-cell sialylation 
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may be established during the early stages of autoimmunity before joint 

inflammation is apparent, and therefore may be an important mechanism which 

promotes B-cell autoimmunity. 

3.2.2.1 Expression of α2,6-sialic acid is lower in B-cells from patients with 

RA than in cells from healthy donors 

Samples of peripheral blood were collected from patients with biologic-naïve 

early RA (ERA) (n=10) with a symptom duration of less than 12 months, and from 

healthy donors (n=5).Since bSNA and streptavidin-PE were used to assess 

surface SA expression, the output for the measurement of surface SA expression 

used in this case is PE MFI. Initial experiments on fresh samples of PBMCs 

isolated from the blood of healthy donors and patients with ERA showed a large 

degree of variation in PE MFI of samples analysed on different days (results not 

shown). This was thought to be due to possible differences in machine calibration 

and/or experimental variation. It was therefore decided that samples of PBMCs 

should be collected and cryopreserved, to be analysed later in one batch 

experiment - minimising the chances of experimental and instrument variation. 

Frozen samples were thawed then stained with a panel of antibodies which 

allowed sialylation to be measured in CD27-CD19+ naïve B-cells, CD27+CD19+ 

memory B-cells and CD27+CD19+CD38++ plasmablasts. Samples were also 

stained with bSNA and streptavidin-PE and PE MFI was measured (Figure 3.4). 

Results are described as fold change in PE MFI relative to the mean PE MFI of 

healthy donor samples.  

It was found that naïve B-cells, memory B-cells and plasmablasts from patients 

with RA showed a trend of reduced sialylation compared to healthy donor cells 

(naïve: 0.658 ± 0.127 vs 1.000 ± 0.391, p=0.1292; memory: 0.722 ± 0.185 vs 

1.000 ± 0.406, p=0.2065; plasmablasts: 0.719 ± 0.298 vs 1.000 ± 0.589, 

p=0.4396) (Figure 3.4). Although subtle changes were observed which were not 

statistically significant due to small numbers, this result was consistent with the 

previous reports that plasmablasts from patients with ERA show reduced 

sialylation235, as well as suggesting that expression of SA may also be reduced 

in naïve and memory B-cells from patients with ERA.  
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Figure 3.2 Optimisation of SNA lectin staining for flow cytometry 

PBMCs from a healthy donor were stained with increasing doses (2.5 - 20 µg/ml) of fluorescein 
conjugated (A) or biotinylated SNA (bSNA) (B) or left unstained. Cells stained with bSNA were 
then stained with streptavidin-PE then fluorescence measured. (C) PBMCs from a healthy donor 
were treated with 100 mU neuraminidase for 18 hrs to digest surface sialic acid then stained with 
bSNA and streptavidin-PE and fluorescence compared. (D) To elucidate streptavidin non-specific 
binding, PBMCs were stained with 5 μg/ml bSNA and streptavidin-PE, streptavidin-PE only or left 
unstained and fluorescence measured. Histograms show PE or FITC MFI.  

A B

C D
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Figure 3.3 Optimising SNA lectin staining in combination with conventional flow antibodies 

PBMCs from healthy donors (n=3) were stained with SNA-fluorescein (fSNA), B-cell lineage 
marker antibodies (CD45 PE-Cy7, CD19 BV421, CD27 APC and CD38 BV605) with or without a 
blocking step/inclusion of blocking buffer in the staining cocktail. The order of staining/blocking 
was changed in each of 5 conditions (C). (A) Histogram overlay shows FITC MFI of merged 
samples. (B) Bar chart shows mean with SD of FITC MFI.  
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Figure 3.4 Baseline sialylation in B-cell subsets from healthy donors and patients with ERA 

PBMCs from healthy donors (HD) (n=5) and patients with early RA (ERA) (n=10) were stained 
with B-cell lineage markers and bSNA with streptavidin PE. Cells were analysed by flow cytometry 
and gated based on expression of surface markers – CD19+CD27- naïve B-cells (A), 
CD19+CD27+ memory B-cells (B) and CD19+CD27+CD38++ plasmablasts (C). Graphs show mean 
PE MFI with SD, expressed as a ratio based on the mean MFI of samples from healthy donors. 
Mann Whitney tests were used to calculate p values.  
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3.2.2.2 Expression of α2,6-sialic acid is reduced in patients with RA prior 

to the onset of symptomatic inflammation 

Samples were collected from patients with PRA (n=5) and healthy donors (n=5) 

to validate previous results which showed reduced surface SA in plasmablasts 

from patients with PRA235. As in section 3.2.2.1, cells were stained with B-cell 

surface marker antibodies and bSNA with streptavidin-PE. Results suggested a 

trend for reduced sialylation in cells from patients with PRA compared to healthy 

donors in plasmablasts (0.541 ± 0.279 vs 1.000 ± 0.589, p=0.2222- fold change 

in PE MFI relative to healthy donor samples) (Figure 3.5C), as well as in naïve 

(0.592 ± 0.289 vs 1.000 ± 0.391, p=0.1508) (Figure 3.5A) and memory B-cells 

(0.670 ± 0.333 vs 1.000 ± 0.406, p=0.1508) (Figure 3.5B). This agrees with 

previously reported findings235 and suggests that there is a trend for reduces 

sialylation in naïve and memory B-cells even in the pre-clinical stage of disease 

and thus may play a role in the onset of symptomatic autoimmunity.  

3.2.2.3 Expression of α2,6-sialic acid decreases in B-cells during the pre-

clinical stages of RA and remains lower upon progression to 

symptomatic inflammation 

To examine changes in B-cell sialylation in patients at different stages of disease, 

samples of B-cells from healthy donors (n=5), patients with PRA (n=5) and 

patients with early RA, which were divided into two categories based on whether 

sample was collected at the time of diagnosis – new early RA (N-ERA, n=5) or if 

the sample was taken at a later clinic visit, still within 12 months of symptom 

onset/diagnosis – later early RA (L-ERA, n=5). All patients were bDMARD naïve 

but L-ERA patients were treated with csDMARDs according to local protocol.  

Differences in sialylation between cell types were subtle, however sialylation 

tended to be lowest in naïve and memory B-cells in patients in the PRA group 

(Figure 3.6A, 3.6B), however this group also had the highest degree of variation. 

In plasmablasts it was also found that expression of SA was slightly higher in the 

early RA groups than the PRA group, however these changes were not 

statistically significant (Figure 3.6C). The results suggest that the decrease in 

sialylation which occurs in the pre-clinical phase of disease is maintained at the 

onset of symptomatic inflammation, indicating that this may be an important 

feature which drives the progression of autoimmune synovial inflammation.  
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Figure 3.5 Baseline sialylation in B-cell subsets from healthy donors and patients with pre-
RA 

PBMCs from healthy donors (HD) (n=5) and patients with a pre-RA diagnosis (PRA) (n=5) were 
stained with B-cell lineage markers and bSNA with streptavidin PE. Cells were analysed by flow 
cytometry and gated based on expression of surface markers – CD19+CD27- naïve B-cells (A), 
CD19+CD27+ memory B-cells (B) and CD19+CD27+CD38++ plasmablasts (C). Graphs show mean 
PE MFI with SD, expressed as a ratio based on the mean MFI of samples from healthy donors. 
Mann Whitney tests were used to calculate p values.  
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Figure 3.6 Baseline sialylation in B-cell subsets from healthy donors and patients with RA 
or pre-RA 

PBMCs from healthy donors (n=5) and patients with a pre-RA diagnosis (PRA) (n=5), newly 
diagnosed RA (NRA) or established early RA (ERA) were stained with B-cell lineage markers and 
bSNA with streptavidin PE. Cells were analysed by flow cytometry and gated based on expression 
of surface markers – CD19+CD27- naïve B-cells (A), CD19+CD27+ memory B-cells (B) and 
CD19+CD27+CD38++ plasmablasts (C). Graphs show mean PE MFI with SD, expressed as a ratio 
based on the mean MFI of samples from healthy donors. One-way ANOVA followed by Sidak’s 
multiple comparisons tests were then used to analyse statistical significance and generate p 
values.  
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3.2.3 Impact of activation via the BCR and TLRs on B-cell surface 

sialylation in cells from healthy donors and patients with RA 

Since B-cell expression of SA has been shown to be reduced in cells from 

patients with ERA and PRA, it was hypothesised that this may be a feature of 

autoimmune inflammation which contributes to the onset of disease in RA. 

However, the regulation of sialylation in B-cells during homeostasis is not well 

understood. One of the key events in B-cell autoimmunity is the activation of 

autoreactive B-cells, which leads to proliferation and differentiation, and the 

production of autoantibodies. Therefore the impact of B-cell activation on 

expression of surface SA was investigated.  

To determine the influence of B-cell activation on expression of surface SA, 

several B-cell activating factors were tested in vitro. B-cells may be activated via 

several pathways, including BCR activation, TLR activation, T-cell co-stimulation 

and cytokine receptor activation. In this section, induction of B-cell activation via 

CpG and R848, ligands for TLR9 and TLR7 respectively, as well as crosslinking 

the BCR with antibodies to IgM and IgG were tested. Activation of B-cells leads 

to upregulation of several surface markers, including CD69 and HLA-DR271, 

which were measured alongside sialylation in stimulated cells. 

3.2.3.1 B-cells are activated in vitro with TLR ligands and BCR 

crosslinking 

Initially, to optimise in vitro activation of B-cells, CpG and anti-IgM/G F(ab’) 

fragments (F(ab’)2) were added in increasing concentrations (1, 2.5 and 5 µg/ml 

and 5, 10 and 20 µg/ml respectively) to B-cell cultures with 20 ng/ml IL-4 (included 

to promote B-cell survival in cultures). Expression of CD69 and HLA-DR were 

measured by flow cytometry at baseline and after 24, 48 and 72 hrs. Both stimuli 

induced a robust increase in expression of CD69 at 24 hrs, which was decreased 

slightly at 48 and 72 hrs (Figure 3.7A, 3.7B). In contrast, HLA-DR expression was 

highest after 72 hrs of stimulation with CpG, and stimulation with F(ab’)2 did not 

lead to a significant increase in HLA-DR over 72 hrs (Figure 3.7C, 3.7D). It was 

also found that in both cases, the lowest tested doses of CpG and F(ab’)2 (1 µg/ml 

and 5 µg/ml respectively) were sufficient to induce a robust response, in terms of 

CD69 upregulation. Similar to CpG, activation of B-cells with TLR7 agonist R848 

was also optimal at 1 µg/ml (data not shown). Expression of HLA-DR was also 



83 
 

 

influenced by IL-4, which was excluded from further experiments in this section 

and was studied separately in Chapter 4.  

3.2.3.2 Expression of sialylated surface proteins is increased in B-cells 

stimulated with TLR ligands and F(ab’)2 from healthy donors but 

not in cells from patients with RA 

To determine the influence of B-cell activation by BCR crosslinking and TLR 

stimulation on expression of surface SA, sialylation was measured in B-cells from 

healthy donors (n=5) stimulated for 48 hrs with either 5 µg/ml F(ab’)2 or 1 µg/ml 

CpG or R848. It was found that stimulation with CpG or R848 led to an increase 

in B-cell sialylation after 48 hrs (1.953 ± 0.273, p=0.0014, and 1.466 ± 0.421, 

p=0.0684 respectively - expressed as fold change relative to unstimulated 

samples), however this effect was more modest in F(ab’)2 stimulated cells, which 

led to a small increase in sialylation (1.171 ± 0.200, p=0.0103) (Figure 3.8A). 

Cells stimulated with R848 showed the highest percentage of CD69+ cells, 

suggesting the highest degree of activation (Figure 3.8B), however the greatest 

increase in levels of SA expression were detected in cells stimulated with CpG, 

suggesting that increased expression of SA may not directly correlate with 

increased B-cell activation at least in terms of CD69 upregulation, and that 

changes to B-cell sialylation may be dependent on the type of stimulus. 

B-cells from patients with ERA (n=5) were also stimulated for 48 hrs with either 5 

µg/ml F(ab’)2 or 1 µg/ml CpG or R848. Strikingly, sialylation in cells these cells 

did not significantly increase in response to either F(ab’)2 (0.992 ± 0.109, 

p=0.9990), CpG (1.004 ± 0.118, p=0.990) or R848 (1.036 ± 0.127, p=0.9309) 

stimulation (Figure 3.8C). It did not appear that this was due to lack of cell 

activation, as there were similar percentages of CD69+ cells following stimulation 

to cells from healthy donors (Figure 3.8D). Despite this, the percentage of CD69+ 

cells was lower in cells stimulated with CpG compared with F(ab’)2-stimulated 

cells (54.35 ± 6.13 vs. 71.62 ± 5.87, p=0.0020) whereas, in cells from healthy 

donors, differences in CD69+ cells in CpG and F(ab’)2 stimulated conditions were 

not statistically significant (63.22 ± 19.43 vs. 51.48 ± 29.07, p=0.9999). This 

suggests there is a decreased response to TLR9 in cells from patients with ERA. 

Overall these results suggest that mechanisms which regulate sialylation in B-



84 
 

 

cells in response to activation may be dysregulated in patients with ERA, and 

there may be a decreased response to TLR9 activation in patients with RA. 

To determine if dysregulated sialylation in response to stimulation is present from 

the onset of B-cell autoimmunity, B-cells from patients with PRA were also 

stimulated with F(ab’)2, CpG or R848. Results showed a slight increase in 

sialylation in response to stimulation with F(ab’)2 (1.327 ± 0.118, 

p=0.1708)(Figure 3.8E). However, similarly to cells from patients with ERA, there 

was no change in sialylation in response to stimulation with CpG (1.094 ± 0.094, 

p=0.9999) and there was only a slight increase in response to R848 (1.224 ± 

0.153, p=0.1708). Interestingly, in the cells from patients with PRA, the 

percentage of CD69+ cells was much lower in TLR ligand-stimulated cells 

compared to F(ab’)2-stimulated cells (F(ab’)2: 81.15 ± 9.91 vs CpG: 35.38 ± 8.50 

p=0.0078 and R848: 48.58 ± 13.11 p=0.0312) (Figure 3.8F), suggesting that 

there may be dysregulated response to TLR stimuli at this stage of disease. 

Taken together, the results from patients with ERA and PRA suggest that 

mechanisms which control expression of SA in response to stimuli may be 

dysregulated, and response to TLR ligands may be dampened even in the 

asymptomatic autoimmunity phase of disease. 

3.2.3.3 Expression of sialylated surface proteins is not increased in B-

cells stimulated with TLR ligands and F(ab’)2 from patients with RA 

in response to increasing doses of stimuli 

It was hypothesised that B-cells from patients with ERA and PRA may require a 

higher dose of stimuli for activation to be achieved, since B-cells from patients 

with ERA and PRA showed less upregulation of CD69 in response to TLR 

stimulation. To determine if higher doses of TLR stimuli or induction of BCR 

cross-linking could induced an increase in sialylation, B-cells from patients with 

ERA were stimulated with increasing doses of CpG (1, 2 and 5 µg/ml – previous 

dose 1 μg/ml) (n=4) and F(ab’)2 (5, 10 and 15 µg/ml – previous dose 5 μg/ml) 

(n=2). B-cell sialylation did not increase in response to higher doses of CpG 

(Figure 3.9A), despite percentage of CD69+ cells increasing between 1 and 2 

µg/ml (64.18 ± 12.65 vs. 72.01 ± 6.621, p=0.4970) (Figure 3.9B). In these 

experiments, sialylation was slightly increased in response to 5 μg/ml of F(ab’)2 

similar to the changes seen previously in cells from healthy donors (1.244 ± 0.244, 
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p=0.5867 and 1.171 ± 0.200, p=0.3543 respectively), and was also slightly 

increased in cells stimulated with 10 and 15 µg/ml F(ab’)2 (Figure 3.9C). 

Expression of CD69 increased in response to F(ab’)2 in a dose dependent 

manner (Figure 3.9D). These results suggest that mechanisms which lead to the 

upregulation of sialylation in response to TLR9 stimulation may be impaired in 

cells from patients with ERA, however the cells appear to respond in a similar 

manner to healthy donor cells to stimulation with F(ab’)2. 

3.2.4 Impact of co-stimulation via CD40/CD40L on B-cell surface 

sialylation in cells from healthy donors and patients with RA 

Previous results have shown that B-cells from healthy donors upregulate 

sialylation in response to TLR stimulation and, to a lesser extent, in response to 

BCR cross-linking via F(ab’)2 (Figure 3.8A). In vivo, when B-cells are activated 

via the BCR with TD antigens, they require a second signal via a co-stimulation 

from activated T-cells to become fully activated. One such co-stimulatory 

molecule expressed on the T-cell surface is CD40L, the ligand for CD40, which 

is expressed on the B-cell surface. To determine the impact of co-stimulation on 

B-cell activation and regulation of sialylation, cells were stimulated in vitro with 

soluble CD40L   F(ab’)2. 

3.2.4.1 Expression of sialylated surface proteins is increased in B-cells 

stimulated with F(ab’)2 and CD40L from healthy donors patients 

with pre-RA but not ERA 

To determine the impact of co-stimulatory molecule CD40L on B-cell sialylation, 

B-cells from healthy donors (n=4) were stimulated with 2 µg/ml CD40L in isolation 

or in combination with 5 µg/ml F(ab’)2. It was found that sialylation was increased 

slightly in cells stimulated with CD40L alone, but was increased to a greater 

extent in cells stimulated with both CD40L and F(ab’)2 (1.231 ± 0.284, p=0.3820 

and 1.377 ± 0.498, p=0.4308 respectively - expressed as fold change relative to 

unstimulated samples) (Figure 3.10A), however none of these changes reached 

statistical significance. Stimulation with a combination of CD40L and F(ab’)2 also 

produced the highest percentage of CD69+ cells, indicating better activation was 

achieved with the dual stimuli, as anticipated (Figure 3.10B). Despite the high 

level of activation induced by F(ab’)2 + CD40L co-stimulation compared to CpG 

(86.74 ± 7.62 vs. 63.22 ± 19.43 – percentage CD69+ cells), the corresponding 
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increase in sialylation was less than in cells stimulated by CpG (Figure 3.8B) 

(1.377 ± 0.498 and 1.953 ± 0.273 respectively), once more suggesting that 

changes to sialylation are dependent on the mode of activation rather than the 

strength of the signal. 

The response of B-cells from patients with ERA to CD40L co-stimulation was also 

tested. As previous, cells from patients with ERA (n=5) were stimulated with 

CD40L and F(ab’)2 and sialylation along with activation measured by flow 

cytometry. Interestingly, cells from patients with RA showed no change in 

sialylation in response to CD40L in isolation or in combination with F(ab’)2 (1.043 

± 0.127, p=0.3569 and 0.946 ± 0.176, p=0.4338 respectively) (Figure 3.10C). 

Percentage CD69+ cells was comparable to cells from healthy donors following 

stimulation, though there were fewer CD69+ cells from patients with ERA than 

from healthy donors stimulated with F(ab’)2 + CD40L (69.18 ± 12.98 vs. 86.74 ± 

7.62) (Figure 3.10D). 

In addition, B-cells from patients with PRA (n=4) were also stimulated with CD40L 

  F(ab’)2. B-cells from patients with PRA showed similar responses to the cells 

from healthy donors – with upregulated sialylation in F(ab’)2 stimulated, CD40L 

stimulated and dual stimulated cells (1.327 ± 0.172 p=0.2132, 1.321 ± 0.123 

p=0.1243 and 1.401 ± 0.038 p=0.0274 respectively) (Figure 3.10E). Percentages 

of CD69+ cells were also comparable to healthy donor cells in the CD40L 

stimulated and dual stimulated cells, however the response to isolated F(ab’)2 

was increased compared to cells from healthy donors (81.15 ± 9.91 vs. 58.27 ± 

24.63) (Figure 3.10F, 3.10A). Taken together, these results suggest that B-cells 

from patients with ERA and PRA can be activated by CD40L co-stimulation to a 

similar extent as in cells from healthy donors. The effect on sialylation – a mild 

increase induced by F(ab’)2, CD40L and dual stimulation – is also similar in cells 

from healthy donors and in cells from patients with PRA, however this response 

is dampened in cells from ERA.
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Figure 3.7 Optimising in vitro B-cell activation via TLR stimulation and BCR crosslinking 

B-cells isolated from healthy donors (n=2) were stimulated for 72 hrs with 20 ng/ml IL-4 and increasing doses of CpG (A,C) or F(ab’)2 (B,D). Expression 
of activation markers CD69 (A-B) and HLA-DR (C-D) were recorded at 24, 48 and 72 hrs. Graphs show one representative experiment and either CD69 
BUV395 MFI or HLA-DR FITC MFI.
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Figure 3.8 Changes to sialylation elicited by in vitro B-cell activation via TLR stimulation 
and BCR crosslinking  

B-cells isolated from healthy donors (n=5) (A-B), patients with early RA (ERA) (n=5) (C-D) or 
patients in the pre-RA group (PRA) (n=4) (E-F), were stimulated with 5 μg/ml F(ab’)2 or 1μg/ml 
CpG or R848 for 48 hrs. After 48 hrs sialylation was measured by flow cytometry along with 
expression of CD69. (A,C,E) Graphs show mean with SD of SNA FITC MFI, expressed as a ratio 
relative to SNA FITC MFI of unstimulated samples. (B,D,F) Graphs show mean with SD of the 
percentage of CD69+ cells. One-way ANOVA followed by Tukey’s multiple comparisons tests 
were used to analyse statistical significance, with relevant statistically significant comparisons 
highlighted on graphs (* p<0.05, ** p<0.005).  
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Figure 3.9 Dose dependent response of B-cells from patients with ERA to TLR stimulation 
and BCR crosslinking 

B-cells from patients with early RA (ERA) were stimulated for 48 hrs with increasing doses (1 – 5 
µg/ml) of CpG (n=4) (A-B) or F(ab’)2 (5 – 15 µg/ml) (n=2) (C-D). After 48 hrs sialylation was 
measured by flow cytometry along with expression of CD69. (A,C) Graphs show mean with SEM 
of SNA FITC MFI, expressed as a ratio relative to SNA FITC MFI of unstimulated samples. (B,D) 
Graphs show mean with SD of the percentage of CD69+ cells. ANOVA and Tukey’s multiple 
comparisons tests were used to generate p values, differences were statistically significant where 
p<0.05.  

0 1 2 5
0

20

40

60

80

100

C
D

6
9

+
 C

e
ll
s

 (
%

)

CpG (g/ml)

p=0.0008

p=0.0189

p=0.0284

CD69 Expression with CpG Stimulation

0 5 10 15
0

20

40

60

80

100

C
D

6
9

+
 C

e
ll
s

 (
%

)

F(ab')2 (g/ml)

p=0.1682

p=0.1452

p=0.1244

CD69 Expression with anti-IgM Stimulation

0 1 2 5
0.0

0.5

1.0

1.5

2.0

2.5

S
ia

ly
la

ti
o

n

(F
o

ld
 c

h
a

n
g

e
 v

s
. 
U

S
)

CpG (g/ml)

p=0.3000

p=0.9995

p=0.5369

B-cell Sialylation with CpG Stimulation

0 5 10 15
0.0

0.5

1.0

1.5

2.0

2.5

S
ia

ly
la

ti
o

n

(F
o

ld
 c

h
a

n
g

e
 v

s
. 
U

S
)

F(ab')2 (g/ml)

p=0.5867

p=0.5189

p=0.7160

B-cell Sialylation with anti-IgM Stimulation

A B

C D



90 
 

 

 

Figure 3.10 Changes to sialylation elicited by in vitro B-cell activation via BCR crosslinking 
and CD40L co-stimulation 

B-cells isolated from healthy donors (n=5) (A-B), patients with early RA (n=5) (C-D) or patients in 
the pre-RA group (n=4) (E-F), were stimulated with 5 μg/ml F(ab’)2, 2 μg/ml soluble CD40L or 
both for 48 hrs. After 48 hrs sialylation was measured by flow cytometry along with expression of 
CD69. (A,C,E) Graphs show mean with SEM of SNA FITC MFI, expressed as a ratio relative to 
SNA FITC MFI of unstimulated (US) samples. (B,D,F) Graphs show mean with SD of the 
percentage of CD69+ cells. One-way ANOVA followed by Tukey’s multiple comparisons tests 
were used to analyse statistical significance, with relevant statistically significant comparisons 
highlighted on graphs (* p<0.05, ** p<0.005).  
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3.2.4.2 Expression of sialylated surface proteins is not increased in B-

cells stimulated with F(ab’)2 and CD40L from patients with RA in 

response to increasing doses of stimuli 

As in section 3.2.3.3, to determine if cells from patients with ERA required a 

higher dose of CD40L in order to upregulate sialylation, B-cells were treated with 

increasing doses of CD40L (2, 5 or 10 µg/ml) alone (n=2) or in combination with 

increasing doses of F(ab’)2 (5, 10 or 15 µg/ml) (n=4). Results showed very little 

change to sialylation at all tested concentrations of CD40L (Figure 3.11A) and 

CD40L + F(ab’)2 (Figure 3.11C). Activation in response to CD40L appeared to 

increase in a dose-dependent manner (Figure 3.11B), and response to CD40L + 

F(ab’)2 was generally high, and comparable to cells from healthy donors (Figure 

3.11D, 3.11B). These results suggest that, even at higher doses of stimuli, 

despite B-cells from patients with RA being activated by CD40L and F(ab’)2 to a 

similar level as cells from healthy donors, there is no corresponding upregulation 

of sialylation. 

3.2.5 Changes to B-cell sialylation following activation are 

dependent on mode of stimuli received and the mechanisms 

which induce such changes may be disrupted in ERA and PRA  

The results of the previous sections (3.2.3 and 3.2.4) described changes to B-cell 

sialylation dependent on the mode of cell activation, which may be altered in 

patients with PRA and ERA. The changes to B-cell sialylation following activation 

were further studied by comparing data from each treatment condition between 

groups of patients and healthy donors. It was found that differences between 

expression of SA in healthy donor cells and cells in both patient groups following 

activation with CpG were highly statistically significant (increased expression in 

cells from healthy donors: HD 1.953 ± 0.273, PRA 1.094 ± 0.094 p<0.0001 and 

ERA 1.004 ± 0.118 p<0.0001 – fold change relative to unstimulated samples) 

(Figure 3.12A). There was also found to be a difference in sialylation of cells 

stimulated with R848, which was significantly higher in cells from healthy donors 

that in patients with ERA (HD 1.466 ± 0.421 vs. PRA 1.224 ± 0.153, p=0.4063 

and vs. ERA 0.971 ± 0.173, p=0.0211). Expression of SA in cells stimulated with 

F(ab’)2 was also significantly higher in cells from patients with PRA than in 

patients with ERA (PRA 1.327 ± 0.172 vs. ERA 0.992 ± 0.110, p=0.0235). 
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Expression of SA following activation with CD40L and F(ab’)2 + CD40L, was 

higher in cells from patients with PRA compared to those with ERA (CD40L: PRA 

1.321 ± 0.123 p=0.024 and ERA 1.043   0.127, p=0.1368; F(ab’)2 + CD40L: PRA 

1.401 ± 0.038 p=0.011 and ERA 0.946 ± 0.151, p=0.1851). Expression was also 

lower in cells from patients with ERA stimulated with CD40L and F(ab’)2 + CD40L 

than in cells from healthy donors, though not statistically significant (CD40L: HD 

1.231 ± 0.284, p=0.3261 and ERA 1.043   0.127; F(ab’)2 + CD40L: HD 1.377 ± 

0.498 p=0.145 and ERA 0.946 ± 0.151, p=0.1869)(Figure 3.12A). 

Differences in percentage of CD69+ cells were also studied between groups. It 

was found that the percentage of CD69+ cells in patients with PRA stimulated 

with CpG was significantly reduced compared to cells from healthy donors (35.38 

± 8.50 vs. 63.22 ± 19.43 p=0.0221) and was reduced compared to cells from 

patients with ERA (35.38 ± 8.50 vs. 54.35 ± 6.13 p=0.5494)(Figure 3.12B). 

Similarly, the percentage of CD69+ cells was reduced in cells stimulated with 

R848 from patients with PRA compared to cells from healthy donors (though not 

statistically significant, 48.58 ± 13.11 vs. 68.92 ± 27.33, p=0.2606) and compared 

to cells from patients with ERA (48.58 ± 13.11 vs. 68.93 ± 6.90, p=0.9999). The 

percentage of CD69+ cells was also reduced in patients with ERA stimulated with 

F(ab’)2 + CD40L compared to cells from healthy donors and cells from patients 

with PRA (ERA 69.18 ± 12.98, HD 86.74 ± 7.62, p=0.0492, PRA 86.97 ± 4.39, 

p=0.0465). In contrast, the percentage of CD69+ cells was reduced in cells 

stimulated with F(ab’)2 from healthy donors compared with cells from patients with 

PRA and ERA (HD 58.27 ± 24.63 vs. PRA 81.15 ± 9.91, p=0.0008, and vs. ERA 

71.62 ± 5.87, p=0.4427)(Figure 3.12B). CD69+ cells were also significantly 

increased in cells from patients with PRA versus cells from patients with ERA 

(PRA 81.15 ± 9.91 vs. ERA 71.62 ± 5.87, p=0.0002).  
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Figure 3.11 Dose dependent response of B-cells from patients with ERA to CD40L co-
stimulation and BCR crosslinking 

B-cells from patients with early RA (ERA) were stimulated for 48 hrs with increasing doses of 
CD40L (2 – 10 µg/ml) (n=2) (A-B) or F(ab’)2 (5 – 15 µg/ml) + CD40L (n=4) (C-D). After 48 hrs 
sialylation was measured by flow cytometry along with expression of CD69. (A,C) Graphs show 
mean with SEM of SNA FITC MFI, expressed as a ratio relative to SNA FITC MFI of unstimulated 
(US) samples. (B,D) Graphs show mean with SEM of the percentage of CD69+ cells. ANOVA and 
Tukey’s multiple comparisons tests were used to generate p values, differences were statistically 
significant where p<0.05.
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Figure 3.12 Influence of B-cell activation on sialylation and CD69 expression in cells from 
healthy donors, patients with ERA and patients with PRA 

B-cells isolated from healthy donors (HD) (n=5), patients with early RA (ERA) (n=5) or patients 
with pre-RA (PRA) (n=4), were stimulated with CpG, R848, F(ab’)2, CD40L or F(ab’)2 + CD40L 
for 48 hrs. Sialylation (A) and % of CD69+ cells (B) was measured after 48 hrs. Graphs show 
mean with SEM of SNA FITC MFI, expressed as a ratio relative to SNA FITC MFI of unstimulated 
(US) samples or mean with SEM of the percentage of CD69+ cells. ANOVA and Tukey’s multiple 
comparisons tests were used to assess statistical significance with relevant statistically significant 
comparisons highlighted on graphs (* p<0.05, ** p<0.005, *** p<0.0005 and **** p<0.0001).  
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In summary, these results show the mechanism of upregulated sialylation 

induced by activation via TLR stimulation is depressed in patients with ERA and 

PRA. Activation via TLRs is also reduced in patients with PRA but not ERA 

suggesting the mechanism of response to TLR stimulation may be disrupted 

during the development of B-cell autoimmunity. However, activation response 

appears to be recovered upon progression to active disease without recovery of 

SA upregulation. 

Sialylation is also upregulated in response to co-stimulation via the BCR and 

CD40 in healthy donor cells, and this response is observed in cells from patients 

with PRA but not ERA, suggesting this mechanism may be dysregulated upon 

progression to active auto-inflammation, but unaffected in the asymptomatic 

autoimmune phase.  

3.2.6 Impact of activated T-cells on activated B-cell sialylation 

As described previously, in section 3.2.4.1, expression of sialic acid on the B-cell 

surface was increased in B-cells from healthy donors in response to BCR 

crosslinking with F(ab’)2 and co-stimulation with CD40L (Figure 3.10A). 

Therefore, it was hypothesised that activated T-cells would also be able to 

activate B-cells in an in vitro co-culture system and induce an upregulation of B-

cell sialylation.  

3.2.6.1 Activated T-cells stimulate B-cells to increase expression of 

surface sialylated proteins 

To determine if T-cells activated in vitro would have an impact on B-cell 

sialylation, PBMCs and B-cells isolated from the same healthy donors (n=3) were 

co-cultured with CD3/CD28 T-cell activation beads, with or without F(ab’)2. It was 

found that even in the absence of direct B-cell activation, T-cells activated with 

CD3/CD28 beads led to an upregulation in B-cell sialylation (1.502 ± 0.109, 

p=0.0378 – fold change relative to unstimulated samples) (Figure 3.13A). 

Sialylation was also upregulated in cells stimulated with F(ab’)2 + activated T-

cells (1.616 ± 0.286, p=0.1588). Thus, suggesting that T-cell co-stimulation 

provides a strong signal for B-cell activation, and leads to upregulation of SA in 

B-cells from healthy donors. 
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To determine if sialylation in B-cells from patients with ERA could also be 

influenced by activated T-cells, PBMCs and B-cells isolated from the same 

patients with ERA (n=5) were also co-cultured with CD3/CD28 T-cell activation 

beads, with or without F(ab’)2. In line with previous results, which showed very 

little change in B-cell sialylation in response to stimulation with CD40L (Figure 

3.10C), the B-cells from patients with ERA showed no change in sialylation in 

response to activated T-cells (1.097 ± 0.101, p=0.2137) or activated T-cells in 

combination with F(ab’)2 (1.022 ± 0.184, p=0.9826) (Figure 3.13B). These results 

confirm previous findings, that B-cells from patients with ERA, have dysregulated 

control of SA expression, in response to activation via CD40L co-stimulation and 

BCR crosslinking via F(ab’)2. 

3.2.6.2 The influence of activated T-cells on B-cell sialylation is in part 

mediated by CD40L co-stimulation 

To confirm if the effects of activated T-cells on B-cell sialylation in cells from 

healthy donors were, at least in part, driven by CD40L signalling, a blocking 

antibody to CD40L was used to inhibit this interaction. It was found that, as 

described previously (Figure 3.13A), cells stimulated with activated T-cells 

showed an increase in sialylation (1.281 ± 0.212, p=0.1695 – fold change relative 

to unstimulated samples). Addition of the blocking antibody led to a decrease in 

B-cell sialylation (1.124 ± 0.098 with blocking vs. 1.281 ± 0.212 without, 

p=0.2623), however sialylation did not decrease to the level of unstimulated cells 

(1.000 ± 0.018) (Figure 3.13C). These results suggest that the effects of activated 

T-cells on B-cell sialylation may be partially driven by CD40L signalling, however 

there are likely other factors which could impact B-cell sialylation such as T-cell 

produced cytokines.  
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Figure 3.13 Influence of activated T-cells on B-cell sialylation in B-cells from healthy 
donors and patients with ERA 

B-cells from healthy donors (n=3) (A) or patients with early RA (ERA) (n=5) (B) were co-cultured 
with PBMCs from the same donor, ± T-cell activation beads (CD3/CD28) and ± F(ab’)2. (C) B-
cells and T-cells from healthy donors (n=4) were co-cultured in the presence of CD3/28 beads ± 
anti-CD40L antibody (αCD40L). Sialylation was measured after 24 hrs. Graphs show mean with 
SD of B-cell SNA FITC MFI, expressed as a ratio relative to SNA FITC MFI of unstimulated (US) 
samples. One-way ANOVA and Tukey’s multiple comparisons test were used to generate p 
values. Differences were statistically significant where p<0.05.  
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3.2.7 Expression of α2,3-sialic acid in activated B-cells 

Despite much of the literature reporting on the importance of α2,6 sialylation, it is 

reasonable to hypothesise that other SA linkages – such as α2,3 sialylation - may 

also be impacted by the same mechanisms as α2,6 sialylation. Therefore, the 

impacts of B-cell activation via TLRs, BCR crosslinking and CD40L co-stimulation 

on α2,3 sialylation were also studied. Expression of α2,3-SA was measured using 

biotinylated Maackia Amurensis (bMAA) lectin which preferentially binds α2,3-

SA.  

3.2.7.1 Optimisation of MAA lectin staining for flow cytometry by titration 

and neuraminidase digestion of sialic acid 

As described previously, use of lectins in flow cytometry requires several 

optimisation steps. Titration of bMAA staining was carried out, using streptavidin-

PE, along with Neu treatment of cells to determine the specificity of binding. It 

was determined that the best concentration of staining was 20 µg/ml (Figure 

3.14), and Neu treatment showed a reduction in bMAA binding, however the 

extent of the decrease in staining was lesser than that seen in cells treated with 

neuraminidase and stained with SNA (Figure 3.2C). For the following 

experiments, bMAA staining was conducted with streptavidin-APC as a 

secondary molecule, to allow expression of α2,3 and α2,6 SA to be measured in 

the same cells, using 20 µg/ml bMAA. 

3.2.7.2 Changes to expression of α2,3-sialic in B-cells in response to 

activation is highly variable 

To investigate the regulation of α2,3 SA expression by B-cell activation, B-cells 

isolated from healthy donors (n=3) were stimulated with either CpG, F(ab’)2, 

CD40L or F(ab’)2 + CD40L for 48 hrs, then α2,3-sialylation measured by flow 

cytometry using bMAA. Expression of α2,3-SA was unchanged in cells stimulated 

with CpG, CD40L and F(ab’)2 + CD40L (Figure 3.15). α2,3-sialylation appeared 

to increase in cells stimulated with F(ab’)2 in isolation, however, there was a large 

margin of error within these results, making them somewhat hard to interpret 

(Figure 3.15).  
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Figure 3.14 Optimisation of flow cytometry staining with Maackia Amurensis Lectin 

PBMCs from a healthy donor were stained with increasing doses (0 - 20 µg/ml) of biotinylated 
maackia amurensis lectin (bMAA). A sample of cells were also treated with neuraminidase (Neu) 
to remove surface sialic acid. Cells stained with bMAA were then stained with streptavidin-PE 
then fluorescence measured, with histogram overlay displaying PE MFI.  

B-cell Staining with bMAA
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Figure 3.15 Expression of α2,3-sialic acid in activated B-cells from healthy donors 

B-cells from healthy donors (n=3) were stimulated for 48 hrs with increasing doses of CpG (1 - 5 
µg/ml) (A), F(ab’)2 (5 – 15 µg/ml) (B), CD40L (2 – 10 µg/ml) (n=2) (C) or F(ab’)2 + CD40L (n=4) 
(D). After 48 hrs α2,3 sialylation was measured by flow cytometry. Graphs show mean with SD of 
APC MFI, expressed as a ratio relative to APC MFI of unstimulated (US) samples. One-way 
ANOVA and Tukey’s multiple comparisons tests were used to generate p values, based on 
comparison with unstimulated control sample mean.  

US F(ab')2 CpG CD40LF(ab')2 

+ CD40L

0

2

4

6


2

,3
-s

ia
ly

la
ti

o
n

(F
o

ld
 C

h
a

n
g

e
 v

s
. 
U

S
) p=0.4183

p=0.9940
p=0.9251

p=0.7512

2,3-sialylation in Activated B-cells



101 
 

 

Taken together, these results show that α2,3-SA may be affected by stimulation 

with F(ab’)2. However, variance in the data made it difficult to draw any 

conclusions from these experiments. Considering there was no change in α2,3-

SA expression induced by CD40L or CpG, it suggests that α2,3-SA is less 

susceptible to changes induced by B-cell activation, or that perhaps the response 

is more variable in cells from healthy donors. 

3.2.8 Expression of ST6Gal1 and NEU1 in activated cells from 

patients with RA and healthy donors 

There are likely several factors which determine the level of SA which is displayed 

on the cell surface. One potential factor may be the level of expression of 

enzymes which may add or remove SA from protein chains within the cell. 

ST6Gal1 is the Golgi enzyme responsible for the addition of α2,6 SA to glycan 

chains163 and NEU1 is able to cleave α2,6 SA from protein chains170. Little is 

known about how the expression of these genes is regulated in B-cells. 

Therefore, experiments were carried out to determine if activation of B-cells leads 

to changes in enzyme mRNA expression in line with levels of cell surface SA 

expression.  

3.2.8.1 Patterns of expression of NEU1 over 48hrs in B-cells from patients 

with RA differs compared to cells from healthy donors 

To determine if activation of B-cells had an impact on the level of expression of 

NEU1 and ST6Gal1 mRNA and to determine if gene expression correlated with 

surface SA expression, B-cells from healthy donors (n=3), or patients with ERA 

(n=3) were stimulated for 48 hrs with CpG or F(ab’)2. Expression of NEU1 and 

ST6Gal1 were measured by RT-qPCR at baseline, after 24 and 48 hrs - relative 

to expression of HPRT1. 

The results showed that in B-cells from healthy donors, after 24 hrs, expression 

of NEU1 decreased in cells stimulated with CpG compared to baseline 

expression levels (0.168 ± 0.060 vs. 0.418 ± 0.033, p=0.0218 – ΔCT values) 

(Figure 3.16A). Expression then increased slightly between 24 and 48 hrs (0.168 

± 0.060 vs. 0.236 ± 0.062, p=0.4334). Unstimulated and F(ab’)2-stimulated cells 

showed no change in expression after 24hrs (0.407 ± 0.063, p=8278 and 0.393 

± 0.143, p=0.9396 respectively, vs. 0.418 ± 0.033), and a slight decrease in 
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expression in F(ab’)2 stimulated cells after 48 hrs (0.380 ± 0.080, p=0.9408). At 

48 hrs expression of NEU1 was lower in cells stimulated with CpG than in 

unstimulated and F(ab’)2-stimulated cells (0.236 ± 0.062 vs. 0.417 ± 0.022, 

p=0.0935 and 0.380 ± 0.080, p=0.1980 respectively) (Figure 3.16B) – concurrent 

with the increase in expression of surface SA in cells stimulated with CpG 

compared to those stimulated with F(ab’)2 and unstimulated cells (Figure 3.8A). 

Unlike in B-cells from healthy donors, in B-cells from patients with ERA, after 24 

hrs expression of NEU1 was increased in both stimulated and unstimulated cells 

– with the largest increase in the unstimulated cells (US: 0.531 ± 0.143, p=0.0443; 

CpG: 0.335   0.194, p=0.4211; F(ab’)2: 0.237 ± 0.039, p=0.2605 vs. 0.143 ± 

0.052) (Figure 3.17A). Expression decreased in unstimulated (0.531 ± 0.142 vs. 

0.471 ± 0.145, p=0.7424) and CpG stimulated (0.335 ± 0.194 vs. 0.257 ± 0.218, 

p=0.0773) cells between 24 and 48 hrs, however expression increased in F(ab’)2 

stimulated cells (0.237 ± 0.039 vs. 0.305 ± 0.085, p=0.5310). At 48 hrs, 

expression of NEU1, similar to the observations in cells from healthy donors, was 

decreased in CpG-stimulated compared to unstimulated and F(ab’)2-stimulated 

cells (0.257 ± 0.218, p=0.5726 vs. 0.471 ± 0.145, p=0.9351 and 0.305 ± 0.085 

respectively) (Figure 3.17B). This pattern of NEU1 expression does not concur 

with the expression of surface SA, which was broadly equal across all conditions 

of activation at 48 hrs in B-cells from patients with RA (Figure 3.8C). 

3.2.8.2 Patterns of expression of ST6Gal1 over 48hrs in B-cells from 

patients with RA differs compared to cells from healthy donors 

In terms of expression of ST6Gal1, in cells from healthy donors, expression of 

ST6Gal1 was decreased in both stimulated and unstimulated cells after 24 hrs 

compared to baseline, with the largest decrease in CpG stimulated cells (US: 

2.160   0.483, p=0.0135; CpG: 0.993   0.135, p=0.0110; F(ab’)2: 1.683 ± 0.184, 

p=0.0156 vs. 3.095 ± 0.370 – ΔCT values) (Figure 3.16C). Sialylation increased 

between 24 and 48 hrs in F(ab’)2 (1.683 ± 0.184 vs. 2.015 ± 0.279, p=0.3479) 

and CpG stimulated cells (0.993 ± 0.135 vs. 1.507 ± 0.254, p=0.0367), with a 

slight decrease in unstimulated cells (2.160 ± 0.483 vs. 1.566 ± 0.420, p=0.0070), 

and at 48 hrs expression of ST6Gal1 was lower in CpG stimulated and 

unstimulated cells than in F(ab’)2-stimulated cells (US: 1.566 ± 0.420; CpG: 1.507 

  0.254; F(ab’)2: 2.015 ± 0.279) (Figure 3.16D). The decrease in expression of 
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ST6Gal1 in all cells, including stimulated cells is in contrast to the increase in 

expression of SA on the cell surface induced by stimulation, particularly with CpG 

(Figure 3.8A). These results may suggest that at this particular time-point, 

expression of ST6Gal1 mRNA does not directly correlate with expression of 

surface SA. There may be several other determining factors for surface 

sialylation, or the kinetics of the response may be such that an increase in 

ST6Gal1 expression may occur prior to the time-points measured here. These 

results also suggest that CpG stimulation may reduce the expression of both 

ST6Gal1 and NEU1 to a greater extent than stimulation with F(ab’)2. 

In cells from patients with ERA, expression of ST6Gal1 was increased in 

unstimulated (2.784 ± 0.279 vs. 5.517 ± 1.835, p=0.1829) and CpG stimulated 

cells between baseline and 24 hrs (2.784 ± 0.279 vs. 3.872 ± 1.255, p=0.3300), 

however expression decreased in F(ab’)2 stimulated cells (2.784 ± 0.279 vs. 

1.779 ± 0.526, p=0.0436) (Figure 3.17C). Between 24 and 48 hrs, expression of 

ST6Gal1 remained high in unstimulated cells (5.517 ± 1.835 vs. 5.274 ± 0.747, 

p=0.9582), but decreased in CpG stimulated cells (3.872 ± 1.255 vs. 2.110 ± 

0.886, p=0.2475) and increased in F(ab’)2 stimulated cells (1.779 ± 0.526 vs. 

2.874 ± 0.334, p=0.0226), resulting in slightly higher expression in F(ab’)2 

stimulated cells than in CpG stimulated cells at 48 hrs (2.874 ± 0.334 vs. 2.110 ± 

0.886, p=0.4679) (Figure 3.17D), similar to expression patterns in cells from 

healthy donors. Although, unlike in cells from healthy donors, both were 

significantly lower than in unstimulated cells.  
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Figure 3.16 Expression of ST6Gal1 and NEU1 in activated B-cells from healthy donors 

B-cells from healthy donors (n=3) were stimulated for up to 48 hrs with CpG or F(ab’)2 or cultured 
without and additional stimuli (US). Expression of NEU1 (A-B) and ST6Gal1 (C-D) were 
measured by RT-qPCR at baseline, after 24 and 48 hrs. Graphs A and C show changes to 
expression over the 48 hr period. Graphs B and D show expression of NEU1 or ST6Gal1 at 48 
hrs in different treatment conditions. ΔCT values were calculated relative to expression of HPRT1. 

Graphs show ΔCT mean with SD. ANOVA with Tukey’s multiple comparisons tests were used to 
analyse statistical significance. Differences were statistically significant where p<0.05. ((A, C) p 
values quoted in main text where relevant).  
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Figure 3.17 Expression of ST6Gal1 and NEU1 in activated B-cells from patients with ERA 

B-cells from patients with early RA (ERA) (n=3) were stimulated for up to 48 hrs with CpG or 
F(ab’)2 or cultured without and additional stimuli (US). Expression of NEU1 (A-B) and ST6Gal1 
(C-D) were measured by RT-qPCR at baseline, after 24 and 48 hrs. Graphs A and C show 
changes to expression over the 48 hr period. Graphs B and D show expression of NEU1 or 
ST6Gal1 at 48 hrs in different treatment conditions. ΔCT values were calculated relative to 

expression of HPRT1. Graphs show ΔCT mean with SD. ANOVA with Tukey’s multiple 

comparisons tests were used to analyse statistical significance. Differences were statistically 
significant where p<0.05. ((A, C) p values quoted in main text where relevant).  
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3.2.8.3 Patterns of expression of NEU1 within the first 24 hrs following 

stimulation differ in B-cells from healthy donors and B-cells from 

patients with RA  

To further examine the early changes in expression of NEU1 and ST6Gal1 in 

response to stimuli, B-cells isolated from healthy donors (n=3) and patients with 

ERA (n=3) were stimulated for 24hrs with CpG, F(ab’)2, or F(ab’)2 + CD40L. 

Expression of ST6Gal1 and NEU1 was measured at baseline and after 1, 4 and 

24 hrs. 

In cells from healthy donors, after 1 hr, NEU1 expression increased in cells 

stimulated with F(ab’)2 (0.557 ± 0.231 vs. 0.359 ± 0.126, p=0.2010 – ΔCT values) 

and F(ab’)2 + CD40L (0.449 ± 0.122 vs. 0.359 ± 0.126, p=0.0355), with a slight 

increase in unstimulated cells (0.385 ± 0.173 vs. 0.359 ± 0.126, p=0.9168) and a 

decrease in expression in CpG stimulated cells (0.278 ± 0.148 vs. 0.359 ± 0.126, 

p=0.2296) (Figure 3.18A). Between 1 and 4 hrs, expression in unstimulated cells 

continued to increase (0.385 ± 0.173 vs. 0.472 ± 0.272, p=0.5552), and 

expression in CpG stimulated cells continued to decrease (0.278 ± 0.148 vs. 

0.234   0.092, p=0.6957), however expression in F(ab’)2 (0.557 ± 0.231 vs. 0.265 

  0.084, p=0.1892) and F(ab’)2 + CD40L (0.557 ± 0.231 vs. 0.169 ± 0.062, 

p=0.0377) stimulated cells sharply decreased. Between 4 and 24 hrs, expression 

remained low in stimulated cells, and slightly increased in unstimulated cells. At 

24 hrs, expression in stimulated cells was far lower than in unstimulated cells, 

however there was no discernible differences in expression in the stimulated 

samples (CpG: 0.175   0.044, p=0.0670; F(ab’)2: 0.206 ± 0.091, p=0.0879; 

F(ab’)2 + CD40L: 0.185 ± 0.066, p=0.0577 vs. US: 0.483 ± 0.134). 

In cells from patients with ERA, there was also an increase in expression of NEU1 

in F(ab’)2 (0.297 ± 0.205 vs. 0.557 ± 0.231, p=0.2479) and F(ab’)2 + CD40L (0.297 

± 0.205 vs. 0.449 ± 0.122, p=0.1774) stimulated cells after 1 hr, with a slight 

increase in unstimulated (0.297 ± 0.205 vs. 0.385 ± 0.173, p=0.7956) and CpG-

stimulated cells (0.297 ± 0.205 vs. 0.234 ± 0.092, p=0.8117) (Figure 3.18B). 

Following this, between 1 and 24 hrs, expression decreased in F(ab’)2 (0.557 ± 

0.231 vs. 0.206   0.091, p=0.1417) and F(ab’)2 + CD40L stimulated cells (0.449 

± 0.122 vs. 0.185 ± 0.066, p=0.0778), remained steady in unstimulated cells 

(0.385 ± 0.173 vs. 0.483 ± 0.134, p=0.6958) and decreased slightly in CpG 
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stimulated cells (0.234 ± 0.092 vs. 0.175 ± 0.044, p=0.6081). Cells from healthy 

donors and patients with ERA followed similar patterns of expression in cells 

stimulated with F(ab’)2 and F(ab’)2 + CD40L, in that there was an upregulation of 

NEU1 expression in the first hour following stimulation, which then decreased. 

The initial response to F(ab’)2 and F(ab’)2 + CD40L appeared to be stronger in 

patients with RA, as it induced a greater fold change compared to unstimulated 

cells than in samples from healthy donors (3.01 and 3.04 vs 1.55 and 1.25 

respectively ). The response differed however, in the fact that after 24 hrs in cells 

from healthy donors expression of NEU1 in unstimulated cells was higher than in 

stimulated cells (Figure 3.18A), whereas in cells from patients with RA, 

expression in unstimulated cells was nearly equal to stimulated cells (Figure 

3.18B).  

3.2.8.4 Patterns of expression of ST6Gal1 within the first 24 hrs following 

stimulation differ in B-cells from healthy donors and B-cells from 

patients with RA  

As described previously, ST6Gal1 was also measured in cells stimulated for 24 

hrs at baseline, 1, 4 and 24 hrs. In cells from healthy donors, expression of 

ST6Gal1 decreased after 1 hr in unstimulated cells (3.405 ± 1.113 vs. 4.906 ± 

2.705, p=0.6093 – ΔCT values), with very little change in stimulated cells (CpG: 

4.577   1.710, p=0.9889; F(ab’)2: 4.929   2.077, p=0.9999 and F(ab’)2 + CD40L: 

5.067 ± 2.671 vs. 4.906 ± 2.705, p=0.9403) (Figure 3.18C) Between 1 and 4 hrs, 

expression increased in unstimulated samples (3.405 ± 1.113 vs. 4.719 ± 2.768, 

p=0.7843), and decreased in all stimulated cells, with the sharpest decrease in 

F(ab’)2 + CD40L-stimulated cells (CpG: 4.577 ± 1.710 vs. 3.686 ± 2.017, 

p=0.0557; F(ab’)2: 4.929   2.077 vs. 3.168   1.250, p=0.7133; and F(ab’)2 + 

CD40L: 5.067 ± 2.671 vs. 1.450 0.726, p=0.4918). At 24 hrs, there was no change 

in expression between stimulated cells (CpG: 2.449   1.824; F(ab’)2: 2.822 ± 

0.744; and F(ab’)2 + CD40L: 2.595 ± 1.540), although expression was marginally 

lower in stimulated cells than in unstimulated cells (US: 3.951 ± 3.798) (Figure 

3.18C). 

In cells from patients with ERA, expression of ST6Gal1 showed little variation 

after 1 hr, with a slight decrease in F(ab’)2 + CD40L (2.921 ± 0.227 vs. 2.985 ± 

1.041, p=0.9997) and unstimulated cells (2.836 ± 1.185 vs. 2.985 ± 1.041, 
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p=0.9990), and a slight increase in CpG (3.179 ± 0.753 vs. 2.985 ± 1.041, 

p=0.8260) and F(ab’)2 stimulated cells (3.756 ± 0.724 vs. 2.985 ± 1.041, 

p=0.6256) (Figure 3.18D). Between 1 and 4 hrs expression increased slightly in 

all samples (US: 2.836 ± 1.185 vs. 3.491 ± 0.898, p=0.9216; CpG: 3.179 ± 0.753 

vs. 3.443 ± 0.249, p=0.9512; F(ab’)2: 3.756 ± 0.724 vs. 4.010 ± 1.119, p=0.4807; 

F(ab’)2 + CD40L: 2.921 ± 0.227 vs. 3.241 ± 1.193, p=0.9357), then decreased 

slightly in all stimulated samples, with unstimulated cells remaining unchanged 

between 4 and 24 hrs. After 24 hrs, expression was slightly lower in stimulated 

samples (CpG: 2.899   0.041; F(ab’)2: 2.642   0.600; F(ab’)2 + CD40L: 2.812 ± 

0.733) than in unstimulated samples (3.401 ± 0.821), similar to pattern of 

expression in cells from healthy donors after 24 hrs (Figure 3.18C). The timeline 

of expression of ST6Gal1 in cells from patients with RA differed from that in 

healthy donors in that expression in cells stimulated with F(ab’)2 increased 

between 1 and 4 hrs before decreasing between 4 and 24 hrs (Figure 3.18C), 

whereas in cells from healthy donors, expression slowly decreased after 1 hr 

(Figure 3.18D).  

Taken together, these results suggest that although there may be subtle changes 

in expression of ST6Gal1 following stimulation, there are likely other factors at 

play which determine expression of SA on the cell surface. Expression of surface 

SA may, however, be related to expression of NEU1, as this tended to be lower 

in CpG stimulated cells from healthy donors which previously showed the highest 

levels of SA expression (Figure 3.8A). Expression of ST6Gal1 and its relationship 

to expression of surface SA appears to be more nuanced, since gene expression 

did not appear to correlate with surface SA expression, rather an increase in SA 

expression was accompanied by a decrease in ST6Gal1 expression. It could be 

hypothesised that expression of surface sialic acids may be determined by 

dynamic expression of both NEU1 and ST6Gal1, rather than a direct relationship 

existing between surface sialic acid and expression of either enzyme.
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Figure 3.18 Time-course of expression of ST6Gal1 and NEU1 in activated B-cells from healthy donors and patients with ERA over 24 hrs 

B-cells from healthy donors (n=3) (A,C) and patients with early RA (ERA) (n=3) (B,D) were stimulated for up to 24 hrs with CpG, F(ab’)2 or F(ab’)2 + 
CD40L or cultured without any additional stimuli (US). Expression of NEU1 (A-B) and ST6Gal1 (C-D) were measured by RT-qPCR at baseline, after 1, 4 
and 24 hrs. ΔCT values were calculated relative to expression of HPRT1. Graphs show ΔCT mean with SD. ANOVA with Tukey’s multiple comparisons 

tests were used to analyse statistical significance (p values quoted in main text where relevant).
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3.3 Discussion 

Despite the long-established finding that Fc sialylation is reduced in ACPA-IgG in 

RA227, it was only recently described that sialylation of the plasmablast surface 

may also be altered, thought to be an indication of overall reduced 

sialyltransferase activity in B-cells235. The implications of reduced antibody Fc 

sialylation mostly relate to the impact on Fc receptor binding, however, the 

potential implications of reduced B-cell surface sialylation are not yet well 

understood. In this study, the results supported the previous finding that 

sialylation of the plasmablast surface is reduced in RA, along with the additional 

finding that surface sialylation is also reduced in memory and naïve B-cells from 

patients with RA.  

The results of this study showed a trend for decreased SNA binding in B-cells 

from patients with ERA and PRA. However, data did not reach statistical 

significance - likely due to the small sample size, which was limited to due to 

availability of patient samples. There was a clear trend for decreased binding 

however, and this data would benefit from repetition in a much larger cohort of 

patients and healthy donors. The current data, however, are enough to validate 

the previously reported data235, and suggest that the decrease in binding occurs 

in memory and naïve B-cells in addition to plasmablasts.  

When conducting these experiments, difficulties were encountered in 

standardising the measurement of SNA binding, using MFI of PE-streptavidin as 

an output. It was found that MFI measurements were highly variable when B-cell 

sialylation was measured in freshly isolated cells. This was possibly due to 

technical variations in the flow cytometer, slight differences in staining conditions 

or human error in pipetting. The use of molecules of equivalent soluble 

fluorescence (MESF) beads to standardise measurement of MFI across different 

experiments was also trialled, but could not successfully resolve this issue. To 

overcome this, it was decided that samples of PBMCs isolated from peripheral 

blood would be frozen, then sialylation measured in one large batch experiment. 

Handling and storage of samples was standardised in order to minimise bias 

introduced by the freezing process. 
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Factors which may determine sialyltransferase activity in B-cells were largely 

unknown, therefore, the impact on sialylation of several factors which led to B-

cell activation were investigated. B-cells from healthy donors upregulated 

sialylation in response to activation, particularly in response to TLR ligands - 

suggesting that upregulated sialylation may be associated with B-cell activation, 

increased cell survival and proliferation. B-cells from patients with RA, however, 

showed unaltered sialylation in response to TLR ligands. Activation markers were 

upregulated in cells from patients with RA in response to TLR ligands, indicating 

that activation was occurring, however activation markers were increased slightly 

less than in cells from healthy donors. This indicated that regulation of sialylation 

in response to TLR signalling may be disrupted in RA, and the response to TLR 

stimulation may be dampened. Further to this, cells from patients with PRA also 

showed no upregulation of sialylation in response to TLR ligands, suggesting that 

this disruption may occur in the pre-RA phase and may be associated with the 

development of autoimmunity.  

In order to assess B-cell activation, expression of one marker of B-cell activation 

– CD69 - was measured in stimulated cells. It would be of value to include other 

markers of cell activation and functions such as antibody and cytokine production 

in future experiments. Although measuring sialylation with SNA lectin staining has 

uncovered a net increase in sialylation in activated cells, this method cannot be 

used to determine which particular surface proteins may have increased in 

expression or increased in sialylation. It would be beneficial in future to measure 

upregulation of particular sialylated proteins by flow cytometry, or to use a 

technique such as lectin blotting – a modified Western blotting technique where 

lectins are used in place of antibodies to (semi) quantify protein sialylation - and 

immunoprecipitation to investigate changes to sialylation of individual proteins. 

During in vivo B-cell activation, cells require two signals for complete activation, 

however, in the current experiments the impact of TLR ligands was measured 

only in isolation. This would be taken into consideration for future experiments, 

which would combine TLR activation with BCR ligation, to give a fuller picture of 

B-cell activation in this manner. It is interesting to note that co-stimulation with 

BCR crosslinking and CD40L had similar results in terms of sialylation to each 

individual stimuli, despite the increase in CD69 expression when cells were 

subject to dual stimulation. 
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As well as B-cells from patients with RA failing to upregulate sialylation in 

response to TLR ligands, neither did these cells upregulate sialylation in response 

to activated T-cells. Stimulation with activated T-cells lead to increased sialylation 

in the absence of other B-cell stimuli in experiments using healthy donor cells. 

This suggested that there may be an overall lack of response to activation in RA 

in terms of regulation of sialic acid expression. However, with current data it is 

not possible to conclude whether this observation is due to intrinsic B-cell factors 

or a lack of activation in T-cells. To get a more complete picture of the activity 

both B-cells and T-cells in RA it would be beneficial to measure activation in these 

cells, including regulation of CD40L expression in T-cells. The upregulation of B-

cell sialylation in healthy donor cells was in part attributed to CD40/CD40L 

signalling. When a blocking antibody was applied, the increase of B-cell 

sialylation was impaired, but was still higher than in cells cultured with 

unstimulated T-cells. There are a number of factors which may influence this, 

firstly a potential lack of efficiency of the blocking antibody allowing some 

CD40/CD40L interactions to take place. Th cell production of cytokines such as 

IL-4, IL-10, IFN-γ or TGF-β, which are produced by Th2 and Th1 subsets272, may 

also have had an impact on B-cell sialylation. 

The main limitation of these current data is that it explores only a snapshot of the 

B-cell response to stimulation. An interesting follow-up experiment would be to 

conduct a time-course and follow the changes which occur shortly following 

activation, through longer periods of exposure to the stimuli. It would also be of 

interest to include some patients with other autoimmune conditions which share 

similar mechanisms in further experiments. Furthermore, it would be beneficial to 

establish if particular sialylated proteins are downregulated in RA or if there is 

indeed reduced overall sialyltransferase activity.  

Since cell surface sialylation is not restricted to α2,6-linkages, α2,3-linkages were 

also investigated. However, it was found that in this study, measurement of α2,3-

sialylation by flow cytometry delivered highly variable results, suggesting this form 

of sialic linkage may be more variable in nature, or the detection methods used 

less reliable. There were also some changes in α2,3-sialylation in response to 

stimuli, however these were largely negligible in comparison to changes in α2,6-

sialylation and were difficult to interpret due to variability between samples. It was 

decided therefore that the rest of the study would focus on the measurement of 
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α2,6-sialylation, in line with its widely reported importance in autoimmune disease 

and inflammation.  

Little is known about how expression of enzymes which regulate sialylation – 

ST6Gal1 and NEU1 – is controlled in B-cells. In this study, expression of ST6Gal1 

and NEU1 mRNA were studied in cells from healthy donors and patients with RA. 

The results presented a complicated picture of gene expression patterns. NEU1 

was generally downregulated in activated cells from healthy donors compared 

with unstimulated cells, in line with increased expression of surface SA, 

suggesting a correlation between NEU1 activity and sialylation. Expression of 

NEU1 was particularly low in B-cells measured in these experiments, potentially 

leading to less accurate readings, making it challenging to draw strong 

conclusions from this work. Despite the low expression, there were some clear 

trends which emerged although future experiments would benefit from higher 

starting concentrations of RNA within the samples. 

In addition to NEU1 downregulation, ST6Gal1 also tended to be downregulated 

in activated cells, suggesting a more complicated relationship between its 

expression and surface sialylation. In cells from patients with RA, gene 

expression patterns were contrasting, with a slight increase NEU1 and a 

decrease in ST6Gal1 expression, which could suggest that NEU1 could be in part 

responsible for the lack of upregulated sialylation. However, to further complicate 

matters, expression of NEU1 and ST6Gal1 were both increased to a high degree 

in unstimulated cells after 48 hrs in culture media. This observation was 

unexpected, and may be explained by an experimental anomaly, however it may 

also be an indication of gene expression changing when cells are cultured ex 

vivo, removed from in vivo factors which may suppress gene expression. This 

warrants further investigation, and would benefit from increased n numbers to 

solidify conclusions drawn. There was a relatively high degree of variability within 

the samples, given this and the low expression of NEU1, it would have been 

useful to include an internal positive control for each experiment to further validate 

these results. The use of multiple housekeeping genes may also prove useful in 

determining more meaningful results. 

A limitation of the current data is the assumption that mRNA expression of each 

enzyme is directly correlated with enzyme activity output, which may not be the 
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case. To further investigate the link between mRNA and activity, it would first be 

helpful to establish the link between protein expression and mRNA expression – 

measuring ST6Gal1 and NEU1 protein levels in the cell by Western blot under 

the same conditions of activation. Furthermore, it may be of interest to measure 

levels of CMP-SA and free CMP within the cell, to determine if SA metabolism 

and transport increases when B-cells are activated. It would also be interesting 

to note whether enzymes which control galactosylation (galactosyltransferases) 

are also affected by cell activation, since sialylation requires a galactosylated 

substrate glycoprotein. In addition to this, since n numbers were modest and error 

margins were relatively high, it was difficult to establish differences in gene 

regulation between cells from healthy donors and patients with RA. Therefore 

repeating these experiments on a larger scale may assist in identifying any 

differences in regulation driven by pathology.  

In summary, the findings of this chapter have shown that B-cell surface sialylation 

can be influenced by activation, and the mode of activation may determine the 

extent of the surface sialylation. It is hypothesised that increased sialylation may 

be a mechanism to promote B-cell survival and proliferation, and that greater 

surface sialylation is required in cells which quickly differentiate to short-lived 

ASCs in response to TI antigens. It was also shown that B-cells from patients with 

RA did not upregulate sialylation in response to activation, particularly with TLR 

stimuli, suggesting impaired response to TLR stimuli. It is hypothesised that 

response to B-cell stimuli may contribute to sialylation in peripheral B-cells. 

However, as well as these B-cell intrinsic factors which were investigated, it is 

also possible that B-cell extrinsic factors, such as cytokines and other serum 

proteins may influence peripheral B-cell sialylation, and such factors will be 

investigated in the following chapters.
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Chapter 4  

Impact of B-cell differentiation and exposure to cytokines on 

B-cell surface sialylation 

4.1 Introduction 

Since previous data have shown that sialylation is reduced in plasmablasts from 

patients with RA and Pre-RA235, it was hypothesised that events during B-cell 

activation may influence plasmablast sialylation in differentiated cells. In the 

previous chapter, the early events in B-cell activation were studied in detail in 

cells from healthy donors, and patients with pre-RA and/or RA. However, in order 

to understand the impact of early activation events on sialylation in ASCs, B-cells 

were differentiated in vitro to plasma cells. This was not only to determine the 

impact of activation conditions on ASC sialylation, but to determine how 

regulation of sialylation changes during B-cell differentiation.  

The previous results of this study have shown that B-cell sialylation may be 

altered by the activation status of B-cells, and that the mode of activation is 

important in determining overall surface sialylation. As well as activation via the 

BCR and TLRs, B-cell function can also be influenced by soluble proteins such 

as cytokines and chemokines. It was hypothesised that the presence of such 

factors in the extracellular environment may also influence B-cell sialylation. As 

mentioned previously, little is known about what regulates B-cell sialylation, and 

the impact of exposure to particular cytokines on B-cell expression of SA is 

unknown. In this chapter the impact of exposure to key inflammatory cytokines in 

RA on B-cell sialylation will be studied. 

Cytokines play a crucial role in driving inflammation in RA. A complex network of 

inflammatory cytokines can be present from the onset of synovial inflammation, 

and can help determine cell trafficking, phenotype and function63. Cytokines are 

a popular target for therapy, and the key roles of TNF and IL-6 have been 

illustrated by the wide successes of anti-TNF and anti-IL-6 targeted therapies, 

compared with relative failures in treatment with anti-IL-1 targeted therapies7.  
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TNF is a driving factor behind several inflammatory processes in RA. It is 

produced by numerous cell types and is involved in promoting lymphocyte 

activation and migration, expression of chemokines, activation of stromal cells 

and osteoclast functioning. TNF acts as an autocrine growth factor in B-cells, and 

is produced when cells are activated. TNF signalling mainly takes place via two 

receptors, TNF receptor 1 and 2 (TNFR1 and TNFR2). TNFR1 is ubiquitously 

expressed in most tissues, whereas TNFR2 is mainly expressed by lymphocytes 

and is better activated by membrane bound TNF than soluble TNF273. In B-cells  

signals are transduced via MAPK/JNK signalling pathways to drive expansion of 

activated cells274. 

The role of IL-6 in RA is similar to that of TNF, however it also plays a role in 

driving the acute phase response in the liver, which leads to the release of C-

reactive protein, serum amyloid A, fibrinogen and haptoglobin275. IL-6 can also 

be produced by numerous cell types, including fibroblasts and endothelial cells in 

response to IL-1 or TNF275. In B-cells, IL-6 signals via the JAK/STAT pathway73, 

and has been shown to promote plasmablast maturation to plasma cells259 and 

promote antibody production276. IL-6 also drives the generation of Tfh cells, which 

may also promote the formation of spontaneous germinal centres in 

autoimmunity277. 

Although Th17 cytokines are thought to play an important role in RA, like in many 

autoimmune diseases, treatment of patients with RA with anti-IL-17 therapies has 

proven less effective than in treating conditions such as psoriasis and psoriatic 

arthritis7. The presence of Th17 cells in the blood60, and Th17 cytokines in 

synovial fluid61 has been detected in patients with RA, and IL-17 is able to induce 

the production of inflammatory cytokines including IL-6, IL-8 and G-CSF in 

synovial fibroblasts62. In addition to this it can stimulate the production of matrix 

metalloproteinases60, and stimulate osteoclastogenesis61, both of which can lead 

to tissue destruction in the joint. In B-cells, it has been shown that, in vitro, IL-17 

is able to induce proliferation and differentiation to plasma cells, via IL-17RA278, 

and has also been associated with the formation of spontaneous ectopic germinal 

centres in models of autoimmune disease279. Th17 cytokines including IL-17 have 

also been shown to play a role in the production of desialylated IgG antibodies in 

murine models235, suggesting a role for Th17 cells in RA during the development 

of autoimmunity, prior to the onset of synovial inflammation. It was hypothesised 
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that sialyltransferase activity, and potentially surface sialylation may be 

downregulated in B-cells in response to exposure to IL-17. 

Although not typically associated with inflammation and inflammatory disorders, 

in vivo, exposure to IL-4 drives B-cell proliferation and survival, and is produced 

by germinal centre cells and T-cells in the lymph node. It was important to include 

IL-4 in this study to be able to investigate the impact of a non-inflammatory 

cytokine on B-cell sialylation. Furthermore, in previous optimisation experiments 

it was found that inclusion of IL-4 in cultures led to increased sialylation, which 

was an intriguing finding that warranted further investigation. In light of the finding 

that B-cell activation also led to increased sialylation, it was hypothesised that 

upregulated sialylation may be induced in proliferating cells, and may be 

upregulated to promote B-cell survival upon activation.  

To study the impact of cytokine exposure on B-cell sialylation, cells were 

stimulated with TNF, IL-6, IL-17 or IL-4 and sialylation measured after a short 

exposure in vitro. As well as studying the short-term effects of acute exposure to 

cytokines, the impact of cytokine exposure prior to differentiation to ASCs was 

also studied.  
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4.2  Results  

4.2.1 B-cell phenotypic changes and changes to sialylation during 

in vitro differentiation to plasma cells 

Thus far, the results of this study have shown that B-cells from healthy individuals 

upregulate sialylation when activated – particularly in response to TLR 

stimulation. Following activation in vivo, B-cells go on to differentiate to long or 

short-lived ASCs or memory cells. There are currently no data on the changes to 

sialylation which occur during this differentiation, nor any evidence that the 

changes to sialylation seen during activation with various stimuli would translate 

to terminally differentiated cells. Therefore, in order to study the changes in B-cell 

sialylation during differentiation to plasma cells, B-cells isolated from the 

peripheral blood of healthy donors and patients with ERA were differentiated in 

vitro to plasma cells via a three step differentiation protocol. A detailed description 

of each step is provided in Chapter 2. In short, B-cells are first activated via BCR 

crosslinking and co-stimulation provided by CD40L expressing cells in the 

presence of IL-2 and IL-21 in order to fully activate the cells and prime them for 

differentiation, replicating the dual stimulation received by B-cells in the lymph 

nodes in vivo. Following this step, the activating and co-stimulatory factors are 

removed, allowing for differentiation to plasmablasts. Lastly, cells are cultured 

with IL-21, IL-6 and IFN, and IL-2 is withdrawn so that differentiate to plasma cells 

can occur259. Several measurements were taken at each stage of differentiation, 

including expression of cell surface phenotype markers and surface sialylation -

measured by flow cytometry, expression of ST6Gal1 and NEU1 mRNA by RT-

qPCR and concentration of IgM, as measured by ELISA, in cell culture 

supernatants. 

4.2.1.1 Mitogens and cytokines in combination can drive the 

differentiation of B-cells to plasma cells in vitro 

To determine the phenotypic changes experienced by B-cells during the process 

of differentiation, and to track the expression of markers which imply cell 

differentiation, cells were assessed by flow cytometry at days 0, 3, 6 and 13. Cells 

were stained with a viability dye, and with CD19, CD20, CD27, CD38 and CD138 

antibodies. A representative example of staining is shown in Figure 4.1.
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Figure 4.1 Changes to B-cell phenotype during in vitro differentiation to plasma cells 

B-cells undergoing in vitro differentiation to plasma cells were analysed by flow cytometry at four stages of differentiation – baseline B-cells isolated from 
peripheral blood (A), activated B-cells at day 3 (B), plasmablasts at day 6 (C) and plasma cells at day 13 (D). At each stage cells were stained with a 
viability dye, CD19 BV421, CD20 PE, CD27 PE-Cy7, CD38 BV605 and CD138 APC. Cells were first gated based on the viability stain, to exclude stained 
dead cells. Cells were then gated on expression of CD20 and CD19 to identify the total B-cell population. Based on expression of CD27 and CD38, CD27-

CD38- naïve B-cells, CD27+ memory B-cells, and CD27+CD38++ plasmablasts can be identified. Plasma cells can then be identified as CD19+/-

CD27+CD38++CD138+.

A

C

D

B



120 
 

 

 

At day 0 the population of B-cells mainly consists of either naïve or memory B-

cells, with a small percentage of plasmablasts and very few plasma cells (Figure 

4.1A). By day 3 the phenotype of the cells changes dramatically, and cell 

populations expand by up to four-fold (unreported observations). The forward and 

side scatter profile of the cells changes dramatically with a large increase in side 

scatter. Similarly to day 0, the majority of cells express markers of naïve or 

memory B-cells, with a greater percentage of cells expressing CD27 than at day 

0. Plasmablasts are no longer detectable and there are no plasma cells (Figure 

4.1B). At day 6, side scatter increases further. Viability of cells in the culture is 

reduced, and the majority of cells express CD27 and CD38 – suggesting a 

plasmablast phenotype (Figure 4.1C). At day 13, cell viability is once again 

reduced (~30-50% viable cells). Expression of CD19 and CD20 is variable and 

the majority of cells are CD38+CD138+, indicating cells have adopted a plasma 

cell phenotype (Figure 4.1D). 

4.2.1.2 Variations exist in sialylation, expression of ST6Gal1 and NEU1 

mRNA, and IgM production between differentiating B-cells from 

patients with RA and from healthy donors 

As well as changes to cell phenotype being measured during in vitro B-cell 

differentiation, expression of SA on the B-cell surface was also measured by flow 

cytometry at day 0, 3, 6 and 13 – to detect changes to sialylation accompanying 

phenotypic changes. In B-cells from healthy donors (n=6) expression of SA 

increased between days 0 and 3 during the activation phase (9.700 ± 7.867, 

p=0.1139 – fold change relative to baseline samples). It then decreased between 

days 3 and 6 (6.88 ± 0.263 vs. 9.700 ± 7.867, p=0.0863), and between days and 

6 and 13 (6.88 ± 0.263 vs. 0.149 ± 0.263, p=0.0366), with greatly reduced 

expression in plasma cells compared to day 0 B-cells (Figure 4.2A). The increase 

in sialylation in activated B-cells between day 0 and day 3 is in line with previously 

observed results which showed increased B-cell sialylation upon stimulation in 

Chapter 3. Fold change in sialylation was much higher in this case (up to 18 fold 

increase vs. 2 fold increase recorded previously (Figure 3.8A). This is possibly 

reflective of the high dose of stimuli delivered to cells, in this case via F(ab’)2 and 

CD40L expressing L-cells, as well as potentially the influence of cytokines 
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included in these cultures. The reduction in sialylation between day 3 and day 13 

may be due to reduced requirement for expression of sialylated proteins, 

previously it was observed (data not shown) that unstimulated ex vivo 

plasmablasts express lower levels of SA than naïve and memory B-cells, which 

is reflected in these results. 

Previous results had showed that sialylation was dysregulated in cells from 

patients with ERA, and was not upregulated in response to activation to the same 

extent as in cells from healthy donors. To determine the impact of dysregulated 

expression of sialic acid on differentiation, B-cells from patients with ERA (n=3) 

were also isolated and differentiated to plasma cells. It was found that, similar to 

cells from healthy donors, expression of SA increased between day 0 and 3 

(1.706 ± 0.487, p=0.2888 – fold change relative to baseline samples), however 

this increase was less pronounced in cells from patients with ERA than in cells 

from healthy donors (1.706 ± 0.487 vs. 9.700 ±7.867, p=0.2472). Of note, the 

absolute MFI values were highly variable in the cells from healthy donors at both 

day 0 and day 3, making it difficult to draw any strong conclusions from these 

data. Sialylation also decreased between day 3 and 6 (1.706 ± 0.487 vs. 0.908 ± 

0.519, p=0.2537) and day 6 and 13 (0.908 ± 0.519 vs. 0.010 ± 0.014, p=0.0463), 

similar to patterns of expression seen in cells from healthy donors (Figure 4.2A). 

The relatively low fold increase in sialylation between day 0 and day 3 in B-cells 

from patients with ERA could be in line with previous results which showed that 

B-cells from patients with ERA did not respond to activation with an increase in 

sialylation (Figure 4.2B). Despite the potentially dampened response to stimuli 

and lack of increase in sialylation within the first 3 days, B-cells from patients with 

ERA were still able to differentiate to plasma cells, suggesting that the fluctuation 

in SA expression may not be a requirement for B-cell differentiation in cells from 

patients with RA.  
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Figure 4.2 Changes to sialylation, expression of ST6Gal1 and NEU1, and production of IgM 
during in vitro B-cell differentiation in B-cells from healthy donors and patients with ERA 

B-cells isolated from healthy donors (HD) (n=6) or from patients with early RA (ERA) (n=3) were 
differentiated to plasma cells in vitro. At baseline, day 3, day 6 and day 13 expression of SA was 
measured by flow cytometry (A). IgM in cell culture supernatants was measured by ELISA at day 
6, day 10 and day 13 (B) and expression of NEU1 and ST6Gal1 mRNA were measured by RT-
qPCR (C-D). Schematic summary of B-cell phenotypic and gene expression changes in B-cells 
during differentiation to plasma cells (E). Graphs show mean with SD. Unpaired t tests were used 
to generate p values, comparing HD and ERA at each time point.  
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Further to measuring expression of SA, expression of ST6Gal1 and NEU1 mRNA 

were also measured by RT-qPCR. Expression of ST6Gal1 and NEU1 mRNA 

followed similar patterns of expression, with a trend for decreased expression of 

both enzymes between day 0 and day 3 (NEU1: 0.318 ± 0.259 vs. 0.181 ± 0.035; 

p=0.6644; ST6Gal1: 3.538 ± 1.274 vs. 1.518 ± 0.109, p=0.0367 – ΔCT values) 

then an increase between day 3 and day 6 (NEU1: 0.181 ± 0.035 vs. 0.427 ± 

0.141, p=0.0224; ST6Gal1: 1.518 ± 0.109 vs. 7.170 ± 0.421, p<0.0001) (Figure 

4.2C, 4.2D). In contrast, expression of ST6Gal1 was decreased in plasma cells 

at day 13 compared to plasmablasts at day 6 (6.094 ± 4.294 vs. 7.170 ± 0.421, 

p=0.9115) (Figure 4.2D). Expression of NEU1 however, increased between day 

6 and day 13 (0.427 ± 0.141 vs. 0.485 ± 0.163, p=0.8441), reaching the highest 

expression in plasma cells (Figure 4.2C). These results also agree with previous 

observations which described a decrease in expression of both NEU1 and 

ST6Gal1 with increasing expression of SA (Section 3.2.8). 

In patients with ERA, expression of NEU1 increased in cells from patients with 

RA between days 0 and 3 (0.034 ± 0.023 vs. 0.219 ± 0.007, p=0.0243) (Figure 

4.2C), then increased between day 3 and 6 (0.219 ± 0.007 vs. 0.546 ± 0.055, 

p=0.0894) and remained constant between day 6 and 13 (0.546 ± 0.055 vs. 0.534 

± 0.069, p=0.4766). This was similar to the pattern of expression seen in cells 

from healthy donors, however – in contrast – in the cells from healthy donors, 

expression decreased between day 0 and day 3 (Figure 4.2C). 

Expression of ST6Gal1 also showed a similar pattern of expression in cells from 

patients with ERA as in cells from healthy donors (Figure 4.2D). Expression 

decreased between days 0 and 3 (3.517 ± 1.194 vs. 1.104 ± 0.521, p=0.2081) 

then increased between day 3 and 6 (1.104 ± 0.521 vs. 5.761 ± 1.575, p=0.1678). 

In contrast to cells from healthy donors however, expression of ST6Gal1 mRNA 

increased in cells between days 6 and 13 (5.761 ± 1.575 vs. 7.781 ± 2.762, 

p=0.4738) whereas a decrease was seen in cells from healthy donors (Figure 

4.2D). Expression of NEU1 and ST6Gal1 was higher in plasmablasts and plasma 

cells than baseline and activated B-cells in cells from both healthy donors and 

patients with ERA. These results are consistent with previous results which 

showed that higher expression of NEU1 and ST6Gal1 occurs when surface 

sialylation is lower (Figure 3.16). It would appear that in differentiating cells, as 
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sialylation decreases following initial cell activation, expression of both NEU1 and 

ST6Gal1 increases in cells from healthy donors and patients with ERA. 

Production of IgM by differentiating cells was also measured by ELISA in 

supernatants collected at day 6, 10 and 13. Production of IgM declined as cells 

from healthy donors and patients with ERA differentiated from plasmablasts to 

plasma cells (Figure 4.2B). This is most likely indicative of a switch to IgG 

producing cells induced by differentiation, and is in line with previously described 

data259. Concentration of IgM was initially higher in day 6 supernatants from 

cultures of cells from patients with ERA than in cells from healthy donors (139456 

± 83637 vs. 78894 ± 56654, p=0.2765 IgM concentration ng/ml), but 

concentration then decreased dramatically between day 6 and day 10 in cultures 

of ERA cells and was at a similar level to cultures of cells from healthy donors at 

both day 10 and day 13 (Day 10: HD 50548 ± 21543 ERA 49207 ± 3907, 

p=0.9363; Day 13: HD 21238 ± 7439 ERA 23158 ± 11382, p=0.7846 ng/ml) 

(Figure 4.2B). These results could indicate that plasmablasts from patients with 

ERA intrinsically produce more IgM. However, since the concentrations were 

approximately equal in ERA and healthy donor cultures by day 10, it may indicate 

that there was a delay in class switching to IgG producing cells in the cells from 

patients with ERA, which then occurred between days 6 and 10. 

4.2.2 Impact of TLR stimulation on B-cell phenotypic changes 

during in vitro differentiation to plasma cells  

In Chapter 3 it was determined that changes to B-cell sialylation in response to 

activation were dependent on the type of stimuli received (Section 3.2.5). Results 

showed that stimulation with TLR ligands led to a greater increase in sialylation 

of activated B-cells, than in those activated by BCR crosslinking (Figure 3.8A). It 

was therefore hypothesised that changes to sialylation induced by activation 

stimuli may translate to differential expression of SA in differentiated plasma cells, 

as a potential mechanism of reduced B-cell sialylation in RA.  
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4.2.2.1 Stimulation with TLR ligands may alter production of IgM in 

plasmablasts from healthy donors and patients with RA 

In order to determine if changes to sialylation in plasma cells and plasmablasts 

may be primed by a pre-differentiation stimulus, B-cells isolated from the blood 

of healthy donors (n=2) and patients with RA (n=2) were differentiated to plasma 

cells under one of two initial conditions of stimulation – either F(ab’)2 or CpG + 

R848 in combination with CD40L stimuli. Sialylation, along with expression of 

NEU1 and ST6Gal1 and production of IgM were first measured in plasmablasts 

at day 6 of the differentiation protocol. In the cells from healthy donors, it was 

found that sialylation did not significantly differ in cells stimulated with F(ab’)2 and 

those stimulated with TLR ligands at day 0, showing only a very slight decrease 

in expression of SA in the TLR stimulated cells (0.871 ± 0.111, p=0.3463 – fold 

change relative to F(ab’)2 stimulated cells) (Figure 4.3A). It was also found that 

there was a very slight increase in expression of NEU1 (0.476 ± 0.075 vs. 0.542 

± 0.051, p=0.1585 – ΔCT values) (Figure 4.3B) and a slight decrease in ST6Gal1 

mRNA expression (6.813 ± 0.143 vs. 5.838 ± 0.344, p=0.2164) (Figure 4.3C). 

Production of IgM was very slightly increased in cells stimulated with TLR ligands 

(140276 ± 147101 vs. 32068 ± 3926, p=0.4958 IgM concentration, ng/ml), 

however there was also a large degree of variation in IgM production in TLR-

stimulated cells (Figure 4.3D). In cells from a patients with ERA, expression of 

SA did not significantly differ other than a very slight increase in expression in 

TLR ligand stimulated cells (1.147 (n=1 due to insufficient cells at day 6 and day 

13 to carry out measurements by flow cytometry and qPCR in samples from one 

patient)) (Figure 4.3E). Expression of NEU1 and ST6Gal1 were also both slightly 

reduced in cells stimulated with TLR ligands than with F(ab’)2 (0.354 vs. 0.485 

and 4.107 vs. 5.603 respectively) (Figure 4.3F 4.3G). In contrast to cells from 

healthy donors, production of IgM was reduced in cells treated with TLR ligands 

(63724 ± 21363 vs. 139456 ± 83637 ng/ml) (Figure 4.3H), suggesting the cells 

from patients with RA may respond differently to TLR ligands in terms of IgM 

production at the plasmablast stage.
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Figure 4.3 Changes to sialylation, expression of ST6Gal1 and NEU1 and production of IgM in plasmablasts after exposure to TLR stimuli in B-
cells from healthy donors and patients with RA 

B-cells isolated from healthy donors (n=2) (A-D), or from patients with early RA (ERA) (n=2) (E-H) were differentiated to plasma cells in vitro. Between 
day 0 and 3, cells were stimulated as per protocol with CD40L L-cells and either 4 µg/ml F(ab’)2 (US) or 1 µg/ml CpG + 1 µg/ml R848 (TLR). Plasmablasts 
at day 6 were analysed and expression of SA was measured by flow cytometry (A, E), expression of NEU1 (B, F) and ST6Gal1 (C, G) mRNA were 
measured by RT-qPCR and IgM in cell culture supernatants was measured by ELISA (D, H). Graphs show mean with SD. Paired t tests were used to 
calculate p values. Differences were statistically significant where p<0.05.
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4.2.2.2 Stimulation with TLR ligands may alter production of IgM in 

plasma cells from healthy donors and patients with RA 

As well as measurements taken at the plasmablast stage at day 6, sialylation, 

gene expression and production of IgM were also measured at day 13 when cells 

had differentiated to plasma cells. In cells from healthy donors, it was found that 

expression of SA was increased in cells treated with TLR ligands compared with 

those stimulated with F(ab’)2 (1.386 ± 0.465, p=0.4490 – fold change relative to 

F(ab’)2 stimulated samples) (Figure 4.4A). Expression of both NEU1 and 

ST6Gal1 mRNA was also increased slightly in cells stimulated with TLR ligands 

(0.554 ± 0.007 vs. 0.471 ± 0.130, p=0.5118 and 6.082 ± 0.884 vs. 5.104 ± 1.792, 

p=0.9778 respectively, ΔCT values) (Figure 4.4B 4.4C). Most strikingly, 

production of IgM was increased in cells treated with TLR ligands compared to 

those stimulated with F(ab’)2 (55808 ± 6852 vs. 23158 ± 11382, p=0.1778 – IgM 

concentration, ng/ml) (Figure 4.4D). In cells from patients with RA, expression of 

SA was slightly lowered in TLR-stimulated cells compared to F(ab’)2-stimulated 

cells (0.712 fold change relative to unstimulated sample) (Figure 4.4E). 

Expression of NEU1 and ST6Gal1 mRNA were largely unchanged in cells 

stimulated with TLR ligands compared to those stimulated with F(ab’)2 (0.498 vs. 

0.486 and 6.638 vs. 5.828 respectively) (Figure 4.4F, 4.4G). Similar to the 

observations in cells from healthy donors, production of IgM was increased in 

cells stimulated with TLR ligands (55808 ± 6852 vs. 23158 ± 11382 ng/ml) (Figure 

4.4H). These results may suggest that priming with TLR ligands leads to 

continued production of IgM in plasma cells, perhaps indicating a delay in or lack 

of class-switching to IgG producing cells in these cultures. 

4.2.3 Influence of cytokines on B-cell sialylation 

As discussed previously, there are several factors which may lead to changes in 

B-cell sialylation, involving activation of B-cells either via TLR signalling or BCR 

crosslinking with CD40L co-stimulation (Chapter 3). Aforementioned 

inflammatory cytokines TNF and IL-6 are known to play key roles in RA, with 

involvement in numerous inflammatory processes, including leukocyte activation, 

adhesion and migration, and chemokine expression. IL-6 has similar functions to 

TNF in the synovium, as well as driving the acute phase response63. IL-17 is also 
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associated with a number of autoimmune and inflammatory diseases, however 

its exact role in RA remains to be fully elucidated280. IL-17 has also been 

previously linked to the reduction in sialylation of autoantibodies produced by B-

cells in RA, in a murine model of disease235.  

It was hypothesised that exposure to certain cytokines, particularly those which 

may be increased in the serum of patients with RA, could contribute to the 

changes in sialylation in B-cells from patients with RA described in Section 3.2.2. 

B-cells from healthy donors and patients with ERA were cultured in vitro in the 

presence of these TNF, IL-6 and IL-17 - as well as IL-4 – to establish if the 

response to cytokines differs between health and disease, and to determine the 

possible impact of exposure to cytokines on B-cell sialylation. 

4.2.3.1 Changes to sialylation in response to IL-4 may be different in B-

cells from patients with RA to cells from healthy donors 

B-cells from healthy donors (n=5), patients with ERA (n=5) and patients with PRA 

(n=4) were cultured for 48 hrs with 20 ng/ml of either IL-4, TNF, IL-6 or IL-17. 

Sialylation was measured after 48 hrs. In B-cells from healthy donors, exposure 

to TNF led to trend of slightly decreased expression of SA (0.883 ± 0.349, 

p=0.9224 - fold change compared to unstimulated samples), IL-4 led to a slight 

increase in SA expression (1.342 ± 0.418, p=0.2328), though these changes 

were not statistically significant. Additionally there was no change in sialylation in 

response to IL-6 or IL-17 at 20 ng/ml (0.976 ± 0.295, p=0.9998 and 1.018 ± 0.213, 

p=0.9999 respectively) (Figure 4.5A). In B-cells from patients with ERA, exposure 

to TNF, IL-4 and IL-6 did not lead to any change in sialylation (1.029 ± 0.247, 

p=0.9987; 0.980 ± 0.214, p=0.9997 and 1.059 ± 0.337, p=0.9803 respectively), 

whereas IL-17 led to a very slight decrease in SA expression, though not 

statistically significant. (0.892 ± 0.113, p=0.8797) (Figure 4.5B). In B-cells from 

patients with PRA, similar to results seen in cells from patients with ERA, there 

was no change in sialylation in B-cells stimulated with TNF and IL-6, and these 

cells also showed no change in response to IL-17 (1.075 ± 0.053, p=0.9991; 

1.024 ± 0.057, p=0.9821 and 1.030 ± 0.066, p=0.9910 respectively) (Figure 

4.5C). In contrast to cells from patients with ERA, cells from patients with PRA 

did show a significant upregulation of sialylation in response to IL-4 (1.556 ± 

0.136, p=0.0011).
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Figure 4.4 Changes to sialylation, expression of ST6Gal1 and NEU1 and production of IgM in plasma cells after exposure to TLR stimuli in B-
cells from healthy donors and patients with RA 

B-cells isolated from healthy donors (n=2) (A-D), or from patients with early RA (ERA) (n=2) (E-H) were differentiated to plasma cells in vitro. Between 
day 0 and 3, cells were stimulated as per protocol with CD40L L-cells and either 4 µg/ml F(ab’)2 (US) or 1 µg/ml CpG + 1 µg/ml R848 (TLR). Plasma cells 
at day 13 were analysed and expression of SA was measured by flow cytometry (A, E), expression of NEU1 (B, F) and ST6Gal1 (C, G) mRNA were 
measured by RT-qPCR and IgM in cell culture supernatants was measured by ELISA (D, H). Graphs show mean with SD. Paired t tests were used to 
calculate p values. Differences were statistically significant where p<0.05.

F ( a b ' )
2

T L R

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

S
ia

ly
la

t
io

n

(
F

o
ld

 c
h

a
n

g
e

 v
s

. 
F

(
a

b
')

2
) p = 0 . 4 4 9 0

F ( a b ' )
2

T L R

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

S
ia

ly
la

t
io

n

(
F

o
ld

 c
h

a
n

g
e

 v
s

. 
F

(
a

b
')

2
)

F ( a b ' )
2

T L R

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

Ig
M

 (
n

g
/m

l)

p = 0 . 4 4 9 0

F ( a b ' )
2

T L R

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

Ig
M

 (
n

g
/m

l)

p = 0 . 1 7 7 8

E F G H

F ( a b ' )
2

T L R

0

2

4

6

8

R
e

la
t

iv
e

 E
x

p
r

e
s

s
io

n
 S

T
6

G
a

l
1

p = 0 . 9 7 7 8

F ( a b ' )
2

T L R

0 . 0

0 . 2

0 . 4

0 . 6

R
e

la
t

iv
e

 E
x

p
r

e
s

s
io

n
 N

E
U

1 p = 0 . 5 1 1 8

F ( a b ' )
2

T L R

0

2

4

6

8

R
e

la
t

iv
e

 E
x

p
r

e
s

s
io

n
 S

T
6

G
a

l
1

F ( a b ' )
2

T L R

0 . 0

0 . 2

0 . 4

0 . 6

R
e

la
t

iv
e

 E
x

p
r

e
s

s
io

n
 N

E
U

1

A B C D

Healthy Donors

Early RA



130 
 

 

 

 

Figure 4.5 Influence of cytokines on B-cell sialylation in cells from healthy donors and 
patients with ERA or PRA 

B-cells from healthy donors (n=5) (A), patients with early RA (ERA) (n=5) (B) or patients with pre-
RA (PRA) (n=4) (C) were cultured for 48 hrs with 20 ng/ml IL-4, TNF, IL-6 or IL-17. Sialylation 
was measured by flow cytometry. Graphs show mean with SD of SNA FITC MFI, expressed as a 
ratio relative to mean MFI of unstimulated (US) samples. One-way ANOVA followed by Dunnet’s 
multiple comparisons tests were used to analyse statistical significance, with relevant statistically 
significant comparisons highlighted on graphs. ** p<0.005.  
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4.2.3.2 Response to cytokines in vitro varies according to dose 

To examine the dose response to cytokines on B-cell sialylation, B-cells from 

healthy donors (n=5) and from patients with ERA (n=5) were stimulated for 48 hrs 

with increasing doses of IL-4, TNF, IL-6 and IL-17 (10, 20 or 50 ng/ml). Sialylation 

was measured after 48 hrs and it was found that - as described previously - in 

cells from healthy donors, IL-4 led to an increase in sialylation at all doses, with 

the strongest response to 10 ng/ml (1.542 ± 0.207, p=0.0050 – fold change 

relative to unstimulated samples) (Figure 4.6A). In cells from patients with ERA, 

there was no change in sialylation in cells stimulated with 10 ng/ml (1.206 ± 0.448 

vs. 1.542 ± 0.207) (Figure 4.6B). Furthermore, at higher doses of IL-4 there was 

very little change in sialylation in B-cells from patients with ERA. In B-cells from 

healthy donors stimulated with TNF, there was a trend for decreased sialylation 

at all three doses (Figure 4.6C). In cells from patients with ERA, there was no 

change in sialylation in response to 10 and 20 ng/ml, and even a slight increase 

in sialylation in some samples at 50 ng/ml (Figure 4.6D). IL-6 at a dose of 10 

ng/ml led to a slight increase in sialylation in cells from healthy donors (1.182 ± 

0.109, p=0.0786), with little change at higher doses (20 ng/ml: 0.976 ± 0.295, 

p=0.9961 and 50 ng/ml: 0.904 ± 0.198, p=0.6369) (Figure 4.6E). In contrast, in 

cells from patients with ERA, there was a trend for a slight increase in sialylation 

at higher doses of IL-6, however this increase was not statistically significant (50 

ng/ml: 1.120 ± 0.135, p=0.2846) (Figure 4.6F). In response to IL-17, cells from 

patients with ERA showed a decrease in sialylation at 10 ng/ml (0.832 ± 0.073, 

p=0.0406) (Figure 4.6G, 4.6H). In cells from healthy donors, at 20 and 50 ng/ml, 

sialylation was similar to unstimulated controls (1.018 ± 0.213, p=0.9945 

and0.820 ± 0.305, p=0.4890) (Figure 4.6G). In cells from patients with ERA, 

sialylation was slightly reduced at both 20 (0.892 ± 0.113, p=0.2986) and 50 ng/ml 

(0.950 ± 0.375, p=0.9849) (Figure 4.6H), though these changes were not 

significant. These results suggest that the response to certain cytokines may be 

altered in patients with ERA compared to healthy donors.
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Figure 4.6 Influence of increasing doses of cytokines on B-cell sialylation in cells from healthy donors and patients with ERA 

B-cells from healthy donors (n=5) (A, C, E, G), patients with early RA (ERA) (n=5) (B, D, F, H) were cultured for 48 hrs with 10, 20 or 50 ng/ml IL-4, TNF, 
IL-6 or IL-17. Sialylation was measured by flow cytometry. Error bars show mean with SD of SNA FITC MFI, expressed as a ratio relative to mean MFI of 
unstimulated (US) samples. One-way ANOVA and Dunnett’s multiple comparisons tests were used to generate p values. Statistically significant 
differences are indicated where p<0.05.
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IL-4 leads to an increased in sialylation in cells from healthy donors (Figure 4.5A) 

as well as in cells from patients with PRA (Figure 4.5C), however, in cells from 

patients with ERA, there was no change in sialylation in response to IL-4 (Figure 

4.5B, 4.6B). This suggested that the response to IL-4 is disrupted in RA when 

disease progresses to the active symptomatic stage, but not during the 

asymptomatic autoimmune phase. It may be hypothesised therefore, that this 

disruption in IL-4 response is due to chronic inflammation, and may not be 

associated with autoimmunity. The results also suggested that there may be a 

small decrease in sialylation in response to IL-17. This is interesting considering 

previous findings which showed decreased sialylation in autoantibodies produced 

by B-cells exposed to Th17 cytokines235. It is possible that expression of 

sialylated surface proteins may also be affected by B-cell exposure to IL-17. 

4.2.3.3 Exposure to IL-4 and TNF in activated B-cells inhibits upregulation 

of sialic acid  

To assess the impact of exposure to certain inflammatory cytokines on B-cell 

surface sialylation during activation, B-cells from healthy donors (n=6) were 

stimulated for 48 hrs with F(ab’)2 + CD40L ± 20 ng/ml IL-4, TNF or IL-6. Sialylation 

was measured after 48 hrs. As described previously in Section 3.2.4, it was found 

that stimulation of B-cells with F(ab’)2 + CD40L led to an upregulation of SA 

expression (1.407 ± 0.254, p=0.0073 – fold change relative to unstimulated 

samples) (Figure 4.7). When cells were stimulated with F(ab’)2 + CD40L with TNF 

(1.295 ± 0.624, p=0.3752) or IL-4 (1.244 ± 0.521, p=0.3953), sialylation was 

slightly increased, however, the changes were not significant and were less than 

the increase in sialylation induced by F(ab’)2 + CD40L alone. It was also found 

that cells stimulated with F(ab’)2 + CD40L and IL-6 showed increased expression 

of sialic acid, comparable with F(ab’)2 + CD40L only samples (1.464 ± 0.444 

p=0.0048 and 1.407 ± 0.254, p=0.0073). Results in TNF-stimulated cells are 

consistent with previous findings that exposure to TNF tended to decrease 

sialylation (Figure 4.5A 4.6C) and exposure to IL-6 tended to lead to an increase 

in sialylation (Figure 4.5A, 4.6E). However, in unstimulated cells we previously 

reported that exposure to IL-4 led to an increase in sialylation in B-cells from 

healthy donors (Figure 4.5A, 4.6A). This discrepancy may indicate that IL-4 has 

varying effects on B-cells dependent on the activation status of the cells, which 
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has been described previously281. These results suggest that exposure to TNF 

and IL-4 in combination with B-cell activating factors may inhibit the upregulation 

of sialylation. 

4.2.3.4 Exposure to IL-4 and TNF does not significantly affect B-cell 

expression of NEU1 and ST6Gal1 

Since activation of B-cells via TLR and BCR signalling pathways was previously 

shown to have an impact on both expression of SA on the cell surface (Section 

3.2.3) and on expression of NEU1 and ST6Gal1 mRNA (Section 3.2.8), the 

impact of exposure to cytokines on gene expression was also studied. B-cells 

from healthy donors (n=2) were stimulated for 48 hrs with increasing doses (10, 

20 or 50 ng/ml) of either IL-4 or TNF, since these cytokines appeared to have 

opposing effects on B-cell surface sialylation. After 48 hrs, expression of ST6Gal1 

and NEU1 mRNA was measured by RT-qPCR. It was found that expression of 

NEU1 was slightly upregulated in samples exposed to 50 ng/ml IL-4 versus 

unstimulated samples (0.299 ± 0.018 vs. 0.240 ± 0.031, p=0.5161 – ΔCT values) 

(Figure 4.8A). In contrast, exposure to 50 ng/ml IL-4 led to downregulation of 

ST6Gal1 expression compared to unstimulated samples (1.270 ± 0.552 vs. 1.977 

± 0.050, p=0.4544) (Figure 4.8C) however, due to small study size these changes 

did not reach statistical significance.  

NEU1 expression slightly decreased at all doses of TNF (Figure 4.8B), and 

expression of ST6Gal1 tended to be slightly increased with increasing doses of 

TNF (Figure 4.8D), although there were no statistically significant differences. 

These results are somewhat surprising, since surface sialylation tended to be 

increased in cells stimulated with IL-4 (Figure 4.5A, 4.6A) and decreased in cells 

stimulated with TNF (Figure 4.5A, 4.6C). It was therefore hypothesised that 

ST6Gal1 and NEU1 would both decrease in cells stimulated with IL-4 and vice 

versa in TNF-stimulated cells, in line with results shown previously in Chapter 3, 

however, small study size makes it difficult to draw a solid conclusion from this 

current data.  
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Figure 4.7 Influence of cytokines on activated B-cells from healthy donors 

B-cells from healthy donors (n=5), were stimulated for 48 hrs with 20 ng/ml IL-4, TNF or IL-6 ± 
F(ab’)2 + CD40L. Sialylation was measured by flow cytometry. Graphs show mean with SD of 
SNA FITC MFI, expressed as a ratio relative to mean MFI of unstimulated (US) samples. One-
way ANOVA and Tukey’s multiple comparisons tests were used to asses statistical significance, 
with relevant statistically significant comparisons highlighted on graphs (**p<0.005).  
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Figure 4.8 Influence of IL-4 and TNF on expression of ST6Gal1 and NEU1 in B-cells from 
healthy donors 

B-cells from healthy donors (n=2) were stimulated for 48 hrs with 20 ng/ml IL-4 or TNF and 
expression of ST6Gal1 (A, C) and NEU1 (B, D) were measured by RT-qPCR after 48 hrs. ΔCT 

values were calculated relative to expression of HPRT1. Graphs show ΔCT mean with SEM. One-

way ANOVA and Dunnett’s multiple comparisons tests were used to generate p values.  
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4.2.4 Impact of cytokine stimulation on B-cell phenotypic changes 

during in vitro differentiation to plasma cells 

Results in this chapter have suggested that, in cells from healthy donors, 

exposure to low doses of TNF may lead to a decrease, and exposure to IL-6 may 

lead to an increase in sialylation after 48 hrs in vitro (Figure 4.5). It was 

hypothesised that exposure to cytokines in vivo in the serum or in the synovial 

fluid, may contribute to the observed decrease in B-cell sialylation in cells from 

patients with RA. To determine if B-cell priming with cytokines could alter 

plasmablast and plasma cell sialylation following differentiation, cells from healthy 

donors were stimulated with 20 ng/ml of either TNF or IL-6 between day 0 and 

day 3, then differentiated as per protocol. 

4.2.4.1 Stimulation with TNF did not alter sialylation, gene expression or 

production of IgM during in vitro differentiation to plasma cells 

B-cells isolated from the blood of healthy donors (n=4) were stimulated with 

F(ab’)2 and CD40L L-cells, ± 20 ng/ml TNF at day 0. Expression of SA, along with 

expression of NEU1 and ST6Gal1 mRNA and production of IgM were all initially 

measured at day 6 in generated plasmablasts. It was found that exposure to TNF 

at day 0 did not have an effect on sialylation at day 6 in plasmablasts (1.017 ± 

0.240, p=0.8953 – fold change relative to untreated samples) (Figure 4.9A), nor 

did it appear to have an impact on expression of NEU1 and ST6Gal1 (0.446 ± 

0.084 vs. 0.460 ± 0.095, p=0.8415 and 6.851 ± 0.626 7.355 ± 0.397, p=0.0810 

respectively – ΔCT values) (Figure 4.9B, 4.5C) or the production of IgM in 

plasmablasts (102054 ± 70687 vs. 102306 ± 56140, p=0.9936 IgM concentration 

ng/ml) (Figure 4.9D).  

Sialylation, expression of NEU1 and ST6Gal1, and production of IgM were also 

measured in day 13 plasma cells that were treated ± TNF at day 0. Similar to 

results in day 6 plasmablasts, there were no observed differences in surface 

sialylation (0.991 ± 0.383, p=0.9698), expression of NEU1 (0.480 ± 0.108 vs. 

0.492 ± 0.196, p=0.8472) and ST6Gal1 mRNA (5.737 ± 3.529 vs. 6.589 ± 5.355, 

p=0.4246) or IgM production (26569 ± 12983 vs. 25480 ± 3436, p=0.8629) in cells 

exposed to TNF compared to untreated cells (Figure 4.10). These results 

suggested that despite the initial trend for a decrease in sialylation observed in 

B-cells after a short exposure to TNF that was reported previously (Figure 4.5A), 
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the same dose does not appear to have a priming effect on these cells during 

differentiation, and does not translate to decreased plasmablast or plasma cell 

sialylation.  

4.2.4.2 Stimulation with IL-6 may lead to decreased production of IgM in 

plasma cells differentiated in vitro  

As in Section 4.2.4.1, B-cells isolated from the blood of healthy donors (n=4) were 

stimulated as per protocol with F(ab’)2 and CD40L L-cells, ± 20 ng/ml IL-6 at day 

0. Expression of SA, along with expression of NEU1 and ST6Gal1 mRNA and 

production of IgM were all initially measured at day 6 in generated plasmablasts. 

It was found that exposure to IL-6 at day 0 led to increased expression of SA in 

day 6 plasmablasts, though this change was not statistically significant (1.592 ± 

0.980, p=0.3135 – fold change relative to untreated samples) (Figure 4.11A). 

However, there was very little change observed in expression of NEU1 or 

ST6Gal1 mRNA (0.498 ± 0.064 vs. 0.460 ± 0.095, p=0.4624 and 8.160 ± 1.533 

vs. 7.335 ± 0.397, p=0.3199 respectively – ΔCT values) (Figure 4.11C). 

Production of IgM was found to be slightly decreased in the plasmablasts which 

were primed with IL-6 (74996 ± 44135 vs. 102306 ± 56140, p=0.0921 - IgM 

concentration ng/ml) (Figure 4.11D).  

Similarly, sialylation, expression of NEU1 and ST6Gal1 and production of IgM 

were measured in day 13 plasma cells, and expression of SA was only slightly 

increased in cells exposed to IL-6 at day 0, and the change was not statistically 

significant (1.296 ± 0.366, p=0.4574)(Figure 4.12A). Parallel to results at day 6, 

there was very little change observed in expression of NEU1 and ST6Gal1 mRNA 

in day 13 plasma cells (0.526 ±0.113 vs. 0.492 ± 0.196, p=0.5030 and 7.260 ± 

4.478 vs. 6.589 ± 5.355, p=0.4504 respectively) (Figure 4.12B, 4.8C). Production 

of IgM was also found to be largely unchanged in cells stimulated with IL-6 

compared to unstimulated cells in day 13 plasma cells (27416 ± 10588 vs. 25480 

± 3436, p=0.7224) (Figure 4.12D).  

These results suggested that exposure to IL-6 prior to differentiation may 

increase sialylation and decrease production of IgM in plasmablasts, but changes 

to sialylation and IgM production may not be maintained when cells further 

differentiate to plasma cells. This agrees with previously reported results which 

showed that exposure to low doses of IL-6 tended to lead to upregulated 
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sialylation in cells from healthy donors (Figure 4.6E). However, despite reports of 

increased levels of IL-6 in the serum of patients with RA282, resting peripheral B-

cell sialylation is decreased. Results showed that when B-cells from patients with 

RA were exposed to the same low dose of IL-6 in vitro, sialylation did not increase 

(Figure 4.6F). It was hypothesised that chronic exposure to IL-6 may increase the 

threshold for activation in these cells. Taken together, these results suggest that 

acute IL-6 exposure may lead to increased B-cell sialylation, however this effect 

may be dampened by chronic exposure or increased dose.
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Figure 4.9 Changes to sialylation, expression of ST6Gal1 and NEU1 and production of IgM in plasmablasts after exposure to TNF in B-cells 
from healthy donors 

B-cells isolated from healthy donors (n=4) were differentiated to plasma cells in vitro. Between day 0 and 3, cells were stimulated as per protocol with 
CD40L L-cells + 4 µg/ml F(ab’)2 with 20 ng/ml TNF (TNF) or without (UT). Plasmablasts at day 6 were analysed and expression of SA was measured by 
flow cytometry (A), expression of NEU1 (B) and ST6Gal1 (C) mRNA were measured by RT-qPCR and IgM in cell culture supernatants was measured by 
ELISA (D). Graphs show mean with SD. Paired t tests were used to generate p values, with statistically significant differences indicated where p<0.05.
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Figure 4.10 Changes to sialylation, expression of ST6Gal1 and NEU1 and production of IgM in plasma cells after exposure to TNF in B-cells 
from healthy donors 

B-cells isolated from healthy donors (n=4) were differentiated to plasma cells in vitro. Between day 0 and 3, cells were stimulated as per protocol with 
CD40L L-cells + 4 µg/ml F(ab’)2 with 20 ng/ml TNF (TNF) or without (UT). Plasma cells at day 13 were analysed and expression of SA was measured by 
flow cytometry (A), expression of NEU1 (B) and ST6Gal1 (C) mRNA were measured by RT-qPCR and IgM in cell culture supernatants was measured by 
ELISA (D). Graphs show mean with SD. Paired t tests were used to generate p values, with statistically significant differences indicated where p<0.05.
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Figure 4.11 Changes to sialylation, expression of ST6Gal1 and NEU1 and production of IgM in plasmablasts after exposure to IL-6 in B-cells 
from healthy donors 

B-cells isolated from healthy donors (n=4) were differentiated to plasma cells in vitro. Between day 0 and 3, cells were stimulated as per protocol with 
CD40L L-cells + 4 µg/ml F(ab’)2 with 20 ng/ml IL-6 (IL-6) or without (UT). Plasmablasts at day 6 were analysed and expression of SA was measured by 
flow cytometry (A), expression of NEU1 (B) and ST6Gal1 (C) mRNA were measured by RT-qPCR and IgM in cell culture supernatants was measured by 
ELISA (D). Graphs show mean with SD. Paired t tests were used to generate p values, with statistically significant differences indicated where p<0.05.
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Figure 4.12 Changes to sialylation, expression of ST6Gal1 and NEU1 and production of IgM in plasma cells after exposure to IL-6 in B-cells 
from healthy donors 

B-cells isolated from healthy donors (n=4) were differentiated to plasma cells in vitro. Between day 0 and 3, cells were stimulated as per protocol with 
CD40L L-cells + 4 µg/ml F(ab’)2 with 20 ng/ml IL-6 (IL-6) or without (UT). Plasma cells at day 13 were analysed and expression of SA was measured by 
flow cytometry (A), expression of NEU1 (B) and ST6Gal1 (C) mRNA were measured by RT-qPCR and IgM in cell culture supernatants was measured by 
ELISA (D). Graphs show mean with SD. Paired t tests were used to generate p values, with statistically significant differences indicated where p<0.05.
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4.3 Discussion  

Thus far, sialylation had been investigated only in the initial stages of B-cell 

activation, but following activation in vivo, B-cells undergo differentiation to ASCs. 

The impact of sialylation on the differentiation process was previously unknown. 

When B-cells from both healthy donors and patients with RA were differentiated, 

it was found that sialylation was first increased during the initial phase of 

activation, as seen previously, then decreased as cells differentiated to ASCs, 

with greatly reduced expression in plasma cells compared with memory and 

naïve B-cells isolated from peripheral blood. When cells were activated with TLR 

ligands instead of by BCR stimulation as in previous differentiations, it was found 

that TLR-stimulated cells may generate plasma cells with increased sialylation 

and sustained production of IgM. This may be an indication of reduced class-

switching in these cells, as TLR-stimulated cells in vivo generally differentiate to 

short-lived, IgM-producing ASCs.  

Due to the small sample size, which was limited due to availability of samples 

and a requirement for a large number of starting cells in order to conduct the 

experiments, the data would benefit from adding a number of biological repeats 

to improve statistical power and strengthen any conclusions which might be 

drawn. In these experiments, the measurement of sialylation was carried out by 

flow cytometry, which may have introduced a degree of variation in MFI measured 

at different time-points, potentially influencing the results. It may be of benefit to 

use a more stringent method of measuring cell sialylation, which is less 

susceptible to technical variation and more easily standardised. Quantifying 

sialylation by lectin blot may prove effective in this case. Despite these 

challenges, the increase in sialylation between cells at day 0 and day 3 was 

obvious, and there was a clear reduction in sialylation in all samples measured 

at days 6 and 13 despite these potential confounding factors.  

Production of cytokines by immune cells is an important driving factor for 

inflammation in RA. Illustrated by the large successes of treatment of patients 

with RA with anti-TNF and anti-IL-6 therapies, it is clear that these cytokines in 

particular are key to its pathogenesis. Despite successes in treatment, however, 

disease relapse, non-response to therapy and drug-resistant disease are still 
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challenging issues in the treatment of RA, and strategies which can prevent 

disease from reaching the multi-drug-resistant stage are the focus of much 

attention in RA research. It is clear that TNF and IL-6 promote and propagate 

chronic inflammation in RA, but their specific effects on aspects of B-cell 

autoimmunity are not well understood. It was therefore important to study the 

effects of cytokine exposure in the context of B-cell sialylation, to determine 

whether there may be some causal factor in cytokine exposure which leads to 

altered sialylation in RA. It was found that exposure to TNF in vitro tended to lead 

to reduced sialylation in cells from healthy donors. It would be interesting to 

speculate therefore, that extended exposure to TNF may contribute to decreased 

surface expression of sialylated proteins in B-cells from patients with RA. 

However, when cells from patients with RA were exposed to TNF in vitro, there 

was no change in sialylation. It was hypothesised that this may indicate a lack of 

response - induced by chronic over-exposure to TNF - leading to the induction of 

a negative feedback loop and reduced response to prevent over-activation. 

Despite the lack of response to TNF from B-cells from patients with RA, the 

impact of TNF on B-cell sialylation in vivo cannot be discounted, and is an 

interesting factor to consider which may, in combination with other factors alter 

B-cell surface sialylation in RA. 

On exposure to IL-6 in vitro, sialylation tended to be increased in cells from 

healthy donors, but similarly to TNF, this effect was absent in cells from patients 

with RA at the same dose. There was, however, a mild increase in sialylation at 

a higher dose in cells from patients with RA, indicating that there may be a similar 

mechanism of negative feedback to prevent over-activation. It is interesting that 

these cytokines should have opposing effects, considering the wide-ranging 

effects of each cytokine are largely similar. It could be hypothesised that, in RA, 

a combination of cytokines may contribute to changes in sialylation, and the 

impact on sialylation may change over time with chronic exposure. Despite recent 

evidence that IL-17 may also play an important role in RA, treatment of patients 

with anti-IL-17 has proven less effective than other cytokine therapies7. A 

previous study linked exposure to Th17 cytokines with reduced expression of 

ST6Gal1 in murine B-cells, leading to production of IgG with reduced Fc 

sialylation235. In this study, IL-17 was found to decrease B-cell sialylation in low 
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doses in B-cells from patients with RA, potentially linking IL-17 with reduced B-

cell sialylation in autoimmunity.  

Although not considered an inflammatory cytokine, IL-4 drives B-cell proliferation, 

and it was found that following exposure to IL-4 in vitro, sialylation was increased 

in cells from healthy donors and patients with PRA, but not in those with ERA. 

These results suggest that increased B-cell sialylation may be associated with 

proliferation, and that response to IL-4 may be lost upon progression to chronic 

inflammation in RA. 

Despite the initial decrease in sialylation observed in B-cells from healthy donors 

upon exposure to TNF, when cells were activated and differentiated following 

exposure, there was no change in sialylation. Interestingly, exposure to IL-6 did 

lead to increased production of IgM in plasmablasts and slightly increased 

sialylation. This is an interesting observation, and a potential indication of a role 

for IL-6 in determining sialyltransferase activity during differentiation. However, 

small numbers in this study of differentiation make it more difficult to draw solid 

conclusions, and the data would benefit from increased biological repeats.  

When interpreting in vitro data involving cytokine exposure, it is important to 

consider the dose used experimentally in relation to physiological dose. The 

doses which B-cells are exposed to in vivo are likely to vary widely depending on 

the tissue environment. A range of cytokine doses were tested in this study to 

determine any dose-sensitive effects on B-cell sialylation. In RA, B-cell cytokine 

exposure in vivo may also vary according to stage of disease. It has been 

suggested that Th17 cytokines may play a role during the onset of autoimmunity, 

before TNF and IL-6 become more prominent during the onset of synovial 

inflammation63. It is also important to note that B-cells in the synovium are likely 

to be exposed to several cytokines at once, which may have separate opposing 

or cumulative effects on sialylation. Further study could include several cytokines 

in combination, and a wider variety of doses to reflect changing physiological 

conditions. As well as the cytokines investigated in this study, there are several 

other cytokines which are involved in the pathogenesis of RA which may have an 

impact on B-cell sialylation such as B-cell activating factor (BAFF), IFN and GM-

CSF63, which could also be studied in future experiments. For further studies, it 

would also be useful to add a measure of response to each cytokine such as 



147 
 

 

proliferation in response to IL-4, to determine if the response to each cytokine is 

altered or if there is an intrinsic alteration in sialylation in B-cells from patients 

with RA. 

To summarise, the findings of this chapter have shown that B-cell sialylation 

varies during B-cell differentiation and is lowest in plasma cells. It was also shown 

that exposure to cytokines could potentially influence B-cell sialylation, and could 

account for some of the alterations to B-cell sialylation observed in baseline 

peripheral B-cell samples, in combination with B-cell intrinsic factors which were 

studied in Chapter 3. Although cytokines are an important driving factor for 

inflammation in RA, and concentrations are often altered in the serum or RA 

patients, there may yet be other B-cell extrinsic factors in serum which may also 

contribute to altered sialylation. Further serum proteins and their impact on 

sialylation will be studied in Chapter 5.
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Chapter 5  

Serum neuraminidase activity and consequences of 

reduced B-cell sialylation in RA 

5.1 Introduction 

The results of the previous chapters have described several potential candidates 

for B-cell intrinsic and extrinsic factors which may influence sialylation. Thus far 

each potential factor has been investigated more or less individually, without 

taking into account the dynamic presence of certain molecules such as cytokines 

in different body compartments, and without considering the impact of exposure 

to multiple cytokines and inflammatory markers in both the serum and in synovial 

fluid at disease sites in RA. Thus far, cytokines have been considered as potential 

serum factors which may alter sialylation, however there is potential for many 

other molecules to cause a shift in glycosylation. For example, free ST6Gal1 has 

been shown to be present in the bloodstream during inflammation, as it is 

released by hepatocytes as part of the acute phase response283. Free 

neuraminidase can also exist in the serum284 and its increased presence in the 

serum has been shown to be associated with inflammation in some cases285. In 

this chapter, serum factors in RA were considered as a whole, and cells from 

healthy donors were exposed to serum from patients with RA during activation 

and differentiation in vitro. 

Since the previous results of this study showed that sialylation was reduced on 

the surface of B-cells from patients with RA compared to healthy donors, the 

consequences of reduced sialylation were also considered in this chapter. There 

is a large body of research in several areas of pathology which suggests that 

altered sialylation can contribute to pathogenesis. In several cancers, increased 

sialylation promotes tumour cell survival, invasiveness and promotes resistance 

to chemotherapy286. In cardiovascular pathologies, during plaque formation in 

atherosclerosis, sialylation is downregulated in vessel wall integrins, facilitating 

monocyte transendothelial migration and promoting vessel wall 

inflammation173,191. The potential consequences of reduced B-cell sialylation in 

RA are as yet unknown, as are the direct consequences of reduced B-cell 

sialylation on function. 
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The overall impact of a shift in the glycocalyx of the B-cell surface has been 

examined by several groups in relation to the ability of the B-cell to activate T-

cells209-211. It was observed that when B-cells were treated with Neu to digest 

surface sialic acid, the ability of resting B-cells to stimulate T-cells was greatly 

increased209. This was dubbed the “neuraminidase effect” and was thought to be 

a consequence of removing sialic acids which were masking co-stimulatory 

molecules on the B-cell surface. However, only one group reported that B-cell 

sialylation was also reduced in response to activation211. This research was 

carried out in mouse splenocytes, and thus far no follow-up experiments to 

determine the sialylation of primary human B-cells under differing conditions of 

activation have been published, nor have any further consequences for B-cell 

function been reported. 

As mentioned previously, several studies have shown that increased sialylation 

promotes chemoresistance in cancer cells197,198,201,203,287. It was therefore 

hypothesised that altered B-cell sialylation in autoimmunity may also have an 

impact on biologic drug treatment. Rituximab is an anti-CD20 monoclonal 

antibody which is thought to lead to B-cell depletion via several proposed 

mechanisms – by opsonising cells and promoting complement-dependent lysis 

or ADCC, or by directly triggering B-cell apoptosis245. Since its modes of action 

depend on the anti-CD20 antibody binding to CD20 on the B-cell surface, it was 

hypothesised that reduced SA on the B-cell surface would improve binding and 

also improve the efficacy of complement-dependent lysis and ADCC. An in vitro 

rituximab killing assay was used to study the impact of sialylation on rituximab B-

cell killing efficacy.   



151 
 

 

5.2 Results 

5.2.1 Impact of serum factors on B-cell sialylation 

Previous results showed that exposure to certain cytokines may have an impact 

on B-cell surface expression of SA (Chapter 4). It was hypothesised that 

exposure to these cytokines in the serum, as well as other factors, may contribute 

to altered B-cell sialylation in vivo in RA. It was also hypothesised that serum from 

patients with RA may have an impact on healthy donor B-cell sialylation in vitro.  

5.2.1.1 Exposure to serum from both healthy donors and patients with 

ERA leads to a reduction in B-cell sialylation 

In order to determine the impact of exposure to RA serum on healthy donor B-

cells in vitro, B-cells isolated from healthy donors (n=2) were exposed to serum 

from both healthy donors (n=5) and patients with ERA (n=5) in an increasing 

percentage in media (2.5, 5 or 10% in 200 µl media). B-cells were cultured with 

the serum for 48 hrs, then sialylation was measured by flow cytometry. Results 

showed that the expression of surface SA in the healthy donor B-cells was 

inversely correlated with serum concentration (Figure 5.1). This was true for 

serum from both healthy donors and patients with ERA, and expression of B-cell 

sialylation was very slightly lower in cells cultured with serum from patients with 

ERA than with serum from healthy donors at 2.5% and 5% (2.5%: 0.404 ± 0.118 

vs. 0.443 ± 0.098, p=0.5778; 5% 0.283 ± 0.086 vs. 0.323 ± 0.102, p=0.5206 – 

fold change relative to untreated samples), although sialylation was slightly 

higher on exposure to 10% serum (0.190 ± 0.035 vs. 0.181 ± 0.041, p=0.7213). 

These results suggested that serum from both healthy donors and from patients 

with RA contains factors which led to a decrease in sialylation of B-cells from 

healthy donors on exposure in vitro.  
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Figure 5.1 Impact of serum from patients with RA on sialylation in B-cells from healthy 
donors 

B-cells from healthy donors (n=2) were cultured with serum from healthy donors (HD) (n=5) and 
patients with early RA (ERA) (n=5) in increasing percentages in RPMI (2.5, 5 or 10%). After 48 
hrs, sialylation was measured by flow cytometry. Graphs show mean with SD of B-cell SNA FITC 
MFI, expressed as a ratio relative to SNA FITC MFI of samples cultured in 0% serum. Unpaired t 
tests were used to generate p values, comparing HD and ERA serum at each concentration.  
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5.2.2 Neuraminidase activity in serum of patients with ERA and 

healthy donors 

It was hypothesised that neuraminidases in the serum were responsible for the 

reduction in B-cell expression of SA when serum was added to B-cell cultures 

(Figure 5.1). Studies of serum neuraminidase are few and far between, however 

there has been some evidence to link serum neuraminidase with inflammation. 

One study found that in patients with type II diabetes, levels of serum and urine 

neuraminidase were increased in patients with diabetic nephropathy compared 

to control groups285. A neuraminidase enzymatic activity assay was carried out to 

confirm the presence of active neuraminidase in serum and to determine if there 

was any difference in activity of neuraminidases between serum from healthy 

donors and patients with RA. The assay used Amplex red - a reagent which 

produces fluorescent molecule resorufin in the presence of H2O2288. H2O2 is 

generated by oxidation of desialylated galactose – the end product of 

neuraminidase activity - via galactose oxidase289, thus the assay can be used to 

detect neuraminidase activity in the sample by measuring 

fluorescence/absorbance. 

5.2.2.1 Activity of neuraminidase is increased in patients with RA 

compared to serum from healthy donors 

Before comparing neuraminidase activity in the serum of healthy donors and 

patients with RA, optimal dilution of the serum in reaction buffer from the assay 

kit had to be established. Dilutions of serum from healthy donors (n=3) were 

made, containing 10 – 50% serum. Serum samples were then incubated with the 

rest of the kit reagents, including the fluorescent substrate, Amplex Red for up to 

2 hrs at 37°C. Absorbance was measured at 30, 60, 90 and 120 mins. Activity 

could be detected after just 30 mins (Figure 5.2A) and remained relatively stable 

for the 2 hrs measured in this optimisation test (results not shown). This confirmed 

the presence and activity of neuraminidase within the serum, and potentially 

explained the reduction in SA expression observed when B-cells were exposed 

to serum samples in culture (Figure 5.1). A serum concentration of 30% in the 

reaction buffer was found to be optimal for the assay (Figure 5.2A).  
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Figure 5.2 Serum neuraminidase activity in healthy donors and patients with ERA 

Activity of Neu in serum of healthy donors (HD) (n=6) and patients with early RA (ERA) (n=6) 
were measured by Amplex RedTM fluorescence assay. To optimise serum from healthy donors 
(n=3) was diluted in sample diluent at 10, 20, 30, 40 or 50% and absorbance measured after 30 
mins (A). Serum was diluted to 30% in sample diluent and absorbance measured at 30, 60, 90 
and 120 mins (B). Graphs show mean absorbance with SD. Unpaired t tests were used to 
calculate p values, comparing HD and ERA serum at each time point – 30 mins p=0.7322, 60 
mins p=0.4023, 90 mins p=2263 and 120 mins p=0.2509.  
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To determine if neuraminidase activity in the serum was altered in RA, samples 

of serum from healthy donors (n=6) and patients with ERA (n=6) were tested. 

Serum was diluted in reaction buffer then incubated with the kit reagents for up 

to 2 hrs, with absorbance measured every 30 mins. At 30 mins, absorbance, and 

therefore neuraminidase activity was approximately equal in the samples from 

healthy donors and patients with ERA (0.040 ± 0.015 and 0.044 ± 0.021, 

p=0.7322 absorbance respectively) (Figure 5.2B). However, between 30 and 90 

mins absorbance increased in samples from patients with ERA, tapering off 

between 90 and 120 mins. Samples from healthy donors however, showed no 

change in absorbance throughout the time-course and at 120 mins absorbance 

was higher in samples from patients with ERA than healthy donors (0.069 ± 0.048 

vs. 0.044 ± 0.015, p=0.2509). The increase in absorbance seen in the samples 

from patients with ERA indicates an increase in fluorescent substrate, indicating 

increased neuraminidase activity in these samples. These results suggested that 

there may be a higher level of Neu present in the serum of patients with ERA, 

which may have implications for the expression of SA on the B-cell surface in 

vivo. 

5.2.3 Impact of exposure to serum on B-cell phenotypic changes 

during in vitro differentiation to plasma cells 

As discussed previously in Section 5.2.1, when B-cells from healthy donors were 

exposed to serum from patients with ERA and from healthy donors - sialylation 

decreased, possibly due to the presence of neuraminidases in the serum. It was 

therefore hypothesised that exposure to serum from patients with RA, prior to in 

vitro differentiation, may influence the sialylation of plasmablasts and plasma 

cells generated from serum-primed B-cells.  

5.2.3.1 Exposure to serum from patients with RA led to a reduction in 

sialylation and production of IgM in plasmablasts 

B-cells from healthy donors (n=4) were differentiated under normal conditions, 

however between days 0 and 3, cells were cultured in media containing either 

10% FBS, or 5% FBS + 5% serum from healthy donors (n=2) or patients with 

ERA (n=2). Following day 3, the differentiation protocol was carried out as 

normal, in media containing 10% FBS only. Expression of SA was measured at 

day 6 in generated plasmablasts, and was found to be reduced in cells cultured 
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with serum from patients with ERA (0.761 ± 0.130, p=0.0688 – fold change 

relative to no serum controls). There was also a slight increase in expression of 

SA in cells cultured with serum from healthy donors (1.121 ± 0.484, p=0.8769), 

compared to FBS only controls (Figure 5.3A). Further to this, expression of NEU1 

and ST6Gal1 mRNA was also measured at day 6, and it was found that exposure 

to serum from healthy donors slightly increased expression of both enzymes 

(0.558 ± 0.167 vs. 0.460 ± 0.095, p=0.5220 and 9.117 ± 1.772 vs. 7.355 ± 0.397, 

p=0.2260 respectively) (Figure 5.3B, 5.3C). Exposure to serum from patients with 

ERA slightly increased expression of ST6Gal1 (8.150 ± 1.048 vs. 7.355 ± 0.397, 

p=0.3751 – ΔCT values) (Figure 5.3C) and had no effect on NEU1 (0.454 ± 0.076 

vs. 0.460 ± 0.095, p=0.9772) (Figure 5.3B). Differentiating cell production of IgM 

was also measured at day 6, and it was found that cells exposed to serum from 

patients with ERA produced less IgM than FBS only controls and cells exposed 

to serum from healthy donors (68600 ± 45627 vs. 102306 ± 56140, p=0.3804 and 

122015 ± 69712, p=0.1151 respectively IgM concentration ng/ml) (Figure 5.3D). 

5.2.3.2 Exposure to serum from patients with RA led to a reduction in 

sialylation and production of IgM in plasma cells 

As in section 5.2.3.1, expression of SA, along with expression of NEU1 and 

ST6Gal1 mRNA and production of IgM were also measured in day 13 plasma 

cells, following early exposure to serum from healthy donors and patients with 

RA. Similar to findings in plasmablasts, expression of SA was reduced in cells 

exposed to serum from patients with ERA pre-differentiation, compared to those 

exposed to serum from healthy donors and to FBS only controls (0.135 ± 0.027, 

p=0.0212 – fold change based on unstimulated samples) (Figure 5.4A). 

Sialylation was also slightly reduced in cells exposed to serum from healthy 

donors compared to FBS controls (0.734 ± 0.123, p=0.2987). Further to this, 

similar to results in plasmablasts, production of IgM was also reduced in cells 

exposed to serum from patients with ERA compared to those exposed to serum 

from healthy donors and FBS controls (9753 ± 3195 vs. 20248 ± 17762, p=0.5883 

and 25480 ± 3436, p<0.0001 respectively, IgM concentration ng/ml) (Figure 

5.4D). Contrary to results in plasmablasts, expression of NEU1 and ST6Gal1 

mRNA was increased in cells exposed to serum from healthy donors and from 

patients with ERA compared to FBS only controls (NEU1 0.606 ± 0.101, p=0.4204 

and 0.566 ± 0.228, p=0.4866 vs. 0.492 ± 0.196; ST6Gal1 7.686 ± 3.974, 
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p=0.6575 and 8.836 ± 0.699, p=0.7685 vs. 6.589 ± 5.355 respectively – ΔCT 

values) (Figure 5.4B, 5.4C). Taken together, these results suggested that 

exposure to serum from patients with ERA prior to differentiation leads to a 

reduction in sialylation, which translates to downregulated sialylation in 

differentiated plasmablasts and plasma cells. Production of IgM may also be 

reduced in cells exposed to serum from patients with RA, possibly due to 

decreased surface sialylation, or as a result of other cytokines and inflammatory 

markers which may be present in the serum. 

5.2.4 Impact of exposure to serum factors on B-cell activation 

Previously, it was found that when B-cells from healthy donors were activated via 

certain signalling pathways, there was an upregulation of sialylation. However, in 

cells from patients with ERA, this response was absent, despite cells showing a 

similar level of expression of CD69 Section 3.2.3. It has also been shown 

previously that several cytokines may have an effect on B-cell sialylation, with or 

without additional stimuli (Chapter 4). With the observation that serum from 

healthy donors and from patients with RA leads to a decrease in B-cell sialylation 

(Figure 5.1), and the findings that exposure to serum from patients with ERA prior 

to differentiation led to decreased sialylation in plasmablasts and plasma cells 

(Figure 5.3, 5.4), it was hypothesised that exposure to serum may have an impact 

on sialylation following B-cell activation. Therefore, B-cells from healthy donors 

were exposed to serum from patients with ERA, and activated via TLR stimulation 

and BCR crosslinking ± CD40L co-stimulation – to determine if serum factors play 

a role in regulating sialylation in activated cells.
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Figure 5.3 Changes to sialylation, expression of ST6Gal1 and NEU1 and production of IgM in plasmablasts after exposure to serum from 
patients with RA in B-cells from healthy donors 

B-cells isolated from healthy donors (n=4) were differentiated to plasma cells in vitro. Between day 0 and 3, cells were stimulated as per protocol with 
CD40L L-cells + 4µg/ml F(ab’)2 in media with 10% FBS (NS) or 5% FBS + 5% serum from a healthy donor (HD) or a patient with ERA. Plasmablasts at 
day 6 were analysed and expression of SA was measured by flow cytometry (A), expression of NEU1 (B) and ST6Gal1 (C) mRNA were measured by 
RT-qPCR and IgM in cell culture supernatants was measured by ELISA (D). Graphs show mean with SD. ANOVA with Tukey’s multiple comparisons 
tests were used to generate p values, with statistically significant differences indicated where p<0.05.
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Figure 5.4 Changes to sialylation, expression of ST6Gal1 and NEU1 and production of IgM in plasma cells after exposure to serum from patients 
with RA in B-cells from healthy donors 

B-cells isolated from healthy donors (n=4) were differentiated to plasma cells in vitro. Between day 0 and 3, cells were stimulated as per protocol with 
CD40L L-cells + 4µg/ml F(ab’)2 in media with 10% FBS (NS) or 5% FBS + 5% serum from a healthy donor (HD) or a patient with ERA. Plasma cells at 
day 13 were analysed and expression of SA was measured by flow cytometry (A), expression of NEU1 (B) and ST6Gal1 (C) mRNA were measured by 
RT-qPCR and IgM in cell culture supernatants was measured by ELISA (D). Graphs show mean with SD. ANOVA with Tukey’s multiple comparisons 
tests were used to generate p values, with statistically significant differences indicated where p<0.05.
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5.2.4.1 Exposure to serum from both healthy donors and patients with 

ERA leads to a reduction in B-cell sialylation in activated B-cells, 

and an overall reduction in activation 

B-cells from a healthy donor were stimulated for 48 hrs ± 10 µl serum (5% in 200 

μl RPMI) from healthy donors (n=2) or patients with ERA (n=2) and activated with 

either CpG, F(ab’)2 or F(ab’)2 + CD40L. Sialylation was measured after 48 hrs, 

and as shown previously, exposure to both sera from healthy donors and patients 

with RA led to a reduction in sialylation (Figure 5.5A). Interestingly however, in B-

cells exposed to serum from patients with ERA, sialylation was lower than in cells 

exposed to serum from healthy donors in all stimulated and unstimulated 

conditions, particularly in CpG stimulated cells (0.750 ± 0.136 vs. 0.962 ± 0.204 

p=0.5499) and F(ab’)2 + CD40L (0.3478 ± 0.010 vs. 0.610 ± 0.079, p=0.0771) 

compared with cells exposed to serum from healthy donors. 

The impact of exposure to serum from healthy donors and patients with RA on B-

cell activation was also studied, by measuring the percentage of CD69+ cells after 

48 hrs. It was found that the percentage of CD69+ cells was markedly lower in 

cells exposed to both types of sera, and stimulated with F(ab’)2 (HC: 14.57 ± 1.46, 

p=0.0009; RA: 14.95   1.46, p=0.0010 vs. Control: 68.99) and F(ab’)2 + CD40L 

(HC: 46.91 ± 5.83, p=0.0830; RA: 40.28 ± 7.69, p=0.0613 vs. Control: 84.43) 

(Figure 5.5B). However, in cells exposed to serum from healthy donors, the 

percentage of CD69+cells following CpG stimulation was similar to the no serum 

control (68.52 ± 10.39 vs. 68.85, p=0.9992). However, percentage CD69+ cells 

was slightly lower in cells exposed to serum from patients with RA than from 

healthy donors (55.23 ± 0.59 vs. 68.85, p=0.4436). Overall, these results suggest 

that exposure to serum in general leads to reduced sialylation in B-cells and a 

dampened response to stimuli with F(ab’)2. Exposure to serum from patients with 

ERA in particular led to a greater reduction in sialylation, potentially contributing 

to the greater inhibition of response to activating stimuli.  
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Figure 5.5 Impact of serum from patients with RA on sialylation in activated B-cells from 
healthy donors 

B-cells from a healthy donor were cultured with 5% serum from healthy donors (HD) (n=2) and 
patients with early RA (ERA) (n=2) in RPMI (2.5, 5 or 10%). Cells were stimulated with CpG, 
F(ab’)2, F(ab’)2 + CD40L or left unstimulated (US). After 48 hrs, sialylation and % CD69+ were 
measured by flow cytometry. Graphs show mean with SD of B-cell SNA FITC MFI (A), expressed 
as a ratio relative to SNA FITC MFI of samples cultured in 0% serum or % CD69+ cells in each 
condition (B). ANOVA with Tukey’s multiple comparison tests were used to analyse statistical 
significance (p values quoted in text where relevant).  
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5.2.5 Impact of reduced B-cell sialylation on B-cell activation in vitro 

As described previously, (Section 3.2.2) expression of SA on the B-cell surface 

is reduced in patients with ERA and PRA compared to B-cells from healthy 

donors. It was also shown that Neu was present in the serum of healthy donors 

and of patients with ERA – with higher expression in samples from patients with 

ERA (Figure 5.2B). Furthermore, exposure to serum in culture led to a decrease 

in expression of SA on the cell surface (Figure 5.1) and a decrease in cell 

activation (Figure 5.5B). To further understand the potential consequences of 

reduced B-cell sialylation in B-cells in RA, the direct effect of reducing surface SA 

expression on B-cell function was investigated. B-cells were treated with Neu to 

digest SA from the cell surface, producing low SA expressing cells in vitro - which 

were used for further analyses. 

5.2.5.1 Incubation of B-cells with neuraminidase leads to a reduction in 

surface sialic acids measured by flow cytometry 

To first optimise Neu digestion of B-cell surface SA, B-cells were treated with 100 

mU Neu in RMPI at 37°C for 1 – 18 hrs. Sialylation was measured after 1, 2, 4, 6 

and 18 hrs by flow cytometry. It was found that even after one hour, sialylation 

was reduced compared to untreated cells and continued to decrease up to 4 hrs. 

There was no difference in sialylation between 4 and 6 hrs, however by 18 hrs 

sialylation was again reduced compared to 4 hrs (Figure 5.6A).  

To determine if higher concentrations of Neu would achieve better digestion of 

SA in shorter periods of time, cells were treated with 100 or 200 mU of Neu for 4 

hrs then stained with fSNA and FITC MFI recorded. Results show that there was 

no difference in sialylation after 4 hrs of treatment with 100 or 200 mU Neu (Figure 

5.6B). Therefore, for future experiments, 100 mU of Neu were used for digestion 

of SA.  
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Figure 5.6 Optimisation of neuraminidase mediated B-cell surface sialic acid digestion 

B-cells from a healthy donor were treated with 100 mU Neu for 1-18 hrs or left untreated. 
Sialylation was measured by flow cytometry at 1, 2, 4, 6 and 18hrs and compared to untreated 
and unstained samples (A). Cells were treated with 100 mU or 200 mU Neu for 4 hrs and 
sialylation measured then compared to untreated and unstained samples (B). Graphs show 
histogram overlays of sialylation in treatment conditions in one representative experiment.  
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5.2.5.2 Digestion of surface sialic acid by neuraminidase treatment leads 

to a decrease in B-cell activation potential 

To directly test the consequences of reduced sialylation on B-cells, cells from 

healthy donors (n=5) were first treated with 100 mU Neu for 4hrs then stimulated 

with CpG or F(ab’)2 + CD40L. Activation was measured after 24 hrs of stimulation. 

Expression of three surface markers of B-cell activation – CD69, CD80 and CD86 

were measured by flow cytometry. Activation marker expression is recorded as a 

ratio of MFI for each antibody relative to the unstimulated, untreated sample in 

each experiment. It was found that expression of all three markers of activation 

was decreased in cells treated with Neu, in cells stimulated with CpG and in cells 

stimulated with F(ab’)2 + CD40L (Figure 5.7). These results suggest that 

expression of surface SA may be important for adequate cell activation via both 

of these signalling pathways, and reduced surface sialylation may inhibit 

signalling. 

5.2.6 Influence of expression of sialic acid expression on 

production of IgM 

Since previous findings showed that treatment of B-cells with neuraminidase led 

to a decrease in B-cell activation potential (Figure 5.7) it was hypothesised that 

surface SA expression may also have an impact on further B-cell functions. A key 

function of activated B-cells is the production of antibodies, therefore the potential 

relationship between sialylation and antibody production was investigated.  

5.2.6.1 Expression of sialic acid on the cell surface did not correlate 

significantly with production of IgM  

In order to study the impact of sialylation on production of IgM, these factors were 

measured by flow cytometry and ELISA respectively. Measurements were taken 

at day 6 in plasmablasts and in day 13 plasma cells differentiated from healthy 

donors (n=6). Cell culture supernatant IgM concentration was plotted with cell 

sialylation measured at each time-point, and the correlation between the two 

variables was analysed. It was found that at day 6, there was no significant 

correlation between sialylation and IgM concentration (r -0.053, p= 0.787) (Figure 

5.8A). However, at day 13 there was found to be a modest positive correlation 

between sialylation and production of IgM (r 0.431, p=0.036) (Figure 5.8B). This 
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suggested that surface sialylation may be associated with production of IgM in 

plasma cells, but not in plasmablasts. 

5.2.6.2 Treatment of B-cells with neuraminidase prior to differentiation led 

to increased production of IgM in plasmablasts and plasma cells 

To further study the impact of sialylation on production of IgM, cells were treated 

with Neu at various points during the in vitro differentiation protocol. Cells were 

treated for 1 hr with 100 mU Neu at either day 0 prior to differentiation, day 3 

following initial activation, or day 6 at the plasmablast stage. Production of IgM 

was then measured at day 6 and day 13 in treated and untreated cells. It was 

found that at day 6 in plasmablasts, production of IgM was higher in cells which 

were treated with Neu at day 0 (40632 ± 17165 vs. 32068 ± 3926, p=0.8565 – 

IgM concentration ng/ml), yet unchanged in those treated at day 3 (30493 ± 2168 

vs. 32068 ± 3926, p=0.9336) (Figure 5.9A). Similarly, at day 13, the cells treated 

with Neu at day 0 show increased production of IgM compared to untreated cells, 

and cells treated at day 3 and day 6 (29931 ± 15683 vs. 12754 ± 5034, p=0.6616, 

12617 ± 4040, p=0.9923 and 8590 ± 7549, p=0.3964 respectively) (Figure 5.9B). 

Treatment of cells with Neu at day 3 appeared to have very little effect on IgM 

production at day 13, whereas there was a slight reduction in IgM production at 

day 13 in cells treated with Neu at day 6. Taken together, these results suggested 

that cells treated with Neu, or cells that have reduced sialylation at day 0 prior to 

differentiation may go on to produce higher levels of IgM even at the plasma cell 

stage. It may also be an indication that pre-treatment of cells with Neu may 

impede the differentiation process, leading to increased survival of IgM producing 

cells and less class-switched cells in these cultures.  
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Figure 5.7 Impact of reduced sialylation on B-cell activation 

B-cells from healthy donors (n=5) were treated with 10 mU Neu for 4hrs or left untreated. Cells 
were then stimulated with CpG, F(ab’)2, F(ab’)2 + CD40L or left unstimulated (US) for 24 hrs, then 
expression of CD69 (A), CD80 (B) and CD86 (C) were measured by flow cytometry. Graphs show 
min to max expression of each surface marker, expressed as fold change relative to unstimulated 
(US) samples. Paired t tests were used to generate p values, comparing untreated and treated 
samples in each condition. Statistically significant differences are indicated where p<0.05.
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Figure 5.8 Correlation of expression of sialic acid and the production of IgM during in vitro B-cell differentiation 

B-cells isolated from healthy donors (n=6) were differentiated to plasma cells in vitro. At day 6 (A) and day 13 (B) cell surface expression of SA was 
measured by flow cytometry and IgM in cell culture supernatants was measured by ELISA (data points include cells cultured under various conditions 
including TLR stimulation, exposure to TNF, IL-6 and serum). Graphs show line of best fit, and r and p values were calculated using Pearson correlation.
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Figure 5.9 Impact of neuraminidase treatment on the production of IgM during in vitro B-
cell differentiation 

B-cells isolated from healthy donors (n=2) were differentiated to plasma cells in vitro. At day 0 
(N0), day 3 (N3) or day 6 (N6), cells were treated with 100 mU Neu for 1 hr, or left untreated (UT). 
At day 6 (A) and Day 13 (B) IgM in cell culture supernatants were measured by ELISA. Graphs 
show mean with SD. ANOVA with Tukey’s multiple comparisons tests were used to generate p 
values.  
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5.2.7 Impact of reduced sialylation on B-cell susceptibility to 

rituximab-induced depletion in vitro 

As well as the potential impact of reduced B-cell expression of SA on B-cell 

activation potential, and potential contribution to promoting autoimmunity which 

has been discussed in this chapter, it was also hypothesised that B-cell surface 

SA expression may have an impact on response to biologic therapies. In 

particular, treatment with B-cell depletion therapy. A number of studies in cancer 

cell lines have shown that an increase in sialylation leads to increased resistance 

of cells to chemotherapeutic agents197,198,203,287. Therefore it was hypothesised 

that reduced sialylation in B-cells may lead to increased susceptibility to rituximab 

treatment. Since SAs can inhibit binding interactions due to their negative charge, 

it was hypothesised that reduced expression of SA would increase binding of 

rituximab to the B-cell surface, and therefore increase the efficiency of B-cell 

depletion. 

5.2.7.1 Reduced sialylation leads to increased binding of a CD20 antibody  

In order to determine if reduced expression of SA could increase the efficiency of 

rituximab binding to the B-cell surface, B-cells from healthy donors (n=3) were 

first treated with Neu for 4 hrs. Cells were then stained with an antibody for CD20 

– CD20 eFlour 450, as a substitute for rituximab, which would allow the extent of 

binding to be measured by flow cytometry. It was found that the MFI of eFlour 

450 was increased in B-cells treated with Neu compared to untreated cells (48671 

± 10448 vs. 28258 ± 3827, p=0.0497 MFI units) (Figure 5.10). This result 

suggested that binding of anti-CD20 Ab is increased in cells with lower expression 

of SA, potentially by “unmasking” antibody binding sites. 

5.2.7.2 Reduced sialylation leads to increased susceptibility of B-cells to 

rituximab-induced death in vitro 

Since reduced expression of SA led to an increase in the binding of a CD20 

antibody (Figure 5.10), it was hypothesised that this may lead to an increase in 

B-cell depletion by rituximab. In order to study this in vitro, B-cell viability after 

treatment with rituximab was measured, (method based on a previously 

described assay262). Since it is thought that rituximab works by opsonising B-cells 

and inducing killing via the complement system and via clearance by 

phagocytosis245, B-cells from healthy donors (n=6) were incubated with rituximab 
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for 4 hrs under one of three conditions: 1. B-cells in 50% healthy donor serum (in 

RPMI), 2. With 9:1 healthy donor PBMCs to B-cells 3. In 50% serum with 9:1 

healthy donor PBMCs to B-cells (Figure 5.11A). The assay used healthy donor 

serum to deliver complement proteins and PBMCs to act as phagocytes. The 

assay was confirmed to be effective as B-cell viability reduced in cells treated 

with rituximab compared to untreated cells in conditions 1. and 3. As described 

previously (Figure 3.11B, 3.11D). The assay was less efficient in samples 

incubated with PBMCs alone (condition 2.), suggesting that serum, and therefore 

complement opsonisation was required for the most efficient response (Figure 

5.11C).  

To investigate the impact of reduced sialylation on the efficiency of the assay, B-

cells were treated for 1 hr with Neu prior to incubation with rituximab. It was found 

that in samples treated with Neu, B-cell viability following treatment with rituximab 

was reduced in cells incubated with PBMCs (UT: 65.45 ± 29.53 vs. Neu: 54.45 ± 

25.25, p=0.0541 - % viable B-cells) (Figure 5.12B) and PBMCs + serum (UT: 

26.05 ± 23.15 vs. Neu: 14.29 ± 11.38, p=0.0590) (Figure 5.12C). Results were 

less clear in cells incubated with serum only, yet overall there was a slight 

decrease in cell viability in treated cells (UT: 9.58 ± 8.75 vs. Neu: 9.09 ± 9.37, 

p=0.8209) (Figure 5.12A). Further to this, PBMCs were pre-treated with Neu 

before being added to the assay with B-cells and rituximab with/without serum. 

Results showed that treatment of PBMCs with Neu led to decreased B-cell 

viability following treatment with rituximab (Figure 5.12D).These results 

suggested that B-cell depletion with rituximab may be more efficacious in cells 

with lower expression of SA, consistent with current research that suggests 

overexpression of SA is an important factor in drug resistance, particularly in 

tumour cells197,198,203,287.   
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Figure 5.10 Impact of reduced B-cell sialylation on anti-CD20 Ab binding 

B-cells from healthy donors (n=3) were treated with 10 mU neuraminidase (Neu) for 4hrs or left 
untreated. Cells were then stained with CD20 eFlour 450 antibody and binding assessed by flow 
cytometry. MFI of eFlour 450 was recorded for each sample. A paired t test was used to analyse 
statistical significance. 

 

 

Figure 5.11 In vitro Rituximab B-cell killing assay 

B-cells from healthy donors (n=6) were cultured ± rituximab (Rtx) for 4 hrs under one of 3 
conditions (A): 1. in 50% serum from healthy donors (B); 2. with PBMCs from a healthy donor 
(9:1 PBMC:B-cell ratio) (C); 3. with PBMCs from a healthy donor in 50% serum (D). After 4 hrs 
cell viability was recorded by flow cytometry using a viability stain (FV 780). Graphs show % viable 
B-cells in Rtx treated and untreated samples. Paired t tests were used to generate p values, with 
statistically significant differences indicated where p<0.05.  
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Figure 5.12 Impact of reduced sialylation on in vitro B-cell depletion by rituximab 

B-cells from healthy donors (n=6) were cultured with rituximab (Rtx) for 4 hrs under one of 3 
conditions, with or without prior treatment for 1 hr with 10 mU neuraminidase (Neu): 1. in 50% 
serum from healthy donors (A); 2. with PBMCs from a healthy donor (9:1 PBMC:B-cell ratio) (B); 
3. with PBMCs from a healthy donor in 50% serum (C). B-cells from a healthy donor were cultured 
with rituximab in 50% serum with PBMCs from the same healthy donor which were treated ± 10 
mU Neu for 1 hr prior to culture (D). After 4 hrs cell viability was recorded by flow cytometry using 
a viability stain (FV 780). Graphs show % viable B-cells in Neu treated and untreated samples. 
Paired t tests were used to generate p values, with statistically significant differences indicated 
where p<0.05.  
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5.3 Discussion 

The previous results of this study showed that sialylation was reduced on the 

surface of naïve and memory B-cells as well as plasmablasts from the peripheral 

blood of patients with RA compared to healthy donors. B-cell intrinsic factors 

which may influence B-cell sialylation, as well as targeted cytokines involved in 

inflammation have been studied and it was found that there may be influence 

from both intrinsic and extrinsic factors on B-cell sialylation. It was hypothesised 

that the serum environment in RA may be a key player in determining surface 

sialylation, and the results of this chapter found that exposure to serum in vitro 

led to reduced sialylation in healthy cells. However, this phenomenon was 

observed when healthy cells were exposed to serum from healthy donors and 

from patients with RA, suggesting that factors – most likely neuraminidases - 

were present in both groups of sera which had the potential to influence 

sialylation. Serum neuraminidase activity was measured and was found to be 

increased in serum from patients with RA compared with serum from healthy 

donors – providing the first potential link to reduced cell surface sialylation in RA 

patients.  

The main limitation in this data is the modest number of samples which were 

analysed. Study size was limited due to availability of patient samples, and these 

preliminary results would be strengthened by validation on a larger scale. It would 

also be pertinent to measure Neu activity in serum samples from patients with 

PRA, to determine if serum Neu activity is increased at the onset of autoimmunity, 

at the time when decreased B-cell surface sialylation can first be detected. It 

would also be interesting to investigate paired samples of peripheral blood B-cells 

and serum, to determine if serum Neu correlates with B-cell surface sialylation in 

patients with RA.  

Although the focus of this current study was on B-cell sialylation, in light of these 

findings, it would also be interesting to compare sialylation of other immune cell 

types in RA to cells from healthy donors, to indicate whether increased 

neuraminidase activity could have wide-ranging pathological implications. As well 

as serum neuraminidases potentially reducing B-cell sialylation, there are several 

other factors present in serum which may lead to decreased sialylation, and other 

factors in RA serum which can reduce healthy donor B-cell activation potential in 
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vivo. These could include cytokines, antibodies, hormones, acute phase proteins 

etc. It would be helpful to profile RA serum for the presence of such factors, to 

identify any other possible candidates which may reduce serum sialylation. As 

well as Neu activity, it would also be useful to measure serum ST6Gal1 activity. 

This may be useful in the context of autoantibody sialylation, but less so in B-cell 

surface sialylation, since it has been previously found that soluble ST6Gal1 in 

serum could sialylate soluble proteins but not surface bound molecules166. 

It was also observed that when cells from healthy donors were exposed to serum 

from patients with RA, sialylation was upregulated less when cells were activated 

via TLR or BCR stimulation, than when cells were exposed to serum from healthy 

donors and in no-serum controls. Further to this, when cells were exposed to 

serum in general, they were far less responsive to BCR stimuli, and activation 

marker upregulation was impaired. It was hypothesised that desialylation induced 

by serum exposure may have an impact on B-cell activation potential. Cells were 

treated directly with Neu to investigate this and it was found that activation via 

both TLR9 and the BCR was reduced in Neu treated cells. It was then 

hypothesised that surface sialylation played a role in signalling via both pathways, 

most likely mediated by the Siglec CD22, which is known to regulate both BCR180 

and TLR signalling290. 

One limitation of this current data is that serum neuraminidases and exogenous 

Neu which was added to could target more than one SA linkage – therefore the 

consequences of reduced sialylation which were observed may be impacted by 

several different SA linkages. To combat this would be a difficult task, as no 

naturally occurring sialidases target only α2,6-linkages. However, one group have 

engineered a sialidase which targets α2,6-linkages specifically, which may have 

interesting potential for use in studying the impact of this type of linkage in 

isolation291. According to the results of this study, certain antibodies may be able 

to bind to cells more efficiently when SA is removed from the cell surface – 

therefore a potential confounding factor in these experiments may have been 

changes to antibody binding capabilities. However, in unstimulated samples there 

was no discernible increase in antibody binding, which helps to rule out this 

possibility. The three markers of B-cell activation which were selected, CD69, 

CD80 and CD86 were selected as expression can be easily detected by flow 

cytometry. However, it would also be useful to use other measures of B-cell 
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activation such as cytokine production, antibody production and proliferation, to 

further determine the impact of reduced sialylation on B-cell function. 

As well as the impact on B-cell activation it was hypothesised that desialylation 

may also have an impact on B-cell differentiation, since it was previously shown 

that increased sialylation was an important first step in the differentiation process. 

It was found that Neu pre-treatment of cells prior to differentiation led to increased 

production of IgM in plasma cells, which may suggest that class switching was 

impaired in these cells, potentially due to an impaired response to the initial 

stimuli. In differentiation experiments, small n numbers made some of the data 

difficult to interpret, and introduced large error margins. It would be advantageous 

to repeat these experiments in a larger cohort. In further samples, B-cell 

activation should also be measured after initial activation phase at day 3, along 

with production of IgG to confirm if class switching is still able to occur in Neu 

treated cells.  

Reduced B-cell activation in desialylated cells is an interesting concept with 

potential implications for treatment of B-cell disorders, potentially utilising 

neuraminidase to abrogate B-cell activation. However, it was also hypothesised 

that sialylation may have an impact on current therapeutic strategies – namely 

rituximab-induced B-cell depletion. B-cells were pre-treated with neuraminidase 

then subject to an in vitro rituximab killing assay. Pre-treated cells were more 

susceptible to depletion, suggesting that removing surface sialylation may allow 

better drug binding, increased complement binding or increased recognition by 

phagocytes.  

The current data cannot tell us whether removal of SA from CD20 molecules on 

the cell surface is responsible for the increase in binding, or if it is a combined 

effect of overall reduced sialylation on the cell. First determining if CD20 is a direct 

target for ST6Gal1 would be a logical next step to investigate this further. It would 

also be interesting to compare the susceptibility of cells from patients with RA, 

which already express reduced SA with cells from healthy donors. One limitation 

of the current study was in the high variability of B-cell viability following rituximab 

depletion, likely due to donor variability. In an attempt to lessen this effect, the 

same experiments were conducted in a B-cell line, however the cell lines were 

particularly susceptible to rituximab treatment – achieving almost 100% cell death 
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under both conditions, making it difficult to discern any potential effects of 

changes to sialylation (results not shown). The findings of the in vitro rituximab 

assay experiments could be strengthened by replication on a larger scale, with 

the inclusion of patient samples to investigate intrinsic differences in 

susceptibility. 

In summary, the data in this chapter has shown that the increased activity of 

neuraminidase in RA serum may contribute to reduced B-cell sialylation. It has 

also shown that as a consequence of reduced activation, cells may be less active, 

likely influenced by CD22 signalling. It was also observed that rituximab treatment 

may be more efficient in cells which have reduced sialylation. There are two 

avenues through which this observation may prove useful for further research – 

either in its potential use as a predictive factor for response, or as a potential 

therapeutic adjuvant to increase effectiveness of the drug. Use of neuraminidase 

as an adjuvant is not a novel concept and has been tested in breast cancer cell 

lines, and proven effective292 in early studies. There are a number of situations in 

which this may prove to be of benefit, including RA, but also in chemoresistant 

cancers, which often express increased levels of SA.
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Chapter 6  

General Discussion 

6.1 Summary of Principal Findings 

Initially, the finding that sialylation, as detected by lectin flow cytometry, is 

reduced on the B-cell surface in patients with RA and asymptomatic PRA, was 

validated in the Leeds cohort. In addition, it was found that sialylation was also 

reduced in peripheral memory B-cells and naïve B-cells from patients with RA 

and PRA.  

Next, mechanisms which may control sialylation in B-cells were investigated. It 

was found that when B-cells from healthy donors were activated via stimulation 

with TLR ligands, surface sialylation increased. Surface sialylation also increased 

when cells were stimulated by BCR crosslinking, by CD40L co-stimulation and by 

both in combination, though to a lesser extent than stimulation with TLR ligands. 

This effect did not appear to be solely due to B-cell activation status, since dual 

stimulation with CD40L and BCR stimuli produced the most robust response in 

terms of activation – measured by expression of surface activation markers - yet 

TLR ligands led to the greatest increase in sialylation. It was also found that B-

cell sialylation was increased in B-cells from healthy donors by activated T-cells, 

which was, at least in part, driven by CD40/CD40L signalling. However, when the 

same stimuli were given to B-cells from patients with ERA and PRA it was found 

that sialylation was not increased in response to TLR ligands. In response to BCR 

crosslinking and CD40L co-stimulation there was an increase in sialylation in cells 

from patients with PRA, but not ERA – suggesting that the response to TLR 

ligands (in terms of regulation of sialylation) was impaired from the onset of 

autoimmunity, whereas the response to BCR activation/co-stimulation may be 

affected by the transition to active disease. 

To further understand the influence of activation status on B-cell sialylation, the 

impact of stimuli on regulation of expression of two enzymes involved in α2,6-

sialylation was investigated. Expression of ST6Gal1, the Golgi enzyme which 

adds SA to protein chains and NEU1, the enzyme which cleaves SA from 

glycoprotein chains were measured by RT-qPCR following B-cell activation with 
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TLR or BCR stimuli. It was found that activation via either signalling pathway 

tended to lead to a decrease in expression of both enzymes, which suggested 

that the downregulation of NEU1 may play a role in increased surface sialylation 

following activation, however the relationship between surface sialylation and 

expression of ST6Gal1 mRNA appears to be more nuanced.  

To determine if the conditions surrounding activation could impact the surface 

sialylation of terminally differentiated cells, B-cells were differentiated to plasma 

cells in vitro. It was found that during differentiation sialylation increased when 

cells were first activated, then decreased when cells differentiated to 

plasmablasts and plasma cells. When cells were stimulated with TLR ligands 

instead of BCR stimuli prior to differentiation there was an increase in sialylation 

of plasma cells, and an increased production of IgM. 

As well as factors which directly activate B-cells, the effect of cytokines - which 

are present in the blood and synovium during active RA - on B-cell sialylation was 

investigated. The impact of in vitro exposure to IL-4, TNF, IL-6 and IL-17 was 

tested and it was found that IL-4 led to an increase in sialylation in cells from 

healthy donors and patients with PRA, but not patients with ERA. Exposure to 

TNF tended to decrease sialylation in cells from healthy donors and, in contrast, 

IL-6 led to an increase in sialylation at low doses. However, this differed in cells 

from patients with ERA as TNF had little effect on sialylation, and only the highest 

tested dose of IL-6 led to an increase in sialylation. 

The impact of cytokine exposure on differentiating B-cells was also investigated, 

and it was found that when cells were exposed to TNF during activation prior to 

differentiation, there was no change in sialylation of plasmablasts or plasma cells, 

compared with TNF-naïve cells. Exposure to IL-6, however, did result in a slight 

increase in sialylation of plasmablasts and plasma cells. 

To determine the combined effect of factors in the extracellular environment in 

RA on B-cell sialylation, serum from patients with ERA was added to cultures of 

B-cells from healthy donors and the impact on sialylation was measured. 

Surprisingly, exposure to serum from both healthy donors and patients with ERA 

led to a decrease in sialylation in these cells. A neuraminidase activity assay was 

carried out, which detected neuraminidase activity in both healthy donor and ERA 
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samples, and also showed increased activity in the samples from patients with 

ERA. This identified a possible contributing factor to the decreased sialylation in 

B-cells in RA.  

The impact of exposure to serum from patients with ERA on healthy donor B-cells 

prior to differentiation was also investigated, and it was found that exposure to 

serum from patients with RA led to decreased plasma cell sialylation, and 

reduced production of IgM compared with exposure to serum from healthy donors 

and no-serum controls. 

In addition to reduced sialylation following exposure to serum in vitro, when the 

serum-exposed cells were stimulated with TLR ligands and BCR stimuli, 

activation was found to be dampened compared to no-serum controls. This 

response was particularly clear in cells exposed to serum from patients with ERA. 

It was hypothesised that this may be due to the reduction in cell surface SA, 

therefore the direct impact of reduced sialylation on activation was investigated 

by treating B-cells from healthy donors with neuraminidase before stimulating 

with TLR ligands or BCR stimuli. It was found that treatment with neuraminidase 

led to reduced activation in response to both types of stimuli, suggesting surface 

sialylation plays a part in transmission of signals in both pathways of activation. 

Production of IgM was also found to be loosely associated with surface sialylation 

in plasma cells. When B-cells were treated with neuraminidase prior to 

differentiation there was an increase in production of IgM compared to untreated 

controls, suggesting that these cells may not have undergone class switching 

during differentiation. 

Finally, the potential impact of sialylation on response to B-cell depletion therapy 

was investigated. It was found that when cells were treated with neuraminidase, 

there was increased binding of an anti-CD20 antibody used as a surrogate for 

rituximab. Treatment with neuraminidase also improved the efficacy of B-cell 

killing in an in vitro rituximab killing assay, suggesting that reducing SA 

expression may increase the availability of binding sites for rituximab, and may 

increase B-cell susceptibility to death via complement lysis or via phagocytosis.   
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6.2 Discussion 

There is a well-established link between autoimmunity and reduced IgG Fc 

sialylation. However, evidence has emerged that there are other areas of 

pathology in which sialylation may be influential. Recently it has been described 

that Fab sialylation is increased in ACPA antibodies in RA, and that decreased 

sialylation can be detected on the B-cell surface in RA and PRA. Despite this 

well-established association between sialylation and autoimmunity, there 

remains a number of unknowns as to how sialylation is regulated, and as to the 

diverse roles it may play in regulating autoimmunity. The aim of this research was 

to further investigate the changes to B-cell surface sialylation in RA, and to 

investigate the potential consequences of reduced sialylation for B-cell function. 

This research has found that there are several factors which may contribute to 

sialylation changes in autoimmunity, and that there are diverse consequences for 

B-cells depending on the cell subtype and extracellular environment. 

6.2.1 B-cell sialylation is reduced in B-cells in patients with 

Rheumatoid Arthritis 

Reduced IgG-Fc sialylation has been recognised as a feature of RA for more than 

three decades227. Only in the last few years has evidence emerged that increased 

IgG-Fab sialylation is also a feature of RA230. Changes to Fc sialylation are also 

known to be present in patients with asymptomatic autoimmunity236 and have 

been associated with progression to symptomatic inflammation235,236. The use of 

SNA lectin staining as a surrogate for measuring sialyltransferase activity in 

plasmablasts has been described previously235 along with the findings that SNA 

lectin staining was reduced in patients with RA and PRA compared with healthy 

donors235. The results of this current work have validated these findings, showing 

reduced plasmablast sialylation in cells from patients with PRA and ERA, 

however it was also found that sialylation is reduced in memory and naïve B-cells 

from the same patients, compared to the healthy donor cohort. 

These results could imply that there is overall reduced sialyltransferase activity in 

B-cells from patients with RA and PRA. This reduction in activity may be reflected 

in the production of antibodies with reduced Fc sialylation and increased 

inflammatory activity. However, there are also some caveats to this interpretation. 

The relationship between B-cell SNA lectin staining and sialyltransferase activity 
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was previously validated in ST6Gal1 knockout mice235, in which staining was 

absent. Although confirming ST6Gal1 activity is required for staining, it does not 

directly describe the relationship between ST6Gal1 activity and surface 

expression of SA. Furthermore, it would be anticipated that ST6Gal1 activity 

would be increased to produce sialylated Fab glycans, which is not reflected in 

peripheral B-cells from patients with RA if we assume surface sialylation is an 

indication of ST6Gal1 activity. 

Neuraminidase enzymes further complicate the picture, as they are able to cleave 

sialic acids from glycoprotein chains. NEU1 can be expressed within the plasma 

membrane or within intracellular compartments such as lysosomes293 and its 

activity in serum can be accurately measured by fluorescent assay294. Therefore 

it cannot be ruled out that NEU1 may have an influence on overall surface 

sialylation. It may be more accurate therefore, to consider SNA lectin binding 

more holistically as a dynamic interaction of overall activity of sialyltransferases 

and sialidases within the cell and in the extracellular environment.  

Regardless, the observation that overall B-cell sialylation is reduced in patients 

with RA and PRA is an interesting one, and begs the question of whether 

sialyltransferase activity is lower, or perhaps sialidase activity is intrinsically 

higher in these patients. A further possibility is the reduction of expression of a 

particular sialylated protein or a number of proteins found on the surface of cells 

from patients with RA, a line of investigation which warrants further investigation. 

It also possible that these changes to B-cell surface sialylation may be unrelated 

to antibody sialylation, and may be a feature of B-cell autoimmunity in itself. The 

implications of this will be discussed later in this chapter.  

6.2.2 B-cell sialylation increases response to B-cell activation via 

TLR and BCR signalling 

A previous study had shown that stimulation of murine splenic B-cells with anti-

IgM led to a decrease in surface expression of SA, but found that stimulation with 

anti-CD40L had no impact211. Since this study in 1999, there have been no further 

studies to support/challenge these findings, and no further data to suggest how 

sialylation may be controlled in B-cells. The results of this current study have 

shown that B-cell sialylation is generally increased when B-cells are activated. 

This response is particularly pronounced in cells stimulated with TLR ligand CpG 
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compared with cells stimulated by BCR cross-linking plus CD40L co-stimulation, 

in which the upregulation of sialylation still occurs but is lesser. It was also found 

that activated T-cells could induce a level of upregulation of B-cell sialylation 

which was higher than induced by free CD40L but lower than CpG.  

Taking the results of this study into account, it would be tempting to speculate 

that, in general, B-cell activation would lead to upregulated expression of surface 

sialic acid. Increased surface expression may occur as a consequence of 

upregulated sialyltransferase activity or by upregulated expression of particular 

sialylated surface proteins. However, this hypothesis does not account for the 

differences observed in cells stimulated with TLR ligands compared with those 

stimulated via BCR ligation. Furthermore, surface sialylation did not correlate with 

expression of CD69, the selected measure of B-cell activation. This therefore 

suggests that the activation of distinct signalling pathways may determine surface 

sialylation following stimulation.  

ST6Gal1 has been shown to be associated with increased survival in cancer cells 

and overexpression is associated with invasiveness, metastasis and 

chemoresistance197,203. Taking this into account, it could be hypothesised that the 

increase in sialylation induced by TLR9 stimulation by CpG could be a 

mechanism to promote B-cell survival. Interestingly, a previous study found that 

when cells were stimulated with anti-IgM alone, it induced mitochondrial 

dysfunction and reduced cell viability compared with cells stimulated with CpG or 

CpG plus anti-IgM295. Therefore, differences in regulation of sialylation could be 

attributed to differences in metabolic shifts induced by TLR or BCR signalling, 

with increased sialylation potentially contributing to preserved B-cell viability in 

CpG-stimulated cells. Another study has found that BCR recognition of antigens 

which also contain TLR9 ligands leads to an initially strong proliferation response, 

followed by a period of cell cycle arrest and apoptosis296, which could support the 

hypothesis that this early upregulation of sialylation is a B-cell survival 

mechanism and also suggests it may be associated with proliferation.  

TD antigens, which require a second signal from T-cells in order to fully activate 

B-cells, induce a period of proliferation and antibody production in short-lived 

ASCs, as well as triggering germinal centre formation and the generation of long-

lived plasma and memory cells. It may be hypothesised that the dampened 
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increase in sialylation in anti-IgM/G and CD40L stimulated cells, could promote 

germinal centre formation. However, sialylation has been found to be required for 

GC formation in ST6Gal1 knockout mice studies185. Taken together these results 

suggest that ST6Gal1 and α2,6- sialylation are important for efficient B-cell 

function, and α2,6- sialylation is tightly regulated in activated cells to promote 

effector function dependent on the type of stimulus received.  

6.2.3 B-cells from patients with RA are unresponsive to certain 

stimuli 

Despite previous studies showing that cells from patients with ERA have lower 

B-cell surface sialylation235, no studies have explored sialylation in activated cells 

versus “resting” cells in patients with RA and healthy donors. In this study it was 

found that B-cells from patients with RA did not upregulate sialylation in response 

to stimulation with TLR ligands, neither did cells from patients with PRA. This 

suggested an intrinsic mechanism related to autoimmunity which inhibits the TLR 

response.  

The differences in response to F(ab’)2 and CD40L between cells from patients 

with RA/PRA and healthy donors is less clear cut. Cells from patients with PRA 

showed a comparable upregulation of sialylation to healthy donor cells, however 

there was generally very little alteration in sialylation in cells from patients with 

RA. This suggested that increased sialylation in response to BCR ligation and co-

stimulation may be preserved in PRA but lost as disease progresses to 

symptomatic inflammation – suggesting this may be more of a feature of chronic 

inflammation rather than autoimmunity. Loss of response to BCR ligation and co-

stimulation may also contribute to the development of joint inflammation during 

the pre-RA stage.  

Studies have suggested that markers of activation are increased in peripheral 

blood B-cells in RA, suggesting these cells have a more “active” phenotype at 

baseline297. It could be hypothesised that these cells may require a higher dose 

of stimuli to overcome an increased threshold for activation, potentially 

accounting for some of the observed differences in response to different stimuli 

between cells from healthy donors and patients from RA. The results of this study 

showed that expression of CD69 was increased to a similar degree in HD and 

ERA B-cells in response to stimulation with F(ab’)2 and CD40L, however, it was 
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slightly less in cells from patients with ERA than in healthy cells in response to 

TLR ligands.  

In systemic lupus erythematosus (SLE), it has been found that there is a defective 

response to TLR9 ligand CpG, characterised by reduced upregulation of 

activation markers and impaired cytokine production298. This is particularly 

significant in SLE, as autoreactive B-cells mount a response to double stranded 

DNAs (dsDNAs)299, which are ligands for TLR9. It is also thought that TLR9 

activation is a peripheral checkpoint to prevent autoimmunity296, and the lack of 

response to TLR9 in SLE may lead to the development and persistence of anti-

dsDNA antibody producing B-cells298. Although SLE and RA share certain 

similarities, this lack of response to CpG has not yet been reported in RA B-cells. 

The findings of the current study showed that expression of CD69 following 

activation with CpG was impaired in cells from patients with ERA and this was 

even more pronounced in cells from patients with PRA. It is interesting to 

speculate that there may be a shared mechanism of autoimmunity which involves 

impaired TLR9 responses. It would be interesting to investigate this on a wider 

scale in a larger cohort of patients with ERA and PRA to confirm these findings.  

Despite their mechanistic similarities, RA and SLE have widely different disease 

phenotypes, and it would be of value to examine the differences in response to 

TLR9 antigens which may lead to development of SLE in some individuals and 

RA in others, likely due to a combination of genetic and environmental factors 

which take part in the “multi-hit hypothesis” of autoimmune diseases. It would 

interesting to study B-cells from patients with SLE and compare response to 

TLR9 ligands in terms of changes to sialylation. Since IgG-Fc sialylation has also 

been found to be reduced in SLE300, it would be tempting to speculate that these 

cells would also have impaired upregulation of sialylation following activation. 

Furthermore, in one study, CpG stimulation was found to increase IgG1 Fc 

galactosylation, which in turn can lead to increased sialylation233, further 

supporting a role for TLR9, and increased sialylation in protecting against the 

development of autoimmunity. 

Another interesting finding in this study was that activated T-cells from patients 

with ERA did not lead to upregulated B-cell sialylation, as was the finding in 

healthy cells. Since lymphocytes in RA can be considered to be in a more “active” 
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state at baseline, it is possible that the T-cells from patients with RA were not 

sufficiently activated, resulting in a lack of response in B-cells. However, the lack 

of response in B-cells is in agreement with earlier results which showed that 

despite a similar level of activation being achieved in healthy donor and ERA B-

cells stimulated with CD40L, sialylation was much lower in cells from patients with 

ERA – suggesting a potential B-cell intrinsic mechanism which prevents 

upregulated sialylation upon activation. 

6.2.4 Gene expression and sialylation 

Despite the extensive study of the impact of α2,6-sialylation in a number of 

pathological contexts, little is known about what determines the extent of cell 

surface or secreted protein sialylation. α2,6-sialylation is known to be mediated 

by the enzyme ST6Gal1163 however, the regulation of this enzyme in B-cells in 

healthy individuals and in those with autoimmune conditions is not well 

understood. NEU1 is one of 5 neuraminidase enzymes expressed in human cells, 

which removes SA from glycan chains. Regulation of NEU1 is also poorly 

understood. The results of the current study showed that NEU1 mRNA was 

decreased when cells were activated, particularly with CpG, concurrent with a 

strong upregulation of surface sialylation. ST6Gal1 however, was also 

downregulated in these cells, suggesting the relationship between ST6Gal1 

mRNA and cell sialylation may be more nuanced than a direct correlation 

between expression and surface sialylation.  

NEU1 is abundantly expressed by B-cells and is found in the plasma membrane 

as well as in lysosomes293. It was hypothesised that decreased expression of 

NEU1 could increase surface SA expression due to less cleavage of SA from 

glycan chains. However, there may also be other, cell extrinsic factors which can 

influence cell surface sialylation - such as soluble neuraminidases. Interestingly, 

a study has found that activation of cells via TLR4 leads to NEU1 relocation to 

the cell surface and desialylation of TLR4 which in turn activates the receptor301 

– suggesting a potential role for NEU1 during cell activation. Furthermore, 

contrary to the results of the current study, NEU1 has been found to be 

upregulated upon activation in several other cell types, including T-cells and 

monocytes293. Despite this, given the current evidence, downregulating NEU1 

cannot be ruled out as a mechanism for increased B-cell sialylation upon 
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activation. Especially when the relationship between ST6Gal1 mRNA expression 

and surface sialylation is also considered.  

It is somewhat surprising that ST6Gal1 mRNA expression was also found to be 

reduced in CpG activated cells, despite the robust increase in sialylation of 

surface proteins, and suggested that the relationship between the two outputs 

was more complex than initially anticipated. There are a number of factors which 

may explain this discordance, for example ST6Gal1 activity may have been 

increased, perhaps by changing expression of a limiting factor, without a 

corresponding increase in gene expression – however direct measurement of 

enzyme activity would be required to test this hypothesis. Since gene expression 

was only measured at specific time-points there is also a chance that the true 

kinetics of the response may have been clearer outside of the time-points which 

were measured here. Since ST6Gal1 expression also decreased in unstimulated 

B-cells over 48 hrs, another potential hypothesis could be that ST6Gal1 

expression does not play an important role in deciding cell surface sialylation. 

Instead, surface SA may be determined by sialidase activity and cell-extrinsic 

factors. Previously it has been found that in mice with B-cell specific ST6Gal1 

knockdown, IgM molecules were still sialylated – indicating B-cell extrinsic 

measures of protein sialylation exist, thought to be driven by ST6Gal1 released 

from hepatocytes during the acute phase response283. However, another study 

found that serum ST6Gal1 had an effect on soluble proteins only, and not on 

surface proteins166. 

The results of this study identify a potential link between B-cell activation and 

sialyltransferase/sialidase enzyme mRNA expression. There are some other 

proposed mechanisms of ST6Gal1 regulation, with several studies finding that 

ST6Gal1 expression is influenced by hormones. Both androgens206 and 

oestrogen exposure led to increased expression of ST6Gal1, as well as the latter 

leading to an increase in IgG-Fc sialylation234. Some further evidence suggests 

that ST6Gal1 activity may be determined by the generation of the SA substrate 

N-Acetyl-D-mannosamine (ManNAc) - increased flux in sialic acid metabolism led 

to increased sialylation of certain glycoproteins302. It was also shown in pancreatic 

cancer, that high fructose in the extracellular environment led to an increase in 

generation of ManNAc and increased expression of ST6Gal1207. This evidence 

further supports a role of cell metabolism in changes to sialylation, however both 
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of these studies describe increased expression of ST6Gal1 leading to increased 

cell sialylation207,302. Taken together with the results of this study, this suggests 

that regulation of NEU1 may be more important in determining B-cell surface 

sialylation in the case of B-cell activation. Further study of both NEU1 and 

ST6Gal1 and their impact on cell signalling pathways and B-cell function would 

be of interest, and would likely add to the understanding of the role of each 

enzyme in determining overall sialylation. 

6.2.5 B-cell sialylation in response to cytokines 

Considering the important role of cytokines in driving inflammation in RA, the 

potential impact of exposure to cytokines on B-cell sialylation was studied. 

Notably, in vitro exposure of B-cells to TNF led to decreased sialylation in cells 

from healthy donors but not patients with ERA, and IL-6 led to increased 

sialylation at lower doses in B-cells from healthy donors, but required a much 

higher dose to upregulate sialylation in B-cells from patients with RA. IL-4 was 

also found to increase sialylation in B-cells from healthy donors and from patients 

with PRA, but not ERA, and IL-17 led to a decrease in B-cell sialylation in lower 

doses in patients with ERA and healthy donors. 

A previous study of the impact of cytokines on IgG1 galactosylation showed that 

exposure to IL-21 led to an increase in galactosylation, but exposure to TNF, IL-

6, IL-4 or IL-17 had no significant effect233. However, another previous study 

showed that in murine B-cells, exposure to IL-21 and IL-22 produced by Th17 

cells led to decreased expression of ST6Gal1 and reduced IgG sialylation235. 

Taken together, these results suggest that cytokines may have varied impacts on 

B-cells depending on other environmental or phenotypic factors, or may have 

specific effects on different isoforms of IgG. It is also difficult to determine from 

these studies whether reduced IgG sialylation is induced by exposure to these 

cytokines in vivo or if there are other instigating factors at work. Neither study 

considered the impact of these cytokines on B-cell surface sialylation. The results 

of the current study found that IL-17 could decrease B-cell surface sialylation, 

however, the impact of IL-21 and 22 on surface sialylation was not investigated.  

Downregulated sialylation induced by TNF in peripheral memory and naïve B-

cells ex vivo has interesting implications for the mechanism of decreased 

sialylation in peripheral B-cells from patients with RA – considering TNF is known 
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to be a key player in driving RA pathogenesis and is increased in the serum in 

RA63. It was hypothesised that TNF exposure may contribute to reduced B-cell 

sialylation in RA, possibly in combination with other factors. B-cells produce TNF 

upon activation, and there is some evidence that it may act as an autocrine 

growth factor, stimulating expansion of activated cells274. Another result of the 

current study showed that decreased sialylation led to reduced B-cell activation, 

which could suggest that downregulation of sialylation in B-cells exposed to TNF 

could form part of a negative feedback loop to prevent over-activation. This could 

be supported by a study which found that exposure TNF led to decreased 

response to TLR4 stimulation in murine B-cells303.  

TNF and IL-6 are known to be key players in driving pathogenesis in RA, and 

exert similar effects in terms of general immune cell activation63. Therefore, the 

observation that low doses of IL-6 led to increased B-cell sialylation was 

interesting. However, in B-cells TNF and IL-6 signal via different pathways – 

MAPK/JNK and JAK/STAT respectively73, which may have opposing effects on 

B-cell sialylation. In addition, IL-6 is able to signal via surface bound receptor, as 

well as soluble receptors which associate with gp130 on the cell surface304. IL-6 

classical signalling via membrane bound receptors has been associated with anti-

inflammatory effects, whereas trans signalling via soluble IL-6R has been shown 

to promote pro-inflammatory activity305. IL-6 signalling and its role in anti/pro-

inflammatory activity depends on a dynamic interaction between both membrane 

and soluble receptor and ligand concentration306, making its true effects in vivo 

difficult to replicate in in vitro studies.  

Further to this, IL-6 mediates the acute phase response in the liver. Part of the 

acute phase response involves the secretion of ST6Gal1 from hepatocytes, 

thought to be due to increased demand for sialylated proteins283. It could 

therefore be hypothesised that the mechanisms of inflammation induced by IL-6 

could promote upregulated sialylation. It could be speculated that the lack of 

response to TNF and IL-6 in cells from patients with RA may be due to increased 

activation thresholds induced by chronic exposure. This is supported by the 

finding that higher doses of IL-6 were able to induce an increase in sialylation 

cells from patients with RA. Despite the decrease in sialylation observed in cells 

exposed to TNF, when cells primed with TNF were differentiated to plasmablasts 

and plasma cells, sialylation was not downregulated compared with TNF-naïve 
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cells. However, IL-6 exposure pre-differentiation, led to increased sialylation in 

plasma cells. It could be hypothesised that the impact of TNF in B-cells is 

transient, or only relevant in naïve or memory cells, but the impact of IL-6 

exposure is sustained, however these results require further validation in a larger 

cohort. Overall, these results further suggest that a balance of factors are likely 

to form the picture of B-cell surface sialylation, and that the decrease in sialylation 

in RA may not be attributable to just one factor alone. 

Despite previous results showing some promising findings in Th17 cytokines and 

the regulation of sialylation, only a mild change in sialylation was observed when 

B-cells were exposed to IL-17. However, in this case only IL-17A was tested, 

whereas previous studies showed IL-21 and IL-22 to have the greatest impact on 

antibody sialylation233,235, but did not agree on whether exposure increased or 

decreased Ab sialylation. The role of IL-17 in RA is less well defined than that of 

TNF and IL-6, and treatment of RA with anti-IL-17 therapies has been shown to 

be less effective than anti-IL-6 and anti-TNF in clinical trials307. However, 

preclinical studies suggest that perhaps anti-IL-17 therapy may prove more 

beneficial in patients with pre-RA or early RA235. More study may be needed 

therefore, to determine the exact role of Th17 cytokines in RA, in order to further 

understand their contribution to autoimmunity, and sialylation in particular. 

Although IL-4 is not usually associated with pathology in RA, it plays an important 

role in driving B-cell proliferation308. The finding that exposure to IL-4 led to 

increased sialylation in cells from healthy donors and from patients with PRA, but 

not ERA was interesting, and further suggests that increased sialylation is 

associated with B-cell proliferation and survival, as discussed previously. The 

lack of response in cells from patients with RA could suggest that a number of 

pathways are dysregulated in these cells. It may indicate that there is a lack of 

response to IL-4, preventing upregulated sialylation and an increase in 

proliferation. However, this cannot be confirmed by current results as proliferation 

was not studied. Another possible explanation is a normal response to IL-4, but 

a lack of upregulated sialylation, further indicating disrupted pathways of 

sialylation in RA. Further study of B-cell proliferation and activation in response 

to IL-4 would likely further elucidate this mechanism of dysregulated response. 
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6.2.6 Serum neuraminidase is increased in patients with RA 

Neu activity was detected in serum samples from both healthy donors and 

patients with ERA, and, interestingly, it was found that there was increased 

activity in serum from patients with ERA. It was also found that exposure to ERA 

serum led to marginally reduced B-cell sialylation compared with exposure to 

healthy donor serum, an effect which was amplified when cells were activated. In 

activated B-cells exposed to serum from patients with ERA, sialylation was lower 

than in those exposed to HD serum and cells expressed less CD69, suggesting 

that desialylation, may contribute to the lack of upregulated sialylation and 

reduced activation observed in B-cells from patients with ERA. It was also found 

that when B-cells from healthy donors were exposed to serum from patients with 

ERA during the initial activation phase of differentiation, sialylation was 

decreased in differentiated plasmablasts and plasma cells, suggesting that 

exposure to serum factors in RA may prime cells for reduced expression of SA in 

differentiated cells. Increased serum Neu has previously been linked to 

inflammation, with increased serum levels in patients with type II diabetes mellitus 

who develop glomerular nephritis compared with those without nephritis285. It has 

also been found to be increased in the serum of patients with several cancers284. 

However, previous study of Neu activity in the serum of patients with RA has not 

been identified. 

The potential contribution of serum neuraminidase to reduced B-cell sialylation in 

RA is interesting, and suggests a potential mechanism for reduced sialylation 

across B-cell subtypes. The paper which links serum Neu to glomerular nephritis 

suggests that there was a strong association between increased serum 

neuraminidase activity and increased serum and urine SA, suggesting its release 

from proteins285. In studies of cancer, increased serum Neu is implicated in 

removing SA from the surface of cancer cells, and increasing invasiveness and 

promoting cancer progression284. The source of increased Neu in serum is 

unclear, though may possibly be shed from the cell surface in the presence of 

gangliosides284. Despite finding that serum Neu activity was increased in patients 

with ERA, when cells from healthy donors were initially exposed to serum in vitro, 

there was only a marginal difference in sialylation between cells exposed to 

serum from patients with ERA versus serum from healthy donors. However, when 

cells were then activated, decreased sialylation in cells exposed to serum from 
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patients with ERA was apparent, and the activation potential of these cells was 

also noticeably lower. Therefore it may be hypothesised that there are additional 

factors in RA serum which may contribute to impaired upregulation of surface SA 

and decreased cell activation. Without taking these other potential factors into 

consideration, there are potential implications here for increased serum 

neuraminidase as a contributing factor to drive inflammation or autoimmunity in 

RA. Measuring serum neuraminidase activity in patients with other, similar 

autoimmune conditions, as well as inflammatory and non-inflammatory arthritic 

conditions would be useful in determining if serum Neu activity may have potential 

as a biomarker to detect inflammation/autoimmunity.  

6.2.7 Consequences of reduced sialylation in B-cells 

The initial finding that exposure to serum in culture leads to dramatically reduced 

B-cell sialylation was an unexpected observation. As was the finding that serum 

exposure also led to decreased B-cell activation. Initially it was hypothesised that 

decreased sialylation would lead to an increase in B-cell activation, due to the 

removal of the inhibitory negative charge of sialic acids. These two results 

combined challenged this hypothesis and suggested that reduced sialylation, or 

another factor present in serum reduced B-cell activation potential. To investigate 

this new hypothesis, the direct effect of reduced sialylation on B-cell activation 

was measured by treating cells with neuraminidase, and it was found that Neu 

treatment led to decreased activation potential when cells were stimulated with 

CpG or with BCR crosslinking plus CD40L co-stimulation. It was also found that 

pre-treating with Neu before B-cells were differentiated led to increased 

production of IgM in plasmablasts and plasma cells, which may indicate a lack of 

class-switching during the differentiation process. Sialylation was also loosely 

related to production of IgM in plasma cells, with a weakly positive correlation 

between sialylation and IgM concentration in culture supernatants.  

The finding that reduced sialylation led to impaired activation implied that surface 

sialylation is important for effective signalling via both TLR and BCR signalling 

pathways. Lectin receptor CD22 is an important regulator of BCR signalling, the 

ligand for which is α2,6-SA. Following BCR activation, CD22 is phosphorylated 

and attenuates calcium signalling within the cell via SHP-1176. Generally, CD22 

molecules on the cell surface are thought to exist as multimers, with each 
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molecule ligated by SA on neighbouring molecules183. This method of cis 

signalling limits the availability of CD22 for trans signalling176. Studies have 

shown however, that trans signalling of CD22 provides a robust inhibitory signal, 

and further increases the threshold for B-cell activation180. It was therefore 

hypothesised, that removal of sialic acid from the cell surface frees CD22 for trans 

signalling, and this leads to downregulated B-cell activation, as observed in this 

study (summarised in Figure 6.1). B-cells also express siglec-10 which can bind 

α2,6-SA, but also has affinity for α2,3-SA309. The influences of cis and trans ligand 

binding in siglec-10 signalling are less clear but would be interesting to investigate 

in this context, as it could be hypothesised that both CD22 and siglec-10 

signalling may influence B-cell signalling by binding ligands in trans. 

Decreased surface sialylation also reduced B-cell responses to TLR9 signalling, 

however the mechanism of this reduction is less clear. Given the link between 

defective CD22 signalling and autoimmunity, it could be hypothesised that 

reduced B-cell sialylation may lead to increased inhibition of B-cell activation via 

CD22, and that this may lead to the survival of autoimmune B-cells, normally 

regulated via TLR signalling. In mice, it has been shown that both CD22 and 

Siglec-G290 (murine analogue of Siglec-10) could inhibit TLR signalling, with 

CD22-/- cells showing hyperactivation in response to TLR3, 4 and 9 ligands which 

was linked to the induction of suppressors of cytokine signalling (SOCS) SOCS1 

and SOCS3189. It has also been shown that targeting CD22 with a therapeutic 

antibody can prevent B-cell activation by TLR7 ligands, which may help to 

maintain tolerance to T-independent antigens in autoimmunity310. Although the 

exact mechanism of Siglec-G inhibition of TLR signalling is not yet clear, it is 

thought that CD22 may be recycled between the cell surface and endosomes, 

which may account for the inhibition of endosomal TLRs such as TLR9311. 

However, previously it has been shown that CD22 ligands are not directly 

involved in CD22 regulation of TLR signalling, as ST6Gal1-/- mice showed normal 

responses to CpG312. Taken together, this evidence suggests a potential role for 

CD22 in regulating TLR activation, however the increased inhibition of TLR9 

signalling in desialylated cells may occur via a mechanism which is distinct from 

CD22 trans signalling.
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Figure 6.1 CD22 signalling in cis and trans inhibits B-cell activation via the BCR 

Key events in CD22 inhibition of BCR signalling are depicted. (A) Under normal conditions of cell sialylation, CD22 molecules on the cell surface form 
multimers which are ligated by α2,6 sialic acid on neighbouring molecules. (B) When the BCR is crosslinked by antigen binding, kinase Syk is recruited 
and phosphorylates CD79 ITAM and begins the cascade of kinase activation which leads to B-cell activation. Kinase Lyn is also recruited to CD22 ITIM 
which recruits SHP-1 and this leads to inhibition of the BCR signalling cascade. (C) When surface sialic acid molecules are removed, CD22 molecules 
exist in an open confirmation and are available to bind sialylated ligands. (D) Desialylated CD22 molecules can bind α2,6- sialic acid on other cells or on 
antigens which may also engage the BCR. This triggers a stronger inhibitory signal than CD22 signalling in a cis manner. The exact mechanism of 
increased inhibition is currently unknown. This figure was created using templates from Servier Medical Art which are licensed under a Creative Commons 
Attribution 3.0 Unported License; https://smart.servier.com.
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6.2.8 Changes to sialylation during B-cell differentiation 

Changes to sialylation which occur during B-cell differentiation to plasma cells 

were previously unknown. The results of this study found that B-cell sialylation 

initially increased greatly during activation, then decreased during differentiation 

to plasmablasts and further decreased during terminal differentiation to plasma 

cells. It was observed previously that sialylation was lower in plasmablasts 

isolated from peripheral blood compared with memory and naïve B-cells 

(unreported observations). Accordingly, expression of NEU1 and ST6Gal1 

mRNA also tended to increase as cells differentiated to plasmablasts and plasma 

cells, in line with previously reported results which suggested that surface 

sialylation and expression of both NEU1 and ST6Gal1 are inversely related. 

The initial increase in sialylation which was observed following the first three days 

of exposure to a strong activation stimuli is in line with our previous results which 

showed that sialylation increased in B-cells from healthy donors when activated. 

This further indicated that upregulated sialylation is important during activation 

and may promote proliferation and survival to allow for B-cell differentiation. The 

corresponding decrease in sialylation which follows as cells differentiate to 

plasmablasts and plasma cells could be due to a number of factors. Previously, 

the results of this study found that a decrease in cell sialylation was associated 

with reduced activation, associated with CD22 trans signalling. However, these 

tests were performed in naïve and memory B-cells and the baseline set-point for 

plasmablast or plasma cell sialylation may be much lower than in naïve or 

memory cells. Further to this, expression of CD22 is known to increase in 

activated B-cells then decline as cells differentiate to plasma cells313, suggesting 

less of an influence for CD22 and surface sialylation in determining activation in 

terminally differentiated ASCs. Decreased expression of CD22 in plasma cells 

could also contribute to reduced expression of surface sialylation, as the molecule 

itself contains SA. 

As well as changing surface marker expression, ASCs are phenotypically distinct 

from naïve and memory B-cells, and have altered functional requirements. They 

are much larger in size and have to adapt to a greater secretory load by 
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upregulating genes which can counteract endoplasmic reticulum stress259. 

Plasma cells also exit the cell cycle and become non-dividing cells314. This may 

be another indication that increased sialylation is important in B-cells during the 

proliferative stage of differentiation, and is then downregulated as cells move 

towards a non-dividing phenotype. 

As mentioned previously, the increase in expression of both NEU1 and ST6Gal1 

during differentiation whilst sialylation decreased, was in line with the previous 

results of this study. A similar upregulation of NEU1 expression was previously 

observed in differentiating monocytes, and its expression was associated with 

macrophage cytokine production and phagocytic capacities315. It could be 

hypothesised increased NEU1 expression may also be important during B-cell 

differentiation to plasma cells. The increase in ST6Gal1 could be a reflection of 

increased requirement for sialylation of proteins for secretion, particularly the 

greatly increased production and secretion of IgG antibodies, which are a known 

target of ST6Gal1 activity212. It is interesting to note that ST6Gal1 expression in 

differentiated plasma cells from patients with ERA was slightly higher than in cells 

from healthy donors. It was initially hypothesised that ST6Gal1 expression would 

be reduced in these cells – as a reflection of reduced antibody sialylation which 

is a well-established feature of RA227. However, since cells from healthy donors 

and patients with ERA were differentiated under identical condition in vitro, this 

may be an indication that the environment in which cells differentiate has an 

important impact on ST6Gal1 activity and sialylation of secreted antibodies, 

rather than an intrinsic difference in ST6Gal1 activity. Taken together, these 

results highlight the need for further investigation in this area, paying particular 

attention to the relationship between NEU1 and ST6Gal1 mRNA expression and 

B-cell surface sialylation. Further study of the relationship between antibody 

sialylation and events which may alter expression and activity of ST6Gal1 would 

also be of great benefit, and increase the potential for development of 

therapeutics which may be able to target events which alter sialylation and 

enhance autoantibody pathogenicity. 
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6.2.9 Reduced sialylation may lead to improved response to B-cell 

depletion therapy 

There is a large body of research in oncology which suggests that sialylation 

status of tumour cells has an important influence on response to chemotherapies. 

The majority of studies find that increased tumour cell surface sialylation 

promotes chemoresistance197,198,201,203,287, and may be a strategy utilised by 

cancerous cells to avoid detection by immune cells179,286. It was therefore 

hypothesised that cell-surface sialylation may also be important in the treatment 

of autoimmune diseases. B-cell depletion by rituximab is a commonly used 

treatment for RA, therefore the impact of B-cell sialylation on response to 

rituximab was investigated. It was found that cells with reduced sialylation were 

more susceptible to death in an in vitro rituximab assay. 

There are a number of factors which may contribute to this finding. When B-cells 

were treated with neuraminidase, a CD20 antibody (used as a surrogate for 

rituximab) could more easily bind to the cell surface. SAs often function to block 

receptor-ligand interactions due to their negative charge, and it would appear that 

removal of this inhibition and charge allows for easier binding to CD20. There are 

several mechanisms which are thought to contribute to rituximab-induced B-cell 

depletion, which include opsonisation - leading to complement-mediated lysis 

and phagocytosis, and by directly inducing apoptosis in B-cells245. However, the 

mechanism by which rituximab can directly induce B-cell death by binding to 

CD20 is not well defined, and has not been convincingly shown to occur in vivo316. 

Reduced sialylation could potentially have a bearing on all of these mechanisms, 

by facilitating interactions between cells and by increasing binding of the drug to 

the cell surface.  

The findings of the current study have potentially important implications for 

prediction of response to therapy and for targeted delivery of neuraminidase as 

a potential therapeutic adjuvant. Any potential consideration of neuraminidase as 

a means of increasing response would have to be carefully targeted, considering 

the wide-ranging roles that sialylation plays in different cells and tissue types. 

One study describes targeted delivery of a recombinant sialidase conjugated to 

an antibody targeting HER2+ breast cancer, which enhanced ADCC during in 

vitro experiments292. This line of investigation may prove to be fruitful in both 
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cancer and autoimmunity therapeutics. Alternatively, work has already been 

carried out to investigate the use of small molecule inhibitors of SA metabolism, 

which have proven effective in early in vitro studies317. 

An interesting next step would be to investigate the potential benefits of 

measuring sialylation as a predictor of response to therapy. It would be a 

challenging task to measure the impact on initial response, since rituximab 

infusions commonly led to near total B-cell depletion, to the point where B-cells 

are undetectable by conventional flow cytometry253. It may, however, be useful to 

investigate sialylation in patients who do not achieve complete depletion in the 

first instance. A pressing issue with rituximab treatment is the high rate of disease 

relapse, particularly when B-cells repopulate following depletion318. It would be 

interesting to study whether baseline sialylation has an influence on relapse rates, 

or whether sialylation is altered when B-cells repopulate and if this may have a 

bearing on disease relapse.   
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6.3 Future Direction 

Much of the work in this thesis has presented opportunities for interesting future 

studies. The initial work has provided preliminary data that could form the basis 

of three key lines of investigation which are detailed below. 

6.3.1 Regulation of sialylation in B-cells in health and in 

autoimmunity 

Firstly, the mechanisms which regulate sialylation in B-cells from healthy donors 

warrant further investigation. The results of this study have shown that sialylation 

is increased in response to activation, particularly via TLR stimulation. It is 

important to next investigate how sialylation is altered – i.e. are naturally 

sialylated proteins upregulated and if so which ones, or is sialylation of particular 

surface proteins increased. To do this, B-cell surface molecules which are ligands 

for ST6Gal1 would have to be identified, and their expression monitored, as well 

as investigating sialic acid content of particular surface proteins – possibly 

utilising mass spectrometry to do so. Throughout this study it was hypothesised 

that sialylation was upregulated to promote proliferation and cell-survival, and it 

would be useful to confirm this experimentally, potentially by treating cells with 

neuraminidase following activation.  

Further to this, investigating which signalling molecules and transcription factors 

are involved in regulating sialylation would be of great interest. Studying 

molecules in the signalling pathways utilised by the BCR and TLRs using small 

molecule inhibitors may of benefit in identifying potential candidates for further 

study. As well as this, the involvement of gene regulation of ST6Gal1 and surface 

sialylation was not clear in this study, warranting further investigation. It would be 

beneficial to initially measure expression of ST6Gal1 protein in activated and 

resting cells, and determining how this relates to surface sialylation, and mRNA 

expression of ST6Gal1. 

It was found that in cells from patients with RA, TLR stimulation did not induce 

upregulation of sialylation, whereas in some cases, stimulation via the BCR was 

able to induce a degree of upregulation similar to healthy donor cells. It would be 

pertinent to examine the link between autoimmunity and TLR response in RA, 

given the association between SLE and impaired TLR response. Firstly, it would 
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be interesting to measure other indicators of B-cell activation in RA cells in 

response to TLR stimuli such as cytokine production, antibody production and 

proliferation. Next it would be important to repeat such experiments in cells from 

patients with other autoimmune diseases to determine if reduced response to 

TLR stimuli, and lack of upregulation of SA may be a shared mechanism of 

autoimmunity.  

6.3.2 Serum Neuraminidase changes 

Secondly, further investigation of serum neuraminidase activity would likely be of 

great benefit. Validating preliminary data described in this study in a much larger 

cohort of patients would be a logical first step, as would the inclusion of samples 

from patients in the pre-RA “at-risk” category and patients with other autoimmune 

diseases such as SLE and Psoriatic Arthritis. Once this data has been validated 

on a larger scale it would be interesting to study serum neuraminidase in relation 

to disease activity in RA, to determine any potential correlation. 

Further to these studies, in light of this data, it would be interesting to study the 

sialylation of other immune cells in RA in relation to cells from healthy donors. 

Sialylation in T-cells and monocytes from peripheral blood could be measured in 

the first instance, to determine if other cell types may be impacted by increased 

serum neuraminidase. It would also be pertinent to study the relationship between 

neuraminidase activity and B-cell sialylation in patients with RA. In addition, since 

neuraminidase cleaves sialic acid from glycoprotein chains, it may also be useful 

to study free sialic acid in the serum, as another potential marker of increased 

neuraminidase activity. 

To further investigate the consequences of reduced sialylation on B-cell function, 

it is important to establish the mechanisms which led to greater inhibition of B-

cell activation when cells are desialylated. It was hypothesised that CD22 

signalling in a trans manner may be responsible for the increased inhibition, 

however this remains to be confirmed experimentally. To do so, utilising CD22-

specific knockouts would provide further confirmation of this, potentially 

combined with the use of sialylated ligands which also bind the BCR. To 

determine the link between TLR signalling and reduced sialylation may be a more 

challenging task, but may be investigated through the use of tracking CD22 

recycling to endosomes, and the influence of surface sialic acid on this process. 
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Exploring further consequences for B-cell function of reduced sialylation would 

also be of benefit, such as measuring cytokine production, proliferation and 

possibly interactions with other cells.  

6.3.3 Impact of sialylation on therapies 

Lastly, there is scope to investigate the potential use of sialylation status as a 

marker of response to rituximab therapy. Initial work in this area could involve a 

pilot study in rituximab-naïve patients with RA, with sialylation measured at 

baseline prior to treatment. Patients would then be followed up after their first 

rituximab infusion, and efficacy of B-cell depletion measured by flow cytometry to 

assess any correlation between B-cell sialylation and poor initial response to 

rituximab depletion. It may also be interesting to investigate the relationship 

between serum Neu activity and rituximab response in these patients. 

Investigating the impact of sialylation on other therapies used to treat RA could 

also prove interesting. Drug candidates could be selected based on their 

mechanism of action, targeting drugs such as ipilimumab which bind the T-cell 

surface.  

Additional study of the use of neuraminidase as a targeted therapeutic adjuvant 

is another interesting prospect with potential to prove useful in a number of clinical 

situations. In the case of B-cell depletion therapy, the delivery of neuraminidase 

with the drug could potentially increase binding and increase efficacy of killing by 

phagocytosis and complement lysis.   
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6.4  Concluding Remarks 

Studying B-cell sialylation is a challenging task. The phenotypic and functional 

diversity of B-cell subsets, as well as the difficulties of studying sialylation itself 

can often lead to data which is complicated to interpret. However, the findings 

presented here have some potentially exciting implications for the study of B-cell 

sialylation in the future, along with some interesting implications for the treatment 

of B-cell mediated pathologies. Although this work has made great inroads into 

understanding the complicated picture of the regulation of B-cell sialylation, there 

is much which still remains to be understood.  

Arguably the most important current challenge facing patients with RA, and 

clinicians treating patients with RA, is in establishing a treatment regimen which 

achieves long-lasting disease remission and greatly improves quality of life. The 

issue of non-response to treatment is a most pressing one, and the solutions will 

most likely depend on effective prevention rather than cure, as is the case in 

many pathologies. Therefore, understanding the key events in the process of 

progression from asymptomatic autoimmunity to development of chronic joint 

inflammation in RA could be key to improving outcomes for patients worldwide. 

Without doubt sialylation plays a role in driving autoimmunity, and further 

understanding this role will undeniably assist in planning future areas of 

therapeutic research, and help to identify the most pertinent time for effective 

intervention. 
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