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ABSTRACT 
 

Predicting outdoor sound in uncertain conditions is a difficult task and 

there are limited data and statistical research which enable us to relate 

accurately the variations in the conditions in the propagation path to the 

fluctuations in the received acoustical signal. This research aimed to create better 

understanding of the propagation of uncertainty, using both forward and inverse 

case studies, in varied conditions with widely accepted engineering models, so 

further improvements could be made in our academic understanding and to 

industrial practices.  

The separation of the direction of uncertainty allows for more focus to be 

focused on each given condition. Firstly, the forward problem is approached by 

simplifying the model used and conditions in present, to better understand the 

statistical behaviour across evolving parameter uncertainties. A further study, 

inspired by current acoustical standards, evaluated whether improvements to 

data capture could be made by manipulating the physical way the data was 

obtained, in the presence of varying parameter uncertainties. The inverse 

problem was investigated for a very specific application of small arms fire, yet the 

methodology was expanded to show how powerful computationally cheap 

statistical methods can be used in investigating parameter interactions under 

given uncertainties, while also accurately inverting the desired parameters. 

Investigations have proved successful in characterising, in general and for 

specific scenarios, the foundational uncertainties in outdoor sound propagation. 

Methods have been presented that allow for simple yet powerful study into the 

statistical behaviours of a wide range of outdoor sound propagation problems.  

Characterising uncertain acoustic data using statistical representations serves to 

be extremely beneficial, while a physical two-microphone method is shown to be 

theoretically efficient in negating a large proportion of the uncertainty present, 

while capturing acoustical data known to be useful for source localisation and 

characterisation. It is also shown in which direction research should be 

established in relation to military applications, after showing efficient ways in 

which computational models be applied to invert important parameters from 

readily obtainable data. 

 

 



 

 

 

 
If one is to understand the great mystery, one must study all it’s aspects… 

 

 

 



 

 

 

TABLE OF CONTENTS 

      NONCLEMANTURE  ............................................................................................... i 

 

B   INTRODUCTION  .................................................................................................... 1 

A.I Research objectives  ................................................................................................ 1 

A.II Structure of thesis  ................................................................................................... 2 

A.III Contributions to research  ................................................................................. 3 

 

C   FORWARD-WISE UNCERTAINTY  .................................................................. 5 

B.I Investigating uncertain geometries effect on sound 

propagation in a homogeneous and non-moving 

atmosphere over an impedance ground ................................................ 5 

 

Introduction         6 

Research methods        7 

Model development      7 

   Simulation methods      9 

Results         10 

  Exploring 𝚽 and 𝛔𝐠      10 

  Simulation statistics      11 

  Normality assumption     13 

Conclusions         13 

Appendix A: The effect of frequency range                15 

References         16 

 

B.II Pressure ratio and phase difference in a two-microphone 

system under uncertain outdoor sound propagation 

conditions .................................................................................................................... 17 

 

Introduction         18 

Research methods        19 

  The model       19 

   Propagation of uncertainty     20 



 

 

 

Results         20 

  Sound pressure amplitude ratio    20 

  Phase difference      21 

Conclusions         25 

Appendix A: Table of statistics     26 

References         27 

 

C   INVERSE UNCERTAINTY  ................................................................................. 28 

C.I Outdoor acoustics: Estimation of gunfire over an acoustically 

soft impedance ground in a homogeneous atmosphere  ...... 28 

 

Introduction         29 

Acoustical Methods        29 

  Acoustical Foundations      29 

   Gunshot Evaluation       30 

   Parameter Selection and Observations            31 

Statistical Methods       32 

  Maximum Log-likelihood Estimation (MLE)   32 

  Bayesian Maximum a Posteriori (MAP)   32 

  Computational Error Analysis    33 

Results         33 

  Broadband Analysis       33 

  Octave Filtering        34 

Conclusion          35 

References          35 

 

C.II Pressure ratio and phase difference in a two-microphone 

system under uncertain outdoor sound propagation 

conditions  .................................................................................................................. 36 

 

Introduction         37 

Research methods        38 

  Gun source evaluation     38 

   Acoustical predictions      39 

   Generating observed SPL      40 

Statistical techniques        41 

  Maximum log-likelihood estimation (MLE)   41 



 

 

 

  Semi-Bayesian maximum a Posteriori (MAP)  42 

  Performance metrics      42 

Results        43 

  Inference using broadband data    43 

Visualisation of errors       43 

  Interactions of uncertainties      45 

  Inference using octave band data     47 

  Octave band visualisations      48 

Conclusions          51 

References          51 

 

D   CONCLUSIONS  ................................................................................................... 53 

D.I Key conclusions  ..................................................................................................... 53 

D.II Future works  ............................................................................................................ 55 

D.III Closing remarks ..................................................................................................... 56 

 

E   BIBLIOGRAPHY ................................................................................................... 57 

 



 
 

 

Page | i  

NONCLEMANTURE 

       List of Symbols 

The list of symbols, with units where appropriate, as they appear chronologically. Symbols 
used twice for different parameters, or parameters that have multiple symbols, due to 
variations across different studies are marked with an asterisk (*). 

𝑟  Range between source and receiver   (m) 

𝑧"  Source height*      (m) 

𝑘   Wavenumber       ( – )  

𝑄  Spherical wave reflection co-efficient   ( – ) 

𝑝#  Complex sound pressure     (p) 

𝑝$%&&  Sound pressure (free field)     (p) 

𝑓  Frequency of sound*      (Hz) 

𝑍  Normalised impedance     (Pasm-1) 

Δ𝐿  Excess attenuation      (dB) 

𝜙  Porosity       ( – ) 

𝛼'  Tortuosity       ( – ) 

�̅�  Median pore size      (m2) 

𝜎"  Standard deviation of pore size    (m2) 

𝜌2(𝜔)  Frequency dependent bulk dynamic density  ( – ) 

𝐶7(𝜔)  Bulk complex compressibility of the fluid   ( – ) 

𝜔  Circular frequency*      (Hz) 

𝜂  Dynamic viscosity of air     (Pas) 

𝜌(  Ambient density of air     (Pas) 

𝛾  Ratio of specific heats     ( – ) 

𝑁)%  Pradntl number      ( – ) 
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𝑃(  Ambient atmospheric atmosphere    (Pa) 

𝜎*+   Thermal flow resistivity     (Pasm-2) 

𝜎*  Effective flow resistivity     (Pasm-2) 

𝑧,(𝜔)  Characteristic acoustic impedance    (Pasm-3) 

𝜇  Mean (average)*      ( – ) 

Φ  Ratio of source/receiver height over range   ( – ) 

𝜎  Standard deviation      ( – ) 

𝑠  Skewness       ( – ) 

𝑘"  Kurtosis       ( – ) 

𝑀-  Mode (average)      ( – ) 

𝑀./  Median (average)      ( – ) 

𝑁  Sample size*       ( – ) 

𝜇0???  Average sound pressure amplitude ratio   ( – ) 

𝜇1????  Average phase difference ratio    ( – ) 

Δ  Uncertainty       ( – ) 

𝜔  Frequency of sound*      (Hz) 

𝑠2  Source height*      (m) 

𝑟2  Receiver height      (m) 

𝜖"  Normally distributed error term    (dB) 

ℒ(𝜃|𝑋)  Likelihood function      ( – ) 

ℓ(𝜃|𝑋)  Log-likelihood function     ( – ) 

ℎ"G  Distribution of source heights    (m) 

𝜎*H  Distribution of effective ground impedances  (Pasm-2) 

𝑟∗  Known true range      (m) 

𝜖%  Error between true and simulated range   (m)
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A INTRODUCTION 

A.I    Research objectives 

Acoustics is the branch of physics which deals with sound waves, including 

their production, propagation & effects. The sub-branch of outdoor acoustics deals 

with the propagation of sound in the larger-scales of the outdoor environment. 

This expansion of the environment from smaller acoustic sub-branches gives rise 

to a multitude of influencing parameters, in which uncertainty can appear. This 

causes issues in the prediction, quantification and understanding of acoustics in 

the outdoors, with the knock-on effect of limiting the effectiveness of industrial 

practices in these conditions.  

The objective of this research was to solidify the foundations of uncertainty 

in outdoor sound propagation problems; quantifying and explaining the 

underlying statistics and physics to enhance future research with a strong 

theoretical basis while also hoping to improve related practices. The immediate 

practices were motivated by the needs of the industrial sponsor (DSTL UK). Due to 

the lack of understanding of the fundamental statistical behaviours, various 

assumptions are applied along the narrative of this research, removing some of the 

more complex parameters defined earlier which may, or may not, be influential in 

combination with the presence of uncertainty. The thesis is structured around the 

logical order of the research, with separation into the respective forward or inverse 

statistical methodologies, rather than the chronological order of exploration.  

The first steps in this research were to establish a strong foundation, asking 

how does uncertainty effect outdoor acoustics in the most fundamental form? The 

simplest case considered a 2-D geometry with a non-moving homogenous 

atmosphere present, removing all meteorological parameters that could possibly 

interfere with the acoustical study. This leaves only the geometry of the problem 

with the ground beneath the sound source and the sound receiver. The basic 

acoustical model (excess attenuation) defined the resulting interaction between a 

direct sound ray and a reflective ray from the impedance ground known for its 

ability to characterise the source. Once this case was established, it was asked 

whether slight variations in geometrical patterns propagate forward quantifiable 

statistical behaviours? This was studied over multiple impedance grounds with 

varying acoustical hardness, so results were applicable to many real-life variations 

(Paper I). 
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Once a grasp of the fundamental uncertain nature of acoustics was studied, 

the problem moved from forward to inverse, with how well can parameters be 

inferred in simple but uncertain conditions? Inversion methods are complex, 

usually relying on intricate statistical ability to implement. The aim was to show 

how effective simplistic methods can be. A simple method relying on the 

maximisation of the likelihood function was applied, using both frequentist and 

Bayesian methodologies, to range a small handheld firearm. This source was 

analysed in an anechoic chamber to allow for accurate source data to be simulated. 

The model (excess attenuation) from Paper I was applied in Paper III, while a more 

realistic, but still simplistic, acoustical model (sound pressure level) was employed 

for more detailed investigations in Paper IV. The interactions between 

combinations of known, and unknown, parameters are studied to show the 

interactions present while ranging gunfire. The study also aimed to define these 

statistical methods and their implementations, so they could be applied for any 

acoustical source or initial conditions (Paper III and Paper IV). 

With studies completed in either direction of uncertainty, the question of 

how uncertainty affects simple acoustical parameters was expanded to question 

slightly more complex acoustical output parameters. This led to the question of 

how, using a two-microphone model, uncertainty effected the phase difference 

and absolute sound pressure ratio in the presence of varying parameter 

uncertainties? This used the model (sound pressure level) from Paper IV, with 

additional calculations, combined with the methodology of forward propagation 

in Paper I. Sound level differences are used for acoustical calculations successfully 

at small scales, but specific research with these methods are lacking in outdoor 

scales. Varying impedance grounds and geometries, using the understanding 

developed form earlier studies, were investigated for greater understanding. The 

applicability of the two-microphone model in outdoor sound propagation was also 

investigated for the varying conditions (Paper II).  

A.II    Structure of thesis 

This thesis is structured as interrelated collection of two published journal 

papers, one journal paper currently under review (as of 07 November 2020) and 

one peer-reviewed conference paper. The papers respective chronology is ignored 

and they are divided into two distinct statistical methodologies they embody: 

forward-wise and inverse problems. 

Papers I, II, III and IV were completed within the University of Sheffield 

campus. Paper I and II form Chapter B while Paper III and Paper IV form Chapter 

C collectively. Paper I and Paper II are related by their statistical forward 



 

 

 

Page | 3  

methodologies. Paper IV is the logical progression of the smaller conference (peer-

reviewed) Paper III that was given at the ICSTA 19’.  

Paper I investigates the forward statistical behaviour that relate to using a 

simple acoustical model (excess attenuation) in the presence of uncertain 

geometries over a varied impedance ground in a non-moving homogenous 

atmosphere. 

Paper II also investigates statistical behaviours going forward-wise in the 

presence of uncertain geometries over a varied impedance ground in a non-

moving homogenous atmosphere, yet employs a two-microphone model to 

calculate more complex acoustic outputs (absolute pressure ratio/phase 

difference). 

Paper III shows how a simple acoustical model (excess attenuation) can be 

combined with a simple Bayesian approach (Maximum A Priori) to the inverse 

problem of inferring the unknown range of a small firearm over a vegetative 

impedance ground.  

Paper IV further describes how techniques related to maximisation of the 

likelihood function can be used with a realistic acoustical model (sound pressure 

level) to infer the unknown range of a small firearm, while describing how 

competing uncertainties inside other modelled parameters interact. 

Finishing the thesis is the conclusions chapter. This includes a further 

discussion on the impact of the results of this research. Concluding remarks are 

made about where future study should be focused. A complete bibliography of all 

sources finishes the thesis, collecting referenced literature in the order of their 

appearance in the thesis.  

A.III    Contributions to research 

Papers I–IV were written with multiple co-authors, specifically; Myself (JP), 

Kirill V. Horoshenkov (KH) and Duncan P. Williams (DW). The contributions made 

to each study can be broken down into the six categories; (i) conception & design, 

(ii) planning & implementation, (iii) data collection, (iv) analysis & interpretation, (v) 

writing and (vi) overall responsibility.  Table 1 shows, and acknowledges, where 

each author has made a contribution to any of Papers I–IV using the six defined 

categories. 

 Paper I Paper II Paper III Paper IV 
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Conception & 
Design KH; JP JP; KH JP JP 

Planning & 
Implementation JP; KH JP; KH JP; KH JP 

Data Collection JP JP JP; KH JP; KH 

Analysis & 
Interpretation JP; KH JP; KH JP JP; KH 

Writing JP; KH; 
DW JP; KH JP; KH; 

DW JP; KH 

Overall 
Responsibility  JP JP JP JP 

Table 1: Acknowledgements of contributions made to the papers included in this thesis. 
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B FORWARD-WISE UNCERTAINTY 

B.I    Investigating uncertain geometries effect on sound 
propagation in a homogeneous and non-moving atmosphere 

over an impedance ground 

 

Paper I – J. A. Parry, K. V. Horoshenkov and D. P. Williams. “Investigating uncertain 

geometries effect on sound propagation in a homogeneous and non-moving 

atmosphere over an impedance ground”. Applied Acoustics, 160 (March 2020). 
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a b s t r a c t

Predicting outdoor sound in uncertain conditions is a difficult task and there are limited data which
enable us to relate accurately the variations in the conditions in the propagation path with the fluctua-
tions in the received acoustical signal. This paper investigates, though numerical simulations, the effect of
uncertainties on sound propagation in a homogeneous atmosphere over an impedance ground. A simple
Monte Carlo method is used to understand the effect of uncertainties in the source and receiver positions
on the excess attenuation. The ratio of source/receiver height to the horizontal source/receiver separation
is found to influence strongly the statistical distribution of the resultant excess attenuation spectrum.
Impedance ground and level of uncertainty are found to be influential only for specific statistics while
all samples were found to violate normality. These findings help to increase understanding of the role
of uncertainties in outdoor sound propagation, accuracy of source characterization based on parameter
inversion and at lower computational costs.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Predicting outdoor sound is a complex problem particularly
when there an uncertainty in the parameters involved. Compre-
hensive quantification of uncertainties in relation to outdoor
acoustics remains challenging. One recent paper related to uncer-
tainties in outdoor sound propagation concluded that uncertainties
within the characteristics of the ground and atmosphere dominate
uncertainties in the predicted sound pressure [1]. A subsequent
paper by the same research team found that the impact of uncer-
tainty from the range and source height were equal and that the
temperature gradient was only influential at short ranges and at
high frequencies [2]. Sound levels were found to be more accu-
rately predicted in downwind situations comparted to upwind.
The authors also highlighted the importance balancing the trade-
off point between model complexity & computational effort.

The above work points out to the difficulties in isolating specific
effects leading to outdoor sound measurement uncertainties and
complexity of the interactions between key parameters many of
which are not known. Complex models used in the case of inhomo-
geneous settings (e.g. atmospheric effects) can have better predica-
tion accuracy provided the values of the input parameters are
accurately known [3]. However, there is a lack of data on the sen-
sitivity of these models to some uncertainty in the input parameter
values. In this respect, moving back to simpler models allows for a
clearer understanding of the statistics which describe the uncer-
tainties in predictions for sound propagation in homogenous, and
non-moving, atmosphere but with uncertain source position and
ground conditions. Simpler models are able to accurately predict
impedance of the ground and isolate this effect form the uncer-
tainty in the source geometry.

Prediction of the ground effect on outdoor sound pressure from
a point source at a known position is a reasonably routine matter.
A considerable amount of work has been done to study this effect.
Harriot and Hothersall investigated propagation, using multiple
methods, over an impedance ground in an infinite plane, in a
non-moving homogenous atmosphere, while computational costs
were also considered [4]. The specific geometry where source-
receiver heights where 1 – 4 m across 50 m range at 1 kHz fre-
quency created strong destructive interference between the direct
and reflected waves. Accuracy in results was found to be highest
for combinations of greater source-receiver heights or shorter
source-receive distances. More expansive methods were later
applied by Kruse and Mellert [5]. They used a two-microphone
method to measure errors due to an impedance ground under also
under the assumption of a non-moving homogenous atmosphere.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apacoust.2019.107122&domain=pdf
https://doi.org/10.1016/j.apacoust.2019.107122
mailto:JAParry1@Sheffield.ac.uk
mailto:K.Horoshenkov@     Sheffield.ac.uk
mailto:K.Horoshenkov@     Sheffield.ac.uk
mailto:DPWilliams@dstl.gov.uk
https://doi.org/10.1016/j.apacoust.2019.107122
http://www.sciencedirect.com/science/journal/0003682X
http://www.elsevier.com/locate/apacoust
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For low impedance surfaces, acceptable accuracy was found at fre-
quencies above 100 Hz, while higher flow resistivity grounds
shown use of the predefined geometries may not be recommended
for frequencies below 500 Hz. Although the results in Ref. [5] relate
directly to the problem of sound propagation in the presence of an
impedance ground, this work does not present any statistical data
that can be used to characterise the uncertainty in the excess
attenuation, especially in the case of large variability in the source
position.

In general, the effects of uncertainty in key model parameters
on prediction of outdoor sound propagation and acoustic source
characterisation are greatly understudied. This becomes the
motivation for our study with the primary question of this paper:
How does an uncertainty in geometrical parameters affect the
broadband excess attenuation of sound for a relatively simple
source-receiver geometry? The excess attenuation is an important
parameter which is routinely used to predict the influence of the
ground, topography and meteorological conditions on sound pres-
sure level at the receiver position [3]. Removal of other complexi-
ties to understand the effects will build stronger foundations to
progress further developments for more complex research and
application. Therefore, understanding of the effect of uncertainties
on this parameter is of importance to several applications, which
include environmental noise control, source characterisation and
environmental monitoring.

The purpose of this paper is to study the effect of uncertainty in
the range and source height on the statistical properties of the
excess attenuation spectrum for a range of ground conditions.
We structure the paper in the following manner. Section 2.1 details
the acoustical model and ground effect, Section 2.2 details the sta-
tistical simulation setup, and Section 3 reviews the results from
this simulation. Finally, Section 4 is our conclusions.

2. Research methods

2.1. Model development

2.1.1. Initial acoustic model
Let us assume that a sound wave radiated by a point source

propagates above a porous ground in a homogeneous atmosphere.
This means that the effects of atmospheric parameters such as
wind and temperature gradients can be excluded, leaving only
the geometrical parameters such as the source and receiver height
and their horizontal separation. This geometric scenario is illus-
trated in Fig. 1. We assume that the problem is symmetrical, i.e.
the sound pressure is predicted in an x; zð Þ co-ordinate system
and the source and receiver are located at 0; zsð Þ and r; zð Þ, respec-
tively. The complex sound pressure at the receiver position is [3]

pc ¼ pfree 1þ Q
R1

R2
exp ikR2 � ikR1ð Þ

� �
; ð1Þ
Fig. 1. Diagram of acoustical scenario with impedance ground and incident angle
highlighted.
with

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z� zsð Þ2

q
; ð2Þ

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ zþ zsð Þ2

q
: ð3Þ

k and Q are the wavenumber and spherical wave reflection co-
efficient, respectively. pfree is the sound pressure in the absence of
the impedance ground. The imaginary part of the wavenumber
accounts for the attenuation in air. The reflection coefficient
accounts for the proportion of the incident sound pressure reflected
from the porous ground and any phase changes the reflected acous-
tic wave undergoes due to the ground effect. As detailed by Salo-
mons in his book [6], the equation for the spherical wave
reflection coefficient is

Q ¼ Zcosh� 1
Zcoshþ 1

� �
þ 1� Zcosh� 1

Zcoshþ 1

� �� �
F wð Þ: ð4Þ

The angle h is the incident angle as shown in Fig. 1. The function
F wð Þ is the boundary loss factor

F wð Þ ¼ 1þ iw
ffiffiffiffi
p

p
exp �wð Þerfc �iwð Þ; ð5Þ

and erfc �iwð Þ the complimentary error function

erfc zð Þ ¼ 1ffiffiffiffiffiffiffi
2p

p
Z 1

z
exp �t2

� �
dt: ð6Þ

The parameter Z seen in Eq. (4) is the normalised impedance of
the ground, which depends greatly on the ground characteristics.
The sound pressure levels in the presence and absence of the
ground are

pc ! Lp ¼ 10log10
pcj j2
2p2

ref

 !
; ð7Þ

pfree ! L
p;free

¼ 10log10

pfree

		 		2
2p2

ref

 !
; ð8Þ

respectively. Combining Eqs. (7) and (8) gives

Lp ¼ Lp;free þ DL: ð9Þ
The term DL in Eq. (9) is the relative sound pressure level, or

excess attenuation. This term can be expressed as

DL ¼ 10log10 1þ Q
R1

R2
exp ikR2 � ikR1ð Þ

				 				2: ð10Þ

This value physically represents deviation from the free field
due to the influence of the ground. The excess attenuation can take
positive and negative values that correspond to the constructive
and destructive interference between the direct and reflected
waves, respectively. The excess attenuation is used for a wide
range of acoustics purposes, especially in outdoor acoustics, which
is why it will be the predicted value in question during the analysis
of the influence of the parameter uncertainties. Examples of possi-
ble excess attenuation spectra over different source/receiver
geometries and impedance grounds are illustrated Fig. 2. Excess
attenuation exhibits oscillatory behaviour as frequency increases
and is greatly dependent on the geometrical parameters. However,
in real cases the maximum value never exceeds 6dB. The difference
in excess attenuation due to the acoustic hardness of the ground is
both sensitive to the sound frequency and geometrical parameters.
Direct analysis of the excess attenuation is rather complicated
because the maxima and minima in this spectrum depend strongly
on the problem geometry and ground properties. This makes it dif-
ficult to use the excess attenuation spectrum for the ground
parameter inversion, source characterisation or for the inversion



Fig. 2. Example excess attenuation spectrum. Top – source/receiver separation is 10m and source/receiver heights are 1:5m. Middle – source/receiver separation is 60mand
source/receiver heights are 1:5m. Bottom – source/receiver separation is 10m and source/receiver heights are 4m. Solid line – acoustically ‘hard’ impedance ground. Dashed
line – acoustically ‘soft’ impedance ground.
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of the problem geometry acoustically. A question which this paper
poses is: Can we adopt a statistical measure of sound pressure in
the wave propagated above porous ground to quantify its variabil-
ity due to some level of uncertainty in the problem geometry and
ground properties? This paper attempts to answer this question
using the probability density function for the excess attenuation
of sound propagation above a porous ground in the presence of
uncertainties, discovering from sampling methods.

2.1.2. Measuring impedance
The normalised impedance, Z, in the spherical wave reflection

co-efficient (Eq. (4)) can be predicted with an acoustic model if
the ground is assumed to be porous. The model used in this work
was the one proposed by Dazel, Groby and Horoshenkov et al. [7].
This model calculates the acoustic properties of the impedance
ground by considering the ground as a porous media with circular
pores of non-uniform cross-section. This model assumes that the
pore size is log-normally distributed. It requires four non-
acoustical parameters to predict the ground impedance: (i) poros-
ity (/Þ ; (ii) tortuosity (a1Þ; (iii) median pore size (s); and standard
deviation in the pore size (rsÞ. If the median pore size in the
ground is much less than the boundary layer thickness for all the
frequencies of interest, then it has been shown that one can
assume that a1 � 1; / � 1 and rs � 0. In this case the only influ-
ential parameter is the median pore size, (s).

In this work we use the Padé approximations for the frequency
dependent bulk dynamic density, ~q xð Þ, and bulk complex com-

pressibility, eC xð Þ, in the equivalent fluid model to predict the
acoustical properties of porous media with log normal distribution,
with circular frequency x. The bulk dynamic density can be
approximated by

~qðxð�qÞ
q0

’ a1
/

1þ ��2
q
fFqð�pÞ� ;

�
ð11Þ

where

fFq xð Þ ¼ 1þ hq;3�q þ hq;1�q
1þ hq;3�q

; ð12Þ
is the Padé approximation to the viscosity correction function

with �q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ixq0a1

/rg

q
. In these approximations, the coefficients are

real and positive numbers with hq;1 ¼ 1
3, hq;2 ¼ ffiffiffiffiffiffiffiffi

1=2
p

e
1
2 rs log 2ð Þð Þ2

and hq;3 ¼ hq;1
hq;2

. The equation for the bulk flow resistivity in the por-

ous medium is

rg ¼ g
j0

¼ 8ga1
s2/

e6 rs log 2ð Þð Þ2 ; ð13Þ

with g being the dynamic viscosity of air and q0 the ambient den-
sity of air. Likewise, the bulk complex compresibitly of the fluid in
the material pores can be equated as

eC xð Þ ¼ 1
cP0

c� c� 1

1þ 2�2
c
eFc 2cð Þ

 !
; ð14Þ

with

eFc �cð Þ ¼ 1þ hc;3�c þ hc;1�c
1þ hc;3�c

ð15Þ

In the above two equations hc;1 ¼ 1
3, hc;2 ¼

ffiffi
1
2

q
e
3
2 rs log 2ð Þð Þ2 , hc;3 ¼ hc;1

hc;2
.

The frequency dependant parameter is �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ixq0Npr

r0
g

� �s
with c

the ratio of specific heats, NPr the Pradntl number and P0 the ambi-
ent atmospheric pressure. Thermal flow resistivity is defined here
as the inverse of the thermal permeability

r0
g ¼

g
j0

0
¼ 8ga1

s2/
e�6 rs log 2ð Þð Þ2 ð16Þ

Combining Eqs. (11) and (14) predicts the characteristic acous-
tic impedance

zb xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifqb xð ÞfCb xð Þ

s
; ð17Þ

and complex wavenumber

kb xð Þ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifqb xð ÞCb xð Þ

q
; ð18Þ

in a porous medium with log-normal pore size distribution.



Table 1
Values of U and their geometrical parameter combinations.

Height mð Þ Range mð Þ U

1 200 �2.301
1 100 �2
2 100 �1.699
3 100 �1.523
4 100 �1.398
2 25 �1.097
3 25 �0.921
2 9.5 �0.677
3 8.3 �0.442
4 6.6 �0.218
2 2 0
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2.2. Simulation methods

2.2.1. Parameter uncertainties
To create uncertainty in our desired parameters, random distri-

butions around some true value of interest are generated. The con-
text of true (known) value is that the user may know the true
value, whereas our computational model only sees a random num-
ber generated from the distribution that was created from the
known value. The uncertainty is varied by manipulating the widths
of the distributions in proportion to the true value.

Uniform distributions are used to denote uncertainty around a
parameter. The uniform distribution denoted U a; b½ �, is a flat, or
square, distribution between a lower and upper limit, being a and
b here respectively. It is common practice to use uniform and nor-
mal distributions to simulate error. However, this paper is investi-
gating the systemic uncertainty in the modelling process.
Therefore, a flat uncertainty distribution for an input parameter
is used so that any parameter value between the bounds is
assumed as equally probable. This form of uncertainty is analogous
to an observer knowing bounds of a parameter but no other knowl-
edge. It should be noted that the distribution is non-normal by nat-
ure. The probability density function (PDF hereon) of the
continuous uniform distribution is written as

f xð Þ ¼
1

b�a

0

(
fora � x � b;

forx < aorx > b:
ð19Þ

In this study, distributions around some parameter, say y, with
the true known true value, y�, are generated via

y � U 0:95� y�ð Þ; 1:05� y�ð Þð Þ ; ð20Þ

y � U 0:8� y�ð Þ; 1:2� y�ð Þð Þ : ð21Þ

y � U 0:65� y�ð Þ; 1:35� y�ð Þð Þ : ð22Þ
This creates a proportional uncertainty of �5%, �20% and �35%

around the true value, respectively. These percentages are chosen
to simulate a gradual decrease in the precision of an estimate by
an observer, i.e. 5% shows confidence in the chosen interval
whereas 35% shows a lack of thorough belief, allowing the value
to be within a larger probability distribution interval. Due to the
adopted nature of uniform probability distribution our true value
is always the mean value as l ¼ 1

2 aþ bð Þ. These distributions are
applied to simulate uncertainty in source/receiver height and
range.

2.2.2. Sampling methods
The propagation of uncertainty, along with its related effects, is

analysed using a basic Monte Carlo method. This simple Monte
Carlo method generates a probability density function, or PDF, by
repeatedly sampling from the parameter distributions described
in the previous section and then inputs the generated parameter
values, along with known parameters, into the excess attenuation
model (Eq. (10)) over 10; 000 runs. Within the context of uncer-
tainty, it assumed that our model for this purpose of use is perfect.
Therefore, no error term is included as it is assumed that the model
output is precisely the real-life answer produced by the input
parameters given.

The frequency range of 100Hz– 5kHz is used. In this simulation,
1000 frequency points are used, with each point used for the
10; 000 main runs to cover equidistantly this broadband frequency
range. The frequency range of 100 Hz – 5 kHz was adopted as a bal-
ance between computation costs, ability to measure outdoor sound
pressures accurately and frequency composition of the sound pres-
sure spectra radiated by realistic sources (see Figures 1.2, 1.3 and
9.25 in Ref. [3] and Figure 3.12 in Ref. [6]). The choice of frequency
range can be important and needs to fit a given application. Appen-
dix A presents data from Monte Carlo simulation showing the
effect of the adopted frequency range on the statistical distribution
of the access attenuation against an expanded frequency range.

In order to understand better the ground effect on the uncer-
tainty four types of ground are studied: soft (35 kPam�2); medium
(500 kPam�2); hard (2000 kPam�2) and effectively rigid
(20;000 kPam�2). The adopted values of the flow resistivity repre-
sent experimental data of real-life impedance grounds [8]: urban
grass, sports field, gravel and concrete respectively. It is convenient
to adopt a dimensionless parameter when dealing with the prob-
lem geometry. An obvious dimensionless parameter is the loga-
rithm of the ratio of source/receiver height over range

U ¼ log10
Rh

R

� �
: ð23Þ

This parameter controls the problem geometry and its values
are listed in Table 1 for a range of source/receiver height and range
combinations. The maximum true value of height is 4 m due to
knowledge that our model would not be as reliable for higher
source/receiver positions because of the progressive effect of the
wind and temperature gradients. The source height takes the same
true value as the receiver height in these simulations for simplicity.

2.2.3. Statistical analyses
Statistical analysis accompanies the results from the Monte

Carlo simulations. Visually, simulation results are displayed via
histograms which present the probability density of the excess
attenuation for a given uncertainty in the input parameters. His-
tograms are generated from the sample data by grouping the data
into a number of bins. Since bin width is important, Scott’s method
[9] is used to choose a sensible number of bins to be generated from
each sample. This method assigns bins based on the sample stan-
dard deviation and sample size. This becamemore important when
filtering into octave bands as each band’s sample size is different
due to the sliding octave band width which increases with
frequency.

Statistical moments calculated from the simulated data for the
excess attenuation accompany our analysis. Four key moments in
this analysis are: mean (l); standard deviation (r); skew sð Þ; and
kurtosis ksð Þ while the mode Moð Þ and median Mdnð Þ averages are
also investigated. These moments allow us to quantify the beha-
viour of the probability density function for the excess attenuation
presented in the histograms. One behaviour that can be described
as normality. Normality is a key check with the validity of many
statistical tests dependent on this assumption. It has been
reviewed that around half of scientific literature articles published
contain at least one error, highlighting the need for more validation
in future works [10]. Such statistical procedures, especially those
commonly used by non-statistical acousticians, such as; correla-
tion, regression, analysis of variance and other such parametric
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tests are bead on the assumption that the data is normally dis-
tributed, or more specifically, that the population that has been
sampled from is a normal distribution [11].

Normality can be tested using various methods and tests, but
the Anderson-Darling test (A-D test) will be used on simulated sam-
ples [12]. This test confirms whether the sample came from a pop-
ulation of a given distribution i.e. the normal distribution. It is a
modification of Kolmogrov-Smirnov test, but gives more weight to
the tails. The A-D test makes use of the specific distribution in cal-
culating critical values. The A-D test statistics, A, is defined as

A2 ¼ �N � S; ð24Þ
where

S ¼
XN

i¼1

2i� 1ð Þ
N

ln F Yið Þ þ ln 1 ¼ F YNþ1�ið Þð Þ½ �: ð25Þ

N is the sample size, F is the cumulative distribution function
(CDF) of the specified parameter distribution (the normal distribu-

tion in our case), and Yi are ordered from smallest to largest. A2 is
then compared to the known critical value Cvð Þ for a given distribu-
tion, or the normal distribution for this papers purpose (calculation

of this value is outside the scope of this paper). If A2
< Cv then the

null hypothesis H0ð Þ is accepted, and the data is assumed to follow

a normal distribution (normality is not violated). If A2
> Cv , then

the null hypothesis is rejected and the alternative hypothesis
Hað Þ is accepted at a given significance level a � 0:005ð Þ, allowing
us to state the sample does not follow the normal distribution
and normality is violated.

The values of the statistical moments are calculated from the
simulated broadband and octave band excess attenuation data to
be analysed. The median is defined as the middle point value of
the data. The mean, or expected value E yð Þ ¼ l, of the data is cal-
culated by

l ¼ 1
N

XN
i¼1

yi; ð26Þ

where yi is a data point in the access attenuation spectrum and N is
the total number of data points. These two averages usually are in a
similar position in a symmetric distribution. The sample standard
deviation, a measure of howmuch data varies from the mean, is cal-
culated as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

yi � lð Þ2
vuut : ð27Þ

The skewness is a measure of asymmetry of data around the
sample mean. For example, a perfect uniform distribution would
have the value of 0, as would any other perfectly symmetric distri-
bution such as the normal distribution. Negative and positive of
skewness mean that the sample data is stretched more to the left
or right from the mean, respectively. As general rule, data which
has skewness of less than �0:5j jcan be considered symmetrical.
Data is highly skewed when skewness exceeds �1j j. If the skew-
ness is larger than2, or smaller than �2, then the data is strongly
non-normal [12]. The skewness is calculated as

s ¼
PN

i¼1 y� lð Þ3=N
r3 : ð28Þ

Kurtosis measures how outlier prone, or how heavy-tailed or
light-tailed the distribution is, in relation to a normal distribution.
The kurtosis of perfect normal distribution is 3, while the kurtosis
of a perfect uniform distribution is 1:8. Distributions that are more,
or less outlier-prone than the perfect normal distribution have kur-
tosis greater, or less, than 3 respectfully. Kurtosis values between 1
and 5 are accepted for the assumption of normality [12], while
vales below 0 or greater than 7 would indicate a substantial depar-
ture from normality [12]. This final value is equated as

ks ¼
PN

i¼1 y� lð Þ4=N
r4 : ð29Þ

The median Mdnð Þ is found by locating the n
2

� �thpoint in the data
set, where n is the number of points in the set. Since our data sam-
ples are an even numbered, the middle value between the two

numbers that surround the n
2

� �thpoint is taken. The mode Moð Þ is
taken as the estimate that appears the most, also seen as the most
likely value in the PDF (Figs. 3–6).
3. Results

The effect of ground impedance is well known to be greatly
influential on the acoustical signal. However, the differences in
the PDFs for the excess attenuation found for different values of
U over the different ground types are not as pronounced as
expected (see Figures (3–6)). Sample means and medians did not
significantly differ across the range of the flow resistivity, rg . How-
ever, some statistical moments do show some consistent differ-
ences. This strongly suggests that the effect of the problem
geometry on the excess attenuation statistics are dominant for this
particular propagation model.
3.1. Exploring U and rg

Some differences do exist in the simulated PDFs for the different
values of flow resistivity rg (see Figs. 3–6) and there these beha-
viours are mirrored in the value of the statistical moments (see
Tables 2 and 3). However, there is some consistency in the PDF
for particular values of the parameter U. The most obvious differ-
ences between the results for different impedance grounds are
for U < �2. As rg is increased, the long smooth distribution has
its deviation reduced by half between the softest and hardest
impedance grounds (see Figs. 3 and 6 respectively). It is unclear
what distribution these results follow. The PDFs presented in
Figs. 3–6 appearing irregular and suggest some non-normality
within the data.

When �2 < U < �1 the PDF for the excess attenuation contains
a clear peak which amplitude depends on the level of uncertainty
in the adopted values of geometrical parameters. These data are
associated with a strongly negative skewness and relatively large
standard deviation (see Table 3). These peaks appear in the range
of 0dB < DL < 5dB. A very small secondary peak emerges at
DL 	 �5dB, doing so more strongly as rg increases. The second
peak in the PDF becomes clearly visible in the range of
DL � �5dB when the ratio U increases for DL > �1. The peaks ini-
tial value changes depending on the value of rg , yet with no con-
sistent pattern in relation to the change of rg . This peak directly
relates to the mode (see Table 2), which makes the behaviour
easier to describe. The amplitude of this second negative peak
increases with an increase in the ratio Uwith its position moving
progressively towards DL ¼ �1dB for the lowest value of rg and
to DL ¼ �4dB for the highest value of rg .

For ratios U 	 0 the PDF of the excess attenuation spectrum
appears increasingly bimodal, with the space between peaks
increased, and the strength of the negative peak decreased, by
the increase in rg . However, the increase in uncertainty and rg

negates the second peak at the negative point, smoothing out the
distribution.



Fig. 3. The PDFs of excess attenuation spectra for a range of values of U and levels of uncertainties in the source/receiver coordinates. The flow resistivity of the ground is
rg ¼ 35 kPasm�2.

Fig. 4. The PDFs of excess attenuation spectra for a range of values of U and levels of uncertainties in the source/receiver coordinates. The flow resistivity of the ground is
rg ¼ 500 kPasm�2.
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3.2. Simulation statistics

The statistics can be described by a number of statistical
moments. It seems that the statistics for U < �2 are inconsistent,
and hard to describe in relation to combinations of differing values
for U, rg and uncertainty.

Looking at the averages, the mean (see the 3rd column of
Table 2) is the most stable and unaffected. For U > �1, the mean
is close to0dB. ForU < �2 themean is highly negative (see Table 2).
This behaviour is seemingly unaffected by the change in the uncer-
tainty level. As the ground becomes much harder, the mean for
U < �2 increases.

This suggests that the true mean of the population (the data set
which each sample intends to replicate) is not strongly affected by
the variation in U or rg . This is useful for shaping fitting distribu-
tion to data that require the use of the mean i.e. the normal distri-
bution of N � l;r2

� �
.

The median (see the 4th column of Table 2) follows a similar
behaviour to that observed for the mean while around 1dB higher.
For a harder ground (rg 
 2000 kPasm�2) it displays an oscillatory
behaviour as a function of U. The increased median, in relation to
the respective mean for a given U and rg is expected due to the
negative skew.

The most repeated observed value, the mode Moð Þ (see the last
column of Table 2), is the average most effected by rg , U and
uncertainty. The mode begins at 5dB when / 	 �2 which
decreases to 2dB when U is decreased to zero. Each mode is
reduced by 0:5dB per each increase in rg at every respective
related value of U. Uncertainty does increase the mode for higher
values of rg , with little difference seen between mode for the
softest impedance ground. Modes when / < �2 show the greatest
difference, with the lowest rg giving values between approxi-
mately �5 < M0 < 3 while at the hardest impedance ground, the
range of mode is halved and decreased to around



Fig. 5. The PDFs of excess attenuation spectra for a range of values of U and levels of uncertainties in the source/receiver coordinates. The flow resistivity of the ground is
rg ¼ 2000 kPasm�2.

Fig. 6. The PDFs of excess attenuation spectrum for a range of values of U and levels of uncertainties in the source/receiver coordinates. The flow resistivity of the ground is
rg ¼ 20;000 kPasm�2.
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�13 < Mo < �7. The increase from the median and mean was
again an expected side effect of the negative skewness present in
the samples. In the case of symmetric distributions, the mode quite
often relates to parameter estimation techniques, highlighting the
need for quantifying U and rg efficiently.

The second grouping of statistics (Table 3) are the higher
moments such as the standard deviation rð Þ, skewness sð Þ and kur-
tosis ksð Þ. Behaviours for the increase/decrease in the varying con-
trol parameters /, rg and uncertainty are clearer for these
statistical moments than the earlier averages (Table 2).

The standard deviation is most effected by the value of rg and U
(3rd column of Table 3). The standard deviation for the minimum
value of U ¼ �2:301 has the maximum. As U ! 0 the value of
the standard deviation reduces consistently for all ground types.
The standard deviation generally reduces with the increase in the
value of rg for U < �1. For U 	 0 the standard deviation slightly
increases with the increased flow resistivity of the ground. The
effect of the geometrical uncertainty on the standard deviation is
relatively small.

The skewness (4th column of Table 3) is seen to be consistently
negative but increasing with the increasing value of U in the case
of the softest ground (rg ¼ 35 kPasm�2). As the value of rg

increases to 20,000 kPasm�2 this dependence changes and the
skewness seems to have a clear minimum for �1 < U < 0:5. For
the flow resistivity values between these extreme ground cases
the skewness behaves as an oscillatory function of U. The geomet-
rical uncertainty does not affect this parameter significantly for
U > �1:5.

The behaviour of the kurtosis as a function of U (5th column of
Table 3) shows a clear minimum around �1 < U < �1:5for the
case with the softest ground. For the hardest ground this minimum
becomes the maximum. For the cases with 35 < rg < 2000



Table 2
Collated sample averages from simulations for each combination of rg and U. Columns from left to right are for uncertainties from 5%, 20% and 35%, respectively.

rg U Mean lð Þ Mode Moð Þ Median Mdnð Þ
35 kPasm�2 �2.301 �9.462 �9.469 �9.482 �1.905 �3.17 �4.099 �6.997 �7.109 �7.367

�2 �3.818 �3.844 �3.905 3.187 2.039 1.889 �1.304 �1.410 �1.654
�1.699 �1.074 �0.387 0.065 5.524 5.614 5.455 1.413 2.188 2.679
�1.523 0.217 �0.014 0.028 5.392 5.287 5.344 2.673 2.376 2.407
�1.398 0.108 0.017 0.026 5.068 5.167 5.068 2.322 2.207 2.192
�1.097 0.007 �0.059 �0.048 4.461 4.241 4.114 1.600 1.497 1.481
�0.921 �0.038 �0.045 �0.035 3.807 3.516 2.929 1.078 1.059 1.042
�0.677 �0.055 �0.055 �0.054 2.536 2.419 2.305 0.508 0.504 0.489
�0.422 0.021 0.019 0.012 1.562 1.48 1.302 0.252 0.250 0.247
�0.218 �0.007 �0.006 �0.002 0.84 0.808 0.802 0.105 0.108 0.109
0 0.013 0.012 0.009 0.54 0.547 0.511 0.068 0.065 0.064

500 kPasm�2 �2.301 �9.327 �9.332 �9.343 �2.283 �3.804 �5.079 �7.381 �7.490 �7.739
�2 �3.839 �3.864 �3.924 2.785 1.51 1.165 �1.866 �1.965 �2.198
�1.699 �1.025 �0.395 �0.007 4.996 4.876 4.897 0.814 1.505 1.954
�1.523 0.038 �0.119 �0.078 4.089 4.246 4.246 1.664 1.446 1.475
�1.398 �0.033 �0.089 �0.079 3.869 4.087 3.598 1.277 1.197 1.199
�1.097 �0.095 �0.104 �0.097 3.094 3.156 2.975 0.748 0.744 0.758
�0.921 �0.088 �0.092 �0.091 2.816 2.861 2.781 0.655 0.647 0.668
�0.677 �0.089 �0.086 �0.083 2.767 2.741 2.773 0.746 0.753 0.762
�0.422 0.023 0.014 0.009 2.86 2.917 2.862 0.932 0.924 0.904
�0.218 �0.01 �0.006 �0.003 2.694 2.694 2.694 0.709 0.707 0.696
0 0.012 0.011 0.01 2.122 2.129 1.925 0.672 0.677 0.689

2000 kPasm�2 �2.301 �8.884 �8.888 �8.894 �2.867 �4.481 �5.256 �7.623 �7.726 �7.96
�2 �3.698 �3.723 �3.78 2.078 1.331 0.427 �2.333 �2.427 �2.636
�1.699 �0.794 �0.294 0.004 4.153 4.148 4.112 0.566 1.063 1.434
�1.523 �0.059 �0.128 �0.095 3.285 3.255 3.25 1.02 0.924 0.966
�1.398 �0.087 �0.105 �0.097 3.113 3.146 3.07 0.806 0.793 0.809
�1.097 �0.151 �0.111 �0.109 3.007 2.943 3.016 0.715 0.801 0.825
�0.921 �0.097 �0.098 �0.101 3.179 3.113 3.074 1.016 1.015 1.012
�0.677 �0.097 �0.091 �0.088 3.804 3.683 3.855 1.333 1.331 1.319
�0.422 0.022 0.012 0.007 3.895 3.878 3.788 1.445 1.422 1.396
�0.218 �0.011 �0.006 �0.003 3.36 3.398 3.331 1.028 1.021 1.007
0 0.016 0.009 0.007 2.625 2.508 2.331 0.599 0.586 0.585

20;000 kPasm�2 �2.301 �6.874 �6.870 �6.855 �13.779 �6.649 �9.912 �7.677 �7.746 �7.756
�2 �2.941 �2.959 �2.993 �8.509 �7.561 �6.769 �3.131 �3.199 �3.296
�1.699 �0.019 0.002 0.037 3.129 3.246 3.198 0.87 0.951 1.048
�1.523 �0.26 �0.123 �0.123 3.266 3.054 3.05 0.629 0.92 0.947
�1.398 �0.178 �0.114 �0.117 3.403 3.418 3.215 1.032 1.151 1.158
�1.097 �0.208 �0.114 �0.124 4.305 4.301 4.39 1.611 1.746 1.731
�0.921 �0.103 �0.097 �0.106 4.691 4.717 4.732 1.990 1.992 1.972
�0.677 �0.102 �0.092 �0.093 4.995 5.02 4.844 2.076 2.076 2.061
�0.422 0.02 0.009 0.006 4.713 4.743 4.705 1.937 1.913 1.886
�0.218 �0.011 �0.006 �0.003 4.011 3.87 3.654 1.311 1.304 1.287
0 0.016 0.008 0.006 2.994 2.728 2.51 0.741 0.729 0.73
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kPasm�2 this behaviour is complex and oscillatory. The geometri-
cal uncertainty does not affect this parameter significantly.
3.3. Normality assumption

Normality is an assumption that needs to be taken seriously.
When this assumption is violated, it becomes harder to draw accu-
rate and reliable statistical conclusions [14]. In the case of higher-
order statistical moments (Table 3) there is no visual indication
that normality has been violated. However, the non-normal indica-
tors are checked through the Anderson-Darling test which is
applied to the simulation data from each combination of U, rg

and uncertainty level. It is found that every single sample signifi-
cantly p � 0:005ð Þ rejected the null hyposthesis that the sample
was normal. This indicates that it is the data obtained violate the
normality assumption.

This could indicate one of the following scenarios: (i) a certain
combination of the frequency range over which the data are anal-
ysed, U and/or uncertainty create non-normal PDFs; (ii) the initial
prior uniform distribution propagates through its non-normality;
(iii) the acoustic prediction model is non-normal in itself. It is not
of ease to statewhich the causes is nor is it any easier to prove.More
investigation into the physics underpinning the interactions
betweenU, rg and acoustic wavelength, k is required. It is also use-
ful to investigate how great an effect the distribution of the uncer-
tainty in unknown parameters is. This could be can be done be
comparing simulation results from known prior distributions and
using statistical test to investigatewhether the final sample changes
accordingly, yet this work lies outside the main scope of this work.
4. Conclusions

The effect of the impedance grounds on the statistics in the
excess attenuation data was significantly related to the test statis-
tic chosen. The mean and median values of the excess attenuation
did not change significantly (within 1/100th of a dB) as the ground
properties have changed from soft to hard. However, the mode and
later statistical moments did differ in relation to the values of rg .
The mode and standard deviation were most significantly affected
by the change in rg . The deviation decreasws in parallel with the
increase of rg while the modes oscillatory behaviour around U
had the range between the maximum and minimum modes
decrease with the increase in rg . It is known that varying ground
can make a very strong effect on the excess attenuation spectrum,
but this shows a relatively small effect on mean, skewness and kur-
tosis when the model geometry is uncertain. In contrast, the modes



Table 3
Collated sample statistical moments from simulations for each combination of rg and U. Columns from left to right are for uncertainties from 5%, 20% and 35%, respectively.

rg U Std. Dev rð Þ Skewness sð Þ Kurtosis ksð Þ
35 kPasm�2 �2.301 7.661 7.768 8.011 �1.226 �1.171 �1.058 3.777 3.714 3.578

�2 7.384 7.464 7.64 �1.284 �1.245 �1.17 3.92 3.873 3.77
�1.699 6.987 6.649 6.431 �1.134 �1.318 �1.428 3.365 3.893 4.253
�1.523 5.94 5.998 5.959 �1.332 �1.276 �1.291 3.85 3.705 3.786
�1.398 5.54 5.564 5.537 �1.193 �1.172 �1.186 3.399 3.365 3.456
�1.097 4.369 4.381 4.362 �0.84 �0.83 �0.859 2.456 2.474 2.616
�0.921 3.51 3.512 3.51 �0.643 �0.658 �0.701 2.077 2.154 2.341
�0.677 2.368 2.381 2.412 �0.452 �0.472 �0.511 1.87 1.963 2.143
�0.422 1.539 1.559 1.596 �0.322 �0.35 �0.402 2.267 2.342 2.516
�0.218 1.192 1.196 1.203 �0.485 �0.469 �0.441 3.644 3.644 3.571
0 0.884 0.89 0.904 �0.263 �0.269 �0.306 3.369 3.469 3.71

500 kPasm�2 �2.301 6.778 6.891 7.151 �0.792 �0.749 �0.664 2.631 2.633 2.623
�2 6.322 6.409 6.604 �0.878 �0.849 �0.794 2.679 2.699 2.719
�1.699 5.724 5.381 5.216 �0.807 �0.963 �1.043 2.503 2.86 3.056
�1.523 4.502 4.532 4.506 �0.891 �0.874 �0.896 2.632 2.646 2.747
�1.398 3.955 3.974 3.971 �0.76 �0.757 �0.783 2.373 2.401 2.519
�1.097 3 3.022 3.057 �0.57 �0.576 �0.603 2.02 2.056 2.156
�0.921 2.83 2.85 2.889 �0.715 �0.711 �0.71 2.829 2.816 2.8
�0.677 3.123 3.123 3.119 �0.805 �0.801 �0.795 3.131 3.099 3.051
�0.422 3.166 3.163 3.138 �0.662 �0.679 �0.69 2.367 2.445 2.519
�0.218 2.738 2.734 2.725 �0.535 �0.546 �0.562 2.039 2.096 2.193
0 1.988 2.006 2.045 �0.378 �0.391 �0.43 1.789 1.869 2.05

2000 kPasm�2 �2.301 6.18 6.296 6.559 �0.331 �0.317 �0.292 2.368 2.375 2.378
�2 5.426 5.521 5.731 �0.57 �0.554 �0.529 2.164 2.22 2.305
�1.699 4.601 4.303 4.219 �0.593 �0.713 �0.787 2.025 2.266 2.421
�1.523 3.477 3.497 3.512 �0.616 �0.614 �0.646 2.036 2.073 2.178
�1.398 3.096 3.121 3.159 �0.589 �0.593 �0.62 2.044 2.075 2.177
�1.097 3.217 3.235 3.279 �0.763 �0.791 �0.794 2.853 2.913 2.934
�0.921 3.663 3.674 3.689 �0.906 �0.906 �0.903 3.285 3.278 3.259
�0.677 4.229 4.213 4.18 �0.906 �0.905 �0.898 2.927 2.925 2.9
�0.422 4.077 4.069 4.036 �0.805 �0.814 �0.821 2.437 2.488 2.546
�0.218 3.339 3.339 3.34 �0.62 �0.636 �0.665 2.039 2.111 2.247
0 2.358 2.383 2.436 �0.433 �0.451 �0.499 1.767 1.858 2.06

20;000 kPasm�2 �2.301 5.636 5.732 5.94 0.715 0.639 0.49 2.591 2.523 2.399
�2 4.144 4.231 4.416 0.392 0.338 0.229 2.231 2.196 2.143
�1.699 3.311 3.354 3.423 �0.532 �0.554 �0.596 2.158 2.165 2.227
�1.523 3.564 3.588 3.642 �0.692 �0.779 �0.799 2.63 2.77 2.866
�1.398 3.958 3.967 4.007 �0.896 �0.94 �0.955 3.116 3.224 3.302
�1.097 5.068 5.049 5.062 �1.055 �1.098 �1.104 3.29 3.398 3.429
�0.921 5.488 5.481 5.464 �1.171 �1.172 �1.164 3.535 3.539 3.515
�0.677 5.642 5.615 5.571 �1.158 �1.155 �1.146 3.354 3.351 3.33
�0.422 4.987 4.983 4.957 �0.993 �1.005 �1.022 2.798 2.861 2.968
�0.218 3.864 3.872 3.89 �0.716 �0.74 �0.789 2.164 2.27 2.481
0 2.663 2.694 2.76 �0.487 �0.509 �0.568 1.806 1.914 2.153
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dependence on both U and rg is crucial as common point estima-
tion inference techniques, such as maximum likelihood methods,
are directly linked to this statistic, thus an inaccurate estimation
of the mode will hinder effective parameter estimations. These
findings highlight the importance of removing such geometric
uncertainties before making predictions or using excess attenua-
tion data for parameter inversion. Inference work using more
uncertain or complex models could also benefit from these find-
ings, relying on the ability to either select arbitrary impedance val-
ues or save computation time drawing from these known PDF
while have uncertainties, at minimum, present in the ground and
receiver geometry. This would greatly reduce computational costs
while having a likely negligible effect on accuracy.

The behaviour of the broadband excess attenuation PDF as a
function of U is rather informative. When U < �1 the PDFs contain
a clear peak which amplitude depends on the level of uncertainty
in U. These data are associated with a strongly negative skewness
and relatively large standard deviation. For U < �2 the PDF shifts
in its entirety across the excess attenuation scale (x-axis) to around
�5dB, however has no obvious defined distribution, which is exac-
erbated across varying rg . For the ratioU 	 �1 the standard devia-
tion in the data, skewness and kurtosis reduce with a second peak
becoming visible in the range of DL � �10dB. When the ratio U
increases above �1, the second peak in the PDF at DL � 0dB
becomes very pronounced. The amplitude of this peak increases
with the increase in the ratio Uand its position moves progres-
sively towards DL ¼ �1dB, converging the two peaks. The PDFs
appear to become bimodal in nature due to the strength of this sec-
ondary peak. The convergence of the negative peak is hindered with
both its increase in the related excess attention value (x-axis) and
probability clue (y-axis), as well as the convincing appearance of a
bimodal distribution, by the increase in rg and uncertainty. Being
able to understand and/or control the PDF using this numerical
value of U, solely and in combination with rg , will be of great
use for future statistical methods to parameter inversion and
may hint towards methodologies to use i.e. regression methods
since interactions between parameters are likely to help prior
selection while using Bayesian methods. The more pronounced
bimodality at lower rg may also suggest reasoning to inaccuracies
during measurement in low impedances i.e. convergence to wrong
peak during calculation of the mean.

Most statistical inference is done via parametric methods i.e.
assumes the observe data available follows a normal distribution.
However, if normality is found to be violated, then the validity of
the results gained using such methods is compromised [10–14].
None of the indicator statistics had values that indicated non-
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normal behaviour, however the movement of the kurtosis values
indicated some of the samples were acting peculiar. The
Anderson-Darling tests that were performed were shown to extre-
mely support the assumption that each sample violated normality,
with substantial confidence p � 0:05ð Þ. It is unclear what caused
these irregularities: the uniform sampling distribution or physical
phenomena from U with the frequency bands themselves. Investi-
gating the physics underpinning the interactions between U and k,
while comparing the effect of using normal and non-normal distri-
butions to sample will hopefully recover the true reason. This also
highlights the need to validate the normality assumption before
progressing with statistical processes on a given data set, a process
which is majorly overlooked.

Future research would require an investigation into a more
complex sound propagation model that allows for meteorological
effects. This would reveal how strong the influence of the geomet-
rical uncertainties is in relation to the influence of stochastic mete-
orological effects and ground effects. It would also reveal the
relative strength of uncertainty in different input parameters on
the excess attenuation. Regression methods on real data sets could
also be used to investigate such behaviours as interaction effects
etc. The parameter U could be used to strengthen the effectiveness
of the regression either as an additional parameter or even instead
of the receiver parameters. Investigating of the effect of a broader
range of values of U on the excess attenuation statistics will also be
of interest to expand current understanding. This may require a
more complicated propagation model which includes a realistic
ground topography, effects of buildings and vegetation in the prop-
agation path. Investigation of a dimensionless parameter from a
combination of U, rg and k to shape likelihood distributions would
likely be successful. This could also be extended to other models to
see if attributes of U remain constant. Finally, discovering the
Fig. A1. The effect of the choice of the frequency range on the probability density functio
uncertainty is 20%. Black dashed line: frequency band 100 Hz – 5 kHz. Magenta: 25 Hz – 2
is referred to the web version of this article.)
cause of the non-normal behaviour in the predicted statistical
moments for the excess attenuation is a key to better understand-
ing of the capabilities and limitations in the statistical simulation
of sound propagation in the presence of uncertainties. Performing
rigorous normality tests for results from differing U and rg , both
for broadband and narrowband samples, will be a step forward
to discovering if they are true anomalies or a product of the non-
normal input prior. We theorise it is possible that the extreme
non-normality is a product of some interference patterns produced
by certain values of U at relevant frequencies rather than prior
parameter distribution being non-normal or normal.
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Appendix A. The effect of frequency range

The choice of frequencies in this paper is based on the fact that a
majority of sources of outdoor noise emit efficiently frequencies of
sound between 100 Hz and 5 kHz [3,6]. This range is sensible to
n for the excess attenuation predicted with the adopted Monte Carlo simulation. The
0 kHz. (For interpretation of the references to colour in this figure legend, the reader
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find a balance between computational costs and accuracy in the
statistical data attained from the Monte Carlo simulation.

The frequency ranges suggested in some popular prediction
standards may differ from the range adopted in this paper. The
ISO 9613 Part 2 standard [15] suggests that the calculations should
be carried out in the octave bands between 63 and 8000 Hz. The
Harmonoise prediction standard [16] suggests that this range
should be between 25 Hz and 20 kHz.

The probability density functions for the excess attenuation
presented (Fig. A1) illustrate the effect of the spectral width. This
difference is between the 100 Hz – 5 kHz range and 25 Hz –
20 kHz range is not large, but noticeable dependent on U and rg .
Therefore, it should be recommended to ensure that the spectrum
of the source is properly captured in this type of analysis by adopt-
ing the right frequency range.
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Predictions of outdoor sound propagation in uncertain conditions are a challenging task. Evidence sug-
gests that using more than one receiver can reduce the effect of uncertainties. This paper studies via
numerical simulations the effects of uncertainty in the source/receiver geometry and impedance ground
condition on the sound pressure ratio recorded using the two-microphone method. A Monte Carlo
method is employed to study the effect of uncertainties in the range and ground parameters. The range
and frequency are found to be key parameters which control the resultant probability density function for
the absolute sound pressure ratio and phase difference. The introduction of small uncertainty only mat-
ters if the uncertainty is present in the distance between the source and receiver. Uncertainties in the
impedance ground are found to have a negligible effect. The sound pressure ratio is affected by the uncer-
tainty more strongly at a shorter range. These findings pave the way to the development of more robust
methods for outdoor acoustic source localisation and identification from two-microphone data.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The two-microphone method is used extensively in outdoor
sound propagation to determine the ground impedance from
acoustical data (e.g. [1]) for noise control (e.g. [2]) and source local-
isation (e.g. [3]). American National Standards Institute (ANSI) pro-
vides a standard method for determining the acoustic impedance
of ground surfaces using the ratio between two close microphones
to infer an impedance of an unknown ground using carefully
obtained acoustical data [4]. The use of a sound pressure ratio or
level difference between the two microphones cancels out trouble-
some interference patterns and source spectrum effect, allowing
for more accurate predictions of the ground properties and envi-
ronmental effects.

A key for the successful use of this method is the quality of the
sound pressure measurements and microphone mismatch. While
Harriot and Hothersall investigated the accuracy of the signal pro-
cessing method in the presence of an uncertain ground, especially
the interference patterns, the geometric and frequency ranges used
in this standard are far too small to study whether these effects
carried over into the larger geometries and/or more varied sound
sources [5]. Kruse and Mellert [6] used the two-microphone
method to measure errors from uncertainties present in outdoor
sound propagation over a wider frequency range. Errors were min-
imised at frequencies above 100Hz and 500Hz for acoustical soft
and hard impedance grounds respectively, yet the study did not
investigate the medium/longer ranges (>100 m) which are of com-
mon interest in outdoor acoustics and there is a limited statistical
data on the sound pressure ratio and phase mismatch.

This study aims to increase the scale of the geometries used to
assess the viability of the two-microphone method for the statisti-
cal analysis of outdoor sound propagation. One effect which has
not been quantified yet, is the influence on geometrical uncertain-
ties on the probabilistic measures of the sound pressure data
obtained on a pair of microphones. The main research question
here is: How does the uncertainty in the sound/receiver position affect
the absolute sound pressure ratio and phase difference between the
two microphones used with this method? These parameters are
important in the understanding of outdoor sound propagation,
with specific application to the inverse problems such as sources
localisation, identification and ground property inversion. Other
questions are also answered in the study such as; whether the
two-microphone method is applicable for large scale studies and
the computational efficiency that can be achieved with readily
available hardware, having possible direct impact on the analysis
of outdoor sound propagation methods used by industry and
academia.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apacoust.2020.107548&domain=pdf
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This paper is structured in the following manner. Section 2.1
details the acoustical methods, such as the acoustical model and
the physical representations of gathered outputs. Section 2.2 outli-
nes the statistical methods applied to study the uncertainty. Sec-
tion 3 presents and reviews the results from our simulations.
Finally, Section 4 summarises the main findings of this study.

2. Research methods

2.1. The model

This study makes three key initial assumptions about the acous-
tical scenario: (i) non-moving homogenous atmosphere; (ii) a 2D
ðr; zÞ problem geometry with a point source; and (iii) a homoge-
neous impedance ground with well-defined acoustical characteris-
tics between the source and receivers. The first assumption is used
to understand the geometrical uncertainty in the absence of atmo-
spheric effects. The 2D geometry is not a concern because it is used
extensively and successfully for outdoor sound propagation mod-
elling (e.g. [4]). The final assumption of the uniform ground is
acceptable as prior works have shown that a relatively large vari-
ability in the ground does not significantly affect the interaction
paths over the scales adopted in this study [7].

The American National Standard S1.18 method for determining
an acoustic impedance of a ground [4] inspired this work. The ANSI
S1.18 standard makes used of the ratio and corresponding level dif-
ference between the sound pressures obtained on two closely
spaced receivers installed at the same range rð Þ from the point
source. These two receivers are installed at two distinct receiver
heights hrð Þ. This study uses the recorded pressure, and the ratios
between these measures, at the receivers to establish; (i) the abso-
lute pressure ratio and (ii) phase difference.

To calculate these values, it is first recounted that the sound
pressure measured at a receiver from a source [8] can be equated
to be

p ¼ p0½1þ Q
R1

R2
exp ik R2 � R1ð Þð Þ�; ð1Þ

using the time convention exp �jxtð Þ, where po, k and Q are the ref-
erence sound pressure at 1 m from the source, wavenumber and
spherical wave reflection coefficient, respectively. The distances R1

and R2 can be defined as

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z� zsð Þ2

q
; ð2Þ
Fig. 1. Acoustic scenario of the two-micro
R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ zþ zsð Þ2

q
; ð3Þ

for given source zsð Þ and the receiver ðzÞ heights, respectively. R1

and R2 represents the directed and reflected path respectively.
The spherical wave reflection coefficient (Q) accounts for the effect
of the locally reactive impedance ground on the reflected rays. The
equation for the spherical wave reflection coefficient is

Q ¼ Z cosh� 1
Z coshþ 1

� �
þ 1� Z cosh� 1

Z coshþ 1

� �� �
F wð Þ: ð4Þ

The angle h is the incident angle at which the reflected ray
leaves the impedance ground, given as hA and hBin Fig. 1 for the dif-
ferent paths to each respective receiver. The function F wð Þ
accounts for the boundary loss factor and it is defined as

F wð Þ ¼ 1þ iw
ffiffiffiffi
p

p
exp �w2� �

erfc �iwð Þ; ð5Þ
with erfc �iwð Þ being the complimentary error function

erfc zð Þ ¼ 2ffiffiffiffi
p

p
Z 1

z
exp �t2

� �
dt: ð6Þ

The parameter Z in Eq. (4) is the normalised impedance of the
ground, which is dependent on the acoustic properties of said
ground. The impedance Z is determined using the model proposed
by Horoshenkov et al. [6]. This model calculates the acoustic prop-
erties of the impedance ground by considering the ground as a por-
ous media with pores of non-uniform cross-section, with the
median pore-size s.

In outdoor sound propagation studies, it is common to refer to
the effective flow resistivity of the ground (rgÞ: The acoustic impe-
dance model proposed in [6] relates the effective flow resistivity to
the median pore size as

rg ¼ 8ga1
s2/

e6 rs log 2ð Þ2 ; ð7Þ

where g is the dynamic viscosity of air. In the above equation it is
common to set the values of porosity (/Þ and tortuosity a1ð Þ to
unity and standard deviation in pore size (rsÞ to zero, because for
a majority of outdoor ground types their influence on the value of
effective flow resistivity is relatively small in comparison with that
of the median pore size. This value will be used to determine the
grounds effect on the interaction patterns between reflected and
direct sound rays.

The complex sound pressure at the receiver positions A and B is

pA ¼ p0½1þ Q
R1A

R2A
exp ik R2A � R1Að Þð Þ�; ð8Þ
phone system in the ðr; zÞ geometry.
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pB ¼ p0½1þ Q
R1B

R2B
exp ik R2B � R1Bð Þð Þ�; ð9Þ

where the distances are now dependent on the direct paths to the
receivers A and B (R1A & R1B) and reflected from the ground paths
(R2A & R2B). Using Eqs. (7) and (8), the sound pressure ratio between
the signals recorded on receiver A and B, presented as an amplitude
from hereon is

pd ¼
pA

pB
exp i/B � i/Að Þ: ð10Þ

Two parameters in eq. (10) are of direct interest: (i) the ratio of
the sound pressure amplitudes, lp ¼ pA

pB
; and (ii) the phase differ-

ence, l/ ¼ /B � /A. The uncertainty in the sound pressure ampli-
tude ratio can alter the quality of the ground impedance
inversion method [4], whereas the uncertainty in the phase differ-
ence would affect the accuracy of source localisation [3].

2.2. Propagation of uncertainty

The problem approached in this work is of a forward nature,
with the uncertainty added into the model which we assume to
be perfect i.e. the model would predict the exact result for a given
set of parameters. It is assumed that there is a variability in the
geometry and ground properties, specifically in: (i) the range rð Þ;
and (ii) the ground impedance which is controlled by the effective
flow resistivity rg

� �
. The heights of the source zsð Þ, receiver A zAð Þ

and receiver B zBð Þ are assumed locked to 1:5m, 1:5m and 0:5m,
respectively. The range rð Þ is varied from 100m to 500m, while
the effective flow resistivity of the impedance ground takes the

values of 100kPasm�2 and 2000kPasm�2. These values for the
impedance follow some published experimental data [10] that cor-
responds to acoustical soft (e.g. grassland) and hard grounds
(rocks), respectively.

For these ground types the real and imaginary parts of the
sound pressure spectra at receiver A for p0 ¼ 1Pa are illustrated
Fig. 2. Real (Left column) and Imaginary (Right column) parts of the sound pressure pre
acoustically soft 100kPasm�2

� �
and hard 2000kPasm�2

� �
impedance grounds, respective
in Fig. 2, which shows the real ((a) and (c) of Fig. 2) and imaginary
((b) and (d) of Fig. 2) parts of these spectra for a set of ranges. It is
seen that the true spectra are all dependent on combinations of fre-
quency xð Þ and range rð Þ with visible differences between simu-
lated results.

In this paper the sensitivity in the model to some uncertainty in
the range rð Þ and effective flow resistivity of the ground rg

� �
is

studied through a Monte Carlo simulation. The Monte Carlo
method is sampling method, that repeatedly calculates a given
value while allowing for uncertainty to be present in certain model
input parameters. In this case, the model employed is the one pre-
viously defined in Eq. (10), predicting the sound pressure ampli-
tude ratio and phase difference between the two receiver points.

The input parameters of the effective flow resistivity rg
� �

and
range rð Þ are independently, and in combination, doped with
uncertainty. This is done by replacing the true singular value
with a parameter randomly sampled from the given distribution.
The given distributions used in this study are uniform distribu-
tions, flat distributions around the true value, meaning that
any value inside the distribution is equally likely to be selected
before each run of the Monte Carlo simulation. The uncertainty
is controlled by changing how wide the distribution is i.e. lower
and upper bounds being proportionally within either 5% or 35%
of the true value.

This process is repeated for 1000 runs, for each combination of
uncertainties, where for ease of analysis the average of each simu-
lation is taken giving us the average sound pressure amplitude

ratio lp

� �
and average phase difference l/

� �
in the frequency

range of 60Hz to 8kHz. These parameters are the main focus of
the analysis presented in the following section. The analysis is car-
ried out visually and statistically, where kernel density estimation
is used to generate the probability density functions (PDFs) of the

average sound pressure amplitude ratio lp

� �
and average phase

difference l/

� �
.

dicted at position A as a function of the range. Top and bottom rows show data for
ly.
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3. Results

3.1. Sound pressure amplitude ratio

Fig. 3 shows the spectra of the average sound pressure ampli-
tude ratios predicted for sound propagation in the presence of a
relatively soft ground. Four situations are considered: (i) the fixed
values of the parameters (rg jrÞ; (ii) uncertain value of the effective
flow resistivity (Drg rj Þ; (iii) uncertain value of the range (rg Drj Þ;
and (iv) uncertain values of the effective flow resistivity and range
(Drg Drj Þ. Here D stands for the parameter uncertainty. Two sets of
results are presented: (i) for D ¼ 5% of the given true value ((a), (b),
(c) and (d) of Fig. 3); and (ii) for D ¼ 35% of the given true value
((e), (f), (g) and (h) of Fig. 3). Fig. 4 presents a similar set of results
for the case of hard ground. Figs. 5 and 6 present the probability
density functions for the average sound pressure amplitude ratios
taken over the whole frequency spectrum. These are shown for
each of the given combinations of parameter uncertainties.

The results from the Monte Carlo simulation suggest that the

effect to the average pressure amplitude ratio lp

� �
for any combi-

nation of small uncertainties D ¼ 5%ð Þ is relatively small, i.e. that
this ratio predicted for these microphone locations is relatively
immune to variations in the true value of range or flow resistivity
of the ground. The effect of frequency on this ratio is dominant as
suggested in Ref. [3]. Visually, the spectra only show discernible
differences from the true spectra ((a) and € in Fig. 4) when the true
range rð Þ is less than � 150m and large uncertainty D ¼ 35%ð Þ is
added to it ((d) and (h) in Fig. 4).

Statistically (see Table 1 in Appendix A) the mean of the average

ratio of the sound pressure amplitudes lp

� �
increases from ~1:7 to

~2:9 as the range rð Þ increases. There is variation of �0:01 between
the means for each hardness of the impedance ground which is
controlled by the effective flow resistivity rg

� �
. The standard devi-
Fig. 3. Simulation results for the average ratio of the sound pressure amplitudes lp

� �
, fo

uncertainty present and range rð Þ is mapped to colour, frommagenta ð100mÞ to black ð500
(For interpretation of the references to colour in this figure legend, the reader is referre
ation of the average ratio of the sound pressure amplitudes lp

� �
decreases in line with the increase in range rð Þ, with the deviation
proportionally decreasing by 50% in the decrease from 500m to
100m.

The generated PDFs seen in Figs. 5 and 6, for soft impedance
rg ¼ 100kPasm�2
� �

and hard impedance rg ¼ 2000kPasm�2
� �

grounds respectively, allow for better insight into the effect of
the uncertainty and range. Range rð Þ is the strongest parameter

for shaping these distributions, creating a strong peak at lp

� � 3.
This peak is reduced and disappears as the range reduces from
500m to 100m resulting in a close to flat distribution (see the
magenta distributions in Figs. 5 and 6).

The strength of the peak is reduced for all simulations with the
acoustical hardening of the impedance ground is increased i.e. an
increase in flow resistivity rg

� �
. In this case the shape of the distri-

bution and probability of other values (i.e. less than 3) do not
change significantly. For the larger uncertainty D ¼ 35%ð Þ and at
the shortest range (e.g. r ¼ 100m) another peak appears in the

PDFs at lp

� � 1 (see Fig. 6).
It is apparent that a PDF of the average ratio of the sound pres-

sure amplitudes lp

� �
is not generally affected by smaller uncer-

tainties or effective flow resistivity rg
� �

. This mirrors the
behaviours seen in a similar study into excess attenuation [7].
The range rð Þ and frequency xð Þ shape the spectrum and PDF beha-
viours, with the range rð Þ being the dominant parameter which
effect becomes more pronounced as the uncertainty increases.
3.2. Phase difference

Similar to the procedure reported in Section 3.1 the behaviour
of the average phase difference spectra is studied over the four
conditions: (i) the fixed values of the parameters (rgjrÞ; (ii) uncer-
r an acoustically soft ground rg ¼ 100kPasm�2
� �

, where each column defining the
mÞ. Uncertainty Dð Þ is at 5% in the first row and increased to 35% in the second row.
d to the web version of this article.)



Fig. 4. Simulation results for the average ratio of the sound pressure amplitudes lp

� �
, for an acoustically hard ground rg ¼ 2000kPasm�2

� �
, where each column defining the

uncertainty present and range rð Þ is mapped to colour, frommagenta ð100mÞ to black ð500mÞ. Uncertainty Dð Þ is at 5% in the first row and increased to 35% in the second row.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. PDFs for the average ratio of the sound pressure amplitudes lp

� �
, for an acoustically soft ground rg ¼ 100kPasm�2

� �
, where each column defining the uncertainty

present and range rð Þ is mapped to colour, from magenta ð100mÞ to black ð500mÞ. Uncertainty Dð Þ is at 5% in the first row and increased to 35% in the second row. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. PDFs for the average ratio of the sound pressure amplitudes lp

� �
, for an acoustically hard ground rg ¼ 2000kPasm�2

� �
, where each column defining the uncertainty

present and range rð Þ is mapped to colour, from magenta ð100mÞ to black ð500mÞ. Uncertainty Dð Þ is at 5% in the first row and increased to 35% in the second row. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Simulation results for the average phase difference l/

� �
, for an acoustically soft ground rg ¼ 100kPasm�2

� �
, where each column defining the uncertainty present and

range rð Þ is mapped to colour, from magenta ð100mÞ to black ð500mÞ. Uncertainty Dð Þ is at 5% in the first row and increased to 35% in the second row. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Simulation results for the average phase difference l/

� �
, for an acoustically hard ground rg ¼ 2000kPasm�2

� �
, where each column defining the uncertainty present

and range rð Þ is mapped to colour, from magenta ð100mÞ to black ð500mÞ. Uncertainty Dð Þ is at 5% in the first row and increased to 35% in the second row. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. PDFs for the average phase difference l/

� �
, for an acoustically soft ground rg ¼ 100kPasm�2

� �
, where each column defining the uncertainty present and range rð Þ is

mapped to colour, from magenta ð100mÞ to black ð500mÞ. Uncertainty Dð Þ is at 5% in the first row and increased to 35% in the second row. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. PDFs for average phase difference l/

� �
, for an acoustically hard ground rg ¼ 2000kPasm�2

� �
, where each column defining the uncertainty present and range rð Þ is

mapped to colour, from magenta ð100mÞ to black ð500mÞ. Uncertainty Dð Þ is at 5% in the first row and increased to 35% in the second row. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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tain value of the effective flow resistivity (Drg rj Þ; (iii) uncertain
value of the range (rg Drj Þ; and (iv) uncertain values of the effective
flow resistivity and range (Drg Drj Þ. Two sets of results are pre-
sented: (i) for D ¼ 5% of the given true value ((a), (b), (c) and (d)
in Fig. 5); and (ii) for D ¼ 35% of the given true value ((e), (f), (g)
and (h) in Fig. 5). Fig. 6 presents a similar set of results for the case
of hard ground.

The results of these simulations suggest that the variation in the

average phase difference spectra l/

� �
for any combination of

small uncertainties D ¼ 5%ð Þ is relatively small, i.e. that this
parameter predicted for the chosen microphone locations is rela-
tively immune to the variation in the true value of the range or
effective flow resistivity of the ground. The frequency xð Þ is the
dominant parameter here. Visually, the spectra only show dis-
cernible differences from the true spectra, irrespective of the impe-
dance ground rg

� �
((a) and (e) in Figs. 7 and 8), when the

uncertainty in the range rð Þ is high D ¼ 35%ð Þ and at shorter ranges,
i.e. r � 150m:

The effect of the effective flow resistivity on the mean of the

average phase difference l/

� �
is more significant than on the aver-

age sound pressure amplitude ratio lp

� �
(See Appendix A). The

mean of l/ seen in Table 1 (See Appendix A) for a soft ground

rg ¼ 100kPasm�2
� �

starts at ~0:8 and reduces to ~0:1 at the maxi-
mum range of 100 m. These mean values change from 0:65 to
�0:015, respectively, when the impedance of the ground hardens
and the effective flow resistivity is increased to
rg ¼ 2000kPasm�2. The standard deviation of the average absolute

phase difference l/

� �
decreases with the increased range rð Þ.

The PDFs for the average phase difference l/

� �
show a different

shape than that of the average absolute pressure ratio lp

� �
. These
PDFs depend strongly on the range rð Þ, as the peak, and maximum

attainable values for average phase difference l/

� �
of each simu-

lation are directly linked to the range rð Þ, as seen by the evolution
between simulations by the colour mapping (Figs. 9 and 10). The
lower values of average phase difference are not seemingly
affected by the range rð Þ. The change in the impedance ground
affects the gradient of the slope of these PDFs, these data show a
little ground effect even with the addition of higher uncertainty.
When the range is small r � 150mð Þ the PDFs for the average phase
difference show a much more complex behaviour than those pre-
dicted for greater ranges ((c), (d), (g) and (h) in Figs. 9 and 10). This
complex behaviour is exacerbated by an increase in uncertainty in
the range parameter.

It is apparent that like in the case of the average absolute pres-

sure ratio lp

� �
, the PDFs for average phase difference l/

� �
are not

influenced significantly by smaller uncertainties. An increase in the
ground impedance reduces the peak in the PDF for the average
phase difference at longer ranges, but it does not change the value
at which this peak actually occurs. The range and frequency control
the PDFs. The range is the most influential parameter, which can be
useful for source localisation applications.
4. Conclusions

The two-microphone method is found to be suitable for the
characterisation of sound pressure and related measurements. This
is said to be true given favourable atmospheric conditions, while
early works by the author suggests this assumption holds through
varying atmospheric conditions, this conclusion needs further test-
ing in the presence of realistic atmospheric effects such as sound
speed gradient and turbulence. The use of the two-microphone
method can be helpful in applications related to source localisation
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and when the range is greater than 100� 150m, because the sim-
ulations show that this method can be less consistent over the
shorter ranges and higher uncertainties. This method seems much
more immune to the uncertainties in the range and ground impe-
dance than alternative methods based on single microphone data,
e.g. that reported in Ref. [7].

The results suggest that the uncertainty in the ground does not
seem to be significant unless the it is relatively high (e.g. D ¼ 35%)
and the range is relatively short (e.g. r � 150m). In this case, the
uncertainty in the range has the dominant effect of the sound pres-
sure ratio spectra and resultant PDFs. Combination of uncertainties
in the ground impedance and range results in an increased vari-
ability in the predictions of the sound pressure ratio between
two microphone positions. This suggests that for applications of
the two-microphone method: (i) removal of uncertainty in the
range is key for reliably source localisation/inferences, particularly
at shorter distances r < 150ð Þ; and (ii) uncertainty in the effective
flow resistivity of the ground is unlikely to affect the behaviour of
the PDF for the sound pressure ratio, but relaxing this parameter
would result in reduced computational costs with negligible, if
any, loss in accuracy.

The frequency has a strong effect on stability of the two-
microphone method. For frequencies below 100 Hz the absolute
pressure ratio is close to unity and phase difference is close to zero.
This small difference between the two sound pressures in this fre-
quency range is likely to affect the quality of inference if this
method applied to sources which frequency spectrum is domi-
Table 1
Table of means lð Þ and std. deviations rð Þ for simulation results for average absolute pr
parameters and uncertainty Dð Þ.

Average absolute pressure lp

� �

Mean lð Þ Std. Dev. rð Þ
rg kPasm�2

� �
r mð Þ D ¼ 5% D ¼ 35% D ¼ 5%

100 100 1.7279 1.037
150 2.3467 0.6615
200 2.6156 0.5134
250 2.7505 0.4573
300 2.8269 0.4344
350 2.8743 0.4242
400 2.9057 0.4193
450 2.9275 0.4167
500 2.9434 0.4154
D100 1.7302 1.7568 1.0328
D150 2.3445 2.2881 0.6628
D200 2.6516 2.5701 0.5134
D250 2.7499 2.7185 0.4575
D300 2.8257 2.8061 0.4347
D350 2.874 2.8607 0.4242
D400 2.9056 2.8923 0.4193
D450 2.9274 2.9141 0.4167
D500 2.9434 2.9532 0.4154

D100 100 1.7279 1.7277 1.037
150 2.3467 2.3464 0.6615
200 2.6156 2.6153 0.5133
250 2.7505 2.7502 0.4572
300 2.8269 2.8267 0.4343
350 2.8943 2.8741 0.4241
400 2.9057 2.9054 0.4192
450 2.9275 2.9273 0.4167
500 2.9434 2.9431 0.4153
D100 1.7288 1.7475 1.033
D150 2.345 2.2825 0.6624
D200 2.6149 2.5759 0.5137
D250 2.7497 2.7192 0.4575
D300 2.8268 2.8031 0.4344
D350 2.8742 2.8552 0.4242
D400 2.9054 2.8918 0.4193
nated by low frequency components, e.g. gun fire. Larger separa-
tions between the two microphones which are comparable with
the paths difference and wavelength may be required to enhance
the sensitivity of the two-microphone method for applications in
this frequency range.
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Appendix A

Table of statistics
essure ratio lp

� �
and average phase difference l/

� �
at each combination of given

Average phase difference l/

� �

Mean lð Þ Std. Dev. rð Þ
D ¼ 35% D ¼ 5% D ¼ 35% D ¼ 5% D ¼ 35%

0.8282 0.7405
0.6182 0.5696
0.4401 0.4731
0.3322 0.4157
0.2599 0.3782
0.2082 0.3518
0.1693 0.3324
0.1391 0.3176
0.1148 0.3059

0.927 0.8267 0.6842 0.7028 0.5339
0.6916 0.6194 0.6367 0.5702 0.5732
0.5345 0.44 0.4638 0.473 0.4857
0.4686 0.3325 0.3515 0.4159 0.4259
0.4398 0.261 0.2737 0.3787 0.3852
0.4268 0.2085 0.2179 0.352 0.3567
0.4212 0.1694 0.1809 0.3325 0.3382
0.4182 0.1392 0.1529 0.3177 0.3243
0.416 0.1148 0.1231 0.3059 0.3099
1.0356 0.8282 0.8287 0.7404 0.7394
0.6591 0.6182 0.6188 0.5696 0.5684
0.5102 0.4401 0.4406 0.4731 0.4718
0.4537 0.3322 0.3327 0.4157 0.4144
0.4306 0.2599 0.2604 0.3781 0.3768
0.4203 0.2082 0.2087 0.3518 0.3505
0.4153 0.1693 0.1698 0.3324 0.331
0.4128 0.1391 0.1396 0.3176 0.3162
0.4114 0.1148 0.1153 0.3059 0.3045
0.9282 0.8251 0.6825 0.7014 0.5324
0.6933 0.6191 0.6417 0.57 0.5755
0.529 0.4404 0.46 0.4733 0.4825
0.4653 0.3327 0.3512 0.416 0.4245
0.4374 0.2599 0.2769 0.3781 0.3857
0.4246 0.2082 0.2239 0.3518 0.3585
0.418 0.1696 0.1814 0.3326 0.3372

(continued on next page)



Table 1 (continued)

Average absolute pressure lp

� �
Average phase difference l/

� �

Mean lð Þ Std. Dev. rð Þ Mean lð Þ Std. Dev. rð Þ
rg kPasm�2

� �
r mð Þ D ¼ 5% D ¼ 35% D ¼ 5% D ¼ 35% D ¼ 5% D ¼ 35% D ¼ 5% D ¼ 35%

D450 2.9272 2.9157 0.4167 0.4147 0.1395 0.1508 0.3178 0.322
D500 2.9431 2.9329 0.4154 0.4129 0.1152 0.1263 0.3061 0.3101

2000 100 1.6702 0.9787 0.6473 0.7462
150 2.2784 0.7535 0.4345 0.6579
200 2.5488 0.704 0.2713 0.569
250 2.6876 0.6994 0.1703 0.5146
300 2.7678 0.7034 0.102 0.4785
350 2.8185 0.7083 0.0528 0.4528
400 2.8527 0.7125 0.0158 0.4337
450 2.877 0.7159 �0.0131 0.4189
500 2.8948 0.7185 �0.0364 0.4072
D100 1.6706 1.6846 0.9761 0.8852 0.6399 0.5111 0.7389 0.6153
D150 2.2779 2.2306 0.7536 0.7632 0.4346 0.4458 0.6579 0.6591
D200 2.549 2.5052 0.704 0.7078 0.271 0.2918 0.5688 0.5799
D250 2.6867 2.6548 0.6994 0.6989 0.1708 0.1886 0.5149 0.5243
D300 2.7677 2.748 0.7034 0.7018 0.102 0.1139 0.4785 0.4847
D350 2.8181 2.8009 0.7083 0.7063 0.0532 0.0654 0.453 0.4593
D400 2.8529 2.8391 0.7125 0.7106 0.0156 0.0264 0.4336 0.4391
D450 2.8765 2.8637 0.7158 0.7138 �0.0126 �0.0011 0.4192 0.425
D500 2.8948 2.8859 0.7185 0.717 �0.0364 �0.0283 0.4072 0.4112

D2000 100 1.6702 1.671 0.9786 0.9758 0.6473 0.6494 0.7462 0.7447
150 2.2784 2.2793 0.7534 0.7481 0.4345 0.4366 0.6579 0.6559
200 2.5488 2.5497 0.7039 0.6975 0.2712 0.2732 0.5689 0.5668
250 2.6876 2.6884 0.6993 0.6926 0.1702 0.1721 0.5146 0.5123
300 2.7678 2.7686 0.7033 0.6965 0.102 0.1038 0.4784 0.4761
350 2.8185 2.8193 0.7082 0.7014 0.0528 0.0546 0.4528 0.4504
400 2.8527 2.8534 0.7125 0.7056 0.0158 0.0175 0.4337 0.4313
450 2.877 2.8776 0.7158 0.7089 �0.0132 �0.0114 0.4189 0.4165
500 2.8948 2.8955 0.7184 0.7116 �0.0364 �0.0346 0.4072 0.4048
D100 1.6727 1.695 0.9753 0.8778 0.6405 0.5138 0.739 0.6137
D150 2.2766 2.2218 0.7538 0.761 0.4352 0.4497 0.6583 0.6588
D200 2.5479 2.5014 0.704 0.7034 0.2716 0.2942 0.5692 0.5794
D250 2.6872 2.6551 0.6993 0.6942 0.1704 0.1881 0.5147 0.5222
D300 2.7676 2.7397 0.7034 0.6967 0.102 0.1209 0.4785 0.4865
D350 2.8184 2.7992 0.7083 0.7016 0.0528 0.0667 0.4528 0.4581
D400 2.8523 2.8362 0.7124 0.7059 0.0161 0.0294 0.4338 0.4388
D450 2.8769 2.8661 0.7158 0.7099 �0.0132 �0.0039 0.4189 0.4217
D500 2.8945 2.8839 0.7184 0.7125 �0.036 �0.0258 0.4074 0.4106
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Abstract – Predicting outdoor sound propagation in uncertain conditions remains a challenge. This increases the complexity of the 

inverse problem, e.g. parameter recovery in the presence of a particular sound source such as like gunfire. This paper investigates 

the use of maximum likelihood methods, both frequentist and Bayesian, in inverting true parameters from measured and simulated 

data. A simple source-receiver acoustic model is used which assumes; a homogeneous atmosphere, soft impedance ground and some 

medium range sound propagation to predict the deviation in sound pressure at the receiver. A blank firing pistol, Bruni Mod 92, is 

used to record a realistic sound source spectrum in an anechoic chamber. Gaussian noise is added to model predictions for this type 

of source to mimic uncertainty of real-life observations. Error analysis is performed by repeatedly generating observations and then 

evaluating the errors between the true range and recovered range estimate. This analysis is performed in broadband and octave 

frequency bands. It was found that the frequentist method greatly underestimates the range while the Bayesian method, even with a 

particularly flat prior, greatly reduces both over- and underestimations, significantly improving the range estimate to within ±5𝑚 of 

the true value in the majority of cases. The inclusion of octave band filters in the infrasonic frequency showed these bands were 

mostly responsible for the accurate range estimates. This paper paves the way for applications of this class of statistical models to 

real-life acoustic data for source parameter recovery. 

 

Keywords: Acoustics; Sound Propagation; Maximum Likelihood; Maximum A Posteriori; Inference; Error Analysis. 

 

 

1. Introduction 
Unlike other acoustical disciplines, outdoor sound propagation is not well understood in the presence of uncertainty. 

This complicates the application of the inverse process in which experimental data are used to infer sound source and 

environmental parameters. Improving the statistical understanding of this problem at the fundamental level will help the 

development of more robust inversion models and their practical applications. 

This paper makes use of the likelihood function, frequentist and Bayesian methodologies to infer an unknown 

gunshot source range. This is done in the scenario where a simple homogenous atmosphere and soft impedance ground 

are present, and the remaining key parameters are known. Simulations are done by generating a small set of observations 

from an established acoustic model with gaussian noise added to simulate uncertainty in experimental data. Parameter 

estimates are then obtained from the frequentist Maximum Log-likelihood [1] and Bayesian Maximum a Posteriori 

methods [2]. The error of the inferred parameters against the true value is studied. This process repeated for over sets of 

generated observations. The performance of statistical methods is compared for broadband data and data filtered in octave 

band frequency windows. It is believed that the results obtained from this work will improve current inversion techniques 

and industrial practices which rely on outdoor sound propagation with uncertainties. 

 

2. Acoustical Methods 
 
2.1. Acoustic Foundations 

A typical sound source produces a collection of sound waves, composed of different frequencies that propagate 

through some medium i.e. air in the outdoor case. A homogenous, atmosphere removes possible interferences from wind, 

turbulence and/or temperature gradients. Following this assumption, the sound pressure generated by this source can then 

be measured at the receiver position as a combination of the direct wave and wave reflected from the ground. These two 

waves interfere in constructive/destructive way resulting a complicated spectrum of the sound observed at the receiver 

position. The key parameters that need quantifying to make accurate predictions for this source/receiver/ground 
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configuration are: sound frequency (𝜔), source height (𝑠ℎ), range (𝑟), receiver height (𝑟ℎ) and impedance of the ground 

(𝜎𝑔). Figure 1 explains this problem schematically. 

 

 
Fig. 1: Acoustic scenario in the (𝑟, 𝑧) geometry. 

 

The excess attenuation spectrum is a common characteristic of the sound field predicted by this acoustical model. 

The excess attenuation, Δ𝐿, represents the deviation from the free pressure field now due to the influence of the ground, 

frequency and geometry, taking positive and negative values due to the constructive or destructive interference between 

the direct and reflected rays, respectively [3]. Δ𝐿 is equated as 

Δ𝐿 = 10log10 |1 + 𝑄
𝑅1

𝑅2
exp(𝑖𝑘𝑅2 − 𝑖𝑘𝑅1)|

2

, (1) 

where  

𝑅1 = √𝑟2 + (𝑧 − 𝑧𝑠)2 , (2) 

𝑅2 = √𝑟2 + (𝑧 + 𝑧𝑠)2 . (3) 

Parameters 𝑘 and 𝑖 are the wavenumber and imaginary number, respectively. The parameter 𝑄 in eq. (1) is the 

spherical wave reflection co-efficient, describing the relative pressure in the spherical wave reflected by the ground. This 

is a combination of the incident angle, 𝜃, and normalised impedance of the ground, 𝑍. 𝑄 is calculated as 

𝑄 = (
𝑍 cos𝜃 − 1

𝑍 cos𝜃 + 1
) + (1 − (

𝑍 cos𝜃 − 1

𝑍 cos𝜃 + 1
)) 𝐹(𝑤) , (4) 

with the boundary loss factor, 𝐹(𝑤), as 

𝐹(𝑤) = 1 + 𝑖𝑤√𝜋 exp(−𝑤) erfc(−𝑖𝑤) , (5) 

and error function, erfc(𝑧),  

erfc(𝑧) =
1

√2𝜋
∫ exp(−𝑡2) 𝑑𝑡 .

∞

𝑧

(6) 

Calculating the acoustic impedance of the ground, 𝑍, can be done be various methods, however assuming the ground 

to be porous, the method proposed by Horoshenkov et al is used [4] in this paper. This model makes use of the median 

pore size which relates to the ground impedance. It considers the ground as a porous media with circular pores of non-

uniform cross-section. It can be noted however; recent findings suggested the impedance of the ground was not a strongly 

significant factor inside simple acoustic scenarios while uncertainty was present in the geometry [5].  

 
2.2. Gunshot Evaluation 

Acoustical characterisation work on gunfire show that the sound generated can be categorised into three parts; 

muzzle blast, mechanical action and supersonic projectile [6]. The paper uses data collected from a Bruni mod 92 blank 

pistol, meaning that no supersonic projectile is produced leaving only the muzzle blast and mechanical action of the 

pistol. Sound recordings were taken of the pistol shots in an anechoic chamber at the University of Sheffield. The source 

and receiver were placed on the hard ground and separated by 3 m. The Fast Fourier Transform algorithm was applied 
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to the time data (left-hand side of Fig. 2) to determine the frequency spectrum of each firing event (right-hand side of 

Fig. 2). 

 

 
Fig. 2: Selection of gunshot recordings (left) with FFT of each (right). 

 
Problematic mechanical action i.e. the casing being ejected, ricocheting etc is assumed to be the causes of the 

variation in the higher frequencies in the frequency plot (Fig. 2). It is also logical to assume that at long ranges, the 

smaller intensity of such sounds would likely dissipate before reaching the receiver. The measured frequency spectra 

were then averaged, using a cut-off point to remove small amplitudes, to leave a singular array of values which created 

a broadband frequency spectrum between a minimum of 0.24Hz and maximum of 93.02Hz. These frequencies 

correspond to the lower and upper octave bands used in this paper as it is common in acoustical practices to study outdoor 

sound propagation in individual octave bands. Octave filtered bands used in our analyses (Table 1) follow the current 

international standard set [7]. Bands with an asterisk (*) are described but are not used in analysis since the spectrum 

recovered did not contain frequencies inside that respective window.  
 

Table 1: Octave band limits, in accordance to ISO 266. 

 

Octave 1/1 Band Lower Limit (Hz) Centre Frequency (Hz) Upper Limit (Hz) 

Band 0 0.24 1 1.41 

Band 3 1.41 2 2.82 

Band 6 2.82 4 5.62 

Band 9* 5.62 8 11.2 

Band 12 11.2 16 22.4 

Band 15 22.4 31 44.7 

Band 18 44.7 63 89.1 

Band 21 89.1 125 177 

 
2.3. Parameter Selection and Observations 

 The known source and receiver heights were set to 2𝑚, as higher geometries begin to be highly subject to 

atmospheric effects, thus keeping our current model fit for use. The ground was considered as acoustically soft, which is 

typical for a field with low growing vegetation with an experimentally measured flow resistivity of at 500𝑃𝑎𝑠𝑚−2 

corresponding to the median pore size of 530𝜇𝑚 [8]. Range, being the unknown parameter, will have three true values 

being; 100𝑚, 200𝑚 and 300𝑚. The excess attenuation spectrum, Δ𝐿 for the each set of true values are shown in Fig. 3. 

Before collecting observations, it is helpful to rewrite the acoustical model (eq. (1)) as a function of the parameters 

𝑌 = 𝑓(𝜔, ℎ𝑠, 𝑟, ℎ𝑟 , 𝜎𝑔) . (7) 
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It is assumed that the acoustic model is perfect which means that it will predict the exact sound spectra for the input 

parameters given. To generate observations, the function (eq. (7)) has some gaussian noise added to predicted values, via 

an error term of 𝜀𝑠 ∼ 𝑁(0, 𝜎𝜀
2) with the variance 𝜎𝜀

2 fixed at 3dB. Thus, dropping constant terms from the notation, 

observations can be generated by the rewritten function  

𝑦𝑠 = 𝑓(𝜔, 𝑟) + 𝜀𝑠 . (8) 

In relation to the true excess attenuation spectrum, the possible values of the observed excess attenuation are shown 

to exist between the dashed limits depicted in Fig. 3. 

 

 
Fig. 3: Excess attenuation spectrum (solid) for true values, for range at 100m (left), 200m (middle) and 300m (right). Limits to 

observed values due to noise (dashed) are superimposed. 

 
3. Statistical Methods 
 
3.1. Maximum Log-likelihood Estimation (MLE) 

The first method will be of the frequentist approach, maximising the likelihood function to estimate a given 

parameter. It is assumed that the observations generated can be described by some normal distribution, of some give 

mean and variance 𝑋𝑠~𝑁(𝜇, 𝜎2), then it has the likelihood function ℒ(𝜃|𝑋) = ∏ 𝑓𝑁(𝑥𝑠; 𝜇, 𝜎2)𝑛
𝑠 , which can be log 

transformed to the log-likelihood as 

log(ℒ(𝜃|𝑋)) = ℓ(𝜃|𝑋) = −
𝑛

2
log 2𝜋 −

𝑛

2
log 𝜎2 −

1

2𝜎2
∑(𝑥𝑠 − 𝜇)2

𝑛

𝑠=1

 . (9) 

The above is the log-likelihood [1]. The function in eq. (9) can then, using eq. (7) and eq. (8), be rewritten as 

ℓ(𝜃|𝑌, 𝜔, 𝑟) = −
𝑛

2
log 2𝜋 −

𝑛

2
log 𝜎2 −

1

2𝜎2
∑ ∑ ∑ (𝑦𝑠 − 𝑓(𝜔𝑗 , 𝑟𝑘))

2
𝑛

𝑠=1

𝑚

𝑘=1

𝑞

𝑗=1

 . (10) 

This log-likelihood, eq. (10), uses an 𝑛 number of generated observations (𝑦𝑠), to find the best estimate of the range 

from the source (𝑟𝑘), from a parameter space of 𝑚 points, by locating the point in which the function is maximised. This 

is done for each frequency (𝜔𝑗) from an array of 𝑞 frequency points. Apart from finding the maximised value for 𝑟 for 

all the complete frequency spectrum, maximised results inside frequency bandwidths like the defined octave bands 

(Table. 1), and thus a related estimate for 𝑟, can be located to be explored. 

 
3.2. Bayesian Maximum a Posteriori (MAP) 

The second method adheres to the Bayesian perspective. Bayes' theorem allows for the likelihood function to be 

combined with prior beliefs, giving such knowledge statistical weighting in the predictive process. The renown theorem 

can be written as 

𝑃(𝜃|𝑋) =
𝑃(𝑋|𝜃) × 𝑃(𝜃)

𝑃(𝑋)
=

ℒ(𝜃|𝑋) × 𝑃(𝜃)

𝑃(𝑋)
 , (11) 
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where 𝑃(𝜃|𝑋) is posterior, 𝑃(𝑋) is the evidence, 𝑃(𝜃) is the prior and  ℒ(𝜃|𝑋) the likelihood described earlier. The 

posterior probability is computed as a probability distribution of 𝜃 given the observed data 𝑋. Since the peak of the 

posterior distribution is the only value of interest to us, as this is the most likely estimate of the parameter/s, the 

normalising constant of 𝑃(𝑋) can be dropped greatly reducing computational effort. This results in eq. (3) being modified 

to 

𝑃(𝜃|𝑋) ∝ ℒ(𝜃|𝑋) × 𝑃(𝜃) . (12) 

Eq. (12) allows for the MAP (Maximum a posterior) estimate, or the most likely value given the combination of 

prior beliefs and observed data, to be found. Like the earlier likelihood function, eq. (12) can be log transformed to 

log(𝑃(𝜃|𝑋)) ∝ ℓ(𝜃|𝑋) + log 𝑃(𝜃) . (13) 

Priors can be used to import knowledge, or lack of, around the true value. Furthermore, the log of probability is a 

negative number, thus the value of log 𝑃(𝜃) can be interpreted as a penalty term. When the estimated parameters fall 

outside the interval prior, the penalty becomes log (0), thus reducing the likelihood to −∞. [2]. The prior probabilities 

applied in this work are assumed to be proportional to some normal distribution, 𝑃(𝜃) ∼ 𝑁(𝜇∗, 𝜎∗), where the value of 

𝜇∗is taken to be equal to the true parameter in each scenario. The standard deviation in the source range is fixed at 𝜎∗ =
15𝑚, as this gives a possible error of up to ~ ± 50𝑚. This is analogous to the observer having an idea where the gunshot 

was fired yet giving themselves a large window of error, that is also similar to the parameter space of 𝑟 that is numerically 

calculated from. 

 
3.3. Computational Error Analysis 

Investigating how efficient an estimate of the range is achieved computationally (using MATLABTM) by comparing 

every simulated estimate to the true value of 𝑟 in question. This is done by creating 3 observations, using eq. (8), 

maximising likelihood function for the observations over the (𝑚, 𝑞) space detailed in eq. (10) with, and without, a prior 

belief applied and comparing the related estimate of 𝑟 to the true range for all the three different true ranges. The process 

is repeated 1000 times, for each true value of 𝑟, so an adequate amount of errors can be investigated. Errors are compared 

across combinations of each true value for range, statistical method applied and frequency windows. 

 

4. Results 
 
4.1. Broadband Analysis 

Comapring the errors from using MLE to the MAP methods (Fig. 4) reveals clear differences in how well the true 

range of the source was recovered from the simulated observations. The MLE method is not very effective at any range, 

actually estimating each posible value of 𝑟 in the parameter space used at least once. There is also a large tendency to 

underestimate by the minimum possible value. The shortest range (100𝑚) was least sucecptble to this but the remaining 

ranges (200𝑚, 300𝑚) had over a 50% chance of being out by −50𝑚, which is a 50% error in the 100𝑚 case. In only 

a small perecetnage of simulations was the true vlaue recovered, but this was as likely as recoving any parameter from 

the parameter space for 𝑟. There was also a recurrent overestimation (+~15𝑚) in the case were 𝑟 = 100𝑚, being the 

most estimated value,  yet this slight overestimation dissappeared once the range was increased.  

Bayesian MAP method showed that the application of a prior, even the flat one used, greatly reduced the margins of 

error with 60% + of the simulations aprroximating the true value of 𝑟 (±2𝑚). Some underestimations of ~ − 50𝑚 

remained present in the shortest range (100𝑚), but the occurrence of this was greatly reduced than to their MLE 

counterparts. For the ranges greater than 100𝑚, the variance in the error decreases greatly. Some errors of up to+~20𝑚 

for 𝑟 = 200𝑚 and +~10𝑚 for 𝑟 = 300𝑚, yet these results were extremely uncommon. The majority of the results fell 

within ±5𝑚, a far more reliable window of error than that of the MLE. 
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Fig. 4: Errors between estimate and true range across simulations using MLE (top row) and Bayesian MAP (bottom row) methods. 

 
4.2. Octave Filtering 

Filtering the excess attenuation data into octave bands and applying the MLE method to data presented in individual 

octave bands resulted in almost identical errors as in the case of broadband data. However, the application of the MAP 

method to octave band data proved more successful. Frequncy bands deep into the infrasonic range (< 6Hz) were most 

succesful in estimating the true value, with the full variance in errors greatly decreasing as the centre freqeuncy decreased. 

Application of the MAP method to Band 6 revealed that rarely overstimations were made, and when the exact value 

wasn’t recovered the error was spread between 0𝑚 and −50𝑚. Decreasing to Octave band 3 reduced the underestimation, 

to approximately −20𝑚, with a small likelihood of overstimating by up to ~20𝑚. Band 0 was the most effecient, with 

little to no understimation, but could overstimate by up to 10𝑚, while it had recovered the true value (±2𝑚) in over 

50% of simulations. There was consistent effects of the range, apart from the increase in range to 300𝑚 inside Octave 

band 6 pushed up the maximal understimations to be the most persistent. 

 

 
Fig. 5: Error between estimate and true range across simulations for the Bayesian MAP method for each true range (rows) and the 

lowest three Octaves (columns). 
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5. Conclusion 
Estimating the sound source range solely form the maximising likelihood function does not recover its true value 

effectively being susceptible to large underestimations. The Bayesian use of a prior was significantly more effective. In 

the case of a flatter prior, it greatly improved the ability of the model to recover the true parameter value within ±2m. 

Most other simulations resulted in an error of ±10𝑚, particularly at longer ranges. At the shorter range of 100𝑚 the 

method underestimated the true range value, but the occurrence of this reduced by half. This supports the case of using 

Bayesian techniques with data that has: a small sample size, not easily replicable or when time constraints may be present 

around the inference result.  

Octave filtering using only the maximisation of the likelihood revealed no significant differences in the error analysis 

than to the broadband spectrum. However, the application of the Bayesian MAP method to octave band data was shown 

more successful when some particular frequency bands were adopted. In particular, the infrasonic (< 20Hz) frequency 

bands were found to produce less error. Octave bands higher than Band 6 consistently underestimated the range by ~ −
50𝑚, akin to that observed with the MLE method. Thus, it is recommended to use a combination of the lower frequency 

bands and MAP method with priors that allow for more accurate estimations. This supports the idea of relying on 

infrasonic measurements for a gunfire source when the impedance ground is soft to make accurate predictions while also 

and may prove useful when trying to invert parameters from higher dimensional problems i.e. inhomogeneous 

atmosphere. 
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frequency-dependent sound pressure level and power spectra for a blank firing pistol are used to gener-
ate simulated data with added Gaussian error to represent variations usually present in real life experi-
ments. Inference is carried out using maximum likelihood estimation (MLE) and maximum a priori (MAP)
where model parameters are either given as known or restricted to some uncertain distribution bounded
by realistic conditions. The quality of inference is assessed visually and statistically as the error between
the true and inferred predictions for a given propagation range. Application of a prior (MAP) greatly
improves inference accuracy compared to the sole maximisation of the likelihood function (MLE). It is
shown that the use of a single octave band frequency window does not improve the quality of inference,
whereas combinations of several low frequency octave bands do. Exact quantification of the true values
of the ground and source height are seemingly less important as range increases beyond 500m. Although
the techniques presented in this paper are for military/security applications, they are readily applicable
to other acoustical problems, e.g. source characterisation in engineering noise control. The methods
adopted are likely to benefit from higher-dimensional models, i.e. inhomogeneous atmospheres, complex
terrain or urban environments.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Predicting outdoor sound is a complex problem particularly
when there is an uncertainty in the parameters involved. This
makes the inverse problem, or the inference of the non-acoustical
parameters affecting outdoor sound propagation from the acousti-
cal data a rather difficult task. This is the situation where an array
of statistical concepts and methods can be used to infer a parame-
ter while adjusting for the uncertainty present [1]. Only recently
has significant works been published by D. K. Wilson et al, remov-
ing some of the ambiguity surrounding uncertainty quantification
within outdoor sound propagation [2]. Two cases were studied: a
simple homogenous atmosphere then a near-ground propagation
in a turbulent atmosphere. It showed which sampling methods
proved more accurate, dependant on which parameter uncertainty
was more dominant. Citing this work, further research by T. Van
Renterghem and D. Botteldooren looked at quantifying the varia-
tion in downwind sound propagation over a grassland impedance
ground [3]. A large variation was found, strongly dependent on
sound frequency, source height, receiver height, and propagation
distance. The variation ranges give insight to this systematic uncer-
tainty when performing short-range measurements. However, the
effect of the uncertainties and their interactions is still not well
understood.

These works suggest to use statistics in combination with out-
door acoustics to understand the uncertainty the problem pre-
sents. The art of using statistically justified methods in the
already complex outdoor setting usually requires high-level statis-
tical knowledge combined with thorough understanding of acous-
tical principles. Otherwise, the inference is likely to yield
statistically insignificant results. Extending this work to specific
sources can complicate matters further, i.e. gun fire sources which
spectrum is limited to very low frequencies of sound. Work on gun
detection is of obvious importance in defense applications, yet it is
still an understudied area particularly in the case of large-scale
outdoor situations. There has been works (e.g. [4]) in which meth-
ods for localization of small arms fire using acoustic measurements
of muzzle blast with, and without, ballistic shock wave arrivals
were studied. It was found that accuracy of detection was greatly
dependant on the classification of the firearm and bullet
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https://doi.org/10.1016/j.apacoust.2020.107281
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themselves, making wider applicability limited. A more recent
paper by one of authors of [4] attempted to expand the model
using the miss angle, i.e. the angle in which the bullet from a small
arms fire passed the acoustic sensor node, to infer the range over a
given 2-D space [5]. This method improved by only having to know
a known approximate range for the acoustic impulses i.e. gun bar-
relling, caliber, rather than requiring exact classification of the fire-
arms and components as in the authors former study. It was shown
that the error greatly increased with the increase in miss angle, and
it was suggested that the method would be relatively accurate for
known stationary geometric areas, i.e. counter-sniper zone. This is
an improvement for stationary 3D capture, but there was lot of
inherent reliance on known parameters, like impedance ground,
and a fair amount of information about the firearm source. More
recent work by J. A. Parry et al. used a simple excess attenuation
model, with and without a priori knowledge to infer the source
range and simulated data for sound propagation from a blank firing
pistol [6]. The ground in this instance was assumed to be vegeta-
tive, creating an acoustically softer ground. It was found that errors
could be reduced when a priori was applied. A greater accuracy
(~±5 m) of range detection was achieved when the likelihood space
was filtered in octave bands in the infrasonic frequency range. It
was noted that measuring the value of excess attenuation directly
would require some extra mathematical computation, but this
study still showed the powerful accuracy of this method specifi-
cally and also how these statistical techniques could be expanded
directly to other models.

This paper aims to study the effect of geometrical uncertainties
on outdoor sound propagation of a gunshot and performance of
some parameter inversion methods. We show that a relatively sim-
ple outdoor propagation model and maximum likelihood method
can be applied effectively to infer the location of the gunshot with
limited prior knowledge at a short and medium range. The study
assumes a grassland impedance, more similar to wilder areas of
United Kingdom. The methods applied also aim to show the effect
of specific interactions of uncertainties in the parameters of the
model. This paper makes use of two differing statistical ideologies
to maximise the likelihood function: frequentist and Bayesian. The
frequentist method of maximum likelihood (or log-likelihood) esti-
mation (MLE) makes use of the likelihood function in combination
with the mean and variance to gather estimates of given parame-
ters [7]. MLE methods have been successfully used in acoustical
research, with good examples in the forward case to evaluate mod-
els for impulsive noise propagation [8] or for acoustic source local-
isation in wireless sensor networks [9]. These works are a good
example of how MLE methods can be applied to given uncertain
scenarios and used to improve understanding of the effects of a
given uncertainty on sound propagation, while also being used
for direct parameter inference.

The Bayesian Maximum a Posteriori (MAP) method also makes
use of the likelihood function, but it also incorporates a prior,
which is the quantification of beliefs or known knowledge [10].
The use of Bayesian methods is more novel in outdoor sound prop-
agation. A recent study successfully used Bayesian inference to
optimise the selection of parameters in models used for sound
propagation outdoors [11] and in porous media [12]. They however
did not successfully detail the uncertainty itself, perhaps because
some departure from model simplicity in their approach [11].
The work by Xiang and Fackler [12] defines the power of Bayesian
statistics in application to acoustics in general rather than for out-
door sound propagation. This work demonstrates how Bayesian
statistics can be used to improve model selection and parameter
inference techniques in acoustics. This work suggests that Bayesian
methods have their advantages when applied correctly, but they
can easily be misused or overcomplicated meaning that intricacies
of the physical effects can be overlooked.
Our paper aims to illustrate how these statistical ideas can be
effectively applied to study the uncertainty in outdoor sound prop-
agation and how two different statistical approaches can influence
the effectiveness of the inference process and quantified in terms
of the inversion error. Simulations are used to mimic the repeated
measurement to inform the inference process. It is assumed that
sound propagates in a non-moving homogenous atmosphere over
a grassland impedance ground. The impedance ground, and other
source geometry parameters are studied under known and uncer-
tain conditions, solely and in combination, to establish whether or
not some particular uncertain conditions have a significant influ-
ence on the inference process.

Observed data are synthesised using a popular model for short-/
mid-range sound propagation that is assumed to be perfect, i.e.
given a set of geometrical, ground and source parameters this
model would predict the exact true value of the sound pressure
at the receiver position. Gaussian (normal) noise is then added to
simulate the uncertainties present in the measurements. Observa-
tion sample size is kept small n ¼ 10ð Þ to test the effects of limiting
information on the performance of the model. Estimates of the
range are gathered from each sample data set either solely from
the maximisation of the log-likelihood or via Maximum a Posteriori
by applying some prior beliefs as a statistical function. Estimations
are performed for a combination of the parameters being given as
known, or uncertain. The uncertainty here is some flat uniform dis-
tribution where no information on which parameter values are
more likely is given. The prior considered here is chosen selectively
around the true parameter value with a normal distribution,
N l;r2
� �

, with a mean (l) and constant variance r2
� �

. Prior beliefs
are only applied to the range parameter. The function will also
have its frequency range restricted to specific octave bands to fur-
ther assess whether inference or parameter interactions change
compared to the initial broadband frequency range.

The primary question of this paper is: How well can a simple
method recover an unknown range in an outdoor sound propagation
setting? We are also asking: (i) Which, if any, combinations of
uncertainty inside parameters cause more errors than others? (ii)
What is the effectiveness of simple statistical techniques in infer-
ring the source range? (iii) How effectively the source of a gunshot
could be detected, over a grassy floor, using these methods? The
answer to the primary question is likely to have an immediate
impact on current practices while the other specific questions will
help improve the basic understanding of the uncertainty in out-
door sound propagation. This work will also pave the way to fur-
ther statistical improvements to acoustic inversion methods in
the presence of uncertainties, with direct application to improving
gunshot detection practices.

This paper is structured in the following manner. Section 2
describes the acoustical model and source characterisation. Sec-
tion 3 details the statistical likelihood methodologies. Section 4
reviews the results from the simulations, firstly for broadband
sounds and then at octave filtered frequency bands. Finally, Sec-
tion 5 is the conclusions from this study.
2. Research methods

2.1. Gun source evaluation

Acoustical characterisation of gunfire shows it has three main
components: (i) muzzle blast, (ii) mechanical action; and (iii)
supersonic projectile [13]. The gun used in this study is a Bruni
Mod. 92 Top Venting 8 mm Blank Pistol. A blank pistol must be used
due to the obvious security issues and to obey with the statutory
gun law in the UK. This means that the third contributing sound
source of the projectile is not present in this experiment. Acoustic
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recordings of the gunfire are taken in the anechoic chamber at the
University of Sheffield. The hilt of the gun is placed on the floor
and 3m away from a GRAS 46AN 1/20’ Microphone which is also
placed on the floor. The frequency range of this microphone is
0.5–10000 Hz. The microphone is connected to a NI DAQ PC and
digitised at 1 kHz without any filtering except the anti-aliasing fil-
ter provided as standard in the NI DAQ PC. The level of background
noise in the chamber was negligibly small in comparison with the
level of the gunshot (with the SNR > 100 dB). Recordings made
were narrowed down to four clean recordings to study the repro-
ducibility of the source spectrum with minimum interference.
Fig. 1 presents the Fourier spectra plotted against the frequency
(x) in Hertz of the four clean (i.e. without unwanted sounds heard
during recording) gunshots. The frequency spectra show strong
peaks around < 5Hz and 50Hz which level is consistent within
< �1dB between individual gunshots. Frequencies over 500 Hz
were omitted due to their lack of energy. The time and Fourier
spectra look remarkably alike to other experimental data recorded
for other types of gunfire [14,15].

An important quantity that can be established form these
recordings is the sound power level (SWL or Lw for hereon) of the
gunshot. The SWL of the source placed on the ground can be
defined as

Lw xð Þ ¼ Lp xð Þ þ 10 log 2pr2
� � ð1Þ

where r is the range from the sound source and Lp is the sound pres-
sure level (SPL from hereon). The range from the source is known to
be 3 m, resolving the second term in Eq. (2). The SPL is a measure of
the frequency-dependent pressure measured against the reference

pressure pref ¼ 20� 10�6Pa
� �

. The SPL is calculated from

Lp xð Þ ¼ 10 log
p2
av xð Þ
p2
ref

 !
ð2Þ

where pref ¼ 20lPa is the reference sound pressure. The mean is
taken from the measured pressures pavð Þ, as seen in the left of
Fig. 1, to then obtain a given SPL. This gives us a representative
Fig. 1. Sound pressure level spectra (Lp) of the gunshot recordings
frequency dependent SWL of the gunshot (see RHS of Fig. 1) ready
to be used to generate long range observations.

2.2. Acoustical predictions

Acoustical predictions are made with one receiver across a 2-D
plane as shown in Fig. 2. Ignoring problems, such as angle detec-
tion for a 3-D sound propagation case allows for better investiga-
tion into the underlying uncertainties. In practical applications
the measured quantity at the receiver is the SPL. The calculated
SWL is used to simulate the SPL Lp

� �
that would be measured at

a given range. According to the constraints from the assumptions
of the homogenous atmosphere and from impedance ground, the
frequency dependent SPL at a given range rcan be calculated as
[16]

Lp xð Þ ¼ LW xð Þ � 10 log 4pr2
� �þ DL xð Þ ð3Þ

where DL is the excess attenuation. Atmospheric absorption is omitted
due to its negligible effect at the given lower frequencies. The
excess attenuation for a non-moving, homogeneous atmosphere is
a measure of the ground effect only and it is calculated as [17]

DL ¼ 10 log 1þ Q
R1

R2
exp ik R2 � R1ð Þð Þ

����
���� ð4Þ

where k and Q are the wavenumber and spherical wave reflection
coefficient, respectively. The distances R1 and R2 can be defined as

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z� zsð Þ2

q
ð5Þ

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ zþ zsð Þ2

q
ð6Þ

for given source zsð Þ and the receiver ðzÞ heights. The spherical wave
reflection coefficient (Q) accounts for the effect of the impedance
ground on the acoustic pressure amplitude and phase. The equation
for the spherical wave reflection coefficient is

Q ¼ Zcosh� 1
Zcoshþ 1

� 	
þ 1� Zcosh� 1

Zcoshþ 1

� 	� 	
F wð Þ ð7Þ
(left) and the mean sound power level LWð Þ spectrum (right).



Fig. 2. Acoustic scenario in the ðr; zÞ geometry.
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The angle h is the incident angle as shown in Fig. 2. The function
F wð Þ accounts for the boundary loss factor and it is defined as

F wð Þ ¼ 1þ iw
ffiffiffiffi
p

p
exp �wð Þerfc �iwð Þ ð8Þ

with erfc �iwð Þ being the complimentary error function

erfc zð Þ ¼ 1ffiffiffiffiffiffiffi
2p

p
Z 1

z
exp �t2

� �
dt: ð9Þ

The parameter Z in Eq. (7) is the normalised impedance of the
ground, which depends greatly on the ground characteristics. The
impedance Z is determined using the model proposed by Hor-
oshenkov et al. [18]. This model calculates the acoustic properties
of the impedance ground by considering the ground as a porous
media with pores of non-uniform cross-section with the median
radius s.

In outdoor sound propagation studies, it is common to refer to
the effective flow resistivity of the ground (rgÞ: The acoustic impe-
dance model proposed in [18] relates the effective flow resistivity
to the median pore size as

rg ¼ 8ga1
s2/

e6 rs log 2ð Þ2 ð10Þ

where g is the dynamic viscosity of air. In the above equation it is
common to set the values of porosity (/Þ and tortuosity a1ð Þ to
unity and standard deviation in pore size (rsÞ to zero, because for
a majority of outdoor ground types their influence on the value of
effective flow resistivity is relatively small in comparison with that
of the median pore size.

Examples of the excess attenuation spectrum for the given true
values, the varying range and grassland impedance, of the input
Fig. 3. Excess attenuation DLð Þ spectra of due to each combination of parameters and imp
The ranges given are 250m (black line) and 500m (magenta line). (For interpretation of th
of this article.)
parameters are shown in Fig. 3. It is seen how the value of excess
attenuation DLð Þ is varies across frequency xð Þ, exhibiting an oscil-
latory behaviour with the increase of frequency xð Þ. The initial
geometry effects the interaction pattern, with more oscillations
occurring as the range is decreased.

2.3. Generating observed SPL

Observations are generated by assuming that our acoustical
model is perfect, or that with given parameters the model would
predict the exact observable value i.e. SPL measurement. This
assumption allows observations to then be generated by using
the predictive model itself with some given noise. Initial observa-
tions are generated using the SPL model (Eq. (3)) with the true
heights of the source hsð Þ and receiver hrð Þ set to 2 m and the impe-
dance ground has the effective flow resistivity rg

� �
of 100 kPasm�2,

which is the typical for grassland [19]. The range rð Þ is assessed at
either 250 m or 500 m. The predicted SPL spectrum for the set
parameters including the range rð Þ, are shown in Fig. 4 as black
lines. These predicted SPL show a strong resemblance with the
experimental data recorded for similar settings using a 9 mm
handgun [20], with the differences expected to be due to 1 mm
decrease in the pistol calibre and lack of projectile in the case of
our pistol. The sound propagation model, Eq. (3), can be expressed
as a function of the input parameters

y ¼ f x;hs; r; hr ;rg ; LW xð Þ� � ð11Þ
Simulated observations are then repeatedly generated by add-

ing a random, but controlled, artificial error to mimic noise within
data collection, thus observations,y, are generated via

y ¼ f x;hs; r; hr ;rg ; LW xð Þ� �þ es ð12Þ
The error applied at every simulation is randomly drawn from

the distribution es � N 0;r2
e

� �
, with a fixed variance r2

e
� �

set to
5dB. This error term remains constant across frequency xð Þ. Nor-
mal (Gaussian) error is an acceptable error term to use being sup-
ported by the central limit theorem. The added term creates
observations that can be �5dB away from the true value. However,
the probability of observing data with such an error decreases the
further it moves from the true value. This error value is approxi-
mately equal to 10% of the difference between the highest and
lowest observable SPL. The range for which the generated observa-
tions can be measured are seen via the dashed limits in the plots of
the true SPL (dashed lines in Fig. 4).
edance rg ¼ 100kPasm�2
� �

over a logarithmic scale up to a frequency xð Þ of 16kHz.
e references to colour in this figure legend, the reader is referred to the web version



Fig. 4. Predicted SPL Lp
� �

against frequency xð Þ for the different ranges rð Þ over a logarithmic scale (solid line). Error margins for observation generation are superimposed
(dashed lines).
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For our investigations a small amount of observations n ¼ 10ð Þ
are used to test how effective the parameter estimation can be
using each statistical technique and little information present in
the model. It is known that smaller sample sizes increase the
uncertainty present in the estimation techniques. This is a key part
in the investigation to compare how applicable this methodology is
in practice in the presence of such systematic uncertainty.

In practice it is common to analyse the sound pressure level in
octave bands. This analysis will become useful as shown in the fol-
lowing sections. The octave bands used in our analysis are defined
in Table 1 in accordance with the ISO 266 [21]. Each band is
denoted as B with a relevant subscript. This is merely to improve
ease during visual analysis and scission.

3. Statistical techniques

3.1. Maximum log-likelihood estimation (MLE)

The first statistical method uses the frequentist ideology of
maximising the likelihood function at a given parameter. For this,
we assume that the observations are distributed normally. This
allows us to describe the observations with a normal probability
density function (PDF for hereon), the familiar bell-shaped curve,
defined as

f N xjjlo;r
2
o

� � ¼ 2pr2
o

� ��1
2 exp � 1

2r2 xj � lo

� �2� 	
ð13Þ

The mean lo

� �
and variance r2

o

� �
in this case are the true and

known values that describe how the observations, e.g. sound pres-
sure or sound pressure level, are distributed. The set of parameters
then define a normal distribution, h ¼ l;rð Þ, are the values that
objective variables the likelihood function attempts to maximise
Table 1
Octave bands, in keeping with ISO 266.

Octave 1/1
band Bnð Þ

Lower
limit Hzð Þ

Centre
frequency Hzð Þ

Upper
limit Hzð Þ

B0(Band 0) 0.24 1 1.41
B1(Band 3) 1.41 2 2.82
B2(Band 6) 2.82 4 5.62
B3(Band 9) 5.62 8 11.2
B4(Band 12) 11.2 16 22.4
B5(Band 15) 22.4 31 44.7
B6(Band 18) 44.7 63 89.1
B7(Band 21) 89.1 125 177
B8(Band 23) 177 250 355
B9(Band 25) 355 500 710
simultaneously. The remaining information required by the likeli-
hood function is the observables, i.e. recorded data. Each new
observable brings information into the function, allowing for the
likelihood to define a better set of h that describes the likelihood’s
of new data [7]. If we define our sample group of observations as
x ¼ x1; � � � ; xj

� �
the likelihood function can be written as

L hjxð Þ ¼
Yn

j¼1
f N xjjl;r2� � ð14Þ

where n is the total number of observables xð Þ. The function in Eq.
(14) can be further simplified with some manipulation to

L hjxð Þ ¼
Yn

j
2pr2� �1

2 exp �1
2

xj � l
� �2

r2

 !
ð15Þ

L hjxð Þ ¼ 2pr2� ��n
2 exp � 1

2r2

Xn

j
xj � l
� �2� 	

ð16Þ

Taking the log transform log L hjxð Þð Þ ! l hjxð Þ, gives the
log-likelihood function, a better-defined function which is also
algebraically easier to compute. The log-likelihood l hjxð Þ can be
rewritten as

log L hjxð Þð Þ ¼ l hjxð Þ ¼ � n
2
log 2pð Þ � � � � � � � n

2
log r2� �

� 1
2r2

Xn

j
xj � l
� �2 ð17Þ

It is important to note at his stage the key relationship, and
differences between likelihood and probability. The following
relationship is known to be true

P xjhð Þ � L hjxð Þ ð18Þ
While colloquial in use, the terminology is equally misused as

the same thing in daily life whereas each function is doing some-
thing different. For any given distribution, P xjhð Þ defines the prob-
ability for observing data x, for given set of parameters h.
Meanwhile, L hjxð Þ describes the how likely taking the set of param-
eters inside h is for given values of the observables x. The important
difference is that each function is asking question about the data or
parameters values. Manipulation of these statistical ideas is what
allows us to perform inferences on our observables and thus study
the effects of error and uncertainty on our given, or in a matter of
fact any, acoustical scenario.

Our study manipulates the h set in combination with the model
that generates x, to infer parameters from inside the later model.
The variance ðr2Þis given as known being assumed equal to the
initial variance inside our observations. Thus, the variance of
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l hjxð Þ is equal to r2
e which was set to 5 dB in Eq. (12). The mean lð Þ

is also given as known, but uses the given acoustical model in per-
fect conditions. The mean lð Þ is calculated using the same method
that generates our sample data, requiring the situation-dependant
true values of frequency xð Þ, source geometry hs; rð Þ and effective
flow resistivity of the ground rg

� �
, but no noise added. This can

be used as it is still assumed that, given a set of parameters, the
model would predict the perfect result which would also be equiv-
alent to the mean of a data set containing noise. The inference pro-
cess then relies on the values inside our predictive model (Eq. (3))
would maximise the likelihood to these given set of h, i.e. which set
of parameter values would be most likely.

It is well understood that Bayesian methods become equivalent
to frequentist methods as the number of observations becomes
large. Limiting the initial information available to the likelihood
function allows for investigation into the performance of the MLE
(and soon to be discussed MAP) method. The increase in observa-
tion size, albeit small, will assess if any improvements can be
detected with such a smaller addition of initial information.

The x� r space is generated by using given values of
each parameter. Frequency points xð Þ cover the frequency range
for sound generated by the gunshot (see Section 2.2),
usually 1 � x � 500Hz. The r space covers the range of
100m � r � 650m. The definition of the r space should not be
confused with the application of a prior previously discussed in
Section 3.2. Other parameters, specifically the source height hsð Þ
and effective flow resistivity of the ground rg

� �
, are allowed to

be distributed, i.e. incorporate uncertainty, for further study into
their interactions. In the most uncertain case, with both parame-
ters unknown, draws are taken from a uniform distribution for each
parameter for every individual simulation run. A uniform distribu-
tion, U~½a; b	, creates a distribution between a lower bound að Þ
and upper bound bð Þwith an equally weighted probability of draw-
ing any number between these limits. This allows for the physical
constraints of reality to be applied without any a priori knowledge,
while simulating complete uncertainty around the parameter. The
distributions drawn from are

h
�
s � U 0:1;10½ 	 ð19Þ
r
�
g � U 20000;200000½ 	 ð20Þ
The distribution of the height (Eq. (19)) has its upper bound at

10 m as higher source heights are also known to be subjected to
atmospheric influences [17] which the model adopted here does
not account for. The distribution of the flow resistivity of the impe-
dance ground (Eq. (20)) is chosen to encompass variations in the
experimental data recorded for this type of grassland [19] we are
assuming to be present.

The values of the x� r space that best maximise the given
combination of likelihood parameters hð Þ can now be located.
According to the most uncertain case, Eq. (17) can be rewritten as

l hjy;x;hs;r;rg
� �¼�n

2
log 2pð Þ�n

2
log r2

e
� � � � � � � �

� 1
2r2

e

Xnx

a¼1

Xnr

b¼1

Xn

j¼1
yj� f xa;h

�
s;rb;r

�
g

� 	� 	2

ð21Þ
In the case when the source height hsð Þ and/or impedance rg

� �
are known they simply have the distributions h

�
s;r

�
g

� 	
replaced

with the respective true, and unchanging, values

2m;100kPasm�2
� �

. This likelihood function uses n observations to

generate a nx � nr space over nx and nr points for frequency xð Þ
and range rð Þ; respectively. In simple terms, the maximised value
is located in the space related to thebest estimateof r, at a specific fre-
quency for given or unknown source height and impedance.

3.2. Semi-bayesian maximum a Posteriori (MAP)

The second method requires the understanding of Bayes’ theo-
rem. Bayes’ theorem is defined as [10]

P hjxð Þ ¼ L hjxð Þ � P hð Þ
P xð Þ ; ð22Þ

where P hjxð Þ is the posterior, P xð Þ is the evidence, P hð Þ is the prior and
L hjxð Þ is the likelihood function. The likelihood function is defined
the same way as in Section 3.1, while the prior is the PDF of beliefs
about h. The application of a prior is used to import knowledge, or
the absence, into the given statistical procedure. The posterior is
the PDF that uses these beliefs in combination with the likelihood
to generate a probability function of h for a given set of data. The
evidence term normalises the function to a true PDF, however is
generally difficult and expensive (computational) to compute. The
MAP procedure avoids this by disregarding this term. The only
value of interest to us in the posterior is the best estimate which
happens to be the easily-obtainable peak of the distribution, which
is proportional to the combination of the prior and likelihood. This
method reduces Eq. (22) to

P hjxð Þ / L hjxð Þ � P hð Þ ð23Þ

Removal of the evidence term greatly reduces computational
time, without removing the ability to gather a best estimate of a
parameter. Similar to the MLE method, the reduced Bayes equation
(Eq. (23)) can be log-transformed to

log P hjxð Þð Þ / l hjxð Þ þ log P hð Þ ð24Þ

The log-transformed prior can be better interpreted here as a
penalty term. The log of a probability is always negative, increasing
in magnitude for a decreasingly small probability. The application
of log here reduces the likelihood function at positions where the
prior is less-confident. It also reduces the likelihood to �1 in areas
outside of the coverage of the prior, due to the log of zero [10].

The prior applied in this instance is a normal, centred around
the mean l0 ¼ 250m;500m

� �
with a standard deviation of 15m,

thus the distribution covers approximately �50m either side of
the given mean. A completely flat prior could have been used in
principle, especially in situations where reality constraints moti-
vate it i.e. a uniform distribution that installs cut-offs at values that
are known physical impossibilities. However, a flat normal is
already applied, thus uniform priors are deemed unnecessary to
the narrative of this paper.

3.3. Performance metrics

To investigate the effectiveness of the inference process and the
effects of uncertainties in parameters, we study the errors in rela-
tion to the predicted values and the true value. We make use of
MATLABTM (and the ShARC supercomputer facilities at the Univer-
sity of Sheffield) to repeatedly simulate a small set of observations
ðn ¼ 10Þ, maximise the likelihood over the x� r parameter space
for given parameter values, either known or randomly drawn from
given distributions, then find the best-estimate before and after a
prior is applied. The x space is also analysed in the octave band
bounds defined in Table 1.

The error erð Þ is then found as the difference between a simula-
tion’s estimate of the range and the true value of range

erð Þi ¼ rð Þi � r
 for i 2 1 1000½ 	 ð25Þ
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The error is investigated in both relative and absolute terms. The
relative error will allow insight into the direction of the incorrect
estimations (i.e. whether an under or over estimation was made)
while the absolute error is independent of direction.

A substantial number of errors ne ¼ 1000ð Þ are generated to
allow the error set to be explored visually and numerically and
to minimise the error from the sampling process. Additionally,
two more statistics can be investigated: (i) mean absolute error
(MAE); and (ii) root mean squared error (RMSE). Both use the pre-
viously defined er to analyse the inference process across the entire
set of errors. The MAE is the arithmetic mean of the modulus of the
errors (Eq. (26)), while the RMSE is the root of the arithmetic mean
of the square of the errors (Eq. (27))

MAE ¼ 1
ne

Xne

i¼1
erð Þi
�� �� ð26Þ
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ne

Xne

i¼1
erð Þi

� �2s
ð27Þ

The MAE allows for an insight into the overall average error,
while the RMSE is another way of calculating the average error,
but it is far more punishing to larger errors, i.e. more weight is
given to larger errors. Both errors are independent of direction,
i.e. whether the average estimate overestimates or underestimates
the given true value. Visual analysis will be used to assess the
under and/or overestimations that may occur
4. Results

4.1. Inference using broadband data

The results of the analysis of errors using broadband sound
pressure level data is presented in Table 2. This table shows the
MAE, RMSE and absolute maximum error for the simulations for
the combinations of known or unknown parameter. These data
were drawn from the respective error distribution. The results
from each statistical method are also compared.

Overall errors estimated while using MLE alone are relatively
large, being on average 50% and 60% of the true range when the
true range ðr
Þ is 250 m and 500 m, respectively. Application of a
priori, using the MAP method, greatly reduced errors to within
10% of the true range.

The differences in the MAE and RMSE are negligibly small
< 0:05mð Þ between most simulations where the true range r
ð Þ is
250 m. In addition, the difference between error statistics when
Table 2
Collated statistics of error erð Þ from each simulation. Each row follows the selection of initia
method used.

r
 mð Þ hs mð Þ rg kPasm�2
� �

Method

250 2 100 MLE
MAP

r
�
g

MLE
MAP

h
�
s

100 MLE
MAP

r
�
g

MLE
MAP

500 2 100 MLE
MAP

r
�
g

MLE
MAP

h
�
s

100 MLE
MAP

r
�
g

MLE
MAP
the true range is 500 m are also negligibly small ð< 0:1mÞ when
using the MAP method in all conditions. However, when the true
range is 250 m, and both the flow resistivity of the ground rg

� �
and source height hsð Þ where initially unknown, a large jump in
error can be seen when the MAP method is used. The MAE
increased by ~15 m, the RMSE by ~20 m and the absolute maxi-
mum error increased by ~100 m. It is likely that the increase in
extreme outliers has dragged the average errors particularly in
the case when both the source height hsð Þ and flow resistivity of
the ground rg

� �
have varied due to the uncertainty present. This

effect is not seen when the true range r
ð Þ is increased to 500 m,
which indicates the interaction effects of these uncertainties may
either be increased by reducing range, or the opposite, the interfer-
ing effects of the uncertainties being reduced as the true range ðr
Þ
is increased.

The negligible differences between the statistics of error when
uncertainties are imported to various parameters, may be influ-
enced by a relatively small sample of observed data ðn ¼ 10Þ in
the model. Studying interactions with various levels of initial data
in the model is outside the scope of this paper, and it would require
repetition of the methods used here with such variations present.
They also would inherently be affected by the distribution choice,
specifically the effective flow resistivity of the ground rg

� �
being a

distribution that covers various recorded values for grassland.More
acoustically harder grounds urbanised areas, water, can have differ-
ent effects.

4.2. Visualisation of errors

Visualisation of errors erð Þ is done using three different plots: (i)
a PDF of estimates; (ii) a PDF of the absolute errors; and (iii) the cu-
mulative distribution function (CDF from hereon) of the absolute
errors. The first allows for insight into the general distribution of
where estimates were made in relation to the true value and differ-
ences in over and underestimations. The second plot of absolute
error defines the probability of the error, no matter whether it is
over or under. The CDF of absolute error can be used to visualise
the cumulative probability of the defined error. Kernel density esti-
mation (ksdist function in MATLATM) is used to produce smoothed
curves that are visually easier to assess. This is deemed acceptable
due to the large sample size in each case ne ¼ 1000ð Þ.

Visualisations are presented in Fig. 5 r
 ¼ 250mð Þ and Fig. 6
r
 ¼ 500mð Þ. Each subplot of a given PDF/CDF contains multiple
lines, each representing the results for simulations with the vary-
ing input uncertainty, i.e. either only r is unknown, or r and rg

are unknown or r; rg and hs are unknown. The results presented
l parameters, known or drawn from a given distribution, then for the given statistical

MAEðmÞ RMSE mð Þ Abs. max. mð Þ

124.74 127.26 150
23.53 30.1634 96.05
122.55 125.64 150
23.53 30.16 96.05
123.24 126.48 150
23.58 30.21 96.05
120.89 124.71 150
37.85 48.25 202.9

294.43 300.21 500
44.63 57.81 211.71
295.1 301.21 399.45
44.67 57.83 211.72
295.9 302.47 400
44.72 57.87 211.72
300.29 306.63 400
44.77 57.91 211.71



Fig. 5. Kernel distributions for the PDF of estimates (first column), PDF of absolute errors (second column) and CDF of absolute errors (last column) for each simulation of
varying uncertainty at r
 ¼ 250m. Top and bottoms rows show the results from using the MLE and MAP methods, respectively. The true range value is superimposed (dashed
line) in the PDF plot of estimates. Each line represents which initial parameters were uncertain as defined in each legend.

Fig. 6. Kernel distributions for the PDF of estimates (first column), PDF of absolute errors (second column) and CDF of absolute errors (last column) for each simulation of
varying uncertainty at r
 ¼ 500m. Top and bottoms rows show results from using the MLE and MAP methods, respectively. The true range value is superimposed (dashed line)
in the PDF plot of estimates. Each line represents which initial parameters were uncertain as defined in each legend.
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in Fig. 5 suggest that in the short-range case r
 ¼ 250mð Þ the inef-
fectiveness of the sole maximisation of the likelihood (MLE) is
obvious (as also seen in Table 2). Estimates are centred around
the minimum possible value of r set in the model, with a positive
skew allowing for a smaller proportion of better estimates, as well
as over-estimations (top-left in Fig. 5). The PDF of absolute error
(top and mid rows in Fig. 5) shows that the majority of errors are
greater than 100 m, which is confirmed by the CDF of absolute
error (top-right in Fig. 5) where there is a 20% chance of getting
an error of less than ~100 m and 80% chance of getting an error
of smaller than ~140 m. The differences between the simulations
when all to none of the initial parameters are known are not clear
for the MLE method for the true range r
ð Þ of 250 m (top row in
Fig. 5). However, there is some indication that allowing the effec-
tive flow resistivity of the ground rg

� �
to vary may decrease the

error slightly, but the magnitude in which the peak (and distribu-
tions generally) is flattened here is too small to state as fact.

The application of a prior (MAP method) greatly improves esti-
mations (bottom row of Fig. 5). The spread of estimates (bottom-
left of Fig. 5) is more symmetric around the true range
r
 ¼ 250mð Þ, with a negative skew away from this value. When
the source height hsð Þ and effective impedance of the ground
rg
� �

are unknown, the distribution of estimates is far flatter, yet
more symmetric around the true value, showing tails containing
more overestimations than the related simulations while using
the MLE. This confirms the findings (see Table 2) that the error is
increased in the most uncertain simulation due to the allowance
of larger overestimations rather than underestimations. The MAP
method leads to the PDF of absolute error (bottom and mid row
in Fig. 5) becoming flipped, peaking around zero error with tail
decreasing toward larger errors. The most uncertain case is less
strongly peaked leading to an increase in size and frequency of
large errors. All other simulations seem to be highly probable to
be less than ~30 m, with a large drop to a step appearing to around
~50 m. The likelihood of an error larger than 50 m lower substan-
tial, before tailing out to the maximum error. The CDF (bottom-
right of Fig. 5) shows the reduction in error compared to the
MLE, with a 20% chance of error of less than ~5 m and 80% chance
of an error less than ~40 m. These probabilities are weakened by
the case where initial parameters are unknown, with only an 80%
chance of less than ~55 m, yet this is substantially better than
the MLE case with the least uncertainty. Practical application
shows how effective a single simulation could be for inference, giv-
ing a user with data ready a value within seconds, with great con-
fidence while using the MAP method. More simulations would be
needed for confident predictions with the MLE.

All MAP simulations (see bottom row in Fig. 5) show far less dif-
ference between each distribution, with each plot being smoother
and almost exactly alike when compared to the MLE results (see
top row in Fig. 5) where each plot oscillates over one other i.e. each
distribution is higher and lower than the others at multiple points.
This indicates that the MAP method may itself smooth out small
artefacts from varying the uncertainty in other parameters in the
model that are not the direct object of the inference. The MAP
method does highlight a reduction in likleihood in the most uncer-
tain case (see blue plot at the bottom row in Fig. 5), which is not
seen in any other simulations. It is not clear what causes this sim-
ulation to be so different, but it seems that the increase in degree of
uncertainty is the most likely reason for this difference.

Increasing the true range to r
 ¼ 500m leads to the results
shown in Fig. 6. The performance of the MLE method is similar to
that observed in the case of r
 ¼ 250m (see top-left graph in
Fig. 5) with a similar distribution of the range and error estimates
(see top-left graph in Fig. 6). There is a strong peak at the lowest
range that the model accepts, with a decreasing probability as
the estimate value increases. The distribution of absolute error
(top-mid rows in Fig. 6) shows a strong peak around 300 m tailing
off with some negative skew towards small errors. The CDF of
absolute error (see top-right in Fig. 6) shows that an increase in
range reduces performance, where now there is only a 20% chance
of the range being less than ~250 m out and 80% chance of being
greater than ~250 m. Differences between simulations in the three
plots (see top row in Fig. 6) are due to the fact that the uncertain-
ties present are less erratic (or less oscillatory). The peak in each of
distribution becomes increasingly flatter as more uncertainty is
present (from initial parameters).

The MAP method at this range improves the estimation and
reduces the discrepancies between the differing levels of uncer-
tainties from initial parameter selection. The distribution of esti-
mates (see bottom-right graph in Fig. 6) shows a distribution
around the true value r
ð Þ close to normal with a negative skew.
There is evidence of another peak in the distribution around
450 m range. The distribution of the absolute error (see bottom-
middle graph in Fig. 6) is strongly centred around 5 m, with the
second peak around 50 m. There is a long tail in the distribution
showing that larger errors (100 m+) are highly unlikely in this case.
The CDF (bottom-right graph in Fig. 6) shows the effectiveness of
the MAP method for errors with a 20% chance of being within
5 m and an 80% chance of being within 50 m. All of the simulations,
of any given initial uncertainty, are near-identical (see bottom row
in Fig. 6). Even the most uncertain case (source height hsð Þ and
impedance ground rg

� �
being uncertain) is now no longer a visible

different distribution, unlike when the true range was less
r
 ¼ 250mð Þ (bottom row in Fig. 5). A recent study by the authors
highlighted how the impedance in particular uncertain geometries
and statistical behaviour can affect inferences using certain meth-
ods [21]. This is likely why the simulations with multiple uncer-
tainties are more strongly affected in the MAP methods at the
shorter range r
 ¼ 250mð Þ, yet the increase in range reduces this
effect.

4.3. Interactions of uncertainties

Since draws were taken from distributions for the unknown
parameters, source height hsð Þ and/or effective flow resistivity of
the ground rg

� �
, they can be compared to the final estimate deter-

mined via the inference. This will enable us to study the sensitivity
of such parameter/s while using MLE/MAP methods with the given
conditions, i.e. differing range, low initial data source, grassland
impedance ground against the final inferred range. Scatter plots
are used to compare when either the flow resistivity of the ground
rg
� �

or source height hsð Þ are uncertain to their relevant error from
the inference (see Figs. 7 and 8). The dots shown in Figs. 7 and 8
correspond to the realisations simulated with the proposed statis-
tical methods. When both the effective flow resistivity of the
ground rg

� �
and source height hsð Þ are uncertain, a grayscale sur-

face plot is used (see Fig. 9) to show maps for the error as a func-
tion of the range and flow resistivity. These graphs highlight
behaviour patterns in the uncertainty that are affecting such infer-
ence processes.

The first parameter investigated is the effective flow resistivity

of the ground rg
� �

taken across all possible values r
�
g

� �
against its

related absolute error erð Þ. This is achieved by taking the absolute
difference from the inferred value and true value while using a
drawn value of rg (see Fig. 7). The MAP method is shown to be
far more effective than the MLE method in terms of the value of
error. This is true for the both true ranges r
ð Þ studied in this work.
The results presented in Figs. 7 and 8 show that the error is not
sensitive to the initial draw of rg . Although, the MLE results for a



Fig. 7. Draws from r
�
g against their related er for both statistical methods for r
 ¼ 250m (left) and r
 ¼ 500m (right). The true value of the effective flow resistivity

rg ¼ 100kPasm�2
� �

is superimposed (dashed line).

Fig. 8. Draws from h
�
s against their related er for both statistical methods for r
 ¼ 250m (left) and r
 ¼ 500m (right). The true value of the source height hs ¼ 2mð Þ is

superimposed (dashed line).
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true range r
 ¼ 500 m tend to have smaller errors when a higher
value of the effective flow resistivity rg

� �
is drawn (see right plot

in Fig. 7). It is not thoroughly clear why this would be the case.
Plotting the draws from the source height hsð Þ instead of the
flow resistivity of the ground rg

� �
shows similar behaviour (see

Fig. 8). The MAP method again has greater accuracy than the



Fig. 9. The absolute error plotted as a function against the draws of source height hsð Þ and effective flow resistivity of the ground rg
� �

for the two ranges. Error is depicted
using a colour gradient. Top and bottom rows show r
 as 250 m and 500 m, with left and right columns the MLE method and MAP method respectively.
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MLE, with no obvious sensitivity to the draw of the source height
hsð Þ at initialisation. There is some indication that at the range of
500 m the MLE method performs slightly worse as the drawn value
of source height hsð Þ increases. It is known that the increased
height would greatly affect the ground interference patterns, yet
an overestimation of 8 m (as 10 m is the maximum overestimated
source height allowed) does not seem to prevent the model from
inferring the true range (and close to it).

The interactions between the draws and the given error erð Þ are
harder to visualise. Fig. 9 plots the error against the source height
and effective flow resistivity of the ground. The absolute error is
depicted using a colour map with white being no error and black
being the maximum error of 180 m and 350 m for the true range
of 250 m and 500 m, respectively. Horizontal bands can be seen
in the surface plots in Fig. 9. This means that small variations in
the source height hsð Þ for a given effective flow resistivity of the
ground rg

� �
do not strongly affect the quality of inference, whereas

small variations in the effective flow resistivity of the ground rg
� �

for a selected source height hsð Þ do. This hints that quantification of
the ground impedance may be more important than the source
height in situations where both are unknown quantities. These
findings are supported by the fact that the so-called ‘‘ground
effect” is more important for low-height sources than sources at
higher altitude, a well-known fact in acoustics, with greatly devel-
oped definitions and reasoning explained in well by Solomons [17].
4.4. Inference using octave band data

Additionally, inference is studied in octave frequency bands and
compared against that obtained for the broad band spectrum. This
enables us to assess the effect that specific frequency restrictions
would have on the inference quality. Table 3 presents the error
statistics for each combination of known or unknown (and there-
fore drawn from the respective distribution) parameters. Only
the best and worst performing bands (using bandwidths defined
in Table 1) are shown. Best and worst are taken to be the smallest
and largest values of error respectively. Unlisted bands are only
assessed visually later.

As expected, for both the MAE and RMSE, the equally worst per-
forming bands are B8 and B9 for all the cases considered in this
study. These are higher frequency bands in which the sound power
of the gun shot is relatively low (see Fig. 1). At the shorter range



Table 3
Collated statistics of error erð Þ from each simulation, portraying the best and worst performing octave bands. Each row follows the selection of initial parameters, known or drawn
from a given distribution and for the given statistical method.

r
 mð Þ hs mð Þ rg kPasm�2
� �

Method MAE mð Þ RMSE mð Þ
Best Worst Best Worst

250 2 100 MLE B0: 55.3 B3;7;8;9 :150 B0: 70.96 B3;7;8;9 :150
MAP B0: 34.16 B3;7;8;9 :150 B0: 41.66 B3;7;8;9 :150

r
�
g

MLE B0: 55.04 B3;7;8;9 :150 B0: 70.82 B3;7;8;9 :150
MAP B0: 55.04 B3;7;8;9 :150 B0: 41.67 B3;7;8;9 :150

h
�
s

100 MLE B0: 56.42 B3;7;8;9 :150 B0: 72.18 B3;7;8;9 :150
MAP B0: 56.42 B3;7;8;9 :150 B0: 41.67 B3;7;8;9 :150

r
�
g

MLE B0: 56.73 B3;7;8;9 :150 B0: 72.55 B3;7;8;9 :150
MAP B0: 56.73 B3;7;8;9 :150 B0: 48.24 B3;7;8;9 :150

500 2 100 MLE B0: 190.21 B7;8;9 :400 B0: 233.66 B7;8;9 :400
MAP B0: 62.63 B8;9 :400 B0: 76.7 B8;9 :400

r
�
g

MLE B0: 188.27 B8;9 :400 B0: 231.83 B8;9 :400
MAP B0: 62.63 B8;9 :400 B0: 76.7 B8;9 :400

h
�
s

100 MLE B0: 187.06 B8;9 :400 B0: 230.16 B8;9 :400
MAP B0: 62.63 B8;9 :400 B0: 76.7 B8;9 :400

r
�
g

MLE B0: 189.02 B8;9 :400 B0: 232.57 B8;9 :400
MAP B0: 62.64 B8;9 :400 B0: 76.7 B8;9 :400
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r
 ¼ 250mð Þ;bandsofB3andB7 are also relatively poor performing.
Band B7 also appears as the worst for the least uncertain MLE in
the longer range r
 ¼ 500mð Þ. All of these are the result of the
model choosing the lowest value possible, the lowest value for r
that was used in the computation of the likelihood, a problem that
was also seen in the MLE for broadband.

The best performing band is the infrasonic band B0, no matter
which method is used or error statistic analysed. In this range
the MAP method remains mostly effective. In general, the same
bands B3;B7;B8;B9ð Þ underperform as in the MLE, albeit with some
small differences. Unlike for the broadband results, the MAEs for
the MLE and MAP methods are equivalent when either the effec-
tive flow resistivity rg

� �
or source height hsð Þ is unknown. The

RMSE data suggest that the MLE is underperforming against the
MAE and that outlying inferences are present in simulated data.

Comparing the broadband results (see Table 2) to the octave
band results (see Table 3) suggests that overall the broadband
inference is likely to outperform inference via specific octave bands
for the considered acoustic and statistical models. This does not
however rule out that combinations of octave band windows
would allow for better inferences for some types of sources, specif-
ically B0, B1 and B2 for gunshot sources.

4.5. Octave band visualisations

Visualisations are completed to assess more in-depth the effects
of filtering to octave bands (see Figs. 10–13). Each figure is for a
particular statistical method and value of the true range. Each sub-
plot is for a given octave band where each of the plots follow the
same rules as before, with each representing the given initial
uncertainties. The PDF of estimates are used to assess the octave
bands, so both under and over estimates can be detected.

Fig. 10 depicts the PDFs for the MLE method when the true
range r
ð Þ is 250 m. Octave bands B3; B7; B8 and B9 perform poorly
picking up estimates at the minimum value entered into the
model. Bands B4 and B6 also perform poorly but have tails extend-
ing towards to true value r
ð Þ. The distributions created for bands
B2 and B5 have their peaks at slightly above the minimum value,
but their tails have no coverage of the true range r
 ¼ 250mð Þ:
The remaining bands, B0 and B1 cover much more accurately
the true range r
ð Þ with band B0 being the best choice for having
the most likely point close to the true value. Interestingly, there is
a bimodal (i.e. double peaked) PDF present for B0, with an earlier
peak around 120m which can be associated with strong variations
in the gunshot spectrum (see Fig. 1). B1 has the majority of esti-
mate below the true value but extends to the true value also. It is
seen that while using the MLE method (see Fig. 5) inferences can
be improved by choosing the best estimates from these top-
performing bands B0;B1ð Þ. Variation between simulations of dif-
fering input uncertainty is negligible in the case of the MLE
method.

Fig. 11 presents the PDFs for the error estimated using the MAP
method for the true ranger
 = 250 m. These results follow the same
behaviour as seen in the case of the MLE (see Fig. 10) but with
some improvements. The poor performing bands remain the same
as in the case of the MLE, while the better performing bands
B0;B1ð Þ have larger probabilities of capturing the true range r
ð Þ.
In comparison with the MLE, the PDF for band B1 is shifted closer
to the true range. The PDF for band B0 is accurately centred around
the true value, but the bimodality observed in the case of MLE is
now removed. The increased accuracy in the lower bands could
be due to the physical interactions, i.e. excess attenuation, remain-
ing constant at the lower frequency ranges.

Increasing the true range to r
 = 500 m changes the PDFs consid-
erably especially when using the MLE (see Fig. 12). The PDFs for
bands B0;B1 and B2 exhibit bimodality. The two bands that can
cover well the true estimate B0;B1ð Þ exhibit relatively strong
bimodality. In the case of band B0 the dominant peak is around
200m whereas the secondary peak is close to the true range. This
behaviour can hinder the convergence to the true estimate.

The application of a prior in the MAP addresses the issues expe-
rienced with the MLE method. Fig. 13 illustrates that the use of
limited prior knowledge removes the bimodality and leaves only
one peak in the PDF for bands B0 and B1 close to the true estimate.
The great increase in accuracy is even more likely to be due to the
physical interaction patterns, which become even more constant at
the extended range. The application of the MAP to other bands
does not offer any improvement and results in a relatively large
error.

The existence of the bimodal distribution is believed to be cre-
ated by the generation of two distinct normal distributions, from
the normal likelihood function (not the uncertainty – as a data
doped with uniform uncertainty most times still produce normally
distributed data) that are interfering with each other. Their appear-
ance is likely due to strong interactions present at such combina-
tions of parameters in the model.



Fig. 10. Kernel distributions for the PDF of estimates, using the MLE method at each octave band from smallest (top-left) to largest (bottom-right) for each simulation of
varying uncertainty at r
 ¼ 250m. The true range value is superimposed (dashed line) in the PDF plot of estimates.

Fig. 11. Kernel distributions for the PDF of estimates, using the MAP method at each octave band from smallest (top-left) to largest (bottom-right) for each simulation of
varying uncertainty at r
 ¼ 250m. The true range value is superimposed (dashed line) in the PDF plot of estimates.
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Fig. 12. Kernel distributions for the PDF of estimates, using the MLE method at each octave band from smallest (top-left) to largest (bottom-right) for each simulation of
varying uncertainty at r
 ¼ 500m. The true range value is superimposed (dashed line) in the PDF plot of estimates.

Fig. 13. Kernel distributions for the PDF of estimates, using the MAP method at each octave band from smallest (top-left) to largest (bottom-right) for each simulation of
varying uncertainty at r
 ¼ 500m. The true range value is superimposed (dashed line) in the PDF plot of estimates.
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5. Conclusions

The application of a prior to infer the true range from the sound
pressure level data of a gunshot recorded on a single microphone
in the presence of porous ground reduces the average error from
almost 50% to within 10% of the true range event when initial
information is limited to a small number of observations, e.g.
n ¼ 10. The MLE performs poorly because it has the tendency to
choose repeatedly the smallest range possible in the model. There
is a possibility for this method to become more accurate as more
data for a wider range of porous grounds is made available. Appli-
cation of a prior, even a flat one like in this study, greatly reduces
the hindrance of parameter uncertainties. Although at the shorter
range r
 ¼ 250mð Þ, the average error was only reduced to ~15%
when all parameters were uncertain, indicating that shorter ranges
are still more influenced by high uncertainty. Both the MLE (as long
as the observation size was greatly increased) & MAP techniques
are widely applicable to other acoustical settings, yet would pro-
vide a substantially effective basis to methods that incorporate
learning algorithms.

The study of the interactions between uncertain parameters
reveals that exact quantification of individual unknown parame-
ters is not always necessary. Only at the shorter range
r
 ¼ 250mð Þ either the source height hsð Þ or impedance ground
rg
� �

needs quantifying to improve the inference quality as it was
shown that when the both parameters hs;rg

� �
were uncertain a

notable increase in error could be observed. Further investigation
into this dual uncertainty shows that the effective flow resistivity
of the ground would be the preferential parameter to be quantified.
This parameter seems more significant. An increasing degree of
uncertainty in the adopted acoustical model becomes more influ-
ential as the range shortens.

Use of octave filtering reveals those bands which are responsi-
ble for poor or more efficient inferences. In general, limiting the
analysis to a single octave band results in poor performance in
terms of the MAE and RMSE in comparison with a broadband spec-
trum analysis. However, the PDFs of the infrasonic bands (see B0;B1

in Table 1) exhibit strong likelihoods on, and closely around, the
given true range, especially for the MLE method, than when using
the broadband spectrum. Combinations of these octave bands
would likely be more effective for the inference. A large portion
of energy output of a firearm exists in the infrasonic frequency
range. As highlighted in recent works [6], there is strong evidence
to suggest that combining octave windows between in the low and
infrasonic, frequency range will greatly improve parameter infer-
ence for firearms. Usual techniques try to use information from
the supersonic projectile (bullet) which is good for 3D problems
(location via miss angle), but may not actually be the best method.
The lower frequency output of the firearm going off is likely to less
effected by possible interferences that can generate mid and high
frequency noises. This could also improve detection in more realis-
tic environments (i.e. inhomogeneous atmosphere).

The real-life application to small arms fire is apparent. Unlike
current practices [4,5], this technique does not rely on the make,
model, barrel rifling etc. This makes it appropriate to such defen-
sive security programs where quantification of the firearm would
likely be implausible, but prior information of the detection zone
would be readily accessible. Study into larger firearms, and other
small arms fire, will help confirm the best combination of octave
bands suitable for specific purposes. The main benefit of this
approach is that it relies on a single receiver which can be a smart-
phone or low-cost microphone connected to a basic microcon-
troller. It should also be stated that these methods would be
effective for other low frequency sources, such as the natural
occurrences of earthquakes, volcanic eruptions and thunder, or
man-made sources like windfarms. Further study of applications
to a broader range of sources would be beneficial to test this idea
further and expand it to cases where an array of receivers is used.

This study was limited to grassland. Other harder grounds can
have different effects on the quality of inference methods proposed
here. These proposed inference methods are not specifically exclu-
sive to application to firearms. These can be extended to other low
frequency sources such as drones and sources of environmental
noise. Higher frequency sources deserve more extensive studies
to assert such claims.
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D CONCLUSIONS 

D.I    Key conclusions 

The aim of this thesis has been to explore the effects of uncertainty in 

outdoor sound propagation, with attempts to simplify methodologies were 

possible. While there are a wide range of methodologies concerning the prediction 

and quantification of outdoor sound propagation. These studies have maintained 

direct focus on the understanding of the foundational behaviours. While the 

possible limitations highlighted in each paper have been discussed, the 

understanding of statistical behaviours, both in the theoretical and practical 

aspects, are widely misunderstood. This thesis has made progress towards 

providing the insight into and highlight the use of understanding statistical 

behaviours, both forward-wise and inverse, of outdoor sound propagation. This has 

been collectively done by the papers presented in this thesis, where now the overall 

impact of this research is discussed. 

The initial aims of this thesis, to establish a thorough foundation in the 

understanding of the statistical behaviour in outdoor sound propagation in 

relation to the uncertainties present, were addressed in Paper I. Most studies 

assume behaviours from the interactions seen at a foundational level, yet this work 

shown that there are significant behaviours in the statistical moments that relate 

directly to the strength of the uncertainty, acoustical hardness of the ground and 

the geometry of the scenario, which are commonly not employed in the most 

effective manner. The predicted mean is shown to hardly vary, yet the mode is 

sensitive to the manipulation of the geometric ratio between the receiver height 

and range. This greatly effects which parameter estimation methods will and will 

not be effective. Since the geometric ratio of range and receiver height is also 

found to be the dominant parameter in shaping the distributions, this would be 

the most effective parameter for both use for in inverse and forward sampling, 

especially in combination with Bayesian methods using the distributions detailed 

in Paper I. The acoustical hardness of the ground is found not be greatly influential 

with the presence of geometric uncertainty, with only minimal evidence of 

differences in the jump from a soft ground (𝜎𝑔 = 500 kPasm−2) to a very hard ground 

(𝜎𝑔 = 20,000 kPasm−2). This does hint that the quantification of the ground in not 

crucial in outdoor sound propagation studies, which is corroborated by the results 

from the later studies. 
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The results of Paper I helped navigate towards further research ideas 

regrading forward-wise uncertainty studies. Paper II looked at implemented a 

differing physical method, inspired by current standard practices in related 

acoustic measurements, to understand more greatly the statistical behaviour of 

common acoustical quantities. As highlighted in the results from Paper I, the 

acoustical hardness of the ground was found to be minimally influential, even at 

large uncertainties (Δ = 35%)  in the simulated data. This uncertainty was only 

found to be influential when there was uncertainty in the geometry. The physical 

implication of this method are promising, as with ranges of greater than 150m, the 

uncertainty present seems to be completely nullified, giving rise to more accurate 

measurements with recording of acoustical data with this method at the given 

ranges. There is a direct relationship highlighted between the results and 

frequency however, with lower frequencies being unable to be determined 

efficiently. This is believed to likely be due to the distance of separation chosen 

between the microphones.  

Paper III and Paper IV complete the research of this thesis, reversing the 

direction of the uncertainty, to assess methods to be efficiently used in general and 

for a defined small firearm source. Each paper is separate in their study, but the 

implementation of reversing the likelihood function, in combination with simple 

engineering models, to invert parameters from given acoustical data from differing 

simple acoustical models is shown to be highly effective when considering 

computational costs, and accuracy when Bayesian methodology is applied. The 

explicit defining of the likelihood function, and ways it can be implemented with 

common engineering models and user-defined uncertainties, while not 

revolutionary in statistical terms, allows for any acoustician to apply such methods 

to their given problems with ease, aiming to improve studies of uncertainty within 

acoustics, even to the most complex cases. The results directly related to specific 

firearm sound source also serve to be novel. While most detection methods for 

gunfire rely on the bullet, which is complex supersonic problem, it has been shown 

in Paper III and Paper IV that isolating the sound waves from the infrasonic 

explosion of the bullet leads to far greater accuracy. The application to the 

development and/or improvement security and military applications is greatly 

apparent. It was found to be true again that only the geometric uncertainties effect 

the accuracy of the results, with the ground being non-influential and confirmed 

to be the non-dominant parameter when both the geometry and the acoustical 

hardness of the ground were uncertain, just as presented in Paper I and Paper II. 

It should be pointed out however, that in this instance it could be a direct relation 
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to the specific low-frequency sound source of a firearm, but it is interesting that 

this behaviour would arise again. 

D.II    Future works 

Each of the papers presented in this thesis has contributed scientific 

advances towards the understanding of, and the ability to overcome, the problems 

faced due to uncertainties in outdoor sound propagation. While interesting 

progress has been made, the research has raised further questions that future 

research should answer. While each paper did discuss aspect for future works, this 

section reflects on the compiled research and outlines several key examples where 

this work could be extended and built upon. 

Mimicking the studies of Paper I and Paper II to other acoustical models is 

the next important step. The models used in this research were intentionally 

simple for computational costs and clarity of understanding, however there are 

additional parameters that can effect outdoor sound propagation. Preliminary 

studies have shown complex models that account for metrological effects, in the 

case of non-extreme but uncertain atmospheres, are simply not worth the 

computational costs and do not greatly improve the accuracy that can be obtained 

using the statistical and/or simpler methods outlined in this thesis. This however 

does need further study to expand the validity of this claim and to improve the 

knowledge of statistical behaviours of these effects in the literature. 

Using the two-microphone method experimentally to build a substantial 

knowledge database, defining its effectiveness in relation to the separation of the 

receiver array in relation to the frequency of the source and geometry should be 

established. Quantification of the optimal array for a given scenario gives rise to 

improving recording techniques for acoustical research and for immediate 

applications in industry. 

The development of an advanced neural network (ANN) was investigated 

briefly, based on the results from Paper III and Paper IV. Due to the computational 

cheapness of the methods applied, and the further understanding of what 

frequencies can be efficiently used to detect and locate gunfire, an extremely 

powerful ANN could be developed for use in military and security applications. The 

cheapness of its initial development allows for either the development of a mobile 

instate-response model, or mounting to a receiver to which more power can be 

used to greater depth in the network without losing speed in response time. There 
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are also opportunities to apply such statistical (and related) methods to other 

cases, yet the effectiveness of the ANN would be greatly influenced by the 

understanding of the architect who designs the learning algorithm, in relation to 

the characteristics of the acoustic problem. 

D.III    Closing remarks 

This thesis presents research that has provided insight into the application 

of statistical methodologies, both with uncertainty present in prediction and in 

inversion, to outdoor sound propagation problems. Consistent, although not 

revolutionary, improvements are made in the characterisation of parameters and 

development of complex engineering models thought to be useful in outdoor 

sound propagation. Yet this research has highlighted gaps in the foundational 

understanding of the methodology being employed, for which with some intuitive 

statistical thinking, could bring vast improvements to outdoor sound propagation. 

The importance of effectively employing statistical methodologies into 

outdoor sound propagation problems, along with understanding of the resultant 

statistical behaviour, is evident, especially with the successes highlighted while 

using simpler engineering models. The expansion into more complex statistical 

methods, now that more understanding of the foundational statistical behaviours 

has been established, can only serve to improve the results seen in this thesis and 

likely outperform the methods that expend their computational costs on the 

engineering models. 
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