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Abstract

Causality and logic are both fundamental to our understanding of the universe, but our intu-
itions about these are challenged by quantum phenomena. This thesis reports progress in the
analysis of causality and multi-agent logical paradoxes in quantum and post-quantum theories.
Both these research areas are highly relevant for the development of quantum technologies such
as quantum cryptography and computing.

Part I of this thesis focuses on causality. Firstly, we develop techniques for using generalised
entropies to analyse distinctions between classical and non-classical causal structures. We de-
rive new properties of classical and quantum Tsallis entropies of systems that follow from the
relevant causal structure, and apply these to obtain new necessary constraints for classicality
in the Triangle causal structure. Supplementing the method with the post-selection technique,
we provide evidence that Shannon and Tsallis entropic constraints are insufficient for detect-
ing non-classicality in Bell scenarios with non-binary outcomes. This points to the need for
better methods of characterising correlations in non-classical causal structures. Secondly, we
investigate the relationships between causality and space-time by developing a framework for
modelling cyclic and fine-tuned influences in non-classical theories. We derive necessary and
sufficient conditions for such causal models to be compatible with a space-time structure and
for ruling out operationally detectable causal loops. In particular, this provides an operational
framework for analysing post-quantum theories admitting jamming non-local correlations.

In Part II of this thesis, we investigate multi-agent logical paradoxes, of which the quantum
Frauchiger-Renner paradox has been the only example. We develop a framework for analysing
such paradoxes in arbitrary physical theories. Applying this to box world, a post-quantum
theory, we derive a stronger paradox that does not rely on post-selection. Our results reveal
that reversible, unitary evolution of agents’ memories is not necessary for deriving multi-agent
logical paradoxes, rather that certain forms of contextuality could be.
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CHAPTER 1

Introduction

1.1 Preface

Quantum theory makes several predictions that fly in the face of common intuition and have
puzzled its very founders— energy appearing only in discrete quanta, particles exhibiting

wave-like properties such as interference and superposition, entanglement of distant particles,
the list goes on. Nevertheless, quantum theory has passed several decades of stringent ex-
perimental tests, establishing itself as one of the most successful theories of nature currently
available. Why does nature seem to comply with the predictions of quantum theory? What
are the physical principles that uniquely define quantum theory? These questions continue
to be actively researched, even after a century since the inception of the theory. The pro-
cess has repeatedly revealed the inter-dependent and mutually reinforcing relationship between
technological progress and advancements in fundamental scientific research— an understand-
ing of fundamental principles enables us to harness their potential for technologies, which in
turn allow us to probe nature at greater detail. Revolutionary technologies such as the laser,
nuclear energy, positron emission tomography (i.e., PET medical imaging) and quantum com-
puting would not exist if not for fundamental explorations into the microscopic regime, fed
by human curiosity to comprehend the ways of nature. On the other hand, breakthroughs in
high-precision measurements are enabling the observation of quantum effects at newer physical
regimes, making it imperative to model the implications of extending quantum theory to larger
and more complex systems.

In the modern era of physics, the field of quantum information theory has led to great progress
in understanding the foundational aspects of the quantum regime, while also bringing to atten-
tion the increased information-processing capabilities of quantum theory. A lot of this progress
traces back to a seminal theorem by John Bell in 1964 [22] proving the incompatibility of quan-
tum predictions with certain classical models of the physical world. The remarkable fact is
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CHAPTER 1. INTRODUCTION

that this incompatibility can in principle be witnessed at the level of empirical data such the
settings of knobs and values of pointers on measurement devices, by testing the strength of
correlations between the data obtained by non-communicating parties. This has made possible
cryptographic protocols such as key distribution whose security is guaranteed by the laws of
physics [79, 145, 17], as opposed to weighing an adversary’s computing power against the dif-
ficulty of solving a mathematical problem. It has also enabled the generation and certification
of true randomness [168, 60, 5], leading to the development of quantum random number gener-
ators that have now become commercially available. In the field of computing, Shor’s quantum
algorithm [191] enables prime factorisation in polynomial time, offering a significant speedup
over existing classical algorithms, which has major implications for the security of modern day
cryptosystems.1 This has attracted huge investments from governments as well as companies
such as Google, IBM and Microsoft, that are making steady progress towards the development
of scalable quantum computers as well as quantum cryptographic primitives. Furthermore,
quantum advantages in several communication tasks have also been reported [210, 40], and
there are global efforts towards establishing quantum communication in space through satellite
networks and also developing the quantum internet.

These technological feats are backed by theoretical research into quantum correlations, quantum
networks, relativistic quantum information and quantum circuits, among others. Many of these
areas fall in the ambit of the study of causality and causal structures in non-classical theories, of
which there are several approaches. For example, reformulating Bell’s theorem in terms of the
different constraints implied by causal structures on correlations in classical and non-classical
theories has revealed possible ways to generalise it to more complex scenarios involving multiple
parties and sources of correlations [224, 48]. Analysing causal structures beyond the standard
CHSH Bell scenario [56] are important for building quantum networks for communication and
distributed computing. Furthermore, in protocols involving multiple agents distributed over
space-time, relativistic principles such as the finite speed of signalling, also play a role in re-
stricting the information processing possibilities and consequently, in the security of relativistic
cryptographic protocols [59, 209]. The study of causation in quantum theory has also extended
the analysis of quantum properties such as superposition and entanglement from the spatial to
the temporal domain, and generalisations of quantum circuits have been introduced for mod-
elling spatio-temporal correlations [53, 154, 171]. Such scenarios have not only been physically
implemented [146, 173, 184], they have also been shown to offer additional information-theoretic
advantages in numerous information-processing tasks [37, 9, 107, 51]. These examples can also
be used to simulate thought experiments where the space-time structure itself exhibits quantum
properties, arising from quantum gravitational effects [230]. Therefore a more complete under-
standing of causation and its relation to space-time structure in quantum theory is essential
for harnessing its full information-processing potential and is likely to aid the long sought after
unification of quantum theory with general relativity.

The ability to create and manipulate quantum superpositions of larger composite systems is an
important consequence of the advancements in quantum networks and computing technologies.
While we don’t observe quantum effects at macroscopic scales, the possibility of such an obser-
vation under careful experimental conditions is not forbidden by any known physical principle.

1The RSA encryption scheme is based on the complexity of this problem.
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Several theoretical and experimental research groups around the globe have been invested in
probing the quantum to classical transition, whether there is a fundamental scale at which
such a transition should occur remains a burning open question. Recent work has revealed
that extending quantum theory to more complex systems can lead to a conflict with simple
and commonly employed principles of logical reasoning [85, 152]. Continued research into this
domain would hence enable a better characterisation of the structure of logic that apply to
larger scale quantum systems, such as quantum computers. It would also generate insights
into whether the principles of quantum theory are universally applicable, or whether they are
merely a very good approximation for the microscopic realm offered by a more fundamental
theory that we are yet to discover.

This thesis concerns itself with the two areas of quantum information research enunciated
above, namely the study of causality and of multi-agent logical paradoxes that can arise when
quantum theory is extended to more complex systems. Our analysis of these topics also extends
to post-quantum theories, since it is often the case that stepping beyond quantum theory to a
more general setting informs an understanding of what makes quantum theory special among
the plethora of other physical theories. We summarise the main contributions of this thesis
below, and its relevance for the broader open questions described here.

1.2 Synopsis

This thesis divided into two parts and consists of a total of nine chapters. The first part focuses
on causality while the second on multi-agent paradoxes in non-classical theories. Chapters 4,
5, 6 and 8 contain the majority of the original contributions of this thesis which are based on
published [206, 207, 208] as well as unpublished work2. Leaving out the present chapter, of
which the current section is the last, we summarise the main contents and/or contributions of
the remaining eight chapters below.

Chapter 2: Preliminaries Here we introduce the background concepts and mathemati-
cal tools that will be important for the rest of this thesis. An expert reader may choose to
skip over parts or the whole of this chapter. We first cover the basics of polyhedral geometry
and computation, followed by an overview of information-theoretic entropic measures and their
properties. Both these topics are central to the results of Chapters 4 and 5. We then dis-
cuss a class of post-quantum theories, namely generalised probabilistic theories, before moving
on to the preliminary concepts about causal structures in classical, quantum and generalised
probabilistic theories. The former will be relevant for both parts of the thesis while the latter
will predominantly be employed in Part I. We conclude this chapter with a review of epistemic
modal logic, a concept that will feature in Part II of the thesis.

2Vilasini, V. and Colbeck, R. Cyclic and fine-tuned causal models and compatibility with relativistic principles.
In preparation (2020).
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CHAPTER 1. INTRODUCTION

Part I: Approaches to causality in non-classical theories

Causality is a fundamental part of our perception of the universe. A precise understanding
of cause-effect relationships is integral to the scientific method, having found applications in
drug trials, economic predictions, machine learning as well as biological and physical systems.
Quantum mechanics, a theory that has been immensely successful in explaining microscopic
physics, strongly challenges our classical intuitions about causation, deeming classical models
inadequate for describing quantum phenomena. Apart from this fundamental implication, a
plethora of information-theoretic applications arise from the study of causal structures, that
benefit from a quantum over classical advantage. Extending this study to more general, post-
quantum theories facilitates this understanding by highlighting the aspects of causality that
might be special to quantum theory. Part I of this thesis is dedicated to the analysis of causal
structures, both acyclic and cyclic, and using both entropic and non-entropic techniques.

Chapter 3: Overview of techniques for analysing causal structures Here, we provide
a more specific overview of the techniques for certifying the non-classicality of causal structures,
that will be employed in Chapters 4 and 5. We first discuss the techniques employed when the
observed correlations in a causal structure are represented in probability space, focusing on the
geometry of the correlation sets in the bipartite Bell causal structure. Following this, we present
an overview of methods to certify non-classicality in entropy space. This includes a summary of
the entropy vector method and the post-selection technique which is often employed with this
method. This chapter is based on the introductory sections of our published papers [206, 207].

Chapter 4: Entropic analysis of causal structures without post-selection In this
chapter, we develop new techniques for using generalised entropy measures to analyse causal
structures, particularly Tsallis entropies. Employing the Shannon entropy for this purpose is
known to have certain limitations [214, 216] and the use of generalised entropies have not been
previously considered. Our first contribution is a new set of constraints on the Tsallis entropies
that are implied by (conditional) independence between classical random variables, which we
apply to causal structures.3 Finding that the standard entropic method becomes computation-
ally intractable even for small causal structures, we propose a way to circumvent this issue and
obtain a partial solution, namely a new set of Tsallis entropic necessary constraints for clas-
sicality in the Triangle causal structure. Tsallis entropies have found important applications
in other areas of information theory and in the field of non-extensive statistical physics, hence
the properties of Tsallis entropies derived here can be useful even beyond the analysis of causal
structures. Further, we also find that Rényi entropies pose significant limitations for certifying
the non-classicality of causal structures. This chapter is based on our published work [206].

3Additionally, we also generalise these constraints to quantum Tsallis entropies in certain cases, under a
suitable notion of quantum conditional independence. But this is not central to the remaining results.
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Chapter 5: Entropic analysis of causal structures with post-selection We investigate
whether the entropic method combined with the post-selection technique allows non-classicality
to be detected whenever it is present. We focus on the bipartite Bell causal structure, where the
answer is known to be positive for the case of binary valued measurement outcomes [46]. Devel-
oping an analogue of the technique used in [46] to the scenario where there are three outcomes
and two inputs per party, we identify two families of non-classical distributions here, namely
those whose non-classicality can/cannot be detected through this technique. We then inves-
tigate extensions of the technique by allowing the observed correlations to be post-processed
according to a natural class of non-classicality non-generating operations prior to testing them
entropically. We provide numerical as well as analytical evidence that indicate that even under
a natural class of post-processings, entropic inequalities for either the Shannon or Tsallis en-
tropies are generally not sufficient to detect non-classicality in the Bell causal structure. Our
work provides insights into some of the advantages and the limitations of the entropic tech-
nique, and is the first to report drawbacks of the technique in post-selected causal structures.
This chapter is based almost entirely on published material [207].

Chapter 6: Cyclic and fine-tuned causal models and compatibility with relativistic
principles In this chapter, we investigate the relationships between causation and space-time
structure. We develop an operational framework for modelling cyclic and fine-tuned causal in-
fluences in non-classical theories, and characterise their compatibility with an underlying space-
time structure. Distinguishing between causal loops based on the ability to operationally detect
them, we derive necessary and sufficient conditions for ruling out operationally detectable loops
in these causal models, and for the model to not signal superluminally with respect to a space-
time structure. This provides a mathematical framework for analysing generalisations of the
so-called “jamming” scenario [105, 116] whereby a party superluminally influences correlations
between other space-like separated parties. We prove, through an explicit protocol that these
scenarios can lead to superluminal signalling (without additional assumptions), contrary to the
original claim that they are compatible with relativistic principles. Furthermore, we analyse a
claim made in [116] that a set of no-signaling conditions are necessary and sufficient for ruling
out causal loops in multipartite Bell scenarios. Our results also identify missing assumptions
in these claims and generalise them to arbitrary causal structures. Finally, we present ideas
for building a more complete framework for causally modelling these general scenarios, which
is likely to be of broader relevance. This work is yet unpublished.

Part II: Multi-agent paradoxes in non-classical theories

Logical deduction is another rudimentary aspect of our understanding of the world around us,
which we begin to employ since early childhood. In recent years, it has been shown that quantum
theory, when extended to the level of the observer, challenges some of the commonly employed
rules of logical reasoning. More precisely, when observers model each other’s memories (where
they store their measurement outcomes) as quantum systems and use simple logical principles to
reason about each other’s knowledge, they can arrive at a deterministic contradiction [85, 152].
This multi-agent logical paradox proposed by Frauchiger and Renner has generated a surge of
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scientific interest in understanding the role of observers as quantum systems, and the objectivity
of their physical observations. An observer here need not necessarily be a conscious entity, but
one capable of implementing quantum measurements and performing simple deductions based
on the outcomes— something that a relatively small quantum computer can be programmed
to do (in principle). Experimental efforts towards the developing scalable quantum computers
could make possible a physical implementation of such scenarios in the near future, making it
imperative to develop a better theoretical understanding thereof. Part II of this thesis focuses
on multi-agent paradoxes, in and beyond quantum theory, for we must step outside the quantum
formalism to better comprehend its peculiarities.

Chapter 7: Multi-agent paradoxes in quantum theory In this chapter, we present an
entanglement-based version of the Frauchiger-Renner thought experiment [85] and explain its
seemingly paradoxical result. We briefly analyse the relationship of this to other results with
similar implications for the objectivity of agents’ observations. We conclude with a discussion
about the implications of this result for the interpretations of quantum theory.

Chapter 8: Multi-agent paradoxes beyond quantum theory We generalize assump-
tions involved of the Frauchiger-Renner result so that they can be applied to arbitrary physical
theories. This provides an operational framework for modelling agents as systems of a gen-
eral physical theory, which we apply for modelling how observers’ memories may evolve in box
world, a particular post-quantum, probabilistic theory. We use this to find a deterministic con-
tradiction in the case where agents share a PR box, a bipartite box world system. Our version
of the paradox in box world is stronger than the quantum one of Frauchiger and Renner, in the
sense that it does not rely on post-selection. It also reveals that reversibility of the memory
update, akin to quantum unitarity is not necessary for witnessing such paradoxes, suggesting
that certain forms of contextuality are to be held responsible. Obtaining an inconsistency in
the framework of generalised probabilistic theories broadens the landscape of theories which
are affected by the application of classical rules of reasoning to physical agents, and enables a
deeper understanding of the features of quantum theory that lead to an incompatibility with
classical logical structures. This chapter is based on our published paper [208].

Chapter 9: Conclusions and oulook We present concluding remarks on the contributions
made in both parts of this thesis, and their potential scope for addressing immediate as well as
broader open problems in the foundations of physics and information theory.
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CHAPTER 2

Preliminaries

In this chapter, we review the necessary background and main mathematical tools that will
be employed in this thesis. We begin with an overview of convex geometry, optimization and

polyhedral computations in Section 2.2. In Section 2.3, we present the information-theoretic
entropy measures that are relevant to this thesis, namely Shannon, von-Neumann, Tsallis and
Rényi entropies, and outline some of their useful properties. We then review the framework of
generalised probabilistic theories (GPTs) in Section 2.4, mainly following the work of Barrett
[16]. Section 2.5 summarises the basics of classical and non-classical causal models which will
be primarily based on the classical Bayesian networks approach of Judea Pearl [159] and the
framework of generalised causal structures developed by Henson, Lal and Pusey [115] that
apply to quantum and GPT causal structures. These concepts form the backbone of Part I of
this thesis which concerns causality in classical and non-classical theories. In Section 2.6 we
summarise the main structures and axioms underlying the modal logic framework. This, along
with the framework for GPTs mentioned above form the main prerequisites for Part II of this
thesis, which concerns multi-agent logical paradoxes in quantum and GPT settings. We first
present a brief overview of notational conventions used in this thesis.

2.1 Overview of notational conventions

Throughout this thesis (unless specified otherwise), we will employ the following notational
conventions.

Random variables, probabilities, entropies: We will use capital letters (typically from
the second half of the English alphabets) to denote random variables or RVs for short e.g., X,
Y , Z. We will also use the same label to denote the set of possible values taken by the random
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CHAPTER 2. PRELIMINARIES

variable, the corresponding small letter to denote a particular value of the random variable and
∣.∣ to denote cardinality of sets. For example, the random variable X takes values x ∈ X, and
there are ∣X ∣ possible values that X can take. We will only consider finite and discrete random
variables throughout this thesis. For a probability distribution over a set of random variables
{X1, ...,Xn}, we will use PX1,...,Xn ∈ Pn, where Pn denotes the set of all probability distributions
over n discrete random variables. Whenever it is necessary to mention the specific values of the
random variables, we will abbreviate PX1,...,Xn(X1 = x1, ...,Xn = xn) to P (X1 = x1, ...,Xn = xn)
or simply P (x1, ..., xn). When an equation contains only distributions labelled by variables
denoted in capital letters, it should be interpreted as being satisfied for every value of those
variables (denoted by the corresponding small letter). For example PXY = PXPY should be read
as P (xy) = P (x)P (y) ∀x ∈X, y ∈ Y , where P (xy) is short for PXY (X = x,Y = y). We will use
the short form XY or sometimes X,Y to denote the union of two variables/sets of variables.
Further, we will use H(XY...) (or sometimes, H(X,Y, ...)) to denote joint entropies of sets of
random variables X, Y , ....

Quantum formalism: Given a Hilbert space H , we will use P(H ) to represent the set
of positive, semi-definite operators on H , and S (H ) to denote the set of positive semi-
definite and trace one operators on H . Quantum states will, in general be represented by
density operators, i.e., ρ ∈ S (H ). Hermitian conjugate will be denoted using the usual dag-
ger notation, ρ† and matrix transpose by the subscript T , ρT . Rank 1 density operators i.e.,
pure states will be denoted as elements of the Hilbert space H , in the conventional bra-ket
notation ∣ψ⟩ ∈ H and ∣ψ⟩† = ⟨ψ∣ ∈ H ∗, where H ∗ is the dual space of H . Quantum chan-
nels or transformations on quantum states correspond to completely positive trace-preserving
(CPTP) maps E ∶ S (HA)↦S (HB) that map an input state ρA ∈ S (HA) to an output state
ρB = E (ρA) ∈ S (HB). Quantum measurements will be described by positive operator valued
measures (POVMs): a POVM is a set {Ex}x∈X with Ex ∈ P(H ), labelled by the classical
values x, and summing to identity ∑x∈X E

x = 1. We will often abbreviate {Ex}x∈X to {EX}X .
For the purposes of this thesis, we will only consider a discrete and finite set of measurement
outcomes, so X corresponds to a discrete and finite random variable taking values x ∈X.

Causal structures and space-time diagrams: Everywhere in the thesis, except for Chap-
ter 6, we will use the regular arrows Ð→ to denote causal influence (from cause to effect). In
Chapter 6, we will use for the same purpose because we would like to categorise these into
solid arrows Ð→ and dashed arrows 99K based on how these causal influences are detected
operationally. A vast majority of the causal structures appearing in the rest of the thesis cor-
respond to the Ð→ case, which justifies this notation. All space-time diagrams will have space
along the x-axis and time along the y-axis.

Logical operators and others: We will use the standard logical operators i.e., ¬ for ‘not’,
∧ for ‘and’, ∨ for ‘or’, ⇒ for ‘if...then’, and⇔ for ‘equivalent.’ Further, ⊕ will be used to denote
modulo-2 addition of classical bits i.e., the bitwise OR. Logarithms will use base e i.e., we will
consider natural logarithms and denote it by ln.

8
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2.2 Convex geometry and polyhedral computations

The lecture notes [92] provide a thorough introduction to polyhedral computation, while [31,
104, 142] are good resources for convex geometry and their application in optimisation problems.
In this section, we give an overview of the main aspects of these topics that will be relevant to
the current thesis and will focus our attention on the vector spaces V = Rn over the ordered
field of reals R.

2.2.1 The geometry of convex polyhedra

The following special types of linear combinations are central to the concepts of polyhedral
theory and convex optimization.

Definition 2.2.1 (Affine, conic and convex combinations). Consider a set of points x1, ..., xm ∈
V and their linear combination ∑m

i=1αixi with real coefficients αi. Then,

1. ∑m
i=1αixi is an affine combination if ∑m

i=1αi = 1.

2. ∑m
i=1αixi is a conic combination if αi ≥ 0 ∀i.

3. ∑m
i=1αixi is a convex combination if it is both affine and conic i.e., ∑m

i=1αi = 1 and αi ≥ 0
∀i.

The affine, conic and convex hull of a set of points are then naturally defined with respect to
the corresponding type of linear combination.

Definition 2.2.2 (Affine, conic and convex hull). The affine hull of a set of points S ⊆ V , is
the set of all affine combinations of points in S and is denoted as Aff(S). Similarly the conic
and convex hull of S correspond to the sets of all conic and convex combinations of S and are
denoted by Cone(S) and Conv(S) respectively.

Analogous to the concept of linear independence, a set of points S is said to be affinely inde-
pendent if and only if none of the points in S can be expressed as an affine combination of the
remaining points in S. A set S ⊆ V that is closed under affine combinations is called an affine
subspace of V = Rn.

We now proceed to discuss the central objects of polyhedral theory namely, convex sets, convex
cones, polyhedra and polytopes, based on the concepts defined above.

Definition 2.2.3 (Convex set). A subset S ⊆ V is said to be convex if for any two points
x1, x2 ∈ S, the line segment [x1, x2] ∶= {x ∶ x1 + (1 − α)x2,0 ≤ α ≤ 1} is contained in S.

9
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By applying Definition 2.2.3 inductively to the set S, it can be shown that a set is convex if and
only if it contains every convex combination of its points. Convex sets of particular interest to
us are convex cones, and a further subset of those, polyhedral cones.

Definition 2.2.4 (Convex cone). A set C ⊆ V is called a cone if for every x ∈ C, and α ≥ 0,
αx ∈ C. C is a convex cone if it is convex and a cone i.e., for any x1, x2 ∈ C, and α1, α2 ≥ 0,

α1x1 + α2x2 ∈ C (2.1)

Note that a set is a convex cone if and only if it contains every conic combination of its points.

Definition 2.2.5 (Polyhedral cone). A set P ⊆ V is said to be a polyhedral cone if it is a
polyhedron and a cone, where a polyhedron P is a subset of V that can be expressed as the
solution set of a finite number of linear inequalities,1

P = {x ∈ V ∶ Ax ≤ b and Cx = d}, A ∈ Rm×n, b ∈ Rm,C ∈ Rk×n, d ∈ Rk. (2.2)

By construction, a polyhedron corresponds to an intersection of half-spaces {x ∈ V ∣Ax ≤ b} and
hyperplanes {x ∈ V ∣Cx = d}, and is convex. This is known as the H-representation (where H
stands for half-space) of a polyhedron, and bounded polyhedra are called polytopes.2 Since a
cone, by definition contains the origin cone, 0 ∈ V = Rn, polyhedral cones can be expressed
in the more concise form P = {x ∈ V ∶ Ax ≤ 0}. Polyhedra (and hence polytopes) can also
be represented through a V-representation (where V stands for vertex)3 which follows from an
important result in polyhedral theory, the Minkowski-Weyl Theorem.

Theorem 2.2.1 (Minkowski-Weyl Theorem). For P ⊆ V , the following statements are equiva-
lent

1. P is a polyhedron,

2. P is finitely generated, i.e., there exist finite sets S,T ⊂ V such that

P = Conv(S) +Cone(T ), (2.3)

where addition of sets is defined with respect to the Minkowski sum, i.e., S1+S2 ∶= {s1+s2 ∶
s1 ∈ S1, s2 ∈ S2} for S1, S2 ⊆ V .

The second statement defines the V-representation of P. In the case of a polyhedral cone given
by P = {x ∈ V ∶ Ax ≤ 0} in the H-representation, S ⊂ V can be taken to be the empty set in the

1Note that the equalities Cx = d in Equation (2.2) can be equivalently written in terms of inequalities as
Cx ≥ d and Cx ≤ d, but we will often write these separately (as is common in the convex optimization literature).

2We will adopt these definitions in the rest of thesis, noting that in the literature, the opposite convention
for defining polyhedra and polytopes is sometimes used.

3Strictly speaking, unbounded polyhedra have extremal rays rather than extremal points or vertices (defined
later in the section). Nevertheless, the representations in terms of extremal rays (in the unbounded case) as
well as in terms of vertices (bounded case) are known as the V-representation.
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corresponding V-representation. On the other hand, a polytope (in its V-representation) can
be written as the convex hull of a finite set of points, and T can be taken to be the empty set
in this case. A simplex is a polytope that can be written as the convex hull of a finite set of
affinely independent points.

The geometry of a polyhedron P ⊆ V is characterised by its faces which are defined in terms of
valid linear inequalities of P. A linear inequality is valid for P if it holds for all x ∈ P.

Definition 2.2.6 (Faces of a polyhedron). For a polyhedron P ⊆ V , a subset F ⊆ P is called a
is called a face of P if it is represented as

F = P ∩ {x ∶ cTx = d}, (2.4)

for some valid inequality cTx ≤ d.

All faces of a polyhedron are by construction, polyhedrons themselves. Faces of dimensions 0, 1
and dim(P)−1 are called vertices, edges and facets respectively. It can be shown that vertices of
a polyhedron are equivalent to its extreme points which are points in P that cannot be written
as a convex combination of other points in P. Hence will use these terms interchangeably.
Further, when an edge of a polyhedron is unbounded, it can either be a line (unbounded in
both directions or half-line (starting from a vertex and unbounded in one direction). In the
latter case, the edge is called an extremal ray.4 In the V-representation of a polyhedron given
by statement 2 of Theorem 2.2.1, it is often convenient to take the sets S and T to correspond
to the set of extremal points and extremal rays respectively.

2.2.2 Projections of polyhedra: Fourier-Motzkin Elimination

Fourier-Motzkin Elimination is a method for projecting higher dimensional polyhedra to lower
dimensional ones through variable elimination, and forms an important part of the computa-
tional methods employed in this thesis. Here, we describe the mathematical concepts underpin-
ning this algorithm. For this, we start with linear transformations of which the transformations
of interest, projections are a subset.

Definition 2.2.7 (Linear transformation). A linear transformation is a map f ∶ Rn → Rm that
acts as f ∶ x↦ Ax, where A ∈ Rm×n.

It can be immediately shown that linear transformations preserve convexity (since convex com-
binations are particular cases of linear combinations). Additionally, linear transformation also
map convex cones to convex cones and polyhedral cones to polyhedral cones. Projections π are
linear transformations that are idempotent i.e., π.π = π. In particular, we will consider orthog-
onal projections which are projections on a Hilbert space that satisfy ⟨π(u), v⟩ = ⟨u,π(v)⟩ for

4Extremal rays can also be defined as a subset R of P that cannot be expressed as a (non-trivial) conic
combination of points not belonging to R.
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the Hilbert space inner-product ⟨, ⟩ between any vectors u and v in the space. In our case this
Hilbert space is simply Rn and ⟨, ⟩ is the corresponding dot product, and in the remainder of
the thesis, projections must be taken to mean orthogonal projections.

For a polyhedron P ⊆ V expressed as P = {(x, y) ∈ Rn1 ×Rn2 ∶ Ax +By ≤ b}, with n1 + n2 = n,
the projection of P into the subspace of the y variables πy(P) ∶ V ↦ V is defined as

πy(P) ∶= {(0, y) ∶ y ∈ Rn2 , and ∃x ∈ Rn1 such that (x, y) ∈ P}. (2.5)

πy is a linear transformation that can be represented by a n×n matrix with an n2 ×n2 identity
matrix as its second block, and zeroes everywhere else.5 In the V representation, a projection
π transforms the convex/conic hull of a set of points {x1, ..., xm} to the convex/conic hull of
the points {π(x1), ..., π(xm)}. Given a polyhedron P in the H-representation {x ∈ V ∶ Ax ≤ b}
as input, the Fourier-Motzkin Elimination (FME) procedure outputs the H-representation, or
the inequalities describing the projected polyhedron πy(P). The projection πy is implemented
through FME by eliminating the first n1 variables in the system of inequalities defining P.
Taking x to represent the n-dimensional vector with components xi, the following steps detail
the Fourier-Motzkin Elimination procedure for eliminating the variable x1. This procedure can
then be iterated n1 times to eliminate all required variables.

1. The inequalities Ax = b are partitioned into three sets I+, I− and I0. I+ denotes the set
of all inequalities in Ax ≤ b where the variable x1 has a strictly positive coefficient, i.e.,
all inequalities where Ai1 > 0. Similarly, I− is the set of all inequalities where x1 has a
strictly negative coefficient, and I0 is the set of all inequalities where x1 does not appear
i.e., its coefficient is 0.

2. If I+ is empty, then the inequalities in I− are ignored, and vice-versa. If both I+ and I−
are non-empty, then the following steps are undertaken. Every inequality Aix ≤ bi in I+
is rearranged and expressed as

x1 ≤
1
Ai1

(bi −∑
k≠1

Aikxk) ∶= fi(x2, ..., xn). (2.6)

There are ∣I+∣ such inequalities. Similarly, every inequality Ajx ≤ bj in I− is expressed as
(noting that Aj1 < 0 in this case)

x1 ≥
1
Aj1

(bj −∑
l≠1
Ajlxl) ∶= gj(x2, ..., xn), (2.7)

and there are ∣I−∣ inequalities of this type. Equations (2.6) and (2.7) are then combined
to give the following set of ∣I+∣.∣I−∣ inequalities that are independent of the variable x1,

gj(x2, ..., xn) ≤ fi(x2, ..., xn). (2.8)
5Here, the projection π is defined as an endomorphism on V i.e., a map from V to itself. However, it can be

equivalently seen as a map from V to a lower dimensional space by dropping additional zeroes, i.e., replacing
(0, y) ∈ Rn with y ∈ Rn2 in the Equation (2.5).
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−2x+ 4z
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Figure 2.1: Projections of a polyhedral cone (Example 2.2.1): (a) illus-
trates a polyhedral cone (P), with 3 faces (H-representation) and 3 extremal rays (V-
representation) as indicated. Projections of P on to the xy, yz and xz-planes are also
polehedra, as shown in (b), (c) and (d) respectively. In all four subfigures, the correspond-
ing polyhedron (blue region) is unbounded, and extends to infinity along the direction of
the extremal rays indicated.

3. The union of the ∣I+∣.∣I−∣ inequalities of Equation (2.8) with those of I0 characterise the
final output set of inequalities corresponding to the projection into the space of the n− 1
variables x2, ..., xn.

Note that the final set of inequalities obtained in the FME procedure is often not minimal,
in the sense that it can contain several redundancies. This can however be checked efficiently
through a linear program, and a characterisation of the projected polyhedron in terms of fewer,
non-redundant inequalities can be obtained (as described in Section 2.2.3.1 and Figure 2.2).

Example 2.2.1. Consider the polyhedral cone P ∈ V of Figure 2.1a which, in the H-representation
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is given by

P =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
∈ R3

RRRRRRRRRRRRRR

⎛
⎜
⎝

−2 1 1
0 −3 1
0 0 −1

⎞
⎟
⎠
⋅
⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
≤
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.9)

The same polyhedron in expressed in the V-representation as

P = Cone
⎛
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⎝

⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
,
⎛
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⎠
,
⎛
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⎞
⎟
⎠

(2.10)

The projection matrices in the 3 coordinate planes are,

πxy =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎠
, πyz =

⎛
⎜
⎝

0 0 0
0 1 0
0 0 1

⎞
⎟
⎠
, πxz =

⎛
⎜
⎝

1 0 0
0 0 0
0 0 1

⎞
⎟
⎠
, (2.11)

Then the projections of P onto each of the coordinate planes correspond to the polyhedra Pxy
(Figure 2.1b), Pyz (Figure 2.1c) and Pxz (Figure 2.1d) expressed in the V-representation as

Pxy = Cone
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⎠

(2.12)
The same projections can be obtained by performing Fourier-Motzkin Elimination on the H-
representation of P (Equation (2.9)) as shown below.

1. For the projections πxy, πyz, πxz, we wish to eliminate the variables z, x and y respectively.
Denoting the variable to be eliminated by a superscript, we have

Iz+ = {−2x + y + z ≤ 0,−3y + z ≤ 0}, Iz− = {−z ≤ 0}, Iz0 = ∅
Ix+ = ∅, Ix− = {−2x + y + z ≤ 0}, Ix0 = {−3y + z ≤ 0,−z ≤ 0}

Iy+ = {−2x + y + z ≤ 0}, Iy− = {−3y + z ≤ 0}, Iy0 = {−z ≤ 0}

2. Since Ix+ is empty, we can ignore Ix− and only need Ix0 to describe Pyz. Iy+, Iy−, Iz+ and Iz− are
all non-empty, so we rearrange the corresponding inequalities as Iz+ = {z ≤ 2x − y, z ≤ 3y},
Iz− = {z ≥ 0} and Iy+ = {y ≤ 2x − z}, Iy− = {y ≥ z

3}. Combining the inequalities in each case
we have 2x − y ≥ 0,3y ≥ 0 for the projection πxy, 3y − z ≥ 0, z ≥ 0 for the projection πyz
and 2x − 4 z3 ≥ 0, z ≥ 0 for the projection πxz.

3. We obtain the H-representation of the projected polytopes as

Pxy = {(x
y
) ∈ R2∣ (−2 1

0 −3) ⋅ (
x
y
) ≤ (0

0)}

Pyz = {(y
z
) ∈ R2∣ (−3 1

0 −1) ⋅ (
y
z
) ≤ (0

0)}

Pxz = {(x
z
) ∈ R2∣ (−2 4

3
0 −1) ⋅ (

x
z
) ≤ (0

0)}

(2.13)

One can then see that the V-representation of the polyhedra are indeed those found in
Equation (2.12), as illustrated in Figure 2.1.
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Algorithmic complexity of FME: The FME algorithm can be computationally costly due
to its high algorithmic complexity, which is, in the worst case double exponential. For an initial
system of ni inequalities, a maximum of (ni2 )2 inequalities can be obtained after one elimination
step.6 After k elimination steps, the algorithm can produce a maximum of 4(ni4 )2k inequalities,
which scales double-exponentially in the number of iterations k. This makes the algorithm
quite inefficient in general. However, the method remains useful in several cases for which the
scaling is far from the worst-case scaling. It can also be marginally improved by removing some
of the redundancies using the so-called Chernikov rules [49, 50]. For the work presented in
this thesis, the algorithm was mainly implemented on the porta software [55] that takes into
account some of the Chernikov rules.

2.2.3 Convex optimization

2.2.3.1 Linear programs

A linear program (LP) consists of optimising a linear function subject to linear equality/inequality
constraints. Every linear program can be expressed as a primal and a dual problem. For
x, y ∈ Rn, A ∈ Rm×n, c ∈ Rn and b ∈ Rm we have,

Primal program

Minimise cTx

Subject to Ax ≥ b, x ≥ 0

Dual program

Maximise bTy

Subject to ATy ≤ c, y ≥ 0

A vector satisfying all the constraints of the primal/dual program is said to be a feasible solution
of that program. Hence the sets of feasible solutions for the primal and the dual programs are
{x ∈ V ∶ Ax ≥ b, x ≥ 0} and {y ∈ V ∶ ATy ≤ c, y ≥ 0} respectively. An optimal solution for
the primal (/dual) program is a feasible solution of that program that attains the smallest
(/largest) value of the objective function cTx (/bTy). A linear program is called feasible if
the corresponding feasible set of solutions is non-empty and it is said to be unbounded if the
objective function is not bounded above in the case of maximization or not bounded below in
the case of minimization problems. Note that the geometry of the feasible region of a linear
program is a polyhedron, and hence convex. In the rest of this thesis, we will refer to this as
the standard form of the LP7.

Duality: Using the definitions of the primal and dual programs, we can see that cTx ≥
(ATy)Tx = yTAx ≥ yT b = bTy. In other words, for any feasible solutions x and y of the primal
(minimization) problem and the dual (maximization) problem, cTx ≥ bTy holds. This property
is called weak duality. Another property which is not immediately evident, but nevertheless

6This corresponds to the case where ∣I+∣ = ∣I−∣ =
ni

2 and ∣I0∣ = 0 for the variable being eliminated.
7This might differ from other texts but we choose this convention for convenience, since this is also the format

used by Mathematica, the main computational software used in this thesis.
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true is that of strong duality. It states that if the primal and dual problems are feasible, then
there exist a pair of feasible solutions x∗ and y∗ of these problems such that cTx∗ = bTy∗. By
weak duality, these solutions will be optimal.

Removing redundant constraints using LPs: Linear programs can be efficiently used
to check whether a given system of linear inequalities contains any redundant inequalities
that can be dropped without affecting the solution set. In general, to check whether the ith
inequality in Ax ≥ b is redundant, one can minimise Aix subject to the remaining inequalities.
If the optimal feasible solution is strictly smaller than bi, then the inequality Aix ≥ bi is not
redundant. Otherwise, the inequality is redundant and can be ignored. An example is illustrated
in Figure 2.2. Iterating this procedure for all inequalities in the system, we can obtain a
minimal set of non-redundant inequalities that are equivalent to the original system. For the
work presented in the current thesis, this method was used to remove redundant inequalities in
the output of the Fourier-Motzkin elimination procedure. Reducing inequalities at the output
of each iteration also helps in speeding up the computational procedure of FME. This was
primarily implemented on Mathematica using the inbuilt LinearProgramming function.

The LinearProgramming function in Mathematica can only handle linear programs where the
objective vector c, constraint matrix A and the constraint vector b do not contain unspecified
variables. For example, we might wish to optimize x1 + ax2, where a is an unspecified constant
in the range 0 ≤ a ≤ 1, returning the solution for all values of a in the range. For solving linear
programs involving such additional unknown variables (other than those being optimised over),
subject to assumptions on them, we developed a Mathematica Package, LPAssumptions [62]
that was used to produce some of the main computational results of Chapters 4 and 5. Our
package is based on the two-phase simplex method for solving linear programming problems.

2.2.3.2 The Simplex method for solving linear programs

The simplex algorithm is widely used for solving linear programming problems and was origi-
nally proposed by George Dantzig [69]. The algorithm is fairly involved, consisting of several
steps. Our Mathematica Package [62] (see Appendix 4.5.2 for details) implements this algo-
rithm, however the full details are not required for understanding the numerical results produced
using this package. Hence, we provide only a brief overview of the main mathematical concepts
underpinning this algorithm and refer the reader to [70, 142, 104] for further details of the
algorithm, and other methods for solving linear programs.

As we have previously noted, the feasible region of a linear program is a polyhedron, and by
Theorem 2.2.1, every polyhedron can be represented as a Minkowski sum of two sets: the former
a convex hull of a finite set of vertices, and the latter a conic hull of a finite set of extremal rays.
An extreme point or vertex of the polyhedron defining the feasible region of a linear program
is called a basic feasible solution (BFS). The following theorem (Theorem 3.3 of [123]) is at the
core of the simplex method.
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Theorem 2.2.2 ([123] Theorem 3.3). Let P ⊂ V be polyhedron with at least one extreme point.
Then every linear program with the feasible solution set {x ∈ P}, is either unbounded or attains
its optimal value at an extreme point of P.

Further, if a given extreme point xe of P is not an optimal solution, then it can be shown that
there exists an edge of P containing xe such that the objective function strictly improves (i.e.,
increases in case of a maximization LP and decreases in case of a minimization LP) as we move
away from xe along that edge (Section 3.8 of [123]). Finite edges connect extreme points to
extreme points and moving along this direction will lead to a new extremal point x′e with a
better value of the objective function. If the identified edge emanating from xe is unbounded,
then the linear program has no finite solution. The simplex method is based on this intuition—
starting with an initial vertex of the feasible set P i.e., an initial basic feasible solution, one
moves along edges of P to other vertices that improve the objective function value, until an
optimal vertex is reached or it is revealed that the problem is unbounded.

Example 2.2.2 (Intuition behind the Simplex algorithm). Consider the following simple linear
program (left), expressed in the standard form (right).

Maximise 2x + 3y
Subject to 2x + y ≤ 6,

x ≤ 2,
y ≤ 3,
x, y ≥ 0

Minimise (−2,−3)T ⋅ (x, y)

Subject to
⎛
⎜
⎝

−2 −1
−1 0
0 −1

⎞
⎟
⎠
⋅ (x
y
) ≥

⎛
⎜
⎝

−6
−2
−3

⎞
⎟
⎠
,

x, y ≥ 0

As shown in Figure 2.2, the feasible region is a polytope (bounded polyhedron) in 2 dimensions
with 5 vertices, V = {(0,0), (0,3), (3

2 ,3), (2,2), (2,0)} and 5 facets F = {x = 0, y = 0, y = 3,2x+y =
6, x = 2}. From the figure, it is evident that the maximum must be attained at a vertex since
the objective function f(x, y) = 2x+ 3y is linear. Calculating the value of the objective function
f at all 5 vertices, we immediately see that the maximum value f = 12 is attained at the vertex
(3

2 ,3). That this is indeed the maximum value of the constrained optimization problem, and that
it is attained at the said point, can also be verified by using the method of Lagrange multipliers,
for example.

Phases: The simplex algorithm proceeds in two phases. Phase I concerns the problem of
finding an initial basic feasible solution. This is done by formulating a new linear program LP
based on the original LP for which an initial BFS x is readily found. The construction of LP
is such that applying the simplex method to x either yields an optimum x that would be an
initial BFS for the original problem LP , or reveals that LP is infeasible. If feasible, Phase
II uses the initial BFS x obtained in Phase I to find an optimum solution (if a finite solution
exists) of the original problem LP through the simplex method.
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(0, 0)

(0, 3) (1.5, 3)

(2, 2)

(2, 0)
x

y

f = 27
2

f := f(x, y) = 2x + 3y

f = 0

f = 9 f = 12

f = 10

f = 4

2x + y = 6

y = 3

x = 2

Figure 2.2: Intuition behind the Simplex algorithm: This figure illustrates
the simple linear program of Example 2.2.2, where the feasible region corresponds to
a polytope (shaded in blue). The thick blue lines correspond to different level curves
f(x, y) = c of the objective function f . The maximum value of c for which (x, y) belongs
to the feasible region is our required solution. In the present example, the maximum
value of f = 12 is attained at the vertex (1.5,3) (in accordance with Theorem 2.2.2).
Starting at any other vertex, there is always an edge (in this 2D case, edges are also the
facets) along which the value of the f increased, and following the path specified by such
an edge at each subsequent vertex, we can always reach the optimal vertex. This figure
also illustrates how redundant inequalities can be removed using linear programming
(explained in Section 2.2.3.1). Suppose that we have the 5 inequalities of Example 2.2.2,
expressed as in the standard form of an LP, along with a sixth inequality −2x−3y ≥ −27

2 .
From the figure, it is evident that the sixth inequality is not required to characterise the
blue polytope, and can be dropped. This is checked by minimising −2x−3y subject to the
other inequalities, which is the LP of Example 2.2.2. Since the minimum value −12 ≥ −27

2 ,
we conclude that this inequality is redundant. On the other hand, −2x − 3y ≥ −9 along
with the other 5 inequalities would define a smaller polytope and would hence not be
redundant.

Column geometry and efficiency: It can be shown that a linear programming problem
with m constraints and n variables has at most (m

n
) = m!

n!(m−n)! basic feasible solutions when
m ≥ n. Hence a brute-force method for finding the optimum solution would be quite inefficient
in general. The merit of the simplex method is derived from its ability to find the optimum
much more efficiently (relative to a brute-force method) by exploiting the geometry of convex
sets. This consists of first expressing the original LP involving inequality constraints in an
equivalent form involving only equality constraints, by introducing certain additional slack
variables. Once the LP is bought to the desired equivalent form, the geometry defined by the
column vectors of the new constraint matrix provide a way to systematically compute a better
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BFS at each step or to decide whether the LP is unbounded.8 The improved BFS in every
iteration is found by computing its so-called reduced cost that indicates how much the objective
function value will be improved by moving to that BFS. Hence the method manages to reach
the optimum solution (if it exists) in much fewer iterations on an average, as compared to
brute-force and other graph-traversal methods [70, 142]. It was originally found that for many
linear programs admitting an optimal solution, the simplex method found it in O(n) iterations
[69, 70], which was the main reason for the success of the algorithm. However, over the years,
a number of examples have surfaced where the number of iterations of the simplex method
scales exponentially in the number of variables. In fact, determining the number of iterations
needed for solving a given linear program, is known to be an NP-hard problem. Nevertheless,
the simplex method continues to be useful in several practical cases (which includes the work
presented in this thesis).

2.2.4 Polyhedral representation conversion

The task of converting from the H to the V representation of a convex polyhedron is called
vertex enumeration while the reverse is called as facet enumeration. Representation conversion
problems are in general known to be computationally hard— there is no known vertex/facet
enumeration algorithm that is polynomial in the input and output size and in the dimension
of a polyhedron, and in the case of unbounded polyhedra, the problem is known to be NP
hard [124]. In general, it is difficult to characterise the size of the output of such problems
given the size of the input. For example, a hypercube in n-dimensions has 2n facets and 2n
vertices. The output of the vertex enumeration in this case would scale exponentially in the
input while the output of the facet enumeration would be quite small relative to the input size.
The computational complexity of vertex/facet enumeration problems continues to be a subject
of current research and several algorithms have been proposed for the same.

The most basic algorithm for facet enumeration involves a direct application of Fourier-Motzkin
Elimination, which is not always very efficient (as seen in Section 2.2.2). There are also bet-
ter methods, such as the double description method, that use similar steps as FME, while
additionally exploiting properties of polyhedral representations (such as the Minkowski-Weyl
Theorem 2.2.1) to achieve better efficiency. Broadly, there are two main classes of polyhedral
representation conversion algorithms, namely incremental and graph traversal algorithms. The
double description method mentioned above corresponds to an incremental algorithm. In the
case of polytopes, one method for implementing the latter is through reversing the procedure of
the simplex method (discussed in Section 2.2.3.2), whereby starting at a vertex that optimises a
suitably chosen objective function, all other vertices are systematically enumerated until every
vertex has been visited at least once [92].

8Here, the columns of the constraint matrix provide a basis, an appropriate linear combination of which gives
the required BFS. Geometrically, the basis vectors in each iteration correspond to the vertices of a simplex and
the associated BFS lies in this simplex i.e., belongs to the convex hull of the vertices represented by those basis
vectors. The geometry of the simplex provides a minimal, affinely independent basis for representing the basic
solution at each step.
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Softwares such as porta [55], on which the main computational work of this thesis has been
carried out, employ FME-based incremental algorithms. We present an overview of a simple
FME-based approach for enumerating facets of polyhedral cones, without going into the details
of more efficient incremental or graph-traversal algorithms. The concept of a polar dual of a
polyhedron, which essentially interchanges the role of the vertices and faces of a polyhedron (see
Figure 2.3) is then used such that we also get vertex enumeration for free, given an algorithm
for facet enumeration.

Facet enumeration: Consider a polyhedron P ⊆ V expressed as P = Conv(x1, ..., xk) +
Cone(y1, ..., yl) in the V-representation. To convert to the H-representation of P,

1. Express the convex and conic hulls in terms of inequalities as follows

x = α1x1 + ... + αkxk + λ1y1 + ... + λlyl,
1 = α1 + ... + αk,
α1, ..., αk, λ1, ..., λl ≥ 0

(2.14)

2. The variables in the above system of equations are x,α1, ..., αk, λ1, ..., λl. Project out the
variables α1, ..., αk, λ1, ..., λl using Fourier-Mozkin Elimination (See Section 2.2.2) to ob-
tain linear inequalities only involving components of x, which corresponds to the required
H-representation.

In order to convert from the H to V-representation, we require the concept of the polar or polar
dual of a polyhedron.

Definition 2.2.8 (Polar of a polyhedron). The polar P∆ of a polyhedron P ⊆ V is defined as

P∆ = {c ∈ V ∶ cTx ≤ 1,∀x ∈ P}. (2.15)

The following theorem (Theorem 9.1 of [187]) elucidates some elegant properties of the polar
P∆ and relates its H/V representations to those of the original polytope P.

Theorem 2.2.3 (Properties of the polar). Let P ⊆ V be a polyhedron that contains the origin.
Then,

1. P∆ is a polyhedron and P∆∆ = P,

2. If P = Conv(x1, ..., xk) +Cone(y1, ..., yl) ⊆ V , then P∆ = {u ∈ V ∶ xTi u ≤ 1, ∀i = 1, ..., k and
yTj u ≤ 0, ∀j = 1, ..., l},

3. If P = {u ∈ V ∶ xTi u ≤ 1, ∀i = 1, ..., k, and yTj u ≤ 0, ∀j = 1, ..., l}, then P∆ = Conv(x1, ..., xk)+
Cone(y1, ..., yl).
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Figure 2.3: A polytope (blue cube) and its dual (red octahedron): The dual of
a polyhedron has the elegant property that there is a one-to-one correspondence between
vertices of the original polyhedron and facets of the dual, and between facets of the
original and vertices of the dual. Using this concept, any algorithm for facet enumeration
also yields an algorithm for vertex enumeration. The notion of a polar dual that is
required for this inter-conversion is defined formally in the main text. Note that this
figure is only for the purpose of illustrating the concept of a dual, and does not exactly
correspond to the polar dual.

Vertex enumeration: Consider a polyhedron P ⊆ V that contains the origin in its interior.
If a polyhedron does not contain the origin, then by an appropriate coordinate transformation,
it can be transformed into one that does. This allows P to be expressed in the H-representation
as P = {x ∈ V ∶ Ax ≤ b}, with bi ≥ 0 ∀i. To convert to the V-representation of P,

1. For all inequalities Aix ≤ bi such that bi > 0, divide throughout by bi to express in the
form Ãix ≤ 1. Without loss of generality, let these be the first k inequalities. Then
P = {x ∈ V ∶ Ãix ≤ 1,∀i = 1, ..., k and Aix ≤ 0,∀i = k + 1, ...,m}, where m is the total
number of inequalities.

2. Use the third statement of Theorem 2.2.3 to find the V-representation of the polar P∆ as
P∆ = Conv(ÃT1 , ..., ÃTk ) +Cone(ATk+1, ...,A

T
m).

3. Convert P∆ to its H-representation using facet enumeration.

4. Use the first an third statements of Theorem 2.2.3 to find the V-representation of P =
(P∆)∆ using the H-representation of P∆ obtained in the previous step.

2.3 Information-theoretic entropy measures and their prop-
erties

Entropies have played a crucial role in the study of thermodynamic phenomena and statistical
mechanics since the 19th century [58, 29, 97], and in 1932, John von Neumann generalised
the concept of entropies to quantum systems [212]. An information-theoretic understanding of
entropy on the other hand, was first developed by Claude Shannon in his seminal 1948 paper
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[190], where he introduced the Shannon entropy as a measure of the information content of
a message and used it to characterise the information capacity of communication channels.
Interestingly, the von Neumann entropy, even though chronologically prior, turns out to be a
quantum generalisation of the Shannon entropy.9 Since then, entropies have become an integral
part of both classical and quantum information theory. Several other information-theoretic
entropy measures have also been proposed (such as Rényi [179], Tsallis [200], min and max
entropies [177]), and serve as useful mathematical tools for tackling a plethora of information-
theoretic problems such as data compression [190, 172], randomness extraction [24, 128], key
distribution [177, 12] as well as causal structures [46, 89, 213, 216]. Here, we provide a brief
overview of some of the classical and quantum information-theoretic entropy measures and their
properties that are relevant for the work presented in this thesis.

2.3.1 Shannon and von Neumann entropies

Definition 2.3.1 (Shannon entropy). Given a random variable X distributed according to the
discrete probability distribution PX , the Shannon entropy of X is given by10

H(X) = −∑
x

P (x) lnP (x). (2.16)

The Shannon entropy H(X) is a continuous and strictly concave function of the probability
distribution over X i.e., for two probability distributions P and Q over X and λ ∈ [0,1],
denoting the dependence on the distribution by a subscript,

H(X)λP+(1−λ)Q ≥ λH(X)P + (1 − λ)H(X)Q. (2.17)
Definition 2.3.2 (Conditional Shannon entropy). Given two random variables X and Y , dis-
tributed according to PXY , the conditional Shannon entropy is defined by

H(X ∣Y ) = −∑
x,y

P (xy) ln P (xy)
P (y)

(2.18)

It is also useful to define a quantity called the mutual information, which, as the name suggests,
quantifies the amount of information that two random variables carry about each other. The
conditional version of this quantity quantifies how much information two variables share about
each other, given the value of a third variable.
Definition 2.3.3 (Shannon mutual information). Given 3 random variables, X, Y and Z, the
Shannon mutual information and Shannon conditional mutual information between X and Y ,
and X and Y conditioned on Z are respectively given by

I(X ∶ Y ) =H(X) −H(X ∣Y ),
I(X ∶ Y ∣Z) =H(X ∣Z) −H(X ∣Y Z).

(2.19)
9In fact, Shannon had corresponded with von Neumann, who is said to have suggested that Shannon call his

new uncertainty measure “entropy”, due to its similarities with prior notions of thermodynamic and statistical
entropies.

10Note that it is common to take logarithms in base 2 and measure entropy in bits; here we use base e
corresponding to measuring entropy in nats.

22



CHAPTER 2. PRELIMINARIES

Properties of Shannon entropy: Some useful information-theoretic properties satisfied by
the Shannon entropy and associated mutual information are discussed below. Some of these
properties can be expressed in different, but equivalent forms. We will distinguish between these
because equivalences that apply in the case of the Shannon entropy may not necessarily apply
for other entropies. Whenever we have an entropic equation/inequality where no conditional
entropies are explicitly involved (such as the left most ones in all of the properties below),
we will refer to it as the unconditional form of that property, otherwise it will be called the
conditional form. According to the defining of mutual information (Equation (2.19)) adopted
in this thesis, the forms of properties expressed in terms of the mutual informations qualify
as conditional forms as well. In the following, R, S and T are three disjoint sets of random
variables.

1. Non-negativity and upper bound (UB): The Shannon entropy is positive i.e.,
H(R) ≥ 0 and upper bounded as H(R) ≤ ln ∣R∣, where ∣.∣ denotes cardinality. Equal-
ity for the upper bound is achieved if and only if PR(r) = 1/∣R∣ for all possible values
r ∈ R (i.e., if the distribution on R is uniform).

2. Chain rule (CR): For disjoint sets R1,...,Rn, S of random variables,

H(R1,R2, . . . ,Rn∣S) =
n

∑
i=1
H(Ri∣Ri−1, . . . ,R1, S), (2.20)

which in particular implies the two useful identities H(R∣S) = H(RS) − H(S) and
H(R∣ST ) =H(RS∣T ) −H(S∣T ).

3. Additivity (A): If R and S are independent i.e., if PRS = PRPS, then

H(RS) =H(R) +H(S) CR⇐⇒ H(R∣S) =H(R) (2.21)

4. Monotonicity (M): From the definition (2.18) of the conditional Shannon entropy, it
follows that

H(S) ≤H(RS) CR⇐⇒ H(R∣S) ≥ 0 (2.22)

5. Subadditivity (SA):

H(R) +H(S) ≥H(RS) CR⇐⇒ H(R) ≥H(R∣S)
(2.19)
⇐Ô⇒ I(R ∶ S) ≥ 0 (2.23)

6. Strong subadditivity (SSA):

H(RT )+H(ST ) ≥H(RST )+H(T ) CR⇐⇒ H(R∣T ) ≥H(R∣ST )
(2.19)
⇐Ô⇒ I(R ∶ S∣T ) ≥ 0

(2.24)

Note that SSA implies SA when T is the empty set, but SA does not imply SSA. The un-
conditional form of SSA is often called submodularity. The conditional forms of SA and SSA
(often referred to as data-processing inequalities) tell us that entropy cannot increase when
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conditioning on more random variables, which is a crucial information-theoretic property of the
entropy. The conditional and unconditional forms of the properties given above are equivalent
for entropic measures that satisfy the chain rule (CR) in the form given in Equation (2.20).
However for entropies that do not satisfy this chain rule, the two forms will be inequivalent
and we will explicitly specify which form is being referred to in such cases. In the rest of this
thesis, when we say that an entropy satisfies the properties given by Equations (2.20)-(2.24),
this should be understood as— the corresponding property holds when the Shannon entropy
H() in these equations is replaced by the entropy measure under consideration.

The von Neumann entropy generalises the Shannon entropy to quantum states (represented by
density operators), and is defined as follows.
Definition 2.3.4 (von Neumann entropy). The von Neumann entropy of a density operator
ρA ∈ S (HA) is defined as

H(A)ρ ∶= −tr(ρ ln(ρ)). (2.25)

It follows that the von Neumann entropy is zero for pure quantum states.

We will often drop the subscript ρ in the von Neumann entropy even though this will lead to
the same notation as the Shannon case. However, this is justified since classical probability
distributions can be equivalently encoded using diagonal density matrices (with the distribution
along the diagonal), in which case we indeed recover the Shannon entropy. We will often use X,
Y , Z etc. to denote classical random variables and A, B, C etc. to denote labels of quantum
subsystems, to distinguish between the two entropies. With this, the conditional von Neumann
entropy is simply defined through the chain rule, i.e.,

H(A∣B) =H(AB) −H(B). (2.26)

The von Neumann mutual information and its conditional version are defined exactly as in
the Shannon case, i.e., through Equation (2.19) with H() denoting the von Neumann entropy
instead.

Properties of von Neumann entropy: The von Neumann entropy is nonnegative and satis-
fies additivity (Equation (2.21)), chain rule (Equation (2.20)), subadditivity (Equations (2.23))
and strong subadditivity11 (Equations (2.24)). Further, it also admits a corresponding upper
bound, H(A) ≤ ln(dA) where dA denotes the dimension of the Hilbert space HA, with equality
if an only if ρA is the maximally mixed state 1

dA
. Note however that the von Neumann entropy

does not satisfy monotonicity (Equation (2.22)) i.e., the conditional entropy is not positive.
This can be seen by taking ρAB to be an entangled pure state in Equation (2.26), such that
H(A),H(B) > 0 even though H(AB) = 0. Instead, the von Neumann entropy satisfies a weaker
property (weak monotonicity) that states that for any tripartite state ρABC , the following holds.

H(A∣B)ρ ≥ −H(A∣C)ρ (2.27)
11The strong subadditivity of the von Neumann entropy is an important theorem in quantum information

theory, proven by Lieb and Ruskai [135]. The original proof (which is also the one presented in standard
textbooks [151]) is particularly known for its complexity and a number of simpler proofs have been proposed
since then (see for example [177]).

24



CHAPTER 2. PRELIMINARIES

2.3.2 Tsallis entropies

Definition 2.3.5 ((Classical) Tsallis entropies). Given a random variable X distributed ac-
cording to the discrete probability distribution PX , the order q Tsallis entropy of X for a
non-negative real parameter q is defined as [200]

Sq(X) =
⎧⎪⎪⎨⎪⎪⎩

−∑{x∈X ∶PX(x)>0}P (x)q lnq P (x) if q ≠ 1
H(X) if q = 1

(2.28)

where lnq P (x) = P (x)1−q−1
1−q .

The q-logarithm function converges to the natural logarithm in the limit q → 1 so that lim
q→1

Sq(X) =
H(X) and the function is continuous in q. For brevity, we will henceforth write ∑x instead of
∑{x∶P (x)>0}, keeping it implicit that probability zero events do not contribute to the sum.12 An
equivalent form of Equation (2.28) is the following.

Sq(X) =
⎧⎪⎪⎨⎪⎪⎩

1
1−q(∑x∈X P (x)q − 1) if q ≠ 1
H(X) if q = 1

(2.29)

A number of non-equivalent ways of defining the conditional Tsallis entropy have been proposed
in the literature [93, 3]. The definitions of [3] does not satisfy the chain rule that is satisfied by
the conditional Shannon entropy (Equation (2.20)), while the definition of [93] does. Hence we
will stick to the latter definition throughout this thesis, which is as follows.

Definition 2.3.6 (Conditional Tsallis entropies). Given two random variables X and Y , dis-
tributed according to PXY , the order q conditional Tsallis entropy for q ≥ 0 is defined by

Sq(X ∣Y ) ∶=
⎧⎪⎪⎨⎪⎪⎩

−∑x,y P (xy)q lnq P (x∣y) if q ≠ 1
H(X ∣Y ) if q = 1

(2.30)

Note that Sq(X ∣Y ) converges to the Shannon conditional entropy H(X ∣Y ) in the limit q →
1. The unconditional and conditional Tsallis mutual informations are defined analogously to
Equation (2.19) for the Shannon case with I replaced by Iq and H replaced by Sq.

Iq(X ∶ Y ) = Sq(X) − Sq(X ∣Y ),
Iq(X ∶ Y ∣Z) = Sq(X ∣Z) − Sq(X ∣Y Z).

(2.31)

Properties of Tsallis entropies: Tsallis entropies are non-negative and satisfy the uncon-
ditional and conditional forms of monotonicity (Equation (2.22)) and the chain rule (Equa-
tion (2.20)) for all q ≥ 0. They also satisfy both the forms of subadditivity (Equations (2.23))

12Note that this means the Tsallis entropy for q < 0 is not robust in the sense that small changes in the
probability distribution can lead to large changes in the Tsallis entropy.
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and strong subadditivity (Equations (2.24)) for all q ≥ 1. For q ≥ 0, they admit an analogous
upper-bound as the Shannon case i.e., Sq(X) ≤ lnq ∣X ∣, where for q > 0, equality is achieved
if and only if PX(x) = 1/∣X ∣ for all x (i.e., if the distribution on X is uniform). However,
Tsallis entropies are not additive (Equation (2.21)) in general and instead satisfy a weaker con-
dition known as pseudo-additivity [68]— for two independent random variables X and Y i.e.,
PXY = PXPY , and for all q, the Tsallis entropies satisfy

Sq(XY ) = Sq(X) + Sq(Y ) + (1 − q)Sq(X)Sq(Y ). (2.32)

Note that in the Shannon case (q = 1), we recover additivity for independent random variables.
For q < 1, strong subadditivity (Equation (2.24)) does not hold in general [93]. The results
presented in this thesis rely on this property and hence we will restrict to the q ≥ 1 case in
the remainder of this thesis. The quantum generalisation of the (classical) Tsallis entropy is
defined as follows. Note that in the rest of this thesis, “Tsallis entropy” will stand for the
“classical Tsallis entropy” defined in Definition 2.3.5. In the quantum case, we will explicitly
use “quantum Tsallis entropy”.

Definition 2.3.7 (Quantum Tsallis entropies). The order q quantum Tsallis entropy of a density
operator ρA ∈ S (HA), for a non-negative real parameter q is defined as [200]

Sq(A) =
⎧⎪⎪⎨⎪⎪⎩

1
1−q(tr(ρq) − 1) if q ≠ 1
H(A) if q = 1,

(2.33)

where H(A) denotes the von Neumann entropy (Definition 2.3.4) of ρA.

Quantum Tsallis entropies can be seen as a generalisation of the von Neumann entropy since
they converge to H(A) in the limit of q going to 1. The conditional quantum Tsallis entropy
for a density operator ρAB ∈ S (HA ⊗HB) can be simply defined as

Sq(A∣B) = Sq(AB) − Sq(B) (2.34)

(analogous to the von Neumann case, Equation (2.26)).

Properties of quantum Tsallis entropies: Quantum Tsallis entropies are non-negative and
satisfy the chain rule (Equation (2.20)) by definition of the conditional entropy. They also satisfy
pseudo-additivity (Equation (2.32)) ∀q ≥ 0, both forms of subadditivity (Equation (2.23)) ∀q ≥ 1
and are upper-bounded as Sq(A) ≤ lnq(dA), where the bound is saturated for q > 0 if and only
if ρA is the maximally mixed state. However, they no not satisfy monotonicity and strong-
subadditivity in general. The former is evident since the von Neumann entropy, a special case
of quantum Tsallis entropies, also does not satisfy this property. The latter was noted in [162]
where sufficient conditions for the strong subadditivity of quantum Tsallis entropies expressed
in its unconditional form, were also analysed.
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A
Eq. (2.21)

CR
Eq. (2.20)

M
Eq. (2.22)

SA
Eq. (2.23)

SSA
Eq. (2.24)

Shannon ✓ [190] ✓ [190] ✓ [190] ✓ [190] ✓ [190]

Von Neumann ✓ [212] ✓
(By definition)

× [43]
(Weak Mono. [135]) ✓[7] ✓ [135]

Tsallis × [200]
(Pseudo-add.) ✓ [93] ✓ [71] ✓ [93]

(q ≥ 1)
✓ [93]
(q ≥ 1)

Q. Tsallis × [200]
(Pseudo-add.)

✓
(By definition) × [43] ✓ [13]

(q ≥ 1) × [162]

Rényi ✓ [179] ×[120]
(Alternate CR [148]) ✓[136] ✓

(C. form [120])
✓

(C. form [120])

Min ✓ [177] × [177] × [177] ✓
(C. form [177])

✓
(C. form [177])

Max ✓ [177] × [177] × [177] ✓
(C. form [177])

✓
(C. form [177])

Table 2.1: Information-theoretic properties of generalised entropies: This table summarises
the main properties of the entropy measures discussed in the main text along with those of the min
and max entropies. The acronyms A, CR, M, SA, SSA and C. form denote additivity, chain rule,
monotonicity, subadditivity, strong subadditivity and conditional form respectively. Rényi, Min and
Max entropies satisfy SA and SSA only in the conditional form while the remaining entropies satisfy
them (wherever indicated so) in both conditional and unconditional forms. For the von Neumann
and quantum Tsallis entropies, the chain rule follows by definition (Equations (2.26) and (2.34)).
Monotonicity fails for the von Neumann entropy and hence the quantum Tsallis entropy which is a
generalisation of it for q ≠ 1. Weak Monotonicity (2.27) holds in the von Neumann case but an analogue
for the more general q ≥ 0 quantum Tsallis entropies is not known (to the best of our knowledge).
Pseudo-additivity (Equation (2.32)) for quantum Tsallis entropies follows in the same manner as it
does for the classical case shown in [200]. The table only lists the properties of the classical Rényi
entropy, since the quantum version is not relevant for the work presented in this thesis. Multiple
definitions of quantum Rényi entropies have been proposed [199, 148], and these properties may differ
in each case. For example SSA in conditional form is only known to hold for α ∈ [0,2] for the quantum
Rényi entropy of [199]. The Rényi entropies do not satisfy the chain rule of Equation (2.20), but they
satisfy a weaker, cardinality-dependent chain rule of Equation (2.38). The min and max entropies
(which are originally defined as quantum entropies) are also included in this table for comparison,
their definition and further properties can be found in [177].

2.3.3 Rényi entropies

Here we define only the classical versions of Rényi entropies, as the quantum version will not
be used in the remainder of this thesis.

Definition 2.3.8 ((Classical) Rényi entropies). Given a random variable X distributed ac-
cording to the discrete probability distribution PX , the order α Rényi entropy of X for a
non-negative real parameter α is defined as

Rα(X) =
⎧⎪⎪⎨⎪⎪⎩

1
1−α ln (∑x∈X P (x)α) if α ≠ 1
H(X) if α = 1

(2.35)
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There are several inequivalent definitions of the conditional Rényi entropy proposed in the
literature [120, 83], in this thesis, we will consider the following definition.

Definition 2.3.9 (Conditional Rényi entropy). Given two random variables X and Y , dis-
tributed according to PXY , the order α conditional Rényi entropy for α ≥ 0 is defined by

Rα(X ∣Y ) =
⎧⎪⎪⎨⎪⎪⎩

1
1−α log(∑xy P (xy)αP (y)1−α) if α ≠ 1
H(X ∣Y ) if α = 1

(2.36)

(2.37)

Both the unconditional and conditional Rényi entropies converge to the corresponding Shannon
entropy as α tends to 1.

Properties of Rényi entropies: The Rényi entropies are nonnegative and upper-bounded
as Rα(X) ≤ ln ∣X ∣ for all α ≥ 0, with equality (for α > 0) if and only if PX is the uniform
distribution over X [179]. Rényi entropies do not satisfy the chain rule (Equation (2.20)) in
general for α ≠ 1. However, an alternate, dimension dependent chain rule has been proposed
for quantum Rényi entropies in [148], which therefore also hold for classical Rényi entropies
(where dimension would correspond to the cardinality of the variables). This alternate chain
rule is given as

Hα(X ∣Y Z) ≥Hα(XZ ∣Y ) − ln ∣Z ∣. (2.38)
Further, Rényi entropies also satisfy monotonicity (Equation (2.22)) in both the conditional
and unconditional forms i.e., Hα(X) ≤ Hα(XY ) and Hα(X ∣Y ) ≥ 0, even though these forms
are not equivalent due to failure of the chain rule (in contrast to the Shannon case). Classical
Rényi entropies have been shown to satisfy subadditivity (Equation (2.23)) as well as strong
subadditivity (Equation (2.24)), both only in the conditional forms. They fail to satisfy the
(inequivalent) unconditional form of these properties for α ≠ 1.

Table 2.1 summarises some of the important information-theoretic properties of the entropies
discussed so far, as well as those of the min and max entropies proposed in [177] for comparison.
We will not define or discuss these and other entropy measures here as they are not relevant
for the work presented in this thesis.

2.4 Generalised probabilistic theories

Quantum theory has worked and continues to work remarkably well to explain and predict
empirical observations. However there is no consensus on a set of natural physical princi-
ples that single out quantum theory from a plethora of other possible theories that are also
compatible with relativistic principles (such as finite signalling speed) but produce stronger-
than-quantum correlations [170]. Generalised probabilistic theories (GPTs), of which classical
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and quantum theories can be seen as particular members, were developed out the motivation to
derive the mathematical formalism of quantum theory from fundamental physical principles or
axioms, and to probe deeper, theory-independent connections between information processing
and physical principles [188, 139, 140, 141, 110, 16, 157]. Several properties such as (Bell)
non-locality, contextuality, entanglement, non-unique decomposition of a mixed state into pure
states, monogamy of correlations, information-theoretically secure cryptography and no-cloning
have been shown to extend beyond quantum theory [170, 110, 17, 144, 16]. However, telepor-
tation and entanglement swapping are not always possible in non-classical GPTs despite the
existence of entangled states [192, 16, 193, 103, 218].13 Further, from a foundational point of
view, it is of interest to understand whether interpretational issues are peculiarities of quantum
theory. The contextuality/non-locality of GPTs suggests that similar interpretational problems
could arise here. We will discuss this aspect in more detail in Chapter 8 where we derive a
Wigner’s friend type paradox in box world (a particular GPT).

In the present chapter, we provide an overview of the framework for information processing in
GPTs proposed by Barrett in [16]. In the remainder of this thesis, we will use the more collo-
quial term, “box world” to denote the set of theories that Barrett originally calls Generalised
no-signaling Theories. This theory allows arbitrary correlations between measurements on sep-
arated systems, as long as they are non-signaling i.e., choice of measurement on one subsystem
does not affect the measurement outcome on the other. Here separation between systems is
expressed in terms of a tensor product structure (that allows us to identify subsystems), and
without reference to space-time locations/space-like separation14. Not all GPTs need to have a
tensor product structure for representing composite systems, but will focus only on those that
do, for the purposes of this thesis. The following is based on the review sections of our paper
[208].

2.4.1 States and transformations

Individual states. The so-called generalised bit or gbit is a system completely characterized
by two binary measurements which can be performed on it [16]. Such sets of measurements
that completely characterise the state of a system are known as fiducial measurements. The
state of a gbit is thus fully specified by the vector

P⃗gbit =
⎛
⎜⎜⎜
⎝

P (a = 0∣X = 0)
P (a = 1∣X = 0)
P (a = 0∣X = 1)
P (a = 1∣X = 1)

⎞
⎟⎟⎟
⎠
, (2.39)

13The intuition here is that there is a trade-off between the state space and the effect space (the dual of
the former). A larger state space implies that the set of effects leading to valid probabilities would be smaller,
leading to a smaller effects space. Hence, there exist GPTs with entangled states but no analogue of entangling
measurements, both of which are needed for teleportation-like protocols.

14Of course this leads to systems and correlations that are non-signaling also with respect to a space-time
structure once this is introduced into the picture.
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X a

(a) G-bit. A gbit is a function with
binary input and output, character-
ized by the probability vector P⃗gbit,
also called the state vector.

X a

Y b

(b) PR box. The PR box has two binary in-
puts X,Y and two binary outputs a, b, satisfy-
ing XY = a ⊕ b, and otherwise uniformly ran-
dom (state vector on the right). Usually it is
applied in the context of two space-like sepa-
rated agents, each providing one of the inputs
and obtaining the respective output. The box is
non-signaling, and maximally violates the CHSH
inequality [170].

Figure 2.4: Boxes in Generalized Probabilistic Theories. The modular objects
of GPTs are input/output functions depicted as boxes and characterized by probability
vectors. Each function (or box) can be evaluated once, and it may or not correspond to a
physical system being probed; even if it is, nothing is assumed about the post-evaluation
state of the system (unlike quantum theory, which specifies the post-measurement state
of a system given its initial state and the measurement device).15

where X = 0 and X = 1 represent the two choices of measurements and a ∈ {0,1} are the possible
outcomes (Figure 2.4a). Analogously, a classical bit is a system characterized by a single binary
fiducial measurement,

P⃗bit = ( P (a = 0∣X = 0)
P (a = 1∣X = 0) ) , (2.40)

and, in quantum theory, a qubit is characterized by three fiducial measurements (corresponding,
for example, to three directions X, Y and Z in the Bloch sphere),

P⃗qubit =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

P (a = 0∣X = 0)
P (a = 1∣X = 0)
P (a = 0∣X = 1)
P (a = 1∣X = 1)
P (a = 0∣X = 2)
P (a = 1∣X = 2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.41)

15This figure is taken from our paper [208] which is joint work with Nuriya Nurgalieva and Lídia del Rio, and
was made by Lídia.
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For normalized states, we have ∣P⃗ ∣ = ∑iP (a = i∣X = j) = 1,∀ j. The set of possible states of a
gbit is convex, with the extreme points

P⃗00 =
⎛
⎜⎜⎜
⎝

1
0
1
0

⎞
⎟⎟⎟
⎠
, P⃗01 =

⎛
⎜⎜⎜
⎝

1
0
0
1

⎞
⎟⎟⎟
⎠
, P⃗10 =

⎛
⎜⎜⎜
⎝

0
1
1
0

⎞
⎟⎟⎟
⎠
, P⃗11 =

⎛
⎜⎜⎜
⎝

0
1
0
1

⎞
⎟⎟⎟
⎠
. (2.42)

These correspond to pure states, and the state space of a gbit is a polytope (due to the finite
number of extreme points). In the qubit case, the extreme points correspond to all the (infinitely
many) pure states on the surface of the Bloch sphere, some of these are

P⃗∣+⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0

1/2
1/2
1/2
1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, P⃗∣−⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
1

1/2
1/2
1/2
1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, P⃗∣0⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1/2
1/2
1/2
1/2

1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

P⃗∣1⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1/2
1/2
1/2
1/2

0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.43)

Note that in box world, pure gbits are deterministic for both alternative measurements, whereas
in quantum theory at most one fiducial measurement can be deterministic for each pure qubit,
as reflected by uncertainty relations. We denote the set of allowed states of a system A by S A.

Composite states. The state of a bipartite system AB, denoted by P⃗AB ∈ S AB can be
written in the form P⃗AB = ∑i ri P⃗

A
i ⊗P⃗B

i where ri are real coefficients16 and P⃗A
i ∈ S A, P⃗B

i ∈ S B

can be taken to be pure and normalised states of the individual systems A and B [16]. Thus,
a general 2-gbit state P⃗AB

2 can be written as in Figure 2.4b (left), where X,Y ∈ {0,1} are the
two fiducial measurements on the first and second gbit and a, b ∈ {0,1} are the corresponding
measurement outcomes. The PR box P⃗PR, on the right, is an example of such a 2 gbit state
that is valid in box world, which satisfies the condition a⊕ b = xy [170].

State transformations. Valid operations are represented as matrices that transform valid
state vectors to valid state vectors. In addition, we only have access to the (single-shot) in-
put/output behaviour of systems, so in practice all valid operations in box world take the form
of classical wirings between boxes, which correspond to pre- and post-processing of input and
output values, and convex combinations thereof [16]. For example, bipartite joint measure-
ments on a 2-gbit system can be decomposed into convex combinations of classical “wirings”,
as shown in Figure 2.5. In contrast, quantum theory allows for a richer structure of bipartite
measurements by allowing for entangling measurements (e.g. in the Bell basis), which cannot
be decomposed into classical wirings. Bipartite transformations on multi-gbit systems turn out
to be classical wirings as well [16]. Reversible operations in particular consist only of trivial
wirings: local operations and permutations of systems [103]. One cannot perform entangling
operations such as a coherent copy (the quantum CNOT gate) [16, 192, 103].

16Note that it is not necessary that the coefficients ri be positive and sum to one. If this is the case, then the
composite state would be separable and hence local, otherwise, the state is entangled [16].
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X Y

A B

Y = f1(a)

b

o = f2(a, b)

a

o

a

Figure 2.5: Bipartite measurements in box world. Any bipartite measurement on
a 2-gbit box world system can be decomposed into a procedure (or convex combinations
thereof) of the following form. Alice first performs a measurement X on one of the gbits
(labelled A), and forwards the outcome a to Bob. Bob then performs a measurement
Y = f1(a), which may depend on a, on the other gbit (labelled B), obtaining the outcome
b. The final measurement outcome o of the joint measurement can be computed by Bob
as a function f2(a, b). All allowed bipartite measurements are convex combinations of
this type of classical wirings [16].

2.4.2 Measurements: observing outcomes

In quantum theory, systems are described by states that live in a Hilbert space, measurements
and transformations on these states are represented by CPTP maps and the Born rule spec-
ifies how to obtain the probabilities of possible measurement outcomes give these states and
measurements. In more general theories, there is no reason to assume Hilbert spaces or CPTP
maps. In fact such a description of the state space and operations may not even be available,
systems may be described as black boxes taking in classical inputs (choice of measurements)
and giving classical outputs (measurement outcomes). What we can demand is that the theory
provides a way for agents to predict the probabilities of obtaining various outputs based on
their input choice and some operational description of the box. We have briefly reviewed states
and transformations in Barrett’s framework for GPTs [16], we now discuss how measurements
and associated probabilities are characterised here.

Consider a GPT, T. Denoting the set of all allowed states of a system in T by S , any valid
transformation on a normalised GPT state P⃗ ∈ S maps it to another normalised GPT state
in S . The set of allowed normalized states is assumed to be closed and convex17 and transfor-

17The motivation for this assumption is that if it is possible to prepare two states P1 and P2, then it should
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mations on these states, assumed to be linear. Each valid transformation is then represented
by a matrix M such that P⃗ → M.P⃗ under this transformation and M.P⃗ ∈ S [16]. Further,
operations that result in different possible outcomes can be associated with a set of transfor-
mations, one for each outcome. These also give an operational meaning to unnormalised states
where ∣P⃗ ∣ = ∑iP (a = i∣X = j) = c ∀j, c ∈ [0,1] (i.e., the norm is independent of the value of j).
Such an operation M on a normalised initial state P⃗ can be associated with a set of matrices
{Mi} such that the unnormalised state corresponding to the ith outcome is Mi.P⃗ . Then the
probability of obtaining this outcome is simply the norm of this unnormalised state, ∣Mi.P⃗ ∣
and the corresponding normalized final state is Mi.P⃗ /∣Mi.P⃗ ∣. A set {Mi} represents a valid
operation if the following hold [16].

0 ≤ ∣Mi.P⃗ ∣ ≤ 1 ∀i, P⃗ ∈ S (2.44a)

∑
i

∣Mi.P⃗ ∣ = 1 ∀P⃗ ∈ S (2.44b)

Mi.P⃗ ∈ S ∀i, P⃗ ∈ S (2.44c)

This is the analogue of quantum Born rule for GPTs. Box world is a GPT where the state
space S consists of all normalized states P⃗ whose entries are valid probabilities (i.e., ∈ [0,1])
and satisfy the no-signaling constraints i.e., for a N -partite state P⃗ , the marginal term

∑
ai

P (a1, .., ai, .., aN ∣X1, ..,Xi, ..,XN)

is independent of the setting Xi for all i ∈ {1, ...,N}18

When the GPT T is box world, the conditions of Equations 2.44a-2.44c result in the characteri-
zation of measurements and transformations in the theory in terms of classical circuits or wirings
as shown in [16]. We summarise the results of [16] characterising allowed transformations and
measurements in box world and will only consider normalization-preserving transformations.

• Transformations:

– Single system: All transformations on single box world systems are relabellings of
fiducial measurements or outcomes or a convex combination thereof.

– Bipartite system: Let X and Y be fiducial measurements performed on the trans-
formed bipartite system with corresponding outcomes a and b, then all transfor-
mations of 2-gbit systems can be decomposed into convex combinations of classical
circuits of the following form: A fiducial measurement X ′ = f1(X,Y ) is performed
on the initial state of the first gbit resulting in the outcome a′ followed by a fiducial
measurement Y ′ = f2(X,Y, a′) on the initial state of the second gbit resulting in the
outcome b′. The final outcomes are given as (a, b) = f3(X,Y, a′, b′), where f1, f2 and
f3 are arbitrary functions.

be possible to prepare a probabilistic mixture of the two (for example, by tossing a coin).
18This is in the spirit of relativistic causality since one would certainly expect that the input of one party

does not affect the output of others when the are all space-like separated from each other.
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• Measurements:

– Single system: All measurements on single box world systems are either fiducial
measurements with outcomes relabelled or convex combinations of such.

– Bipartite system: All bipartite measurements on 2-gbit systems can be decomposed
into convex combinations of classical circuits of the following form (Figure 2.5): A
fiducial measurement X is performed on the initial state of the first gbit resulting
in the outcome a′ followed by a fiducial measurement Y = f(a′) on the second gbit
resulting in the outcome b′. The final outcome is a = f ′(a′, b′), where f and f ′ are
arbitrary functions.

2.5 Causal structures and causal models

Cause-effect relationships between systems constrain the possible correlations that can be ob-
served between them. These relationships are naturally represented using causal structures
or directed graphs. Given a causal structure, a causal model provides a set of mathematical
rules to define the possible correlations that are compatible with the causal structure. Addi-
tionally, it can also provide rules for how the correlations compatible with a causal structure
change under external manipulations of the systems involved. There are different approaches
for mathematically formalising these concepts in general physical theories, depending on what
the nodes and edges of the causal graph correspond to, the compatibility condition required by
the causal model and how external manipulations are described. For classical causal models, a
common approach is that of Bayesian networks, pioneered by Judea Pearl [159]. This has been
generalised to quantum and more general, post-quantum causal structures in [115]. We will
mainly adopt this approach in the thesis, and will briefly discuss other approaches for quantum
causal modelling at the end of Section 2.5.2.3.

General definitions and terminology: Throughout this thesis, we will only consider dis-
crete and finite random variables, and corresponding causal structures with finite number of
systems/nodes. More formally, we have the following definitions.

Definition 2.5.1 (Causal structure). A causal structure is a directed graph G over a set of
nodes, some of which are labelled observed and the rest unobserved. Each observed node X
corresponds to a classical random variable19 of the same name, while unobserved nodes can
correspond to classical, quantum or post-quantum systems. For two (observed or unobserved)
nodes X and Y of G, X is said to be a cause of a Y if and only if there exists a directed path
from X to Y in G.

The majority of the literature on causal structures as well as Chapters 4 and 5 concern the case
of acyclic causal structures represented by directed acyclic graphs (DAGs). In Chapter 6 , we

19Observed variables may represent classical inputs (such as measurement settings) or outputs (such as mea-
surement outcomes) of an experiment.
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attempt to model cyclic causal structures as well, but an understanding of the acyclic case is a
pre-requisite for this as well. Hence, we will focus on the acyclic case in this review.

Note that by the above definition of cause, X is said to be a cause of itself if and only if there is
a directed path from X to itself in G, which is not possible if the graph is acyclic. We will use
family relations to describe causal relationships between nodes of a directed graph— for i ≠ j,
if Xi is a direct or indirect cause of Xj, then Xi is said to be an ancestor of Xj or equivalently,
Xj a descendant of Xi. We will use either explicitly as anc(Xi) or more compactly as X↓ to
denote the set of all ancestors of Xi in G and similarly, desc(Xi) or X↑i for the set of all its
descendants. If Xi is a direct cause of Xj, then Xi is said to be a parent of Xj or equivalently
Xj, a child of Xi. We will use par(Xi) or X↓1i and child(Xi) or X↑1i to denote the sets of all
parents and children respectively, of Xi in G. If a node Xi has no parents in G, then it is said
to be exogenous with respect to that graph, and is called endogenous otherwise.

Figure 2.6 illustrates two causal structures that will be considered extensively Part I of this
thesis, particularly in Chapters 4 and 5. These are the biparite Bell and Triangle causal
structures, which we will denote by GB and GT respectively. Both the Bell [22, 57, 224, 122,
63, 169, 143, 15, 66, 34, 214] and Triangle [88, 47, 48, 33, 215, 178, 129] causal structures have
been studied extensively and continue to be a subject of ongoing research, by virtue of being
relatively small causal structures that are known to support non-classical correlations. We
first outline the preliminaries of classical causal models [159] required for this thesis, and then
discuss the generalisation to quantum and post-quantum causal structures, mainly following
the approach of [115]. We now enunciate the following broad definition of a causal model.

Definition 2.5.2 (General definition of a causal model). A causal model consists of a causal
structure G, and a joint distribution PX1,...,Xn over the set {X1, ...,Xn} of observed nodes of G
that is compatible with the causal structure according to a compatibility condition.

2.5.1 Classical causal models

The section is primarily based on the framework of classical causal models developed by Judea
Pearl [159].

2.5.1.1 Directed graphs and compatible probability distributions

Definition 2.5.3 ((Classical) causal structures). A causal structure is called classical and
denoted GC if all its unobserved nodes correspond to classical random variables (denoted by
the same name as the associated node).

Hence for classical causal structures, all nodes (observed and unobserved) correspond to classical
random variables and we will use the same label to denote the node of the DAG as well as the
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A B

X Y

Λ

(a)

Z

X Y

AB

C

(b)

Figure 2.6: The bipartite Bell and Triangle causal structures: Two widely
studied causal structures that are known to support a gap between correlations realisable
through classical vs non-classical unobserved causes. Here observed nodes are circled
while the uncircled nodes are unobserved. (a) The bipartite Bell causal structure: This
corresponds to an information processing protocol involving two parties Alice and Bob
where the observed nodes A and B represent the random variables corresponding their
choice of input (measurement setting) while X and Y represent the random variables
corresponding to their outputs (measurement outcome). The outcomes X and Y are
obtained by measuring the respective halves of a shared system Λ, which may be classical,
quantum or post-quantum. (b) The Triangle causal structure: Here, the three observed
nodes X, Y and Z have unobserved, pairwise common causes A, B and C, but no joint
common cause. This corresponds to a information processing protocol involving three
parties who produce correlated data (X, Y and Z) by pre-sharing information pairwise,
and never having interacted as a group.

random variable it represents. The framework of classical causal models [159] then specifies
when a joint probability distribution over all nodes is said to be compatible with the causal
structure.
Definition 2.5.4 (Compatibility of distribution with GC). A distribution PX1,...,Xn ∈ Pn over
the random variables {X1, . . . ,Xn} is said to be compatible with a classical causal structure
GC (with these variables as nodes) if it satisfies the causal Markov condition i.e., the joint
distribution decomposes as

PX1,...,Xn =
n

∏
i=1
P
Xi∣X↓1i

, (2.45)

where X↓1i denotes the set of all parent nodes of the node Xi in the DAG GC.

A crucial concept relating to the joint distribution of a causal structure is conditional indepen-
dence defined as follows.
Definition 2.5.5 (Conditional independence). Given pairwise disjoint subsets of random vari-
ables X, Y and Z (where X and Y are non-empty) and a joint distribution PXY Z over them,
X and Y are said to be conditionally independent given Z, denoted X á Y ∣Z if

PXY ∣Z = PX ∣ZPY ∣Z . (2.46)

The relationship between the Markov compatibility condition of Definition 2.5.4 and conditional
independence as defined above are given by the following Theorem (Theorem 1.2.7 in [159]).
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Theorem 2.5.1 (Pearl 2009). A distribution P ∈ Pn is compatible with a classical causal
structure GC over a node set {X1, ...,Xn} if and only if every node Xi is conditionally inde-
pendent from its non-descendants, denoted X�i given its parents X↓1i in GC i.e., ∀i ∈ {1, . . . , n}
Xi áX�i ∣X

↓1
i , or explicitly

P
XiX

�

i ∣X
↓1
i
= P

Xi∣X↓1i
P
X�i ∣X

↓1
i

(2.47)

The equivalent compatibility condition in terms of conditional independence provided by The-
orem 2.5.1 is often referred to as local Markov or parental Markov condition in the literature.
It is possible to read off the conditional independences satisfied by a Markov compatible distri-
bution from the corresponding causal graph, rules for doing so were independently developed
by Geiger [96] and Verma and Pearl [205]. The following graph theoretic notions are required
to understand how this can be done.

Definition 2.5.6 (Blocked paths). Let G be a DAG in which X and Y are distinct nodes and
Z be a set of nodes not containing X or Y . A path from X to Y is said to be blocked by Z if
it contains either A Ð→W Ð→ B with W ∈ Z, A ←ÐW Ð→ B with W ∈ Z or A Ð→W ←Ð B
such that neither W nor any descendant of W belongs to Z.

In the following, three node subgraphs of the form A Ð→ W ←Ð B will be known as colliders
where W is referred to as the collider node. Other three node subgraphs will be referred to as
non-colliders, in particular A ←Ð W Ð→ B corresponds to the common cause subgraph where
the node W is a common cause of A and B.

Definition 2.5.7 (d-separation). Let G be a DAG in which X, Y and Z are disjoint sets of
nodes. X and Y are d-separated by Z in G, denoted as (X ⊥d Y ∣Z)G (or simply X ⊥d Y ∣Z if G
is obvious from context) if every path from a variable in X to a variable in Y is blocked by Z,
otherwise, X is said to be d-connected with Y given Z.

The concept of d-separation was developed independently in [96] and [205]. It follows from
the above definition that d-separation is a symmetric relation in the first two arguments (as is
conditional independence) i.e., X ⊥d Y ∣Z is equivalent to Y ⊥d X ∣Z. When Z is the empty set
∅, we will simply denote this as X ⊥d Y , and similarly for conditional independences (which
will be called independences when the conditioning set Z is empty). For arbitrary disjoint
subsets X, Y and Z of the nodes, d-separation can be used to determine whether X and Y
are conditionally independent given Z for a distribution compatible with the causal structure
(according to Definition 2.5.4). The following result which is Theorem 1.2.5 of [159], and was
originally presented in [205] illustrates this.

Theorem 2.5.2 (Verma and Pearl 1988). Let GC be a classical causal structure and let X, Y
and Z be pairwise disjoint subsets of nodes in GC. If a probability distribution P is compatible
with G (according to Definition 2.5.4), then the d-separation X ⊥d Y ∣Z implies the conditional
independence X á Y ∣Z. Conversely, if all distributions P compatible with GC satisfy the con-
ditional independence X á Y ∣Z, then the corresponding d-separation relation X ⊥d Y ∣Z holds.
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S

E H

+ −
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Figure 2.7: Example of fine-tuned correlations compatible with a causal struc-
ture: Even though S is a cause of H, it is possible for the correlations pSEH to be
fine-tuned such that the positive dependence S +

Ð→ E
+
Ð→H exactly cancels out the negative

dependence S −
Ð→H resulting in S and H being uncorrelated (see Example 2.5.1

The forward direction of the above Theorem is referred to as the soundness of d-separation and
the reverse direction as the completeness of d-separation for determining conditional indepen-
dences. Note that for the latter, it is important that all compatible distributions satisfy the
conditional independence. It is possible for a distribution P that is compatible with a graph G
to satisfy a conditional independence X á Y ∣Z even when the d-separation relation X ⊥d Y ∣Z
does not hold in G. A causal model defined by such a distribution P and causal structure G is
said to be unfaithful or fine-tuned. Therefore for a faithful causal model, the only conditional
independence relations are those that can be read off from the d-separation relations in the
associated causal graph. For a faithful causal model, it can be shown that all the conditional
independences in the distribution are implied by the n conditional independence constraints
(one for each node) given by the parental/local Markov condition (Equation (2.47)), and can
be derived from these constraints and standard probability calculus based on Bayes’ rule. In
general, not all of these n constraints may be required. The following example (taken from
[186]) illustrates a compatible distribution that is unfaithful with respect to its causal graph.

Example 2.5.1 (A fine-tuned causal model). Consider the causal structure of Figure 2.7 where
+ or − on an edge indicates whether the nodes connected by that edge are positively or negatively
correlated as a result of that causal influence. Note that the Markov condition of Equation (2.45)
does not impose any constraints on joint distributions PSEH compatible with this causal struc-
ture, and neither does d-separation. Any probability distribution PSEH can be expressed as
PSEH = PSPE∣SPH ∣ES using Bayes’ rules, which is the same factorization obtained by applying
the Markov condition to this graph. Further, S influences H through two causal mechanisms—
a direct, negative causal influence and an indirect, positive influence. It is therefore possible to
have a compatible distribution PSEH in which these two causal mechanisms exactly cancel each
other out such that S and H appear to be uncorrelated i.e., PSH = PSPH , even though S and H
are clearly d-connected in the graph.

Note that such examples are fine-tuned in the sense that the causal influences will have to
conspire in a very specific way in order to just cancel out, and even slight deviations in the
strength of the correlations will destroy the apparent independence. We will consider such
examples in further detail (including explicit distributions) in Chapter 6. In the rest of this
section, we will focus only on faithful correlations and causal models. We now provide an
illustrative example for the concepts of d-separation and conditional independence.

Example 2.5.2 (d-separation and conditional independence). Consider the causal structure of
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X R S T U V Y

W

Figure 2.8: Causal structure of Example 2.5.2

Figure 2.8, where all nodes are observed. Here, the node T (and the corresponding sub-graph
S Ð→ T ←Ð U) is a collider (and all remaining nodes are non-colliders), and V is a common
cause of U and Y . We now consider d-separation relations involving different conditioning sets
Z. If Z is the empty set, X ⊥d Y ∣Z (or simply X ⊥d Y ) because the path between X and Y
is blocked by the collider T that does not belong to Z = ∅. If {T,W} or a subset thereof is
contained in Z, then X and Y are not d-separated (or equivalently, they are d-connected) by Z
since the path contains the node T that either belongs to Z or has a descendant W that belongs
to Z. Further, X and T as well as T and Y are d-connected by the empty set Z = ∅. The
former become d-separated when Z contains either one or both of R and S since these block the
directed path from Z to T . Similarly, T and Y become d-separated by Z if it contains one or
both of U and V . By the soundness of d-separation, this implies the conditional independence
relations X á Y , X á T ∣{R,S}, T á Y ∣{U,V }. By finding the set of non-descendants and
parents for all 8 nodes, we have the following set of 8 conditional independences corresponding
to Equation (2.47). For a faithful causal model over the causal structure 2.8, all conditional
independence relations in every compatible distribution (including those mentioned previously)
are implied by these 8 relations.

X á {U,V, Y },
R á {U,V, Y }∣X,
S á {U,V, Y }∣R,
T á {X,R,V, Y }∣{S,U},
W á {X,R,S,U,V, Y }∣T,
U á {X,R,S,Y }∣V,
V á {X,R,S},
Y á {X,R,S,T,W,U}∣V.

(2.48)

d-separation and entropic causal constraints: An equivalent statement of Theorem 2.5.2
can be obtained by encoding conditional independences in terms of the entropies (rather than
the probability distribution) over the nodes. For a classical causal structure G with pairwise
disjoint subsets of nodes X, Y and Z, X á Y ∣Z is equivalent to the entropic constraint I(X ∶
Y ∣Z) = 0, where I(X ∶ Y ∣Z) is the Shannon conditional mutual information (Definition 2.3.3).
Then, X and Y are d-separated by Z in G if and only if I(X ∶ Y ∣Z) = 0 for all distributions
compatible with G [159]. The complete set of d-separation conditions give all the conditional
independence relations implied by the DAG (by soundness of d-separation). In the case of
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Figure 2.9: Two node causal structures with same set of compatible distri-
butions: All of the above causal structures contain two observed nodes X and Y .
In all cases, neither the Markov compatibility condition (2.45) nor d-separation imply
any constraints on the marginal distribution PXY over the observed nodes. Therefore
any 2-variable distribution PXY is compatible with all 5 of these graphs, and the causal
structure cannot be inferred directly from these correlations. However, if we were given,
or could deduce additional information regarding the results of active interventions on X
and Y , we would be able to rule out some of these explanations. For example, if forcibly
setting X to some value x (without changing anything else), resulted in a change in the
distribution over Y , we would say that X is a cause of Y . In this case, the opposite direct
cause explanations (b) and (e) as well as the purely common cause explanation (c) would
be ruled out, leaving us with (a) and (d) as possible explanations.

Shannon entropy for a DAG with n nodes these are all implied by the n constraints

I(Xi ∶X�i ∣X
↓1
i ) = 0 ∀i ∈ {1, . . . , n}. (2.49)

In other words, a distribution over n variables satisfies Equation (2.47) and hence Equa-
tion (2.45) (by Theorem 2.5.1) if and only if it satisfies Equation (2.49).

2.5.1.2 Interventions and counterfactuals

Given a causal structure, we can apply Definition 2.5.4 to obtain the set of all joint distribu-
tions compatible distributions with it. Causal inference concerns the reverse problem— given
a compatible distribution (and possibly some additional information), can we infer the causal
structure that it is compatible with? It is not possible to infer an underlying causal structure
from correlations alone: correlations are symmetric while causal relationships are directional.
For example, if two variables X and Y are correlated, Reichenbach’s principle [176] asserts that
either X must be a cause of Y , Y must be a cause of X, X and Y share a common cause
or any combination thereof and any distribution PXY over these variables is compatible with
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all five of these causal structures illustrated in Figure 2.9. Hence these causal explanations
cannot be distinguished immediately using observed correlations alone, and additional infor-
mation/deductions are required in order to infer the underlying causal structure. Intuitively,
we can argue that if actively intervening or “doing” something only to X changed something
about Y , then we definitely know that X is a cause of Y . This intuition is formalised in terms
of interventions and do-conditionals [159], which in addition to the observed correlations allow
for the inference of the underlying causal structure in several scenarios that cannot be identified
from the correlations alone. We will follow the augmented graph approach (Section 3.2.2 of
[159]) to define interventions and do-conditionals and only consider the case of perfect or ideal
interventions in this thesis.

First, consider a causal model associated with a causal structure G over a set {X1, ...,Xn} of
nodes, all of which are observed. External intervention on a node Xi can be described using an
augmented graph GIXi which is obtained from the original graph G by adding a node IXi and an
edge IXi Ð→Xi (with everything else unchanged). The intervention variable IXi can take values
in the set {idle,{do(xi)}xi∈Xi}, where IXi = idle corresponds to the case where no intervention
is performed (i.e., the situation described by the original causal model) and IXi = do(xi) forces
Xi to take the value xi by cutting off its dependence on all other parents. Hence the parents of
the node Xi in the original and augmented graphs are related as parGIXi (Xi) = parG(Xi) ∪ IXi .
We will denote parGIXi (Xi) simply as parI(Xi) and the parG(Xi) as par(Xi), in short-hand.
The conditional probability of Xi = xi conditioned on its parents par(Xi)/parI(Xi) taking the
value pXi/pIXi is given as.

P (xi∣pIXi) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P (xi∣pXi), if IXi = idle
0, if IXi = do(x′i) and x′i ≠ xi
1, if IXi = do(x′i) and x′i = xi

(2.50)

From this, we see that whenever IXi ≠ idle, Xi no longer depends on its original parents par(Xi).
Therefore, conditioned on IXi ≠ idle, it is illustrative to consider a new graph which we denote by
Gdo(Xi) that represents the post-intervention causal structure after a non-trivial intervention has
been performed. The causal graph Gdo(Xi) is obtained by cutting off all incoming arrows to Xi

except the one from IXi in the causal graph GIXi , with everything else unchanged. An example
of the graphs G, GIXi and Gdo(Xi) is given in Figure 2.10. Then the effect of an intervention
setting Xi = x′i, i.e., performing do(x′i) is to transform the original probability distribution
P (X1 = x1, ...,Xn = xn) into a new probability distribution P (X1 = x1, ...,Xn = xn∣do(Xi = xi))
(the do-conditional) given as

P (x1, ..., xn∣do(xi)) ∶= PGdo(Xi)(x1, ..., xn∣IXi = do(xi)), (2.51)

where P (x1, ..., xn, IXi = do(xi)) is compatible with the graph Gdo(Xi) and Equation (2.50), which
implies that P (x1, ...x′i, ..., xn∣do(xi)) = 0 if x′i ≠ xi. Applying the Markov compatibility con-
dition (Definition 2.5.4) to the original, pre-intervention graph G implies that all distributions
compatible with this graph must satisfy PX1,...,Xn = Πn

j=1PXj ∣par(Xj). In the post-intervention
graph Gdo(Xi), the only causal relations that change are those involving the intervened node
Xi where the set of parents of Xi in Gdo(Xi) is the single element set {IXi}, and the parent
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sets of all other nodes remain the same as those of G. Then any distribution PX1,...,Xn,IXi
with IXi taking values in {do(xi)}xi∈Xi (i.e., not idle), that is compatible with Gdo(Xi) satisfies
PX1,...,Xn∣IXi = Πn

j=1,j≠iPXj ∣par(Xj)PXi∣IXi , for any distribution over IXi . Noting that PXi∣IXi is the
deterministic distribution which is 1 whenever Xi takes the same value set by IXi and 0 other-
wise, this gives the following transformation between the do-conditional (Equation (2.51)) and
the original distribution,

P (x1, ..., xn∣do(x′i)) =
⎧⎪⎪⎨⎪⎪⎩

P (x1,...,xn)
P (xi∣par(xi)) , if x′i = xi
0, if x′i ≠ xi.

(2.52)

Importantly, this allows us to decide, given two nodes X and Y , whether or not X is a cause
of Y— if there exists a value x ∈ X such that P (y∣do(x)) ≠ P (y) for some y ∈ Y , then X is a
cause of Y (or equivalently, there is a directed path from X to Y ). Otherwise, we can conclude
that X is not a cause of Y or equivalently that there is no directed path from X to Y (if the
causal model is faithful)20. This formalises the intuition explained in Figure 2.9, where checking
whether an active intervention (IX ≠ idle) on X changes the distribution over Y allowed us
to rule out 3 of 5 causal explanations. As we will see in the following paragraphs, checking
whether the do-conditional P (y∣do(x)) differs from the regular conditional P (y∣x), can allow
us to pick out a unique causal structure in this case.

Interventions on subsets of nodes: This procedure naturally extends to interventions on
subsets of the nodes. If a simultaneous intervention is performed on a subset X of the nodes
{X1, ...,Xn}, an intervention variable IXi will be introduced for each element Xi of the subset
X, along with the corresponding edge IXi Ð→ Xi. Then conditioning on each of the IXi for
Xi ∈X being idle, the original graph is obtained and conditioning on IX′ ≠ idle for X ′ ⊆X (i.e.,
a “do” operation has been performed on every node in X ′), the corresponding graph Gdo(X′) is
defined by cutting off all incoming edges (except IXi Ð→ Xi for all Xi ∈ X ′) in G. Then the
do conditional P (x1, ..., xn∣do(x′)) and its relation to the original distribution P (x1, ..., xn) are
defined analogously, using Equations (2.51) and (2.52) for the graph Gdo(X′).

The importance of the transformation (2.52) is that it allows for counter-factual reasoning by
mathematically relating the post-intervention distribution to the pre-intervention distribution.
It tells us that if all the nodes in a causal structure are observed, then we can deduce the result
of any intervention (possibly on a subset of nodes) just by passively observing the correlations
over the variables and using mathematical manipulations, without physically performing any
interventions. This ability to deduce the post-intervention distribution only from the observed
distribution in a consistent manner is known as identifiability. Identifiability of interventional
effects is of crucial practical use, especially in situations where an actually intervention may be
physically (or ethically) forbidden, for example testing the effect of certain drugs and treatments
on humans. In causal structures that include unobserved nodes, this kind of counter-factual

20Note that in unfaithful causal models, it is possible to have P (y∣do(x)) = P (y) for all x ∈ X and y ∈ Y
even when X is a cause of Y , and checking for the violation of this condition only provides a sufficient test of
causation but not a necessary one. This point is crucial for the results of Chapter 6 , which concern unfaithful
causal models.
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reasoning may not always be possible i.e., the effect of interventions may not be identifiable
from the observed distributions, as explained below.

Interventions in the presence of unobserved nodes: For a causal structure containing
unobserved nodes, interventions can only be performed on the observed nodes. For a clas-
sical causal structure GC , the unobserved nodes are also random variables. Let {X1, ...,Xn}
and {Λ1, ...,Λm} denote the set of observed and unobserved nodes of GC respectively. Any
observed distribution PX1,...,Xn compatible with G can be obtained by applying the Markov
condition (2.45) to the hypothetical distribution over all nodes and summing over all possible
values of the unobserved nodes i.e.,

PX1,...,Xn = ∑
Λ1,...,Λm

Πn
i=1PX1∣par(Xi)Πm

j=1PΛj ∣par(Λj). (2.53)

Considering interventions only on observed nodes, Equations (2.51) and (2.52) can be derived
analogously using this compatibility condition. However there are two important distinctions
to be noted. Firstly, the observed distribution PX1,...,Xn is in general not Markov (and hence
not compatible) with respect to the sub-graph involving only the observed nodes and edges
connecting them. However the overall distribution over observed and unobserved nodes is
Markov with respect to the complete DAG involving all these nodes if we assume that graph
accounts for all the unobserved common causes and corresponds to a classical causal structure.
Secondly, the post-intervention distribution may not be identifiable from the observed, pre-
intervention distribution alone. This is because, an intervened node Xi may contain unobserved
parents in the original causal structure and Equation (2.52) would then require division by a
quantity that cannot be obtained from the observed distribution alone. More explicitly, the
following example describes a non-identifiable causal structure involving an unobserved node.
Example 2.5.3 (A non-identifiable causal structure). Consider the causal structure of Fig-
ure 2.9d with X, Y observed and Λ unobserved. The augmented and post-intervention causal
structures corresponding to an intervention on X are illustrated in Figure 2.10. Observed
distributions compatible with the original causal structure are given as PXY = ∑ΛPΛXY =
∑ΛPΛPX ∣ΛPY ∣XΛ. Note that any distribution PXY can be written in this form using Bayes’
rule and marginalising over some variable Λ. The post-intervention distribution PXY ∣IX (with
IX ≠ idle) is compatible with the graph Gdo(X) and is given as PXY ∣IX = ∑ΛPΛPX ∣IXPY ∣XΛ.
Equation (2.52) in this case corresponds to

P (xy∣do(x′)) =
⎧⎪⎪⎨⎪⎪⎩

∑λ∈Λ
P (λxy)
P (x∣λ) = ∑λ∈ΛP (λ)P (y∣xλ), if x′ = x

0, if x′ ≠ x.
(2.54)

Note that the transformation involves division by a value corresponding to the distribution PX ∣Λ
which cannot be determined from the observed distribution PXY alone. Hence the effect of the
intervention is not identifiable for this causal structure. We will discuss identifiability of causal
structures in further detail in Chapter 6 .

In the above example, the do-conditional P (y∣do(x)) is simply the non-zero expression in the
above equation i.e., P (y∣do(x)) = ∑λ∈ΛP (λ)P (y∣xλ). The regular conditional P (y∣x) is ob-
tained using the Markov compatibility condition as P (y∣x) = ∑λ∈Λ P (λ)P (x∣λ)P (y∣xλ)P (x) . As long as
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Figure 2.10: Pre-intervention, augmented and post-intervention causal struc-
tures: Taking the original, pre-intervention causal structure to be that of Figure 2.9d
(repeated here in (a) for completeness), parts (b) and (c) of this figure illustrate the
augmented and post-intervention causal structures corresponding to an intervention on
X in the causal structure of (a). In the former, the variable IX can take values in the
set {idle,{do(x)}x∈X} while in the latter, it can only take the values {do(x)}x∈X corre-
sponding to an active intervention. Conditioned on IX = idle, we effectively obtain the
original causal structure (a) which corresponds to no intervention being performed, as
specified by Equation (2.51).

P (x∣λ) ≠ P (x) for some values x ∈ X,λ ∈ Λ, the two conditionals will be different. Note that
this must indeed hold i.e., X and Λ cannot be independent if the distribution is faithful, since
they are d-connected in the causal structure. Therefore, for faithful causal models over the
causal structure 2.9d, there exist values x ∈ X,y ∈ Y such that P (y∣do(x)) ≠ P (y∣x). On the
other hand, one can easily check that for the causal structure 2.9a, P (y∣do(x)) = P (y∣x) always
holds— the intuition being that, in this case X is a parentless (i.e., exogenous) node, hence the
intervention does not change any of the causal relations that were present in the original graph.
In general, interventions on an exogenous node X does not change the distribution, and whether
or not X is a cause of Y in this case can simply be decided by checking whether or not X and
Y are correlated i.e., whether PY ∣X = PY . In conclusion, while the do-conditional P (y∣do(x))
for the causal structure 2.9d is not identifiable from the original observed distribution P (xy), it
can be determined experimentally by physically performing the intervention. Comparing this
experimentally obtained estimate of the do-conditional with the original distribution will allow
us to uniquely identify one among the 5 causal structures of Figure 2.9, if we assume that the
causal model is faithful.

Remark 2.5.1. Note that there is a slight but harmless abuse of notation in this section.
The intervention variable IX takes different values in the augmented graph GIX and the post-
intervention graph Gdo(X). It takes values in {idle,{do(x)}x∈X} and {do(x)}x∈X in the two cases
respectively. We nevertheless use the variable name to also denote the set of possible values it
takes, but will be careful to specify which graph we are referring to whenever this happens.
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2.5.2 Non-classical causal models

A typical laboratory experiment uses devices that take classical inputs (settings of knobs or
buttons) and produce classical outputs (reading of a pointer or numbers on a screen). This
classical, observed data may however be produced through quantum mechanisms. Bell [22]
famously showed that local measurements on a shared quantum system can lead to stronger
correlations than those on any shared classical system. In recent years, Wood and Spekkens
[224] have reformulated Bell’s Theorem in the language of Bayesian networks [159], showing
that quantum correlations cannot be explained by faithful classical causal models, and therefore
the framework of [159] must be suitably generalised for defining quantum causal models21. More
generally, one can also consider post-quantum systems such as non-local or non-signaling boxes
[201, 170], that produce stronger-than-quantum correlations. These can be seen as elements
of a more general class of theories, generalised probabilistic theories (GPTs, see Section 2.4),
of which quantum and classical theories emerge as particular cases. Hensen, Lal and Pusey
(HLP) [115] were the first to define a generalised causal model that allows unobserved nodes
to be either classical, quantum or more generally, GPT. This enables a characterisation of the
theory-independent aspects of causal models and allows us to derive bounds on the correlations
realisable in causal structures depending on the nature of their unobserved nodes, which has
foundational as well as practical applications.

2.5.2.1 Generalised causal structures and compatibility

Definition 2.5.8 (Generalised causal structure). A generalised causal structure, denoted GG is
a causal structure in which every observed node is associated with a classical random variable
and every unobserved node is associated with a system belonging to a generalised probabilistic
theory. Generalised causal structures include quantum GQ and classical causal structures GC .
In the former case, each unobserved node is associated with a quantum system, and in the
latter case, each unobserved node is associated with a classical random variable.

For a classical causal structure GC , the Markov factorization condition (2.45) provides a compat-
ibility condition for a joint distribution with the causal structure. In case there are unobserved
nodes, the observed distribution is simply obtained by taking a joint distribution over all the
nodes that factorises according to the Markov condition, and then marginalising over the un-
observed variables. If the unobserved systems are non-classical, this does not work since a joint
distribution over all the nodes may no longer exist22 and a more general compatibility condition
that takes into account quantum and GPT mechanisms is required.

21Unless one is willing to accept fine-tuned classical causal explanations that involve hidden influences prop-
agating superluminally or retrocausally.

22Quantum and GPT systems do not co-exist with the outcomes of measurements performed on them, there-
fore one cannot in general assign a joint probability distribution over quantum/GPT nodes and their children.
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Post-quantum/GPT causal structures: The operational probabilistic framework of [52]
provides a method of representing operations and transformations on GPT systems using
circuit-like diagrams. Elements of this generalised circuit are called tests, which take as in-
put a system and produce as output another system, and a classical outcome variable. Inputs
and outputs of different tests are connected through wires which carry the associated systems
along them. If a test has a trivial input system, then it is called a preparation test and if it has a
trivial output system, it is called an observation test. Any test from the trivial system to itself is
a probability distribution, hence probabilities can be generated by composing tests using wires.
In the HLP framework [115], every node of a generalised causal structure is associated with a
test. In the case of observed nodes, the output system of the test is simply a classical random
variable and for unobserved nodes, this corresponds to a GPT system. Further, the systems
described by the operational probabilistic framework [52] are causal in the sense that an out-
come at an earlier time cannot depend on the choice of operation performed on the system at a
later time. Then a distribution P over the observed nodes of a generalised causal structure GG
is said to be compatible with GG if there exists a causal operational probabilistic theory, a test
corresponding to each node and a system corresponding to each edge of G in the theory that
generate the observed distribution P . The formula for generating P in this manner is analo-
gous to the Markov condition (2.45), where, instead of a product of conditional distributions
P
Xi∣X↓1i

, we have a product of tests that map the unobserved parents of a node to its unobserved
children, conditioned on the observed parents. This is called the generalised Markov condition,
and the corresponding generalised causal structure is represented by a directed acyclic graph
or a GDAG. The set of all distributions compatible with a generalised causal structure GG will
be denoted by P(GG). Note that by construction these are distributions over observed nodes
only.

Quantum causal structures: AGPT of particular interest is quantum theory and the causal
structure framework of [115] includes quantum causal structures as a special case. There are
however several frameworks for describing quantum causal structures that are compatible with
each other, but differ essentially on how nodes and edges of the causal structure are identified
with quantum systems and transformations. We will mainly stick to the description that follows
from the generalised causal structures of [115], to provide a unified picture, but use a language
and notation similar to that of [215] for convenience. We will discuss the relation to other
approaches at the end of this section. For a quantum causal structure GQ, every exogenous
node A i.e., those without any incoming edges correspond to a preparation of a density matrix
ρA ∈ S (HA). In the case of observed nodes, ρA is classical. This can be seen as a preparation
test, where the trivial input system is associated with the one dimensional Hilbert space H = C.
Each directed edge corresponds to a quantum system and hence to a Hilbert space, which we
will label by the starting and ending node of the edge. For example, if a node A only has two
children Y and Z, then the Hilbert space of A will be factorised as HA = HAY ⊗HAZ , where
the subsystem HAY corresponds to the edge from A to Y , and HAZ to the edge from A to
Z. If A is a classical node, then the two factors AY and AZ are taken to be copies of A, since
classical information can be copied.

As in the HLP framework, each node is labelled by its output state which is classical for observed
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nodes and quantum for unobserved nodes in GQ. Every observed node X represents the output
statistics of a measurement performed on the incoming systems. If this node has unobserved
parents then X can be seen as the result of a quantum measurement (implemented through
a POVM) on those incoming quantum states, where the choice of measurement can possibly
depend on the classical value of other observed parents of X. If X only has observed parents,
then it can be seen as the output as a stochastic map on the incoming classical random variables.
More generally, tests correspond to CPTP maps that map the joint state of all incoming edges
to the joint state of all outgoing edges. Preparations, measurements (POVMs) and arbitrary
classical stochastic maps can be seen as special cases of CPTP maps. A distribution, P over the
observed nodes of a causal structure GQ is compatible with GQ if there exists a quantum state
labelling each unobserved node (with subsystems for each unobserved edge) and CPTP maps,
i.e., preparations or quantum transformations for each unobserved node as well as POVMs or
stochastic maps for each observed node, that allow for the generation of P in accordance with
the Born rule. We will denote the set of all observed distributions compatible with a quantum
causal structure GQ by P(GQ), and for a classical causal structure GC by P(GC).

Theory dependent and theory-independent aspects: We already noted that in causal
structures with non-classical nodes, a joint distribution over all nodes may no longer be defined.
Further in classical causal structures, it is implicitly assumed that the complete information
about a node is transmitted to each of its children. Then each node receives complete informa-
tion about all its parents and performs a classical stochastic map to obtain the output. The
stochastic nature of this map is taken to arise from lack of knowledge about additional “error
variables”, and once the parents and the error variables are given, the map corresponds to a
deterministic function23. These aspects are not problematic in the classical case since classical
information can be copied. However arbitrary states of quantum and GPT systems cannot
be copied due to the no-cloning theorem. Hence, after a measurement on such a system, the
measurement outcome and the initial state do not co-exist and one can no longer condition on
unobserved systems in the same manner24. Neither can complete information about the state
of an unobserved node be transmitted to all its children. Further, arbitrary quantum or GPT
maps cannot be reduced to deterministic functions by including additional information. These
theory-dependent differences mean that the sets of compatible correlations P(GC), P(GQ),
and P(GG) for a causal structure G need not coincide in general. Causal structures that
support such a gap between the sets of classical and non-classical correlations are termed as in-
teresting causal structures, and [115] identify certain necessary conditions for a causal structure
to be interesting. To do so, they prove the following theory-independent property of gener-
alised causal structures, which is an analogue of Theorem 2.5.2, showing that the d-separation

23Introducing suitable error variables and expressing the functional dependence of each node on its parents
through structural equations is the basis of the structural causal model approach for classical causal structures.
This is compatible with the Bayesian networks approach discussed in Section 2.5.1, and can been seen as
providing underlying classical mechanisms to the probability assignments. Both approaches are covered in
Pearl’s book [159].

24The quantum causal models of [6, 132] tackle this issue by introducing the notion of a conditional quantum
state of an output conditioned on an earlier input. These are interpreted not as quantum states in the usual sense
(since they correspond to systems at different times that do not coexist), but as a mathematical representations
of the quantum channel transforming the input to the output system.
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condition applies to classical, quantum and post-quantum causal structures alike. Identifying
such theory-independent aspects is also useful because for instance, there is no consensus on
the representation of states and transformations in arbitrary GPTs, even though this exists for
specific GPTs such as box world (See Section 2.4).

Theorem 2.5.3 (Hensen, Lal, Pusey 2014). Let GG be a generalised causal structure and let X,
Y and Z be pairwise disjoint subsets of observed nodes in GG . If a probability distribution P is
compatible with GG, then the d-separation X ⊥d Y ∣Z implies the conditional independence X á
Y ∣Z. Conversely, if for every distribution P compatible with GG, the conditional independence
X á Y ∣Z holds, then the d-separation relation X ⊥d Y ∣Z also holds in GG.

Using this, necessary conditions for a causal structure G to be interesting are found in [115]
by first identifying sufficient conditions under which the only restrictions on P(GC) are those
implied by d-separation, and then using Theorem 2.5.3 to conclude that such causal structures
must be uninteresting i.e., P(GC) = P(GQ) = P(GG). Simple examples of causal structures
that satisfy this equivalence and are hence uninteresting, are those of Figures 2.9c- 2.9e. In these
causal structures, there are no restrictions implied by d-separation on the observed distribution
PXY and hence arbitrary distributions are compatible with these causal structures irrespective
of the nature of the unobserved node Λ. Examples of causal structures that do not satisfy
this equivalence and are hence interesting are the bipartite Bell (GB) and Triangle (GT ) causal
structures illustrated in Figure 2.6. In the former case, d-separation implies the independence
of the inputs A and B as well as the no-signaling conditions (X á B∣A and Y á A∣B) which are
satisfied by all observed distributions P(GCB), P(GQB) and P(GGB). However, P(GCB) satisfy
additional constraints given by Bell inequalities, which are not satisfied by all distributions
in P(GQB) and P(GGB). In fact, there is also a gap between the sets P(GQB) and P(GGB),
the former satisfies Tsirelson’s inequalities while the latter does not. Example 2.5.4 describes
the sets P(GCB) and P(GCB) for the bipartite Bell causal structure GB. That GT is also an
interesting causal structure can be witnessed by suitably embedding the Bell scenario GB in the
Triangle GT such that non-classicality of correlations in GT follows from that of GB [88] (this is
explained in Section 4.3.1 of Chapter 4). The simplest causal structure that is interesting i.e.,
supports a classical-quantum gap is the instrumental causal structure of [158, 45, 203], which
is essentially the causal structure of Figure 2.9d (which by itself is not interesting) but with an
additional node and edge Z Ð→X.

Example 2.5.4 (Sets of compatible correlations in the bipartite Bell causal structure GB).
In the classical causal structure GCB , the set of compatible (observed) distribution is obtained
by assuming a joint distribution PΛXY AB ∈ P5 over all nodes, that satisfies the Markov condi-
tion (2.45) and marginalising over the unobserved node Λ,

P(GCB) ∶= {PXY AB ∈ P4∣PXY AB =∑
Λ
PΛPAPBPX ∣AΛPY ∣BΛ}. (2.55)

If Λ is a continuous random variable, the sum is replaced by an integral over Λ. This compat-
ibility condition for the classical causal structure GCB is in fact identical to the local-causality
condition used in the derivation of Bell inequalities (see [39] for a comprehensive review).
In the quantum causal structure GQB , the unobserved node Λ corresponds to a quantum state
ρΛ ∈ S (HΛ) = S (HΛX ⊗ HΛY ), and the observed nodes X and Y are associated with the
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POVMs {EX
A }X and {EY

B}Y , that act on the subsystems HΛX and HΛY , depending on the
inputs A and B respectively to generate the output distribution.

P(GQB) ∶= {PXY AB ∈ P4∣PXY AB = tr((EX
A ⊗EY

B )ρΛ)PAPB}. (2.56)

2.5.2.2 Interventions and counterfactuals in non-classical causal structures

Interventions in generalised causal structures can be modelled in the same manner as the clas-
sical case (Section 2.5.1.2), where a non-trivial intervention on an observed node X (or a subset
of of nodes) introduces a new edge IX Ð→X and cuts off all other incoming arrows to X. This
means that we can only intervene upon classical variables and not quantum systems. Note
however that we can model situations involving the manipulation of quantum/GPT systems by
allowing the choice of preparation, transformation or measurement on the system to depend on
a classical variable. Then an intervention on such a variable will influence the map performed
on the quantum/GPT system. Equation (2.51) relates the conditional probabilities PXi∣par(Xi)
for the pre and post intervention causal structures, but this can involve conditioning on possibly
unobserved parents which is not possible in generalised causal structures. Equation (2.51) can
however be generalised by specifying how the test (i.e., the causal mechanisms) corresponding
to each node transforms under an intervention. In [115], each node is associated with a test that
maps all joint state of the incoming (unobserved) subsystems to the joint of the outgoing (unob-
served) subsystems, depending on the values of the observed parents. Under an intervention on
the node X, the corresponding test would remain unchanged if IX = idle, and would effectively
correspond to a preparation test that prepares X in a specific value x ∈ X (deterministically)
whenever IX = do(x), and traces out the systems associated with all other incoming edges.25

So far, the procedure is similar to the classical case, however, there is one crucial difference.
Equation (2.52) which relates the pre and post intervention distributions and thereby provides
a rule for counterfactual inference no longer holds for non-classical causal structures, since this
equation is derived using the Markov compatibility condition (2.45), which does apply to this
case. Since non-classical causal structures by construction include at least one unobserved
node, one would expect that the observed post-intervention distribution may not always be de-
termined by the observed pre-intervention distribution, as is the case also with classical causal
structures involving unobserved nodes (see Example 2.5.3). [164] shows that it is impossible to
derive any general inference rule relating the observed distributions in pre and post interven-
tion quantum causal structures.26 This means that it may not always be possible to deduce
the post-intervention distribution counterfactually using the pre-intervention distribution, in-
stead one would have to physically perform the intervention (i.e., an additional experiment,

25Note that we can view do(x) effectively as a preparation test even though the node X has an input edge
IX Ð→X, because a) IX is just a hypothetical variable that is introduced to provide an agency to the intervention
in the augmented graph approach, but interventions can be equivalently described by an alternative approach
that does not introduce any additional variables [159], and b) The value of X is deterministically correlated
with IX , such that if do(x) is seen as a preparation on the exogenous variable IX , this deterministically induces
the preparation X = x on X.

26The causal model framework of [164] is slightly different than what we have presented here, but nevertheless
compatible with this picture. This is explained further in the next subsection.
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after the original experiment that collected the pre-intervention statistics) to characterise this
distribution and all the do-conditionals. However, [163] and [164] provide conditions for iden-
tifying quantum causal structures where an inference rule analogous to (2.52) does exist and
fully counterfactual inference is possible. This is still a field of ongoing research, we will discuss
interventions in non-classical causal structures in further detail in Chapter 6.

2.5.2.3 Other approaches for causality beyond the classical setting

The main approach to quantum and post-quantum causal structures adopted in this thesis,
that we have discussed so far is based on the framework of [115]. This approach retains d-
separation and conditional independence criteria from the classical Bayesian networks approach
[159] while generalising the Markov condition (2.45). There are a several other frameworks for
quantum causal models that build on different aspects of Pearl’s classical framework [159].
These frameworks are consistent with each other but can differ in scope due to how they
formalise the notion of a causal model in quantum settings i.e., how the nodes and edges are
represented, what compatibility conditions are used, and type of interventions/manipulations
that are considered.

[165, 67, 6] have proposed generalisations of the Reichenbach principle [176] to the quantum
setting. Among these, [165] is based on a new graph separation condition for quantum causal
structures called q-separation, while [67, 6] are based on formulating quantum networks using
quantum channels and their Choi states. [6] as well as an earlier work [132] construct quan-
tum networks by representing quantum channels as conditional quantum states (analogous to
conditional probabilities). The framework of [6] will employed in one of our results, we briefly
outline it here and present the relevant details in Chapter 4 where it will be used. In [6], nodes
correspond to systems and edges to transformations, in contrast to the HLP framework [115]
where transformations (tests) occur at the nodes and the edges propagate systems. All nodes
are taken to be quantum systems and a distinction between observed and unobserved nodes is
not made. Then a conditional quantum state ρA∣par(A) for a node A conditioned on its parents
(analogous to conditional distributions PX ∣par(X)) is defined through the Choi-Jamiolkowski rep-
resentation of the quantum channel that maps the quantum systems corresponding to par(A)
to that corresponding to A. With this, a quantum Markov condition, completely analogous to
the classical case (2.45) is defined. This also allows for the definition of a joint state σA1,...,An

over all the nodes {A1, ...,An}, even though the systems corresponding to these nodes may not
coexist. This joint state σ characterises the structure of the channels connecting the various
nodes and not the quantum states of the systems. Interventions correspond to CPTP maps
that act on quantum nodes and the causal model provides a prescription for obtaining the
post-intervention distribution given the joint state σ and the CPTP maps corresponding to the
interventions, through a formula analogous to the Born rule.

In another recent framework for quantum causal models [163, 164] (also noted in the previous
subsection), all nodes are taken to be classical, while edges correspond to propagating quantum
systems that are acted upon by transformations that depend on the values of the classical
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nodes.27 Further, frameworks such as [181] have shown that quantum causal models can provide
an information-theoretic advantage for causal inference by utilising quantum properties such as
entanglement and superposition.

The discussion so far has focussed on the assumption that a fixed causal structure (between
classical/quantum or post-quantum systems) exists, even if it may be unknown. More general
approaches to non-classical notions of causality have considered scenarios where not only the
systems in a causal structure, but the causal structure itself is of a quantum nature [111,
154, 230]. In such frameworks, quantum superpositions of the causal and temporal orders
between events are typically considered by dropping the assumption of a fixed background
space-time or causal structure, and the study of such indefinite causal structures have garnered
much research interest in recent years and shown to provide additional information-theoretic
advantages [53, 9, 8, 10, 21, 107, 32, 155, 171, 51, 153, 18]. Here, analogous to Bell inequalities,
which certify the non-classicality of correlations in a fixed causal structure, causal inequalities
have been proposed for certifying the non-classicality of the causal structure itself [154]. Unlike
the former which have been violated in several experiments, violations of the latter are modelled
in several theoretical frameworks [154, 106, 32, 18], but whether causal inequalities can be
physically violated remains a thriving open question. Further, scenarios where quantum systems
are superposed/entangled over space as well as in time have been physically implemented.
The so-called causal box framework [171] models information processing tasks where quantum
states can be delocalised in states as well as time, in a manner compatible with our relativistic
causality. This framework has applications for relativistic quantum cryptography as well as for
foundational questions regarding causal inequalities, as we have shown in a previous work [209],
and an ongoing work28 (both of which are not included in this thesis). Finally, there also exist
general frameworks for quantum causality that take into account gravitational effects, with the
aim of developing an operational understanding of quantum gravity [111, 112, 230, 42].

2.6 Modal logic

In daily life and as part of the scientific method, we often use logic to reason about our observa-
tions and to predict the possibility of future observations. We do so by assigning truth values to
different statements depending on what we observed and what we might already know. Modal
logic is broadly speaking, a family of formal systems of logic that are associated with different
modalities for assigning truth values to statements, such as “it is necessary that” (alethic), “it
is known that” (epistemic), “it ought to be the case that” (deontic), or “it has been the case
that” (temporal). In this thesis, we will focus on the branch of modal logic, namely epistemic
modal logic that is applied for reasoning about knowledge. This is particularly useful in sce-

27For example, three sequential operations on a quantum state are represented by the causal structure X Ð→
Y Ð→ Z, where X specifies the preparation of a quantum state ρX that travels to the next node where a CPTP
map EY labelled by Y acts on ρX , and finally a POVM labelled by Z, {EZ}Z acts on the output of the CPTP
map EY (ρX).

28Vilasini, V., del Rio, L. and Renner, R. Causality in definite and indefinite space-times. In preparation
(2020).
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narios (both classical and quantum) where where multiple agents reason about each others’
knowledge to make logical deductions. Examples include games like poker, logical hat puz-
zles29, extended Wigner’s friend experiments in quantum theory [85, 152] (Chapter 7) and in
post-quantum theories [208] (Chapter 8), among others [41, 82, 133, 134].

Here we provide a brief summary including the main features of epistemic modal logic that are
relevant for this thesis. Modal logic applies to most classical multi-agent setups, and can be seen
as a compact mathematical way to capture some of intuitive laws commonly used for reasoning
in classical settings. We will first review the basics of the standard framework [131], and then
discuss the weaker versions of the axioms proposed recently in [152] for modelling scenarios
involving multiple quantum agents. For further reading and a more in depth understanding of
the modal logic framework, we refer the reader to [41, 101, 82, 133, 134].

2.6.1 Knowledge, possibilities and truth: Kripke structures

We will consider a finite set of agents {A1, ...,An} who describe the world by means of primitive
propositions φ1, φ2, ... belonging to a some set Φ. These primitive propositions correspond to
simple statements about the world, for example, φ1 = “Alice is a person” or φ2 = “Alice has
a secret key”. The framework of modal logic allows for compactly representing the knowledge
that agents possess about these primitive statements as well more complex, chained statements
about the knowledge of other agents, such as φ̃ =“Alice knows that Bob knows that Eve doesn’t
know the secret key k, and Alice further knows that k = 1”. It also provides simple rules for
combining such statements to perform logical deductions.

More formally, we consider a set Σ of possible states (or alternatives, or worlds30) as introduced
by [131] in the context of modal logic: for example, in a world s1 ∈ Σ the key value is k = 1
and Eve does not know it, and in another world s2 ∈ Σ Eve could know that k = 0. The truth
value of a proposition φ is then assigned depending on the possible world in Σ, and can differ
from one possible world to another. The setup we will employ for modelling multiple reasoning
agents is associated the following structure.

Definition 2.6.1. (Kripke structure) A Kripke structure M for n agents over a set of
statements Φ is a tuple ⟨Σ, π,K1, ...,Kn⟩ where Σ is a non-empty set of states, or possible
worlds, π is an interpretation, and Ki is a binary relation on Σ.
The interpretation π is a map π ∶ Σ × Φ → {true, false}, which defines a truth value of a
statement φ ∈ Φ in a possible world s ∈ Σ.
Ki is a binary equivalence relation on a set of states Σ, where (s, t) ∈ Ki if agent i considers
world t possible given his information in the world s.

The truth assignment tells us if the proposition φ ∈ Φ is true or false in a possible world s ∈ Σ;
29For an analysis of classical hat puzzles in the epistemic modal logic language, see [152].
30This is an entirely classical concept and is not to be confused with “many worlds” type interpretations of

quantum theory. World here only represents potential alternative situations i.e. a classical list of possibilities,
it does not mean that all these situations are actually realised.
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for example, if φ = “you are reading this PhD thesis” and s is the present world in which you
have indeed chosen to read this thesis, then π(s, φ) = true. On the other hand, if φ′ =“There
is a mammoth in the snow” then π(s, φ′) = false in the current world where mammoths are
(unfortunately) extinct, however in a world s′ corresponding to the ice age φ′ can indeed be a
true statement. Therefore the truth value of a statement in a given structure M might vary
from one possible world to another; we will denote that φ is true in world s of a structure M
by (M,s) ⊧ φ, and ⊧ φ will mean that φ is true in any world s of a structure M .

Naturally, agents need not possess complete information about a possible world they are in,
and may consider other alternative worlds possible; for example, if Bob doesn’t know whether
Alice has a secret key, he can consider as possible both the world where Alice has such a key,
and one where she doesn’t. This situation is captured by binary relations Ki, as formalised in
the following definition.

Definition 2.6.2 (Knowledge operators Ki). We say that agent Ai “knows” φ in a world s ∈ Σ
i.e.,

(M,s) ⊧Kiφ

if and only if for all possible worlds t ∈ Σ such that (s, t) ∈ Ki (that is, all the worlds deemed
possible by the agent, given their knowledge), it holds that (M, t) ⊧ φ.

Knowledge operators combined with the standard logical operators allow us to compactly ex-
press complex statements, for instance, our earlier example φ̃ =“Alice knows that Bob knows
that Eve doesn’t know the secret key k, and Alice further knows that k = 1” becomes

KA [(KB ¬KE k) ∧ k = 1].

2.6.2 Reasoning about other’s knowledge: Axioms of knowledge

The axioms of knowledge [95] provide certain rules for combining the statements produced
by different agents and to compress them for deducing new statements. These axioms might
appear to be common-sensical, but it is imperative to state them formally since not all of these
axioms apply in the quantum world, that often surprises our daily common-sensical intuitions.

The distribution axiom allows agents combine statement which contain inferences:

Axiom 1 (Distribution axiom.). If an agent is aware of a proposition φ and that another
proposition ψ follows from φ, then the agent can conclude that ψ holds:

(M,s) ⊧ (Kiφ ∧Ki(φ⇒ ψ))⇒ (M,s) ⊧Kiψ.

Knowledge generalization rule permits agents use commonly shared knowledge:

Axiom 2 (Knowledge generalization rule.). All agents know all the propositions that are always
valid in a structure:
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(M,s) ⊧ φ ∀s ∈ Σ⇒⊧Kiφ ∀i.

At first sight, this might appear to be a strong assumption. However, this depends on what
Σ is chosen to be for a particular purpose, and characterises what statements can be assumed
to be the basic, common knowledge of all agents. For example, we would find it reasonable to
expect that the propositions φ1=“objects fall when we drop them”, φ2=“guitars have strings”,
φ3=“we cannot signal from future to past” to be common knowledge, such that they hold in
every s ∈ Σ that we wish to consider. However, if we wish to consider hypothetical worlds
where guitars are wind instruments or where we can signal to the past (as physicists working
in foundations, including ourselves often do), we can simply include a world s′ ∈ Σ where the
statements φ2 or φ3 are false, and hence do not correspond to the common knowledge of the
agents. In fact, parts of Chapter 6, will indeed be set in such a hypothetical world where φ3 is
not true. One can also treat a theory (such as quantum theory) or aspects of the theory (such
as the Born rule) to be the common knowledge of the agents that we wish to consider, as we
will see in Chapter 8.

Axiom 3 (Truth axiom). If an agent knows that a proposition is true then the proposition is
true,

(M,s) ⊧Kiφ⇒ (M,s) ⊧ φ

In philosophy, the truth axiom is often considered as a candidate for a property that distin-
guishes knowledge from belief.

Positive and negative introspection axioms highlight the ability of agents to reflect upon their
knowledge:

Axiom 4 (Positive and negative introspection axioms.). Agents can perform introspection
regarding their knowledge:

(M,s) ⊧Kiφ⇒ (M,s) ⊧KiKiφ (Positive Introspection),
(M,s) ⊧ ¬Kiφ⇒ (M,s) ⊧Ki¬Kiφ (Negative Introspection).

Weaker version: The truth axiom assigns objective reality to all statements that agents
know which can be particularly problematic for quantum settings. Hence a weaker alternative
to the truth axiom was proposed in [152].

The trust structure governs the way the information is passed on between agents:

Definition 2.6.3 (Trust). We say that an agent i trusts an agent j (and denote it by j ↝ i )
if and only if

(M,s) ⊧Ki Kj φ Ô⇒ Ki φ, ∀φ ∈ Φ, s ∈ Σ

Note that trust is neither a symmetric nor a transitive relation and hence does not define a
pre-order on the agents. This is also in line with what we might expect common-sensically; I
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might trust my favourite news reporter (R) to deliver reliable news such that KIKRφ ⇒ KIφ
would hold in all worlds s relevant to me and for all statements φ relating to the news (which
I could take to characterise the sets Σ and Φ) i.e., R ↝ I. However R, who does not know
me has no reason to trust what I say, even if it relates to the news hence KIKRφ /⇒ KIφ or
equivalently R /↝ I. Similarly, R might have a trusted source S for acquiring the news, and S in
turn may acquire that news through a source T whom she trusts i.e., S ↝ R and T ↝ S. While
R would trust the same information when relayed indirectly through the agent S, R may not
know of T’s existence and hence not trust T if he approached R directly, hence T ↝ R does not
necessarily hold.

While replacing truth with the notion of trust may suffice in standard quantum settings, as we
will see in Chapters 7 and 8, it turns out to be incompatible with situations where reasoning
agents are themselves modelled as physical systems of quantum or post-quantum theories [152].
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Correlation doesn’t imply causation, but it does waggle its eyebrows
suggestively and gesture furtively while mouthing ‘look over there.’

- Randall Munroe



CHAPTER 3

Overview of techniques for analysing causal structures

In Section 2.5, we provided an overview of the frameworks used for modelling causal structures
in classical, quantum and post-quantum theory. We motivated the problem of certifying the

non-classicality of causal structures, which has become a focal point of research interest in
quantum information by virtue of having deep foundational as well as practical implications.
In this chapter, we outline some of the techniques used for this purpose. Section 3.1 and
Section 3.2 provide an overview of the main probabilistic and entropic techniques employed in
Chapters 4 and 5, taking as example the bipartite Bell causal structure (Figure 2.6a), which
is a causal structure of particular interest in this thesis. These sections are largely based on
the review sections of our published papers [206] and [207]. The main results of these papers
are presented in Chapters 4 and 5. All of the above focus on the case of faithful and acyclic
causal structures, as does the majority of literature in the field, and justifiably so, since our
observations suggest that causal influences propagate in one direction i.e., from past to future.
The present chapter will also focus only on the acyclic case. In Chapter 6, we develop a
framework for modelling cyclic and fine-tuned causal structures in non-classical theories and
will review the necessary preliminaries for cyclic causal structures there.

3.1 Certifying non-classicality in probability space

In the probability space characterisation of bipartite Bell causal structure GB (Figure 2.6a), the
observed correlations are represented through the conditional distribution PXY ∣AB. Each point
in the probability space corresponds to such a conditional distribution and it will be convenient
to denote the cardinalities ∣A∣, ∣B∣, ∣X ∣ and ∣Y ∣ as iA, iB, oA and oB (representing the inputs and
outputs of the parties Alice and Bob) respectively. Each Bell scenario is defined by the 4-tuple
(iA, iB, oA, oB). In a given scenario we will be interested in the sets of local and non-signaling
distributions, which are the sets of conditional distributions PXY ∣AB corresponding to the sets
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P(GCB) and P(GGB) (Section 2.5.2.1) of observed correlations PXY AB. Following the notation
of [202], we will express the distribution using a matrix, rather than a vector. For instance, in
the case where all the variables take values in {0,1} and using P (xy∣ab) as an abbreviation for
PXY ∣AB(xy∣ab), this is done as

PXY ∣AB =

P (00∣00) P (01∣00) P (00∣01) P (01∣01)
P (10∣00) P (11∣00) P (10∣01) P (11∣01)
P (00∣10) P (01∣10) P (00∣11) P (01∣11)
P (10∣10) P (11∣10) P (10∣11) P (11∣11)

(3.1)

and the generalisation to larger alphabets is analogous (see, e.g., [202]). This format is conve-
nient because it makes it easy to check whether a distribution is non-signaling, i.e., to check
that PX ∣AB is independent of B and that PY ∣AB is independent of A. Both the local and non-
signaling sets form convex polytopes, that are highly symmetric. In particular, such polytopes
are invariant under local relabellings and/or relabelling parties. By local relabellings we mean
combinations of relabelling the inputs (e.g., A ↦ A ⊕ 1) and outputs conditioned on the local
input (e.g., X ↦X ⊕αA⊕β where α,β ∈ {0,1} and ⊕ denotes modulo-2 addition). One might
also think about more general global relabellings that depend on both inputs (for instance maps
of the form X ↦ X ⊕ αA ⊕ βB ⊕ γ with α,β, γ ∈ {0,1}), but these do not preserve the non-
signaling set in general so will not be considered here. The only global relabelling we consider
is exchange of the two parties, which corresponds to transposing the distribution in the matrix
notation of Equation (3.1) and always preserves non-signaling.

More specifically, the non-signaling set is restricted only by the conditional independences
X á B∣A and Y á A∣B (no-signaling constraints)1, which follow from the d-separation rela-
tions in GB (Figure 2.6a), and naturally the positivity and normalisation conditions since these
are valid probability distributions. These restrictions can be written out as linear inequal-
ity/equality constraints, and characterise the H representation of the non-signaling polytope.
The corresponding V-representation is characterised by the extremal non-signaling distribu-
tions. On the other hand, the local set is the set of all observed distributions PXY ∣AB that
can arise when Λ is classical corresponds to the set of correlations that admit a local hidden
variable model, i.e., the set of distributions that can be expressed in the form

PXY ∣AB = ∫
Λ

dΛPΛPAPB PX ∣AΛPY ∣BΛ. (3.2)

Here, Λ can be any (possibly continuous) random variable. In the rest of the thesis, we will refer
to such correlations either as local or as classical and denote the set of all such distributions
L . We also use L (iA,iB ,oA,oB) to denote the local set in the (iA, iB, oA, oB) scenario.

The local set forms a convex polytope, which can be specified in terms of a finite set of Bell
inequalities, each a necessary condition for classicality of the correlation. Along with the pos-
itivity and normalisation constraints, these define the H-representation of L (iA,iB ,oA,oB). The
V-representation of the local polytope is defined by the set of all local deterministic distributions
i.e., distributions PXY ∣AB that are deterministic overX and Y for every value of A and B. There

1The independence A á B (measurement independence) also follow from the graph, but this is not relevant
when we are considering the conditional distributions PXY ∣AB .
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are oiAA ⋅oiBB distinct local deterministic distributions in a (iA, iB, oA, oB) scenario. In the matrix
notation (3.1), each block corresponds to a fixed value for A and B. The local deterministic
distributions expressed in this notation have exactly one non-zero entry (= 1) in each block
in accordance with the no-signaling condition required by the causal structure. The set of all
such distributions can be easily enumerated. Hence, the V-representation of the local polytope
(local deterministic distributions) and the H-representation of the non-signaling polytope (no-
signaling, positivity and normalisation constraints) can be easily found for a given scenario.
The H-representation of the local polytope (Bell inequalities) and the V-representation of the
non-signaling polytope (extremal non-signaling distributions) can in principle be found through
facet and vertex enumeration respectively. However, this becomes computationally intractable
for larger cardinalities of the observed variables. In the following, we describe the structure of
these sets in more detail for the (2,2,2,2) and (2,2,3,3) bipartite Bell scenarios, which are of
particular interest in this thesis.

3.1.1 The bipartite Bell scenario with 2 inputs and 2 outputs per
party

In the (2,2,2,2) scenario, there are eight extremal Bell inequalities (facets of the local polytope),
which are equivalent under local relabellings to the following inequality [57, 202]

ICHSH ∶=P (X = Y ∣A = 0,B = 0) + P (X = Y ∣A = 0,B = 1) + P (X = Y ∣A = 1,B = 0)
+ P (X ≠ Y ∣A = 1,B = 1) ≤ 3

(3.3)

We denote these by IkCHSH for k ∈ [8], where I1
CHSH ∶= ICHSH and [n] stands for the set {1,2, ...., n}

where n is a positive integer. This provides the facet description of the (2,2,2,2) local polytope.
One can also express ICHSH in matrix form using

MCHSH =

1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

, (3.4)

so that the Bell inequality can be written tr (MT
CHSHP ) ≤ 3, where P is the distrubution ex-

pressed in the matrix form (3.1) and T denotes the transpose.

In the vertex picture, the (2,2,2,2) local polytope has 16 local deterministic vertices and the
(2,2,2,2) non-signaling polytope shares the vertices of the local polytope and has eight more:
the Popescu-Rohrlich (PR) box and seven distinct local relabellings [202, 170]. The PR box
distribution (discussed in Section 2.4) satisfies X ⊕ Y = A.B and takes the following form in
the current notation

PPR =

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 0 1

2
0 1

2
1
2 0

. (3.5)
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We denote the eight extremal non-signaling vertices equivalent under local relabellings to PPR
by P k

PR, k ∈ [8] where P 1
PR ∶= PPR. Note that the 8 CHSH inequalities {IkCHSH} are in one-to-one

correspondence with these 8 extremal non-signaling points i.e., each P k
PR violates exactly one

CHSH inequality and each CHSH inequality is violated by exactly one P k
PR.

3.1.2 The bipartite Bell scenario with 2 inputs and 3 outputs per
party

In the (2,2,3,3) Bell scenario, there are two classes of Bell inequalities that completely char-
acterize the local polytope: the CHSH inequalities and the I2233 inequalities [122, 64]. A
representative example of the latter is

I2233 ∶= [P (X = Y ∣A = 0,B = 1) + P (X = Y − 1∣A = 1,B = 1) + P (X = Y ∣A = 1,B = 0)
+ P (X = Y ∣A = 0,B = 0)] − [P (X = Y − 1∣X = 0,B = 1) + P (X = Y ∣A = 1,B = 1)
+ P (X = Y − 1∣A = 1,B = 0) + P (X = Y + 1∣A = 0,B = 0)] ≤ 2 ,

(3.6)

where all the random variables take values in {0,1,2} and all additions and subtractions of
the random variables are modulo 3. CHSH-type inequalities for the (2,2,3,3) scenario can
be obtained from those of the (2,2,2,2) scenario (Equation (3.4)) through a procedure known
as “lifting”. The inequalities of the larger scenario are known as the lifted CHSH inequalities
[167]. Evaluating the value of a lifted CHSH inequality attained by a given distribution in
the (2,2,3,3) scenario is equivalent to first coarse-graining the distribution by combining two
outcomes into a single outcome, and then evaluating the corresponding CHSH inequality of the
(2,2,2,2) scenario. For instance, the lifted CHSH inequality corresponding toMCHSH (3.4) and
the coarse-graining of always mapping outcomes 1 and 2 to 1 is given in matrix form in the
following equation, along with a representative inequality of the I2233 type.

M
(2,2,3,3)
CHSH =

1 0 0 1 0 0
0 1 1 0 1 1
0 1 1 0 1 1
1 0 0 0 1 1
0 1 1 1 0 0
0 1 1 1 0 0

and MI2233 =

1 0 −1 1 −1 0
−1 1 0 0 1 −1
0 −1 1 −1 0 1
1 −1 0 −1 1 0
0 1 −1 0 −1 1
−1 0 1 1 0 −1

. (3.7)

The (2,2,3,3) local polytope has a total of 1116 facets, 36 of which correspond to positivity
constraints, 648 to CHSH facets (these are equivalent to first coarse-graining two of the outputs
into one (for each party and each input) and then applying one of the eight (2,2,2,2) CHSH
inequalities), and the remaining 432 are I2233-type [63] (we label these I i2233 for i ∈ {1,2, . . . ,432}
with I1

2233 = I2233).

The facets of the non-signaling polytope correspond to positivity constraints, since the no-
signaling constraints being equalities, only reduce the dimension of the polytope. Converting
this facet description to the vertex description (e.g., using the Porta software [55]) one can
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obtain all the vertices of the (2,2,3,3) non-signaling polytope. This comprises 81 local deter-
ministic vertices, 648 PR-box type vertices and 432 extremal non-signaling vertices (for each
of the I2233 inequalities there is one of the latter that gives maximal violation). We call these
new vertices the I2233-vertices. The specific vertex that maximally violates (3.6) is

PNL ∶=

1
3 0 0 1

3 0 0
0 1

3 0 0 1
3 0

0 0 1
3 0 0 1

3
1
3 0 0 0 1

3 0
0 1

3 0 0 0 1
3

0 0 1
3

1
3 0 0

(3.8)

The 432 I2233 vertices of the (2,2,3,3) non-signaling polytope are related to each other through
local relabellings2. The I2233 inequalities are a special case of the CGLMP inequalities which
correspond to facets of the local polytope L (2,2,d,d) (d ≥ 3) [64, 143]. For the d > 3 case however,
there may in general be other new classes of inequalities apart from the CHSH and CGLMP
inequalities.

3.2 Certifying non-classicality in entropy space

3.2.1 Motivation for the entropic analysis of causal structures

In the bipartite Bell causal structure (Figure 2.6a), that we discussed above, the set of all
joint conditional distributions PXY ∣AB over the observed nodes X,Y ,A,B that can arise when
Λ is classical is relatively well understood. For fixed input and output sizes, it forms a convex
polytope and hence membership can be checked using a linear program (although the size of the
linear program scales exponentially with the number of inputs and the problem is NP-complete
[169]). Because of this, the complete set of Bell inequalities characterizing these polytopes are
unknown for ∣X ∣, ∣Y ∣ > 3 or ∣A∣, ∣B∣ > 5 [143, 15, 66]. In causal structures with more unobserved
common causes (such as the Triangle causal structure of Figure 2.6b), the set of compatible
correlations is not always convex, and hence not well understood. The inflation technique
proposed in [223] has been used to derive some necessary constraints (or Bell inequalities) on
the classical sets of correlations in such causal structures. This technique in principle certify
whether or not a given distribution belongs to the classical set P(GC) of a causal structure G
[149], and involves constructing a new causal structure, known as the inflation of the original

2In general, equivalent points of the non-signaling polytope may be related by local relabellings or exchange
of the two parties (which is a global operation). In the (2,2,3,3) scenario there are 2 × (2 × 62)2 = 10368 such
operations, twice the number of local relabellings. To count these, note that for each party there are 2 ways to
permute the inputs, and 6 ways to permute the outputs for each of the 2 inputs. All 432 extremal points of
the I2233 type (those which maximally violate a I2233 inequality) can be generated using only local relabellings
of PNL, and similarly all 648 extremal points of the CHSH type can be generated through local relabellings of
PPR embedded in the (2,2,3,3) scenario (by adding zero probabilities to the third outcome).
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causal structure such that Bell inequalities for the inflated causal structure also hold for the
original causal structure. However, the method does not tell us how to construct a suitable
inflation of the causal structure in order to achieve this, or how large this inflation needs to be.
Thus, in general, using the inflation technique becomes intractable in practice.

One approach to overcoming the difficulties of non-convex correlation sets is to analyse the
problem in entropy space [225]. This has proven to be useful in a number of cases (see, e.g., [89,
44], or [215] for a detailed review), since the problem is convex in entropy space and the entropic
inequalities characterising the relevant sets are independent of the number of measurement
outcomes. These advantages have motivated the entropic analysis of causal structures and
the entropy vector method is employed for this purpose. In causal structures with observed
parentless nodes (such as the Bell scenario), this method can be supplemented with the post-
selection technique [34] that can allow for the detection of non-classicality that was previously
undetectable in entropy space. In the following, we outline the basics of the entropy vector
method, with and without post-selection. For a more thorough overview of entropic techniques
for analysing causal structures, we refer the reader to [215].

3.2.2 The entropy vector method

The results of this thesis are related to certifying the gap between the classical and quantum
sets of correlations in entropy space. For this, one must find necessary conditions satisfied by
the set of classical entropies over the observed nodes, and look for quantum violations of these
conditions. Hence the entropy vector method in this case only involves classical entropies. In
the following, we describe the entropy vector method for the Shannon entropy H(), but the
same concepts will be later applied to other measures such as the Tsallis or Rényi entropies.

Definition 3.2.1 (Entropy vector). Given a joint distribution PX1,...,Xn ∈ Pn over n random
variables X1,X2, . . . ,Xn, the entropy vector of PX1,...,Xn is defined as a vector with 2n−1 compo-
nents, each of which correspond to the entropy of an element of the powerset of {X1,X2, . . . ,Xn}
(excluding the empty set), i.e., the entropy vector can be expressed as

(H(X1), ...,H(Xn),H(X1X2),H(X1X3)...,H(X1X2...Xn)).

The entropy vector of a distribution P ∈ Pn is denoted as H(P ) ∈ R2n−1.

Definition 3.2.2 (Entropy cone). Let Γ∗
n be set of all vectors in R2n−1 that are entropy vectors

of a probability distribution P ∈ Pn, i.e., Γ∗
n = {v ∈ R2n−1 ∶ ∃PX1,...,Xns.t. v = H(PX1,...,Xn)}.

Its closure Γ∗
n is known as the entropy cone and it includes vectors v for which there exists a

sequence Pk ∈ Pn such that H(Pk) tends to v as k →∞.

Note that the conditional entropies and mutual informations can be encoded in the entropy
vector description through the chain rule (2.20) which gives the relations H(X ∣Y ) =H(XY ) −
H(Y ), I(X ∶ Y ) = H(X) +H(Y ) −H(XY ) and I(X ∶ Y ∣Z) = H(XZ) +H(Y Z) −H(XY Z) −
H(Z). The entropy cone Γ∗

n is known to be a convex set for any n [227], but it is difficult to
characterise and various approximations to it have been considered [215].
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An outer approximation to the entropy cone, known as the Shannon cone is obtained by not-
ing that the information-theoretic properties of entropies (discussed in Section 2.3.1) imply
constraints on valid entropy vectors. These include non-negativity of the entropies, monotonic-
ity (2.22) (i.e., H(R) ≤H(RS)) and submodularity (2.24) (also known as strong-subadditivity;
H(RT ) +H(ST ) ≥ H(RST ) +H(T )). As noted in Section 2.3.1, in the Shannon case, mono-
tonicity and submodularity are equivalent to the non-negativity of the conditional entropy
H(S∣R) and the conditional mutual information I(R ∶ S∣T ) respectively and hold for any three
disjoint subsets R, S and T of {X1, . . . ,Xn}.

Definition 3.2.3 (Shannon constraints and the Shannon cone). The set of linear constraints
comprising of non-negativity, monotonicity and submodularity are together known as the Shan-
non constraints and the set of vectors u ∈ R2n−1 obeying all the Shannon constraints form the
convex cone known as the Shannon cone, Γn.

Following standard practice, we will include non-negativity implicitly, such that every entropy
vector v belongs to the space R2n−1

≥0 . Excluding non-negativity, there are a total of n+n(n−1)2n−3

independent Shannon constraints for n variables [225]. By definition, the Shannon cone is an
outer approximation to Γ∗

n i.e., Γ∗
n ⊆ Γn.3 Hence all entropy vectors derived from a probability

distribution P ∈ Pn obey the Shannon constraints but not all vectors u ∈ R2n−1 obeying the
Shannon constraints are such that H(P ) = u for some joint distribution P ∈ Pn.

Entropic causal constraints: The constraints on the entropy vectors mentioned so far are
independent of the causal structure. We know from Section 2.5.1 that a causal structure imposes
further constraints on the entropies of the random variables associated with its nodes. In the
case of Shannon entropies and a classical causal structure GC over n nodes, all the constraints
implied by the causal structure on the entropies can be derived from the following n constraints
(of Equation (2.49), reproduced here for convenience), one for each node Xi

I(Xi ∶X�i ∣X
↓1
i ) = 0 (3.9)

These encode the conditional independence of each node from its non-descendants given its
parents. Then the set of all entropy vectors v ∈ Γ∗

n that also satisfy the n entropic causal
constraints (3.9) for a classical causal structure GC are denoted as Γ∗

n(GC). Similarly, the set
of all entropy vectors in the outer approximation, v ∈ Γn that satisfy the causal constraints for
GC are denoted as Γn(GC). Then Γ∗

n ⊆ Γn by construction. Further, it can be shown (Lemma
9 of [215]) that Γ∗

n(GC) is indeed the set of all achievable entropy vectors in GC i.e.,

Γ∗
n(G∗) = {v ∈ R2n−1

≥0 ∣∃P = Πn
i=1PXi∣X↓1i

∈ Pn s.t. H(P ) = v}, (3.10)

and that its closure Γ∗
n(GC) is convex. Note that it need not be finitely generated. However,

its outer approximation Γn(GC) is by construction defined through a finite set of inequalities
i.e., the n + n(n − 1)2n−3 Shannon constraints and the n causal constrains (3.9).

Given a causal structure G, we wish to characterise the set of entropy vectors over the observed
nodes that can arise in the classical causal structure GC . Say the causal structure G has n nodes

3For n ≤ 3, the cones coincide, but for n ≥ 4 they do not [227].
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Λ
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X0 X1 Y0 Y1

Λ

(b)

Figure 3.1: The bipartite Bell causal structure and its post-selected version:
(a) The bipartite Bell causal structure. The nodes A and B represent the random
variables corresponding to independently chosen inputs, while X and Y represent the
random variables corresponding to the outputs. Λ is an unobserved node representing
the common cause of X and Y . (b) The post-selected bipartite Bell causal structure for
the case of binary inputs. The observed nodes Xa represent the outputs when the input
is a ∈ {0,1} and likewise for Yb. Note that X0 and X1 are never simultaneously observed
and likewise Y0 and Y1.

{X1, ...,Xn} of which, without loss of generality, the first k are observed and the remaining
n − k are unobserved. Then the marginalisation is performed by projecting the entropy cone
in R2n−1 (over all the nodes) to its marginal entropy cone in R2k−1 (over the observed nodes
only). The finitely generated outer approximation, Γn(GC) is often considered for this purpose
since the cone Γ∗

n(GC) is difficult to characterise. The projection of the cone Γn(GC) into
the subspace of the k observed nodes defines the marginal cone Γk(GC), and can be obtained
through Fourier-Motzkin Elimination [221] (Section 2.2.2). This provides a H-representation of
the marginal cone Γk(GC), and every marginal entropy vector over the observed nodes arising
from a compatible distribution in the classical causal structure GC necessarily belongs to this
cone. Since non-classical causal structures do not satisfy the initial assumption of the existence
of the joint distribution/entropies, they may give rise to correlations that do not satisfy the
marginal constraints on the observed nodes obtained through this procedure. A violation of
any of the inequalities defining Γk(GC) by the entropy vector v = H(PQ) of a distribution PQ
compatible with the quantum causal structure GQ, certifies the non-classicality of PQ.

3.2.3 Post-selected causal structures

In causal structures with one or more observed parentless nodes, supplementing the entropy vec-
tor method with an additional technique can allow for tighter characterisations of the marginal
scenario. This technique involves defining, for each given causal structure with at least one
parentless node, a new causal structure called the post-selected causal structure. The general
technique for doing this can be found in [215] (for example). Here, we will only consider the
bipartite Bell causal structure (Figure 2.6a, and reproduced in Figure 3.1a for convenience)
with two inputs per party and the post-selected version thereof.

The post-selected causal structure is obtained by removing the parentless observed nodes A
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and B in the original causal structure 3.1a and replacing the descendants X and Y with two
copies of each i.e., XA=0, XA=1, YB=0, YB=0 such that the original causal relations are preserved
and there is no mixing between the copies (this is shown in Figure 3.1b). It makes sense to do
this in the classical case because classical information can be copied, so we can simultaneously
consider the outcome X given A = 0 and that given A = 1. By contrast, in the quantum case
the values of A correspond to different measurements that are used to generate X, and the
associated variables XA=0 and XA=1 may not co-exist. It hence does not make sense to consider
a joint distribution over XA=0 and XA=1 in this case. We therefore only consider the subsets of
the observed variables that co-exist

S ∶= {X0, X1, Y0, Y1, X0Y0, X0Y1, X1Y0, X1Y1}, (3.11)

where we use the short form X0Y0 for the set {X0, Y0} etc. Any non-trivial inequalities derived
for the co-existing sets in the classical case can admit quantum or GPT violations.

3.2.4 Entropy vectors and post-selection

In [34], Braunstein and Caves derived a set of constraints on the post-selected causal structure
of Figure 3.1b and showed that these constraints can be violated by quantum correlations. In
fact, it is now known that in the absence of post-selection, the sets of entropies over the observed
nodes in the classical and quantum causal structures, GCB and GQB coincide and therefore, the
non-classicality of GB cannot be detected entropically [214]. To discuss post-selected entropic
inequalities, we first introduce the notion of entropic classicality. For every distribution PXY ∣AB
in the Bell causal structure (Figure 3.1a), we can associate an entropy vector v ∈ R8 in the post-
selected causal structure (Figure 3.1b) whose components are the entropies of each element of
the set S (Equation (3.11)) distributed according to PXaYb ∶= PXY ∣A=a,B=b. Let H be the map
that takes the observed distribution to its corresponding entropy vector in the post-selected
causal structure.

Definition 3.2.4 (Entropic classicality). An entropy vector v ∈ R8 is classical with respect to
the bipartite Bell causal structure (Figure 3.1a) if there exists a classical distribution PXY ∣AB ∈
L such that H(PXY ∣AB) = v, where L is the local or classical polytope (Equation (3.2)).
Further, a distribution PXY ∣AB is entropically classical if there exists a classical distribution with
the same entropy vector, i.e., if there exists a classical entropy vector v such that H(PXY ∣AB) = v.

The set of all classical entropy vectors forms a convex cone. We now review how the Braun-
stein Caves (BC) Inequalities are derived for the case when the observed parentless nodes A
and B are binary. In this case, the post-selected causal structure 3.1b imposes no additional
constraints on the distribution (or entropies) of the observed nodes X0, X1, Y0 and Y1 because
they share a common parent and thus any joint distribution over X0, X1, Y0 and Y1 can be
realised in the causal structure 3.1b. By contrast, any correlations in the original causal struc-
ture 3.1a must obey the no-signaling constraints over the observed nodes A, B, X and Y since
A does not influence Y and B does not influence X in this causal structure. The inequalities
derived by Braunstein and Caves follow by applying monotonicity (2.22), strong subadditivity
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in unconditional form (2.24) and the chain rule (2.20) to the entropies of the observed variables
{X0,X1, Y0, Y1} in the post-selected causal structure. The derived relations hold for the classi-
cal causal structure (and not necessarily for the quantum and GPT cases) because only in the
classical case does it make sense to consider a joint distribution over these four variables that
in the quantum and GPT cases do not co-exist (c.f. Section 3.2.3). The BC inequalities are
entropic Bell inequalities i.e., they hold for every classical entropy vector in the post-selected
causal structure 3.1b. There are four BC inequalities

I1
BC ∶=H(X0Y0) +H(X1) +H(Y1) −H(X0Y1) −H(X1Y0) −H(X1Y1) ≤ 0
I2

BC ∶=H(X0Y1) +H(X1) +H(Y0) −H(X0Y0) −H(X1Y0) −H(X1Y1) ≤ 0
I3

BC ∶=H(X1Y0) +H(X0) +H(Y1) −H(X0Y0) −H(X0Y1) −H(X1Y1) ≤ 0
I4

BC ∶=H(X1Y1) +H(X0) +H(Y0) −H(X0Y0) −H(X0Y1) −H(X1Y0) ≤ 0

(3.12)

It has been shown in [90] that these four inequalities are complete in the following sense (the
lemma below is implied by Corollary V.3 in [90]).

Lemma 3.2.1. A distribution in the post-selected Bell scenario with binary A and B is en-
tropically classical if and only if it satisfies the four BC inequalities (3.12).

Note that the BC inequalities (3.12) and this completeness result are independent of the cardi-
nality of X and Y . However, a crucial point is that entropic classicality does not imply classi-
cality of the associated distribution. For example, the entropy vector H(PPR) associated with
the maximally non-classical distribution PPR (Equation (3.5)) satisfies all the BC inequalities
is hence entropically classical. Since entropic inequalities are non-linear in the probabilities, it
is nevertheless possible to have a convex combination of two entropically classical distributions
that is entropically non-classical. This allows for the non-classicality of a distribution such as
PPR to be “activated” in entropy space by mixing with a classical distribution. Hence a natural
question that arises is whether post-selected entropic inequalities can identify all non-classical
distributions in this manner, after a suitable and reasonable post-processing operation (such as
mixing with a classical distribution). This is known to be the case for (d, d,2,2) Bell scenarios
with d ≥ 2 [46], but has been an open question for the non-binary outcome case. In Chapter 5
(which is based on [207]), we analyse this question for the 2 input, d outcome Bell scenarios or
(2,2, d, d) scenarios with d ≥ 3, and our results suggest that the answer is negative in this case
for both Shannon and Tsallis entropic inequalities. The Triangle causal structure (Figure 2.6b)
on the other hand cannot be analysed using post-selection since it has no observed parentless
nodes. We analyse this causal structure using Tsallis entropies, in the absence of post-selection
in Chapter 4 (based on [206]). We leave further details of the entropic technique and of these
results to Chapters 4 and 5.
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CHAPTER 4

Entropic analysis of causal structures without
post-selection

As discussed in Section 3.2, the main motivation for the entropic technique for analysing
causal structures stems from their ability to overcome certain problems that arise in proba-

bility space, such as the non-convexity of correlation sets and the drastic scaling of the number
of Bell inequalities in the cardinality of the variables. The entropic method for analysing causal
structures has proven to be useful in a number of cases (see, e.g., [90, 44], or [215] for a de-
tailed review). However, it was shown in [214] that the entropy vector method with Shannon
entropies cannot detect the classical-quantum gap for line-like causal structures, in the absence
of post-selection. This includes causal structures such as the Bell scenario which are well known
to support non-classical correlations. Although new Shannon entropic inequalities have been
derived using this method (e.g., in the Triangle causal structure), no quantum violation of
these have been found even when non-classical correlations are known to exist in these causal
structures [216, 47]. Due to these limitations of Shannon entropies, it is natural to ask whether
other entropic quantities could do better.

This chapter is predominantly based on work carried out with Roger Colbeck [206], while Ap-
pendix 4.5.3 reports observations from a side-project with Mirjam Weilenmann. The main
question we address here is whether generalised entropic inequalities can overcome these limi-
tations of Shannon entropies in the absence of post-selection. In particular we employ Tsallis
entropies and analyse the Bell 2.6a and Triangle causal structures 2.6b. A motivation for consid-
ering Tsallis entropies for the task is that they are a family with an additional (real) parameter.
The set of entropies for all possible values of this parameter conveys more information about the
underlying probability distribution than a single member of the family and hence the ability to
vary a parameter may give advantages for analysing causal structures. Tsallis entropies appear
to be a good candidate since they satisfy monotonicity, strong subadditivity (in both condi-
tional and unconditional forms) and the chain rule which are desirable properties for their use
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in the entropy vector method.1 Tsallis entropies have been considered in the context of causal
structures before [213] where they were shown to give an advantage over Shannon entropy in
detecting the non-classicality of certain states in the post-selected Bell scenario 3.1b2. In this
chapter we analyse causal structures in the absence of post-selection and consider post-selection
in Chapter 5. Note however that the post-selection technique (c.f. Section 3.2.3) can only be
applied to causal structures with at least one observed parentless node i.e., it can be applied
to the Bell, but not to the Triangle causal structure.

4.1 Summary of contributions: in words and in poetry

The entropy vector method requires as input the constraints implied by a causal structure on
the entropies of its nodes. Finding that these constraints in for Tsallis entropies cannot take
the same form as the Shannon ones (Equation (3.9)), we derive the constraints on the classical
Tsallis entropies that are implied by a given causal structure in Section 4.2. As an additional
result, we generalise these entropic causal constraints to quantum Tsallis entropies for certain
cases, in Appendix 4.5.1. In Section 4.2.2, we use these causal constraints in the entropy
vector method with Tsallis entropies but find that the computational procedure becomes too
time consuming even for simple causal structures such as the bipartite Bell scenario. Despite
this limitation, we derive new Tsallis entropic inequalities for the Triangle causal structure
in Section 4.3, using known Shannon entropic inequalities of [47] and our Tsallis constraints
of Section 4.2. In Section 4.4, we discuss the reasons for the computational difficulty of this
method, the drawbacks of using Tsallis entropies for analysing causal structure and identify
potential future directions stemming from our work. In Appendix 4.5.2, we provide details of
the Mathematica package LPAssumptions [62] that we developed and used for obtaining some
of the computational results of this, and the next chapter. Additionally, in Appendix 4.5.3,
we summarise the results obtained together with Mirjam Weilenmann where we also found
limitations of using Rényi entropies for certifying non-classicality in causal structures. Below
is a poetic summary of our paper [206] on which the current chapter is based, following which
we present the results (in a more rigorous, non-poetic fashion).

About underlying physics we want to tell,
Using observed correlations, as did Bell
For a scenario that was blessed,
In probability space, with convex correlation sets.
Generally though,
That may not be so.

So we move to entropy space,
1Other examples of more general entropy measures such as the Rényi entropy [179] do not satisfy one or

more of these properties, making it more difficult to get entropic constraints on them using the entropy vector
method (c.f. Table 2.1).

2Note that non-classicality cannot be detected Shannon entropically in the Bell causal structure (Figure 2.6a)
without post-selection [214].
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Putting convexity back in place,
But we can not be too smug,
For the Shannon cones aren’t too snug.

So here we try our luck with Tsallis entropies,
Hoping they give us tighter inequalities.
On the way we find some constraints that are new,
That follow from classical causal structures, and some quantum ones too

Then we use them in the method of entropy vectors.
Alas, that seems too much for our little computers.
But we have a cheeky way to put our constraints to use,
Using known Shannon results, new Tsallis inequalities we produce.

Though we found nice math results along the way,
Our Tsallis inequalities also seem hard to violate,
Computationally costly to find tighter inequalities,
A feature or a bug of the entropic technique?

4.2 Causal constraints and Tsallis entropy vectors

In Section 2.3.2, we discussed some of the general properties of Tsallis entropy that hold ir-
respective of the underlying causal structure over the variables. These include non-negativity,
monotonicity (2.22), and strong subadditivity (2.24) which characterise the set of Shannon
constraints (c.f. Definition 3.2.3). We summarise these properties here for convenience. For
any joint distribution over the random variables involved the following properties hold.

1. Pseudo-additivity [68]: For two independent random variables X and Y i.e., PXY =
PXPY , and for all q, the Tsallis entropies satisfy

Sq(XY ) = Sq(X) + Sq(Y ) + (1 − q)Sq(X)Sq(Y ). (4.1)

Note that in the Shannon case (q = 1), we recover additivity for independent random
variables.

2. Upper bound [94]: For q ≥ 0 we have Sq(X) ≤ lnq dX . For q > 0 equality is achieved if
and only if PX(x) = 1/dX for all x (i.e., if the distribution on X is uniform).

3. Monotonicity [71]: For all q,

Sq(X) ≤ Sq(XY ). (4.2)

4. Strong subadditivity [93]: For q ≥ 1,

Sq(XY Z) + Sq(Z) ≤ Sq(XZ) + Sq(Y Z). (4.3)
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5. Chain rule [93]: For all q,

Sq(X1,X2, . . . ,Xn∣Y ) =
n

∑
i=1
Sq(Xi∣Xi−1, . . . ,X1, Y ). (4.4)

The chain rules Sq(XY ) = Sq(X) + Sq(Y ∣X) and Sq(XY ∣Z) = Sq(X ∣Z) + Sq(Y ∣XZ) emerge as
particular cases and allow the Tsallis mutual informations (Equation (2.31)) to be written as
follows.3 Note that, due to the chain rules, the conditional version of the properties are also
satisfied.

Iq(X ∶ Y ) = Sq(X) + Sq(Y ) − Sq(XY ),
Iq(X ∶ Y ∣Z) = Sq(XZ) + Sq(Y Z) − Sq(Z) − Sq(XY Z).

(4.5)

The causal structure imposes the causal Markov constraints on the joint probability distribution
as well as entropic causal constraints over the variables involved (Section 2.5.1). We have
seen in Section 3.2 that the entropy vector method requires as an input, the complete set of
entropic causal constraints that encode all the conditional independences of the causal structure.
In the case of Shannon entropies, for an n node causal structure, the n Shannon entropic
causal constraints of Equation (3.9) imply all the conditional independences that follow from
d-separation for that causal structure. To analyse causal structures using Tsallis entropies, we
require analogous Tsallis entropic causal constraints.

A first observation is that Tsallis entropy vectors do not in general satisfy the causal constraints
(Equation (3.9)) satisfied by their Shannon counterparts. For a concrete counterexample, con-
sider the simple, three variable causal structure where Z is a common cause of X and Y , and
where there are no other causal relations. In terms of Shannon entropies, the only causal con-
straint in this case is I(X ∶ Y ∣Z) = 0. Taking X,Y and Z to be binary variables with possible
values 0 and 1, the distribution P (xyz) = 1/4 ∀x ∈ X,y ∈ Y if z = 0 and P (xyz) = 0 otherwise,
satisfies P (xy∣z) = P (x∣z)P (y∣z) ∀x ∈ X,y ∈ Y and z ∈ Z but has a q = 2 Tsallis conditional
mutual information of I2(X ∶ Y ∣Z) = 1

4 . Hence when using Tsallis entropies (and conditional
Tsallis entropy as defined in Section 2.3.2), the causal constraint cannot be simply encoded by
Iq(X ∶ Y ∣Z) = 0 for q > 1.

Given this observation, it is natural to ask whether there are constraints for Tsallis entropies
implied by the causal Markov condition (Equation (2.45)). We answer this question with the fol-
lowing Theorems. Note that we will be using the notation dX to denote the cardinality/alphabet
size ∣X ∣ of a random variable X in order the make the notation consistent with the quantum
case (Section 4.5.1) where dX will denote the dimension of the Hilbert space associated with the
subsystem X. Then for classical states, dX coincides with the cardinality of the corresponding
random variable, which justifies this notation.

Theorem 4.2.1. If a joint probability distribution PXY over random variables X and Y with
alphabet sizes dX and dY factorises as PXY = PXPY , then for all q ∈ [0,∞), the Tsallis mutual

3Using the chain rule, the monotonicity and strong subadditivity relations (Equations (4.2) and (4.3)) are
equivalent to the non-negativity of the unconditional and conditional Tsallis mutual informations. For q < 1,
strong subadditivity does not hold in general [93], hence we often restrict to the case q ≥ 1 in what follows.
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information Iq(X ∶ Y ) is upper bounded by
Iq(X ∶ Y ) ≤ f(q, dX , dY ) ,

where the function f(q, dX , dY ) is given by

f(q, dX , dY ) =
1

(q − 1) (1 − 1
dq−1
X

)(1 − 1
dq−1
Y

) = (q − 1) lnq dX lnq dY .

For q ∈ (0,∞) ∖ {1}, the bound is saturated if and only if PXY is the uniform distribution over
X and Y .

Proof. The proof follows from the pseudo-additivity of Tsallis entropies (Property 1) and the
upper bound (Property 2). Using these, for all q ≥ 0 and for all separable distributions PXY =
PXPY , we have

Iq(X ∶ Y ) = Sq(X)+Sq(Y )−Sq(XY ) = (q−1)Sq(X)Sq(Y ) ≤
(1 − 1

dq−1
X

)(1 − 1
dq−1
Y

)

q − 1 = f(q, dX , dY ) .

(4.6)
Whenever q ∈ (0,∞) ∖ {1}, the bound is saturated if and only if PXY is uniform over X and Y
since, for these values of q, Sq(X) and Sq(Y ) both attain their maximum values if and only if
this is the case.
Theorem 4.2.2. If a joint probability distribution PXY Z satisfies the conditional independence
PXY ∣Z = PX ∣ZPY ∣Z, then for all q ≥ 1 the Tsallis conditional mutual information Iq(X ∶ Y ∣Z) is
upper bounded by

Iq(X ∶ Y ∣Z) ≤ f(q, dX , dY ) .
For q > 1, the bound is saturated only by distributions in which for some fixed value k the joint

probabilities are given by P (xyz) =
⎧⎪⎪⎨⎪⎪⎩

1
dXdY

if z = k
0 otherwise

for all x, y and z4.

Proof. Writing out Iq(X ∶ Y ∣Z) in terms of probabilities we have

Iq(X ∶ Y ∣Z) = 1
q − 1

[∑
xyz

P q(xyz) +∑
z

P q(z) −∑
xz

P q(xz) −∑
yz

P q(yz)]

= 1
q − 1∑z

P q(z)[∑
xy

P q(xy∣z) + 1 −∑
x

P q(x∣z) −∑
y

P q(y∣z)]

=∑
z

P q(z)Iq(X ∶ Y )PXY ∣Z=z .

Using this and Theorem 4.2.1, we can bound Iq(X ∶ Y ∣Z) as
max

PXY Z=PZPX∣ZPY ∣Z
Iq(X ∶ Y ∣Z) = max

PXY Z=PZPX∣ZPY ∣Z
∑
z

P (z)qIq(X ∶ Y )PXY ∣Z=z

≤ max
PZ

∑
z

P (z)q max
PX∣Z=zPY ∣Z=z

Iq(X ∶ Y )PXY ∣Z=z

= max
PZ

∑
z

P (z)qf(q, dX , dY ) = f(q, dX , dY ) .

4These distributions have deterministic Z and there is one such distribution for each value that Z can take.
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The last step holds because for all q > 1, ∑z P (z)q is maximized by deterministic distributions
over Z with a maximum value of 1 i.e., only distributions PXY Z that are deterministic over Z
saturate the upper bound of f(q, dX , dY ). This completes the proof.

Two corollaries of Theorem 4.2.2 naturally follow.

Corollary 4.2.1. Let X, Y and Z be random variables with fixed alphabet sizes. Then for all
q ≥ 1 we have

max
PXY Z

PXY ∣Z=PX∣ZPY ∣Z

Iq(X ∶ Y ∣Z) = max
PXY

PXY =PXPY

Iq(X ∶ Y ) .

Furthermore, for q > 1, the maximum on the left hand side is achieved only by distributions in

which for some fixed value k the joint probabilities are given by P (xyz) =
⎧⎪⎪⎨⎪⎪⎩

1
dXdY

if z = k
0 otherwise

,

while the maximum on the right hand side occurs if and only if PXY is the uniform distribution.

The significance of these new relations for causal structures is then given by the following
corollary.

Corollary 4.2.2. Let PX1...Xn be a distribution compatible with the classical causal structure
GC and X, Y and Z be disjoint subsets of {X1, . . . ,Xn} such that X and Y are d-separated
given Z. Then for all q ≥ 1 we have

Iq(X ∶ Y ∣Z) ≤ f(q, dX , dY ) ,

where dX is the product of dXi for all Xi ∈X, and likewise for dY .

Remark 4.2.1. The results of this section can be generalised to the quantum case under certain
assumptions i.e., as constraints on quantum Tsallis entropies implied by certain quantum causal
structures (see Appendix 4.5.1 for details). Note that only constraints on the classical Tsallis
entropy vectors derived in this section are required to detect the classical-quantum gap. Hence,
Appendix 4.5.1 is not pertinent to the main results of this chapter but can be seen as additional
results regarding the properties of quantum Tsallis entropies.

4.2.1 Number of independent Tsallis entropic causal constraints

We saw previously that in the Shannon case (q = 1), the n conditions (3.9) of the form I(Xi ∶
X�i ∣X

↓1
i ) = 0 (i = 1, . . . , n) imply all the independence relations that follow from the causal struc-

ture. In the Tsallis case however, the n conditions of the form Iq(Xi ∶ X�i ∣X
↓1
i ) ≤ f(q, dXi , dX�i )

(Corollary 4.2.2) do not do the same. In the bipartite Bell and Triangle causal structures, in
the case where the dimension (cardinality) of each individual node is taken to be d, we find
that there are 53 and 126 distinct Tsallis entropic inequalities that are implied by the respective
causal structures. These are in one-to-one correspondence with the d-separation relations in
the corresponding DAGs, and there are no redundancies in these constraints i.e., all of them are
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required for characterising the conditional independences in the DAGs. In more detail, we used
linear programming to show that each implication of d-separation yields a non-trivial entropic
causal constraint for all q > 1 and d > 2 for the bipartite Bell and Triangle causal structures. By
comparison, in these causal structures five and six independent Shannon entropic constraints
imply all the others. As an illustration of the difference, in the Shannon case, I(A ∶ BC) = 0
implies I(A ∶ B) = I(A ∶ C) = 0, whereas the analogous implication does not hold in the Tsallis
case in general: although Iq(A ∶ BC) ≤ f(q, dA, dBC) implies Iq(A ∶ B) ≤ f(q, dA, dBC), it is not
the case that Iq(A ∶ BC) ≤ f(q, dA, dBC) implies Iq(A ∶ B) ≤ f(q, dA, dB).5

The number of distinct conditional independences (and hence the number of independent Tsallis
constraints that follow from d-separation) in a DAG depends on the specific graph, however for
any DAG Gn with n nodes, the number of such constraints can be upper bounded by that of
the n-node DAG where all n nodes are independent i.e., the n node DAG with no edges. The
number of conditions in this DAG can be thought of as the number of ways of partitioning n
objects into four disjoint subsets6 such that the first two are non-empty and where the ordering
of the first two does not matter. Therefore, there are at most 1

2(4n−2×3n+2n) such conditions.

4.2.2 Using Tsallis entropies in the entropy vector method

We used the causal constraints of Corollary 4.2.2 in the entropy vector method (Section 3.2)
with the aim of deriving new quantum-violatable entropic inequalities for the Triangle causal
structure (Figure 2.6b). To do so, we started with the variables A,B,C,X,Y,Z of the Tri-
angle causal structure, the Shannon constraints and causal constraints satisfied by the Tsallis
entropy vectors over these variables (Corollary 4.2.2) and used a Fourier-Motzkin (FM) elimi-
nation (Section 2.2.2) algorithm (from the porta software [55]) to eliminate the Tsallis entropy
components involving the unobserved variables A,B,C and obtain the constraints on the ob-
served nodes X,Y,Z. The Tsallis entropy vector for the six nodes has 26 − 1 = 63 components.
The required marginal scenario with the observed nodes X,Y,Z has Tsallis entropy vectors with
23 − 1 = 7 components and in this case, the Fourier-Motzkin algorithm has to run 56 iterations,
each of which eliminates one variable.

Starting with the full set of 126 Tsallis entropic causal constraints for the Triangle causal
structure as well as the 246 independent Shannon constraints, the Fourier-Motzkin elimination
algorithm did not finish within several days on a standard desktop PC and the number of inter-
mediate inequalities generated grew to about 90,000 after 11 steps. Because of this we instead

5For an explicit counterexample, consider PABC = { 3
10 ,0,

2
10 ,0,

1
10 ,

1
10 ,

2
10 ,

1
10} over binary A, B and C for

which I2(A ∶ BC) = 9/25 < 3/8 = f(2,2,4) but I2(A ∶ B) = 13/50 > 1/4 = f(2,2,2).
6The four subsets correspond to the three arguments of the conditional mutual information and a set of

‘leftovers’.
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tried starting with a subset comprising 15 of the 126 Tsallis entropic causal constraints7 i.e., 261
constraints on 63 dimensional vectors. We considered the case of q = 2 and where the six ran-
dom variables are all binary. Again, in this case the algorithm did not finish after several days.
We also tried starting with fewer causal constraints (for example, the six constraints analogous
to the Shannon case) as well as using a modified code, optimised to deal with redundancies
better but both of these attempts made no significant difference to this outcome.

Such a rapid increase of the number of inequalities in each step is a known problem with
Fourier-Motzkin elimination where an elimination step over n inequalities can result in up to
n2/4 inequalities in the output and running d successive elimination steps can yield a double
exponential complexity of 4(n/4)2d [221]. This rate of increase can be kept under control when
the resulting set of inequalities has many redundancies. This happens in the Shannon case where
the causal constraints are simple equalities and the system of 246 Shannon constraints plus 6
Shannon entropic causal constraints reduces to a system of just 91 independent inequalities
before the FM elimination. In the Tsallis case, no reduction of the system of inequalities
is possible in general due to the nature of the causal constraints. The fact that the Tsallis
entropic causal constraints are inequality constraints rather than equalities also contributes to
the computational difficulty since each independent equality constraint in effect reduces the
dimension of the problem by 1.

We also tried the same procedure on the bipartite Bell causal structure (Figure 2.6a), again for
q = 2 and binary variables. Starting with the full set of 53 causal constraints, again resulted in
the program running for over a week without nearing the end, and a similar result was obtained
when starting only with 8–10 causal constraints. While starting with fewer causal constraints
such as the 5 conditional independence constraints (one for each node) resulted in a terminating
program, no non-trivial entropic inequalities were obtained (i.e., we only obtained those relating
to the Shannon constraints or following directly from d-separation).8

4.3 New Tsallis entropic inequalities for the Triangle causal
structure

Despite the limitations encountered in applying the entropy vector method to Tsallis entropies
(Section 4.2.2), here we find new Tsallis entropic inequalities for the Triangle causal structure

7These included the 6 that follow from “each node Ni is conditionally independent of its descendants given
its parents” (denoted as Ni ⊥d N�i ∣N

↓1
i ) and 9 more chosen arbitrarily from the total of 126 independent Tsallis

constraints we found for the Triangle. The 6 former constraints for the Triangle (Figure 2.6b) are A ⊥d CXB,
B ⊥d CY A, C ⊥d BZA, X ⊥d Y AZ ∣CB, Y ⊥d XBZ ∣AC and Z ⊥d Y CX ∣AB. An example of 9 more constraints
for which the procedure did not work are X ⊥d Y ∣CB, X ⊥d A∣CB, X ⊥d Z ∣CB, Y ⊥d X ∣AC, Y ⊥d B∣AC,
Y ⊥d Z ∣AC, Z ⊥d Y ∣AC, Z ⊥d C ∣AB and Z ⊥d X ∣AB. We also tried some other choices and number of
constraints but this did not lead to any improvement.

8For example, we were able to obtain I2(A ∶ BY ) ≤ 7
16 and I2(B ∶ AX) ≤ 7

16 , while, in the case of binary
variables and q = 2, the independences in the DAG together with Theorem 4.2.1 imply I2(A ∶ BY ) ≤ 6

16 and
I2(B ∶ AX) ≤ 6

16 , which are the Tsallis entropic equivalents of the two no-signaling constraints.

75



CHAPTER 4. ENTROPIC ANALYSIS OF CAUSAL STRUCTURES WITHOUT POST-SELECTION

for all q ≥ 1 by using known inequalities for the Shannon entropy [47] and the causal constraints
derived in Section 4.2. Using the entropy vector method for Shannon entropies, the following
three classes of entropic inequalities were obtained for the Triangle causal structure (Figure 2.6b)
in [47].9 Including all permutations of X, Y and Z, these yield 7 inequalities.

−H(X) −H(Y ) −H(Z) +H(XY ) +H(XZ) ≥ 0, (4.7a)
− 5H(X) − 5H(Y ) − 5H(Z) + 4H(XY ) + 4H(XZ) + 4H(Y Z) − 2H(XY Z) ≥ 0, (4.7b)
− 3H(X) − 3H(Y ) − 3H(Z) + 2H(XY ) + 2H(XZ) + 3H(Y Z) −H(XY Z) ≥ 0. (4.7c)

By replacing the Shannon entropy H() with the Tsallis entropy Sq() on the left hand side
of these inequalities and minimizing the resultant expression over our outer approximation to
the classical Tsallis entropy cone for the Triangle causal structure, one can obtain valid Tsallis
entropic inequalities for this causal structure. More precisely, the outer approximation to the
classical Tsallis entropy cone for the Triangle is characterised by the 6 + 6(6 − 1)26−3 = 246
independent Shannon constraints (monotonicity and strong subadditivity constraints) and the
126 causal constraints (one for each conditional independence implied by the causal structure).
To perform this minimization we used LPAssumptions [62] (Appendix 4.5.2), a Mathematica
package that we developed for solving linear programs involving unspecified variables (other
than those being optimised over), by implementing the simplex method (Section 2.2.3.2). In
our case, we assumed that the dimensions of all the unobserved nodes (A,B and C) are equal
to du and those of all the observed nodes (X, Y and Z) is do, and so the unspecified variables
are q ≥ 1, du ≥ 2 and do ≥ 2. We obtained the following Tsallis entropic inequalities for the
Triangle.

− Sq(X) − Sq(Y ) − Sq(Z) + Sq(XY ) + Sq(XZ) ≥ B1(q, do, du), (4.8a)

−5Sq(X) − 5Sq(Y ) − 5Sq(Z) + 4Sq(XY ) + 4Sq(XZ) + 4Sq(Y Z) − 2Sq(XY Z)
≥ B2(q, do, du) ∶= max (B21(q, do, du),B22(q, do, du)),

(4.8b)

−3Sq(X)−3Sq(Y )−3Sq(Z)+2Sq(XY )+2Sq(XZ)+3Sq(Y Z)−Sq(XY Z) ≥ B3(q, do, du), (4.8c)

where,

B1(q, do, du) = −
1

q − 1
⎛
⎝

1 − d1−q
o

⎞
⎠
⎛
⎝

2 − d1−q
o − d1−q

u

⎞
⎠
, (4.9a)

9Note that a tighter entropic characterization was found in [216] based on non-Shannon inequalities, and
that the techniques introduced here could also be applied to these.
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B21(q, do, du) = −
1

q − 1
⎛
⎝

11 + d3−3q
u + 6d2−2q

o + 3d1−q
o d1−q

u − 6d1−q
u − 15d1−q

o

⎞
⎠
,

B22(q, do, du) = −
1

q − 1
⎛
⎝

10 + d1−q
o d3−3q

u + 5d2−2q
o + 2d1−q

o d1−q
u − 5d1−q

u − 13d1−q
o

⎞
⎠
,

(4.9b)

B3(q, do, du) = −
1

q − 1
⎛
⎝

6 + d1−q
o d2−2q

u + 3d2−2q
o + d1−q

o d1−q
u − 3d1−q

u − 8d1−q
o

⎞
⎠
. (4.9c)

Note that limq→1B1 = limq→1B2 = limq→1B3 = 0 ∀du, do ≥ 2, recovering the original inequalities
for Shannon entropies (Equations (4.7a)–(4.7c)) as a special case.

In [182], an upper bound on the dimensions of classical unobserved systems needed to reproduce
a set of observed correlations is derived in terms of the dimensions of the observed systems.
In the case of the Triangle causal structure with dX = dY = dZ = do and dA = dB = dC = du as
considered here, the result of [182] implies that all classical correlations PXY Z can be reproduced
by using hidden systems of dimension at most d3

o − do. Since the dimension of the unobserved
systems is unknown, it makes sense to take the minimum of the derived bounds over all du
between 2 and d3

o − do. By taking their derivative, one can verify that for q > 1 each of the
functions B1, B21, B22 and B3 is monotonically decreasing in do and du, and hence that the
minimum is obtained for du = d3

o − do for any given do ≥ 2. It follows that for all q > 1 and
do ≥ 2 relations of the same form as Equations (4.8a)–(4.8c) hold, with the quantities on the
right hand sides replaced by
B∗

1 (q, do) = B1(q, do, d3
o − do)

= −1
q − 1

⎛
⎝

2 + d2−2q
o − 3d1−q

o + do(−do + d3
o)−q − d3

o(−do + d3
o)−q − d2−q

o (−do + d3
o)−q + d4−q

o (−do + d3
o)−q

⎞
⎠

(4.10a)

B∗
21(q, do) = B21(q, do, d3

o − do)

= −1
q − 1

⎛
⎝

11 + 6d2−2q
o − 15d1−q

o + (−do + d3
o)3−3q − 6(−do + d3

o)1−q + 3d1−q
o (−do + d3

o)1−q⎞
⎠
,

B∗
22(q, do) = B22(q, do, d3

o − do)

= −1
q − 1

⎛
⎝

10 + 5d2−2q
o − 13d1−q

o + d1−q
o (−do + d3

o)3−3q − 5(−do + d3
o)1−q + 2d1−q

o (−do + d3
o)1−q⎞

⎠
,

(4.10b)

B∗
3 (q, do) = B3(q, do, d3

o − do)

= −1
q − 1

⎛
⎝

6 + 3d2−2q
o − 8d1−q

o + d1−q
o (−do + d3

o)2−2q − 3(−do + d3
o)1−q + d1−q

o (−do + d3
o)1−q⎞

⎠
.

(4.10c)
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A quantum violation of any of these bounds would imply that no unobserved classical systems
of arbitrary dimension could reproduce those quantum correlations.

Remark 4.3.1. Because they are monotonically decreasing, the bounds for du = d3
o −do are not

as tight as the du-dependent bounds for general q > 1. Nevertheless, as q → 1, all the bounds
B∗(q, do) tend to 0, reproducing the known result of [90] for the Shannon case.

Remark 4.3.2. In some cases it may be interesting to show quantum violations of these
inequalities for low values of du, hence ruling out classical explanations with hidden systems of
low dimensions, while possibly leaving open the case of arbitrary classical explanations. This
would be interesting if it could be established that using hidden quantum systems allows for
much lower dimensions than for hidden classical systems, for example.

4.3.1 Looking for quantum violations

It is known that the Triangle causal structure (Figure 2.6b) admits non-classical correlations
such as Fritz’s distribution [88]. The idea behind this distribution is to embed the CHSH
game in the Triangle causal structure such that non-locality for the Triangle follows from
the non-locality of the CHSH game. To do so, C is replaced by the sharing of a maximally
entangled pair of qubits, and A and B are taken to be uniformly random classical bits. The
observed variables X, Y and Z in Figure 2.6b are taken to be pairs of the form X ∶= (X̃,B),
Y ∶= (Ỹ ,A) and Z ∶= (A,B), where X̃ and Ỹ are generated by measurements on the halves of
the entangled pair with B and A used to choose the settings such that the joint distribution
PX̃Ỹ ∣BA maximally violates a CHSH inequality. By a similar post-processing of other non-local
distributions in the bipartite Bell causal structure (Figure 2.6a) such as the Mermin-Peres
magic square game [147, 161] and chained Bell inequalities [34], one can obtain other non-local
distributions in the Triangle that cannot be reproduced using classical systems. We explore
whether any of these violate any of our new inequalities.

Since the values of Bi(q, do, du) are monotonically decreasing in do and du, if a distribution
realisable in a quantum causal structure does not violate the bounds (4.8a)–(4.8c) for all q ≥ 1
and some fixed values of do and du, then no violations are possible for d′o > do, d′u > du.
We therefore take the smallest possible values of do and du when showing that a particular
distribution cannot violate any of the bounds.

For Fritz’s distribution [88], C is a two-qubit maximally entangled state, A and B are binary
random variables while X, Y and Z are random variables of dimension 4, i.e., the actual
observed dimensions are (dX , dY , dZ) = (4,4,4) in this case. Here we see that taking do = 4 and
the smallest possible du which is du = 2, the left hand sides of Equations (4.8a)–(4.8c) evaluated
for Fritz’s distribution do not violate the corresponding bounds Bi(q, do = 4, du = 2) for any
q ≥ 1. This means that it is not possible to detect any quantum advantage of this distribution
(even over the case where the unobserved systems are classical bits) using this method, and
automatically implies that it cannot violate the bounds Bi(q, do = 4, du) for du ≥ 2.

We also considered the chained Bell and magic square correlations embedded in the Triangle
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di smallest
Scenario Ineq. (4.8a) (i = 1) Ineq. (4.8b) (i = 2) Ineq. (4.8c) (i = 3) observed dim. (dmin

o )
N = 2 2 2 2 4
N = 3 3 2 3 6
N = 4 4 2 4 8
N = 5 5 2 5 10
N = 6 6 2 6 12
N = 7 7 2 7 14
N = 8 8 2 8 16
N = 9 9 3 9 18
N = 10 10 3 10 20

Magic Sq. 4 2 4 9

Table 4.1: Values of di for the chained Bell and magic square correlations embedded in
the Triangle causal structure. The values of N correspond to the number of inputs per party in the
chained Bell inequality, which always has two outputs per party (the N = 2 case corresponds to Fritz’s
distribution [88]). When embedded in the Triangle, the number of outcomes of the observed nodes
are (dX , dY , dZ) = (2N,2N,N2). The last column of the table gives the minimum of the observed
node dimensions (dX , dY , dZ) for each N , which is simply 2N . For the magic square, the dimensions
(dX , dY , dZ) are (12,12,9). In all cases, the minimum value of di such that the Inequalities (4.8a)–
(4.8c) with bounds Bi(q, do = di, du = 2) are not violated for any q ≥ 1 is less than the minimum
observed dimension dmin

o , and hence no violations of (4.8a)–(4.8c) could be found for the relevant case
with do = dmin

o .

causal structure analogously to the case discussed above. For each of these, we define di to
be the smallest value of do for which the bound Bi(q, do = di, du = 2) cannot be violated for
any q > 1. The values of di are given in Table 4.1 for the different cases of the chained Bell
correlations and the magic square. Since the values of di are always lower than the smallest of
the observed dimensions in the problem, and due to the monotonicity of the bounds it follows
that none of these quantum distributions violate any of our inequalities when the observed
dimension is set to dmin

o .

We further checked for violations of Inequalities (4.8a)–(4.8c) by sampling random quantum
states for the systems A, B and C and random quantum measurements whose outcomes would
correspond to the classical variables X, Y and Z. The value of q was also sampled randomly
between 1 and 100. We considered the cases where the shared systems were pairs of qubits
with 4 outcome measurements (dX = dY = dZ = 4) and qutrits with 9 outcome measurements
(dX = dY = dZ = 9) but were unable to find violations of any of the inequalities even for the
bounds with the do = 4, du = 2 (two qubit case) and do = 9, du = 2 (two qutrit case), i.e., the
bounds obtained when the unobserved systems are classical bits.

Remark 4.3.3. In the derivation of Inequalities (4.8a)–(4.8c), we set the dimensions of the
observed nodesX, Y and Z to all be equal and those of the unobserved nodes A, B and C to also
all be equal. One could in principle repeat the same procedure taking different dimensions for
all 6 variables but we found the computational procedure too demanding. However, Table 4.1
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shows that even when we consider the bounds Bi(q, do, du) with do and du much smaller than
the actual dimensions, known non-local distributions in the Triangle considered in Table 4.1
do not violate the corresponding Inequalities (4.8a)–(4.8c) for any q ≥ 1. Since the bounds are
monotonically decreasing in du and do, even if we obtained the general bounds for arbitrary
dimensions of X, Y , Z, A, B and C, they would be strictly weaker than Bi(q, di, du = 2)
∀i ∈ {1,2,3}, q ≥ 1 and can certainly not be violated by these distributions.

4.4 Discussion

We have investigated the use of Tsallis entropies within the entropy vector method to causal
structures, showing how causal constraints imply bounds on the Tsallis entropies of the variables
involved. Although Tsallis entropies for q ≥ 1 possess many properties that aid their use in the
entropy vector method, the nature of the causal constraints makes the problem significantly
more computationally challenging than in the case of Shannon entropy. This meant that we
were unable to complete the desired computations in the former case, even for some of the
simplest causal structures. Nevertheless, we were able to derive new classical causal constraints
expressed in terms of Tsallis entropy by analogy with known Shannon constraints, but were
unable to find cases where these were violated, even using quantum distributions that are known
not to be classically realisable. This mirrors an analogous result for Shannon entropies [216].

One could also investigate whether other entropic quantities could be used in a similar way,
and in Appendix 4.5.3 we have considered the use of Rényi entropies. The Rényi entropies
of order α do not satisfy strong subadditivity for α ≠ 0,1, while the Rényi as well as the min
and max entropies fail to obey the chain rules for conditional entropies. Thus, use of these in
the entropy vector method, would require an entropy vector with components for all possible
conditional entropies as well as unconditional ones, considerably increasing the dimensionality
of the problem, which we would expect to make the computations harder. In some cases, not
having a chain rule has not been prohibitive [217], but our results of Appendix 4.5.3 reveal
significant limitations of Rényi entropies for analysing causal structure.

Further, one could consider using algorithms other than Fourier-Motzkin elimination to obtain
non-trivial Tsallis entropic constraints over observed nodes starting from the Tsallis cone over
all the nodes (see e.g., [99]). These could in principle yield solutions even in cases where
FM elimination becomes intractable. However, we found that the FM elimination procedure
became intractable even when starting out with only a small subset of the Tsallis entropic causal
constraints for a simple causal structure such as the Bell one. This suggests that the difficulty
is not only with the number of constraints, but also with their nature (in particular, that they
are not equalities and depend non-trivially on the dimensions). Consequently, we bypassed FM
elimination and used an alternative technique to obtain new Tsallis entropic inequalities for the
Triangle causal structure (Section 4.3).

It is also worth noting that the following alternative definition of the Tsallis conditional entropy
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was proposed in [3].

S̃q(X ∣Y ) = 1
1 − q

∑y P (y)qSq(X ∣Y = y)
∑y P (y)q

= 1
1 − q (∑x,y P (xy)q

∑y P (y)q
− 1) . (4.11)

Using this definition, Tsallis entropies would satisfy the same causal constraints as the Shannon
entropy (Equation (2.49)). However, the conditional entropies defined this way do not satisfy
the chain rules of Equation (2.20) but instead obey a non-linear chain rule, Sq(XY ) = Sq(X)+
Sq(Y ∣X) + (1 − q)Sq(X)Sq(Y ∣X) [3]. This would again mean that conditional entropies would
need to be included in the entropy vector. Furthermore, since Fourier-Motzkin elimination only
works for linear constraints, an alternative algorithm would be required to use this chain rule
in conjunction with the entropy vector method.

That the inequalities for Tsallis entropy derived in this work depend on the dimensions of the
systems involved could be used to certify that particular observed correlations in a classical
causal structure require a certain minimal dimension of unobserved systems to be realisable.
To show this would require showing that classically-realisable correlations violate one of the
inequalities for some du. Such bounds would then complement the upper bounds of [182].
However, in some cases we know our bounds are not tight enough to do this. As a simple
example, within the Triangle causal structure we tried taking X = (XB,XC), Y = (YA, YC)
and Z = (ZA, ZB) with XB = ZB, XC = YC and YA = ZA where each are uniformly distributed
with cardinality D, for D ∈ {3, . . . ,10}. In this case it is clear that the correlations cannot be
achieved with classical unobserved systems with du = 2. Taking the bound with du = 2 and
do = D2 no violations of (4.8a)–(4.8c) were seen by plotting the graphs for q ∈ [1,20], for the
range of D above. Hence, our bounds are too loose to certify lower bounds on du in this case.

While our analysis highlights significant drawbacks of using Tsallis entropies for analysing
causal structures, it does not rule out the possibility of Tsallis entropies being able to detect
the classical-quantum gap10 in these causal structures, or others. To overcome the difficulties
we encountered we would either need increased computational power, and/or the development
of new, alternative techniques for analysing causal structures (with or without entropies).

4.5 Appendix

4.5.1 Quantum generalisations of Theorems 4.2.1 and 4.2.2

The main results of this Chapter only required the Tsallis entropic causal constraints of Theo-
rems 4.2.1 and 4.2.2, which were derived for classical causal structures. Here, we present addi-

10Proving that Tsallis entropies are unable to do this would also be difficult. For instance, the proof of [214]
that Shannon entropies are unable to detect the gap in line-like causal structures involves first characterising the
marginal polytope through Fourier-Motzkin elimination, which itself proved to be computationally infeasible
with Tsallis entropies even for the simplest line-like causal structure, the bipartite Bell scenario.
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tional results that generalise these theorems to certain quantum causal structures. For these,
we recap some of the properties of quantum Tsallis entropies encountered in Section 2.3.2.

Tsallis entropies as defined for classical random variables in Section 2.3.2 are easily generalised
to the quantum case by replacing the probability distribution by a density matrix [119]. For
a quantum system described by the density matrix ρ ∈ S (H ) on the Hilbert space H and
q > 0, the quantum Tsallis entropy is defined by

Sq(ρ) =
⎧⎪⎪⎨⎪⎪⎩

−Trρq lnq ρ, q ≠ 1.
H(ρ), q = 1.

(4.12)

where H(ρ) = −Trρ lnρ is the von Neumann entropy of ρ and lnq(x) = x1−q−1
1−q as in Sec-

tion 2.3.2.11

Given a density operator ρAB ∈ S (HA ⊗HB), the conditional quantum Tsallis entropy of A
given B can then be defined by Sq(A∣B)ρ = Sq(AB) − Sq(B), the mutual information between
A and B by Iq(A ∶ B)ρ = Sq(A) + Sq(B) − Sq(AB), and for ρABC ∈ S (HA ⊗ HB ⊗ HC)
the conditional Tsallis information between A and B given C is defined by Iq(A ∶ B∣C)ρ =
Sq(A∣C) + Sq(B∣C) − Sq(AB∣C). In this section we use dS to represent the dimensions of the
Hilbert space HS.

The following properties of quantum Tsallis entropies will be useful for what follows.

1. Pseudo-additivity [200]: If ρAB = ρA ⊗ ρB, then

Sq(AB) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) . (4.13)

2. Upper bound [13]: For all q > 0, we have Sq(A) ≤ lnq dA and equality is achieved if and
only if ρA = 1A/dA.

3. Subadditivity [13]: For any density matrix ρAB with marginals ρA and ρB, the following
holds for all q ≥ 1,

Sq(AB) ≤ Sq(A) + Sq(B) . (4.14)

Using these we can generalize Theorem 4.2.1 to the quantum case. This corresponds to the
causal structure with two independent quantum nodes and no edges in between them.

Theorem 4.5.1. For all bipartite density operators in product form, i.e., ρAB = ρA ⊗ ρB with
ρA ∈ S (HA) and ρB ∈ S (HB), the quantum Tsallis mutual information Iq(A ∶ B)ρ is upper
bounded as follows for all q > 0

Iq(A ∶ B)ρ ≤ f(q, dA, dB) ,
11Analogously to the classical case we keep it implicit that if ρ has any 0 eigenvalues these do not contribute

to the trace.
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where the function f(q, dA, dB) is given by

f(q, dA, dB) =
1

(q − 1) (1 − 1
dq−1
A

)(1 − 1
dq−1
B

) = (q − 1) lnq dA lnq dB .

The bound is saturated if and only if ρAB = 1A
dA

⊗ 1B
dB

.

Proof. The proof goes through in the same way as the proof of Theorem 4.2.1 for the classical
case (Properties 1 and 2 are analogous to those needed in the classical proof).

Next, we generalise Theorem 4.2.2 and Corollaries 4.2.1 and 4.2.2. This would correspond to the
causal constraints on quantum Tsallis entropies implied by the common cause causal structure
with C being a complete common cause of A and B (which share no causal relations among
themselves). Here, one must be careful in precisely defining the conditional mutual information
and interpreting it physically. For example, if the common case C were quantum and the nodes
A and B were classical outcomes of measurements on C, then A, B and C do not coexist and
there is no joint state ρABC in such a case. This is a significant difference in quantum causal
modelling compared to the classical case, and there have been several proposals for how do deal
with it [132, 67, 6, 163]. In the following we consider two cases:

1. When C is classical, all 3 systems coexist and ρABC can be described by a classical-
quantum state (See Theorem 4.5.2).

2. When C is quantum, one approach is to view ρABC not as the joint state of the 3 systems
but as being related to the Choi-Jamiolkowski representations of the quantum channels
from C to A and B (See Section 4.5.1.1) as done in [6].

The following Lemma proven in [125] is required for our generalization of Theorem 4.2.2 in the
first case.

Lemma 4.5.1 ([125], Lemma 1). Let HA and HZ be two Hilbert spaces and {∣z⟩}z be an
orthonormal basis of HZ. Let ρAZ be classical on HZ with respect to this basis i.e.,

ρAZ =∑
z

P (z)ρ(z)A ⊗ ∣z⟩⟨z∣,

where ∑z P (z) = 1 and ρ(z)A ∈ S(HA) ∀z. Then for all q > 0,

Sq(AZ)ρ =∑
z

P (z)qSq(ρ(z)A ) + Sq(Z),

where Sq(Z) is the classical Tsallis entropy of the variable Z distributed according to PZ.

Note that the above Lemma immediately implies that

Sq(A∣Z)ρ =∑
z

P (z)qSq(ρ(z)A ) . (4.15)
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Theorem 4.5.2. Let ρABC = ∑cP (c)ρ(c)AB ⊗ ∣c⟩⟨c∣, where ρ(c)AB = ρ(c)A ⊗ ρ(c)B ∀c, then, for all q ≥ 1,

Iq(A ∶ B∣C)ρABC ≤ f(q, dA, dB) .

For q > 1 the bound is saturated if and only if ρABC = 1A
dA

⊗ 1B
dB

⊗ ∣c⟩⟨c∣C.

Proof. Using (4.15) we have,

Iq(A ∶ B∣C)ρABC = Sq(A∣C)ρ + Sq(B∣C)ρ − Sq(AB∣C)ρ
=∑

c

P (c)q[Sq(ρ(c)A ) + Sq(ρ(c)B ) − Sq(ρ(c)AB)]

=∑
c

P (c)qIq(A ∶ B)
ρ
(c)
AB

.

The rest of the proof is analogous to Theorem 4.2.2, where using the above, Theorem 4.5.1 and
defining the set R = {ρABC ∈ HA ⊗HB ⊗HC ∶ ρABC = ∑cP (c)ρ(c)A ⊗ ρ(c)B ⊗ ∣c⟩⟨c∣} we have,

max
R

Iq(A ∶ B∣C)ρ = max
R
∑
c

P (c)qIq(A ∶ B)
ρ
(c)
AB

≤ max
{P (c)}c

∑
c

P (c)q(c) max
{ρ(c)A }c,{ρ

(c)
B }c

Iq(A ∶ B)
ρ
(c)
AB

= f(q, dA, dB) ,

where the last step follows because for all q ≥ 1, ∑cP (c)q is maximized by deterministic distri-
butions over C with a maximum value of 112 and Iq(A ∶ B)

ρ
(c)
AB

for product states is maximised
by the maximally mixed state over A and B for all c (Theorem 4.5.1). Thus, for q > 1, the
bound is saturated if and only if ρABC = 1A

dA
⊗ 1B

dB
⊗ ∣c⟩⟨c∣C for some value c of C.

4.5.1.1 A generalisation: when systems do not coexist

There is a fundamental problem with naively generalising classical conditional independences
such as PXY ∣Z = PX ∣ZPY ∣Z to the quantum case by replacing joint distributions by density
matrices: it is not clear what is meant by a conditional quantum state e.g., ρA∣C since it is
not clear what it means to condition on a quantum system, specially when the (joint state of
the) system under consideration and the one being conditioned upon do not coexist. There
are a number of approaches for tackling this problem, from describing quantum states in space
and time on an equal footing [117] to quantum analogues of Bayesian inference [132] and causal
modelling [67, 6, 163]. In the following, we will focus on one such approach that is motivated by
the framework of [6]. Central to this approach is the Choi-Jamiołkowski isomorphism [121, 54]
from which one can define conditional quantum states.

12For q > 1 such deterministic distributions are the only way to obtain the bound.
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Figure 4.1: A circuit decomposition of the channel E ∶ S (HC)→S (HA ⊗HB)

when C is a complete common cause of A and B: If the map E from the system C
to the systems A and B can be decomposed as shown here, then C is a complete common
cause of A and B ([6]). We build up our result step by step considering the channels
given by Ei (unitary), Eii (unitary followed by local isometries) and Eiii = E .

Definition 4.5.1 (Choi state). Let ∣γ⟩ = ∑i ∣i⟩R∣i⟩R∗ ∈ HR⊗HR∗ , where HR∗ is the dual space
to HR and {∣i⟩R}i, {∣i⟩R∗}i are orthonormal bases of HR and HR∗ respectively. Given a channel
ER∣S ∶ S (HR)→S (HS), the Choi state of the channel is defined by

ρS∣R = (ER∣S ⊗ I)(∣γ⟩⟨γ∣) =∑
ij

E (∣i⟩⟨j∣R)⊗ ∣i⟩⟨j∣R∗ .

Thus, ρS∣R ∈ P(HS ⊗HR∗).

Now, if a quantum system C evolves through a unitary channel EI(⋅) = U ′(⋅)U ′† to two systems
A′ and B′ where U ′ ∶ HC → HA′ ⊗ HB′ , it is reasonable to call the system C a quantum
common cause of the systems A′ and B′. Further, this would still be reasonable if one were to
then perform local completely positive trace preserving (CPTP) maps on the A′ and B′ systems.
By the Stinespring dilation theorem, these local CPTP maps can be seen as local isometries
followed by partial traces, and the local isometries can be seen as the introduction of an ancilla
in a pure state followed by a joint unitary on the system and ancilla. This is illustrated in
Figure 4.1 and is compatible with the definition of quantum common causes presented in [6].
In other words, a system C can be said to be a complete (quantum) common cause of systems
A and B if the corresponding channel E ∶ S (HC) → S (HA ⊗HB) can be decomposed as in
Figure 4.1 for some choice of unitaries U ′, UA, UB and pure states ∣φ⟩EA , ∣ψ⟩EB . Note that a
more general set of channels fit the definition of quantum common cause in Ref. [6] than we
use here; whether the theorems here extend to this case we leave as an open question.

In [6] it is shown that whenever a system C is a complete common cause of systems A and
B then the Shannon conditional mutual information evaluated on the state τABC∗ = 1

dA
ρAB∣C
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satisfies I(A ∶ B∣C∗)τ = 0 where ρAB∣C is the Choi state of the channel from C to A and B. We
generalise this result to Tsallis entropies for q ≥ 1 for certain types of channels. We present the
result in three cases, each with increasing levels of generality. These are explained in Figure 4.1
and correspond to the cases where the map from the complete common cause C to its children
A and B is (i) unitary (Ei = U ′); (ii) unitary followed by local isometries (Eii); (iii) Unitary
followed by local isometries followed by partial traces on local systems (Eiii = E ).

Lemma 4.5.2. Let Ei ∶ S (HC)→S (HA′ ⊗HB′) be a unitary quantum channel i.e.,

Ei(⋅) = U ′(⋅)U ′†,

where U ′ ∶ HC → HA′ ⊗HB′ is an arbitrary unitary operator. If ρA′B′∣C is the corresponding
Choi state, then the Tsallis conditional mutual information evaluated on the state τA′B′C∗ =
1
dC
ρA′B′∣C ∈ S (HA′ ⊗HB′ ⊗HC∗) satisfies

Iq(A′ ∶ B′∣C∗)τ = f(q, dA′ , dB′) ∀q > 0.

Proof. The conditional mutual information Iq(A′ ∶ B′∣C∗)τ can be written as

Iq(A′ ∶ B′∣C∗)τ =
1

q − 1
(TrA′B′C∗ τ qA′B′C∗ +TrC∗ τ qC∗ −TrA′C∗ τ qA′C∗ −TrB′C∗ τ qB′C∗). (4.16)

We will now evaluate every term in the above expression for the case where the channel that
maps the C system to the A′ and B′ systems is unitary. In this case, τA′B′C∗ is a pure state
and can be written as τA′B′C∗ = ∣τ⟩⟨τ ∣A′B′C∗ where

∣τ⟩A′B′C∗ = 1√
dC
∑
i

U ′∣i⟩C ⊗ ∣i⟩C∗ . (4.17)

This means that TrA′B′C∗ τ qA′B′C∗ = TrA′B′C∗ τA′B′C∗ ∀q > 0. Since τA′B′C∗ is a valid quantum
state, it must be a trace one operator and we have

TrA′B′C∗ τ qA′B′C∗ = 1 ∀q > 0 (4.18)

Further, we have τC∗ = TrA′B′ τA′B′C∗ = 1C∗

dC
and hence

TrC∗ τ qC∗ =
1
dq−1
C

= 1
dq−1
A′ d

q−1
B′

. (4.19)

The second step follows from the fact that U ′ ∶ HC →HA′ ⊗HB′ is unitary so dC = dA′dB′ .

Now, the marginals over A′ and B′ are τA′ = TrB′C∗ τA′B′C∗ = 1A′

dA′
and τB′ = TrA′C∗ τA′B′C∗ = 1B′

dB′
.

By the Schmidt decomposition of τA′B′C∗ , the non-zero eigenvalues of τA′ are the same as those
of τB′C∗ . Since the Tsallis entropy depends only on the non-zero eigenvalues, Sq(A′) = Sq(B′C∗)
and hence

TrB′C∗ τ qB′C∗ = dA′
⎛
⎝

1
dqA′

⎞
⎠
= 1
dq−1
A′

. (4.20)
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By the same argument it follows that

TrA′C∗ τ qA′C∗ = dB′

⎛
⎝

1
dqB′

⎞
⎠
= 1
dq−1
B′

. (4.21)

Combining Equations (4.16)-(4.21), we have

Iq(A′ ∶ B′∣C∗)τ =
1

q − 1
⎛
⎝

1 + 1
dq−1
A′ d

q−1
B′

− 1
dq−1
A′

− 1
dq−1
B′

⎞
⎠
= f(q, dA′ , dB′) ∀q > 0 . (4.22)

Lemma 4.5.3. Let Eii ∶ S (HC)→S (HÃ ⊗HB̃) be a quantum channel of the form

Eii(⋅) = (UA ⊗UB)[∣φ⟩⟨φ∣EA ⊗U ′(⋅)U ′† ⊗ ∣ψ⟩⟨ψ∣EB](UA ⊗UB)†,

where U ′ ∶ HC →HA′ ⊗HB′, UA ∶ HEA ⊗HA′ →HÃ and UB ∶ HB′ ⊗HEB →HB̃ are arbitrary
unitaries and ∣φ⟩EA and ∣ψ⟩EB are arbitrary pure states. If ρÃB̃∣C is the corresponding Choi
state, then the Tsallis conditional mutual information evaluated on the state τÃB̃C∗ = 1

dC
ρÃB̃∣C ∈

S (HÃ ⊗HB̃ ⊗HC∗) satisfies

Iq(Ã ∶ B̃∣C∗)τ = f(q, dA′ , dB′) ∀q > 0.

Proof. Note that the map Eii is the unitary map Ei(⋅) = U ′(⋅)U ′† followed by local isometries VA
and VB on the A′ and B′ systems respectively. Since the expression for the conditional mutual
information Iq(Ã ∶ B̃∣C∗)τ can be written in terms of entropies, which are functions of the
eigenvalues of the relevant reduced density operators, and since the eigenvalues are unchanged
by local isometries, this conditional mutual information is invariant under local isometries. The
rest of the proof is identical to that of Lemma 4.5.2 resulting in

Iq(Ã ∶ B̃∣C∗)τ = Iq(A′ ∶ B′∣C∗)τ = f(q, dA′ , dB′) ∀q > 0. (4.23)

For the last case where Eiii(⋅) = TrA′′B′′ [(UA ⊗UB)[∣φ⟩⟨φ∣EA ⊗U ′(⋅)U ′† ⊗ ∣ψ⟩⟨ψ∣EB](UA ⊗UB)†],
one could intuitively argue that tracing out systems could not increase the mutual information
and one would expect that

Iq(AA′′ ∶ BB′′∣C∗)τ ≥ Iq(A ∶ B∣C∗)τ . (4.24)

Since Iq(AA′′ ∶ BB′′∣C∗)τ = Iq(A ∶ B∣C∗)τ + Iq(AA′′ ∶ B′′∣BC∗)τ + Iq(A′′ ∶ B∣AC∗)τ , Equa-
tion (4.24) would follow from strong subadditivity used twice i.e., Iq(AA′′ ∶ B′′∣BC∗)τ ≥ 0 and
Iq(A′′ ∶ B∣AC∗)τ ≥ 0. However, it is known that strong subadditivity does not hold in general
for Tsallis entropies for q > 1 [162]. Ref. [162] also provides a sufficiency condition for strong
subadditivity to hold for Tsallis entropies. In the following Lemma, we provide another, simple
sufficiency condition that also helps bound the Tsallis mutual information Iq(AA′′ ∶ B∣C)τ (or
Iq(A ∶ BB′′∣C)τ ) corresponding to the map Eiii where only one of A′′ or B′′ is traced out but
not both.
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Lemma 4.5.4 (Sufficiency condition for strong subadditivity of Tsallis entropies). If ρABC is
a pure quantum state, then for all q ≥ 1 we have Iq(A ∶ B∣C)ρ ≥ 0.

Proof. We have

Iq(A ∶ B∣C) = Sq(AC) + Sq(BC) − Sq(ABC) − Sq(C).

Since ρABC is pure we have Sq(ABC) = 0 ∀q > 0 and (from the Schmidt decomposition argument
mentioned earlier) Sq(AC) = Sq(B), Sq(BC) = Sq(A) and Sq(C) = Sq(AB). Thus,

Iq(A ∶ B∣C) = Sq(A) + Sq(B) − Sq(AB) = Iq(A ∶ B) ≥ 0,

which follows from subadditivity of quantum Tsallis entropies for q ≥ 1 [13]. In other words, for
pure ρABC , strong subadditivity of Tsallis entropies is equivalent to their subadditivity which
holds whenever q ≥ 1.
Corollary 4.5.1. Let E 1

iii ∶ S (HC)→S (HÃ ⊗HB) be a quantum channel of the form

E 1
iii(⋅) = TrB′′ [(UA ⊗UB)[∣φ⟩⟨φ∣EA ⊗U ′(⋅)U ′† ⊗ ∣ψ⟩⟨ψ∣EB](UA ⊗UB)†],

where U ′ ∶ HC →HA′ ⊗HB′, UA ∶ HEA ⊗HA′ →HÃ ≅ HA⊗HA′′ and UB ∶ HB′ ⊗HEB →HB̃ ≅
HB ⊗HB′′ are arbitrary unitaries and ∣φ⟩EA and ∣ψ⟩EB are arbitrary pure states. If ρÃB∣C is
the corresponding Choi state, then the Tsallis conditional mutual information evaluated on the
state τÃBC∗ = 1

dC
ρÃB∣C ∈ S (HÃ ⊗HB ⊗HC∗) satisfies

Iq(Ã ∶ B∣C∗) ∶= Iq(AA′′ ∶ B∣C∗)τ ≤ f(q, dA′ , dB′) ∀q ≥ 1.

Proof. Since Iq(AA′′ ∶ BB′′∣C∗)τ = Iq(AA′′ ∶ B∣C∗)τ +Iq(AA′′ ∶ B′′∣BC∗)τ , the purity of τÃB̃C∗ =
τAA′′BB′′C∗ and Lemma 4.5.4 imply that

Iq(AA′′ ∶ BB′′∣C∗)τ ≥ Iq(AA′′ ∶ B∣C∗)τ ,∀q ≥ 1,

or (equivalently) in more concise notation,

Iq(Ã ∶ B̃∣C∗)τ ≥ Iq(Ã ∶ B∣C∗)τ ∀q ≥ 1.

Finally, using Lemma 4.5.3 we obtain the required result.

Now, for Equation (4.24) to hold, we do not necessarily need strong subadditivity. Even if
Iq(A′′ ∶ B∣AC)τ ≥ 0 does not hold, Equation (4.24) would still hold if Iq(AA′′ ∶ B′′∣BC)τ+Iq(A′′ ∶
B∣AC)τ ≥ 0. This motivates the following conjecture.
Conjecture 4.5.1. Let Eiii ∶ S (HC)→S (HA ⊗HB) be a quantum channel of the form

Eiii(⋅) = TrA′′B′′ [(UA ⊗UB)[∣φ⟩⟨φ∣EA ⊗U ′(⋅)U ′† ⊗ ∣ψ⟩⟨ψ∣EB](UA ⊗UB)†],

where U ′ ∶ HC →HA′⊗HB′, UA ∶ HEA⊗HA′ →HA⊗HA′′ and UB ∶ HB′⊗HEB →HB⊗HB′′ are
arbitrary unitaries and ∣φ⟩EA and ∣ψ⟩EB are arbitrary pure states. If ρAB∣C is the corresponding
Choi state, then the Tsallis conditional mutual information evaluated on the state τABC∗ =
1
dC
ρAB∣C ∈ S (HA ⊗HB ⊗HC∗) satisfies

Iq(A ∶ B∣C∗)τ ≤ f(q, dA′ , dB′) ∀q ≥ 1.
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Notice that in Corollary 4.5.1 and Conjecture 4.5.1, the bounds are functions of dA′ and dB′

and not of the dimensions of the systems A and B (those in the quantity on the left hand
side). In the case that dA ≥ dA′ and dB ≥ dB′ , the fact that f(q, dA, dB) is a strictly increasing
function of dA and dB ∀q ≥ 0 allows us to write Iq(Ã ∶ B∣C∗)τ ≤ f(q, dÃ, dB) and Iq(A ∶ B∣C∗)τ ≤
f(q, dA, dB) under the conditions of Corollary 4.5.1 and Conjecture 4.5.1 respectively. However,
if dA ≤ dA′ and/or dB ≤ dB′ , the bounds f(q, dÃ, dB) and f(q, dA, dB) are tighter than the bound
f(q, dA′ , dB′) and so not implied. However, based on the several examples that we have checked,
we further conjecture the following.

Conjecture 4.5.2. Under the same conditions as Conjecture 4.5.1

Iq(A ∶ B∣C∗)τ ≤ f(q, dA, dB) ∀q ≥ 1.

Further, it is shown in [6] that if C is a complete common cause of A and B then the corre-
sponding Choi state, ρAB∣C decomposes as ρAB∣C = (ρA∣C ⊗ 1B)(1A ⊗ ρB∣C) or ρAB∣C = ρA∣CρB∣C
in analogy with the classical case where if a classical random variable Z is a common cause
of the random variables X and Y , then the joint distribution over these variables factorises
as pXY ∣Z = pX ∣ZpY ∣Z . Then we have that τABC∗ = 1

dC
ρAB∣C = 1

dC
ρA∣CρB∣C . By further analogy

with the classical results of Section 4.2, one may also consider instead a state of the form
σ̂ABCC∗ = σC ⊗ 1

dC
ρA∣CρB∣C = σC ⊗ τABC∗ , where σC ∈ S (HC).13 Note that σ̂ABCC∗ is a valid

density operator on HA ⊗HB ⊗HC ⊗HC∗ .

Lemma 4.5.5. The state σ̂ABCC∗ = σC ⊗ τABC∗ defined above satisfies

Iq(A ∶ B∣CC∗)σ̂ ≤ f(q, dA, dB) ,

whenever Iq(A ∶ B∣C∗)τ ≤ f(q, dA, dB) holds for the state τABC∗ = 1
dA
ρAB∣C, where ρAB∣C rep-

resents the quantum channel from C to A and B and σC is the input quantum state to this
channel.

Proof. Since σ̂ is a product state between the C and ABC∗ subsystems, by the pseudo-additivity
of quantum Tsallis entropies and the chain rule we have

Iq(A ∶ B∣CC∗)σ̂ = Sq(ACC∗) + Sq(BCC∗) − Sq(ABCC∗) − Sq(CC∗)
= Sq(AC∗) + Sq(BC∗) − Sq(ABC∗) − Sq(C∗)
− (q − 1)Sq(C) (Sq(AC∗) + Sq(BC∗) − Sq(ABC∗) − Sq(C∗))

= (1 − (1 − q)Sq(C))I(A ∶ B∣C∗)
= Tr(σqC)I(A ∶ B∣C∗) .

Now let pc be the distribution whose entries are the eigenvalues of σC . We have Tr(σqC) = ∑c p
q
c.

Thus if q > 1, ∑c p
q
c ≤ 1 with equality if and only if pc = 1 for some value of c. It follows that

Iq(A ∶ B∣CC∗)σ̂ ≤ Iq(A ∶ B∣C∗)τ .

Therefore, if Iq(A ∶ B∣C∗)τ ≤ f(q, dA, dB), we also have Iq(A ∶ B∣CC∗)σ̂ ≤ f(q, dA, dB).
13This is the analogue of the statement PABC = PCPA∣CPB∣C for probability distributions.

89



CHAPTER 4. ENTROPIC ANALYSIS OF CAUSAL STRUCTURES WITHOUT POST-SELECTION

4.5.2 LPAssumptions: A new linear program solver for Mathemat-
ica

Our new Tsallis entropic inequalities for the Triangle causal structure, presented in Section 4.3
were obtained using the LPAssumptions Mathematica package that we developed for solving
linear programs involving unspecified variables. The package is available as open source on
Github [62]. Here we provide a brief overview of the main functionality of this package and
how it was used for obtaining the results presented earlier in this chapter.

Linear programs are discussed in Section 2.2.3.1 of the preliminaries, but we restate the stan-
dard form of a linear program (according to the convention followed in this thesis) here for
completeness. A generic linear programming problem can be specified by giving a vector c, a
matrix M and a vector b such that the problem corresponds to

Minimize c.x
Subject to Mx ≥ b

x ≥ 0

Any linear programming problem can be written in this form and this is the same form as used
by Mathematica’s inbuilt LinearProgramming function. If c, M and b are completely specified
(i.e., consist of numerical values), LinearProgramming can already be used to solve the problem.
The aim of our package [62] is to also be able to cope with the case where there are unspecified
constants in vector c representing the objective function. For example, we might wish to opti-
mize x1+ax2, where a is an unspecified constant in the range 0 ≤ a ≤ 1, returning the solution for
all values of a in the range. In our case, for the results of Section 4.3, we optimised the entropic
expressions of Equations (4.7a)-(4.7c) with the Shannon entropies H() replaced by Tsallis en-
tropies Sq() over our outer approximation to the classical Tsallis entropy cone for the Triangle
causal structure. This outer approximation is characterised by the Shannon constraints and
our Tsallis entropic causal constraints (Corollary 4.2.2). The latter involve unspecified variables
other than those being optimised over, namely the dimensions/cardinality of the variables and
this optimisation cannot be performed using Mathematica’s inbuilt LinearProgramming function,
and requires our LPAssumptions package.

LPAssumptions works by using the two phase simplex algorithm [70] (Section 2.2.3.2). The al-
gorithm involves visiting adjacent vertices of the feasible region (a polyhedron), starting from an
initial vertex, until the vertex corresponding to the optimal solution is reached. The coefficients
of the objective function and the constraints are encoded in a tableau and at each step, the next
vertex to be visited is decided by checking the sign of certain elements in this tableau, which
would indicate whether or not moving to that vertex would improve the value of the objective
function. In our case, these elements of the tableau can depend on the additional unspeci-
fied variables in the problem. LPAssumptions relies on Mathematica’s Simplify[expr,assump]
command to decide on on the sign of these elements, which will then tell it how to proceed
through the computation. Here, expr is an inequality that checks for the sign and assump are
the constraints on the unspecified variables that can be input by the user, along with any addi-
tional assumptions on the expressions that are made during the computation. If Mathematica
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is unable to decide whether the inequality is true or false, the algorithm splits into two cases,
one in which it assumes expr is true, and the other in which it assumes it is false. It then carries
on adding additional assumptions as necessary until termination (or the number of iterations is
exceeded). Problems can arise if expr is true (or false) but Mathematica’s Simplify is unable to
determine this (see the examples notebook mentioned in the next paragraph for such a case).

The main function of the package, is LPAssumptions[c, M, b, assump, (Options)]. It takes as
input c (a vector corresponds to the objective function), M (the constraint matrix), b (the
constraint vector) and assump (any initial assumptions on the unspecified variables involved).
The output is a set of pairs {(constri,veci)}i, where constri specifies the set of constraints under
which the optimum is achieved by the vector veci. With no assumptions and no unspecified
variables, provided the problem is feasible and bounded, the answer given by LPAssumptions
should match that of LinearProgramming (up to the slightly different structure of the output).
Note that the current version of our package can only handle linear programs in which all the
additional, unspecified variables occur in the objective function. Linear programs where all such
variables occur in the constraint vector can also be solved using our program by the following
trick: convert the original LP to the desired form (variables appearing only in the objective
vector c) by taking the dual of the LP, solve the dual LP using LPAsssumptions and use the
duality theorems of Section 2.2.3.1 to obtain a solution for the original LP. We had to use this
trick for obtaining our results of Section 4.3.

A detailed explanation of the various functionalities and commands can be found in the user
manual we have made available along with the package [62], and a Mathematica notebook
(LPAssumptions_examples.nb) with examples illustrating the use of this package is available
at http://www-users.york.ac.uk/~rc973/LPAssumptions.html. In the examples, we also
show how to compute the local weight (defined in Appendix 5.6.3, see also [228, 66]) of a non-
signaling probability distribution where the distribution has unspecified parameters (specifically
we consider a noisy PR-box with inefficient detectors, see Section IV D F of [166]). This package
was also used in some of the results of [207] which are presented in Chapter 5.

4.5.3 Analysing causal structures using conditional Rényi entropies

Given the limitations of Shannon as well as Tsallis entropies found in [214] and the work
presented in this chapter [206], a natural question that arises is— what about other generalised
entropies? We already noted that other entropies like the Rényi, min or max entropies do not
satisfy the chain rule (Table 2.1). The chain rule is important for the entropy vector method
since it allows conditional entropies to be written in terms of unconditional ones (Equation (4.4))
and hence these need not be included as independent components of the entropy vector. In the
absence of a chain rule, one would need to include the conditional entropies involving all possible
subsets of nodes as additional components of the entropy vector, thereby significantly increasing
the dimensionality of the problem and one would expect this to make the computations harder.
This was an important motivation behind the choice of Tsallis entropies for the work presented
in this chapter. However, in some cases, it has been possible to obtain non-trivial results using
the entropic technique even in the absence of a chain rule [217].
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In a side project with Mirjam Weilenmann, we investigated the possibility of using Rényi
entropies for analysing causal structures. For this, we considered the conditional Rényi entropies
of Definition 2.3.9. Some of the properties of Rényi entropies and this conditional version were
discussed in Section 2.3.3 and summarised in Table 2.1, these include: the non-negativity of the
entropy i.e. Hα(X) ≥ 0, ∀α ≥ 0, additivity i.e., if PXY = PXPY , then Hα(XY ) =Hα(X)+Hα(Y )
∀α ≥ 0 [179], monotonicity i.e., Hα(X) ≤Hα(XY ) ∀α ∈ (0,1)∪(1,∞) [136] and the conditional
form of strong subadditivity, also known as data processing Hα(X ∣Y ) ≥ Hα(X ∣Y Z) ∀α ≥ 0
[120]. There are further properties of these entropies which are already known or can be easily
derived, as we show below. Importantly, one of these (Property 4.5.3) is a generalised chain
rule for the conditional Rényi entropies.

• Property 1: (Non-negativity of conditional entropy) Hα(X ∣Y ) ≥ 0 ∀α ≥ 1.

Proof. Since∑xP (x∣y)α ≤ ∑xP (x∣y) = 1 ∀y ∈ Y and α ≥ 1, we have that∑y P (y)∑xP (x∣y)α
≤ ∑y P (y) = 1 and hence log(∑y P (y)∑xP (x∣y)α) ≤ 0 ∀α ≥ 1. Thus Hα(X ∣Y ) ≥ 0
∀α ≥ 1.

• Property 2: (Independence) If PXY = PXPY , then Hα(X ∣Y ) =Hα(X) ∀α ≥ 0.
Note: This is a special case of Property 6 and will also be part of that in the implemen-
tation.

Proof. This directly follows from using P (xy) = P (x)P (y) ∀x ∈X,y ∈ Y in the definition
of the conditional Rényi entropy (Equation (2.36)),

Hα(X ∣Y ) = 1
1 − α log(∑

y

P (y)∑
x

P (x)α) = 1
1 − α log(∑

x

P (x)α) =Hα(X).

• Property 3: (Generalised chain rule) ∀α ∈ (0,1) ∪ (1,∞), ∀PXY Z ,

Hα(X ∣Y Z) ≥Hα(XZ ∣Y ) − log dZ

This is derived for quantum Rényi entropies in [148] and follows as a special case for our
classical definition.

• Property 4: (Conditional independence or entropic causal constraint) If PXY ∣Z = PX ∣ZPY ∣Z ,
then Hα(X ∣Y Z) =Hα(X ∣Z) or equivalently, Iα(X ∶ Y ∣Z) = 0 ∀α ≥ 0.

Proof. Using the conditional independence PXY ∣Z = PX ∣ZPY ∣Z ⇒ P (xyz) = P (x∣z)P (y∣z)P (z)
= P (x∣z)P (yz) ∀x ∈ X,y ∈ Y, z ∈ Z in the definition of the conditional Rényi entropy
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(Equation (2.36)) we have

Hα(X ∣Y Z) = 1
1 − α log(∑

xyz

P (xyz)αP (yz)1−α)

= 1
1 − α log(∑

xyz

P (x∣z)αP (yz)αP (yz)1−α)

= 1
1 − α log(∑

xz

P (x∣z)α∑
y

P (yz))

= 1
1 − α log(∑

xz

P (x∣z)αP (z)) =Hα(X ∣Z).

(4.25)

By the definition of the conditional mutual information, Iα(X ∶ Y ∣Z) = H(X ∣Y Z) −
H(Y ∣Z), it follows that Iα(X ∶ Y ∣Z) = 0 in this case.

• Property 5: (Monotonicity under conditioning) Hα(X ∣Z) ≤Hα(XY ∣Z) ∀α ≥ 0.

Proof. Noting that ∑y P (xy∣z)α ≤ (∑y P (xy∣z))α = P (x∣z)α ∀α ≥ 0, we have

Hα(XY ∣Z) = 1
1 − α log(∑

z

P (z)∑
x
∑
y

P (xy∣z)α)

≥ 1
1 − α log(∑

z

P (z)∑
x

P (x∣z)α) =Hα(X ∣Z).
(4.26)

Using these constraints to define the outer approximation to the classical Rényi entropy cone
for the bipartite Bell causal structure (Figure 3.1a), we applied the entropy vector method for
this case. The range of α for which all these constraints hold is α ≥ 1, and the following applies
to this range. The program terminated and no non-trivial entropic inequalities were obtained,
indicating that this outer approximation to the classical marginal Rényi entropy cone coincides
with the quantum one for this causal structure. This is the same outcome as the Shannon case
(α = 1) found in [214], while for the Tsallis case analysed in the main part of this chapter, we
found the problem to be computationally too costly and were hence unable to find any non-
trivial Tsallis entropic inequalities. In the Rényi case, the program ran for several days (5-7
days on a regular desktop PC), probably owing to the dimension-dependency of the generalised
chain rule (Property 4.5.3), suggesting that this method would be computationally costly for
larger causal structures such as the Triangle (Figure 2.6b).

In the presence of post-selection, we saw that the Shannon entropic Braunstein-Caves inequal-
ities (3.12) can be derived for the post-selected Bell causal structure of Figure 3.1b. These
are derived by using the monotonicity (2.22) and strong-subadditivity (2.24) (unconditional
form) on the entropies of the set {X0,X1, Y0, Y1}. In the Rényi case however, strong sub-
additivity does not hold in the unconditional form, and such inequalities cannot be derived
analogously. Implementing the entropy vector method for Rényi entropies in the post-selected
Bell causal structure, it was found by Mirjam that no non-trivial inequalities are obtained. We
believe that this failure to detect non-classicality using Rényi entropies is because the gener-
alised chain rule 4.5.3 is not a tight enough constraint, and as a consequence, the initial outer
approximation to classical entropy cone is not a good one.
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Entropic analysis of causal structures with post-selection

The results of Chapter 4 along with those of [214] have revealed important drawbacks of the
entropic technique for analysing causal structures in the absence of post-selection, using

Shannon, Tsallis and well as Rényi entropies. In the present chapter, we analyse the post-
selected Bell causal structure (Figure 3.1b) using entropies. We have seen that post-selection
allows for the derivation of non-trivial entropic inequalities (3.12) in causal structures such as
the Bell scenario that do not support a classical-quantum gap in the absence of post-selection
[214]. It is then natural to ask whether the non-classicality of a distribution can always be
detected through post-selected entropic inequalities such as those of Equation (3.12). For the
(d, d,2,2) Bell scenarios with d ≥ 2, this is known to be the case [44] in the following sense. For
every non-classical distribution in the (d, d,2,2) Bell scenario, there is a transformation that
does not make any non-classical distribution classical, and such that the resulting distribution
violates one of the BC entropic inequalities. The main purpose in this chapter is to investigate
whether a similar result holds for non-binary outcomes. To do so, we need to specify a class
of post-processing operations. The most general operations that we could consider are the
non-classicality non-generating (NCNG) operations, i.e., those that do not map any classical
distribution to a non-classical one. An interesting subset of these is the class of post-processings
achievable through local operations and shared randomness (LOSR), which are physical in the
sense that two separated parties with shared randomness could perform them.1 Because of
the difficulty of dealing with arbitrary NCNG operations, for the majority of our analysis we
consider LOSR supplemented with the additional (NCNG) operation where the parties are
exchanged (and convex combinations). We use LOSR+E to refer to this supplemented set.

We study the (2,2,3,3) Bell scenario with LOSR+E post-processing operations, to see whether
when applied to any non-classical distribution the result violates an entropic Bell inequality.
We investigate this using both Shannon and Tsallis entropies. Our motivation for considering

1In general NCNG operations used on the correlations prior to evaluating an entropic inequality need not
be physical in this sense.
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Tsallis entropies is that they are known to provide an advantage over the Shannon entropy
in detecting non-classicality in the absence of post-processing [213] in the sense that there
are non-classical distributions that violate Tsallis entropic inequalities but not the analogous
Shannon-entropic inequality. In the (2,2,2,2) case however, due to the result of [44], this
advantage is less apparent when post-processings are considered. It is unclear whether or not
this is also the case for the (2,2,3,3) scenario, and hence we consider Tsallis entropies in this
work. The present chapter is based on the paper [207] which is joint work with Roger Colbeck.

5.1 Summary of contributions: in words and in poetry

The result of [44] that Shannon inequalities are always sufficient for detecting distributions
that violate the CHSH inequality in the (2,2,2,2) scenario readily extends to the lifted-CHSH
inequalities of the (2,2,3,3) scenario (c.f. Corollary 5.4.1). We summarise this result in Sec-
tion 5.2. Due to Corollary 5.4.1, we are particularly interesting in the region containing non-
classical distributions that satisfy all the CHSH-type inequalities in the (2,2,3,3) scenario.
In Section 5.3, we find the vertex description of the convex polytope containing non-signaling
distributions in the (2,2,3,3) scenario that satisfy all the lifted-CHSH inequalities. We show
that every non-classical distribution in this polytope violates exactly one I2233-type inequality
(Proposition 5.3.1) and identify non-classical distributions in this region that violate entropic
inequalities. Further, in Section 5.4, we first consider a subset of the post-processing operations
LOSR + E, that correspond to mixing with a classical distribution, and identify a family of
non-classical distributions in Π{2,2,3,3}CHSH for which we conjecture that the non-classicality cannot
be detected through arbitrary Shannon entropic inequalities and a class of Tsallis entropic in-
equalities. In Section 5.4.2, we show analytically that if these conjectures hold, then they also
extend also the whole of LOSR + E. This suggests that post-selected entropic inequalities,
both of Shannon and Tsallis types, are in general insufficient for detecting non-classicality in
the bipartite Bell causal structure. Following the trend set in the previous chapter, a poetic
summary of this chapter is provided before delving into the technical results.

Recall, we found it hard to certify,
That a causal structure must be described,
By systems that obey non-classical physics,
Based on the entropies of the observed statistics.

But for some causal structures, we realise,
That an additional technique does materialise.
Post-selection provides a trick,
To detect non-classicality that would otherwise escape our grip.

But does it allow us to identify,
All the non-classical correlations that can arise?
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In some cases2, there’s indeed a technique [44],
But does it generalise? An answer we seek.

We consider a set of operations O you can do,
On correlations before their entropies are put to test,
For a subset M of O, our computations give a clue
That the final entropies fail to reveal non-classicality, even at their best.

If our computations for M are true,
We prove that they continue to be true for all of O,
Along the way, we get some related results too,
Through a minor geometric detour.

So it seems that post-selected entropic inequalities,
Be it of Shannon or the Tsallis kind,
Are insufficient for detecting non-classicality,
Even if we post-process our data before we try.

5.2 Existing result for the (2, 2, 2, 2) Bell scenario in en-
tropy space

The current section summarises the relevant results of [44] regarding the sufficiency of en-
tropic inequalities in the (2,2,2,2) scenario. As previously mentioned, it is possible for a
non-classical distribution to have the same entropy vector as a classical one and hence to be en-
tropically classical. For example, the maximally non-classical distribution in probability space,
PPR (Equation (3.5)) is entropically classical since it has the same entropy vector as the classical
distribution

PC =

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

(5.1)

and hence cannot violate any of the BC inequalities3. However, the distribution 1
2PPR + 1

2PC
maximally violates I4

BC ≤ 0 attaining a value of ln 2. That convex mixtures of non-violating
distributions can lead to a violation is due to the fact that entropic inequalities are non-linear
in the underlying probabilities (in contrast to the facet Bell inequalities in probability space).

2Particularly, this refers to
Bell scenarios with output cardinality two,
Here we consider,
Cardinalities of three or larger.

3PPR and PC are related by a permutation of the entries in the bottom right 2 × 2 block and entropies are
invariant under such permutations.
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In [44], it was shown that such a procedure is possible for every non-classical distribution
in the (d, d,2,2) Bell scenario with d ≥ 2 i.e., for every such distribution, there exists an
LOSR transformation such that the resultant distribution violates a Shannon entropic BC
inequality (3.12). Thus, non-classicality can be detected in this scenario by processing the
observed correlations (in a way that cannot generate non-classicality) before using a BC entropic
inequality on the result. In this sense the BC entropic inequalities provide a necessary and
sufficient test for non-classicality in these scenarios.

In more detail, for the (2,2,2,2) case this works as follows. First, one defines a special class of
distributions, isotropic distributions, as follows for some k ∈ {1,2, ...,8} ∶= [8] and ε ∈ [0,1].

P k
iso = εP k

PR + (1 − ε)Pnoise, (5.2)
where Pnoise is white noise i.e., the distribution with all entries equal to 1/4. In the (2,2,2,2)
Bell scenario the isotropic distribution P k

iso is non-classical if and only if ε > 1/2. The LOSR
transformation used in [44] involves first transforming the observed distribution into an isotropic
distribution through a local depolarisation procedure that cannot generate non-classicality.
Second, it is shown that for any non-classical isotropic distribution i.e., a P k

iso with ε > 1/2,
there exists a classical distribution P k

C such that the distribution P k
E,v = vP k

iso+(1−v)P k
C violates

one of the BC entropic inequalities for sufficiently small v > 0. In particular, the value of IkBC
for P k

E,v can be expanded for small v as

IkBC ≈ v

ln 4[f(ε) − (4ε − 2) ln v], (5.3)

where f(ε) is a function of ε, independent of v (see [44] for details). Thus for any ε > 1/2,
the corresponding isotropic distributions are non-classical and taking v arbitrarily small can
make IkBC positive which is a violation of the entropic inequality. We summarise the main result
of [44] for (2,2,2,2) Bell scenarios in the following Theorem (which is implicit in [44]).
Theorem 5.2.1. For every non-classical distribution, PXY ∣AB in the (2,2,2,2) Bell scenario,
there exists an LOSR transformation T , such that T (PXY ∣AB) violates one of the BC entropic
inequalities (3.12).

One of the aims of the present chapter is to study whether this result extends to the case where
the number of outcomes per party is more than two. In general, the (2,2, d, d) Bell polytope
for d > 2 has new, distinct classes of Bell inequalities and extremal non-signaling vertices other
than the CHSH inequalities and the PR boxes. We analyse this problem for the d = 3 case,
for which the following results pertaining to the (2,2,3,3) scenario in probability space will be
helpful.

5.3 New results for the (2, 2, 3, 3) Bell scenario in proba-
bility space

In this section we compute the vertex description of the CHSH-classical polytope, Π(2,2,3,3)CHSH , i.e.,
the polytope whose facets are the 648 CHSH inequalities and the positivity constraints of the

97



CHAPTER 5. ENTROPIC ANALYSIS OF CAUSAL STRUCTURES WITH POST-SELECTION

(2,2,3,3) Bell scenario. As previously mentioned, this will be the main region of interest in the
remainder of this work since the non-classicality of distributions not belonging to this region
can always be certified using Shannon-entropic inequalities (Corollary 5.4.1). The following
result allows us to significantly speed up the vertex enumeration problem.

Proposition 5.3.1. Every non-classical distribution in Π(2,2,3,3)CHSH violates only one I2233 inequal-
ity.

Proof. Let i ∈ {2,3, . . . ,432} and consider the linear program that maximises the value of ε ≥ 0
subject to there existing a non-signaling distribution that

• violates I1
2233 ≤ 2 and I i2233 ≤ 2 by at least ε, i.e., I1

2233 − ε ≥ 2 and I i2233 − ε ≥ 2;

• satisfies all CHSH-type inequalities.

We run over i ∈ {2,3, . . . ,432} and check that in all cases either the output of this linear program
is ε = 0 (meaning that the two I2233 inequalities can be jointly saturated but not violated) or
that the program is infeasible (the two I2233 inequalities cannot even be jointly saturated). By
symmetry it follows that no pair of I2233 inequalities can be simultaneously violated when all
the CHSH-type inequalities are satisfied.

Note that in the (2,2,3,3) scenario there exist extremal non-signaling distributions that violate
multiple Bell inequalities. For example, the distributions PNL (Equation (3.8)) and P ∗

NL (Equa-
tion (5.7)) violate I2233 ≤ 2 (c.f. Equation (3.6)) although only PNL violates it maximally. By
symmetry, PNL also violates another I2233 inequality. In addition, PNL violates the CHSH-type
inequality whose evaluation is equivalent to applying the output coarse-graining 0 ↦ 0, 1 ↦ 1
and 2↦ 1 for each party and then evaluating (3.3). This is in contrast to the (2,2,2,2) scenario
where there is a one-to-one correspondence between the extremal non-signaling vertices and the
CHSH inequalities in the sense that each such vertex violates exactly one CHSH inequality.4

Due to the symmetries, all the vertices of Π(2,2,3,3)CHSH can be enumerated by first finding all the
vertices for which the I2233 inequality of Equation (3.6) is saturated or violated i.e., I2233 ≥ 2,
and taking the orbit of these vertices under local relabellings and exchange of the parties. The
vertex enumeration for this case yields 47 extremal points of which 30 are the local deterministic
points that saturate I2233 ≥ 2 and 17 are non-classical points that violate only this inequality.
These are listed in Table 5.1. By applying all symmetries and removing duplicate vertices we
find that Π(2,2,3,3)CHSH has 7425 vertices (including the 81 local deterministic vertices).

4Note that this correspondence breaks down in the (2,2,3,3) scenario where it is possible for a CHSH-type
vertex to violate multiple CHSH-type inequalities (these correspond to the same 2-outcome CHSH inequality
after coarse-graining).
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5.4 New results for the (2, 2, 3, 3) Bell scenario in entropy
space

We now investigate whether entropic inequalities are necessary and sufficient for non-classicality
in the (2,2,3,3) Bell scenario. In (d, d,2,2) scenarios with d ≥ 2, only 2d Shannon entropic
inequalities are required for the Shannon entropic characterisation of the scenario [46, 90]; in
the (2,2,2,2), these are the four inequalities of (3.12). It may at first seem surprising that these
can always be used to decide whether a distribution is classical because the number of extremal
Bell inequalities grows very rapidly in d in the (d, d,2,2) scenario [66], and deciding whether
a distribution is classical is NP-complete [14]. The reduction in the number of inequalities in
entropy space is compensated by the need to identify a suitable post-processing operation (of
which there are uncountably many possibilities) in order to detect violations.

The first observation is a corollary of Theorem 5.2.1.

Corollary 5.4.1. Let PXY ∣AB be a distribution in the (2,2,3,3) Bell scenario that violates
at least one CHSH-type inequality. Then there exists an LOSR transformation T , such that
T (PXY ∣AB) violates one of the BC entropic inequalities (3.12).

Proof. For each CHSH-type inequality in the (2,2,3,3) scenario, there exists a coarse-graining
in which two of the outcomes are mapped to one (for each party and each input) such that
for any initial distribution in the (2,2,3,3) scenario that violates the CHSH-type inequality
the coarse-grained distribution violates one of the CHSH-inequalities in the (2,2,2,2) scenario.
Hence, for the given PXY ∣AB, after applying the corresponding coarse-graining for the violated
CHSH-type inequality, followed by the LOSR operation from Theorem 5.2.1 we violate one of
the BC entropic inequalities.

This corollary means that we can limit our analysis to Π(2,2,3,3)CHSH , the polytope in which all the
CHSH inequalities are satisfied, and, in particular, the non-classical region of this. This is the
region in which one of the I2233 inequalities is violated.

In going from the (2,2,2,2) to (2,2,3,3) scenario, a new class of inequalities (the I2233 inequali-
ties) become relevant in probability space but the entropic characterisation remains unchanged,
since entropic inequalities do not depend on the number of measurement outcomes. It is nat-
ural to ask whether all non-classical distributions in the (2,2,3,3) scenario that satisfy all the
CHSH inequalities cannot be certified entropically. However, this is not the case as shown by
the following proposition.

Proposition 5.4.1. The polytope Π(2,2,3,3)CHSH is not entropically classical.
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Figure 5.1: Plot of the I4
BC,q value as a function of the Tsallis parameter q for

the distribution pe (Equation (5.4)). As seen from the plot, the distribution violates
the BC inequality I4

BC,q ≤ 0 for q values between 1 (Shannon case) and just under 1.5
and the violation is maximum in the Shannon case, indicating that it is preferable to use
Shannon rather than Tsallis entropies with q > 1 in this case.

Proof. Consider the distribution

Pe ∶=
1
50

21 0 0 21 0 0
0 2 0 1 1 0
11 0 16 0 1 26
31 0 0 20 1 10
1 1 0 1 0 1
0 1 16 1 1 15

. (5.4)

This is formed by mixing the non-local extremal point number 8 of Π(2,2,3,3)CHSH (see Table 5.1)
with the three local deterministic points 18, 26 and 47 with respective weights 1/10, 3/10, 1/5
and 2/5, and hence is in Π(2,2,3,3)CHSH . It achieves a I4

BC value of 0.0199733, in violation of I4
BC ≤ 0,

so is not entropically classical.

We remark that by mixing with more local deterministic distributions and varying the weights,
larger violations of I4

BC ≤ 0 can be found; the distribution Pe used in the previous proposition
was chosen for its relative simplicity. Interestingly, we find that the Shannon entropic BC
inequalities appear to give the largest violation among the Tsallis entropic inequalities for q ≥ 1
when applied to Pe. This can be seen in Figure 5.1.

In light of Proposition 5.4.1, it is natural to ask whether the non-classicality of all distribu-
tions in Π(2,2,3,3)CHSH can be detected through entropic inequalities. We find numerical evidence
that suggests the contrary, i.e., that there are non-classical distributions in Π(2,2,3,3)CHSH whose
non-classicality cannot be detected through entropic inequalities using a general class of post-
processing operations, and hence that these entropic inequalities are not sufficient for detecting
non-classicality in the (2,2,3,3) scenario. Before presenting these results, we briefly overview
the post-processing operations considered in this work.
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Post-processing operations In this chapter we study whether entropic inequalities can
always detect non-classicality in the (2,2,3,3) Bell scenario. In order to do so we could in
principle consider applying any NCNG operation to the distribution prior to evaluating the
entropic inequality. However, due to the difficulty in dealing with arbitrary NCNG operations,
we consider the subset of these corresponding to LOSR+E instead. In [222] it was shown that
all LOSR operations can be generated by convex combinations of local deterministic operations.
These can be thought of in the following way. Each party first does a deterministic function
on their input, uses the result as the input to their device, then does a deterministic function
on their input and the output of their device to form the final output. All such operations
correspond to local relabellings and local coarse-grainings. Note that deterministic classical
distributions can be formed as a special case of coarse-graining (a local deterministic distribu-
tion is formed when each party coarse-grains all of their outputs to one output for each of their
inputs). For the distributions we consider for our main conjectures, it turns out that all the
coarse-grainings give rise to local distributions (c.f. Proposition 5.4.5), so, by considering mix-
ing with deterministic classical distributions, local relabelling and exchange of parties we can
cover all LOSR+E operations. We hence start by separately considering mixing with classical
distributions, and then consider relabelling and exchange of parties.

5.4.1 Mixing with classical distributions

Analogously to the (2,2,2,2) case, we can define a family of distributions P (2,2,3,3)iso,ε = εPNL +
(1 − ε)P (2,2,3,3)noise , where P (2,2,3,3)noise is the uniform distribution with all entries equal to 1/9 and
ε ∈ [0,1]. This class of distributions is isotropic in the sense that the marginal distributions are
uniform for each input of each party. In order to show the insufficiency of entropic inequalities,
one needs to identify at least one non-classical distribution whose non-classicality cannot be
detected through entropic inequalities. We will discuss this for the class P (2,2,3,3)iso,ε and only
consider distributions of this form in the rest of the chapter. Further, without loss of generality,
we consider only the BC inequality I4

BC ≤ 0 in what follows (by symmetry all the arguments
will also hold for isotropic distributions corresponding to relabelled versions of PNL and the
corresponding BC inequalities).

5.4.1.1 Using Shannon entropy

In the entropic picture of the (2,2,3,3) scenario, the 4 BC Inequalities (3.12) still hold (these
are valid independently of the cardinality of the random variables). Again, analogously to the
(2,2,2,2) case, the maximally non-local distribution, PNL has the same entropy vector as the
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classical distribution

P
(2,2,3,3)
C =

1
3 0 0 1

3 0 0
0 1

3 0 0 1
3 0

0 0 1
3 0 0 1

3
1
3 0 0 1

3 0 0
0 1

3 0 0 1
3 0

0 0 1
3 0 0 1

3

(5.5)

(amongst others). The distribution PNL is hence entropically classical. However, in contrast to
the (2,2,2,2) case, we have evidence suggesting that there are values of ε for which P

(2,2,3,3)
iso,ε

is non-classical, but such that the mixture vP (2,2,3,3)iso,ε + (1 − v)PL is entropically classical for
all classical distributions PL and all v ∈ [0,1], i.e., there exist non-classical distributions in the
(2,2,3,3) scenario for which mixing with classical distributions never gives rise to a non-classical
entropy vector.

We begin by considering mixing P (2,2,3,3)iso,ε with P
(2,2,3,3)
C in analogy with the treatment of the

(2,2,2,2) case. Although we have not fully proven this, from our numerics, this mixing appears
to be optimal in the sense that when it does not allow for entropic violations, no other mixing
can either. This allows us to identify a range of ε for which the mixture P (2,2,3,3)iso,ε is non-
classical, yet appears to remain entropically classical even when mixed with arbitrary classical
distributions. We begin with two propositions whose proofs can be found in Appendix 5.6.3.

Proposition 5.4.2. P (2,2,3,3)iso,ε is non-classical if and only if ε > 1/2. Further, for ε ≤ 4/7,
P
(2,2,3,3)
iso,ε satisfies all the CHSH-type inequalities, while for ε > 4/7 it violates at least one CHSH-

type inequality.

By analogy with the (2,2,2,2) case, we consider the violation of I4
BC attainable by mixing

P
(2,2,3,3)
iso,ε with P

(2,2,3,3)
C . We find that for ε ∈ (1/2,4/7], P (2,2,3,3)iso,ε is non-classical but does not

violate any of the BC inequalities. As shown in the above proposition, these distributions are
in the CHSH-classical polytope Π(2,2,3,3)CHSH and hence lie in our region of interest.

Proposition 5.4.3. For ε ≤ 4/7, P (2,2,3,3)E,ε,v = vP (2,2,3,3)iso,ε + (1 − v)P (2,2,3,3)C does not violate any of
the BC entropic inequalities (3.12) for any v ∈ [0,1]. However, for all ε > 4/7, there exists a
v ∈ [0,1] such that the entropic inequality I4

BC ≤ 0 is violated by P (2,2,3,3)E,ε,v .

The second part of this proposition already follows from Corollary 5.4.1 and Proposition 5.4.2.

Corollary 5.4.2. For ε ≤ 4/7, P (2,2,3,3)E,ε,v = vP (2,2,3,3)iso,ε + (1− v)P (2,2,3,3)C is entropically classical for
all v ∈ [0,1].

Proof. This follows from Proposition 5.4.3 and Lemma 3.2.1.

While Proposition 5.4.3 shows that the proof strategy of [44] does not directly generalize to
all non-classical distributions in the (2,2,3,3) case, it does not rule out the possibility that
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there may exist other mixings with classical distributions that could transform P
(2,2,3,3)
iso,ε for

ε ∈ (1/2,4/7] into a distribution that violates one of the BC inequalities. To investigate this,
we can consider the polytope formed by mixing P (2,2,3,3)iso,ε with classical distributions for some
ε ≤ 4/7, i.e., the polytope Conv({P (2,2,3,3)iso,ε }⋃{P L,k}k), where {P L,k}k denotes the set of all
(81) local deterministic vertices of the (2,2,3,3) Bell-local polytope, {P (2,2,3,3)iso,ε } is a set with a
single element and Conv() denotes the convex hull. We considered several values of ε ≤ 4/7 and
numerically optimised the entropic expression I4

BC over the non-classical region of this polytope5

for each6 and were unable to find violations. The optimization involves a non-linear objective
function with linear constraints. Hence, it is possible that the numerical approach missed the
global optimum. Nevertheless, this is evidence for the following conjecture and is presented
in more detail in Appendix 5.6.2. Proposition 5.4.3 along with Figures 5.2 and evidence in
Appendix 5.6.2 also suggest this conjecture.

Conjecture 5.4.1. Let ε ≤ 4/7. For all mixtures of the distribution P
(2,2,3,3)
iso,ε with classical

distributions in the (2,2,3,3) Bell scenario, the resulting distribution is entropically classical,
i.e., all distributions in Conv({P (2,2,3,3)iso,ε }⋃{pL,k}k}) are entropically classical.

The interesting cases of Conjecture 5.4.1 are for non-classical distributions (i.e., for ε > 1/2),
and the most relevant of these are those that can be achieved in quantum theory. The next
remark addresses this case.

Remark 5.4.1. There exist non-classical quantum distributions that lie in the polytope
Conv({P (2,2,3,3)iso,ε=4/7}⋃{P L,k}k}) and in this case, our results suggest that the non-classicality of the
corresponding distributions cannot be detected through entropic inequalities. Let PQM be the
quantum distribution from [64, Equation (14) with d = 3] with Bob’s inputs relabelled. This
violates I4

BC ≤ 0 through mixing with P (2,2,3,3)C . Consider then mixing PQM with uniform noise
P
(2,2,3,3)
noise to obtain Pmix(u) ∶= uPQM + (1−u)P (2,2,3,3)noise (u ∈ [0,1]). We found that for some values

of u (e.g., u = 7/10), Pmix(u) is non-classical. Further, Pmix(u) is quantum achievable since it
can be obtained from the density operator u∣ψ′⟩⟨ψ′∣+(1−u) I

9 (where ∣ψ′⟩ is the two qutrit state
producing PQM) and the same quantum measurements that produce PQM from ∣ψ′⟩.

5.4.1.2 Using Tsallis entropies

Given the results (Proposition 5.4.3 and Conjecture 5.4.1) of the previous section for Shannon
entropic inequalities, a natural question is whether other entropic measures can provide an
advantage over the Shannon entropy in detecting non-classicality. Here, we look at Tsallis
entropies and find that similar results hold in this case as well, suggesting that Tsallis entropies
also do not allow us to completely solve the problem.

5To restrict to the non-classical region, it is sufficient to mix with a subset of these 81 locals— see Ap-
pendix 5.6.2 for more detail.

6Note however that it is enough that these results hold for one value of ε ∈ (1/2,4/7] in order to conclude
that entropic inequalities are not sufficient for detecting non-classicality in this scenario.
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The properties of monotonicity, strong-subadditivity and the chain rule are sufficient to derive
the BC inequalities, which hence also hold for Tsallis entropy when q ≥ 1. Other generalized
entropies such as Rényi or min/max entropies do not satisfy one or more of these properties in
general and it is not clear whether the analogues of (3.12) hold for these. In the Rényi case,
we saw in Appendix 4.5.3 that no analogous inequalities were obtained. Hence we focus on the
case of Tsallis entropies in the remainder of this chapter, where for all q ≥ 1 we have

I1
BC,q = Sq(X0Y0) + Sq(X1) + Sq(Y1) − Sq(X0Y1) − Sq(X1Y0) − Sq(X1Y1) ≤ 0
I2

BC,q = Sq(X0Y1) + Sq(X1) + Sq(Y0) − Sq(X0Y0) − Sq(X1Y0) − Sq(X1Y1) ≤ 0
I3

BC,q = Sq(X1Y0) + Sq(X0) + Sq(Y1) − Sq(X0Y0) − Sq(X0Y1) − Sq(X1Y1) ≤ 0
I4

BC,q = Sq(X1Y1) + Sq(X0) + Sq(Y0) − Sq(X0Y0) − Sq(X0Y1) − Sq(X1Y0) ≤ 0

(5.6)

and we refer to these as the Tsallis entropic BC inequalities. Entropic classicality in Tsallis
entropy space can be defined analogously to Definition 3.2.4, in terms of Tsallis entropy vectors
over the set of variables S (Equation (3.11)). We say that a distribution is q-entropically
classical if its entropy vector written in terms of the Tsallis entropy of order q is achievable
using a classical distribution. In the case of the Shannon entropy, we used the fact (Lemma 3.2.1)
that the BC Inequalities (3.12) are known to be necessary and sufficient for entropic classicality
for 2-input Bell scenarios [90]. However, it is not clear if the result of [90] generalises to Tsallis
entropies for q > 1. Thus our results in the Tsallis case are weaker than those for Shannon, being
stated only for the BC inequalities. We leave the generalization to arbitrary Tsallis entropic
inequalities as an open problem.

Proposition 5.4.4. For ε ≤ 4/7, P (2,2,3,3)E,ε,v = vP (2,2,3,3)iso,ε + (1 − v)P (2,2,3,3)C does not violate any of
the Tsallis BC inequalities (5.6) for any v ∈ [0,1] and q > 1. However, for ε > 4/7 and every
q > 1, there always exists a v ∈ [0,1] such that the entropic inequality I4

BC,q ≤ 0 is violated by
P
(2,2,3,3)
E,ε,v .

We refer the reader to Appendix 5.6.3 for a proof of this Proposition. To investigate the
extension to other mixings, we tried the same computational procedure (see Appendix 5.6.2)
as in the Shannon case. We found no violation of the Tsallis entropic BC inequalities for any
mixings of P (2,2,3,3)iso,ε with classical distributions, for several values of q > 1 and ε ∈ (1/2,4/7],
leading to the following conjecture, which is similar to Conjecture 5.4.1.

Conjecture 5.4.2. Let ε ≤ 4/7. For all mixtures of the distribution P (2,2,3,3)iso,ε with classical distri-
butions in the (2,2,3,3) Bell scenario, the resulting distribution does not violate any of the Tsal-
lis entropic BC inequalities for any q > 1, i.e., all distributions in Conv({P (2,2,3,3)iso,ε }⋃{P L,k}k)
satisfy the Tsallis entropic BC Inequalities (5.6) for all q > 1.

Figure 5.2a, shows the values of ε and v for which I4
BC,q (for q = 1,2,8) evaluated with P (2,2,3,3)E,ε,v

is positive, which is also suggestive of this conjecture.

Remark 5.4.2. Any impossibility result for the (2,2,3,3) scenario also holds in the (2,2, d, d)
case for d > 3 because the former is always embedded in the latter i.e., every distribution in the
(2,2,3,3) scenario has a corresponding distribution in all the (2,2, d, d) scenarios with d > 3
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which can be obtained by assigning a zero probability to the additional outcomes. Further, the
entropic Inequalities (3.12) remain the same for all these scenarios as they do not depend on
the cardinality of the random variables involved. Thus the existence non-classical distributions
for the d = 3 case whose non-classicality cannot be detected by entropic inequalities implies the
same result for all d > 3.

5.4.2 Beyond classical mixings

So far, we only considered mixing with classical distributions to obtain entropic violations and
gave evidence that this does not work for some non-classical distributions in the (2,2,3,3)
scenario. This motivates us to study whether using arbitrary LOSR+E operations allows us
to detect this non-classicality through entropic violations. We show in this section that if
Conjectures 5.4.1 and 5.4.2 hold then they also hold for all LOSR+E operations. First consider
the following example.

The maximum possible violation of the BC inequalities in the (2,2,2,2) case is I4
BC = ln 2 [44].

This is derived by considering only Shannon inequalities within the coexisting sets, and the
bound that the maximum entropy of a binary variable is ln 2. An analogous proof holds in the
(2,2,3,3) case, except that the bound is then ln 3. In the former case we have PE,ε=1,v=1/2 =
1
2PPR + 1

2PC, which maximally violates I4
BC ≤ 0, while in the latter case, one such distribution is

formed by (PNL + P ∗
NL + P

(2,2,3,3)
C )/3, where P ∗

NL is another extremal non-local distribution:

P ∗
NL =

1
3 0 0 1

3 0 0
0 1

3 0 0 1
3 0

0 0 1
3 0 0 1

3
1
3 0 0 0 0 1

3
0 1

3 0 1
3 0 0

0 0 1
3 0 1

3 0

. (5.7)

Since the equal mixture (PNL + P (2,2,3,3)C )/2 violates I4
BC ≤ 0 non-maximally, one may be moti-

vated to use the non-local distribution P̃NL = (PNL +P ∗
NL)/2 in place of PNL in the definition of

P
(2,2,3,3)
iso,ε , i.e., to take

P̃
(2,2,3,3)
iso,ε = εP̃NL + (1 − ε)P (2,2,3,3)C .

One could then consider whether for ε ∈ (1/2,4/7], P̃ (2,2,3,3)E,ε,v = vP̃ (2,2,3,3)iso,ε +(1−v)P (2,2,3,3)C violates
I4

BC ≤ 0. Interestingly, while P̃ (2,2,3,3)E,ε,v violates I4
BC ≤ 0 for a larger range of v values whenever

ε > 4/7, it does not give any violation (for any value of v) when ε ≤ 4/7, and Propositions 5.4.2
and 5.4.3 also hold if P̃ (2,2,3,3)iso,ε replaces P (2,2,3,3)iso,ε (see Figure 5.2b for an illustration). The
corresponding results also hold for the Tsallis case with q > 1, i.e., Proposition 5.4.4 also
holds with P̃

(2,2,3,3)
iso,ε replacing P (2,2,3,3)iso,ε (see also Figure 5.2). These suggest that mixing with

relabellings in addition to mixing with classical distributions may also not help to violate
entropic inequalities when ε ≤ 4/7.
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(a) (b)

Figure 5.2: The regions in the v − ε plane where the Shannon entropic inequality
I4

BC,1 ∶= I
4
BC ≤ 0 (blue), the Tsallis entropic inequality, I4

BC,q ≤ 0 for q = 2 (orange) and
q = 8 (red) are violated by the distributions (a) P (2,2,3,3)E,ε,v = vP

(2,2,3,3)
iso,ε + (1 − v)P (2,2,3,3)C

(b) P̃ (2,2,3,3)E,ε,v = vP̃
(2,2,3,3)
iso,ε + (1 − v)P (2,2,3,3)C . Here P (2,2,3,3)iso,ε = εPNL + (1 − ε)P (2,2,3,3)noise and

P̃
(2,2,3,3)
iso,ε = ε(1/2PNL + 1/2P ∗

NL) + (1 − ε)P (2,2,3,3)noise . For both (a) and (b) I4
BC,q ≤ 0 is not

violated when ε ≤ 4/7 ≈ 0.5714 but for ε > 4/7, there is a violation of this inequality for a
larger range of v values in the latter case, and also for a larger range in the q = 2 case as
compared to the other two cases.

In the remainder of this section we consider the full set of LOSR+E operations. We first
note that all input coarse-grainings of P (2,2,3,3)iso,ε result in local distributions (there are no Bell
inequalities if either of the parties have only one input). Similarly, considering output coarse-
grainings, whenever three outcomes are mapped to one the resulting distribution is always
classical because there are no Bell inequalities if one party always makes a fixed outcome for
one of their inputs. We henceforth only consider coarse-grainings that take two outcomes to
one. We can choose two of the three outcomes to combine into one for each party and each
local input. For the four input choices {A = 0,A = 1,B = 0,B = 1}, there are 81, 108, 54 and 12
distinct coarse-grainings of this type when the outcomes of either 4, 3, 2 or 1 input choices are
coarse-grained. Thus there are a total of 255 coarse-grainings that remain.

If we apply all such coarse-grainings to P (2,2,3,3)iso,ε , this generates 255 possible distributions that
we denote {PCG,i

ε }i, i ∈ [255]. There are also 432 distinct local relabellings of P (2,2,3,3)iso,ε , which
we denote by {PR,j

ε }j, j ∈ [432] (this set includes P (2,2,3,3)iso,ε = PR,1
ε ). Due to symmetries of

P
(2,2,3,3)
iso,ε , it turns out that exchanging parties can be achieved through local relabellings for these

distributions, so we do not need to separately consider the exchange in our results pertaining to
P
(2,2,3,3)
iso,ε . The set of all distributions that can be achieved through a convex mixture of P (2,2,3,3)iso,ε

with its coarse-grainings, relabellings and classical distributions is a convex polytope Πε for
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each ε and is the convex hull of these 255 + 432 + 81 = 768 points, i.e.,

Πε ∶= Conv ({PCG,i
ε }i⋃{PR,j

ε }j⋃{P L,k}k}) .

We present the results for the remaining coarse-grainings and relabellings separately below.
Firstly, we show that the coarse-grainings {PCG,i

ε }i of P (2,2,3,3)iso,ε are classical if and only if ε ≤ 4/7.

Proposition 5.4.5. The distribution PCG,i
ε is classical for all i if and only if ε ≤ 4/7.

This is intuitive because P (2,2,3,3)iso,ε satisfies all the CHSH-type inequalities if and only if ε ≤ 4/7.
Since coarse-grainings cannot generate non-classicality and correspond to reducing the number
of outcomes, and since I2233 requires three outcomes, after coarse-graining the only relevant
thing is whether there is a CHSH-violation. A full proof is given in Appendix 5.6.3.

Proposition 5.4.5 implies that Πε = Conv({PR,j
ε }j ⋃{P L,k}k) ∀ε ≤ 4/7, and that it is not nec-

essary to consider coarse-grainings for such values of ε. Our next results are that if Conjec-
tures 5.4.1 and 5.4.2 hold for P (2,2,3,3)iso,ε for ε ≤ 4/7, then they continue to hold even when we
consider arbitrary convex combinations with classical distributions and local relabellings of
P
(2,2,3,3)
iso,ε .

Proposition 5.4.6. Let ε ≤ 4/7. If Conjecture 5.4.1 holds, then every distribution in Πε is
Shannon entropically classical.

Proposition 5.4.7. Let ε ≤ 4/7. If Conjecture 5.4.2 holds, then every distribution in Πε satisfies
the Tsallis entropic BC Inequalities (5.6) ∀q > 1.

These are proven in Appendix 5.6.3 and give the following corollary.

Corollary 5.4.3. Let ε ≤ 4/7. If Conjectures 5.4.1 and 5.4.2 hold, then for any operation O in
LOSR+E, O(P (2,2,3,3)iso,ε ) does not violate a Shannon or Tsallis (q > 1) entropic BC inequality.

5.5 Discussion

We have provided evidence that there are distributions in the (2,2, d, d) (d ≥ 3) scenarios for
which arbitrary LOSR+E operations do not enable detection of non-classicality with any Shan-
non entropic inequalities or Tsallis entropic BC inequalities. This is in contrast to the (2,2,2,2)
case [44], where non-classicality can always be certified using the Shannon BC inequalities and
LOSR post-processings. The region where the BC inequalities can fail to detect non-classicality
would contain non-classical distributions that satisfy all CHSH-type Bell inequalities. We found
all the vertices that characterize this region for the d = 3 case and identified distributions in
it that violate BC entropic inequalities. Thus, the set of all non-classical distributions in the
(2,2,3,3) scenario that cannot be certified through entropic inequalities under LOSR+E post-
processings is not characterized by the CHSH-type inequalities.
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Although we considered LOSR+E operations, a natural next question is to what extent the
results can be generalized to more general NCNG operations. In particular, there could be
a non-linear NCNG map that allows the entropic BC inequalities to detect a wider range of
non-classical distributions. An interesting open question would be to see whether for any non-
classical distribution of the form P

(2,2,3,3)
iso,ε with 1/2 < ε ≤ 4/7 (conjectured to be entropically

classical with respect to LOSR+E), one of these more general operations would allow its non-
classicality to be detected entropically.

In [213] it was shown that (without post-processing) Tsallis entropic inequalities can detect
non-classicality undetectable by Shannon entropic inequalities in the (2,2,2,2) and (2,2,3,3)
Bell scenarios. In the presence of LOSR+E operations, we did not find any advantage of Tsallis
entropies over the Shannon entropy in the (2,2,3,3) Bell scenario. In fact, for some non-classical
distributions such as that of Equation (5.4), the Shannon entropic inequalities appear to give
the largest violations among Tsallis entropies with q ≥ 17. On the other hand, for the family
of distributions P (2,2,3,3)iso,ε , our results suggest that the range of ε for which post-processing via
mixing with classical distributions enables non-classicality detection is the same for the Shannon
as well as Tsallis entropic BC inequalities for q > 1. However, when entropic detection of non-
classicality is possible, using Tsallis entropy can make it easier to do this detection in the sense
that there is a wider range of mixings that achieve this (see Figure 5.2).8

In conclusion, while the entropic approach for detecting non-classicality is useful in a number
of scenarios, it is known to have disadvantages in others. In particular, in the absence of post-
selection we are not aware of any cases where entropic inequalities can be violated [214, 216, 206].
We found that the entropic approach also suffers drawbacks in the presence of post-selection as
it may fail to detect non-classicality under a natural class of post-processing operations, both
in the case of Shannon and Tsallis entropies. However, this method remains of use since in
many cases non-classicality can be detected using it.

5.6 Appendix

5.6.1 V-representation of the polytope Π(2,2,3,3)
CHSH

Table 5.1 enumerates the 47 extremal points of the polytope Π(2,2,3,3)CHSH that saturate or violate the
inequality I2233 ≤ 2 (3.6) while satisfying all the CHSH-type inequalities in the (2,2,3,3) Bell

7Which corresponds to those for which the BC inequalities can be derived in the classical case
8As a specific example, consider the distribution P

(2,2,3,3)
E,ε=0.7,v=0.4. Figure 5.2a indicates that this distribu-

tion violates the Tsallis entropic inequality I4
BC,q=2 ≤ 0 but does not violate the Shannon entropic inequality

I4
BC ≤ 0. However, we can always further mix P (2,2,3,3)E,ε=0.7,v=0.4 with the classical distribution P

(2,2,3,3)
C to obtain

0.05P (2,2,3,3)E,ε=0.7,v=0.4 + 0.95P (2,2,3,3)C = 0.02P (2,2,3,3)iso,ε + 0.98P (2,2,3,3)C which violates the Shannon entropic inequality
I4
BC ≤ 0. This is also in agreement with the results of [213], since when mixing is not considered, we also find
examples where it is advantageous to use Tsallis entropy in the (2,2,3,3) scenario.
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scenario. The first 17 of these are non-classical while the remaining 30 are local deterministic
vertices. Due to Proposition 5.3.1 and the symmetries of the scenario, the remaining vertices
of Π(2,2,3,3)CHSH can be generated by taking the orbit of these vertices under local relabellings and
exchange of parties. In Table 5.1, each extremal point is given by a single 36 dimensional vector
which corresponds to writing the point in the notation explained in Section 3.1 (a 6×6 matrix)
and “flattening” it by writing one row after another in order.

5.6.2 Evidence for Conjectures 5.4.1 and 5.4.2

In order to check for violations of the Shannon and Tsallis entropic inequalities I4
BC ≤ 0

and I4
BC,q ≤ 0 that could be obtained by mixing P

(2,2,3,3)
iso,ε (Equation (3.8)) with arbitrary

classical distributions, we maximized the left hand sides of these inequalities over the poly-
tope Conv({P (2,2,3,3)iso,ε }⋃{P L,k}k) for some ε values in (1/2,4/7] (such as ε = 4/7,5/9) nu-
merically using Mathematica. Note that this polytope contains the local polytope where
by definition, entropic inequalities cannot be violated. Thus we can simplify the optimiza-
tion and increase its reliability by only optimizing over the non-classical part of the poly-
tope Conv({P (2,2,3,3)iso,ε }⋃{P L,k}k). We find this region as follows. For 1/2 < ε ≤ 4/7, we know
from Proposition 5.4.2 that P (2,2,3,3)iso,ε is non-classical but does not violate any of the CHSH
inequalities, while it violates I2233 ≤ 2 (3.6). By Proposition 5.3.1, this is the only Bell in-
equality that P (2,2,3,3)iso,ε violates for this range of ε. Thus, the non-classical part of the polytope
Conv({P (2,2,3,3)iso,ε }⋃{P L,k}k) is the convex hull of P (2,2,3,3)iso,ε and all the local deterministic points
that satisfy I2233 = 2. These are the 30 local deterministic points of Table 5.1. Hence we only
need to optimise over convex combinations of P (2,2,3,3)iso,ε with these 30 points and not all 81 lo-
cal deterministic points, which reduces the size of the optimization (number of variables) and
increases the chances of it being effective in detecting entropic violations if there are any.

Performing the optimization as outlined above, we found the maximum value to always be
non-positive for both Shannon case and the Tsallis case with q = 1.1,2,3,10,50. We obtained
similar results when taking other values of ε ≤ 4/7 in the distribution P (2,2,3,3)iso,ε and also when
considering the inequalities I iBC,q for i ∈ {1,2,3}. This suggests that no point in the polytope
Conv({P (2,2,3,3)iso,ε }⋃{P L,k}k) violates any of the (Shannon or Tsallis entropic) BC inequalities
for ε ≤ 4/7. For ε > 4/7, some mixing of P (2,2,3,3)iso,ε with P (2,2,3,3)C gives a distribution that violates
I4

BC,q ≤ 0 ∀q ≥ 1 (c.f. Proposition 5.4.3). Note that in the Shannon (q = 1) case, the range of
values of the mixing parameter v for which a violation can be found becomes arbitrarily small
as ε approaches 4/7 from above (see Figure 5.2). This limits the effectiveness of numerical tests
for q close to 1. For instance, in the Shannon case our program was not able to detect violations
of I4

BC ≤ 0 for ε < 4.2/7 (even though our analytic argument shows that these are present), while
it was for ε ≥ 4.2/7. Similarly, for the q = 2 Tsallis case, violations of I4

BC,2 ≤ 0 could be found
for ε ≥ 4.00001/7, but not below. The reason for this difference is in line with what one might
expect by comparing the plots in Figure 5.2, where for ε > 4/7 the range of values of v for which
a violation is possible is larger in the q = 2 case. This highlights an advantage of using Tsallis
entropy and gives us further confidence that for 1/2 ≤ ε < 4/7 there is no violation.
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Number Vertex
1 1

6(1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 2, 0, 0)
2 1

6(1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 0, 0, 2, 1, 1, 0)
3 1

6(1, 1, 0, 2, 0, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0)
4 1

6(2, 0, 0, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0)
5 1

5(1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0)
6 1

5(1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 2, 1, 1, 0)
7 1

5(1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0)
8 1

5(1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0)
9 1

5(1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0)
10 1

5(1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 1, 0)
11 1

5(1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0)
12 1

5(1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0)
13 1

5(1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0,1, 0, 1, 1, 2, 0, 0)
14 1

5(1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0)
15 1

5(1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0)
16 1

5(2, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0)
17 1

9(2, 1, 0, 2, 0, 1, 0, 2, 1, 1, 2, 0, 1, 0, 2, 0, 1, 2, 2, 0, 1, 0, 2, 1, 1, 2, 0, 1, 0, 2, 0, 1, 2, 2, 1, 0)
18 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)
19 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0)
20 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
21 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0)
22 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
23 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0)
24 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
25 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
26 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
27 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
28 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0)
29 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
30 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0)
31 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
32 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0)
33 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
34 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
35 (0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0)
36 (0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
37 (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
38 (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0)
39 (0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
40 (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0)
41 (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
42 (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
43 (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
44 (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
45 (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0)
46 (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
47 (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Table 5.1: The vertices of Π(2,2,3,3)CHSH that saturate or violate the I2233 Inequality (3.6). All
the vertices of the polytope can be obtained from the vertices listed here through local relabellings or
exchange of parties.
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However, because of the form of our objective function, the optimisation methods available do
not guarantee to find the global maximum. Thus, our findings only constitute evidence for
the conjectures and are not conclusive. In general, finding global optima for non-linear, non-
convex/concave functions is an open question. A potential avenue for proving these conjectures
is using DC (difference of convex) programming [118] since our objective function being a linear
combination of entropies is a difference of convex functions.

5.6.3 Proofs

For the proofs we need the concept of the local weight of a non-signaling distribution [228, 66]

Definition 5.6.1. The local weight of a non-signaling distribution PXY ∣AB is the largest α ∈
[0,1] such that we can write

PXY ∣AB = αQL
XY ∣AB + (1 − α)QNL

XY ∣AB ,

where QL
XY ∣AB is an arbitrary local distribution and QNL

XY ∣AB is an arbitrary non-signaling dis-
tribution. We denote the local weight by l(PXY ∣AB).

The local weight of a distribution can be found by linear programming.

Proposition 5.4.2. P (2,2,3,3)iso,ε is non-classical if and only if ε > 1/2. Further, for ε ≤ 4/7,
P
(2,2,3,3)
iso,ε satisfies all the CHSH-type inequalities, while for ε > 4/7 it violates at least one CHSH-

type inequality.

Proof. The distribution P (2,2,3,3)iso,ε = εPNL + (1 − ε)P (2,2,3,3)noise can be written as follows.

P
(2,2,3,3)
iso,ε =

A B BA B B
B A BB A B
B B AB B A
A B BB A B
B A BB B A
B B AA B B

(5.8)

where A = (2ε+1)/9 and B = (1−ε)/9. We used the LPAssumptions linear program solver [62]
(see Appendix 4.5.2 of Chapter 4 for details) to find the local weight of P (2,2,3,3)iso,ε , as a function
of ε to be

l(P (2,2,3,3)iso,ε ) =
⎧⎪⎪⎨⎪⎪⎩

1 0 ≤ ε ≤ 1
2

2(1 − ε) 1
2 < ε ≤ 1

which establishes the first part of the claim.

The second part can be confirmed by computing the value of each CHSH-type quantity for the
distribution P (2,2,3,3)iso,ε and determining that each has a saturating ε of at most 4/7.
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Proposition 5.4.3. For ε ≤ 4/7, P (2,2,3,3)E,ε,v = vP (2,2,3,3)iso,ε + (1 − v)P (2,2,3,3)C does not violate any of
the BC entropic inequalities (3.12) for any v ∈ [0,1]. However, for all ε > 4/7, there exists a
v ∈ [0,1] such that the entropic inequality I4

BC ≤ 0 is violated by P (2,2,3,3)E,ε,v .

Proof. Consider the function f ∶ (0,1) × (0,1)→ R given by

f(ε, v) ∶=3(3 − 2(1 − ε)v) ln[3 − 2(1 − ε)v] + 5(1 − ε)v ln[(1 − ε)v] − (1 + 2ε)v ln[(1 + 2ε)v]
− (3 − (2 + ε)v) ln[3 − (2 + ε)v] − 3 ln 9

where we implicitly extend the domain to [0,1]×[0,1] by taking the relevant limit. The Shannon
entropic expression I4

BC(ε, v) evaluated for the distribution P (2,2,3,3)E,ε,v = vP (2,2,3,3)iso,ε +(1−v)P (2,2,3,3)C
(seen as a function of ε and v) is then given as

I4
BC = 1

3 ln[2]f(ε, v)

Thus all the following arguments for f(ε, v) also hold for I4
BC.

We first use that for c > 0 and a ∈ R for sufficiently small v we have

ln[c + av] = ln[c] + av
c
+O(v2) .

Using this we can expand f(ε, v) for small v as

f(ε, v) = (4−7ε)v ln[v]−(4−7ε)v(1+ln[3])+v(5(1−ε) ln[1−ε]−(1+2ε) ln[1+2ε])+O(v2) . (5.9)

Thus, since limv→0 v ln[v] = 0 we have limv→0 f[ε, v] = 0.

We also have
∂

∂v
f(ε, v) = (4 − 7ε) ln [v] + 5(1 − ε) ln[1 − ε] − (1 + 2ε) ln[1 + 2ε]

− 6(1 − ε) ln[3 − 2(1 − ε)v] + (2 + ε) ln[3 − (2 + ε)v] .
(5.10)

Note that 5(1 − ε) ln[1 − ε] ≤ 0, −(1 + 2ε) ln[1 + 2ε] ≤ 0 ∀ε ∈ [0,1]. Further, since 3 − 2(1 − ε)v ≥
3−(2+ε)v and both terms are positive, 6(1−ε) ≥ (2+ε) ∀ε < 4/7, and using the fact that ln[] is
an increasing function, we have −6(1−ε) ln[3−2(1−ε)v]+(2+ε) ln[3−(2+ε)v] ≤ 0 ∀ε ∈ [0,4/7],
v ∈ [0,1]. This in turn implies that

∂

∂v
f(ε, v) ≤ (4 − 7ε) ln [v] ∀ 0 ≤ ε ≤ 4/7,0 ≤ v ≤ 1

Hence we can conclude that for ε ≤ 4/7, ∂
∂vf(ε, v) < 0 for all v ∈ [0,1]. Thus, f(ε, v) is zero

at v = 0 and, for ε ≤ 4/7, decreases with v, implying that f(ε, v) ≤ 0 ∀ε ∈ [0,4/7], v ∈ [0,1].
Note that P (2,2,3,3)E,ε,v = vp(2,2,3,3)iso,ε +(1−v)p(2,2,3,3)C does not violate any of the analogous inequalities
I iBC ≤ 0 for any i ∈ {1,2,3}, ε, v ∈ [0,1]. This is because for this distribution, we always
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have H(X0Y0) = H(X0Y1) = H(X1Y0), H(X0) = H(X1) = H(Y0) = H(Y1). Thus all three
inequalities I1

BC ≤ 0, I2
BC ≤ 0 and I3

BC ≤ 0 reduce to H(X1) +H(Y1) −H(X1Y0) −H(X1Y1) ≤ 0,
which is always satisfied since H(X1) ≤ H(X1Y0) and H(Y1) ≤ H(X1Y1) by the monotonicity
of Shannon entropy.

Further, using the expression for the derivative of f(ε, v) with respect to v in Equation (5.10),
we find that for ε > 4/7, limv→0

∂
∂vf(ε, v) =∞. Thus, since f(ε, v) = 0 for v = 0, sufficiently close

to v = 0 there exists a v such that f(ε, v) > 0. This proves the claim.

Proposition 5.4.4. For ε ≤ 4/7, P (2,2,3,3)E,ε,v = vP (2,2,3,3)iso,ε + (1 − v)P (2,2,3,3)C does not violate any of
the Tsallis BC inequalities (5.6) for any v ∈ [0,1] and q > 1. However, for ε > 4/7 and every
q > 1, there always exists a v ∈ [0,1] such that the entropic inequality I4

BC,q ≤ 0 is violated by
P
(2,2,3,3)
E,ε,v .

Proof. The Tsallis entropic expression I4
BC,q(ε, v) evaluated for the distribution P

(2,2,3,3)
E,ε,v =

vP
(2,2,3,3)
iso,ε + (1 − v)P (2,2,3,3)C (seen as a function of q, ε and v) is given as

I4
BC,q =

1
q − 1

⎡⎢⎢⎢⎢⎣
9
⎛
⎝

3 − 2(1 − ε)v
9

⎞
⎠

q

+ 15
⎛
⎝
(1 − ε)v

9
⎞
⎠

q

− 6
3q − 3

⎛
⎝

3 − (2 + ε)v
9

⎞
⎠

q

− 3
⎛
⎝
(1 + 2ε)v

9
⎞
⎠

q⎤⎥⎥⎥⎥⎦

=∶ g(q, ε, v)
q − 1

For q > 1, the following arguments for g(q, ε, v) also hold for I4
BC,q. Note that

∂

∂v
g(q, ε, v) = q

32q−1 [ − 6(1 − ε)(3 − 2(1 − ε)v)
q−1

+ 5(1 − ε)((1 − ε)v)
q−1

+ (2 + ε)(3 − (2 + ε)v)
q−1

− (1 + 2ε)((1 + 2ε)v)
q−1

] .
(5.11)

Then, since

6(1 − ε)(3 − 2(1 − ε)v)
q−1

≥ (2 + ε)(3 − (2 + ε)v)
q−1

and

(1 + 2ε)((1 + 2ε)v)
q−1

≥ 5(1 − ε)((1 − ε)v)
q−1

hold for all ε ≤ 4/7, v ∈ [0,1] and q > 1, we have

∂

∂v
g(q, ε, v) ≤ 0 ∀ε ≤ 4/7, v ∈ [0,1], q > 1.

Since g(q, ε, v = 0) = 0, this implies that g(q, ε, v) ≤ 0 ∀ε ≤ 4/7, v ∈ [0,1], q > 1. Hence, for ε ≤ 4/7
we cannot violate I4

BC,q ≤ 0 for any v ∈ [0,1], q > 1.

Analogously to the Shannon case, P (2,2,3,3)E,ε,v = vP (2,2,3,3)iso,ε + (1 − v)P (2,2,3,3)C also does not violate
any of the inequalities I1

BC,q ≤ 0, I2
BC,q ≤ 0 or I3

BC,q ≤ 0 for any ε, v ∈ [0,1] and q > 1 by the same
argument as in Proposition 5.4.3.
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Further, Equation (5.11) implies limv→0
∂
∂vg(q, ε, v) = q

3q (7ε − 4) which is always positive for
ε > 4/7. Since g(q, ε, v) = 0 for v = 0, this allows us to conclude that for ε > 4/7, there exists a v
sufficiently close to v = 0 such that g(q, ε, v) > 0. This establishes the claim.
Proposition 5.4.5. The distribution PCG,i

ε is classical for all i if and only if ε ≤ 4/7.

Proof. For the “if” part of the proof, we calculated all the 255 coarse-grainings of P (2,2,3,3)iso,ε=4/7 and
used a linear programming algorithm to find that all of these are local (their local weight equals
1). Since decreasing ε in P (2,2,3,3)iso,ε cannot increase the violation of any (probability space) Bell
inequality and neither can coarse-grainings, it follows that if ε ≤ 4/7, all coarse-grainings of
P
(2,2,3,3)
iso,ε are classical.

For the “only if” part we need to show that if all coarse-grainings of P (2,2,3,3)iso,ε are classical then
ε ≤ 4/7 or equivalently, if ε > 4/7, there exists at least one coarse-graining of P (2,2,3,3)iso,ε that is
non-classical. Consider the coarse-graining that involves combining the second output with the
first for all 4 input choices. For P (2,2,3,3)iso,ε as in Equation (5.8), this coarse-graining gives

P
(2,2,3,3)
CG,ε =

2(A +B) 0 2B 2(A +B) 0 2B
0 0 0 0 0 0

2B 0 A 2B 0 A
2(A +B) 0 2B 3B +A 0 A +B

0 0 0 0 0 0
2B 0 A A +B 0 B

, (5.12)

where A = (2ε + 1)/9 and B = (1 − ε)/9. The I2233 value or left hand side of Equation (3.6) for
this distribution is 9A − 3B. For this to be classical, we require that 9A − 3B ≤ 2 which gives
ε ≤ 4/7. Again using the LPAssumptions linear program solver [62] we found the local weight
of this distribution as a function of ε, which gives the following.

l(P (2,2,3,3)CG,ε ) =
⎧⎪⎪⎨⎪⎪⎩

1, 0 ≤ ε ≤ 4
7 .

1
9(17 − 14ε), 4

7 < ε ≤ 1.

In other words, if ε > 4/7, then the coarse-graining P (2,2,3,3)CG,ε of P (2,2,3,3)iso,ε violates the I2233 In-
equality (3.6) and is hence non-classical. This concludes the proof.

We prove the following two propositions together as they only differ in one step.
Proposition 5.4.6. Let ε ≤ 4/7. If Conjecture 5.4.1 holds, then every distribution in Πε is
Shannon entropically classical.
Proposition 5.4.7. Let ε ≤ 4/7. If Conjecture 5.4.2 holds, then every distribution in Πε satisfies
the Tsallis entropic BC Inequalities (5.6) ∀q > 1.

Proof. If Conjectures 5.4.1 and 5.4.2 hold, then for any ε ≤ 4/7, I iBC,q ≤ 0 holds ∀q ≥ 1, ∀i ∈
{1,2,3,4} and for all distributions in the polytope Conv({P (2,2,3,3)iso,ε }⋃{P L,k}k}).9 We want to

9Note that q = 1 covers the Shannon case.
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show that this implies the same for the larger polytope that comprises the convex hull of not
just P (2,2,3,3)iso,ε and local deterministic distributions {P L,k}k, but also all the local relabellings
of P (2,2,3,3)iso,ε , i.e., the polytope Πε = Conv({PR,j

ε }j ⋃{P L,k}k). While we considered P (2,2,3,3)iso,ε in
Propositions 5.4.3 and 5.4.4 and Conjectures 5.4.1 and 5.4.2, due to symmetries, these also
apply to every relabelling of P (2,2,3,3)iso,ε , i.e., I iBC,q ≤ 0 (∀i ∈ {1,2,3,4}) throughout every polytope
in the set {Conv({PR,j

ε }⋃{P L,k}k)}j (where j runs over all the local relabellings of P (2,2,3,3)iso,ε )10.
This is because for every input-output relabelling of P (2,2,3,3)iso,ε , we can correspondingly relabel
the inequality expression I4

BC,q (for q ≥ 1) and the same arguments as Propositions 5.4.3 and
5.4.4 again hold, and similarly Conjectures 5.4.1 and 5.4.2 also follow for this case.11 From this
argument, it follows that if Conjectures 5.4.1 and 5.4.2 hold, then I iBC,q ≤ 0 ∀q ≥ 1, ∀i ∈ {1,2,3,4}
everywhere in the union of the polytopes, i.e., everywhere in ⋃j Conv({PR,j

ε }⋃{P L,k}k).

To conclude the proof it remains to show that ⋃j Conv({PR,j
ε }⋃{P L,k}k) = Πε ∀ε ≤ 4/7. This is

established below. Then, Proposition 5.4.7 automatically follows while Proposition 5.4.6 follows
from this and Lemma 3.2.1.

Proposition 5.6.1. P j
mix,ε ∶= 1

2P
(2,2,3,3)
iso,ε + 1

2P
R,j
ε is local ∀j ≠ 1 if and only if ε ≤ 4/7.

Proof. For the “if” part of the proof, we used a linear program to confirm that P j
mix,ε=4/7 is

local12 ∀j ≠ 1. Since reducing ε in P j
mix,ε cannot decrease the local weight, this also holds for

ε < 4/7.

The “only if” part of the proof is equivalent to showing that ∀ε > 4/7, ∃j such that P j
mix,ε is

non-classical. Consider the particular local relabelling that corresponds to Alice swapping the
outputs “1” and “2” only when her input is A = 1. Let the distribution obtained by applying
this relabelling to P (2,2,3,3)iso,ε be PR

ε . Then Pmix,ε = 1
2P
(2,2,3,3)
iso,ε + 1

2P
R
ε . More explicitly,

PR
ε =

A B B A B B
B A B B A B
B B A B B A
A B B B A B
B B A A B B
B A B B B A

and pmix,ε =

A B B A B B
B A B B A B
B B A B B A
A B B B A B
B ∗ ∗ ∗ B ∗
B ∗ ∗ ∗ B ∗

, (5.13)

where ∗ = A+B
2 , A = (2ε+1)/9 and B = (1− ε)/9. Now consider the Bell inequality Tr(MTP ) ≥ 1

10A note on notation: {PR,j
ε } is a set comprising a single element, while {PR,j

ε }j is a set whose elements are
the distributions for every j.

11Note that output relabellings don’t change the entropic expression but input relabellings (4 in number) can
give either one of IiBC,q ≤ 0 for i ∈ {1,2,3,4}. Thus for an output relabelling of P (2,2,3,3)iso,ε , one can continue using
I4
BC,q in Propositions 5.4.3 and 5.4.4 and the following Conjectures while for input relabellings, one simply needs
to relabel the inequalities accordingly and run the same arguments.

12j = 1 is excluded since P 1
mix,ε = P

(2,2,3,3)
iso,ε which is non-classical for ε > 1/2.
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where P is an arbitrary distribution in the (2,2,3,3) scenario and M is the following matrix.

M ∶=

0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 0 0 0 1 0

(5.14)

Then, the condition for Pmix,ε to be non-classical with respect to this Bell inequality i.e.,
Tr(MTPmix,ε) < 1 gives us ε > 4/7. Since PR

ε is a local relabelling of P (2,2,3,3)iso,ε , there exists
a j such that PR

ε = PR,j
ε and hence Pmix,ε = P j

mix,ε. Thus we have shown that whenever ε > 4/7,
∃j such that P j

mix,ε is non-classical and hence P j
mix,ε is local for all j implies that ε ≤ 4/7 which

concludes the proof.

By symmetry, there is an analogue of Proposition 5.6.1 with P (2,2,3,3)iso,ε replaced by PR,i
ε for any

i, so we have the following corollary.

Corollary 5.6.1. P̃ i,j
mix,ε ∶= 1

2P
R,i
ε + 1

2P
R,j
ε is local ∀j ≠ i if and only if ε ≤ 4/7.

Theorem 5.6.1 (Bemporad et. al 2001 [23]). Let P and Q be polytopes with vertex sets V and
W respectively i.e., P = Conv(V ) and Q = Conv(W ). Then P ⋃Q is convex if and only if the
line-segment [v,w] is contained in P ⋃Q ∀v ∈ V and w ∈W .

Let Pj = Conv({PR,j
ε }⋃{P L,k}k}) and P be the set of polytopes P ∶= {Pj}j. We use the above

theorem to prove the final result that establishes Propositions 5.4.6 and 5.4.7.

Lemma 5.6.1. Let Vj be the vertex set of the polytope Pj ∈ P and V ∶= ⋃j Vj. Then, ⋃Pj∈PPj =
Conv(⋃i Vj) = Conv(V ) = Πε ∀ε ≤ 4/7.

Proof. By Corollary 5.6.1, for i ≠ j we have that 1
2 (PR,i

ε + PR,j
ε ) ∈ L(2,2,3,3) = Pi⋂Pj ∀ε ≤ 4/7.

This implies that αPR,i
ε + (1 − α)PR,j

ε ∈ Pi⋃Pj ∀ε ≤ 4/7, α ∈ [0,1], i.e., the line segment
[PR,i

ε , PR,j
ε ] is completely contained in the union of the corresponding polytopes Pi⋃Pj. Note

that all other line segments [vi, vj] with vi ∈ Vi and vj ∈ Vj are contained in Pi⋃Pj by con-
struction since at least one of vi or vj would be a local-deterministic vertex. Therefore, by
Theorem 5.6.1, Pi⋃Pj is convex ∀i, j and ε ≤ 4/7. We can then apply Proposition 5.6.1 and
Theorem 5.6.1 to the convex polytopes Pi⋃Pj and Pk and show that Pi⋃Pj ⋃Pk is convex
∀i, j, k and ε ≤ 4/7. Proceeding in this way, we conclude that ⋃Pi∈PPi is convex ∀ε ≤ 4/7, and
hence ⋃Pj∈PPj = Conv(⋃i Vj) = Conv(V ) = Πε.
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CHAPTER 6

Cyclic and fine-tuned causal models and compatibility
with relativistic principles

The notion of causation is closely tied with that of space-time, but how are the two related?
Causation can be modelled operationally, without any reference to space-time, based only on

observed correlations and interventions on systems [159]. It can be represented through directed
graphs that are in principle independent from the partial order imposed by space-time. That
the arrows of this directed graph are compatible with the light cone structure of space-time
is an empirical observation that supports the notion of relativistic causality. For example, if
an external intervention on a variable A produces an observable change in another variable B,
then one would say that A affects B and call A a cause of B. Assigning space-time locations
to the variables and requiring the effect B to always be in the future light cone of the cause
A makes this causal relationship compatible with the partial order of Minkowski space-time.
In general, a variable may jointly affect a set of variables without affecting individual variables
in the set. Such scenarios correspond to causal models where the correlations are fine-tuned
to hide certain causal influences. For certain embeddings of such causal models in space-
time (such as the jamming scenario considered in [105, 116]), this can lead to superluminal
influence without superluminal signalling, or closed timelike curves that do not lead to an
observable signalling to the past, some of these are strictly post-quantum features that do not
arise in standard quantum theory. For a deeper understanding of causality in quantum and
post-quantum theories, it is thus important to disentangle the two notions of causation– the
operational one and the relativistic one, and to characterise the relationship(s) between them
in these general scenarios. A rigorous framework for causally modelling such scenarios and
formalising their relationship with a space-time structure is not available. Such an analysis can
deepen our understanding of the principles of causality other than broad relativistic principles
(such as no superluminal signalling) that apply in the quantum world. This chapter is based
on joint work with Roger Colbeck that we hope to turn into a paper soon.
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6.1 Summary of contributions: in words and in poetry

We develop an operational framework for analysing cyclic and fine-tuned causal models in
non-classical theories, and their compatibility with a space-time structure. This in particular
includes the jamming scenarios envisaged in [105, 116] where a party superluminally influences
correlations between two other parties. We present the framework in two parts, the first con-
cerns causal models (Section 6.3) and the second characterises the embedding of these causal
models in a space-time structure (Section 6.4). In Sections 6.5.1 and 6.5.2, we derive necessary
and sufficient conditions for the causal model to be compatibly embedded in a space-time struc-
ture and to rule out operationally detectable causal loops. Following this, in Section 6.6, we
analyse the jamming scenario [105, 116] using causal modelling. We prove in Theorem 6.6.1 that
if the shared joint system is classical and accessible to the parties, then the jamming scenario
would indeed lead to superluminal signalling, contrary to what is claimed in [105, 116]. In Sec-
tion 6.6.2, we analyse the results of [116] regarding such scenarios, providing counter examples
to some of their claims, and discussing how our results provide possible resolutions. Keeping
in theme with the many cycles and paradoxes that the reader will encounter in this thesis, we
present them with a mildly self-referential poem before looping back into the technicalities.

What is causation?
Can we always discover its presence?
If it is not mere correlation,
Then what is its essence?

What is it that orders the cause
Before that what we dub the effect?
What brings order to the chaos
Telling us what we can or cannot affect?

Time1 gives us a direction “forward”.
To pose questions without already knowing the answer.
To drive causation through its invisible arrow,
A rule that seems doomed to be followed.

Causality and space-time,
At first, we disconnect.
By actions and observable changes,
We model cause and effect.

Space-time out of the way, we abstract away,
Allowing causal loops, and hidden influences

1What is time,
does it really “exist”?
That is a question for another time,
Another poem, and I must resist.
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That travel faster than light can propagate.
But we’d like to avoid paradoxes
That put our grandfathers’ lives at stake.
Requiring a joint probability distribution
Keeps these inconsistencies at bay.

Bringing one foot back to reality,
We embed the causal model in space-time
Derive conditions for its compatibility.
Align the actions and changes
With the past and future,
But this doesn’t suffice to exorcise
All the loops we set afoot earlier.

Some lurk, beyond the observable realm.
Finely tuned parameters that don’t reveal them.
We can only rule out loops that manifest
In observations that we can operationally test.
So we critically analyse a previous claim [116]
That specifies how all the loops can be tamed.

A plethora of questions begging for answers,
Some to be addressed before publishing.
Therefore, much like the work presented here,
This poem too needs some fine-tuning.

6.2 Motivation for analysing cyclic and fine-tuned causal
models

A ubiquitous assumption made in majority of the literature on causal modelling is that of
faithfulness, which we briefly discussed in Section 2.5.1 (in particular, Example 2.5.1). This
corresponds to the requirement that all the (conditional) independences observed in the correla-
tions arising from a causal structure must be a consequence of graph separation properties (i.e.,
d-separation relations Definition 2.5.7) of that causal structure. In unfaithful causal models, the
causal parameters are fine-tuned such that some causal influences exactly cancel out to yield
additional independences beyond what is implied by d-separation. Fine-tuning creates prob-
lems for causal inference since it leads to correlations that do not faithfully reflect the causal
relations and it is considered an undesirable property of causal models and often avoided in the
literature, also on the grounds that fine-tuned causal models constitute a set of measure-zero.
In fact quantum correlations in the Bell causal structure 3.1a can be explained using classical
causal models if we allow for additional, fine-tuned causal influences (e.g., from A to X, see
Figure 6.11) [224], but a faithful explanation using quantum causal models is often preferred.
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However, there are a number of examples, as we will see below, which necessitate a fine-tuned
explanation irrespective of whether the causal structure is classical and non-classical. These
include certain everyday scenarios, cryptographic protocols as well as those arising in certain
post-quantum theory. Moreover, another common assumption in the causality literature is that
the causal structure is acyclic, this is justifiably so since our observations suggest that causal
influences only propagate in one direction. Nevertheless, allowing fine-tuned causal influences
makes possible cyclic causal structures that are compatible with minimal notions of relativistic
causality, such as the impossibility of signalling superluminally at the observed level. Cyclic
causal models have also been employed in the classical literature for describing systems with
feedback loops [160, 84].

6.2.1 Friedman’s thermostat and one-time pad

Consider a house with an ideal thermostat. Such a thermostat would maintain a constant inside
temperature TI throughout the year by adjusting the energy consumption E in accordance
with the outside temperature TO. An individual who does not know how a thermostat works
might conclude that TO and E which are correlated have a causal relationship between each
other while the indoor temperature TI is causally independent of everything else. However, an
engineer who is more well-versed with the workings of a thermostat knows that both TO and
E exert a causal influence on TI , and that these influences must perfectly cancel each other
out for the thermostat to function ideally. The causal model in this case is fine-tuned since the
independence of TI from TO and E does not correspond to a d-separation relation in the causal
structure (Figure 6.1a). This thermostat analogy which is attributed to Milton Friedman [87],
can be extended to a number of other scenarios such as the effect of fiscal and monetary policies
on economic growth [183], or physical systems where several forces exactly balance out.

In cryptographic settings, examples that necessitate fine-tuning include one-time pad or the
“traitorous lieutenant problem” [38]. Consider a general who wishes to relay an important
secret message M to an ally and has two lieutenants available as messengers, but one of them
is a traitor who might leak the message to enemies. Consider for simplicity that M is a single
bit. The general could then adopt the following strategy: Depending on M = 0 or M = 1, two
uniformly distributed bits M1 and M2 are generated such that M1 = M2 or M1 ≠ M2. M1 is
given to the first and M2 to the second lieutenant to relay to the ally. Then the ally would
receive M1 and M2 and can simply use modulo-2 addition ⊕ to obtain M∗ which would be
identical to the original message M∗ = M = M1 ⊕M2 (Figure 6.1b). More importantly, the
individual messages M1 and M2 contain no information about M and hence neither lieutenant
has any information about the secret message. A similar protocol underlies the one-time pad
where a messageM is encrypted using a secret key K (both binary for this example) to produce
an encrypted message ME =M ⊕K which can be sent through a public channel as it will carry
no information about the original message M if the key K is uniformly distributed and is kept
private. Only a receiver of ME who knows the key K can decrypt the message M = ME ⊕K
(Figure 6.1c). Hence fine-tuning of causal influences i.e., causation in the absence of correlation,
is key to the working of such cryptographic protocols.
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Figure 6.1: Causal structures for the motivating examples described in the
main text: (a) Friedman’s thermostat (b) Traitorous Lieutenant (c) One-time pad.
In this chapter, we use squiggly arrows to denote causal influence, as this will later
be classified into solid and dashed arrows. Note that there may be additional causal
influences, for example there can be a direct influence of the outside temperature TO
and/or the inside temperature TI on the energy consumption E in (a), the latter would
make it a cyclic causal model. Further, in examples like (b), we will later see that
an additional common cause between M1 and M2 will be required to fully explain the
correlations (c.f. Figure 6.4a).

Further, cyclic causal models have been analysed in the classical literature [160, 84] for the
purpose of describing complex systems involving feedback loops. Note that the cyclic depen-
dences here do not correspond to closed time-like curves since the variables under question are
considered over a period of time— e.g., demand at time t1 influences the price at time t2 > t1,
which in turn influences the demand at time t3 > t2. Therefore in order to characterise genuine
closed time-like curves one must consider not only the pattern of causal influences, but also
how the relevant variables are embedded in a space-time structure.

6.2.2 Jamming non-local correlations

Another example that involves fine-tuning, even though it has not been motivated or discussed
in this context, is that of jamming non-local correlations introduced in [105]. Consider three,
space-like separated parties, Alice, Bob and Charlie sharing a tripartite system Λ which they
measure using measurement settings A, B and C, producing outcomes X, Y and Z respectively.
Suppose that their space-time locations are such that Bob’s future light cone entirely contains
the joint future of Alice and Charlie, as shown in Figure 6.2. The standard no-signaling condi-
tions forbid the input of each party from being correlated with the outputs of any subset of the
remaining parties, in particular, the joint distribution PXY Z∣ABC satisfies PXZ∣ABC = PXZ∣AC . In
[105] it is argued that a violation of this requirement does not lead to superluminal signalling
in the space-time configuration of Figure 6.2, as long as X and Z are individually independent
from B i.e., PX ∣ABC = PX ∣A and PZ∣ABC = PZ∣C . This is because any influence that B exerts
jointly on X and Z can only be checked when X and Z are brought together to evaluate the
correlations PXZ∣ABC , which is only possible in their joint future, that is by construction con-
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tained in the future of B. This scenario allows Bob to jam the correlations between Alice and
Charlie non-locally, hence the name.

In [116], where jamming is further analysed, the causal structure for such an experiment is
represented by introducing a new random variable CXZ associated with the set {X,Z} that
encodes the correlations between its elements. Then B is seen as a cause of CXZ but not as
a cause of either X or Z. In general scenarios, this representation would require adding a
new variable for every non-empty subset of the observed nodes, which can become intractable.2
Further, this representation does not always correspond to what is physically going on— for
instance, in the example of the traitorous lieutenant, this would introduce a new variable CM1M2

that is observably influenced by the general’s original message M , while M would no longer
be seen as a cause of M1 or M2. However, we know that we physically generated M1 and M2
using3 M , hence it is indeed a cause of at least one of them. Therefore, we aim to develop a new
approach to causally modelling in a general class of fine-tuned and cyclic scenarios, using only
the original variables/systems. The following proposition illustrates that the jamming scenario
considered in [105, 116] necessarily corresponds to a fine-tuned causal model over the original
variables. Here, jamming is considered in the context of multipartite Bell scenarios where the
jamming variable is a freely chosen input of one of the parties. In the causal model approach
adopted here, we will take free choice of a variable to correspond to the exogeneity of that
variable in the causal structure.4

Proposition 6.2.1. Consider a tripartite Bell experiment where three parties Alice, Bob and
Charlie share a system Λ which they measure using the setting choices A, B and C, producing
the measurement outcomes X, Y and Z respectively. Let G be any causal structure with only
{A,B,C,X,Y,Z} as the observed nodes where A, B and C are exogenous. Then any joint
distribution PXY Z∣ABC corresponding to the jamming correlations of [105, 116] defines a fine-
tuned causal model over G, irrespective of the nature (classical, quantum or GPT) of Λ.

Proof. Jamming allows Bob’s input B to be correlated jointly withX and Z but not individually
with X or Z. Hence jamming correlations in the tripartite Bell experiment of [105, 116] are
characterised by the conditions B á X and B á Z while B /á {X,Z}. Since B is exogenous
(i.e., has no incoming arrows), the only way to explain the correlation between B and {X,Z}
is through an outgoing arrow or a directed path from B to the set {X,Z} i.e., either an arrow
from B to X, or from B to Z or both.5 Since we require both independences B áX and B á Z
to hold, at least one of these will not be a consequence of d-separation and hence the causal
model must be fine-tuned in order to produce these correlations in the causal structure G.

The simplest example of a jamming where B = X ⊕ Z and all variables are binary uniformly
2In general, this representation would include up to 2n − 1 observed variables whenever the original set of

observed variables has n elements.
3And possibly some additional information to explain the distribution over the individual variables. As we

will see later in Figure 6.4a, a common cause Λ between M1 and M2 would also be required in such examples.
4Free choice is often of a variable B is often defined through the condition that B can only be correlated

with variables in its future [61]. We will discuss the relation between this notion of free choice and ours, namely
taking B to be exogenous, later in the chapter (Section 6.6.2).

5If this were not the case, B would be d-separated from {X,Z} and therefore cannot be correlated with it.
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Figure 6.2: A tripartite Bell experiment: Three parties Alice, Bob and Charlie
share a tripartite system Λ, they measure their subsystem using the freely chosen mea-
surement settings A, B and C, producing the outcomes X, Y and Z respectively. (a)
Space-time configuration for the jamming scenario [105, 116]: The measurement events
of the three parties are space-like separated such that the future of Bob’s input B con-
tains the entire joint future (in blue) of Alice and Charlie’s outputs X and Z. Here, B is
allowed to signal to X and Z jointly (which can only be verified in the blue region) but
not individually. In [116], a new variable CXZ is introduced, located at the earliest point
in the joint future of X and Z and representing the correlations between X and Z. (b)
Causal structure for the usual tripartite Bell experiment. Note that in order to explain
jamming correlations, we must either include additional causal arrows from B to X or B
to Z or both (Proposition 6.2.1), or introduce a new node CXZ with an incoming arrow
from B [116]. We adopt the former approach in the rest of this chapter.

distributed (the remaining variables are irrelevant here), and we will revisit this example several
times in this chapter. These are in fact the same correlations as the traitorous lieutenant
example. However in the jamming case, the three variables involved are pairwise space-like
separated and since B is exogenous, this corresponds to a situation where B superluminally
influences the correlations between X and Z.

6.3 The framework, Part 1: Causal models

6.3.1 Cyclic and fine-tuned causal models

In Section 2.5 we have reviewed the standard literature on acyclic and faithful causal models,
both in the classical as well as non-classical cases. Here, following the motivation set out in the
previous sections, we wish to relax the assumptions of acyclicity and faithfulness and extend
these methods to cyclic and fine-tuned causal structures. While quantum cyclic causal models
have been previously studied [18], these have only been analysed in the faithful case and are
based on the split-node causal modelling approach of [6] (this approach is briefly discussed in
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Section 2.5.2.3). This approach is not equivalent to the standard causal modelling approach
such as [115] in the cyclic case, for example the former forbids faithful 2 node cyclic causal
structures [18] but the latter does not, and the former admits a Markov factorisation (analogous
to Equation (2.45)) while the latter does not in general (as we will see later in the chapter).
To the best of our knowledge, there is no prior framework for causally modelling cyclic and
unfaithful causal structures in the presence of quantum and post-quantum latent nodes, the
lack of a Markov factorisation posing a particular difficulty. Here, we develop the bare bones
of such a framework that will suffice for our main results. We note that there may be other,
inequivalent ways to do the same.6 We will define causal models in terms of minimal conditions
that they must satisfy at the level of the observed nodes which are classical.

Causal structure: Causal structures will be represented using directed graphs, of which the
directed acyclic graphs of Section 2.5 are special cases. Edges in these graphs will be denoted
using (unlike Ð→ in previous chapters), as it will be useful to later classify these edges into
solid Ð→ and dashed 99K ones based on certain operational conditions for detecting causation.
These causal structures can have observed as well as unobserved nodes, where the former are
classical random variables and the latter can be classical or non-classical systems. We will
then assume the existence of such a causal structure (though it may be unknown) and use the
following definition of cause that directly arises from this assumption.

Definition 6.3.1 (Cause). Given a causal structure represented by a directed graph G, possibly
containing observed as well as unobserved nodes, we say that a node Ni is a cause of another
node Nj if and only if there is a directed path Ni ... Nj from Ni to Nj in G.

Observed distribution: In classical acyclic causal models, the causal Markov condition (2.45)
is used for defining the compatibility of the observed distribution with the causal structure [159].
In the non-classical case, the generalised Markov condition of [115] provides a compatibility con-
dition (Section 2.5.2.1). However, in cyclic causal models, demanding such a factorisation will
be too restrictive even in the classical case. For example, consider the simplest cyclic causal
structure, the 2-cycle where X Y and Y X, with X and Y observed and X = Y . The
Markov condition would imply that PXY = PX ∣Y PY ∣X . Since X = Y , the right hand side is a
product of deterministic distributions, which forces PXY to also be deterministic in order to
be a valid distribution. Therefore, we instead use a weaker compatibility condition in terms
of d-separation between observed nodes (Definition 2.5.7),a concept that also applies to non-
classical causal structures (Theorem 2.5.3) and define compatibility of the observed distribution
with a cyclic causal structure as follows within our framework.

Definition 6.3.2 (Compatibility of observed distribution with a causal structure). Let {X1, ...,Xn}
be a set of random variables denoting the observed nodes of a directed graph G, and PX1,...,Xn

be a joint probability distribution over them. Then P is said to be compatible with G if for all
disjoint subsets X, Y and Z of {X1, ...,Xn},

X ⊥d Y ∣Z ⇒ X á Y ∣Z i.e., PXY ∣Z = PX ∣ZPY ∣Z ,
6Based on a different condition for compatibility of a distribution with a causal structure, for example.
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for the marginal distribution, PXY Z = PXY ∣ZPZ over X ∪ Y ∪Z of PX1,...,Xn .7

Definition 6.3.2 is essentially the soundness of d-separation (c.f. Theorem 2.5.2) and is satisfied
by classical as well as non-classical causal models in the acyclic case [159, 115]. It is sometimes
referred to as the global directed Markov condition [180] and holds in several classical cyclic
causal models [160, 84] and well as non-classical acyclic causal models [115]. In Appendix 6.8.1,
we provide an example of a quantum cyclic causal model where this holds. However there also
exist cyclic causal models producing observed distributions that do not satisfy Definition 6.3.2,
we discuss this further in the Appendix as well. There, we also present further motivation for
the compatibility condition of Definition 6.3.2 in terms of the properties of the underlying causal
mechanisms (e.g., functional dependences in the classical case, completely positive maps in the
quantum case) and outline possible methods for identifying when this condition might hold for
non-classical cyclic causal models. Even in the classical case, several inequivalent definitions
of compatibility are possible (which become equivalent in the acyclic case) and [84] presents a
detailed analysis of these conditions and the relationships between them. Such an analysis for
the non-classical case is beyond the scope of the present thesis. For the rest of this chapter, we
will only consider causal models that satisfy the compatibility condition 6.3.2.

We will work with the following minimal definition of a causal model in this chapter which is in
terms of the graph and observed distribution only. Further details such as the functional rela-
tionships between classical variables, choice of quantum states/transformations, or generalised
tests (Section 2.5.2.1) can also be included in the full specification of the causal model. These
constitute the causal mechanisms of the model. Developing a complete and formal specification
of these mechanisms and deriving the conditions for their compatibility with cyclic and fine-
tuned causal models is a tricky problem, we outline possible ideas for this in Appendix 6.8.1
and leave the full problem for future work. The following minimal definition suffices for the
purposes of the main results of this chapter.

Definition 6.3.3 (Causal model). A causal model over a set of observed random variables
{X1, ...,Xn} consists of a directed graph G over them (possibly involving classical/quantum/GPT
unobserved systems) and a joint distribution PX1,...,Xn that is compatible with this graph ac-
cording to Definition 6.3.2.

Definition 6.3.2 allows for fine-tuned distributions to be compatible with the causal structure
since it only requires that d-separation implies conditional independence and not the converse.
Fine-tuned causal models may in general have an arbitrary number of additional conditional
independences that are not implied by the d-separation relations in the corresponding causal
graph. The following lemma shows that some additional conditional independences that are
not directly implied by d-separation can be derived using d-separation and other independences
(not implied by d-separation) that may be provided.

7Note that we only need to consider d-separation between observed sets of variables in this definition, however
the paths being considered may involve unobserved nodes. For example, if the observed variables X and Y have
an unobserved common cause Λ, then X and Y are not d-separated by the empty set since there is an unblocked
path between X and Y through the unobserved common cause, and naturally we don’t expect X and Y to be
independent in this case.
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Lemma 6.3.1. Let S1, S2 and S3 be three disjoint sets of RVs such that S1 á S2∣S3. If S is a
set of RVs that is d-separated from these sets in a directed graph G containing S1, S2, S3 and
S are nodes i.e. S ⊥d Si ∀i ∈ {1,2,3}, then any distribution P that is compatible with G also
satisfies the following conditional independences,

(S1 ∪ S) á S2∣S3, S1 á (S2 ∪ S)∣S3 and S1 á S2∣(S2 ∪ S).

A proof can be found in Appendix 6.8.2. Note that this lemma is trivial in the case of faithful
causal models. This is because, the independence S1 á S2∣S3 implies the d-separation S1 ⊥d
S2∣S3 in this case and combined with S ⊥d Si, this would immediately imply the d-separations
(S1 ∪ S) á S2∣S3,S1 á (S2 ∪ S)∣S3 and S1 á S2∣(S2 ∪ S), which in turn imply the corresponding
independences. This property is not so evident in the case of fine-tuned causal models but as
we have shown, it nevertheless holds here. Specific examples of this property for fine-tuned
causal models are discussed in Section 6.3.5.

6.3.2 Interventions and affects relations

We adopt the characterisation of interventions outlined in Section 2.5.2.2, following the aug-
mented graph approach [159] presented in Section 2.5.1.2. The main intuition behind interven-
tions in the acyclic case carries forth to the cyclic case as well, but we will not be allowed to use
a Markov factorisation condition such as Equation (2.45) for classical cyclic causal structures
or its non-classical analogue of [115] since this does not holds for cyclic causal structures in
general. We summarise these concepts here for completeness. Given a generalised, cyclic causal
structure G, an intervention on an observed node X of G is described as follows.

• An intervention variable IX taking values in the set {idle,{do(x)}x∈X} is introduced where
IX = idle corresponds to the original pre-intervention scenario and IX = do(x) sets the
variable X to a particular value x ∈ X, cutting off its dependence on all other parents in
G.

• Two new causal structures are introduced to keep track of what happens during such an
intervention, the augmented graph GIX and the do-graph Gdo(X). The former is obtained
from the original graph G simply by adding IX as a node an including an edge IX X
(with the rest remaining unchanged). The latter corresponds to the case when a non-
trivial intervention is performed i.e., when IX ≠ idle. Hence, Gdo(X) is obtained from GIX
by cutting off all incoming arrows to X, except the one from IX , and IX only takes values
in {do(x)}x∈X in Gdo(X).

• The causal mechanisms involved in the causal model are updated accordingly i.e., they re-
main unchanged when IX = idle and when IX = do(x), all causal mechanisms, except that
of X remain unchanged while X is deterministically set to the value x (irrespective of the
states of the subsystems corresponding to incoming edges to X in G). The do-conditional
P (Y = y∣do(x)) encodes the correlations between a variable Y and the intervened variable
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X (or equivalently IX , since X and IX are perfectly correlated) in the post-intervention
graph i.e., P (Y = y∣do(x)) ∶= PGdo(X)(Y = y∣IX = do(x)) (c.f. Equation (2.51)), where
PGdo(X) is compatible with the do-graph Gdo(X).

This method naturally extends to simultaneous interventions on subsets of nodes (as described
in Section 2.5.1.2). Only interventions on the observed nodes (which are classical) need to be
considered since unobserved nodes are by construction experimentally inaccessible.8

Physically, the post-intervention distribution corresponds to additional empirical data that is
collected in an experiment, that is in general different from the experiment generating the
original, pre-intervention data. For example, when the latter involves passive observation of
correlations between the smoking tendencies and presence of cancer in a group of individu-
als, the former may involve forcing certain individuals to take up smoking and then studying
their chances of developing cancer. Such experiments may not necessarily be ethical but are
nevertheless a physical possibility. In certain cases, it may be possible to fully deduce the
post-intervention statistics counterfactually from the pre-intervention data alone (e.g., using a
relation such as (2.52)), and the former experiment need not be actually performed, sparing us
some ethical dilemmas.9 In some cases however, this may not be possible (c.f. Example 2.5.3).

Therefore a complete specification of the post-intervention distribution in terms of the pre-
intervention may not always be possible. However, the compatibility condition of Defini-
tion 6.3.2 allows for the derivation certain relationships between these distributions, in par-
ticular the three rules of Pearl’s do-calculus [159]. These rules have been originally derived
for classical causal models satisfying the causal Markov property (2.45) which we do not as-
sume here. However, the derivation of these rules don’t necessarily need the Markov property
but only the weaker d-separation condition of Definition 6.3.2 assumed in our framework. We
present such a derivation here for completeness, even though it bears some resemblance to the
original proof of [159]. In the following, we will use GX to denote the graph obtained by deleting
all incoming edges to X in a graph G, where X is some subset of the observed nodes. Similarly,
GX denotes the graph obtained by deleting all outgoing edges from a subset X of nodes in a
graph G.

Theorem 6.3.1. Given a causal model over a set S of observed nodes, associated causal graph G
and a distribution PS compatible with G according to Definition 6.3.2, the 3 rules of do-calculus
[159] hold for interventions on this causal model.

• Rule 1: Ignoring observations

P (y∣do(x), z,w) = P (y∣do(x),w) if (Y ⊥d Z ∣X,W )G
X

(6.1)
8Manipulation of non-classical systems such as quantum states, which are by construction unobserved, can

be modelled by introducing observed classical variables that specify the choice of preparation/transformation
or measurement acting on the system.

9As discussed in Section 2.5, whenever this is possible, the causal model is called identifiable and in Ex-
ample 2.5.3 we visited an example of a simple non-indentifiable scenario involving a classical latent common
cause.
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• Rule 2: Action/observation exchange

P (y∣do(x), do(z),w) = P (y∣do(x), z,w) if (Y ⊥d Z ∣X,W )G
X,Z

(6.2)

• Rule 3: Ignoring actions/interventions

P (y∣do(x), do(z),w) = P (y∣do(x),w) if (Y ⊥d Z ∣X,W )G
X,Z(W )

, (6.3)

where X, Y , Z and W are disjoint subsets of the observed nodes and Z(W ) denotes the set of
nodes in Z which are not ancestors of W .

A proof of the theorem is provided in Appendix 6.8.2. Note that considering the underlying
causal mechanisms–e.g., the states, transformations, measurements involved in the original
causal model should, in principle allow for the complete specification of the post-intervention
distribution, even when it cannot be estimated from the observed correlations alone. To the
best of our knowledge, this problem has not been studied in non-classical and cyclic causal
models, we discuss this point in further detail in Appendix 6.8.1, providing examples of non-
classical cyclic causal models where the post-intervention distribution can be calculated from
the causal mechanisms.

Using these concepts, we now define the affects relation that is central to the results of this
chapter. Intuitively, the condition states that when an intervention on a set X of variables
produces a change in the distribution over another variable Y (everything else remaining un-
changed), then we can say that X affects Y or that X signals to Y , in which case we have
operationally identified that X is a cause of Y .

Definition 6.3.4 (Affects relation). Consider a causal model over a set of random variables S
with causal graph G and a joint distribution P compatible with it. For X, Y ⊆ S, if there exists
a value x of X such that

P (Y ∣do(x)) ≠ P (Y ),

then we say that X affects Y .

X affects Y implies that there must be a directed path from X to Y in G (which is equivalent
to X is a cause of Y , c.f. Definition 6.3.1) due to the following reason. If there were no
directed paths from X to Y in G, there would not be any in Gdo(X) which would make X and
Y d-separated from each other in the latter and hence independent (due to Definition 6.3.2).
But the affects relation asserts that the variables are not independent in the post-intervention
graph which is a contradiction. However, the converse is not true. A causal relationship X Y
does not imply an affects relation X affects Y , in the presence of fine-tuning (as illustrated in
the examples of Section 6.3.5). This motivates the following classification of the causal arrows

between observed nodes. The arrows emanating from/pointing to an unobserved node
cannot be operationally probed and hence need not be classified.
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Definition 6.3.5 (Solid and dashed arrows). Given a causal graph G, if two observed nodes X
and Y in G sharing a directed edge X Y are such that X affects Y , then the causal arrow
between those nodes is called a solid arrow, denoted X Ð→ Y . Further, all arrows between
observed nodes in G that are not solid arrows are called dashed arrows, denoted 99K . In other
words, X 99K Y for any two RVs X and Y in G implies that the X does not affect Y .

Remark 6.3.1 (Exogenous nodes). Rule 2 of Theorem 6.3.1 has a particular implication that
will be useful. It implies that for interventions on exogenous nodes X, the pre and post
intervention distributions are identical. To see this, consider a causal graph that contains a
directed pathX ... Y as a subgraph, and whereX is an exogenous node. Then in the graph
GX , X becomes d-separated from all other nodes. Then the d-separation (Y ⊥d X)GX implies
(by Rule 2) that P (y∣do(x)) = P (y∣x). Then if X and Y are correlated, i.e., P (y∣x) ≠ P (y) this
would imply by Definition 6.3.4 that X affects Y . If the path from X to Y was a single link,
i.e. X Y , then by Definition 6.3.5 this would further imply that this arrow must be a solid
one (since X affects Y ). Applying this to the graphs GIX and Gdo(X), where IX is exogenous
and correlated with X by construction (Equation (2.51)), we can conclude that the arrow from
every intervention variable to the corresponding intervened variable must be a solid arrow, i.e.,
IX Ð→X.

6.3.3 Causal loops

We distinguish between two types of causal loops that can arise in our framework. The first
will be called an affects causal loop which is based on the affects relation of Definition 6.3.4 that
corresponds to physically detectable causal relationships. The second will be called a functional
causal loop and corresponds to a loop at the level of the causal mechanisms (which are functional
dependences in the classical case). These function as causal loops at the underlying level even
though they may not be detectable at the observable level.

Definition 6.3.6 (Causal loops). A causal model associated with a causal structure G over a
set S of RVs is said to have an affects causal loop if there exist two distinct random variables X
and Y in S such that X affects Y and Y affects X. Hence every affects causal loop corresponds
to a directed cycle in G. Any directed cycle in G that is not an affects causal loop is called a
functional causal loop.

Note that the affects causal loop is defined in terms of single RVs X and Y and not sets of RVs.
Replacing X and Y by sets of observed variables S1 and S2 in this definition does not imply the
existence of a directed cycle. For example, consider a causal structure G with 4 nodes A, B, C
and D, all of which are observed such that the only edges in G are the solid arrows AÐ→ B and
C Ð→ D, with A affects B and C affects D. Then, if S1 = {A,D} and S2 = {B,C} we have S1
affects S2 and S2 affects S1 even though G is clearly acyclic. On the other hand, it is also possible
to have a cyclic causal model that has no affects causal loops but admits cyclic affects relations
in terms of subsets of variables (Example 6.3.5.3). Such loops fall into the category of functional
causal loops, even though it might be possible to operationally detect their existence through
simultaneous interventions on multiple nodes and additional conditions. We will discuss these
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further detail later in the chapter. In particular, we will see that such causal loops can be
embedded in space-time without leading to superluminal signalling (Figure 6.10).

Remark 6.3.2. A causal modelling approach allows us to define causal loops without a ref-
erence to space-time. This would correspond to a closed time-like curve when the variables
X and Y in the loop are each associated with single, but mutually distinct space-time points.
Cyclic causal models have also been used to describe variables such as demand and supply that
are studied over a period of time. These cyclic scenarios do not correspond to closed time-like
curves but to physical feedback mechanisms.

6.3.4 Relationships between concepts

Due to the presence of fine-tuning and the introduction of the 2 types of causal arrows (solid and
dashed), a number of concepts that are equivalent in faithful causal models are not equivalent
for the causal models described in our framework. It will hence be illustrative to present some of
relationships between the concepts relating to our causal models, before discussing the relation
to space-time structure. These are illustrated in Figure 6.3. The reason for every implication
is explained in the figure caption, and for every implication that fails, we provide a counter-
example below. There are 11 implications in Figure 6.3 that do not hold. Some of these can
be explained by the same counter-example or are immediately evident from the definitions.
Therefore we first group these 11 cases based on the corresponding counter-example/argument
needed for explaining them, in the end we will only need a few distinct counter-examples to
cover all these cases.

1. Non-implications 1,2,4,9: These are covered by Example 6.3.1.

2. Non-implication 3: This is covered by Example 6.3.2.

3. Non-implication 6: This is covered by Example 6.3.3.

4. Non-implication 5: It is evident that “X is a cause of Y ” does not imply X 99K Y ,
since it can also be a cause through a solid arrow or an indirect cause.

5. Non-implications 7,8: These are just a consequence of the fact that correlation does
not imply causation. Correlation between X and Y can arise when they share a common
cause, even when neither X nor Y are a cause of each other.

6. Non-implication 10: It is evident that independence of X and Y does not imply that
there is a dashed arrow between them, they can also be d-separated.

7. Non-implication 11: We can consider scenarios where two variables connected by a
dashed arrow also share a common cause, and hence the dashed arrow does not by itself
rule out the possibility of the variables being correlated.
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∃ a directed path from X to Y in G

X affects Y X is a cause of Y

X −→ Y in G X 99K Y in G

PXY 6= PXPY PXY = PXPY
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Figure 6.3: Relationships between concepts relating to causal models: The
black arrows denote implications while red (crossed out) arrows denote non-implications.
The numbers label the counter-examples corresponding to each non-implication, which
are explained in the main text. The equivalence between “X is a causal of Y ” and “∃
a directed path from X to Y ” is by construction (Definition 6.3.1). This also justifies
that the former is implied by X Ð→ Y and X 99K Y (which are just specific instances
of directed paths). X Ð→ Y implies X affects Y follows from Definition 6.3.5. That “X
affects Y ” implies “∃ a directed path fromX to Y ” is explained in the paragraph following
Definition 6.3.4. From this, the implication between “X affects Y ” and “X is a cause of
Y ” also follows by Definition 6.3.1. Finally, an equivalence not shown in the figure is that
X affects Y is equivalent to the condition that ∃x ∈ X such that P (Y ∣do(x)) ≠ P (Y )

(Definition 6.3.4), which is equivalent to saying that X signals to Y .
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Example 6.3.1 (Jamming). Consider the causal structure of Figure 6.4a where B 99K A,
B 99K C and the RVs A and C share an unobserved common cause Λ. By Definition 6.3.5
of the dashed arrows, we have B does not affect A and B does not affect C. Suppose that B
affects the set {A,C}. When A, B and C are binary, a probability distribution compatible with
this situation is one where all 3 RVs are uniformly distributed and correlated as B = A ⊕ C,
where ⊕ stands for modulo-2 addition. Then, A and C individually carry no information about
B but A and C jointly determine the exact value of B. In this case, B is a cause of A and of
C but due to fine-tuning, this cannot be detected when considering B and A or B and C alone,
but only when all 3 RVs are jointly accessed. The common cause is crucial to this example as
explained in Figure 6.4a, and the causal structure compatible with the distribution and affects
relations of this example is not unique. An alternative causal structure would be one where one
of the dashed arrows B 99K A or B 99K C is dropped, as we will see in Section 6.8.

This example by itself makes no reference to space-time or the tripartite Bell scenario. However,
for the particular embedding of the variables A, B and C in space-time where they are pairwise
space-like separated and taken to correspond to the output of Alice, input of Bob and output of
Charlie respectively, this becomes a special case of the tripartite jamming scenario of [105, 116]
(Figure 6.2).10 In the rest of the chapter, such examples, where an RV has dashed arrows to a
set of RVs will be referred to as instances of “jamming” in accordance with the terminology of
[105], irrespective of the space-time configuration. We will further discuss the relation of such
causal models to space-time structure later in the chapter, and will also revisit Example 6.3.1
several times in this process.

Example 6.3.2. Consider a causal model over observed variables {A,B,C,D} associated with
the causal graph G given in Figure 6.4b. Here, there are no pairs of variables sharing an edge
such that one of them affects the other. A correlation compatible with this graph is obtained by
taking B = A⊕C =D where all variables are binary and uniformly distributed. Here, B affects
D even though there are no solid arrow paths from B to D.

Example 6.3.3. Consider the causal structure of Figure 6.5. Let the three variables S, E
ad H be binary and correlated as H = S ⊕ E and S = E. These relations imply that H = 0
deterministically while S = E. However, when we intervene on E, we can choose its value
independently of S and whenever we choose E ≠ S, we will see that H = 1 occurs with non-zero
probability in other words there exists a value e such that P (H = 1∣do(e)) ≠ P (H = 1) = 0 i.e.,
E affects H even though PEH = PEPH in the original causal model. On the other hand, S does
not affect H since S the exogeneity of S implies that P (H ∣do(S)) = P (H ∣S) always holds (Rule
1 of Theorem 6.3.1), and we have P (H ∣S) = P (H) by construction.11

10Barring the slight change of notation: In Figure 6.2 A and C correspond to the inputs of Alice and Charlie
while X and Z correspond to the outputs that are jammed by B. We don’t make a distinction between inputs
and outputs in general since we will also consider situations where the jamming variable is not exogenous for
example.

11This is essentially the example of Figure 2.7 (discussed in Section 2.5), where we have distinguished between
solid and dashed arrows in accordance with Definition 6.3.5.
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Figure 6.4: Some fine-tuned causal structures: (a) The jamming causal structure
of Example 6.3.1. Note that the common cause Λ is essential to this example, because
without Λ, A and C would be d-separated given B which would imply the conditional
independence PAC∣B = PA∣BPC∣B. The dashed arrows would imply the independence of
A and B as well as C and B and hence the observed distribution would factorise as
PABC = PAPBPC . Then no pairs of disjoint subsets of {A,B,C} would affect each other
contrary to the original example. (b) Causal structure for Example 6.3.2 where B affects
D even though there is no solid arrow path from B to D.

S

E H

Figure 6.5: Affects relation does not imply correlation: This is a causal struc-
ture for Example 6.3.3 which demonstrates a scenario where E affects H even though
PEH = PEPH , i.e., solid arrows can also be fine-tuned and the ability to detect causation
through an active intervention) does not imply that we will see correlation upon passive
observation.

6.3.5 Identifying conditional independences and affects relations:
Examples

Here we provide examples that better illustrate some of the definitions and rules of the frame-
work laid out so far. In particular, how one can deduce the conditional independences and
affects relations in a given causal model. We briefly summarise these below.

• Conditional independences: Given a causal graph G with the set of observed nodes S, the
conditional independences satisfied by the joint distribution PS can be listed by a) using
Definition 6.3.2 to list all the conditional independences implied by d-separation relations
in G and b) using Definition 6.3.5 of dashed arrows, and Lemma 6.3.1 to list further
independences not implied by d-separation in G. There may still be more conditional
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independences in PS that cannot be listed this way, for instance, in Example 6.3.1, we
also have A á C but this neither follows from d-separation or the dashed arrow structure.
Since we allow for fine-tuning, there could be arbitrarily many independences in P , but
those mentioned above are sufficient for compatibility with the causal model.

• Affects relations: We have seen that a non-trivial intervention on a subset S of the
observed nodes corresponds to a new causal graph Gdo(S) in which all the nodes contained
in S are exogenous. Then the condition that S affects another subset R of the observed
nodes (i.e., there exists a values s of S such that P (R∣do(s)) ≠ P (S)), corresponds to
the condition that S and R are not independent in the post-intervention causal structure
Gdo(S). Hence one can apply the procedure of identifying independences explained in
the previous point to the post-intervention causal structure, to identify affects relations.
Again, due to fine-tuning, this identification may not be exhaustive.

6.3.5.1 Jamming (Figure 6.4a)

In the jamming causal structure Gjam of Figure 6.4a and Example 6.3.1, Definition 6.3.2 does
not impose any conditional independences on the observed distribution PABC since Λ is unob-
served.12 However, from Definition 6.3.5 of dashed arrows we have the independences A á B
and C á B. Further, B affects {A,C} implies that B /á {A,C} since B is exogenous here.
Consider an intervention on A, the post-intervention causal structure Gjam

do(A) only has the edges
B 99K C and Λ C (along with IA Ð→ A of course). The independences in Gjam

do(A) due to d-
separation are A á C, A á B, A á {B,C} and A á C ∣B and due to the dashed arrow, we have
B á C. The independence A á C in Gjam

do(A) implies that A does not affect C. Similarly, we can
derive C does not affect A, A does not affect {B,C}, C does not affect {A,B} and {A,C} does
not affect B. Further, using Lemma 6.3.1, we also have {A,B} does not affect C and {B,C}
does not affect A. This is because in the causal structure Gjam

do({A,B}), A is d-separated from B
and C, while B and C are independent of each other due to the dashed arrow connecting them.
Using the lemma, this gives {A,B} á C in Gjam

do({A,B}), which in turn implies that {A,B} does
not affect C.

6.3.5.2 Fine-tuned collider (Figure 6.6a)

In the causal structure of Figure 6.6a, the independence A á C follows from Definition 6.3.2,
while A á B and C á B follow from the dashed arrow structure. These are the same inde-
pendences as the case in the previous example of jamming with unobserved Λ (where A á C
was an additional independence in the jamming example but follows from d-separation in this
case). Thus the distribution PABC from Example 6.3.1 is compatible with both the jamming
(Figure 6.4a) as well the fine-tuned collider (Figure 6.6a) causal structures.13 However inter-

12If Λ in Figure 6.4a were observed, A and C would be d-separated given {B,Λ} and we would have the
conditional independence PAC∣BΛ = PA∣BΛPC∣BΛ.

13Note that this is essentially the one-time pad example from earlier.
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Figure 6.6: Some fine-tuned and/or cyclic causal structures: (a) A fine-tuned
collider (b) A functional causal loop (c) An affects causal loop

ventions on the two causal structures yield different results. We have {A,C} affects B for the
fine-tuned collider but not for the jamming case. We also have A affects {B,C} and C affects
{A,B} for the fine-tuned collider even though A and C do not individually affect B due to the
dashed arrow structure. This follows from the exogeneity of A and C and the joint correlations
A = B ⊕C. Further, {A,B} does not affect C, {B,C} does not affect A and B does not affect
{A,C} (in contrast with the jamming case where B affects {A,C}).

6.3.5.3 A functional causal loop (Figure 6.6b)

The cyclic causal structure of Figure 6.6b is a combination of jamming and the fine-tuned
collider. The distribution PABC of Example 6.3.1 with B = A⊕C is also compatible with this
causal structure, but the affects relations differ. An intervention on A and C would cut off the
incoming dashed arrows from B to A and C as well as those from Λ, and we would recover
the fine-tuned collider of Figure 6.6a, giving {A,C} affects B. An intervention on B in the
original causal structure would eliminate the collider and yield the jamming causal structure of
Figure 6.4a, and we have B affects {A,C}. We also have A affects {B,C} and C affects {A,B}
as in the collider. And as in the jamming case, we also get {A,B} does not affect C and {B,C}
does not affect A due to Lemma 6.3.1. Further we have no pair of variables in {A,B,C} that
affect each other and hence this does not correspond to an affects causal loop (Definition 6.3.6).
Even though we have directed cycles and the cyclic affects relations B affects {A,C} and {A,C}
affects B, the variables A, B and C can be embedded in Minkowski space-time such that this
causal model does not lead to signalling superluminally, as we will see later (Figure 6.10).

6.3.5.4 An affects causal loop (Figure 6.6c)

Consider the causal structure of Figure 6.6c over the variables A, B, C and D. Applying
Definition 6.3.5 of solid arrows, to this causal structure we have A affects B, B affects C, C
affects D and D affects A, which forms an affects causal loop. The conditional independences
that follow from d-separation are A á C ∣{B,D} and B á D∣{A,C} and any joint distribution
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satisfying these would be compatible with the causal structure. To further illustrate the kind of
causal loops allowed in this framework, consider the pairwise correlations A = B, B = C, C =D
and D ≠ A. Since this system of equations has no solutions, there exists no joint distribution
PABCD from which the pairwise marginals producing these correlations can be obtained. Such
examples correspond to grandfather type paradoxes and cannot be modelled in frameworks that
demand the existence of a valid joint probability distribution over all variables involved in a
causal loop. On the other hand, examples of solid arrow directed cycles where the functional
dependences of the loop variables admit solutions such as A = B = C =D (with any probability)
or the examples considered in [160] for other cyclic causal structures can be modelled in our
framework. Additionally, there can also be affects causal loops that do not involve any solid
arrows, for example through a concatenation of structures such as that of Figure 6.4b. We
discuss causal loops in more detail in Appendix 6.8.1, also in the case of quantum causal
structures.

6.4 The framework, Part 2: Space-time

6.4.1 Space-time structure

We model space-time simply by a partially ordered set T without assuming any further struc-
ture/symmetries. A particular example of T is Minkowski space-time, where the partial order
corresponds to the light-cone structure and the elements of T can be seen space-time coordi-
nates in some frame of reference. Our results will only depend on the order relations of T and
not on the representation of its particular elements. To make operational statements about
T , we must embed physical systems into it. In our case, we can only do so for the observed
systems in the causal model which are random variables. We embed them in this space-time
by assigning an element of T to specify the space-time location of each variable, and refer to
such variables as ordered random variables or ORVs. Here, the order of an ORV corresponds
to that of the space-time T (and not of the causal model).14

Definition 6.4.1 (Ordered random variable (ORV)). Each ORV X is defined by a pair X ∶=
(R(X ),O(X )) where R(X ) (equivalently denoted by the corresponding, non-calligraphic letter
X) is a random variable and O(X ) ∈ T specifies the location of X with respect to a partially
ordered set T .

Notation: We use ≺, ≻ and ⊀⊁ to denote the order relations for a given partially ordered set T ,
where for α, β ∈ T , α ⊀⊁ β corresponds to α and β being unordered with respect to T . This
is not to be confused with α = β which corresponds to the two elements being equal. These
relations carry forth in an obvious way to ORVs and we say for example that 2 ORVs X and Y
are ordered as X ≺ Y iff O(X ) ≺ O(Y). Note however that X = Y is equivalent to X = Y and
O(X ) = O(Y).

14This can be seen as an abstract version of space-time random variables.
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Definition 6.4.2. The future of an ORV is the set

F(X ) ∶= {α ∈ T ∶ α ≻ O(X )}.

Then, we say that an ORV Y lies in the future of an ORV X iff O(Y) ∈ F(X ). In a slight abuse
of notation, we will simply write this as Y ∈ F(X ), which is equivalent to X ≺ Y.

Definition 6.4.3. The inclusive future of an ORV is the set

F(X ) ∶= {α ∈ T ∶ α ⪰ O(X )}.

Note that X ∈ F(X ) but X ∉ F(X ), hence the name “inclusive” future. Further, any probabili-
ties written in terms of ORVs should be understood as being probability distributions over the
corresponding random variables.

6.4.2 Compatibility of a causal model with the embedding space-
time

We have encountered two types of order relations, one which is encoded in the arrows of the
causal structure and the other specified by the order relation ≺ of the space-time T . The former,
which can include directed cycles corresponds to a pre-order while the latter is by construction a
partial order. We now describe the compatibility condition will tell us when the order provided
by a causal model is compatible with the order provided by the space-time T at the operational
level, here the classification of the arrows into solid and dashed arrows will play a role.
In an operational theory, we must be able to consider scenarios where a random variable may
be copied, distributed or acted upon. For ordered random variables, we need to consider a set
of locations in the embedding partial order at which copies of RVs can be accessed for further
information processing. To this effect, we first propose the following definitions before defining
compatibility.

Definition 6.4.4 (Copy of a RV). A random variable X ′ is called a copy of a random variable
X if X = X ′ and X affects X ′. Hence every RV X is a copy of itself, we call this the trivial
copy of X.

For ordered random variables X and X ′, we will simply say X ′ is a copy of X whenever the
corresponding RV X ′ ∶= R(X ′) is a copy of the RV X ∶= R(X ).

Definition 6.4.5 (Accessible region of an ORV). With each ordered random variable X ∶=
(R(X ),O(X )) ordered with respect to some partially ordered set T , we can associate a subset
RX ⊆ T called its accessible region, such that any copy X ′ of X must belong to this set i.e.,
O(X ′) ∈ RX for all copies X ′ of X , and RX is the smallest subset of T that has this property.
We say that X is accessible in R(X ).

The accessible region has the property that R(X ′) ⊆ R(X ) for all copies X ′ of X (since the
copy of a copy is a copy), and X ∈RX for all ORVs X .
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Remark 6.4.1. Definition 6.4.5 allows us to naturally associate accessible regions to sets of
ORVs in terms of the accessible regions of their individual members. The accessible region of
a set S = {X1, ...,Xk} of ORVs is the smallest subset of T within which all the ORVs in the
set can be jointly accessed i.e., RS = ⋂

Xi∈S
R(Xi). Each set S of ORVs can be thought of as

being comprised of one copy of each of its members, and its accessible region is the region of
space-time where a copy of each ORV in the set can be accessed.

Definition 6.4.6 (Embedding). An embedding of a set of RVs S in a partially ordered set T
produces a corresponding set of ORVs S by assigning a location O(X ) ∈ T , and an accessible
region RX ⊂ T to each RV X, which defines the associated ORV X = (X,O(X )).

We now define what it means for a causal model to be compatible with the embedding partial
order T which captures the idea of no superluminal signalling with respect to the space-time T .
Intuitively, the definition corresponds to the condition that “it is possible to signal everywhere
in the future and nowhere else”. This is not the same as “it is possible to signal only to the
future (but not necessarily to every point in the future)”. We will see that this subtle difference
plays a role in our results of the following sections (c.f. Remark 6.5.1).

Definition 6.4.7 (Compatibility of a causal model with the embedding partial order (compat)).
Let S be a set of ORVs ordered with respect to the partially ordered set T . Then a causal
model over S is said to be compatible with the partial order T if the following conditions are
satisfied:

1. For all X ∈ S, RX = F(X ), and

2. For all subsets of ORVs, S1,S2 ⊆ S, such that no proper subset of S1 affects S2, S1 affects
S2 ⇒ RS2 ⊆RS1 .

Remark 6.4.2. In the second statement above, the condition that no proper subset of S1
affects S2 is required because whenever a set S of ORVs affects another set S2, any S1 ⊃ S
will also trivially affect S2. In such situations, one is only interested in the non-trivial affects
relation S affects S2 (given that no further proper subsets of S affect S2) and not S1 affects S2,
since S1 ⊃ S could be arbitrarily large in this case.15

6.5 Necessary and sufficient conditions

In this section, we derive necessary and sufficient conditions for a causal model to be compatible
with a partial order T (Section 6.5.1) and for it to have no affects causal loops (Section 6.5.2).
In [116], a set of necessary and sufficient conditions for no causal loops in the bipartite and

15In the case of single variables, X affects Y implies that Y must be in the future of X in order to be compatible
with the space-time. We don’t require Y to be in the future of every superset of X , which would trivially affect
it.
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tripartite Bell scenarios have been proposed. The results of this section identify implicit as-
sumptions in these claims [116] and provide necessary and sufficient conditions for compatibility
with the space-time and for no affects causal loops for arbitrary causal structures. The other
type of causal loops, functional causal loops cannot in general be detected operationally and
therefore cannot be ruled out. We then discuss the relationships between the various conditions
derived in our results in Section 6.5.3 and consider [116] in further detail in Section 6.6.2.

6.5.1 Conditions for compatibility with the embedding space-time

Theorem 6.5.1. [Necessary and sufficient conditions for compatibility with T ] Given a causal
model over a set of ORVs S, the following condition (cond) is necessary for the causal model
to be compatible with the embedding partial order T according to compat (Definition 6.4.7).

∀subsets S1,S2 ⊆ S, such that no proper subset of S1 affects S2,

⋂
s2∈S2

F(s2) ⊈ ⋂
s1∈S1

F(s1) ⇒ S1 does not affect S2.
(6.4)

While cond alone is not sufficient for compat, along with the following additional requirement
it provides a sufficient condition for compat

∀X ∈ S, F(X ) ⊆RX (6.5)

A proof of this theorem can be found in Appendix 6.8.2.

6.5.2 Conditions for no affects causal loops

Theorem 6.5.2. [Necessary and sufficient condition for no affects causal loops] A necessary
condition for a causal model over a set S of RVs to have no affects causal loops is that there
exists an embedding of S in Minkowski space-time T such that the corresponding ORVs S
satisfies the condition cond of Equation (6.4). cond along with the additional assumption that
any 2 distinct ORVs X and Y such that one affects the other, cannot share the same location
in T , are sufficient for having no affects causal loops in the causal model.

A proof of the above theorem can be found in Appendix 6.8.2. Note that a subset of the above
conditions, would already be sufficient for no affects causal loops, since these causal loops
are defined in terms of a chain of affects relations involving single variables (and not sets of
variables). Suppose that for every pair of affects relations in a causal model, X affects Y where
X and Y are single variables, we can ensure that the corresponding ordered random variables
satisfy Y ∈ F(X ), this would already be sufficient to conclude that the causal model has no
affects loops. However this is not sufficient for compatibility with the space-time since we may
have X affects {W,Z} for some variables W and Z in the model that are not individually
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affected by X such that F(W)⋂F(Z) /⊆ F(X ). Based on this, a third class of causal loops can
be defined, those that can be operationally detected only when we consider affects relations of
the form S1 affects S2 where at least one of S1 and S2 is a set of cardinality greater than one.
An example would be the cyclic causal structure of Figure 6.6b where {A,C} affects B and B
affects {A,C}. With our current definition 6.3.6, this gets classified as a functional causal loop
and not an affects loop. Prior to publication of this work, we will consider whether defining
this third category of causal loops would be useful for deriving additional results. This does
not, however, affect the results presented here.

Keeping this in mind and applying Theorem 6.5.2 to the bipartite and tripartite Bell exper-
iments respectively, where the parties are space-like separated, we have Corollaries 6.5.1 and
6.5.2.

Corollary 6.5.1 (Bipartite Bell scenario). Consider a causal model over the observed variables
{A,B,X,Y } where A and B are exogenous, and X and Y share an unobserved common cause
Λ. Suppose that T corresponds to Minkowski space-time. Let the observed ORVs defined with
respect to T be such that A ⊀⊁ B, A ⊀⊁ Y, B ⊀⊁ X , X ⊀⊁ Y, A ≺ X and B ≺ Y and the accessible
region of every ORV coincides with its inclusive future. In this scenario, a set of sufficient
conditions for the causal model to have no affects causal loops are

1. A does not affect any subset of ORVs not containing X .

2. B does not affect any subset of ORVs not containing Y.

3. X and Y do not affect any other ORVs.

1. and 2. are equivalent to the bipartite no signalling conditions (NS2) given the exogeneity of
A and B.

PX ∣A(x∣a) ∶=∑
y

PX,Y ∣A,B(x, y∣a, b) =∑
y

PX,Y ∣A,B(x, y∣a, b′) ∀x, a, b, b′,

PY ∣B(y∣b) ∶=∑
x

PX,Y ∣A,B(x, y∣a, b) =∑
x

PX,Y ∣A,B(x, y∣a′, b) ∀y, a, a′, b
(6.6)

Hence NS2 along with 3. are sufficient for no affects causal loops in this scenario.

Corollary 6.5.2 (Tripartite Bell scenario). Consider a causal model over the observed variables
{A,B,C,X,Y,Z} where A, B and C are exogenous, and X, Y and Z share an unobserved
common cause Λ. Suppose that T corresponds to Minkowski space-time. Let the observed ORVs
defined with respect to T be such that A ≺ X , B ≺ Y, C ≺ Z, F(X )⋂F(Z) ⊆ F(B), all other
pairs of observed ORVs are unordered with respect to T and the accessible region of every ORV
coincides with its inclusive future. In this scenario, a set of sufficient conditions for the causal
model to have no affects causal loops are

1. A does not affect any subset of ORVs not containing X .

2. B does not affect any subset of ORVs containing neither Y, nor the set {X ,Z}.
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3. C does not affect any subset of ORVs not containing Z.

4. X , Y and Z do not affect any other ORVs.

Given the exogeneity of A, B and C, 1., 2. and 3. are equivalent to the relaxed tripartite
no-signaling conditions (NS3’) of [116].

PX,Y ∣A,B(x, y∣a, b) ∶=∑
z

PX,Y,Z∣A,B,C(x, y, z∣a, b, c) =∑
z

PX,Y,Z∣A,B,C(x, y, z∣a, b, c′) ∀x, y, a, b, c, c′

PY,Z∣B,C(y, z∣b, c) ∶=∑
x

PX,Y,Z∣A,B,C(x, y, z∣a, b, c) =∑
x

PX,Y,Z∣A,B,C(x, y, z∣a′, b, c) ∀y, z, a, a′, b, c

PX ∣A(x∣a) ∶=∑
y,z

PX,Y,Z∣A,B,C(x, y, z∣a, b, c) =∑
y,z

PX,Y,Z∣A,B,C(x, y, z∣a, b′, c′) ∀x, a, b, b′, c, c′

PZ∣C(z∣c) ∶=∑
x,y

PX,Y,Z∣A,B,C(x, y, z∣a, b, c) =∑
x,y

PX,Y,Z∣A,B,C(x, y, z∣a′, b′, c) ∀z, a, a′, b, b′, c

(6.7)

Hence NS3’ along with 4. are sufficient for no affects causal loops in this scenario.

An important point to note here is that the conditions are only sufficient and not necessary. This
is because the Bell experiments considered in [116] correspond to particular embeddings of the
causal model where the measurement events are space-like separated, while our Theorem 6.5.2
only requires the existence of a suitable embedding which need not be this particular one. More
explicitly, a violation of the no-signaling condition (6.6) in a Bell experiment is not necessarily
a problem when the parties are not space-like separated, and if they are, they would need
to be able to signal superluminally in more than one frame to create a causal loop from this
ability to signal superluminally. But superluminal signalling in one frame need not imply the
same for other frames. Hence the no-signaling conditions (6.6) and (6.7) are are not necessary
for ruling out causal loops in the bipartite and tripartite Bell scenarios, contrary to the claim
of [116]. We further discuss [116] in the context of our framework in Section 6.6.2 providing
explicit counter examples to these claims. Furthermore, note that these corollaries only rule out
affects causal loops and not all causal loops, they also do not guarantee compatibility with the
space-time. For example, a causal model whereby {A,X} affects Y and {B,Y } affects X, A or
X affecting Y and B or Y affecting X, would create a directed cycle or a functional causal loop
between X and Y and also lead to signalling outside the future for the space-time configuration
of Corollary 6.5.1. This is not ruled out by the conditions of the above corollaries, but can
nevertheless be obtained from Theorems 6.5.1 and 6.5.2. We now present another noteworthy
corollary that can be derived from Theorems 6.5.1 and 6.5.2, a proof of which can be found in
Appendix 6.8.2.

Corollary 6.5.3. [No affects causal loops and compatibility with space-time] A necessary con-
dition for a causal model over a set S of RVs to have no affects causal loops is that ∃ an embed-
ding of S in Minkowski space-time T such that the causal model is compatible (Definition 6.4.7)
with T . This condition along with the additional assumption that any 2 distinct ORVs X and
Y such that one affects the other, cannot share the same location in T , are sufficient for having
no affects causal loops in the causal model.

141



CHAPTER 6. CYCLIC AND FINE-TUNED CAUSAL MODELS AND COMPATIBILITY WITH RELATIVISTIC
PRINCIPLES

Remark 6.5.1. We have seen two distinct necessary and sufficient conditions for no causal
loops: a) there exists an embedding in T such that cond (Equation (6.4)) holds (Theorem 6.5.2),
and b) there exists an embedding in T such that the causal model is compatible with T (Corol-
lary 6.5.3). These two conditions namely cond and compatibility with T are not equivalent,
which follows from Theorem 6.5.1 due to the additional assumption required in one direction
of the proof. The difference has to do with whether or not the accessible region coincides with
the future for each ORV or is only a subset of it. The embedding for which a) holds may in
general be different from the embedding for which b) holds, since an embedding also involves
a specification of the accessible region (Definition 6.4.6). In the latter case, the accessible re-
gion must coincide with the future by definition of compatibility (Definition 6.4.7), while in
the former case, it need not. In the case that only a) holds, we can have a jamming scenario
(Figure 6.4a) where the jammed variables can be jointly accessed only within a strict subset
RAC of their joint future F(A) ∩ F(C). Then it is enough if this subset is contained in the
future of the jamming variable B and not the entire joint future. Note that modifying Defini-
tion 6.4.7 of compatibility to require RX ⊆ F(X ) instead of RX = F(X ), would not alter the
fact that Theorem 6.5.1 would require an additional assumption along with cond for one of
the directions, it would only alter the direction for which this is required.

6.5.3 Relationships between the conditions

The results of Sections 6.5.1 and 6.5.2, along with related (non-)implications are summarised in
Figure 6.7. All the implications are covered by the results of the previous sections as explained
in the Figure. Here, we describe counter examples to establish the 7 non-implications of the
Figure, which can be grouped as follows.

1. Non-implications I, III: While no affects causal loops implies cond by Theorem 6.5.1,
it does not imply that O(X ) ≠ O(Y) whenever X affects Y. This is because we can have
an acyclic causal model with non-trivial affects relations that is embedded trivially in
space-time, i.e., where all the variables are embedded at the same space-time location.
This explains non-implication I. Further, this trivial embedding of any causal model is
clearly compatible with the space-time, which explains non-implication III.

2. Non-implications IV, V: These are immediately established by embedding the 2-cycle
affects loop (i.e., the two variable causal model with X affects Y affects X) in space-time
such that X and Y are assigned the same space-time location O(X ) = O(Y). Such causal
loops between variables located at the same space-time point do not violate the compati-
bility condition 6.4.7 or lead to superluminal signalling, but they are rather uninteresting.

3. Non-implications II, VI: These are covered by the example provided in Remark 6.5.1:
compatibility requires that the accessible region coincides with the future while cond only
implies that the accessible region is a subset of the future.

4. Non-implications VII, VIII: This is because the accessible region (Definition 6.4.5)
of an ordered random variable X is defined only in terms of copies of X . Therefore we
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cond ∧ (X affects Y ⇒ O(X ) ≠ O(Y))

No affects causal loops ∃ a compatible embedding in space-time

cond cond ∧ (F(X ) ⊆RX ∀X ∈ S)

RX ⊆ F(X ), ∀X ∈ S

Thm. 6.5.2
/ II/I

Cor. 6.5.3

Thm. 6.5.2

/

III

/IV

Thm. 6.5.1

Thm. 6.5.1

/V /VI

Thm. 6.5.1
(proof)

Thm. 6.5.1
(proof)

/

VII
/VIII

Figure 6.7: Illustrative summary of results pertaining to embeddings of causal
models in a space-time.

can have an embedding for which X affects another ORV Y which is not a copy of itself
and does not lie in its future, even if the accessible region of each variable is contained in
the variable’s future. Such an embedding would violate cond.

6.6 Theories with superluminal influence without super-
luminal signalling

6.6.1 Jamming and superluminal signalling

The jamming scenario analysed in the literature [105, 116] has been considered only in the con-
text of multipartite Bell scenarios, in particular the tripartite case, as discussed in Section 6.2.
There, the inputs of all the parties are considered to be freely chosen and the parties share a
joint system Λ that provides the initial correlations for the Bell scenario. Additionally, jamming
allows the input of one party to jointly signal to the outputs of a set of other parties, without
signalling to them individually. In the causal modelling paradigm, we have formalised freely
chosen variables as parentless nodes in the causal structure, the notion of signalling through the
affects relation, and have modelled Λ as a common cause between outputs of all the parties. In
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the following, we will consider a particular class of jamming scenarios arising in the tripartite
Bell experiment of [105, 116], those where Bob’s input jams the outputs of Alice and Charlie,
while the other inputs and outputs do not feature in the correlations. In this section, we simply
denote these variables as B, A and C respectively.16 In Figure 6.4a, we have explained that a
common cause Λ between A and C is necessary for producing jamming correlations in a causal
structure where the input B is parentless and the outputs A and C have no outgoing arrows.
In the remainder of this section, we explore the possibility of superluminal signalling using such
a causal model.17

It would be illustrative to sketch a simple protocol that can be used to obtain the jamming cor-
relations of Example 6.3.1, that can lead to superluminal signalling in the space-time embedding
considered in [105, 116]. This protocol captures the main intuition behind Theorem 6.6.1 that
will follow, and is illustrated in Figure 6.8. It also illustrates that Figure 6.4a is not the unique
causal structure that is compatible with the correlations and affects relations of Example 6.3.1.

A protocol for jamming: In Example 6.3.1, suppose that Λ is classical and all four variables,
including Λ are binary and uniformly distributed. The output A is generated from Λ by flipping
its value whenever B = 1 and outputting A = Λ otherwise i.e., A = Λ ⊕B. C is set to always
be equal to Λ irrespective of B. This immediately gives the required correlation B = A ⊕ C
and reproduces the affects relations of the example. Even though B does not affect A, it was
physically sent to A and even though B jointly affects A and C, it was not sent to C. This
corresponds to the causal structure of Figure 6.4a but with the arrow B 99K C removed, as
shown in Figure 6.8. Equivalently, the same correlations and affects relations can be generated
by setting A = Λ and C = Λ⊕B which would correspond to the causal structure of Figure 6.4a
but with the arrow B 99K A removed instead. In this example, without additional information,
we cannot distinguish between the three causal structures where B has a dashed arrow to A,
to C or to both. All 3 causal structures (also illustrated in Figure 6.12) are compatible with
the correlations and the affects relations of the example.

Note that A and Λ together are enough to determine B. Therefore, in a space-time configuration
such as that of [105, 116] where the space-time random variables A, B and C are pairwise space-
like separated, and Λ is in the common past of A and C, information about the freely chosen
variable B can already be available at the space-time location of A. This is outside the future
of B, and can lead to superluminal signalling from the space-time location of B to that of A.
More generally, note that {B,Λ} affects A but neither B nor Λ affect A (as denoted by the
dashed arrows in Figure 6.8). By Theorem 6.5.1, A must be in the joint future of B and Λ for
compatibility with the space-time. However, the space-like separation between A and B leads
to a violation of this condition and hence to superluminal signalling, irrespective of the space-
time location of Λ. The following theorem (a proof of which can be found in Appendix 6.8.2)

16Even though the naming convention is slightly different from the full tripartite Bell scenario of Figure 6.2
17When causally modelling Bell scenarios, it is standard to take input variables to be exogenous and output

variables to have no outgoing arrows, and be related by a common cause, as in Figures 3.1a and 6.2. However,
one can explain the correlations and affects relations of the Bell scenario using alternative causal models whereby
the inputs have incoming fine-tuned arrows, and/or outputs have outgoing fine-tuned arrows. These can also
be analysed in our framework, but we will not consider them here.
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A B C

Λ

(a)

B

A C

Λ
(b)

A B C Λ PABC

0 0 0 0 1/4
1 0 1 1 1/4
0 1 1 0 1/4
1 1 0 1 1/4

(c)

Figure 6.8: A simple protocol that can lead to superluminal signalling in the
jamming scenario of [105, 116]: (a) Space-time embedding of the variables A, B,
C and Λ suggested in [105, 116], where the joint future of the space-time variables A
and C (blue region) is contained in the future of B. Here, B corresponds to the input of
a party, Bob while A and C are the outputs of Alice and Charlie respectively. In this
configuration, [105, 116] claim that there will be no superluminal signalling since A and
C are jointly accessible only in the future of B and B = A⊕C can not be computed from
A or C individually. However, if Λ is observed, then our protocol explained in the main
text allows for superluminal signalling in this space-time configuration, contrary to this
claim. In the protocol, C = Λ and B = A ⊕ Λ freely chosen variable B can already be
determined at the location of A which is outside the future of B and hence can lead to
superluminal signalling. (b) The causal structure corresponding to the protocol. Note
that this causal structure is missing the dashed arrow from B to C that is present in
the causal structure of Figure 6.4a even though both explain the same correlations and
affects relations. (c) The correlations obtained from the protocol.

establishes the possibility of superluminal signalling using an observed Λ in a general class of
jamming scenarios.

Theorem 6.6.1. Consider a causal model over four nodes A, B, C and Λ, all of which are
observed. Let B be exogenous, A and C have no outgoing arrows and Λ be a common cause
of A and C. Further, suppose that B affects the set {A,C} without affecting its individual
elements i.e., B jams the correlations between A and C. This causal model is not compatible
with Minkowski space-time T i.e., leads to superluminal signalling when the variables A, B and
C are embedded in T as proposed in [105, 116], irrespective of the space-time location of Λ.
The proposed embedding is: A ⊀⊁ B, B ⊀⊁ C, A ⊀⊁ C, F(A)⋂F(C) ⊆ F(B), and the accessible
region of each observed ORV coincides with its inclusive future.

Remark 6.6.1. The classical protocol described in this section can also be extended to jamming
scenarios where Bob jams non-classical correlations between Alice and Charlie. For example,
let Alice and Charlie share a bipartite state, measure it using the inputs A and C and obtain
the outcomes X and Z, and let B be an input of Bob that may be sent to one of them.
Suppose, depending on B, we would like Alice and Charlie to share either correlations arising
from measurements on the Bell state ∣ψ0⟩ = 1√

2(∣00⟩ + ∣11⟩) or those arising from the same
measurements on a different Bell state, ∣ψ1⟩ = 1√

2(∣01⟩+ ∣10⟩). For this, Alice and Charlie simply
need to share the first Bell state but one of the parties, say Alice must perform a controlled NOT
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on her local subsystem controlled on the value of B, prior to the measurement. Then the parties
would measure ∣ψ0⟩ whenever B = 0 and ∣ψ1⟩ whenever B = 1 as required. Similarly, B can be
used to decide whether Alice and Charlie share one relabelling of a PR box (Equation (3.5))
or another.18 Note however that in a tripartite Bell scenario where all the parties are non-
communicating, these correlations cannot be generated quantum mechanically or in boxworld,
and therefore define a more general class of post-quantum theories [116, 185].

6.6.2 Comments on Horodecki and Ramanathan, Nat. Comms.
2019

Here, we address the claim of [116] (Propositions 2 and 3) that the no-signaling conditions NS2
(Equation (6.6)) and NS3’ (Equation (6.7)) are necessary and sufficient for no causal loops in
the bipartite and tripartite Bell scenarios respectively. The definition of no causal loops used
by [116] in the proof of this statement is the following, which we quote verbatim below.

No causal loops occur, where a causal loop is a sequence of events, in which one
event is among the causes of another event, which in turn is among the causes of
the first event.

Here “events” correspond to measurement events, i.e., an input and output pair of space-time
random variables both of which are assigned the same space-time location, and “cause” does
not seem to be defined explicitly. A rigorous formalisation of these definitions is offered by the
present framework— events correspond to ordered (or space-time) random variables (Defini-
tion 6.4.1), causation and signalling (which are non-equivalent) are defined in terms of a causal
model (Definition 6.3.1 and 6.3.4) and different types of causal loops have been distinguished
(Definition 6.3.6). Based on this, it appears that neither direction of these claims hold. In
the following we provide concrete counter-examples to illustrate our points, and explain how
our results provides possible resolutions. Since the definitions of [116] appear to be relatively
ambiguous, we note that our framework may not be the only possible way to formalise them,
but we are not aware of any other.

Definition of causal loops: As we have seen, fine-tuning allows for two distinct types of
causal loops (Definition 6.3.6), the affects loops which can be detected at the observed level
and the functional loops that may in principle be operationally undetectable (functional causal
loops). An example of the latter in the bipartite Bell scenario is provided in Figure 6.9a, where
the observed distribution PXY AB over the parties’ inputs A and B, and outputs X and Y

18Similarly, one can devise protocols to realise other types of jamming correlations by allowing the underlying
mechanisms (like the choice of local operation prior to measurement) to depend on B in a way that this does
not reflect in the local statistics. Further one can also consider jamming correlations where Bob’s output Y is
non-trivially involved in the process, which we do not analyse here as it is not directly relevant to the results of
this thesis.
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Figure 6.9: Counter-examples to the claims of [116]: All variables are assumed
to be binary in these examples. (a) Causal loops do not imply signalling: Let the de-
pendence of X and Y on their parents be X = Y ⊕Λ and Y =X⊕Λ, with X and Y being
uniformly distributed.19 This, along with the d-separation condition (Definition 6.3.2)
yields PXY AB = PXPY PAPB, and the no-signaling conditions (6.6) trivially hold. Never-
theless, we have a causal loop between X and Y that cannot be operationally detected
when Λ is unobserved. (b) Signalling does not imply causal loops: When A and Y are
embedded in space-time such that they are space-like separated, the causal model is not
compatible (Definition 6.4.7) with the space-time and leads to superluminal signalling.
However, it has no causal loops. (c) Instantaneous measurements are problematic: Let
all the variables be uniformly distributed and related as X = A⊕ Y (X jams A and Y ),
A ⊕ Λ = X (A and Λ collide into X). This gives Y = Λ (hence the solid arrow). If A
and X are assigned the same space-time location by idealising the local measurement to
be instantaneous, then no superluminal signalling ensues despite the causal loop. Note
that even if we had a solid arrow 2-cycle with X affects A affects X, this need not pose a
problem (either to the free choice definition used in [116] or to superluminal signalling)
when they are embedded at the same location.

exhibits no correlations i.e., PXY AB = PXPY PAPB, and there are no affects relations i.e., none
of the causal influences can be operationally detected, when Λ is unobserved. Nevertheless, the
causal structure involves a (functional) causal loop, which would qualify as a causal loop also
according to the definition of [116]. Clearly we could never rule out such causal loops based
on any operational conditions, especially using conditions that only restrict the correlations
(such as NS2 and NS3’). We can only rule out causal loops of the affects type as done in
Theorem 6.5.2, where have taken into account correlations as well as an operational notion
of causation defined through active interventions. For this reason, even if we take “no causal
loops” of [116] to mean “no affects causal loops”, the no signalling conditions (NS2) (6.6) and
(NS3′) (6.7) are neither necessary nor sufficient, which we discuss below with explicit examples.

Sufficient conditions for no causal loops: The no-signaling conditions NS2 (6.6) and
NS3′ (6.7) are not sufficient for no causal loops (of either type) in the corresponding Bell
scenarios, and there are a number of reasons for this. Firstly, in Theorem 6.6.1 we have shown
that the jamming scenario in the space-time configuration of [116] can lead to superluminal
signalling if the common cause Λ is an observed variable. The scenarios for which we have
proven this result are a special case of the tripartite Bell experiment where the inputs of

147



CHAPTER 6. CYCLIC AND FINE-TUNED CAUSAL MODELS AND COMPATIBILITY WITH RELATIVISTIC
PRINCIPLES

Alice and Charlie, and the output of Bob are ignored, and they satisfy the tripartite no-
signaling conditions NS3′ of [116]. This shows that NS3′ alone are not sufficient for ruling
out superluminal signalling and subsequent causal loops that can arise, we have also seen that
there exists an explicit protocol (Figure 6.8) that achieves superluminal signalling when Λ is
observed. Furthermore, including this assumption still does not suffice to rule out causal loops,
even in the bipartite Bell experiment, as shown in Corollaries 6.5.1 and 6.5.2. To rule out
affects causal loops, we also require that the output variables do not affect any other variables.
For an example of an affects causal loop that is not ruled out by the no-signaling conditions
NS2 of the bipartite Bell scenario, simply consider a 2-cycle between the outputs X and Y
such that X Ð→ Y and Y Ð→ X with X = Y . Since the inputs A and B play no role here,
no-signaling is trivially satisfied despite the causal loop that allows X to affect Y and Y in turn
to affect X. In addition, the inclusion of these extra assumptions still falls short for ruling out
all causal loops and superluminal signalling. For the latter, as mentioned in Section 6.5.2, we
require further assumptions involving affects relations such as {A,X} does not affect Y . We
note that a previous work by Baumeler, Degorre and Wolf [20] also illustrates that non-classical,
non-signaling correlations in the bipartite Bell scenario admit an alternative explanation using
causal loops, pointing to insufficiency of the no-signaling conditions for ruling out causal loops.

Necessary conditions for no causal loops: We also noted in Section 6.6.1 that the no-
signaling conditions are not necessary for no causal loops in the bipartite and tripartite Bell
scenarios. Consider the causal structure of Figure 6.9b where we have the usual bipartite Bell
scenario, and in addition that Alice’s input A affects Bob’s output Y . This violates the no-
signaling conditions. The particular embedding of this causal model in Minkowski space-time T
where the space-time random variables A and Y are space-like separated is not compatible with
the space-time and leads to superluminal signalling. However, the causal structure is clearly
acyclic and hence the causal model has no causal loops (in this case both of the affects or the
functional kind). Further, there clearly exists a compatible embedding of the causal model in T ,
this would be one where Y is taken to be in the future of A (in accordance with Corollary 6.5.3).
The fact that superluminal signalling does not imply causal loops has been pointed out in [116]
itself. If superluminal signalling were allowed only in one special reference frame, this cannot
be used to create causal loops.20 The conclusion that the no-signaling conditions are necessary
for no causal loops appears to be at odds with this observation, and the proof of [116] seems to
be implicitly assuming that superluminal signalling in one frame would enable such signalling
in all frames.

Instantaneous measurements: As an idealisation, measurements are considered to be in-
stantaneous in [116], such that the input and output variables of each party are embedded at

20Though we have not explicitly considered reference frames in this work, they could in principle be taken into
account by introducing a partially ordered set for every choice of reference frame, such that the space-time is
characterised by a collection of partially ordered sets. And compatibility of a causal model with the space-time
(Definition 6.4.7) would correspond to compatibility (or no signalling outside the future) with all these partially
ordered sets, such that signalling outside the light cone even in one frame would be a violation of compatibility.
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A

B

C

Figure 6.10: A space-time embdedding for the cyclic causal model of Fig-
ure 6.6b: In the causal model, we have B affects {A,C} and {A,C} affects B. In this
above space-time embedding, the future of the space-time random variable B exactly co-
incides with the joint future of A and C (blue region) i.e., the causal model is compatible
with the space-time (Definition 6.4.7) for this special embedding and does not lead to
superluminal signalling even though it contains functional causal loops. Note that for
affects causal loops, the only compatible embedding in space-time is the one where all
the loop variables are assigned the same space-time location (c.f. Corollary 6.5.3).

the same space-time location. While this is an idealisation that is often made, in the present
case in must be treated with caution, since causal loops (even of the affects type) between vari-
ables at the same space-time location do not necessarily lead to superluminal signalling (c.f.
Theorem 6.5.2, Figure 6.9c). In the bipartite Bell scenario, when Alice’s input and output are
at the same space-time location, this allows for an affects causal loop A Ð→ X and X Ð→ A,
while still satisfying free choice in the sense of: a free variable is not correlated with variables
outside its (inclusive) future. This is yet another reason for the insufficiency for the no-signaling
conditions for ruling out causal loops. From a physical standpoint, it would be natural to expect
that in a causal theory, non-trivial operations cannot be performed instantaneously and some
frameworks for causality, such as [171] explicitly forbid this. Note that the sufficiency proof of
Theorem 6.5.2 explicitly forbids such instantaneous embeddings.

Causal structure vs space-time structure: It is important to point out that the directed
graphs presented here differ from those of [116] in what they represent. In [116], arrows between
space-time variables (which are always represented as solid) X Ð→ Y represent the space-time
structure i.e., that Y is in the future of X . This does not necessarily mean that X is a cause of
Y. In this thesis, arrows are used to represent the causal structures such that X Ð→ Y stands
for X is a cause of Y (Definition 6.3.1). If the causal model is compatible with the space-time,
this would imply that Y is indeed in the future of X , but apriory this need not be the case
in our framework. [116] assumes that for any two space-time random variables X is a cause
of Y implies that Y is in the future of X . Again the definition of “cause” is important here,
since this need not hold for fine-tuned causes. For example if X is a fine-tuned cause of Y (i.e.,
X 99K Y ), Y being in the future of X is not necessary for ruling out superluminal signalling in
such cases (Theorem 6.5.1). Formalising this notion in terms of the affects relation (introduced
in Definition 6.3.4) we have X affects Y implies that Y is in the (inclusive) future of X . Note
that this follows from our compatibility condition (Definition 6.4.7).
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Free choice: Free choice of inputs in the Bell scenario is crucial to the arguments of [116]
since without this, outputs of parties can be correlated with inputs of space-like separated
parties through common causes, hence violating the no-signaling conditions without leading to
causal loops. The commonly used definition of free choice proposed in [61] needs to be modified
when considering jamming correlations in multipartite Bell scenarios as noted in [116]. The
former requires each party’s input to only be correlated with variables in its future while the
latter allows Bob’s input in the tripartite Bell experiment to be correlated with Alice and
Charlie’s outputs jointly even though the each output is space-like separated to the input
variable. Accordingly, the definition will change depending on the scenario considered, and
does not generalise easily. Here we have modelled free choice of a random variable by taking it
to be exogenous in the causal graph, which generalises readily to arbitrary causal structures.
Though admittedly, this is not the only way to model free choice in causal structures.Modelling
free choice is not a major concern in this work since our main results, Theorems 6.5.1 and 6.5.2
do not assume any form of free choice and apply to arbitrary causal models.
Remark 6.6.2. It can be shown that defining free choice through exogeneity would recover
the free choice definitions of [61, 116] in the Bell scenarios when the causal model is embedded
compatibly in the space-time (using the results of Section 6.5.2). However, the converse is not
true since the latter are defined in terms of correlations and the lack of correlation does not
imply a lack of causation, specially when we allow for fine-tuning. Therefore the definitions are
not equivalent. Other inequivalent definitions may also be possible. We leave for future work,
a deeper exploration of the relationship(s) between the different notions of free choice that can
arise in the presence of fine-tuning.

6.7 Discussion

D-separation and affects relations: The affects relation (Definition 6.3.4), based on the
notion of interventions which is crucial for distinguishing between correlation and causation. In
acyclic causal structures [159, 115] and in classical cyclic causal structures [84], existing frame-
works completely describe how the post-intervention distribution can be calculated, from the
observed distribution and/or the underlying causal mechanisms. In non-classical cyclic causal
structures, such a characterisation is not available. In Section 6.3, we have used the d-separation
condition (Definition 6.3.2) on the observed distribution to obtain a partial characterisation
which suffices for the current purpose, but this does not fully specify the post-intervention
distribution. In Appendix 6.8.1, we outline a possible method for doing so, given the under-
lying causal mechanisms. We note that this method may not always recover the d-separation
condition 6.3.2. In the classical cyclic case, it has been shown that the d-separation condition
is recovered whenever all the variables are discrete and the causal mechanisms of the model
satisfy a certain property known as ancestrally unique solvability (discussed in Appendix 6.8.1).
All the examples presented in the main chapter are either acyclic or cyclic and satisfy these
properties. Therefore our main results are not impacted by making d-separation a defining
condition. Defining the framework without this assumption, using the causal mechanisms as
primitives would only generalise it, and could potentially be of independent interest as a general
framework for causal modelling. Further, another observation made in Appendix 6.8.1 is that
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the presence of causal loops could allow us to distinguish between a faithful, non-classical expla-
nations vs unfaithful classical explanations (e.g., using non-local hidden variables) of quantum
correlations, which cannot be operationally distinguished otherwise. Formalising this intuition
would provide another interesting line of investigation stemming from this work.

Causal loops and paradoxes: A full formalisation of our causal model framework, in a
manner described in the above paragraph would allow us to make a precise comparison with
the two main types of closed timelike curves or CTCs that have been proposed in the literature
namely, Deutsch’s CTCs (DCTCs) [75] and post-selected CTCs (PCTCs) [25, 198, 137, 138].
These CTCs have provided insights into complexity classes in information theory, known to have
different computing powers [2, 138] and to provide different resolutions to the grandfather and
unsolved theorem paradoxes [138]. In our framework, grandfather type paradoxes are forbidden
by the assumption that a valid joint probability distribution observed variables indeed exists.
An example of a paradoxical scenario is a 2-cycle between X and Y where the influence X Ð→ Y
defines the functional dependence Y = X and Y Ð→ X gives the dependence X ≠ Y . These
equations are mutually inconsistent and there is no joint distribution PXY compatible with
these dependences.21 This consistency condition appears to be similar in spirit to that of
PCTCs where the paradoxical scenario is never compatible with the post-selection i.e., occurs
with zero probability. The unproved theorem paradox on the other hand, can depend on how
the framework is formalised. For example, in classical cyclic causal models, an assumption
regarding the unique solvability of the underlying functional dependences is often made. In
particular, this could be seen as the requirement that any information involved in a loop (such
as the unproved theorem) must be fully determined by the mechanisms of the causal model
thereby eliminating the paradox of a proof that “came from nowehere”.

Causal inference in the presence of fine-tuning: The no fine-tuning assumption, in some
form or the other is required by all causal discovery algorithms, which are algorithms that infer
an unknown causal structure from observed correlations, interventions and other additional
information that may be available. Relaxations to the assumption have been considered where
certain forms of fine-tuning have been allowed [226]. In the general case where arbitrary amount
of fine-tuning is allowed, it can be fundamentally impossible to infer the causal structure since
we have an arbitrary number of fine-tuned causal arrows that produce absolutely no observable
effects. Take for instance the example of Figure 6.9a, where there is a fine-tuned causal loop
even though no correlations can be seen between the observed variables even when we intervene
on them. Therefore, to address the problem of causal inference in our framework i.e., in
the presence of cycles, fine-tuning and non-classical systems, we would need to make certain
assumptions on the kind of fine-tuning that is allowed. One reasonable assumption could be
that whenever there is a fine-tuned arrow between two variables X 99K Y that cannot be
detected when considering those variables alone, the causal influence must become detectable

21This is similar in structure to the Liar’s paradox, e.g., “this statement is false” or more generally a liar
cycle. Interestingly, this will crop up again in our discussion of multi-agent paradoxes and contextuality in
Chapter 8. The striking similarities between such paradoxes in philosophy, time-travel, quantum contextuality
and multi-agent scenarios have also been pointed out in [77].
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when we consider additional variables along with X and Y , as is the case in the jamming and
collider examples of Section 6.3.5. This is another interesting direction for future work.

Jamming theories and physical principles: An important motivation for analysing post-
quantum theories and jamming type scenarios constrained by relativistic principles is to gain
deeper insights into the physical principles that single out quantum theory. One property of
jamming theories that becomes suggested by our results is that they would involve some form
of fine-tuning as well as variables and influences that must remain fundamentally inaccessible
to observation. Even though jamming correlations in the space-like separated configuration of
[105, 116] are post-quantum phenomena, they are similar in spirit to non-local hidden variable
explanations of quantum theory such as the De broglie-Bohm pilot wave theory [27] which also
involve fine-tuned influences. Here the pilot wave which is not operationally accessible leads
to the operational predictions of quantum theory, but can involve non-local or superluminal
influences at the ontological level. An interesting future direction would be to formalise the
concept of jamming theories in a similar manner to generalised probabilistic theories and con-
sider other physical properties thereof. One difficulty in doing this is that the post-quantum
jamming scenario requires a particular space-time configuration, while GPTs can be formalised
independently of a space-time structure. Disentangling the notions of causality and space-time
through operational considerations, as done here, could be seen as first step towards such a
more general characterisation of jamming theories.

Indefinite causal orders: Going beyond the notion of a fixed (but possibly unknown) causal
structure, causal orders that may be fundamentally indefinite has been considered [154]. Here
processes are said to be causally separable if they admit an explanation in terms of a classical
mixture of fixed causal order processes, and causally non-separable otherwise. Even though
our framework assumes a fixed causal and space-time structure, we note the following point
regarding causally separable processes. Consider a scenario where the causal order X Ð→ Y
or Y Ð→ X between two classical random variables is determined probabilistically by a third,
binary variable Λ. Let the first causal order correspond to the dependence Y =X and the second
correspond to the dependence X = Y ⊕ 1 for binary X and Y . This can be modelled in the
causal structure of Figure 6.9a with the dashed arrows replaced with solid arrows, considering
only the variables X, Y and Λ. The causal mechanisms would be X = Λ.(Y ⊕ 1)⊕ (Λ⊕ 1).EX
and Y = (Λ⊕1).X ⊕Λ.EY , where EX and EY are mutually independent, uniformly distributed
binary variables. Conditioned on Λ = 0, X affects Y but Y does not affect X i.e., P (X ∣do(Y =
y),Λ = 0) = P (X ∣Λ = 0) ∀y and similarly P (Y ∣do(X = x),Λ = 1) = P (Y ∣Λ = 1) ∀x. However,
when Λ is not given, it can be checked that X affects Y and Y affects X which is an affects
causal loop.22 At first sight this might seem counter-intuitive to the idea that classical mixtures
of causal orders should be implementable in a lab by flipping a coin to decide the order of two
operations. Such a physical implementation corresponds to a situation where one operation (say,
that which generates X) is performed at a time t1 and the other (which generates Y ) at time
t2 > t1 when Λ = 0 while the second operation is performed at t1 and first at t2 when Λ = 1 i.e.,

22Note that the contradictory conditions X = Y and Y =X ⊕ 1 are not a problem here since they never have
to be satisfied simultaneously.
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it is a directed acyclic graph over 4 variables, with Xt1 Ð→ Yt2 , Yt1 Ð→ Xt2 . This suggests the
importance of the space-time embeddings in understanding the physicality if such processes. It
would be interesting to analyse the quantum counterpart of this example, namely the quantum
switch [53] (which implements a quantum controlled superposition of the orders) in a similar
manner, through a suitable generalisation of our framework. Further, indefinite causal orders
that violate so-called causal inequalities [154] have also been proposed in frameworks that do
not assume a fixed background space-time structure (as we have assumed in the present work).
However such frameworks appear to disallow certain types of causal loops that are allowed by
ours, and it would also be interesting to consider whether genuine23 causal inequality violations
can be modelled in our framework.

Indefinite space-time locations: Physically, it is possible to implement scenarios where
a quantum system is superposed not only between spatial locations, but also in time. These
spatio-temporal superpositions are required in the physical implementation of the quantum
switch mentioned above [173, 184, 171]. It would therefore be of interest to generalise our
framework to also consider unobserved systems that may be space-time delocalised. The frame-
work currently uses the standard quantum formalism and the Born rule which only apply to
quantum states and composite systems defined at a single instant of time. Generalisations to
the standard formalism that define quantum states over space and time have been proposed and
a particularly relevant one for this purpose would be the causal box formalism of [171] which
models quantum information processing mechanisms that act on such systems. In an ongoing
collaboration with members of ETH Zurich24, we explore the relations between the causal box
formalism and indefinite causality, outlining a way to recover a probability rule analogous to
the Born rule in certain cases. This suggests one possible way to generalise the results of the
current chapter to situations where the systems are delocalised in space and time.

6.8 Appendix

6.8.1 Do-conditionals from causal mechanisms

In Section 6.3 we have outlined how interventions and do-conditionals (i.e., the post interven-
tion distribution) are defined in our framework, and Theorem 6.3.1 provides some conditions
under which the post and pre intervention distributions can be related. Ideally though, one
would expect that it should be possible to fully specify the post-intervention distribution if we
are given all the underlying causal mechanisms involved in the causal structure. For example,
in the classical case, the structural equations of the causal model [159] provide these causal

23When no assumptions are made, causal inequalities, like Bell inequalities can be trivially violated. Identi-
fying a genuine violation hence depends on the assumptions under which the causal inequality is derived, and
these are not yet completely formalised for general scenarios.

24Vilasini, V., del Rio, L. and Renner, R. Causality in definite and indefinite space-times. In preparation
(2020). https://wdi.centralesupelec.fr/users/valiron/qplmfps/papers/qs01t3.pdf
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mechasisms. Here for each node X in the causal structure, the dependence of X on its parents
par(X) corresponds to a stochastic map, which can be written in terms of a deterministic func-
tion X = fX(par(X),EX) by including an additional exogenous and unobserved error variable
EX for each node X. This is called a structural equation. If the structural equations for all the
nodes are known, then the complete post-intervention distribution can be calculated. This has
been shown to be the case for classical cyclic causal models in [84]. An intervention do(x) on
X, corresponds to updating the structural equation for X to X = x while keeping the remaining
structural equations the same. Another important result for the classical case derived in [84]
is that the d-separation property or the global directed Markov condition of Definition 6.3.2 is
recovered whenever all the random variables are discrete and the structural equations of the
causal model satisfy a property known as ancestrally unique solvability (anSEP). Roughly, this
property demands that the structural equation for each node must admit a unique solution
given the values of the node’s ancestors. We need not define this concept formally for our
purposes here.

Our goal would be to extend these ideas to quantum and post-quantum cyclic causal structures,
where the causal mechanisms involve measurements and transformations on non-classical sys-
tems, which cannot be expressed using deterministic structural equations. In the non-classical
case, it is unclear what conditions allow for the d-separation condition to be recovered. Even
to make this question precise in the non-classical case, one would need to specify the analog
of structural equations for such causal models which is an open problem. Here, we present a
possible method for achieving this by explaining it using the following example and sketching
how it might generalise to a larger class of causal models.

Example 6.8.1 (A quantum cyclic causal model). Consider the cyclic variation of the bipartite
Bell causal structure illustrated in Figure 6.11a. Let the common cause Λ correspond to the
Bell state ∣ψΛ⟩ = 1√

2(∣00⟩ + ∣11⟩). Suppose that A and B are the settings of local measurements
on the two subsystems such that when these variables take the value 0, it denotes a σZ or com-
putational basis ({∣0⟩, ∣1⟩}) measurement on the associated subsystem, and the value 1 denotes
a σX or Hadamard basis ({∣+⟩, ∣−⟩}) measurement. X and Y are the binary outcomes of these
measurements where 0 and 1 for the Hadamard basis measurements denote the outcomes + and
− respectively. The additional constraints coming from the causal loop are that B = X and
A = Y . This specifies all the causal mechanisms, how do we calculate the observed distribution
PXY AB?

A method based on post-selection: One method is to first calculate the observed corre-
lations for the specified state and measurements in the original Bell scenario (Figure 3.1a), and
then post-select on the observations that obey the loop conditions B = X and A = Y . More
formally, this corresponds to transforming the original cyclic causal structure of Figure 6.11a
to the acyclic causal structure of Figure 6.11b by cutting off the edges A X and B Y and
replacing them with the edges A∗ X and B∗ Y by introducing two exogenous nodes A∗

and B∗. Then the inputs A∗ and B∗ and outputs X and Y along with the shared system Λ
define a Bell scenario, while the variables A = Y and B = X can simply be seen as local post-
processings of the outcomes. We can then calculate the observed probabilities for this acyclic
causal structure using the Born rule, and post-select on A∗ = A and B∗ = B, which effectively
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achieves the post-selection A = Y and B =X in the original Bell scenario (Figure 3.1a). These
probabilities will not be normalised and one has to renormalise them to obtain the observed
distribution PXY AB. This is calculated in Figure 6.11 and can be used to find all the affects
relations. An intervention on A would cut off the arrow from Y to A. We can immediately
see that A does not affect X since A is effectively exogenous in the post-intervention causal
structure and will be uncorrelated with X since Λ is the maximally entangled state. Similarly
B does not affect Y . However, {A,B} affects {X,Y } since a joint intervention on A and B
takes us back to the original Bell scenario in which these sets are correlated. We also have X
affects B and Y affects A due to the loop conditions A = Y and B = X. And naturally, also
{X,Y } affects {A,B}. In this example, Gdo(A,B) corresponds to a quantum causal structure (the
Bell scenario) while Gdo(X,Y ) is a simple classical causal structure for the causal structure G of
Figure 6.11a and the (observed) arrows of the figure can be classified into dashed and solid
arrows as: A 99K X, B 99K Y , X Ð→ B and Y Ð→ A. Note that this example corresponds
to a functional causal loop as per Definition 6.3.6, and the observed distribution satisfies the
d-separation condition of Definition 6.3.2. The post-intervention distribution is fully specified
here because, all interventions (except the one on Λ alone) are associated with acyclic post-
intervention graphs and for interventions on the exogenous Λ, the post and pre-intervention
distributions coincide.

Applying the method to fine-tuned explanations of non-classical correlations: It is
known that certain non-classical correlations arising in the bipartite Bell causal structure cannot
be obtained in the same causal structure if the common cause Λ was classical. However, these
correlations can be easily generated in the classical, fine-tuned causal structure of Figure 6.11c,
which differs from the original causal structure by the inclusion of fine-tuned causal influences
from each party’s input to the other party’s output. We now explain how this is achieved and
then apply the post-selection method explained above to create a causal loop in Figure 6.11c
by adding X Ð→ B and Y Ð→ A. This will demonstrate that, even though the same non-
classical correlations and affects relations can be obtained in the original Bell causal structure
and its fine-tuned classical counterpart 6.11c, the two causal structures behave differently in
the presence of causal loops.

First consider the PR box (Equation (3.5)), which is one of the maximally non-classical corre-
lations of the Bell causal structure. It is defined by the condition X ⊕ Y = A.B where all the
variables are binary. This is easily generated in the classical causal structure of Figure 6.11c
by the structural equations Λ = E, Y = E and X = E ⊕A.B (where E is binary and uniformly
distributed). Other non-classical correlations can be obtained by adding some “noise” to this
PR box example. Let Λ = (E,F ) correspond to two variables E and F both binary, and the
former distributed uniformly. Then the structural equations Y = E and X = E ⊕ F ⊕A.B for
different distributions over the exogenous variable F correspond to the PR box mixed with
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different levels of noise.25

X = A.B ⊕E ⊕ F,
Y = E.

(6.8)

Therefore, the causal mechanisms that allow us to produce non-classical correlations PXY AB in
the acyclic causal structure 6.11c are the functional dependences (6.8) along with a specification
of the distributions over the exogenous variables E and F that constitute Λ. E is uniform while
F can vary depending on the correlation to be generated. We now construct the causal loop
by including the additional arrows X B and Y A and by effectively post-selecting on the
loop condition A = Y and B =X. These, along with the causal mechanisms (6.8) of the acyclic
case define the mechanisms for the cyclic causal structure. We will now see that these causal
mechanisms are incompatible with each other. We have Y = E, X = E ⊕ F ⊕A.B, A = Y and
B = X, which gives X = E.X ⊕ E ⊕ F and Y = E. Therefore for (E,F ) = (0,0), we have
(X,Y ) = (0,0) and for (E,F ) = (0,1) we have (X,Y ) = (1,0). However for (E,F ) = (1,0)
we get X = X ⊕ 1 which does not have a solution. For (E,F ) = (1,1) we get X = X which
is not a unique solution. Therefore if we demand unique solvability, we must require E = 0
deterministically which contradicts the initial assumption that E is uniform. Even if we don’t
require uniqueness, we can not have (E,F ) = (1,0) and forbidding this would make E and F
correlated and non-uniform.

Therefore, in the classical, fine-tuned explanation of the Bell correlations, adding the loop is
not consistent with the causal mechanisms that generate the non-classical correlations in the
absence of the loop— in particular, they are in conflict with the preparation of the exogenous
variable Λ. If we have a consistent loop, then intervention on A and B will no longer recover the
original non-classical correlations. This is in contrast to the faithful case analysed in Figure 6.11
(and explained previously in the text), when do(A,B) gives back the non-classical correlations
of the Bell scenario. This suggests that certain (non-local) hidden variable explanations for
quantum correlations (in a Bell experiment) can in principle be distinguished from the expla-
nation provided by standard quantum mechanics in the presence of causal loops. We have only
shown this for a particular set of functions or causal mechanisms for generating the former
and it would be interesting to consider if this generalises, in particular to causal mechanisms
provided by Bohmian mechanisms [27], a non-local hidden variable theory.

Generalising to other causal structures: The idea behind the post-selection method
employed for Example 6.8.1 above can in principle be generalised to other non-classical, cyclic
causal structures where every directed cycle includes at least one edge W Z connecting
classical nodes W and Z. The intuition is that cutting off such an edge in every direct cycle
and replacing it with an edge W ∗ Z, by introducing an additional, exogenous variable W ∗

would result in a directed acyclic graph (DAG). One can then apply the generalised causal model
framework of [115] (reviewed in Section 2.5.2.1) to obtain the observed distribution in this DAG
and then post-select on W = W ∗ for all the edges that were cut off. Then a way to recover

25Note that the model can be symmetrised by including an additional, uniformly distributed binary variable
G in the description of Λ = (E,F,G) and using the structural equations X = E ⊕ (G ⊕ 1)(A.B ⊕ F ) and
Y = E ⊕G(A.B ⊕ F ).
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Figure 6.11: A cyclic quantum causal model: (a)A cyclic variation of the bipartite
Bell causal structure (Figure 3.1a). (b) A method to calculate the observed distribution
of (a) when Λ is non-classical involves this intermediate causal structure. This is obtained
from (a) by copying the nodes A and B and removing the directed cycle as shown. This
gives an acyclic causal structure for which the distribution PXY ABA∗B∗ can be calculated
using known methods. Then, post-selecting on A = A∗ and B = B∗ gives the distribution
PXY AB for the original cyclic causal structure of (a). (c) A classical causal, fine-tuned
structure that can generate, all non-classical correlations of the bipartite Bell causal
structure. Creating a causal loop in this case by adding the arrows X B and Y A
does not lead to the same predictions as (a), which corresponds to adding these arrows
to the original Bell causal structure. This method explained in the main text. (d) The
table provides the observed distribution for Example 6.8.1 calculated using the proposed
method. The only values of A, B, X and Y that are compatible with the loop conditions
A = Y and B =X are those listed here, and the fifth column lists the measurements and
outcomes that these values correspond to, according to Example 6.8.1. PQMXY AB denotes
the probabilities of the measurements and outcomes listed in the fifth column calculated
using the Born rule. These values are sub-normalised, and upon renormalisation, the
observed distribution PXY AB for the cyclic causal structure (a) is obtained. Note that
the d-separation condition 6.3.2 is satisfied in this case.

the d-separation condition (using the result of [84]) would be to check whether these exists
a classical causal model for the same cyclic causal structure that produces identical observed
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correlations and satisfies the anSEP property. Note that this classical causal model need not
necessarily yield the same post-intervention distributions. In the example of Figure 6.11a, an
intervention on A and B gives the Bell scenario, which as we know produces non-classical
correlations that cannot be obtained in the corresponding classical causal model [224]. Finally,
it would be interesting to compare this method with the framework of post-selected closed
time-like curves [138].
Remark 6.8.1. We note that assuming the d-separation condition of Definition 6.3.2 as a
primitive property of the framework rules out certain cyclic causal structures from being de-
scribed in our current framework. In the classical case, these are precisely those cyclic causal
models that do not satisfy anSEP or those involving continuous random variables (due to the
result of [84]). A good example of such a causal model is that of [150], and [84] proposes a gen-
eralisation of d-separation called σ−separation through which they derive a generalised global
directed Markov condition that applies to classical causal models involving continuous variables
and/or do not satisfy anSEP. This reduces to d-separation in the acyclic case. Therefore, one
option would be to replace d-separation with σ-separation in Definition 6.3.2 to generalise our
framework for cyclic causal models.

6.8.2 Proofs

Lemma 6.3.1. Let S1, S2 and S3 be three disjoint sets of RVs such that S1 á S2∣S3. If S is a
set of RVs that is d-separated from these sets in a directed graph G containing S1, S2, S3 and
S are nodes i.e. S ⊥d Si ∀i ∈ {1,2,3}, then any distribution P that is compatible with G also
satisfies the following conditional independences,

(S1 ∪ S) á S2∣S3, S1 á (S2 ∪ S)∣S3 and S1 á S2∣(S2 ∪ S).

Proof. The conditional independendence S1 á S2∣S3 stands for PS1S2∣S3 = PS1∣S3PS2∣S3 , which
implies

PS1∣S2S3 = PS1∣S3 . (6.9)
The 3 d-separation relations S ⊥d Si for i ∈ {1,2,3} imply that S is d-separated from every
subset of the union S1 ∪ S2 ∪ S3. This implies the following independences by Definition 6.3.2
of compatibility of the distribution P with the causal model represented by G,

PS∣S′ = PS ∀S′ ⊆ S1 ∪ S2 ∪ S3. (6.10)

Now consider the conditional distribution PS2∣SS1S3 . We have,

PS2∣SS1S3 =
PS2SS1S3

PSS1S3

=
PS3PS2∣S3PS1∣S2S3PS∣S1S2S3

PSS1S3

=
PS3PS2∣S3PS1∣S3PS

PSPS1S3

= PS2∣S3 ,

(6.11)
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where we have used Equations (6.9) and (6.10) in the third line, noting that PS∣S1S3 = PS ⇒
PSS1S3 = PSPS1S3 . Equation (6.11) is equivalent to PSS1S2∣S3 = PSS1∣S3PS2∣S3 which denotes the
conditional independence (S ∪S1) á S2∣S3. The conditional independence S1 á (S ∪S2)∣S3 can
be derived analogously due to the symmetry between S1 and S2.

Finally, we have

PS2∣SS3 =
PS2SS3

PSS3

=
PS3PS2∣S3PS∣S2S3

PSPS3

= PS2∣S3 , (6.12)

and similarly PS1∣SS3 = PS1∣S3 . Together with Equation (6.11), this implies PS2∣SS1S3 = PS2∣SS3 .
This is equivalent to PS1S2∣SS3 = PS1∣SS3PS2∣SS3 which denotes the final conditional independence
S1 á S2∣(S ∪ S3).

Theorem 6.3.1. Given a causal model over a set S of observed nodes, associated causal graph G
and a distribution PS compatible with G according to Definition 6.3.2, the 3 rules of do-calculus
[159] hold for interventions on this causal model.

• Rule 1: Ignoring observations

P (y∣do(x), z,w) = P (y∣do(x),w) if (Y ⊥d Z ∣X,W )G
X

(6.1)

• Rule 2: Action/observation exchange

P (y∣do(x), do(z),w) = P (y∣do(x), z,w) if (Y ⊥d Z ∣X,W )G
X,Z

(6.2)

• Rule 3: Ignoring actions/interventions

P (y∣do(x), do(z),w) = P (y∣do(x),w) if (Y ⊥d Z ∣X,W )G
X,Z(W )

, (6.3)

where X, Y , Z and W are disjoint subsets of the observed nodes and Z(W ) denotes the set of
nodes in Z which are not ancestors of W .

Proof. Rule 1: We first note that the graph Gdo(X) differs from GX only by the inclusion
of the additional nodes IXi and corresponding edge IXi Xi for each Xi ∈ X. Therefore,
the d-separation condition (Y ⊥d Z ∣X,W )G

X
for the latter implies the same condition (Y ⊥d

Z ∣X,W )Gdo(X) for the former. Using the d-separation condition of Definition 6.3.2 this implies
the conditional independence of Y and Z given {X,W} for the distribution PGdo(X) compatible
with Gdo(X). Using the definition of the do-conditional (Equation (2.51)), PGdo(X)(y, z∣x,w) ∶=
P (y, z∣do(x),w) = P (y∣do(x),w)P (z∣do(x),w). This conditional independence automatically
gives the required Equation (6.1).

Rule 2: GX,Z is the graph where all incoming arrows to X and outgoing arrows from Z are
removed in G. Hence, the d-separation condition (Y ⊥d Z ∣X,W )G

X,Z
implies that the only paths

between Y and Z in the graph GX that are not blocked by X and W are paths involving an
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outgoing arrow from Z. These are precisely the paths that get removed in going from GX to GX,Z ,
resulting in the required d-separation there. The same statement holds for the graph Gdo(X) (by
the argument used in the proof of Rule 1), and also for the graph Gdo(X),IZ which corresponds to
adding the nodes IZi and edges IZi Zi to Gdo(X) for each Zi ∈ Z. The latter holds true since
the addition of the IZi nodes and IZi Zi edges cannot create any additional paths between
Z and Y that are left unblocked by X and W . This implies that the only paths between Y
and the set IZ ∶= {IZi}i not blocked by X and W in Gdo(X),IZ are paths from IZ , going through
Z and involving an outgoing arrow from Z i.e., paths involving the subgraph IZ Z ....
All these paths would get blocked when conditioning additionally on Z. This gives (Y ⊥d
IZ ∣X,W,Z)Gdo(X),IZ , which through the d-separation condition (Definition 6.3.2) and definition
of the post-intervention distribution (Equation (2.51)), give the required Equation (6.2). In
other words, once X, W and Z are given, Y does not depend on whether the given value z of Z
was obtained through an intervention (IZ = do(z)) or passive observation (i.e., where IZi = idle
for all i, which is the causal model where no interventions are made on elements of Z).

Rule 3: The d-separation condition (Y ⊥d Z ∣X,W )G
X,Z(W )

implies (Y ⊥d Z ∣X,W )G
X,Z

since
going from the first to the second graph involves removing additional incoming arrows to nodes
in the set Z that don’t belong to the subset Z(W ) ⊆ Z, and if (P ⊥d Q∣R)G holds for some
sets P , Q, R of nodes in a graph G, then the same d-separation, (P ⊥d Q∣R)G′ also holds in
any graph G′ obtained from G only by removing some of the edges. By the same argument as
in the proof of Rule 1, this implies the same d-separation for the corresponding “do” graph,
i.e. (Y ⊥d Z ∣X,W )Gdo(X),do(Z) . Then, applying the compatibility condition of Definition 6.3.2 to
PGdo(X),do(Z) gives the required Equation (6.3).

Theorem 6.5.1. [Necessary and sufficient conditions for compatibility with T ] Given a causal
model over a set of ORVs S, the following condition (cond) is necessary for the causal model
to be compatible with the embedding partial order T according to compat (Definition 6.4.7).

∀subsets S1,S2 ⊆ S, such that no proper subset of S1 affects S2,

⋂
s2∈S2

F(s2) ⊈ ⋂
s1∈S1

F(s1) ⇒ S1 does not affect S2.
(6.4)

While cond alone is not sufficient for compat, along with the following additional requirement
it provides a sufficient condition for compat

∀X ∈ S, F(X ) ⊆RX (6.5)

Proof. Necessity of condition: For any two subsets S1,S2 ⊆ S such that no proper subset of S1
affects S2, compat implies that RS2 ⊆RS1 whenever S1 affects S2. Further, by compat, RX =
F(X ) for all ORVs X . Using these along with the fact that for any subset Si ⊆ S, RSi = ⋂

si∈Si
Rsi

(see Remark 6.4.1), we have RSi = ⋂
si∈Si
F(si) for all subsets Si whenever compat holds. Hence

we have the following whenever compat holds, which is equivalent to Equation (6.4)

S1 affects S2 ⇒ ⋂
s2∈S2

F(s2) ⊆ ⋂
s1∈S1

F(s1).
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Sufficiency of condition + additional assumption: Applying the condition cond of Equa-
tion (6.4) to the case where Y = {X} (i.e., Y is any arbitrary copy of X ), we have X affects Y
(by Definition 6.4.4 of a copy). This gives F(X ′) ⊆ F(X ) and hence X ′ ∈ F(X ) ∀ copies X ′ of
X . Since by Definition 6.4.5, the accessible region of X is the smallest subset of T containing
all possible copies of X , we must have RX ⊆ F(X ). Hence cond by itself is not sufficient for
compat as it does not require the accessible region to coincide with the future, only that it is
a subset of the future. Along with the additional assumption that RX ⊇ F(X ) ∀X ∈ S, this
gives

RX = F(X ), ∀X ∈ S. (6.13)

Again, the accessible region of any subset Si ⊆ S is RSi = ⋂
si∈Si
Rsi (Remark 6.4.1). Equa-

tion (6.13) then implies that
RSi = ⋂

si∈Si
F(si) ∀Si ⊆ S (6.14)

Hence we have that the condition of Equation (6.4) along with the additional requirement of
Equation (6.5) imply Equation (6.13) and (6.14), where Equation (6.13) is the first condition for
compat (Definition 6.4.7). Further, Equation (6.14) along with the condition Equation (6.4)
then imply the second condition for compat which is

∀subsets S1,S2 ⊆ S, such that no proper subset of S1 affects S2, S1 affects S2 ⇒RS2 ⊆RS1 .
(6.15)

Theorem 6.5.2. [Necessary and sufficient condition for no affects causal loops] A necessary
condition for a causal model over a set S of RVs to have no affects causal loops is that there
exists an embedding of S in Minkowski space-time T such that the corresponding ORVs S
satisfies the condition cond of Equation (6.4). cond along with the additional assumption that
any 2 distinct ORVs X and Y such that one affects the other, cannot share the same location
in T , are sufficient for having no affects causal loops in the causal model.

Proof. Necessity of condition: Consider a causal model over a set S of RVs that has no affects
causal loops. Taking T to be Minkowski space-time, embed the RVs in T such that whenever
an RV X affects another RV Y , then the corresponding ORVs satisfy Y ∈ F(X ). Since X
affects Y implies that Y does not affect X (by the assumption of no affects causal loops), this is
always possible for any pair of RVs. For embedding the remaining RVs, consider the following
conditions for two sets S1 and S2 of the RVs,

1. No proper subset of S1 affects S2,

2. No proper subset of S2 is affected by S1,

3. No proper subset of S2 affects S1 and,

4. No proper subset of S1 is affected by S2,
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Then embed the elements of S1 and S2 in T as follows

• If conditions 1. and 2. hold and S1 affects S2: ⋂
s2∈S2
F(s2) ⊆ ⋂

s1∈S1
F(s1).

This automatically gives (since the sets are arbitrary):

• If conditions 3. and 4. hold and S2 affects S1: ⋂
s2∈S2
F(s2) ⊇ ⋂

s1∈S1
F(s1),

• If conditions 1.-4. hold, S1 affects S2 and S2 affects S1: ⋂
s2∈S2
F(s2) = ⋂

s1∈S1
F(s1).

Such an embedding is always possible because the joint inclusive future of some set T of points
in Minkowski space-time can be seen as the inclusive future of a single point LT , which would
be the earliest point that is in the future of all points in T , and the embedding imposes an
order on the points LT corresponding to a set. For example, for every pair of ORV sets S1 and
S2 satisfying 1. and 2. and S1 affects S2, the embedding requires LS1 ⪯ LS2 . For the third case
where 1.-4. are satisfied and the sets affect each other, we would have LS1 = LS2 . Note that this
is possible even when the RVs are assigned distinct locations in T , since only the joint futures
of sets need to coincide (this was the case in Figure 6.6b where B and {A,C} affect each other).
In the case that S1 and S2 consist of single elements, this embedding clearly agrees with X
affects Y implies Y ∈ F(X ), since no causal loops forbids the third case. In particular, for all
subsets S1 and S2 satisfying the conditions 1. and 2., we have

S1 affects S2 ⇒ ⋂
s2∈S2

F(s2) ⊆ ⋂
s1∈S1

F(s1) (6.16)

Now, suppose S1 and S2 are two sets of variables that satisfy 1. and S1 affects S2. Then,
either they also satisfy 2. or they do not satisfy 2., in which case there exists a proper subset
S′2 ⊂ S2 such that S1 affects S′2. Without loss of generality, we can assume that S1 and S′2
satisfy both 1. and 2. (if not, we can repeat the argument for this case by taking a proper
subset of S′2 that will satisfy these conditions). In other words S1 and S′2 ⊆ S2 satisfy 1.
and 2. and also the affects relation S1 affects S′2. Therefore, for the embedding described
above, we have ⋂

s′2∈S′2
F(s′2) ⊆ ⋂

s1∈S1
F(s1) due to Equation (6.16). Further, S2 ⊇ S′2 implies that

⋂
s2∈S2
F(s2) ⊆ ⋂

s′2∈S′2
F(s′2). Therefore for any S1 and S2, which satisfy 1. and S1 affects S2, we

have ⋂
s2∈S2
F(s2) ⊆ ⋂

s1∈S1
F(s1). In other words, for the embedding described above, we have the

following which is equivalent to cond (Equation (6.4)).

∀subsets S1,S2 ⊆ S, such that no proper subset of S1 affects S2,

S1 affects S2 ⇒ ⋂
s2∈S2

F(s2) ⊆ ⋂
s1∈S1

F(s1).

For all other RVs (if any remain), the embedding can be arbitrary. For example, these may
be superfluous RVs that are neither affected nor affect any other sets of RVs in the model.

162



CHAPTER 6. CYCLIC AND FINE-TUNED CAUSAL MODELS AND COMPATIBILITY WITH RELATIVISTIC
PRINCIPLES

Hence we have shown that if a causal model has no causal loops, there exists an embedding in
Minkowski space-time T such that cond is satisfied.

Sufficiency of condition+additional assumption: cond (Equation (6.4)) implies in particular
that when the sets correspond to single elements X and Y, X affects Y implies that F(Y) ⊆
F(X ) (i.e., Y ∈ F(X )). Hence we can have a causal loop X affects Y and Y affects X only if X
and Y share the exact same space-time location i.e., O(X ) = O(Y). The additional assumption
forbids this and hence forbids causal loops.

Corollary 6.5.3. [No affects causal loops and compatibility with space-time] A necessary con-
dition for a causal model over a set S of RVs to have no affects causal loops is that ∃ an embed-
ding of S in Minkowski space-time T such that the causal model is compatible (Definition 6.4.7)
with T . This condition along with the additional assumption that any 2 distinct ORVs X and
Y such that one affects the other, cannot share the same location in T , are sufficient for having
no affects causal loops in the causal model.

Proof. Necessity of condition: The proof is identical to that of Theorem 6.5.2, with the addi-
tional requirement that F(X ) = RX . Note that this is a particular choice of embedding since
an embedding involves an assignment of locations in T to each RV along with an assignment of
accessible regions (see Definition 6.4.6). In Theorem 6.5.1, we proved the sufficiency of cond
(Equation (6.4)) along with the additional assumption F(X ) ⊆RX for compatibility of a causal
model with the embedding T . cond implies that F(X ) ⊇ RX which along with F(X ) ⊆ RX
implies F(X ) = RX , and this was required for the proof. Here, we already have F(X ) = RX
by our choice of embedding and Theorem 6.5.2 shows that no causal loops imply the existence
of an embedding for which cond holds. Hence with the current choice of embedding, this also
implies compatibility of the causal model with the embedding partial order T .

Sufficiency of condition+additional assumption: The proof is identical to the that of the suffi-
ciency part of Theorem 6.5.2.

Theorem 6.6.1. Consider a causal model over four nodes A, B, C and Λ, all of which are
observed. Let B be exogenous, A and C have no outgoing arrows and Λ be a common cause
of A and C. Further, suppose that B affects the set {A,C} without affecting its individual
elements i.e., B jams the correlations between A and C. This causal model is not compatible
with Minkowski space-time T i.e., leads to superluminal signalling when the variables A, B and
C are embedded in T as proposed in [105, 116], irrespective of the space-time location of Λ.
The proposed embedding is: A ⊀⊁ B, B ⊀⊁ C, A ⊀⊁ C, F(A)⋂F(C) ⊆ F(B), and the accessible
region of each observed ORV coincides with its inclusive future.

Proof. B affects {A,C} implies the existence of a directed path from B to at least one of A and
C. Given that B is exogenous, A and C have no outgoing arrows and share a common cause
Λ, this yields the 3 possible causal structures of Figure 6.12, where the arrows from Λ may be
solid of dashed. In all these causal structures, we have the d-separation relations A ⊥d C ∣{B,Λ}
and B ⊥d Λ. By Definition 6.3.2, these imply the conditional independences

A á C ∣{B,Λ} and B á Λ. (6.17)
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Figure 6.12: Possible causal structures for Theorem 6.6.1.

Further, the given affects relations along with the exogeneity of B imply that

B /á {A,C} and B á A and B á C. (6.18)

We now show that in all the causal structures, irrespective of the classification of the outgoing
arrows from Λ and the space-time location that it is assigned, the causal model is not compatible
with Minkowski space-time with respect to the embedding given in the theorem statement, and
hence leads to superluminal signalling. For this, our first step is to show, using Equations (6.17)
and (6.18) that B affects at least one of {A,Λ} and {C,Λ}. Suppose that B affects neither of
the sets, then by its exogeneity, this is equivalent to

B á {A,Λ} and B á {C,Λ} (6.19)

Then we have

PA∣CBΛ = PA∣BΛ = PABΛ

PBΛ
=
PAΛ∣BPB

PBΛ

= PAΛPB
PBPΛ

= PA∣Λ,
(6.20)

Where we have used A á C ∣{B,Λ} in the first line and B á Λ and B á {A,Λ} in the second
line. Further, B á {C,Λ} implies that PBCΛ = PBPCΛ. Using this in Equation (6.20),

PABCΛ = PA∣ΛPBCΛ = PBPA∣ΛPCΛ (6.21)

Summing over B and Λ, we obtain PAC = ∑ΛPA∣ΛPCΛ. Using this in Equation (6.21) gives

PABC = PB∑
Λ
PA∣ΛPCΛ = PBPAC . (6.22)

The last line is equivalent to B á {A,C}, which contradicts Equation (6.18). Therefore, given
the conditions in the theorem statement, Equation (6.19) cannot hold i.e., B is correlated with
at least one of {A,Λ} and {C,Λ}. Using the exogeneity of B, this implies that B affects at
least one of these sets. For compatibility with the space-time, this affects relation implies the
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following constraint on the space-time embedding where the accessible region of each ORV is
taken to coincide with its inclusive future.

F(A) ∩F(Λ) ⊆ F(B) ∨ F(C) ∩F(Λ) ⊆ F(B). (6.23)

Now, note that Equation (6.18) implies that

A /á C ∣B (6.24)

This is because if we had the contrary, i.e., A á C ∣B, then along with B á A this gives
PA∣BC = PA∣B = PA. Using this along with B á C gives PABC = PA∣BCPBC = PAPBPC . This in
turn implies B á {A,C}, which contradicts the first condition of Equation (6.18).

Next, we show that {B,Λ} affects A and {B,Λ} affects C, again by contradiction. Suppose
that {B,Λ} does not affect A, this is equivalent to {B,Λ} á A (i.e., PA∣BΛ = PA) since B
and Λ are exogenous. Along with Equation (6.17), this implies that PA∣BCΛ = PA∣BΛ = PA.
Then PABC = ∑ΛPAPBCΛ = PAPBC , which contradicts Equation (6.18). Therefore we must
have {B,Λ} affects A. Similarly, one can show that {B,Λ} affects C must also hold under the
assumptions given in the theorem statement. Now, we have four cases depending on whether
or not Λ affects A or C, which we enumerate below.

• Case 1: Λ affects neither A nor C In this case, both the outgoing arrows from Λ would
be dashed (by Definition 6.3.5). In this case, any compatible embedding of the causal
model in space-time must satisfy (c.f. Theorem 6.5.1)

A ∈ F(B) ∩F(Λ) ∧ C ∈ F(B) ∩F(Λ). (6.25)

• Case 2: Λ affects A but not C In this case we have ΛÐ→ A and Λ 99K C, and a necessary
condition for compatibly embedding this causal model in space-time is

A ∈ F(Λ) ∧ C ∈ F(B) ∩F(Λ). (6.26)

• Case 3: Λ affects C but not A In this case we have ΛÐ→ C and Λ 99K A and compatibly
with the space-time requires that

A ∈ F(B) ∩F(Λ) ∧ C ∈ F(Λ). (6.27)

• Case 4: Λ affects A as well as C Here we have Λ Ð→ A and Λ Ð→ C and compatibility
with the space-time necessitates

A ∈ F(Λ) ∧ C ∈ F(Λ). (6.28)

In Cases 1-3, we can immediately see that at least one of A and C must be in the future of
B to restrict the causal model from signalling superluminally. In Case 4, this follows from
Equations (6.23) and (6.24)— since A and C must be in the future of Λ, the joint futures of
each of these ORVs and Λ coincides with the future of the ORV itself. Therefore, the space-time
compatibility condition is always violated by the embedding of [105, 116] where A, B and C are
pairwise space-like separated, and for this embedding, the jamming causal model considered
here, with observed Λ leads to superluminal signalling.
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The ‘paradox’ is only a conflict between reality and your feeling of what
reality ‘ought to be’.

- Richard Feynman



CHAPTER 7

Multi-agent paradoxes in quantum theory

Processing empirically acquired data and making inferences about the world form a crucial
part of the scientific method. For a consistent description of the world, these inferences

should be based on a sound system of logic— simple reasoning principles applicable to general
situations, on which there is common agreement. For example, we would like to make inferences
such as “if I know that a holds, and I know that a implies b, then I know that b holds”
independently of the nature of a and b. When considering scenarios with several rational
agents, inferences may involve reasoning about each other’s knowledge. In such cases, we often
use logical primitives such as, “If I know that she knows a, and I know that she arrived at a
using a set of rules that we commonly agreed upon, then I know a”. Examples include games
like poker, complex auctions, cryptographic scenarios, and logical hat puzzles, where we must
process complex statements of the sort “I know that she knows that he does not know a” based
on some logical primitives, and the common knowledge of the agents. A system of logic that
provides these simple and intuitive rules for multi-agent reasoning is modal logic, which we
outlined in Section 2.6.

On the other hand, when agents (such as ourselves) describe the world through physical theories,
we would like to be able to model the agents also as physical systems of the theory, in order
to develop a more complete understanding of the physical world. In particular, we would like
our theory to model at least those parts of the agent that are responsible for storing and
processing empirical data, such as their memory. When that theory is quantum mechanics,
it turns out that these two desiderata (applying standard rules of logic to reason about each
other’s knowledge, and modelling agents’ memories as physical systems) are incompatible with
agents’ empirical observations. This incompatibility (or “paradox”) was first formalised by
Frauchiger and Renner, in a thought experiment where agents who can measure each others
memories (modelled as quantum systems) and reason about shared and individual knowledge
may reach conclusions that contradict their own observations [85].

The FR paradox is originally presented in terms of a prepare and measure scenario where
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parties exchange quantum states and thereby generate quantum correlations between each
other. However it can be equivalently described by an entanglement-based scenario where
the parties do not communicate but pre-share suitable quantum correlations, as illustrated in
Figure 7.1. Here, we present the entanglement version of the paradox (Section 7.1) as this will
be the most convenient form for generalising the paradox to post-quantum settings as we will
do in Chapter 8. The Frauchiger-Renner thought experiment has fuelled an enormous volume
of discussion and debate in the scientific community that is still ongoing. In Section 7.2, we aim
to provide a brief overview of this debate and an outlook on this matter, which will also serve
to motivate the results of the next chapter where we generalise the analysis beyond quantum
theory.

7.1 An entanglement version of the Frauchiger-Renner
thought experiment

7.1.1 The assumptions

The main result of Frauchiger and Renner establishes the impossibility of a physical theory T
to simultaneously satisfy three assumptions, denoted by Q, C and S. In [152], it was pointed
out that the FR argument involved an additional implicit assumption, U. We present these
four assumptions below as stated in [85] and [152], before we proceed to demonstrate their
incompatibility with the entanglement version of FR’s argument.

The first assumption Q pertains to the validity of certain predictions of quantum mechanics. For
FR’s argument, the full framework of quantum theory need not be assumed, but only requires
a weaker version of the Born rule that is applicable for making deterministic predictions.

Assumption (Q). A theory T that satisfies Q allows any agent Alice to reason as follows.
Suppose Alice is in the vicinity of a system S associated with the Hilbert space HS, and she
knows that “The system S is in a state ∣ψ⟩S ∈ HS at time t0”. Furthermore, suppose that Alice
also knows that“ the value x is obtained by a measurement of S w.r.t. the family {πt0x }x∈X
of Heisenberg operators relative to time t0, and the measurement is completed at time t”. If
⟨ψ∣πt0ξ ∣ψ⟩ = 1 for some ξ ∈ X, then Alice can conclude that “I am certain at time t0 that x = ξ
at time t”.

The second assumption C, originally referred to as “self-consistency”, pertains to how agents
reason about each other’s knowledge.

Assumption (C). A theory T that satisfies C allows any agent Alice to reason as follows. If
Alice has established that “I am certain that an agent Bob, upon reasoning using theory T , is
certain that x = ξ at time t” then Alice can conclude “I am certain that x = ξ at time t.”
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The third assumption, S (originally referred to as “single-world”) pertains to the intuition that
an agent experiences a single outcome when they perform or witness a measurement.

Assumption (S). A theory T that satisfies S disallows any agent Alice from making both the
statements “I am certain at time t0 that x = ξ at time t.” and “I am certain at time t0 that
x ≠ ξ at time t”, where x is a value that can be observed at time t > t0.

The fourth assumption U, requires a bit more explanation. Suppose an agent Alice, has a
system S prepared in the state ∣ψ⟩S = 1√

2(∣0⟩ + ∣1⟩). Alice measures S in the Z basis, {∣0⟩, ∣1⟩},
and records the outcome x of the measurement in her memory A (which was initialised to the
state ∣0⟩A. From Alice’s perspective, x is a uniformly distributed classical bit. Suppose also that
(rather idealistically) that this measurement happens in Alice’s lab which is a closed system
consisting of the subsystems S and A that does not leak any information to the environment.
Now, consider how an outside agent Bob who models S and A both as quantum systems would
describe the measurement process. Since Alice’s lab is a closed system, Bob knows nothing
about Alice’s measurement outcome x and would describe the evolution of systems A and
S in the lab through a unitary map UAS. Further, due to the perfect correlations between
the measurement outcome and the memory state that records it, this unitary would be a
coherent controlled NOT with the S as control and A as target. That is, Bob describes Alice’s
measurement through the evolution,

1√
2
(∣0⟩S + ∣1⟩S)⊗ ∣0⟩A

UASÐÐ→ 1√
2
(∣0⟩S ∣0⟩A + ∣1⟩S ∣1⟩A). (7.1)

Hence, Bob would see Alice’s memory A to be entangled with her measured system S. The FR
thought experiment assumes that outside agents such as Bob, who model an inside agent such
as Alice as a quantum system would model measurements performed by the latter in through
such reversible evolutions. This was noted in [152], and is encapsulated in the assumption U
proposed by therein.

Assumption (U). A theory T that satisfies U allows any agent Bob to model measurements
performed by any other agent Alice as reversible evolutions in Alice’s lab — for example, a
unitary evolution UAS of the joint state of Alice’s memory A and the system S measured by
her.

7.1.2 The paradox: incompatibility of the assumptions

One may have already spotted a tension between the assumptions S and U which describe the
“inside” and “outside” perspectives of a quantum measurement i.e., the subjective experience
of a single classical outcome for Alice, vs the entangled superposition state of Alice and her
system as seen by Bob. This is precisely the tension that Wigner originally illustrated in his
thought experiment. In fact, Wigner’s thought experiment essentially corresponds to the two
agent scenario described in the previous section (paragraph preceding assumption U), where
the inside observer Alice plays the role of “Wigner’s friend” and the outside observer Bob who
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(a) Inside perspective (b) Outside perspective

Figure 7.1: An entanglement-based version of the Frauchiger-Renner set-
ting [85] from different perspectives. Alice and Bob (inside agents) share a Hardy
state ∣Ψ⟩PR = (∣00⟩ + ∣10⟩ + ∣11⟩)/

√
3, measure each their qubit (P and R respectively)

and update their memories A and B accordingly. Their labs are contained inside the
labs of the outside observers Ursula and Wigner, who can measure the systems AP
and RB respectively. The paradox arises when one tries to combine the inside and
outside perspectives of quantum measurements on an entangled system into a single
perspective. (a) From their viewpoints, Alice and Bob measure their halves of ∣Ψ⟩PR

in the Z basis {∣0⟩, ∣1⟩} to obtain the outcomes a and b. They then perform a classical
CNOT (i.e., classical copy) to copy their classical outcome into their memories A and
B both initialised to ∣0⟩. (b) Ursula and Wigner perceive Alice and Bob’s memory
updates as implementing quantum CNOTs on A controlled by P and B controlled by
R respectively. The resultant joint state is ∣Ψ⟩APRB = (∣0000⟩ + ∣1100⟩ + ∣1111⟩)/

√
3.

Hence, they see quantum correlations between the systems and memories of the in-
side agents. Later, they measure the joint systems AP and RB in the “X basis”
{∣ok⟩ = (∣00⟩−∣11⟩)/

√
2, ∣fail⟩ = (∣00⟩+∣11⟩)/

√
2} to obtain the outcomes u and w respec-

tively. If they obtain u = w = ok, the agents can reason about each others’ knowledge
to arrive at the paradoxical chain of statements u = w = ok⇒ b = 1⇒ a = 1⇒ w = fail.
In Chapter 8, we extend this scenario to box world where Alice and Bob share a PR
box instead of the Hardy state and find a suitable memory update operation and mea-
surements for the parties such that a stronger version of the paradox is recovered,
independently of the outcomes obtained.1

describes Alice as a quantum system plays the role of Wigner. By including the assumptions Q
and C which introduce the element of reasoning about the knowledge of other agents, the FR
experiment elevates this apparent tension to an explicit mathematical contradiction between
the four assumptions. The following entanglement version of the thought experiment is entirely
equivalent to the original prepare and measure version, but simplifies the description.

1This figure is taken from our paper [208] which is joint work with Nuriya Nurgalieva and Lídia del Rio, and
the credits for this pretty illustration goes to Nuriya.
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Experimental setup. The experiment involves four agents, whom we call Alice, Bob, Ursula
and Wigner2. The experiment starts with Alice and Bob sharing the following bipartite state

∣ψ⟩PR = 1√
3
(∣0⟩P ∣0⟩R + ∣1⟩P ∣0⟩R + ∣1⟩P ∣1⟩R), (7.2)

where P and R denote the subsystems held by Alice and Bob respectively (for reasons that
will become more apparent in the next chapter). This state is known as a Hardy state due
to its particular relevance in Hardy’s paradox [108, 109]. Let A and B denote the subsystems
that correspond to Alice’s and Bob’s memory respectively, where they store the outcome of
any measurement that they may perform. Suppose that Alice’s lab is located inside the lab
of another agent, Ursula who can perform joint measurements on Alice’s system P and her
memory A. Similarly, let Bob’s lab be located inside Wigner’s lab, such that Wigner can
perform joint measurements on Bob’s system R and his memory B. Alice’s and Bob’s labs are
isolated such that no information about their measurement outcomes leaks out.

The protocol: The protocol is the following:

t=1 Alice measures her half (P ) of joint state ∣ψ⟩PR, in the {∣0⟩, ∣1⟩} (i.e., Z or computational)
basis, and stores the outcome a in her memory A.

t=2 Bob measures his half (R) of joint state ∣ψ⟩PR, also in the Z basis, and stores the outcome
b in his memory B. By the assumption U, the final joint state of Alice and Bob’s systems
and memories after their measurements at times t = 1 and t = 2, as described from the
outside would be

∣ψ⟩PARB = 1√
3
(∣0⟩P ∣0⟩A∣0⟩R∣0⟩B + ∣1⟩P ∣1⟩A∣0⟩R∣0⟩B + ∣1⟩P ∣1⟩A∣1⟩R∣1⟩B) (7.3)

t=3 Ursula jointly measures the systems P and A in Alice’s lab, in the {∣ok⟩, ∣fail⟩} basis
defined below and obtains the outcome u.

∣ok⟩PA ∶=
1√
2
(∣0⟩P ∣0⟩A − ∣1⟩P ∣1⟩A)

∣fail⟩PA ∶=
1√
2
(∣0⟩P ∣0⟩A + ∣1⟩P ∣1⟩A)

(7.4)

t=4 Wigner jointly measures the systems R and B in Bob’s lab, also in the {∣ok⟩, ∣fail⟩} basis
and obtains the outcome w.

∣ok⟩RB ∶= 1√
2
(∣0⟩R∣0⟩B − ∣1⟩R∣1⟩B)

∣fail⟩RB ∶= 1√
2
(∣0⟩R∣0⟩B + ∣1⟩)R∣1⟩B)

(7.5)

2In accordance with the naming convention of [152, 208].
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t=5 Ursula and Wigner compare the outcomes of their measurements. If they were both “ok”,
they halt the experiment. Otherwise, they reset the timer and all systems to the initial
conditions, and repeat the experiment. Note that there is a non-zero probability for both
Ursula and Wigner to obtain the outcome “ok” when measuring the subsystems PA and
RB in the state ∣ψ⟩PARB of Equation (7.3) i.e.,

P (u = w = “ok′′∣ψPARB) = ∣(⟨ok∣PA ⊗ ⟨ok∣RB) ⋅ ∣ψ⟩PARB ∣2 =
1
12 . (7.6)

The measurement basis for each agent mentioned above are agreed on beforehand and the agents
do not communicate once the experiment begins, except for the communication between Ursula
and Wigner at t = 5. We now discuss how the agents reason about each other’s knowledge to
arrive at the contradiction, given that the experiment halted i.e., post-selecting on the condition
that

u = w = ok

.

Agents’ reasoning:

1. Ursula reasons about Bob: Rewriting the joint state ∣ψ⟩PARB as follows

∣ψ⟩PARB =
√

2
3 ∣fail⟩PA∣0⟩R∣0⟩B +

1√
3
∣1⟩P ∣1⟩A∣1⟩R∣1⟩B,

=
√

2
3 ∣fail⟩PA∣0⟩R∣0⟩B +

1√
6
∣fail⟩PA∣1⟩R∣1⟩B −

1√
6
∣ok⟩PA∣1⟩R∣1⟩B,

(7.7)

Ursula at t = 3 reasons (using Q) on obtaining the outcome u = ok ,that she knows with
certainty that Bob must have obtained the outcome b = 1 at t = 2. This is because Ursula
knows that her (normalised) post-measurement state on obtaining the outcome u = ok
would be ∣ok⟩PA∣1⟩R∣1⟩B, and there is unit probability of Bob obtaining b = 1 for his
measurement on B given this outcome. Thus Ursula (at t = 3) knows that

u = ok⇒ b = 1.

2. Bob reasons about Alice: From the original form of the joint state (7.3), Bob reasons
using Q, on obtaining the outcome b = 1 at time t = 2 that he knows with certainty that
Alice would have obtained the outcome a = 1 at t = 1 i.e., Bob (at t = 2) knows that

b = 1⇒ a = 1.

3. Alice reasons about Wigner: Rewriting the joint state as

∣ψ⟩PARB = 1√
3
∣0⟩P ∣0⟩A∣0⟩R∣0⟩B +

√
2
3 ∣1⟩P ∣1⟩A∣fail⟩RB, (7.8)
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Alice, on obtaining the outcome a = 1 at t = 1, uses Q to reason about what Wigner
would observe at t = 4 when he measures Bob’s lab. Similar to previous steps, she would
conclude with certainty that Wigner observes w = fail i.e., Alice (at t = 1) knows that

a = 1⇒ w = fail.

Note that in each of the steps above, S is implicitly used. These statements reflect the knowledge
and reasoning of different agents, and are combined using the assumption C to give the following
paradoxical chain of statements when u = w = ok is observed at t = 4.

u = w = ok⇒ b = 1⇒ a = 1⇒ w = fail (7.9)

In other words, whenever the experiment halts with u = w = ok, the agents can make determinis-
tic statements about each other’s reasoning and measurement outcomes, and thereby conclude
that Alice had predicted w = fail with certainty. This is in conflict with the assumption S
which forbids w from taking both the values with certainty.

In the modal logic language, the assumption C can be seen as encoding the distribution axiom
(Axiom 1) i.e., “If an agent knows a statement φ and also that φ ⇒ ψ, then they know ψ”,
along with the concept of trust (Definition 2.6.3) i.e., an agent A trusts another agent B if and
only if “A knows that B knows φ implies that A knows φ”. In [152], it is shown that the FR
paradox can be reformulated as: the Kripke structure satisfying the knowledge axioms of modal
logic described in Section 2.6 is incompatible with agents who apply quantum theory to model
each other and reason using that logical system. They show that this is the case even if the
truth axiom (Axiom 3) is replaced with the weaker notion of a trust structure (Definition 2.6.3).
We refer the reader to [152] for a detailed analysis of this paradox in terms of the axioms of
modal logic and the trust relations at different times. These ideas will also become clearer
in Chapter 8 where we derive an analogous paradox in box world, a generalised probabilistic
theory (see Section 2.4 for an overview of GPTs) by generalising the quantum theory dependent
assumptions of FR to the general setting, in the language of modal logic. We now proceed to
discuss some of the implications of FR’s result and its relation to other no-go theorems.

Remark 7.1.1. It is important to note here, also as stressed in the original paper [85] that an
“agent” need not necessarily correspond to a conscious observer in such thought experiments.
An agent simply refers to any entity capable of performing measurements on other systems
and applying simple deductive principles to process empirical information. For example, a
small quantum computer would in principle fulfil the desiderata for agency in such settings.
Hence, FR-type thought experiments could possibly be implementable in the near future, with
progress in scalable quantum computing, even though they cannot be implemented with current
technology.
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7.2 Discussion

7.2.1 Intuition and relation to Hardy’s paradox

The intuition behind the FR paradox described above comes from Bell’s theorem, combined
with the unitary description of the measurement from the outside perspective (Equation (7.1)).
The entanglement of the shared Hardy state ∣ψ⟩PR implies the inability to assign simultaneous
values to the outcomes corresponding to different measurement settings [109], the FR experi-
ment corresponds to a situation where all the choices of measurements are actually implemented
in a single run of the experiment since the unitarity of the measurement map (7.1) allows the
outside agents to reverse the effect of the inside agents’ measurement before performing their
measurement. This also means that the final joint state ∣ψ⟩PARB that Ursula and Wigner mea-
sure contains the initial correlations of ∣ψ⟩PR as evident from Equations (7.2) and (7.3). This
leads to the paradoxical situation that the outcomes of all four parties cannot admit simul-
taneous value assignments. FR’s paradox can be viewed as a manifestation of Hardy’s proof
of Bell’s theorem [109] which is not based on the violation of Bell inequalities, but on deriv-
ing a logical contradiction between the prediction of quantum mechanics for certain entangled
states (such as (7.2)) and the assumption of local hidden variables for the outcomes of possible
measurements. Hardy derives such a contradiction for almost all bipartite entangled states in
[109].3 It can be shown that in the 4 agent setting of FR (Figure 7.1), replacing the shared
state ∣ψ⟩PR by any one state from the class of Hardy states, and modifying the definition of the
{∣ok⟩, ∣fail⟩} basis accordingly (also as proposed in [109]), one can elevate Hardy’s argument for
the outcomes of potentially unperformed measurements in the regular bipartite Bell scenario to
the outcomes of the four measurements (one per agent) actually performed by in an FR-type
setup. Hence the FR paradox is closely related to Hardy’s paradox [108], as was also pointed
out in [174]. We leave the formal derivation of this and a more general characterisation of the
states and measurements required for deriving FR-type paradoxes in N -agent experiments to
future work.

7.2.2 Relation to other no-go theorems

There are other no-go theorems in a similar vein as FR, that are based on an extension of
Wigner’s thought experiment. All these theorems illustrate the incompatibility between an
objective assignment of values to the measurement outcomes of all agents in scenarios where
quantum predictions are extended to the level of agents. The most notable of these is Brukner’s
no-go theorem [36] which states that the following four assumptions are incompatible: 1. quan-
tum theory is universally valid (also when applied to observers), 2. locality i.e., the setting of
one party doesn’t affect the outcome of the other, 3. freedom of choice 4. the ability to jointly
assign truth values to observed outcomes of all the observers. Brukner derives the CHSH in-

3This class excludes the maximally entangled Bell states which are too symmetric to derive a logical contra-
diction akin to the chain (7.9).
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equalities from these assumptions 2.-4. and the well known violation of these Bell inequalities
in quantum theory demonstrates the aforementioned incompatibility of the assumptions 1.-4.
Assumption 1 roughly corresponds to the assumptions Q and U of FR, with the difference be-
ing that the former would need to assume full validity of the Born rule rather than the weaker,
deterministic version given by Q. Assumption 4 is similar in motivation as the assumption C
of FR, with the difference being that C relates to combining deterministic statements made by
agents to assign values to all their outcomes. In this sense, C is a stronger assumption than
4. which does not require the value assignments to be deterministic. Assumptions 2 and 3 are
different from the FR setting, where the measurement choice for each party is fixed. One could
say that FR’s no-go theorem is to Brukner’s what Hardy’s is to Bell’s. The former, in both
cases are based on logical arguments, that can be made without reference to inequalities but
require certain probabilities to be deterministic i.e., have 0 or 1 values. For example, in the
FR case, we require P (b = 0∣u = ok) = P (a = 0∣b = 1) = P (w = ok∣a = 1) = 0 in order to make
deterministic logical inferences, which we cannot have for measurements on the maximally en-
tangled Bell states (as per Hardy’s argument [109]). However the latter could still be certified
as incompatible with Brukner’s assumptions since it violates CHSH inequalities.

[30] proposed a modified version of Brukner’s theorem, noting a limitation of the latter. They
pointed out that the Bell inequalities derived through assumptions 2.-4., can also be derived
using the assumptions 3. (free choice) and Kochen-Spekker non-contextuality [127], without
reference to the objectivity of the agents’ observations, which is supposed to be the subject of
such theorems. They show that Bell inequality violations are in general, not sufficient to demon-
strate a contradiction between quantum theory and the existence of observer independent or
objective facts about the world, and derive a new set of inequalities from weaker assumptions
that are indeed sufficient for this purpose. The difference is that, Brukner’s version includes
hypothetical measurements that may not have been actually performed in the considered ex-
perimental run, while [30] only considers measurement outcomes that were actually observed
by the agents, and tests for the objectivity (i.e., possibility of assigning universal truth values)
of the observed outcomes. The exact connections between FR’s paradox and these no-go the-
orems is not known. But these examples suggest that contextuality would be a necessary but
not sufficient condition to derive FR-type paradoxes. We discuss the relation to contextuality
in Chapter 8, Section 8.5.4 and leave a characterisation of the set of all contextual scenarios
leading to FR-type paradoxes to future work. Such a characterisation would require a general
definition of an FR-type logical paradox which is currently lacking, and to the best of our
knowledge the only examples of such logical multi-agent paradoxes are the original FR paradox
[85] and our box world version [208] (Chapter 8). Generalising the study of such paradoxes to
arbitrary theories as attempted in [208] (Chapter 8) provides a starting point for addressing
such questions.

7.2.3 Interpretations of quantum theory

When treating agents as physical systems, the divide between the “observer” and the “observed”
becomes subjective— we always put ourselves in the former category, but may be put in the
latter category by another observer. Wigner [220] was among the first to point out through his
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famous thought experiment, that this leads to conceptual issues in the quantum case, and this
problem is sometimes colloquially referred to as the shifty split. FR’s extension of the Wigner’s
friend scenario formalises this conceptual argument as a no-go theorem, thereby providing a
concrete footing for the longstanding debates regarding the measurement problem and in turn,
interpretations of quantum theory, which represent the different stances that one can take on the
measurement problem. We begin this discussion by noting the importance of differentiating
between objections against the FR result vs objections against specific assumptions used in
deriving the result. The result itself, demonstrates an incompatibility between a certain set of
assumptions and subsumes the latter type of objections— it leaves open the choice of which
assumption(s) among Q, C, S and U must be dropped to resolve the paradox, it is agnostic
to the choice itself. This allows for a classification of the different interpretations of quantum
theory based on the choice they make, and also indicates that any interpretation that satisfies
all four assumptions should be ruled out. It appears that the main interpretation(s) under
threat of being ruled out are those presented in standard textbooks which albeit ambiguous,
seem to be trying to have the cake and eat it too [174]. Possible resolutions to the apparent
paradox involve dropping one or more of the assumptions.

Dropping Q and/or U: Objections against FR such as “you cannot put agents in super-
positions”, or “the outside description of the measurement (7.1) should lead to a mixed state
and not a pure, entangled state” do not refute the validity of the theorem but that of the
assumptions U and/or Q about extending quantum theory to agents. This is one possible
resolution allowed by the theorem.4 Further, in [196], Anthony Sudbery analyses Bohmian
mechanics [72, 27, 78] in the light of FR’s result, arguing that the interpretation satisfies all
assumptions, except possibly U regarding the particular evolution of the labs. This would
imply that Bohmian mechanics does not agree with the predictions of quantum theory at all
scales, as is commonly believed. Veronika Baumann and Stefan Wolf [19] have provided an
interesting analysis of the thought experiment in the relative state formalism [81, 219], consid-
ering different ways of describing the evolution of the labs and showing that these can lead to
different predictions. They also compare other interpretations in this regard and show that the
relative state formalism admitting unitary and universal quantum description deviates from the
standard Born rule.

Dropping C: Certain versions of the Copenhagen interpretation [113, 28] also turn out to
problematic for similar reasons as the textbook approach, and Matthew Leifer argues (for ex-
ample, in this talk) that only a perspectival version of the interpretation, which gives up the
assumption C would survive. QBism [91] and relational quantum mechanics are also perspecti-
val in this sense and propose a similar resolution— measurement results are real only from the

4Similar misinterpretations can occur with Bell’s theorem. For example, if we interpret Bell’s theorem
as telling us that there is fundamental uncertainty in quantum theory, that cannot be explained away by
conditioning on classical information. A realist would argue that this is not true, since we can have fine-tuned,
classical explanations i.e., non-local HV theories. Stating Bell’s theorem as a no-go result, this argument is
subsumed: you can either drop “realism” or “locality”, you have a choice, the theorem doesn’t tell you which
one to pick.
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subjective perspective of specific agents, and not objective properties of the world.5 Further, a
theory that satisfies all assumptions except C, would call for a revision of our understanding
of causal and logical inference. The latter, since dropping C implies a break down of standard
rules of classical modal logic [152]. The former, due to the following reason. As we have seen in
Part I of this thesis, standard approaches to causal inference depict causal structures as having
certain observed and certain unobserved nodes. The former are classical variables correspond-
ing to the observed measurement statistics. In theories where agents as modelled as quantum
systems according to Q and U, whether measurement outcomes are seen as classical variables
or as entangled quantum subsystems is subjective, which challenges existing models for causal
inference (both in classical and quantum theory). This suggests that causal structure itself may
be subjective in such scenarios. It would be interesting to study causal and logical inference in
such scenarios and understand how these differ from situations where agents are modelled as
classical systems.

Dropping S: This appears to be an intuitive assumption but a violation of this is not neces-
sarily in conflict with the quantum formalism. It is argued that interpretations such as many-
worlds (and its numerous variations) [76, 74] as well as the relative state formalism mentioned
earlier, do not satisfy this assumption [85]. In the former, measurement is seen as leading to a
branching into different possible worlds such that every possible outcome of the measurement
occurs in a corresponding world. Whether many-worlds type interpretations satisfy the other
assumptions, may depend on the particular variation being considered, and how the branching
is defined therein.

Other assumptions: Other implicit assumptions of the FR experiment have been pointed
out [197, 152]. Some of these assumptions relate to idealizations such as the ability to perfectly
prepare pure states and perform perfect projective measurements. While it is true that a
relaxation of such assumptions may no longer result in a deterministic, logical paradox, these
would still result in a conceptual problem regarding the incompatibility of universal quantum
theory and objectivity of measurement results, akin to those pointed out by [36, 30]. Further,
one can argue that most interpretations would allow for such idealizations to be made, which
are common place in theoretical studies. It would be interesting to analyse whether some of
the other implicit assumptions in the result pointed out in [197] are no longer needed in the
entanglement version of the experiment presented here. This discussion by no means does full
justice to the massive volume of discussions and literature generated by the FR result. We
refer the reader to the original paper [85] as well as [152] for more in-depth discussions on
interpretations.

5However, as pointed out in [152, 85], it may be difficult to fully analyse such multi-agent experiments in
QBism which tends to limit its focus on the experience and actions of single agents.
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7.2.4 Outlook

In conclusion, we draw yet another analogy with Bell’s theorem [22]. The theorem has resulted
in significant conceptual and practical advancement by ruling out certain classical descriptions
of the world (i.e., local hidden variables) due to their incompatibility with our observations,
which agree with quantum theory. It has also faced several objections and criticism over the
years, and generated several alternate derivations/versions [57, 56, 109, 102, 224] which reveal
different facets of quantum theory that deviate from our understanding of the classical world.
In a similar manner, theorems such as those of Frauchiger and Renner have deep foundational
implications for the nature of objectivity, agents’ experience, logical reasoning and causal infer-
ence. Critically examining the assumptions behind such theorems and characterising general
scenarios where such incompatibilities can arise are likely to reveal important connections be-
tween these fundamental concepts and the role that quantum theory plays in them. Finally,
as previously noted, FR-type thought experiments could possibly be implemented in the near
future depending on the advancements in scalable quantum computing, and don’t necessarily
require the agents to be conscious observers [85]. This would in principle allow for the interpre-
tations of quantum theory to be subject to experimental tests. The caveat being that a clear
cut answer would require a loophole-free implementation. This would be significantly more
difficult, as we have seen in the case of Bell’s theorem where the first experimental test [86] was
realised within a decade but the first loophole free tests [98, 114, 189] were only realised more
than 5 decades after the original theorem [22] was proposed.
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CHAPTER 8

Multi-agent paradoxes beyond quantum theory

The Frauchiger-Renner thought experiment [85] reveals an incompatibility between extend-
ing quantum theory to reasoning agents and certain simple rules of logical deduction [152],

which we have discussed in Chapter 7. Our goal here is to understand whether this incom-
patibility is a peculiar feature of quantum theory, or whether modelling reasoning agents using
other physical theories can also lead to such contradictions. Previous works have analysed such
multi-agent paradoxes only in quantum theory, and a theory-independent analysis could pos-
sibly reveal more fundamental aspects these examples. For example, is the reversibility (in the
quantum case, unitarity) of the global measurement transformation a necessary property for
such paradoxes or the entanglement of the shared state (in the quantum case, the Hardy state),
or both? Generalising this study beyond the quantum setting would not only help us identify
the features of physical theories responsible for such paradoxes, but may also shed some light
on the structure of logic in non-classical theories. Here, we investigate this question within the
landscape of generalized probabilistic theories [110, 16]. This chapter is based on our paper
[208], which is coauthored by Nuriya Nurgalieva and Lídia del Rio.

8.1 Summary of contributions: in words and in poetry

In Section 8.2, we generalize the Frauchiger-Renner conditions using the laguage of modal logic,
so that they can be applied to any physical theory. In particular, in Section 8.2.4, we introduce
a way to describe an agent’s measurement from the perspective of other agents in generalised
probabilistic theories (GPT). Finally, in Section 8.4 we derive a logical inconsistency akin to
one found in [85], using a setup where agents share a PR box, a maximally non-local resource
in box world (a particular GPT). The paradox found is stronger than the quantum one, in
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the sense that it does not rely on post-selection.1. Another important point brought to light
by our version of the paradox is that the reversibility of the measurement map (akin to the
assumption U in the quantum case) is not necessary for deriving such paradoxes in general. In
Section 8.5, we provide a detailed discussion which includes a comparison of our results with the
quantum case (Section 8.5.1), its implications for measurements in box world (Section 8.5.2),
relationships between multi-agent paradoxes and contextuality (Section 8.5.4), and the plentiful
scope for future work. Based on the knowledge of the summary sections of previous chapters,
the reader might logically reason and thereby consider possible a world s where the present
chapter also contains a poetic summary. This is indeed that world.

We talk, so we reason.
We reason about what we know,
We reason about what others know
And if we trust them, make their knowledge our own.

We learn, so we store.
We store our knowledge in a part of our memory.
We model that memory by a physical theory.
But if that theory is quantum, this leads to an inconsistency [85].

We learn, so we wonder.
Which theories lead to such inconsistensies,
Between reasoning agents and their memories modelled “physically”?
Proposing a mathematical map for update of memories,
An example we find in box world, a GPT,
where using a PR box, agents find a stronger paradox.

We answer questions, so we question more.
What properties of theories lead to these paradoxes galore?
Must be contextuality, which forms of it, we are not yet sure
That, in future work we will explore!

8.2 Generalized reasoning, memories and measurements

Here we generalize the assumptions underlying the Frauchiger-Renner result to general physical
theories. The conditions can be instantiated by each specific theory. This includes but is not
limited to theories framed in the approach of generalized probabilistic theories (GPTs) [110]. In
some theories, like quantum mechanics and box world (a GPT), we will find these four conditions
to be incompatible, by finding a direct contradiction in examples like the Frauchiger-Renner

1The joint state and the probability distributions of the original Frauchiger-Renner paradox are akin to those
of Hardy’s paradox [109]. For a comparison of Hardy’s paradox and PR box and why the latter allows for a
contradiction without post-selection, see [4]. An entanglement version of the Frauchiger-Renner experiment and
it’s relation to our extension is explained in Figure 7.1.

181



CHAPTER 8. MULTI-AGENT PARADOXES BEYOND QUANTUM THEORY

experiment or the PR-box experiment described in Section 8.4. In other theories (like classical
mechanics and Spekkens’ toy theory [195]) these four conditions may be compatible. A complete
characterization of theories where one can find these paradoxes is the subject of future work.

8.2.1 Reasoning about knowledge

This condition is theory-independent. It tells us that rational agents can reason about each
other’s knowledge in the usual way. This is formalized by a weaker version of epistemic modal
logic, which we explain in the following. For the full derivation of the form used here see [152],
and for an overview of the modal logic framework, see Section 2.6.

We start with a simple example. The goal of modal logic is to allow us to operate with chained
statements like “Alice knows that Bob knows that Eve doesn’t know the secret key k, and Alice
further knows that k = 1,” which can be expressed as

KA [(KB ¬KE k) ∧ k = 1],

where the operators Ki stand for “agent i knows.” If in addition Alice trusts Bob to be a
rational, reliable agent, she can deduce from the statement “I know that Bob knows that Eve
doesn’t know the key” that “I know that Eve doesn’t know the key”, and forget about the
source of information (Bob). This is expressed as

KA(KB ¬KE k) Ô⇒ KA ¬KE k.

We should also allow Alice to make deductions of the type “since Eve does not know the secret
key, and one would need to know the key in order to recover the encrypted message m, I
conclude that Eve cannot know the secret message,” which can be encoded as

KA[(¬KE k) ∧ (Ki m Ô⇒ Ki k, ∀ i)] Ô⇒ KA¬KE m.

Generalizing from this example, this gives us the following structure.

Definition 8.2.1 (Reasoning agents). An experimental setup with multiple agents A1, . . .AN
can be described by knowledge operators K1, . . .KN and statements φ ∈ Φ, such that Kiφ
denotes “agent Ai knows φ.” It should allow agents to make deductions2, that is

Ki[φ ∧ (φ Ô⇒ ψ)] Ô⇒ Ki ψ.

Furthermore, each experimental setup defines a trust relation between agents (Definition 2.6.3):
we say that an agent Ai trusts another agent Aj (and denote it by Aj ↝ Aj) iff for all statements
φ, we have

Ki(Kj φ) Ô⇒ Ki φ.

2Note that this is the distribution axiom, (Axiom 1).
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Remark 8.2.1 (One human ≠ one agent). Note that in general ‘one human ≠ one agent.’
For example, consider a setting where we know that Alice’s memory will be tampered with at
time τ (much like the original Frauchiger-Renner experiment, or the sleeping beauty paradox
[80]). We can define two different agents At<τ and At>τ to represent Alice before and after the
tampering— and then for example Bob could trust pre-tampering (but not post-tampering)
Alice, At<τ ↝ B.

Remark 8.2.2 (Complexity cost of reasoning). Note that in general, even the most rational
physical agents may be limited by bounded processing power and memory capacity, and will
not be able to chain an indefinite number of deductions within sensible time scales. That is,
these axioms for reasoning are an idealization of absolutely rational agents with unbounded
processing power (see [1] for an overview of this and related issues). If we would like modal
logic to apply to realistic, physical agents, we might account for a cost (in time, or in memory)
of each logical deduction, and require it to stay below a given threshold, much like a resource
theory for complexity. However, in the examples of this chapter, agents only need to make a
handful of logical deductions, and these complexity concerns do not play a significant role.

8.2.2 Physical theories as common knowledge

This condition is to be instantiated by each physical theory, and is the way that we incorporate
the physical theory into the reasoning framework used by agents in a given setting. If all agents
use the same theory to model the operational experiment (like quantum mechanics, special
relativity, classical statistical physics, or box world), this is included in the common knowledge
shared by the agents. For example, in the case of quantum theory, we have that “everyone
knows that the probability of obtaining outcome ∣x⟩ when measuring a state ∣ψ⟩ is given by
∣⟨x∣ψ⟩∣2, and everyone knows that everyone knows this, and so on.”

Definition 8.2.2 (Common knowledge). We model a physical theory shared by all agents {Ai}i
in a given setting as a set T of statements that are common knowledge shared by all agents,
i.e.

φ ∈ T ⇐⇒ ({Ki}i)n φ, ∀ n ∈ N,

where ({Ki}i)n is the set of all possible sequences of n operators picked from {Ki}i. For
example, (K1 K5 K1 K2) ∈ ({Ki}i)4 and stands for “agent A1 knows that agent A5 knows that
agent A1 knows that agent A2 knows.”

Note that the set T of common knowledge may include statements about the settings of the
experiment, as well as complex derivations.3 To find our paradoxical contradiction, we may
only need a very weak version of a full physical theory: for example Frauchiger and Renner
only require a possibilistic version of the Born rule, which tells us whether an outcome will be
observed with certainty [85]. This will also be the case in box world.

3One can also alternatively model a physical theory as a subset TP of the set T of common knowledge,
TP ⊆ T, in the case when details of experimental setup are not relevant to the theoretical formalism.
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8.2.3 Agents as physical systems

In operational experiments, a reasoning agent can make statements about systems that she
studies; consequently, the theory used by the agent must be able to produce a description or a
model of such a system, namely, in terms of a set of states. For example, in quantum theory a
two-state quantum system with a ground state ∣0⟩ and an excited state ∣1⟩ (qubit) can be fully
described by a set of states {∣ψ⟩} in the Hilbert space C2, where ∣ψ⟩ = α∣0⟩ + β∣1⟩ with α,β ∈ C
and ∣α∣2 + ∣β∣2 = 1. Other examples of theories and respective descriptions of states of systems
include: GPTs, where e.g. a generalised bit (gbit) is a system completely characterized by two
binary measurements which can be performed on it [16] (a review of GPTs can be found in
Section 2.4); algebraic quantum mechanics, with states defined as linear functionals ρ ∶ A→ C,
where A is a C∗-algebra [211]; or resource theories with some state space Ω, and epistemically
defined subsystems [73, 130].

Definition 8.2.3 (Systems). A “physical system” (or simply “system”) is anything that can
be an object of a physical study4. A system can be characterized, according to the theory T, by
a set of possible states PS. In addition, a system is associated with a set of allowed operations,
OS ∶ PS ↦PS on these states.

Definition 8.2.4 (Parallel composition). For any two systems S1 and S2, the union of the two
defines a new system S1 ∪ S2 or simply S1S2. The operator ∥ denotes parallel composition of
states and operations such that PS1 ∥ PS2 ∈ PS1S2 whenever PS1 ∈ PS1 and PS2 ∈ PS2 and
similarly, OS1 ∥ OS2 ∈ OS1S2 whenever OS1 ∈ OS1 and OS2 ∈ OS2 . In other words, the state
PS1 ∥ PS2 of S1S2 can be prepared by simply preparing the states PS1 and PS2 of the individual
systems S1 and S2 and the operation OS1 ∥ OS2 can be implemented by locally performing the
operations OS1 and OS2 on the individual systems.

We assume no further structure to this operator. Note also that we do not assume that a
given composite system can be split into/described in terms of its parts even though combining
individual systems in this manner allows us to define certain states of composite systems5. Now
we introduce agents into the picture.

Definition 8.2.5 (Agents). A physical setting may be associated with a set A of agents. An
agent Ai ∈ A is described by a knowledge operator Ki ∈ KA and a physical system Mi ∈MA,
which we call a “memory.” Each agent may study other systems according to the theory T. An
agent’s memory Mi records the results and the consequences of the studies conducted by Ai.
The memory may be itself an object of a study by other agents.

4We strive to be as general as possible and do not suppose or impose any structure on systems and connec-
tions between them; in particular, we don’t make any assumptions about how composite systems are formally
described in terms of their parts.

5In fact, in box world, we can consider operations on two initial systems that transform it into a new, larger
system that can no longer be seen as being made up of 2 smaller systems. We call this “supergluing", see
Section 8.5 for a discussion.
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8.2.4 Measurements and memory update

Here we consider measurements both from the perspective of an agent who performs them, and
that of another agent who is modeling the first agent’s memory. In an experiment involving
measurements, each agent has the subjective experience of only observing one outcome (inde-
pendently of how others may model her memory), and we can see this as the definition of a
measurement: if there is no subjective experience of observing a single outcome, we don’t call
it a measurement. We can express this experience as statements such as φ0 = “The outcome
was 0, and the system is now in state ∣0⟩.” We explain this further after the formal definition.

Definition 8.2.6 (Measurements). A measurement is a type of study that can be conducted
by an agent Ai on a system S, the essential result of which is the obtained “outcome” x ∈ XS.
If witnessed by another agent Aj (who knows that Ai performed the measurement but does not
know the outcome), the measurement is characterized by a set of propositions {φx} ∈ Φ, where
φx corresponds to the outcome x, satisfying:

• Kj(Ki(∃ x ∈ XS ∶Ki φx)),

• Kj Ki φx Ô⇒ Kj Ki ¬(φy), ∀ y ≠ x.

The first condition tells us that Aj knows that from Ai’s perspective, she must have observed one
outcome x ∈ X, and Ai would have used this knowledge to derive all the relevant conclusions,
as expressed by the proposition φx. For example, if the measurement represents a perfect Z
measurement of a qubit, φ0 may include statements like “the qubit is now in state ∣0⟩; before
the measurement it was not in state ∣1⟩; if I measure it again in the same way, I will obtain
outcome 0” and so on. Note that this condition does not imply that the measurement outcome
stored in Ai’s memory is classical for Aj. In fact, in the quantum case Aj may see Ai’s memory
as a quantum system entangled with the system that Ai measured. Despite this, Aj knows that
from Ai’s perspective, this outcome appears to be classical, which is what the first condition
captures. The second condition implements Ai’s experience of observing a single outcome,
and the fact that the outside agent Aj knows that this is the case from Ai’s perspective. If
Ai observes x, they conclude that the conclusions φy that they would have derived had they
observed a different outcome y are not valid and Aj knows that Ai would do so. In the previous
example, they would know that it does not hold φ1 = “the qubit is now in state ∣1⟩; before the
measurement it was not in state ∣0⟩; if I measure it again I will see outcome 1.” This condition
also ensures that the conclusions {φx}x are mutually incompatible, i.e. that the measurement
is tightly characterized.

A measurement of another agent’s memory is also an example of a valid measurement. In other
words, agent Aj can choose Ai’s lab, consisting of Ai’s memory and another system S (which
Ai studies), as an object of her study. Thus, any agent’s memory can be modelled by the
other agents as a physical system undergoing an evolution that correlates it with the measured
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system. In quantum theory, this corresponds to the unitary evolution

(
N−1
∑
x=0

px ∣x⟩system)⊗ ∣0⟩memory →
N−1
∑
x=0

px ∣x⟩system ⊗ ∣x⟩memory
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶ ∣x̃⟩SM

. (8.1)

The key aspect here is that the set of states of the joint system of observed system and memory,
PSM = span{∣x⟩system ⊗ ∣x⟩memory}N−1

x=0 is post-measurement isomorphic to the set of states PS

system alone. That is, for every transformation εS that you could apply to the system before
the measurement, there is a corresponding transformation εSM acting on the PSM that is
operationally identical. By this we mean that an outside observer would not be able to tell if
they are operating with εS on a single system before the measurement, or with εSM on system
and memory after the measurement. In particular, if εS is itself another measurement on S
within a probabilistic theory, it should yield the same statistics as post-measurement εSM . For
a quantum example that helps clarify these notions, consider S to be a qubit initially in an
arbitrary state α∣0⟩S +β∣1⟩S. An agent Alice measures S in the Z basis and stores the outcome
in her memory A. While she has a subjective experience of seeing only one possible outcome,
an outside observer Bob could model the joint evolution of S and A as

(α∣0⟩S + β∣1⟩S)⊗ ∣0⟩A → α∣0⟩S ∣0⟩A + β∣1⟩S ∣1⟩A.

Suppose now that (before Alice’s measurement) Bob was interested in performing an X mea-
surement on S. This would have been a measurement with projectors {∣+⟩⟨+∣S, ∣−⟩⟨−∣S}, where
∣±⟩S = 1√

2(∣0⟩S ± ∣1⟩S). However, he arrived too late: Alice has already performed her Z mea-
surement on S. If now Bob simply measured X on S, he would obtain uniform statistics, which
would be uncorrelated with the initial state of S. So what can he do? It may not be very
friendly, but he can measure S and Alice’s memory A jointly, by projecting onto

∣+⟩SA = 1√
2
(∣0⟩S ∣0⟩A + ∣1⟩S ∣1⟩A)

∣−⟩SA = 1√
2
(∣0⟩S ∣0⟩A − ∣1⟩S ∣1⟩A),

which yields the same statistics of Bob’s originally planned measurement on S, had Alice not
measured it first. In fact, this is precisely the {∣ok⟩, ∣fail⟩} basis in which the outside observers,
Ursula and Wigner measure, in the Frauchiger-Renner case (c.f. Section 7.1). Ideally, this
equivalence should also hold in the more general case where the observed system may have been
previously correlated with some other reference system: such correlations would be preserved
in the measurement process, as modelled by the “outside” observer Bob.

There are many options to formalize this notion that “every way that an outside observer could
have manipulated the system before the measurement, he may now manipulate a subspace of
‘system and observer’s memory,’ with the same results.” A possible simplification to restrict
our options is to take subsystems and the tensor product structure as primitives of the theory,
which may apply to GPTs [16] but not for general physical theories (like field theories; for a
discussion see [130]). Here, we will for now restrict ourselves to this case, and leave a more
general formulation of this condition as future work. We also restrict ourselves to information-
preserving measurements (excluding for now those where some information may have leaked to
an environment external to Alice’s memory), which are sufficient to derive the contradiction.
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S |ψ〉 •

A |0〉
(a) Alice’s perspective. The
measurement in Z basis per-
formed by Alice, who writes the
classical result down to her mem-
ory A.

S |ψ〉 •
A |0〉

(b) Bob’s perspective on Alice
performing a measurement. The
memory update of Alice, after she mea-
sures the system S in Z basis, as seen
from the point of view of the outside
observer, corresponding to the memory
update U .

ES [Z,X]

S |ψ〉 H •

B |0〉
(c) Bob’s perspective. Bob
performs a measurement in the X
basis of a system S.

ESA[Z,X]
U

S |ψ〉 • • H •

A |0〉
B |0〉

(d) Bob’s perspective on perform-
ing a measurement after Alice. Bob
performing a measurement in X̃ basis of
systems S and A, after Alice’s memory
update U .

Figure 8.1: The measurement and memory update in quantum theory
from different perspectives. From Alice’s point of view, the measurement of the
system S either in Z basis yields a classical result, which she records to her memory
A, performing a classical CNOT (Figure 8.1a). For an outside observer, Bob who is
not aware of Alice’s measurement result, Alice’s memory is entangled with the system
and the CNOT is a quantum entangling operation which corresponds to the memory
update U (Figure 8.1b). Further, there is no classical measurement outcome from
Bob’s perspective even though he knows that Alice would perceive one. If Bob had
access to the system S prior to the measurement by A, and wanted to measure it in X
basis ({∣+⟩S , ∣−⟩S}), he would have to perform an operation ES[Z,X] (and then copy
the classical result into his memory B) (Figure 8.1c). If the system S was initially
in a state ∣ψ⟩ = ∣+⟩S , then a proposition which would correspond to this operation is
φ[ES[Z,X](∣ψ⟩S)] = “s = +”. However, if the measurement in Z is already performed
by A and the result is written to her memory, the whole process described by Bob as
a memory update u, and in order to comply his initial wish to measure S only, he can
perform an operation ESA[Z,X] on S and A together instead, which is a measurement
in {∣+⟩SA, ∣−⟩SA} basis (Figure 8.1d). A proposition which this operation yields is
φ[ESMi ○ u(∣φ⟩S ⊗ ∣0⟩A)] = “sa = +” (as ∣ξ⟩SA = ∣+⟩SA), which naturally follows from
“s = +”, given the structure of the memory update u.6

Definition 8.2.7 (Information-preserving memory update). Let PS be a set of states of a
system S that is being studied by an agent Ai with a memory Mi, and PSMi

be a set of states
6This figure is taken from our paper [208] and was made by coauthors.
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of the joint system SMi. If for a given initial state Qin
Mi

∈ PMi
of the memory, there exists a

corresponding map UQ ∶ PSMi
→PSMi

(∈ OSMi
) that satisfies the following conditions (1) and

(2), then UQ is called an information-preserving memory update.

1. Local operations on S before the memory update can be simulated by joint operations on
S and Mi after the update. That is, for all PS ∈ PS, OS ∈ OS, Aj ∈ A, φ, there exists an
operation OSMi

∈ OSMi
such that

Kj φ[OS(Ps)]⇒Kj φ[OSMi
○UQ(PS ∥ Qin

Mi
)],

where φ[. . . ] are arbitrary statements that depend on the argument.

2. The memory update does not factorize into local operations. That is, there exist no
operations O′

S ∈ OS and O′
Mi

∈ OMi
such that

UQ = O′
S ∥ O′

Mi

Condition (1) was explained in previous paragraphs. Condition (2) is required because the
trivial map which entails doing nothing to the system and memory (i.e., the identity) satisfies
Condition (1) even though such an operation should certainly not be regarded as a memory
update. Condition (2) requires that UQ does not factorise into local operations over S and
Mi is required in order to rule out such trivial operations that cannot be taken to represent
a memory update. See Figure 8.1 for an example of UQ in the quantum case where it is a
reversible unitary operation and the initial state of the memory, Qin

Mi
is ∣0⟩Mi

. In general, the
memory update map UQ need not be reversible; for example, in box world it is an irreversible
transformation, as we will see later.

Note that it is enough to consider the memory update map UQ corresponding to a particular
choice of initial state Qin

Mi
since the map UQ′ corresponding to any other state Q′in

Mi
∈ PMi

can
be obtained by first locally transforming the memory state into Qin

Mi
and then applying UQ.

Thus without loss of generality, we will consider only specific initial states in the chapter and
drop the label Q on this map, simply calling it U . For example, in the quantum case, it is
enough to consider the memory update with the memory initialised to the state, ∣0⟩Mi

.

The characterization of measurements introduced in this section is rather minimal. In physical
theories like classical and quantum mechanics, measurements have other natural properties that
we do not require here. Two striking examples are “after her measurement, Alice’s memory
becomes correlated with the system measured in such a way that, for any subsequent operation
that Bob could perform on the system, there is an equivalent operation he may perform on
her memory” and “the correlations are such that there exists a joint operation on the system
and Alice’s memory that would allow Bob to conclude which measurement Alice performed.”
While these properties hold in the familiar classical and quantum worlds, we do not know of
other physical theories where measurements can satisfy them, and they require Bob to be able
to act independently on the system and on Alice’s memory, which may not always be possible.
For example, we will see that in box world, these two subsystems become superglued after
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Alice’s measurement, and that Bob only has access to them as a whole and not as individual
components.7 As such, we will not require these properties out of measurements, for now. We
revisit this discussion in Section 8.5.

8.3 Agents, memory and measurement in box world

In Section 2.4, we reviewed Barrett’s framework [16] for generalised probabilistic theories, in
particular describing states, transformations and measurements in box world, a particular GPT.
We will now instantiate our general conditions for agents, memories and measurements (defi-
nitions definitions 8.2.5 to 8.2.7) in box world. As there is no physical theory for the dynamics
behind box world, there is plenty of freedom in the choice of implementation. In principle each
such choice could represent a different physical theory leading to the same black-box behaviour
in the limit of a single agent with an implicit memory. This is analogous to the way in which
different versions of quantum theory (Bohmian mechanics, collapse theories, unitary quantum
mechanics with von Neumann measurements) result in the same effective theory in that limit.

Definition 8.3.1 (Agents in box world). Let T be the theory that describes box world, ac-
cording to [16] (see also Section 2.4). As per definition 8.2.5, an agent Ai ∈ A is described by a
knowledge operator Ki ∈ KA and a physical memory Mi ∈MA.

We will focus on the case where the memory consists of bit or gbits. Each agent may study other
systems according to the theory T. An agent’s memory records the results and the consequences
of the studies conducted by them, and may be an object of a study by other agents.

It is worth mentioning that boxes do not correspond to physical systems, but to input/output
functions that can only be evaluated once. As such, the post-measurement state of a physical
system is described by a whole new box. The notion of an individual system itself, as we
will see, may be unstable under measurements— some measurements glue the system to the
observer’s memory, in a way that makes individual access to the original system impossible.

Measurement: observer’s perspective. From the point of view of the observer who is
measuring (say Alice), making a measurement on a system corresponds simply to running
the box whose state vector encodes the measurement statistics. Alice may then commit the
result of her measurement to a physical memory, like a notebook where she writes ‘I measured
observable X and obtained outcome a.’ To be useful, this should be a memory that may be
consulted later, i.e. it could receive an input Y =‘start: open and read the memory’, and output
the pair (X,a). In the language of GPTs, this means that Alice, from her own perspective,
prepares a new box with a trivial input Y =‘start’ and two outputs (X ′, a′), with the behaviour
P⃗ (X ′, a′∣Y ) = δX,X′δa,a′ , which depends on her observations. She may later run this box (look at
her notebook) and recover the measurement data. The exact dimension of the box will depend

7Thus the state-space PSMi can also contain such “super-glued states".
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Ursula runs the box 
at time t=3

a
box
for 

Ursula

Alice’s memory update
(as seen by Ursula, at time t=1)

(a) Generally, in GPTs with some
notion of subsystems, Ursula can
think of the physical system mea-
sured by Alice, and Alice’s mem-
ory pre-measurement as two boxes,
which Ursula could in principle
run if Alice chose not to measure
(left). From Ursula’s perspective,
Alice’s measurement corresponds to
a transformation of the two initial
boxes that results in a new, post-
measurement box available to Ur-
sula, whose behaviour will depend
on the concrete physical theory.

Alice’s memory update
(as seen by Ursula, at time t=1)

(b) In box world, suppose the two
initial systems correspond to gbits,
and Alice’s memory is initialized as
shown. If we want to preserve the
global system dimensions, then the
rules for allowed transformations
(Definition 8.2.7) limit the statis-
tics of Ursula’s final box to be of
the form shown in the right (Ap-
pendix 8.6.1). The asterisks repre-
sent arbitrary values, which will de-
pend on the choice of implementa-
tion of Alice’s measurement.

Figure 8.2: Memory update after a measurement: an outsider’s perspective.
Here Alice makes a measurement of a system (blue, top) at time t = 1 and stores her
outcome in her memory (pink, bottom). The question is how an outsider, Ursula,
models Alice’s measurement. Note that this transformation need not be reversible, in
fact this is true of the box world case.8

on how Alice perceives and models her own memory; for example it could consist of two bits,
or two gbits, or, if we think that before the measurement she stored the information about the
choice of observable elsewhere, it could be a single bit or gbit encoding only the outcome. We
leave this open for now, as we do not want to constrain the theory too much at this stage.

Measurements: inferences. To see the kind of inferences and conclusions that an agent
can take from a measurement in box world, it’s convenient to look at the example where Alice
and Bob share a PR box (Figure 2.4). Suppose that Alice measured her half of the box with
input X = 1 and obtained outcome a = 0. From the PR correlations, XY = a ⊕ b, she can
conclude that if Bob measures Y = 0, he must obtain b = 0, and if he measures Y = 1, he must
obtain b = 1. This is independent of whether Bob’s measurement happens before or after Alice
(or even space-like separated). She could reach similar deterministic conclusions for her other

8This figure is taken from our paper [208] and was made by Lídia del Rio.
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choice of measurement and possible outcomes. In the language of Definition 8.2.6, we have

φX=0,a=0 = “[Y = 0 Ô⇒ b = 0] ∧ [Y = 1 Ô⇒ b = 0]”,
φX=0,a=1 = “[Y = 0 Ô⇒ b = 1] ∧ [Y = 1 Ô⇒ b = 1]”,
φX=1,a=0 = “[Y = 0 Ô⇒ b = 0] ∧ [Y = 1 Ô⇒ b = 1]”,
φX=1,a=1 = “[Y = 0 Ô⇒ b = 1] ∧ [Y = 1 Ô⇒ b = 0]”.

Measurement: memory update from an outsider’s perspective. Next we need to
model how an outside agent, Ursula, models Alice’s measurement, in the case where Alice
does not communicate her outcome to Ursula.9 Suppose that all agents share a time reference
frame, and Alice makes her measurement at time t = 1. From Ursula’s perspective, in the most
general case, this will correspond to Alice preparing a new box, with some number of inputs
and outputs, which Ursula can later run (Figure 8.2a). The exact form of this box will depend
on the underlying physical theory for measurements: in the quantum case it corresponds to a
box with the measurement statistics of a state that’s entangled between the system measured
and Alice’s memory, as we saw. In classical mechanics, it will correspond to perfect classical
correlations between those two subsystems. In the other extreme, we could imagine a theory of
very destructive measurements, where after Alice’s measurement, the physical system she had
measured would vanish. From Ursula’s perspective, this could be modelled by a box with a
void associated distribution. Now suppose that we would like to have a physical theory where
the dimension of systems is preserved by measurements: for example, if the system that Alice
measures is instantiated by a box with binary input and output (e.g. a gbit, or half of a PR-box),
and Alice’s memory, where she stores the outcome of the measurement is also represented as a
gbit, then we would want the post-measurement box accessible to Ursula to have in total two
binary inputs and two binary outputs (or more generally, four possible inputs and four possible
outputs). Note that this is not a required condition for a theory to be physical per se— it is
just a familiar rule of thumb that gives some persistent meaning to the notion of subsystems
and dimensions. In such a theory that supports box world correlations, we find that the allowed
statistics of Ursula’s box must satisfy the conditions of Figure 8.2b (proof in Appendix 8.6.1).
These conditions still leave us some wiggle room for possible different implementations.

Measurements: information-preserving memory update. In order to find a multi-
agent paradox, we will need a model of memory update that is information-preserving, in the
sense of Definition 8.2.7. This does not imply that Alice’s transformation (as seen by Ursula)
be reversible. Firstly, it is known that all reversible dynamics in box world is trivial and cannot
correlate product states [103], hence the memory update map (Definition 8.2.7) in box world
cannot be reversible. Further, we find that in general, the memory update (from the outside
perspective) can glue two subsystems such that Ursula will only be able to address them as a
whole (since separating them could lead to a violation of no-signaling). But the relevant fact

9Naming convention: as we will see in Section 8.4, the proposed experiment feature two “internal” agents,
Alice and Bob, who will in turn be measured by two “external” agents, Ursula and Wigner. In the example of
Section 8.2, the internal agent was Alice and the external Bob, so that their different pronouns could help keep
track of whose memory we were referring to.
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Ursula’s box
(prepared by Alice at time t=1)

0
or

(a) Alice measures a system (inner
blue box) and stores the outcome in
her memory (inner pink box). From
Ursula’s perspective, this appears as
though Alice simply wired the outputs
of the two boxes with a controlled-not
gate, so that the measurement output
is copied to the output of the memory.
When Ursula later runs the outer green
box, she provides two inputs, which go
through this circuit, resulting in two
identical outputs.

0
or

0

X a
~ ~

(b) In an information-preserving
model, for every measurement X
on the initial state of the system
measured by Alice, there exists a
measurement X̃ that Ursula can do
jointly on the system and Alice’s
memory that reproduces the same
statistics. This is achieved, for ex-
ample, by Ursula fixing her second
input to 0, and simply discarding the
second (trivial) output as shown.

Figure 8.3: Information-preserving memory update. This (trivial) physical im-
plementation of Alice’s measurement in box world satisfies the conditions of Figure 8.2b
and is information-preserving (Definition 8.2.7). The crucial detail is that Ursula is
not allowed to open her box (in green) and access the circuitry inside. Note that is
Ursula can perform arbitrary measurements on the joint system then the pre and post
measurement states give different statistics, the former is a product state while the
latter isn’t. Further, there are other possibilities for modelling measurements— this
is the simplest one that still allows us to derive the paradox. Details and proofs in
Appendix 8.6.1.10

is that Ursula can apply some post-processing in order to obtain a new box with the same
behaviour as the pre-measurement system that Alice observed. In Figure 8.3 we give an
example of a model that satisfies these conditions, in addition to the conditions of Figure 8.2b.
It is a minimal implementation among many possible, which already allows us to derive such a
paradox beyond quantum theory. We further discuss some of the limitations and alternatives
to this model in Section 8.5. What is important here (and proven in Appendix 8.6.1) is that
this model generalizes to the case where Alice measures half of a bipartite state, like a PR
box. That is, suppose that Alice and Bob share a PR box. Imagine that at time t = 1 Alice
makes her measurement X, obtaining (from her perspective) an outcome a, and that Bob
makes his measurement Y at time t = 2, obtaining outcome b. As usual, if Alice and Bob were
to communicate at this point, they would find that XY = a ⊕ b, and indeed the propositions
φX,a and φY,b that represent their subjective measurement experience would hold. But now
suppose that Alice and Bob do not get the chance to communicate and compare their input
and outputs; instead, at time t = 3, an observer Ursula, who models Alice’s measurement as in
Figure 8.3a, runs the box corresponding to Alice’s half of the PR box and Alice’s memory, and
applies the post-processing of Figure 8.3b. Ursula’s input is X̃ and her output is ã. Then the

10This figure is taken from our paper [208] and was made by Lídia del Rio.
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claim is that X̃Y = ã ⊕ b: that is, Ursula and Bob effectively share a PR box. This is proven
in Appendix 8.6.1. We now have all the ingredients needed to find a multi-agent epistemic
paradox in box world.

8.4 Finding the paradox

We now describe a scenario in box world where reasoning, physical agents reach a logical
paradox.

Experimental setup. The proposed thought experiment is similar in spirit to the one pro-
posed by Frauchiger and Renner [85], with the PR box playing the role of the Hardy state
(c.f. Figure 7.1). Alice and Bob share a PR box (the corresponding box world state is given in
Figure 2.4b); they each will measure their half of the PR box and store the outcomes in their
local memories. Let Alice’s lab be located inside the lab of another agent, Ursula’s lab such
that Ursula can now perform joint measurements on Alice’s system (her half of the PR box) and
memory, as seen in the previous section. Similarly, let Bob’s lab be located inside Wigner’s lab,
such that Wigner can perform joint measurements on Bob’s system and memory. We assume
that Alice’s and Bob’s labs are isolated such that no information about their measurement
outcomes leaks out. The protocol is the following:

t=1 Alice measures her half of the PR box, with measurement setting X, and stores the
outcome a in her memory A.

t=2 Bob measures his half of the PR box, with measurement setting Y , and stores the outcome
b in his memory B.

t=3 Ursula measures the box corresponding to Alice’s lab (as in Figure 8.3b), with measure-
ment setting X̃ =X ⊕ 1, obtaining outcome ã.

t=4 Wigner measures the box corresponding to Bob’s lab, with measurement setting Ỹ = Y ⊕1,
obtaining outcome b̃.

Agents can agree on their measurement settings beforehand, but should not communicate once
the experiment begins. The trust relation, which specifies which agents consider each other to
be rational agents (as opposed to mere physical systems), is

At=1,2 ↭ Bt=1,2

Bt=2,3 ↭ Ut=3

Ut=3,4 ↭Wt=4

Wt=4 ↭ At=1.
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Note that the time information is important here as it tells us that the trust relations hold for the
pre-tampering versions of the “inside” agents, Alice and Bob (who are measured by the “outside”
agents Ursula and Wigner). The common knowledge T shared by all four agents includes the
PR box correlations, the way the external agents model Alice and Bob’s measurements, and
the trust structure above.

Reasoning. Now the agents can reason about the events in other agents’ labs. We take here
the example where the measurement settings are X = Y = 0, X̃ = Ỹ = 1, and where Wigner
obtained the outcome b̃ = 0; the reasoning is analogous for the remaining cases.

1. Wigner reasons about Ursula’s outcome. At time t = 4, Wigner knows that, by virtue of
their information-preserving modelling of Alice and Bob’s measurements, he and Ursula
effectively shared a PR box11. He can therefore use the PR correlations X̃Ỹ = ã ⊕ b̃ to
conclude that Ursula’s output must be 1,

KW (b̃ = 0 Ô⇒ ã = 1).

2. Wigner reasons about Ursula’s reasoning. Now Wigner thinks about what Ursula may
have concluded regarding Bob’s outcome. He knows that at time t = 3, Ursula and Bob
effectively shared a PR box11, satisfying X̃Y = ã⊕ b, and that therefore Ursula must have
concluded

KWKU(ã = 1 Ô⇒ b = 1).

3. Wigner reasons about Ursula’s reasoning about Bob’s reasoning. Next, Wigner wonders
“What could Ursula, at time t = 3, conclude about Bob’s reasoning at time t = 2?" Well,
Wigner knows that she knows that Bob knew that at time t = 2 he effectively shared a
PR box with Alice, satisfying XY = a⊕ b, and therefore concludes

KWKUKB(b = 1 Ô⇒ a = 1).

4. Wigner reasons about Ursula’s reasoning about Bob’s reasoning about Alice’s reasoning.
Now Wigner thinks about Alice’s perspective at time t = 1, through the lenses of Bob (at
time t = 2) and Ursula (t = 3). Back then, Alice knew that she obtained some outcome
a, and that Wigner would model Bob’s measurement in an information-preserving way,
such that Alice (at time t = 1) and Wigner (of time t = 4) share an effective PR box11,
satisfying XỸ = a⊕ b̃, which results, in particular, in

KWKUKBKA(a = 1 Ô⇒ b̃ = 1).

5. Wigner applies trust relations. In order to combine the statements obtained above, we
need to apply the trust relations described above, starting from the inside of each propo-

11See Appendix 8.6.1 for a proof.
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sition, for example,

KWKUKBKA(a = 1 Ô⇒ b̃ = 1)
Ô⇒ KWKUKB(a = 1 Ô⇒ b̃ = 1) (∵ A↝ B)
Ô⇒ KWKU(a = 1 Ô⇒ b̃ = 1) (∵ B ↝ U)
Ô⇒ KW (a = 1 Ô⇒ b̃ = 1) (∵ U ↝W )

and similarly for the other statements (where A ↝ B denotes B trusts A, c.f. Defini-
tion 2.6.3), so that we obtain

KW [(b̃ = 0 Ô⇒ ã = 1) ∧ (ã = 1 Ô⇒ b = 1) ∧ (b = 1 Ô⇒ a = 1) ∧ (a = 1 Ô⇒ b̃ = 1)]
Ô⇒KW (b̃ = 0 Ô⇒ b̃ = 1).

We could have equally taken the point of view of any other observer, and from any particular
outcome or choice of measurement, and through similar reasoning chains reached the following
contradictions,

KA[(a = 0 Ô⇒ a = 1) ∧ (a = 1 Ô⇒ a = 0)],
KB[(b = 0 Ô⇒ b = 1) ∧ (b = 1 Ô⇒ b = 0)],
KU[(ã = 0 Ô⇒ ã = 1) ∧ (ã = 1 Ô⇒ ã = 0)],
KW [(b̃ = 0 Ô⇒ b̃ = 1) ∧ (b̃ = 1 Ô⇒ b̃ = 0)].

8.5 Discussion

We have generalized the conditions of the Frauchiger-Renner theorem and made them applicable
to arbitrary physical theories, including the framework of generalized probability theories. We
then applied these conditions to the GPT of box world and found an experimental setting that
leads to a multi-agent logical paradox.

8.5.1 Comparison with the quantum thought experiment

We showed that box world agents reasoning about each others’ knowledge can come to a
deterministic contradiction, which is stronger than the original paradox, as it can be reached
without post-selection, from the point of view of every agent and for any measurement outcome
obtained by them.

Post-selection. In contrast to the original Frauchiger-Renner experiment of [85], no post-
selection was required to arrive at this contradictory chain of statements as, in fact, all the
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implications above are symmetric, for example

ã = 0 ⇐⇒ b = 0 ⇐⇒ a = 0 ⇐⇒ b̃ = 0 ⇐⇒ ã = 1.

As a result, one can arrive at a similar (symmetric) paradoxical chain of statements irrespective
of the choice of agent and outcome for the first statement. In other words, irrespective of the
outcomes observed by every agent, each agent will arrive at a contradiction when they try to
reason about the outcomes of other agents. This is because, as shown in [4], the PR box exhibits
strong contextuality and no global assignments of outcome values for all four measurements
exists for any choice of local assignments. In contrast, the original paradox of [85] admits the
same distribution as that of Hardy’s paradox [109]. It is shown in [4] that this distribution is
an example of logical contextuality where for a particular choice of local assignments (the ones
that are post-selected on in the original Frauchiger-Renner experiment), a global assignment
of values compatible with the support of the distribution fails to exist, but this is not true
for all local assignments. This makes the paradox even stronger in box world, since it can be
found without post-selection and by any of the agents, for any outcome that they observe. In
particular, the paradox would already arise in a single run of the experiment. For a simple
method to enumerate all possible contradictory statements that the agents may make, see the
analysis of the PR box presented in [4].

Reversibility of the memory update map As mentioned previously, the memory update
map U in the quantum case is quantum CNOT gate which is a unitary and hence reversible.
In box world however, this map cannot be reversible since it is known that all reversible maps
in box world map product states to product states [103] and hence no reversible U in box
world could satisfy Definition 8.2.7 of an information-preserving memory update. The map we
propose here for box world is clearly irreversible as it leads to correlations between the initially
uncorrelated system and memory.

8.5.2 Physical measurements in box world

Since we lack a physical theory to explain how measurements and transformations are instanti-
ated for generalised non-signaling boxes, and only have access to their input/output behaviour,
all allowed transformations consist of pre- and post-processing. In the quantum case, we have
in addition to a description of possible input-output correlations, a mathematical framework for
the underlying states producing those correlations, the theory of von Neumann measurements
and transformations as CPTP maps. In box world, introduction of dynamical features (for
example, a memory update algorithm) is less intuitive and requires additional constructions.
In the following, we outline the main limitations we found.

Systems vs boxes. In quantum theory, a system corresponds to a physical substrate that
can be acted on more than once. For example, Alice could measure a spin first in the Z basis
and then in X basis (obviously with different results than if she had measured first X and

196



CHAPTER 8. MULTI-AGENT PARADOXES BEYOND QUANTUM THEORY

then Z). The predictions for each subsequent measurement are represented by a different box
in the GPT formalism, such that each box encodes the current state of the system in terms
of the measurement statistics of a tomographically complete set of measurements. After each
measurement, the corresponding box disappears, but quantum mechanics gives us a rule to
compute the post-measurement state of the underlying system, which in turn specifies the box
for future measurements. On the other hand, the default theory for box world lacks the notion
of underlying physical systems and a definite rule to compute the post-measurement vector state
of something that has been measured once. Indeed, Equations 2.44a-2.44c tell us that post-
measurement states is only partially specified: for instance, if the measurement performed was
fiducial, we know that the block corresponding to that measurement in the post-measurement
state would have a “1” corresponding to the outcome obtained and “0” for all other outcomes
in the block. However, we still have freedom in defining the entries in the remaining blocks.
Our model proposes a possible physical mechanism for updating boxes (which could be read as
updating the state of the underlying system), but so far only for the case where we compare
the perspectives of different agents, and we leave it open whether Alice has a subjective update
rule that would allow her to make subsequent measurements on the same physical system.

Verifying a measurement. In our simple model, the external observer Ursula has no way
to know which measurement Alice performed, or whether she measured anything at all— the
connection between Alice’s and Ursula’s views is postulated rather than derived from a physical
theory. Indeed, Alice could have simply wired the boxes as in Figure 8.3a without actually
performing the measurement, and Ursula will not know the difference: she obtains the same
joint state of Alice’s memory and the system she measured. In contrast, consider the case of
quantum mechanics with standard von Neumann measurements. There, Alice’s memory gets
entangled with the system, and the post-measurement state depends on the basis in which Alice
measured her system. For example, if Alice’s qubit S starts off in the normalised pure state ∣ψ⟩ =
α∣0⟩S +β∣1⟩S and her memory M initialised to ∣0⟩M , the initial state of her system and memory
from Ursula’s perspective is ∣Ψ⟩inSM = [α∣0⟩S + β∣1⟩S]⊗ ∣0⟩M = [(α+β√2 )∣+⟩S + (α−β√2 )∣−⟩S)]⊗ ∣0⟩M If
Alice measures the system in the Z basis, the post-measurement state from Ursula’s perspective
is ∣Ψ⟩out,ZSM = α∣0⟩S ∣0⟩M + β∣1⟩S ∣1⟩M , which is an entangled state. If instead, Alice measured in
the Hadamard (X) basis, the post-measurement state would be ∣Ψ⟩out,XSM = (α+β√2 )∣+⟩S ∣0⟩M +
(α−β√2 )∣−⟩S ∣1⟩M . Clearly the measurement statistics of ∣Ψ⟩inSM , ∣Ψ⟩out,ZSM and ∣Ψ⟩out,XSM are different
and Ursula can thus (in principle, with some probability) tell whether or not Alice performed
a measurement and which measurement was performed by her. In the absence of a physical
theory backing box world, we can still lift this degenerancy between the three situations (Alice
didn’t measure, she measured X = 0, or she measured X = 1) by adding another classical system
to the circuitry of 8.3a: for example, a trit that stores what Alice did, and which Ursula could
consult independently of the glued box of system and Alice’s memory. However, we’d still have
a postulated connection between what’s stored in this trit and what Alice actually did, and not
one that is physically motivated.

Supergluing of non-signaling boxes. For the memory update circuit (from Ursula’s per-
spective) of Figure 8.3a, and the initial state of Equation (8.3), the final state would be
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(following the notation of Section 2.4) P⃗ SM
fin = (p 0 0 1 − p∣p 0 0 1 − p∣q 0 0 1 −

q∣q 0 0 1−q)TSM . Note that while the reduced final state of S does not depend on the input
X ′ to M , the reduced final state on Alice’s memory M , P⃗M

fin clearly depends on the input X of
the system S if p ≠ q. If X = 0, P⃗M

fin = (p 1−p∣p 1−p)T and if X = 1, P⃗M
fin = (q 1−q∣q 1−q)T ,

i.e., the systems S and M are signalling. This is expected since there is clearly a transfer of
information from S to M during the measurement as seen in Figure 2.5. However, this means
that the state P⃗ SM

fin is not a valid box world state of 2 systems S and M but a valid state
of a single system SM i.e., after Alice performs her wiring/measurement, it is not possible to
physically separate Alice’s system S from her memory M from Ursula’s perspective. For if
this were possible, there would be a violation of the no-signaling principle and the notion of
relativistic causality. In quantum theory, on the other hand it is always possible to perform
separate measurements on Alice’s system and her memory even after she measures. We call
this feature supergluing of post-measurement boxes, where it is no longer possible for Ursula to
separately measure S or M , but she can only jointly measure SM as though it were a single
system. Note that this is only the case for p ≠ q and in our example with the PR-box (Section
8.4), p = q = 1/2 and P⃗ SM

fin remains a valid bipartite non-signaling state in this particular, fine-
tuned case of the PR box and there is no supergluing in the particular example described in
Section 8.4.

A glass half full. The above-mentioned features of the memory update in box world are
certainly not desirable, and not what one would expect to find in a physical theory with mean-
ingful notions of subsystems. An optimistic way to look at these limitations is to see them
as providing us with further intuition for why PR boxes have not yet been found in nature.
One of the main contributions of this chapter is the finding that despite these peculiar features
of box world and the fact that it has no entangling bipartite joint measurements (a crucial
step in the original quantum paradox), a consistent outside perspective of the memory update
exists such that with our generalised assumptions, a multi-agent paradox can be recovered.
This indicates that the reversibility of dynamics akin to quantum unitarity is not necessary
to derive this kind of paradox. We suspect that contextuality, and the existence of a suitable
information-preserving memory update (Definition 8.2.7) are necessary conditions for deriving
such paradoxes. We discuss the relation to contextuality further in Section 8.5.4, and leave a
detailed analysis to future work.

Other models for physical measurements. Ours is not the first attempt at coming up
with a (partial) physical theory that reproduces the statistics of box world. Here we review
the approach of Skrzypczyk et al. in [193]. There the authors consider a variation of box world
that has a reduced set of physical states (which the authors call genuine), which consists of
the PR box and all the deterministic local boxes. The wealth of box world state vectors (i.e.
the non-signaling polytope, or what we could call epistemic states) is recovered by allowing
classical processing of inputs and outputs via classical wirings, as well as convex combinations
thereof. In contrast, box world takes all convex combinations of maximally non-signaling boxes
(of which the PR box is an example) to be genuine physical states; this becomes relevant as
we require the allowed physical operations to map such states to each other. For the restricted
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state space of [193], the set of allowed operations is larger than in box world, particularly for
multipartite settings. For example, there we are allowed maps that implement the equivalent
of entanglement swapping: if Bob shares a PR box with Alice, and another with Charlie, there
is an allowed map that he can apply on his two halves which leaves Alice and Charlie sharing a
PR box, with some probability. It would be interesting to try to model memory update in this
modified theory, to see if (1) there is a more natural implementation of measurements within
the extended set of operations, and (2) whether this theory allows for multi-agent paradoxes.

8.5.3 Characterization of general theories

While we have shown that a consistency paradox, similar to the one arising in the Frauchiger-
Renner setup, can also be adapted for the box world in terms of GPTs, it still remains unclear
how to characterize all possible theories where it is possible to find a setup leading to a contra-
diction. It seems that contextuality is a key property of such theories, this is discussed in more
detail in Section 8.5.4. Another central ingredient seems to be information-preserving models
for physical measurements such as our memory update of Definition 8.2.7, which allow us to
replace counter-factuals with actual measurements, performed in sequence by different agents.

Beyond standard composition of systems. Additionally, it is still an open problem to find
an operational way to state the outside view of measurements (and a memory update operation),
for theories without a prior notion of subsystems and a tensor rule for composing them. This
will allow us to search for multi-agent logical paradoxes in field theories, for example. One
possible direction is to use notions of effective and subjective locality, as outlined for example
in [130].

8.5.4 Relation to contextuality

Multi-agent logical paradoxes involve chains (or possibly more general structures) of statements
that cannot be simultaneously true in a consistent manner. Contextuality, on the other hand,
can often be expressed in terms of the inability to consistently assign definite outcome values
to a set of measurements [126, 194].

The examples of Frauchiger-Renner in quantum theory and the the present one in box world,
both arise in contextual theories. Given this, and the strong links between these, Hardy’s
paradox [108, 109] and logical contextuality [4] (also pointed out in Section 7.2)— our hypothesis
is that a contextual physical theory, when applied to systems that are themselves reasoning
agents, can give rise to logical multi-agent paradoxes. The fact that such theories may allow
a very different description of a measurement process from the points of views of an agent
performing the measurement vs an outside agent (who analyses this agent and her system
together) also has an important role to play in these paradoxes. In the quantum case this
is closely linked to the measurement problem, the problem of reconciling unitary dynamics
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(outside view) and non-unitary “collapse" (inside view). The existence of a connection between
multi-agent paradoxes and contextuality is hard to miss, but it is the nature of this connection
that is unknown i.e., are all proofs of multi-agent logical paradoxes proofs of contextuality,
or vice-versa? Based on our results, and the analysis of the Frauchiger-Renner experiment
presented in Section 7.2, the hunch is that contextuality is necessary, but not sufficient for
deriving such paradoxes: specific forms of contextuality, combined with suitable conditions on
the memory update might be required. These questions will be formally addressed in future
work. Nevertheless, in the following, we provide an overview of further connections and some
more specific open questions in this direction.

Liar cycles. In [4] relations between logical paradoxes and quantum contextuality are ex-
plored; in particular, the authors point out a direct connection between contextuality and a
type of classic semantic paradoxes called Liar cycles [65]. A Liar cycle of length N is a chain
of statements of the form:

φ1 = “φ2 is true′′, φ2 = “φ3 is true′′, . . . , φN−1 = “φN is true′′, φN = “φ1 is false′′. (8.2)

It can be shown that the patterns of reasoning which are used in finding a contradiction in the
chain of statements above are similar to the reasoning we make use of in FR-type arguments,
and can also be connected to the cases of PR box (which corresponds to a Liar cycle of length
4) and Hardy’s paradox. This further suggests that multi-agent paradoxes are closely linked to
the notion of contextuality.

Relation to logical pre-post selection paradoxes. In [175], it has been shown that every
proof of a logical pre-post selection paradox is a proof of contextuality. The exact connection
between FR-type paradoxes and logical pre-post selection paradoxes is not known and this
would be an interesting avenue to explore which would also provide insights into the relationship
between FR paradoxes and contextuality.

8.6 Appendix

8.6.1 Proofs

8.6.1.1 Memory update for a single lab

In this section, we describe how a box world agent would measure a system and store the result
in a memory. From the perspective of an outside observer (who does not know the outcome of
the agent’s measurement), we describe the initial and final states of the system and memory
before and after the measurement as well as the transformation that implements this memory
update in box world. In the quantum case, any initial state of the system S is mapped to
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an isomorphic joint state of the system S and memory M (see Equation (8.1)) and hence the
memory update map that maps the former to the latter (an isometry in this case12) satisfies
Definition 8.2.7 of an information-preserving memory update. We will now characterise the
analogous memory update map in box world and show that it also satisfies Definition 8.2.7.

Theorem 8.6.1. In box world, there exists a valid transformation u that maps every arbitrary,
normalized state P⃗ S

in of the system S to an isomorphic final state P⃗ SM
fin of the system S and

memory M and hence constitutes an information-preserving memory update (Definition 8.2.7).

Proof. To simplify the argument, we will describe the proof for the case where S and M are
gbits. For higher dimensional systems, a similar argument holds, this will be explained at the
end of the proof.

We start with the system in an arbitrary, normalized gbit state P⃗ S
in = (p 1 − p∣q 1 − q)T

(where the subscript T denotes transpose and p, q ∈ [0,1]) and the memory initialised to one
of the 4 pure states13, say P⃗M

in = P⃗1 = (1 0∣1 0)T . Then the joint initial state, P⃗ SM
in =

(p 1−p∣q 1−q)TS ⊗(1 0∣1 0)TM of the system and memory can be written as follows, where
Pin(a = i, a′ = j∣X = k,X ′ = l) denotes the probability of obtaining the outcomes a = i and
a′ = j when performing the fiducial measurements X = k and X ′ = l on the system and memory
respectively, in the initial state P⃗ SM

in .

P⃗ SM
in =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Pin(a = 0, a′ = 0∣X = 0,X ′ = 0)
Pin(a = 0, a′ = 1∣X = 0,X ′ = 0)
Pin(a = 1, a′ = 0∣X = 0,X ′ = 0)
Pin(a = 1, a′ = 1∣X = 0,X ′ = 0)
Pin(a = 0, a′ = 0∣X = 0,X ′ = 1)
Pin(a = 0, a′ = 1∣X = 0,X ′ = 1)
Pin(a = 1, a′ = 0∣X = 0,X ′ = 1)
Pin(a = 1, a′ = 1∣X = 0,X ′ = 1)
Pin(a = 0, a′ = 0∣X = 1,X ′ = 0)
Pin(a = 0, a′ = 1∣X = 1,X ′ = 0)
Pin(a = 1, a′ = 0∣X = 1,X ′ = 0)
Pin(a = 1, a′ = 1∣X = 1,X ′ = 0)
Pin(a = 0, a′ = 0∣X = 1,X ′ = 1)
Pin(a = 0, a′ = 1∣X = 1,X ′ = 1)
Pin(a = 1, a′ = 0∣X = 1,X ′ = 1)
Pin(a = 1, a′ = 1∣X = 1,X ′ = 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
SM

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p
0

1 − p
0
p
0

1 − p
0
q
0

1 − q
0
q
0

1 − q
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
SM

(8.3)

The rest of the proof proceeds as follows: we first describe a final state P⃗ SM
fin of the system

and memory and a corresponding memory update map U that satisfy Definition 8.2.7 of a
generalized information-preserving memory update. Then, we show that this map can be seen
an allowed box world transformation which completes the proof.

12An isometry since it introduces an initial pure state on M , followed by a joint unitary on SM .
13It does not matter which pure state the memory is initialized in, a similar argument applies in all cases.
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If an agent performs a measurement on the system, the state of the memory must be up-
dated depending on the outcome and the final state of the system and memory after the
measurement must hence be a correlated (i.e., a non-product) state. Although the full state
space of the 2 gbit system SM is characterised by the 4 fiducial measurements (X,X ′) ∈
{(0,0), (0,1), (1,0), (1,1)}, Definition 8.2.7 allows us to restrict possible final states to a useful
subspace of this state space that contain correlated states of a certain form. The definition
requires that for every map ES on the system before measurement, there exists a corresponding
map ESM on the system and memory after the measurement that is operationally identical.
Thus it suffices if the joint final state P⃗ SM

fin belongs to a subspace of the 2 gbit state space for
which only 2 of the 4 fiducial measurements are relevant for characterising the state, namely
any 2 fiducial measurements on ⃗P SM

fin that are isomorphic to the 2 fiducial measurements on P⃗ S
in.

Note that by definition of fiducial measurements, the outcome probabilities of any measurement
can be found given the outcome probabilities of all the fiducial measurements and without loss
of generality, we will only consider the case where the agents perform fiducial measurements on
their systems.

A natural isomorphism between fiducial measurements on P⃗ S
in and those on P⃗ SM

fin to consider
here (in analogy with the quantum case) is: X = i ⇔ (X,X ′) = (i, i) ,∀i ∈ {0,1} i.e., only
consider the cases where the fiducial measurements performed on S and M are the same.
Now, in order for the states to be isomorphic or operationally equivalent, one requires that
performing the fiducial measurements (X,X ′) = (i, i) on P⃗ SM

fin should give the same outcome
statistics as measuring X = 0 on P⃗ S

in. This can be satisfied through an identical isomorphism
on the outcomes: a = i⇔ (a, a′) = (i, i) ,∀i ∈ {0,1}. Then the final state of the system and
memory, P⃗ SM

fin will be of the form

P⃗ SM
fin =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Pfin(a = 0, a′ = 0∣X = 0,X ′ = 0)
Pfin(a = 0, a′ = 1∣X = 0,X ′ = 0)
Pfin(a = 1, a′ = 0∣X = 0,X ′ = 0)
Pfin(a = 1, a′ = 1∣X = 0,X ′ = 0)
Pfin(a = 0, a′ = 0∣X = 0,X ′ = 1)
Pfin(a = 0, a′ = 1∣X = 0,X ′ = 1)
Pfin(a = 1, a′ = 0∣X = 0,X ′ = 1)
Pfin(a = 1, a′ = 1∣X = 0,X ′ = 1)
Pfin(a = 0, a′ = 0∣X = 1,X ′ = 0)
Pfin(a = 0, a′ = 1∣X = 1,X ′ = 0)
Pfin(a = 1, a′ = 0∣X = 1,X ′ = 0)
Pfin(a = 1, a′ = 1∣X = 1,X ′ = 0)
Pfin(a = 0, a′ = 0∣X = 1,X ′ = 1)
Pfin(a = 0, a′ = 1∣X = 1,X ′ = 1)
Pfin(a = 1, a′ = 0∣X = 1,X ′ = 1)
Pfin(a = 1, a′ = 1∣X = 1,X ′ = 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
SM

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p
0
0

1 − p
∗
∗
∗
∗
∗
∗
∗
∗
q
0
0

1 − q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
SM

, (8.4)

where ∗ are arbitrary, normalised entries and where Pfin(a = i, a′ = j∣X = k,X ′ = l) denotes
the probability of obtaining the outcomes a = i and a′ = j when performing the fiducial
measurements X = k and X ′ = l on the system and memory respectively, in the final state
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P⃗ SM
fin . This final state can be compressed since the only relevant and non-zero probabilities in
P⃗ SM
fin occur when X = X ′ and a = a′. We can then define new variables X̃ and ã such that
X =X ′ = i⇔ X̃ = i and a = a′ = j⇔ ã = j for i, j ∈ {0,1} and P⃗ SM

fin can equivalently be written
as in Equation (8.5) which is clearly of the same form as P S

in.

P⃗ SM
fin ≡

⎛
⎜⎜⎜⎜
⎝

P (ã = 0∣X̃ = 0)
P (ã = 1∣X̃ = 0)
P (ã = 0∣X̃ = 1)
P (ã = 1∣X̃ = 1)

⎞
⎟⎟⎟⎟
⎠
SM

=
⎛
⎜⎜⎜
⎝

p
1 − p
q

1 − q

⎞
⎟⎟⎟
⎠
SM

(8.5)

Hence the initial state of the system, P⃗ S
in = (p 1−p∣q 1−q)T (which is an arbitrary gbit state) is

isomorphic to the final state of the system and memory, P⃗ SM
fin (as evident from Equation (8.5))

with the same outcome probabilities for X = 0,1 and X̃ = 0,1. This implies that for every
transformation ES on the former, there exists a transformation ESM on the latter such that
for all outside agents Aj and for all p, q ∈ [0,1] (i.e., all possible input gbit states on the
system), Kjφ[ES(P⃗ S

in)] ⇒ Kjφ[ESM ○ P⃗ SM
fin ], where P⃗ fin

SM = U(P⃗ in
S ). Thus any map U that

maps P⃗ SM
in = P⃗ in

S ⊗ PM
in to P⃗ fin

SM satisfies Definition 8.2.7.

We now find a valid box world transformation that maps the initial state P⃗ SM
in (Equation (8.3))

to any final state of the form P⃗ SM
fin (Equation (8.4)) which would correspond to the memory

update map U .

Noting that all bipartite transformations in box world can be decomposed to a classical circuit
of a certain form (see Appendix 2.4.2 or the original paper [16] for details), In Figure 8.4, we
construct an explicit circuit of this form that converts P⃗ SM

in to P⃗ SM
fin . By construction, we only

need to consider the case of X = X ′ since for X ≠ X ′, the entries of P⃗ SM
fin can be arbitrary

and are irrelevant to the argument. For X ≠ X ′, one can consider any such circuit description
and it is easy to see that P⃗ SM

in = (p 1− p∣q 1− q)TS ⊗ (1 0∣1 0)TM is indeed transformed into
P⃗ SM
fin = (p 0 0 1−p∣∗ ∗ ∗ ∗∣∗ ∗ ∗ ∗∣q 0 0 1−q)TSM through the map U defined

by these sequence of steps. For example, if the circuit description for the X ≠ X ′ case is same
as that for the X =X ′ case, then the resultant memory update map is equivalent to the circuit
of Figure 8.3a which corresponds to performing a fixed measurement X ′ = 0 on the initial state
of M and a classical CNOT on the output wire of M controlled by the output wire of S14. The
final state in that case is (p 0 0 1 − p∣p 0 0 1 − p∣q 0 0 1 − q∣q 0 0 1 − q)TSM .

For higher dimensional systems S with n > 2 fiducial measurements, X ∈ {0, ..., n− 1} and k > 2
outcomes taking values a ∈ {0, ..., k−1}, let bn and bk be the number of bits required to represent
n and k in binary respectively. Then the memoryM would be initialized to bk copies of the pure
state P⃗M

in,n = (1 0∣...∣1 0)TM which contains n identical blocks (one for each of the n fiducial
measurements). One can then perform the procedure of Figure 8.4 “bitwise” combining each
output bit with one pure state of M and apply the same argument to obtain the result. For

14The output wires of boxes carry classical information after the measurement.
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the specific case of the memory update transformation of Figure 8.3a, this would correspond
to a bitwise CNOT on the output wires of S and M .

8.6.1.2 Memory update for two labs sharing initial correlations

So far, we have considered a single agent measuring a system in her lab. We can also consider
situations where multiple agents jointly share a state and measure their local parts of the state,
updating their corresponding memories. One might wonder whether the initial correlations in
the shared state are preserved once the agents measure it to update their memories (clearly
the local measurement probabilities remain unaltered as we saw in this section). The answer is
affirmative and this is what allows us to formulate the Frauchiger-Renner paradox in box world
as done in the Section 8.4, even though a coherent copy analogous to the quantum case does
not exist here.

Theorem 8.6.2. Suppose that Alice and Bob share an arbitrary bipartite state P⃗ PR
in (which

may be correlated), locally perform a fiducial measurement on their half of the state and store
the outcome in their local memories A and B. Then the final joint state P⃗ ÃB̃

fin of the systems
Ã ∶= PA and B̃ ∶= RB as described by outside agents is isomorphic to P⃗ PR

in with the systems
Ã and B̃ taking the role of the systems P and R i.e., local memory updates by Alice and Bob
preserve any correlations initially shared between them.

Proof. In the following, we describe the proof for the case where the bipartite system shared
by Alice and Bob consists of 2 gbits, however, the result easily generalises to arbitrary higher
dimensional systems by the argument presented in the last paragraph of the proof of Theo-
rem 8.6.1.

Let P⃗ PR
in be an arbitrary 2 gbit state with entries Pin(ab = ij∣XY = kl) (i, j, k, l ∈ {0,1}), which

correspond to the joint probabilities of Alice and Bob obtaining the outcomes a = i and b = j
when measuring X = k and Y = l on the P and R subsystems when sharing that initial state.
Let X ′, a′ ∈ {0,1} and Y ′, b′ ∈ {0,1} be the fiducial measurements and outcomes for the memory
systems A and B (also gbits) respectively. We describe the measurement and memory update
process for each agent separately and characterise the final state of Alice’s and Bob’s systems
and memories after the process as would appear to outside agents who do not have access to
Alice and Bob’s measurement outcomes. This analysis does not depend on the order in which
Alice and Bob perform the measurement as the correlations are symmetric between them, so
without loss of generality, we can consider Bob’s measurement first and then Alice’s.

Suppose that Bob’s memory B is initialised to the state P⃗B
in = P⃗B

1 = (1 0∣1 0)TB. Then
the joint initial state of the Alice’s and Bob’s system and Bob’s memory as described by
an agent Wigner outside Bob’s lab is P⃗ PRB

in = P⃗ PR
in ⊗ P⃗B

1 . This can be expanded as follows
where Pin(abb′ = ijk∣XY Y ′ = lmn) represents the probability of obtaining the binary outcomes
a = i,b = j,b′ = k when performing the binary fiducial measurements X = l, Y = m, Y ′ = n on
the initial state P⃗ PRB

in .
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P⃗ PRB
in =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Pin(abb′ = 000∣XY Y ′ = 000)
Pin(abb′ = 001∣XY Y ′ = 000)
Pin(abb′ = 010∣XY Y ′ = 000)
Pin(abb′ = 011∣XY Y ′ = 000)
Pin(abb′ = 100∣XY Y ′ = 000)
Pin(abb′ = 101∣XY Y ′ = 000)
Pin(abb′ = 110∣XY Y ′ = 000)
Pin(abb′ = 111∣XY Y ′ = 000)

⋅
⋅
⋅

Pin(abb′ = 000∣XY Y ′ = 111)
Pin(abb′ = 001∣XY Y ′ = 111)
Pin(abb′ = 010∣XY Y ′ = 111)
Pin(abb′ = 011∣XY Y ′ = 111)
Pin(abb′ = 100∣XY Y ′ = 111)
Pin(abb′ = 101∣XY Y ′ = 111)
Pin(abb′ = 110∣XY Y ′ = 111)
Pin(abb′ = 111∣XY Y ′ = 111)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
PRB

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Pin(ab = 00∣XY = 00)
0

Pin(ab = 01∣XY = 00)
0

Pin(ab = 10∣XY = 00)
0

Pin(ab = 11∣XY = 00)
0
⋅
⋅
⋅

Pin(ab = 00∣XY = 11)
0

Pin(ab = 01∣XY = 11)
0

Pin(ab = 10∣XY = 11)
0

Pin(ab = 11∣XY = 11)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
PRB

(8.6)

P⃗ PRB
in has 8 blocks GXY Y ′ , one for each value of (X,Y,Y ′) and is a product state with 4 equal

pairs of blocks, Gin
000 = Gin

001,Gin
010 = Gin

011, Gin
100 = Gin

101, Gin
110 = Gin

111 since both measurements on
the initial state of B give the same outcome.

Now, the outside observer Wigner will describe the transformation on RB through the memory
update map U of Figure 8.4. Let P⃗ PRB

fin be the final state that results by applying this map to
the systems RB in the initial state P⃗ PRB

in . Any transformation on a system characterised by
n fiducial measurements with k outcomes each can be represented by a nk × nk block matrix
where each block is a k × k matrix (see [16] for further details), for the system RB, n = k = 4
and the memory update map URB would be a 16× 16 block matrix of the following form where
each Uij is a 4 × 4 matrix.

URB =

⎛
⎜⎜⎜⎜⎜⎜
⎝

U11 ⋅ ⋅ ⋅ U14
⋅ ⋅
⋅ ⋅
⋅ ⋅
U41 ⋅ ⋅ ⋅ U44

⎞
⎟⎟⎟⎟⎟⎟
⎠
RB

Here, the first 4 rows decide the entries in the first block of the transformed matrix, the next
4, the second block and so on. Noting that the memory update transformation (Figure 8.4)
merely permutes elements within the relevant blocks (and does not mix elements between
different blocks), the only non-zero blocks of URB are the diagonal ones Uii. Further, by the
same argument as in Theorem 8.6.1, the only relevant entries in the transformed state are when
the same fiducial measurement is performed on Bob’s system R and memory B i.e., only cases
where Y = Y ′. The remaining measurement choices maybe arbitrary for the final state (just as
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X1 = X X2 = 0

X X′

X1 X2

S M

a2

a = a1

a′ = a2 ⊕ a1

P⃗ SM
fin

a a′

a1

P S
in

⎛

⎜
⎜
⎜

⎝

1
0
1
0

⎞

⎟
⎟
⎟

⎠
M

Figure 8.4: Classical circuit decomposition of the memory update map U as
a box world transformation: The blue box represents the final state of the system
S and memoryM after the memory update characterised by the fiducial measurements
X and X ′ and the outcomes a, a′. Let U be the memory update map that maps the
initial state P⃗SMin to a final state P⃗SMfin . Noting that we only need to consider the case
of X = X ′ since the for X ≠ X ′, the entries of P⃗SMfin can be arbitrary, the action of T
is equivalent to the circuit shown here i.e., 1) Choose X1 = X(= X ′) and perform this
fiducial measurement on the initial state of the system P⃗Sin to obtain the outcome a1.
2) Fix X2 = 0 (or X2 = 1) and perform this fiducial measurement on the initial state of
the memory P⃗Min = (1 0∣1 0)TM to obtain the outcome a2. 3) Set a = a1. 4) If a1 = 1,
set a′ = a2, otherwise set a′ = a2 ⊕ 1, where ⊕ denotes modulo 2 addition.

they are for X ≠ X ′ in Equation (8.4)). This means that among the 4 diagonal blocks, only 2
of them are relevant. The 4 fiducial measurements on RB are Y Y ′ = 00,01,10,11 and in that
order, only the first and fourth are relevant since they correspond to Y = Y ′. Within these
relevant blocks (in this case U11 and U44), the operation is a CNOT on the output b′ controlled
by the output b and we have the following matrix representation of the memory update map U
of Figure 8.415.

URB =
⎛
⎜⎜⎜
⎝

CN 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 CN

⎞
⎟⎟⎟
⎠
RB

, CN =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠

(8.7)

15The memory update map corresponding to the circuit of Figure 8.3a is a specific case of this map where
the arbitrary blocks ∗ are also equal to CN
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where 0 represents the 4× 4 null matrix and blocks labelled ∗ can be arbitrary. The final state
P⃗ PRB
fin as seen by Wigner is then

P⃗ PRB
fin = (IP ⊗URB)P⃗ PRB

in = (IP ⊗URB)[P⃗ PR
in ⊗

⎛
⎜⎜⎜
⎝

1
0
1
0

⎞
⎟⎟⎟
⎠
B

], (8.8)

where IP is the identity transformation on the P system. Since the CN blocks are the only
relevant blocks in uRB and each block of P⃗ PRB

in has the same pattern of non-zero and zero
entries (Equation (8.6)), it is enough to look at the action of IP ⊗CN on the first block Gin

000
of P⃗ PRB

in . Noting that IP is a 2 × 2 identity matrix, we have

(IP ⊗CN)Gin
000 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Pin(ab = 00∣XY = 00)
0

Pin(ab = 01∣XY = 00)
0

Pin(ab = 10∣XY = 00)
0

Pin(ab = 11∣XY = 00)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= Gfin
000

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Pin(ab = 00∣XY = 00)
0
0

Pin(ab = 01∣XY = 00)
Pin(ab = 10∣XY = 00)

0
0

Pin(ab = 11∣XY = 00)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Pfin(abb′ = 000∣XY Y ′ = 000)
Pfin(abb′ = 001∣XY Y ′ = 000)
Pfin(abb′ = 010∣XY Y ′ = 000)
Pfin(abb′ = 011∣XY Y ′ = 000)
Pfin(abb′ = 100∣XY Y ′ = 000)
Pfin(abb′ = 101∣XY Y ′ = 000)
Pfin(abb′ = 110∣XY Y ′ = 000)
Pfin(abb′ = 111∣XY Y ′ = 000)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where Pfin(abb′ = ijk∣XY Y ′ = lmn) represents the probability of obtaining the outcomes a = i,
b = j, b′ = k when performing the fiducial measurements X = l, Y = m, Y ′ = n on the final
state P⃗ PRB

fin and Gfin
000 is the first block of this final state. Clearly the only non-zero outcome

probabilities are when b = b′ and this allows us to compress the final state by defining b̃ = i⇔
b = b′ = i for i ∈ {0,1} and we have the following.

(IP ⊗CN)Gin
000 ≡

⎛
⎜⎜⎜
⎝

Pin(ab = 00∣XY = 00)
Pin(ab = 01∣XY = 00)
Pin(ab = 10∣XY = 00)
Pin(ab = 11∣XY = 00)

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜
⎝

Pfin(ab̃ = 00∣XY Y ′ = 000)
Pfin(ab̃ = 01∣XY Y ′ = 000)
Pfin(ab̃ = 10∣XY Y ′ = 000)
Pfin(ab̃ = 11∣XY Y ′ = 000)

⎞
⎟⎟⎟⎟
⎠

= Gin
00

Here Gin
00 is the first block of the initial state P⃗ PR

in and we have that the first block of the final
state of PRB is equivalent (up to zero entries) to the first block of the initial state over PR
alone or Gfin

000 = Gin
00. Among the 8 blocks of P⃗ PRB

fin , only the 4 blocks Gfin
000,G

fin
011,G

fin
100 and Gfin

111 are
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the relevant ones (since Y = Y ′ for these) and we can similarly show that Gfin
011 ≡ Gin

01,G
fin
100 ≡ Gin

10
and Gfin

111 ≡ Gin
11 for the remaining 3 relevant blocks. Defining Ỹ = i⇔ Y = Y ′ = i for i ∈ {0,1},

we obtain

P⃗ PRB
fin = P⃗ PB̃

fin ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Pfin(ab̃ = 00∣XỸ = 00)
Pfin(ab̃ = 01∣XỸ = 00)
Pfin(ab̃ = 10∣XỸ = 00)
Pfin(ab̃ = 11∣XỸ = 00)
Pfin(ab̃ = 00∣XỸ = 01)
Pfin(ab̃ = 01∣XỸ = 01)
Pfin(ab̃ = 10∣XỸ = 01)
Pfin(ab̃ = 11∣XỸ = 01)
Pfin(ab̃ = 00∣XỸ = 10)
Pfin(ab̃ = 01∣XỸ = 10)
Pfin(ab̃ = 10∣XỸ = 10)
Pfin(ab̃ = 11∣XỸ = 10)
Pfin(ab̃ = 00∣XỸ = 11)
Pfin(ab̃ = 01∣XỸ = 11)
Pfin(ab̃ = 10∣XỸ = 11)
Pfin(ab̃ = 11∣XỸ = 11)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Pin(ab = 00∣XY = 00)
Pin(ab = 01∣XY = 00)
Pin(ab = 10∣XY = 00)
Pin(ab = 11∣XY = 00)
Pin(ab = 00∣XY = 01)
Pin(ab = 01∣XY = 01)
Pin(ab = 10∣XY = 01)
Pin(ab = 11∣XY = 01)
Pin(ab = 00∣XY = 10)
Pin(ab = 01∣XY = 10)
Pin(ab = 10∣XY = 10)
Pin(ab = 11∣XY = 10)
Pin(ab = 00∣XY = 11)
Pin(ab = 01∣XY = 11)
Pin(ab = 10∣XY = 11)
Pin(ab = 11∣XY = 11)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= P⃗ PR
in (8.9)

Equation (8.9) shows that final state P⃗ PB̃
fin of Alice’s system P , Bob’s system R and Bob’s

memory B after Bob’s local memory update is isomorphic to the initial state P⃗ PR
in shared

by Alice and Bob, having the same outcome probabilities as the latter for all the relevant
measurements. Thus the initial correlations present in P⃗ PR

in are preserved after Bob locally
updates his memory according to the update procedure of Figure 8.4. One can now repeat the
same argument for Alice’s local memory update taking P⃗ PB̃

fin ⊗ (1 0∣1 0)TA to be the initial
state and by analogously defining s̃ = i⇔ s = s′ = i for s ∈ {a,X},i ∈ {0,1}, we have the required
result that the final state after both parties perform their local memory updates (as described
by outside agents Ursula and Wigner) is isomorphic and operationally equivalent to the initial
state shared by the parties before the memory update.

P⃗ PARB
fin = P⃗ ÃB̃

fin ≡ P⃗ PR
in (8.10)
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CHAPTER 9

Conclusions and outlook

This two part thesis proposes new techniques for analysing acyclic and cyclic causal struc-
tures as well as multi-agent logical paradoxes in non-classical theories. By developing these
techniques, we have derived interesting preliminary insights and have identified a number of
possible directions for future work on these aspects of quantum and post-quantum theories,
which have both foundational as well as practical applications.

The results reported in Part I pertain to the entropic analysis of causal structures (Chapters 4
and 5) and to the connections between the notions of causation and space-time (Chapter 6).
In the former case, we have developed a systematic method for analysing causal structures
using generalised entropies, providing, in particular, a new set of Tsallis entropic inequalities
for the Triangle causal structure. We have also extended our analysis to post-selected causal
structures and identified families of distributions whose non-classicality can be detected in
Bell scenarios with non-binary outcomes. Further, the properties of classical and quantum
Tsallis entropies derived in Chapter 4 can be potentially useful beyond the analysis of causal
structures, since Tsallis entropies are widely employed in other areas of information theory as
well as non-extensive statistical physics.

On the other hand, our results also reveal significant drawbacks of the entropic technique for
certifying the non-classicality of causal structures, both with and without the additional post-
selection method. We identified the main reasons for the computational intractability of the
entropy vector method using Tsallis entropies. Although we were able to circumvent this issue to
derive new Tsallis entropic inequalities for the Triangle scenario, no quantum violations of these
inequalities were found even by known non-classical distributions in the scenario. We noted
that Rényi entropies do not seem to overcome these limitations either, due to the lack of linear
constraints required to construct a good initial outer approximation to the Rényi entropy cone.
In post-selected causal structures, we provided numerical and analytical evidence suggesting
that both Shannon and Tsallis entropic inequalities are in general insufficient for detecting
non-classicality in Bell scenarios with binary inputs and three or more outcomes per party.
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Limitations for distinguishing between classical and non-classical correlations in causal struc-
tures using Shannon entropies have been previously encountered in the absence of post-selection
[214, 215]. By showing that similar limitations arise even for generalised entropies and in the
presence of post-selection, our results shed further light on the debate regarding the usefulness
of the entropic method for this purpose. It appears that the advantages of working in entropy
space such as convexity and better scaling of the number of bounding inequalities come at the
cost of losing valuable information about the non-classical nature of the correlations, even in
post-selected causal structures. Our results illuminate some of the merits as well as limitations
of the entropic technique and point to the need for developing novel methods for understanding
causation in non-classical theories.

In general, this is a difficult task— fully characterising the bounding inequalities for the set
of classical correlations in a given causal structure is known to be an NP-complete problem
[169]. Therefore, increase in the computational power of current technologies and improve-
ments to the performance of variable elimination algorithms would naturally increase the set of
scenarios that can be characterised. For example, developing a variable elimination algorithm
(such as Fourier-Motzkin) capable of dealing with systems of non-linear constraints would allow
for tighter entropic characterisations through the inclusion of non-linear inequalities. One can
also consider other algorithms for polyhedral projection that can sometimes produce results
even when Fourier-Motzkin Elimination (FME) becomes intractable [99]. We have provided a
method to bypass the FME to derive generalised entropic inequalities in cases where Shannon
entropic inequalities are known. Our Tsallis inequalities thus derived depend on the cardinality
of the variables in the Triangle causal structure. Hence one could, in principle, investigate di-
mension dependent distinctions between classical and quantum correlations using these, while
also taking into account the new class of non-local distributions recently discovered in the Tri-
angle network [178, 129]. Other possibilities include employing the inflation technique [223] in
combination with the entropic method, constructing more efficient algorithms (than the ran-
dom search typically employed) for finding quantum violations, and considering an alternative
definition of the Tsallis conditional entropies [3] that satisfy simpler causal constraints but vi-
olate the chain rule. These methods could lead to improvements but are not guaranteed to be
computationally tractable.

Cryptographic and other information-processing applications have greatly benefited from the
characterisation of the sets of correlations in the Bell scenario [79, 145, 17, 168, 60, 59], which
are relatively well understood due to their convexity. Often, these applications also go beyond
the Bell scenario and involve networks of parties sharing multiple sources of entanglement,
where the set of observed correlations in probability space is no longer convex. The entan-
glement swapping protocol [26, 229] is an important example, which also plays a role in the
construction of quantum repeater networks [35] used in quantum communication scenarios and
the quantum internet. Therefore, exploring different techniques for certifying non-classicality
in and beyond the Bell causal structure, and understanding their advantages and limitations as
done in this thesis is also of practical importance. At the foundational level, this reveals fun-
damental distinctions between the principles of causality that manifest themselves in classical
and quantum regimes. The information-theoretic approach to causal structures also allow us
to consider post-quantum theories and identify physical principles other than relativistic ones
that single out quantum theory among this spectrum of theories.

210



CHAPTER 9. CONCLUSIONS AND OUTLOOK

In Chapter 6, we have further explored this fundamental aspect by developing a causal mod-
elling framework for a general class of physical theories, and formalising relationships between
causality, space-time and relativistic principles (such as the inability to signal superluminally)
therein. This allowed us to analyse scenarios involving superluminal influences and causal loops
that nevertheless do not lead to superluminal signalling at the operational level. In particular,
our framework provides an initial tool set for causally modelling post-quantum theories admit-
ting jamming non-local correlations [105, 116], which have not been rigorously analysed before,
and for identifying further physical principles underlying such theories.

Moreover, these results also generate scope for interesting future investigations into causality
and space-time structure. One promising avenue would be to extend this work to construct
a more complete framework for causally modelling cyclic and fine-tuned causal structures in
non-classical theories, which is likely to be of independent interest. Furthermore, this work
can aid an operational analysis of closed time-like curves (CTCs) in the presence of fine-tuned
causal influences, and an investigation of whether fine-tuned and non fine-tuned interpretations
of quantum theory behave differently in the presence of CTCs. Yet another direction is to
examine simulations of indefinite causal structures [111, 154, 11] using CTCs and fine-tuning,
and analyse their embeddings within a fixed space-time structure. Indefinite causal structures
can in theory be implemented through a quantum superposition of gravitating masses [230], they
have also been claimed to be physically implemented by superposing the orders of quantum
operations on a target system [173, 184]. The space-time information associated with these
operations plays an important role in distinguishing between the two implementations [156]1.
Further, general relativity is known to admit CTC solutions [204, 100] even in the absence
of quantum effects, while certain fundamental principles of quantum theory such as the no-
cloning principle and linearity may no longer hold in the presence of CTCs [75]. A deeper
understanding of causality and space-time structure in non-classical theories, in the presence
of causal loops would hence provide insights not only into quantum theory, but potentially
also into its unification with general relativity, which has been a longstanding open problem in
theoretical physics. The thesis provides a small contribution towards these larger goals.

Part II of this thesis contributes to an understanding of multi-agent logic in scenarios where
reasoning agents model each other’s memories as systems of a physical theory. Generalising the
conditions of the Frauchiger-Renner quantum experiment to generalised probabilistic theories
allowed us to derive a stronger paradox in the particular GPT of box world. Our result reveals
that reversibility of the memory update akin to quantum unitarity is not necessary for deriving
such multi-agent paradoxes. Rather, a logical form of contextuality along with an appropriate
notion of an information-preserving memory update appear to be more fundamental for de-
riving a deterministic paradox. This work paves the way for a more general characterisation
of Frauchiger-Renner type paradoxes, their relationships to contextuality and the structure of
multi-agent logic in quantum and post-quantum theories.

Apart from the implications for logic, these multi-agent paradoxes also challenge standard
approaches to causal modelling that we have discussed in the first part of this thesis. In these

1As we also find in: Vilasini, V., del Rio, L. and Renner, R. Causality in definite and indefinite space-times.
In preparation (2020). https://wdi.centralesupelec.fr/users/valiron/qplmfps/papers/qs01t3.pdf
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settings, a system, such as a measurement outcome that appears classical to one agent may
be modelled as an entangled subsystem (entangled with the first agent’s memory) by another
agent. Therefore the distinction between observed and unobserved systems in a causal structure
can become subjective, and a detailed investigation of causality in these general settings is yet
to be undertaken.

The fact that the agents do not necessarily model the measurement outcomes of other agents
as classical systems implies that one cannot assume the existence of a joint distribution over
all these outcomes. As we have also seen in Part I of this thesis, no joint distribution can in
general be assigned to non-coexisting systems in a non-classical causal structure. It is precisely
this inability to make a global assignment of values to all measurement outcomes that results
in the apparent paradox, suggesting that these outcomes cannot be seen as objective facts
about the world, but only subjective to the agents who observed them. In both the quantum
and box-world versions of the paradox, the states and measurements involved produce non-
classical correlations in the bipartite Bell causal structure. The treatment of agents as systems
of a non-classical physical theory promotes this non-classicality to the level of the outcomes
observed by the agents, however it appears that not all non-classical correlations can lead to
such paradoxes. A better understanding of non-classical correlations in causal structures would
hence enhance our knowledge about these general settings involving complex quantum systems
that are capable of logical deductions.

With sufficient technological progress in creating and manipulating stable many-qubit super-
positions, the physical implementation of multi-agent paradoxes may be a distinct possibility
in the near future, since a relatively small quantum computer would fulfill the role of an agent
for these purposes. There are global efforts towards achieving such macroscopic superpositions,
both for the practical purposes of scalable quantum computing and for pushing the horizons
of fundamental physics by probing the quantum effects of gravity. These make it imperative
to develop more general theoretical frameworks for modelling multi-agent paradoxes as well
as causality and space-time structure in non-classical theories. We believe there are several
deep connections between causality and multi-agent logical paradoxes in non-classical theories
that are yet to be discovered, and hope that the results presented in both parts of this thesis
contribute towards a more complete physical framework or theory in the future.
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