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Abstract 

Retinal diseases including age-related macular degeneration (AMD) and retinitis 

pigmentosa (RP), have been associated with significant secondary structural changes to 

the posterior visual pathway. What has yet to be established is whether such cortical 

changes reflect atrophy (cortical shrinkage), demyelination (reduced axon myelination) 

and/or degeneration (cell death). Understanding the effects of retinal disease on the 

entire visual pathway and how this may differ with the type of retinal disease, will aid 

future techniques aimed to restore visual input and patient selection for such treatments 

In this thesis, novel magnetic resonance imaging (MRI) and magnetic resonance 

spectroscopy (MRS) protocols were employed to quantify changes to the posterior visual 

pathway, specifically whether there is evidence of cortical atrophy, degeneration, or 

demyelination in retinal disease. Outcome measures from the anterior and posterior 

visual pathways were correlated to investigate potential biomarkers of disease 

progression. The penultimate chapter investigated how the Argus® II retinal prosthesis 

affects the structure and function of the visual cortex.   

Chapters two and three reveals that significant cortical atrophy of the entire 

occipital cortex is observed in long-term unilateral and bilateral AMD. Pilot data from 

a small cohort of long-term bilateral RP patients, suggest some patients show signs of 

atrophy whilst other do not, although a larger sample is needed to draw definitive 

conclusions. Moreover, there were no significant signs of cortical degeneration or 

demyelination were observed in either retinal disease. 

Chapters four and five reveal that reduced macular thickness, specifically the 

ganglion cell layer (GCL), is observed in both retinal diseases suggesting degeneration 

of the retina. Monitoring GCL thickness may be a sensitive biomarker of disease 

progression. This thesis also revealed that reduced cortical thickness in the occipital pole 

significantly predicts visual acuity performance in AMD, the first study to report such a 

finding. 

Finally, in an individual AMD patient implanted with the Argus® II, 13-months 

post-surgery there was a very modest increase in cortical thickness of the occipital cortex 

yet diminished stimulus-driven responses. The success of restoring visual input in this 

case may well have been limited by the substantial cortical atrophy observed pre-

surgery.  
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Chapter 1 

Overview of the Human Visual System and Retinal Disease 
 

1.1. The Human Visual System 

Vision is the primary sense in humans and as such, vision processing is a multifaceted 

system. Understanding how vision is processed is vital when it comes to retinal disease 

or disorders which cause vision loss. Knowing how the system breaks down in these 

circumstances may help to inform new treatment strategies. Typically, ophthalmologists 

assess changes to the eye or the ‘anterior visual pathway’ however, the visual system 

includes both the eye and the brain, or the ‘posterior visual pathway’ and both elements 

of the visual pathway need to be intact for vision processing to take place. Therefore, it 

is essential that the entire visual pathway is assessed and considered when determining 

causes and effects of vision loss.  

1.1.1. Anterior Visual Pathway 

The anterior visual pathway encompasses the eyes, optic nerve, optic chiasm and optic 

tract. To begin, the basic concept of the anatomy of the eye is like a camera; at the optical 

surface, primarily the lens and cornea, light rays are refracted and focused on the light 

sensitive tissue of the retina. Between the lens and the retina lies the transparent vitreous 

gel which is attached to the retina at the pars plana. 

Light energy is transduced into electrical signals by the retinal photoreceptor 

cells in the photo-transduction cycle. There are two types of photoreceptors, rods and 

cones. Rods, of which there are 130 million in the retina (Snell & Lemp, 1998), are more 

sensitive than cones. Rods are responsible for low light (scotopic) vision and are located 

principally in the peripheral part of the retina. The central part of the retina is called the 

macula, with a diameter of 5.5mm representing 18 degrees of the visual field, and the 

central part of the macula is called the fovea, with a diameter of 1.5mm representing 5 

degrees of the visual field. It is the fovea where seven million cone cells (Snell & Lemp, 

1998) are located which are responsible for vision in high illumination settings (photopic 

vision), allowing high acuity.   

Information from rods and cones are received by bipolar cell dendrites with the 

body of bipolar cells forming the inner nuclear layer of the retina. Axons of bipolar cells 
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then contact the dendrites of retinal ganglion cells. Horizontal and amacrine cells are 

classed as interneurons of the retina, responsible for processing visual input from bipolar 

and retinal ganglion cells (Joukal, 2017).  

Retinal ganglion cell axons run toward the posterior pole of the eye, passing 

through the wall of the eyeball at the optic papilla. The axons then constitute the optic 

nerve which emerges from each eye in the middle cranial fossa and meet in the optic 

chiasm. Here, fibres of the nasal hemiretinae cross to the contralateral optic tract while 

axons of the temporal hemiretinae remain uncrossed (Joukal, 2017). These axons then 

form the lateral root of the optic tract and continue to the lateral geniculate nucleus 

(LGN). 

1.1.2. Posterior Visual Pathway 

The posterior visual pathway commences at the LGN, which comprises of six cellular 

layers; three layers (layer 1, 4 and 6) receive information from the contralateral nasal 

hemiretinae, whilst the remaining layers (layers 2, 3 and 5) receive information from the 

ipsilateral temporal hemiretinae (Swienton & Thomas, 2014). Neurons of the LGN send 

their axons to the cortex via the optic radiations (Figure 1). Inferior fibres contain 

information relating to the superior visual field which travel anteriorly as the Meyer 

Loop, passing through the temporal lobe and terminating below the calcarine fissure of 

primary visual cortex in the medial surface of the occipital lobe. Superior fibres contain 

information relating to the inferior visual field which pass through the parietal lobe, 

terminating above the calcarine fissure in the superior part of primary visual cortex, V1 

(Joukal, 2017; Swienton & Thomas, 2014).  

The posterior visual pathway contains multiple maps of the visual world, 

including ‘early’ visual areas V1, V2 and V3. Early visual cortex occupies the medial 

wall of the occipital cortex; primary visual cortex (V1) occupies the calcarine sulcus, 

with V2 and V3 bordering V1 both dorsally and ventrally. The central part of our visual 

field (where visual acuity is highest) is located posteriorly at the occipital pole and has 

a much larger representation in visual cortex; this is referred to as cortical magnification. 

Approximately, 50% of the occipital lobe is dedicated to processing the central 5 degrees 

visual field. The focus of this thesis will be on retinal disease affecting the central and/or 

peripheral visual field. As such, references to the posterior visual pathway will refer to 
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primary visual cortex, V1, specifically the occipital pole and calcarine sulcus which are 

known to represent the central and peripheral retina respectively. 

 

 

Figure 1: Cross-sectional view of the visual pathway. Visual information travels from the left 

(L) or right (R) visual field onto the corresponding retinal wall. This information then travels 

along the optic nerve to the corresponding lateral geniculate nucleus (LGN), along the axons of 

the optic radiations (OR), terminating in the primary visual cortex (PVC). 

 

1.2. Classification of Retinal Disease 

Vision loss can also be characterised functionally by the region of the visual field 

affected. Throughout this thesis, vision loss will be categorised as either affecting the 

central visual field, or peripheral visual field and in some cases, both. Here, some of the 

most commonly diagnosed causes of vision loss will be described. 

1.2.1. Central Retinal Disease 
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Age-related macular degeneration (AMD) is a progressive form of blindness affecting 

the central visual field. AMD is currently the leading cause of vision loss in developed 

countries; in the UK, 12% of all people over the age of 80 are affected (H. D. H. Brown, 

Woodall, Kitching, Baseler, & Morland, 2016). There are two types of this condition: 

dry-AMD, the early and most common form, which is less severe but so-far untreatable; 

and wet-AMD, an advanced, treatable, and less common form.   

Dry-AMD results in progressive atrophy of the retinal pigment epithelium 

(RPE), choriocapilliaris and photoreceptors. A central scotoma, caused by a build-up of 

drusen in the RPE, damages the photoreceptor cells leading to central blindness. 

Roughly 10% of dry-AMD cases progress into wet-AMDknown clinically as 

neovascular-AMD (nvAMD), which is characterised by choroidal neovascularisation 

(CNV), which is a process involving the growth of abnormally fragile blood vessels 

under and through the layers of the retina. These blood vessels leak, allowing the build-

up of fluid in the macula, a region of the retina responsible for central vision. This fluid, 

along with accumulated cellular waste (drusen) causes the detachment and scarring of 

the macula, damaging its delicate photoreceptor cells, resulting in a growing blind spot, 

known as a scotoma (Holz, Pauleikhoff, Klein, & Bird, 2004). The treatment often used 

for nvAMD in the UK is the intravitreal injection of one of a group of drugs known as 

anti-vascular endothelial growth factor (anti-VEGF), which work by perturbing the 

function of the protein VEGF responsible for CNV, to reduce leakage (Nowak, 2006). 

In the UK, nvAMD accounts for more than half of all cases of registered sight and severe 

sight impairment (Rostron & McKibbin, 2012). 

1.2.2. Peripheral Retinal Disease 

Retinitis pigmentosa (RP) is the most common inherited retinal degeneration worldwide 

(Shintani, Shechtman, & Gurwood, 2009). Characterised by the progressive loss of rod 

and cone photoreceptors, RP affects about 1 in 4000, with around 1 million individuals 

affected (Hartong, Berson, & Dryja, 2006). Typically, manifestations arise between 

adolescence and early adulthood, but the range of onset can vary considerably, along 

with disease severity even within the same family (Berson, 2007). Peripheral vision loss 

is typically associated with night blindness, but as the disease progresses, patients 

develop tunnel vision as the far peripheral vision is lost, finally losing central vision by 

the age of 60 years (Hartong et al., 2006).  
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1.3. Clinical Assessments of Retinal Disease 

Performance of the anterior visual pathway is often assessed within the eye clinic using 

a multitude of techniques. The methods used throughout this thesis have been split into 

those assessing structural and functional performance of the anterior visual pathway.   

1.3.1. Structural Assessments 

Optical coherence tomography (OCT) is a relatively quick examination of the eye, 

providing cross-sectional 3D images of the retina, optic disc and anterior segments.  

OCT is widely used to aid diagnosis and management of many ocular diseases, such as 

AMD, glaucoma, RP, central serous retinopathy, and macular oedema.   

Numerous morphologic parameters can be assessed including central retinal 

thickness (CRT), which is ranked the most readily available and most intuitive to 

interpret (Ou, Brown, Payne, & Wykoff, 2017). Many clinical trials use CRT as a 

complementary outcome to visual performance. OCT is particularly useful is assessing 

nvAMD, providing information on whether excess fluid is present in the retina.  nvAMD 

is primarily treated in form of anti-VEGF ocular injections. OCT-measured CRT has 

revealed significant decreases in retinal fluid with the anti-VEGF agent ranibizumab 

(Airody, Venugopal, Allgar, & Gale, 2015), a result confirmed by other studies albeit 

over shorter time periods for groups treated with both ranibizumab and aflibercept anti-

VEGF agents (Keane et al., 2008; J. H. Kim, Lee, Chang, Kim, & Kim, 2016).  

OCT assessments can also provide additional measurements to CRT. For 

example, retinal diseases including RP , OCT is used to assess differences in thickness 

of the retinal layers, including the retinal nerve fibre layer (RNFL), ganglion cell 

complex (GCCx) and ganglion cell layer (GCL). In RP, OCT is also used to evaluate the 

structural integrity of the inner and outer retinal layers, including peripapillary RNFL. 

Whilst studies have reported high variability in RP patients, with peripapillary RNFL 

thickness either increasing, decreasing or remaining within normal limits (Anastasakis, 

Genead, McAnany, & Fishman, 2012; Walia, Fishman, Edward, & Lindeman, 2007), 

evaluating these changes would appear prudent if patients are to be considered for 

therapeutic trials.  

1.3.2. Functional Assessments 
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Visual acuity (VA) has been established as the most important outcome for clinical trials 

for new ophthalmic pharmaceutical agents (Ou et al., 2017). Therefore, VA is considered 

a primary endpoint in clinical research with the most common method of assessment 

being the Early Treatment Diabetic Retinopathy Study (ETDRS) letter chart (ETDRS, 

1985). ANCHOR and MARINA were two early clinical trials reporting the effects of 

anti-VEGF treatment for nvAMD. These studies revealed significant increases in VA by 

15 letters or more following ranibizumab injections; a benefit which was maintained at 

24-month follow-up (D. M. Brown et al., 2006; Rosenfeld et al., 2006). These were the 

first reports to show vision loss prevention in nvAMD with ranibizumab treatment. 

Many research studies have since reported similar findings with other types of anti-

VEGF treatment such as aflibercept (J. H. Kim et al., 2016). More importantly, studies 

have also reported that stabilisation of vision is maintained in nvAMD patients 

longitudinally, assessed over a 5 year period (Airody, Venugopal, Allgar, & Gale, 2015). 

In RP patients who have a small area of preserved retinal function in the central macula, 

visual acuity can remain normal whereas in other cases, visual acuity can be lost earlier 

in the disease (Hartong et al., 2006). 

Visual field assessments are another common measure of functional vision, 

covering wide-field peripheral functioning and more central assessments to capture the 

macula. Typically, RP research employs wide-field assessments to capture retinal 

function using Goldmann perimetry or the Humphrey visual field analyser. Studies have 

shown that midperipheral scotomas with asymmetrical visual field loss is associated 

with RP, with initial preservation of the central visual field (S. Grover, Fishman, 

Anderson, Alexander, & Derlacki, 1997; Sandeep Grover, Fishman, & Brown, 1998). 

Progressive loss of visual function has also been linked with significant loss of the 

central visual field (Hirakawa, Iijima, Gohdo, Imai, & Tsukahara, 1999; Holopigian, 

Greenstein, Seiple, & Carr, 1996). Microperimetry is a more focused assessment of 

central macular functioning and is regularly used in retinal disease including AMD, 

revealing decreased retinal sensitivity with disease severity (Dinc, Yenerel, Gorgun, & 

Oncel, 2008; Vujosevic et al., 2011). 

Both structural and functional assessments are often conducted in vision loss 

research to observe correlations following treatment and to compare outcomes from 

different techniques. For example, changes in RNFL and GCL appear to vary 

considerably with RP, appearing thinner (Humayun, Prince, et al., 1999; Oishi et al., 



 

 

Rachel L.W. Hanson | SYNAPTIC 
 

 

25 

2009; Vámos et al., 2011) and thicker (Hood et al., 2009; Vámos et al., 2011) compared 

to sighted controls. In a larger review of six prospective clinical trials of AMD patients, 

no correlations were observed between measures of CRT and BCVA (Ou et al., 2017), 

with similar findings observed across other studies (Ristau et al., 2014; SPAIDE et al., 

2006).  

Whilst this section has summarised just a few techniques used within the eye clinic 

to measure visual performance; these techniques are only assessing the anterior visual 

pathway. As previously mentioned, vision processing requires the entire visual system 

to work in synchrony. Therefore, when assessing cases of visual disease and loss, it is 

vital to consider potential changes occurring to the posterior visual pathway. 

 

1.4. Neuroimaging Assessments of Retinal Disease 

Magnetic resonance imaging (MRI) is a non-invasive technique for measuring the 

function, structure, and neurochemistry of the human brain. Approximately 20% of 

cortex in the human brain is dedicated to visual processing, spanning the occipital lobe 

(Wandell, Dumoulin, & Brewer, 2007). MRI of this posterior visual pathway can 

therefore allow for correlations with clinical assessments of the anterior visual pathway 

to allow further understanding of underlying mechanisms in different clinical 

presentation (H. D. H. Brown et al., 2016).   

1.4.1. Functional Magnetic Resonance Imaging  

Functional MRI (fMRI) has been used extensively to record how our visual world is 

mapped in the brain. In doing so, the variation in these maps in both health and disease 

can be determined. Before neuroimaging was available, (Holmes, 1918) outlined key 

features of how visual space is represented in human visual cortex using brain lesions 

caused by gunshot wounds. Neuroimaging research has since supported these original 

findings, demonstrating that visual cortex is topographically organised; spatial 

information is preserved, meaning neighbouring areas in the visual world are 

represented by neighbouring neurons in visual cortex (Holmes, 1918).  

When visual input is diminished following sight loss via retinal disease or 

damage, research has shown that regions of cortex dedicated to processing parts of the 

affected visual field are subject to change (Baker, Dilks, Peli, & Kanwisher, 2008; 
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Baker, Peli, Knouf, & Kanwisher, 2005; Baseler, Gouws, et al., 2011). However, there 

is a debate in the literature regarding the definition of cortical reorganisation, but also 

the mechanism by which it may occur (Dilks, Baker, Peli, & Kanwisher, 2009). Cortical 

reorganisation frequently refers to functional brain changes whereby patterns of neural 

activation differ from those observed in healthy individuals. It has been proposed that 

the term ‘reorganization’ should be used only when the absence of visual input, 

combined with known properties of the normal visual system, cannot explain the pattern 

of activity observed in patients with visual loss (Dilks et al., 2009; Morland, 2015). 

Central vision loss due to AMD for example, has generated much research into 

this area of reorganisation. Some researchers have evidenced cortical reorganisation 

occurs as the cortical region representing the lesioned retina (lesion projection zone; 

LPZ) takes on a new function and processes visual information from the cortical region 

representing intact retina (intact projection zone; IPZ) (Baker et al., 2008, 2005; Dilks 

et al., 2009; Dilks, Julian, Peli, & Kanwisher, 2014). Other researchers argue that the 

region of visual deficit must be absolute and include the fovea to generate reorganisation, 

because some patients with foveal sparing do not exhibit reorganisation (Baker et al., 

2008). Additionally, the spread of activation in the LPZ is not always large-scale; in 

some cases, only part of the occipital pole is activated by stimuli presented to a small, 

intact part of the retina, suggesting a smaller, more local reorganisation is occurring in 

these individuals (Dilks et al., 2014). Other studies reporting LPZ activity in AMD 

suggest this is evidence of feedback from extrastriate visual areas and as such, this task-

specific ‘reorganisation’ reveals existing feedback pathways (Masuda, Dumoulin, 

Nakadomari, & Wandell, 2008; Masuda et al., 2010).    

AMD patients have also been shown to develop a preferred retinal locus (PRL) 

in part of the peripheral retina still intact. Typically, a PRL will develop in a region 

abutting the scotoma, but the location depends on the size and extent of the damaged 

retina (Cheung & Legge, 2005; Schumacher et al., 2008). It is thought that the 

establishment of a PRL may trigger reorganisation as it essentially takes on the function 

of the formerly intact fovea (Schumacher et al., 2008). Whilst some have shown greater 

LPZ activity to stimuli presented to the PRL compared to a peripheral location of equal 

eccentricity (Schumacher et al., 2008) others have argued there is no difference between 

peripheral locations (Dilks et al., 2009). 
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Comparatively, fewer studies have assessed functional changes resulting from 

peripheral vision loss such as retinitis pigmentosa (RP). Similarly to AMD studies, some 

researchers have reported evidence of reorganisation in RP, revealing task-dependent 

activity in the LPZ (Masuda et al., 2010), a shift of central retinal representations to more 

peripheral locations (Ferreira et al., 2017) whilst others have reported no evidence of 

reorganisation in the LPZ (Goesaert, Van Baelen, Spileers, Wagemans, & Op De Beeck, 

2014). A lack of reorganisation, reported in AMD (Baseler, Crossland, et al., 2011; 

Smirnakis et al., 2005; Sunness, Liu, & Yantis, 2004) and RP (Goesaert et al., 2014) 

may be positive news with respect to treatment restoring retinal function; if cortex has 

not taken on a new role it is theoretically ready to resume processing incoming 

information. 

1.4.2. Structural Magnetic Resonance Imaging  

Structural MRI can reveal associated changes in the brain to several visual disorders, 

evidence of cortical atrophy due to diminished visual input. Primarily, research focuses 

on changes to cortical grey and white matter using analysis methods to measure changes 

in mean cortical thickness and volume. However, new novel acquisitions allowing the 

quantification of cortical myelination may provide additional information on how the 

visual cortex may change over time. 

Structural abnormalities have been observed in a variety of studies assessing 

central vision loss from diseases such as AMD. These reports suggest significant 

reductions in grey and white matter within the posterior visual pathway, including  the 

occipital pole, LGN, optic radiations and optic tract in AMD patents compared to age-

matched sighted controls (Boucard et al., 2009; Hernowo et al., 2014; Malania, Konra, 

Jägle, Werner, & Greenlee, 2017; Plank et al., 2011). Some suggest this supports the 

transneuronal degeneration idea, whereby retinal degeneration at the fovea propagates 

back along the visual pathway causing atrophy in the retinotopically corresponding areas 

of cortex (Boucard et al., 2009; Hernowo et al., 2014). Significant thinning of primary 

visual cortex in macular degeneration has also been reported alongside significant 

increases in peripheral cortical representations (Burge et al., 2016). Here it is believed 

that compensatory recruitment of spared vision in those with central vision loss may 

explain the increase in cortical thickness of intact retinal representations.  
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Volumetric reductions of white matter in other non-visual cortical regions has  

been reported in AMD patients suggesting a potential link between AMD and 

Alzheimer’s disease, although this warrants further investigations (Keenan, Goldacre, & 

Goldacre, 2014; Ohno-Matsui, 2011; Sivak, 2013). 

Alterations to the posterior visual pathway associated with RP are not well 

researched. Of the few studies which have assessed such structural changes, no 

difference in cortical thickness has been reported compared to sighted control 

participants (Cunningham, Weiland, Bao, Lopez-Jaime, & Tjan, 2015; Ferreira et al., 

2017), although one study has reported that as the disease advances, cortical volume 

decreases (Rita Machado et al., 2017). Another study concluded there is no evidence of 

cortical atrophy in RP due to a lack of correlation between cortical thickness decreases 

and visual sensitivity (Castaldi, Cicchini, Falsini, Binda, & Morrone, 2019). Considering that 

RP participants are generally targeted in trials assessing success of restorative treatments 

(Ahuja et al., 2011; Castaldi et al., 2016, 2019; da Cruz et al., 2016; Humayun et al., 2009; Luo, 

Davagnanam, & Dacruz, 2013; Luo, Zhong, & da Cruz, 2015; Rizzo et al., 2014), 

understanding how the visual cortex may change as a result of long-term vision loss is 

imperative to such devices working. 

Myelin is essential for a healthy functioning nervous system as it expedites 

conduction of electrical signals along axons. Whilst myelinated fibres are abundant 

within the cortical white matter, significant amounts are also found within cortical grey 

matter (Shafee, Buckner, & Fischl, 2015). Myelin content is believed to covary with the 

intensity of T1-weighted (T1w) and T2-weighted (T2w) images, but in the opposite 

direction, and recent work has outlined a method to quantify cortical grey matter myelin 

content using a ratio of T1w and T2w images acquired during a normal MRI session 

(Glasser & Van Essen, 2011). A significant correlation has been found between 

myelination content and the retinotopic organisation of the visual cortex, with high 

myelin density in early visual areas, V1-V3 (Abdollahi et al., 2014; Sereno, Lutti, 

Weiskopf, & Dick, 2013). However, it is not known how myelin content may change in 

relation to other structural changes, associated with long-term vision loss. One could 

hypothesise that myelin content may reduce along with cortical thickness and volume, 

potentially indicating cortical atrophy due to diminished visual input but current research 

has not yet assessed this.  

1.4.3. Magnetic Resonance Spectroscopy  
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Magnetic resonance spectroscopy (MRS) is an inherently quantitative technique since 

the signal intensity of a resonance is directly proportionate to a specific metabolite 

concentration. MRS data can therefore be analysed in conjunction with MRI to correlate 

anatomical and physiological changes in the brain. For this reason, MRS is a potential 

tool for studying the metabolic changes in visual cortex in vivo, providing direct clinical 

applications for studying brain plasticity and adaptive changes following sight loss 

(Bernabeu, Alfaro, García, & Fernández, 2009).   

-aminobutyric acid (GABA) is the principle inhibitory neurotransmitter 

believed to be involved in a homeostatic balance between excitatory, inhibitory and 

modulatory pathways. Reduced resting GABAergic inhibition has been shown to trigger 

ocular dominance plasticity, modulating both the onset and offset of the critical period 

(H. D. H. Brown et al., 2016). Therefore, measuring GABA in response to visual 

stimulation following deprivation could be a sensitive indicator of plasticity.  

Retinal damage is in continuous progress in glaucoma, RP and AMD. A number 

of mechanisms have been invoked to explain the effects of glaucoma, including reactive 

oxygen species, excitotoxicity, defective axon transport, trophic factor withdrawal and 

loss of electrical activity (Chang & Goldberg, 2012). These pathophysiological actions 

lead to a series of biochemical compound changes in brain tissue. For example, 

transsynaptic damage caused by excitotoxicity of glutamate (Glu) (as can be assessed 

by levels of the glutamate/glutamine complex (Glx)) is an important mechanism of 

glaucomatous central visual pathway injury. Using MRS to investigate metabolic 

concentrations in the striate area and geniculocalcarine tract, significant decreases in N-

Acetyl-Aspartate:Creatine (NAA:Cr) and Choline:Creatine (Cho:Cr) ratios were 

detected, although there were no reported differences in concentrations of Glx:Cr in a 

group of glaucoma patients compared with sighted controls (Yan Zhang, Chen, Wen, 

Wu, & Zhang, 2013). These results suggest that within the central visual pathway in 

glaucoma, neurodegeneration is an ongoing process. If progressive visual deprivation 

affects the metabolism of the adult visual brain, lower concentrations of the metabolite 

NAA would be expected in occipital cortex, given the association between NAA and 

neuronal activity. However, one study reported no difference in either Cho, Cr or NAA 

absolute concentrations in the striate area in a group of glaucoma patients compared to 

AMD patients, relative to sighted controls (Boucard, Hoogduin, van der Grond, & 

Cornelissen, 2007). This indicates that within the visual pathways of the brain, progressive 
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retinal visual field defects do not always induce a measurable decrease in metabolite 

concentration. 

A single MRS voxel of interest (VOI) can in theory be positioned anywhere in the 

brain as long as there is limited interference with the metabolic signal. One theory 

proposed as a factor in glaucoma is the apoptosis theory (programmed cell death). 

Therefore, one would expect to see an increase in metabolic concentrations of Glu in the 

vitreous humour and lateral geniculate body (LGB) regions due to the known neurotoxic 

effects of Glu. MRS was performed using a VOI in these two regions in a group of 

glaucoma patients. Analysis revealed significantly greater levels of Glx:Cr in both VOIs 

for the glaucoma patients compared to sighted controls, supporting the apoptosis theory 

in the aetiopathogenesis of glaucoma (Boucard et al., 2007). MRS could therefore move 

the diagnosis of glaucoma forward enhancing the understanding and diagnosing of 

glaucoma at the cellular level (Boucard et al., 2007).   

1.4.4. Summary  

To summarise, structural MRI investigating the effects of vision loss on the brain reveal 

significant alterations to cortical structure, with reductions to both white and grey matter 

in multiple regions along the posterior visual pathway. Correlating these observed 

alterations with clinical measures of the anterior visual pathway can aid our 

understanding of disease progression and ultimately, vision restoration. In addition to 

ophthalmological measures, including visual acuity, perimetry, optical coherence 

tomography and physical examination of the retina, fMRI aids our understanding of how 

the entire visual system is affected with eye disease, from the eye to the brain (Baker et 

al., 2008, 2005; Haak, Morland, & Engel, 2015; Masuda et al., 2008). Lastly, MRS can 

provide which neurochemical constituents change in the posterior visual pathway as a 

result of brief and long-standing visual deprivation. 

 

1.5. Aims of the Thesis 

Vision loss is of growing concern in our aging population; by 2020, it is estimated that 

2.7 million people will be registered with sight loss. This estimation is believed to double 

to over 4 million by 2050 (RNIB, 2018). Therefore, understanding how the entire visual 

pathway, from the eye to the brain, is affected by visual disease, is essential. 
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A growing body of vision research is investigating techniques aimed at restoring 

visual input to those affected by such conditions outlined above, including retinal 

prostheses (Weiland & Humayun, 2014). Treatments have also been developed to help 

limit disease progression in the eye, including anti-VEGF for wet-AMD (D. M. Brown 

et al., 2006; Rosenfeld et al., 2006). However, success of such treatments depends on 

the posterior visual pathway remaining viable to receive and process restored visual 

input. Neuroimaging literature has revealed significant structural reductions of the 

posterior visual pathway in patients with vision loss, reporting decreased cortical volume 

of brain regions representing damaged retina (Boucard et al., 2009; Hernowo, Boucard, 

Jansonius, Hooymans, & Cornelissen, 2011; Hernowo et al., 2014). If these reductions 

in volume of the posterior visual pathway result from degeneration due to significant 

cell death, restoration techniques may be unsuccessful in patients with vision loss. 

However, if vision loss results in temporary atrophy of the posterior visual pathway; a 

shrinkage of the cortex, this may suggest a potential ability for the brain to return to 

processing visual information once input has been restored (Hensch & Fagiolini, 2005). 

Therefore, understanding how the posterior visual pathway responds to different types 

of vision loss will ultimately aid our understanding of how this pathway might respond 

once/if vision is restored. 

The aim of this thesis is to examine the effects of long-term vision loss on both 

the anterior and posterior visual pathways. In a group of patients diagnosed with bilateral 

vision loss resulting from either central or peripheral retinal damage, or both, clinical 

assessments of the anterior visual pathway will be compared with neuroimaging 

measures of the posterior visual pathway. Neuroimaging research has revealed 

significantly decreased cortical volume of brain regions representing damaged retina. 

What has yet to be established is 1) whether this reduction represents a) atrophy: 

condensed cortex that remains plastic to restored visual input, b) demyelination: a 

reduction in myelin density or c) degeneration: reduced cortical volume due to cell death 

and 2) to what extent do changes in the anterior visual pathway influence changes in the 

posterior visual pathway. 

1.5.1. Objectives  

The primary objective will measure how the posterior visual pathway changes due to 

diminished visual input following vision loss. The hypotheses will be 1) reduced visual 

input due to retinal disease will result in reductions in cortical volume and thickness 
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which will represent evidence of cortical atrophy 2) reduced visual input may result in 

reduced myelin density evidencing demyelination 3) reduced visual input may result in 

cell death evidencing cortical degeneration via necrosis and/or apoptosis due to 

decreased Choline and increased Glutamate. Whilst it is hypothesised that cortical 

changes may be the result of either atrophy, demyelination or degeneration, it is 

important to note that long-term retinal disease may in fact result in a combination of 

these three possibilities.   

The secondary objective will measure changes to the anterior visual pathway 

following vision loss and the relationship between changes in the brain and the retina. 

Here, the hypotheses will be 1) increased disease duration and reduced visual function 

will correlate with reduced cortical volume, thickness and myelin density; evidence of 

cortical atrophy and 2) scotoma size will correlate with decreased visual performance 

and amount of brain atrophy.
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Chapter 2 

Following the status of visual cortex over time in patients with 

macular degeneration reveals atrophy of visually deprived brain 

regions 

 

2.1. Introduction  

It has recently emerged that eye disease can result in secondary structural changes within 

primary visual cortex. This is true whether the eye disease is congenital, for example in 

ocular albinism (Von Dem Hagen, Houston, Hoffmann, Jeffery, & Morland, 2005), or 

acquired, for example in age-related macular degeneration (Boucard et al., 2009). Most 

commonly, atrophy demonstrated by a reduction in cortical thickness or volume, is 

reported in the retinotopic representation of the lesions that are a consequence of the 

disease (Aguirre et al., 2016; Boucard et al., 2009; Hernowo et al., 2014; Malania et al., 

2017; Neveu, von dem Hagen, Morland, & Jeffery, 2008; Plank et al., 2011; Prins et al., 

2016; Von Dem Hagen et al., 2005). Conversely, some studies have reported atrophy in 

retinotopic representations of intact but not lesioned retina in monocularly blind (Prins, 

Jansonius, & Cornelissen, 2017) and age-related macular degeneration (AMD) patients 

(Prins et al., 2016), whereas others revealed significant thickening of cortical 

representations of the intact retina, believed to be a compensatory phenomenon (Burge 

et al., 2016). Controversy therefore remains over the exact nature of the response of 

visual cortex to retinal disease and furthermore the timing of such changes. 

AMD is an excellent model to study the consequences of vision deprivation as it 

leads to a loss of retinal input to the cortical representation of the central visual field. 

However, the most common form of the disease progresses slowly, and onset of visual 

loss is a challenge to pinpoint in time. However, the neovascular (nvAMD) form of the 

disease, characterised by fluid leakage and haemorrhage in the central macula, has an 

acute onset, therefore visual loss is well-defined (Lim, Mitchell, Seddon, Holz, & Wong, 

2012). NvAMD generally manifests unilaterally, with disease onset in the second eye 

occurring in 50% of patients within 3-years following unilateral loss (A. Y. Lee et al., 

2015).  

To assess the time course of structural changes to visual cortex resulting from a 

loss of input, we recruited individuals recently diagnosed with onset of acute unilateral 



 

 

Rachel L.W. Hanson | SYNAPTIC 
 

 

34 

nvAMD who had established bilateral retinal disease. As a result, a significant unilateral 

change of input to visual cortex was well-defined in time. 

NvAMD affects 40,000 new people in the UK every year (NICE, 2018) and 

when left untreated, leads to severe sight impairment. Current treatment involves regular 

intraocular Anti-Vascular Endothelial Growth Factor (anti-VEGF) injections which 

restore around half the initially lost visual acuity (D. M. Brown et al., 2006a; J. H. Kim 

et al., 2016; Rosenfeld et al., 2006) by halting leakage, therefore decreasing central 

retinal thickness (Airody et al., 2015; Keane et al., 2008; J. H. Kim et al., 2016). 

Following an initial improvement of visual acuity by month 3, a long-term slow decline 

in visual acuity can be observed (Airody et al., 2015; Rofagha, Bhisitkul, Boyer, Sadda, 

& Zhang, 2013; Singer et al., 2012). The patients we tested received standard treatment 

to preserve and stabilize vision. 

This study aimed to observe the short- and long-term nature of visual cortical 

changes in the context of unilateral visual loss due to nvAMD. Previous studies focussed 

on testing patients with established bilateral disease, between 1-42 years post-onset 

(Boucard et al., 2009; Burge et al., 2016; Hernowo et al., 2014; Malania et al., 2017; 

Prins et al., 2016). Therefore, our first objective was to determine whether cortical 

changes occurred over a short timescale of 3 months. The second objective, met by the 

opportunity to follow-up patients long-term, was to determine what changes occurred 

several years following the acute onset of unilateral nvAMD. The third objective was to 

establish whether cortical changes were atrophic and if they were specific to the cortical 

representation of the retinal lesion.  

 

2.2. Materials and Methods  

2.2.1. Participants 

Written informed consent was obtained from all participants. This study followed the 

tenets of the Declaration of Helsinki with approval granted by York Neuroimaging 

Centre Research, Ethics and Governance Committee and the NHS Research Ethics 

Committee (IRAS: 27966, 199112). 

Ten participants were recruited from York Teaching Hospital NHS Foundation 

Trust. Inclusion criteria was onset of acute unilateral nvAMD following progression 

from bilateral dry-AMD based on clinical examination. Thus, a significant reduction in 

input to visual cortex from unilateral disease was well-defined in time. Recruitment took 

place between January 2011 and November 2013. Routine clinical treatment was 
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administered in accordance with guidance from the National Institute of Health and 

Clinical Excellence (NICE, 2008).  

Initial assessments and magnetic resonance imaging (MRI) were carried out 

prior to commencing routine anti-VEGF treatment for nvAMD, with short-term 

assessments taking place a mean of 3.5 months (range, 3-4 months) later in all 10 

participants. Long-term assessments were carried out a mean of 4.8 years (range, 3.8 – 

6.1 years) post-diagnosis in 7 participants in this group, because 2 participants did not 

join the follow-up component of the study for long-term assessments and 1 died. Our 

analysis was therefore restricted to assessing those 7 patients in whom we had measures 

at all time points. The mean age of participants at baseline was 73.5 years (range = 67.1 

– 81.5 years), increasing to 77.9 years (range = 73.1 – 86.1 years) at follow-up (Table 

1).  

 

Table 1: Participant demographics.  

Participant Gender 
Treated 

eye 

Age (y, m) MRI Visit 

Baseline 
Long-term 

assessment 

Short-term 

assessment 

Long-term 

assessment 

P3 Male Right 67, 11 73, 10 3 months 6.01 years 

P5 Female Right 75, 01 79, 09 3 months 4.08 years 

P6 Male Right 81, 05 86, 01 4 months 4.08 years 

P7 Male Right 71, 04 75, 09 3 months 4.05 years 

P8 Female Right 70, 00 73, 10 4 months 3.10 years 

P9 Female Right 70, 07 74, 03 4 months 4.10 years 

P10 Male Left 79, 00 82, 08 3 months 3.08 years 

 

2.2.2. Design  

In this longitudinal study, structural MRI was acquired at three intervals, a baseline 

assessment took place prior to participants receiving the first anti-VEGF treatment 

(month 0), a short-term assessment took place a mean of 3.5 months post-baseline with 

a long-term assessment occurring a mean of 4.8 years post-baseline (Table 1). Routine 

clinical assessments, detailed below, coincided with the MRI visits.  

 

2.2.3. Procedures 

2.2.3.1. MRI. Structural MRI was acquired using an eight-channel phased-array head 

coil tuned to 127.4 MHz, on a GE Healthcare 3 Tesla Signa HD Excite scanner. One T1-

weighted anatomical volume was acquired (TR, 8ms; TE, 3ms; TI, 450ms; voxel size, 
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1.13 x 1.13 x 1mm3, flip angle, 200; 256 x 256 matrix; FOV, 290mm). All participants 

were instructed to lie as still as possible during the scan. Foam padding was used around 

the head to minimise movement, with earplugs provided to protect against scanner noise.   

2.2.3.1.1. Analysis. Cortical reconstruction and volumetric segmentation were 

performed using the Freesurfer analysis suite (version 5.3, available at: 

http://surfer.nmr.mgh.harvard.edu/). This process includes removal of non-brain tissue, 

intensity normalisation (Sled, Zijdenbos, & Evans, 1998), tessellation of the grey/white 

matter boundary, automated topology correction (Fischl, Liu, & Dale, 2001; Ségonne, 

Pacheco, & Fischl, 2007) and surface deformation following intensity gradients to 

optimally place the grey/white matter and grey/cerebrospinal fluid boundaries at the 

location where the greatest shift in intensity defines the transition to the other tissue 

class. 

Cortical anatomy was assessed in two ways with the following rationale. We first 

assessed grey matter volume of occipital cortex. This coarse measurement has the 

advantage of not being susceptible to individual differences in the cortical 

representations of the visual field whilst also capturing representations outside primary 

visual cortex.  At the same time, however, analysis of the whole occipital cortex does 

not allow hypotheses concerning the retinotopic nature of cortical changes. We turned 

therefore, to a more focussed region of interest (ROI) analysis, gathering information 

explicitly testing regions of primary visual cortex representing lesioned and intact retina. 

The occipital pole and calcarine sulcus were selected as they coincide with the lesion 

and intact projection zones for individuals with central visual loss. In defining such 

regions on the cortical surface, cortical thickness offers a sensible way to gauge the 

status of the visual representation that can be compared over time. Our target areas of 

the brain were defined using Freesurfer’s Destrieux Atlas using the following 

parcellations; occipital cortex: 2, 11, 19, 20, 22, 42, 44, 51, 57, 58, 59, 65; lesion 

projection zone: 42; intact projection zone: 44 (Destrieux, Fischl, Dale, & Halgren, 

2010) (see Figure 2A).  

Mean grey matter volume was extracted from each parcellation within the 

occipital cortex ROI, from both the left and right hemispheres. An average across 

hemispheres was then calculated for each participant, creating the final entire occipital 

cortex ROI. A paired-samples t-test assessed changes in cortical volume between the 

three intervals. Mean cortical thickness was extracted following this same procedure for 

the lesion and intact projection zones, calculated as the shortest distance between the 
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grey/white matter boundary and the grey/cerebrospinal fluid boundary at each vertex 

across the cortex in millimetres (mm), averaged over all vertices within each ROI (see 

Figure 1). A paired-samples t-test assessed changes in cortical thickness within each 

ROI between the same three intervals.  

2.2.3.2. Routine clinical assessments. Best corrected visual acuity and central retinal 

thickness were acquired in all 7 participants at all time points 

2.2.3.2.1. Best Corrected Visual Acuity. Standard clinical visual acuity was 

measured in an illuminated room at 4 meters, with the participant’s spectacle correction 

in each eye using an ETDRS (Early Treatment Diabetic Retinopathy Study) letter chart 

(ETDRS, 1985). If participants were able to read four or more of the five letters on the 

first line of the chart they were asked to continue reading down the chart until they could 

read fewer than three letters on a single line. At this point, the total number of letters 

read correctly was recorded and an additional 30 letters were added to the total. If 

participants were unable to read 4 letters correctly on the first line, they were brought to 

1 meter and asked to continue reading down the chart until they could read fewer than 

three letters on a single line. Thirty letters were not added to the final ETDRS score in 

this circumstance. 

2.2.3.2.2. Central retinal thickness. Effectiveness of anti-VEGF treatment in 

reducing the consequence of choroidal neovascularisation over time can be measured 

using central retinal thickness. A reduction in central retinal thickness will indicate 

resolution of the oedema due to treatment. This was measured using 1mm3 subfield 

central retinal thickness with spectral-domain optical coherence tomography (Cirrus 

OCT, Carl Zeiss Meditec, Dublin, CA). A standard macular cube (128 x 256 x 518) 

assessment took place in an illuminated room, acquiring retinal images through dilated 

pupils for the treated and untreated eyes of each participant.  

2.2.3.2.3. Analysis. Changes in best corrected visual acuity and central retinal 

thickness were analysed for the treated and untreated eyes at each session. As ETDRS 

letter scores and central retinal thickness values did not pass tests for normality (Shapiro-

Wilk, p < 0.001 0.000), a Wilcoxon signed rank test assessed changes over time.  
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Figure 1. T1-weighted MRI image showing the boundary between the white and gray 

matter surface, referred to as the white surface (yellow line) and the gray matter and 

CSF, referred to as the pial surface (red line). The distance between the white and pial 

surfaces gives the thickness at each location of cortex (white line). 
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Figure 2. Regions of interest (ROIs) and their anatomical properties. A: Surface reconstruction of a template brain with the occipital lobe (blue), 

lesion projection zone (red) and intact projection zone (green). Note that the latter two ROIs constitute elements of the larger occipital lobe ROI. 

B: Volume of grey matter measured in the occipital lobe ROI at the three times of measurement. T1 refers to the baseline measure, T2 refers to the 

short-term assessment and T3 refers to the long-term assessment. Also plotted is the cortical thickness of grey matter detected within the intact 

projection zone (C) and lesion projection zone (D) ROIs at three times of measurement. Line graphs for B-D represent individual changes in cortical 

structure for each participant at each time point. In panels B-D statistically significant differences at p<0.05 are indicated with an * and error bars 

represent +/- one standard error of the mean. 
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2.3. Results 

2.3.1. MRI 

Our first and second objectives set out to determine whether cortical changes occurred 

within the initial treatment period following the onset of unilateral nvAMD (short-term) 

and what cortical changes occurred over time (long-term). Compared to baseline, we 

reveal no significant changes in cortical volume at the short-term assessment 

(31,580mm3, t(6) = 0.757, p = 0.478)  however, there is a significant reduction in cortical 

volume at long-term follow-up (31,767mm3 versus 28,639mm3, t(6) = 3.033, p = 0.023) 

- indeed 6 of the 7 participants showed a reduction in volume. There was also a 

significant difference in cortical volume between the short-term and long-term 

assessments (t(6) = 2.689, p = 0.036) (Figure 2B).    

We next asked whether changes in volume were reflected by cortical atrophy: a 

thinning of cortex in identifiable retinotopic representations of the retinal lesion. The 

two regions we selected showed different results (Figure 2C&D). In the intact projection 

zone, mean cortical thickness changed very little (Figure 2C); neither short-term 

(1.81mm, t(6), 1.218, p = 0.269) nor long-term (1.76mm, t(6) = 1.021, p = 0.347) 

assessments yielded significant differences compared to baseline (1.82mm). There was 

also no significant difference between the short- or long-term assessments (t(6) = 0.793, 

p = 0.458). In contrast, the lesion projection zone was significantly thinner at the long-

term (1.94mm, t(6) = 2.389, p = 0.027, one-tailed), but not short-term (2.08mm, t(6) = 

1.857, p = 0.113) assessments compared to baseline (2.11mm), with a significant 

difference between the short- and long-term assessments (t(6) = 2.467, p = 0.025). 

Although there is not a significant interaction between timepoint and ROI, these data are 

suggestive that cortical atrophy is a feature present at long-term follow-up and larger in 

the cortical representation of the lesioned retina.  

While results indicate anatomical changes in visual areas of the brain are atrophic 

and retinotopic, we wanted to check whether age-dependent changes in the whole brain 

explained any effects detected. Cortical thinning associated with natural aging is well 

documented, although there is some discrepancy whether cortical thinning of primary 

visual cortex occurs with increasing age (Fjell et al., 2009; McGinnis, Brickhouse, 

Pascual, & Dickerson, 2011) or not (Lemaitre et al., 2012; Thambisetty et al., 2010). 

Griffis et al. reported age-dependent cortical thinning specific to peripheral but not 

central representations of visual cortex (Griffis, Burge, & Visscher, 2016). To 
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investigate whether reductions in mean thickness observed in this study are not simply 

a consequence of natural aging, a linear regression analysis investigated changes to the 

lesion and intact projection zones in relation to changes to the whole brain. Excluding 

the occipital lobes, changes in the whole brain significantly accounted for 65% of the 

variance observed in the intact projection zone, (F(1, 6) = 9.28, p = 0.029) but only 31% 

of the variance in the lesion projection zone (F(1, 6) = 2.32, p = 0.189). Although there 

was no significant difference between the two ROIs, because the whole-brain effects 

accounted for more of the variance in the intact projection zone, the data are suggestive 

that the reductions in cortical thickness of the lesion projection zone are due to decreased 

retinal input rather than aging.  

 

2.3.2. Disease progression over time  

What factors might determine the changes we observed in visual cortex? If the retinal 

lesions remain relatively stable over time, it is likely that cortical atrophy was a result of 

the duration of reduced input to cortex. However, if the retinal lesion progresses over 

time, we would be unable to dissociate the effects of disease progression and time on 

cortical atrophy. To monitor disease progression, measures of visual acuity and central 

retinal thickness were taken, coinciding with the MRI timepoints. 

Visual acuity measures are shown in Figure 3A. Median acuity across the 7 

participants was below the normal range in both treated and untreated eyes due to 

longstanding vision loss associated with bilateral dry AMD. Short-term assessments 

show visual acuity increased in the treated eye compared to baseline but not significantly 

(T2 vs. T1: Z = -1.690, p = 0.091). At long-term follow-up, acuity was still improved 

relative to baseline, but again not significantly (T3 vs. T1: Z = -0.676, p = 0.499). A 

similar pattern of results was observed for the untreated eye, with no significant changes 

in acuity between baseline and short-term (T2 vs. T1: Z = -1.951, p = 0.051), or baseline 

and long-term follow-up (T3 vs. T1: Z = -0.169, p = 0.866). As can be seen in Figure 

3C, a decrease in visual acuity is evident in the untreated eye for 5 of 7 participants 

between the short- and long-term assessment (T2 vs. T3). Although the changes are not 

significant, the gradual decline in visual acuity could indicate changes in cortical input 

over time. 

We also tracked any changes in retinal anatomy with treatment by measuring 

central retinal thickness as an indicator of resolved oedema (Figure 3D). Compared to 
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baseline, there was a significant decrease in central retinal thickness at the short-term 

assessment in the treated eye (T2 vs T1: Z = -2.366, p = 0.018), which remained 

significant at long-term follow-up (T3 vs T1: Z = -2.366, p = 0.018). For the untreated 

eye, although a decrease in central retinal thickness was observed in 5 of 7 participants, 

this was not significant, either between baseline and short-term (T2 vs T1: Z = -0.254, p 

= 0.799) or baseline and long-term follow-up (T3 vs T1: Z = -0.507, p = 0.612) with 

data remaining within the normal range. 

Taken together, measures of visual function and retinal anatomy appear to 

indicate that although vision was subnormal in both eyes, it was largely stable over the 

period of our study. This suggests that treatment was successful in halting disease 

progression in the treated eye with central retinal thickness indicating resolution of the 

oedema. Nevertheless, a gradual decline in both eyes in some participants means we 

cannot assert that there is no change to the input to cortex over time. 
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Figure 3: Clinical assessments. A: Box plots showing visual acuity performance 

measured in ETDRS letter score for the treated eye (orange) and the untreated eye 

(cyan). Horizontal dashed line represents an ETDRS score of 84 letters, equivalent to 

6/6 Snellen acuity, or 0.0 logMAR. D: Box plots showing changes in central retinal 

thickness for the treated eye (orange) and the untreated eye (cyan). Horizontal dashed 

lines represent a healthy central retinal thickness range for the Cirrus SD-OCT machine 

(Sabouri, Kazemnezhad, & Hafezi, 2016). Horizontal lines represent the median, the 

upper and lower whiskers represent scores outside the middle 50%, whilst outliers are 

shown as points. Line graphs show individual changes in performance over time for 

each participant for the treated eye (B / E) and the untreated eye (C / F). Black arrows 

on plots B and C represent an ETDRS score of 84 letters, equivalent to 6/6 Snellen 
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acuity, or 0.0 logMAR whereas on plots E and F they represent a healthy central retinal 

thickness range for the Cirrus SD-OCT machine (Sabouri et al., 2016).  All assessments 

were measured at three time points: T1 (baseline), T2 (short-term) and T3 (long-term 

assessment).  

 

2.4. Discussion  

This study shows, for the first time, the time course of structural changes to visual cortex 

following the onset of acute unilateral vision loss due to nvAMD. We report that atrophy 

(shrinkage) of visual cortex, detectable in a small number of individuals followed 

longitudinally, is also retinotopic as it was detected in the representation of the central 

visual field, that is, the macular lesion projection zone. Atrophy was not detected over 

the initial treatment period of 3-4 months but developed over several years. 

 Our findings reinforce the evidence for retinotopic and atrophic changes in the 

brain following eye disease (Aguirre et al., 2016; Boucard et al., 2009; Hernowo et al., 

2014; Malania et al., 2017; Neveu et al., 2008; Plank et al., 2011; Prins et al., 2016; Von 

Dem Hagen et al., 2005). Converging evidence suggests that when retinal disease occurs, 

changes to visual cortex emerge in retinotopic representations of the retinal lesion. For 

example, albinism appears to result in changes at or near the occipital pole reflecting 

foveal hypoplasia (Von Dem Hagen et al., 2005), and in an elegant study comparing 

individuals affected by glaucoma with peripheral field defects and macular degeneration 

with central visual defects, cortex was affected in regions corresponding to the 

representations of the affected visual fields (Boucard et al., 2009). Further research in 

central visual field defects arising from juvenile- and AMD also reveal atrophic changes 

in visual cortex and underlying white matter (Hernowo et al., 2014). The former 

appeared most pronounced in posterior visual cortical locations consistent with a 

retinotopic locus for the effect. However, these studies use cohorts of patients with 

bilateral vision loss. We find that even with significant unilateral loss, volume of the 

occipital cortex is reduced with a specific decrease in mean cortical thickness in the 

retinotopic representation of the retinal lesion. 

 In contrast to the majority of studies reporting cortical loss following retinal 

disease, one study has reported significant thickening of retinotopic representations of 

the intact retina, which was attributed to potential compensatory mechanisms (Burge et 

al., 2016). As with many other studies, the patients had bilateral vision loss thereby 
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increasing the need for compensatory mechanisms. However, the participants reported 

in this current study had predominantly unilateral vision loss, limiting the need for a 

compensatory mechanism, consistent with the lack of a significant change in 

representations of intact retina. 

 Our results also provide evidence for key elements that have not been addressed 

by previous investigations. Former studies have been cross-sectional, so whilst 

accumulating evidence of cortical loss has been relatively strong, there remained the 

possibility that cohorts of patients with visual deficits may also have comorbid brain 

properties differentiating them from control cohorts. Our longitudinal study 

demonstrates that atrophic changes can be observed within a group of patients followed 

over time. 

We first asked whether changes occurred over a period of 3-4 months which we 

believe is shorter than that previously assessed. We detected no change at this early 

stage, offering some reassurance that changes in the status of visual cortex detectable 

with MRI are not rapid. Most cross-sectional studies tested patients who had established 

visual loss between 1-42 years duration (Boucard et al., 2009; Burge et al., 2016; 

Hernowo et al., 2014; Malania et al., 2017; Prins et al., 2016). It would appear therefore 

that atrophic changes in visual cortex due to retinal disease may emerge between 3- and 

12-months post disease onset. Future longitudinal studies would benefit from assessing 

the anatomy of visual cortex during the first 24 months following visual loss to 

characterise better the time course of brain changes. Our long-term follow-up 

successfully detected retinotopic atrophy, which has featured in the literature. However, 

the fact that such changes were detectable in such a small sample indicates that following 

individual patients over time may be a valuable way of assessing the status of visual 

cortex following vision loss. 

As mentioned above, previous literature has primarily addressed cortical changes 

following bilateral retinal loss. However, some studies have found structural changes 

following unilateral loss. Previous studies have reported that monocular enucleation 

performed early in development results in shrinkage of ocular dominance columns 

(Adams, Sincich, & Horton, 2007; Kelly, Desimone, Gallie, & Steeves, 2015; Kelly, 

McKetton, Schneider, Gallie, & Steeves, 2013) and reduced white matter connections 

(N. A. Wong et al., 2017). Moreover, early unilateral functional loss due to amblyopia 

has also been shown to result in structural changes to primary visual cortex (Mendola et 

al., 2005). Taken together, these studies suggest that changes to visual cortex can occur 
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as a result of both anatomical and functional unilateral loss occurring early in 

development. Importantly, we demonstrate that cortical changes can follow unilateral 

loss of input in adulthood when the visual system has reached maturity.  

Finally, routine clinical assessments highlighted the effectiveness of anti-VEGF 

treatment for nvAMD. In all but one participant, vision was subnormal in both eyes but 

remained relatively stable over time, consistent with previous literature studying larger 

cohorts (Airody et al., 2015; Keane et al., 2008; J. H. Kim et al., 2016). Although visual 

acuity and central retinal thickness did not indicate significant changes in both eyes over 

time, we cannot rule out entirely the possible contribution of disease progression in 

either or both eye to the cortical atrophy we observe. 

 Significant thinning of visual cortex may ultimately limit the success of 

restorative treatments for eye disease. At present, such treatments are limited by the 

quality of information generated at the retina (Fine & Boynton, 2015; Fine, Cepko, & 

Landy, 2015), or indeed fed to the cortex directly (Dobelle, Quest, Antunes, Roberts, & 

Girvin, 1999; Pezaris & Reid, 2007). However, as the quality of visual information 

increases, the reliance on functional properties of visual cortex will come into play. For 

example, it has been proposed cortical plasticity would be required to process the limited 

visual inputs that can be restored (Fine & Boynton, 2015). However, it is not known 

whether atrophy can be reversed, or whether sufficient cortical plasticity can be achieved 

once functional input is restored. 

Our current results cannot inform whether atrophy reflects degenerative 

processes in the cortex. Anterograde trans-synaptic degeneration has been reported 

within visual cortex in patients following retinal disease/damage (for a review, see 

(Dinkin, 2017)). Retrograde trans-synaptic degeneration has also been observed; when 

cortex is lesioned, retinal ganglion cell numbers reduce in regions projecting to the 

lesioned part of cortex (Beatty, Sadun, Smith, Vonsattel, & Richardson, 1982; Jindahra, 

Petrie, & Plant, 2009; Keller, Sánchez-Dalmau, & Villoslada, 2014; Mitchell, Oliveira, 

Tsiouris, & Dinkin, 2015; Yamashita et al., 2016).  It may be valuable therefore to probe 

visual cortex for measures that can track degeneration, perhaps using magnetic 

resonance spectroscopy to assess neurochemical signatures of necrosis or apoptosis. 

We conclude that longstanding unilateral loss of input to visual cortex results in 

significant atrophy. However, there is a window – at least within 3-4 months post-

diagnosis – during which no detectable atrophy was present. This finding indicates that 

detrimental changes in visual cortex emerge relatively slowly. 
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Chapter 3 

Does long-term visual deprivation result in atrophy or degeneration 

of visually deprived brain regions? 

 

3.1. Introduction 

Vision restoration techniques, including stem cell and gene therapies (Acland et al., 

2001; Beltran et al., 2015; Boye, Boye, Lewin, & Hauswirth, 2013), antiangiogenics (D. 

M. Brown et al., 2006b; Rosenfeld et al., 2006) and visual prostheses (Humayun, de 

Juan, et al., 1999; Marc, Pfeiffer, & Jones, 2014; Weiland & Humayun, 2014) amongst 

others, have grown rapidly in recent years with the aim to restore retinal input in those 

with profound vision loss. However, the success of such techniques depends on the 

visual cortex of the brain remaining viable to process restored visual signals. Therefore, 

it is imperative to investigate and understand any potential alterations within visual 

cortex resulting from vision deprivation. 

The vast majority of studies assessing cortical alterations associated with vision 

loss focus on central retinal disorders such as age-related macular degeneration (AMD), 

a progressive disease that affects more peripheral locations over time. In the developed 

world, AMD is the most common cause of visual impairment, affecting 12.2% of those 

aged 80 years and over (NICE, 2018). Significant atrophy (shrinkage) of the posterior 

visual pathway (the occipital cortex) has been reported in a number of studies including 

AMD cohorts (Aguirre et al., 2016; Boucard et al., 2009; Hanson et al., 2019; Hernowo 

et al., 2014; Malania et al., 2017; Plank et al., 2011; Prins et al., 2016), also reporting 

significant reductions in thickness in the cortical representation of the lesioned retina 

(Hanson et al., 2019).  

Less research has focused on cortical changes associated with peripheral retinal 

disorders such as retinitis pigmentosa (RP). RP is a group of hereditary retinal diseases 

affecting 1 in 4000 worldwide (Hartong et al., 2006). Characterised by a progressive 

loss of photoreceptors, RP has been the main disease of focus in trials measuring the 

success of retinal prostheses such as the Argus II® (Ahuja et al., 2011; Castaldi et al., 

2016; Castaldi, Cicchini, Falsini, Binda, & Morrone, 2019; da Cruz et al., 2016; 

Humayun et al., 2009; Luo, Davagnanam, & Dacruz, 2013; Luo, Zhong, & da Cruz, 
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2015; Rizzo et al., 2014) and gene therapy (Cehajic-Kapetanovic et al., 2020; Garafalo 

et al., 2020; Sudharsan & Beltran, 2019). Of the few studies that have looked at structural 

alterations to the visual cortex specifically in RP patients, results outline a significant 

decrease in volume of the occipital cortex (Rita Machado et al., 2017), suggesting 

cortical atrophy. Other reports outline a reduced cortical thickness in V1 (primary visual 

cortex) in RP patients (Castaldi et al., 2019; Cunningham, Shi, et al., 2015) whilst some 

report no difference in V1 compared to sighted controls (Ferreira et al., 2017). However, 

the mechanisms behind these structural changes for both central and peripheral retinal 

disease are not well understood. 

Whilst the existing literature may provide conflicting evidence on whether 

structural alterations occur to the visual cortex following vision deprivation, it is also 

unclear whether alterations are dependent on the type of retinal disease and whether the 

adult brain is able to return to processing restored visual input despite structural 

alterations. The outcome of sight restoration procedures often varies for reasons that are 

not fully understood. For example, assessments of antiangiogenic treatments show 

declines in visual performance in the long-term, despite initial improvements (Airody et 

al., 2015). As the retinal disease advances in both AMD and RP, the visual field affected 

can also increase. Two possible mechanisms that could explain the continued decline in 

visual performance long-term are cortical demyelination (reduced myelination coating 

axons) or cortical degeneration (a shrinkage of the cortex due to cell death).  

Evolved to expedite conduction of electrical signals along axons, myelin is 

essential for a healthy functioning nervous system. Within the cerebral white matter, 

myelinated fibres are abundant, carrying information from one brain area to another. 

However, myelin can also be found within cerebral cortex (grey matter), largely in the 

cortical input layers (layer IV) where these white matter tracts terminate (Shafee et al., 

2015). Recent work has outlined a method to quantify myelination content within 

cortical grey matter using in vivo T1-weighted (T1w) and T2-weighted (T2w) MRI ratio, 

based on the hypothesis that cortical myelin content covaries with the intensity of both 

T1w and T2w images, but in the opposite direction (Glasser & Van Essen, 2011). Myelin 

is most dense in sensory input areas including primary visual cortex, with high myelin 

density in early visual areas, V1-V3 (Abdollahi et al., 2014; Sereno et al., 2013). 

Whereas studies have reported on changes in cortical thickness associated with long-

term vision loss from AMD and RP, it is currently unknown how myelin density may 
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also change in these diseases, and what the impact of such changes may mean to future 

restoration techniques. 

Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive technique 

that allows detection and quantification of certain biochemical compounds (metabolites) 

in brain tissue. The resulting spectral peaks correspond with various metabolites, with 

the height of the peak reflecting the amount of the metabolite within the area of interest 

(Soares & Law, 2009).  It is widely reported that levels of some metabolites may change 

in response to neurodegenerative disease (Kuzniecky, 2004; Lin, Shic, Enriquez, & 

Ross, 2003; Martin, 2007; Sijens, Mostert, Oudkerk, & De Keyser, 2006; Tedeschi et 

al., 1997) however, detecting changes associated with vision loss is a relatively new area 

of research.  

N-Acetyl-Aspartate (NAA) is found at relatively high concentrations in the 

human central nervous system and is particularly localised within neurons and related to 

neuronal processes. A decrease in NAA is routinely considered an indicator of neuronal 

loss or dysfunction (Block et al., 2002; Gujar, Maheshwari, Bjo, & Sundgren, 2005) and 

has been observed in different brain regions in various neurodegenerative disorders 

(Kuzniecky, 2004; Sijens et al., 2006; Tedeschi et al., 1997) and neuro-ophthalmology 

(Ettl, Fischer-Klein, Chemelli, Daxer, & Felber, 1994). Choline (Cho), another 

metabolite, is considered a marker for cell turnover with increased Cho found in 

malignant tumours and in demyelination (Gujar et al., 2005). Glutamate (Glu), the most 

abundant excitatory neurotransmitter in the brain (Ramadan, Lin, & Stanwell, 2013), is 

an indicator of neuronal dysfunction and degeneration, with elevated levels often found 

in neurodegenerative disorders (Lin et al., 2003; Martin, 2007). Glu has also been shown 

to mediate neurotoxicity and excitotoxicity, with toxicity involved in oxidative stress 

and apoptosis (programmed cell death) (YueMei Zhang & Bhavnani, 2005). Creatine 

(Cr), which is known to play a role in cortical energy metabolism, is reported to be 

relatively stable and often used as a control reference (Gujar et al., 2005). However, 

reductions in Cr together with other major metabolites may also indicate tissue death or 

necrosis (unprogrammed cell death) (Gujar et al., 2005). -aminobutyric acid (GABA) 

is the principle inhibitory neurotransmitter involved in altering the excitatory/inhibitory 

balance mediating plasticity in the adult brain and as such, a potential indicator of 

cortical plasticity (Bavelier, Levi, Li, Dan, & Hensch, 2010; Hensch, 2005; Hensch & 

Fagiolini, 2005).  
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Adapting 1H-MRS in vision loss research allows for direct evidence of brain 

plasticity and adaptive changes within the visual cortex. Whilst a number of studies have 

looked at chemical changes in early total blindness (Coullon, Emir, Fine, Watkins, & 

Bridge, 2015; Weaver, Richards, Saenz, Petropoulos, & Fine, 2013), very little research 

has focused on progressive central and peripheral retinal deficits such as AMD and RP 

respectively. One study assessing chemical differences using 1H-MRS in AMD 

compared to glaucoma and sighted controls, reported no differences in the striate visual 

area (Boucard et al., 2007). The authors suggest that progressive retinal defects do not 

always induce measurable changes in metabolite concentration. In a cross-sectional 

study, in which two participants had RP, the only significant difference found was an 

increase in myo-Inositol (mIno), a glial marker, observed in the blind group compared 

to sighted controls. This study also reported no significant signs of atrophy in the 

occipital cortex (Bernabeu et al., 2009). The authors conclude this to be first evidence 

that plasticity mediated by glial cells is induced following vision deprivation. 

Notwithstanding, Boucard et al. and Bernabeu et al. do report mean differences in a 

number of metabolites between the patient groups and sighted controls, although these 

were not significant. This could suggest that underlying neurochemical changes may be 

associated with progressive retinal disease. 

Whilst cortical atrophy has been reported in cases of central retinal disease, 

namely AMD, whether peripheral retinal disease results in cortical atrophy remains 

unclear. The effects of vision loss from AMD and RP on myelin density of the visual 

cortex is also unknown, particularly how this may differ with type of disease and the 

impact this may have. Nevertheless, 1H-MRS has been shown to be useful in measuring 

metabolic alterations in the posterior visual pathway in early vision loss (Coullon et al., 

2015; Weaver et al., 2013) however, research into vision loss due to progressive diseases 

such as AMD and RP remain very limited. The ability to confirm signs of cortical 

degeneration in retinal disease will have a crucial impact on restoration techniques and 

their success on a patient-by-patient case. However, if vision loss results in atrophy of 

the posterior visual pathway, this suggests a potential ability for the brain to return to 

processing visual information once input has been restored (Beyeler, Rokem, Boynton, 

& Fine, 2017; Fine & Boynton, 2015; Hensch, 2005). Therefore, understanding how the 

posterior visual pathway responds to different types of vision loss will ultimately aid our 

understanding of how this pathway might respond once/if vision is restored. 
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What has yet to be established from the current literature is whether cortical 

reductions represent a) atrophy: condensed cortex that remains plastic to restored visual 

input, b) demyelination: reductions in myelin density or c) degeneration: reduced 

cortical volume due to cell death. The aim of this study is to examine the effects of vision 

loss due to either central or peripheral retinal disease on the posterior visual pathway, 

with four main objectives: 1) use structural MRI to measure evidence of cortical atrophy 

via changes in cortical volume, mean cortical thickness and myelin density within visual 

cortex, 2) use MRS to measure neurochemical differences indicating cortical 

degeneration due to apoptosis and/or necrosis, 3) use MRS to investigate evidence of 

cortical plasticity with changes in GABA levels and 4) to investigate the relationship 

between structural and neurochemical measures within the visual cortex and how these 

may differ depending on the type of retinal disease. 

 

3.2. Materials and Methods 

3.2.1. Participants 

Written informed consent was obtained from all participants. Ethical approval was 

granted by York Neuroimaging Centre Research, Ethics and Governance Committee 

and the NHS Research Ethics Committee (IRAS: 181823). This study followed the 

tenets of the Declaration of Helsinki. 

Twenty-five participants were recruited to the SYNAPTIC study from York 

Teaching Hospital NHS Foundation Trust between November 2018 and September 

2019. Inclusion criteria were bilateral vision loss with an overlapping scotoma resulting 

in allocation to either a central or peripheral vision loss group. Exclusion criteria 

included contraindications for completing the MRI procedures or receiving pupil 

dilation, enrolment on an interventional clinical trial and inability to comply with the 

study. 

Eighteen participants were allocated to the central vision loss group. Three 

participants withdrew from the study before data collection and a fourth participant was 

unable to complete the magnetic resonance imaging (MRI) assessments and was 

excluded. This resulted in a final central vision loss cohort of fourteen participants (mean 

age = 78.07 years; age range = 63.07 – 90.10 years; 6 females; Table 1). Disease duration 
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outlined in Table 1 relates to bilateral onset, all participants had unilateral loss prior to 

this time. For further details on the clinical demographics of the full cohort, please refer 

to Chapter 4, section 2.1. 

Seven participants were allocated to the peripheral vision loss group. One 

participant was excluded for not being able to complete the MRI assessments, a second 

participant was excluded due to MRI anomalies and a third participant withdrew from 

the study before data collection. This resulted in a final peripheral vision loss cohort of 

four participants (mean age = 47.03 years; age range = 26.03 – 66.11 years; 2 females; 

Table 1). Two participants (P15 and P16) fell within the age-range of the entire cohort 

whereas P17 and P18 were much younger (Table 1). Whilst the control group discussed 

below acted as controls for participants P15 and P16, an additional younger participant 

was recruited as a control for participants P17 and P18 (see below for further details).  

 

Table 1: Demographics of participants enrolled in the SYNAPTIC study.  

Subject Gender 
Age 

(y, m) 

 

Bilateral 

Diagnosis 

 

Group 
Disease 

duration (y, m) 

P01 Male 63, 7 nvAMD Central 2, 3 

P02 Female 69, 0 nvAMD Central 5, 7 

P03 Female 83, 7 nvAMD Central 6, 5 

P04 Female 75, 10 nvAMD Central 5, 10 

P05 Male 84, 4 nvAMD Central 5, 4 

P06 Male 74, 3 nvAMD Central 13, 7 

P07 Male 77, 5 nvAMD Central 6, 1 

P08 Female 90, 10 nvAMD Central 13, 2 

P09 Female 90, 4 nvAMD Central 10, 3 

P10 Male 75, 7 nvAMD Central 7, 8 

P11 Male 87, 11 nvAMD Central 6, 6 

P12 Male 76, 6 CSCR Central 8, 4 

P13 Male 73, 2 nvAMD Central 11, 11 

P14 Female 85, 1 nvAMD Central 9, 1 

P15 Female 63, 8 RP Peripheral 20, 2 

P16 Female 66, 11 RP Peripheral 3, 10 

P17 Male 26, 3 RP Peripheral 7, 0 

P18 Male 34, 3 RP Peripheral 23, 1 

*nvAMD: Neovascular Age-related macular degeneration; CSCR: Central Serous 

Chorioretinopathy; RP: Retinitis pigmentosa 
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Thirty-four healthy control participants were recruited from York Neuroimaging 

Centre between May 2018 and November 2019. All participants were age-range 

matched (mean age = 71.02 years; age range = 65.01 – 83.03 years; 14 females), had 

normal or corrected-to-normal vision and acted as a control group for the vision loss 

participants. All control participants completed the same structural MRI procedure with 

a subset of eleven participants also completing magnetic resonance spectroscopy (MRS) 

assessments (mean age = 70.5 years; age range 65.1 – 81.6 years; 5 females). One 

additional participant was recruited as control subject for the two younger peripheral 

loss participants, P17 and P18 (Male; age = 31 years) and completed the same structural 

MRI and MRS assessments. 

Participants were excluded from the study if they had contraindications for 

completing the MRI procedures or receiving pupil dilation, if they were currently 

enrolled on an interventional clinical trial and if they were unable to comply with the 

study. 

 

3.2.2. Design 

In this cross-sectional study, all participants diagnosed with vision loss completed both 

MRI and MRS assessments on the same day. For the eleven control participants who 

also completed the MRS assessment, five participants completed this on the same day 

and six participants completed the MRS within 12 months of the structural MRI. 

 

3.2.3. Procedures 

Neuroimaging procedures took place on a 3 Tesla Siemens Magnetom Prisma scanner 

using a sixty-four-channel head receiver array. All participants were instructed to lie as 

still as possible during the scan. Foam padding was used around the head to minimise 

movement, with earplugs provided to protect against scanner noise. All statistical 

analysis was performed using SPSS (IBM Corp. Released 2017. IBM SPSS Statistics for 

Windows, Version 25.0. Armonk, NY: IBM Corp).   

3.2.3.1. MRI. Two isotropic T1-weighted MPRAGE (TR = 2400ms, TE = 

2.28ms, TI = 1010ms, Flip angle = 8o,, Voxel size = 0.8 x 0.8 x 0.8mm, Matrix size = 
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256 x 256 x 167mm) and two isotropic T2-weighted SPACE (TR = 3200ms, TE = 

563ms, Voxel size = 0.8 x 0.8 x 0.8mm, Matrix size = 256 x 256 x 167mm) anatomical 

volumes were acquired following guidelines from the Human Connectome Project 

(Glasser et al., 2013). 

3.2.3.1.1. Analysis. Cortical reconstruction, volumetric segmentation and 

myelin quantification were performed using the Human Connectome Project analysis 

pipeline (version 6.0), incorporating the Freesurfer analysis suite (version 6.0). The 

three-stage structural analysis pipeline includes alignment of T1w and T2w images, bias 

field correction, volume segmentation, reconstruction of white and pial surfaces and 

surface registration (Glasser et al., 2013). Cortical myelin content is quantified by the 

ratio of T1w and T2w signal intensity, improving areal localisation by contrast to noise 

between heavily and lightly myelinated areas (Glasser & Van Essen, 2011). 

Three structural characteristics of the cerebral cortex (grey matter) were 

assessed: cortical volume of the entire occipital cortex and mean cortical thickness and 

cortical myelination of the occipital pole and calcarine sulcus (Figure 1). The rationale 

for these assessments is the same as that outlined in Chapter 2. Mean grey matter volume 

was extracted from each parcellation within the occipital cortex ROI, from both the left 

and right hemispheres. An average across hemispheres was then calculated for each 

participant, creating the final entire occipital cortex ROI. A one-way ANOVA assessed 

changes in cortical volume between the controls and central loss group. Mean cortical 

thickness and myelination were extracted following this same procedure for two regions 

representing the central (occipital pole) and peripheral (calcarine sulcus) retina. Cortical 

thickness was defined as the shortest distance between the grey/white matter boundary 

and the grey/cerebrospinal fluid boundary at each vertex across the cortex in millimetres 

(mm), averaged over all vertices within each ROI. A one-way ANOVA compared mean 

cortical thickness within each ROI between the controls and central vision loss group. 

A separate one-way ANOVA compared mean cortical myelin within each ROI between 

the controls and central vision loss group. Due to the small group size, data from the 

peripheral vision loss group were not statistically analysed and will be discussed in 

relation to the sighted controls and central vision loss group. 

3.2.3.2. MRS. For all participants, this scan session was the first scan acquired 

of the day in order to ensure homogeneity of the scan environment and to reduce 
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influence of any previous MRI scan on the gradient coils. For those participants 

completing the structural MRI and MRS on the same day, the MRS scan was completed 

first followed by the structural MRI session after a 60-minute interval. One localiser 

image was acquired (TR = 606ms, TE = 122ms, Voxel size = 0.5 x 0.5 x 6.0mm, Flip 

angle = 144o) to guide placement of the MRS voxel. Shimming and tuning were achieved 

with automated procedures along with variable power radio frequency pulses with 

optimised relaxation delays (VAPOR) water suppression followed by two MRS 

acquisitions (TR = 2010ms; TE = 135ms; 8 averages; spectral width = 2000Hz) using a 

multi-voxel CSI (chemical shift imaging) sLASER (semi-adiabatic localization by 

adiabatic selective refocusing) with MEGA (MEshcher-GArwood) spectral editing 

sequence (Deelchand et al., 2019; Öz & Tkáč, 2011). This sequence allowed for the 

quantification of GABA alongside the following metabolites of interest: NAA, Glu, Cho 

and Cr. For all participants, a large (8.0 x 8.0 x 1.5cm2) multi-voxel grid was positioned 

in occipital cortex across both hemispheres, ensuring that the central four voxels of 

interest (VOIs) from the larger grid followed the angle of the calcarine sulcus, capturing 

as much of the calcarine sulcus and occipital pole as possible (Figure 2). 

3.2.3.2.1. Analysis. Data were analysed using TARQUIN (Totally Automatic 

Robust Quantitation in NMR) version 4.3.10 (http://tarquin.sourceforge.net), a fully 

automated analysis software (Wilson, Reynolds, Kauppinen, Arvanitis, & Peet, 2011). 

Each MRS run was selected along with the localiser image in order to select the VOIs 

from the multi-voxel grid. One VOI was selected occupying the occipital pole (central 

retinal representations) and a second VOI occupying the calcarine sulcus (peripheral 

retinal representations) for both hemispheres. Upon inspection of the voxel placements, 

the VOI occupying the occipital pole included excess non-brain tissue, affecting the 

quality of the spectra across all participants (Figure 2A). Therefore, only data from the 

calcarine sulcus VOI were statistically analysed.  

TARQUIN uses three main stages to process MRS data: pre-processing, 

including the removal of water, automatic phase adjustments and referencing; basis set 

simulation against built-in chemical shift and J-coupling values and non-linear least-

squares fitting, modelling the data as a linear combination of modified simulated basis 

signals (Wilson et al., 2011). Basis sets encompass an example spectra of metabolites at 

their ppm in order to model the acquired data against to confirm which metabolites have 

been successfully acquired. The resulting spectra were extracted from the VOI from each 

http://tarquin.sourceforge.net/
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hemisphere for every participant with a hemisphere average calculated. Following the 

same rationale as that for the MRI analysis, an average of the two hemispheres was 

calculated here as there was no significant difference found between the hemispheres. A 

previous study used a relative quantification method to reduce systematic variation 

among participants and to avoid making assumptions about different metabolites 

remaining constant, calculating ratios of each metabolite of interest against Cr 

(Bernabeu et al., 2009). We implemented the same rationale here, calculating a ratio for 

the amplitude of each metabolite of interest to Creatine, resulting in four final rations 

NAA:Cr, GABA:Cr, Glu:Cr and PCh:Cr. A two-way mixed, repeated measures 

ANOVA compared the amplitude of each metabolite between the sighted controls and 

central vision loss group. Due to the small group size, data from the peripheral vision 

loss group were not statistically analysed and will be discussed in relation to the sighted 

controls and central vision loss group. 

3.2.3.3. MRI vs MRS. To explore whether the structural alterations we observe 

within the visual cortex could be explained by changes in neurochemistry, Pearson 

correlations were carried out on the outcome measures from the MRI and MRS 

procedures for all participants in central retinal disease group only. Due to the small 

sample size with peripheral retinal disease, correlational analyses were not carried out 

in this group. This enabled exploratory investigations into the relationship between the 

structure and neurochemical levels within the entire occipital cortex, particularly in the 

cortical representations of the lesioned and intact retina. Our predictions would be that 

1) if long-term retinal disease results in neuronal loss/dysfunction, MRI reductions 

should correlate with decreased NAA:Cr, 2) if cortical degeneration is occurring, MRI 

reductions should correlate with increased Glu:Cr, 3) if cortical demyelination is 

occurring, MRI reductions should correlate with increased PCh:Cr and 4) signs of 

cortical plasticity should result in correlations between MRI outcome measures and 

reduced GABA:Cr. 
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Figure 1: Structural MRI region of interest (ROI). A: Inflated medial surface of the left 

hemisphere showing the three ROIs. The entire visual cortex is represented by all 

coloured regions shown in blue including the cortical representations of the central 

visual field, the occipital pole, shown in red and the peripheral visual field, the calcarine 

sulcus, shown in green. B: Example cortical thickness map on an inflated medial surface 

of the left hemisphere. Cool colours represent cortical regions which are thinner than 

those of hotter colours, such as the visual cortex. C: Example myelin density map shown 

on an inflated medial surface of the left hemisphere. Hot colours represent cortical 

regions which have greater myelin density, such as the visual cortex.  
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Figure 2: MRS multi-voxel grid placement and example spectrum. A: Placement of the 

multi-voxel CSI grid in the occipital lobe, positioned parallel to the calcarine sulcus 

shown on a sagittal structural MRI image on the left-hand side and an axial MRI image 

on the right-hand side. The green box indicates the voxel of interest (VOI) over the 

calcarine sulcus from the left hemisphere. The equivalent VOI was also obtained from 

the right hemisphere with the final VOI an average of the two. The red box indicates the 

VOI placed over the occipital pole which was excluded from the analysis due to the 

inclusion of non-brain tissue. B: Example MRS spectrum showing the metabolites of 

interest, N-Acetyl-Aspartate (NAA), Creatine (Cr), Glutamate (Glu), -aminobutyric 

acid (GABA) and Phosphocholine (PCh).  
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Table 2: Description of the role for each 1H-MRS metabolite of interest within the human brain, with the predicted change relative to the control 

group of each metabolite ratio stratified by type of retinal disease. 

Metabolite 

Ratio of 

Interest 

Description 

Predicted Change 

Central 

retinal disease 

Peripheral 

retinal disease 

Glu:Cr 

• Excitatory neurotransmitter and indicator of neuronal dysfunction and 

degeneration 

• Increased Glu found in neurodegenerative disorders, oxidative stress and 

apoptosis 

↑ ↑ 

NAA:Cr 
• Localised within neurons and related to neuronal processing 

• Decreased NAA considered an indicator of neuronal loss or dysfunction 
↓ ↓ 

PCh:Cr 
• Considered a marker for cell turnover. 

• Increased Cho found in malignant tumours and demyelination. 
↑ ↑ 

GABA:Cr 

• Inhibitory neurotransmitter involved in altering the excitatory/inhibitory balance 

mediating cortical plasticity 

• Reduced GABA may indicate cortical plasticity 

↓ ↓ 

*Glu: Glutamate; NAA: N-Acetyl-Aspartate; PCh: Phosphocholine; GABA: -aminobutyric acid; Metabolite ratios are calculated against 

Creatine (Cr); ↑: Increased amplitude; ↓: Decreased amplitude. 
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3.3. Results 

Data from the peripheral vision loss group have not been included in any statistical 

analysis due to the small group size therefore, the results from this group will only be 

discussed in relation to the two other cohorts (Table 3).  

3.3.1. MRI. Our first objective was to establish evidence of atrophy (shrinkage) 

in the occipital cortex resulting from long-term central or peripheral vision loss (Figure 

3). In the central vision loss group, despite a medium effect size, there was a non-

significant reduction in cortical volume compared to sighted controls (F(1,46) = 3.819, 

p = 0.057, η2 = 0.078).  

Although the reduction in cortical volume did not reach significance, as expected 

with central vision loss, there was evidence of significant cortical atrophy via a reduction 

in cortical thickness in the retinotopic representation of the central retina, namely the 

occipital pole, where there was a large effect size (F(1,46)= 13.086, p = 0.001, η2 = 

0.225). Surprisingly, significant cortical atrophy was also observed with a reduction in 

cortical thickness in the retinotopic representation of the peripheral retina, namely the 

calcarine sulcus, also with a large effect size (F(1,46)= 12.122, p = 0.001, η2 = 0.212; 

Table 3).  

Examining the effects of vision loss on cortical myelin density, we found no 

significant difference between sighted controls and the central vision loss group in the 

retinotopic representation of the central retina, the occipital pole (F(1,46) = 0.995, p = 

0.324, η2 = 0.022) or the peripheral retina, the calcarine sulcus, (F(1,46) = 0.653, p = 

0.423, η2 = 0.014; Table 3).  

Whilst no statistical analysis can be performed on the peripheral vision loss 

group, observational data suggest that cortical volume was reduced compared to sighted 

controls, possibly indicating evidence of cortical atrophy (Table 3). However, compared 

to the central vision loss group and sighted controls, mean cortical thickness appeared 

greater in the calcarine sulcus and occipital pole whilst myelin density levels also 

appeared greater in both the calcarine sulcus and occipital pole compared to sighted 

controls (Table 3).   

3.3.2. MRS. Our second and third objectives were to establish signs of cortical 

degeneration and/or plasticity associated with long-term vision loss and whether this 
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differs depending on the type of retinal disease (Table 4; Figure 4). Data were removed 

from two outliers (one sighted control and one central vision loss participant) due to data 

falling more than 2 standard deviations before performing a two-way mixed, repeated 

measures ANOVA using the Greenhouse-Geisser correction. This analysis revealed the 

mean metabolite amplitude ratios were significantly different from each other across 

both groups (main effect of metabolite type) (F(1.724, 34.483) = 139.072, p = 

1.8476*10^-16, η2 = 0.874). However, despite slight reductions across all metabolite 

ratios, there was no significant difference between the sighted controls and central vision 

loss group, suggesting that cortical degeneration was not measurable in the group of 

participants tested here (F(1.724, 34.483) = 0.041, p = 0.942, η2 = 0.002).  

Observational data from the peripheral vision loss group showed greater mean 

amplitude ratios of Glu:Cr, NAA:Cr and GABA:Cr yet reduced PCh:Cr compared to 

sighted controls (Table 4). Based on our predictions, outlined in Table 2, the most 

interesting results are the greater mean amplitude ratio of Glu:Cr, as increased Glu is 

often associated with cortical degeneration via apoptosis although significance testing 

on a larger cohort is required to confirm this finding.  

3.3.3. MRI vs MRS. Our fourth and final objective was to investigate the 

relationship between outcome measures obtained from the MRI and MRS procedures 

(Table 5; Figure 5). In the central vision loss group, we found that cortical thickness in 

the occipital pole significantly positively correlated with PCh:Cr (R = 0.616, p = 0.025). 

One of our hypotheses was that if cortical demyelination is occurring, MRI reductions 

should correlate with increased PCh:Cr. However, whilst significant reductions in 

cortical thickness in the occipital pole was observed, we found no significant difference 

in myelin density or PCh:Cr in this cohort. 
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Table 3: Mean and standard error of the mean (SEM) for structural measures of the cortex stratified by participant group. 

 

 

 

 

 

  

  Sighted Controls Central Retinal Disease Peripheral Retinal Disease 

  Mean (SEM) Mean (SEM) Mean (SEM) 

Cortical Volume (mm3) 30,739 (4,695) 27,952 (3,863) 29,067 (1,240) 

Mean 

Cortical 

Thickness 

Occipital Pole (mm) 1.90 (.15) 1.74 (.11) 1.92 (.10) 

Calcarine Sulcus (mm) 1.85 (.13) 1.69 (.18) 1.92 (.13) 

Cortical 

Myelin 

Occipital Pole (a.u) 1.50 (.03) 1.51 (.03) 1.51 (.03) 

Calcarine Sulcus (a.u) 1.45 (.03) 1.44 (.03) 1.46 (.03) 
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Table 4: Mean and standard error of the mean (SEM) for each MRS metabolite ratio stratified by participant group. 

 

 

 

 

 

 

 

* Glu: Glutamate; NAA: N-Acetyl-Aspartate; PCh: Phosphocholine; GABA: -aminobutyric acid; Metabolite ratios are calculated against Creatine 

(Cr). 

 

 

 

 

Metabolite Ratio 

Sighted Controls Central Retinal Disease Peripheral Retinal Disease 

Mean (SEM) Mean (SEM) Mean (SEM) 

Glu:Cr 1.64 (.30) 1.58 (.62) 2.09 (.52) 

NAA:Cr 1.34 (.43) 1.29 (.53) 1.42 (.55) 

PCh:Cr .18 (.08) .15 (.11) .13 (.11) 

GABA:Cr .57 (.16) .56 (.27) .73 (.28) 
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Figure 3: MRI results. From left to right, the boxplots show cortical volume of the entire occipital cortex, with mean cortical thickness and cortical 

myelin values for the two smaller ROIs: occipital pole (red boxes) and calcarine sulcus (green boxes). All boxplots show data for the three participant 

groups: age-matched sighted controls, central vision loss (CVL) and peripheral vision loss (PVL). The horizontal lines represent the median with 

the upper and lower whiskers representing scores outside the middle 50%. White stars represent the mean. Data for each individual participant is 

overlaid on the boxplots shown as black dots. Open black dots represent the young control and the two younger participants in the peripheral loss 

group. *p = 0.001. 

 



 

 

Rachel L.W. Hanson | SYNAPTIC 
 

 

67 

 



 

 

Rachel L.W. Hanson | SYNAPTIC 
 

 

68 

Figure 4: MRS results stratified by participant group. Boxplots show the amplitude ratio of each metabolite against Creatine for the control 

participants in grey, central vision loss group in orange and peripheral vision loss group in purple. The horizontal lines represent the median with 

the upper and lower whiskers representing scores outside the middle 50%. Red stars represent the mean. Data for each individual participant is 

overlaid on the boxplots shown as black dots. Open black dots represent the young control and the two younger participants in the peripheral loss 

group. 
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Table 5: Pearson correlations between structural (MRI) and neurochemical (MRS) 

outcome measures from the posterior visual pathway for the central retinal disease 

cohort. 

  MRS outcome measures 

  Glu:Cr PCh:Cr NAA:Cr GABA:Cr 

Cortical Volume 
R = 0.454 

p = 0.119 

R = 0.310 

p = 0.303 

  R = -0.044 

p = 0.888 
  R = 0.336 

p = 0.262 

C
o
rt

ic
a
l 

T
h

ic
k

n
es

s Occipital Pole 
R = 0.517 

p = 0.070 

R = 0.616* 

 p = 0.025 

R = 0.200 

p = 0.512 

R = 0.318 

p = 0.290 

Calcarine 

Sulcus 

R = 0.329 

p = 0.273 

R = 0.242 

p = 0.425 

R = 0.182 

p = 0.552 

R = 0.156 

p = 0.612 

C
o
rt

ic
a
l 

M
y
el

in
 Occipital Pole 

R = 0.304 

p = 0.313 

R = 0.444 

p = 0.129 

R = 0.316 

p = 0.293 

R = 0.340 

p = 0.256 

Calcarine 

Sulcus 

R = -0.018 

p = 0.952 

R = 0.210 

p = 0.492 

R = -0.069 

p = 0.824 

R = -0.043 

p = 0.890 

*Significant at 0.05, 2-tailed 
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Figure 5: MRS v MRI correlation showing a positive correlation between PCh:Cr and 

mean cortical thickness in the occipital pole with central retinal disease. 

 

 

3.4. Discussion 

This study shows that atrophy of the occipital cortex, due to a reduction in cortical 

volume, occurs following long-term bilateral vision loss. With central retinal disease, 

whilst we find significant atrophy in retinotopic representations of the lesioned retina, 

namely the occipital pole, surprisingly, we also find atrophy in the calcarine sulcus, the 

retinotopic representation of the intact retina. In the case of peripheral retinal disease, 

observational data reveal no evidence of atrophy in the retinotopic representations of the 

lesioned retina, namely the calcarine sulcus. Pilot MRS data reveal no significant 

evidence of degeneration with either central or peripheral retinal disease.  
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Previous research has reported evidence of cortical atrophy associated with 

central vision loss via reduced volume or thickness in retinotopic representations of the 

lesioned central retina (Aguirre et al., 2016; Boucard et al., 2009; Hanson et al., 2019; 

Hernowo et al., 2014; Plank et al., 2011; Prins et al., 2016). Our results show that, whilst 

not quite significant (p = 0.057), volume of the entire occipital cortex was reduced 

compared to controls, explaining 8% of the variation observed. Nevertheless, supporting 

previous research, we have shown significant atrophy in the retinotopic representation 

of the lesioned retina, the occipital pole, with a reduction in mean cortical thickness. 

Surprisingly, we also reveal evidence of significant atrophy in the calcarine sulcus, the 

retinotopic representation of the intact retina. These data could indicate that as the retinal 

disease advances to occupy more peripheral retinal locations, this loss of input is 

measurable in the cortex. This widespread reduction in cortical thickness likely 

contributed to the significant reductions in volume we found throughout the occipital 

lobes. However, it also leads to the possibility that other areas beyond primary visual 

cortex (calcarine sulcus) may be affected as well. 

Although the effects of peripheral retinal disease, specifically RP, on the 

structure of the posterior visual pathway are limited, it is suggested that atrophy of the 

visual cortex occurs (Rita Machado et al., 2017). In this current study, observational data 

reveal that volume of the entire occipital cortex was reduced compared to sighted 

controls, indicating possible cortical atrophy. Whilst this finding was not significance 

tested due to the small cohort, it is in line with this previous finding. Unlike central 

retinal disease, previous RP reports have failed to address whether there is evidence of 

atrophy in the cortical representation of the lesioned peripheral retina, the calcarine 

sulcus (Castaldi et al., 2019; Cunningham, Shi, et al., 2015; Ferreira et al., 2017). 

Addressing this in the current study, we found no evidence of atrophy in the calcarine 

sulcus, with mean cortical thickness in this region within the range of sighted controls 

yet greater than the central vision loss group. 

Despite the small number of participants with peripheral retinal disease in this 

current study, all were of similar age range, gender distribution and had similar disease 

durations to those reported in previous studies (Castaldi et al., 2019; Cunningham, Shi, 

et al., 2015; Ferreira et al., 2017; Rita Machado et al., 2017). Although the age range in 

the current study was varied, we do not believe that age had an impact on the measures 
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we obtained. Participants P17 and P18 were much younger than P15 and P16, yet their 

results, across all measures, were similar. 

Another difference to consider between the current and previous studies is the 

advancement of the RP disease and its effect on visual acuity (VA) performance. 

Castaldi et al. reported VA ranging from hand movements to bare light perception 

(Castaldi et al., 2019), whereas the VA in the current cohort ranged from 1 – 90 ETDRS 

letters (see Chapter 4, Table 1). This could also explain the reduced cortical thickness 

values reported in the Castaldi et al. study, which we did not find in our cohort. Research 

has shown that as RP advances, the central retina becomes affected (Hirakawa et al., 

1999; Holopigian et al., 1996), in turn resulting in poor VA. This may indicate a degree 

of atrophy of the cortical representations of the central retina, the occipital pole, like 

those we observe in the central vision loss group in the current study (see Chapter 4, 

Table 1). Considering Castaldi et al. measured structural changes in primary visual 

cortex (V1) only, it is not possible to distinguish whether the reductions they observed 

are relating to the cortical representations of the lesioned or intact retina, as V1 includes 

both representations.  

Until now, the effects of retinal disease due to AMD and RP on myelin density 

in the human visual cortex have been unknown. It is possible that the observed 

reductions in cortical volume and thickness associated with retinal disease may in part 

reflect changes in myelin density. Whilst we found reductions in both cortical volume 

and mean thickness with central retinal disease compared to sighted controls, this was 

not the case for cortical myelin. Myelin density was slightly greater in the occipital pole 

and lower in the calcarine sulcus (the cortical representations of the lesioned and intact 

retina respectively), but not significantly so. Interestingly, with peripheral retinal 

disease, we observed a reduction in volume of the entire occipital lobes, but this was not 

specific to mean cortical thickness in either the occipital pole or calcarine sulcus. Myelin 

density in these regions was also comparable to that in sighted controls.  

There is an inverse relationship between cortical myelination and cortical 

thickness, such that lightly myelinated regions are found to be thicker whilst heavily 

myelinated regions tend to be thinner (excluding primary motor cortex and the frontal 

pole) (Glasser & Van Essen, 2011). Across all cohorts tested in this current study, we 
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did not find any correlation between cortical volume/thickness and myelin density. It 

has also been reported that in highly myelinated regions, distinguishing the deeper layers 

of cortex from white matter may be difficult, resulting in artificially thin estimates of 

cortical thickness (Glasser & Van Essen, 2011; Natu et al., 2019). As a consequence, 

myelin content is frequently underestimated in thin, heavily myelinated cortex (Glasser 

& Van Essen, 2011). This interaction could explain the apparent increase in relative 

amounts of myelin observed with central retinal disease, as a result of the reduced 

cortical thickness. However, considering there was no significant change in cortical 

thickness and myelin density with peripheral retinal disease, this may suggest a degree 

of preservation of retinal inputs to the cortex. 

Whilst changes to cortical structure are currently associated with evidence of 

atrophy (shrinkage) due to retinal disease, the extent to which this may reflect cortical 

degeneration (cell death) or demyelination is unclear. Pilot data from this current study 

reveal no significant evidence of cortical degeneration, however, 1H-MRS profiles 

obtained from the occipital cortex differed with disease type compared to sighted 

controls. Reductions in NAA are considered to indicate neuronal loss or dysfunction 

(Block et al., 2002; Gujar et al., 2005). In central retinal disease, we observed a slight 

reduction in NAA:Cr compared to sighted controls, whereas levels were slightly greater 

with peripheral retinal disease. Whilst these differences were not significant, they were 

in line with previous reports in both late (Bernabeu et al., 2009; Boucard et al., 2007) 

and early (Coullon et al., 2015; Weaver et al., 2013) blind subjects. The MRS voxel of 

interest was positioned occupying the calcarine sulcus which represents the intact retina 

in central retinal disease and the lesioned retina in peripheral retinal disease. Therefore, 

it is interesting to note this reduction in NAA:Cr in central retinal disease as it could also 

explain the reduction in cortical thickness observed in the calcarine sulcus.  

Cortical atrophy resulting from long-term vision loss may also represent 

demyelination. Whilst we assessed changes myelin density changes using MRI, we also 

obtained levels of phosphocholine (PCh). A marker for cell turnover, increased Cho (and 

PCh) is found in malignant tumours and in demyelination (Gujar et al., 2005). Our 

results revealed, compared to sighted controls, PCh:Cr was slightly reduced in both 

central and peripheral retinal disease, although not significant. These data correspond 

with the MRI myelin density analysis outlined above which showed no significant 
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difference between central or peripheral retinal disease and sighted controls. Therefore, 

with central retinal disease, it would appear that the observed cortical atrophy is not 

being driven by demyelination. This is supported by the positive correlation between 

PCh and cortical thickness in the occipital pole.  

Evidence of cortical degeneration can be assessed by measuring changes in Glu 

levels, as increased Glu indicates neuronal dysfunction (Lin et al., 2003; Martin, 2007) 

and cortical degeneration via apoptosis (YueMei Zhang & Bhavnani, 2005). This current 

study revealed that mean Glu:Cr levels appeared to be greater with peripheral retinal 

disease whilst lower in central retinal disease compared to sighted controls. As 

previously mentioned, placement of the MRS voxel favoured assessments of the 

calcarine sulcus, the representation of the lesioned retina in peripheral retinal disease 

and not the occipital pole, the representation of the lesioned retina in central retinal 

disease. Future studies would benefit from obtaining MRS from multiple voxels in the 

brain to ensure efficient coverage of brain regions relevant to different disease types. 

However, the difference in Glu:Cr levels may reflect the different underlying 

mechanism of the retinal disease. Peripheral retinal disease due to RP results from 

degeneration of the photoreceptor layer in the retina whereas central retinal disease due 

to nvAMD, results from neovascularisation affecting the retinal pigment epithelium. 

Consequently, anterograde degeneration may occur at a faster rate in RP, in which no 

treatment exists compared with the preventative treatment which exists for nvAMD. 

Non-significant differences in Glu levels have been previously reported in 

studies with late (Bernabeu et al., 2009) and early (Weaver et al., 2013) blind subjects 

however, one early blind study did reveal significantly greater Glu/Gln in early blind 

subjects (Coullon et al., 2015). However, the latter study was unable to break down the 

two neurochemicals thus distinguishing the effect of retinal disease on Glu alone is 

difficult to infer from this study as changes in one could mask changes in the other. The 

advantage of this current study is the utilisation of a 1H-MRS acquisition which allowed 

for the quantification of these two compounds independently. 

The final assessment using 1H-MRS in this current study investigated changes in 

GABA levels to probe signs of cortical plasticity in retinal disease. Involved in altering 

the excitatory/inhibitory balance mediating plasticity of the adult brain, research 
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suggests that a reduction in GABAergic inhibition leads to a reawakening of plasticity 

in the visual cortex (Bavelier et al., 2010; Hensch, 2005; Hensch & Fagiolini, 2005). 

While the differences in GABA:Cr levels in this current study were not significantly 

different to sighted controls, results do suggest a reduction in GABA:Cr with central 

retinal disease with increased GABA:Cr found with peripheral retinal disease. 

Considering the placement of the MRS voxel, this result may reflect that the loss of 

projections from the central visual field may awaken plasticity in neighbouring 

peripheral representations, although further research is required to support this theory.  

In conclusion, we report significant evidence of cortical atrophy via a reduction 

in volume of the entire occipital cortex with central retinal disease. Significant atrophy 

is also found in both the retinotopic representation of the lesioned and intact retina with 

central retinal disease, namely the occipital pole and calcarine sulcus respectively. We 

report no significant evidence of either cortical degeneration or demyelination in the 

central retinal disease cohort compared to sighted controls.  Observational data from a 

small cohort with peripheral retinal disease reveal no evidence of cortical atrophy, 

although cortical volume of the entire occipital lobe was reduced, no cortical 

degeneration or demyelination.Whilst pilot 1H-MRS results indicate a trend towards 

evidence of cortical degeneration via apoptosis, this may indicate that the reduced 

cortical volume could be a result of cortical degeneration rather than cortical atrophy 

due to the lack of reduced mean thickness observed. However, testing this hypothesis 

on a larger cohort is required. 

Ultimately, preservation of the visual cortex is essential in the success of vision 

restorative techniques which restore visual input. Whilst we are showing significant 

evidence of cortical atrophy with central retinal disease, the potential plasticity of visual 

cortex should be considered a double-edged sword. If plasticity is representing 

reorganisation of the visual cortex to perform new functions, this would be detrimental 

to restorative techniques. However, if reorganisation has not occurred, plasticity 

provides hope that restorative techniques may be successful. Moreover, these data only 

represent changes to the calcarine sulcus, the cortical representation of the intact retina 

in central retinal disease, thus we do not know what neurochemical changes are taking 

place in the representation of the lesioned retina, the occipital pole. Considering 

peripheral retinal disease, the potential cortical degeneration would suggest that 
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restorative techniques may not be successful. Whilst these 1H-MRS pilot data are 

interesting, further research is required with much larger cohorts to establish 

significance in these changes. It is also worth considering that the lack of significance 

between both patient cohorts and sighted controls could simply indicate that although 

patients may have the same diagnosed retinal disease, the effects could be different for 

each patient, thus one could exhibit signs of cortical atrophy whilst another cortical 

degeneration. Consequently, treatment regimens should be tailored to the individual 

patient rather than based on disease alone. 
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Chapter 4 

What is the relationship between the anterior and posterior visual 

pathway in long-term central retinal disease?  

 

4.1. Introduction 

The prevalence of vision loss due to retinal disease is on the rise. As a result, current 

research is focusing on treatment techniques to prevent disease progression in the eye 

and to restore visual input. Nevertheless, it is important to ensure we fully understand 

the relationship between changes occurring in the anterior and posterior visual pathways 

to possibly help determine biomarkers of disease, neuroprotection and future restorative 

treatment technologies. 

Age-related macular degeneration (AMD) is one of the progressive retinal 

diseases of focus in this thesis. AMD is the leading cause of vision loss in the developed 

world (Lim et al., 2012) with two sub-types: “dry” geographic atrophy (GA) and “wet” 

neovascular AMD (nvAMD). In GA, there is a slow progressive atrophy of the retinal 

pigment epithelium and photoreceptors, whereas in nvAMD, choroidal 

neovascularisation (CNV) occurs along with an accumulation of either subretinal or 

intraretinal fluid and haemorrhage resulting in fibrous scarring (Lim et al., 2012). 

Classification of this leakage either falls under Type 2 CNV, in which the lesion 

penetrates the retinal pigment epithelium layer (RPE) and lies in front, or Type 1 CNV, 

whereby the lesion lies under the RPE (Lim et al., 2012) (Figure 1). Patients with 

nvAMD will often experience metamorphopsia (distortion of straight lines), a scotoma 

obscuring their central vision or both (Lim et al., 2012). Typically affecting individuals 

over the age of 50 years, it is estimated that 40,000 people develop nvAMD in the UK 

every year (NICE, 2018). In both cases, AMD affects the central macula of the retina 

and progresses to occupy more peripheral retinal locations over time.  

Clinical assessments of the anterior visual pathway monitor disease progression 

through functional and structural measures of the retina. In the management of central 

retinal disease such as AMD, functional measures such as best corrected visual acuity 

(BCVA), measured using the Early Treatment Diabetic Retinopathy Study (ETDRS) 
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vision chart (ETDRS, 1985), has been established as the most important outcome 

measure in clinical research (Ou et al., 2017). Early clinical trials including MARINA, 

ANCHOR and later HORIZON, investigated the use of anti-vascular endothelial growth 

factor (anti-VEGF) treatment for nvAMD, revealing significant increases in the number 

of ETDRS letters read following treatment, which is maintained over time (D. M. Brown 

et al., 2006b; Rofagha et al., 2013; Rosenfeld et al., 2006). Nevertheless, whilst these 

results suggest that some vision loss is recoverable, BCVA performance often varies 

considerably between session (Patel, Chen, Rubin, & Tufail, 2008). Moreover, more 

recent reports suggest that BCVA performance begins to decline again after ~5 years of 

treatment (Airody et al., 2015). 

Alongside BCVA assessments in central retinal disease, retinal sensitivity can 

be measured with microperimetry using, for example, the Nidek MP (Nidek 

Technologies, Padova, Italy) and Macular Integrity Assessment (MAIA, CentreVue, 

Padova, Italy) microperimeters. The most common outcome measure is mean sensitivity 

(MS), a mean of the light sensitivity across all stimulus locations, which has been shown 

to decrease with disease severity in AMD (Dinc et al., 2008; Vujosevic et al., 2011). 

However, reduced light sensitivity measured using microperimetry has been reported 

even with good visual acuity (for a review, see (Cassels et al., 2017)), therefore, 

microperimetry is often used in addition to other measures of visual function as it gives 

complimentary information. 

Structural assessments of the retina have become a vital part of routine care, 

allowing clinicians to evaluate retinal and subretinal structures affected by disease. High 

resolution images acquired using spectral domain optical coherence tomography (SD-

OCT) can quantify total thickness changes across the retinal layers along with changes 

in peripapillary RNFL thickness (pRNFL) of the optic nerve head. In central retinal 

disease, retinal thickness is widely used to measure the magnitude of the macular 

oedema particularly in nvAMD. Studies have shown by measuring the central retinal 

thickness, that treatment with anti-VEGF reduces the size of the oedema over the initial 

treatment phase (~4 months) with monthly anti-VEGF injections (Airody et al., 2015; 

Flinn, 2017; Hanson et al., 2019). However, assessing changes to specific retinal layers 

such as the ganglion cell layer (GCL) may be more informative as the inner retina will 

be less contaminated by subretinal fluid associated with nvAMD. Reports suggest that 
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thinning of the GCL occur in nvAMD compared with sighted controls (Beck, Munk, 

Ebneter, Wolf, & Zinkernagel, 2016; Martinez-de-la-Casa et al., 2012; Zucchiatti et al., 

2015). Trajectories of the retinal nerve fibre bundles from the optic nerve head have 

revealed that foveal fibres occupy a large portion of the temporal quadrant (Fitzgibbon 

& Taylor, 1996; Jansonius et al., 2009). Two studies have reported significantly thinner 

optic nerve head thickness, particularly in the superior, inferior, and temporal quadrants 

in both nvAMD (Martinez-de-la-Casa et al., 2012) and dry-AMD (E. K. Lee & Yu, 

2015). 

Assessments of the posterior visual pathway, primarily measured using 

neuroimaging techniques such as magnetic resonance imaging (MRI), have provided an 

abundance of information on cortical changes associated with central retinal disease, 

including age-related macular degeneration (AMD). Structural MRI has revealed 

significant atrophy (shrinkage) of the visual cortex with reductions in volume of the 

entire visual cortex and specific significant reductions in cortical thickness in cortical 

representation of the lesioned retina, the occipital pole (Aguirre et al., 2016; Boucard et 

al., 2009; Hanson et al., 2019; Hernowo et al., 2014; Malania et al., 2017; Plank et al., 

2011; Prins et al., 2016). In Chapter 3 of this thesis, we also report significant atrophy 

in volume of the entire occipital cortex, cortical thickness of the occipital pole and the 

calcarine sulcus, cortical representations of the central and peripheral retina respectively.  

Whilst some of these neuroimaging studies have reported on potential 

relationships between changes to the posterior and anterior visual pathways (Malania et 

al., 2017), it is not known whether changes in one eye alone could predict alterations 

further down the visual stream. Consequently, to better understand the relationship 

between clinical and neuroimaging data and to potentially identify biomarkers of disease 

progression, this study aimed to observe the relationship between changes to the anterior 

(the eye) and posterior (the brain) visual pathways in patients with long-term central 

retinal disease.  
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Figure 1: Layers of the human retina measurable using the Heidelberg Optical Coherence Tomography (OCT), and the cells contained within 

them. Know Your Retinal Layers (Heidelberg, 2016). 
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4.2. Materials and Methods 

4.2.1. Participants 

Written informed consent was obtained from all participants. Ethical approval was 

granted by York Neuroimaging Centre Research, Ethics and Governance Committee 

and the NHS Research Ethics Committee (IRAS: 181823). This study followed the 

tenets of the Declaration of Helsinki. 

Twenty-five participants were recruited to this SYNAPTIC study from York 

Teaching Hospital NHS Foundation Trust between November 2018 and September 

2019. Inclusion criteria were bilateral vision loss with an overlapping scotoma, resulting 

in allocation to either a central or peripheral vision loss group. Exclusion criteria 

included contraindications for completing the MRI procedures or receiving pupil 

dilation, enrolment on an interventional clinical trial and inability to comply with the 

study. 

Following some withdrawals outlined in Chapter 3, section 3.2.1, a final cohort 

of eighteen participants completed the clinical assessment element of the SYNAPTIC 

study; fourteen participants were diagnosed with central retinal disease (Table 1) and 

four patients were diagnosed with peripheral retinal disease (discussed in Chapter 5). 

Disease duration for all central retinal disease participants is outlined in Table 1 and 

refers to the time at which the disease became bilateral. All participants had unilateral 

retinal disease prior to this timepoint and as a result, the effect of unilateral retinal 

disease on the following outcomes measures is unknown. Nevertheless, we would expect 

the most significant effect of retinal disease on the following outcomes measures to 

occur following bilateral vision loss. Participant P03 was diagnosed with bilateral 

nvAMD but also had a cataract in the left eye. Whilst visual acuity was recorded for this 

eye as hand movements only (HM), it was not possible to complete all other clinical 

assessments as P03 was unable to detect any stimuli or maintain fixation and as a result, 

this eye was excluded from these analyses. 

4.2.2. Design 
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In this cross-sectional design, routine clinical assessments, detailed below, took place 

no more than two weeks prior to the neuroimaging assessments of the posterior visual 

pathway detailed in Chapter 3, section 3.2.3. 

 

Table 1: Demographics of participants recruited to the SYNAPTIC study diagnosed with 

central retinal disease.  

Subject Gender 
Age 

(y, m) 

Bilateral 

Diagnosis 

Worse Eye Better Eye Disease 

Duration 

(y, m) 

OD / 

OS 
BCVA 

OD / 

OS 
BCVA 

P01 Male 63, 7 nvAMD OS 20             OD              29             2, 3 

P02 Female 69, 0 nvAMD OD              HM OS 34 5, 7 

P03 Female 83, 7 nvAMD OS HM OD 29 6, 5 

P04 Female 75, 10 nvAMD OD 65 OS 68 5, 10 

P05 Male 84, 4 nvAMD OS 52 OD 67 5, 4 

P06 Male 74, 3 nvAMD OD 46 OS 75 13, 7 

P07 Male 77, 5 nvAMD OD 68 OD 71 6, 1 

P08 Female 90, 10 nvAMD OS 24 OD 31 13, 2 

P09 Female 90, 4 nvAMD OS HM OD 48 10, 3 

P10 Male 75, 7 nvAMD OD 85 OS 85 7, 8 

P11 Male 87, 11 nvAMD OS 50 OD 71 6, 6 

P12 Male 76, 6 CSCR OS 3 OD 42 8, 4 

P13 Male 73, 2 nvAMD OS 37 OD 48 11, 11 

P14 Female 85, 1 nvAMD OD 25 OS 68 9, 1 

*nvAMD: Neovascular age-related macular degeneration; CSCR: Central Serous 

Chorioretinopathy; OD: Oculus Dexter (right eye); OS: Oculus Sinister (left eye); 

BCVA: Best Corrected Visual Acuity; HM: Hand movements  

 

4.2.3. Procedures 

All clinical assessments were completed at York Teaching Hospital NHS Foundation 

Trust during the participants’ routine clinical visits.  

4.2.3.1. Structural assessments. All participants completed an additional structural 

assessment of the eye using the Heidelberg Spectralis spectral-domain optical coherence 

tomography (SD-OCT; Heidelberg Engineering, Heidelberg, Germany). 

Autofluorescence and infrared images of the central macula and optic nerve head were 

acquired through dilated pupils for each eye. 
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4.2.3.1.1. Macular Thickness. Foveal volumetric scans acquired 25 frames in 

an area of 30 x 30 degrees at 1536 x 1536 pixels (Figure 2). Infrared images of the 

macula enabled segmentation of the retinal layers using the built-in Heidelberg Eye 

Explorer software, version 1.9.17.0. Thickness measures were calculated for the 

ganglion cell layer (GCL) with total macular thickness calculated to include all retinal 

layers between the internal limiting membrane (ILM) and Bruch’s membrane (BM) 

shown in Figure 1. The central 1mm and 3mm diameter ETDRS locations were used to 

represent the central macula (0 - 5 degrees eccentricity), with the 6mm diameter ETDRS 

location representing the peripheral macula, from 5 - 10 degrees eccentricity (Figure 3). 

4.2.3.1.2. Optic Nerve Head Thickness. Peripapillary RNFL (pRNFL) 

thickness was acquired using a 3.5mm diameter disk (768 A-scans) centred over the 

optic disk head (Figure 4) allowing for classification of seven quadrants of the optic 

nerve head: Temporal, Inferior Temporal, Superior Temporal, Nasal, Inferior Nasal, 

Superior Nasal and all quadrants, Global. Built-in software analysed all quadrants 

identifying those which fell within and outside of (below) normal thickness limits for 

the age range of each participant (Figure 5). Previous research has shown that fibres 

from the central macula occupy a large portion of the temporal quadrant (Fitzgibbon & 

Taylor, 1996; Jansonius et al., 2009), therefore, it would be expected that reduced 

thickness in the temporal quadrants, relating to the central retina, may be found in this 

patient group. It is important to note that the three nasal quadrants represent projections 

from the far peripheral retina, including retinal locations beyond that classified as the 

peripheral macula in Section 4.2.3.1.1. above.  

4.2.3.1.3. Lesion Size. Autofluorescence images of the central macular region 

were used to measure the size of the structural lesion in each eye for all participants 

(Figure 6). The border of the affected retina was traced using built-in software, with the 

resulting value showing the area of the affected region in mm2.  

4.2.3.2. Functional Assessments. All participants completed a best corrected visual 

acuity and retinal sensitivity assessments during their routine clinical visit.  

4.2.3.2.1. Best Corrected Visual Acuity. Standard clinical visual acuity was 

measured in an illuminated room at 4 meters, with the participant’s spectacle correction 

in each eye using an ETDRS (Early Treatment Diabetic Retinopathy Study) letter chart 
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(ETDRS, 1985). If participants were able to read four or more of the five letters on the 

first line of the chart they were asked to continue reading down the chart until they could 

read fewer than three letters on a single line. At this point, the total number of letters 

read correctly was recorded and an additional 30 letters were added to the total. If 

participants were unable to read 4 letters correctly on the first line, they were brought to 

1 meter and asked to continue reading down the chart until they could read fewer than 

three letters on a single line. Thirty letters were not added to the final ETDRS score in 

this circumstance. Participants P02, P03 and P09 were not able to read any ETDRS 

letters in one eye and could only detect hand movements (HM). For analysis purposes, 

the ETDRS letter score for that eye was set to 0 letters. 

4.2.3.2.2. Retinal Sensitivity. Microperimetry examinations, completed in 

twenty-seven eyes from fourteen participants in the central vision loss group, were 

carried out using the AMD-20 examination (Nidek MP1, Nidek Technologies, Padova, 

Italy). Examinations took place in a darkened room testing each eye independently 

through a dilated pupil whilst the fellow eye was patched. Participants were instructed 

to place their chin on the chin rest and look directly down the camera lens. Once the 

macula was in view, participants were asked to maintain their gaze for the duration of 

the examination. Stimuli would appear at different retinal locations and at varying 

intensities and the participant pressed a button when they could detect the stimuli. The 

range of intensities was 0 – 20 decibels (dB), with 0 representing the brightest light, 

corresponding to the lowest visual sensitivity. An eccentricity grid covering the central 

20 degrees of visual angle was centred over the fovea for each eye for each participant 

(Figure 7). The total number of stimuli presented which fell within the eccentricity 

border were calculated. The intensity of all stimuli which were responded to were added 

up and divided by the total number of stimuli presented to give an average retinal 

sensitivity (RS) value. Any points falling on or outside of the outer eccentricity border 

were not included to keep the area measured consistent across individuals. This was 

carried out for each eye. Data were excluded for one eye from participant P03 due to the 

participant having a cataract. Participants P07, P12 and P18 were not able to identify 

any stimulus presented during the microperimetry assessment for one eye, whereas P10 

could not complete the assessment in either eye. As a result, the RS for these 5 eyes was 

set to 0dB. 
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4.2.3.3. Bilateral Disease Duration. Disease duration was calculated as the time at 

which each patient was diagnosed with bilateral retinal disease in years (Table 1). Prior 

to this, all patients were diagnosed with unilateral retinal disease. Whilst we are not able 

to measure the effects of unilateral loss on the entire visual pathway, knowing when 

patients were diagnosed with bilateral retinal disease provides the point in time when a 

significant loss of bilateral visual input occurred.  

4.2.3.4. Analysis. Best corrected visual acuity was used to determine the better and 

worse seeing eye for each participant (Table 1). Apart from disease duration, outcome 

measures for all other clinical assessments were separated in relation to the worse and 

better seeing eye.  

The first stage of the analysis used one-sample t-tests to establish whether values 

from the worse or better seeing eye were significantly different from normal. This was 

carried out on assessments where a normal value existed, including retinal structure, 

optic nerve head structure and BCVA. Normative mean thickness values assessing 

retinal structure were extracted from a different study using the same model of SD-OCT 

machine (Nieves-Moreno et al., 2017). The normative means were extracted from a 

group of age-range matched control subjects, ranging between 69-87 years. Normative 

optic nerve head thickness values were taken from the OCT output of this study whilst 

normal BCVA represented an ETDRS letter score of 84 letters, equivalent to 6/6 Snellen 

acuity or 0.0 logMAR. Paired-samples t-tests then established whether the worse and 

better seeing eye were significantly different from each other for all clinical measures. 

The second stage of the analysis addressed four research questions investigating 

the relationship between changes to the anterior and posterior visual pathway. These 

questions included 1) Does retinal structure predict cortical structure?, 2) Does retinal 

structure predict visual function?, 3) Does cortical structure predict visual function?, and 

4) Does bilateral disease duration predict retinal structure, visual function or cortical 

structure? Pearson correlations were carried out between the clinical output measures 

listed above relating to changes to the anterior visual pathway and output measures 

outlined in Chapter 3 relating to changes to the posterior visual pathway.  
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Figure 2: Infrared SD-OCT retinal image of the right eye. A: Infrared image of the central macular region showing the 25 slices (horizontal green 

lines) used to segment the layers of the macula. B: Cross-section of slice 14 of the central macular region from A (bold green horizontal line) 

showing the different retinal layers. The central dip represents the foveal location with the optic nerve head on the right-hand side of the images. 
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Figure 3: Macula thickness by ETDRS location. A: Macula thickness map in which cool (blue/purple) colours indicate thinner areas, and warm 

(green/yellow/red) regions indicate thicker areas. The overlaid grid represents the 1mm (centre ring), 3mm (inner ring) and 6mm (outer ring) 

diameter ETDRS locations.  B: Cross-section through the retina showing that the total macula thickness measure includes the retinal layers from 

the internal limiting membrane (ILM) to Bruch’s membrane (BM), marked by the red borders. 
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Figure 4: SD-OCT-generated RNFL map of the optic nerve head. A: Segmentation of the optic disk was acquired using a 3533µm diameter disk 

centred over the optic disk, shown in green. B: Cross-section of the unfolded optic nerve head showing the segmented layers highlighting the 

retinal nerve fibre layer (RNFL) by the horizontal cyan line, automatically segmented using the SD-OCT software.  
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Figure 5: Peripapillary RNFL classification. A: Seven quadrants of the optic nerve head, NS: Nasal Superior; N: Nasal; NI: Nasal Inferior; TI: 

Temporal Inferior; T: Temporal; TS: Temporal Superior; G: Global. Colours indicate quadrants in which values fall within normal limits (green), 

borderline (yellow) and below normal limits (red) with numbers shown in green inside the brackets representing normative values for those 

segments. B: Graph illustrating optic nerve head thickness in microns (µm) of the seven quadrants. Coloured areas denote the limits defined in A 

with the black line representing the thickness values of the participant. The green vertical line corresponds to the green vertical line in Figure 4B. 
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Figure 6: SD-OCT autofluorescence images of the twenty-seven eyes diagnosed with central retinal disease. Left eyes are presented on the left-

hand side with right eyes on the right-hand side. Dark regions to the far left in all left eyes and far right in all right eyes denote the optic nerve 

head. Dark and mottled areas within the centre of all images reflect damage to the central macula, extending to more peripheral retinal locations 

in some patients. In all images, the area of the lesion (in mm2) has been measured using built-in software, represented by the yellow line.  
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Figure 7: Colour fundus image of the right eye of a participant in the central vision loss 

group. Overlaid is the retinal sensitivity performance measured using an AMD-20 

examination on the Nidek MP1 microperimeter. Coloured box/number pairs represent 

the different intensities of the presented stimuli. Higher numbers represent a dimmer 

stimulus, i.e. greater retinal sensitivity, with numbers ranging from 0-20 dB. Filled 

squares indicates a response was made to the stimulus. If no response was made, the 

box remained empty. The black eccentricity grid maps the central 20-degree diameter 

visual angle. All responses which fall within the eccentricity grid were used to calculate 

the retinal sensitivity for each eye. Those falling on or outside the eccentricity grid were 

excluded.  
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4.3. Results 

4.3.1. Structural Assessments 

4.3.1.1. Macular Thickness. Macular thickness for the total macula (averaged 

across the 1mm, 3mm and 6mm diameter ETDRS locations), central macula (1mm and 

3mm diameter ETDRS locations) and peripheral macula (6mm diameter ETDRS 

location) for each participant is shown in Figure 8. Data from three individuals (P01, 

P08 and P09) were shown to be excessively greater compared to the remaining cohort 

when considering total macular thickness in the worse seeing eye. Upon closer 

inspection of the OCT images, the increased macular thickness appears to be driven by 

active oedemas in these participants (Figure 8). Whilst we expect that regular anti-VEGF 

treatment being received by all patients in this cohort would reduce any active oedema, 

the presence of such has contaminated the total thickness measure. Therefore, data from 

these three participants were removed. The following t-tests were then conducted to 

analyse whether total macular thickness significantly differed from a normative mean 

thickness in the following three macular locations. 

Total macular thickness was measured as the average of the three retinal 

locations, 1mm, 3mm and 6mm diameter ETDRS locations (0 – 10 degrees eccentricity). 

Total macular thickness was greater in the worse compared to the better seeing eye, 

although this was not significant (t(9) = 1.027, p = .331; Table 2). Compared against the 

normative mean of 317.5µm, only the better seeing eye was significantly thinner 

(Worse: t(9) = -2.017, p = .074; Better: t(10) = -3.417, p = .007, 2-tailed; Figure 9A). 

Central macular thickness was measured as the average of the 1mm and 3mm 

diameter ETDRS locations (0 – 5 degrees eccentricity). Central macular thickness was 

greater in the worse compared to the better seeing eye, although this was not significant 

(t(9) = 1.310, p = .223; Table 2). Compared against the normative mean of 320.6µm, 

only the better seeing eye was significantly thinner (Worse: t(9) = -1.162, p = .275; 

Better: t(10) = -3.005, p = .013, 2-tailed; Figure 9B).  

Finally, peripheral macular thickness was measured as the 6mm diameter 

ETDRS location (5 - 10 degrees eccentricity). Whilst thickness in the worse seeing eye 

was slightly thinner than in the better seeing eye, this was not significant (t(9) = -.355, 
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p = .731; Table 2). However, both eyes were significantly thinner than the normative 

mean of 313.8µm (Worse: t(9) = -5.051, p = .001; Better: t(10) = -5.189, p = .000408, 

2-tailed; Figure 9C). 

4.3.1.2. Ganglion Cell Layer (GCL) Thickness. Highlighted above, data from 

three participants was removed from the macular thickness analysis due to active 

oedemas contaminating the thickness measures. Oedemas tend to affect the outer retinal 

layers more so than the inner retinal layer. Therefore, the GCL should be less 

contaminated by the active oedema in the three participants identified above. Data were 

assessed for these three participants to ensure that the automatic segmentation of the 

GCL was not affected by the active oedema (Figure 10). Examining the automatic 

segmentations revealed that GCL thickness estimations were affected for patient P01 

only (Figure 10). As a result, patient P01 was removed from the subsequent analyses of 

GCL thickness whilst data from patients P08 and P09 were retained. 

Total macula GCL thickness was measured as the average of the three macular 

locations, 1mm, 3mm and 6mm diameter ETDRS. Total GCL thickness was greater in 

the worse compared to the better seeing eye, although this was not significant (t(11) = 

.689, p = .505; Table 2). Compared against the normative mean of 36.8µm, both the 

worse (t(11) = -5.257, p = .000269, 2-tailed) and better (t(12) = -4.977, p = .000321, 2-

tailed) seeing eye were significantly thinner (Figure 11A). 

Central macula GCL thickness was measured as the average of the 1mm and 

3mm diameter ETDRS locations (0 – 5 degrees eccentricity). Central macula GCL 

thickness was greater in the worse compared to the better seeing eye, although this was 

not significant (t(11) = .780, p = .452; Table 2). Compared against the normative mean 

of 40.2µm, both the worse (t(11) = -4.895, p = .000475, 2-tailed) and better (t(12) = -

5.409, p = .000158, 2-tailed) seeing eye were significantly thinner (Figure 11B).  

Finally, peripheral macula GCL thickness was measured as the 6mm diameter 

ETDRS location (5 - 10 degrees eccentricity). With very similar values between the 

worse and better seeing eyes, they were not significantly different (t(11) = .038, p = .970; 

Table 2). Compared against the normative mean of 32.5µm, both the worse (t(11) = -

5.262, p = .000268, 2-tailed) and better (t(12) = -3.728, p = .003, 2-tailed) seeing eyes 

were significantly thinner (Figure 11C). 
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4.3.1.3. Optic Nerve Head Thickness. Assessing the raw values revealed 

increased thickness measures for participant P01 across all quadrants of the optic nerve 

head. Data from P01 were therefore removed from the following analyses as an outlier. 

Mean global optic nerve head thickness was calculated as the average across six 

quadrants shown in Figure 12. Thickness values were not significantly reduced in the 

worse compared to the better seeing eye, (t(11) = -.481, p = .640; Table 2), however both 

eyes were significantly thinner than the normative mean of 95.0µm (Worse: t(11) = -

3.229, p = .008; Better: t(12) = -2.357, p = .036). 

Next, we wanted to see if thickness in the temporal quadrants differed from 

normal, as these quadrants represent projections from the central retina (Figure 12). 

Mean thickness was not significantly different between eyes  for the Superior Temporal 

(t(11) = .824, p = .428). Temporal (t(11) = -1.173, p = .266) and Inferior Temporal 

quadrants (t(11) = -1.187, p = .260; Table 2), ). Compared against the normative mean 

values in each quadrant, both eyes were significantly thinner for the Inferior Temporal 

quadrant (NM = 135.0µm; Worse: t(11) = -5.531, p = .000178; Better: t(12) = -3.716, p 

= .003). However, there was no significant difference between either eye and the 

normaltive mean in the Temporal quadrant (NM = 72.0µm; Worse: t(11) = -1.337, p = 

.208; Better: t(12) = -1.005, p = .335), nor the Superior Temporal quadrant (NM = 

130.0µm; Worse: t(11) = -1.183, p = .262; Better: t(12) = -1.814, p = .095). 

Finally, we assessed changes in thickness across the nasal quadrants, which 

represent projections from the far peripheral retina, beyond the 10 degrees visual angle 

captured in the total macula and GCL thickness outlined above. This was done to 

investigate whether loss in peripheral retinal projections might explain the significant 

atrophy of the cortical representation of the peripheral retina, the calcarine sulcus, we 

reported in Chapter 3 (Figure 12). There was no significant difference in mean thickness 

between eye in the Nasal(t(11) = 1.004, p = .337)Superior Nasal (t(11) = -.310, p = .762) 

and Inferior Nasal quadrants (t(11) = -.230, p = .822; Table 2).Compared against the 

normative mean (NM) values in each quadrant, thickness values were not significantly 

different for either eye in the Inferior Nasal quadrant (NM = 103.0µm; Worse: t(11) = -

.757, p = .465; Better: t(12) = -.252, p = .805), the Nasal quadrant (NM = 72.0µm; 

Worse: t(11) = -1.772, p = .104; Better: t(12) = -1.675, p = .120), nor the Superior Nasal 
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quadrant (NM = 102.0µm; Worse: t(11) = -1.475, p = .168; Better: t(12) = -1.409, p = 

.184). 

4.3.1.4. Lesion Size. Including all participants, whilst lesion size appeared 

greater in the worse seeing eye compared to the better seeing eye, this was not 

significant(t(12) = .823, p = .426).  

4.3.2. Functional Assessments 

Raw data from the functional assessments were investigated for outliers as with the 

previous analyses. No outliers were identified and as a result, the BCVA analysis 

contained data from both eyes for all fourteen participants. As outlined in Section 

4.2.3.1., the exception in analysing retinal sensitivity, was that data from the worse 

seeing eye for participant P03 was not obtained due to concurrent cataract restricting 

this measurement. Therefore, thirteen data points are included from the worse seeing 

eye with fourteen data points from the better seeing eye.   

4.3.2.1. Best Corrected Visual Acuity. Best corrected visual acuity (BCVA) 

determined the better and worse seeing eye for the analyses reported in this chapter. 

Statistical analysis revealed that both eyes were significantly different from each other 

(t(13) = -4.810, p = .000340; Figure 13A) and were significantly reduced from normal 

(Worse: t(13) = -6.670, p = .000015, 2-tailed; Better: t(13) = -5.628, p = .000082, 2-

tailed). 

4.3.2.2. Retinal Sensitivity. Retinal sensitivity measured using microperimetry, 

is assessed in dB ranging from 0-20dB where the higher the number, the dimmer the 

stimulus, corresponding to greater sensitivity. Figure 13B shows that whilst retinal 

sensitivity was consistently reduced across the cohort for both the worse and better 

seeing eyes, there was no significant difference between the two eyes (t(13) = .025, p = 

.981). 

 

4.3.3. Summary of structural and functional retinal assessments.  

To summarise this first stage of the results, these data show that even with regular anti-

VEGF treatment for central retinal disease, active oedema persists in some individuals, 
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contaminating thickness of the macula (Figure 8). When data from such individuals are 

removed, retinal structure appears to be significantly impacted by the central retinal 

disease. This is evidenced by significant reductions in mean macular thickness, 

including all retinal layers, GCL thickness and optic nerve head thickness in regions 

containing projections from the central retina. Assessing visual function in all 

individuals reveals that both BCVA and retinal sensitivity are reduced in all participants, 

with BCVA significantly impaired in both eyes compared to normal. Moreover, the 

worse and better seeing eye were only significantly different from one another in terms 

of BCVA, with no significant difference found between the two eyes across all other 

measures.   
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Table 2: Mean and standard error of the mean (SEM) for the worse and better seeing 

eye across all assessments of the anterior visual pathway. Bold values indicate those 

which are significantly different from the normative mean. 

  
Normative 

Mean 

Worse Seeing Eye Better Seeing Eye 

  Mean (SEM) Mean (SEM) 

Macular thickness (µm):      

 

Total macula 317.6 298.3 (9.5) 285.2 (9.4) 

Central macula 320.6 305.6 (12.9) 285.4 (11.7) 

Peripheral macula 313.8 283.6 (6.0) 284.8 (5.6) 

GCL Thickness (µm):      

 

Total macula 36.8 26.2 (2.0) 24.3 (2.5) 

Central macula 40.2 26.4 (2.8) 23.6 (3.1) 

Peripheral macula 32.5 25.6 (1.3) 25.6 (1.9) 

Optic Nerve Head Thickness (µm):      

 Global 95 82.8 (3.8) 86.2 (3.8) 

 Inferior Temporal 135 99.5 (6.4) 111.8 (6.2) 

 Temporal 72 60.8 (8.4) 68.5 (3.4) 

 Superior Temporal 130 122.3 (6.6) 117.0 (7.2) 

 Inferior Nasal 103 97.2 (7.7) 100.9 (8.2) 

 Nasal 72 66.8 (3.0) 63.9 (4.8) 

 Superior Nasal 102 90.5 (7.8) 94.0 (5.7) 

Lesion Size (mm2) - 22.8 (4.3) 19.8 (2.7) 

BCVA (# of ETDRS letters) 84 33.9 (7.5) 54.7 (5.2) 

Retinal Sensitivity (dB) - 5.2 (1.6) 5.2 (1.4) 

*BCVA: Best Corrected Visual Acuity; ETDRS: Early Treatment Diabetic Retinopathy 

Study  
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Figure 8: Macular thickness variation for all eyes diagnosed with central retinal disease. Left eyes are presented on the left-hand side with right 

eyes on the right-hand side. Increased macular thickness is associated with the presence of active oedema which is a factor of nvAMD. Active 

oedemas appear as black bubbles within the retinal layers, indicted by the red arrows, result in increasing macular thickness evident in patients 

P01, P08 and P09. N: Nasal, I: Inferior, T: Temporal. 
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Figure 9: Macular thickness for the worse and better seeing eye by ETDRS location. A: Total macular thickness, averaged across the 1mm, 3mm 

and 6mm diameter ETDRS locations. B: Central macular thickness calculated as an average of the 1mm and 3mm diameter ETDRS locations. C: 

Peripheral macular thickness representing the 6mm diameter ETDRS location. For all box plots, horizontal lines represent the median with upper 

and lower whiskers representing scores outside the middle 50%. Red crosses indicate the mean thickness value. Dots represent data from each 

participant. Horizontal dashed lines represent the normative mean taken from age-range matched sighted controls (Nieves-Moreno et al., 2017). 

NS = Non-significant. *Significant at .001, 2-tailed. 
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Figure 10: Automatic segmentation of the macula ganglion cell layer (GCL). Left eyes are presented on the left-hand side with right eyes on the 

right-hand side. The top panel outlined in red, shows the automatic segmentation of the GCL for patient P04 who does not exhibit macula oedema. 

This is shown as a comparison against the three patients (P01, P08 and P09) who do exhibit macula oedemas, shown as black ‘bubble-like’ areas 

within the retinal layers. GCL segmentation is denoted by the cyan and purple horizontal lines following the contour of the retina. The large 

oedema in patient P01 has resulted in this segmentation not capturing the GCL particularly over the central macula, in both eyes. However, 

compared with patients P08 and P09, whilst they also show macula oedemas, the automatic segmentation has been able to follow the contour of 

the retina to provide an accurate thickness of the GCL. As a result, patient P01 was removed from subsequent analysis due to inaccurate retinal 

segmentation whilst data from patients P08 and P09 remained.   
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Figure 11: Macula ganglion cell layer (GCL) thickness for the worse and better seeing eye by ETDRS location. A: Total macula GCL thickness, 

averaged across the 1mm, 3mm and 6mm diameter ETDRS locations. B: Central macula GCL thickness calculated as an average of the 1mm and 

3mm diameter ETDRS locations. C: Peripheral macula GCL thickness representing the 6mm diameter ETDRS location. For all box plots, 

horizontal lines represent the median with upper and lower whiskers representing scores outside the middle 50%. Red crosses indicate the mean 

thickness value. Dots represent data from each participant. Horizontal dashed lines represent the normative mean taken from age-range matched 

sighted controls (Nieves-Moreno et al., 2017). *Significant at .001, 2-tailed. 
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Figure 12: Peripapillary retinal nerve fibre layer (pRNFL) thickness of the optic nerve head stratified by quadrant for the central vision loss 

group. Schematics above the line graph denote the quadrant of interest for each data set. The dashed line represents thickness values from each 

quadrant for the worse seeing eye with the dotted line representing the better seeing eye. An average of the two eyes is shown by the full orange 

line, with error bars representing the standard error of the mean. The black line represents normative mean values built into the Heidelberg SD-

OCT machine. Global thickness is calculated as the average of all nasal and temporal quadrants. *Significant at .001, 2-tailed. 
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Figure 13: Visual function results stratified by the worse or better seeing eye. A: Best corrected visual acuity results measured by the number of 

ETDRS letters read by each eye. B: Retinal sensitivity measures using the Nidek MP-1 microperimeter. For all box plots, horizontal lines represent 

the median with upper and lower whiskers representing scores outside the middle 50%. Red crosses indicate the mean value. Dots represent data 

from each participant. The dashed black horizontal line in A represents an ETDRS letter score of 84 letters, equivalent to 6/6 Snellen acuity or 0.0 

logMAR. *Significant at .001, 2-tailed.
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4.3.4. Anterior vs Posterior Visual Pathway 

Evidence of significant atrophy to the visual cortex with central retinal disease has been 

previously reported in this cohort of patients in Chapter 3, Section 3.3 of this thesis. This 

Chapter revealed significant reductions in cortical volume of the entire occipital cortex, 

with significant reductions in thickness in the occipital pole and calcarine sulcus, the 

cortical representations of the central and peripheral retina respectively. Here, I report 

on whether changes to the anterior visual pathway may be related to the significant 

atrophy of the posterior visual pathway via a series of Pearson correlations addressing 

three specific research questions.  

4.3.4.1. Does retinal structure predict cortical structure? To address this first 

question, three sets of Pearson correlations were conducted. The first set of correlations 

assessed whether changes to total macular and GCL thickness, global optic nerve head 

thickness and lesion size were significant predictors of reduced volume of the entire 

occipital cortex. The second set of correlations assessed whether changes to the central 

macula, including central macula across all retinal layers and central GCL thickness, 

projections from the central retina to the optic nerve head and lesion size were significant 

predictors of reduced cortical thickness in the occipital pole. This cortical region 

represents the lesioned retina in central retinal disease. The third and final set of 

correlations assessed whether changes to the peripheral macula, including peripheral 

macular thickness across all retinal layers and the GCL layer, projections from the far 

peripheral retina to the optic nerve head and lesion size were significant predictors of 

reduced cortical thickness in the calcarine sulcus. This cortical region represents the 

peripheral retina. Unfortunately, across all three sets of correlations, there was no 

significant relationship between any variable (Table 3). Therefore, in this cohort, there 

is no significant evidence that changes to the structure of the retina predict changes to 

the structure of the cortex.  

4.3.4.2. Does retinal structure predict visual function? To address this second 

question, three sets of Pearson correlations were conducted (Table 4). Set one assessed 

whether structure of the central macula, including central macular thickness of all retinal 

layers and thickness of the GCL predicted visual function of the central macula, BCVA. 

Results indicated a trending relationship between central macular thickness and BCVA 
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performance in the better seeing eye, suggesting the possibility that reduced central 

macular thickness in the better seeing eye, including all retinal layers, may be related to 

reduced BCVA (Table 4; Figure 14). It also suggests this may be a neural effect (i.e. 

fewer retinal cells = fewer cortical cells) rather than an inflammation effect (thicker 

retina = thinner cortex).  

Set two assessed whether structure of the total macula, including total macular 

thickness of all retinal layers and thickness of the GCL predicted visual function 

measured using retinal sensitivity. Changes to the total macula was used in this 

correlation since retinal sensitivity covered the central 20-degree diameter visual angle, 

capturing both the central and peripheral macula. Here, results revealed no significant 

relationship between any variable (Table 4). 

The third and final set of correlations assessed whether lesion size in the worse 

and better seeing eye could predict visual function from BCVA and retinal sensitivity. 

Whilst lesion size was not significantly correlated with BCVA in either eye, it was 

significantly correlated with retinal sensitivity in the worse seeing eye (Figure 15). This 

indicates that lesion size is a significant predictor of visual function, such that the greater 

the retinal lesion the poorer the visual performance.    

4.3.4.3. Does cortical structure predict visual function? To address this final 

question, two sets of Pearson correlations were conducted (Table 5). The first set of 

correlations assessed whether changes in cortical thickness of the occipital pole, the 

cortical representation of the central macula, can predict visual function measured from 

BCVA and retinal sensitivity. Results show that cortical thickness in the occipital pole 

was not significantly correlated with retinal sensitivity in either the better or worse 

seeing eye. However, cortical thickness was significantly correlated with BCVA in the 

worse seeing eye with results indicating a trend towards a significant relationship with 

the better seeing eye (Figure 16). To the best of my knowledge, this study is the first to 

report that reduced cortical thickness in the occipital pole significantly predicts reduced 

visual acuity in the worse seeing eye.     

The second set of correlations assessed whether changes in cortical thickness of 

the calcarine sulcus, the cortical representation of the peripheral macula, can predict 

visual function measured using BCVA and retinal sensitivity. Due to previous evidence 
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of significant cortical atrophy of the calcarine sulcus in this cohort (reported in Chapter 

3), it could well be that BCVA relies on intact structure throughout the visual cortex, not 

just the occipital pole. However, our results showed no significant correlation. 

Correlating cortical thickness in the calcarine sulcus with retinal sensitivity also revealed 

no significant relationship. 

4.3.4.4. Does bilateral disease duration predict retinal structure, visual 

function, or cortical structure? To address this final question, three sets of Pearson 

correlations were carried out (Table 6). The first set assessed whether bilateral disease 

duration can predict retinal structure, including total macular thickness, GCL thickness 

and global optic nerve head thickness. The second set assessed whether bilateral disease 

duration can predict visual function, including BCVA and retinal sensitivity. The third 

and final set assessed whether bilateral disease duration can predict cortical structure, 

including cortical volume and mean thickness of the occipital pole and calcarine sulcus. 

Across all correlations, the only significant relationship found was between bilateral 

disease duration and total macula GCL thickness in the better seeing eye (Figure 17). 

This indicates that the longer the disease duration, the thinner the GCL. This result 

supports previous literature showing that retinal remodelling occurs in nvAMD and that 

inner retinal layers become affected as nvAMD progresses (Beck et al., 2016; Martinez-

de-la-Casa et al., 2012; Zucchiatti et al., 2015). 

4.3.5. Summary of the anterior vs posterior visual pathway.  

To summarise this second stage of the results, this data reveal that retinal structure can 

predict visual function, such that the larger the lesion size, the worse the visual function, 

measured using both BCVA and retinal sensitivity. There is also a trending relationship 

suggesting that reduced macular thickness across all retinal layers from the better seeing 

eye, may predict BCVA in both eyes, although this did not reach significance. 

Excitingly, this data also revealed that cortical structure can predict visual function, 

specifically, reduced cortical thickness in the occipital pole significantly predicts 

reduced BCVA in the worse seeing eye, with a trending relationship with BCVA in the 

better seeing eye. This indicates that BCVA does not rely only on efficient functioning 

of the macula but also on maintained structure of the visual cortex, specifically the 

occipital pole. The final relationship found that bilateral disease duration significantly 
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predicts retinal structure, such that greater disease duration is significantly correlated 

with reduced GCL thickness in the better seeing eye only.  

 

Table 3: Pearson correlation and significance values assessing whether retinal 

structure predicts cortical structure. 

 Worse Seeing Eye Better Seeing Eye 

 R (p) R (p) 

Volume     

Total macular thickness (N = 11) .467 (.174) .241 (.475) 

Total macula GCL thickness (N = 13) .324 (.304) .003 (.992) 

Global ONH thickness (N = 13) .148 (.647) .450 (.123) 

Lesion size (N = 14) .157 (.593) -.376 (.185) 

Mean Thickness – Occipital Pole     

Central macular thickness (N = 11) .036 (.922) .400 (.223) 

Central macula GCL thickness (N = 13) -.134 (.677) .274 (.364) 

Av. Temporal ONH thickness (N = 13) .049 (.880) -.135 (.660) 

Lesion size (N = 14) -.135 (.646) -.322 (.261) 

Mean Thickness – Calcarine Sulcus     

Peripheral macular thickness (N = 11) -.126 (.729) .426 (.192) 

Peripheral macula GCL thickness (N = 13) .119 (.712) .005 (.988) 

Av. Nasal ONH thickness (N = 13) -.165 (.609) .202 (.509) 

Lesion size (N = 14) .003 (.991) -.452 (.104) 

*GCL: Ganglion Cell Layer; ONH: Optic Nerve Head  
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Table 4: Pearson correlation and significance values assessing whether retinal 

structure predicts visual function. 

  BCVA RS 

  WE BE WE BE 

Central macular thickness 

(N = 11) 

WE 
R = .056 

p = .878 
- - - 

BE - 
R = .543 

p = .084 
- - 

Central macula GCL 

thickness (N = 13) 

WE 
R = -.005 

p = .988 
- - - 

BE - 
R = .286 

p = .343 
- - 

Total macular thickness  

(N = 11) 

WE - - 
R = .023 

p = .950 
- 

BE - - - 
R = .101 

p = .769 

Total macula GCL 

thickness (N = 13) 

WE - - 
R = .010 

p = .975 
- 

BE - - - 
R = .226 

p = .459 

Lesion Size (N = 14) 

WE 
R = -.387 

p = .172 
- 

R = -.638* 

p = .014 
- 

BE - 
R = .375 

p = .186 
- 

R = .437 

p = .119 

*BCVA: Best Corrected Visual Acuity; RS: Retinal Sensitivity; WE: Worse seeing eye; 

BE: Better seeing eye; GCL: Ganglion Cell Layer 
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Figure 14: Scatterplot showing the trending relationship between central macular 

thickness, including all retinal layers, and visual function measured using BCVA for the 

better seeing eye. Dots represent data from each individual participant with the dotted 

line representing the line of best fit. Pearson R and significance values indicate the 

trending relationship between these variables.   
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Figure 15: Scatterplot showing the significant correlation between lesion size and visual 

function measured using retinal sensitivity, for the worse seeing eye. Dots represent data 

from each individual participant with the dotted line representing the line of best fit. 

Pearson R and significance values indicate the significant relationship between these 

variables.    
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Table 5: Pearson correlation and significance values assessing whether cortical 

structure predicts visual function. 

 BCVA RS 

 WE BE WE BE 

Mean Thickness – Occipital Pole 

(N = 14) 

R = .576*  

p = .031 

R = .513 

p = .061 

R = .275  

p = .341 

R = .065 

p = .825 

Mean Thickness – Calcarine 

Sulcus (N = 14) 

R = .332 

p = .246 

R = .142 

p = .629 

R = -.093 

p = .752 

R = -.196 

p = .501 

*Significant at .005, 2-tailed; BCVA: Best Corrected Visual Acuity; RS: Retinal 

Sensitivity; WE: Worse seeing eye; BE: Better seeing eye 
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Figure 16: Scatterplot showing the relationship between cortical thickness in the 

occipital pole and visual function measured using BCVA. BCVA for the worse seeing 

eye is plotted in dark grey and the better seeing eye plotted in light grey. Dots represent 

data from each individual participant with the dotted line representing the line of best 

fit. Pearson R and significance values indicate the significant relationship between 

BCVA from the worse seeing eye and the trending relationship with BCVA from the 

better seeing eye.   
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Table 6: Pearson correlation and significance values assessing whether bilateral 

disease duration predicts retinal structure, visual function, or cortical structure. 

  Bilateral Disease Duration 

Retinal Structure:    

Total macular thickness (N = 11) 

W R = -.148 p = .683 

B R = -.344 p = .300 

Total macula GCL Thickness (N = 13) 

W R = -.140 p = .665 

B R = -.804** p = .001 

Global ONH Thickness (N = 13) 

W R = .367 p = .240 

B R = .003 p = .992 

Lesion size (N = 14) 

W R = .426 p = .147 

B R = .223 p = .443 

Visual Function (N = 14):    

BCVA 

W R = -.083 p = .777 

B R = .073 p = .805 

Retinal Sensitivity 

W R = -.149 p = .611 

B R = -.127 p = .666 

Cortical Structure (N = 14):    

Cortical Volume  R = -.168 p = .566 

Mean Cortical Thickness – Occipital Pole  R = .223 p = .444 

Mean Cortical Thickness – Calcarine Sulcus  R = -.027 p = .927 

*BCVA: Best Corrected Visual Acuity; WE: Worse seeing eye; BE: Better seeing eye; 

GCL: Ganglion Cell Layer; ONH: Optic Nerve Head 
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Figure 17: Scatterplot showing the significant correlation between bilateral disease 

duration and total macula GCL thickness of the better seeing eye, indicating that 

bilateral disease duration can predict retinal structure. Dots represent data from the 

better seeing eye from each individual participant with the dotted line representing the 

line of best fit. Pearson R and significance values indicate the significant relationship. 
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4.4. Discussion 

This study has shown that with central retinal disease, there are significant changes to 

the structure of the retina, evidenced by reduced macular thickness across all retinal 

layers, with a specific thinning of the ganglion cell layer (GCL) and thinning of 

projections from central retina to the optic nerve head. Central retinal disease is also 

associated with reduced visual function, with a significant reduction in best corrected 

visual acuity (BCVA) in both the worse and better seeing eye. In the cohort tested here, 

results indicate significant relationships between the anterior and posterior visual 

pathway such that retinal structure and cortical structure predict visual function and 

bilateral disease duration predicts retinal structure.  

In line with previous research, this data reveals significant reductions in macular 

thickness across all retinal layers. In addition to these previous reports we show that 

whilst thickness values were not significantly different between the worse or better 

seeing eye, total macular thickness averaged across the 1-6mm diameter ETDRS 

locations and central macular thickness, averaged across the 1 and 3mm diameter 

ETDRS locations were significantly reduced in the better seeing eye only. However, 

peripheral macular thickness of the 6mm diameter ETDRS location was significantly 

reduced in both eyes.   

Nevertheless, in nvAMD, neovascularisation occurs due to subretinal or 

intraretinal fluid (Lim et al., 2012) which contaminates macular thickness. In this cohort, 

macular thickness is quite varied as the disease manifests differently in each patient, 

with some patients exhibiting active oedemas (Figure 8). This in turn could mask 

changes occurring to specific layers of the retina which may reflect thinning due to 

degeneration. Therefore, assessing changes to other retinal layers which are less 

contaminated by oedema, may provide more sensitive measures of retinal changes than 

macular thickness alone. This study assessed changes to the GCL and revealed 

significant thinning to the GCL in both eyes at all macula ETDRS locations, supporting 

previous research (Beck et al., 2016; Zucchiatti et al., 2015). This suggests that 

degeneration of the GCL may be occurring due to apoptosis, following reduced input 

from the photoreceptors. It may well be that GCL could be a more sensitive biomarker 

of disease progression than total macular thickness. 
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Morphological studies have investigated the trajectories of the retinal nerve fibre 

bundles from the optic nerve head demonstrating that foveal fibres from the central 

macula occupy a large portion of the temporal quadrant (Fitzgibbon & Taylor, 1996; 

Jansonius et al., 2009). Consequently, we should expect to find that central retinal 

disease due to nvAMD is associated with reduced pRNFL thickness particularly in 

temporal quadrants compared the nasal quadrants. Whilst thickness values did not differ 

significantly between eyes, compared to normative data there was a significant reduction 

in global pRNFL thickness, with specific thinning in the Inferior Temporal quadrant, 

consistent with previous research (Malania et al., 2017). This suggests that changes to 

the structure of the central macula may lead to changes in thickness of projections to the 

optic nerve head, indicating a progressive loss of neurons in both outer and inner retinal 

layers. 

As expected with this central retinal disease cohort, this study showed that visual 

function was also impaired in both the worse and better seeing eyes. In line with previous 

research, retinal sensitivity measured using microperimetry was reduced in both eyes 

(Cassels et al., 2017; Dinc et al., 2008; Vujosevic et al., 2011). BCVA was also 

significantly reduced from normal in both eyes, consistent with previous research 

(Airody et al., 2015; D. M. Brown et al., 2006a; Hanson et al., 2019; Rosenfeld et al., 

2006), with the worse seeing eye significantly impaired compared to the better seeing 

eye. This is consistent with previous research suggesting that despite an initial increase 

in BCVA following anti-VEGF treatment for nvAMD, long-term visual function 

continues to decline (Airody et al., 2015). 

The second stage of the results assessed the relationship between changes to the 

anterior and posterior visual pathway. Progression of central retinal disease due to 

nvAMD moves from the photoreceptor layer to more inner retinal layers including the 

GCL, which in turn projects to the visual cortex via the optic radiations. Investigating 

the relationship between the two visual pathways may address whether neuronal loss in 

one pathway can lead to neuronal loss in the other. Conversely, we may find that the 

loss of visual input to the anterior visual pathway alone may be sufficient to lead to 

cortical atrophy in the posterior visual pathway.  
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Assessing the anterior visual pathway first, this data reveal that retinal structure 

significantly predicts visual function, such that the larger the lesion size, the worse the 

visual function, measured using retinal sensitivity. There is also a trending relationship 

suggesting that reduced macular thickness across all retinal layers from the better seeing 

eye, may predict BCVA in the better seeing eye, although this did not reach significance. 

Finally, this data revealed that bilateral disease duration significantly predicts retinal 

structure, such that greater disease duration is significantly correlated with reduced GCL 

thickness in the better seeing eye only. This supports previous literature showing that 

retinal remodelling occurs in nvAMD and that inner retinal layers, such as the GCL, 

become affected as nvAMD progresses (Beck et al., 2016; Martinez-de-la-Casa et al., 

2012; Zucchiatti et al., 2015). 

Whilst we report no significant relationships between structural changes to 

anterior and posterior visual pathway, we did reveal that structure of the posterior visual 

pathway significantly correlated with visual function. Excitingly, this data revealed that 

reduced cortical thickness in the occipital pole significantly predicts reduced BCVA in 

the worse seeing eye, with a trending relationship with BCVA in the better seeing eye. 

Existing knowledge suggests that maintained structure of the central macula is essential 

to see in fine detail including BCVA (Lim et al., 2012). Importantly, however, the 

current study suggests that BCVA also relies on maintained structure of the visual 

cortex, specifically the occipital pole. Reduced BCVA may in fact be due to both retinal 

and cortical loss. To the best of our knowledge, this is the first study to report that BCVA 

is significantly predicted by cortical thickness in the occipital pole.   

In conclusion, this study demonstrates that in central retinal disease, visual 

function is significantly impaired as measured by retinal sensitivity and BCVA. There 

are also significant changes in retinal structure, with reduced macular thickness and 

macula GCL thickness. This is also reflected by a reduction in pRNFL thickness in the 

inferior temporal quadrant, implying reduced projections from the macula to the optic 

nerve head. Such structural changes may suggest that retinal degeneration may be 

occurring with long-term reduced input from the photoreceptors. Monitoring GCL 

thickness changes specifically in individuals without active oedemas may therefore be a 

more sensitive biomarker of disease progression.  
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We have shown significant relationships between different measures of the 

anterior visual pathway, such that bilateral disease duration predicts GCL thickness in 

the better seeing eye and large lesion size predicts visual function. Furthermore, the 

advantage of this study has been to address the relationship between changes to the 

anterior and posterior visual pathway in central retinal disease. Here we have shown, for 

the first time, that cortical structure predicts BCVA. What this study does not address is 

the order of these changes, for example, do reductions in retinal thickness result in 

impaired BCVA which then results in atrophy of the visual cortex or is impaired BCVA 

alone sufficient to cause atrophy of the cortex, and together these result in reduced 

thickness of the retina?  

Together, this information is important in future research into patient selection 

for vision restoration techniques. The ability to measure the impact of long-term vision 

loss on the extent of cortical atrophy and/or degeneration of the posterior visual pathway 

is vital as the success of such restorative devices relies on the posterior visual pathway 

remaining viable to process restored visual input.    
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Chapter 5 

What is the relationship between the anterior and posterior visual 

pathway in long-term peripheral retinal disease?  

 

5.1. Introduction 

Following on from Chapter 4, which focused on the relationship between the anterior 

and posterior visual pathway in central retinal disease, this chapter will focus on those 

relationships in a peripheral retinal disease known as retinitis pigmentosa (RP). RP is a 

form of hereditary retinal disease resulting from degeneration of rod and cone 

photoreceptors. Rod photoreceptors mediate achromatic vision in dim light (e.g., 

starlight or moonlight) whereas cone photoreceptors are important for colour vision and 

fine acuity in bright light (e.g., daylight) (Hartong et al., 2006). Rod and cone 

photoreceptor nuclei are found in the outer nuclear layer of the retina which is attenuated 

with RP (Hartong et al., 2006). Although the inner nuclear layer, ganglion cell layer and 

retinal nerve fibre layer remain well preserved (Figure 1), degeneration of these layers 

is often seen as the disease advances (Hartong et al., 2006). While some patients develop 

symptoms in childhood, others remain asymptomatic until mid-adulthood (Hartong et 

al., 2006). Typically, patients exhibit difficulties with dark adaptation and night 

blindness due to loss of rods, with a loss of the mid-peripheral visual field. As RP 

advances, far peripheral vision will be lost with the eventual development of tunnel 

vision, finally losing central vision (Hartong et al., 2006).     

As outlined in Chapter 4, visual function is often assessed via best corrected 

visual acuity (BCVA), using the Early Treatment Diabetic Retinopathy Study (ETDRS) 

vision chart (ETDRS, 1985). In contrast to central retinal disease, monitoring central 

visual function in peripheral retinal disease may not be as informative in diseases such 

as retinitis pigmentosa (RP), as often performance can remain normal whilst there is a 

small area of central macula preserved (Hartong et al., 2006). Assessments of the visual 

field such as the Humphrey Field Analysers (HFA) are therefore routinely used 

alongside BCVA in the management of peripheral retinal disease. These assessments 

have revealed that some patients exhibit midperipheral scotomas and some show 
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asymmetrical visual field loss with preservation of the central visual field (S. Grover et 

al., 1997; Sandeep Grover et al., 1998). However, there are also reports that progressive 

loss of visual function over an average 5-year period is associated with significant 

deterioration of the central 10-degree visual field (Hirakawa et al., 1999; Holopigian et 

al., 1996). This highlights the importance of assessing the whole visual field, even in 

retinal diseases primarily affecting peripheral visual field loss. 

Structural assessments of the retina are in line with those discussed in Chapter 4. 

High resolution images acquired using spectral domain optical coherence tomography 

(SD-OCT) can quantify total thickness changes across the retinal layers along with 

changes in peripapillary RNFL thickness (pRNFL) of the optic nerve head. In RP, 

reduced central retinal thickness (Hood et al., 2009; Rita Machado et al., 2017; Vámos 

et al., 2011), thought to potentially indicate cell loss, has been significantly correlated 

with reduced visual acuity (Y. J. Kim et al., 2013; Sandberg, Brockhurst, Gaudio, & 

Berson, 2005) however, increased central retinal thickness can also be present due to 

oedema (Sandberg et al., 2005). OCT has also enabled researchers to identify whether 

reductions are occurring to other layers of the retina which may be driving total retinal 

thickness reductions. Some reports have revealed a reduction in the ganglion cell layer 

(GCL) in RP (Humayun, Prince, et al., 1999; Santos et al., 1997; Stone, Barlow, Milam, 

Juan, & Milam, 1992; Vámos et al., 2011), indicating transneuronal degeneration 

whereas others have reported thickening (Hood et al., 2009; Yoon & Yu, 2018). Current 

reports on changes to peripapillary RNFL (pRNFL) thickness in RP are also 

contradictory, with reports of pRNFL thickening (Anastasakis et al., 2012; Hood et al., 

2009), pRNFL thinning (Anastasakis et al., 2012; Oishi et al., 2009; Walia et al., 2007) 

and pRNFL thickness within normal limits (Rita Machado et al., 2017). Therefore, there 

is some debate as to whether degeneration of multiple retinal layers and/or pRNFL 

thickness may be occurring with RP. 

The effects of RP on the posterior visual pathway are currently under-researched 

and remain unclear. Whilst previous reports are limited, there is evidence of atrophy of 

the visual cortex with reductions in cortical volume (Rita Machado et al., 2017). 

However, there are mixed results in terms of atrophy in the form of reduced cortical 

thickness, with some reporting thinner primary visual cortex (Castaldi et al., 2019) 

whilst other report no or minor changes (Cunningham, Weiland, et al., 2015; Ferreira et 
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al., 2017). Please see Chapter 3, section 3.1 for a more extensive review of MRI 

assessments of the posterior visual pathway in retinal disease.  

Whilst some of these neuroimaging studies have also reported on structural 

changes to the anterior visual pathway (Ferreira et al., 2017; Rita Machado et al., 2017), 

they have not established whether changes to the anterior and posterior pathways are 

correlated. For example, are changes to one eye alone driving potential changes further 

along the visual pathway? Consequently, to increase our understanding of the 

relationship between clinical and neuroimaging data, to potentially identify biomarkers 

of disease progression, this study aimed to observe the relationship between changes to 

the anterior (the eye) and posterior (the brain) visual pathways in patients with long-term 

peripheral retinal disease. The objective of this study was to compare the worse and 

better seeing eye across several clinical assessments of the anterior visual pathway with 

data from the central retinal disease group discussed in Chapter 4. This data will also be 

compared with outcome measures showing potential atrophy of the posterior visual 

pathway outlined in Chapter 3, to see if there are any indications that changes to the 

anterior visual pathway may drive changes to the posterior visual pathway.   
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Figure 1: Layers of the human retina measurable using the Heidelberg Optical Coherence Tomography (OCT), and the cells contained within 

them. Know Your Retinal Layers (Heidelberg, 2016).
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5.2. Materials and Methods 

5.2.1. Participants 

Written informed consent was obtained from all participants. Ethical approval was 

granted by York Neuroimaging Centre Research, Ethics and Governance Committee 

and the NHS Research Ethics Committee (IRAS: 181823). This study followed the 

tenets of the Declaration of Helsinki. 

Details relating to recruitment numbers and dates, inclusion and exclusion 

criteria are outline in Chapter 4, Section 4.2. Of the final cohort of eighteen participants, 

fourteen of whom are discussed in Chapter 4, four patients were diagnosed and allocated 

into the peripheral retinal disease group (Table 1).  

  

Table 1: Demographics of participants recruited to the SYNAPTIC study diagnosed with 

peripheral retinal disease.  

Subject Gender 
Age 

(y, m) 
Diagnosis 

Worse Eye Better Eye Disease 

duration 

(y. m) 
OD / 

OS 
BCVA 

OD / 

OS 
BCVA 

P15 Female 63, 8 RP OD 45 OS 58 20, 2 

P16 Female 66, 11 RP OD 90 OS 90 3, 10 

P17 Male 26, 3 RP OD 1 OS 63 7, 4 

P18 Male 34, 3 RP OD 60 OS 71 23, 1 

*RP: Retinitis pigmentosa; OD: Oculus Dexter; OS: Oculus Sinister; BCVA: Best 

Corrected Visual Acuity. 

 

5.2.2. Design 

In this cross-sectional design, routine clinical assessments (outlined in Chapter 4, 

Section 4.2.3), took place no more than two weeks prior to the neuroimaging 

assessments of the posterior visual pathway detailed in Chapter 3, Section 3.2.3.  

5.2.3. Procedures 

All clinical assessments were completed at York Teaching Hospital NHS Foundation 

Trust during the participants’ routine clinical visit. Whilst this cohort completed the 
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same structural assessments outlined in Chapter 4, Section 4.2.3, the functional 

assessments differed slightly. Best corrected visual acuity (BCVA) was conducted under 

the same procedure described in Chapter 4, Section 4.2.3.1.1. However, this cohort did 

not complete microperimetry, which focuses on central retinal sensitivity. Instead, 

information was taken from a Humphrey Visual Field assessment completed within 12-

months of joining the SYNAPTIC study, providing a broader, more standardised 

measure of visual field sensitivity (see below).  

5.2.3.1. Visual Field Sensitivity. Visual field examinations had been completed 

by all four participants in the peripheral vision loss group within 12 months of joining 

the SYNAPTIC study. As it is known this disease progresses slowly, no new assessment 

was conducted, with data extracted from these existing assessments. Examinations had 

been carried out using the Swedish Interactive Threshold Algorithm (SITA) standard of 

the Humphrey Field Analyser (HFA) II (Carl Zeiss, Meditec, Dublin, CA, USA). Two 

participants (P15 and P17) had an existing examination using the central 10-2 threshold 

test (Figure 2A) whilst participants P16 and P18 had an existing examination using the 

central 24-2 threshold test (Figure 2B). Output measures from the examinations included 

mean deviation (MD) and pattern standard deviation (PSD) which were taken for both 

eyes for all participants. MD demonstrates the difference between the patient and age-

range matched normative values built into the HFA machine at tested points on the retina 

with one overall value. Negative values indicate visual field loss whilst positive values 

indicate above average visual fields. PSD records focal loss only resulting from the 

pathology in question whilst accounting for general reductions in vision caused by 

cataract, uncorrected refractive error and age-related reduced sensitivity. A high PSD 

indicates irregular vision and is a useful measure of disease progression. Retinal 

sensitivity (RS) of the central 10-degree radius visual field was also calculated using the 

visual sensitivity results from the HFA output from the central part of the 10-2 and 24-

2 threshold examinations (Figure 2). For both examinations, central retinal sensitivity 

was calculated from all values within the red hexagon on the numeric sensitivity map, 

denoting the central 10-degree visual angle. This was calculated for both eyes and 

allowed for a more direct (but approximate) comparison in visual field function between 

participants in the peripheral vision loss group, despite the different examinations 

completed. This method also allowed a more direct comparison between function of the 
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central retina between participants diagnosed with central (Chapter 4) and peripheral 

retinal disease.  

5.2.3.2. Lesion Size. Autofluorescence images of the central macular region 

were used to measure the size of the structural lesion in each eye for all participants 

(Figure 3). In this cohort, there were signs of retinal disease affecting both the peripheral 

and central retina, particularly for participant P17 (Figure 3). As a result, the lesion size 

for P17 was deemed to affect the entire retina captured with spectral domain optical 

coherence tomography (SD-OCT) and given a value of 60, the size of the whole screen 

minus the optic nerve head. For the remaining peripheral vision loss participants, 

scotoma size reflects the entire captured area (60mm2) minus the unaffected area shown 

in Figure 3. The border of the affected retina was traced using built-in software, with the 

resulting value showing the size of the affected area in mm2.  

5.2.3.3. Bilateral Disease Duration. Disease duration was calculated as the time 

at which each patient was diagnosed with bilateral peripheral retinal disease in years 

(Table 1).  

5.2.3.4. Analysis. Due to the small sample size diagnosed with peripheral retinal 

disease, no statistical analyses were carried out on these data. Instead, individual data 

were visually compared with normative data between the worse and better seeing eye 

following a similar rationale as that outlined in Chapter 4. This was determined by best 

corrected visual acuity for each participant (Table 1). Apart from disease duration, 

outcomes for all other clinical assessments were separated in relation to the worse and 

better seeing eye. This was to investigate the relationship between each eye and the 

indication towards volumetric atrophy of the entire occipital cortex outlined in Chapter 

3. Lesion size was not assessed in relation to other measurements of the anterior visual 

pathway as they each captured changes within the central macula whereas the lesion size 

refers to the extent of damage within the peripheral retina.
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Figure 2: Results from the Humphrey Field Analyser II. Visual field sensitivity maps from A: the central 10-2 examination for participants P15 

(top row) and P17 (bottom row) and B: the 24-2 examination for participants P16 (top row) and P18 (bottom row). Images on the left-hand side 

for each patient indicate the threshold of stimulus intensity detected in dB. The brightest intensity corresponds to 0dB, with normal sensitivity 

values around 30dB. The grey scale map on the right-hand side is a visual representation of the numeric map, with darker areas indicating poorer 

sensitivity to the stimulus. The red hexagons denote the central 10-degree radius visual field used to compare central retinal sensitivity across the 

peripheral vision loss participants. 
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Figure 3: SD-OCT autofluorescence images of the eight eyes diagnosed with peripheral vision loss. Left eyes are presented on the left-hand side 

with right eyes on the right-hand side. In all images, the extent of the retina affected by the disease falls outside of the yellow line, with the area 

inside the yellow line representing unaffected retina. The size of the lesion is therefore calculated as the total area of the window, minus the 

representation of the unaffected retina. The lesion for P17 was calculated as the full extent of the window, occupying both central and peripheral 

retinal locations.
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5.3. Results 

The following data will be compared between the worse and better seeing eye and 

published normative data. For those assessments which were carried out by the central 

retinal disease cohort, outlined in Chapter 4, data will be compared in terms of eye and 

disease type.  

5.3.1. Structural Assessments 

5.3.1.1. Macular Thickness. Macular thickness was assessed covering three 

categories; total macula thickness, calculated as an average of the 1mm, 3mm and 6mm 

diameter ETDRS locations, central macula thickness, calculated as an average of the 

1mm and 3mm diameter ETDRS locations, and peripheral macula thickness, the 6mm 

diameter ETDRS location. Mean total macula thickness was slightly less in the worse 

(292.9µm) compared to the better seeing eye (298.2µm). Compared against the 

normative mean of 317.5µm, two patients had thickness values above whilst two had 

thickness values below. Compared with the central retinal disease cohort, mean total 

macula thickness was comparable in both eyes (Table 2; Figure 4A). 

Mean central macula thickness was also less for the worse (301.1µm) compared 

to the better seeing eye (312.2µm), with two patients falling below the normative mean 

of 320.6µm. Compared against the central retinal disease cohort, central macula 

thickness was comparable in the worse seeing eye whilst slightly thicker in the better 

seeing eye (Table 2; Figure 4B).  

Finally, mean peripheral macula thickness was slightly greater for the worse 

(276.5µm) compared to better seeing eye (270.3µm) however, three out of four patients 

fell below the normative mean of 313.6µm. Compared to the central retinal disease 

cohort, mean peripheral macula thickness was reduced in both eyes (Table 2; Figure 

4C).    

5.3.1.2. Ganglion Cell Layer (GCL) Thickness. GCL thickness was assessed 

covering three categories; total macula GCL thickness, calculated as an average of the 

1mm, 3mm and 6mm diameter ETDRS locations, central macula GCL thickness, 

calculated as an average of the 1mm and 3mm diameter ETDRS locations, and 

peripheral macula GCL thickness, the 6mm diameter ETDRS location. Mean total 
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macula GCL thickness was slightly reduced in the worse (23.0µm) compared to the 

better seeing eye (25.4µm). Compared against the normative mean of 36.8µm, all 

patients fell below this value for the worse seeing eye whilst three out of four patients 

fell below for the better seeing eye. Compared to the central retinal disease cohort, mean 

total macula GCL thickness was comparable for both eyes (Table 2; Figure 5A). 

Mean central macula GCL thickness was also reduced for the worse (23.7µm) 

compared to the better seeing eye (26.8µm). Compared against the normative mean of 

40.2µm, all patients fell below this value for the worse seeing eye whilst three out of 

four patients fell below for the better seeing eye. Compared against the central retinal 

disease cohort, mean central macula GCL thickness was comparable in both eyes (Table 

2; Figure 5B).  

Finally, mean peripheral macula GCL thickness was slightly reduced for the 

worse (21.7µm) compared to better seeing eye (22.6µm). As with the other ETDRS 

locations, compared against the normative mean of 32.5µm, all patients fell below this 

value for the worse seeing eye whilst three out of four patients fell below for the better 

seeing eye. Compared to the central retinal disease cohort, mean peripheral macula GCL 

thickness was reduced for both eyes (Table 2; Figure 5C).    

5.3.1.3. Optic Nerve Head Thickness. Global optic nerve head thickness was 

calculated as the average of the following six quadrants: superior nasal, nasal, inferior 

nasal, superior temporal, temporal and inferior temporal. Results show that global 

thickness was greater for the worse (114.8µm) compared to better seeing eye (97.3µm), 

with both eyes thicker than the normative mean of 95.0µm. On average, global optic 

nerve head thickness was slightly greater in both eyes when compared against the central 

retinal disease cohort (Table 2; Figure 6). 

Next, the three nasal quadrants were assessed which represent projections from 

the peripheral retina affected in RP. Mean thickness for the Inferior Nasal quadrant was 

greater in the worse (101.8µm) compared to the better seeing eye (75.8µm), with both 

eyes falling below the normative mean of 103.0µm. Mean thickness for the Nasal 

quadrant was also greater in the worse (67.3µm) compared to the better seeing eye 

(59.5µm), with both eyes falling below the normative mean of 72.0µm. Mean thickness 

for the Superior Nasal quadrant was reduced in the worse (76.3µm) compared to the 
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better seeing eye (86.5µm), again with both eyes falling below the normative mean of 

102.0µm. As expected, mean thickness of each Nasal quadrant appears to be reduced in 

this cohort when compared against the central retinal disease cohort (Table 2; Figure 6). 

Finally, the three temporal quadrants were assessed which represent projections 

from the central retina. Mean thickness for the Inferior Temporal quadrant was greater 

in the worse (165.3µm) compared to the better seeing eye (123.0µm), with only the 

worse seeing eye greater than the normative mean of 135.0µm. Mean thickness for the 

Temporal quadrant was greater in the worse (156.5µm) compared to the better seeing 

eye (110.3µm), with both eyes greater than the normative mean of 72.0µm. Mean 

thickness for the Superior Temporal quadrant was reduced in the worse (129.0µm) 

compared to the better seeing eye (153.3µm), with only the better seeing eye falling 

above the normative mean of 130.0µm. Again, as expected, mean thickness of each 

Temporal quadrant appears greater in this cohort when compared with the central retinal 

disease cohort (Table 2; Figure 6).  

5.3.1.4. Lesion Size. Lesion size appears comparable between the two eyes, 

measuring 39.0 and 36.5mm2 for the worse and better seeing eyes, respectively. 

Compared against the central retinal disease cohort, whilst the lesion size was greater it 

must be noted that they capture different parts of the retina; lesion size for the central 

cohort mainly captures the central retina whereas for the peripheral cohort, the lesion 

occupies primarily the peripheral retina although the central retina may also be affected 

by disease (Table 2; Figure 3).   

5.3.2. Functional Assessments 

5.3.2.1. Best Corrected Visual Acuity. Best corrected visual acuity (BCVA) 

was reduced from normal (84 ETDRS letters) in both the worse (49) and better seeing 

eyes (70.5), revealing a degree of central retinal deficit. Compared to the central retinal 

disease cohort, BCVA was slightly better in both eyes (Table 2; Figure 7). 

5.3.2.2. Visual Field Sensitivity. Visual field sensitivity was measured using the 

Humphrey Visual Field Analyser and gave two output measures, mean deviation (MD) 

and pattern standard deviation (PSD). MD is an indicator of global visual field loss, with 

normal values ranging between 0 - -2dB; negative values indicating greater visual field 

loss (poorer vision). PSD is an indicator of localised visual field loss with larger values 
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indicating irregular vision. As expected, results show that visual function is consistent 

across the worse and better seeing eye, both in terms of MD (Worse Eye: Mean = -

28.5dB, SEM = 3.1dB; Better Eye: Mean = -28.8dB, SEM =2.7dB) and PSD (Worse 

Eye: Mean = 7.2dB, SEM = 2.2dB; Better Eye: Mean = 7.1dB, SEM = 2.0dB). This 

shows that all participants had extensive global visual field deficits, with large negative 

MD values (Figure 8). 

Additionally, retinal sensitivity (RS) of the central 10-degree radius visual field 

was calculated using data from the Humphrey examination, to allow a more direct 

comparison between retinal sensitivity obtained from the central retinal disease cohort 

described in Chapter 4. Here, results reveal that all participants diagnosed with 

peripheral retinal disease also had central retinal defects, with a marginal difference 

between the worse (9.7dB) and better seeing eyes (9.4dB). Compared against the central 

retinal disease cohort, retinal sensitivity was greater for both the worse and better seeing 

eye (Table 2; Figure 9).  

5.3.3. Summary of structural and functional retinal assessments. 

To summarise this first stage of the results, this small pilot dataset shows that macular 

thickness, including all retinal layers, is reduced in some patients but not all. Specifically 

assessing thickness of the macula GCL, all patients have reduced thickness in the worse 

seeing eye compared to the normative mean, whilst three out of four patients show 

reductions in the better seeing eye compared to the normative mean. Optic nerve head 

thickness across the nasal quadrants also appears to be reduced compared to both the 

normative mean and central retinal disease cohort, suggesting the possibility that 

projections from the peripheral retina are reduced. However, testing this hypothesis on 

a larger RP cohort is required to make a definitive conclusion. 

Whilst functional assessments of the anterior visual pathway confirm visual field loss in 

both eyes (PSD and MD outcomes) they also reveal reduced BCVA in both eyes in three 

out of four patients compared against normal. Retinal sensitivity is also reduced, albeit 

slightly greater than the central retinal disease cohort in both eyes. These data suggest 

that even in RP, a peripheral retinal disease, some patients may also have central retinal 

deficits.  
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Table 2: Mean and standard error of the mean (SEM) for the worse and better seeing eye across all assessments of the anterior visual pathway.  

  

Normative 

Mean 

Peripheral Retinal Disease Central Retinal Disease 

  Worse Seeing Eye Better Seeing Eye Worse Seeing Eye Better Seeing Eye 

  Mean (SEM) Mean (SEM) Mean (SEM) Mean (SEM) 

Macular thickness (µm):          

 

Total macula 317.6 292.9 (22.6) 298.2 (27.8) 298.3 (9.5) 285.2 (9.4) 

Central macula 320.6 301.1 (24.0) 312.2 (30.9) 305.6 (12.9) 285.4 (11.7) 

Peripheral macula 313.8 276.5 (25.0) 270.3 (27.7) 283.6 (6.0) 284.8 (5.6) 

GCL Thickness (µm):          

 

Total macula 36.8 23.0 (4.3) 25.4 (6.5) 26.2 (2.0) 24.3 (2.5) 

Central macula 40.2 23.7 (5.7) 26.8 (7.8) 26.4 (2.8) 23.6 (3.1) 

Peripheral macula 32.5 21.7 (3.2) 22.6 (4.4) 25.6 (1.3) 25.6 (1.9) 

Optic Nerve Head Thickness (µm):          

 Global 95 114.8 (12.8) 97.3 (10.4) 82.8 (3.8) 86.2 (3.8) 
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 Inferior Temporal 135 165.3 (12.3) 123.0 (11.7) 99.5 (6.4) 111.8 (6.2) 

 Temporal 72 156.5 (14.0) 110.3 (12.4) 60.8 (8.4) 68.5 (3.4) 

 Superior Temporal 130 129.0 (15.4) 153.3 (15.2) 122.3 (6.6) 117.0 (7.2) 

 Inferior Nasal 103 101.8 (12.0) 75.8 (11.2) 97.2 (7.7) 100.9 (8.2) 

 Nasal 72 67.3 (14.5) 59.5 (11.8) 66.8 (3.0) 63.9 (4.8) 

 Superior Nasal 102 76.3 (14.7) 86.5 (11.9) 90.5 (7.8) 94.0 (5.7) 

Lesion Size (mm2) - 39.0 (7.5) 36.5 (9.2) 22.8 (4.3) 19.8 (2.7) 

BCVA (# of ETDRS letters) 84 49 (18.5) 70.5 (7.0) 33.9 (7.5) 54.7 (5.2) 

Retinal Sensitivity (dB) - 9.7 (4.0) 9.4 (4.0) 5.2 (1.6) 5.2 (1.4) 

*BCVA: Best Corrected Visual Acuity; ETDRS: Early Treatment Diabetic Retinopathy Study  
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Figure 4: Macula thickness stratified by disease type for the better and worse seeing eye by ETDRS location. A: Total macula thickness, averaged 

across the 1mm, 3m and 6mm diameter ETDRS locations. B: Central macula thickness calculated as an average of the 1mm and 3mm diameter 

ETDRS locations. C: Peripheral macula thickness representing the 6mm diameter ETDRS location. CVL = Central vision loss. PVL = Peripheral 

vision loss. ND = Normative data from age-range matched sighted controls (Nieves-Moreno et al., 2017). Dark grey boxplots represent data for 

the worse seeing eye with light grey boxplots representing data for the better seeing eye. For all box plots, horizontal lines represent the median 

with upper and lower whiskers representing scores outside the middle 50%. Red crosses denote the mean value. Overlaid dots represent data from 

each participant.  
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Figure 5: Ganglion cell layer (GCL) thickness stratified by disease type for the better and wrose seeing eye by ETDRS location. A: Total macula 

GCL thickness, averaged across the 1mm, 3m and 6mm diameter ETDRS locations. B: Central macula GCL thickness calculated as an average 

of the 1mm and 3mm diameter ETDRS locations. C: Peripheral macula GCL thickness representing the 6mm diameter ETDRS location. CVL = 

Central vision loss. PVL = Peripheral vision loss. ND = Normative data from age-range matched sighted controls (Nieves-Moreno et al., 2017). 

Dark grey boxplots represent data for the worse seeing eye with light grey boxplots representing data for the better seeing eye. For all box plots, 

horizontal lines represent the median with upper and lower whiskers representing scores outside the middle 50%. Red crosses denote the mean 

value. Overlaid dots represent data from each participant.  
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Figure 6: Peripapillary retinal nerve fibre layer (pRNFL) thickness of the optic nerve head stratified by quadrant and disease type. Schematics 

above the line graph denote the quadrant of interest for each data set. The dashed lines represent thickness values from each quadrant for the 

worse seeing eye with the dotted lines representing the better seeing eye. The full line represents the average across the two eyes, with error bars 

representing the standard error of the mean. The orange lines represent data from the central retinal disease cohort whilst the purple lines 

represent data from the peripheral retinal disease cohort. Global thickness is calculated as the average of all nasal and temporal quadrants. 
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Figure 7: Best correct visual acuity for the worse and better seeing eye stratified by 

disease type. Dark grey boxes represent data for the worse eye, with light grey boxes 

representing the better eye. CVL = Central vision loss PVL = Peripheral vision loss. 

For all box plots, horizontal lines represent the median with upper and lower whiskers 

representing scores outside the middle 50%. Red crosses denote the mean value. 

Overlaid dots represent data from each participant. The dashed horizontal line 

represents an ETDRS letter score of 84 letters, equivalent to 6/6 Snellen acuity or 0.0 

logMAR 
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Figure 8: Visual Field Sensitivity obtained from the Humphrey Visual Field Analyser. 

Pattern standard deviation (PSD), in which larger numbers indicate irregular localised 

deficits, is plotted on the left-hand side. Mean deviation (MD), in which more negative 

values indicate greater visual field loss, is plotted on the right-hand side. Dashed lines 

indicate the range in which values are considered to represent normal vision (0 - -2dB). 

Dark grey boxes represent data for the worse eye, with light grey boxes representing the 

better eye. For all box plots, horizontal lines represent the median with upper and lower 

whiskers representing scores outside the middle 50%. Overlaid dots represent data from 

each participant. 
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Figure 9: Retinal sensitivity of the 10-degree radius central retina. CVL = Central 

vision loss. PVL = Peripheral vision loss. Smaller values represent reduced sensitivity. 

Dark grey boxes represent data for the worse eye, with light grey boxes representing the 

better eye. For all box plots, horizontal lines represent the median with upper and lower 

whiskers representing scores outside the middle 50%. Red crosses denote the mean 

value. Overlaid dots represent data from each participant. 
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5.3.4. Anterior vs Posterior Visual Pathway 

Chapter 3, Section 3.3. revealed lower mean cortical volume of the entire occipital cortex 

in participants with peripheral retinal disease compared to sighted controls. Whilst this 

difference could not be assessed statistically due to the small sample size, we want to 

see whether changes to the anterior visual pathway may be related to the observed 

differences in volume of the posterior visual pathway. No statistics have been carried 

out on this small data set; therefore, the following scatterplots will be discussed in 

relation to the following questions: 

5.3.4.1. Does retinal structure predict cortical structure? Of the four 

participants, one individual appears to have lower total macula thickness with lower 

cortical volume whereas the other three individuals have greater total macula thickness 

with greater cortical volume (Figure 10A). Although this data requires a larger sample 

size to calculate significance, it may suggest that cortical volume is positively related to 

total macula thickness.  

The relationship between macula ganglion cell layer (GCL) thickness and 

cortical volume appears to be similar across three participants in this cohort whilst one 

participant has greater GCL thickness values for both the better and worse seeing eye 

compared to the other three (Figure 10B).  As such, we cannot state whether a correlation 

exists between these two measures based on the sample size.  

Similarly to GCL thickness, the relationship between thickness of the 

peripapillary retinal nerve fibre layer (pRNFL) of the optic nerve head and cortical 

volume appears to be comparable between three participants, with one individual 

showing slightly greater pRNFL thickness with greater cortival volume (Figure 10C). 

However, a larger sample size is required to evaluate whether this data reflect a positive 

trending relationship.   

5.3.4.2. Does retinal structure predict visual function? Figure 11 shows the 

relationship between retinal structure and BCVA performance. Central macula thickness 

does not appear to correlate with BCVA performance for either the worse or better 

seeing eye (Figure 11A). However, central macula GCL thickness may correlate with 

BCVA performance, such that lower BCVA is associated with reduced GCL thickness. 

However, this is based on one participant in this cohort showing greater BCVA and 
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thicker GCL, therefore a larger sample size is required to establish significance (Figure 

11B). pRNFL thickness averaged across the three temporal quadrants appears to be 

comparable between participants, although there are differences with the better seeing 

eye for two participants having thinner pRNFL  (Figure 11C). 

Figures 12 - 14 show the relationship between retinal structure and visual field 

sensitivity. Central macula thickness does not appear to be correlated with pattern 

standard deviation, mean deviation or retinal sensitivity as measures from both eyes are 

comparable across the cohort (Figure 12). Interestingly, whilst central macula GCL 

thickness is similar for three participants, one participant shows thicker GCL with 

slightly greater visual field sensitivity. Although more data is required to confirm, this 

may suggest that reduced GCL thickness is associated with reduced (poorer) retinal 

sensitivity (Figure 13C). However, when considering visual field sensitivity measuring 

PSD and MD, there is no clear pattern in this small cohort. Finally, the relationship 

between pRNFL thickness averaged across the temporal quadrants and visual field 

sensitivity was assessed (Figure 14). However, there appears to be no strong relationship 

between either PSD, MD or retinal sensitivity measures from either eye. 

5.3.4.3. Does cortical structure predict visual function? Here, we report on 

potential relationships between cortical volume and visual function, measured using 

BCVA and visual field sensitivity. The data reveal a possible negative relationship with 

BCVA, such that greater BCVA is associated with reduced cortical volume, more so for 

the worse seeing eye (Figure 15A). However, this does appear to be driven by one 

participant, so further data would be required to make a definitive conclusion. There also 

appears to be no relationship between cortical volume and visual field sensitivity 

measuring PSD (Figure 15B), MD (Figure 16A) or retinal sensitivity. Yet, there is one 

patient who has reduced retinal sensitivity and reduced cortical volume, so again, further 

testing would be required to make a definitive conclusion (Figure 16B). 

5.3.4.4. Does bilateral disease duration predict retinal structure, visual 

function, or cortical structure? Figure 17 shows the relationship between disease 

duration and retinal structure. It appears that the two particpants with longer disease 

duration exhibited reduced total macula thickness and GCL thickness yet comparable 

global pRNFL thickness. Next, disease duration was assessed against visual function. It 
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appears there is no relationship between BCVA performance (Figure 18A), PSD (Figure 

18B), MD  (Figure 19A) or retinal sensitivity (Figure 19B). Finally, the relationship 

between disease duration and cortical structure is shown in Figure 20. It appears that 

longer disease duration  may be associated with reduced cortical volume of the entire 

occipital cortex however, there is no clear relationship with cortical thickness in the 

occipital pole or calcarine sulcus. Of the two patients with the longer disease duration, 

one has reduced cortical thickness and the other has greater cortical thickness in both 

cortical locations.  

5.3.5. Summary of the anterior vs posterior visual pathway. 

To summarise this second stage of the results, data suggest that retinal structure may 

predict cortical structure as reduced total macula thickness appears related to reduced 

cortical volume in one participant. The second assessment suggests that retinal structure 

may predict visual function, with reduced central macula GCL thickness related with 

reduced BCVA.The third assessment suggests that cortical structure may predict visual 

function with a possible negative relationship between reduced cortical volume and 

greater BCVA.. Finally, bilateral disease duration may predict cortical structure, such 

that longer disease duration may be associated with reduced cortical volume of the entire 

occipital cortex. It is important to note here that these suggested relationships would 

need testing in a larger sample size for a definitive conclusion. 
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Figure 10: Scatterplots showing the relationship between retinal structure and cortical structure. A: Total macula thickness plotted against 

cortical volume for the entire occipital cortex. B: Total macula ganglion cell layer (GCL) thickness plotted against cortical volume. C: Global 

peripapillary retinal nerve fibre layer (pRNFL) thickness plotted against cortical volume. For all plots, dark grey dots represent data from the 

worse seeing eye with light grey dots representing the better seeing eye. Dotted lines denote the line of best fit with the black horizontal line 

representing the normative mean. 
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Figure 11: Scatterplots showing the relationship between retinal structure and visual function measured using BCVA. A: Central macula thickness 

is plotted in A, central macula GCL thickness in B and pRNFL thickness averaged across the temporal quadrants in C. For all plots, dark grey 

dots represent data from the worse seeing eye with the light grey dots representing the better seeing eye. Dashed lines represent the line of best fit 

with horizontal black lines denoting the normative mean. 
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Figure 12: Scatterplots showing the relationship between central macula thickness and visual function measuring visual field sensitivity. A: 

Central macula thickness plotted against visual field sensitivity measuring pattern standard deviation. B: Central macula thickness plotted against 

visual field sensitivity measuring mean deviation. C: Central macula thickness plotted against retinal sensitivity. In all plots, dark grey dots 

represent data from the worse seeing eye with the better seeing eye shown in the light grey dots. Dashed lines represent the lines of best fit.  
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Figure 13: Scatterplots showing the relationship between macula GCL thickness and visual function measuring visual field sensitivity. A: Central 

macula GCL thickness plotted against visual field sensitivity measuring pattern standard deviation. B: Central macula GCL thickness plotted 

against visual field sensitivity measuring mean deviation. C: Central macula GCL thickness plotted against retinal sensitivity. In all plots, dark 

grey dots represent data from the worse seeing eye with the better seeing eye shown in the light grey dots. Dashed lines represent the lines of best 

fit.  
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Figure 14: Scatterplots showing the relationship between pRNFL thickness and visual function measuring visual field sensitivity. A: Temporal 

pRNFL thickness averaged across the three temporal quadrants is plotted against visual field sensitivity measuring pattern standard deviation. B: 

Temporal pRNFL thickness plotted against visual field sensitivity measuring mean deviation. C: Temporal pRNFL thickness plotted against retinal 

sensitivity. In all plots, dark grey dots represent data from the worse seeing eye with the better seeing eye shown in the light grey dots. Dashed 

lines represent the lines of best fit.  
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Figure 15: Scatterplots showing the relationship between cortical structure and visual function measuring BCVA and PSD. A: Cortical volume 

of the entire occipital cortex is plotted against BCVA, shown as the number of ETDRS letters. B: Cortical volume plotted against visual field 

sensitivity measuring PSD, in which larger values indicate poorer vision. For both plots, dark grey dots relate to data from the worse seeing eye 

with the light grey dots relating to the better seeing eye. Dashed lines represent the lines of best fit.  
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Figure 16: Scatterplots showing the relationship between cortical structure and visual function measuring mean deviation (A) and retinal 

sensitivity (B). In A, more negative values indicate greater visual field defect whilst in B, smaller values indicate poorer vision. For both plots, 

dark grey dots related to data from the worse seeing eye with the light grey dots relating to the better seeing eye. Dashed lines represent the lines 

of best fit. 
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Figure 17: Scatterplot showing the relationship between bilateral disease duration and retinal structure. Disease duration is plotted against total 

macula thickness in A, total macula GCL thickness in B and global pRNFL thickness in C. For all plots, dark grey dots related to data from the 

worse seeing eye with the light grey dots relating to the better seeing eye. Dashed lines represent the lines of best fit. 
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Figure 18: Scatterplot showing the relationship between bilateral disease duration and visual function. measuring BCVA (A) and pattern standard 

deviation (B). For both plots, dark grey dots related to data from the worse seeing eye with the light grey dots relating to the better seeing eye. 

Dashed lines represent the lines of best fit. 



 

 

Rachel L.W. Hanson | SYNAPTIC 
 

 
168 

 

Figure 19: Scatterplot showing the relationship between bilateral disease duration and visual function. measuring mean deviation (A) and retinal 

sensitivity (B). For both plots, dark grey dots related to data from the worse seeing eye with the light grey dots relating to the better seeing eye. 

Dashed lines represent the lines of best fit. 
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Figure 20: Scatterplot showing the relationship between bilateral disease duration and cortical structure. A: Disease duration plotted against 

cortical volume of the entire occipital cortex. B: Disease duration plotted against mean cortical thickness of the occipital pole (red) and calcarine 

sulcus (green). Dots represent data from each individual participant with dashed lines representing the line of best fit. 
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5.4. Discussion 

This study has reported on structural and function changes to the anterior visual pathway 

in four individuals diagnosed with peripheral retinal disease due to retinitis pigmentosa 

(RP). Data reveal reductions to total macula thickness and specifically ganglion cell 

layer (GCL) thickness, whilst reduced thickness across the nasal quadrants of the optic 

nerve head suggest a possible reduction in the number of projections from the peripheral 

retina to the optic nerve head. Functional assessments confirm visual field loss in both 

eyes, whilst reduced BCVA and retinal sensitivity suggest that these RP patients also 

exhibit central retinal deficits. Assessing relationships between the anterior and posterior 

visual pathway, these pilot data suggest that retinal structure may predict cortical 

structure and visual function, cortical structure may predict visual function and bilateral 

disease duration may predict cortical structure. Whilst statistical analysis on the data 

reported here is not possible, future investigations into these associations is required to 

identify their significance as new biomarkers of disease progression in RP. 

Consistent with previous work (Hood et al., 2009; Y. J. Kim et al., 2013; Rita 

Machado et al., 2017; Sandberg et al., 2005; Vámos et al., 2011), our data suggest that 

macula thickness is reduced in RP. Interestingly, macula thickness values fall in line 

with a cohort diagnosed with central retinal disease (described in Chapter 4), whilst 

falling below a normative mean of age-range matched sighted controls (Nieves-Moreno 

et al., 2018). It has been reported that such reductions in macula thickness in RP are 

driven by transneuronal degeneration of the ganglion cell (GCL) and inner plexiform 

layer (Vámos et al., 2011). Whilst we do not have data relating to changes to the inner 

plexiform layer, we are able to show that on average, central GCL thickness is reduced 

compared against the normative mean and against the central retinal disease cohort. This 

is in contrast to a recent report showing thickening of the GCL in less advanced RP, with 

GCL thickness matching sighted controls with advanced disease (Yoon & Yu, 2018). 

However, this report assessed the GCIPL (ganglion cell and inner plexiform layer) and 

the authors suggest that such increases could have actually reflected thickening of the 

IPL caused by neural and/or glial remodelling rather than thickening of the GCL.    

Reduced GCL thickness has major implications to recent technologies aimed at 

restoring visual input including retinal prosthesis, as even epiretinal prostheses, which 

do not rely on an intact outer retina, do rely on transmitting signals via intact GCL and 

RNFL. If significant GCL thinning does occur in RP, this could indicate transneuronal 
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degeneration of the retina following damage to the photoreceptor layer. As such, 

assessing changes in GCL thickness may therefore be a useful biomarker of disease 

progression in potential patients for such retinal prosthetic devices. 

Considering the current contradictory reports on changes to peripapillary RNFL 

(pRNFL) thickness in RP, our data show that pRNFL thickness is reduced across the 

three nasal quadrants. Whilst this confirms some previous reports (Anastasakis et al., 

2012; Oishi et al., 2009; Walia et al., 2007), it also contradicts others showing no 

changes (Rita Machado et al., 2017) and even thickening (Anastasakis et al., 2012; Hood 

et al., 2009). Nevertheless, compared against a cohort of patients with central retinal 

disease (see Chapter 4), our data reveal that pRNFL thickness is reduced across the nasal 

quadrants whilst thicker across the temporal quadrants. Reduced nasal pRNFL thickness 

may suggest a reduction in the number of projections from the peripheral retina to the 

optic nerve head, which would be somewhat expected in a peripheral retinal disease and 

based on previous morphological research (Fitzgibbon & Taylor, 1996; Jansonius et al., 

2009). Notwithstanding, evaluating statistical significance in the reductions observed in 

the current study is not possible and so we can only state these results are suggestive of 

reduced nasal pRNFL thickness. 

 As expected, functional assessments of the anterior visual pathway revealed 

impairment in visual field sensitivity, indicating that all participants had global and 

localised visual field deficits (S. Grover et al., 1997; Sandeep Grover et al., 1998). 

However, previous reports have also suggested that deficits often occur to more central 

retinal locations with RP over time (Hartong et al., 2006). Our data also suggest this is 

the case, as coupled with a reduced BCVA, we report reduced sensitivity of the central 

10-degree visual field (Hirakawa et al., 1999; Holopigian et al., 1996). Whilst these data 

are comparable with sensitivity of the central 10-degree in a cohort of central retinal 

disease patients, it worth noting that different assessments were used to obtain this data, 

Humphrey visual field analyser and Nidek MP-1 microperimetry, respectively. Despite 

this, it is important to note that even with a predominantly peripheral affecting disease, 

the central retina has become affected.  

Correlating changes to the anterior visual pathway with changes to the posterior 

visual pathway addressed four possibilities. Firstly, our data suggest that retinal structure 

may be predictive of cortical structure. We find that reduced total macula thickness is 

associated with reduced cortical volume of the entire occipital cortex in one of the four 
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participants. Secondly, our data suggest that retinal structure may also predict visual 

function, such that reduced central macula GCL thickness is positively related with 

reduced BCVA. Interestingly, our data did not indicate that reduced central macula 

thickness relates to reduced BCVA or visual field sensitivity, contrasting previous 

reports (Y. J. Kim et al., 2013; Sandberg et al., 2005). Thirdly, this data suggest that 

cortical structure may predict visual function in RP, albeit reduced cortical volume 

appears negatively related with and greater BCVA, contrasting previous reports which 

found a positive correlation with the extent of visual field loss (Rita Machado et al., 

2017). Finally, bilateral disease duration appears to predict cortical structure, such that 

longer disease duration may be associated with reduced cortical volume of the entire 

occipital cortex. It is important to note here that all the above suggested relationships 

would need testing in a larger sample size for a definitive conclusion. 

The main difference between the current study and previous reports cited with 

RP patients is the sample size. This current study included four RP patients, as such 

should be considered pilot data for further investigation. It is also important to note that 

each patient included in this current study exhibited different values across all clinical 

assessments. This highlights that RP is not a uniform retinal disease, but a collection of 

diseases that stem from different genotypes and present with different phenotypes 

(Hartong et al., 2006). Not only will the same retinal disease manifests differently across 

individuals but the patient sample in this current study were also of varying age and had 

the disease for different lengths of time. Whilst changes in macula and GCL thickness 

may be potential biomarkers of disease progression, it is important to note that such 

assessments are required on a patient-by-patient basis when evaluating the most efficient 

form of treatment.  

In conclusion, reduced retinal and GCL thickness appear to be possible 

predictors of atrophy of the posterior visual pathway in RP. Further research should 

assess the benefit of these measures as biomarkers of disease progression in larger RP 

cohorts. This is particularly important when considering retinal prostheses, as 

transneuronal degeneration of the GCL not only means that the retina has undergone 

irreversible changes, but this is fed back to the visual cortex of the brain.   
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Chapter 6 

Vision restoration via the Argus® II retinal prosthesis: How is the 

structure and function of primary visual cortex affected? 

 

6.1. Introduction 

The Argus® II epiretinal prosthesis system (Second Sight Medical Products, Sylmar, 

CA) was developed to provide electrical stimulation of the retina to induce visual 

perception in patients with retinal pathologies (Ahuja et al., 2011; Humayun et al., 2009). 

Since obtaining a CE Mark in 2011 and Food and Drug Administration (FDA) approval 

in 2013, the Argus® II system has been used as a commercial treatment option for 

retinitis pigmentosa (RP). Several clinical trials have reported benefits in patients’ 

performance with the device ON, including improvements in object location  (da Cruz 

et al., 2016; Luo et al., 2015), spatial-motor tasks (Ahuja et al., 2011), motion detection 

(Dorn et al., 2013), visual acuity (da Cruz et al., 2016), word identification (da Cruz et 

al., 2013) and significantly improved vision-related quality of life (Duncan et al., 2017). 

Considering the positive outcomes following implantation of the Argus® II in RP 

patients, it is important to assess whether the same level of response can be seen in other 

retinal pathologies.  

Age-related macular degeneration (AMD) is currently the leading cause of vision 

impairment in the developed world, affecting 12.2% of those aged 80 years or over in 

the UK (NICE, 2018), with an estimated 288 million people affected by the year 2040 

(W. L. Wong et al., 2014). A progressive form of blindness, AMD primarily affects the 

central retina which is responsible for high resolution vision such as reading, driving, 

face and object recognition. Of the two forms of AMD, neovascular AMD (nvAMD) is 

less common, but more advanced and treatable, whereas dry-AMD is the early and most 

common form, but currently untreatable. 

Structural and functional alterations to primary visual cortex following long-term 

vision deprivation from AMD have been discussed in the literature. Some reports reveal 

significant cortical atrophy, as evidenced by reductions in cortical thickness and volume, 

particularly in regions of the visual cortex retinotopically representing the lesioned retina 

(Aguirre et al., 2016; Boucard et al., 2009; Hanson et al., 2019; Hernowo et al., 2014; 
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Malania et al., 2017; Plank et al., 2011). Conversely, others have reported cortical 

atrophy in retinotopic representations of the intact retina but not the lesioned retina in 

AMD (Prins et al., 2016), whilst some have shown significant thickening in cortical 

representations of the intact retina, believed to be a compensatory phenomenon (Burge 

et al., 2016).  

Functionally, there is evidence both for (Baker et al., 2008, 2005; Dilks et al., 

2009, 2014) and against (Baseler, Gouws, et al., 2011; Smirnakis et al., 2005; Sunness 

et al., 2004) cortical reorganisation, debating whether the cortical representation of the 

lesioned retina, or lesion projection zone (LPZ), takes on new functions to process visual 

information from the intact peripheral retina. Some studies have shown stimulus-

synchronised responses in the LPZ, but only when patients perform a one-back task and 

not under passive viewing, and suggest that this is evidence of existing feedback from 

extrastriate visual areas due to task demands, rather than cortical reorganisation per se 

(Masuda et al., 2008, 2010).  

Critically, the success of a retinal prosthesis depends on the brain remaining 

viable, modality specific (i.e. responsive to visual input), and topographically stable to 

process visual information accurately when such signals are restored; however, the 

capacity of the adult human visual system to process restored visual input is uncertain. 

Whilst some research has shown only limited activity in primary visual cortex (V1) 

following vision restoration after 40 years of deprivation (Fine et al., 2003) others have 

revealed enhanced activity in V1 and the lateral geniculate nucleus (LGN) 17 months 

post-implantation of the Argus® II retinal prosthesis (Castaldi et al., 2016). Cross-modal 

plasticity (Noppeney, Friston, Ashburner, Frackowiak, & Price, 2005) can also occur 

following late-onset blindness (Sabbah et al., 2017), which may provide an obstacle if 

visual inputs are restored. Nevertheless, reports of gradual suppression of cross-modal 

plasticity in V1 have been suggested following implantation of the Argus® II retinal 

prosthesis (Cunningham, Shi, et al., 2015).  

Although these studies have reported on changes in brain macrostructure and 

visual responsiveness following retinal disease and restoration, very little is known 

about the neuronal changes that underpin them. Enhanced plasticity early in life (the 

‘critical period’) depends on the balance between excitation and inhibition (Hensch, 

2005). Animal models of congenital blindness have reported that reorganisation is 

driven by changes to the excitatory and inhibitory pathways that underlie development 
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on the occipital cortex, such that visual deprivation results in increased excitatory 

cholinergic pathways (Coullon et al., 2015; Zheng et al., 2014) with an attenuation of 

inhibitory GABAergic pathways (Benevento, Bakkum, & Cohen, 1995; Fosse, 

Heggelund, & Fonnum, 1989).    

Magnetic resonance spectroscopy (MRS) is a non-invasive method to measure 

metabolic changes in the human brain that can signal changes in cell physiology. 

Detectable via MRS, -aminobutyric acid (GABA) is a neurotransmitter involved in 

altering the excitatory/inhibitory balance mediating adult plasticity (Hensch & Fagiolini, 

2005). Research has shown that ocular dominance plasticity is triggered in response to 

reduced resting GABAergic inhibition, modulating the critical period (Lunghi, Emir, 

Morrone, & Bridge, 2015). Therefore, measuring GABA levels in visual cortex could 

be a sensitive indicator of plasticity following vision deprivation. Whilst studies have 

reported metabolic alterations following early blindness (Weaver et al., 2013), 

congenital blindness (Coullon et al., 2015) and glaucoma (Boucard et al., 2007), to the 

best of our knowledge, there is no evidence of metabolic changes before and after vision 

restoration. Changes in GABA concentrations, an indicator of cortical plasticity, will be 

of particular interest. 

The aim of this pilot study is to report on quantitative measures of brain structure 

and function in participants with dry-AMD before and after implantation with a retinal 

prosthesis. Our first objective is to investigate how restoration of visual inputs affect 

brain structure, hypothesising that visual areas may become thicker following successful 

restoration. Our second objective will address the effects of restoration to brain function. 

Following the theory outlined by Masuda et al. (Masuda et al., 2008) we would 

hypothesise that both active and passive conditions would result in activity in the cortical 

representation of the lesioned retina. Our third objective is to assess whether GABA 

levels in the brain before implantation can predict the success of retinal prosthesis 

restoring sight, hypothesising that reduced GABA within the visual cortex may indicate 

a reawakening of plasticity.  
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Figure 1: Argus® II retinal prosthesis system. External elements of the device include 

a transmitter coil, camera mounted onto the glasses and a video processing unit. 

Internal elements of the device include a 60-electrode array, receiver coil and 

electronics. 

 

6.2. Materials and Methods 

6.2.1. Participants 

Written informed consent was obtained from all participants in the study. This study 

followed the tenets of the Declaration of Helsinki with experimental protocols approved 

by the York Neuroimaging Centre, Research, Ethics and Governance Committee and 

the NHS Research Ethics Committee (IRAS: 171426, REC: 15/YH/0092, 

http://www.isrctn.com/ISRCTN52484108).  

Recruitment was organised by Manchester Royal Eye Hospital in accordance 

with eligibility criteria outlined for the first UK clinical trial for the use of a retinal 

prosthesis in patients with long-term vision loss due to dry-AMD (IRAS: 157253, 

ClinicalTrials.gov Identifier: NCT02227498). All five participants were given the option 

of also taking part in the current study; three participants from the cohort consented (P02, 

P03 and P04; all female; mean age = 74 years; age range = 69-78 years).  

All participants underwent surgical implantation of the Argus® II epiretinal 

prosthesis (Second Sight Medical Products, Sylmar, California, USA). The external 

components of the device include a video camera mounted on glasses with a transmitter 

coil and a video processing unit (VPU) whilst the internal elements include a 60-

electrode epiretinal array and receiver coil (Figure 1). The array is surgically inserted 

http://www.isrctn.com/ISRCTN52484108
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into the eye to stimulate the inner retina, mainly the ganglion and possibly the bipolar 

cells. The signal is transmitted via the normal visual pathway to the visual cortex in the 

brain (Humayun et al., 2003).  

Magnetic resonance imaging (MRI) took place in all participants 5-19 days 

before implantation with post-implantation assessments taking place ~13-months 

following device activation in participant P02 only. Of the remaining two participants, 

one was deceased, and one withdrew for non-study related reasons (Table 1). Therefore, 

the results shown will be in relation to participant P02 with whom pre- and post-surgery 

data exists. Post-implantation MRI adhered to published safety guidelines, with the 

device turned OFF (Weiland, Faraji, Greenberg, Humayun, & Shellock, 2012).  

Fourteen sighted, age-range matched control participants (7 females, mean age 

= 70.07 years, age range = 62.03 – 83.03 years) were scanned under the same structural 

MRI protocol. One participant from this control group also completed the same MRS 

procedure (Female, age = 64.07 years).  

6.2.2. Design 

In this longitudinal study, structural MRI, functional MRI and magnetic resonance 

spectroscopy (MRS) were acquired at a baseline assessment taking place prior to implant 

surgery of the Argus® II retinal device. Post-surgery assessments took place ~13-

months later and included structural and functional MRI. MRS was not completed as the 

device has not been safety tested under these imaging parameters.  

 

Table 1: Participant demographics. 
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6.2.3. Procedures 

All neuroimaging procedures were acquired using an eight-channel phased-array head 

coil tuned to 127.4 MHz, on a GE Healthcare 3 Tesla Signa HD Excite scanner. 

Participants were instructed to lie as still as possible during the scans. Foam padding 

was used around the head to minimise movement, with earplugs provided to protect 

against scanner noise. 

6.2.3.1. MRI. Structural MRI protocols were based on guidelines for the Human 

Connectome Project acquisition, adapted for a GE 3T scanner (Glasser & Van Essen, 

2011). Scans included one T1-weighted anatomical volume (TR, 7.78ms; TE, 2.98ms; 

TI, 600ms; voxel size, 1 x 1 x 1mm3; flip angle, 900; 256 x 256 x 176 matrix; FOV, 

256mm) and one T2-weighted anatomical volume (TR, 2500ms; TE, 84.93ms; voxel 

size, 1 x 1 x 1mm3; flip angle, 100; 256 x 256 x 176 matrix; FOV, 256mm) were acquired. 

6.2.3.1.1. Analysis. Cortical reconstruction, volumetric segmentation and 

myelin quantification were performed using the Human Connectome Project analysis 

pipeline (version 6.0), incorporating the Freesurfer analysis suite (version 6.0). The 

three-stage structural analysis pipeline includes alignment of T1w and T2w images, bias 

field correction, volume segmentation, reconstruction of white and pial surfaces and 

surface registration (Glasser et al., 2013). Three structural characteristics of the cerebral 

cortex (grey matter) were assessed: 1) cortical volume of the entire occipital cortex; 2) 

mean cortical thickness and 3) cortical myelination of the occipital pole and calcarine 

sulcus (Figure2). The rationale for these assessments is the same as that outlined in 

Chapter 2.  

6.2.3.2. fMRI. Before scanning commenced, the right eye in patient P02 was patched to 

test the left eye which would receive the retinal implant. Functional MRI (fMRI) was 

acquired using the following parameters: TR, 3000ms; TE, 29ms; voxel size, 2 x 2 x 

2mm3; flip angle, 900; 96 x 96 matrix; 37 axial slices; FOV, 192mm. In order to 

determine the region of cortex representing the intact and damaged retina, a flickering 

radial checkerboard stimulus, alternating between a central (6o radius visual angle) and 

peripheral annulus (6o - 15o radius visual angle) was presented for 12 seconds each at 

6Hz for 8 cycles (Figure 3). The main functional experiment consisted a one-back task 

performed under active and passive viewing conditions. For the active condition, an 

initial blank screen was followed by 12 blocks of stimuli in which 12 images (6 x faces, 



 

 

Rachel L.W. Hanson | SYNAPTIC 
 

 

179 

6 x scrambled faces) were presented for 8 seconds followed by a 2 second blank screen 

(Figure 3). Participants were instructed to complete a one-back task, pressing a response 

button when they thought an image had been presented consecutively. During the 

passive condition, participants were asked to observe the stimuli being presented without 

making any judgement. There were four runs altogether – two active and two passive.  

To determine the position and size of the stimuli to be presented during the main 

functional experiment, all participants completed a psychophysics test outside of the 

scanner until the they could see the whole image and distinguish between the gender and 

stimulus type (faces or scrambled faces; Figure 3). 

6.2.3.2.1. Analysis. Localiser data were analysed using FEAT (FMRI Expert 

Analysis Tool; (Woolrich, Ripley, Brady, & Smith, 2001)). At the first level, a high-pass 

filter cut-off with a period of 48s was used to correct for low-frequency drift, followed 

by MCFLIRT (Motion Corrected FMRIB’s Linear Image Registration Tool) motion 

processing, spatial smoothing with a Gaussian kernel of 4mm full-width half maximum 

(FWHM) and FILM (FMRIB’s Improved Linear Model) pre-whitening. Finally, a fixed-

effects analysis with cluster correction (Z > 2.3, p < 0.05) was performed. Data from the 

functional scans were also analysed using the above FEAT parameters, along with co-

registration to the individuals own high-resolution structural T1 image. For each 

condition (active and passive), contrasts were set up to compare each stimulus type 

(faces vs scrambled faces). The two active runs and the two passive runs were combined 

in a higher-level analysis and retained in the high-resolution space. This resulted in two 

final datasets: one active and one passive. The number of voxels within significant 

clusters of activation relating to each stimulus type, both under active and passive 

conditions (Figure 8), were extracted and compared pre- and post-surgery for patient 

P02 (Figure 9).   

6.2.3.3. MRS. Proton magnetic resonance spectroscopy (1H-MRS) was acquired using 

a single voxel, J-edited, MEGA-PRESS (MEshcher-GArwood Point RESolved 

Spectroscopy) sequence (R. a E. Edden, Intrapiromkul, Zhu, Cheng, & Barker, 2012) 

with the following parameters: TR, 1800ms; TE, 68ms; voxel size, 34.04 x 28.78 x 

24.08mm; volume, 23.59ml. The first acquisition took place with the voxel of interest 

(VOI) positioned in the occipital lobe of the right hemisphere whilst for the second 

acquisition the VOI was positioned in a control region within the frontal lobe right 

hemisphere (Figure 4). 
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6.2.3.3.1. Analysis. To assess whether inhibitory neurotransmitter levels in the 

brain before implantation could predict successful restoration of sight after implantation, 

GABA concentrations from two VOIs were assessed using Matlab version 8.5 and 

Gannet, the batch-processing tool for quantitative analysis of GABA-edited MRS 

(version 2.0) (R. A. E. Edden, Puts, Harris, Barker, & Evans, 2014). J-difference editing 

involves the subtraction of two experiments (obtained during a single acquisition) which 

treat the GABA spin system differently. The ON experiment applies frequency-selective 

editing pulses to GABA spins at 1.9ppm (parts per million) to refocus evolution of their 

coupling to 3ppm, the spins of interest. In the OFF experiment, no frequency-selective 

editing pulses are applied, so the coupling evolves for the duration of the TE. In both 

cases, the overlying creatine (Cr) signals remain the same whereas there is a different 

shape of the 3ppm multiplet. Therefore, subtraction of two experiments removes the Cr 

leaving a measurable GABA signal.  The five-stage analysis pipeline processes time-

domain MRS data into a frequency-domain GABA-edited spectrum, generates a mask 

of the MRS voxel in T1-image space, uses nonlinear least-squares fitting to integrate the 

edited GABA peak at 3ppm, derives grey matter and CSF voxel fractions finally 

calculating tissue-corrected GABA levels. 
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Figure 2: Structural MRI regions of interest (ROIs). A: Inflated medial surface of the 

left hemisphere showing the three ROIs. The entire visual cortex is represented by all 

coloured regions shown in blue including the cortical representations of the central 

visual field, the occipital pole, shown in red and the peripheral visual field, the calcarine 

sulcus, shown in green. B: Example cortical thickness map on an inflated medial surface 

of the left hemisphere. Cool colours represent cortical regions which are thinner than 

those of hotter colours, such as the visual cortex. C: Example myelin density map shown 

on an inflated medial surface of the left hemisphere. Hot colours represent cortical 

regions which have greater myelin density, such as the visual cortex.  
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Figure 3: fMRI paradigm. A: Functional localiser checkerboard stimulus for the central 

visual field on the left-hand side and the peripheral visual field on the right-hand side. 

B: Size and position of the stimulus for the main functional experiment was determined 

via psychophysics prior to scanning. C: Main functional experiment paradigm in which, 

following an initial blank screen, test blocks alternated between faces and scrambled 

faces, ending with another blank screen. 
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Figure 4: MRS voxel of interest (VOI) position. A: VOI placement for patient P02 

showing the VOI in the occipital cortex in the image on the left-hand side with the control 

VOI shown in the image on the right-hand side. B: VOI placements for the control 

participant. In both subjects, the VOI was placed in the right hemisphere of the brain.  

 

6.3. Results 

Statistical analysis has not been performed for any of the measures noted below. As only 

one participant, P02, completed both pre- and post-implantation assessments, data will 

be discussed in relation to a control where available.  

6.3.1. MRI. The first objective was to investigate how restoration of visual inputs 

affects brain structure. Results reveal that long-term vision loss due to AMD in patient 

P02 resulted in atrophy (shrinkage) of the occipital cortex. Volume of the entire occipital 

cortex was greatly reduced in P02 compared to age-matched sighted controls, by 22.21% 

(controls = 37,847mm3). However, there was a 1.11% increase in cortical volume for 

P02 post-surgery, increasing from 29,441.5mm3 to 29.772.5mm3 (Figure 5). Mean 

cortical thickness in both ROIs was also greatly reduced in P02 compared to controls, 

by 14.76% in the calcarine sulcus (controls = 2.50mm) and 44.19% in the occipital pole 
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(controls = 3.52mm). However, post-surgery measurements revealed a 1.85% increase 

in mean cortical thickness in the calcarine sulcus, increasing from 2.13mm to 2.17mm, 

and a 5.16% increase in the occipital pole, increasing from 1.97mm to 2.07mm (Figure 

6A). Similarly, myelin density was also greatly reduced in P02 compared to the controls, 

by 0.54% in the calcarine sulcus (controls = 1.46a.u) and 1.74% in the occipital pole 

(1.53a.u). Again, there were post-surgery increases of 0.5% in the calcarine sulcus, 

increasing from 1.45a.u to 1.46a.u and 0.6% in the occipital pole, increasing from 

1.50a.u to 1.51a.u (Figure 6B). It is important to note here, that despite the increases in 

cortical volume, thickness and myelin density observed in the patient post-surgery, due 

to the scan resolution of 1x1x1mm, such increases are likely representative of general 

fluctuations in the MRI scanner.  

6.3.2. fMRI. The second objective was to investigate how restoration of visual inputs 

affects brain function. The localiser scan was used to establish cortical representations 

from the central (intact) and peripheral (damaged) retina and how these may change in 

response to vision restoration. Data showed that pre-surgery, the significantly active 

cluster of activity relating to the central retinal projections contained 640 active voxels 

whereas 351 voxels were active in relation to stimulation of the peripheral retina. 

However, post-surgery, there were no clusters of activity in relation to either stimulus 

type (Figure 7).  

Pre-surgery data from the main functional task revealed there were two clusters 

of significant activation in response to the face stimuli and one active cluster in response 

to scrambled face stimuli, under both active and passive conditions (Figure 8). Overall, 

there were more active voxels within the two clusters responding to face stimuli under 

the active condition (Figure 9). There were also more active voxels within these clusters 

in the left hemisphere (Active: cluster 1 = 264 voxels, cluster 2 = 1571 voxels; Passive: 

cluster 1 = 154 voxels, cluster 2 = 1356 voxels) compared to the right hemisphere 

(Active: cluster 1 = 311 voxels, cluster 2 = 703 voxels; Passive: cluster 1 = 119 voxels, 

cluster 2 = 756 voxels). However, with the scrambled face stimuli, there were more 

active voxels in the significant cluster under passive conditions for both the left (Active 

= 254 voxels; Passive = 634 voxels) and right hemispheres (Active = 0 voxels; Passive 

= 42 voxels; Figure 9).    

Post-surgery, there was no significant cluster of activity under the active 

condition for either stimulus type (Figure 8). However, under passive conditions, there 
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was one significant cluster of activity in response to the face stimuli, activating 41 voxels 

within the left hemisphere (Figures 8 and 9). Despite the reduction in cortical activity 

post-surgery, it is worth noting that during the active condition patient P02 completed a 

one-back task with performance at 100%. The lack of post-surgery activation could 

possibly be due to distortions created by the implanted device affecting the analysis 

(Figure 10). However, it is unclear to what extent the observed distortion affects the 

occipital lobe in this patient. Another possible explanation could be that the device itself 

was implanted obscuring the remaining functional retina which subsequently impacted 

functional cortical responses. To confirm this, a detailed examination of the placement 

of the device would be required.   

6.3.3. MRS. Our third objective was to assess whether pre-surgery levels of GABA, 

considered an indicator of plasticity, could predict the success of retinal prosthesis 

restoring sight. Pre-surgery corrected GABA concentration in the voxel of interest 

located in the occipital cortex was 1.54% higher in patient P02 (5.35a.u) compared to 

the control participant C03 (5.27a.u) and 65.4% higher in the control voxel (P02 = 

13.88a.u, C03 = 4.80a.u; Figure 11). However, it is important to note that the placement 

of the control VOI in the patient did not match the control participant (see Figure 4). 

This change in location would have resulted in a different ratio of tissue, CSF and non-

brain matter which likely have contributed to the large difference in the GABA 

concentration measured. 
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Figure 5: Bar graph showing the cortical volume of the entire occipital cortex. The left-hand plot shows the cortical volume for patient P02 pre- 

and post-surgery with each subsequent bar representing an individual control participant. The plot on the right-hand side shows the cortical volume 

for patient P02 against an average of all control participants. 

 



 

 

Rachel L.W. Hanson | SYNAPTIC 
 

 

187 

 

Figure 6: Structural MRI by region of interest. A: Bar graph showing mean cortical thickness with cortical myelin density shown in B. Plots on the 

left-hand side show values for each ROI for patient P02 pre- and post-surgery with each subsequent bar representing an individual control 

participant. The plot on the right-hand side shows values for patient P02 against an average of all control participants. Values for the calcarine 

sulcus are represented by the green bars, with those for the occipital pole represented by the red bars. The horizontal dashed line specifies the break 

between patient P02 and the control participants. 
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Figure 7: Functional localiser results. A: Cortical activation to stimulation of the central visual field. B: Cortical activation of the peripheral visual 

field. Left-hand plots represent pre-surgery activation with post-surgery activation shown on the right-hand plots. Hot colours represent regions 

responding significantly to the stimulus.  
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Figure 8: Clusters of significant cortical activation during the fMRI procedure. Data on the left-hand side show significantly active clusters of 

cortical activity during “Active” runs, with the “Passive” runs shown on the right-hand side. From top to bottom, rows 1-3 relate to fMRI performed 

pre-surgery, with the final row beneath the dashed line relating to the fMRI performed post-surgery in patient P02. Rows 1 and 2 depict significant 

clusters (shown within the red circles) in relation to “Face” stimuli, whilst row 3 depicts the significant cluster activated in response to “Scrambled 

Face” stimuli. Data beneath the dashed line show no cortical activity under “Active” conditions for either stimulus type whilst there is a small 

cluster of activity under “Passive” conditions to “Face” stimuli.  
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Figure 9: Bar chart showing the number of voxels within the significant clusters of activity per stimulus type, pre- and post-surgery. Data are shown 

for the two stimulus types, “Faces” and “Scrambled Faces” (Scram). Black bars represent data under “Active” conditions for the left hemisphere 

(full black) and the right hemisphere (black dash). Grey bars represent data under the “Passive” conditions for the left hemisphere (full grey) and 

right hemisphere (grey dash).
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Figure 10: MRI artefacts from the Argus® II retinal prosthesis. Blue dashed circles 

highlight artefacts in the structural images on the left-hand side, a functional image in 

the middle and the proton density image on the right-hand side. 
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Figure 11: Bar chart showing corrected GABA 1H-MRS results comparing two voxels 

of interest, one located in the occipital cortex and a control voxel. Black bars represent 

corrected GABA concentrations for patient P02 whilst grey bars represent the control 

participant C03 

 

 

6.4. Discussion 

This feasibility study is the first to report on quantitative measures of brain structure, 

function and neurochemistry in a participant with dry-AMD before and after 

implantation with the Argus® II retinal prosthesis. Our results indicate that 13-months 

after implantation, there is a retinotopically specific increase of visual cortex structure, 

more so in the occipital pole, the representation of the lesioned retina. These structural 

changes were observed despite a decrease in stimulus-driven functional responses post-

surgery. Pre-surgery GABA levels were comparable to a sighted control participant thus 

reflecting a potential indicator of successful restoration. 
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Pre-implantation, our findings revealed substantial cortical atrophy resulting 

from long-term central vision loss. This atrophy was so great that the occipital pole, the 

cortical representation of the lesioned central retina was even thinner than the calcarine 

sulcus, the naturally thin cortical representation of the intact peripheral retina. 

Surprisingly, post-implantation data revealed an increase in cortical thickness in both of 

these cortical representations, although such increases may in fact represent fluctuations 

in the MRI scanner rather than physical cortical increase. Despite this, these regions 

remained substantially atrophied compared to sighted controls. Supporting previous 

research, these data highlight the profound effects long-term retinal disease has on the 

structure of visual cortex (Boucard et al., 2009; Hanson et al., 2019; Hernowo et al., 

2014; Malania et al., 2017). This is in stark contrast to the reported increase in cortical 

thickness in the occipital lobe of congenitally and early blind patients compared to 

sighted controls (Anurova, Renier, De Volder, Carlson, & Rauschecker, 2015; Bridge, 

Cowey, Ragge, & Watkins, 2009; Jiang et al., 2009; Park et al., 2009; Voss & Zatorre, 

2012).  

Previous research has shown that in AMD patients, stimulus-driven activity is 

observed in the occipital pole, the cortical representation of the lesioned retina, when 

performing a task compared with passive viewing conditions (Masuda et al., 2008, 

2010). The authors suggested this was evidence of feedback from extrastriate visual 

areas rather than evidence of reorganisation. Following this theory, we hypothesized that 

restoration of visual inputs due to the Argus® II would yield stimulus-driven activity in 

the occipital pole under both active (task) and passive conditions. Unfortunately, our 

data reveal that post-surgery, fMRI responses were diminished to all visual stimulation, 

regardless of condition (active vs passive task) or stimulus type (faces vs scrambled 

faces).  

These diminished post-surgery functional responses could not be explained by a 

complete reduction in vision over time. During the active conditions, the patient 

performed a one-bask to task in which performance remained at ceiling level both pre- 

and post-surgery. Consequently, could the diminished functional activity be related to 

the device itself? Although the Argus® II device has been reported as safe for MRI under 

certain conditions (Weiland et al., 2012), previous research has shown the presence of 

artefacts from the device (Cunningham, Shi, et al., 2015). Considering so few studies 

have been able to assess the potential for device-related artefacts distorting MRI 
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outcomes, further investigation would be required to establish the possibility of 

distortion effects on our data. A further explanation to be explored would surround the 

placement of the retinal device on the retina as this may have obscured functioning retina 

which subsequently affected the cortical responses measured here.  

Of course, the success of vision restoration techniques relies on the adult visual 

system being able to process re-established visual input. Whilst some researchers have 

reported on both structural (Boucard et al., 2009; Hanson et al., 2019; Hernowo et al., 

2014; Malania et al., 2017) and functional (Baker et al., 2005; Dilks et al., 2009; Masuda 

et al., 2008) changes to the cortex resulting from long-term vision loss, we do not fully 

understand the impact these changes have on vision restoration techniques. Previous 

research has suggested a reduction in GABAergic inhibition can reawaken plasticity 

(Bavelier et al., 2010; Hensch, 2005; Hensch & Fagiolini, 2005). Therefore, we wanted 

to assess the feasibility of measuring pre-surgery GABA levels within the occipital 

cortex as a potential indicator of restoration success. However, our results revealed that 

compared to an age-matched sighted control participant, patient P02 exhibited 

comparable GABA levels in the occipital cortex pre-surgery. Although it would be 

useful to measure GABA levels post-surgery and following use of the device, this was 

not possible due to the fact the Argus® II device has not been safety tested under this 

type of acquisition. 

A number of contributing factors should be taken into account when assessing 

the success of the Argus® II device in restoring vision. One important factor is the 

amount of time using the device. Anecdotal evidence from patient P02 reveals 

difficulties getting used to wearing the device. Patient P02 felt the cable of the device 

“got in the way”, causing problems in her normal day-to-day activities so she resorted 

to not using the device whilst out of her home. This resulted in the device only being 

used when at home watching TV. Patient P02 also discussed needing several further 

surgeries after the device was implanted due to complications with the initial surgery. It 

is currently unclear the extent these complications had in relation to the patients’ intact 

vision, and whether it resulted in a further reduction of visual input to cortex. However, 

we do know that these additional surgeries reduced the amount of time P02 was able to 

adjust to using the device before the 13-month post-surgery assessments took place. 

We conclude that obtaining structural, functional and neurochemical levels 

within the visual cortex before and after implantation with the Argus® II retinal 
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prosthesis is feasible in a patient with long-term vision loss due to dry-AMD. Whilst our 

results show a very modest increase in cortical thickness of the occipital cortex 13-

months post-surgery, substantial atrophy remained compared to sighted controls. 

Unfortunately, stimulus-driven responses were diminished post-surgery in this patient. 

It may well be that our ability to restore vision in this patient is limited by the fact that 

the visual cortex, specifically the occipital pole, was severely degraded pre-surgery due 

to long-term retinal disease. Surgical complications reducing the amount of time allowed 

to use the device may have also impacted potential improvements. 
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Chapter 7 

Conducting research in the NHS; Feasibility and participant feedback 

on the SYNAPTIC study 

 

7.1. Introduction 

The SYNAPTIC study, results of which have been outlined in Chapters 3 and 4, set out 

to examine the effects of long-term vision loss on the anterior and posterior visual 

pathway. Participants diagnosed with bilateral vision loss resulting from either central 

or peripheral retinal damage, or both, underwent clinical assessments of the anterior 

visual pathway which were compared with neuroimaging assessments of the posterior 

visual pathway. The aim of this study was to investigate associated changes to the 

posterior visual pathway following damage to the anterior visual pathway, determining 

if such changes 1) represent cortical reduction via a) atrophy: condensed cortex which 

remains plastic to restored visual input or b) degeneration: reduced cortical volume due 

to cell death and 2) are influenced by changes in the anterior visual pathway. 

The primary objective was to measure how the posterior visual pathway changes 

as a result of diminished visual input following long-term vision loss. The secondary 

objective was to measure changes to the anterior visual pathway following long-term 

vision loss and the relationship between changes in the brain and the retina. The third 

objective was to measure visual behaviour and its relationship with the anterior and 

posterior visual pathways.  

In this chapter, I will outline my experience of the application process for 

undertaking the SYNAPTIC study with York Teaching Hospital NHS Foundation Trust. 

I will cover the timeline of events leading up to the study opening, the recruitment 

window and reasons why participants decided not to take part in the study. The chapter 

will end with a summary of feedback from a subset of participants relating to their 

experience whilst taking part in the SYNAPTIC study and how this information could 

be used when designing future research studies.  
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7.2. Applying for NHS ethical approval 

Once the basic outline of the study has been decided, the application process can begin. 

All steps within this process are highlighted in Figure 1. There are a number of different 

teams and systems involved in applying to complete a basic science project within the 

NHS, including the local Research and Development (R&D) team at the NHS Trust, 

University and Trust sponsors, the Health Research Authority (HRA), the Clinical 

Research Network (CRN) and the Integrated Research Application System (IRAS). All 

information below is taken from my experience in gaining ethical approval to conduct 

the SYNAPTIC study. 

The first stage involved creating a set of study documents which outline the 

whole study; rationale, aims, objectives, participant groups, information sheets, consent 

forms, list of procedures and a complete protocol. Liaising with the R&D team at York 

Teaching Hospital NHS Foundation Trust (York Teaching Hospital) was extremely 

useful at this stage as they have template documents which can be used if this is your 

first application. This step of the process took 4 months to complete for SYNAPTIC. All 

study documents were then forwarded for assessment by the R&D team at York 

Teaching Hospital for clarity of information. Upon receiving feedback from R&D, study 

documents were edited with the final versions considered suitable to submit along with 

the IRAS application at the end of October 2017.  

Once the application has been received at IRAS, it is initially reviewed by the 

HRA who decides whether or not the application requires a face-to-face meeting. In this 

instance, HRA decided that SYNAPTIC would benefit from a face-to-face meeting 

which was scheduled for early February 2018. During the meeting, key members of the 

research team discussed the study and all supporting documents with a panel of 10-12 

lay and expert members. The panel ensure that all information in the supporting 

documents will be clearly understood by potential participants. Following this meeting, 

the panel suggested minor edits to some SYNAPTIC documents to increase clarity. 

These amendments were considered satisfactory and HRA approval was granted in April 

2018. 

As soon as the NHS grants ethical approval, additional ethical approval from the 

York Neuroimaging Centre at the University of York was required in order to complete 

the neuroimaging aspect involved in the SYNAPTIC study. Copies of all study 
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documents and approval notifications were submitted to the York Neuroimaging Centre 

Research and Ethics Committee with approval granted on the 23rd May 2018.  

The final stage in the application process is to obtain approval from the R&D 

team at York Teaching Hospital confirming capacity and capability for the site to 

conduct this project. Once this is approved the study is activated with a green light, 

indicating recruitment can commence. For SYNAPTIC, this was issued on the 29th May 

2018. 

 

7.3. Recruitment  

Following study activation (green light issued), there is a 75-day window to recruit the 

first participant to the study. For SYNAPTIC, this occurred within 15 days, with the first 

participant consenting on the 13th June 2018 (Table 1).  

The planned recruitment window was due to close on 1st October 2019 which 

left 17 months to recruit the target of 20 participants. Due to unforeseen delays obtaining 

the magnetic resonance spectroscopy (MRS) protocol, recruitment had to be postponed. 

The SYNAPTIC protocol stated that all participants would be given the option of 

whether they would prefer to be scanned in one visit or over two visits taking place 

within the same week. Due to the MRS delays, this option could not be given. Therefore, 

it was decided to pause recruitment until the issues with the MRS protocol were 

resolved. Recruitment commenced again in November 2018, following a 6-month pause. 

This left 11 months to recruit the target of 20 participants. A breakdown of recruitment 

during this time is outlined in Table 1. 

Participants were recruited to one of two groups based on a diagnosis of either 

central or peripheral vision loss, with an initial aim to recruit 10 participants to each 

group. Recruitment to the central vision loss group went relatively smoothly. The nature 

of the macular degeneration treatment clinics at York Teaching Hospital meant there 

were around 200 patients over 4 clinics each week. Recruitment focusing on the central 

vision loss group lasted 4 months, from November 2018 to February 2019 when the 10th 

participant was recruited. 
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Figure 1: Timeline of the application process for conducting the SYNAPTIC study with 

York Teaching Hospital NHS Foundation Trust. 
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Table 1: Key dates during the recruitment window. 

Recruitment time point Date 

Study activation (green light issued) 29th May 2018 

First participant recruited 13th June 2018 

Recruitment paused 22nd June – 1st November 2018 

Last participant recruited 20th August 2019  

Recruitment window closed 1st October 2019 

Total recruitment period (activation – last participant 

recruited) 

448 days (approx. 14 months) 

  

Unfortunately, recruitment to the peripheral vision loss group was not as straight 

forward. Recruitment focusing on this group commenced in February 2019, initially 

recruiting from the glaucoma clinics which review around 50 patients, one day a week. 

Many of the patients identified as eligible based on eye data alone declined to take part 

in the study, resulting in recruitment of just 2 participants in 2-months. A discussion 

with the clinical supervisor resulted in a change in target group. Based on the inclusion 

criteria of a bilateral overlapping scotoma, it was decided that potentially a better group 

to target would be individuals diagnosed with retinitis pigmentosa (RP). Although this 

would not yield the intended target of 10 recruits due to the small number of patients 

regularly receiving check-ups in the eye clinic, it was decided that the change in patient 

group would still provide an interesting avenue for investigation. Due to the smaller 

recruitment target in this group, it was also decided to increase the number of 

participants recruited to the central vision loss group. 

The final breakdown of participants invited and consented to the study are 

outlined in Figure 2. From the 18 participants consented to the central vision loss group, 

14 completed the whole study. 2 participants withdrew before any data was collected 

and 2 participants were unable to perform the magnetic resonance imaging (MRI) 

element of the study. In the peripheral vision loss groups, 1 participant recruited with 

glaucoma was unable to complete the MRI elements with the second participants data 

being withdrawn due to anomalies identified in the MRI scan. Of the 5 participants 

recruited with RP, 4 participants completed the whole study with 1 participant 

withdrawing before data collection.      
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Figure 2: Breakdown of the number of participants approached to join the SYNAPTIC 

study stratified by disease type. The final cohort size is denoted by the last box in each 

column, outlined in bold. 

 

7.4. Reasons participants declined to take part 

In total, 88 patients were approached to join the SYNAPTIC study, however 49 patients 

declined to take part (Figure 2). In an open-ended question, all patients were asked to 

expand on why they chose not take part in the study if they were willing to provide this 

information. It was interesting to assess the reasons behind this large number of declines 

to understand if the reasons were due to the study design or something else as this 

information could be used when designing future studies to help improve recruitment 

rates. Reasons why patients declined to join the study have been highlighted in Figures 

3 and 4, separated by the group they would have been allocated to. 
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Those participants approached to join the central vision loss group, the most 

common reason why participants declined to take part was due to their ineligibility to 

undergo an MRI with 31% of patients stating this reason (Figure 3). This ranged from 

mobility issues, to not being able to lie down for the duration of the scan and having a 

pacemaker. The least common reason given by 15% of participants was that they felt 

they were attending the hospital for other problems quite frequently, so they felt they 

had enough appointments and did not want to take on more. When considering the 

participants approached to join the peripheral vision loss group, the most common 

reason given by 50% of those approached was that participants did not want to take part 

in research (Figure 4). Responses ranged from not wanting to know what happens in the 

brain, to simply not wanting to be part of research. 

Upon reviewing the reasons given by participants for not wanting to join the 

study, I do not feel that in this particular study, any changes to the design of the study 

would have yielded a greater number of recruits. The purpose of the SYNAPTIC study 

was to investigate the changes in the brain in response to long-term vision loss. MRI is 

a vital part of the study design allowing such investigations which could not be removed 

or replaced. Therefore, no changes could be made to appeal to those participants who 

declined due to not wanting an MRI.  

With regards to those who stated their reason for declining was due to the number 

of clinical visits to the hospital they already had, this study was designed with minimal 

need for increased or multiple appointments. The additional clinical assessments took 

place during the participants usual clinical appointment, with the only change being that 

their appointment was switched from a clinic on a Wednesday or Thursday (standard 

clinic days) to a Friday research clinic. Not only did this reduce the need for an additional 

visit but it also minimised any disruption to the extremely busy standard eye clinics. 

However, it is important to note this reason when designing future research studies to 

ensure that the need for multiple appointments is minimised where possible. 
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Figure 3: Pie chart showing the reasons participants who declined to take part gave 

when approached to join the SYNAPTIC study. Al responses are from those participants 

who were diagnosed with central vision loss. Each segment contains the response given 

by participants at the side along with the number of participants who gave that response. 
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Figure 4: Pie chart showing the reasons participants who declined to take part gave 

when approached to join the SYNAPTIC study. Al responses are from those participants 

who were diagnosed with peripheral vision loss. Each segment contains the response 

given by participants at the side along with the number of participants who gave that 

response.  

 

7.5. Participant Feedback 

The final part of the SYNAPTIC study asked participants to complete a PPI (Patient and 

Public Involvement) questionnaire (Appendix A). The aim of this was to gather feedback 

from participants involved in the SYNAPTIC research study between York Teaching 

Hospital and the University of York. The questionnaires took between 15-20 minutes to 

complete with the researcher asking the questions and writing down the participants 

responses. Depending on the length of responses, the questionnaire may have taken 

slightly longer to complete. Completing the qustionnaire was not a compulsary element 

of the study. From the entire SYNAPTIC cohort, seven of the eighteen participants 

completed the questionnaire. Those who didn’t complete the questionnire stated that this 
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“was their first study” and “didn’t have anything to complain about” and they “enjoyed 

taking part”.  

The questionnaire was split into six sub-sections which covered questions 

relating to why participants chose to join the study, whether enough information was 

given justifying why the study was taking place, confidentiality, knowing results of the 

study and their experiences of taking part in the SYNAPTIC study. Some questions 

required a response using a Likert scale ranging from 1-5, whereby 1 indicated strongly 

disagree and 5 indicating strongly agree. The final question in every section allowing 

participants to provide any additional information relevant to that section if they felt the 

need. 

On the whole, responses from all participants were very positive. One consistent 

theme amongst participants for why they chose to join the SYNAPTIC study was that 

they felt this was their was of repaying the NHS for the care they have received, with 5 

of the 7 participants also stating they wanted to help others: 

“I want to give something back for the treatment I have – try to repay the NHS. 

I’m glad I volunteered as it’s helping you and me” 

“Personally, I’m happy to be able to give back and help eye research. I’m also 

happy that I know I’m helping the NHS further their research” 

 

The second common theme amongst responses related to participant experiences of 

taking part in the SYNAPTIC study. Some participants commented that being recruited 

in the eye clinic at the hospital made them feel more confident in the study: 

“The great thing was the first appointment being at the hospital. This built up 

confidence that there was a link between the hospital and the university” 

Some participants also noted they felt taking part in the study was a valuable experience: 

“Yes. It’s made me realise what work is being done to find ways to help 

conditions” 

 

A third theme focused on the results of the study. All participants expressed the 

importance to them in knowing the results of the study, with all participants confriming 
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they had been informed the results would be shared once they are available by the 

researcher. However, feedback from the participants highlights that they feel the results 

need to be very clear in what it means for them: 

“Setting expectations is important. What is the importance of the results? What 

do they mean for me?” 

“What the results mean is more important than just knowing the results” 

 

The final theme relates to what should be focused on for future research studies; ideas 

for improvement. All participants stated they were not aware that York Teaching 

Hospital was a research active trust and that they were unaware there were research links 

between the hospital and the University of York. One participant also commented that 

the eye clinic does not advertise research studies clearly either, which is definitely an 

area to be improved:  

“Adverts and notices regarding what studies are available in the clinic and what 

studies would be appropriate for me to take part in. Possibility for optoms to 

encourage research and discuss with patients. 1-to-1 briefing in the hospital 

regarding information on research” 

Participants also stated they think it would be better to highlight the importance of 

research in how it links back to everyday life in the hospital, including what research 

studies may mean to them: 

“Research – I understand all of that. I don’t really understand how research 

links back to everyday life at the hospital though” 

 

7.6. Summary 

This chapter has summarised the overall process of applying to complete the 

SYNAPTIC study with York NHS, the recruitment process, reasons some participants 

declined to take part ending with feedback from the participants who completed the 

study.  

Applying to conduct scientific research within the NHS was a relatively straight 

forward exercise. Having completed this process for other research studies, I knew the 
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teams to liaise with from the start to make the whole process streamlined. From creating 

the study documents, to obtaining the green light to recruit the first participant, the 

application process took 14 months. There are areas which could have been speeded up 

however, this process was conducted alongside applying for a second research study 

within the NHS and whilst co-supervising a third study at the University.  

Once the green light had been activated, indicating the first participant could be 

recruited, it took approximately 14-months to recruit the SYNAPTIC cohort. The 

recruitment window lasted much longer than expected due to an unforseen problem with 

the MRI procedures. Once recruitment reopened, the main issue concerned recruiting 

participants diagnosed with peripheral vision loss. The initial plan was to target the 

glaucoma clinic. The problem faced was that patients with the inclusion criteria of a 

bilateral overlapping scotoma, were not seen regularly in clinic. The few patients who 

were seen in clinic unfortunately either were MRI ineligible or did not want to take part 

in research. This again haulted recruitment to this group until a decision was made to 

open the target participant group to include those diagnosed with retinitis pigmentosa. 

In future research, I would reconsider the inclusion criteria for participants diagnosed 

with peripheral vision loss, making sure not to restrict potential interested participants 

who fit the inclusion criteria.  

Collecting participant feedback via a questionnaire was an extremely valuable 

element of the SYNAPTIC study. Overall, feedback was very positive on participant 

experiences of the study and why they wanted to join in the first place. Some participants 

were also very helpful in giving suggestions on ways to improve research in the future. 

Therefore, I would encourage the use of PPI discussions during the development stage 

of future research studies, something which appears to be increasing in popularity with 

ophthalmology clinical research (Dean et al., 2017). Finally, increasing the information 

available in the eye clinic to inform patients of the different research studies available to 

them and who they can speak to about joining a project may increase uptake to research 

studies in the future. 
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Chapter 8 

Summary and Conclusions 

 

8.1. Summary 

Restoring visual input to those with profound blindness is of growing interest with 

techniques including gene and stem cell therapy (Acland et al., 2001; Beltran et al., 2015; 

Boye et al., 2013), antiangiogenics (D. M. Brown et al., 2006a; Rosenfeld et al., 2006) 

and retinal prostheses (Bloch, Luo, & da Cruz, 2019; Humayun, de Juan, et al., 1999; 

Marc et al., 2014; Weiland & Humayun, 2014). Whilst such techniques aim to restore 

visual input to the anterior visual pathway (the eye), it remains unclear what changes 

may occur to the function and structure of the posterior visual pathway (the brain) 

following long-term retinal disease. If changes to the posterior visual pathway result in 

an inability to retrieve and process re-established visual input, vision restoration will be 

unsuccessful. Consequently, understanding the impact of such changes is essential to 

ensure the success of the current and future restorative treatments.  

The data presented in this thesis identify that longstanding unilateral vision loss 

from neovascular age-related macular degeneration (nvAMD) results in significant 

atrophy (cortical shrinkage) of the posterior visual pathway. However, there is a window 

– at least within 3-4 months post-diagnosis – during which no detectable atrophy was 

present. This finding indicates that detrimental changes to the posterior visual pathway 

emerge relatively slowly. We also show that long-term bilateral nvAMD results in 

significant atrophy of the posterior visual pathway. However, with progressing central 

retinal disease, significant atrophy occurs in cortical representations of both the central 

and peripheral retina, namely the occipital pole and calcarine sulcus respectively 

Moreover, pilot data from a small cohort of patients with peripheral retinal disease due 

to retinitis pigmentosa (RP) suggest some patients show signs of atrophy whilst others 

do not, although a larger sample is needed to draw definitive conclusions. 

Understanding the driving force for cortical atrophy and whether such cortical 

reductions in fact reflect demyelination (reduced myelin) or degeneration (cell death) is 

essential in understanding the effects of retinal disease on the posterior visual pathway. 

Two novel magnetic resonance imaging (MRI) protocols were employed in this thesis 
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to quantify changes in cortical myelin levels and changes in neurochemical metabolites 

associated with cell death (apoptosis and necrosis). With central retinal disease, whilst 

there is a possibility that the visual cortex may remain plastic to restored visual input 

due to reduced GABA:Cr levels, mean levels of NAA:Cr were also reduced which may 

indicate neuronal loss/dysfunction. However, these changes were only showing trends 

rather than highlighting significant differences in this cohort. Nevertheless, with 

peripheral retinal disease, pilot 1H-MRS results indicate a trend towards evidence of 

cortical degeneration via apoptosis. This may suggest that the reduced cortical volume 

could be a result of cortical degeneration rather than cortical atrophy due to the lack of 

reduced mean thickness observed. However, confirming this hypothesis on a larger RP 

cohort is required. 

With no significant evidence of cortical degeneration or demyelination 

associated with either central or peripheral retinal disease, we suggest that the posterior 

visual pathway may remain viable to process re-established visual input, lending hope 

to the future of vision restoration techniques. Assessing this possibility in a candidate 

for implantation of the Argus II® retinal prosthesis, we reveal a very modest increase in 

cortical thickness of the occipital cortex 13-months post-surgery. Nevertheless, 

substantial atrophy remained compared to sighted controls. Unfortunately, stimulus-

driven responses were diminished post-surgery in this patient. It may well be that our 

ability to restore vision in this patient is limited by the fact that the visual cortex, 

specifically the occipital pole, was severely degraded pre-surgery due to long-term 

retinal disease.  

Identifying new biomarkers of disease progression is a fundamental element in 

ensuring the most suitable treatment options are provided to patients with retinal disease. 

This study highlights that macular thickness across all retinal layers can be contaminated 

by active oedemas, particularly with central retinal disease due to nvAMD. Therefore, 

assessing changes to specific retinal layers which may be less contaminated by oedema 

may provide a more sensitive biomarker of disease progression. With both central and 

peripheral retinal disease, this study shows significant reductions in thickness of the 

ganglion cell layer (GCL). With central retinal disease, such retinal changes are reflected 

in a reduction in peripapillary retinal nerve fibre layer (pRNFL) thickness in the inferior 

temporal quadrant, implying reduced projections from the macular to the optic nerve 

head. Conversely, in peripheral retinal disease, pRNFL thickness is reduced in more 
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nasal quadrants, suggesting there may be a reduction in projections from the far 

peripheral retina to the optic nerve head. 

Reduced thickness of the GCL in both central and peripheral retinal disease 

suggests that retinal degeneration due to apoptosis is occurring, following reduced input 

from the photoreceptors. Monitoring changes to GCL thickness should therefore be 

considered a biomarker of disease progression and specifically used when identifying 

suitable patients for restorative treatments such as the Argus II® system, an epiretinal 

implant that sits on the inner retina and thus relies on a functioning GCL and RNFL to 

carry signals to the brain.  

A further novelty of this thesis was the investigation of the relationship between 

changes to the anterior and posterior visual pathway, to establish possible predictors in 

one pathway to changes in the other. With central retinal disease, this study is the first 

to reveal that cortical structure predicts visual function. These results show that reduced 

thickness of the occipital pole, the cortical representation of the central retina, predicts 

reduced best corrected visual acuity (BCVA), suggesting that BCVA relies on 

maintained structure of both the anterior and posterior visual pathway.  

Whilst we reveal no evidence that retinal structure predicts cortical structure with 

central retinal disease, with peripheral retinal disease, data point towards retinal structure 

predicting cortical structure, specifically reduced total macula thickness and global 

pRNFL thickness predicting reduced cortical volume of the entire occipital cortex. 

Interestingly, this data also suggest that retinal structure may predict visual function, 

with reduced central macula GCL thickness related to reduced BCVA and retinal 

sensitivity. Finally, longer disease duration in this cohort also appears to relate with 

reduced cortical volume of the entire occipital cortex. However, with such a small 

cohort, larger numbers are required to confirm this result.   

With so many clinical measures from the anterior visual pathway, this study also 

allowed for investigations into the relationship between structure and function of the 

eye. In central retinal disease, this study reveals that within the anterior visual pathway, 

bilateral disease duration predicts GCL thickness in the better seeing eye and large lesion 

size predicts visual function. Similarly, with peripheral retinal disease, disease duration 

also appears to be related with both macular thickness and macula GCL thickness, such 

that the longer the disease, the thinner the macula. Moreover, it was only in the central 
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retinal disease cohort where the size of the lesion was found to significantly predict 

visual function, with larger lesions related with poor vision both in terms of BCVA and 

retinal sensitivity.  

In conclusion, whilst we reveal significant atrophy of the posterior visual 

pathway occurs with central retinal disease, testing a larger cohort of peripheral retinal 

disease patients is required for a definitive conclusion. With central retinal disease, 

although we find significant cortical atrophy in the retinotopic representations of the 

central and peripheral retina, namely the occipital pole and calcarine sulcus, we found 

no significant correlation between lesion size and cortical thickness in the calcarine 

sulcus. This suggests that the cortical atrophy observed in the calcarine sulcus is in fact 

a secondary effect of simply having a macula retinal lesion, evidence of disease 

progression on the brain. Whilst we found no significant evidence of cortical 

degeneration in either patient cohort, this pilot data did highlight possible trends which 

warrant further investigation. There was also no significant evidence of demyelination 

in either cohort, which may simply suggest that myelin density in the visual cortex is 

rather robust despite other structural cortical alterations resulting from disease.  

There are two exciting findings from this thesis. Firstly, reduced macula GCL 

thickness in both central and peripheral retinal disease suggest that retinal degeneration 

is occurring due to the loss of input from the photoreceptors. Considering that vision 

restoration techniques are being trialled in these two diseases currently, it is imperative 

to monitor changes to the GCL as retinal prostheses in particular rely on sending signals 

to the brain via the GCL. Secondly, reduced cortical thickness in the occipital pole is a 

significant predictor of reduced BCVA in central retinal disease. This suggests that 

maintaining structure of the occipital pole may be critical to maintain visual function 

and prevent BCVA declining in nvAMD. Together, this information is important in 

future research into patient selection for vision restoration techniques. The ability to 

measure the impact of long-term vision loss on the extent of cortical atrophy and/or 

degeneration of the posterior visual pathway is vital as the success of such restorative 

devices relies on the posterior visual pathway remaining viable to process restored visual 

input.    

 

8.2. Limitations and Future Work 
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There are a number of limitations throughout this thesis which could be 

overcome in future research. Throughout the chapters, it is important to note that 

measures of cognitive function were not obtained for any participant recruited as a 

sighted control. Future research collecting this information could include the measures, 

educational level and exercise level for example, as co-variates in statistical analyses. 

Including such information will help to determine whether cortical changes observed are 

related to natural aging or effects of the retinal disease.Secondly, when measuring 

cortical affects of retinal disease, it would be preferrable to capture the exact cortical 

representation of the retinal lesion, namely the lesion projection zone, via techniques 

such as retinotopic mapping. Whilst employing such techniques would provide the direct 

representation, it relies on the participants ability to fixate during the fMRI scan. Such 

an inclusion criteria will impact the number of participants recruited to the study and the 

extent of vision loss they experience. The nature of age-related macular degeneration is 

that the central visual field is affected which in turn impacts the participants ability to 

fixate on a centrally located target such as that used in retinotopic mapping. Recruiting 

participants with the ability to centrally fixate would prevent participants with advanced 

disease being able to partake in the study. However, not employing retinotopic mapping 

in this thesis allowed a wider recruitment pool of participants with varying levels of 

vision loss due to retinal disease. Future research would need to consider the pros and 

cons of using retinotopic mapping over the technique used in this thesis in relation to the 

potential number of eligible participants able to be recruited.  

Thirdly, an interesting addition to future research investigating retinal implants 

would be the inclusion of behavioural measures such as motion, colour and contrast 

discrimination. Such measures could provide further detail on potential behavioural 

improvements associated with use of the retinal device. Including these measures would 

also eliminate possible distortion effects which may be affecting the quality of the 

cortical responses, although additional research into this is required for a definitive 

conclusion. However, incorporating MRI into future retinal device studies with larger 

sample sizes is important to establish the possibility of cortical changes associated with 

long-term use of the implants. 
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Appendix A – PPI Questionnaire 

 

 

 

 

 

 

IRAS: 181823                  Version 1.0, 13th February 2019 

 

PATIENT PPI QUESTIONNAIRE 

SYNAPTIC 

STRUCTURAL, FUNCTIONAL AND CHEMICAL ASSESSMENTS OF THE VISUAL PATHWAY IN 

VISION LOSS 

 

Patient ID number: ……………..            Name of Researcher: ………....………….. 

 

This questionnaire aims to gather feedback from participants involved in research studies 

between York Teaching Hospital NHS Foundation Trust and the University of York.  

The researcher will complete this questionnaire with you, writing down your answers and it 

should take between 15-20 minutes to complete. Any information relating to your experience 

of taking part in a research study is welcome.     

 

Section 1 - Introduction 

a) Is this the first research study you have taken part in? Please circle one 

YES   NO 
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b) What made you decide to take part in research? (Tick all that apply) 

To understand more about my condition 

To help others 

Felt pressured/obliged 

Doctor recommended 

Interested in research itself 

Other (Please specify) 

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

………………………………………………………… 

 

c) Do you have anything else to add to this section? Your explanation would be valuable 

to us to help us understand your answers to the previous questions. 

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………… 

 

Section 2 - Information 

a) I was given all the information I needed in relation to the study, including the relevance 

of MRI in vision research. Please circle one number 

Strongly disagree   1  2 3  4  5  Strongly agree 

 

b) I had a good experience of taking part in the research study. Please circle one number 

Strongly disagree   1  2 3  4  5  Strongly agree 
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c) Do you have anything else to add to this section? Your explanation would be valuable 

to us to help us understand your answers to the previous questions. 

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………… 

 

Section 3 – Relationship with Research Staff 

a) My privacy and confidentiality were maintained during my research appointments. 

Please circle one number 

Strongly disagree   1  2 3  4  5  Strongly agree 

 

b) I was able to contact someone appropriate to ask questions throughout the study. 

Please circle one number 

Strongly disagree   1  2 3  4  5  Strongly agree 

 

c) The research staff were friendly and professional at all times. Please circle one number 

Strongly disagree   1  2 3  4  5  Strongly agree 

 

d) Do you have anything else to add to this section? Your explanation would be valuable 

to us to help us understand your answers to the previous questions. 

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………… 

 

Section 4 – Time 
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a) The times and dates of my research appointments have been acceptable. Please circle 

one number 

Strongly disagree   1  2 3  4  5  Strongly agree 

 

b) Waiting times during my research appointments have been acceptable. Please circle 

one number 

Strongly disagree   1  2 3  4  5  Strongly agree 

 

c) Do you have anything else to add to this section? Your explanation would be valuable 

to us to help us understand your answers to the previous questions. 

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………… 

 

Section 5 – Knowing Results 

a) It is important to me to know the results of a research study. Please circle one number 

Strongly disagree   1  2 3  4  5  Strongly agree 

 

b) I have been told I will receive the results of the research study when they are available. 

Please circle one number 

Strongly disagree   1  2 3  4  5  Strongly agree 

 

c) Do you have anything else to add to this section? Your explanation would be valuable 

to us to help us understand your answers to the previous questions. 

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………
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…………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………… 

 

Section 6 – General Questions 

a) Before you entered this research study, did you know that York Hospital was a research 

active trust? 

YES   NO 

 

b) If yes, how did you know this? What sources of information have you seen to inform 

you? 

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

………………………………………………………… 

 

c) Before you entered this research study, did you know that collaborative research 

between York Hospital and the University of York took place? 

YES   NO 

  

d) If yes, how did you know this? What sources of information have you seen to inform 

you? 

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

………………………………………………………… 

 

e) Would you say you understand why research looking at changes to the brain is also 

important in vision loss research? Why? 

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

………………………………………………………… 
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f) Would you say taking part in this research study was a valuable experience? Why? 

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

………………………………………………………… 

 

g) Do you have any suggestions on ways we can improve our research study? 

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

………………………………………………………… 

 

h) Having experienced being part of a research study, would you repeat this experience? 

Why? 

…………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………

………………………………………………………… 

 

 

Thank you for taking time to complete this questionnaire 
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Abbreviations/Glossary 

AMD  Age related macular degeneration 

Anti-VEGF  Anti-vascular endothelial growth factor 

BCVA  Best corrected visual acuity 

CI  Chief investigator 

Cr  Creatine 

CRN  Clinical Research Network 

CRT  Central retinal thickness 

fMRI  Functional magnetic resonance imaging 

GABA  -aminobutyric acid 

GCL  Ganglion cell layer 

Glu  Glutamate 

HVA  Humphrey visual field analyser 

IPZ  Intact projection zone 

LPZ  Lesion projection zone 

MRI  Magnetic resonance imaging 

MRS  Magnetic resonance spectroscopy 

NAA  N-acetyl-aspartate 

NIHR  National Institute of Health Research 

NHS  National Health Service 

nvAMD  Neovascular age-related macular degeneration 

OCT  Optical coherence tomography 

PCh  Phosphocholine 

PPI  Patient and Public Involvement  

pRNFL  Peripapillary retinal nerve fibre layer 

R&D  Research and Development 

RNFL  Retinal nerve fibre layer 

RP   Retinitis pigmentosa 

SD-OCT  Spectral domain optical coherence tomography 

VA  Visual acuity 

YNiC  York Neuroimaging Centre 

YTH  York Teaching Hospital NHS Foundation Trust 
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