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Abstract

Most people take the technological revolution from the past two centuries for granted and
expect that this revolution will not slow down. In the recent century, a major presence in
most people’s lives has become electronic computers in one form or another. A new path
for technology innovations needs to be set out if the revolution is to continue at the cur-
rent pacing. One such promising path are optical computers using solitons as information
carriers. Solitons have favourable properties and one under-explored soliton system for its
computation capabilities is the Toda lattice, which has been used to model DNA and can
be transformed into optical fibre models. By expanding the possible logic gate designs in
this lattice, steps are made to bring us closer to realize a fully functional optical computer.

In the one-dimensional Toda lattice, it is possible to create a delay in the solitons’ travels
that can be controlled. The lattice has been used to create logic gates for computation,
however, the delay mechanism has not been incorporated in those designs so far. With
this controllable delay, an OR and XOR gate can be designed. The delay for a travelling
soliton is created by incorporating a lattice made of harmonic oscillators between two
Toda lattices. The duration of the delay can be controlled by changing the time differ-
ence of two solitons scattering against the harmonic oscillators. If the duration is too
short, there are only reflections, however, when the duration between the two soltions’
scatterings is long enough, transmission is possible. Both presented logic gates apply the
controllable delay mechanism.

This thesis contains the following contributions, the first investigation of interaction of
solitons in impurity, a new XOR and OR gate design, and code for simulating the Toda
lattice and the mentioned contributions.
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Chapter 1
Introduction

Most people presume that technology progresses linearly however, a read through history
will show a nonlinear trend of progression, as different options were explored and consid-
ered first before a new paradigm of technology emerges. We live in a period where the
general public expects quick technological advancement in the area of computing and to
deliver on this demand will require a new technological paradigm. One such promising
candidate is optical computing done with the information carriers called solitons. Be-
cause of the attractive physical properties solitons posses, such as their robustness for
carrying information for long-distance communication, much research has been done in
investigating their computation possibilities. One model which allows solitons to exist
is the Toda lattice and in this model, it has been shown that a few logical operations
can be performed on travelling solitons [91]. In this thesis, we will demonstrate how an
additional mechanism, such as the presented mechanism for controlling the delay of a
soliton travel, can be used for performing computation inside the lattice. Further, the
thesis outlines how this research can contribute to the realization of a functional physical
computer that runs on optical solitons.

1.1 Approaching the limits of standard computing

When integrated circuits were introduced, Moore in 1965 [102] discovered a trend that
is now famously known as Moore’s law. In his original work, it stated that on a chip
the number of components would double every year. It is this phenomenological relation
that has been used as a measuring tool to gauge the success of standard computing, also
called conventional computing. Ten years later he altered his prediction to the number
of components doubles every two years [103]. He did this because from around 1980 on-
wards, packing more components in chips was becoming more difficult, which is one of
the parameters in his law. In 1974 Dennard and his team [47] observed that the power
density stayed constant while the number of transistors located in a given area grew. This
is because the power that a transistor requires is proportional to the size of the transistor.
Like Moore’s law, this was another gauging tool used for measuring technology success.
This observation is called Dennard’s scaling rule and it ran alongside Moore’s law until
ten years ago, when it became too difficult to maintain this rule for companies due to
the increased electric current leakages [24, 111]. The leakages of today’s transistors are
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caused by the imperfect insulation layer separating the gate from the other electrode of
the transistor. At 7nm scale decreasing the size of the transistor will increases the flow
of unwanted electrons even further, at this scale the insulation layer in the transistor be-
comes insufficient due to quantum tunnelling and other quantum effects [118]. However,
Moore’s law has not ended as of writing this thesis. Companies are still trying to continue
the trend [94], but the trend however has slowed down [98]. There will probably be a
point where Moore’s law will break down as it is not a law of nature, but a phenomeno-
logical relation, which depends on the ingenuity of technology development. It has been
proclaimed that when Moore’s law breaks down [111], a new course in the development
of computing hardware needs to be made, thus this law has become an indicator of the
urgency for this new course. A reason for setting this new course might be found in the
desire to extend the rapidness of technological progress we have experienced in the last
century.

Let us take a step back in history. The idea of machines performing computations rather
than humans is not a recent interest. For example the Stepped reckoner, also called the
Leibniz Machine, in 1673 [27] invented by G.W. Leibniz, was a mechanical machine that
could multiply numbers by repeating the addition operation [126]. It will not be until
the twentieth century before a functioning electronic computing machine was developed.
In 1946 [117] a group of computer designers came together in the Moore summer school
lecturers to collaborate on the development of an electronic general purpose computer.
Before the invention of the general purpose electrical computer, computers were general
purpose but mechanical, or electrical and not general purpose. Doubt has been risen by
Conrad and Zauner [41] if the general purpose electrical computer (the digital standard
computer) is truly general purpose, as they argue that a realizable general purpose ma-
chines can only implement a portion of its input-output capabilities. For some instances,
standard digital computers may not be the best solution, because it is slower, bigger, uses
a lot more energy, becomes too warm or perhaps it cost more money than a computer
made for the specific task would be. In the field of unconventional computing, some re-
searchers are developing computers specialised for a specific task, which should perform
that specific task better than the standard digital computer. Others are searching and
developing what could become the next generation general purpose computer. This field
is called unconventional computing mainly because the systems performing the comput-
ing have not been brought to the market (yet). Most of those researched systems only
recently have been used for their computing capabilities. The unconventional computers
now being developed could be decades away before they overtake the majority of tasks
being performed by today’s standard computers. However studying them now not only
allows us to ask questions about the nature of computing, but it also allows us to study
never seen before aspects of nature itself. There are questions which we can only hope to
answer on an unconventional computer, one example is simulating quantum mechanics
on a computing system. Feynman [59] argues that to simulate a large quantum system a
quantum computer is needed, as nature is quantum mechanical and not classical, such as
classical physics bounded standard computer. However, a sufficient simulation of some
aspect of quantum mechanics can still be done on the standard computer, as a search
on quantum mechanics simulation literature will show. An example of this is the paper
Sufficient conditions for efficient classical simulation of quantum optics [114].
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Moore’s law is used as an indication of the necessity of new computing developments and
some tasks require unconventional computing methods, but ultimately every computing
system is faced by the limits of the physical world. One such limitation is argued by
Landauer, he states that the minimum amount of energy needed for a switch in an ideal
world is in the order of kBT [93] where kB is the Boltzmann constant and T the temper-
ature. This amount of energy is the difference between the entropy of the binary states.
A physical switch will always cost more energy than the amount to only change the state
of an ideal two-level system. He also argues that a useful logical machine needs to op-
erate on irreversible logic operators (example of an irreversible operation is an OR gate,
which is irreversible if the only information you have is its output). The physical maxi-
mum amount of possible operations executed during a second, as argued by Lloyd [96],
is given by 2∆E/π~, were ∆E is the available energy in the system and ~ the Planck’s
constant divided by 2π. This result is based on the time required to distinguish between
the different quantum states. There are more limits set by physics for any real world
system performing computations, but the examples from Landauer and Lloyd show what
kind of limitations we have to expect when developing computing with unconventional
physical systems. There are advantages when we couple one system to another system
to form a hybrid system, combining the strengths of both systems, which may be the
direction we need to go in the future. However, an example of the disadvantages of hy-
brid systems can be seen with standard computers connected by optical fibre networks,
its an electronic system combined with an optical system, combining the strengths of
silicon based computing to the fast communication properties of optical signals. But
the connection between electronic and optics is causing what is called an electronic bot-
tleneck, also called the electro-optic bottleneck [113]. The electronic components cannot
access the data transport capabilities of the optical fibres, causing a bottleneck to the
network. The electric signal travels only a fraction of the light speed, this also occurs
when electronic computers communicate over the optical fibre network. One solution
to this would be an all-optical computer, which is a computer that completely operates
on light rather than electrons. Over the years different approaches for optical computing
have been researched [9] and one of the promising options is computing done with solitons.

Important to this thesis is the concept of the solitons and most mediums that have
soliton solutions behave classically. A soliton is a hump-shape wave localized in a certain
region of space. The interest computing performed with solitons may have begun when
they were able to carry information over a long distance in optical fibre without significant
background interference [55]. To mention only a few examples, in 1995 Kawai, Iwatsuki
and Nishi [81] published their work on the sending and receiving of soliton transmission
over a distance of 30,000 km at a bit rate of 10Gb/s. In that same year Kubota and
Nakazawa [88] published that they were able to send a soliton successfully over 2,000 km
at 20 Gb/s and 2,500 at 10 Gb/s using an existing optical network in Tokyo. Amiri et al.
[10] in 2017 was able to send and decode a bit pattern from 180 km away, using soliton
for secure communication as an application of chaos theory. At this moment it is still
crucial to restore the logic values of optical solitons during long-distance communication.
One method is by using what is called adiabatic amplifiers [19, 63, 100]. The examples
that use soliton for long-distance communication show that it is possible to receive and
send signals from a great distance at a great speed. This is only possible because solitons
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are robust against small perturbation of the medium, making them excellent carriers of
information in optical fibres. As mentioned before, an all-optical computer would solve
the electro-optic bottleneck problem and with the advantageous properties of soliton, a
computer operates on soliton logic circuits, could pave the way for future technology.
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Soliton does not only exits in optic media, but can also be found in shallow water and
deep water, a tsunami is such an example, but also as cloud formations such as morning
glory clouds and in many more mediums. J.S. Russell discovered this phenomenon in a
canal in Scotland in 1834 and was able to reproduce those solitary waves in his lab [45].
A photo of a soliton on the aqueduct named after him, the Scott Russell Aqueduct can
be found in [53, 107] The photo shows how the soliton he observed may have looked.
However G. G. Stokes and G. B. Airy were not convinced about the existence of those
waves and they derived wave formulas for nonlinear wave behaviour to show that soliton
solutions were not possible. In the decades after the publication, it was shown that those
derivations do not hold in general. In 1895 D. J. Korteweg and G. de Vries demonstrated
mathematically that solitary waves for shallow water can exit. Interestingly they had
rediscovered the equations that J. Boussinesq derived back in 1872 in France, however,
Boussinesq was not aware of the discovery made by Russell. It was not until 1954 that
the derivation of Korteweg and de Vries would be used again. In that year E. Fermi, J.
Pasta and S. M. Ulam looked at a numerical model of a discrete nonlinear mass-spring
system. They followed a suggestion of P. Debye for a nonlinear system and found an
unexpected behaviour, which a decade later turned out to be solitons, by the works of
N.J. Zabusky and M.D. Kruskal [87] and M. Toda [123]. Since then, research in solitons
has been an ongoing process.

Figure 1.1: A picture of the Scott Russell Aqueduct. This image is from [53] and can also be found
in [107]. This image shows a soliton moving over a bridge named after the first person who studied the
behaviour of solitons.
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1.2 Aim of this thesis

This thesis presents a structure for employing solitons in computing. We will do this in the
Toda lattice, a medium that has soliton solutions and is made of sites that are connected
by the nonlinear Toda potential. It has been shown that some varieties of the Toda
lattice are equivalent to varieties of the nonlinear Schrödinger equations (NSE) [11, 83],
an equation that describes soliton dynamic in optical fibres. The majority of literature on
employing solitons for constructing logic gates, are focussed on optical systems and use
primarily the NSE or one of its variations. Those research could help solve the electro-
optic bottleneck problem by developing a fully optical computer. One such work that
shows the equivalence between the NSE and the Toda lattice is from Arnold [11]. It was
shown in his work that a complex variable extension of the Toda lattice is equivalent to a
simplified version of the NSE. Another example is a set-up of the Toda lattice where the
zeroth site is constrained in its movements, the soliton solution of this set-up is equivalent
directly to the soliton solutions of the NSE [83]. The Toda lattice not only played an
important role in the recent interest in solitons, as mentioned in the previous section, but
this system is still being actively researched to this day [17, 108, 112]. The Toda lattice
has been used to model solitons in DNA [105] and also applied to building logic gates [91].
It is the range of possible logic gates designs which this thesis will be expanding. This
will be done by exploring a mechanism that allows control over the delay experienced
by a soliton travelling inside the lattice and this option is subsequently applied in the
design of a new set of binary logic gates in the lattice. This thesis will not be discussing
the transformation required to go from the Toda lattice soliton solutions to those of the
NSE. In theory, it is possible to transform the results described in this thesis to equivalent
results in the NSE. Consequently this thesis indirectly provides an approach to designing
logic gates within an optical fibre system, in the hope that it can be used in an all-optical
computer. Recognize that in the past much research was required on the transistor before
it became widely available, perhaps more research on soliton logic gates is required before
they will see general applications in the area of computing.

1.2.1 Contribution to knowledge

The author claims that the following contributions to knowledge are made through this
thesis:

• The first investigation of an interaction between a travelling soliton arriving at the
impurity and a soliton already trapped inside the impurity. Through this investi-
gation a method of controlling the period a soliton is trapped inside the impurity
was discovered.

• A new design for a XOR and an OR logic gate in the Toda lattice is outlined. The
gate designs uses the method of controlling the trapping period.

• A simulation coded in Mathematica has been created by the author from the ground
up. This program simulates the Toda lattice, has the method for controllable
trapping time of a travelling soliton incorporated and is able to simulate the XOR
and OR gate designs.
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1.3 Thesis outline

The remainder of the thesis is organized as follows:
Chapter 2: This chapter focusses mainly on the background information necessary
to follow the main subject presented in this work. The first part of the chapter will
focus on computing done by physical systems and the framework which makes discussion
about this topic possible. This is followed by a general introduction into the physical
phenomenon of solitons and we end this chapter by discussing how solitons have seen
application in the area of computing.
Chapter 3: Introduces the theory behind the Toda lattice, a system that allows the
existence of solitons. This chapter also treats the mechanic of delaying a soliton in its
travel inside the lattice.
Chapter 4: In this chapter we are going over the measurements done in the Toda lattice
simulations. This chapter contains the original contribution to knowledge made by the
author. An approach is shown of controlling the duration of the delay for a soltion and
how this new kind of delay mechanism is implemented in the creation of an OR and XOR
gate in the lattice.
Chapter 5: The final chapter summarises the thesis and goes over some possibilities for
future continuations of the presented work.
Appendix A: This appendix contains the computer code for simulating the Toda lattice
and the code for generating the results from chapter 4. The first part provides a general
outline of the programming code and how it works in principle. This is followed by the
complete Wolfram Mathematica code itself.
Appendix B: In this appendix we introduce some alternatives to binary logic, such as
fuzzy and multi-valued logic. This chapter is a complement to the suggestions brought
up in chapter 5.
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Chapter 2
Conventional and unconventional computing

In this chapter are introduced two central concepts of the thesis. The first concept is the
notion of physical systems that are capable of performing computation. It is not only the
human mind that is capable of doing computations, as mechanical and electronic machines
have shown their capabilities in this day and age. But we also find in unexpected places
physical systems capable of computation, such as the bulk of nuclear spins, where nuclear
magnetic resonance is used to realize logic gates [18]. Second concept we are introducing
here are solitons, we will go over the definition of solitons and the different types that
exist. Both concepts are then combined into soliton computing, computing done with
solitons. The approach of using soliton to carry information and logic gates that modify
the variables of solitons will be discussed in this section, alongside a discussion of the
current state of this field. This last section lays the ground for chapter 4, where the
author’s original contribution to science are discussed.

2.1 Computing on a physical system

2.1.1 Representing information

In this section, we go over what it means for a physical system to perform any kind of
computation. In standard electronic computing, the logic values are represented by a
voltage level on the wires. For most electronics, the value 1 is represented by a voltage
level close to 5 V and the value 0 by a voltage close to 0 V. As an example, the SN74LS00
NAND gate from Texas Instruments [121] under recommended operating conditions will
recognize a logic 1 if the voltage is ≥ 2 V and a 0 when the voltage is ≤ 0.8 V. The
logic value that the chip outputs will be uncertain when the voltage value is between 0.8
and 2. The keyword in all of this is representation, the logical values are represented by
a physical value, state or quantity in a real world system. The logical values are only
abstract objects and when we want a physical system such as calculators to perform any
computation, we need to have a physical value, state or quantity to represent this abstract
object. Numbers are also abstract objects, having a certain amount of one type of object
in one place represents that amount as an abstract number. When we perform calculations
in our mind, we use the abstract numbers and perform abstract manipulations on those
numbers to arrive at another abstract number. Even though for most of us we were
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initially taught the other way around as children, to make calculations easier, we were
taught that the abstract numbers represent that amount of a certain object. But this is
perhaps more of a difference in how we view things, that goes back as far as the discussion
between Plato and Aristotle over the nature of physical objects and the theory of ideal
forms. Do we recognize physical objects for what they are due to our experience, or do
we recognize them because we have some innate knowledge of their ideal forms? So too
may the difference how we view things exist between a stereotypical mathematician that
would argue that physical amount of the same object represents the abstract numbers and
a stereotypical engineer that would view that abstract numbers represent objects in the
physical world. Going back to the view that physical objects represent abstract numbers,
in an abacus, the numbers are represented by beads on a rod, an abstract number is
represented by the beads slid to a certain side of the rod. Another way to represent
information is with a strip of compartments [60], such as ice trays, where the state of
the compartment corresponds a binary value, the value 0 corresponds to a compartment
being empty and 1 when it is filled, for example by a pebble in the compartment. We
will later come back to this example and it might be used to perform calculations. In the
Turing machine, information is represented by the symbols on the tape. From this point
onwards in this thesis, the writing will be written from the point of view that abstract
objects such as numbers are represented by a physical value, state or quantity in the
physical world. So far the focus has been on numbers and how they are represented in
the physical world, but numbers alone are not useful enough for what we want to achieve
when it comes to computing. If someone gave you a number, for example three, then
there is not enough information in that number until we know the context of the number
for example, that a specific neighbour has three children. Therefore when we mention
information, it is defined as a set of numbers where the context of those numbers are
understood. There are a lot of different ways information can be represented, that is to
say, encoded into a physical form, but it always needs to be in conjunction with the way
how information is manipulated and decoded back to the user in some useful way.

2.1.2 Performing calculations

Due to the abstract nature of numbers, performing operations on those numbers will
require abstraction. When we represent values as physical value, state or quantity, per-
forming operations on those values will mean that there is a way to change those physical
values or quantities in a predictable matter. How those values change predictably will
determine which mathematical operations we can associate with the behaviour of the
physical system. Going back to the standard electronic computing machine, when we are
computing something, a series of mathematical operations are being performed such as
comparing values, adding two values, subtracting, multiplying, etcetera. This approach
can also be used in unconventional computing systems. In the earlier mentioned example
of pebbles in a compartment, we can create an additional operation by placing two rows of
plastic compartments underneath each other and some compartments containing pebbles.
We can move the pebbles from the lower row into the row above, but when there already
is a pebble in the above row, we remove that pebble and place one in the compartment
left of the previously occupied compartment. See an example of this addition done in
figure 2.1. While this operation can be done by us humans and moving pebbles to add
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two numbers is certainly not a conventional way of doing additions, it is however also not
automatic.

Figure 2.1: The sum of two strips of compartments filled with pebbles. Below the two strips is a strip
containing the sum of those strips. The addition is done in the same convention as is done when adding
two binary numbers.

It could very well be that earlier inventors of mechanical calculators such as Pascal, Leib-
niz, Monroe and Babbage [27] were motivated to having calculation performed automat-
ically after the user has entered an input into the machine. The field of unconventional
computing, among its other research topics, investigates different physical systems for
their computing capabilities. An example of an unconventional physical system being
used for computing can be found in the work of Assunção et al. [12]. They had a Y
shaped lattice and the top part of the Y shape is used as the location for the inputs. The
input signal for their AND, OR and XOR gates are harmonic waves and the presence of
the wave represented 1 and its absence 0. Harmonic waves are additive in their ampli-
tude, meaning that the amplitude when two waves are atop of each other is the sum of
the amplitude of both waves. The value of the output was determined by the amplitude
of the wave arriving at the bottom part of the Y shape, if the amplitude was below a
certain threshold then that represented the output value 0 and if it was above or equal
to the threshold, that represented 1.

A common approach of unconventional computing found in the literature is collision-
based computing. As the name suggests, colliding objects are used to perform computa-
tion. An example of this can be found in Conway’s Game of Life, which was used to prove
that it is Turning complete among other things, this was done by colliding gliders [20].
One of the fundamental models of collision-based computing is the billiard ball model
[130], named such because this model can be physically realized with billiard balls. The
billiard ball model can not only be used to realized Boolean logic operations, but also
realizing conservative logic operators [62]. It was Fredkin and Toffoli, the inventors of this
computing model that introduced collision-based computing together with conservative
logic. They described conservative logic as “a comprehensive model of computation which
explicitly reflects a number of fundamental principles of physics, such as the reversibility
of the dynamical laws and the conservation of certain additive quantities” [62]. This type
of logic is still Boolean in nature because there are only two possible values, but the set
of operators are a little bit different than those operations found in Boolean logic. Only
Boolean valued operations that are reversible are considered in the set of conservative
logic. The universal operator in conservative logic is the Fredkin gate and its function is
defined in table 2.1.
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u x1 x2 y1 y2

0 0 0 0 0
0 0 1 1 0
0 1 0 0 1
0 1 1 1 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 0
1 1 1 1 1

Table 2.1: The truth table of the conservative logic Fredkin gate. The control signal is u, the inputs are
x1 and x2, the outputs are y1 and y2. The role of the control signal in this gate is to reverse the outputs
of y1 and y2.

Going back to the billiard ball model for a moment, the billiard balls in this model can
undergo elastic collision that follows the same rules as the perfect gas molecules under
classical kinetic theory. This is drawn in figure 2.2(b). The picture in 2.2(a) shows the
two initial directions a ball is given and in (c) the balls are deflected by mirrors, just as
perfect gas molecules are by the outer walls. Those mirrors allow the balls to be directed
in another direction than that they initially were.

Figure 2.2: Billiard ball model. (a) shows the two initial movements the ball are given, (b) two balls
colliding and their momentum has been swapped, and (c) shows how a ball is deflected by a mirror. This
image is inspired on a figure from Fredkin and Toffoli’s work [62].

A logic gate in conservative logic which can be constructed in the billiard ball model is
the interaction gate, drawn in figure 2.3(a). The binary values 1 and 0 are represented
by the presence and absence of a billiard ball respectively. The interaction gate has three
different outcomes, pq, pq and pq, the grey dashed lines shows the different paths the
balls can take. Those paths are only taken when either input p or q is absent. Another
logic gate that can be constructed in this type of logic is the switch gate, drawn in figure
2.3(b). The input p plays the role of the control signal, because the value of p determines
the location were the input q arrives, thus this set-up acts as a switch for the signal q.
The Fredkin gate can be build from a series of switching gates connected in a particular
way, as shown in Fredkin and Toffoli’s paper on conservative logic [62].
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Figure 2.3: Two gates in the billiard ball model. The inputs are p and q, the values 1 and 0 are
represented by the presence and absence of a billiard ball respectively. The line above the letters p or q
indicates the NOT p and NOT q, which is the absence of the input ball p or q. (a) shows the interaction
gate and (b) shows the switch gate. This image is inspired on a figure from Fredkin and Toffoli’s work
[62].

In this section, we have gone over different physical implementations of operators, from
simple additions with pebbles and compartments to the billiard ball model. It is only
when the physical values, states or quantities change predictably as argued by Horsman
et al. [69], that we are allowed to speak of computation being performed by a physical
system. We are going over this statement and the reasoning behind it.

2.1.3 Computing definition

Now that we are familiar with the notion of information being represented by a physical
parameter, state or quantity, and both information and operations belonging in the realm
of abstraction, we can now dive into what it really means for a physical system to perform
computations. There are different definitions of computation [43], one such definition is
given by B. MacLennan [99]: “Computation is a physical process the purpose of which
is the abstract manipulation of abstract objects”. This definition is in line with the ap-
proach of a physical system performing computing described so far in this chapter. A
more precise definition is found in the framework developed by Horsman et al. [69], which
sets out the criterion that needs to be met before we can categorize a physical system
capable of performing any kind of computation. The paper gives a thorough treatment
of the framework, but what follows in this section are pointers from the paper that are
sufficient for the intention of this thesis. To get to the heart of this framework we need
to take a step backwards and consider the relationship between physical experiments and
models in the natural science fields. In those fields, it is through scientific models that we
can make sense of experimental data. For example, Eratosthenes measured the length of
a shadow in Alexandria and he was familiar with the distance between Syene and Alexan-
dria. Just those numbers alone are not important on their own, but because he had a
model of a spherical earth, he was able to calculate from his shadow length measurement
the radius of the earth. However, the relation between physical experiments and models
can also change our world view. Take for example the geocentric model, which places the
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earth as the centre of our solar system, and the heliocentric model which places the sun
as the solar system’s centre. Both models were in the time of Galileo able to explain the
known observations however, the heliocentric model was used for its ease when it came
to performing calculations and the geocentric model for theological reasoning. It was
the measurement of the parallax of nearby stars that could not be explained from the
geocentric model, that broke the tie between both models. Since then the heliocentric
model has become the dominant model for thinking about our planet’s place in the solar
system. This example illustrates that when we measure new observations, our models
change and when our model changes, we sometimes change our world view with them.
A model is as good as its predictive or explanatory powers are. Through a model are we
able to describe our observations, a model is an abstract object which may be written in
mathematical formulas or drawn pictorial. When creating or using a model, there has
to be some connection or relation between the observations of a physical system and the
abstract model that describes physical systems behaviour(s). Using the same notations as
Horsman et al., let us indicate this relation with the symbol R, the physical system that
observations are taken from with p and the abstract model of p with mp. The relation
may be written as R : p→ mp, it is this relation that brings us from the physical system
to the abstract world where we are describing the relevant qualities and parameters of
the physical system that is being studied.

A model mp is always theory dependent, for example, the motion of the planets can
be described by either Newtonian mechanics or general relativity, but both theory make
on some aspects different predictions. One example is the motion of Mercury observed
from Earth, which can not be determined accurately by Newtonian mechanics, but can
be better predicted by general relativity. While we might, therefore, want to enforce all
calculations about gravitational effects to be made with general relativity, even if it is
mathematically more difficult to do so. In practice for most calculations involving grav-
ity on a planet’s surface will Newtonian mechanics suffice. Another standard example
that shows that the predictive power of a model needs to be viewed from the theory it
is incorporating, is between classical mechanics and quantum mechanics. We know that
at larger scales quantum effect disappears and at a very small scale classical predictions
break down. When we look at the phenomena of light, in classical optics the theory de-
scribes light as waves, while the theory used in quantum computing often describes light
as a particle. Now from quantum mechanics viewpoint, we know that every particle can
be seen as a wave or particle, that both interpretations are equivalent. But the model
predictions are depended on which of the two interpretations are used. Because models
are theory depended, we indicate the relation R with T for the theory the relation and
model is associated with, RT : p → mp. The theory not only includes the experiment
that is being tested, but also the theory that described the behaviour of the apparatus
being used for measurements. At the moment we have a way of writing down how a
static physical systems can be described by a static model. Of course, we want to have
systems that evolve. Let us note the dynamics of the model by the relation CT , that
moves the model mp over time into the new state of the model, written as m′p. Thus we
have CT : mp → m′p. Our physical system will also evolve, let us use H(p) to describe the
process that brings the physical p to the new state of the systems, to p′. In physics, the
dynamics of a physical system are often described by the Hamiltonian is often indicated
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by the letter H. The evolution of the physical system can be written as H(p) : p→ p′.

Now that we have a relation that brings us from the physical system to the model,
and we have a relation for the dynamics of both the model and physical system, we are
now able to compare how faithful the evolved model is to the evolved physical system
really is. We, therefore, want to bring p → p′ and then use the relation RT to have
a model describing this new state of the physical system, mp′ . This can be written as

RT :
[
H(p) : p → p′

]
→ mp′ . When we evolved the model, we ended with the state

of the model m′p and now that we have mp′ , we are going to compare if the outcome
from both evolutions of the system is exactly same. If they are the same, we can say that
m′p = mp′ and that it is a good model to represent the dynamics of this particular physical
system. In practice it is not always possible to obtain this due to modelling or experi-
mental limitations, we sometimes have to be satisfied with a model that is ‘good enough’,
which is |mp−mp′ | < ε. The size of this error ε depends on the context of the usability of
the model and the user their criteria. If mp =ε mp′ , which means that the model agrees
with one another within the accepted error ε, we can say that the theory has not been
invalidated in this one specific experiment. This is summarized schematically in figure 2.4.

Perhaps rather than taking the route RT :
[
H(p) : p → p′

]
→ mp′ , we would like

to have an evolved model that can make new predictions or have explanatory power.

Effectively such a path would be R̃T :
[
CT :

[
RT : p → mp

]
→ m′p

]
→ p′. Where R̃T

brings us from the abstract domain to the physical domain, however, this is only possible
when the theory has been robustly tested and we can extrapolate new predictions of the
physical system dynamics from the model itself. To name only two famous cases of many
where researchers were able to predict phenomenon from theory before any experimental
confirmation. Paul Dirac created a theory that predicted the existence of positrons (anti-
electrons) [56], even when his theories were tested and proven wrong, he kept believing
in his theory. It later turned out that he was right and the existence of positrons was
proven, as the other experiments that invalidated Dirac’s theory were shown to not be
correct and a new experiment was able to produce positrons. Another example is when
Einstein predicted that certain stars would still be visible during a solar eclipse [72], even
though those stars should be behind the sun, after the observation of those stars it gave
evidence for Einstein’s theory of general relativity.
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Figure 2.4: Framework for categorizing how computation is performed by a physical system. Below the
dashed line is the physical system that undergoes evolution. Above the line is the abstract model

that changes after the rules for dynamic behaviour has been applied. This image is inspired on figure 3
in the paper [84].

For a computer, which is a physical system, we want a way to provide it with the necessary
information and that the system evolves such that at the end process the information has
changed in a satisfying and deterministic fashion. The information lives in the realm of
abstraction and while our model may be able to use the information directly, our physical
system does not, because it does not know what a number is. Thus in our model, we have
to include a way to encode our information into the physical system itself. In the section
representing information we have seen some forms of encoding information. After the
physical system has processed the information, we interpreted a quantity in the system,
state or some parameter from the system as the processed information. Thus we use our
model mp′ to decode the processed information in a way that makes sense to us, the end
users of this computing system. The form we encode information and the form how we
decode does not necessary needs to be in the same form, what is important is that we have
a consistent way of encoding and decoding information throughout the experiments. The
information outcome we obtain through the decoding after an experiment, does partly
depend on the physical system. The system may undergo the same physical evolution,
but still is being associated with a different mathematical operation, that is because the
outcome also depends on the decoding scheme we are using. A simple example, let us
say that we swap the decoding scheme for the representation of 0 → 1 and 1 → 0.
We would then change the OR operation with NOR, AND with NAND, and XOR with
XNOR, if our experiment only contained Boolean operations. As said before, the form the
information encoding and decoding can be different, this was done in an NMR computing
set-up [18]. The first input was encoded as a phase difference and the second as time
delays in the initiating pulse signal, the output was decoded from the integrated spectral
intensity obtained from the bulk molecules in the experiment sample. Going back to the
framework, a physical system will evolve through time, even when it is not initiated by the
user. Therefore to have a system that would be meaningful for performing computations
it is important that there is intention behind the evolution from the user, together with
some form of encoding and decoding information. Physical systems all around us evolve
but viewed from this framework, only when information has been encoded and we can
decode the information after the system has evolved in a predetermined way, we can argue
that a physical system has performed any kind of calculation. When we have a theory of
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the systems computation capabilities that has been robustly been tested and so far has
not been invalided, we are then able to create building blocks for computing with this
system. This is the argument by Horseman et al. For electronic computers, those building
blocks are the electronic integrated circuit chips that are only able to perform Boolean
operations. By combining chips, a more complex form of computing can take place. For
those electronic chips robust theories do exits and mp =ε mp′ , thus we can work with
them in confidence and do not need to test those theories every time to check if figure
2.4 still holds. This is also the goal of creating novel ways of performing operations with
a physical system. The physical system most concerning this thesis are the solitons that
travel inside the Toda lattice. In the next chapter, we will be discussing the model for
the Toda lattice, how encoding and decoding have been used to realize logic gates in this
physical system. The next section will introduce the concept of solitons. It is after the
coming section that we are reviewing the literature on logic gate implementation done in
soliton supporting mediums. Horseman et al. [69] summarize their work with following
definition of physical computing: “the use of a physical system to predict the outcome of
an abstract evolution”.
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2.2 Solitons

Waves are everywhere in nature and we come in contact with them daily, such as in
the form of sound or light. They transport energy from one location to another and two
categories of waves are linear and nonlinear. An example of linear waves are the pitches on
a musical instrument and a way to express linear waves are done with travelling harmonic
waves

y(x, t) = A cos
(2π

λ
(x− vt) + φ

)
, (2.1)

where x and y(x, t) are spatial coordinates, A the amplitudes, λ the wavelength, t is time,
v the waves’ velocity and φ is the off-set. Linear waves are characterized by the following
properties:

� The sum of two linear waves is another linear wave.

� The waves’ shape and velocity are independent of the waves’ amplitude.

The first property can also be phrased in another way, the sum of two solutions of a linear
wave equation, is another solution to that same equation. This is called the superposition
principle. We have drawn in figure 2.5 the sum of two linear waves.

Figure 2.5: Two linear waves and the sum of both waves. (a) cos (2π(1− t)), (b) 2cos (2π(1− 2t)) and
(c) showing the sum of (a) and (b).

The superposition principle does not generally hold for nonlinear waves and for many
nonlinear wave equations this means that a unique method needs to be developed specif-
ically for solving the individual equation equation. Unlike linear waves, nonlinear waves
exhibit linear dispersion and nonlinear effects. Nonlinear effect is when the top part of
a wave moves faster than its sides, creating the effect that can be seen in figure 2.6.
Another effect that is seen in nonlinear waves is that the wave peak becomes more nar-
row over time. The linear dispersion, on the other hand, causes the wave to flatten its
form over time, this is generated by the longer wavelength components that travel faster
than shorter wavelength components, see again figure 2.6. It is when both dispersion and
nonlinear effect are balancing out that we have a special class of waves, which is the focus
of this thesis, the so called solitary waves, also known as a soliton.
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Figure 2.6: Waves dispersion and nonlinear effect are shown and how they are balanced to maintain its
shape over time in the solitary wave. Solitary waves are also called solitons due to their pseudo-particle
behaviour. This image is inspired on a figure from Lomdahl’s paper [97].

Not all nonlinear equations have soliton of solutions, thus not all nonlinear systems allows
for solitons to exist. The famous Korteweg-de Vries (KdV) equation [97, eqn.5] is one
such nonlinear equation that has soliton solutions. The equation is given by

ut + uxxx + uux = 0. (2.2)

were u is the amplitude of the wave, which depends on the time t and the spacial co-
ordinate x. The shorthand ut has been used for ∂u

∂t
and ux = ∂u

dx
. When we separate

the above equation into two parts, we have linear dispersion part ut + uxxx = 0 called
the Airy equation, sometimes called the linear Airy equation to differentiate it from
uxx ± con2xu = 0, which is also called the Airy equation in the literature. And the
second part is the nonlinear effect, ut + uux = 0 which is called the nonlinear transport
equation and also called the inviscid Burgers equation, to differentiate it from the Burgers
equation ut+uux = con uxx. The solution to the inviscid Burgers equation will show the
breaking of waves as seen in figure 2.6. Those two parts together balance each other out
to make soliton solutions possible. One soliton solution for the KdV equation is given by
[97, eqn.6]

u(x, t) = 3c sech2
[√c

2
(x− x0 − ct)

]
(2.3)

were c is the velocity of the soliton and x0 its initial location. x0 has been included in
the equation above to show that the difference between the current and initial location
is used in the solution, which is implicitly done in [97, eqn.6]. The soliton is shown in
figure 2.9(a), where the height is u(x, t) and on the horizontal axes the spacial coordinate
x. Unlike the waves that have been drawn in figure 2.5, a soliton is located in one
region of space and their behaviour under collision is analogous to particles [97, 104],
making them pseudo-particles. It is their pseudo-particles behaviour that makes them
interesting, among other things, for their applicability as information carriers. Solitons
are commonly characterised [104] by three properties: (1) localized within a region, (2)
have a permanent form at every moment in time and (3) its shape stays unchanged after
collision with another soliton, only the solitons phase is changed. In figure 2.7 we see
the collision of two solitons. What is characteristic of solitons is that after a collision the
current position is shifted somewhat compared to the location they would have been in
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without any collision. In equation 2.3 if we had introduced a phase ϕ in the sech2[...] term,
then after the collision the value of ϕ would have been changed. From the figure, the
particle behaviour can already be seen and we will illustrate this better with an analogy
of two tennis balls colliding [104], shown in figure 2.8.

0 20 40 60 80 100
x

Figure 2.7: Two solitons colliding. Three moments in time have been drawn, the dashed line
indicates the original trajectory, the height of the soliton is the amplitude. This image is inspired on a
figure from Andrei’s book [104].

One tennis ball moves with velocity v1 and another with v2 in figure 2.8. O indicates
the position of the centre of mass for both balls, O1 and O2 are the position of the two
tennis balls. The surface of a tennis ball is elastic and more flexible than a billiard ball,
meaning that after the collision it will take some time before the velocities of the balls are
swapped, they will first have to squeeze before expanding and restoring to their original
form during the collision. They then continue the paths set out by the other ball. The
current path is somewhat shifted compared to their original trajectory, this is analogous
to the solitons experiencing a phase shift.

Figure 2.8: Collision of two tennis balls, used as an analogue for a soliton collisions. The grey
dashed line indicated the original trajectory of the tennis balls. This image is inspired on a figure from
Andrei’s book [104].

There are three common type of solitons, the Korteweg-de Vries (KdV) type, topological
and envelope soliton types [104]. The equation most associated with KdV soliton is, of
course, the KdV equation itself, for topological soliton is it the sine-Gordon (SG) equation
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and for the envelope soliton, it is the nonlinear Schrödinger (NLS) equation. The KdV
soliton are characterised by their amplitude u(x− vt), that increases with an increase of
the velocity v and vice versa. Therefore it is not possible to have any static KdV soliton
type solution. In figure 2.9(a) is shown the soliton of the KdV equation, the width of
the wave is proportional to the square root of its velocity. The KdV equation is used to
describe among others for the behaviour of shallow water. Soliton solutions in the Toda
lattice, which we will be discussing in chapter 3 belong to this soliton type. For optical
fibre, the main equation is the NLS equation and the soliton solutions are characterised
by their amplitudes which depends on the width of the wave and this type of soliton
its velocity is independent of its amplitude. The soliton is shown in 2.9(b) and it is the
envelope of this wave which is the true soliton. There are two types of envelope solitons
and they are named bright and dark solitons, named this way because the bright soliton
shown in 2.9(b) corresponds to a pulse in light and the dark soliton corresponds to a dip in
the amplitude of the light wave. The SG equation gives rise to solitons that can be static
in its movements, because the amplitude and velocity are not depended on each other. A
soliton solution of the SG equation is shown in figure 2.9(c), the width of the wave gets
narrower the more the velocity increases, causing the slope of the amplitude to become
steeper. The SG has been used in a wide range of applications in physics [44], from
rigid pendula to a junction made of two superconductors called the Josephson junction.
There are different kind of topological solitons, such as the so called kink solitons shown
in 2.9(c), and antikink solitons which moves in the opposite direction to kink solitons.
Then there are also the breathers, which have a different appearance than the kink and
antikink solitons, and are destroyed by any kind of perturbation in the system.
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(a) (b)

(c)

Figure 2.9: Different kind of solitons. The horizontal axes is the spacial direction and the vertical axes
is the amplitude of the solitons. (a) shows a soliton solution from the Kortweg-de Vries equation, (b)
from the nonlinear Schrödinger equation and (c) from the sine-Gordon equation.

Now that we are familiar with a framework that tells us when a physical system is actually
computing and with the concept of solitons, we are in a position to review the soliton
literature for computing.

2.3 Computing with solitons

In the introduction, we have already tipped on the uses of solitons in fibre communication
networks and the goal of realizing an all-optical computer, furthermore that there are
benefits for using solitons as information carriers in an optical computer. One of the first
applications of solitons being used in communication was the development of switches
[38, 51, 52, 119]. They operated on preventing or allowing the flow of solitons, which
is the stream of information and this is analogous to a switch in the on or off state.
One of the earliest works on creating functioning Boolean operators using solitons was
done by Islam et al. [3–5, 15, 28–36, 48–50, 67, 73–80]. He and his colleagues started
working on developing and experimenting on Boolean logic gates from 1989 till around
1996. We will shortly be discussing some of their works. Research on soliton logic gates
has not stopped with Islam two decades ago, but is still being conducted to this day
[16, 25, 54, 65, 95]. Different research groups have used different representations and
have used different set-up for realizing primarily Boolean logic gates. We will be going
over some recurring approaches for both the representation and logic gate designs. Some
researchers in the field were able to go one step further than logic gates, they were able
to build a functioning half- [13, 21, 57, 58, 115, 122], full-adders [22] and flip-flops [128].
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2.3.1 Representing information with solitons

In section 2.1 we started with examining different representations that were used for
defining information in computing. We make the same start in this section. We, therefore,
start our review of the soliton computing literature, by looking at how the encoding and
decoding of information have been done with solitons. The most common binary value
representation used in this field of research is the absence and presence representation.
The presence of a soliton is sometimes defined as the amplitude of a soliton that is above
a certain threshold. This representation will be used in the design of our logic gates in
the Toda lattice in chapter 4. The absence of a soliton within a certain space is often
representing the value 0 and the presence the value 1. Logical operations can then be
created by allowing or preventing the access of a soliton in a specific area space. Another
option is by lowering or increasing the amplitude of a soliton. Using the height of the
amplitude as a way to represent the binary values is analogue to electronic logic gates,
where the value of the electronic potential difference (voltage) is used to represent binary
values.

Figure 2.10: Soliton logic gate design through dragging. The two inputs signals are A and B, and C is
the control signal. This control signal is influences by the presence of A and B, which are both orthogonal
to the control signal. PBS stands for polarized beam splitter. This image is inspired on a figure from
Islam et al. paper [67].
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Let us look at two examples of how the encoding and decoding is being done with soli-
tons. The first example is from Islam et al. [67] and their soliton dragging set-up, drawn
in figure 2.10. To realize the encoding they have one control signal, which is a soliton
and is labelled as signal C in their paper and in the figure. There is one input which uses
the same fibre as the control signal, but its signal (signal A) is orthogonal to the control
signal. The other input (signal B) can only interact with the control signal when both
signals arrive at a polarizing beam splitter around the time. When signal A is present,
it will slow down signal C until it reaches the polarizing beam splitter. When signal A is
absent, signal B is timed such that it will simultaneously arrive at the polarizing beam
splitter with signal C, also influencing the time that C will arrive at the detector. This
covers the encoding of information, the presence or absence of the signals A and B repre-
senting the values 1 and 0 respectively. The decoding is realized in this particular set-up
by looking at the moment the soliton arrives at a certain point in the set-up. There is an
internal clock and when the control signal C arrives outside the predetermined moments
in time (clock windows), the signal will be associated to the value 1, and when the soliton
is within the window, will represent the value 0. With this set-up, the signal C is always
enough delayed with the presence of either or both signal A and B, that it will arrive
outside the clock window. Thus the authors were able to design a NOR gate. If the
representation of the decoding had been the other way around, they would have realized
an OR gate instead. This is an example of how the decoding can influence which logic
operation we associate with the physical evolution, even though physically nothing has
not been changed between the two choices of representation. In this whole set-up, the
amplitude of the control signal did not change by the presence of the other signals, for
the next example, this will be different.

The second example is more relevant to the main focus of this thesis, namely the re-
alization of logic gates inside the Toda lattice. The possibility was demonstrated by
Kubota and Odagaki [91], when they created a NOT, OR and AND gate. Two lattices
were used as inputs and they are connected in a Y shape to a third lattice, functioning as
the entrance for the logic operation(s) and as the output. By initializing a soliton in one
of those lattices, it represented the value 1, when a lattice was used as input without an
initialized soliton, this represented the value 0. The amplitude of the solitons in either
lattice will always be the same. Most soliton systems do not allow static soliton solutions,
therefore most solitons are always moving and the KvD type solitons in the Toda lattice
are no difference. This makes it harder to maintain a constant input value over time, in
the same way as it is possible to do so with electronics. When a soliton enters the end
part of this third lattice, if the amplitude was above a certain threshold, the outcome
represented the output value 1. However, when no such soliton entered the end part of
the third lattice or there was no soliton at all, the outcome represented the value 0.

2.3.2 Performing operations with solitons

We will postpone a discussion about the logic gates that have been designed for the Toda
lattice until section 3.3. In this section, we will be going over other implementations
of solitons for the sole goal of computing. One common way of realizing logic gates in
physical systems are with collision-based computing, also commonly found in the uncon-
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ventional literature with other systems. In collision-based computing there are no wires
as we have discussed in section 2.1.2 with the billiard ball model. The signals are free
to move in any direction inside the system environment. For a system with soliton so-
lutions, the signal can be solitons. Because there are no wires, the solitons can travel in
any direction, this entails that every location in the medium can be used by the soliton.
Information that a soliton carries is then manipulated by colliding solitons with another
soliton or influenced by inserted material in the homogeneous medium. This can cause
the soliton to have a phase shift or a change in the soliton’s amplitude. A possible ap-
proach for representing logical values is by associating the values with certain locations in
the medium where the signals will arrive after it travels through the medium itself. Logic
gates can then be constructed by colliding solitons with each other or inserting material
that changes the solitons’ directions. This approach can be done in systems where solitons
repel each other when they come close to each other, thus changing their direction in the
system. The output values can then be associated with the position a soliton enters at
the end of the medium. This method has been used by Wu [127], Scheur and Orenstein
[110], and by Bakaokas and Edwards [14]. Another example can be found in the work of
Islam et al. [67], which we have already discussed in the previous section with the set-up
shown in figure 2.10. In this work, the solitons always arrive at the same location, but
their phase shift is changed by the collision of two solitons, causing the control soliton to
arrive at a different time slot. If the control soliton does not collide with another soliton
during its course, it will arrive at a particular time slot which associated with the value 0.
When the control signal is influenced by two soliton collision it will arrive at a different
time slot, which is associated with the value 1.

Another set-up for realizing logic gates is the spin ladder. This ladder is made of two
lattices, those lattices are made of connected objects with spins, those can be molecules,
electrons or magnetic dipoles, and those two lattices are then connected to form the spin
ladder. Figure 2.11 shows the spin ladder set-ups. The spin ladder set-up by Veerakumar
[125] and Kavitha et al. [66] are made from a ferromagnetic material, which is material
that is magnetic even in the absence of a magnetic field. Two ways of building a spin
ladder is by having the spin of both coupled lattice pointing in the same direction, this
is ferromagnetic, or pointing in opposite direction and balancing each other out, this is
anti-ferromagnetic. The authors of both works have chosen for a ferromagnetic design.
Kavitha et al. constructed an isotropic spin ladder, meaning that the ladder is the same
in both directions, while Veerakumar constructed an anisotropic spin ladder.
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Figure 2.11: A spin ladder made by coupling two spin lattices together. Two ferromagnetic coupled spin
lattices are coupled together. The above image is ferromagnetic and the one below is the antiferromagnetic
spin ladder. J1 is the coupling constant of the first chain, J2 of the second chain and J3 is the value of
the coupling constant that connects both lattices. This image is inspired by a figure found in the work of
Kavitha et al. [66].
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In Veerakumar’s work [125], the solitons are initialized in the ladder itself and two solitons
are moving towards each other. With certain set of parameter values, both solitons will
collide with one another and only their phases are changed by this collision. But by chang-
ing the set of parameter values to specific values, the solitons will merge after colliding.
The Boolean logic gates can then be constructed by representing 0 if the merged soliton
is absent or below a certain amplitude threshold and 1 is represented by the presence of a
soliton and have an amplitude above a certain threshold. This approach is different from
the work of Kavitha et al. [66], where solitons are initialized in one of the spin lattices.
Gates are constructed by changing the value of the coupling constant that connects both
spin lattice, this constant is J3 in figure 2.11. By changing J3, the outcome of the solitons
interaction is changed too. The same representation as Veerakumar was used in this work.

There are many other set-ups created with soliton supporting physical systems, such
as colliding dark and bright solitons, while those two different soliton solutions represents
the Boolean values [101]. Another example being a mixture of photonic crystal material,
which is material that allows the photons to be guided in a certain direction, the Boolean
values for the in- and output were represented the presence and absence of a soliton [54].
They were able to build an AND gate, because only when both inputs had received a
soliton, was there a soliton produced at the output. Those two examples, together with
the ones already discussed in this section, are only a few examples of the many researched
approaches. In this thesis, we will be focussing on the Toda lattice. We have introduced
in this chapter the concept of representing information with physical quantities, states
or parameters, those have then been applied in varies designs for realizing logical oper-
ations. We have gone over the criteria that needs to be met before a physical system
can be categorized as a system that is performing the computation. Within this chapter,
we have discussed what a soliton entails in the details sufficient for this thesis and we
have seen some of the possible constructions of logic gates when it comes to computing
with solitons. In the next chapter, we will be introducing the theory of the Toda lattice
and an approach of delaying the soliton inside the lattice. This chapter and the next are
introducing the background and theory necessary for the core of this thesis.
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Chapter 3
Toda lattice theory and delay

In this chapter we are going over the theory of the Toda lattice, how soliton solutions from
the Toda Equation of Motion travel through this lattice and how they are delayed in their
movements. In the next chapter, we will implement the theory to create a controllable
delay and design and test new logic gates designs in the lattice. The main source for
this chapter’s information on the Toda lattice theory comes from Toda’s book Theory of
Nonlinear Lattices [124] and we will be using the same notation throughout this chapter
as was used in the book.

3.1 Toda Lattice

A Toda lattice is constructed from sites that are connected with their nearest neighbour
under the Toda potential. Every site has the mass m. The lattice can have any number
of spatial dimensions, but we will start with the simplest case of one spatial dimension.
One dimension is enough to create some of the mechanics we will be using in the next
chapter and we will not need to go further than two spatial dimensions for constructing
logic gates in the lattice. The Toda lattice is an abstract model, but certain behaviour
of physical systems can be emulated with the model and the lattice is drawn in figure
3.1. The model can be directly simulated on a specific electronic circuit called the LC
ladder network [92, 124] and it is made from capacitors, inductors and resistors. The
Korteweg-de Vries equation can be obtained from the Toda lattice equation of motion
(e.g.,[61, 85, 124]), by taking the continuum limit of the lattice, that is by changing the
distances between sites towards zero and adding sites such that the lattice becomes a
continuous line. A complex variable extension of the Toda lattice has been shown to be
equivalent to a simplified version of the nonlinear Schrödinger equation [11]. Furthermore,
a Toda lattice where the zeroth site is constrained in its movements, these soliton solution
set-ups were shown to be equivalent to the soliton solutions of the nonlinear Schrödinger
equations [83]. There are therefore a variety of relations between the Toda lattice model
and behaviours found in nature.

Figure 3.1: A Toda lattice made from sites with equal mass m, equal separation L, connected by Toda
potential.
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In the lattice every site is placed a distance L from the neighbouring sites, this is the rest
length when the lattice is in equilibrium. The approach is the following, the nth site is
placed at position xn and the (n + 1)th site placed at a distance xn+1, this provides us
with the following relation in a lattice in equilibrium

xn+1 = xn + L, (3.1)

When the sites are not in their initial positions, the difference between the xn and xn+1

sites’ current length and the rest length is given by.

rn = xn+1 − (xn + L), (3.2)

where rn is called the relative displacement. When the current length is equal to the rest
length, the relative displacement is zero, as it should be. Because we are working in one
dimension at the moment, the vectors become scalar values. The above expression then
becomes

rn = xn+1 − (xn + L). (3.3)

The advantage of writing rn in the way described above, is that we can place the origin
at any place we desire. Additionally, when we change the site’s coordinates, it will not
affect the value of rn. Looking at the above formula we see that when rn < 0 the lattice
is compressed. It becomes easier to see this when we rewrite the above expression

xn+1 − (xn + L) = rn < 0⇒ (3.4a)

xn+1 < L+ xn. (3.4b)

The reverse rn > 0 implies that xn+1 > L+ xn, thus the lattice is stretched. The reason
for rn being called the relative displacement in the literature can be seen when we look
at the displacement of the site positions. We write the current position of a site at n
as xn and the initial position as x′n. This than gives us an expression for the sites’ own
displacement δxn based on the initial position, which is equal to

δxn = xn − x′n. (3.5)

Writing it in another way xn = x′n + δxn. The value of rn is then given by

rn = xn+1 − (xn + L) = x′n+1 + δxn+1 − (x′n + δxn + L) = δxn+1 − δxn, (3.6)

Therefore rn is the difference between two displacements, in other words the relative
displacement between two sites. If the entire lattice is shifted the same amount in the
same direction, that would mean that δxn+1 = δxn, thus rn = 0, which has the same
effect as shifting your origin. Now that we have a lattice, it is time to introduce the forces
that holds the sites together. The Toda potential is given by the following function

φT,n(rn) =
a

b
e−brn + arn + constant (a, b > 0), (3.7)

where a and b are constants. The unit of a is given as the energy per length [J/m], which
is equivalent to a newton [N]. While the unit of b is the reciprocal of the length [m−1].
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The force felt on the sites exerted by the Toda potential can be found by taking the
spacial derivative of the potential

fT,n(rn) = −dφT,n(rn)

drn
= a(e−brn − 1). (3.8)

Below in figure 3.2 we have plotted the force, from rn = −10 to rn = 0 and rn = 0 to
rn = 10. As can be seen in the plot, the force scales very differently in both ranges.
Between rn = −10 and rn = 0 we see that the e−brn term dominates, whereas in the
other range the −1 term dominates. Bringing this back to the lattice, we see that there
is a much bigger force when the sites are compressed than when they are stretched apart.
Situation of analogues to a spring would be of a spring that is very stiff when it is being
pressing together, but relatively easy to stretch out. Furthermore the force required to
stretch the spring even any further becomes independent of the current extension.

Figure 3.2: The force as function of rn for two regions. The parameters have the value a = b = 1 in
both plots and they show the same function, but are split, allowing the viewer to observe that the scale of
both regions are very different. Note the very different y axes scales in both figures.

In figure 3.2 we have plotted the graph for the case a, b > 0. But if a, b < 0 we would
see that term 1 will dominate in the range rn < 0 and the term −ebrn the range rn > 0.
This means that the force between two sites is constant when we shrink the distance.
When we increase the distance, a strong force will try to keep the sites close together.
Throughout this thesis the values for the constants will be a, b > 0, because this thesis
uses research that has chosen this values. The results of the controllable delay in the next
chapter would be different if we choose a, b < 0.

In the next section, we will need the harmonic oscillator potential and the associated
force, therefore, we are introducing them in this section. In our daily lives we come in
contact with many physical objects that behave as harmonic oscillators, such as springs
found beneath the keys of our keyboards and harmonic waves are used in radio stations
to generate radio waves. The harmonic oscillator potential is given by Hooke’s law

φh,n(rn) =
κ

2
r2
n. (3.9)

where κ is a constant, most often with the constant for a spring. The force exerted by
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this potential is

fh,n(rn) = −dφh,n(rn)

drn
= −κrn. (3.10)

As we can see the force of the harmonic oscillator is linear, rather than the nonlinear
behaviour generated from the Toda potential we saw earlier. For the Toda lattice, an
analogy of the spring constant κ would be the combination of ab. We find this combination
when we look at the first order Taylor expansion of the Toda potential, which is

φT,n(rn) = const. +
ab

2
r2
n (3.11)

3.2 Installing a soliton in the lattice

Now that we have a functional form for both the Toda and harmonic potentials, we can
create an equation for the Toda lattice to initialize a soliton inside it. To start with, we
would like to know how much force exerted is required on the individual sites such that
the creation of a soliton is possible, which would travel through the Toda lattice. The
equation of motion for the lattice is given by

m
d2rn
dt2

= φ′T (rn+1)− 2φ′T (rn) + φ′T (rn−1), (3.12)

where the notation φ′(rn) = dφ(rn)
drn

is used. The simplest soliton solution that satisfies
this equation of motion is given by the following expression for the force

fn(rn) =
mω2

b
sech2(k0n± ωt), (3.13)

which is the force felt on every site at every moment in time while a soliton travels in the

lattice. In the above expression ω is defined as ω =
√

ab
m

sinh k0, where m is the mass,

and k0 is a parameter of the soliton called the wavenumber. For a left moving solitary
wave, we take the + solution, and the − solution will give us a right moving wave. The
speed of a soliton in the lattice is given by

v =
ω

k0

. (3.14)

In figure 3.3 we have plotted the speed against the wavenumber for a = b = m = 1.
As we can see in the figure, increasing the wavenumber increases the speed of a soliton
moving in the lattice.
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Figure 3.3: The speed of a soliton plotted against the wavenumber. Equation 3.14 is plotted with the
values a = b = m = 1.

The energy of a soliton is given by

E0 =
2a

b

(
sinh k0 cosh k0 − k0

)
. (3.15)

The energy is plotted against the wavenumber in figure 3.4. We see again that the energy
increases when the wavenumber increased. In the next section, we will be using this
equation together with the expression for the speed.

Figure 3.4: The energy, in Joules, of a soliton plotted against the wavenumber. Equation 3.15 is plotted
with the values a = b = 1.

For the simulation we would like to prepare a soliton with a certain wavenumber into our
lattice and let the program simulate its dynamics. One way of preparing the lattice is to
stretch and compress sites inside the lattice in a certain way, a good parameter for doing
this would be rn. To be able to do this we combine expressions 3.8 and 3.13, to get

mω2

b
sech2(k0n− ωt) = fn = a(e−brn − 1)⇒ (3.16a)

rn =
−1

b
ln
(mω2

ab
sech2(k0n− ωt) + 1

)
. (3.16b)

31



To initialize a soliton into the lattice we need to determine the position it will start at.
Let the starting position be at n = nc. The next step is to eliminate the time dependency
in the above expression and find a way to incorporate the starting location. We can do
this by searching for the moment at which the soliton has its peak at position nc. To do
this we need to find the maximum value of a function. This can be found by taking its
derivative and placing that equal to zero, then rewrite the obtained expression to find an
expression to find the time tc were the peak of the soliton is at site nc.

0 =
dfn(n = nc, t = tc)

drn
=

d

drn

mω2

b
sech2(k0nc ± ωtc) (3.17a)

=∓ 2mω3

b
sech3(k0nc ± ωt)sinh(k0nc ± ωtc)⇒

0 = sinh(k0nc ± ωtc)⇒ (3.17b)

0 =k0nc ± ωtc ⇒ (3.17c)

tc =∓ k0nc
ω

. (3.17d)

Thus the peak of the soliton is at positon nc at time tc = ∓k0nc

ω
. We were able to divide

both sides by the sech3 term because this function is never equal to zero, which is not the
case for the sinh function. The choice of the + and − solution will depend if we want to
have a left or right moving soliton. Plugging this into 3.16b and we have

rn =
−1

b
ln
(mω2

ab
sech2(k0(n± nc)) + 1

)
. (3.18)

In our simulation, we will not be directly using the relative displacement, but we will be
using the current position of the sites xn, therefore to initialize our soliton we need to
rewrite the expression 3.3 into

xn+1 = rn + xn + L, (3.19)

Combining this expression with 3.18 and we obtain an expression for the position of every
site in our lattice when initializing a soliton

xn+1 =
−1

b
ln
(mω2

ab
sech2

(
k0(n− nc)

)
+ 1
)

+ xn + L. (3.20)

When we write it in this form, we need to specify the position of the first site, because
xn+1 is a function of xn. Let’s call this first site ns and it will be placed at position
xs =constant that is some constant value on the x-axis that does not depend on another
site’s position. From there all the site positions go up, the next site is placed at xs+1. In
figure 3.5 we show the position of the sites when a soliton moves in the lattice that has
been initialized by equation 3.20.
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Figure 3.5: A soliton moving to the right, below the graph is an indication of the position of the sites
in the Toda lattice. The images shows the force vs positions for a soliton. The graph shows a continuous
line, however sites in the lattice are discrete, thus it will be a discrete line when we create a graph in the
simulation. Here a continuous line has been drawn to make the visualization of a soliton easier.
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3.3 Temporary trapping a soliton

Now that we can initialize solitons, we are going over the phenomenon of delaying the
solitons in its travels. We will need this phenomenon in the next chapter when we are
going to design logic gates in the lattice. In 2005 Kubota and Odagaki [89] investigated
what would happen to the transmission of a soliton when it crosses a single harmonic
potential in the Toda lattice. They found that depending on the harmonic potential
constant, the soliton might travel unhindered or the amplitude decreases. The decline of
the amplitude is caused by the harmonic potential being off-resonance with the soliton.
The approximated formula they found is the harmonic potential constant as a function of
the solitons wavenumber, which is the value that allows the soliton to travel unhindered
across two sites connected by the harmonic potential. The formula is given by

κmax '
sinh2k0

ln(1 + sinh2k0)
. (3.21)

In 2006 [90] the same authors found that with two or more sites connected by the harmonic
potential, it is possible to trap a soliton in the Toda lattice for a certain period. The
time that the soliton was trapped depends on the harmonic potential constant, if the
connection between two sites is ‘rigid enough’, the soliton can pass through the series of
harmonic potentials unhindered. We can think of this as being equivalent to two sites
being connected by a metal rod. When the constant is lower, the sites connected by
the harmonic potential will follow the motion of the Toda potential with some delay,
causing the soliton to be trapped for a certain time. The series of harmonic potentials
can be seen as an impurity in the Toda lattice, as the impurity only behaves as the first
approximation of the Toda potential. While the soliton is trapped in the impurity, it will
oscillate and dissipating some of its energy, the amount will depend on the value of the
harmonic potential constant and the resonance frequency of the soliton. The value of the
harmonic potential constant that gives the soliton the maximum trapping period is given
by the following approximate formula

κtrap =
θ2
harm

1.6E0

, (3.22)

where Kubota and Odagaki with the aid of simulations found that θharm was between
3π/2 and 2π. For comparisons, if we initialize a soliton with wavenumber k0 = 3.5,
then use equation 3.21, we find that an undisturbed transmission across the impurity will
require the harmonic potential constant to be 48.733 N/m. Using the above equation 3.22
when we want to know the longest delay possible for the same soliton, the constant needs
to have a value between 0.026 and 0.046 N/m. The phenomena of trapping a soliton
temporarily is drawn abstractly in figure 3.6 and a figure created by the simulation is
shown in figure 3.7. In the abstract depiction, the height of the soliton is given by the
dimensionless normalized ‘energy density’ function h(n, τ) and has not been drawn in
figure 3.6. We will shortly see what this function entails. In both figures, we see that
after some time the soliton T continues its travel in the same direction as the initial
soliton I. There is also a reflection soliton created labelled as R.
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Figure 3.6: An abstract depiction of a soliton scattering against the impurity. The dashed line
shows the location of the impurity, I is the incident soliton, R the reflection and T the transmission.
The horizontal axes shows the sites n in the lattice and vertically is the dimensionless ‘time’ τ .

In figure 3.7 some of the energy is lost due to vibrations of the impurity, this can be seen
in the figure as small ripples leaving the impurity. There are also waves being reflected,
some of those reflected waves are solitons. In the next chapter, we will take a closer
look at how to distinguish between the ripples and solitons coming from the impurity.
Due to the impurity, the energy of the initialized soliton is transferred into small ripples,
transmission and reflection solitons. The energy of transmitted soliton in 3.7 is about
1/3 energy of the original soliton.

Figure 3.7: A soliton that is delayed in its travels, the thick dashed line shows the location of the
impurity. The high h(n, τ) is the dimensionless ‘energy’ density, n is the label for the individual sites and
τ is the dimensionless ‘time’. The wavenumber in this simulation was k0 = 3.5 and the constant for the
sites connected by two harmonic potential was κ = 0.03. This figure has been created by the simulation
of author himself and this simulation is able to create the same images as has been shown in Kubota
and Odagaki’s paper [90, figure 5]. A more in depth comparison between Kubota and Odagaki and the
authors simulations is included in section A.1.3.
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The dynamic of a system of the physical world can often be encapsulated by an object
called the Hamiltonian, and for the Toda lattice, this is not any different. The generic
form of the Hamiltonian for this lattice is given by

H =
∑
n

[ p2
n

2m
+ φn(rn)

]
, (3.23)

where pn is the momentum. We are already familiar with the potential φn(rn), it is either
the harmonic or Toda potential. To show the same results as Kubota and Odagaki,
such as shown in figure 3.7, we will connect together the impurity made of multiple
sites connected by the harmonic potential, between two Toda lattice. The set-up for the
system is drawn in figure 3.8. We will be using this set-up in the next chapter to create
an controllable delay lattice and addition logic gate for the Toda lattice. The potential
φn(rn) can be written as

φn(rn) =

{
a
b
e−brn + arn − a

b
for 0 ≤ n < i and n ≥ j

Kr2n
2

for i ≤ n < j,
(3.24)

where the impurity contains N + 1 = j− i+ 1 sites in total, each two sites are connected
by the harmonic potential, thus the impurity contains N amount of harmonic potentials.
In equation 3.7 for the Toda potential we had a constant named constant, we are free
to assign any kind of constant value for this constant, because the simulation will indeed
be indifferent to our chosen values, but to make life easier we chose to set this constant
equal to −a

b
in the above expression. The reason for this will become apparent after we

introduced the dimensionless variables.

Figure 3.8: The experimental set-up. Between the two Toda lattices is an impurity made from N = j−i
sites, each two sites are connected by the harmonic potential. The lattice can be imaged as a series of sites
being connected by springs. The sites in the impurity would then be connected by conventional springs
and the sites in the Toda lattice connected by springs following the Toda potential. Those Toda potential
springs would behave quite different than the familiar conventional springs as we have discussed in the
first section.

To allow us to focus more on the characteristics of the dynamics and less on keeping track
of the different constants of both potentials, we are changing the variables into dimen-
sionless variables. Those variables are the same as the variables that were introduced
by Kubota and Odagaki in [89–91]. One advantage of using dimensionless variables is
the experiment model is indifferent to the units you are measuring the quantity in. The
dimensionless variables are written as

Pn =
( b

ma

)1/2

pn, Rn = brn, K =
κ

ab
, τ =

(ab
m

)1/2

t, Φ(rn) =
a

b
φ(rn). (3.25)
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The potential in dimensionless units is written as

Φn(Rn) =

{
e−Rn +Rn − 1 for 0 ≤ n < i and n ≥ j
KR2

n

2
for i ≤ n < j.

(3.26)

We already know the energy of a soliton is given by equation 3.15. To obtain the energy
density function the Hamiltonian needs to be rewritten into dimensionless variables, we
then divide it by the energy of the soliton to obtain an expression that is normalized.
Between the different simulations we will be using the normalized energy because it allows
us to assign percentages, how much energy of the initial soliton is being transported to
the reflected or transmitted solitons.

hn(τ) = a
(
P 2
n(τ) + Φn[Rn(τ)] + Φn−1[Rn−1(τ)]

)
/2bE0, (3.27a)

where
∑
n

hn(τ) = 1. (3.27b)

In the above function
∑

n φn(rn) has been replace by
(

Φn[Rn(τ)] + Φn−1[Rn−1(τ)]
)
/2,

because we want to know the energy value of each individual site for the function hn.
Knowing the energy of the individual sites rather than the sum of the entire system allows
us to draw the plots such as those in figure 3.7. Every site has two neighbouring sites,
except the sites at the boundary, and the sites interact with their neighbours through the
potentials connecting them. The term Φn[Rn(τ)] describes the potential energy between
sites n and n+ 1, and Φn−1[Rn−1(τ)] describes the energy between sites n−1 and n. The
potential term needs to be multiplied by 1

2
so that we do not count their contribution

double in expression 3.27b.
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Chapter 4
Controllable delay and logic gates

In the previous chapter, the theory of the Toda lattice was introduced, in this chapter,
we are going over the method that was used to simulate the time evolution of the lattice,
how the logic gates were designed and the mechanic that makes the design possible, the
controllable delay in the soliton travels. We measure how the delay is influenced by the
wavenumber of the soliton, the number of sites in the impurity and by the incident time.
This chapter will be finished by demonstrating the operations of the designed logic gates,
those being the XOR and OR gate.

4.1 Simulation

4.1.1 Integration method

We can initialize a soliton in the Toda lattice, it is now time to determine the solitons new
position a moment in time later and how this can be done inside the simulation. Equation
3.16b describes only the dynamics of the solitons, but not how the sites in the lattice
needs to change and equation 3.20 does not have any time dependencies. Verlet is an
integration method which uses the current site position xi and the position of a moment
earlier in time xi−1, to determine the future position xi+1. This integration method is
one of the simplest integration methods available and another simple method is called
Euler integration. During some of the initial tests studying both integration methods,
the Verlet integration method was closer to the predicted values for the Toda lattice
than those created with the Euler integration, therefore we chose the Verlet integration.
In a later section, we will be discussing the fluctuation in the total amount of energy
seen in the simulation. The total amount of energy is conserved, so when we sum over
all the energy in the system, the number that we get should be constant. But small
deviations from this number has been seen and this small fluctuation is caused by using
this particular integration method, other integration techniques will display a different
amount of energy fluctuation. If we would divide the moments in time that we simulate
to infinitely small, then we would not observe any fluctuations, but the fluctuations were
small enough, as will be discussed in a later section, that we can demonstrate the logic
gate designs with confidence. The new position of a site given by the Verlet method is
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the following

xi+1 = 2xi − xi−1 − α(δt)2, (4.1)

where δt is the step in time we are making, the smaller this step is, the more accurate the
simulation will be and α is the acceleration. We have chosen to use α as the acceleration
symbol to differentiate this quantity from the Toda potential constant a. The acceleration
can be found from Newton’s law by rewriting f = mα. For the Verlet method, we need to
know the previous site positions when we initialize solitons in the simulation for the first
time. This knowledge is important because it will also determine the solitons direction
over time, if it is a right or left moving soliton. We can find an expression by subtracting
the step in time δt from the left-hand side of 3.17d and then rewriting the expression
again for tc

tc = ∓
(knc
ω
± δt

)
. (4.2)

Combining the above expression with 3.16b and 3.19, we obtain the following expression,

xn+1,i−1 =
−1

b
ln
(mω2

ab
sech2

(
k(n− nc) + ωδt

)
+ 1
)

+ xn,i−1 + L, (4.3)

were the index i is used for the steps in time. The results created by applying this
integration method have been compared with the results of Kubota and Odagaki [90] by
reconstructing figure 5 of their work. Our simulation found the same values as Kubota
and Odagaki did for the delay period in the soltions travels. The length of the lattice was
sufficiently long enough in the simulation that the boundary condition did not influence
the final results. If we opted for a fixed boundary condition, the length of the lattice
would be shorter, but this condition will cause the solitons to bounce back from the end
of the lattice. This is analogous to a ball hitting a solid wall. We are almost done with the
preparations needed for the Verlet integration, we now only need to define the momentum
for equation 3.27b, the normalized energy hn(τ). The dimensionless momentum is given
by

Pn = m
Rn(τ)−Rn(τ − δτ)

δτ
. (4.4)

Because the momentum will be squared in h(τ), the sign of the momentum is not impor-
tant to be defined here.

4.1.2 Building a controllable delay

We have now prepared everything necessary for the simulation, we are in a position to
measure the controllable delay. Up to this point, everything was based on the works of
Toda or Kubota and Odagaki, but there has not been an investigation concerning what
happens when one soliton is trapped in the impurity and another soliton arrives at the
impurity. This investigation will lead us to a delay with a certain degree of controllability,
which provides us with the mechanic to create additional logic gates in the lattice. The
controllable delay is created by initializing two solitons with the same wavenumber, which
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are initialized ∆nI sites apart from each other. We initialize the right moving solitons left
of the impurity and because both solitons have the same wavenumber, they will arrive at
impurity at two different times. This difference we will be calling the incident time ∆τI .
The incident time is short enough that one soliton is still trapped in the impurity so that
a second soliton is able to scatter against the impurity. This influences the energy stored
in the trap in such a way that it prolongs the trapping period of the transmission soliton
significantly. Figure 4.1 shows the set-up for the controllable delay.

Figure 4.1: The controllable delay set-up. We initialize two solitons in one Toda lattice in such a way
that they will move towards the impurity. The image indicates the force magnitude exerted on every site
in the lattice, showing the locations of both solitons.

We will initialize one soliton always at position n0 and the second soliton will be initialized
at position n0 − ∆nI . In figure 4.2 we can see the difference in outcome when we only
change the incident time. An abstract depiction of the solitons travels is drawn in figure
4.3. Figure 4.3(a) depicts the situation of figure 4.2(a) and 4.3(b) depicts 4.2(b). The
function hn(τ), the height of the graph has not been drawn in this depiction.

Figure 4.2: Two solitons are scattered by the presence of the impurity. The incident soltions has a
wavenumber k0 = 3.5 and there where N = 2 sites connected by the harmonic potential. The thick
dashed line indicates the position of the impurity. (a) The incident time is ∆τI = 3.39, which cause both
solitons to be reflected after a delay. (b) When we increase the incident time to ∆τI = 12.69 we still
have two solitons that are being reflected, but there is also a transmission. A third reflection can also be
seen.
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(a) (b)

Figure 4.3: An abstract depiction of two solitons scattering against the impurity. The dashed line
shows the location of the impurity, I1 is the first incident soliton, I2 the second. The reflections are R1,
R2 and R3 and T the transmission. The horizontal axes shows the sites n in the lattice and vertically
axes is the dimensionless ‘time’ τ . (a) this image depicts the dynamics of figure 4.2(a) and (b) depicts
figure 4.2(b).

The incident time is given by

∆τI =
(∆nI

v

)√ab

m
= ∆nI

k0

sinh k0

. (4.5)

∆nI

v
gives a quantity in units of seconds, to make the expression dimensionless we need

to multiply this quantity by
√

ab
m

, because this quantity has the units of frequency. From

now on we will be calling the initialized solitons incident solitons, to distinguish those
solitons from the transmitted and reflected solitons. Throughout the simulations for
measuring the delay caused by the controllable delay set-up, the mass will be m = 1,
constants of the Toda potential will be a = b = 1 and for the harmonic potential the
constant will be K = 0.03. We have chosen to use the same values a, b and m as those
used by Kubota and Odagaki [89–91], this makes comparing the results from this chapter
with the other authors easier. The value of κ has been chosen as such specific value,
because Kubota and Odagaki have found that with a wavenumber of k0, this harmonic
potential constant gives the biggest possible delay [90]. Also because this value represents
a very weak connection between two sites which are connected by the harmonic potential,
compared to the connection created from the Toda potential. Such a weak connection is
needed when trapping a soliton, as determined by Kubota and Odagaki [90]. The code
for the controllable delay is described in appendix A, together with the complete program
for the delay written in Wolfram Mathematica programming language.

4.2 Measuring the controllable delay

4.2.1 Delay by scattering

We find in our simulation that when the incident time was small, there were only reflec-
tions, but when we increased the incident time between the two solitons, transmission(s)
were observed. Some incident time values have only one or more reflections, those are for
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the wavenumbers k0 = 2.5, 3 and 3.5). When the incident time is big enough, such as
k0 = 3.5 and 4, a third reflected soliton can be observed and for k0 = 4 a second trans-
mission. In figure 4.4 we show the delay time in dimensionless units for different incident
times ∆τI . The time of delay for the reflections and transmissions are measured as the
difference between the moment when the first incident soliton arrives at the impurity and
the moment when a soliton leaves the impurity, either as a reflected or transmitted soli-
ton. By changing the incident time, we change the time the solitons leaves the impurity.
The delay of the transmissions in this set-up was larger than was measured by Kubota
and Odagaki [90], who found the delay to be τtrap ' 32.5 for k0 = 3.5, K = 0.03, N = 2
and one soliton.

(a) (b)

(c) (d)

Figure 4.4: The time delay when solitons are reflected and transmitted. The time difference between
the first incident soliton arriving at the impurity and a soliton being reflected or transmitted from the
impurity, is plotted against the incident time. This is shown for four different wavenumbers, namely (a)
k0 = 2.5, (b) 3, (c) 3.5 and (d) 4. The reflections are indicated by the letter R in the legend and the
transmissions by the letter T. For this graph the number of sites connected by the harmonic potential was
N = 2 with a harmonic potential constant of K = 0.03 for all four wavenumbers.

While gathering data for figure 4.4, it was observed for k0 = 2.5, 3 and 3.5, that the
reflected soliton R1a, becomes so small in energy and had moved to the same position
as the ripples, that it can not be distinguished from the ripples any longer. When we
increased ∆τI we observed a second reflected soliton, R1b, emerging from the impurity.
The distinction between the reflections R1a and R2 can be ambiguous at times, because
there are values of ∆τI for which they leave the impurity at almost the same time. To
determine which of the two reflections was R1a and R2, we followed the general trend of
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the time they had left the impurity, how much energy the reflections had and which of
the reflections increased or decreased in energy over time.
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4.2.2 Measuring delay

The relative displacement Rn is shown for the sites n = i, i + 1 and n = j = i + 2 in
figure 4.5, together with the moment in time when the incident soliton is trapped in the
impurity and the moment the soliton leaves. We are looking at three sites connected
by the harmonic potential, thus we are looking at N = 2 sites. The most accurate way
to measure the delay time of both the reflections and transitions is to measure when
the relative displacement of Ri, Ri+1 and Rj=i+2 restore themselves to their equilibrium
positions, after they have moved a significant amount. This comes from the characteristics
of the Toda lattice, the potential that connects sites behaves as if it were reluctant to
be compressed. The same method was also applied in [90]. We have compared the time
delay by another method, in which we measured the change in force three sites away (on
both sides) from the impurity. If the force changes significantly (in all cases above 5 N)
and it goes back down again shortly after, we then know that a soliton has passed that
point. The described method gave close results with the method of following the relative
displacement, but it gave a longer delay because it was measured three sites away from
the impurity. Our criteria that the emerging signal cannot be ripples, but has to be a
single soliton, implied that we did not observe delays in the transmission for k0 = 2.5
and 3, even when the relative displacement R3 changed significantly. In this we deviate
from the results of Kubota and Odagaki where they did record delays in transmission for
those wavenumbers.

Figure 4.5: The sites displacement against time. In the graph the moment that the incident solitons I1
and I2 hits the impurity are indicated, the time the reflections leave R1, R2 and R3, and the transitions
T1 and T2 escaping the impurity. Relative displacement Ri is shown by the grey dashed line, Ri+1

by the grey dotted line and Rj=i+2 by the black solid line. This images was made with the
values k0 = 4, ∆τI = 11.73, K = 0.03 and N = 2.
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4.2.3 Energy from scattering

In our results, we only count the outgoing waves as reflections or transmissions when the
energy of the wave was above 0.1% of the normalized energy density, and only when the
majority of the energy of those waves are located at one or two sites. The last requirement
allows us to distinguish signals usable for computation from the ripples. The goal of this
controllable delay is to eventually build logic gates, that will eventually lead to create
circuits from those gates. Therefore this requires that signals coming from one gate as
output can be used as input for the next gate, that gates can be cascaded with each other.
Thus the energy of the transmitted soliton is very important and this is dependent on
the wavenumber, as shown by equation 3.15 and the incident time. From the work of
Kubota and Odagaki [90] we know that it is also dependent on the harmonic potential
constant. The undesired ripples can be seen in figure 4.2(a), they are moving to the
right after the incident soliton hit the impurity. In 4.2(b) can be seen that the different
reflected solitons have a different energy value from each other and they, therefore, move
at different speeds through the lattice. Comparing 4.2(a) with 4.2(b), we see that the
reflected solitons escapes the impurity at different moment. In figure 4.6 we show the
normalized energies of the emerging solitons.

(a) (b)

(c) (d)

Figure 4.6: The energy of the reflected and transmitted solitons plotted against the incident time. This
has been done for the four different wavenumbers (a) k0 = 2.5, (b) 3, (c) 3.5 and (d) 4. The reflections
are indicated by the letter R in the legend and the transmissions by the letter T. The number of sites
connected by the harmonic potential was N = 2 with a potential constant of K = 0.03 for all four
wavenumbers.
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The steps in time δt was 5 ms. Because of the size of the time step, the error in the total
amount of the normalized energy was smaller than 2% when the solitons were initialized,
by making the steps in time even smaller will decrease this error. Shortly after initializing
the incident solitons, this error became smaller than 0.1%, the energy can practically be
seen as conserved for the rest of the simulation, about a second after the initialization.

4.2.4 Increasing size of the impurity

When we increased the number of sites in the impurity in the Toda lattice, we observe
that the delay of the first soliton being transmitted is increased. This is shown in figure
4.7. For figure 4.7(b) we chose one particular incident time which gave only one reflection,
for (c) an incident time which for the wavenumbers 3.5 and 4 gave three reflections. We
changed the size of the impurity for two different incident times to investigate how this
difference in incident time affects the transmitted soliton energy. On the time scale, this
difference in incident time does not affect delay time by much, the biggest contributor
is the number of sites in the impurity, as can be seen in 4.7(a). What we can take
away from this figure is that the energy of the transmission is dependent on the size of
the impurity, the wavenumber, harmonic potential constant and to some extent on the
incident time. An important observation is that there is a transmission for k0 = 3 when
there are N = 4 sites connected by the harmonic potential, this cannot be observed for
N = 2 or N = 3. Another observation was the incident time within the regime where
there was only one reflection, 4.19 ≤ ∆τI < 5.39, when we increased the N to ≥ 8 for
k0 = 3.5, we observe a second reflection. If we increase the number of harmonic potentials
in the impurity to N = 10 for both the incident times for k0 = 3.5, a second transmission
can also be observed. The wavenumber k0 = 2.5 does not show any transmissions when
the sites in the impurity was increased from two to ten. For the wavenumbers 3, 3.5, 4 the
energy of the transmitted soliton changes for different sizes of the impurity. The biggest
transmitted soliton energy with a wavenumber of 3.0 and with ∆τI = 11.98 was with
N = 4 sites in the impurity, while the same wavenumber but with an incident time of
∆τI = 4.79 has its the biggest transmission when there are N = 3 sites.
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(a)

(b)

(c)

Figure 4.7: Delay and energy for the first soliton being transmitted. (a) shows the delay of the transmit-
ted soliton against different number of sites N in the impurity, for different wavenumbers and incident
delay. (b) shows the energy of the transmitted soliton against different N values within the regime were
k0 = 2.5, 3, 3.5 only had one reflected soliton. (c) shows the energy of the transmitted soliton for an inci-
dent time much longer than was shown in (b). The wavenumber k0 = 2.5 does not show any transmissions
when the number of harmonic potential are increased.

4.3 Demonstrating the logic gates operation

4.3.1 Constructing soliton logic gates

In section 4.2.1 we have seen that for only the wavenumbers k0 = 3.5 and 4 there was a
transmission observed. To construct a logic gate in the lattice using the controllable delay
will require the incident solitons to have a wavenumber of k0 ≥ 3.5. To demonstrate the
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functionality of the logic gate design presented in this section, we will be using incident
solitons with a wavenumber of k0 = 3.5, because for this value there was one transmission
observed, rather than the two transmissions for k0 = 4. For a soliton with a wavenumber
of k0 = 3.5, Kubota and Odagaki [90] found that an impurity with a harmonic potential
constant of 0.03 N/m, gave the longest delay possible. Therefore this is the constant
value we will be using in our logic gate demonstration.

In 2013 Kubota and Odagaki [91] were able to design three different logic gates in the
Toda lattice, they showed a design for NOT, OR and AND gates. With the control-
lable delay mechanic shown in the previous section, it is possible to design an XOR and
a differently designed OR gates. The logic value 0 is represented by the absence of a
soliton and the presence represents the value 1, both for in- and output, which is the
same representation as was used by Kubota and Odagaki. For the logic gates design, we
have two incoming lattices that will function as our inputs and they are connected to one
lattice, which functions as our output. The set-up is shown in figure 4.8. One input is
longer than the other, shown in the figure in the upper line as a “valley”. This allows
us to initialize two solitons at the same site n in both lattices. Because one lattice is
longer than the other, this causes both solitons to arrive at the impurity at two different
times, we therefore are in the same situation as we were when measuring the controllable
delay. The length of the valley can be found using equation 4.5, together with the results
from the previous section. The input and output lattices all have the same values for the
potential constants a, b and K.

Figure 4.8: Logic gate design in the Toda lattice. This gate uses the absence of a soliton to represent
the value 0 and the presence as the value 1. The upper input lattice I1 is longer than the bottom, the
extra sites are shown as a “valley” in the figure.

The program that simulates the logic gate is also described in appendix A, together
with the complete program for the delay written in Wolfram Mathematica programming
language.

4.3.2 Performing XOR and OR operations

As shown in section 4.2.1, for certain incident time values there are only reflections. To
build the XOR gate we need to be within that incident time. For k0 = 3.5 that would be
∆τI <3.81, thus using equation 4.5 the extra length for input I1 needs to be less than
19 sites. With the wavenumber k0 = 4 the incident time needs to be ∆τI <4.25, which
is a length smaller than 29 sites. In figure 4.9a we show the working of this XOR for the
input state 01, which gives an output of 1. As we can see in this figure, there is only
one soliton initialized, it does not matter in which input this is initialized. An abstract
depiction of the gates’ operation with the input state 01 is drawn in figure 4.10(a). When
we initialize two solitons in both lattice, we get an output of 0, as shown in figure 4.9b.
As can be seen in the figure it takes one soliton longer to arrive at the impurity than
the other. This input state has been drawn abstractly in figure 4.10(b). In this set-up,
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the incoming solitons are reflected back to both input lattices. In figure 4.9b when the
soliton is reflected from the impurity, the reflected soliton arrives at the point where the
three lattices are connected, a portion is then reflected back towards the impurity again.
Because the potential constant on every Toda lattice is the same, the reflected soliton
will experience ‘a lattice’ (the two input lattices together) that has a constant of 2a, this
will make it more difficult for the solitons to crossover to the input lattices, causing some
of the energy to be reflected back to the impurity. We have observed the same kind
of reflections when we had a one dimensional lattice and the second half of this lattice
had a constant value of 2a. This is in line with results from Nakamura’s study what
the effects it has on of a solitons travels through the lattice if some sites have different
mass or constant values of the Toda potential [106]. In the simulation, the new reflected
soliton heading for the impurity, but were too small to become a transmission soliton,
later on, the energy of this soliton was therefore dissipated by the impurity in the form
of the ripples.

(a) (b)

Figure 4.9: XOR gate operation being performed in the Toda lattice. In (a) input state is 01 and
output is 1, (b) input state is 11 and output is 0. The thick dashed line indicates the location of the
impurity. The number of sites in the impurity were N = 2, wavenumber k0 = 3.5 and one input was 15
sites longer than the other.
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(a) (b)

Figure 4.10: An abstract depiction of the XOR gate operations in the Toda lattice. In (a) is depicted
that the solitons travelling from figure 4.9(a) and (b) depicts figure 4.9(b). When a soliton leaves on of
the inputs (the lattice functioning as the logic gate inputs), it enters the output lattice. The reflection
solitons leaving the impurity will enter both input lattices. Their energy is divided to both lattices, this
means that the speed of the soliton is lower, but in this depiction this has not been incorporated to keep
the depiction more straightforward.

If we increase the length of the input lattice even more, we can have transmissions for
the input state 11, as was seen from our controllable delay investigation. The energy of
transmitted soliton will depend on the increased length in the upper lattice, as length
corresponds to the incident time. We still have transmissions for the 01 and 10 input
state, just as before. To construct an OR gate we give the input I1 19 or more sites than
I2 for k0 = 3.5, we would need more than 29 sites for k = 4. The gate operation for the
11 input state is shown in figure 4.11. This design is an alternative to the OR gate design
from [91]. Again in this design, a reflection can be seen when the reflected soliton tries
to enter both input lattices.
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Figure 4.11: OR gate operation being performed in the Toda lattice. Two solitons are initialized
corresponding to the input state 11 and which gives an output of 1. The thick dashed line indicates
the location of the impurity. The number of sites in the impurity were N = 2, wavenumber k0 = 3.5 and
one input was 35 sites longer than the other.

Figure 4.12: An abstract depiction of the OR gate operations in the Toda lattice. It depicts the state
11 of the OR gate as shown in figure 4.11.
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In section 2.1 we have gone over some of the points discussion in Horsman et al. paper
[69]. It is now time to go over those points and reflect if the above described logic gates
could qualify for a physical system capable of performing computations. The information
has been encoded in representing the value 1 and 0 as the presence and absence of a
soliton in the lattice respectively. The same representation is also used for decoding
the information back, with the extra requirement that the presence of a soliton is only
recognized if the energy of this soliton is > 0.1% of the incident soliton. The abstract
model mp of the logic gate designs has been established in chapter 3 and in figure 4.8.
Our Mathematica program simulates a physical system in the initial state p and the
program then evolves this system to the state p′. What we have done with the simulation
is evolving the state mp of the model into the state m′p of the physical system. The
simulation is based on the theories of the Toda lattice, therefore the simulation plays
the role of CT in the framework. There exist relations R̃T between the abstract Toda
lattice model and a few physical systems, as was discussed in 3. But direct relations R̃T
and RT between the logic gate design in the lattice and any physical systems has not
been established as of this moment. We can not therefore complete the diagram of the
framework. One implementation of the Toda lattice is the LC ladder network [92, 124].
To build our logic gate design in this implementation is in theory possible, we would be
able to measure both input incident solitons and the output soliton by the voltage across
specific capacitors in the network. The shape of our incident soliton would be visible on
an oscilloscope. The precise values of the coils, capacitors and resistors, and the shape
of the network required to realize any kind of Toda lattice logic gate designs is an open
question. Knowing those values would be knowing the relations R̃T and RT . But with
such a physical realization, we would be completing the framework diagram from figure
2.4 and be allowed to categorize this physical implementation and the gate designs from
thesis together as a physical system that is performing computations.
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Chapter 5
Conclusion and outlook

This chapter summarizes the outcome of the thesis, the implications and providing an
outlook on some continuations possible for the presented work.

5.1 Summary and conclusion

This thesis aimed to explore the computing capabilities of the Toda lattice. The soliton
solutions of the Toda lattice or its variation have been shown to be equivalent to the
nonlinear Schrödinger equations or a variation thereof shown by the work of Arnold [11]
and Kaup [83]. Theoretically, it is possible to translate the results presented in this thesis
to soliton solutions of a system governed by the nonlinear Schrödinger equations. In this
thesis, the number of possible logic gates in the Toda lattice was extended to include an
XOR gate design and an alternative design for the OR gate. The gates presented in this
work are capable of being cascaded with the OR and AND gate presented by Kubota and
Odagaki [91]. The mechanism for the additional logic gates was the controllable delay and
this delay temporarily traps the soliton who are travelling through the Toda lattice. The
trap, which was a lattice made from sites that were connected by the harmonic oscillator
potential, which acted as an impurity inside the Toda lattice. A degree of controllability
in the amount of delay was created by changing the incident time. This time parameter
was the time difference between two solitons arriving at the impurity. To construct any
logic gate, a representation of information needs to be defined. In this thesis, the binary
value 0 was represented by the absence of a soliton and the value 1 by the presence of a
soliton carrying an energy that was ≥ 0.1% of the total initialized solitons. The difference
between the design of the XOR and OR gate was the extra length in one of the lattices,
which causes the initialized solitons to have a different incident time, creating different
behaviour in the way solitons are transmitted from the impurity.

The contributions of this thesis has been the first investigation of soliton scattering against
an impurity while another soliton was trapped inside this impurity, as discussed above.
The results of the investigation has been incorporated in the next contribution, a new
design for a XOR and an OR logic gate inside the Toda lattice. In appendix A a code
programmed in Mathematica has been added, which is the third contribution which has
been made to the field of soliton computing. The code creates a Toda lattice which has
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been validated by comparing the results of other authors [90, 91]. After the validation
stage, the simulation has been used in the investigation of soliton scattering against a
trapped soliton and for testing the functionality of the new logic gate designs.

While the Toda lattice is used in different fields, ranging from solid matter physics [17]
to modelling DNA [105], the lattice has not been researched much in its computing capa-
bilities, such as those presented in this work. While cascading can be done in the lattice,
the logic gate design presented in this work and in those from Kubota and Odagaki, still
requires an amplifier when building more complex circuits. After every logical operation
around 10− 30% of energy remains of the original input left for the output soliton to be
used. Therefore energy losses after every logic gate operation will require amplifiers to
build a physical circuit of cascaded gates, when we are using the mentioned designs in
this thesis. Using a different representation for the soliton boolean values or a different
set-up, might mean that amplifier is not required when building complex circuitry, such
as the representation used below in section 5.2.1. The Toda lattice is among the medi-
ums that have soliton solutions and are capable of performing logical operations. Which
soliton system would be the best suited for carrying information in a fully functional
optical computer, that question at present can not be answered with certainty. In section
5.2.2 we go over one suggestion that could help with answering this question and how the
Toda lattice may play a part in answering. This thesis has focused on using the Toda
lattice in the context of optical computing, but because the lattice can also be used to
model switches in DNA [64, 86] using solitons as information carriers, it is not a stretch
to incorporate the results into a set-up with DNA to construct logic gates analogue to
the design presented here. Which paradigm will be used in future technology is never
certain and therefore which path researchers need to take to get us from one paradigm
to another is also uncertain, we may only hope that our contribution will be fruitful in
the future.

5.2 Suggestions for future research

In this section, I will describe some possibilities for continuing the results found in this
thesis. As has been pointed out in the introduction in chapter 3, there are some variations
of the Toda lattice equivalent to the nonlinear Schrödinger equations (NSE). Thus the
first suggestion for further research is to translate the results from this thesis to the
NSE, enabling one to construct logic gates that were done in this work in the NSE.
There are different approaches demonstrated in the NSE to be functional logic gates
[7, 8, 13, 14, 16], which of those approaches are the most optimal for a given situation is
still an open question.

5.2.1 Non Boolean soliton logic gates

The literature on computing with solitons is mainly focussed on binary logic. We may
wonder if not other forms of logic are possible. In appendix B we give a small introduction
into multi-valued and fuzzy logic. With the success of Boolean electronics in the past
century, the tendency to apply the familiar Boolean logic for other physical systems is
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understandable. Perhaps much can be gained using a different type of logic when apply-
ing solitons for computing. We may wonder if the reason for the popularity of Boolean
logic in the soliton computing field is due to the properties of soliton or merely by the
success of Boolean logic in electronics. If it is the latter, then we may ask the following
question what is the most optimal logic for a given medium with soliton solutions for
constructing logic operations. Optimal could mean in a given context the most energy
efficient, the fastest, the smallest in a certain space, the most secure or perhaps robust in
carrying information. Some information representations used in computing with solitons
do not lend itself for representations in other logic systems, for example, the presence
and absence of a soliton is limited to Boolean logic. We will now go through one example
in the Toda lattice which could allow for the construction of multi-valued logic gates.

The multi-valued logic gate option uses the presence of a soliton within a certain space
and time to represent the values for the output. Let us call this representation clock
window, because it depends on the time of an external clock which value is associated
with the output value. In the treatment of this representation, we will be using the Toda
lattice as an example of how such a representation can be used to construct logic gates.
We start the example of with Boolean logic for simplicity, but it is possible to extend it
to another valued logic system and we show this with an extension to ternary. Suppose
we have a lattice where a soliton travels from left to right and we have a detector that
detects when a soliton is located within a certain region of the lattice. Figure 5.1 shows
how such a set-up in the Toda lattice would look like.

Figure 5.1: The detection of a soliton within a region of the lattice.

One option is for the detector to start in the state ‘unknown’ at the beginning of the
experiment and when it detects a soliton, it will change to the state A or B, depending
when it is measured:

mT ≤ t < (m+ 1)T − εT

{
state will be state A if m is even

state will be state B if m is odd
(5.1)

where the current time of the detection is t, m is an integer and the duration of the
detecting certain states lasts for T (1 − ε) seconds. T is the clock window and ε the
extra buffer time required to still be able to distinguish between the different states. The
detector will stay in this new state until it detects another soliton. We have named these
states neutrally as A and B because they can represent boolean states either as (0,1) or
as (1,0). The duration time of the detector needs to be chosen such that a slow soliton
is not detected twice, neither that a fast soliton is never detected, therefore T has to
depend on the speed of the soliton. A part of the soliton might be within the detection
region and the other part is outside when the detector changes state, this would cause the
detector to change states twice. To prevent this from happening we have introduced a
small value ε and this value will depend on the size of the detection region and the width
of the soliton. If one would use the same method of influencing the soliton as was done in
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this thesis, then the ripples created from the interaction of the harmonic oscillator with a
soliton would need to be taken into account when measuring to ensure that the detector
does not change its state due to the ripples. Therefore we need to have a cutoff where
waves below a certain amount of energy are not detected. The outlined representation
allows us to expand and create more states. For example for the detection of three states
A, B and C one possible division would be

mT/3 ≤ t < (m+ 1)T/3− εT/3


state will be A if m is 1, 4, 7, 10, ...

state will be B if m is 2, 5, 8, 11, ...

state will be C if m is 3, 6, 9, 12, ...

(5.2)

where the duration is now T/3. This way of defining the representation of logical values,
could perhaps be the only possibility in the Toda lattice to define more states than binary.
We have seen that it is possible to delay a soliton in the Toda lattice and this can be
used to create a NOT gate with this clock window set-up, as shown in figure 5.2.

Figure 5.2: Three possible ways to design a NOT gate with the clock window representation. (a) The
series of harmonic oscillators delays the soliton in its travelling, (b) the harmonic oscillator is slightly
off-resonance with the soliton, causing it to lower the energy of the soliton, which in turn causes the
soliton becomes slower and (c) the soliton needs to travel a longer path, therefore delay the time when its
arrives at the detector.

In 5.2(a) the energy of the transmission soliton after being trapped in the impurity is
lower than the initial soliton, this will also mean that the speed is reduced. Another way
of realizing a NOT gate is shown in (b), one harmonic oscillator is placed in the Toda
lattice and the harmonic potential constant is chosen in such a way that it is off-resonance
just enough with the soliton’s frequency, causing the soliton speed to reduce because it
has lost some of its energy. A third design for a NOT gate shown in (c), this is to create
a longer path for the soliton to travel on. In all three cases the soliton arriving at a
later point of time than it normally would arrive at, therefore it will be seen as a different
state. To construct an OR or NOR gate for this kind of representation in the Toda lattice
we need the lattices to act as our inputs and output. The mechanism of the controllable
delay can again be used in this set-up. The set-up is shown in figure 5.3 and the truth
table for this gate is shown in table 5.1. When we do not have an impurity in the Toda
lattice, we want the initialized solitons for example in the A state, to later combine the
solitons at the branching site (the site were the three lattice come together) and arrive
at the detector in the A state interval. The same holds true for solitons initialized in the
B state, where solitons arrive at the detectors in the B state interval. We construct our
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series of harmonic oscillators in such a way that solitons initialized in the A or B still
arrive at the detectors A or B state. However, when we initialize one soliton in the A
state and the other in the B state, we want the soliton transmitted from the impurity to
arrive at the B state of the detector.

Figure 5.3: OR or NOR gate set-up for the clock windows representation.

I2 I1 Out
A A A
A B B
B A B
B B B

Table 5.1: Truth table of an OR or NOR gate.

When using this design for constructing the OR or NOR gate, we should keep in mind that
for wavenumber k0 = 4 a second soliton transmission was observed, therefore we need to
keep the wavenumber of the initial soliton lower than k0 = 4. So far only the construction
of a NOT and, OR or NOR gate has been shown. In the thesis we have only experimented
with two solitons of the same wavenumber, it is still unknown what difference it will make
in the outcome when we have two solitons scattering against the impurity with different
wavenumbers. An investigation into the effect on the transmission delay when both initial
solitons do not share the same wavenumber could give us a hint in the components needed
to constructed multi-valued logic gates using the discussed representation of this section.
The option here presented only shows one possible approach of implementing fuzzy or
multi-valued logic, as stated before, a non-Boolean logic option has not been extensively
(if at all) been researched. Some of the benefits for non-Boolean logic are discussed in
appendix B.

5.2.2 General soliton computing framework

In this work we have extended the number of logic gate possibilities in the Toda lattice
and in chapter 2 we have seen different physical systems with soliton solutions who were
capable of performing Boolean operations. But a question one might ask is the following,
which material additions does a system with soliton solutions need to contain if it is going
to be used for (unconventional) computation. With material additions I mean the extra
material that needs to be implemented in the system to influence that system such that
construction logic gates are possible. Phrasing the question differently, given an arbitrary
physical system with soliton solutions, what kind of physical possible material properties
other than those contained in the system itself, are required to incorporate before we can
perform any kind of computation with this system. Those additions in the Toda lattice
were the harmonic oscillator, without those harmonic oscillators there were only solitons
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moving in the lattice and colliding with one another, never changing their initialized
amplitude or velocity. There are systems and representations which makes it possible to
perform operations without any additional material, such as the set-up shown by Wu,
Chen and Chu [37], where they change the angle of the incoming solitons to change the
operator being performed on the soliton. In the Toda lattice, we have used the absence
of a soliton to represent the logic value 0 and the presence as the value 1. Only having
solitons moving in the lattice would not be enough to perform logical operations in the
Toda lattice with this logic value representation. Ideally for this question a framework
would be developed that would apply to every physical system with soliton solutions
and indicates if that system is capable of performing computations, which representation
would be optimal, how operations are done and how information can be stored in this
system for some time. The framework will ideally focus on the properties that all soliton
systems have in common and rather than the details for every specific system. The
framework would be an asset to researchers working in the soliton computing field and
possibly increasing the amount of useful soliton systems for computing we know so far.
Optical solitons have the most potential of being used for creating marketable optical
computers, but other soliton systems can be used in other future technology for their
robustness as information carriers. There are already switches made in DNA with solitons
[64, 86] to name only one example with potential for implementation of solitons.
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The framework does not necessarily have to specify what the “best” implementation
would be, how to increase the speed, size, or even lower the amount of complexity of a
soliton computing set-up. It may very well be that this framework would not be the most
practical implementation, just as Boolean AND and OR gates are universal, but often
it is not practical to make entire circuits from those gates alone. Ideally, the framework
not only answers questions being asked by the researches, but also gives an indication of
how to minimize the amount of extra materials required for performing computations for
a given physical system with solitons. The framework could be broken down into three
parts, encoding and decoding information, operating on that information and, storing and
retrieving information, those parts are requirements for any kind of physical computer.
The framework would then be able to focus on minimizing the amount of extra material
properties required for each part. The quest for minimization has had a lot of interest
and much has been written about it. In cellular automata (CA) for example, there is
the search for the smallest Turing machine in a CA [42], smallest self-reproducing in a
CA [40] and the smallest real-time prime number generator in a CA [1]. In mathematics,
there was the search for the smallest number of necessary Boolean operators, in physics
the minimization (unification) of theories, and for engineering, there is the search for
minimizing (shrinking in size) electronic computers.
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Appendix A
Simulation code

This appendix contains the program code for simulating the Toda lattice, and the re-
sults created by this program can be found in chapter 4. The code is written for Wolfram
Mathematica version 12 and can be found here https://git.cs.york.ac.uk/mc1723/soliton-
computing-in-the-toda-lattice-controllable-delay-and-logic-gates.git. The program has been
made completely from scratch by the author, thus it does not contain any copyrighted
materials, other than from the author himself. The first section gives a general description
of the program written in pseudo code. This section finishes with a comparison between
the results from the authors’ program and the results from Kubota and Odagaki’s paper
on delay of a soliton in the Toda lattice [90]. The second section will be the code used for
the controllable delay measurements, and the code used for simulating the logic gates.
The amount of commentary in this second section will be kept to a minimum. The code
can be copied into a Mathematica file and be used to obtain the results from chapter 4.

A.1 Pseudo code

We start with the code for creating the controllable delay, followed by the code for
simulating the new logic gates designs.

A.1.1 Controllable delay description

The very first step is to have a piece of code that creates a static Toda lattice. After that
we initialize a soliton into this static lattice.

L i s tCur r en tPos i t i on [ ] ;
L i s t P r e v i o u s P o s i t i o n [ ] ;
E0 = TotalEnergy [ k0 ] ;

We create two lists of positions, one being the current positions of all the sites, using
equation 3.20 to determine the positions of the one dimensional lattice together with the
initialized soliton(s). The other list contains the previous positions of the sites in the
lattice and the solitons where they would have been at time t − δt using 4.3. This list
is used for calculating the momentum Pn and for the Verlet integration to determine the
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new position of the sites after a step δt in time. The set-up of the lattice that the code
simulates is drawn in figure A.1.

Figure A.1: Redrawn figure of the experimental set-up, this image is also shown in figure 3.8. n indicates
the label assigned to the sites. Between the two Toda lattices is an impurity made from N = j − i sites
connected by the harmonic potential.

After the two lists of positions of the sites in lattices are determined, the total amount
of energy E0 stored in the lattice is calculated and this value is used later to normalizing
the energy density function. The parameter k0 is the wavenumber.

Main{
Tota lForceL i s t [ n=i ] = Force (n=i −1) + Force (n=i +1);
CheckDelay [ So l i t onDe l ayL i s t ] ;
Ver l e t [ ] ;
I f Mod( t , SavingTime ) = 0 ,

Add CurrentTotelEnergy to StoreEnergyForEveryS i teL i s t [ ] ;
}
t = t + TimeStep ;

}

Plot3D ( CalculateEnergyOverTime [ ] ) ;

When the preparations are done, we enter the main program. Here we simulate the
dynamics of the soliton in the lattice. We first calculate the total force on each site,
the program does not store the data permanently, but at every step in the time, the
forces on every site is recalculated, because the magnitude and direction of the force are
only important for the function verlet[]. For most sites the force would be the sum
of the force of their neighbouring site to their right and left. The only exception are
the sites on both ends of the lattice, because they only have one neighbouring site. In
the function Force(n=i) we also check if the force is caused by the harmonic or Toda
potential. CheckDelay measures if a soliton has escaped the impurity, the function will
then save the duration the soliton was trapped in a list named SolitonDelayList, an
explanation how this is done can be found in section 4.2.2. It is in the SolitonDelayList
list that we used to create the results that were discussed in chapter 4. This is followed
by Verlet integration, which is a method to simulate dynamics of the lattice and from
this method the new position of the sites due to the force exerted of them is calculated
and changed in ListCurrentPosition[]. Before the current site position is changed,
its current position is copied into the previous position list ListPreviousPosition[].
Every SavingTime amount of seconds we store the current energy of every site in a list,
the energy is determined by equation 3.27b with the momentum defined by 4.4. If we
collected the energy of every site at every δt step, it would diminish the readability of
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the graphs, we therefore collect only at a certain number of steps that have past. An
example of the readability of the graph can be seen in figure 4.2. After the simulation
has run for a predetermined period of time, we plot the energy of every site, against the
sites and at the moments in time the data of the simulation has been stored.

A.1.2 Logic gate simulation description

The majority of the program for the simulation logic gates is the same as the previous
program for measuring the controllable delay. But in the previous program where we were
working in one dimension, we are now working in two dimensions with three connected
Toda lattices together and one of the lattices containing the impurity. The set-up is
redrawn in figure A.2.

Figure A.2: Redrawn set-up for the logic gate design in the Toda lattice. Two lattices are used as the
inputs named Up for I1 and Down for I2, they are together connected to a third one Middle and used
as the output of the logic gate. In the Middle lattice is also an impurity incorporated, made from sites
connected by the harmonic potential.

Lis tCurrentMidd lePos i t i on [ ] ;
L i s tCurrentUpPos i t ion [ ] ;
ListCurrentDownPosit ion [ ] ;
L i s tPrev iousMidd l ePos i t i on [ ] ;
L i s tPrev iousUPos i t i on [ ] ;
L istPreviousDownPosit ion [ ] ;
E0 = TotalEnergy [ k0 , Up, Down, Middle ] ;

Rather than having only one lattice to prepare, initialize solitons and calculate its previous
position, we have three. The two lattices named Up and Down will function as our inputs
and in the lattice named Middle the logic operations will be performed and this lattice will
function as our output. It is this middle lattice that the impurity has been incorporated.
In the previous code we only needed to calculate the energy of one lattice, now we need
to know the total amount of energy of the whole set-up together to properly normalize
the energy of every site, to allowing us to compare the different simulations.

Main{
ListForceUp [ n=i ] = Force (n=i −1,Up) + Force (n=i +1,Up ) ;
ListForceDown [ n=i ] = Force (n=i −1,Down) + ForceDown (n=i +1,Down ) ;
ListForceMiddle [ n=i ] = Force (n=i −1,Middle ) + Force (n=i +1,Middle ) ;
ListForceBranch [ n=i ] =

Force (n=i −1,Up)+Force (n=i −1,Down) + Force (n=i +1,Middle ) ;
Ver l e t [Up,Down, Middle ] ;
I f Mod( t , SavingTime ) = 0

Add CurrentTotelEnergy to
StoreEnergyListUp [ ] ;
StoreEnergyListDown [ ] ;
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StoreEnergyListMiddle [ ] ;
}
t = t + TimeStep ;

}

Plot3D ( CalculateEnergyOverTime [Up,Down, Middle ] ) ;

The next step is to calculate the total amount of force, just as before, but now for all
three lattices separately. There is one site that connects all three lattices, this site has
been named the Branching site. This required a separate code to calculate its total
force. The branching site does form a part of the Middle lattice. The next step as was
done before, is to perform the Verlet integration and change the positions of the lattice
one δt step in time. We then have to save the total amount of energy of every lattice, we
do this because eventually, we are plotting the energy of every site against the moment
in time. It is therefore important for demonstrating the logic gate functions to show the
input lattices separately, rather than having them atop of each other in the graph.

A.1.3 Comparing results

The program that was used to produce the results in chapter 4 has been validated by
comparing the duration of the delay and the graphs from both the simulation of the
author and from the work done by Kubota and Odagaki [90]. Only after the program of
the author agreed the theory explained in chapter 3 and with the results of Kubota and
Odagaki, did the author perform the measurements on the controllable delay and tested
the functionality of the OR and XOR gate designs.

The duration of the delay was measured in the controllable delay program described
in section A.1.1 and compared with the results shown in Kubota and Odagaki’s paper
[90, figure 5]. In their work they showed a graph of the harmonic potential constant
against the trapping time τtrap. The program of the author was able to produce the same
trapping ‘time’ values as those seen in Kubota and Odagaki’s work. A graph from both
simulations is shown in figure A.3, were we see a soliton travelling in the Toda lattice
and interacting with an impurity in the form of a series of harmonic potentials.

Figure A.3 shows that the behaviour of both simulation are the same. In both figures
after the collision ripples escape the impurity, followed by a reflection soliton and ripples
in the opposite direction. In figure A.3(a) the soliton is trapped in the impurity between
the dimensionless ‘time’ τ = 0−8 and escapes between τ = 44−52. Therefore the soliton
has been trapped for a duration of about 44 moments in ‘time’. This correspondence to
figure A.3(b), were the soliton enters the impurity between τ = 20 − 24 and escapes
between τ = 64 − 68. The speed of the soliton moving through the lattice, before and
after the collision, appears to be the same in both figures, as the transmitted soliton has
moved about 50 sites further in the lattice after 20 moments in ‘time’.
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(a)

(b)

Figure A.3: Comparing the simulation result of two different programs. Both programs show a soliton
scattering against an impurity. This impurity is a series of harmonic potentials in the Toda lattice.
After a delay, a soliton continues the journey and another soliton escapes the impurity as a reflection.
The wavenumber in both simulations were k0 = 3.5, a constant value of κ = 0.03 and the number of
harmonic potentials was N = 2. (a) is a figure out of Kubota and Odagaki’s paper [90, figure 4], (b)
shows the result from the authors’ program in the same situation. The lines on the plane in figure (a)
are drawn every 8 dimensionless moments in ‘time’, while in (b) they are drawn every 4 moments in
‘time’. The axes of both images are drawn from a different angle. Furthermore in figure (a) the sites
have been numbered from -100 to 150, while the sites in (b) have been from 0 to 250. While the angle,
site numbering and the time a soliton enters the impurity is different, however, both figures do show the
same behaviour.

A.2 Mathematica code

A.2.1 Controllable delay code
The start of the program is to set the values for the constants we are using. SSP is the Soliton Position and SpringPosition
is the position of a site is attached to a harmonic potential. The wavenumber k needs to be >3 for transmission to appear,
otherwise there are only reflections, explained in chapter 4.

a = 1 ; b = 1 ; m = 1 ; k = 4 ;
ka = 0 . 0 3 ;
t imestep = 0 . 0 0 5 ; Par t i c l eLength = 10 ; ParticleAmount = 550 ;
SSP = 270 ; Spr ingPos i t i on = 400 ; BranchEndPosition = −60; d i s t anc e = 350 ;
w = Sqrt [ a b ] Sinh [ k ] ;
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LastHarmonicSpring the number of harmonic springs between both Toda lattices.

Sp r ingL i s t = { Spr ingPos i t ion , Spr ingPos i t i on + 1} ;
LastHarmonicSpring = Length [ Spr ingL i s t ] ;

We are using Verlet integration, where ‘a’ in this expression is the acceleration found by f=ma

Ver l e t [ x , xOld , a ] := 2 x − xOld + a t imestep ˆ2

To find the time at which the soliton is at position SSP, we calculate ‘t’. A table is then made with the values for the x n’s,
to create this soliton at SSP. OldSoliton is needed for the Verlet integration. Changing the OldSoliton list (t-timestep) into
(t+timestep) will cause the soliton to move to the left rather than the right.

t = k SSP/(w) ;
S o l i t o n = Table [ 1/ b ( Log [

1 + wˆ2 /a Sech [w *−t + k *n ] ˆ 2 ] ) , {n , SSP − 5 , SSP + 5 , 1 } ] ;
O ldSo l i ton = Table [ 1/ b ( Log [

1 + wˆ2 /a Sech [w*−( t − t imestep ) + k *n ] ˆ 2 ] ) , {n , SSP − 5 , SSP + 5 , 1 } ] ;

S o l i t o n l i s t = { S o l i t o n [ [ 1 ] ] , Sum[ S o l i t o n [ [ i ] ] , { i , 2} ] ,
Sum[ S o l i t o n [ [ i ] ] , { i , 3} ] , Sum[ S o l i t o n [ [ i ] ] , { i , 4} ] ,
Sum[ S o l i t o n [ [ i ] ] , { i , 5} ] , Sum[ S o l i t o n [ [ i ] ] , { i , 6} ] ,
Sum[ S o l i t o n [ [ i ] ] , { i , 7} ] , Sum[ S o l i t o n [ [ i ] ] , { i , 8} ] ,
Sum[ S o l i t o n [ [ i ] ] , { i , 9} ] , Sum[ S o l i t o n [ [ i ] ] , { i , 1 0} ] ,
Sum[ S o l i t o n [ [ i ] ] , { i , 1 1} ]} ;

O l d S o l i t o n l i s t = {OldSo l i ton [ [ 1 ] ] , Sum[ OldSo l i ton [ [ i ] ] , { i , 2} ] ,
Sum[ OldSo l i ton [ [ i ] ] , { i , 3} ] , Sum[ OldSo l i ton [ [ i ] ] , { i , 4} ] ,
Sum[ OldSo l i ton [ [ i ] ] , { i , 5} ] , Sum[ OldSo l i ton [ [ i ] ] , { i , 6} ] ,
Sum[ OldSo l i ton [ [ i ] ] , { i , 7} ] , Sum[ OldSo l i ton [ [ i ] ] , { i , 8} ] ,
Sum[ OldSo l i ton [ [ i ] ] , { i , 9} ] , Sum[ OldSo l i ton [ [ i ] ] , { i , 1 0} ] ,
Sum[ OldSo l i ton [ [ i ] ] , { i , 1 1} ]} ;

A list of position are created with one initialized soliton at SSP. Also a list is created with the positions at time-timestep.
This list is used to keep trace of the positions of the particles in the lattice along the simulation.

P a r t i c l e P o s i t i o n L i s t = Table [ Par t i c l eLength * i , { i , 1 , ParticleAmount } ] ;
O ldPos i t i onL i s t = P a r t i c l e P o s i t i o n L i s t ;
l en = Length [ S o l i t o n ] ;
For [ i = 1 , i < ParticleAmount − SSP + 6 + 1 , i ++,

I f [ i < l en + 1 ,
P a r t i c l e P o s i t i o n L i s t [ [ SSP − 6 + i ] ] =

S o l i t o n [ [ i ] ] + P a r t i c l e P o s i t i o n L i s t [ [ SSP − 6 + i − 1 ] ] + Part i c l eLength ;
O ldPos i t i onL i s t [ [ SSP − 6 + i ] ] =

OldSo l i ton [ [ i ] ] + OldPos i t i onL i s t [ [ SSP − 6 + i − 1 ] ] + Part i c l eLength ; ,
P a r t i c l e P o s i t i o n L i s t [ [ SSP − 6 + i ] ] = P a r t i c l e P o s i t i o n L i s t [ [ SSP − 6 + i − 1 ] ]
+ Part i c l eLength ;
O ldPos i t i onL i s t [ [ SSP − 6 + i ] ] = P a r t i c l e P o s i t i o n L i s t [ [ SSP − 6 + i ] ] ;

]
] ;

(*This code can be used to p lace a second s o l i t o n at the r i g h t o f
f i r s t s o l i t o n . ’ d i s tance ’ i s the number o f p a r t i c l e s away the second
s o l i t o n i s from the f i r s t . * )
For [ i = 1 , i < ParticleAmount − d i s t ance + 6 + 1 , i ++,

I f [ i < l en + 1 ,
P a r t i c l e P o s i t i o n L i s t [ [ d i s t anc e − 6 + i ] ] =

S o l i t o n l i s t [ [ i ] ] + P a r t i c l e P o s i t i o n L i s t [ [ d i s t anc e − 6 + i ] ] ;
O ldPos i t i onL i s t [ [ d i s t anc e − 6 + i ] ] =

O l d S o l i t o n l i s t [ [ i ] ] + OldPos i t i onL i s t [ [ d i s t anc e − 6 + i ] ] ,
P a r t i c l e P o s i t i o n L i s t [ [ d i s t anc e − 6 + i ] ] =

P a r t i c l e P o s i t i o n L i s t [ [ d i s t anc e − 6 + i ] ] + S o l i t o n l i s t [ [ 1 1 ] ] ;
O ldPos i t i onL i s t [ [ d i s t anc e − 6 + i ] ] =

P a r t i c l e P o s i t i o n L i s t [ [ d i s t anc e − 6 + i ] ] ;
]

] ;
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Momentum and potential energy formulas. Potential2 is for the harmonic spring and Potential1 is for the Toda potential.
E0 is needed to normalize the energy value. In the code we are using dimensionless variables.

Vn [ xnew , xo ld ] := (xnew − xold )/ ( t imestep ) ;
rn [ xn , xnmin ] := Part i c l eLength + xnmin − xn ;
Pot en t i a l 1 [ rn , const , a ] := a/b Eˆ(−b rn ) + a rn + const ;
Po t en t i a l 2 [ rn ] := 1/2 rn ˆ2 ka ;

energyMemory = {} ; For [ i = 1 , i <= ParticleAmount , i ++,
ra = I f [ i == 1 , 0 , rn [ P a r t i c l e P o s i t i o n L i s t [ [ i ] ] , P a r t i c l e P o s i t i o n L i s t [ [ i − 1 ] ] ] ] ;

(* Cal cu l a t ing the d i f f e r e n c e from the equ i l i b r i um d i s t anc e o f p a r t i c l e s *)
rb = I f [ i != ParticleAmount , rn [ P a r t i c l e P o s i t i o n L i s t [ [ i + 1 ] ] ,

P a r t i c l e P o s i t i o n L i s t [ [ i ] ] ] , 0 ] ;
Vm = Vn[ P a r t i c l e P o s i t i o n L i s t [ [ i ] ] , O ldPos i t i onL i s t [ [ i ] ] ] ;

(* Cal cu l a t ing the momentum*)
energy = (Vmˆ2 +

I f [ MemberQ [ Spr ingLi s t , i ] , Po t en t i a l 2 [ b ra ] , Po t en t i a l 1 [ b ra , −a/b , a ] ] +
I f [ MemberQ [ Spr ingL i s t − 1 , i ] , Po t en t i a l 2 [ b rb ] , Po t en t i a l 1 [ b rb , −a/b , a ] ] ) / 2 ;

energyMemory = AppendTo [ energyMemory , {0 , i , energy } ] ; ] ;
E0 = Sum[ energyMemory [ [ i , 3 ] ] , { i , ParticleAmount } ]

The code below lets soliton(s) move for Endtime seconds. At the particle position SpringPosition, the particle is connected
with harmonic springs to particles SpringPosition-1 and SpringPosition+1. The other springs follows the Toda potential.
At the end of the simulation we have list of all the new position of the particle (memoryList2) and the positions at certain
points in time (memoryList3). The last list (memoryList) contains the force of every particle.

time = 0 ;
memoryl ist = {} ; memoryl ist2 = {} ; memoryl ist3 = {} ; Endtime = 100/ t imestep ;
DelayTime = {} ; DelayTimeBool = Fal se ;
DelayTimeLeft = {} ; DelayTimeBoolLeft = Fal se ; DelayTimeRight = {} ;
DelayTimeBoolRight = False ; Boo leanList = {False , False , False , Fa l se } ;
TauDelay = { , {} , {}} ;
For [ j = 0 , j < Endtime + timestep , j ++,

FList = Table [ 0 , {n , 1 , ParticleAmount , 1 } ] ;
(*Temperary l i s t to t r a c e the f o r c e f o r every step in time *)

For [m = 1 , m < ParticleAmount , m++,

I f [m != 1 && m != ParticleAmount , r1 = Part i c l eLength +
P a r t i c l e P o s i t i o n L i s t [ [m − 1 ] ] − P a r t i c l e P o s i t i o n L i s t [ [m] ] ;

(* Cal cu l a t ing the d i f f e r e n c e from the equ i l i b r i um d i s t ance o f p a r t i c l e s *)
r2 = Part i c l eLength + P a r t i c l e P o s i t i o n L i s t [ [m] ] − P a r t i c l e P o s i t i o n L i s t [ [m + 1 ] ] ;
f o r s e = ( I f [ MemberQ [ Spr ingLi s t , m] , ka* r1 , −Force [ r1 ] ] +

I f [ MemberQ [ Spr ingL i s t − 1 , m] , −ka* r2 , Force [ r2 ] ] ) ;
(* Calcu la te the t o t a l f o r c e the p a r t i c l e w i l l f e e l *)
] ;

I f [m == 1 | | m == ParticleAmount , FList [ [m] ] = 0 ; ,
(*To account f o r the boundar ies o f the l a t t i c e and avo id ing an over f l ow
in the program . The s o l i t o n s do now ”bounce back ”*)

FList [ [m] ] = f o r s e ;
] ;

] ;
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(*The below two b locks i s used to f i n d the de lay time *)
I f [ Abs [ P a r t i c l e P o s i t i o n L i s t [ [ Sp r ingPos i t i on − 1 ] ] −

P a r t i c l e P o s i t i o n L i s t [ [ Sp r ingPos i t i on − 2 ] ] −
Part i c l eLength ] > 0 .01 && BooleanList [ [ 1 ] ] == False ,
Boo leanList [ [ 1 ] ] = True ;
TauDelay [ [ 1 ] ] = time ; ] ; (*Green l i n e , incoming s o l i t o n c o l l i s i o n moment , r e f l e c t i o n *)

I f [ Abs [ P a r t i c l e P o s i t i o n L i s t [ [ Sp r ingPos i t i on − 1 ] ] −
P a r t i c l e P o s i t i o n L i s t [ [ Sp r ingPos i t i on − 2 ] ] − Part i c l eLength ] >
5 && BooleanList [ [ 2 ] ] == False ,
Boo leanList [ [ 2 ] ] = True ; ] ; ( * Green l i n e , r e f l e c t i o n *)

I f [ Abs [ P a r t i c l e P o s i t i o n L i s t [ [ Sp r ingPos i t i on − 2 ] ] −
P a r t i c l e P o s i t i o n L i s t [ [ Sp r ingPos i t i on − 3 ] ] − Part i c l eLength ] >
5 && BooleanList [ [ 3 ] ] == False ,
Boo leanList [ [ 3 ] ] = True ] ; ( * Gray−Dashed l i n e , r e f l e c t i o n *)

I f [ Abs [ P a r t i c l e P o s i t i o n L i s t [ [
Sp r ingL i s t [ [ LastHarmonicSpring ] ] + 1 ] ] −
P a r t i c l e P o s i t i o n L i s t [ [ Sp r ingL i s t [ [ LastHarmonicSpring ] ] ] ] −
Part i c l eLength ] > 10 && BooleanList [ [ 4 ] ] == False ,
Boo leanList [ [ 4 ] ] = True ] ; ( * Black l i n e , t r ansmi s s i on *)

I f [ Abs [ P a r t i c l e P o s i t i o n L i s t [ [ Sp r ingPos i t i on − 1 ] ] −
P a r t i c l e P o s i t i o n L i s t [ [ Sp r ingPos i t i on − 2 ] ] − Part i c l eLength ] <
0 .1 && BooleanList [ [ 2 ] ] == True ,
TauDelay [ [ 2 ] ] = AppendTo [ TauDelay [ [ 2 ] ] , time ] ;
Boo leanList [ [ 2 ] ] = Fal se ; ] ; ( * Green l i n e , r e f l e c t i o n *)

I f [ Abs [ P a r t i c l e P o s i t i o n L i s t [ [ Sp r ingPos i t i on − 2 ] ] −
P a r t i c l e P o s i t i o n L i s t [ [ Sp r ingPos i t i on − 3 ] ] − Part i c l eLength ] <
0 .1 && BooleanList [ [ 3 ] ] == True ,
TauDelay [ [ 2 ] ] = AppendTo [ TauDelay [ [ 2 ] ] , time ] ;
Boo leanList [ [ 3 ] ] = Fal se ] ; ( * Gray−Dashed l i n e , r e f l e c t i o n *)

I f [ Abs [ P a r t i c l e P o s i t i o n L i s t [ [
Sp r ingL i s t [ [ LastHarmonicSpring ] ] + 1 ] ] −
P a r t i c l e P o s i t i o n L i s t [ [ Sp r ingL i s t [ [ LastHarmonicSpring ] ] ] ] −
Part i c l eLength ] < 0 .1 && BooleanList [ [ 4 ] ] == True ,
TauDelay [ [ 3 ] ] = AppendTo [ TauDelay [ [ 3 ] ] , time ] ;
Boo leanList [ [ 4 ] ] = Fal se ] ; ( * Black l i n e , t r ansmi s s i on *)

For [m = 1 , m < ParticleAmount , m++,
(*There the new p o s i t i o n i s be ing c a l c u l a t e d with Ver l e t *)
tempPosit ion = P a r t i c l e P o s i t i o n L i s t [ [m] ] ;
P a r t i c l e P o s i t i o n L i s t [ [m] ] = Ver l e t [ P a r t i c l e P o s i t i o n L i s t [ [m] ] , O ldPos i t i onL i s t [ [m] ] ,

FList [ [m ] ] ] ;
O ldPos i t i onL i s t [ [m] ] = tempPosit ion ;
] ;

(*Data i s be ing s to r ed . The Mod[ j , xx ] i s used to lower the number o f data po int .
This i s needed to draw l e g i b l e graphs *)
I f [Mod[ j * t imestep , 0 . 5 ] == 0 ,

memoryl ist = AppendTo [ memorylist , { time , FList } ] ;
memoryl ist2 = AppendTo [ memorylist2 , { time , P a r t i c l e P o s i t i o n L i s t } ] ;
memoryl ist3 = AppendTo [ memorylist3 , { time , O ldPos i t i onL i s t } ] ; ] ;
time = time + timestep ;

] ;

67



This block of code is used to plot the energy of the lattice.

energyMemory = {} ; energyMemory2 = {} ; l en = Length [ memoryl ist ] ;
f o r c e L i s t 2 = {} ; l e en = Length [ memoryl ist [ [ 1 , 2 ] ] ] ;
For [ j = 1 , j < l en + 1 , j ++, energyMemory = {} ;

For [ i = 1 , i < l e en + 1 , i ++,
ra = I f [ i == 1 , 0 , rn [ memoryl ist3 [ [ j , 2 , i ] ] ,

memoryl ist3 [ [ j , 2 , i − 1 ] ] ] ] ;
(* Cal cu l a t ing the d i f f e r e n c e from the equ i l i b r i um d i s t ance o f p a r t i c l e s *)

rb = I f [ i != leen , rn [ memoryl ist3 [ [ j , 2 , i + 1 ] ] , memoryl ist3 [ [ j , 2 , i ] ] ] , 0 ] ;
Vm = Vn[ memoryl ist2 [ [ j , 2 , i ] ] , memoryl ist3 [ [ j , 2 , i ] ] ] ; (* Cal cu l a t ing the momentum*)
I f [ i < BranchEndPosition , energy = (Vmˆ2 +

I f [ MemberQ [ Spr ingLi s t , i ] , Po t en t i a l 2 [ b ra ] , Po t en t i a l 1 [ b ra ,−a (2 b ) , a / 2 ] ] +
I f [ MemberQ [ Spr ingL i s t − 1 , i ] , Po t en t i a l 2 [ b rb ] ,

Po t en t i a l 1 [ b rb , −a /(2 b ) , a / 2 ] ] ) / ( 2 E0 a /(2 b ) ) ; ,
energy = (Vmˆ2 +

I f [ MemberQ [ Spr ingLi s t , i ] , Po t en t i a l 2 [ b ra ] , Po t en t i a l 1 [ b ra , −a/b , a ] ] +
I f [ MemberQ [ Spr ingL i s t − 1 , i ] , Po t en t i a l 2 [ b rb ] , Po t en t i a l 1 [ b rb , −a/b , a ] ]

)/ (2 E0 a/b ) ;
] ;

(* Normalized energy dens i ty *)
energyMemory = AppendTo [ energyMemory , {memoryl ist2 [ [ j , 1 ] ] , i , energy } ] ;

] ;
energyMemory2 = AppendTo [ energyMemory2 , Line [ energyMemory ] ] ;
(* Saving data . Line [ ] command i s need to p l o t the data in the Graphs3D [ ] command*)
] ;
Graphics3D [{ Black , energyMemory2 , Thick ,

Line [{{0 , ParticleAmount , 0} , {80 , ParticleAmount , 0}} ] ,
Line [{{0 , 0 , 0} , {0 , ParticleAmount , 0}} ] , Dashed ,
Line [{{0 , Spr ingPos i t i on , 0} , {80 , Spr ingPos i t ion , 0}} ]} ,
Axes −> True , AxesLabel −> {”\ [Tau ] ” , ”n” , ”h(n , \ [ Tau ] ) ” } ,
AxesOrigin −> {80 , 0 , 0} , BoxRatios −> {1 , 1 , 0 . 5} , Boxed −> False ,
AxesStyle −> Thick , BaseSty le −> {FontWeight −> ”Bold ” , FontSize −> 12} ]

With the code below a graph can be created to check if the energy is conserved throughout the simulation.

memLen = Length [ energyMemory ] ;
For [ z = 1 , z < memLen , z++,

I f [ energyMemory [ [ z , 3 ] ] > 0 .0005 , Pr int [{ z , energyMemory [ [ z , 3 ] ] } ] ]
]

SumEnergy = 0 ; SumTotal = {} ; tempMemory = {} ;
For [ q = 1 , q < l en + 1 , q++,
tempMemory = energyMemory2 [ [ q , 1 ] ] ;
SumEnergy = 0 ;
For [ h = 1 , h < ParticleAmount + 1 , h++,

SumEnergy = SumEnergy + tempMemory [ [ h , 3 ] ] ;
] ;
SumTotal =

AppendTo [ SumTotal , {energyMemory2 [ [ q , 1 , 1 , 1 ] ] , SumEnergy } ] ;
] ;
L i s tL ineP lo t [ SumTotal , PlotRange −> Al l ]
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This code is used to see the path the particles takes (around the harmonic springs) over time.

l en = Length [ memoryl ist2 ] ; temp50 = {} ; temp49 = {} ;
temp51 = {} ; temp48 = {} ; temp52 = {} ; temp47 = {} ;
temp46 = {} ; temp30 = {} ; temp40 = {} ;
For [ j = 1 , j < l en + 1 , j ++,

temp46 =
AppendTo [ temp46 , {memoryl ist2 [ [ j , 1 ] ] ,
−(memoryl ist2 [ [ j , 2 , Spr ingPos i t i on − 4 ] ] − Part i c l eLength ) } ] ;

temp47 =
AppendTo [ temp47 , {memoryl ist2 [ [ j , 1 ] ] ,
−(memoryl ist2 [ [ j , 2 , Spr ingPos i t i on − 3 ] ] −
memoryl ist2 [ [ j , 2 , Spr ingPos i t i on − 4 ] ] − Part i c l eLength ) } ] ;

temp48 =
AppendTo [ temp48 , {memoryl ist2 [ [ j , 1 ] ] ,
−(memoryl ist2 [ [ j , 2 , Spr ingPos i t i on − 2 ] ] −
memoryl ist2 [ [ j , 2 , Spr ingPos i t i on − 3 ] ] − Part i c l eLength ) } ] ;

temp49 =
AppendTo [ temp49 , {memoryl ist2 [ [ j , 1 ] ] ,
−(memoryl ist2 [ [ j , 2 , Spr ingPos i t i on − 1 ] ] −
memoryl ist2 [ [ j , 2 , Spr ingPos i t i on − 2 ] ] − Part i c l eLength ) } ] ;

temp50 =
AppendTo [ temp50 , {memoryl ist2 [ [ j , 1 ] ] ,
−(memoryl ist2 [ [ j , 2 , Spr ingPos i t i on ] ] −
memoryl ist2 [ [ j , 2 , Spr ingPos i t i on − 1 ] ] − Part i c l eLength ) } ] ;

temp51 =
AppendTo [ temp51 , {memoryl ist2 [ [ j , 1 ] ] ,
−(memoryl ist2 [ [ j , 2 , Spr ingPos i t i on + 1 ] ] −
memoryl ist2 [ [ j , 2 , Spr ingPos i t i on ] ] − Part i c l eLength ) } ] ;

temp52 =
AppendTo [ temp52 , {memoryl ist2 [ [ j , 1 ] ] ,
−(memoryl ist2 [ [ j , 2 , Sp r ingL i s t [ [ LastHarmonicSpring ] ] + 1 ] ] −
memoryl ist2 [ [ j , 2 , Sp r ingL i s t [ [ LastHarmonicSpring ] ] ] ] −
Part i c l eLength ) } ] ;

temp30 =
AppendTo [ temp30 , {memoryl ist2 [ [ j , 1 ] ] ,
−(memoryl ist2 [ [ j , 2 , Sp r ingL i s t [ [ LastHarmonicSpring ] ] + 2 ] ] −
memoryl ist2 [ [ j , 2 , Sp r ingL i s t [ [ LastHarmonicSpring ] ] + 1 ] ] −
Part i c l eLength ) } ] ;

]

L i s t P l o t [{ temp48 , temp49 , temp52 } , Joined −> True , PlotRange −> Full ,
P l o tS ty l e −> {{Gray , Dashed } , {Black , Dotted } , Black } ,
BaseSty le −> {FontWeight −> ”Bold ” , FontSize −> 12} , Frame −> True ,
FrameLabel −> {”\ [Tau ] ” , ”\ !\ (\* SubscriptBox [ \ ( r \ ) , \(n \ ) ]\ ) ”} ,
PlotLegends −> {”Toda−2”, ”Toda−1”, ”Toda+1”}]

A.2.2 Logic gate simulation code

The repetition of commentary from the previous section has been left out, it will be clear
to the reader which previous commentary correspondents to which blocks of code in this
section.

a = 1 ; b = 1 ; m = 1 ; Par t i c l eLength = 10 ; ParticleAmount = 300 ;
SSP = 80 ; k = 3 . 5 ; ka = 0 . 0 3 ; Spr ingPos i t i on = 170 ;
d i s t ance = 115 ; (* p o s i t i o n o f the second s o l i t o n *)
BranchEndPosition = 130 ; (* Length o f the branch chain *)
ang le =0 Degree ; (*Angle between the middle l a t t i c e and the upper and lower l a t t i c e *)
aBranch = a ; ( * f a c t o r d i f f e r e n c e between the main chain and the branch i f r equ i r ed *)
w = Sqrt [ aBranch b ] Sinh [ k ] ;
t imestep = 0 . 0 0 5 ;
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Spr ingL i s t = { Spr ingPos i t ion , Spr ingPos i t i on + 1} ;
LastHarmonicSpring = Length [ Spr ingL i s t ] ;

t = k SSP / (\ [Omega ] ) ;
S o l i t o n =

Table [ 1/ b ( Log [
1 + wˆ2 /( aBranch b) Sech [w *−t + k *n ] ˆ 2 ] ) ,
{n , SSP − 5 , SSP + 5 , 1 } ] ;

O ldSo l i ton =
Table [ 1/ b ( Log [

1 + w /( aBranch b) Sech [w *−( t − t imestep ) + k *n ] ˆ 2 ] ) ,
{n , SSP − 5 , SSP + 5 , 1 } ] ;

(*Use t h i s only when one s o l i t o n needs to e x i t s in e i t h e r input o f the cha ins *)
(* extraSpace = Sum[ S o l i t o n [ [ i ] ] , { i , 1 , Length [ S o l i t o n ] } ] * )

BranchPosit ionListUp =
Table [{ Part i c l eLength * i , 2* Sin [ ang le ]} , { i , 1 , BranchEndPosition } ] ;

BranchPositionListDown =
Table [{ Part i c l eLength * i + extraSpace , 0} , { i , 1 , BranchEndPosition } ] ;

BranchOldListUp = BranchPosit ionListUp ;
BranchOldListDown = BranchPositionListDown ;
l en = Length [ S o l i t o n ] ;
For [ i = 1 , i < BranchEndPosition − SSP + 6 + 1 , i ++,

I f [ i < l en + 1 ,
BranchPosit ionListUp [ [ SSP − 6 + i , 1 ] ] =
N[ S o l i t o n [ [ i ] ] ] + BranchPosit ionListUp [ [ SSP − 6 + i − 1 , 1 ] ] +

Part i c l eLength ;
BranchOldListUp [ [ SSP − 6 + i , 1 ] ] =
N[ OldSo l i ton [ [ i ] ] ] + BranchOldListUp [ [ SSP − 6 + i − 1 , 1 ] ] +

Part i c l eLength ; ,
BranchPosit ionListUp [ [ SSP − 6 + i , 1 ] ] =

BranchPosit ionListUp [ [ SSP − 6 + i − 1 , 1 ] ] + Part i c l eLength ;
BranchOldListUp [ [ SSP − 6 + i , 1 ] ] =

BranchPosit ionListUp [ [ SSP − 6 + i , 1 ] ] ;
]

] ;

(Comment t h i s f o r loop when you want to use only one s o l i t o n *)
For [ i =1, i<BranchEndPosition−d i s t ance +6+1, i ++,
I f [ i<l en +1,
BranchPositionListDown [ [ d i s tance−6+i , 1 ] ] =N[ S o l i t o n [ [ i ] ] ] +\
BranchPositionListDown [ [ d i s tance−6+i −1 ,1]]+ Part i c l eLength ;\
BranchOldListDown [ [ d i s tance−6+i , 1 ] ] =N[ OldSo l i ton [ [ i ] ] ] +\
BranchOldListDown [ [ d i s tance−6+i −1 ,1]]+ Part i c l eLength ; ,
BranchPositionListDown [ [ d i s tance−6+i , 1 ] ] = BranchPositionListDown [ [ \
di s tance−6+i −1 ,1]]+ Part i c l eLength ;
BranchOldListDown [ [ d i s tance−6+i , 1 ] ] = BranchPositionListDown [ [ d i s tance−\
6+i , 1 ] ] ;
]
] ;

PositionRound =
Round [ BranchPosit ionListUp [ [ BranchEndPosition , 1 ] ] , 10ˆ−10];

BranchPos i t ionListMiddle =
Table [{ Part i c l eLength * i + PositionRound , Sin [ ang le ]} ,
{ i , 1 , ParticleAmount − BranchEndPosition } ] ;

BranchOldListMiddle = BranchPos i t ionListMiddle ;

Vn [ xnew , ynew , xold , yo ld ] :=
Sqrt [ ( xnew − xold )ˆ2 + (ynew − yold ) ˆ 2 ] / ( t imestep ) ;

rn [ xn , yn , xnmin , ynmin ] :=
Sign [ Par t i c l eLength + xnmin − xn ]*
Sqrt [ ( Par t i c l eLength + xnmin − xn )ˆ2 + ( yn − ynmin ) ˆ 2 ] ;

Po t en t i a l 1 [ rn , const , a ] := aBranch ( a/b Eˆ(−b rn ) + a rn + const ) ;
Po t en t i a l 2 [ rn ] := 1/2 rn ˆ2 ka ;
E0 =1*N[ 2 aBranch/b ( Sinh [ k ] Cosh [ k ] − k ) ]

ExtraTime = 0 . 5 ;
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EnergyModule [ I , t i ] :=
Module [{ i = I , tim = t i } ,

I f [ i <= BranchEndPosition ,

ra = I f [ i == 1 ,
0 ,
rn [ BranchPosit ionListUp [ [ i , 1 ] ] , BranchPosit ionListUp [ [ i , 2 ] ] ,

BranchPosit ionListUp [ [ i − 1 , 1 ] ] ,
BranchPosit ionListUp [ [ i − 1 , 2 ] ] ]

] ; (* Cal cu l a t ing the d i f f e r e n c e from the equ i l i b r i um d i s t anc e o f p a r t i c l e s *)
rb = I f [ i != BranchEndPosition ,

rn [ BranchPosit ionListUp [ [ i + 1 , 1 ] ] ,
BranchPosit ionListUp [ [ i + 1 , 2 ] ] , BranchPosit ionListUp [ [ i , 1 ] ] ,
BranchPosit ionListUp [ [ i , 2 ] ] ] ,

rn [ BranchPos i t ionListMiddle [ [ 1 , 1 ] ] ,
BranchPos i t ionListMiddle [ [ 1 , 2 ] ] + Sin [ ang le ] ,
BranchPosit ionListUp [ [ i , 1 ] ] , BranchPosit ionListUp [ [ i , 2 ] ] ]

] ;
Vm = Vn[ BranchPosit ionListUp [ [ i , 1 ] ] , BranchPosit ionListUp [ [ i , 2 ] ] ,

BranchOldListUp [ [ i , 1 ] ] , BranchOldListUp [ [ i , 2 ] ] ] ;
energyUp = (Vmˆ2 + Poten t i a l 1 [ b ra , −aBranch/b , aBranch ] +

Poten t i a l 1 [ b rb , −aBranch/b , aBranch ] ) / 2 ;
energyMemoryUp = AppendTo [ energyMemoryUp , { tim + ExtraTime , i , energyUp/E0 } ] ;

ra = I f [ i == 1 ,
0 ,
rn [ BranchPositionListDown [ [ i , 1 ] ] ,

BranchPositionListDown [ [ i , 2 ] ] ,
BranchPositionListDown [ [ i − 1 , 1 ] ] ,
BranchPositionListDown [ [ i − 1 , 2 ] ] ]

] ; (* Cal cu l a t ing the d i f f e r e n c e from the equ i l i b r i um d i s t anc e o f p a r t i c l e s *)
rb = I f [ i != BranchEndPosition ,

rn [ BranchPositionListDown [ [ i + 1 , 1 ] ] ,
BranchPositionListDown [ [ i + 1 , 2 ] ] ,
BranchPositionListDown [ [ i , 1 ] ] , BranchPositionListDown [ [ i , 2 ] ] ] ,

rn [ BranchPos i t ionListMiddle [ [ 1 , 1 ] ] ,
BranchPos i t ionListMiddle [ [ 1 , 2 ] ] − Sin [ ang le ] ,
BranchPositionListDown [ [ i , 1 ] ] , BranchPositionListDown [ [ i , 2 ] ] ]

] ;
Vm = Vn[ BranchPositionListDown [ [ i , 1 ] ] ,

BranchPositionListDown [ [ i , 2 ] ] , BranchOldListDown [ [ i , 1 ] ] ,
BranchOldListDown [ [ i , 2 ] ] ] ;

energyDown = (Vmˆ2 + Poten t i a l 1 [ b ra , −aBranch/b , aBranch ] +
Poten t i a l 1 [ b rb , −aBranch/b , aBranch ] ) / 2 ;

energyMemoryDown =
AppendTo [ energyMemoryDown , { tim − ExtraTime , i , energyDown/E0 } ] ;

,

ra = I f [ i == BranchEndPosition + 1 ,
rn [ BranchPos i t ionListMiddle [ [ 1 , 1 ] ] ,

BranchPos i t ionListMiddle [ [ 1 , 2 ] ] + Sin [ ang le ] ,
BranchPosit ionListUp [ [ BranchEndPosition , 1 ] ] ,
BranchPosit ionListUp [ [ BranchEndPosition , 2 ] ] ] ,

rn [ BranchPos i t ionListMiddle [ [ i − BranchEndPosition , 1 ] ] ,
BranchPos i t ionListMiddle [ [ i − BranchEndPosition , 2 ] ] ,
BranchPos i t ionListMiddle [ [ i − 1 − BranchEndPosition , 1 ] ] ,
BranchPos i t ionListMiddle [ [ i − 1 − BranchEndPosition , 2 ] ] ]

] ;
(*Only importent when the two branches come toge the r *)
rc = I f [ i == BranchEndPosition + 1 ,

rn [ BranchPos i t ionListMiddle [ [ 1 , 1 ] ] ,
BranchPos i t ionListMiddle [ [ 1 , 2 ] ] − Sin [ ang le ] ,
BranchPositionListDown [ [ BranchEndPosition , 1 ] ] ,
BranchPositionListDown [ [ BranchEndPosition , 2 ] ] ] ,

0
] ;

rb = I f [ i != ParticleAmount ,
rn [ BranchPos i t ionListMiddle [ [ i + 1 − BranchEndPosition , 1 ] ] ,

BranchPos i t ionListMiddle [ [ i + 1 − BranchEndPosition , 2 ] ] ,
BranchPos i t ionListMiddle [ [ i − BranchEndPosition , 1 ] ] ,
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BranchPos i t ionListMiddle [ [ i − BranchEndPosition , 2 ] ] ] ,
0
] ;

Vm = Vn[ BranchPos i t ionListMiddle [ [ i − BranchEndPosition , 1 ] ] ,
BranchPos i t ionListMiddle [ [ i − BranchEndPosition , 2 ] ] ,
BranchOldListMiddle [ [ i − BranchEndPosition , 1 ] ] ,
BranchOldListMiddle [ [ i − BranchEndPosition , 2 ] ] ] ;

energyMiddle = (Vmˆ2 +
I f [ MemberQ [ Spr ingLi s t , i ] , Po t en t i a l 2 [ b ra ] ,

Po t en t i a l 1 [ b ra ,
I f [ i == BranchEndPosition + 1 , −aBranch/b , −a/b ] ,
I f [ i == BranchEndPosition + 1 , aBranch , a ] ] ] +

I f [ MemberQ [ Spr ingL i s t − 1 , i ] , Po t en t i a l 2 [ b rb ] ,
Po t en t i a l 1 [ b rb , −a/b , a ] ] +

I f [ MemberQ [ Spr ingLi s t , i ] , Po t en t i a l 2 [ b rc ] ,
Po t en t i a l 1 [ b rc , −aBranch/b , aBranch ] ] ) / 2 ;

energyMemoryMiddle =
AppendTo [ energyMemoryMiddle , {tim , i , energyMiddle /E0 } ] ;

]
]

Force [ r , a ] := a (Eˆ(−b r ) − 1)

Ver l e t [ x , xOld , a ] := 2 x − xOld + a t imestep ˆ2

(*Program can only handle i f the sp r ing i s away enough from the po int
that the branches come toge the r *)

time = 0 ;
energyMemoryUp2 = {} ;
energyMemoryDown2 = {} ;
energyMemoryMiddle2 = {} ;
memorylistUp = {} ;
memorylistDown = {} ; memorylistMiddle = {} ;
Endtime = (80 + t imestep )/ t imestep ;
DelayTime = {} ; DelayTimeBool = Fal se ; DelayTimeLeft = {} ;
DelayTimeBoolLeft = Fal se ; DelayTimeRight = {} ; DelayTimeBoolRight = False ;
Boo leanList = {False , False , False , Fa l se } ; TauDelay = { , {} , {}} ;
For [ j = 0 , j < Endtime , j ++,

FListUp =
Table [ 0 , {n , 1 , BranchEndPosition , 1 } ] ; (* temperary l i s t to t r a c e the f o r c e f o r every step in time *)

FListDown = Table [ 0 , {n , 1 , BranchEndPosition , 1 } ] ;
FListMiddle = Table [ 0 , {n , 1 , ParticleAmount − BranchEndPosition , 1 } ] ;
For [ i = 1 , i < ParticleAmount , i ++,

(*To accounts f o r the boundar ies o f the l a t t i c e and avo id ing an
over f l ow in the program . the s o l i t o n s do now ”bounce back ”*)

I f [ i == 1 , FListUp [ [ 1 ] ] = 0 ; FListDown [ [ 1 ] ] = 0 ; ] ;
I f [ i == ParticleAmount , FListMiddle [ [ ParticleAmount ] ] = 0 ] ;

(*−−−−Begin Block Force−−−*)
I f [ i <= BranchEndPosition && i != 1 ,

ra = rn [ BranchPosit ionListUp [ [ i , 1 ] ] , BranchPosit ionListUp [ [ i , 2 ] ] ,
BranchPosit ionListUp [ [ i − 1 , 1 ] ] ,
BranchPosit ionListUp [ [ i − 1 , 2 ] ] ] ;

rb = I f [ i != BranchEndPosition ,
rn [ BranchPosit ionListUp [ [ i + 1 , 1 ] ] ,

BranchPosit ionListUp [ [ i + 1 , 2 ] ] , BranchPosit ionListUp [ [ i , 1 ] ] ,
BranchPosit ionListUp [ [ i , 2 ] ] ] ,

rn [ BranchPos i t ionListMiddle [ [ 1 , 1 ] ] ,
BranchPos i t ionListMiddle [ [ 1 , 2 ] ] + Sin [ ang le ] ,
BranchPosit ionListUp [ [ i , 1 ] ] , BranchPosit ionListUp [ [ i , 2 ] ] ]

] ;
FListUp [ [ i ] ] = ( I f [ MemberQ [ Spr ingLi s t , i ] , ka* ra , −Force [ ra , aBranch ] ] +

I f [ MemberQ [ Spr ingL i s t − 1 , i ] , −ka*rb , Force [ rb , aBranch ] ] ) ;
(* c a l c u l a t e the t o t a l f o r c e the p a r t i c l e f e e l s *)

72



ra = rn [ BranchPositionListDown [ [ i , 1 ] ] ,
BranchPositionListDown [ [ i , 2 ] ] ,
BranchPositionListDown [ [ i − 1 , 1 ] ] ,
BranchPositionListDown [ [ i − 1 , 2 ] ] ] ;

rb = I f [ i != BranchEndPosition ,
rn [ BranchPositionListDown [ [ i + 1 , 1 ] ] ,

BranchPositionListDown [ [ i + 1 , 2 ] ] ,
BranchPositionListDown [ [ i , 1 ] ] , BranchPositionListDown [ [ i , 2 ] ] ] ,

rn [ BranchPos i t ionListMiddle [ [ 1 , 1 ] ] ,
BranchPos i t ionListMiddle [ [ 1 , 2 ] ] − Sin [ ang le ] ,
BranchPositionListDown [ [ i , 1 ] ] , BranchPositionListDown [ [ i , 2 ] ] ]

] ;
FListDown [ [ i ] ] = ( I f [ MemberQ [ Spr ingLi s t , i ] , ka* ra , −Force [ ra , aBranch ] ] +

I f [ MemberQ [ Spr ingL i s t − 1 , i ] , −ka*rb , Force [ rb , aBranch ] ] ) ;
,

ra = I f [ i == BranchEndPosition + 1 ,
rn [ BranchPos i t ionListMiddle [ [ 1 , 1 ] ] ,

BranchPos i t ionListMiddle [ [ 1 , 2 ] ] + Sin [ ang le ] ,
BranchPosit ionListUp [ [ BranchEndPosition , 1 ] ] ,
BranchPosit ionListUp [ [ BranchEndPosition , 2 ] ] ] ,

rn [ BranchPos i t ionListMiddle [ [ i − BranchEndPosition , 1 ] ] ,
BranchPos i t ionListMiddle [ [ i − BranchEndPosition , 2 ] ] ,
BranchPos i t ionListMiddle [ [ i − 1 − BranchEndPosition , 1 ] ] ,
BranchPos i t ionListMiddle [ [ i − 1 − BranchEndPosition , 2 ] ] ]

] ;
(*Only importent when the two branches come toge the r *)
rc = I f [ i == BranchEndPosition + 1 ,

rn [ BranchPos i t ionListMiddle [ [ 1 , 1 ] ] ,
BranchPos i t ionListMiddle [ [ 1 , 2 ] ] − Sin [ ang le ] ,
BranchPositionListDown [ [ BranchEndPosition , 1 ] ] ,
BranchPositionListDown [ [ BranchEndPosition , 2 ] ] ] ,

0
] ;

rb = I f [ i != ParticleAmount ,
rn [ BranchPos i t ionListMiddle [ [ i + 1 − BranchEndPosition , 1 ] ] ,

BranchPos i t ionListMiddle [ [ i + 1 − BranchEndPosition , 2 ] ] ,
BranchPos i t ionListMiddle [ [ i − BranchEndPosition , 1 ] ] ,
BranchPos i t ionListMiddle [ [ i − BranchEndPosition , 2 ] ] ] ,

0
] ;

FListMiddle [ [ i − BranchEndPosition ] ] =
( I f [ MemberQ [ Spr ingLi s t , i ] , ka* ra , −Force [ ra ,

I f [ i == BranchEndPosition + 1 , aBranch , a ] ] ] +
I f [ MemberQ [ Spr ingL i s t − 1 , i ] , −ka*rb , Force [ rb , a ] ] +

I f [ MemberQ [ Spr ingLi s t , i ] , −ka* rc , −Force [ rc , aBranch ] ] ) ;
]

(*−−−−End Block Force−−−*)
] ;

(* Cal cu l a t ing the energy *)
I f [Mod[ j * t imestep , 4 ] == 0 ,

energyMemoryUp = {} ; energyMemoryDown = {} ;
energyMemoryMiddle = {} ;
For [ i = 1 , i <= ParticleAmount , i ++,

EnergyModule [ i , time ]
] ;

energyMemoryUp2 = AppendTo [ energyMemoryUp2 , Line [ energyMemoryUp ] ] ;
energyMemoryDown2 = AppendTo [ energyMemoryDown2 , Line [ energyMemoryDown ] ] ;
energyMemoryMiddle2 = AppendTo [ energyMemoryMiddle2 , Line [ energyMemoryMiddle ] ] ;
] ;
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(*There the new p o s i t i o n i s be ing c a l c u l a t e d with Ver l e t *)
For [m = 1 , m <= BranchEndPosition , m++,

tempPositionUp = BranchPosit ionListUp [ [m, 1 ] ] ;
BranchPosit ionListUp [ [m, 1 ] ] =

Ver l e t [ BranchPosit ionListUp [ [m, 1 ] ] , BranchOldListUp [ [m, 1 ] ] ,
FListUp [ [m ] ] ] ;

BranchOldListUp [ [m, 1 ] ] = tempPositionUp ;

tempPositionDown = BranchPositionListDown [ [m, 1 ] ] ;
BranchPositionListDown [ [m, 1 ] ] =

Ver l e t [ BranchPositionListDown [ [m, 1 ] ] , BranchOldListDown [ [m, 1 ] ] ,
FListDown [ [m ] ] ] ;

BranchOldListDown [ [m, 1 ] ] = tempPositionDown ;
] ;

For [m = BranchEndPosition + 1 , m < ParticleAmount , m++,
tempPosit ionMiddle = BranchPos i t ionListMiddle [ [m − BranchEndPosition , 1 ] ] ;
BranchPos i t ionListMiddle [ [m − BranchEndPosition , 1 ] ] =

Ver l e t [ BranchPos i t ionListMiddle [ [m − BranchEndPosition , 1 ] ] ,
BranchOldListMiddle [ [m − BranchEndPosition , 1 ] ] ,
FListMiddle [ [m − BranchEndPosition ] ] ] ;

BranchOldListMiddle [ [m − BranchEndPosition , 1 ] ] = tempPosit ionMiddle ;
] ;

(*Data i s be ing s to r ed . The Mod[ j , xx ] i s used to lower the number o f data po int .
This i s needed to draw l e g i b l e graphs *)
I f [Mod[ j * t imestep , 2 ] == 0 ,

memorylistUp=AppendTo [ memorylistUp ,{ time , BranchPosit ionListUp } ] ;
memorylistDown=AppendTo [ memorylistDown ,{ time , BranchPositionListDown } ] ;
memorylistMiddle = AppendTo [ memorylistMiddle , { time , BranchPos i t ionListMiddle } ] ;
] ;

time = time + timestep ;
] ;

Lengte = Length [ energyMemoryUp2 ] ;
energyMemoryConnect = {} ;
energyMemoryConnect2 = {} ;
L ineL i s t = {} ;
For [ g = 1 , g <= Lengte , g++, tempTime = energyMemoryMiddle2 [ [ g , 1 , 1 , 1 ] ] ;

energyMemoryConnect = AppendTo [ energyMemoryConnect ,
Line [{{ tempTime , BranchEndPosition ,

energyMemoryDown2 [ [ g , 1 , BranchEndPosition , 3 ] ] } , {tempTime ,
BranchEndPosition + 1 , energyMemoryMiddle2 [ [ g , 1 , 1 , 3 ] ] } } ] ] ;

energyMemoryConnect2 = AppendTo [ energyMemoryConnect2 ,
Line [{{ tempTime , BranchEndPosition ,

energyMemoryUp2 [ [ g , 1 , BranchEndPosition , 3 ] ] } , {tempTime ,
BranchEndPosition + 1 , energyMemoryMiddle2 [ [ g , 1 , 1 , 3 ] ] } } ] ] ;

(*For c r e a t i n g a l i n e between the two l a t t i c e s *)
L ineL i s t = AppendTo [ L ineLi s t ,

Line [{{ tempTime − ExtraTime , BranchEndPosition , 0} ,
{tempTime + ExtraTime , BranchEndPosition , 0 } } ] ] ;

]

Graphics3D [{ energyMemoryUp2 , energyMemoryConnect2 , Black ,
energyMemoryMiddle2 , energyMemoryConnect , energyMemoryDown2 ,
L ineLi s t , Thick , Line [{{−4*ExtraTime , 0 , 0} , { time + 2 , 0 , 0}} ] ,
Line [{{−4*ExtraTime , 0 , 0} , {−2*ExtraTime , ParticleAmount , 0}} ] ,
Dashed , Line [{{0 , Spr ingPos i t i on , 0} , { time , Spr ingPos i t i on , 0}} ] ,
Text [ ” n” , { time + 10 , ParticleAmount /2 , 0} ] ,
Text [ ” \ [ Tau ] ” , { time /2 , ParticleAmount + 20 , 0} ]} , Axes −> True ,

AxesOrigin −> { time + 2 , ParticleAmount , 0} ,
AxesLabel −> {” ” , ” ” , ”h(n , \ [ Tau ] ) ” } ,
Labe lSty l e −> {” Input ” , Black } ,
Ticks −> {{0 , 10 , 20 , 30 , 40 , 50 , 60 , 70} , {0 , 50 , 100 , 150 , 200 ,

250 , 300 , 350} , {0 , 0 . 30 , 0 . 60 , 0 .90}} , BoxRatios −> {1 , 1 , 0 . 5} ,
Boxed −> False , AxesStyle −> Thick ,
BaseSty le −> {FontWeight −> ”Bold ” , FontSize −> 12} ]
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Appendix B
Alternative for Boolean logic

In this appendix, we go over alternative logic systems available that could be used for
computing in physical systems as an alternative to Boolean logic. The two main alter-
natives are multi-valued and fuzzy logic. The most known logic used for computation
is Boolean logic which is the set of {0, 1} with modulo 2. With two inputs there are
22 = 4 possible combinations and therefore there are 24 = 16 operators possible. All
the possible operators labelled fi are shown in table B.1. Some of those operators can
be used to construct all other operators, they are called universal operators or universal
gate. Those are the NOR, NAND, f2, f3, f12 and f13. The operators f2, f3, f12 and f13

require an extra condition to be universal.

BA f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

00 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1
01 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 1
10 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1
11 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1

0 NOR AND B A XNOR XOR A B OR NAND 1

Table B.1: All the possible outputs for two inputs. Some of the outputs are associated to certain gates.
Two operators are input independent and four of them only rely on a single input.

B.1 Introducing multi-valued and fuzzy logic

While Boolean logic has seen the most application in the computing field, there are
however also other logic available. The first logic we are going to introduce is fuzzy or
continuous logic. In fuzzy logic, the values are between 0 and 1 with including those
numbers, written in mathematical notation the element x ∈ [0, 1]. Boolean logic is very
useful when the question can be answered with either true or false, but when we ask
another person if they agree with us when we ask if “the weather is warm today”, they
may reply with “it is a little bit warm”. Fuzzy logic was made to accommodate those types
of statements, where the answer or conclusion may lay between true and false. In fuzzy
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logic, we can no longer write for every possible operator for every possible combination
of two inputs, but there are certain defined operators [109]. The AND operator becomes
min(x, y), which gives a value x or y depending on which of the two is a lower number. For
the OR operator, we have max(x, y), which does the opposite of the previous operator.
The last operator NOT or inverter is given by 1− x for an input value x, the operators
are summarized in table B.2.

x AND y min(x, y)
x OR y max(x, y)
NOT x 1− x

Table B.2: The operators in fuzzy logic. On the left is the operation and on the right how this is
performed in fuzzy logic.

Fuzzy logic has been used to create fuzzy controllers, which uses an analogue input to
determine which actions to take. Those controllers have been employed for household
appliances [129]. Furthermore, fuzzy logic is also used in human mind models that have
to operate in an imprecise environment containing uncertainties [82]. An extension to
fuzzy logic into the complex number is named complex logic [2] and this has been applied
in the realizing of logic gates in nuclear magnetic resonance.

Another logic we are introducing is many-valued, also called multivalued logic. Tech-
nically fuzzy logic also belongs to this category, but in this work we will use the term
many-valued logic to refer to logic that uses a bigger than 2 set of integers. From all
possible multi-valued logic, ternary is perhaps the most studied and we will use it as the
main example of multi-valued logic. Ternary logic uses a set of three number and is most
often represented as {0, 1, 2} or the balanced version {−1, 0, 1}. With two inputs there are
32 = 9 possible combinations of input values, which means there are 39 = 19, 683 numbers
of possible operators for two inputs. Ternary is called by some authors the ‘Goldilock
choice among numbering systems’ [68], based on the calculations of W. Alexander in 1964
[6]. In those calculations, he argues that ternary is the most economic numbering system
to represent other numbers in, more on this in the next section. Comparing binary to
ternary, the latter will use less memory to store the same amount of information and
more information can be processed at once. But the same can be said of any bigger than
two number systems. Focussing on physical applications, the implementation of bigger
number systems brings more complexity with it and most experimental settings do not
allow for storing and processing four states (quaternary), eight states (octal) or other
multivalued states. There are however some systems that will naturally concede bigger
number systems, but seems to be fewer in numbers than the systems with binary. This
is perhaps the reason nowadays most technology is based on binary, which is the small-
est useful number system possible. Relays were used in early computing and they are
binary in nature, its successor the vacuum tube is also binary in nature and its successor
the transistor again binary. While binary counting has its golden age, it does not mean
that binary is the most optimal counting system for future advances in technology. In
the past people have tried to create a ternary computer, in 1958 [116] the researchers
from the Moscow State University build the ternary computer SETUN. The research was
ongoing for twenty years and was done under the guise of being an educational project
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for engineers. From the first SETUN computer, there were 50 computers made and they
were used across the USSR. An old overview of area were multi-valued logic has been
used can be found in Hurst’s work Multiple-valued logic - its status and its future [71].
Ternary and other multi-valued logic has not seen many applications in general, but even
recently it has seen some uses [23, 39, 46, 70, 120].

B.2 Most economic base number

As was mentioned in the previous section, Alexander [6] has argued that the most eco-
nomical integer to represent numbers is three. We will now be following his arguments.
Let the base number, also called radix, be R, the number of digits by n and N is the
maximum number we can represent in this base and with the number of digits1. N is
given by

N = Rn − 1. (B.1)

2 This can be rewritten to an expression for the number of digits as a function of this
maximal number

n = LogR(N + 1) =
ln(N + 1)

lnR
. (B.2)

The next quantity that we are introducing is the radix economy E. This quantity was
created to give some measurement of the effectiveness of the representation of a number
in a given base, which in turn indicates the relative material cost for storing or displaying
a given number. It is given by

E = nR =
R ln(N + 1)

lnR
. (B.3)

So far we have not required R to be an integer and for the next step, we will continue to
do so, thus treating R as a continuous function. To find the minimum radix needed to
express the number N , we can take the derivative with respect to the base of the above
expression and putting that equal to zero

0 =
dE

dR
=

ln(N + 1)

lnR
− ln(N + 1)

(lnR)2
⇒ lnR = 1⇒ R = e. (B.4)

So the most efficient or economical bases would be e ≈ 2.718, the closest integer is three.
Thus ternary can be seen as being more economic than binary when it comes to storing
and representing numbers. A practical downside of ternary is that the distinction between
states tend to be smaller than with binary. The authors in [68] mentions three examples
where three has been found to be a better number system than two.

1In other parts of this thesis the letter R, n and N had a different definition, but in this section we
will not be discussing the Toda lattice or harmonic springs, so this will not cause any confusion.

2Alexender did not include this extra −1 in his expression, for example in base 10 you can store the
number 99 with two digits, but his expression with base 10 and two digits will give you the maximum
number of N = Rn = 102 = 100 rather than 99. All authors after him do include this extra −1. It has
however no bearing on his conclusion.
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The examples that are mentioned are telephone menus, pan balance scale and folder order
systems. For systems that do allow both binary and ternary, it will depend on which of
the two logic is more practical, cheaper or faster. In 1970 Cassée and Strutt [26] gave an
estimation of how much ternary would reduce the number of gates compared to binary
needed when calculating with numbers � 1. They found that for every ternary gate you
would need 1.59 binary gates. However, the same arguments for ternary can also be used
for comparing quaternary with ternary and we would then find that quaternary would
reduce the number of gates even further. But the biggest gain in reducing the number of
gates going from one base into one higher, would be going from binary to ternary. From
the reasoning given above, we can conclude that there are some arguments to be made
in favour of ternary compared to the much applied binary logic.
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[86] T.C. Kofané, A. Mohamadou and C.B. Tabi, “Soliton excitation in the DNA double helix,” Phys. Scr., vol. 77, Art.
no. 045002, 2008.

[87] M.D. Kruskal and N.J. Zabusky, “Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states,”
Phy. Rev. Lett., vol. 15, issue 6, pp. 240-243, 1965.

[88] H. Kubota and M. Nakazawa, “A dispersion-allocated soliton and its impact on soliton communication,” Physics and
Applications of Optical Solitons in Fibres: Proceedings of the Symposium, 1995, Kyoto, Japan.

[89] Y. Kubota and T. Odagaki, “Resonant transmission of a soliton across an interface between two Toda lattices,” Phys.
Rev. E., vol. 71, Art. no. 016605, 2005.

[90] Y. Kubota and T. Odagaki, “Delay in a soliton transmission across an interface between two Toda lattices,” J. Phys.
A: Math. Gen., vol. 39, pp. 12343-12353, 2006.

82



[91] Y. Kubota and T. Odagaki, “Logic Gates Based on Soliton Transmission in the Toda Lattice,” Adv. in App. Phy.,
vol. 1, pp. 29-38, 2013.

[92] T. Kuusela, “Soliton experiments in transmission lines,” Chaos Soliton Fract., vol. 5, pp. 2419-2462, 1995.

[93] R. Landauer, “Irreversibility and heat generation in the computing process,” IBM Journal of Research and Develop-
ment vol. 5, pp. 183-191, 1961.

[94] M. LaPedus, (24 June 2019), “5nm vs. 3nm,” Semiconductor Engineering [online], available:
http://semiengineering.com/5nm-vs-3nm/ [Accessed 28 June 2019].

[95] N. Li, Q. Liu and C. Tan, “All-optical logic gate based on manipulation of surface polaritons solitons via external
gradient magnetic fields,” Phys. Rev. A., vol. 101, Art. no. 023818, 2020.

[96] S. Lloyd, “Ultimate physical limits to computation,” Nature, vol. 406, pp. 1047-1054, 2000.

[97] P.S. Lomdahl, “What is a soliton?” Los Alamos Science, related topics, pp. 27-31, (1984).

[98] C.A. Mack, “Fifty years of Moore’s law,” IEEE Trans. Semicond. Manuf., vol. 24, issue 2, pp. 202-207, 2011.

[99] B. MacLennan, “Natural computation and non-Turing models of computation,” Theor. Comput. Sci., vol. 317, pp.
115-146, 2004.

[100] W. Margulis, K. Rottwitt and J.R. Taylor, “Soliton recovery using a nonlinear amplifying loop mirror,” Electron.
Lett., vol. 31, issue 5, pp. 395-396, 1995.

[101] S. Mitatha, N. Moongfangklanga, P. Phongsanam, A. Polar and P.P Yupapin, “Simultaneous all-optical logic AND
and OR gates using photonic circuits,” Elec. Eng., Comp., Tele. and Inf. Tech. 2011 8th Int.

[102] G.E. Moore, “Cramming more components onto integrated circuits.” Electronics, vol. 38, issue 8, pp. 114-117, 1965.

[103] G.E. Moore, “Progress in digital integrated electronics,” International Electron Device meeting, Washington, DC,
United States, pp. 11-13, 1975.

[104] A. Mourachkine, High-temperature superconductivity in cuprates: The nonlinear mechanism and tunneling measure-
ments. Kluwer Academic, Dordrecht, chapter 5, pp. 101-142, 2002, ISBN: 978-0-306-48063-8.

[105] V. Muto, A.C. Scott, P.L. Christiansen, “A Toda lattice model for DNA: Thermally generated solitons” Physica D,
vol. 44, issue 1-2, pp. 75-91, 1990.

[106] A. Nakamura, “Interaction of Toda lattice soliton with an impurity atom,” Prog. Theor. Phys., vol. 59, pp. 1447-1460,
1978.

[107] Nature News, “Soliton wave receives crowd of admirers,” Nature, vol. 376, issue 6539, pp. 373, 1995.

[108] T. Nilson and C. Schiebold, Solution formulas for the two-dimensional Toda lattice and particle-like solutions with
unexpected asymptotic behaviour. J. Nonlinear Math. Phy., vol. 27, issue 1, pp. 57-94, 2020.

[109] G. Nirmala and G. Suvitha, “Fuzzy logic gates in electronic circuits,” Int J Sci Res., vol. 3, issue 1, ISSN 2250-3153,
2013.

[110] M. Orenstein and J. Scheur, “All-optical gates facilitated by soliton interactions in a multilayered Kerr medium,” J.
Opt. Soc. Am. B, vol. 22, issue 6, pp. 1260-1267, 2005.

[111] F. Peper, “The end of Moore’s law: Opportunities for natural computing?” New Gener. Comput., vol. 35, pp.
253-269, 2017.

[112] A.M. Perelomov, “Remarks on the mass spectrum of two-dimensional Toda lattice of E8 type,” J. Nonlinear Math.
Phy., vol. 27, issue 1, pp. 12-16, 2020.

[113] A. Popescu and R.P. Singh, “An alternative solution to the electro-optic and service bottleneck problem in integrated
multi-Gbit/s LANs: the SUPERLAN architecture,” Comput. Netw. ISDN Syst, vol. 25, pp. 1089-1105, 1993.

[114] S. Rahimi-Keshari, T.C. Ralph and C.M. Caves, “Sufficient conditions for efficient classical simulation of quantum
optics,” Phys. Rev. X, vol. 6, 021039, pp.1-,13, 2016.

[115] R.V.J. Raja and T. Uthayakumar, “Logic gates based all-optical binary half adder using triple core photonic crystal
fiber,” J. Opt., vol. 20, issue 6, Art. no. 065503, 2018.

83



[116] [https://mason.gmu.edu/∼drine/], D. Rine, “SETUN’s reflections, how the SETUN computer was
perceived in the ‘Western’ scientific community”, published year unknown, [online], available:
https://mason.gmu.edu/∼drine/TernaryComputers SETUN mirrored July2005.html , [Accessed: 17 July 2018].

[117] R. Saul, “The origins of modern computing,” Department of Computer Science technical report, Department of
Computer Science, Purdue University, United States, 1990.

[118] E. Sperling, (23 May 2018), “Quantum effects at 7/5nm and beyond,” Semiconductor Engineering [online], available:
http://semiengineering.com/quantum-effects-at-7-5nm/ [Accessed 28 June 2019].

[119] G. I. Stegeman, S. Trillo, S. Wabnitz and E. M. Wright, “Soliton switching in fiber nonlinear directional couplers,”
Opt. Lett., vol. 13, issue 8, pp. 672-674, 1988.

[120] S. Stockinger and O. Trapp, “A continuous and multi valued system as molecular answer for data processing and
data storage,” Chem. Sci., vol. 5, issue 7, pp. 2677-2682, 2014.

[121] Texas Instruments, “SNx400, SNx4LS00, and SNx4S00 quadruple 2-input positive-NAND gates,” Data sheet, Texas
Instruments, 2017.

[122] S. Thongmee and P.P. Yupapin, “All-optical half adder/substractor using dark-bright soliton conversion control,”
Procedia Eng., vol. 8, pp. 217-222, 2011.

[123] M. Toda, “Vibration of a chain with nonlinear interaction,” J. Phys. Soc. Japan, vol. 22, pp. 431-436, 1967.

[124] M. Toda, Theory of nonlinear lattices. Springer-Verslag, 2nd ed. 1989, ISBN: 178-3-540-18327-3.

[125] V. Veerakumar, “Eletromagnetic soliton in magnetic and dielectric media,” (PhD thesis, chapter 7, Bharathidasan
University, Tiruchirappalli, India, supervisor M. Daniel), 22 October 2002. Williams

[126] M.R. Williams, “Early Calculations,” in Computing before computers, Iowa State University Press, Ames, Iowa
50010, editor W. Aspray, 2000, chapter 1, pp. 42-49. ISBN: 0-8138-0047-1. Wu

[127] Y.-D. Wu, “Nonlinear all-optical switching device by using the spatial soliton collision,” Fiber Int. Opt., vol. 24,
issue 5, pp. 387-404, 2004.

[128] P. Yupapin, “Novel All-optical Flip-Flop using Dark-Bright Soliton Conversion Control,” Inf. Tech. J., vol. 11, issue
10, pp. 1470-1476, 2012.

[129] L.A. Zadeh, “Fuzzy logic, neutral networks, and soft computing,” Commun. ACM, vol. 37, issue 3, pp. 77-84, 1994.

[130] L. Zhang, “Computing naturally in the billiard ball model,” UC 09: Proceedings of the 8th International Conference
on Unconventional Computation, pp. 277-286, 2009, ISBN: 978-3-642-03744-3.

84


	Abstract
	List of Figures
	Acknowledgement
	Declaration
	Introduction
	Approaching the limits of standard computing
	Aim of this thesis
	Contribution to knowledge

	Thesis outline

	Conventional and unconventional computing
	Computing on a physical system
	Representing information
	Performing calculations
	Computing definition

	Solitons
	Computing with solitons
	Representing information with solitons
	Performing operations with solitons


	Toda lattice theory and delay
	Toda Lattice
	Installing a soliton in the lattice
	Temporary trapping a soliton

	Controllable delay and logic gates
	Simulation
	Integration method
	Building a controllable delay

	Measuring the controllable delay
	Delay by scattering
	Measuring delay
	Energy from scattering
	Increasing size of the impurity

	Demonstrating the logic gates operation
	Constructing soliton logic gates
	Performing XOR and OR operations


	Conclusion and outlook
	Summary and conclusion
	Suggestions for future research
	Non Boolean soliton logic gates
	General soliton computing framework


	Simulation code
	Pseudo code
	Controllable delay description
	Logic gate simulation description
	Comparing results

	Mathematica code
	Controllable delay code
	Logic gate simulation code


	Alternative for Boolean logic
	Introducing multi-valued and fuzzy logic
	Most economic base number

	References

