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1. Summary 
	

Background: Disorders of cortisol secretion have high mortality and morbidity if 

inadequately treated. Medical treatment is an essential part of patient management 

and has improved prognosis and morbidity, however, there are unanswered questions 

about effectiveness, safety, accuracy and monitoring. The hypothesis in this thesis 

was that medical treatments can restore physiological cortisol and 

adrenocorticotrophin hormone (ACTH) levels in patients with disorders of cortisol 

excess and deficiency.  

Methods: Five studies examined the treatment and monitoring of cortisol secretion 

disorders. Two studies examined medical treatment of cortisol and ACTH excess, 

Cushings syndrome (CS) and Nelson’s syndrome (NS), two studies examined new 

methods for replacing cortisol in children with adrenal insufficiency and one study 

examined potential for a novel biomarker of cortisol replacement in  congenital adrenal 

hyperplasia (CAH).  

Results: Study 1, demonstrated that medical therapy with the steroidogenesis enzyme 

inhibitor metyrapone was effective in restoring eucortisolaemia and reducing 

hypercortisolaemia in 50-80% of patients with CS. Study 2, demonstrated that medical 

therapy with pasireotide, a multi-receptor somatostatin analogue, reduced plasma 

ACTH levels in patients with Nelson’s syndrome. Study 3, showed that it is possible to 

replace cortisol with hydrocortisone through nasogastric tubes, however, there are 

variable drug loses due to interaction with the administering equipment and the study 

provided practical solutions. Study 5, showed that a novel formulation of 

hydrocortisone granules administered sprinkled on soft food (applesauce or yoghurt) 

are bioequivalent to granules delivered directly to the back of the tongue. Study 4, 

showed that haemoglobin and haematocrit are positively correlated with androgen and 

steroid precursor levels in women with CAH and provide a novel biomarker.  

Conclusions. Medical therapy for cortisol excess and deficiency can be improved.  

Metyrapone and pasireotide are effective in improving cortisol and ACTH levels in 

patients with CS and Nelson’s syndrome, respectively. The replacement of cortisol in 

paediatric adrenal insufficiency can be done through nasogastric tubes if required and 

with food to improve accurate dosing in neonates, infants and children.  Markers of 

erythropoiesis may be used as a biomarker to monitor disease control in women with 

CAH.   
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2. Introduction 
	

2.1. Coherence of work presented in this thesis  
	

The work presented in this thesis examines the effectiveness of medical treatment for 

disorders of cortisol excess and deficiency and explores the monitoring of response to 

medical treatment. The five studies that form the spine of the thesis assess the 

optimisation and effectiveness of medical therapy, how response to treatment is 

objectively defined and how old and new biomarkers can be used to define the 

response to medical therapy.  

 

The first two studies assess the effectiveness of medical treatment for cortisol excess 

(Cushing’s syndrome) and adrenocorticotrophin hormone excess (Nelson’s 

syndrome), describe the variations in the monitoring of response in clinical practice 

(cortisol excess) and apply a monitoring approach based on clinical, imaging and 

biochemical data (adrenocorticotrophin excess). The next three studies explore the 

medical treatment of Congenital adrenal hyperplasia (CAH) and disorders of cortisol 

deficiency that require long-term treatment and monitoring. The fourth study tests the 

association of markers of erythropoiesis, which are easily accessible and standardised 

tests as biomarkers of monitoring response to medical treatment in women with CAH. 

The third and fifth studies explore issues related to the accuracy of cortisol dose 

replacement, which is the cornerstone of medical therapy in conditions of cortisol 

deficiency. The fifth study assesses the effect of co-administration with food in the 

pharmacokinetics of a new paediatric formulation of immediate release hydrocortisone 

and the third assesses different delivery methods and accuracy of nasogastric 

administration of hydrocortisone, which is a route of medicine administration necessary 

in some children and adults that require hydrocortisone replacement. 
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2.2. Contribution of the student 
 

The candidate has performed the significant majority of work presented in this thesis 

and was the primary contributor in the five published scientific papers that form the 

body of work of the thesis. The papers were published between 2015 and 2019 during 

the period of PhD studies.  

 

The candidate was the first author in four and the senior author in one of the five 

studies included in the thesis. The studies have been performed with the collaboration 

of internal and external co-authors and a detailed contribution of the student per study 

presented in the thesis is as follows: 

 

1. Effectiveness of Metyrapone in Treating Cushing's Syndrome: A Retrospective 

Multicentre Study in 195 Patients 

The candidate was the first author of the published paper and contributed to the design 

of the study and the data collection proforma, collected the local data from Sheffield 

Teaching Hospitals, led the co-ordination of data collection from the twelve 

participating centres, collated and analysed data from all the centres, produced the 

first draft of the manuscript and then edited, and revised the manuscript, including 

referee’s comments, and produced the final version.  

 

Statement and signature by Prof Newell-Price, senior author:  

Dr Daniel’s contributions are accurately described above. 
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2. A prospective longitudinal study of Pasireotide in Nelson's syndrome 

The candidate collated the data from the four participating centres and co-ordinated 

biochemical and radiological analysis. The candidate analysed and interpreted the 

data, produced the first draft of the paper, edited and revised the manuscript, including 

referee’s comments, and produced the final version.  

 

Statement and signature by Prof Newell-Price, senior author:  

Dr Daniel’s contributions are accurately described above.  

 

 

  
 

 

 

3. Accuracy of hydrocortisone dose administration via nasogastric tube 

The student designed the experimental protocol, used preliminary data to update the 

design of future experiments, performed 90% of all experiments, analysed the 

samples, interpreted the data and performed the statistical analysis, wrote the first draft 

of the paper, edited and revised the manuscript and was the first author of the 

published paper.   

 

Statement and signature by Prof Ross, senior author: 

Dr Daniel’s contributions are accurately described above. 
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4. Androgens correlate with increased erythropoiesis in women with congenital 

adrenal hyperplasia: 

The student had a major role in the concept of the study and deciding which data would 

be collected by designing the relevant proforma, collected local data and performed 

the preliminary data analysis, edited and revised the manuscript and was the senior 

author of the published manuscript.  

 

Statement and signature by Prof Ross, major contributing co-author: 

Dr Daniel’s contributions are accurately described above. 

 

 

 

 
 

 

 

 

5. Hydrocortisone Granules Designed for Children with Taste Masking and Age 

Appropriate Dosing are Bioequivalent When Sprinkled onto Food or Given Directly: 

The student interpreted the study report, produced the first manuscript including 

discussing the data in the context of the literature, edited and revised the manuscript 

and was the first author in the published paper. 

 

Statement and signature by Prof Ross, major contributing co-author: 

Dr Daniel’s contributions are accurately described above. 
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2.3. Publications from the thesis 

 

There have been five publications of original research papers in peer reviewed medical 

journals from this thesis 1-5. Data have also been presented in part in national and 

international conferences during the time course of the PhD studies. The manuscripts 

submitted in this thesis are the authors’ accepted version post peer-review with links 

to the publisher version to comply with the publishers’ copyright policies and embargo 

restrictions as outlined on sherpa.ac.uk/Romeo (accessed 4 September 2019).   

 

Three review papers were also undertaken during the PhD studies following extensive 

literature review and were published in peer-reviewed journals; these papers do not 

form part of the thesis but the experience has informed the writing of the background 

chapter 6-8. 

 

The first scientific paper included in this thesis was selected by the Editor of the 

prestigious journal of the Endocrine Society, The Journal of Clinical Endocrinology and 

Metabolism, as ‘The Best of JCEM in 2016’ 1. This was an award given to 10 articles 

in 2016 and this paper was the only one in its category, hypothalamus and pituitary, to 

receive the award and was selected as the most highly-rated peer reviewed article in 

its category.  It was presented in an award session at the annual conference of the 

Endocrine Society in Orlando, Florida, USA in 2017 (ENDO2017).  

 

The five peer-reviewed original research publications that form part of this thesis are: 

 

1. Daniel E, Aylwin S, Mustafa O, Ball S, Munir A, Boelaert K, Chortis V, Cuthbertson 

DJ, Daousi C, Rajeev SP, Davis J, Cheer K, Drake W, Gunganah K, Grossman A, 

Gurnell M, Powlson AS, Karavitaki N, Huguet I, Kearney T, Mohit K, Meeran K, Hill 

N, Rees A, Lansdown AJ, Trainer PJ, Minder AE, Newell-Price J. Effectiveness of 

metyrapone in treating Cushing’s Syndrome: a retrospective multicenter study in 

195 patients. J Clin Endocrinol Metab. 2015 Nov; 100(11): 4146-54. doi: 

10.1210/jc.2015-2616 

https://academic.oup.com/jcem/article/100/11/4146/2836118 
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2. Daniel E, Debono M, Caunt S, Girio-Fragkoulakis C, Walters SJ, Akker SA, 

Grossman AB, Trainer PJ, Newell-Price J. A prospective longitudinal study of 

Pasireotide in Nelson’s syndrome. Pituitary (2018) 21: 247. 

https://doi.org/10.1007/s11102-017-0853-3 

https://link.springer.com/article/10.1007%2Fs11102-017-0853-3 

 

 
3. Daniel E, Whitaker MJ, Keevil B, Wales J, Ross RJ. Accuracy of hydrocortisone 

dose administration via nasogastric tube. Clin Endocrinol. 2019; 90: 66– 73. 

https://doi.org/10.1111/cen.13876 

https://onlinelibrary.wiley.com/doi/full/10.1111/cen.13876?af=R 

 

 

4. Karunasena N, Han TS, Mallappa A, Elman M, Merke DP, Ross RJ and Daniel E. 

Androgens correlate with increased erythropoiesis in women with congenital 

adrenal hyperplasia. Clin Endocrinol. 2017; 86(1): 19-25. doi:10.1111/cen.13148 

https://onlinelibrary.wiley.com/doi/full/10.1111/cen.13148 

 

 
5. Daniel E, Digweed D, Quirke J, Voet B, Ross RJ, Davies M. Hydrocortisone 

Granules Designed for Children with Taste Masking and Age Appropriate Dosing 

are Bioequivalent When Sprinkled onto Food or Given Directly on the Tongue. J 

Endocr Soc. 2019;3(5):847-856. 

https://academic.oup.com/jes/article/3/5/847/5364743 
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2.4. Aims and Objectives  

2.4.1.  Aims 

	
The aims were to:  

i. Assess new and existing treatments for disorders of cortisol and 

adrenocorticotrophin hormone excess and deficiency 

ii. Discover and assess new monitoring tests 

iii. Improve long-term management of patients with disorders of cortisol excess and 

deficiency 

 

 

2.4.2. Objectives 

	

The objectives were to:  

1. Assess an existing medical treatment for Cushing’s syndrome: 

i. Collect biochemical and clinical data on patients undergoing medical treatment 

with metyrapone for Cushing’s syndrome from multiple centres in the UK. 

ii. Analyse data and assess the effectiveness of metyrapone in treating 

hypercortisolaemia in patients with Cushing’s syndrome. 

iii. Analyse safety data from patients receiving metyrapone to establish the safety 

of this treatment. 

2. Assess a new treatment for Nelson’s syndrome 

i. Collect and organize samples and imaging of patients with Nelson’s syndrome 

treated with pasireotide in four centres in the UK and organize biochemical 

analysis from the reference lab. 

ii. Assess the effectiveness of pasireotide in treating patients with Nelson’s 

syndrome using statistical analysis. 

iii. Analyse the safety data to assess the safety of using pasireotide in patients 

with Nelson’s syndrome. 

3. Assess the feasibility of oral and nasogastric administration of hydrocortisone for 

children and young children with Congenital adrenal hyperplasia and primary 

adrenal insufficiency 
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i. Collect information on nasogastric administration of hydrocortisone in 

paediatric patients and neonates from literature and from interviews with staff 

of endocrine and neonatal hospital units. 

ii. Develop a protocol for testing in vitro the administration of a new formulation of 

hydrocortisone and two commonly used formulations through nasogastric 

tubes.  

iii. Perform and biochemical analysis of the samples to assess the delivery of the 

new formulation and the two current formulations through the nasogastric tube  

iv. Perform statistical analysis of the results to assess how the delivery of the new 

formulation compares with the delivery of the two current formulations 

4. Discover new biomarkers for monitoring disease control in adult patients with 

Congenital adrenal hyperplasia (CAH) 

i. Collect monitoring and clinical information from patients with CAH  treated at 

Sheffield Teaching Hospitals. 

ii. Perform a statistical analysis to check if markers of erythropoiesis are 

associated with worst disease control (using the androgen levels as a surrogate 

marker) in women with CAH. 

iii. Confirm any significant findings by testing the correlations of markers of 

erythropoiesis and androgens in patients treated in a second cohort from 

another specialist centre (the National Institutes of Health, USA). 

5. Test whether the pharmacokinetics of a new hydrocortisone replacement 

formulation for children with CAH could be altered by different administration 

methods 

i. Interpret the pharmacokinetic report of a clinical study to assess the differences 

between three different administration methods of hydrocortisone granules. 

ii. Perform a literature review to understand  

a. the problems of drug administration in young children and practical 

approaches adopted by carers and the flexibility offered by different 

methods of drug administration. 

b. the possible implications of mixing medication with food in the 

medication’s absorption and pharmacokinetic parameters. 

c. national and international regulations on pharmacokinetic studies. 

iii. Write a research paper based on the study report and the review of literature 

performed by the student. 
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3. Background 

3.1. Cortisol production and regulation  
	

3.1.1. Physiology 

3.1.1.1. Cortisol 
 

Cortisol is a glucocorticoid steroid hormone, which is produced by the adrenal cortex 

under tight regulation from centres in the hypothalamus in the brain and the pituitary 

gland. It has important actions on homeostasis, stress response and is essential for 

life. It is secreted to the blood stream and travels through the circulation to reach distant 

organs and tissues where it exerts varied actions in multiple cell types (Table 1) 9. The 

term glucocorticoid, for this group of steroid hormones, reflects the important effects 

on glucose homeostasis including an increase in the release of glucose in the 

circulation.  

 

Steroid hormones are organic compounds that share a core carbon structure 

consisting of seventeen carbon atoms arranged in four fused rings; three cyclohexane 

and one cyclopentane. Functional chemical groups [such as hydroxyl (OH), carbonyl 

(C=O), hydrocarbyl (CaHb)], attach on carbon points on the core structure and diversify 

the chemical and physical properties of steroids and their biological activity 10. There 

are three categories of steroid hormones based on their biological activity; 

mineralocorticoids, glucocorticoids and sex steroids. Cortisol is the most potent 

endogenous glucocorticoid and is a 21-carbon steroid (C21H30O5, 11β,17α,21-

trihydroxypregn-4-ene-3,20-dione) with hydroxyl groups at carbons 11, 17, and 21 and 

oxo groups at positions 3 and 20 (Figure 1) 11. Cortisol is a lipophilic, low-molecular 

weight molecule that can diffuse through cell membranes. In the circulation it mainly 

travels bound with reversible bonds to carrier proteins. These proteins also act as a 

reservoir and prevent cortisol metabolism in the liver. 

 

The structure and biological properties of steroid hormones produced by the adrenal 

glands became an area of intense research interest in the 1930s following the 

recognition that adrenal glands were essential for life and that extracts from adrenal 

glands could sustain life in adrenalectomised animals and improve symptoms of 

patients with adrenal insufficiency 12, 13. Research groups at the time working on  
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Table 1: Tissue-specific glucocorticoid effects 9, 14, 15	

Immune system Immunosuppression and anti-inflammatory action 
Reduction of lymphocytes and eosinophils in the blood 
Induction of lymphocyte apoptosis 
Inhibition of synthesis of immunoglobulins and cytokines 
Inhibition of macrophagocytic activity and differentiation 
Inhibition of prostaglandin synthesis 

Carbohydrate 
metabolism 

Increased glucose release and diabetogenic effect 
Impaired glucose tolerance  
Activation of gluconeogenesis in the liver  
Increase in hepatic glycogen deposition 
Inhibition of glucose uptake in the muscle and fat 
Activation of lipolysis and increase in free fatty acids in the circulation  
Resistance to insulin through permissive effect on catecholamines and glucagon 

Protein 
catabolism 

Muscle wasting, progressive proximal myopathy 
Insulin resistance in myocytes 
Catabolic effects in connective tissue with reduction of collagen production 
Thinning of the skin and stretch marks due to loss of dermal collagen  
Retardation or cessation of linear growth in children 

Adipose tissue Redistribution of body fat with increase in visceral adiposity  
Activation of lipolysis 
Increase in total cholesterol, triglycerides and fall of HDL-Cholesterol 
Adipogenesis through induction of adipogenic genes 

Electrolyte and 
water 
homeostasis, 
blood pressure 
control 

Sodium retention 
Potassium loss 
Metabolic alkalosis 
Water retention and increase in total body water 
Increase in free water clearance 
Increase in blood pressure 
Increased sensitivity to catecholamines-induced vasoconstriction 

CNS Depression 
Euphoria 
Psychosis 
Effects on memory and cognitive function 
Induction of neuronal death (hippocampus) 

Bone Osteoporosis due to inhibition of osteoblast function 
Osteonecrosis (avascular necrosis) 
Reduction of calcium absorption from the intestine  
Increase renal calcium excretion  
Increase in parathyroid secretion 

Eyes Glaucoma, increase in intra-ocular pressure 
Cataract 

Gastrointestinal Peptic ulcer 
Pancreatitis with glucocorticoid excess 

Endocrine Suppress thyroid axis through inhibition of TSH secretion 
Inhibition of peripheral conversion of T4 to T3  
Inhibition of gonadal axis: inhibition of GnRH pulsatility and LH/FSH release 
Inhibition of IGF1 in glucocorticoid excess 
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isolation of compounds from the adrenal cortex recognised these compounds to be 

steroids; Kendall, a chemist at Mayo Clinic, and Reichstein, a chemist at Basel 

University in Switzerland independently discovered cortisone (Kendall’s Compound E) 

and investigated its biological activity 16. The anti-inflammatory effects of cortisol were 

confirmed when in 1949 Kendall and Hench, a physician at Mayo Clinic, used cortisone 

to treat patients with severe rheumatoid arthritis with clinical and biochemical 

improvement 17. Cortisone, a glucocorticoid with a structure similar to cortisol, is 

converted to biologically active cortisol after administration. For this breakthrough 

work, the three received the Nobel prize in Medicine in 1950 (Table 2) 16. Following the 

studies on the anti-inflammatory effects of cortisone, adrenocorticotrophin hormone 

(ACTH), a hormone produced by the pituitary gland and essential signal for cortisol 

synthesis, was administered to patients with chronic inflammatory diseases resulting 

in disease remission but also side effects, namely glycosuria, cushingoid features, and 

potassium depletion 15.  

 

 

Figure 1: Molecular structures of endogenous steroids  

Molecular structures downloaded from https://pubchem.ncbi.nlm.nih.gov, accessed 
19 April 2019. 



	 18	

 

Table 2: Nomenclature of endogenous glucocorticoids and mineralocorticoids		
In the 1930s research groups led by E.C. Kendall at Mayo Clinic, USA, T. Reichstein at Basel University in Switzerland, and O. Wintersteiner at 
Columbia University, USA were isolating steroid compounds from animal adrenal extracts. The compounds were named by alphabetical letters 
in order of discovery by each team. Current steroid nomenclature is defined either by trivial names or by the chemical structure as defined by 
the International Union of Pure and Applied Chemistry (IUPAC) 16, 18-21.														

Trivial names Initially known as Synonyms IUPAC names Chemical 
formula 

Cortisone Kendall’s compound E, 
Reichstein’s substance Fa 
Wintersteiner’s compound F 

17-hydroxy-11-
dehydrocorticosterone  

17α,21-dihydroxypregn-4-ene-3,11,20-trione C21H28O5 

Cortisol Kendall’s compound F, 
Reichstein’s substance M, 
Wintersteiner’s compound F 

17-hydroxy-corticosterone,      
11β-hydrocortisone 

11β,17α,21-trihydroxypregn-4-ene-3,20-dione C21H30O5 

11-Deoxycortisol Reichstein’s substance S  17α,21-dihydroxypregn-4-ene-3,20-dione C21H30O4 

11-
Deoxycorticosterone 
(DOC) 

Kendall’s desoxy compound B 
Reichstein’s substance Q  

Deoxycorticosterone,                   
21-hydroxyprogesterone 

21-hydroxypregn-4-ene-3,20-dione C21H30O3 

Corticosterone Kendall’s compound B 
Reichstein's substance H 

17-deoxycortisol,                     
11β,21-dihydroxyprogesterone 

11β,21-dihydroxypregn-4-ene-3,20-dione C21H30O4 

Aldosterone   11β,21-dihydroxy-3,20-dioxopregn-4-en-18-al C21H28O5 
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Since then, glucocorticoids have been used extensively to treat inflammatory 

conditions and many synthetic glucocorticoids have been produced for clinical use. In 

the 1950s the pharmaceutical steroid production flourished; initially, production of 

significant amounts of synthetic steroids was based on modifications of bile acids but 

soon cost-effective production methods were discovered allowing the production of 

progesterone and glucocorticoids from plant steroids 22. An example was diosgenin 

which is derived from a wild Mexican yam (Dioscorea species) and its discovery helped 

make cortisone widely available 23. Synthetic glucocorticoids differ in their potency of 

anti-inflammatory and mineralocorticoid action, duration of action, and mode of 

administration and these factors determine their clinical use. In recent years, the most 

commonly used synthetic steroids are prednisolone, prednisone that is converted to 

prednisolone by 11-hydroxylation in the liver, methylprednisolone, and 

dexamethasone 24. Hydrocortisone is also prescribed widely; it is cortisol when 

administered as a medication and is on the World Health Organisation’s list of essential 

medicines.   

 

Following production by the adrenal gland, cortisol is excreted in the blood and travels 

through the circulation mainly bound on carrier proteins. Cortisol binds with high affinity 

to cortisol binding globulin (CBG), an alpha2-globulin produced by the liver that 

circulates in the blood with levels around 700 nmol/L 25. The majority of cortisol in the 

blood is bound to CBG (80%), with less bound on albumin (15%) and a small amount 

is unbound, free cortisol (5%) 24, 26. Albumin is a water-soluble protein produced by the 

liver and as the most abundant protein in the circulation, it maintains the colloid osmotic 

pressure of the blood but also is an important carrier protein for hydrophobic 

molecules. When cortisol is quantified in blood or plasma samples both bound and 

unbound cortisol account for the total circulating concentration. However, only 

unbound, free cortisol is biologically active as it can passively travel through the cell 

membrane and enter cells in the target tissues where it exerts its biological actions. 

Free cortisol is present in the saliva and excreted in the urine.  

 

Binding proteins can affect cortisol concentration in the blood. The levels of CBG in 

the blood may be affected by hormones, physiological changes, acquired and 

congenital conditions 26. CBG levels are significantly increased by oestrogens, 

pregnancy, hypothyroidism, some forms of chronic active hepatitis and drugs such as 

oestrogen-containing oral contraceptives and mitotane 27, 28. CBG is reduced in 
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hyperthyroidism, critical illness and acute inflammation, post-surgery, nephrotic 

syndrome, and liver disease such as cirrhosis 27, 29. Cortisol itself downregulates 

production of CBG by the liver 30. When the levels of CBG are increased, the total 

cortisol (bound and unbound) levels are increased too and the opposite occurs with 

reduced CBG levels. Cortisol binds to albumin with low affinity and provided the levels 

of albumin in the blood are stable, albumin buffers changes in the plasma distribution 

of cortisol for example when there is a change in the rate of cortisol secretion or CBG 

concentration 26, 30.  

 

Free cortisol diffuses though the cell membranes and enters cells in multiple target 

tissues. Inside the cells, the levels of cortisol are affected by the action of two enzymes; 

11β-Hydroxysteroid dehydrogenase type 1 and type 2 (11βHSD1 and 11βHSD2). 

These are oxidoreductases that transfer electrons using the cofactors NADPH and 

NADP+ and modify the carbon-11 position of cortisol’s chemical structure; 11βHSD1 

adds a hydroxy-group whereas 11βHSD2 catalyses the opposite reaction removing 2 

hydrogen atoms to form a keto-product. The reaction catalysed by 11βHSD1 converts 

inactive cortisone to cortisol and this enzyme has a widespread localisation in tissues. 

11βHSD2 inactivates cortisol to cortisone and is localised in aldosterone-sensitive 

tissues such as the kidney and restricts cortisol activating the mineralocorticoid 

receptor in these tissues 14, 31.  

 

The half-life of cortisol in the circulation is 60-90 min 14, 24, 32. It is metabolised primarily 

by the liver where a group of enzymes that include 11β-HSD, 5β-reductase, 5α-

reductase, and 3α-HSD perform reduction, hydroxylation at C6 and C20, oxidation at 

C17 and conjugation with glucuronic acid or sulphate 14. Conjugation increases the 

solubility of inactive cortisol metabolites in aqueous solutions that can therefore be 

excreted in the urine as tetrahydrocortisol metabolites in high concentrations 33. Less 

than 1% of cortisol is excreted by the kidneys as free cortisol 34. Cortisol clearance is 

increased by hyperthyroidism, IGF-1, cortisol and enzyme inducers such as rifampicin 

and phenytoin (through the induction of 6β-hydroxylation). On the other hand, cortisol 

clearance is reduced by hypothyroidism, chronic renal disease (due to impaired 

conversion to cortisone), increasing age, pregnancy and stress. 

 

 



	 21	

3.1.1.2. Glucocorticoid receptor 
	

In the cells, cortisol exerts its biological actions by binding to nuclear receptors. It is a 

ligand for two receptors, the glucocorticoid receptor (GR or NR3C1) and the 

mineralocorticoid receptor (MR or NR3C2), which also binds mineralocorticoid 

hormones to high affinity. The glucocorticoid receptor has low affinity for 

mineralocorticoids and high affinity for glucocorticoids and is the main receptor through 

which cortisol exerts its biological actions. GR and MR are members of the steroid 

hormone receptor subfamily (subfamily 3) together with the oestrogen, progesterone, 

and androgen receptors. Steroid receptors function as transcription factors regulating 

the transcription of hormone-responsive target genes. GR is encoded by the gene 

NR3C1 located on chromosome 5. GR protein has the following structure: a N-terminal 

transactivation domain responsible for interaction with co-activators and other 

transcription factors, a DNA-binding domain containing zinc-binding motifs for DNA 

binding and receptor dimerisation, and a C-terminal domain responsible for ligand 

binding 35, 36. There are two main isoforms of the glucocorticoid receptor in human, 

GRα and GRβ and these are produced by alternative splicing of the gene and differ in 

the C-terminal ligand-binding area 36. GRα is a 777 amino acid protein and is 

responsible for hormone-responsive biological activity. GRβ is a 742 amino-acid 

protein lacking the important helices for the formation of the ligand-binding pocket, 

therefore it does not bind ligands and mainly acts as a negative inhibitor of GRα with 

some transcriptional activity regulating sensitivity to glucocorticoids 14, 36, 37. GRα and 

GRβ have further multiple isoforms each due to different translation initiation sites that 

differ in their N-terminal domain and their transcriptional activity 35.  

 

When free cortisol from the circulation diffuses through membranes and reaches cells 

in the target tissues it travels into the cytoplasm and binds to the GRα. Upon ligand 

binding the steroid receptors activate, the ligand-receptor complex translocates to the 

nucleus where it binds to specific DNA sequences in the promoter region of target 

genes called the glucocorticoid-response elements (GRE) 35, 38. The target genes for 

transcription are multiple and vary according to the tissue. The main mechanism of 

transcription regulation by the complex cortisol-GRα involves GRα homodimerisation, 

recruitment of co-activators or co-repressors and transcription induction or repression 

of target genes (transactivation or transrepression) through binding on GREs 39, 40. 

Transactivation involves conformational changes and stabilisation of the RNA 

polymerase II complex following receptor-DNA binding and the GRα-ligand complex 



	 22	

may be directly bound to GREs or tethered through interaction with other transcription 

factors 41. There are other mechanisms for transcription regulation by GRα that are 

non-genomic or do not require DNA binding of GRα to GREs; for example, indirect 

suppression of transcription through binding of the complex cortisol-GRα to other 

transcription factors such as the immunomodulator NF-kB and subsequent prevention 

of NF-kB binding to DNA and NF-kB-depended transcriptional activation 35, 39.  

 

The function of GRα is supported by various other proteins. For example, in the ligand-

free state the GRα interacts with the heat shock proteins 90 and 70 (HSP90 and 

HSP70), which are chaperone proteins that stabilise and activate proteins through the 

induction of conformational changes. The interaction of GRα with HSP90 and HSP70 

together with other co-chaperone proteins keeps the receptor in a high affinity state for 

ligand binding and therefore aids ligand-binding and subsequent activation 42, 43. GRα 

also interacts with the testicular orphan nuclear receptor 4 (TR4), which is a nuclear 

receptor that acts as a regulator of transcription (activator or repressor) and is 

expressed in corticotroph cells 44. Activated TR4 binds to the promoter region of the 

POMC gene and promotes POMC expression and this is induced by receptor 

phosphorylation through the MAPK/ ERK pathway 45.  

 

The recycling of the GRα receptor involves dissociation from the ligand after 

transcription, interaction with heat-shock proteins and return to the cytoplasm or 

degradation of ligand-bound GRα in the nucleus via the ubiquitin-proteasomal pathway 
35, 46. The transcriptional activity of GR is tightly regulated by multiple mechanisms; pre-

receptor ligand availability through ligand activation or inactivation by 11β-HSD type 1 

and type 2 in the cells, interaction of ligand and receptor facilitated by chaperone and 

co-chaperone proteins, intracellular receptor circulation facilitated by chaperone 

proteins, and modification of receptor function by phosphorylation, ubiquitination, 

SUMOylation and acetylation 38, 46-48.  

 

3.1.1.3. Cortisol production: the steroidogenesis pathway 

	

Cortisol is synthesised by the cells of the zona fasciculata of the cortex of the adrenal 

gland in a process called steroidogenesis. The adrenal cortex cells have steroidogenic 
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capacity; they express steroidogenic enzymes necessary for the biosynthesis of 

steroid hormones. The cells of the adrenal cortex are organised in three separate 

zones with distinct histological characteristics and different steroid synthesis 

specialisation; the zona glomerulosa cells produce mineralocorticoid steroid 

hormones, the zona fasciculata cells mainly produce glucocorticoid steroid hormones 

but also small amounts of sex steroids, and the zona reticularis cells mainly produce 

sex steroids with small amounts of glucocorticoids 49. 

 

Steroidogenesis is a complicated biochemical pathway through which steroid 

hormones are synthesized from a cholesterol molecule through multiple enzymatic 

steps. The end steroid products differ in biologic activity and receptor specificity and 

belong to three categories; mineralocorticoids, glucocorticoids, and sex steroids 

(Figure 2). Immediately after production the steroid hormones are released to the 

circulation and travel to target tissues where they act on nuclear steroid receptors to 

exert varied actions essential for homeostasis, stress response, metabolism, growth 

and reproduction. Steroidogenesis can occur at various tissues, most importantly the 

adrenals and gonads by cells that have the ability to express steroidogenic enzymes, 

most notably the P450scc or cholesterol side-chain cleavage enzyme which catalyses 

the first enzymatic step of the pathway to convert cholesterol to pregnenolone. 

Conversion of testosterone to the more potent androgen dihydrotestosterone and 

aromatisation of androgens to oestrogens occurs in steroidogenic cells but also extra-

glandular tissues such as the adipose tissue, brain and genital skin that express the 

enzymes that catalyse these modifications. Throughout life the production rate of 

steroids is relatively stable for mineralocorticoids and glucocorticoids but changes for 

sex steroids at different ages 50-52.  

 

The majority of steroidogenic enzymes belong to the cytochrome P450 family of mixed-

function oxidases, which are membrane-associated enzymes essential in the 

biosynthesis of steroids and sterols and drug metabolism 53. There are 57 cytochrome 

P450 enzymes in humans, 50 are microsomal and are located in the endoplasmic 

reticulum and 7 are located in the mitochondria; mitochondrial P450 are involved in 

biosynthesis and microsomal in biosynthesis and drug metabolism. They have an 

overlap of function and can each catalyse multiple reactions, therefore a single enzyme 

defect may not cause a complete block to the enzymatic reaction it principally catalyses 
54. The main microsomal P450 enzymes that catalyse reactions in the steroidogenesis 
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pathway are P450c17 and P450c21 (Figure 2, Table 3). P450aro is also microsomal 

and essential for steroidogenesis of sex steroids in the gonads but is not present in the 

adrenals and is not necessary for adrenal steroidogenesis. The mitochondrial P450 

enzymes are P450scc, P450c11β, and P450c11AS 51, 55. Steroid substrates must 

transfer between these locations in the cell for consecutive reactions to take place.  

 

P450 enzymes contain one heme group and catalyse oxidation-reduction reactions for 

which they rely on transfer of electrons from NADPH through electron donor proteins; 

microsomal P450 enzymes receive electrons from P450-oxidoreductase (POR) and 

mitochondrial from adrenodoxin and adrenodoxin reductase that are located in the 

mitochondrial matrix 56, 57. POR is a flavoprotein bound to the endoplasmic reticulum; 

it receives two electrons from NADPH that then transfers to the heme iron atom of 

microsomal P450 enzymes such as P450c17 through electrostatic interactions and 

conformational change 58, 59.  Cytochrome b5 is a heme-protein and facilitates the 

allosteric interaction and electron transfer between POR and microsomal CYP450 

enzymes such as P450c17 58, 60. 

 

Other enzymes involved in steroidogenesis include members of the family of 

Hydroxysteroid dehydrogenases (HSDs). HSDs are oxidoreductases that catalyse the 

oxidation of hydroxysteroids to ketosteroids (dehydrogenases) or the reduction of 

ketosteroids to hydroxysteroids (reductases) using NAD+/NADP+ (dehydrogenases) or 

NADPH/NADH (reductases) as cofactors 61, 62. HSDs are membrane-associated 

enzymes located in the endoplasmic reticulum, each enzyme can catalyse multiple 

reactions and their expression is tissue-specific. They are bidirectional in vitro but in 

vivo they mainly function in one direction determined by the availability of the cofactors. 

Structurally they are members of the short-chain dehydrogenases/reductases (SDRs) 

(3βHSDs, 11βHSDs, 17βHSD types 1-4) or aldo-keto reductases (AKRs) (17βHSD5) 

superfamilies 62. Proteins involved in cholesterol biosynthesis, storage, and cell uptake 

also facilitate steroid biosynthesis and examples include the HMG CoA reductase 

which is the rate-limiting enzyme in cholesterol synthesis, the LDL receptor that takes 

up lipoprotein-stored cholesterol from the circulation, hormone-sensitive lipase (HSL) 

that releases cholesterol from lipid droplets and sterol protein 2 that transfers 

cholesterol to the mitochondria 63-65. 
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Figure 2: The steroidogenesis pathway 
The steroidogenesis pathway is a biochemical pathway consisting of multiple enzymatic steps that leads to the production of steroid 
hormones; mineralocorticoids, glucocorticoids, and sex steroids. Hormones produced by the adrenal cortex are in black. Alternative pathways 
of androgen production have recently been elucidated and contribute significantly to the androgen excess in CAH due to 21-hydroxylase 
deficiency (Backdoor pathway and 11-oxygenated C19 androgen synthesis). 
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Table 3: Enzymes and genes involved in steroidogenesis in human 51, 53, 66 
 
Gene Protein 

Name 
Synonyms Protein function 

CYP11A1 CYP11A1 P450scc  
cholesterol side-chain 
cleavage enzyme 
20, 22 desmolase 

Expressed in all the steroidogenic cells including the adrenocortical, ovarian theca, ovarian corpus 
luteum, Leydig and placenta cells. Localized on the matrix side of the inner mitochondrial 
membrane. Catalyses a 3-step reaction: hydroxylation at C22, hydroxylation at C20, cleavage of side 
chain between C20 and C22. 
 

HSD3B2 HSD3B2 3β- hydroxysteroid 
dehydrogenase type 2 
 

Type 2 is expressed in the adrenals and gonads and type 1 is expressed in the placenta, brain, liver, 
breast. Localised in the endoplasmic reticulum membrane. It is an oxireductase that catalyses the 
conversion of Δ5-3β-hydroxysteroids to Δ4-3β-ketosteroids. 
 

CYP17A1 
 

CYP17A1 
 

P450c17 
17α-hydroxylase/ 17, 20 
desmolase 

Expressed in the adrenal cortex (only in zona fasciculata and zona reticularis) and gonadal 
steroidogenic cells (testicular Leydig, and ovarian theca). Not expressed in the placenta. It is 
localised in the endoplasmic reticulum and has two activities: 17α-hydroxylation of C21 steroids and 
cleavage of the C17-C20 bond to form C19 androgen precursors. The 17,20 lyase activity requires 
the presence of b5cytochrome in the zona reticularis and the two activities are independently 
regulated. 
 

CYP21A2 CYP21A2 P450c21 
21- hydroxylase 

Only expressed in the adrenal cortex, in all three zones. It is localised in the endoplasmic reticulum 
and catalyses the 21-hydroxylation of steroids. 
 

CYP11B1 CYP11B1 P450c11β 
11β- hydroxylase 

Expressed only in the adrenal cortex (zona reticularis/ zona fasciculata). It is localised in the inner 
mitochondrial membrane and catalyses the 11β-hydroxylation of C21 steroids. 
 

CYP11B2 CYP11B2 P450c11AS  
P450c18  
P450aldo 
Aldosterone synthase  
 

Expressed only in the adrenal cortex (zona glomerulosa). It is localised in the inner mitochondrial 
membrane and catalyses three sequential reactions in C21 steroids: 11β- hydroxylation, 18-
hydroxylation, oxidation of C18-hydroxyl group to yield C18-aldehyde. 

CYP19A1 CYP19A1 P450aro  
Aromatase 

It is localised in the endoplasmic reticulum and expressed in Leydig, Sertoli, granulosa cells, adipose 
tissue, brain and placenta. It converts C19 androgens to C18 estrogens through three sequential 
reactions: two oxidations at C19 followed by an oxidative aromatisation with C1β hydrogen 
abstraction C10-C19 cleavage.  
 

FDX1 FDX1 Adrenodoxin 
Adrenal ferredoxin 
Ferredoxin-1 
 

Expressed in the adrenal cortex, gonads, and kidneys. It is localised in the mitochondria matrix and 
is an electron transfer protein, transferring electrons between CYP11A1 and adrenodoxin reductase. 
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Gene Protein 
Name 

Synonyms Protein function 

FDXR FDXR Adrenodoxin oxireductase 
Adrenodoxin reductase 

Widely expressed including adrenal cortex, gonads, and brain. It is localised in the inner 
mitochondria membrane and transfers electrons to the mitochondrial P450 enzymes.  
 

STAR STAR Steroidogenic acute 
regulatory protein (StAR) 

Transfers cholesterol from the outer mitochondrial to the inner mitochondrial membrane for 
steroidogenesis to start. Rapid expression controlled by ACTH signalling via cAMP 67, 68.  
 

CYB5A CYB5A Cytochrome b5 
(microsomal) 
 

Small, membrane-bound (endoplasmic reticulum), heme-containing protein with diverse function. 
Catalyses conversion of C21 to C19 steroids together with P450c17 in androgenic tissues (zona 
reticularis and testicular Leydig cells). Interacts with P450 enzymes allosterically but also through 
electron transfer through POR 58, 60, 69. 
 

POR 
 

POR P450 oxidoreductase 
NADPH-cytochrome P450 
reductase 
 

Localised in the endoplasmic reticulum, it transfers electrons to cytochrome P450 microsomal 
enzymes and other enzymes such as cytochrome B5 and is required for their catalytic activity 51. 

AKR1C3 
 
 

AKR1C3 
 

17βHSD type 5 
Aldo-keto reductase 
family 1 member C3 

Localised in the cytoplasm. Types 3 and 5 convert androstenedione to testosterone and DHEA to 
androstenediol. Type 3 is present in the testis and type 5 is present in small amount in the zona 
reticularis. Type 1 converts oestrone to oestradiol and is present in the breast, ovary and adipose 
tissue. 
 

SRD5A2 SRD5A2 5α-reductase Expressed in the endoplasmic reticulum in the skin, testes, and prostate. Converts testosterone to 
5α-dihydrotestosterone. 
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Figure 2 illustrates the enzymatic steps that make up the steroidogenesis pathway and 

shows Cholesterol as the essential and parent molecule from which all steroid 

hormones are synthesised. The transfer of cholesterol from the outer to the inner 

mitochondrial membrane is a prerequisite step for steroidogenesis to begin and is 

facilitated by the steroidogenic acute regulatory protein (StAR) as cholesterol is a 

hydrophobic molecule and there is an aqueous barrier between the outer and inner 

mitochondrial membranes that cholesterol must pass through 68, 70, 71. It is in the inner 

mitochondrial membrane where the first modification to the cholesterol molecule 

occurs catalysed by P450ssc or cholesterol side-chain cleavage enzyme; this is the 

first enzymatic step in steroidogenesis. The pool of cholesterol used for 

steroidogenesis in the adrenal cells comes from low- and high-density lipoprotein 

stores, free cholesterol newly-synthesised in the endoplasmic reticulum, and insoluble 

cholesterol transported on transfer proteins 51. StAR is essential for the transfer of 

cholesterol from the outer mitochondrial membrane to the P450scc and without its 

action steroidogenesis cannot begin however a small low-grade cholesterol influx to 

the mitochondria occurs independent from StAR allowing for a low-grade basal 

steroidogenesis 68, 72. StAR has a C-terminal that is responsible for cholesterol binding 

and lies in the cytoplasmic aspect of the outer mitochondrial membrane and a N-

terminal that is responsible for mitochondrial import and transfers one cholesterol 

molecule at a time 73, 74. The C-terminal is essential for the function of StAR and 

steroidogenesis but the N-terminal affects functionality less as truncated forms of StAR 

at the N-terminal do not alter steroidogenesis in cultured cells 73, 75.  

 

There is tissue-specific variation in the expression of steroidogenic enzymes and the 

biochemical output of the pathway. The essential enzymes are expressed in all 

steroidogenic cells, P450scc being the most important. The zona fasciculata cells of 

the adrenal gland express all enzymes that catalyse steps to cortisol production. The 

zona glomerulosa cells specialise in the production of mineralocorticoids; 17a-

hydroxylase is not expressed in these cells therefore glucocorticoids and sex steroids 

are not produced and aldosterone is the final product of steroidogenesis 53. Zona 

fasciculata and zona reticularis cells do not express P450c11AS (Aldosterone 

synthetase) and do not produce aldosterone. In the gonads, testicular (Leydig) and 

ovarian (thecal) steroidogenic cells express P450c17 but not P450c21 and P450c11β 

therefore cannot produce mineralocorticoids and glucocorticoids, and only produce the 

androgens testosterone and androstenedione 76. Leydig, Sertoli and ovarian granulosa 
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cells express aromatase (P450aro) that catalyses the formation of oestrogens from 

androgens. 

 

Once cholesterol is transferred to the inner mitochondrial membrane, P450scc 

removes the 6-carbon side chain from the cholesterol molecule to form pregnenolone, 

a 21-carbon steroid through three enzymatic reactions; a 20-hydroxylation, a 22-

hydroxylation and cleavage of the C20-C22 carbon-carbon bond. Pregnenolone, 17α-

hydroxy-pregnenolone and dehydroepiandrosterone (DHEA) are Δ5 steroids as they 

retain a double bond between carbon atoms 5 and 6 of the cholesterol B-ring and have 

no hormonal biological activity. The enzyme 3β-hydroxysteroid dehydrogenase type 2 

(3βHSD2) converts the Δ5 steroids to the corresponding Δ4 steroids progesterone, 

17α-hydroxyprogesterone and androstenedione, which are biologically active. These 

reactions occur in the mitochondria (pregnenolone) or the cytoplasm (17α-OH-

pregnenolone and DHEA), therefore the localisation of 3βHSD2 in the cell and the 

chaperone proteins that regulate its localisation may influence the amount of steroids 

produced during steroidogenesis in the cell 51. P450c17 (17-hydroxylase) is encoded 

by the CYP17A1 gene and the enzyme produced has a combined 17-hydroxylase and 

17,20-lyase activity and catalyses the production of 17α-hydroxy-pregnenolone from 

pregnenolone and 17α-hydroxy-progesterone from progesterone with equal efficiency 
58, 77, 78.  

 

In the zona glomerulosa progesterone is converted to 11-deoxycorticosterone by 

P450c21 (21-hydroxylase) that also catalyses the production of 11-deoxycortisol from 

17-hydroxyprogesterone in the cells of the zona fasciculata and zona reticularis. Then, 

11-deoxycorticosterone and 11-deoxycortisol transfer to the inner mitochondrial 

membrane, where they undergo 11-hydroxylation to form corticosterone and cortisol, 

the final product of glucocorticoid synthesis. In the zona fasciculata the reaction is 

catalysed by the mitochondrial enzyme P450c11β whereas in the zona glomerulosa it 

is catalysed by mitochondrial enzyme P450c11AS or aldosterone synthase which has 

11-hydroxylase, 18-hydroxylase, and 18-methyloxidase activity and catalyses the final 

three steps to the production of aldosterone, the most potent mineralocorticoid 51.  

 

In the androgenic tissues, such as the zona reticularis and testicular Leydig cells, the 

21-carbon steroid precursors 17-hydroxypregnenolone and 17-hydroxyprogesterone 
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are converted to 19-carbon androgens DHEA and androstenedione respectively by the 

17, 20-lyase activity of P450c17. 17,20-lyase catalyses the cleavage of the C17-C20 

carbon bond to yield C19 sex-steroids. The reaction catalysed by 17,20-lyase leading 

to DHEA production is about 50 times more efficient than the reaction leading to 

androstenedione production; DHEA is produced abundantly in the adrenal as 17-

hydroxy-pregnenolone is the preferred substrate for 17,20-lyase and significant 

androstenedione levels are produced mainly when 17-hydroxyprogesterone 

concentrations are very high such as in Congenital adrenal hyperplasia (CAH) due to 

21-hydroxylase deficiency 58, 60. The 17,20 lyase activity of P450c17 is specific to 

androgenic tissues and is promoted by an abundance of electron-transfer protein POR, 

the phosphorylation of P450c17 and the interaction of P450c17 and cytochrome b5 60, 

79-81. DHEA and DHEAS concentrations reflect the activity of steroid production from 

the zona reticularis. DHEA levels increase as a response to ACTH signalling whereas 

DHEAS, which is protein-bound, shows stable concentrations but overall much higher 

than DHEA (100-1000 times); both increase rapidly before the onset of puberty 

however they have no known hormonal action or receptor and exert indirect endocrine 

effects following biochemical transformation to sex steroids and activation of the 

androgen and estrogen receptors 51. 

 

The final steps in the synthesis of sex steroids include the conversion of DHEA to 

androstenediol and androstenedione to testosterone which is catalysed by 17βHSD; 

type 3 is present in the testis and type 5 is expressed in low levels in the zona reticularis 

allowing only a small amount of the potent androgen testosterone to be produced in 

the adrenal 82. In extra-adrenal tissues such as the ovarian granulosa cells and 

adipocytes, P450aro (aromatase) catalyses the production of oestrogens using 

androgens as substrates; androstenedione is converted to oestrone and testosterone 

to oestradiol and in oestrogenic tissues (ovary, breast, adipocytes) 17βHSD type 1 

converts oestrone to oestradiol 14. 

 

In addition to the classic steroidogenesis pathway described above, there are 

alternative biochemical pathways that contribute to a significant amount of production 

of potent androgens using early steroid precursors as substrates 83. 11-hydroxylation 

of adrenal androgens catalysed by P450c11β and driven by ACTH produces 11-

oxygenated C19 androgens that can activate the androgen receptor 84-86. 11-

Oxygenated androgens, are potent androgens and are significantly elevated in 
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patients with CAH due to 21-hydroxylase deficiency and correlate with clinical markers 

of poor disease control 86, 87. In particular 11-ketotestosterone is the main circulating 

androgen in women and children suffering from the genetic deficiency 88. Furthermore, 

the ‘backdoor pathway’ uses 17-hydroxyprogesterone as substrate and produces the 

potent androgen dihydrotestosterone through androsterone catalysed by type 1 5α-

reductase, 3α-HSD, and P450c17 and androstanediol catalysed by 17βHSD3/5 

without the intermediates DHEA, androstenedione, and testosterone 62. These 

pathways are very active when there is substrate abundancy such as in genetic 

deficiency of 21-hydroxylase and could contribute to the development of some clinical 

features of the condition, such as testicular rest tumours and the masculinisation of 

female fetuses 87, 89, 90. 

 

 

 

3.1.1.4. Regulation of cortisol secretion: HPA axis and regulation of 

steroidogenesis 

	

3.1.1.4.1. HPA axis  
 

The production of cortisol is tightly regulated by centres in the hypothalamus and 

pituitary that together with the adrenal cortex form the hypothalamus-pituitary-adrenal 

axis. This is a stress-responsive dynamic system, the anatomic components of which 

lie in the hypothalamus, pituitary or hypophysis, and adrenal glands.  

 

The hypothalamus is a small and important area of the brain, evolutionary conserved 

and essential for life, that co-ordinates neuroendocrine, autonomic and behavioural 

responses to environmental and intrinsic stimuli. The hypothalamic neurones are 

organised in nuclei that specialise in important survival functions such as regulating 

sleep, arousal, temperature, feeding, drinking, rivalry, and reproduction; the function 

of the hypothalamic nuclei is to receive stimuli from the cortex and other parts of the 

central nervous system, internal and external stressors and regulate responses 

through neuronal connections, and release of hypothalamic factors to the bloodstream 

or the cerebrospinal fluid 91, 92. Nuclei important for the regulation of HPA axis are the 
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suprachiasmatic nucleus that controls circadian rhythms and regulates the pattern of 

production and secretion of hypothalamic factors such as the corticotropin-releasing 

hormone (CRH) and vasopressin (AVP), and the supraoptic and paraventricular nuclei 

which contain neurons that produce AVP and CRH 92, 93.  

 

The pituitary gland is about 1cm in diameter and is located in the sella turcica of the 

sphenoid bone and connects to the hypothalamus with a thin streak of tissue, which is 

the pituitary stalk or infundibulum. The anterior part of the gland is called the 

adenohypophysis and contains hormone-producing cells; the lactotroph, somatotroph, 

thyrotroph, gonadotroph, and corticotroph cells that produce and release ACTH. The 

posterior pituitary (neurohypophysis) contains the bodies of the hypothalamic neurons 

that produce and store the hormones AVP and oxytocin 14. The pituitary has an 

extremely rich blood supply made up of the inferior and superior hypophyseal artery 

but particularly important for the vascular supply and function of the anterior pituitary 

are the portal veins 14. These are capillaries that spread from the level of the 

hypothalamus to the pituitary and provide the means for vascular transport of 

hypothalamic factors such as CRH that are released by the hypothalamic neurons to 

the anterior pituitary where they regulate the function of the anterior pituitary and the 

release of pituitary hormones.  

 

The adrenal gland is a small pyramidal structure that lies above each kidney 

surrounded in a capsule of connective tissue. The adult adrenal gland is made of two 

areas with distinct physiological function and structure: the cortex and the medulla. 

They derive from separate embryonic tissues; the adrenocortical cells from the 

mesoderm and the adrenal medulla from the neural crest 49. The adrenal cortex is 

about 2 mm thick and contains specialised cells arranged in three concentric bands 

that express steroidogenic enzymes and synthesise steroid hormones and the adrenal 

medulla cells produce catecholamines 94. Steroidogenesis starts early in fetal life; at 6-

7 weeks the fetal adrenal cortex is formed, at 8-10 weeks it produces cortisol 

transiently, and at 12 weeks it starts producing high amounts of DHEA and DHEAS 

that fall rapidly after birth 49. However, fetal adrenal steroidogenesis is not essential for 

fetal development and survival 51. By pre-puberty the adrenals mature in structure and 

the three concentric zones of steroid producing cells become distinct; a narrow outer 

zona glomerulosa containing small columnar cells with a few lipid droplets arranged in 

small nests, a wide middle zona fasciculata containing polygonal cells with prominent 
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lipid-rich vacuolated cytoplasm arranged in vertical columns, and an inner zona 

reticularis with dark-stained cells due to presence of lipofuscin granules 49, 94.  

 

Hypothalamic neurons of the paraventricular nucleus secrete CRH and AVP in 

response to the oscillations of the central pacemaker in the suprachiasmatic nucleus, 

stressors, and other central stimuli 95. CRH, a 41-amino acid peptide hormone and 

AVP, a 9-amino acid oligopeptide hormone stimulate the pituitary corticotroph cells to 

secrete ACTH; CRH is the main signal and AVP potentiates its function 95. CRH 

released by the hypothalamic neurones travels to the pituitary and exerts its biological 

actions through binding to CRH-R1, a G-protein-coupled receptor on the cell surface 

of the pituitary corticotroph cells 96. When CRH binds to CRH-R1, it leads to a 

conformational change of the receptor and activation of a stimulatory G-protein alpha 

subunit (Gas) 97. The downstream intracellular signalling is mediated through cAMP 

and protein kinase A signalling pathways and results in transcription of the pro-

opiomelanocortin (POMC) gene and release of ACTH in the circulation 96, 97.   

 

POMC codes for pro-opiomelanocortin (POMC), a 266-amino-acid precursor 

polypeptide and upon cleavage gives ACTH, a 39-amino-acid polypeptide, and β-

lipotropin. Further cleavage of ACTH gives α-melanocyte-stimulating hormone (a-

MSH) among other POMC products 14, 98. ACTH production and release in the 

circulation follows a circadian rhythm with ultradian pulsatility with nadir levels between 

midnight to 2am, peak on awakening and gradual fall throughout the day and this 

circadian rhythmicity is regulated by the master clock in the suprachiasmatic nucleus 

through vasopressin 99. There are about 20 pulses of ACTH secretion in the 24-hour 

day and the amplitude of these pulses also follows a circadian rhythm with larger 

pulses in the morning 14, 100. The generation of the ultradian pulsatile pattern of ACTH 

and cortisol release (see 3.1.1.5 below) is likely determined in the sub-hypothalamic 

level by the interaction between cortisol release in response to ACTH in the adrenals 

followed by a delayed negative feedback of cortisol-GRa signalling to the anterior 

pituitary 93, 101, 102. 

 

ACTH released by the anterior pituitary into the systemic circulation acts at the adrenal 

cortex by binding to the highly tissue-restricted melanocortin type 2 receptor (MC2R), 

a G-protein-coupled receptor,  on the cell membrane of adrenocortical cells of zona 
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fasciculata and reticularis to stimulate the transcription of genes involved in the 

steroidogenesis pathway through mainly a cAMP-dependent protein kinase A 

signalling pathway 103. Cortisol, an end product of the steroidogenesis pathway is then 

released to the circulation within a few minutes of ACTH stimulation and travels to 

target tissues and cells where it exerts its biological effects through binding to the GRα 
101. Central centres in the hippocampus, hypothalamus, and the corticotroph cells in 

the pituitary gland also express GRα and at these central centres the cortisol-GRα 

complex translocate to the nucleus and bind to regulatory areas on the DNA to inhibit 

POMC, CRH and AVP mRNA and therefore reduce ACTH secretion in a typical 

negative feedback pathway. 

 

 

3.1.1.4.2. The regulation of steroidogenesis in the adrenal gland  
	

Steroid hormones are not stored in the adrenocortical cells and are produced de novo 

and released when needed and ACTH is the signal for the secretion of glucocorticoids 

and adrenal androgens 14. The regulation of glucocorticoid synthesis is through the 

HPA axis and specifically by two different actions of ACTH; an acute response and a 

chronic response. Through the cortisol-mediated central effects to the hypothalamus 

and pituitary (negative feedback pathway) the end product of the pathway participates 

in the dynamic control of the system by inhibiting the effect of ACTH.  

 

The acute response regulates substrate supply and is through non-genomic 

mechanisms. ACTH causes rapid hormone-dependent mobilisation of cholesterol 

molecules from lipid droplets to the inner mitochondrial membrane over 15-60 minutes 
51, 74, 103, 104. Cholesterol mobilisation to the inner mitochondrial membrane is essential 

for steroidogenesis reactions to start and ACTH drives this through an increase in StAR 

protein expression mediated by cAMP and PKA signalling and post-translational 

phosphorylation and phosphorylation of the hormone sensitive lipase (HSL) 67, 68, 70, 105, 

106. The acute response to ACTH is rapid and very efficient in producing cortisol in 

response to stress in the adrenal cortex 53, 68, 70, 107. The pulsatile pattern of ACTH 

secretion is critical to the acute effects on inducing steroidogenesis 93, 108. 
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The chronic response to ACTH is through the trophic effect of ACTH to the adrenal 

tissue causing hypertrophy and hyperplasia over months, and by induction of 

transcription of steroidogenesis enzymes’ genes and MC2R over hours and days 51, 53, 

109. ACTH causes an increase in the expression of all cytochrome-450 steroidogenic 

enzymes and electron-donor proteins through cAMP signalling within a few hours after 

stimulation (4 hours in cultured bovine adrenocortical cells) 53, 109. Furthermore, ACTH 

promotes expression of LDL receptors and HMG-CoA reductase and is essential for 

the expression of enzymes (17α-hydroxylase) and factors such as the steroidogenic 

factor 1 (SF1) that promote differentiation and induce growth of the steroidogenic cells 
14, 53, 110.  

 

Together with ACTH, other factors have a role in the regulation of adrenal 

steroidogenesis. In the zona glomerulosa cells of the adrenal cortex the regulation of 

mineralocorticoid synthesis is by angiotensin II and potassium that induce StAR and 

CYP11B2 activity through protein kinase C pathway 111. There is evidence of a 

glucocorticoid-induced intra-adrenal negative regulation of steroidogenesis 93, 112 and 

during inflammatory stress immune factors may contribute to the regulation of 

steroidogenesis 100. Prolactin, a polypeptide hormone secreted by the anterior pituitary, 

has varied effects on gonadal steroidogenesis and has also been investigated as a 

regulator of adrenal steroidogenesis as prolactin receptors are present in all three 

zones of the human adrenal cortex and stimulation with prolactin increased release of 

cortisol, aldosterone and sex steroids in human adrenal primary cultures 113-115.  

 

 

3.1.1.5. Physiological cortisol secretion  

 

Cortisol is produced when needed from the adrenal cortex and is released to the 

circulation and not stored. In normal circumstances, cortisol production follows a 

circadian rhythm pattern with peak levels (around 450 nmol/L) in the early morning 

about 30min after awakening that reduce during the day to above 100 nmol/L and 

reach nadir levels (around 50 nmol/L) at midnight 99, 116, 117. Superimposed on this, there 

is an ultradian variability due to pulsatility. There are multiple (15-20) pulses of cortisol 

secretion throughout the 24-hour day with variable amplitude that decreases during 

the day and determines the circadian variation of cortisol levels 32, 93, 118. Significant 
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peaks of cortisol secretion are seen after mealtimes, physical or other stress 99, 116.  

The release of ACTH follows a similar pattern with peaks preceding cortisol peaks by 

about 10 minutes 99.  

 

Eucortisolaemia is a state of physiological cortisol levels in the blood. It is not a 

straightforward exercise to define eucortisolaemia and set reference ranges of normal 

cortisol levels because cortisol secretion and its concentration in the blood depends 

on many physiological and pathological factors; the time of the day and the presence 

of stressors, sleep patterns and shift work. There is also significant inter and intra-

individual variation of cortisol secretion which is likely due to the time relation of cortisol 

sampling to the secretion pulses 119. Eucortisolaemia has been used in the literature 

to refer to restoration of cortisol levels following treatment for cortisol excess and in 

this context the term has been used interchangeably with long-term cure. Many 

definitions have been proposed in this context; serum cortisol levels within the normal 

reference range for daytime serum cortisol (220-690 nmol/L or 8-25 mcg/dL and 140-

690 nmol/L or 5-25 mcg/dL), normalisation of urinary free cortisol (UFC), or serum 

cortisol less than 48% of the upper limit of normal  (≤12 mcg/dl or 331 nmol/L) 120-125. 

Others have defined eucortisolaemia as a combination of clinical resolution of 

symptoms, restoration of diurnal rhythm of cortisol secretion, normalisation of UFC, 

suppressibility of cortisol in a dexamethasone suppression test (ONDST) and 

stimulability with a short synacthen test (SST) 126. In healthy individuals or patients 

suspected of adrenal insufficiency eucortisolaemia has been used to indicate a normal 

response to a stimulatory test. 

 

Hypercortisolaemia is the presence of excessive levels of cortisol in the circulation and 

hypercortisolism is the effects of chronically elevated cortisol levels in the tissues. 

Chronic, inappropriate and excessive cortisol levels will eventually cause clinical signs 

and symptoms characteristic of Cushing’s syndrome (see 3.1.2.1), but these can be 

non-specific in early onset or mild disease. It is particularly important to be able to 

recognise and define eucortisolaemia in patients with proven cortisol excess that are 

undergoing medical or other treatments aiming to restore cortisol levels to 

physiological and in suspected or borderline hypercortisolaemia. On the other end of 

the spectrum, cortisol deficiency is defined as the presence of excessively low cortisol 

levels in the blood and this definition is reliant on the time of the day the samples were 

measured. 
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On defining physiological cortisol levels there are certain factors that need to be 

considered. Firstly, there is diurnal variation in cortisol secretion with levels changing 

throughout the 24-hour day cycle therefore there is not one rigid reference range that 

can be applied. The physiological cortisol secretion pattern can be described by a 

number of parameters which are; the time of peak cortisol in the morning, the level of 

peak cortisol, the duration of the quiescent period when cortisol levels reduce to less 

than the mean level for the 24-hour period, and the nadir cortisol levels at midnight 127.  

Secondly, there are pulses of cortisol secretion superimposed on the circadian 

variation, which are affected by physical and mental stressors like eating patterns and 

the time of the day. For these reasons only broad cortisol reference ranges can be 

given as the levels are affected by multiple factors.  Even with these broad reference 

ranges, the values are far from rigid in defining normal levels of cortisol and any 

attempt to classify levels as normal or abnormal should place special consideration on 

the presence of physical stressors. With the exemption of early morning cortisol values 

that reflect early peak and late evening values that reflect nadir levels, random cortisol 

measurements are of very limited use in assessing for eucortisolaemia. Attempts to 

characterise 24-hour patterns of cortisol secretion offer more information but may be 

inconsistent as there is significant inter-individual variability of cortisol levels. 

 

Serum or plasma steroid estimations reflect production rates as these compounds are 

not stored and are released in the circulation as they are produced. Accurate analytic 

methods have estimated the daily cortisol production rate to be around 5.3–6.1 

mg/m2/24hours or 10 mg/24hours and 24-hour cortisol concentration was 180 nmol/L 

in pubertal males 14, 32, 118, 128, 129. These estimates are lower than older studies that 

have defined the historical approach to cortisol replacement. Quantification of basal 

and pulsatile levels of cortisol is currently undertaken in research studies, are not in 

use in clinical practice and serve as a research tool to study cortisol secretion patterns; 

the secretion rate of basal cortisol has been found to be 0.1 μmol/L/24hours and 3.5 

μmol/L/24hours during pulses 130.  
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3.1.1.6. Assessing physiological cortisol levels 

 

Biochemical assessment of physiological cortisol secretion requires multiple tests that 

are complementary and test the integrity and function of the HPA axis at multiple levels 

and includes: 1. Assessment of sufficiency of cortisol levels and diurnal variation with 

early morning and midnight cortisol levels and ACTH levels (physiological results 

assumed if agreement in all of the following: morning cortisol levels in the peak 

reference range as defined by the assay, midnight cortisol levels in the nadir range, 

ACTH levels in the normal range). 2. Assessment of responsiveness of the adrenal 

cortex to ACTH stimulation with dynamic endocrine testing, either a short-synacthen 

test (using synthetic ACTH1-24, SST) or an insulin tolerance test (using a stimulation 

test that causes endogenous ACTH release from the pituitary, ITT) with assessment 

of baseline and response blood cortisol levels. 3. Assessment of daily production of 

cortisol with 24hour urine tests measuring free cortisol excreted in the urine or multiple 

time-point estimation of cortisol in the blood (cortisol day curves or 24hour cortisol 

profiles) 4. Assessment of response of the HPA axis to negative feedback exerted by 

glucocorticoids in the hypothalamus and pituitary (suppression tests using the 

synthetic glucocorticoid dexamethasone). 

 

In the blood, cortisol is measured in the plasma or serum as total or less commonly as 

free cortisol. Total cortisol is measured as a surrogate of free cortisol, which is the 

biologically active fraction. Overall there is an equilibrium of free to total cortisol ratios 

however this is not always the case and total cortisol may not reflect accurately the 

biologically active cortisol amount in many situations 131. Physiological, pathological 

conditions and drugs can alter CBG levels in the circulation and affect the total cortisol 

quantification; conditions that increase CBG levels result in increased total cortisol and 

conditions that decrease CBG levels cause a reduction therefore CBG levels or the 

presence of conditions that influence them should be taken into consideration when 

assessing for cortisol excess or deficiency 30, 132. Examples frequently encountered in 

clinical practice include assessment of acutely unwell and critical care patients who 

are likely to have a reduction in CBG levels or patients taking oral oestrogens or 

pregnant women who may have increased CBG levels resulting in falsely normal 

cortisol results 28, 131. Medications also affect CBG levels and the mode of 

administration matters as well; oral oestrogens increase CBG and total cortisol levels 

but transdermal oestrogens have minimal effects on CBG and total cortisol due to 
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higher levels in the hepatic circulation achieved by the oral route and hepatic induction 

of CBG production 132, 133. During stress CBG levels reduce allowing a higher increment 

of free cortisol levels; for example, free cortisol as a ratio to total cortisol doubles after 

a SST in normal individuals 25, 26. The equilibrium of free to bound cortisol is also 

affected when the affinity of cortisol for CBG reduces which occurs with rising 

temperature allowing more free cortisol in febrile conditions 134. Furthermore, high 

cortisol levels from endogenous or exogenous origin could saturate CBG binding 

capacity which is around 400-500 nmol/l when CBG levels are normal and when total 

cortisol increases above this concentration free cortisol levels increase rapidly and 

then are rapidly cleared through excretion in the urine 26, 134-136.  

	

Cortisol assays are available routinely in secondary care settings and measure the 

total cortisol in the blood, which is 95% bound to CBG and albumin, and 5% free 

cortisol 26, 130. Free cortisol is present in the saliva and urine and cortisol levels in these 

samples reflect serum free cortisol and show good correlation with total plasma cortisol 
136. Plasma free cortisol can be calculated based on total cortisol using a simple 

equation or can be measured directly using complicated laboratory techniques 

(ultrafiltration, equilibration dialysis or gel filtration), which are time-consuming and 

difficult to standardise and perform routinely and lack a validated reference range 27, 

137, 138. Calculated free cortisol based on total cortisol suffers from varying affinity of 

cortisol to CBG and some reports indicate that it may underestimate free cortisol levels 
138, 139. Specific sampling methods should be followed for blood and urine tests and 

without adherence to these methods the results may not be interpretable or accurate 

and the timing of sampling is usually needed to aid interpretation.   

 

The majority of laboratories in the UK use immunoassays to measure cortisol in the 

blood, urine or saliva however the gold standard analytical technique is mass 

spectrometry 138. Gas chromatography–mass spectrometry (GC-MS) is a highly 

sensitive, specific and accurate method and is considered the gold standard for steroid 

hormone analysis; however, it is labour intensive and not considered suitable for a 

busy clinical laboratory whereas liquid chromatography tandem mass spectrometry 

(LC-MS/MS) is similarly sensitive and specific and applicable to use in clinical practice 
138. Mass spectrometry techniques report lower cortisol values than many 

immunoassays 140, 141. Chemiluminescence immunoassays are frequently used in the 

commercial laboratories and most secondary care laboratories and are easily 
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automated suitable for high throughput clinical laboratories. Immunoassays have good 

results but are less specific due to competition of plasma proteins with assay 

antibodies and cross-reaction with other steroids for example synthetic steroids such 

as prednisolone and steroid precursors such as 11-deoxycortisol in the serum and 

steroid metabolites in the urine samples 138. 

 

Early morning serum/plasma cortisol is used to test for adrenal (cortisol) deficiency. 

Levels above 500 nmol/L exclude adrenal deficiency although the cut off between 

assays varies and new assays that suffer less from cross reactivity with cortisol 

precursors have lower cut off values and local guidelines are followed. Early morning 

cortisol levels <100 nmol/L strongly indicate adrenal deficiency especially if there are 

no concomitant steroid medications and night-day sleep circle has not been disturbed. 

Levels in between may indicate adequate cortisol production or partial deficiency and 

must be tested further with a dynamic test; a short synacthen test (SST) or an insulin 

tolerance test (ITT) 142.  

 

Midnight serum cortisol and late-night salivary cortisol tests assess the disturbance of 

diurnal production, which is characteristic of disorders of cortisol excess. Serum 

midnight cortisol is a sensitive test but requires admission for at least 48 hours prior to 

phlebotomy and is therefore inconvenient to perform; a sleeping level above 50 nmol/L 

(1.8 μg/dL) has 100% sensitivity for the detection of CS 143. At a cut-off value of 200 

nmol/L (7.5 μg/dL), there is 96% sensitivity and 100% specificity for differentiating 

between CS and pseudo-Cushing states 144.  

 

Free salivary cortisol is used for the assessment of diurnal cortisol secretion in 

conditions of cortisol excess with late night values (LNSC) showing high sensitivity and 

specificity 145, 146. LNSC is a non-invasive test that reflects the levels of free cortisol in 

the blood and convenient for outpatient investigation as it can be performed by the 

patient in their own environment. It is very useful in differentiating between true cortisol 

excess and pseudo-Cushing states, and as it is not affected by CBG levels it is a good 

test to do in pregnancy or in patients taking oestrogens or having other conditions that 

affect CBG 27, 147-149. This method involves the passive collection of saliva through a 

straw or swab device and the patients should refrain from eating, drinking, brushing 

their teeth or smoking for two hours prior to collection. Cross contamination with 
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steroids (inhaled or oral) and blood in patients with gingivitis is a problem 33. Salivary 

cortisol assays are widely available with appropriate reference ranges for late night 

values. The analytic technique needs to be sensitive to very low levels of cortisol and 

specific to avoid cross-reaction with cortisone and ideally should be LC-MS/MS due to 

better performance compared with immunoassays 33, 137. There is significant inter-

patient variability therefore at least 2 samples are needed 150-152. LNSC levels below 2-

3 nmol/L are proposed to exclude CS 137. Salivary cortisone is currently investigated 

as a better marker for serum free cortisol and one not contaminated by oral 

hydrocortisone 153, 154. 

 

Cortisol day curves (CDCs) have been used in clinical practice to estimate adequacy 

of medical treatment for Cushing’s syndrome and hydrocortisone replacement in 

adrenal insufficiency 155. There are several protocols which involve measuring multiple 

(4-6) cortisol levels during a fraction of the 24hour period, a commonly used method 

involves measuring cortisol levels at 5 time-points starting from 08:00h until 18:30 156, 

157. The levels are then interpreted against hydrocortisone administration times or an 

average of all time-points is calculated. CDCs have been validated against daily 

production rates in eucortisolaemic and metyrapone-treated Cushing’s patients with 

calculated mean cortisol between 150-300 nmol/L corresponding to the normal cortisol 

production rate 156. CDCs use total cortisol measurements and are therefore affected 

by CBG fluctuations. They require frequent blood sampling, are labour intensive and 

need to be undertaken in a hospital setting, and not used routinely by the majority of 

clinicians. 

	

Urinary free cortisol (UFC) measures the free, unbound cortisol excreted in the urine 

over 24 hours and this amount is estimated around 60 nmol/day 158. UFC levels are 

not affected by the diurnal variation of cortisol production as they are 24-hour 

collections or presence of conditions that elevate CBG (pregnancy, oestrogens) and 

fluctuations of CBG levels 28. Urine samples cannot be used for quantifying pulsatile 

cortisol secretion or detection of cortisol deficiency and they are not recommended for 

patients with significant renal impairment. UFC is a standard test for detecting 

hypercortisolaemia and is an essential part of the biochemical work-up for suspected 

cortisol excess. There is significant inter-patient variability in UFC results and up to 

10% of patients eventually diagnosed with cortisol excess have been shown to have a 

normal UFC level; therefore, in the assessment of patients for hypercortisolism it is 
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common practice to analyse multiple UFC collections 33, 146, 159, 160. In clinical practice 

UFC is usually measured by immunoassays however this method suffers from 

specificity problems due to the presence of many cross-reacting steroid metabolites 

and other compounds in the urine and levels of free cortisol can be 2-fold 

overestimated when measured by immunoassays compared with to accurate methods 

such as high performance liquid chromatography or LC-MS/MS	 33, 140, 158, 161. The 

addition of chromatography for purification prior to immunoassay improves specificity 
137. There are practical problems affecting accuracy due to incomplete collections and 

patients may find 24-hour collections troublesome to perform.  

 

The dynamic tests used to assess the integrity of the HPA axis are the ITT or the SST. 

ITT is the gold standard and has been validated against a physical stressor (elective 

surgery) however it has multiple contraindications (epilepsy, cardiovascular disease), 

needs close monitoring and is unpleasant for patients 162. It tests the ACTH secreting 

reserve at the level of the pituitary and is based on hypoglycaemia-induced ACTH 

secretion from the pituitary and subsequent cortisol release from the adrenals. The 

SST is also a good test with peak cortisol results correlating closely to ITT, is simpler 

to perform and has been adopted as the first line test in everyday clinical practice 163. 

It is based on the failure of the adrenals to respond to an acute ACTH stimulus due to 

adrenal atrophy induced by chronic adrenocorticotrophin deficiency. SST tests the 

function of the adrenal cortex directly and the pituitary and hypothalamus indirectly and 

is not useful in the immediate period after acute pituitary or hypothalamic dysfunction 

causing adrenal deficiency 164. Both tests require trained staff and monitored conditions 

with ITT being more intensive. Normal values for SST are an increase in cortisol to 

above 500 nmol/L but cut-offs depend on the cortisol assay used to analyse the 

samples and the current cut off at Sheffield Teaching Hospitals being 430 nmol/L 165.  

 

The dexamethasone suppression tests are commonly used to assess the loss of 

negative feedback regulation of the HPA axis and they are useful in assessing for 

conditions of cortisol excess. There are two tests, the 1 mg overnight test and the 2 

mg 48-hour low-dose test. These are based on the principle that administration of 

exogenous glucocorticoids should suppress ACTH and endogenous cortisol 

production due to corticotroph cell response to negative glucocorticoid feedback 99. 

Both tests can be performed in an outpatient setting. The overnight dexamethasone 

test (1 mg of dexamethasone at 11 pm and measurement of cortisol early the next 
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morning) has high specificity and is an excellent screening test. The low-dose 

dexamethasone-suppression test (0.5 mg of dexamethasone every 6 hours and 

cortisol measurement at baseline and at 48 hours) has a slightly better performance. 

 

The administration of synthetic glucocorticoids affects the assessment of endogenous 

cortisol levels not only because of suppression of endogenous cortisol production but 

also because of interference with analytical methods. Hydrocortisone is measured as 

cortisol in the blood. Prednisolone cross-reacts with most commonly used commercial 

cortisol assays therefore measurement of cortisol levels in patients treated with 

prednisolone is not accurate with standard immunoassays and more accurate 

analytical methods are needed to increase specificity such as MS 166. Prednisolone 

binds to CBG and is affected by CBG fluctuations. Dexamethasone does not bind to 

albumin nor has any significant cross-reactivity therefore it is possible to measure 

endogenous cortisol levels accurately in patients treated with dexamethasone.  

 

Cross-reaction of endogenous steroids can also affect cortisol measurement. Cross-

reactivity of steroid precursors mainly affects serum and plasma cortisol quantification 

and cross-reactivity with steroid metabolites mainly affects urine cortisol quantification 
138. 11-deoxycortisol, a precursor of cortisol is structurally similar to cortisol and cross-

reacts in immunoassays and can affect interpretation of the biochemical assessment 

of the HPA axis in patients with endogenous overproduction of this steroid. 

Quantification of cortisol levels in samples taken from patients treated with medications 

that increase the endogenous production of 11-deoxycortisol such as the 

steroidogenesis enzyme metyrapone may show falsely raised values due to cross 

reaction when immunoassays are used as the analytic method and this could cloud 

assessment of HPA axis and underestimate the risk of adrenal insufficiency or 

response to treatment in these patients. Tetrahydrocortisol metabolites in the urine 

also cross-react with commonly used immunoassays. 
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3.1.2. Androgen effects on erythropoiesis 

 

Erythropoiesis is the generation of new erythrocytes to deliver oxygen to the tissues 

and is a complex process that takes place in the bone marrow and occurs in eight 

stages. In the early stages, pluripotent haemocytoblast stem cells differentiate into 

erythroid progenitor cell types and then erythroblasts. The terminal stages of 

erythropoiesis involve maturation of erythroblasts into anuclear reticulocytes that are 

released in the circulation and mature into erythrocytes after 24-48hours 167. Decrease 

in oxygen availability in the blood stimulates the production of erythropoietin (EPO) by 

the kidneys, primarily in adults, and the liver, primarily in fetuses and newborns. EPO 

is the key factor regulating erythropoiesis and promotes the differentiation of late 

erythroid progenitor cells to erythroblasts. Erythrocytes released in the circulation 

survive for about three months and are then destroyed by macrophages in the spleen 

and liver and new erythrocytes are produced under EPO control at a steady pace to 

maintain the necessary amount of erythrocytes in the circulation to deliver oxygen to 

the tissues 168.  

 

The early stages of erythroid progenitor cell differentiation are regulated by multiple 

factors including glucocorticoids, insulin growth-factor 1, stem cell factor, interleukin-3 

and interleukin-6 169.  EPO binds to its receptor (EPO-R) at the cell surface of erythroid 

progenitors and this initiates downstream signalling including activation of JAK2/ 

STAT5 and MAPK/ PI3K pathways that regulate gene transcription to promote 

differentiation, proliferation and inhibition of apoptosis 168. Maturation of erythrocytes 

also depends on the availability of iron, B12, folic acid and copper and hormones such 

as androgens, thyroxin and growth hormone 170, 171. Regulators of iron uptake and 

metabolism also modulate erythroid maturation and examples of these proteins are; 

the main iron-transport protein transferrin, the central regulator of iron homeostasis 

hepcidin, and the only known cellular iron-exporter protein ferroprotein 172. Hepcidin is 

a negative regulator of iron levels and controls systemic iron homeostasis by binding 

to and inactivating ferroprotein, which exports iron from absorptive enterocytes, 

macrophages and hepatocytes promoting iron recycling 173, 174. Elevated hepcidin 

reduces iron availability and predispose to ‘iron-restricted’ erythropoiesis and  low 

hepcidin levels increase iron availability and predispose to iron overload.  
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Steroid hormones affect erythropoiesis. Patients with cortisol excess present with 

polycythaemia. Glucocorticoids and bone morphogenetic protein 4 together with 

hypoxia-induced factor-1α (HIF-1α) are important for stress erythropoiesis 175. Sex 

steroids and androgens in particular have a significant effect in erythropoiesis and 

although the mechanism is not clear, it is linked to enhanced EPO action. Androgen 

therapy likely increases EPO levels, although this is disputed by some studies. Animal 

studies show increase in EPO levels with testosterone and anabolic androgen therapy 

and several clinical studies also report an increase in EPO levels in anaemic men and 

women with the maximum effect seen after few weeks of androgen treatment together 

with improvement of anaemia 176-178. The mechanism through which androgens 

increase EPO production is not known and in contrast to these findings, other clinical 

studies showed a dose-dependent increase in biomarkers of erythropoiesis, 

haemoglobin and haematocrit, without changes in EPO 179, 180. Similarly, anti-androgen 

therapy has been found to reduce EPO production in patients treated with cyproterone 

but not in men with prostate cancer treated with androgen-deprivation therapy (GnRH 

agonist leuprolide acetate) and castration-levels of testosterone 181. Additionally, there 

is evidence of a direct action of androgens on erythropoiesis in the bone marrow; 

androgens promote erythroid differentiation to erythroblast synergistically with EPO 176, 

182, 183, and anti-EPO pre-treatment abolishes androgen-induced erythropoietic effects 
184, 185. Androgen treatment in women with breast cancer was associated with an 

increase in haemoglobin, erythrocytes and haematocrit associated with histological 

evidence of erythroid cell hyperplasia in the bone marrow 186, 187. Androgens also 

enhance erythropoiesis by indirect effects on iron metabolism and availability for 

erythropoiesis such as promoting iron incorporation into erythrocytes and suppressing 

hepcidin levels and therefore increasing iron availability in a mechanism that is 

independent on 5α-reductase activity and conversion to DHT 176, 184, 188-192.  

 

There are sex differences in erythropoiesis with adult men having higher haemoglobin 

and erythrocyte counts than women and this is likely due to differences in androgen 

levels 193. On the contrary, no sex-specific differences exist in EPO production and 

levels are similar in men and women 194. Sex-specific differences in haemoglobin, 

haematocrit and erythrocyte counts start at puberty when differences in sex steroids 

are established, are greatest in young adults and are not due to menstrual loss as 

differences persist throughout adulthood and post menopause, and in women with 

hysterectomies 195-198. Women have higher rates of anaemia throughout adulthood and 
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men with haemolytic anaemias have higher erythrocyte mass than women with the 

same disease 199, 200.  

 

Several observational studies show a  positive correlation of total and free testosterone 

levels  with haemoglobin and haematocrit levels and lower testosterone levels are 

associated with a risk of anaemia 201, 202. Population studies showed positive 

correlation of testosterone and haemoglobin or haematocrit in men 203, and in 905 men 

and women 65 years-old and above, those with total and free testosterone levels in 

the lowest quartile at baseline were more likely to have anaemia than those in the 

highest quartile 204. Interventional studies consistently show that testosterone therapy 

in men increases haemoglobin and haematocrit 201.  Endogenous androgen excess 

such as in patients with CAH is associated with increased erythropoiesis and 

polycythaemia in patients with poor biochemical  control 205, 206.  

 

A dose-dependent induction of erythropoiesis is a well-recognised response to 

testosterone and androgen therapy and older people and women may be more 

responsive 179, 207. Polycythaemia is a common side-effect of testosterone replacement 

in hypogonadal men and usually improves after treatment dose reduction or treatment 

withdrawal 208. Increase in erythrocyte mass is seen in women with breast malignancy 

treated with androgens and testosterone and anabolic steroids with androgenic action 

have been used for treatment of anaemias for decades and improve erythropoiesis in 

some patients 190. Prior to the introduction of recombinant human EPO, androgens 

were used for the treatment of anaemia due to chronic kidney disease and are still 

used for the treatment of mild forms of acquired aplastic anaemia 209, 210. 

 

In contrast, hypogonadism is associated with reduced erythropoiesis, anaemia and 

androgen replacement corrects this 178, 211, 212. Bilateral orchidectomy results in a 1.2 

g/dl median decrease in post-operative haemoglobin levels 213. Hypogonadism in 

patients with end stage renal failure predisposes to anaemia refractory to  

erythropoiesis-stimulating agents indicating that some important effects of 

testosterone on erythropoiesis are independent to EPO-induced signalling, and could 

affect iron availability for erythropoiesis 202. Moreover, profound hypogonadism due to 

androgen deprivation therapy in patients with prostate cancer and normal baseline 

testosterone levels was associated with a reduction in erythropoiesis and anaemia; 
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serum EPO levels were unchanged with treatment, however, androgen-derivation 

therapy induced changes in markers of iron availability and these findings could be 

explained by drug-induced ‘slowing’ of bone-marrow erythropoiesis or reduced iron 

availability or ‘iron-restriction anaemia’ due to increased hepcidin levels 181.  

 

   

 

 

3.1.3. Disorders of cortisol secretion 

3.1.3.1. Cushing’s syndrome 

	

Cushing’s syndrome (CS) is a group of disorders caused by chronic exposure to 

excessive levels of glucocorticoids 214. The source of glucocorticoid excess maybe 

endogenous due to overproduction of cortisol by the adrenal cortex or exogenous due 

to chronic administration of glucocorticoid-containing medicines at supraphysiologic 

doses, usually prescribed for the treatment of inflammatory conditions. Endogenous 

glucocorticoid excess is a rare condition with an incidence of 1 per 250,000 population 
215. In this thesis CS signifies CS due to endogenous glucocorticoid excess.  

 

The biochemical features of CS are hypercortisolaemia, loss of the negative feedback 

that cortisol exerts on the hypothalamus and pituitary, and loss of the circadian rhythm 

of cortisol secretion 99, 160. The typical clinical features were first described by Harvey 

Cushing in the first case report of a woman with CS in 1912 216-218. Chronic 

hypercortisolism causes protein wasting, with clinical  signs of skin thinning, proximal 

myopathy, skin striae, and easy bruising.  Typically there is an altered centripedal fat 

distribution due to visceral fat accumulation, glucose intolerance, vascular disease and 

hypertension, hypogonadism, osteoporosis, life-threatening infections, mental and 

cognitive changes 216, 219-221. The condition is more prevalent in women and may persist 

for years prior to presentation especially if hypercortisolaemia is mild in which case 

patients frequently present with cardiovascular and metabolic complications due to 

chronic exposure to cortisol excess. Some patients present with acute life-threatening 

infections, frequently atypical, and this acute presentation is more common when the 



	 48	

circulating levels of cortisol are very elevated; electrolyte abnormalities such as 

hypokalaemia is also more common with significant hypercortisolaemia due to 

saturation of the 11βHSD2 in the kidney which allows excess cortisol to activate the 

mineralocorticoid receptor 222. If left untreated, chronic hypercortisolaemia is 

associated with significant morbidity and mortality usually due to vascular disease or 

infections 223.  

 

CS is caused either because of overproduction of ACTH (ACTH-dependent, 80% of 

all causes of CS) or because of autonomous overproduction of cortisol from the 

adrenal glands (ACTH-independent, 20%) (Table 4) 14, 215. In ACTH-dependent CS the 

cause is usually a corticotroph adenoma of the pituitary gland over-secreting ACTH 

and driving cortisol production by the adrenal gland and this is called Cushing’s 

Disease (CD) 216, 220. A less frequent cause is ectopic ACTH release from tumours 224. 

ACTH-independent CS is usually caused by an adrenal tumour that autonomously 

over-secretes cortisol escaping from the regulation of ACTH and the HPA axis. The 

adrenal tumour is most frequently a benign adenoma and less frequently a malignant 

adrenal carcinoma, or rarely by adrenal hyperplasia conditions. 

 

Corticotroph adenomas are rare intracranial tumours and account for 10-15% of all 

pituitary tumours 225. There are almost always benign tumors and very rarely are 

caused by malignant pituitary carcinomas or pituitary blastomas 226. The majority (80-

90%) are microadenomas having a diameter of less than 10 mm however occasionally 

can be macroadenomas and very rarely locally aggressive tumours of significant 

volume exerting pressure or invading surrounding structures such as the optic chiasm 

and the cavernous sinuses and these aggressive tumours frequently have histological 

features of Crooke’s cell adenomas 225. Corticotroph adenomas oversecrete ACTH that 

causes excess cortisol production through induction of steroidogenesis by the adrenal 

glands. Women are affected more frequently than men.   

 

The pathophysiological mechanisms leading to CD are not entirely clear; however, 

recent advances in genetics and identification of specific somatic mutations in a large 

population of patients with corticotroph adenomas have significantly increased our 

understanding on what triggers corticotroph tumorigenesis. Corticotroph adenomas,  



	 49	

 

 

Table 4: Causes of  Cushing’s syndrome 14, 215, 227, 228 

Cause  Pathophysiology 

ACTH-dependent (80%)  

 Cushing’s Disease (65%)  
§ 90% microadenomas  
§ 10% macroadenomas 

Corticotroph pituitary adenoma oversecreting ACTH. 
Genetics: rarely associated with familial endocrine 
syndromes (MEN1, MEN4, AIP), somatic gain-of-
function USP8 mutations in sporadic tumours. 

 Ectopic ACTH secretion (15%) 

 

Paraneoplastic syndrome, secretion of ACTH from tumours 
of neuroendocrine cell origin. Frequently associated with 
small cell lung carcinoma, bronchial and thymic carcinoid, 
gastrointestinal neuroendocrine tumours, medullary thyroid 
carcinoma, phaeochromocytoma.  

 Ectopic CRH secretion  Rare, paraneoplastic secretion of CRH by a tumour of 
neuroendocrine cell origin. 

ACTH-independent (20%)  

Adrenal adenoma (12%) Autonomous cortisol production from adrenocortical 
adenoma cells through overactivation of the cAMP and β-
catenin pathways. Genetics: somatic mutations of PRKACA, 
CTNNB1, GNAS1, PRKAR1A genes. 

 Adrenocortical carcinoma (5%) Autonomous cortisol production from adrenocortical 
carcinoma cells due to overactivation of the β-catenin 
pathway. Genetics: somatic mutations of CTNNB1 gene. 

 Primary pigmented nodular 
adrenocortical disease (PPNAD) 

 

Multiple adrenal nodules (micronodular adrenal hyperplasia) 
with limited pigment, due to overactivation of the cAMP 
pathway. May be isolated or with Carney complex. Genetics: 
germline PRKAR1A loss of function mutations, inactivating 
mutations in phosphodiesterase 11A (PDE11A) gene. 

 Bilateral macronodular adrenal 
hyperplasia (ACTH-independent 
macronodular adrenal 
hyperplasia) 

Multiple adrenal nodules with diameter greater than 1 cm, 
usually sporadic but rarely familial with autosomal dominant 
inheritance. There is aberrant G-protein-coupled receptor 
expression and autocrine ACTH production. Genetics: 
inactivating mutations of armadillo repeat containing 5 
(ARMC5) gene, rarely GNAS mutations and somatic MC2R 
mutations. 

 McCune-Albright syndrome Post-zygotic activating mutations of GNAS gene encoding for 
the stimulatory alpha subunit (Gsa), which cause 
overactivation of cAMP signalling. 
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similar to other pituitary adenomas, are monoclonal tumors arising from a single cell 

that multiplies to cause tumor growth therefore somatic mutations in the tumour have 

been explored as the trigger to tumorigenesis 229-232. Most corticotroph adenomas 

occur sporadically and only very rarely are part of a familial endocrine genetic 

syndrome, most commonly due to germline mutations of the tumor suppressor MEN1 

gene that causes multiple endocrine neoplasia type 1 syndrome (MEN1), the aryl-

hydrocarbon receptor-interacting protein gene (AIP), and the CDKN1B gene (or 

p27/Kip1) that encodes for p27, a cell cycle inhibitor and causes multiple endocrine 

neoplasia type 4 (MEN4) 233-238. Sporadic corticotroph tumours have been found to 

harbour somatic mutations in genes encoding for GR and GR chaperone protein 

HSP90, cell cycle proteins and protein regulators, and the Ubiquitin specific peptidase 

8 gene (USP8) and only rarely in genes that cause CD by germline mutations (MEN1, 

AIP, CDKN1B) 239. Of these somatic mutations those affecting the USP8 gene are 

particularly frequent and found in about 50% of sporadic corticotroph adenomas, more 

likely in female patients or microadenomas 240-243. USP8 gene encodes for a protein 

member of the ubiquitin-specific processing protease family that targets proteins for 

ubiquitination, that is targeting proteins for degradation by the endosome-lysosome 

system through ubiquitin tags 244.  USP8 cleaves the ubiquitin tags (deubiquitination) 

and is involved in epidermal growth factor receptor (EGFR) trafficking, inhibition of 

EGFR degradation at the lysosomes, receptor recycling to the cell surface and 

augmentation of EGFR-induced MAPK signalling leading to high POMC mRNA 

expression 240-242, 245-247.  

 

Multiple mechanisms are most likely involved in the pathogenesis of CD. Excess 

cortisol production in CD should cause negative feedback at the level of the pituitary 

and hypophysis and inhibit CRH and ACTH release however there is evidence that 

there is resistance to this mechanism; although some negative feedback is maintained 

in ACTH-secreting adenomas it seems the sensitivity is set at a much higher set point 
219, 248, 249. Recent studies show that the testicular nuclear receptor, TR4, is 

overexpressed in corticotroph tumour cells and promotes resistance to the negative 

glucocorticoid feedback. When ligand-activated GRα translocate to the nucleus of 

corticotroph cells, GRα interacts with TR4 and this interaction overrides the negative 

regulation of GRα on POMC transcription 250. Recent genetic studies indicate that 

EGFR signalling, a transmembrane receptor for the epidermal growth factor (EGF), 

and the ubiquitin system for protein tagging for its degradation have a key role in the 

tumorigenesis of corticotroph adenomas. EGFR signalling is a powerful proliferation 
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signal and promotes corticotroph cell proliferation and ACTH secretion by down-

regulation of p27/Kip1 gene that encodes for a cyclin-kinase inhibitor protein that 

regulates cell cycle progression 251. Aggressive corticotroph tumors have high levels 

of EGFR/ EGF expression and inhibition of EGFR signalling by gefitinib, an EGFR 

kinase inhibitor, inhibits POMC expression and corticotroph cell proliferation in cell 

cultures, decreases tumour growth and cortisol levels and improves clinical features in 

an animal model of CD 251-256. A possible role of sex steroids in the pathogenesis could 

also be contemplated given the strong female predominance in adults whereas in 

children presenting with CD before puberty there is a male predominance 218. 

 

Ectopic ACTH syndrome (EAS) is caused by paraneoplastic production of ACTH from 

tumours of neuroendocrine cell origin. The tumours that most commonly cause ectopic 

ACTH production are small cell lung cancer, neuroendocrine (carcinoid) tumours, 

phaeochromocytoma, and medullary thyroid cancer 215, 257, 258. There is approximately 

equal prevalence of the disease in men and women; it is uncommon in children but 

more frequent in older adults 222, 258. The presentation of CS may be different in EAS 

and CD; in EAS there is often a history of cancer known to cause EAS or a new 

diagnosis of lung cancer, there is frequently more aggressive disease with higher 

cortisol levels, hypokalaemia and acute complications of hypercortisolism such as 

psychosis and severe infections 221, 259, 260.  

 

ACTH-independent CS is due to disorders affecting the adrenal glands and most 

commonly due to tumours of the adrenal cortex. Benign adrenal adenoma is the cause 

in 60% of ACTH-independent CS followed by adrenocortical carcinoma in 40% of 

cases. In patients with adrenal carcinoma co-secretion of other adrenal steroids 

(androgens) is common and may be a prominent feature in the clinical presentation. 

Overactivation of cAMP (benign disease) and b-catenin (benign disease and ACC) 

signalling is a pathogenic feature of adrenal CS (Table 4). Benign adrenal adenoma 

presents with features of CS, usually due to chronic and mild hypercortisolism. 

Commonly at presentation patients may have hypertension and glucose intolerance or 

even evidence of vascular disease. A small number of benign adrenal adenomas 

develop as part of a familial genetic syndrome such as MEN1 or Gardner’s syndrome 

where the genetic culprit is mutations of the MEN1 gene or germline loss of function 

mutations of the APC gene 228. The majority of benign adrenal adenomas causing CS 

are sporadic tumours and in 50% harbour somatic mutations of the PRKACA gene, 
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which encodes for a catalytic subunit of protein kinase A and leads to overactivation 

of cAMP signalling and increased steroidogenesis. Adrenocortical carcinoma is an 

aggressive disease that mostly affects women and has a biphasic age distribution 

peaking in the 3rd and 5th decades. It can present with distant metastasis at 

presentation, features of severe CS or androgen excess and prognosis is usually 

guarded. Adrenal carcinomas are monoclonal in origin and may be part of a familial 

neoplasia syndrome such as MEN1, Rubinstein-Taybi syndrome (germline CREBBP 

or EP300 loss of function mutations), Li-Fraumeni syndrome (germline TP53 loss of 

function mutation), familial adenomatous polyposis syndrome (loss of function of the 

APC gene), or Beckwith-Wiedemann syndrome 228, 261. Most primary adrenal cancers 

are sporadic and in 30% harbour somatic mutations of the CTNNB1 gene encoding for 

beta-catenin, a protein involved in adrenocortical cell proliferation 262. Bilateral 

macronodular adrenal hyperplasia, previously termed ACTH-independent 

macronodular adrenal hyperplasia, presents with multiple adrenal nodules and 

hyperplasia with mild to moderate cortisol excess and is associated with germline and 

somatic mutations of the armadillo repeat containing 5 (ARMC5) gene that encodes 

for a tumour suppressor protein.   

 

It is important to differentiate the cause of CS in patients presenting with cortisol 

excess, as the treatment is very different depending on the cause. The prognosis also 

varies  between benign and malignant disease and between benign adrenal and 

pituitary disease 146. The differential diagnosis requires careful biochemical 

investigation that follows published guidelines and the first clues for the diagnosis 

come from the history and clinical examination 146. A careful biochemical investigation 

is required to confirm hypercortisolism by demonstrating: 1. Loss of negative feedback 

control. 2. Loss of the circadian rhythm of cortisol secretion. 3. Excessively high cortisol 

production. The biochemical tests employed for this investigation and the outcomes 

that confirm hypercortisolism are: 1. Failure to suppress cortisol to less than 50 nmol/L 

following a dexamethasone suppression test (either the overnight or the low dose two-

day test). 2. High midnight cortisol levels in the serum or saliva indicating loss of the 

circadian pattern of cortisol secretion. 3. Excess cortisol secretion by the adrenal 

glands demonstrated by quantifying free cortisol excretion in a 24-hour urine collection 
7, 215, 263. Quantification of plasma ACTH levels then differentiates the causes of 

hypercortisolism to ACTH-dependent where ACTH levels are high or normal, or ACTH-

independent where ACTH levels are low or suppressed 7, 146, 215.  
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Following the confirmation of biochemical hypercortisolaemia and quantification of 

ACTH the anatomical level of possible disease is imaged with radiological studies of 

the adrenals (ACTH-independent CS) or the pituitary (ACTH-dependent disease). In 

cases of ACTH-dependent disease localisation studies and confirmation of pituitary 

source of excess ACTH may be needed and these are with CRH-stimulation test and 

inferior petrosal sinus sampling. When EAS is suspected, a whole-body cross-

sectional imaging using computerised tomography is needed to look for tumours , but 

these may remain occult 7, 215.  

 

 

3.1.3.2. Nelson’s syndrome 

	

Nelson’s syndrome (NS) is caused by corticotroph tumour growth in patients with 

Cushing’s disease that occurs following surgical resection of both adrenal glands. In 

these patients the bilateral adrenalectomy was performed to treat the hypercortisolism 

caused by the corticotroph adenoma as surgical removal of the adrenal glands 

removes the site of production of cortisol and immediately cures the 

hypercortisolaemia rendering the patient cortisol deficient and in need of cortisol 

replacement long-term. In a proportion of patients who undergo bilateral 

adrenalectomy in this context the corticotroph pituitary adenoma may progress further 

and increase in size causing symptoms due to volume effects on the surrounding 

neurological structures.  

 

NS may be an incurable condition that can become life threatening and has limited 

treatment options. It was first described by Nelson in 1958 who described a case series 

of patients with pituitary adenomas who underwent adrenalectomies and developed 

deep pigmentation, high ACTH levels, and restricted visual fields due to an expanding 

pituitary tumour 1-8 years following the adrenalectomies 264, 265. The clinical 

presentation is with hyperpigmentation of the skin in the majority of patients, and 

symptoms due to mass effects from the expanding pituitary adenoma such as 

headache, visual field defects, and external ophthalmoplegia. NS develops at mean 

15years post-bilateral adrenalectomy (but has developed up to 43 years later), and 



	 54	

mortality is high (12%) with late diagnosis. The corticotroph tumour can be small or 

large and locally invasive 266, 267.  

 

The incidence of NS depends on the criteria set for diagnosis but in case series it is 

estimated that up to 30% of patients with functioning corticotroph adenomas (CD) 

treated with bilateral adrenalectomies develop NS eventually 268, 269. An increase in the 

volume of a corticotroph adenoma following bilateral adrenalectomy is common on 

imaging (MRI) and up to 50% of patients develop NS based on imaging criteria for 

tumour progression 270-272. Although it is known that bilateral adrenalectomy can cause 

NS in patients with CD it is an effective cure for hypercortisolism and is indicated in 

patients where rapid control of hypercortisolism is needed for acute and life-

threatening complications, in women of reproductive age that plan to start a family 

soon and prefer to avoid medical therapy, and in patients where other treatments for 

CD have failed to control hypercortisolaemia.  

 

The biochemical hallmark in NS is increasing levels of ACTH following adrenalectomy. 

There are no universally agreed criteria for the biochemical diagnosis of NS and the 

criteria used are debated. The following diagnostic criteria are commonly used; 1. an 

expanding pituitary tumour on imaging compared with pre-adrenalectomy, 2. an 

elevated plasma ACTH level above 200ng/l 2-hours after the morning dose of 

glucocorticoid, 3. hyperpigmentation 268, 273.  

 

Progressive growth of corticotroph adenomas following bilateral adrenalectomy could 

be either because of the natural course of the adenoma or the loss of cortisol negative 

feedback to the pituitary and hypothalamus on ACTH and CRH release following 

treatment of hypercortisolaemia. Although the sensitivity to cortisol negative feedback 

is reduced in CD, there is some residual effect and this is withdrawn following 

adrenalectomy for the treatment of cortisol excess 274. Furthermore patients with NS 

have likely had multiple treatments prior to bilateral adrenalectomy including 

radiotherapy to the corticotroph adenoma and development of somatic mutations in 

the corticotroph tumours following radiotherapy, for example in the tumour suppression 

p53, could change the natural course and contribute to the development of more 

aggressive tumours 275. Data also show that expansion of a corticotroph tumour 

following bilateral adrenalectomy is more likely when there is a residual pituitary 
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tumour on MRI, an aggressive subtype based on clinical and histology evidence, lack 

of prophylactic neoadjuvant pituitary radiotherapy at the time of bilateral 

adrenalectomy, younger age at adrenalectomy, large tumour size at the time of CD 

presentation, and a rapid rise of ACTH levels in the first year following bilateral 

adrenalectomy (for example an increase higher than 100ng/l in 1 year could be 

indicative) 271, 274, 276. Hyperpigmentation is a common feature and is due to activation 

of the melanocortin 1 receptor (MC1R), a transmembrane GPCR receptor in the skin 

melanocytes that is involved in the regulation of skin and hair colour. High circulating 

levels of ACTH and other POMC-derived melanostimulating peptides bind and activate 

MC1R leading to release of dark melatonin pigment 277, 278. 

 

 

3.1.3.3. Primary adrenal insufficiency 

Primary adrenal insufficiency (PAI) is a group of disorders characterised by failure of 

the adrenal cortex and reduced production of steroid hormones, most notably 

glucocorticoids and mineralocorticoids, despite normal or increased ACTH stimulation. 

It was first described by Thomas Addison in 1849 following autopsy studies in patients 

with anaemia and hyperpigmentation 82. It is a rare condition with incidence 5-6 per 

million but life threatening if left untreated 279-282. It is caused by various disease 

processes most commonly autoimmune and infective adrenalitis due to tuberculosis 

or HIV infection (Table 5). Autoimmune adrenalitis is the most common cause in the 

developed world with an increasing incidence and can be isolated or part of a 

syndrome affecting other endocrine glands or systems 279, 281, 283. Autoimmune 

adrenalitis occurs in any age but is rare in young children.  

 

In adrenal insufficiency there is reduced production of steroid hormones due to 

interruption of steroidogenesis or adrenocortical cell failure. Deficiency of 

mineralocorticoid and glucocorticoid hormones could lead to adrenal crisis with 

hypotension, intravascular volume depletion and electrolyte abnormalities in periods 

of stress and illness; this is a life-threatening condition characterised by hypovolaemic 

shock which could lead to ischaemia and death. Other symptoms include fatigue and 

lack of energy, anorexia and weight loss, nausea, vomiting and abdominal pain, 

myalgia, salt craving and postural symptoms 284. Patients may have evidence of 

hyperpigmentation due to compensatory ACTH secretion and stimulation of the MC1R 
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in the skin melanocytes. There may also be raised creatinine and hypotension 

exacerbated by standing posture due to volume depletion, hyperkalaemia and 

hyponatraemia, anaemia, hypoglycaemia, and abnormalities in sexual development 

due to abnormal secretion of adrenal androgens 285. 
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Table 5: Causes of Primary adrenal insufficiency 283, 284, 286, 287 

Autoimmune adrenalitis/ Addison’s disease 

– Isolated 
– Part of Autoimmune polyglandular syndrome type 1 or type 2 

Infective adrenalitis 

– Bacterial (TB) 
– Viral (HIV, CMV) 
– Fungal (Candidiasis, histoplasmosis) 

Haemorrhage and infarction (affecting both adrenals)  

– Sepsis (such as meningococcal sepsis 
– Anticoagulation drugs 
– Anticardiolipin syndrome 

Genetic 

– Congenital adrenal hyperplasia due to defects in steroidogenesis enzyme 
genes  

– Congenital adrenal hypoplasia due to NROB1 gene mutations (X-linked 
recessive), IMAGE syndrome (CDKN1C gene), 	deletion of multiple genes on 
chromosome Xp21, 	 

– ACTH insensitivity syndrome due to MC2R mutations, Triple A syndrome   
– Keams-Sayre syndrome due to mitochondrial DNA deletions  
– X-linked Adrenoleukodystrophy due to ABCD1 gene mutations  
– Wolman’s disease 

Adrenal metastases  

Bilateral, usually from primary in the lung, breast, colon, lymphoma, 
melanoma 

Infiltration  

– Haemochromatosis 
– Primary amyloidosis 
– Lymphoma  
– Sarcoidosis 

Surgery  

Post bilateral adrenalectomy for Cushing’s disease, bilateral Cushing’s 
syndrome or bilateral phaeochromocytomas 

 

Abbreviations: GC: glucocorticoids, MC: mineralocorticoids, SS: sex steroids 
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In autoimmune adrenalitis, adrenocortical or 21-hydroxylase autoantibodies initially 

trigger a mononuclear infiltration of the adrenal cortex consisting of activated 

lymphocytes, plasma cells and macrophages associated with depletion of suppressor 

T-lymphocytes and activated T-lymphocytes in the peripheral blood 283. There is 

subsequent disturbance and loss of normal cell organisation and architecture with loss 

of the cortical zonation and adrenocortical cell necrosis. As the disease progresses 

there are nodules of functioning cells which are eventually destroyed and replaced by 

fibrous tissues and in the final stages the adrenals become atrophic and small 283. 

 

The diagnosis of primary adrenal insufficiency is made with biochemical testing of the 

adequacy of cortisol levels. Low early morning cortisol levels indicate the diagnosis 

especially if lower than 140 nmol/L and need further evaluation with ACTH levels to 

exclude a central (pituitary/hypothalamic) pathology and a dynamic test for cortisol 

secretion. SST using synthetic ACTH1-24 (250mcg or lower doses in children) 

administered intravenously or intramuscularly confirms the diagnosis; in primary 

adrenal insufficiency basal and stimulated cortisol levels are suboptimal and ACTH is 

usually above 100ng/L or two times the upper limit of normal for the assay used 284, 286, 

288, 289. The stimulated cortisol level cut off in the SST depends on the local assay but 

overall levels above 500 nmol/l (18mcg/dl) at 30 or 60 min exclude AI 284, 286, 290. UFC 

levels are not useful for diagnosis of adrenal insufficiency due to low sensitivity 164. The 

mineralocorticoid deficiency is demonstrated with raised renin levels; aldosterone is 

low or low-normal 289. Adrenal androgen deficiency may exist and is evident by low 

DHEA levels.  

 

The age and features at presentation are important clues for diagnosing the cause of 

PAI. When patients present with features of congenital adrenal hyperplasia including 

hyperandrogenaemia or virilisation at birth or young age the evaluation seeks to 

identify the enzymatic block with biochemical analysis of precursor steroid levels and 

genetic tests. In autoimmune adrenalitis of recent onset adrenal cortex autoantibodies 

or autoantibodies against 21-hydroxylase are detectable in the blood and patients are 

screened for concurrent autoimmune conditions such as hypothyroidism, diabetes, 

and gonadal failure due to high incidence of other autoimmune conditions in patients 

with PAI 283, 291. Boys and young men with no obvious cause are tested for the rare X-

linked adrenoleukodystrophy by assessment of very long chain fatty acids 284, 292. 

Imaging tests show atrophic adrenals in autoimmune disease but bulky in infective 
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causes with or without calcifications and with structural findings such as bilateral 

masses in metastatic disease 283, 293, 294. 

 

 

3.1.3.4. Congenital adrenal hyperplasia 

	

Congenital adrenal hyperplasia (CAH) is a group of genetic disorders with autosomal 

recessive inheritance. The genetic defect affects one of the steroidogenesis enzymes 

causing significant loss of enzyme functionality. As a result, the enzymatic step(s) of 

the steroidogenesis pathway catalysed by the affected enzyme is interrupted and there 

is impaired biosynthesis of steroid hormones by the adrenal cortex 295. Patients who 

develop the disease inherit two mutated genes, one from each parent (homozygotes) 

and usually carry a combination of two different mutations (compound heterozygotes). 

Carriers of the disease have one mutated and one normal allele (heterozygotes) and 

are often asymptomatic or have mild disease and usually do not need regular 

treatment.  

 

CAH is one of the most common inherited metabolic conditions with incidence of the 

commonest mild forms (non-classic CAH due to 21-hydroxylase deficiency) 1:1000 live 

births 296. Data from national screening programmes from the 1980s show higher 

incidence in some ethnic groups such as Yupik Eskimos in Alaska (1:282) and La 

Reunion island (1:214). The worldwide incidence of the severe classic form of 21-

hydroxylase deficiency is about 1:13000 to 1:16000 live births for homozygotes, and 

1:60 for heterozygotes and a gene frequency of 0.01 297-300. The most commonly 

affected enzyme is 21-hydroxylase, which accounts for up to 90-95% of cases in the 

UK. The second most common cause is 11β-hydroxylase deficiency caused by gene 

defects in CYP11B1. Rarer causes affect the enzymes 3β-hydroxysteroid 

dehydrogenase, 17α-hydroxylase/ 17,20-lyase deficiency, electron donor enzyme 

P450 oxidoreductase (Table 6). Rare CAH cases occur more commonly in 

consanguineous families 301. 
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Table 6: Causes of Congenital adrenal hyperplasia 69, 78, 299, 302-307 

Gene 
defect 

Enzyme affected Steroids Biochemical diagnosis 

CYP21A2 21-hydroxylase SS ­ 
MC ¯ 
GC ¯ 

1. High 17OHP and adrenal androgens (DHEA, A4, 
T) 

2. High renin and low aldosterone 
3. Hyperkalaemia, hyponatraemia  
4. Low cortisol 

CYP11B1 
 
 

11β-hydroxylase  
 
 

SS ­ 
MC: Aldo ¯, 
precursors ­ 
GC ¯ 

1. Raised DOC, 11-deoxycortisol, androgens  
2. Hypokalaemia 
3. Suppressed renin 
4. Low cortisol 

HSD3B2 3β-
Hydroxysteroid 
dehydrogenase  
 

SS ¯ 
MC ¯ 
GC ¯ 
 

• High 17-pregnenolone and DHEA, low A4 and T  
• Classical form: 

Low aldosterone  
Low cortisol 
Hyperkalaemia, hyponatraemia and metabolic 
alkalosis  

CYP17A1 17α-Hydroxylase/ 
17,20-lyase 

SS ¯ 
MC ­ 
GC ¯ 

• Raised precursors: progesterone, DOC, 
corticosterone and DOC metabolites 

• Hypokalaemia and metabolic alkalosis 

STAR Steroidogenic 
acute regulatory 
protein deficiency 

SS ¯ 
MC ¯ 
GC ¯ 

1. Low androgens: DHEA, A4, T 
2. High renin, low aldosterone 
High ACTH, low cortisol 

CYP11A1 Cholesterol side-
chain cleavage 
enzyme 

SS ¯ 
MC ¯ 
GC ¯ 

1. Low androgens: DHEA, A4, T 
2. High renin, low aldosterone 
3. High ACTH, low cortisol 

POR POR deficiency SS ¯ 
GC ¯ 

• Low androgens 
• Suboptimal SST 

CYB5A Cytochrome b5  SS ¯ 
MC/ GC 
Normal 

Isolated 17, 20 lyase deficiency:  
• Low DHEA, A4, no response to HCG test for T 

and A4 
• Normal cortisol and aldosterone 
• Methemoglobinemia 

 

SS: sex steroids, MC: mineralocorticoids, GC: glucocorticoids, Aldo: aldosterone, DOC: 11-
deoxycorticosterone, T: testosterone, A4: androstenedione, SST: short synacthen test, HCG: human 
chorionic gonadotropin 
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Most patients with CAH have a significant reduction in cortisol secretion leading to 

reduced negative cortisol feedback to the pituitary gland, increased ACTH secretion 

that drives continued stimulation of steroidogenesis in the adrenocortical cells and 

overproduction of substrates from earlier steps of steroidogenesis 54. Precursor 

steroids could be biologically active and if they accumulate may override the deficiency 

of the more potent end-steroid products. Accumulation of androgen precursors may 

feed production of potent sex steroids and lead to virilisation in females. These effects 

are seen early in life in infancy in the severe forms of enzymatic deficiency but may 

present later in childhood or early adulthood in milder forms of the disease.  

 

The phenotype in CAH is varied because of the number of hormones that can be 

affected and their varied effects from salt and water regulation (mineralocorticoids), 

stress response and glucose homeostasis (glucocorticoids) and sex differentiation and 

reproduction (Table 7). In general, the enzymatic deficiency causes a block in the 

production of subsequent steroid hormones and an over-availability of substrates prior 

to the block and there is a mixed biochemical picture of deficiency of some steroid 

hormones and excess of others and careful assessment and interpretation of 

biochemistry points to the enzymatic defect. The clinical presentation depends on the 

enzyme affected and its residual functionality and different mutations result in different 

levels of residual enzyme functionality 296. There is usually some residual enzymatic 

activity that allows low-grade steroid synthesis through the enzymatic block. Since the 

phenotype is primarily depended on the enzyme affected we will explore each defect 

separately. 

 

 

21-hydroxylase deficiency 

The most common cause of CAH is deficiency of the enzyme 21-hydroxylase which is 

encoded by the CYP21A2 gene that accounts for 95% of all CAH cases. The enzyme 

catalyses the penultimate step for the production of cortisol, which is the production of 

11-deoxycortisol from 17-hydroxyprogesterone (Figure 2). The non-classic form of 21-

hydroxylase deficiency affects 1:1000 live births and is one of the most common 

autosomal recessive conditions 299. Carrier frequency is high in the general population 

for ‘classic’ mutations 1:62 and for non-classic between 1:5 and 1:16 308, 309. 
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The CYP21A2 gene is the functional gene and there is a pseudogene CYP21A1P in 

close proximity in the genome that shares 98% homology with the functional gene but 

has accumulated a number of mutations that render it non-functional. The majority of 

inactivating mutations that cause 21-hydroxylase deficiency are deletions and 

conversions. CYP21A2 undergoes high genetic recombination with parts of the 

pseudogene inserted into the functional gene because of misalignment of sister 

chromatids during meiosis. This allows transfer of pseudogene mutations to the 

functional gene and causes the majority of inactivating mutations 310. Large genetic 

studies have shown that there is good genotype-phenotype association and the 

genetic defects can help predict the functionality of the enzyme and the clinical 

features especially in the severe forms of the disease 311.  

 

Most patients inherit one mutation from each parent and have two different CYP21A2 

mutations that affect the functionality of the enzyme differently (compound 

heterozygous). It is usually the mutation with the mildest effect on enzyme functionality 

that defines the phenotype 54. In complete enzyme function loss or minimal activity (up 

to 2%) there is deficiency of aldosterone and cortisol and the patients present with the 

most severe form of the disease, the salt-wasting classic form. When the functionality 

is up to 10%, aldosterone is usually normal but there is cortisol deficiency and patients 

present with the simple virilising form 296. Mutations that allow higher enzyme 

functionality are associated with the mild, non-classic form of CAH with either normal 

cortisol levels or partial cortisol deficiency which may be undiagnosed clinically. 

 

The clinical features and age of presentation are determined by the individuals’ genetic 

makeup. Patients with genetic defects that allow enough 21-hydroxylase residual 

functionality have the mild form of the disease and present primarily with androgen 

excess; in these cases, the partial defect of cortisol synthesis leads to ACTH over-

stimulation of the steroidogenesis pathway that can overcome the glucocorticoid and 

mineralocorticoid deficiency and cause androgen excess due to increase precursor 

substrate supply. Simple virilising occurs in 25-30% of patients with classical CAH and 

salt-wasting in approximately 70% of patients 302. Adult patients with congenital adrenal 

hyperplasia exposed to high sex steroid levels may have short stature and men and 

women of the severe forms of the disease commonly have subfertility due to a 



	 63	

combination of hormonal factors, anatomical and psychological issues relating to 

abnormal production of sex steroids 308, 312, 313. 

 

Males and females have differences in their clinical presentation as androgen excess 

affects them differently. In newborn females with the classic form, the presence of 

ambiguous genitalia at birth is usually the first clinical sign and leads to relevant 

investigations and diagnosis of cortisol and aldosterone deficiency whereas newborn 

boys usually present with glucocorticoid deficiency, adrenal crisis and a salt-wasting 

crisis (low serum sodium, hypovolaemia, hyperkalaemia) or CAH may be 

unrecognised until later presentation with crisis in infancy 302. Ambiguous genitalia in 

females with classic CAH is variable and spans from clitoral enlargement to fused 

labioscrotal folds and formation of penile urethra with normal development of female 

internal genitals which is controlled by the unaffected anti-Mullerian hormone, AMH 
302. Some females with severe virilisation at birth are assigned male sex and reared as 

males and diagnosed with CAH later in childhood. Ideally sex assignment at birth in 

46XX babies with CAH should follow the biological sex and this approach preserves 

fertility, however some studies report adult male gender identity and male gender role 

compatible to gender assignment in patients with simple virilising classic form 314, 315.  

 

Females with the non-classical form have less hyperandrogonaemia and milder 

symptoms than females with the classical form. They are born with normal genitalia 

however they may develop late menarche and secondary amenorrhea in adolescence 

or as young adults, and may develop hirsutism, oligomenorrhea, features consistent 

with polycystic ovary syndrome and infertility 302.  Men with the non-classic form also 

do not have symptoms at birth but may develop hyperandrogenism later in life with 

oligospermia in some cases. Following birth there may be progressive virilisation in 

both sexes including precocious puberty, advanced bone age and epiphyseal 

development and patients may have no apparent clinical symptoms but may have 

lower final adult height than their genetic potential, insulin resistance and subfertility 
302, 316-318.  

 

Subfertility in women is frequent and induced by elevated sex steroids. The 

mechanisms include anovulation due to interference with the hypothalamic-pituitary-

gonadal axis and gonadotropin (LH) release, menstrual irregularities, and inhibition of 
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implantation 308, 319, 320. Furthermore, over two-thirds of women with virilisation at birth 

have had genital reconstruction surgery and have structural abnormalities in the genital 

tract making intercourse difficult, have low numbers of sexual partners and don’t 

pursue fertility 312, 317. In poor disease control, ovarian tissue damage can occur due to 

the development of adrenal rest tissue and high 17-hydroxyprogesterone and 

progesterone levels have a contraceptive-type effect on the endometrium increasing 

cervical mucous thickness and inhibiting implantation. Subfertility in men may be due 

to elevated adrenal androgens and secondary gonadal failure either as a direct effect 

or following aromatisation of androgens to oestrogens 308, 313, 321. Additionally, the 

presence of testicular adrenal rest tissue, which are benign lesions found in 69% of 

men with CAH can impair fertility; progression of TARTs causes blockage of 

seminiferous tubules and obstructive azoospermia and subsequent Leydig cell failure 
313.  

 

 

11β-hydroxylase deficiency 

This is the second most common cause of CAH affecting about 5% of patients with 

CAH or 1 in 100,000 births and is more common in some populations such as 

Moroccan Jews due to the presence of founder mutations 299, 308. The genetic mutation 

affects the gene CYP11B1 and its gene product enzyme 11β-hydroxylase which is 

located in the inner mitochondrial membrane and catalyses the final step of cortisol 

production which is the hydroxylation of 11-deoxycortisol to form cortisol. It also affects 

mineralocorticoid synthesis blocking the conversion of 11-deoxycorticosterone to 

corticosterone but does not interfere with androgen production. As a result, the 

precursors 11-deoxycorticosterone and 11-deoxycortisol accumulate, aldosterone and 

cortisol production is reduced, and there is an increase of synthesis of adrenal 

androgens due to substrate availability and ACTH drive of steroidogenesis due to low 

cortisol.  

 

The majority of genetic mutations involved are missense, nonsense, and small 

deletions and insertions and affect electron transfer, binding to adrenodoxin and 

substrate binding 301, 308, 322-325. Very rarely unequal crossing-over of CYP11B1 and 

CYP11B2, which encodes for aldosterone synthase or P450c11AS, creates a chimeric 

CYP11B2/ CYP11B1 gene that causes 11β-hydroxylase deficiency 299.  
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The condition clinically presents with symptoms and signs of mineralocorticoid and 

androgen excess and cortisol deficiency but the phenotype is variable 303. The 

mineralocorticoid effects, are due to the accumulation of the aldosterone precursor 11-

deoxycorticosterone that has significant mineralocorticoid activity and causes volume 

expansion, hypertension and hypokalaemia in the majority of patients and usually from 

early age in childhood 326. Androgen excess causes ambiguous genitalia in the 

newborn female and postnatal virilisation in both females and males with premature 

development of secondary sexual characteristics in the severe classic form 301, 303, 325, 

326. Due to the accumulation of corticosterone which has glucocorticoid effects patients 

may not have pronounced glucocorticoid deficiency 299. Milder forms (non-classic) 

rarely present later in life with virilisation and infertility in women and precocious 

puberty in men 322, 326.  

 

 

3β-hydroxysteroid deficiency 

This is a rare cause of CAH due to mutations of the HSD3B2 gene, which encodes for 

the 3β-HSD isoenzymes type 1 and 3 that are expressed in gonadal and adrenal 

tissues. Steroidogenesis in both adrenal and gonadal tissues is affected and the 

enzymatic block is early in the steroidogenesis pathway and affects the production of 

mineralocorticoid, glucocorticoid precursors and androgens. There is accumulation of 

pregnelonone, 17α-hydroxypregnenolone and DHEAS which is converted peripherally 

to more potent androgens 302. The clinical presentation is of mineralocorticoid and 

glucocorticoid deficiency and sex steroid excess or deficiency. In severe deficiency 

both women and men present with ambiguous genitalia; in men this is due to 

incomplete prenatal differentiation of the external genitalia 302.  
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Table 7: Summary of clinical features of Congenital adrenal hyperplasia 69, 78, 299, 302-307 

CAH Clinical features 
Women 

 
Men 

Sex 
reversal 

21-Hydroxylase 
deficiency  

Severe form, salt wasting: 
Ambiguous genitalia, precocious puberty, infertility, 
hyperandrogenism 
Salt-wasting crisis 
Adrenal crisis, hyperpigmentation 
 
Severe form, simple virilising: 
Ambiguous genitalia, short stature, precocious 
puberty, hyperandrogenism, infertility 
Hyperpigmentation 
 
Mild form: 
Normal genitalia at birth, amenorrhea, late menarche, 
clitoromegaly, PCO, precocious puberty, infertility  
 

Severe form, salt wasting: 
Normal genitalia or phallic enlargement, short stature, 
precocious puberty, testicular adrenal rest tumours, 
infertility 
Salt-wasting crisis 
Adrenal crisis, hyperpigmentation 
 
Severe form, simple virilising: 
Normal genitalia or phallic enlargement, short stature, 
precocious puberty, testicular adrenal rest tumours, 
infertility 
Hyperpigmentation 
 
Mild form: 
Normal genitalia at birth, precocious puberty, 
occasionally oligospermia, possible oligospermia 

Female 
to male 

11β-Hydroxylase  
deficiency 
 

Ambiguous genitalia, precocious puberty, menstrual 
irregularity, infertility 
Salt retention and HTN 
Hyperpigmentation 

Acne, infertility, phallic enlargement 
Salt retention and HTN 
Hyperpigmentation 

Female 
to male 

3β-Hydroxysteroid 
dehydrogenase 
deficiency g/a 

Phallic enlargement at puberty if genetically male, 
partial virilisation/ ambiguous genitalia, infertility, 
precocious puberty 
Salt-wasting  and adrenal crisis (classical) 

Ambiguous genitalia, hypospadias, infertility 
Salt-wasting and adrenal crisis (classical) 

Male to 
female 
and 
female 
to male 
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CAH Clinical features 
Women 

 
Men 

Sex 
reversal 

17α-Hydroxylase/ 
17,20-lyase 
deficiency g/a 

Delayed or absent pubertal development  
HNT  
Puberty disorder with normal GC and MC in isolated 
17,20-lyase deficiency 

Ambiguous genitalia, infertility 
HTN 
Ambiguous genitalia and puberty disorder with 
normal GC and MC in isolated 17,20-lyase deficiency  

Male to 
female 

Steroidogenic 
acute regulatory 
protein (StAR) 
deficiency 
(Lipoid CAH) g/a 

Normal genitalia at birth 
Absent or delayed pubertal development  
Low cortisol 
Salt wasting 
Hyperpigmentation 

Ambiguous genitalia, under-virilisation at birth and no 
pubertal development 
Salt wasting 
Low cortisol 
Hyperpigmentation 

Male to 
female 

Cholesterol side-
chain cleavage 
enzyme deficiency 
g/a 

Prematurity 
Normal genitalia at birth 
Delayed pubertal development 
Salt wasting 
Adrenal crisis 
Hyperpigmentation 

Prematurity 
Ambiguous genitalia, under-virilisation at birth and no 
pubertal development 
Salt wasting 
Adrenal crisis 
Hyperpigmentation 

Male to 
female 

POR deficiency g/a Ambiguous genitalia and disturbed pubertal 
development 
Possible maternal virilization during pregnancy 
Possible skeletal malformations (Antley-Bixler 
syndrome)  

Ambiguous genital and disturbed pubertal 
development 
Possible maternal virilization during pregnancy 
Possible skeletal malformations (Antley-Bixler 
syndrome) 

Male to 
female 
and 
female 
to male  

Cytochrome b5 
deficiency g/a 

Female genitalia at birth 
Absent or disturbed pubertal development  

Ambiguous genitalia 
Absent or disturbed pubertal development 

Male to 
female 

 
MC: mineralocorticoids, GC: glucocorticoids, PCO: polycystic ovaries, SST: short synacthen test, HCG: human chorionic gonadotropin, g/a steroidogenesis is 
affected in the gonads and the adrenals 
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17α-hydroxylase/ 17,20-lyase deficiency 

This is the cause of CAH in 1% of cases and affects steroidogenesis in the gonads 

and the adrenals. The enzyme P450c17 encoded by the CYP17A1 gene has a 

combined 17-hydroxylase and 17,20-lyase activity. Reduced 17-hydroxylase 

functionality causes a reduction in the production of glucocorticoids and androgens but 

the production of mineralocorticoids is unaffected; in this situation the cortisol 

deficiency causes an elevated ACTH that drives the accumulation of 

mineralocorticoids especially 11-deoxycorticosterone and corticosterone that cause 

hypokalaemia, hypertension, suppressed renin, and metabolic alkalosis 299. Isolated 

17,20-lyase deficiency causes reduction in sex-steroids only and cortisol and 

mineralocorticoid production is preserved 327. 

 

There is usually deficiency of both the 17-hydroxylase and 17, 20-lyase activity and 

this is caused by mutations of the gene encoding P450 oxidoreductase (POR) or the 

CYP17A1 gene. POR is a protein involved in electron transfer to P450c17 and in 

addition to the steroidogenesis deficiency clinical presentation includes dysmorphic 

skeletal features (Antley-Bixler phenotype) 78. Very rarely some mutations of the 

CYP17A1 gene selectively affect the 17,20-lyase activity and in this case the mutations 

affect the area of interaction of P450c17 with cytochrome b5 and POR and patients 

present with isolated sex steroid deficiency and preserved 17-hydroxylase activity. 328, 

329.  

 

The classic presentation is with female external genitalia in 46XX and 46XY patients, 

hypertension, and absence of development of secondary sexual characteristics 299. In 

the partial forms women are born with normal genitalia but there is failure of 

development of secondary sexual characteristics, delayed puberty, and 

hypergonadotropic hypogonadism 330, 331 and men are born with under-

masculinisation; they have ambiguous or predominantly female genitalia at birth but 

no internal female organs as AMH from testicles inhibits the development of Mullerian 

structures, and delayed or absent pubertal development 302, 306, 329, 331.  
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Steroidogenic acute regulatory protein (StAR) deficiency (Lipoid CAH) 

Lipoid congenital adrenal hyperplasia is the most severe form of CAH and is caused 

by loss-of function mutations of the StAR gene. StAR is essential for the initiation of 

steroidogenesis and is responsible for the rapid delivery of cholesterol to the inner 

mitochondrial membrane to initiate the first step of steroidogenesis, the conversion of 

cholesterol to pregnenolone catalysed by P450scc 68, 70, 332. Mutations of the StAR gene 

block conversion of cholesterol to pregnenolone and significantly impair 

steroidogenesis of all steroids; there is deficiency of mineralocorticoids, glucocorticoids 

and sex steroids. The adrenocortical cells develop characteristic histological features 

due to lipid droplet accumulation. Glucocorticoid deficiency leads to continuous 

stimulation by ACTH and intracellular accumulation of cholesterol. Only low-level 

steroidogenesis may continue due to StAR-independent cholesterol transfer to the 

mitochondria and in some cases, this can produce sufficient oestrogens in the ovary 

to allow development of secondary female sexual characteristics during puberty 68, 333, 

334. Cholesterol has a toxic effect to the cell and intracellular accumulation eventually 

destroys all steroidogenic capacity 335, 336.  

 

Lipoid CAH is more common in Japanese and Palestinian populations likely due to a 

founder effect as some mutations occur repeatedly 75. Genetic defects include 

deletions, frameshift, missense and nonsense mutations that cause a truncated protein 
75, 304, 334-336. Mutations resulting in defects to the C-terminal (cholesterol binding site) 

cause significant loss of enzyme functionality whereas mutations affecting the N-

terminal (mitochondrial targeting) enable the retention of some protein functionality and 

steroidogenic capacity 73, 103, 332-334. Mutations of CYP11A1 were initially thought to be 

incompatible with life due to the lack of progesterone production from the placenta, 

which is necessary for the maintenance of pregnancy, however, there have been a few 

reports of CAH due to mutations of the CYP11A1 gene causing a truncated non-

functional P450scc protein 305, 337-339. Patients have similar biochemical and clinical 

characteristics to Lipoid CAH without adrenal enlargement. 

 

Clinical presentation is with glucocorticoid and mineralocorticoid deficiency within the 

first postnatal weeks, and hyperpigmentation 75. Men have ambiguous genitalia at birth 

due to testosterone deficiency during fetal sexual differentiation, and 46XY individuals 

may be phenotypically women 304. Women are born with female genitalia and may or 
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may not progress through puberty; as ovarian steroidogenesis starts in the pre-

pubertal period; the ovarian tissue is initially spared from damage from the excess 

intracellular cholesterol 75, 334, 335, 340. Some patients have learning difficulties, 

encephalopathy and developmental delay 304. 

 

 

Diagnosis of CAH 

The diagnosis of CAH is made at birth for severe forms and later in childhood or 

adulthood in milder forms. Usually there is clinical suspicion due to clinical features or 

a history of gene defect in a sibling or parent, which is then confirmed with biochemical 

testing. Many countries introduced testing for 21-hydroxylase CAH in national newborn 

screening programmes aiming for early diagnosis, prevention of adrenal and salt-

wasting crisis and correct sex assignment, however, this is not performed in the UK 
300. These screening programmes collect heel-prick dry blood on day3 of life and 

analyse for 17-hydroxyprogesterone 297. The downside of national screening is picking 

up premature or ill babies with normal steroidogenesis who have elevated 17-

hydroxyprogesterone without a genetic defect and possibly treating them with steroids 

while awaiting confirmatory testing.  

 

The biochemical diagnosis is based on demonstration of elevated precursors and 

steroids not affected by the enzymatic block and deficiency of steroids affected by the 

enzymatic block in the blood or their metabolites in the urine. Stimulation testing with 

ACTH is particularly helpful in diagnosing mild forms of CAH as random basal 

hormonal levels in these patients may overlap with physiological outliers which can be 

genetically unaffected individuals or heterozygotes carriers of one mutation known to 

cause functional defect in a steroidogenesis enzyme 302.   

 

In 21-hydroxylase deficiency the biochemical diagnosis is confirmed with elevated 17-

hydroxyprogesterone in the follicular phase or after ACTH challenge. There is an 

increase of 17-hydroxyprogesterone levels post ACTH challenge and results can be 

interpreted against a diagnostic normogram 341. The more severe the loss of enzymatic 

deficiency the higher the baseline levels of 17-hydroxyprogesterone are and levels 

above 20,000 ng/dl are found in the classic salt-wasting form, levels between 10,000-
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20,000 ng/dl are found in the classic simple virilising form, and lower levels in the 

nonclassic form (1,500-10,000 ng/dl) 145. There is also raised progesterone, androgens 

(DHEA, A4 and testosterone), and renin with low aldosterone, cortisol, and metabolic 

alkalosis 302.  

 

In 11β-hydroxylase deficiency the intermediates 11-deoxycorticosterone and 11-

deoxycortisol are raised both at baseline and post response to ACTH challenge with 

high adrenal androgens and low cortisol, aldosterone and renin 302, 308. In urine samples 

there are high levels of the metabolites of the above precursors, tetrahydro-11-

deoxycortisol and tetrahydrodeoxycorticosterone, and high levels of urinary 17-

ketosteroids reflecting the raised adrenal androgens in the blood. 

 

Genetic testing is becoming more available and is used to confirm biochemical 

diagnosis or as first line in cases of screening. Genetic tests are useful for patients 

with classic and non-classic conditions and their partners. They can also be used for 

counselling in the context of fertility as the risk of CAH in the offspring can be estimated 
308. The genetic diagnosis is complex due to high variability of the genomic region and 

whole gene sequencing is usually needed to determine accurate genotype 299. Prenatal 

genetic diagnosis is available when there is a risk of the fetus having the disease.	
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3.2. Medical treatment and monitoring of disorders of cortisol and 

corticotrophin excess 

3.2.1. Cushing’s syndrome 

3.2.1.1. Medical Treatment  

	
The only curative treatment in CS is surgical resection of the tissue that is causing the 

hormonal excess. The result of successful treatment is the reversal of the phenotype 

and metabolic disturbances however some features take a long time to improve. In CD 

the first line treatment is surgical resection of the pituitary tumour, usually performed 

through a trans-nasal approach. Immediate remission rates following pituitary surgery 

vary and can be up to 80%, however up to 20-50% of patients experience a recurrence 

of disease even after several years of treatment 342-344. In recurrent disease the options 

for treatment are further pituitary surgery, radiotherapy if there is a suitable anatomic 

target or medical therapy 345.  Bilateral adrenalectomy is an effective treatment but with 

risks and therefore reserved in CD if surgery of radiotherapy have failed or are not 

possible, in EAS if there is no other treatment and in bilateral adrenal disease causing 

cortisol excess 345.   

 

Medical treatment for CS aims to reduce the hypercortisolism and this is achieved by 

medications that target the adrenal steroidogenesis (steroidogenesis inhibitors) and 

medications that target the GR (mifepristone). In CD medications that target ACTH 

release from the pituitary are also indicated (D2 receptor agonists bromocriptine and 

cabergoline and somatostatin agonists such as pasireotide that targets SSTR5). In 

malignant disease the options of medical therapy include the steroidogenesis inhibitor 

and adrenolytic agent Mitotane in adrenocortical carcinoma and chemotherapy or 

radiation therapy in EAS 346, 347. 

 

Adrenal-targeted therapy for Cushing’s syndrome 
Steroidogenesis enzyme inhibitors are a group of agents that inhibit various steps of 

steroidogenesis and cause a reduction in cortisol synthesis. The most commonly used 

inhibitors metyrapone and ketoconazole have been used for decades in the medical 

therapy of CS and are the still the mainstay of medical therapy however there is lack 

of evidence from prospective studies on their efficacy and mostly single-site 



	 73	

experience has been reported in retrospective studies. Other agents used for this 

indication are mitotane and etomidate and there are new steroidogenesis inhibitors in 

development.  

 

Metyrapone is a potent inhibitor of P450c11β which catalyses the final step to cortisol 

biosynthesis and inhibits P450cAS which catalyses the final step leading to 

aldosterone production to a lesser degree. As a result, the synthesis of cortisol and 

aldosterone is significantly reduced and there is an increase in cortisol precursors such 

as 11-deoxycortisol, 11-deoxycorticosterone and androgens which can manifest 

clinically with hirsutism and virilisation in women 348. It has a short action, is absorbed 

quickly following oral administration and is very effective in reducing 

hypercortisolaemia 349. The starting dose is usually 750-100 mg in divided doses and 

doses up to 6000 mg can be used although high doses are not well tolerated 6. A large 

retrospective single-centre study reported 75% response based on normalisation of 

cortisol day-curves in 91 patients with CS, predominantly CD 349. Overall in the 

literature there are 200 patients treated with metyrapone monotherapy for 

hypercortisolaemia due to CS, small studies and case reports, and the overall 

response rate is 75% 6, 350, 351. Metyrapone is the most commonly used medical therapy 

for hypercortisolaemia occurring in pregnancy.  

 

Side effects of metyrapone are common but usually mild and well tolerated, most 

frequently gastrointestinal. Accumulation of mineralocorticoid precursors causes fluid 

retention and hypertension and androgen excess with hirsutism and acne is due to on-

going stimulation of steroidogenesis by ACTH 6, 350. 

 

Ketoconazole is an imidazole derivative that was developed as an oral antifungal agent 

as it inhibits the synthesis of cell membranes sterols 352, 353. Ketoconazole causes 

reduction of cortisol and sex steroids due to inhibition of multiple steroidogenesis 

enzymes in the adrenals and the gonads; P450c17, P450cAS, P450c11β, P450scc 354-

358. A large retrospective multi-centre study reported response rates based on 

normalisation of UFC in 50% of 200 patients with CS and improvement in clinical signs 

in 40-60% of patients 359. Overall in the literature 456 patients with CS received 

ketoconazole monotherapy and 60% achieved complete biochemical response with 

normalisation of UFC 6, 360-364. Starting dose is 400 mg and this can increase up to 1600 
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mg in 2-3 divided doses 6. Co-administration with medications that increase the gastric 

acidity such as antacids and proton pump inhibitors reduce absorption and should be 

avoided 365, 366.  

 

Ketoconazole has been approved for use in hypercortisolaemia due to CS in Europe, 

however its use as an antifungal agent for skin and nail infections is restricted over 

concerns of hepatotoxicity including fatal hepatitis 367-370. In the largest retrospective 

study of 200 patients with CS treated with ketoconazole, 20% developed mild to severe 

liver dysfunction and 8.5% of CS patients who started treatment with ketoconazole in 

a prospective safety monitoring study; therefore, close monitoring of liver function tests 

is essential on starting treatment and upon dose titration and some patients may 

eventually need to discontinue treatment 359, 371. Other side effects include 

hypogonadism due to inhibition of gonadal steroidogenesis with symptoms reported in 

men taking ketoconazole 372. Due to the inhibition of gonadal steroidogenesis 

ketoconazole should be avoided in pregnancy as it can affect the development of male 

fetuses. 

 

Mitotane (o,p’-DDD) is synthetic derivative of the pesticide DDD and inhibits multiple 

steroidogenesis enzymes mainly P450scc and also P450c11β, P450AS and 5a-

reductase and particularly affects production of glucocorticoids and androgens with 

less effect on mineralocorticoids 373-377. It is a lipophilic agent with slow onset of action 

and a half-life of several weeks. It accumulates in the adipose tissue causing persistent 

effects for several months following discontinuation or dose change 378. Its active 

metabolites cause mitochondrial death and adrenocortical cell necrosis that affects the 

zona fascicularis and zona reticularis of the adrenal cortex and at high doses it acts as 

an adrenolytic agent causing non-reversible chemical adrenalectomy 379, 380. For this 

reason, it has been licensed and used in the treatment of adrenocortical cancer with 

or without hypercortisolaemia 346, 379, 381. Mitotane causes neurotoxicity and to minimise 

this, therapeutic levels are monitored during treatment aiming at levels between 8-20 

mg/L 347, 382. The anti-tumor effects require higher doses than the steroidogenesis 

inhibition effects 382, 383. Common starting doses are 1-1.5 g in divided doses that can 

increase up to 12g however high doses are poorly tolerated 347. High remission rates 

of 70-80% have been described for patients with hypercortisolaemia due to CD and 

this response may be achieved after several months of treatment (5-8 months) 382, 384, 

385. While the effect of mitotane takes place concurrent treatment with another agent 
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will provide short-term control of hypercortisolaemia. It is usually given in a block and 

replace regimen. It causes an increase of CBG levels therefore higher steroid 

replacement doses are needed 377. Common side effects include gastrointestinal 

symptoms and hypogonadism due to inhibition of 5α-reductase and symptoms may 

improve with dose reduction 347, 377, 384, 386. Severe neurotoxicity is less common but 

may be poorly tolerated and lead to cessation of treatment 382. 

 

Etomidate is a parenteral anaesthetic agent that has been used in emergency 

intubations and cardiac surgery due to good anaesthetic safety profile. It has a rapid-

onset and short duration of action and the lethal dose is 12 times the dose needed for 

hypnosis 387. It causes reduction of cortisol production due to reversible inhibition of 

steroidogenesis mainly due to inhibition of P40c11β and to a lesser degree P450scc 
387-393. As it is a sedative agent it is only administered in secondary care in specialist 

units with appropriate monitoring when rapid control of hypercortisolaemia or 

intravenous administration is essential. The dose of the 24-hour infusion is around 1.2-

2.5 mg/h and this is adjusted daily based on sedation and serum cortisol 394. The 

steroidogenic effect is evident in doses lower than those required for the hypnotic effect 

and more prolonged causing adrenal suppression for several days following prolonged 

treatment 394-396. With prolonged use at high doses there is a risk of propylene glycol 

toxicity when the aqueous solution containing propylene glycol is used 397.  

 

New steroidogenesis inhibitors are being developed for treatment of 

hypercortisolaemia and prospective studies underway will provide much needed safety 

and efficacy profiles. Osilodrostat (LCI699) is a potent inhibitor of P45011β developed 

originally as an aldosterone synthase inhibitor for the treatment of hypertension. In pilot 

studies evaluating its efficacy as anti-hypertensive agent there was clinically significant 

reduction of cortisol and is being evaluated in patients with CS in a prospective phase 

III multicentre study 398, 399. In a proof-of-concept study in 12 patients with CD and 

previous pituitary surgery, Osilodrostat induced normalisation of UFC in 92% of 

patients at doses 4-100 mg daily with fluid retention and hypokalaemia being the most 

significant adverse effects due to accumulation of 11-deoxycorticosterone 400. The 

ketoconazole enantiomer 2S,4R (levoketoconazole, COR-003) inhibits 

steroidogenesis and could have a better safety profile 401-403. It was evaluated as a 

medical therapy for 94 patients with CS in a prospective phase 3 study administered 

twice daily to a maximum total daily dose of 600 mg. It was successful in normalising 
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UFC in 31% of patients with 11% showing biochemical evidence of liver toxicity and 

was discontinued due to poor tolerance in 13% 404. Additional to inhibition of 

steroidogenesis enzymes new molecular targets that reduce steroidogenesis in the 

adrenals have been discovered and are under investigation. ALD1613 is a long-acting 

specific monoclonal antibody against ACTH that blocks ACTH-MC2R signalling in the 

adrenal and reduces glucocorticoid production in two animal models 405. ATR-101 is a 

selective inhibitor of Acyl-CoA: cholesterol acyltransferase (ACAT1) that catalyses the 

formation of cholesterol esters which form the intracellular reservoir of cholesterol in 

adrenocortical cells, and acts by reducing cholesterol availability in the adrenocortical 

cells 406. ATR-101 has been found to induce adrenocortical cell apoptosis, and reduce 

adrenocortical steroid production and ACTH-stimulated cortisol in an animal model 

with CS and may provide a therapeutic target for CS, ACC and CAH 407, 408.  

 

 

Pituitary-targeted therapy for Cushing’s Disease 
These are medical therapies that reduce ACTH production and release from the 

corticotroph adenoma cells and are effective in CD. The medications act on receptors 

expressed by the corticotroph adenoma cells such as the dopaminergic (D2) and 

somatostatin receptors. Overall the efficacy of pituitary-directed treatment is less than 

the efficacy reported for steroidogenesis inhibitors with reported response rates in 

about 30% of patients.  

 

Pasireotide is a somatostatin analogue that acts on multiple somatostatin receptor 

subtypes and especially the corticotroph-expressed SSTR type 5 to reduce ACTH 

secretion 409. It has been shown to reduce cortisol secretion in 25-40% of patients with 

Cushing’s disease with improvement of clinical features and is a useful agent in CD 

with mild hypercortisolaemia 410-412. It has been licensed for CD by the European 

Medicines Agency for the treatment of hypercortisolaemia in CD. A significant side 

effect is worsening of glycaemic control or new hyperglycaemia, which occurs in up to 

75% of patients and is due to reduction in secretion of insulin from the pancreas and 

incretin hormones 411, 413, 414.  
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Cabergoline, a dopamine agonist that acts on D2 receptors present on corticotroph 

cells have been successful in inducing remission in 5-40% of patients with CD in 

clinical trials, however, some patients eventually escape control 415-420. Cabergoline 

has been used in doses 1-7 mg/week, lower than the doses used in Parkinson’s 

disease however with long-term high-dose treatment there is the risk of cardiac 

valvular disease.  

 

Pituitary directed treatments under development include retinoic acid that has been 

shown to reduce pomc transcription and cortisol levels in animal corticotroph tumour 

models and at doses of 10-80 mg daily was well tolerated and induced biochemical 

response in 40% of patients with CD in a pilot study 421-423. Gefitinib, an inhibitor of 

EGFR kinase and EGFR proliferation inducing signalling, inhibits pomc expression in 

mice and corticotroph cell proliferation in cell cultures, decreasing tumour growth and 

cortisol levels with improvement of clinical features 256. Silibinin, a plant extract, is a 

HSP90 inhibitor and targets GR signalling in the corticotroph tumour cells. It has been 

found to increase the transcriptional activity of GR by inducing its release from HSP90 

in a stable and high-affinity state for ligand binding in murine corticotroph cells restoring 

glucocorticoid sensitivity. Silibinin has a favourable safety profile and has been 

effective in improving clinical features and biochemistry in an animal CD model and 

clinical trials using this agent are underway 424, 425. 

 

 

Glucocorticoid receptor targeted therapy for Cushing’s syndrome 
Mifepristone is a progesterone agonist and glucocorticoid receptor antagonist that 

binds to the GR with higher affinity than cortisol and blocks cortisol-GRα activation. It 

improves clinical features of CS in 40-87% of patients including hyperglycaemia, 

weight, insulin resistance, depression and cognition at doses 300-1200 mg/day 426, 427. 

As it blocks the effects of cortisol at the receptor level, biochemical monitoring with 

cortisol levels does not correlate with efficacy and objective assessment of response 

is not possible. Monitoring of glycaemic control in CS-induced hyperglycaemia is an 

indirect method of monitoring efficacy and it has been used for the management of 

adrenal and pituitary CS related hyperglycaemia by the U.S. Food and Drug 

Administration Agency. The main adverse effects are worsening of hypertension and 

hypokalaemia and unrecognised adrenal insufficiency due to overtreatment 428, and 
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the effects of anti-progesterone activity with uterine hyperplasia in women seen on 

long-term treatment. 

 

New glucocorticoid receptor antagonists are under development and relacorilant 

(CORT-125134), a selective glucocorticoid receptor modulator has improved blood 

pressure control and Hba1c in patients with CS in a phase 2 study and is currently 

evaluated in a phase 3 multicentre clinical trial in patients with CS and glucose 

intolerance and/or hypertension 429. 

 

 

 

3.2.1.2. Monitoring of medical treatment  

 

Patients with active CS receiving medical therapy to improve hypercortisolism need 

close monitoring to establish the effectiveness of treatment, identify any side effects 

and make appropriate titration decisions. Not all patients respond to the same 

treatment and to the same dose and some patients may develop side-effects and 

others may tolerate the same treatment very well. Side effects such as hyperglycaemia 

may need new medications or modification of medications to address this.  

 

The monitoring is clinical and biochemical and the aim is to try to achieve the balance 

between clinical improvement in the features of cortisol excess and avoid any 

symptoms or signs of overtreatment causing cortisol deficiency. The improvement of 

hypercortisolaemia needs biochemical monitoring and this aids titration decisions. 

Biochemical monitoring is usually with UFC aiming for normalisation or improvement 

and cortisol day-curves (CDCs) aiming for mean cortisol levels between 150-300 

nmol/L 146, 156. Accurate analytical methods for quantification of cortisol in patients 

treated with steroidogenesis enzyme inhibitors are essential to minimise cross 

reactivity with cortisol precursors and cortisol overestimation. This is particularly 

important for patients treated with metyrapone as high levels of 11-deoxycortisol due 

to inhibition of P450c11β cross-react in many commonly used immunoassays and 

there is documented overestimation of cortisol levels in these patients 430. This could 
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result in unnecessary up-titration of treatment and hypoadrenalism, which manifests 

with symptoms overlapping commonly reported side-effects of metyrapone therapy. 

Mitotane causes an increase in CBG and monitoring response with total cortisol levels 

is not reliable and UFC collections should be used. Biochemical monitoring with UFCs 

may miss overtreatment and development of adrenal insufficiency as UFC levels may 

still lie within the normal range therefore clinical correlation is essential. Patients that 

receive medical therapy following pituitary radiotherapy may require dose down-

titration and eventually stopping therapy after several months once radiotherapy has 

taken full effect. 

 

Safety blood test monitoring is usually necessary. Patients treated with pasireotide 

need glucose monitoring and treatment if hyperglycaemia develops, patients on 

ketoconazole need monitoring of their liver function tests closely at the initiation of 

treatment and after every dose change. Mitotane treatment needs close monitoring of 

therapeutic levels to avoid toxicity or inadequate therapeutic effect from 

undertreatment and thyroid function tests to look for hypothyroidism 6, 431.  

 

Patients with CD patient who have been treated with bilateral adrenalectomy are cured 

from hypercortisolaemia but need long-term replacement of adrenal steroids with 

glucocorticoids and mineralocorticoids and clinical and imaging monitoring for 

progression of any residual corticotroph tumour and development of NS 146. 

 

 

 

 

3.2.2. Nelson’s syndrome 

3.2.2.1. Medical Treatment  

	

The first line treatment for Nelson’s syndrome is pituitary surgery and radiotherapy or 

radiosurgery to reduce the tumour burden and activity 273, 432, 433. These treatments offer 

the possibility of cure but are only suitable where the pituitary tumour is accessible to 



	 80	

surgery or radiotherapy and anatomically distinct from surrounding neurological 

structures such as the optic chiasm, cranial nerves and the cavernous sinus and this is 

often not the case 274. Patients usually have invasive corticotroph tumours and pituitary 

surgery in these cases is a palliative procedure for controlling tumour volume 434, 435. In 

suitable patients surgery and radiotherapy are highly effective however there are 

significant peri-operative complications including a risk of hypopituitarism in 70% which 

requires long-term hormone replacement and affects the quality of life adversely 

despite hormone replacement 274, 435. Furthermore, some patients may not be 

candidates for surgery because of medical comorbidities that increase their peri-

operative risk.  

 

The remaining option for patients who need to be treated but are not suitable 

candidates for surgical treatment or radiotherapy is medical treatment. There is no 

standard medical treatment for NS and various medications have been tested in the 

past with mixed and frequently negative results. Due to the rarity of the condition most 

reports are either case studies or small series and frequently retrospective with limited 

follow-up. The antiepileptic sodium valproate has been tried in the past and is generally 

not effective 436-441. The dopamine agonist cabergoline showed more positive results 

and has been reported to induce remission of NS in case reports however this effect 

is inconsistent and there are only occasional responses in the literature 442-445.  

 

The peroxisome proliferator-activated receptor (PPAR) gamma is a nuclear receptor 

associated with differentiation of the adipocytes that was found to be abundantly 

expressed in ACTH-secreting corticotroph tumour cells. Agonists of PPAR-gamma are 

in clinical use as antidiabetic therapeutic agents and one of these agents, 

rosiglitazone, has been trialled in patients with NS. A case series using rosiglitazone 

in three patients with NS showed positive biochemical response in one and an initial 

biochemical response with subsequent relapse in another 446. Two prospective clinical 

trials subsequently examined the effectiveness of rosiglitazone in patients with NS and 

both found no change in biochemical control; 6 patients received 8 mg/day for 12 

weeks and 5 patients received 12 mg/day for 8 weeks which are higher doses than 

those used for hyperglycaemia in type 2 diabetic patients 267, 447. Rosiglitazone is 

therefore not recommended for use in NS. Temozolomide, an alkylating 

chemotherapeutic agent that crosses the blood-brain barrier, has anti-neoplastic 

effects through DNA damage and induction of apoptosis and is used to treat 



	 81	

aggressive pituitary tumours and there are case reports of successful tumour and 

biochemical control in patients with NS and aggressive corticotroph tumour however 

most patients experience side-effects such as fatigue, bone-marrow toxicity and 

gastrointestinal symptoms which need to be balanced against benefit and generally 

limit its use 448-450.   

 

Pasireotide is somatostatin receptor analogue and activates multiple somatostatin 

receptor subtypes (1, 2, 3, and has high affinity for 5). SSTR5 is selectively expressed 

in human corticotroph tumour cells and has been found to regulate basal and CRH-

induced ACTH release from corticotroph tumour cells in cultures 451, 452. Somatostatin 

and somatostatin analogues have been found to reduce ACTH and cortisol levels in 

patients with CD and NS 410, 411, 453-455. In in vitro studies treatment of human 

corticotroph tumour cells with pasireotide reduced ACTH release and cell proliferation 
451, 456. It is now licensed for the medical treatment of hypercortisolism associated with 

CD and but not Nelson’s syndrome 457. 

 

Pasireotide at a dose 900mcg-1200mcg twice daily s/c has been reported to induce 

biochemical response and most importantly control tumour volume in a de novo patient 

with CD due to a pituitary macroadenoma who declined surgery 458. A case report 

described the positive effects of pasireotide treatment in a patient with NS who had 

multiple previous surgical and radiation treatments for an invasive pituitary tumour who 

presented with cranial nerve palsy caused by the growing tumour. The patient was 

treated with monthly long-acting i.m. injections and showed significant improvement of 

ACTH levels, improvement of skin pigmentation and MRI showed reduction of tumour 

volume 459. 
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3.2.2.2. Monitoring of medical treatment 

	

The therapeutic target in NS is to replace the adrenal steroids following bilateral 

adrenalectomy, improve ACTH levels, reduce or stabilise corticotroph tumour volume, 

and improve skin hyperpigmentation. Therefore, following bilateral adrenalectomy and 

documented progression of the corticotroph tumour volume with rising ACTH levels 

patients should have life-long clinical, biochemical, and radiological assessment. 

Replacement of glucocorticoids and mineralocorticoids is identical to patients with 

endogenous primary adrenal insufficiency (see section 3.3.1.). 

 

ACTH levels are elevated in NS and are the biomarker used to monitor corticotroph 

tumour activity and response to treatment 460. ACTH levels maintain diurnal variation 

and also fall post glucocorticoid administration therefore for monitoring of disease 

activity an early morning (08:00H) level 20 minutes before the morning glucocorticoid 

replacement dose should be taken and a two-hour post glucocorticoid morning dose 

is also recommended 274. There is intra-individual variability of ACTH levels therefore 

careful consideration is needed before deciding about response to treatment 267. Some 

patients treated with radiotherapy may have some lasting effects on ACTH reduction 

especially in the first few years after treatment therefore administration of medical 

treatment during this time needs careful consideration before any decision on 

response to treatment.   

 

Clinical monitoring includes routine assessment of adequacy of glucocorticoid and 

mineralocorticoid hormone replacement post adrenalectomy (see section 3.1.1.), 

assessment for pituitary tumour growth with visual assessment for visual field defects 

and cranial nerve palsies, and assessment of skin pigmentation. Radiological 

surveillance for tumour volume is with magnetic resonance imaging and intravenous 

gadolinium contrast and MRIs is performed every 3-6 months for two years following 

adrenalectomy and annually thereafter and ideally the scans should be interpreted by 

a specialist radiologist and images compared with previous examinations 274. The size 

of the adenoma could be measured by maximum diameter or equations that calculated 

tumour volume on cross-sectional imaging.  
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3.3. Medical treatment and monitoring of disorders of cortisol 

deficiency 

3.3.1. Primary adrenal insufficiency  

3.3.1.1. Medical treatment  

 

The aim of treatment is replacement of the deficient hormones; mineralocorticoids, 

glucocorticoids, and adrenal androgens. Lifelong replacement with glucocorticoids is 

essential to restore well-being, reduce mortality and prevent life-threatening adrenal 

crisis. Mineralocorticoid replacement is essential to avoid salt-wasting crisis; in 

childhood salt is also essential but is not usually necessary in adulthood and MC dose 

requirements may decrease in adulthood.  

 

Glucocorticoid replacement is essential to improve symptoms and avoid adrenal crisis 

during periods of intense physical or even mental stressors. There are various 

formulations of glucocorticoids that are used for replacement and we can divide these 

in short-acting formulations and long-acting formulations 461. Hydrocortisone is an 

immediate-release formulation that is identical to the cortisol. After oral administration 

it is absorbed within 15-30 min, reaches maximum levels in the blood after 60-70 min, 

and has a half-life of 60-100 min but there is significant inter-individual variability 136, 

462-465. After intravenous administration peak cortisol level is at 10min and levels 

become undetectable by 6 hours 466. Following an oral or intravenous dose of 

hydrocortisone at a dose used in clinical practice, supraphysiological peak levels are 

rapidly reached that decline to less than 100 nmol/L after 5 hours 136, 462-464. Liquid 

hydrocortisone for parenteral administration (intravenous or intramuscular) is used in 

emergency conditions, for example, when a patient is incapacitated or acutely unwell 

and for this reason is given during adrenal crisis 286. The majority (80%) of patients on 

hydrocortisone receive a total daily dose of 15-30 mg 467.  

 

Long-acting synthetic glucocorticoid have also been used for replacement. 

Prednisolone is widely used for treatment of inflammatory conditions in high doses but 

also used at replacement doses in patients with glucocorticoid deficiency. Peak 

concentration following a dose of prednisolone is at 2 hours and half-life is 12-36 hours 
468, 469. Prednisolone has about 80% of the mineralocorticoid effect of hydrocortisone. 
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It can be administered in once daily or twice daily regimens. Dexamethasone is a very 

long-acting glucocorticoid with potent anti-inflammatory and no mineralocorticoid 

action. It is absorbed quickly after oral intake and reaches maximum levels at 2 hours 

and has a long half-life 36-72 hours 468, 469. For comparison purposes 20 mg of 

hydrocortisone are equivalent to 5 mg of prednisolone and 0.35-0.75 mg of 

dexamethasone in regards to their anti-inflammatory action 468, 470, 471.  

 

Glucocorticoid replacement aims to replace the amount of endogenous cortisol that is 

lacking and also deliver this is a manner that replicates the phycological pattern of 

cortisol production 467. Persistent symptoms despite adequate doses of glucocorticoid 

replacement and impact on quality of life are some reasons to suggest that replicating 

the pattern could improve patient care 472. Furthermore, it has been shown that in 

patients with persistent symptoms simply up-titrating the dose of glucocorticoids 

doesn’t improve symptoms and there are long-term effects with over-treatment 473. To 

achieve physiological replacement the considerations should be that the treatment 

regimen and formulation chosen should provide: 1. The appropriate amount of cortisol 

that the patient is lacking, 2. Cortisol levels that follow the circadian rhythm of cortisol 

production and match peaks and troughs in time. 3. Higher doses of readily absorbable 

glucocorticoid during stress. 

 

The first step to physiological glucocorticoid replacement is administrating a dose of 

that provides glucocorticoid cover equivalent to the endogenous cortisol production.  

In deciding which dose is appropriate one must consider the pharmacological 

characteristics of the compound, the absorption profile, and the bioequivalence 127. For 

hydrocortisone, which has about 90-95% bioavailability, a total daily dose of 15 mg 

corresponds approximately to the calculated production cortisol rate of 5.7-6.1 

mg/m2/day which should be divided in 2-3 doses in adults and 3-4 daily doses in 

children with half or two-thirds of the dose given on awakening in the morning 128, 129, 

288, 462, 465, 474. A total daily dose of 15 mg hydrocortisone in patients with severe 

secondary hypoadrenalism produced a 24hour cortisol profile that matched the 

control’s better than higher doses and some centres advocate this dose as the starting 

dose in patients recently diagnosed with adrenal insufficiency 119, 473. Alternatively, the 

calculation of total daily hydrocortisone replacement dose can be done using weight 

adjusted (0·12 mg/kg) hydrocortisone 475. Although hydrocortisone is widely used for 

replacement especially in Europe, long-acting prednisolone and less frequently 
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dexamethasone are also extensively used in adults. The dose of prednisolone needed 

for physiological replacement is 3-5 mg/day 469, 476. 

 

In the paediatric population hydrocortisone is the preferred glucocorticoid at doses of 

8 mg/m2 /day and is extensively used as there is evidence of benefits in growth 

compared with long-acting glucocorticoids 286, 477-479. In small children very small doses 

of hydrocortisone are needed as the dose is calculated according to surface area of 

the body. However, the strength of hydrocortisone tablets that are available are in the 

adult doses of 10 mg and 20 mg and further manipulation is needed to extract the 

appropriate dose for young children such as cutting, crushing the tablets and making 

up capsules from the powder at the desired dose. Most medications are studied and 

licensed in adults and there is often lack of evidence of pharmacokinetics in the 

paediatric population and medications are used unlicensed with no dose-appropriate 

formulations. Manipulations of hydrocortisone tablets is every day practice when 

treating children that need glucocorticoid replacement therapy, however there is 

evidence that such manipulations lead to variable and unpredictable doses which may 

have clinically significant adverse effects. Infacort is a new multi-particulate formulation 

of immediate release hydrocortisone that is available in small dose increments 

appropriate for suitable dose adjustment in the paediatric population. Pharmacokinetic 

studies in newborns and older children have been shown that it is bioequivalent to 

hydrocortisone. 

 

The second step is mimicking the circadian rhythm. For the immediate-release 

hydrocortisone this is best achieved with thrice daily regimens	where the higher dose 

of hydrocortisone is given in the morning, and two smaller ones one at midday and 

one before 6pm in the evening 127, 157, 469, 480. Twice daily hydrocortisone regimens (one 

early morning and 2 hours post lunch) provide the same total daily dose with two 

cortisol peaks and have the convenience of less doses during the day however do not 

replicate the circadian rhythm with low trough levels between doses in daytime and 

supraphysiologic peaks post dose 52, 157. Prednisolone is not absorbed rapidly and 

administration first thing in the morning will not provide enough glucocorticoid for the 

morning peak. Administration at bedtime will cause an increase in glucocorticoid cover 

during sleep at times when they are not needed and likely to exacerbate metabolic 

complications 481. Dexamethasone has a very long duration of action and it is not 

frequently used to treat cortisol deficiency; in primary adrenal insufficiency is given in 
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the morning with reducing levels in the afternoon that may manifest with tiredness and 

fatigue 469.  

 

Newer glucocorticoid formulations and delivery methods have been specifically 

developed to mimic the physiological cortisol secretion pattern using modified-release 

or dual-release hydrocortisone or continuous infusions of hydrocortisone 117, 482. 

Plenadren combines immediate and slow-release hydrocortisone with an immediate-

release coating combined with a slow release core and when taken immediately after 

awakening it leads to peak cortisol levels after 50 min, has a half-life of 3.5 hours and 

mimics the physiological cortisol secretion during the day 483, 484. Chronocort is a 

multiparticulate formulation where particles coated with hydrocortisone and a delayed-

release coat allow hydrocortisone to be released when the particles reach the small 

bowel; taken in a toothbrush regimen in the evening and in the morning it aims to 

achieve the morning peak of cortisol from slow release of hydrocortisone from the 

evening administration and studies have shown that the 24hour profiles are similar to 

the physiologic cortisol secretion 116, 117. Continuous infusions of hydrocortisone in the 

subcutaneous tissue through a pump, similar to the insulin delivery systems, can be 

planned to deliver variable doses and mimic the normal cortisol rhythm and this has 

had beneficial effects in some patients with primary adrenal deficiency due to 

Addison's disease and congenital adrenal hyperplasia 484-489.  

 

The pulsatile manner of cortisol secretion may have extra benefits in improving 

symptoms (cognitive, behavioural) and reduce cardiovascular and metabolic adverse 

effects in patients receiving glucocorticoid replacement. There are currently no oral 

formulations that can mimic this feature of physiological cortisol secretion. Such a 

pattern, could be mimicked through portable infusion pumps programmed to deliver 

boluses of hydrocortisone; in a pilot study hydrocortisone delivered at 3hourly pulses 

or varying dose through a subcutaneous cannula reproduced the circadian cortisol 

production pattern with a total daily dose of 20 mg 490.   

 

Higher doses of glucocorticoids are delivered during stress though immediate release 

hydrocortisone administered parenterally or orally. During periods of illness or during 

physical stress such as medical interventions and surgery, patients need to self-adjust 

their treatment and take extra hydrocortisone doses 3-4 times daily. All patients need 
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education to be able to recognise and apply these preventive measures (sick day 

rules). They also need to carry a steroid card for recognition of their medical condition 

in case they become incapacitated. When they are unable to take oral treatment, 

admission to hospital or a day ward and 24-hour hydrocortisone infusions or 6hourly 

intravenous or intramuscular injections are necessary for the duration of illness 466.  

 

Overall, there are multiple regimens for glucocorticoid replacement in clinical use and 

treatment is tailored aiming at reducing life-threatening adrenal crises, minimising 

symptoms of cortisol deficiency, restoring quality of life and avoiding the risks of 

overtreatment 467, 469. However, restoration of well-being is suboptimal and there is 

evidence that patients with primary adrenal insufficiency have persistent symptoms, 

low quality of life, 2-fold higher mortality, and reduced life expectancy and delivery of 

glucocorticoids in a non-physiological pattern has been implicated as a reason for this 
282, 472, 491-495. Over-exposure to glucocorticoids due to high replacement doses or 

regimens that result in non-physiological exposure at times when glucocorticoids are 

normally low in the circulation lead to accumulation of cardiovascular risk factors such 

as hypertension and obesity, higher incidence of cardiovascular events, reduced bone 

density and lower health-related quality of life scores 282, 467, 468, 493, 496-500. For example, 

high hydrocortisone doses above 20-30 mg/day or above 0.3 mg/kg are associated 

with higher mortality in patients with secondary adrenal deficiency 501-503. On the other 

hand, under-replacement is associated with persistent symptoms such as fatigue that 

impact on quality of life and higher risk of adrenal crisis 284. It is therefore essential that 

glucocorticoid replacement is carefully reviewed and adjusted to optimise long-term 

health and restore quality of life in this patient population and the total dose and 

circadian pattern of delivery need to be optimised for each patient for maximum benefit. 

Obstacles to this may be timely administration, absorption, appropriate dose and type 

of formulation used.  

 

 

3.3.1.2. Monitoring of medical treatment 

 

Hormone replacement in primary adrenal insufficiency needs regular monitoring 

because the dose may need adjustment, new medications may affect the metabolism 

of glucocorticoids, sick day rules may need re-discussion. The monitoring is clinical 
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and biochemical and addresses the mineralocorticoid and the glucocorticoid 

replacement separately and also screening for associated autoimmune conditions in 

autoimmune adrenalitis. For the mineralocorticoid replacement therapy monitoring 

includes clinical assessment of the deficiency with physical examination (presence of 

oedema) and history (postural symptoms and salt craving) and biochemical monitoring 

of sodium and potassium 286, 288, 469. The usual replacement is with fludrocortisone 50-

200mcg daily and depending on the glucocorticoid formulation used and its 

mineralocorticoid potency there may be some added mineralocorticoid cover such as 

when hydrocortisone is used there is mineralocorticoid cover equivalent to 50mcg 

fludrocortisone for every 20 mg hydrocortisone 284. Monitoring of renin levels which are 

increased when aldosterone is low has also been used to guide mineralocorticoid 

replacement and assessment of replacement dose adequacy aiming for renin levels in 

the high normal range 289. 

 

Glucocorticoid replacement is guided by clinical monitoring for evidence of symptoms 

and signs of glucocorticoid over or under replacement 286. This is done through 

assessment of weight changes, presence of cushingoid features, postural symptoms, 

and subjective report of energy levels 288, 469. Special attention is placed in the 

identification of adrenal crisis and treatment regimens are always reviewed to try to 

develop an individualised regiment that best avoids adrenal crisis which can be life 

threatening. Although glucocorticoid replacement has improved mortality in patients 

with Primary adrenal insufficiency modern epidemiological studies still suggest an 

incidence of five and ten life-threatening adrenal crises per 100 patient years in 

patients on standard replacement therapy 504, 505. 

 

There are no accurate biochemical markers that can be used to assess sufficiency of 

glucocorticoid dose replacement. Various biochemical tests have been used for this 

purpose but there is limited evidence of their support to optimising glucocorticoid dose 

replacement. Monitoring of ACTH levels during treatment is not helpful as ACTH levels 

reduce after the glucocorticoid dose and increase post dose and suppression of ACTH 

levels during treatment indicates overtreatment with glucocorticoids 127, 506. For patients 

on hydrocortisone the methods used in clinical practice involve cortisol day-curves that 

assess cortisol levels in relation to the timing of glucocorticoid replacement and meals 
162. This is helpful to establish the absorption of glucocorticoids with cortisol peaks 

measured after the morning dose aiming for levels in the normal range and detecting 
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under-replacement if pre-dose levels in the afternoon are low (less than 100 nmol/L). 

But it is time-consuming, expensive and needs to be done in a healthcare setting and 

therefore may not reflect the patients’ routine and actual administration times and may 

not correlate accurately with clinical assessment 157, 475, 507. The protocols are variable 

but most centres propose sampling 1-2 hours after the morning dose (+/- after every 

other dose as well) with pre-dose samples for the midday and afternoon doses 157. 

Cortisol day-curves made of dry bloodspot sample from capillary blood are less 

invasive, correlate with plasma cortisol and could be developed in the near future for 

clinical use as an ambulatory and child-friendly test in place of serum cortisol  508. Some 

studies have showed that timed cortisol curves following a single dose of cortisone 

acetate were not more sensitive in identifying over and under-replacement in hypo-

adrenal patients than clinical monitoring and there is significant inter-individual 

variations of cortisol profiles after administration of glucocorticoids which adds to the 

complexity of deciding accurate cut-offs of target cortisol levels that ensure no overlap 

with well-replaced patients 462, 509, 510. A 2-hour post oral hydrocortisone administration 

plasma cortisol corresponds to peak cortisol achieved after a single dose and some 

authors recommend this is used for monitoring 136 and a single 4-hour post 

administration level helps monitor treatment using a published nomogram with levels 

outside the 10 and 90 percentile indicating absorption problems or over-replacement 

and requiring dose adjustment 475.  

 

Salivary cortisol levels are an attractive marker for the sufficiency of cortisol 

replacement as they reflect the biologically active free cortisol however studies have 

shown that they are not very reliable in monitoring patients on glucocorticoid 

replacement due to intra-individual variability of measurements and saliva 

contamination with the medication in patients on oral hydrocortisone 136, 475. Urinary 

free cortisol levels are not reliable for monitoring replacement adequacy in patients on 

hydrocortisone; following each bolus dose there is transient supraphysiologic cortisol 

levels and oversaturation of CBG levels that cause high excretion of free cortisol 

through the kidneys 136, 473. As urine free cortisol is calculated on a 24hour sample this 

obscures the assessment of cortisol sufficiency in other parts the day and may mask 

long periods of under-replacement 507. Urine free cortisol estimations may be helpful 

in under-replacement due to non-compliance with treatment 284, 511, 512.  
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3.3.2. Congenital adrenal hyperplasia  

3.3.2.1. Medical treatment 

	

Treatment for CAH is primarily medical and the cornerstone is adequate replacement 

of the deficient hormones to ensure life-threatening adrenal crises are avoided. 

Additional treatment goals differ in children and adults and in childhood treatment 

focuses on gender assignment, genital surgery and optimisation of growth and 

pubertal development. In adults the focus moves to screening and treating metabolic 

complications due to long-term glucocorticoid replacement (obesity, metabolic 

syndrome and osteoporosis) to ensure long-term vascular health, treat troublesome 

androgen excess and addressing fertility problems 513. Patients with classic CAH have 

glucocorticoid and mineralocorticoid replacement from the age of diagnosis that 

continues lifelong and women with classic CAH and significant virilisation may need 

genital surgery at early childhood. Patents with non-classical CAH have the mild form 

of the disease and do not have mineralocorticoid deficiency. They usually do not need 

cortisol replacement and may not require any medical treatment unless there are 

specific indications; women with signs of virilization or to optimise fertility, and children 

who have early onset of disease and rapid progression of skeletal age/precocious 

puberty 514.  

 

The goal of mineralocorticoid treatment is to replace mineralocorticoids and prevent 

salt-wasting crisis and electrolyte abnormalities while minimising side effects such as 

hypertension and water retention. Mineralocorticoids should be initiated in neonates 

and children with CAH with salt-wasting or raised plasma renin levels. The goals of 

glucocorticoid treatment is to treat the cortisol deficiency and prevent life-threatening 

adrenal crisis, prevent hyperandrogonaemia and control the overnight increase in 

adrenal androgens that is driven by the hypothalamic–pituitary–adrenal axis and the 

overnight increase in ACTH secretion due to activation of HPA axis and avoid long-

term glucocorticoid excess 515.  

 

The treatment aims are quite clear however getting the correct balance 

between over-treatment and undertreatment with glucocorticoids is difficult in 

practice. Undertreatment with lower glucocorticoid doses leads to inadequate 
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control of androgens excess with subsequent early puberty, hirsutism, and infertility 

later in life. When patients are overtreated with high GC doses, the androgens are well 

suppressed however there is cortisol excess with the associated long-term 

complications such as obesity, short stature, osteoporosis, insulin resistance, 

hypertension and adverse effects on quality of life 513. Overtreatment with 

hydrocortisone in early childhood (up to 2 years) in 21-hydroxylase deficiency is 

associated with lower final height (248). Optimizing the treatment of CAH and 

glucocorticoid replacement is essential to improve clinical outcomes as in a national 

cross-sectional study (CaHASE) adult patients with CAH had higher mortality than the 

general population, were shorter and had adverse metabolic features and 

cardiovascular risk factors associated with GC over-replacement including higher BMI, 

hypercholesterolaemia, insulin resistance and osteopenia 318, 516. The metabolic profile 

was worst for long-acting glucocorticoids such as dexamethasone 517. In the CaHASE 

study the disease control measured by control of androgens and precursors in women 

was suboptimal. Ensuring there is good control of androgens and precursors is 

important for fertility in women. 

 

Glucocorticoid replacement for the purposes of treating the cortisol deficiency in CAH 

is explored in the previous chapter along with other causes of primary adrenal failure 

(see chapter 3.3.1.). Treatment of pre-pubertal children with precocious puberty with 

growth hormone alone or in combination with gonadotropin-releasing hormone 

analogue improves growth rate and height prediction (254). If necessary, 

reconstructive surgery to external genitalia should be undertaken by expert surgeons 

(198). 

 

For adults on glucocorticoid replacement there is no consensus for the type of 

glucocorticoid or regimen. Hydrocortisone at a daily total dose of 15–30 mg divided 

thrice daily, with the higher dose given in the morning is a regimen frequently used and 

treatment adjustment (dose titration) is based on clinical monitoring 518. If there is 

suboptimal biochemical control on hydrocortisone then low dose prednisolone (0.5–

2.5 mg) last thing at night with a reduction in the hydrocortisone dose first and then 

twice daily if there is good response to prednisolone 513. Dexamethasone has the 

convenience of once daily administration and provides good control of androgen 

excess; however, it causes more insulin resistance 517. Furthermore, it is not 

inactivated by placental 11β-HSD2 and therefore is not recemented in women of 
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reproductive age who are not on contraception 54, 517. Hydrocortisone infusions have 

shown to reduce the early morning rise in ACTH and steroid precursors and could 

therefore be used to improve disease control 485.  

 

Some patients with CAH take glucocorticoids in a reverse circadian rhythm which 

involves administration of the highest dose of a long-acting glucocorticoid in the 

evening aiming to eliminate the early rise of ACTH and the subsequent drive for 

adrenal androgen production 318. There is no benefit of the reverse rhythm in improving 

biochemical control but reverse circadian rhythm may be helpful in women with 

significant symptoms due to hyperandrogonaemia or women of reproductive age that 

want to optimise their chances for fertility 519. Studies have shown that about 60% of 

adult patients with CAH receive long-acting glucocorticoids with treatment regimens 

not likely to replicate the physiological cortisol levels 318.  

 

Current glucocorticoid regimens try to replicate the normal diurnal secretion of cortisol 

and ACTH and inhibit androgen excess which is important in women with CAH as the 

overnight increase in ACTH drives hyperandrogonaemia which has symptoms and 

adverse sequences on fertility 514. Studies have shown that prednisolone on twice daily 

reverse circadian regimen there is escape of ACTH control during the night with higher 

androgen levels during the day and high cortisol during the midnight. Dexamethasone 

od reverse regimen also shows escape of ACTH control in the afternoon with elevated 

androgens and high glucocorticoid exposure overnight. Current reverse circadian 

replacement regimens are likely exposing patients to too much glucocorticoids during 

the night, at a time where glucocorticoids are physiologically low and there is evidence 

this has more risk for long-term metabolic complications 481. Furthermore, a higher 

glucocorticoid dose does not always lead to better disease control and education on 

sick day rules should be provided 515. 

 

To optimise fertility in patients, the glucocorticoid dose is optimised initially to ensure 

good control of androgen precursors and avoid secondary gonadal failure from the 

elevated sex steroids. In women hydrocortisone or prednisolone are used as they are 

inactivated by 11βHSD and don’t affect fetal adrenals. In women who fail to conceive 

an increase of the glucocorticoid dose to ensure biochemical markers (17-
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hydroxyprogesterone, testosterone, androstenedione) are within normal range is first 

indicated and if this fails then long-acting steroid (prednisolone 2.5 – 3 mg 6 - 8 hourly) 

in multiple daily doses is used to ensure adequate androgen suppression throughout 

the day aiming for suppression of 17-OHP. Men with CAH have ultrasound screening 

to check for the presence of testicular adrenal rest tumours (TARTs). In men with 

TARTs who want fertility preservation the options are increasing the glucocorticoid 

dose and changing to a long-acting formulation such as dexamethasone, a sperm 

count and cryopreservation to avoid worsening of sperm count 313, 520-522. Prenatal 

diagnosis is possible for couples at risk of having offspring with CAH and in these 

cases dexamethasone has been advocated for prenatal treatment until the sex 

determined to be male or throughout pregnancy to reduce risk of masculinisation of 

female fetuses but this is controversial 303. 

 

Treatment of 11-hydroxylase deficiency is with glucocorticoids (hydrocortisone 10-15 

mg/m2 and antihypertensives (spironolactone, calcium channel blockers or amiloride) 

if necessary 303. Good compliance with glucocorticoid replacement normalises blood 

pressure 301.  

 

 

3.3.2.2. Monitoring of medical treatment 

	

Patients have regular clinical reviews for evidence of over or under replacement with 

glucocorticoids and mineralocorticoids. Clinical assessment of fluid retention and 

blood pressure (mineralocorticoids), cushingoid features and virilisation 

(glucocorticoids) is essential in making decisions about dose titrations 515. The 

replacement of glucocorticoids and mineralocorticoids is similar to patients with other 

causes of primary adrenal insufficiency however in patients with CAH there are 

additional biomarkers (steroid precursors) that help assess disease control and dose 

titration decisions and clinical evidence of androgen excess is also considered when 

assessing glucocorticoid dose and regimen adequacy. 

 

Biochemical monitoring for glucocorticoid replacement is by monitoring the levels of 

precursors and androgens. For 21-hydroxylase deficiency the main biomarkers for 
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disease control are 17-hydroxyprogesterone and androstenedione; the target levels 

are serum 17-hydroxyprogesterone between 1-3 times the upper limit of normal and 

serum androstenedione within the reference range however the target for androgen 

control depends on the patient’s needs and may change during life 54. Levels above 

these ranges should trigger a review for possible undertreatment and levels of 17-

hydroxyprogesterone within the normal range and low androstenedione should trigger 

a review for possible overtreatment and excessive glucocorticoid exposure. 

Ketotestosterone levels measured by sensitive analytical methods are increased in 21-

hydroxylase deficiency due to adrenal overproduction and reflect clinical severity in 

studies, however their significance is emerging and there are no data on long-term 

monitoring of disease control and treatment targets 86. For 11β-hydroxylase deficiency 

the biochemical monitoring is with serum 11-deoxycortisol levels aiming for 

normalisation 303. In patients seeking fertility the targets may change to lower ones to 

improve chances of a pregnancy; this usually means a period of overtreatment with 

glucocorticoids to achieve this target.  

 

When assessing response to treatment the timing of the blood test and the relationship 

to the administration of the medication is important and should be recorded to aid 

interpretation and comparison of values. Release of steroid precursors show circadian 

patterns and 17-hydroxyprogesterone is released in a circadian rhythm similar to 

cortisol with concentrations low at night, rising from 0200h, peak in the early morning 

(0800h), and decreasing throughout the day.  

 

Biochemical monitoring for mineralocorticoid replacement is with sodium and 

potassium levels and renin levels aiming for the upper limit of normal 54. In patients 

with hypertension a small reduction of the fludrocortisone dose and accepting a slightly 

raised level of renin in adult patients with hypertension is appropriate provided they 

are well and there is no evidence postural hypotension. 
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3.4. Hypothesis 

 

This research was designed to test the hypothesis that it is possible to restore 

physiological cortisol and adrenocorticotrophin levels in patients with disorders of 

cortisol and adrenocorticotrophin production: cortisol deficiency (Congenital adrenal 

hyperplasia), cortisol excess (Cushing’s syndrome) and adrenocorticotrophin excess 

(Nelson’s syndrome) using medical therapy. The research will examine whether it is 

possible to: 

1. Reduce cortisol levels by medical therapy in patients with overt cortisol excess 

2. Reduce adrenocorticotrophin levels in patients with Nelson’s syndrome  

3. Deliver hydrocortisone for glucocorticoid replacement therapy accurately 

through nasogastric tubes and sprinkled on food 

4. Use new biomarkers to monitor adequacy of glucocorticoid replacement and 

disease control in patients with Congenital adrenal hyperplasia 
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4. Methods 
 

4.1. Overview 

	

The specific methodology for each part is detailed in the method section of the 

published manuscripts included in the thesis. Further information on designing a data 

collection proforma for Study 1, biochemical analysis for Studies 1, 2, and 3 is provided 

in this section, as these areas could not be sufficiently extensive in the papers due to 

word number limitations.  

 

 

	

	

4.2. Data collection 

 

A multicentre national retrospective study was conducted in centres that made up the 

UK Endocrine Neoplasia Collaboration aiming to improve the understanding of the 

effectiveness of Metyrapone in restoring cortisol levels in patients with 

hypercortisolaemia due to Cushing’s syndrome. The UK Endocrine Neoplasia 

Collaboration is a group of thirteen major UK tertiary referral centres in England and 

Wales spread over 9 cities. Each centre had a senior investigator who had oversight 

of the study locally and at least one centre sub-investigator who was trained in 

Endocrinology and had responsibility for data collection. Sheffield Teaching Hospitals 

NHS Trust was the central study site and the investigators in this centre co-ordinated 

data collection from the twelve peripheral study sites (King’s College Hospital NHS 

Foundation Trust, London, Royal Victoria Infirmary, Newcastle, Queen Elizabeth 

Hospital, Birmingham, Aintree University Hospital and Royal Liverpool University 

Hospital, Liverpool, Manchester Royal Infirmary and The Christie NHS Foundation 

Trust, Manchester, Salford Royal Foundation Trust, Salford, St Bartholomew’s 

Hospital, London, Addenbrookes Hospital, Cambridge, Oxford University Hospitals, 

Oxford, Imperial Healthcare, London, University Hospital of Wales, Cardiff). 



	 97	

 

Metyrapone is only available through hospital pharmacy therefore patients treated with 

Metyrapone were identified at each centre through pharmacy and electronic clinical 

records and patients treated between 1997 and 2013 were included in the study. To 

address the aims of the study it was necessary to conduct a review of the medical 

notes of all patients treated with Metyrapone and collect data on the diagnosis of 

Cushing’s syndrome, indication and timing of metyrapone treatment in relation to other 

treatments, dose and regimen use, biochemical monitoring, assay information, and 

safety data. 

 

To ensure the accuracy, reproducibility and quality of data a proforma was designed 

by the candidate who was also the central site sub-investigator. The data collection 

proforma included a combination of free text, selection of pre-defined choices, and 

results of specific investigations with the timing of results in relation to treatment given. 

The data collected included results of baseline and imaging tests at presentation and 

cause of Cushing’s syndrome, clinical and demographic data (age, sex) at 

presentation and start of Metyrapone therapy, documented indication for metyrapone 

therapy (pre-defined options were routine practice, control of severe symptoms, delay 

for medical reasons or patient initiated delay), all therapeutic interventions undergone 

by each patient with dates (options were primary surgery, additional surgery, primary 

radiotherapy, adjuvant radiotherapy, chemotherapy, medical therapy). Multiple options 

were possible and a free text option was offered in all parts of the proforma (data 

collection proforma Appendix A.1.).  

 

The proforma was piloted on five patients treated with Metyrapone in Sheffield 

Teaching Hospitals that fulfilled the inclusion criteria. The quality of data collected was 

reviewed and feedback to improve accuracy of data collected was invited from the 

senior investigators. Improvements were introduced and included designing a table for 

collecting long-term biochemical and clinical monitoring data following initiation of 

Metyrapone therapy and changing of date of birth to year of birth or age to minimise 

collection of patient identifiable information. The updated proforma was then piloted in 

28 patients in the central site and these data were analysed to test if they provided 

answers to the study objectives. Written instructions were produced to guide 

completion and data entering from clinicians at the participating peripheral sites. The 



	 98	

instructions and the results of the pilot data collection were discussed with the study 

senior investigators and the proforma was approved for dissemination to the 

participating peripheral sites. Three case examples were also formulated 

accompanied with completed data collection proformas to serve as examples of 

satisfactory data entering. The sub-investigators at the participating centres all 

received and used the data collection proforma, written information for data entering, 

the three completed examples, and the contact information for the central site 

investigator (the student) who was available for help and guidance on data collection. 

The completed proformas were collected and analysed together at the central site by 

the candidate using excel spreadsheets and GraphPad Prism software.  

 

 

 

 

4.3. Analytical biochemistry for cortisol quantification 

4.3.1. Liquid chromatography tandem mass spectrometry 

 

In Study 3, aqueous samples of hydrocortisone were analysed by liquid 

chromatography tandem mass spectrometry (LC-MS/MS) at South Manchester 

University laboratories. LC-MS/MS is an accurate method of quantifying cortisol and is 

based on the principle of protein precipitation and fragmentation. It uses a combination 

of two techniques, liquid chromatography that allows separation of the analytes in a 

sample based on their polarity, and mass spectrometry which allows separation and 

accurate positive compound identification 523. The combination of the two techniques 

increases the sensitivity and specificity of the mass spectrometer.  

 

The main components of the LC-MS/MS are the liquid chromatography, the ion source, 

the mass analyser, the electron multiplier and the data processor. The preparation of 

the aqueous sample for analysis is shown in Appendix A.2.; this preparation involves 

use of Zinc sulphate and methanol to disrupt cells and precipitate all proteins in the 

serum and unbind compounds, and addition of internal standards to the sample. After 

preparation the sample initially undergoes separation by liquid chromatography, which 
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involves dissolution in a mobile phase, made up of water and an organic solvent 

(methanol). The fraction of water to organic solvent can be modified to allow better 

dissolution of the compound and the sample then travels through a stationary phase 

or column 523, 524. Analytes in the sample travel through the column at different speed 

and separate based on their hydrophobicity and by changing the polarity compounds 

such as steroids are extracted sequentially. This method of separation reduces any 

interference from prednisolone or cortisol metabolites.  

 

The principle of mass spectrometry (MS) is to produce an ion from a neutral compound 

by removing an electron or by adding a proton, fragment the ion through collision with 

a gas and examine these fragments 525, 526. The fragments that each compound 

produces are characteristic of the compound therefore study of the fragments gives 

information for the compound and measuring fragments instead of cortisol adds 

specificity 525. In tandem mass spectrometry (MS/MS) there are two mass 

spectrometers in a single instrument. In the first, the analyte is purified from the mixture 

using a magnetic field and then it is fragmented in a collision chamber. In the second 

mass spectrometer the fragments are analysed for identification and quantification 527.  

 

After separation by liquid chromatography, cortisol is diverted to the ion source that 

uses electrospray ionisation. Electrospray ionisation pumps the liquid sample through 

a metallic capillary that has a high voltage (3-5KV) applied to it and at the end of this 

process the analyte acquires an electric charge 524, 526, 528. Cortisol has a molecular 

mass of 362 and during ionisation a proton is added so the molecular ion of cortisol 

has a molecular mass of 363. The ionised molecules are led into an angle to enter the 

mass spectrometer and anything that is not following this route, for example non-

ionised molecules, is dismissed and the voltage and angle can be altered to increase 

specificity.   

 

After ionisation the compounds are diverted to the first chamber of the mass 

spectrometer where they travel through a magnetic field under vacuum and separate 

according to their mass-to-charge ratio (m/z) 525, 526. The magnetic field is created by 

six parallel rods (hexapole) that have a direct current (DC) or a radiofrequency potential 

applied to each opposite pair; the ions separate by mass as their m/z determines the 

curvature of the path taken by the ions 526. Only ions with the target m/z values have 
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stable trajectories and exit to the next chamber and the selection of m/z depends on 

the DC and radiofrequency voltage applied. Ions with m/z values other than the 

preselected targets have unstable trajectories, collide with the rods or walls of the 

vacuum chamber and neutralise. On the other hand, different compound ions that have 

the same m/z will follow the same trajectory and will not separate. 

 

After the first mass spectrometer the ions go into the collision cell where the ions get 

fragmented by colliding with a neutral target gas such as argon generating fragments 

that then pass through into the second mass analyser which contains a quadrupole 

and the ions are separated according to their m/z ratios again. The collision conditions 

(fragmentation) is controlled by changing the speed of the ions as they enter the 

collision cell and the number of collisions undertaken (collision gas pressure). Two 

fragments are produced from the cortisol molecular ion in the mass spectrometer; they 

have a molecular mass of 121 and 97. All the fragment ions (daughter ions cortisol-

121 and cortisol-97) that enter the second mass spectrometer are derived from a single 

precursor ion (cortisol).  

 

In the second mass spectrometer chamber we choose which target fragment is 

measured by predefining the target m/z ratio; the two cortisol fragments have different 

m/z therefore only the target fragment is measured. At the quadrupole exit the 

fragment with the target m/z will strike the detector and register a signal, which is 

detected by an electron multiplier, and the data are passed to a computer and 

processed 529. The results are displayed as a mass spectrum, which is a graph with y-

axis depicting the amount of the ions (relative abundance or signal strength) and their 

m/z values on the x-axis. Non-fragmented ions of the compound we want to measure 

usually have very low or even no signal. Mass spectrometers can be programmed to 

identify and quantify a selection of compound ions (parent ions) and their fragments 

(daughter ions) and this is called multiple reaction monitoring (MRM) 528. There are 

different ways of presenting the results, they can be normalized using 100% as the 

biggest peak (base peak) of the spectrum (% relative abundance) or total ion current 

(=the sum of all the detector responses for each scan) against time 525. Compounds 

that have been studied by mass spectrometry have a known spectrum and 

hydrocortisone measured as cortisol peaks on the graph (hydrocortisone % relative 

abundance versus time) has a retention time of about 1min. For plotting the standard 

curve (% response versus cortisol concentration), we used the cortisol-97 qualifier. For 
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data analysis the LC-MS/MS measures the response (MRM) as the ratio of cortisol-

363 ion to the internal standard (molecular mass 367) which equals to the ratio of peak 

area of cortisol to the peak area of internal standard. Calibration lines of this ratio 

against cortisol concentration are plotted and the concentration of hydrocortisone 

(measured as cortisol) in the samples is calculated based on these lines. 

	

	

	

	

4.3.2. Immunoassays 

	

Quantification of cortisol by immunoassays was performed by the Biochemistry 

Department, Sheffield Teaching Hospitals NHS Trust for the Study 1 and Study 2 of 

this research, and the Biochemistry Departments for the thirteen participating centres 

in the Study 1. 

 

The immunoassays used by the different departments were the following commercial 

immunoassays; Roche Cobas, Siemens Centaur, and Abbott Architect for serum and 

urine samples. The serum cortisol measuring range with Roche, Siemens and Abbott 

was 0.5 – 1750 nmol/L, 13.8 – 2069 nmol/L, and 27.6 -1649.8 nmol/L respectively, and 

CV% was 2.5-4.3, 4.9-6.0 and 1.6-3.9 respectively 530. The assay analytic specificity 

from the product leaflet was reviewed for cross reactivity data and these data are 

shown in Table 8. 

 

These are competitive binding chemiluminescence immunoassays and are based on 

the following principles: the sample containing the cortisol to be quantified is incubated 

with fixed amounts of anti-cortisol antibody and antigen labelled with a molecule that 

can be triggered to emit a photon of light 531. The labelled antigen competes with 

cortisol for the binding sites of the anti-cortisol antibody and the antigen-antibody 

complexes are bound to paramagnetic microparticles. The mixture is left to incubate 

to achieve equilibrium, washed to remove excess unbound cortisol and reagents, and 
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a trigger is added that interacts with the labelled antigen and this chemical reaction 

results in light emission. The light emission is quantified by photomultiplier and the 

signal is measured as Relative Light Units, plotted against a standard curve, and 

cortisol in the sample is quantified. The higher the chemiluminescent reaction, the 

lower the cortisol concentration in the sample. Acridinium and ruthenium esters are 

commonly used as labels in chemiluminescence assays and can be triggered by 

hydrogen peroxide to emit a photon of light 532. 

 

In the Roche assay the complex of anti-cortisol antibody with cortisol or labelled 

antigen is bound to microparticles that are magnetically captured on an electrode, 

application of voltage on the electrode induces a chemiluminescent emission, light is 

measured and the cortisol amount calculated 533. In the Siemens assay cortisol 

competes with acridinium ester-labelled antigen for binding to the anti-cortisol 

polyclonal antibody. The polyclonal anti-cortisol antibody is then bound to monoclonal 

mouse anti-rabbit antibody which is coupled to paramagnetic microparticles, the 

mixture is incubated and washed and then an acid and base trigger reagent is added 

which triggers the emission of light from the acridinium-labelled antigen 533. The Abbott 

assay has mouse monoclonal anti-cortisol coated paramagnetic microparticles. These 

are incubated with the sample containing cortisol (serum, plasma, or urine sample), 

acridinium-labelled conjugate is added and competes with cortisol for the binding sites 

of the anti-cortisol coated microparticles, the mixture is incubated and the 

microparticles are washed with a phosphate buffered saline solution containing an 

antimicrobial. Hydrogen peroxide and sodium hydroxide solutions are then added that 

cause a chemiluminescent reaction measured as relative light units 534.  

	

	

	

	

	

	

	



	 103	

Table 8: Cross reactivity of cortisol immunoassays 

 Substance Cross-reactivity (%) 

Roche  
(Cobas e analyser) 

Cortisone1 0.30 

Corticosterone1 5.8 

Cortisol-21-S1 0.04 

11-deoxycortisol1 4.1 

11-deoxycorticosterone1 0.69 

Dexamethasone1 0.08 

17α-hydroxyprogesterone1 1.50 

Prednisolone1 0.35 

Progesterone1 0.35 

21-deoxycortisol2 45.4 

6β-hydroxycortisol2 158 

Allotetrahydrocortisol4 165 

Prednisolone4 171 

6a-methylprednisolone4 389 

Siemens Centaur  11-deoxycorticosterone1 1.8 

11- deoxycortisol2 23.3 

Prednisolone3 109 

6-methyl-prednisolone2 26.2 

Dexamethasone1 0.2 

Prednisone2 34.0 

Abbott Architect Cortisone1 2.7 

 Corticosterone1 0.9 

 11-deoxycortisol1 1.9 

 Fludrocortisone2 36.6 

 17-hydroxyprogesterone1 0.6 

 Prednisolone2 12.3 

 

These three immunoassays were used for cortisol quantification in Studies 1 and 2.  

Substance added per (1) 10 μg/ml, (2) 1 μg/ml, (3) 0.5 μg/ml, (4) 0.1 μg/ml 
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4.4. Ethical Approval  

	

Ethical approval was sought for the four parts of this research that involved clinical 

data and patients; Study 3 did not involve any clinical data or animal experiments 

therefore an ethical approval was not required.  

 

Studies 1 and 4 were approved as institutional case notes review projects by Sheffield 

Teaching Hospitals NHS Trust. The process included registration of the study as a 

clinical audit through the Clinical Governance Office. The process of applying to the 

Clinical Governance Office for clinical audit registration includes an application with 

details of the project proposal and the standards against which the data are compared, 

details of data analysis and plan for dissemination of results through presentation or 

publication. The data collection proforma was submitted with the application form and 

was approved before any data collection took place. The project registration 

submission was quality reviewed by the Clinical Effectiveness Project Panel who 

approved the registration of the project and the exact data that could be extracted. 

Once the project was approved then access to local medical and electronic records 

was allowed for data collection specified in the approved proforma. Study 1 was 

registered under the title ‘Indications and monitoring of Metyrapone treatment in 

Cushing’s Syndrome’ with clinical audit project registration number 4947 and Study 4 

under the title ‘Monitoring hormonal replacement in congenital adrenal hyperplasia’ 

with registration number 5384.  

 

Study 1 was a national multicentre study therefore additional to the local registration 

at Sheffield Teaching Hospitals NHS Trust, it was also approved as an institutional 

case notes review at each participating centre. This process included local registration 

of the study as audit through the Clinical Governance Office at each participating NHS 

Trust through submission of an application and a list of the required data for pre-

approval. For the data to be released externally a Caldicott Guardian approval had to 

obtained by the participating NHS Trust. In Sheffield, the local Caldicott Guardian was 

identified though the local NHS Information Governance office and a request for data 

release was made through email with the purpose use of data, purpose of release and 

description of data to be released. The twelve peripheral sites applied for a Caldicott 

Guardian approval for data release to the central site (Sheffield Teaching Hospitals 
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NHS Trust) where all data were collated for central analysis and all centres applied for 

Caldicott approval for release of safety data to the funder (HRA Pharma).  

 

Study 2 was a phase 2 clinical trial which was investigator initiated, led, and designed. 

It was sponsored by Sheffield Teaching Hospitals NHS Trust (STH Project reference 

number STH15164), registered as a clinical study (ClinicalTrials.gov ID: 

NCT01617733, EudraCT number 2009-014457-33), and approved by the UK Health 

Research Authority (ref 10/H1005/53). The principal investigator was Prof Newel-Price 

and funding was provided by the manufacturer of Pasireotide, Novartis 

Pharmaceuticals, UK. 

 

Study 5 was a phase 1 clinical trial preformed at a private clinical research facility 

(Simbec Research Ltd.) in Wales, UK. The protocol of the study, participant information 

leaflet and consent documents were reviewed and approved by the Wales Research 

Ethics Committee (reference number: 17/WA/0114) and Clinical Trials Authorisation 

was obtained from the Medicines and Healthcare Regulatory Agency according to UK 

and EU regulations. The ClinicalTrials.gov registration number was NCT03178214.  

 

 

 

 

	

4.5. Data management and statistics 

 

Clinical data including medical history, clinical evaluation, and laboratory values with 

dates were collected on specifically designed and pre-approved data collection forms 

for Studies 1, 2, and 4. The forms for each study were collected from all centres and 

kept together in secure and locked offices in the University of Sheffield accessible to 

the student, supervisors and the department’s Research Co-ordinator and will be 

archived for 15 years post study completion. For Study 3 only laboratory data were 

collected.  
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The laboratory and anonymised clinical data were entered on excel files for analysis, 

one for each study part, and stored on the student’s personal computer with regular 

back up files. The analyses were performed on the excel files and Graph Pad Prism 

and copies of all analyses, excel files with data and graphs are kept in USB and shared 

with supervisors. Details for further statistical analysis specific for each study are given 

in the individual published papers. 

 

The results of the analyses and details on the statistics used have been published and 

the papers are available as open access research papers and deposited to the White 

Rose Research Online, a shared, open access research repository. The results were 

also presented in part or in full to National and International conferences as oral and 

poster communications (Studies 1, 2, 4, and 5). Two clinical study reports were 

prepared for Study 1 and Study 2 and shared with the funders (HRA Pharma and	
Novartis Pharmaceuticals UK Limited). 

 

In Study 2 the anonymised Case report forms from all four centres were collected and 

stored as hardcopies in the Research Co-ordinator’s office in the Royal Hallamshire 

Hospital/ University of Sheffield together with electrocardiographs, and CDs containing 

patient images and MRI scans.  

 

For Study 4 a confidential clinical study report along with extensive tables and figures 

summarising the raw data was received by electronic mail and hardcopy and is stored 

in a locked office in the University of Sheffield Medical School. 
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5. Results 

5.1. Study 1: Medical therapy in Cushing’s syndrome 
 

Effectiveness of metyrapone in treating Cushing’s Syndrome: a retrospective 

multicenter study in 195 patients.  

Published in The Journal of Clinical Endocrinology and Metabolism.  

2015 Nov; 100(11): 4146-54.  

doi: 10.1210/jc.2015-2616 

Link to the publication: https://academic.oup.com/jcem/article/100/11/4146/2836118 

Authors’ accepted copy of the paper is included in this thesis, pages 109 to 129. 
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Abstract 

 

Background: Cushing’s syndrome is a severe condition with excess mortality and 

significant morbidity necessitating control of hypercortisolemia. There are few data 

documenting use of the steroidogenesis inhibitor metyrapone for this purpose. 

 

Objective: To assess the effectiveness of metyrapone in controlling cortisol excess in 

a contemporary series of patients with Cushing’s syndrome. 

 

Design: Retrospective, multicenter. 

 

Setting: Thirteen university hospitals. 

 

Patients: 195 patients with proven Cushing’s syndrome: 115 Cushing’s disease (CD), 

37 ectopic ACTH (EAS); 43 ACTH-independent disease (Adrenocortical Cancer [ACC] 

10; adrenal adenoma [AA] 30; ACTH-independent adrenal hyperplasia (3) 

Measurements: Biochemical parameters of activity of Cushing’s syndrome: mean 

serum cortisol day-curve (CDC) (target 150-300nmol/L); 09.00h serum cortisol; 24h-

UFC. 

 

Results: 164/195 received metyrapone monotherapy. Mean age was 49.6 +/- 15.7 

years; mean duration of therapy 8 months (median 3 months, range 3 days to 11.6 

years). There were significant improvements on metyrapone - first evaluation to last 

review: CDC [91 patients, 722.9nmol/L (26.2μg/dl) vs. 348.6nmol/L (12.6μg/dl), 

p<0001]; 09.00h cortisol [123 patients, 882.9nmol/L (32.0μg/dl) vs. 491.1nmol/L 

(17.8μg/dl), p<0.0001]; UFC [37 patients, 1483nmol/24h (537μg/24h) vs. 

452.6nmol/24h (164μg/24h), p=0.003]. Overall control at last review: 55%, 43%, 46% 

and 76% of patients who had CDCs, UFCs, 09.00h cortisol <331nmol/L (12.0μg/dl) and 

09.00h cortisol <ULN/600nmol/L (21.7μg/dl). Median final dose: CD 1375mg; EAS 

1500mg; benign adrenal disease 750mg; ACC 1250mg.  Adverse events occurred in 

25% of patients, mostly mild GI upset and dizziness, usually within 2 weeks of initiation 

or dose increase, all reversible. 

 

Conclusions: Metyrapone is effective therapy for short- and long-term control of 

hypercortisolemia in Cushing’s syndrome. 
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Introduction 

Cushing’s syndrome (CS) is a severe condition with excess mortality and significant 

morbidity necessitating effective biochemical control (1). Where a cause amenable to 

surgical intervention is identified, surgery at a center with appropriate expertise is the 

optimum management.  Nevertheless, many patients need urgent control of severe 

or persisting hypercortisolemia. Options for medical treatment include 

steroidogenesis enzyme inhibitors suitable for all causes of CS (ketoconazole, 

metyrapone, mitotane), agents to suppress ACTH in Cushing’s disease (CD), such as 

dopamine agonists and pasireotide, and the glucocorticoid receptor antagonist, 

mifepristone (2,3).  The modern use of ketoconazole has recently been reported in a 

multicenter French Study (4), although its availability in the United States has been 

restricted following an FDA safety warning for hepatotoxicity in 2013 (5,6), but it is 

widely available in Europe in 2015 (7). 

 

The cortisol-lowering effect of metyrapone was described as early as 1958 by Liddle 

and co-workers, with later reports confirming metyrapone as a potent inhibitor of the 

steroidogenesis enzyme 11β-hydroxylase (8,9). Since then, it has been used as a 

diagnostic test of adrenal reserve and to treat the hypercortisolism of CS.  Despite its 

widespread use, data on metyrapone are scarce, with the largest study to date 

(including 91 patients) being published over 25 years ago (10).  Here, we have assessed 

the effectiveness of metyrapone therapy in a contemporary series of patients with CS, 

by performing a retrospective study of patients treated in the UK. 

  

 

Methods 

A multicenter, retrospective study was performed across thirteen University Hospital 

centers in England and Wales, members of the UK Endocrine Neoplasia Collaboration.  

Patients treated with metyrapone were identified through pharmacy records and 

electronic databases. Patients with a diagnosis of CS and treated with metyrapone 

between 1997 and 2013 were included. 
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The same proforma was used in all centers to record anonymized data.  Data were 

gathered from case records and electronic record systems.  Baseline, demographic 

and safety data, the indication for treatment and dose of metyrapone therapy, any 

therapeutic intervention and any recorded adverse events were documented. 

Monitoring tests included early morning (09.00h) serum cortisol, 24-hour urinary free 

cortisol (UFC), serum potassium, plasma ACTH and serum cortisol ‘day-curves’ (CDC). 

In CDCs multiple samples for serum cortisol are collected across the day with the mean 

calculated (11). The majority (91%) of CDCs consisted of 4 or 5 serum cortisol samples 

(minimum 3, maximum 8, median 4). All tests performed during the monitoring period 

were collected and analyzed. All centers used immunoassay-based cortisol assays.  

 

Patients were treated either with a dose titration regimen i.e. metyrapone dose was 

up-titrated according to response to achieve a biochemical target for cortisol, or a 

block-and-replace regimen where the dose of metyrapone was quickly up-titrated to 

achieve blockade of cortisol synthesis and a replacement dose of glucocorticoid was 

added to provide background physiological levels. 

 

Biochemical targets for treatment (eucortisolemia) were defined as a mean CDC value 

of 150-300nmol/l (10.9μg/dl), which has been shown to equate to a normal cortisol 

production rate as assessed by stable isotopic methodology (11), a UFC level below 

the upper limit of normal (ULN) for the assay used or a 09.00h serum cortisol within 

target. Although 09.00h serum cortisol is occasionally being used as a sole test for 

evaluating patients’ response to treatment there is currently no standardized 

agreement for what values of this test represent appropriate control. Two different 

levels of target 09.00h cortisol were therefore assessed; (i) below the upper limit of 

normal for the assay used, or less than 600nmol/l (21.7μg/dl) if the ULN was higher 

than this value, and (ii), a recommended value of 331nmol (12.0μg/dl) (12). Cortisol 

levels were reported in nmol/L and divided by 27.59 to calculate the equivalent value 

in μg/dl. There was a wide range of UFC assays used with variable reference range of 

normal values; therefore UFC values were converted to multiples of the upper limit of 

normal (ULN) for the assay and this value was used for statistical comparisons. 

Patients with sufficient monitoring data (i.e. at least one test as described above 
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repeated at least twice during the study period) were included in the efficacy analysis. 

For the efficacy analyses we compared the mean values at each monitoring test (CDC, 

09.00h serum cortisol, UFC) before treatment to (i) the mean values on the last review 

on treatment (diagnosis vs. last review), and (ii) the mean of all tests performed in all 

patients during treatment (diagnosis vs. treatment), unless otherwise stated. The 

change of the biochemical markers between (i) baseline (at diagnosis/ pre-treatment) 

and the last review on treatment for 09.00h cortisol, and (ii) the first and the last 

biochemical review for CDCs (CDCs were not routinely performed prior to initiation of 

treatment) on treatment was also analyzed.  

 

Statistical analysis was performed using the two-tailed Student’s t test (GraphPad 

prism 6.0, GraphPad Software Inc., La Jolla, USA). Except where stated, values given 

are means +/- standard deviations. A p-value of less than 0.05 was considered 

significant. The study was approved as an institutional case notes review at each 

participating center.  

 

 

 

 

Results 

Baseline characteristics 

One hundred and ninety-five patients were treated with metyrapone across the 13 

centers. The majority of patients had CD (115 patients, 37 macroadenoma) with the 

remainder having ectopic ACTH syndrome (EAS, 37), adrenocortical carcinoma (ACC, 

10), and benign adrenal disease [30 adrenal adenoma (AA), ACTH-independent 

macronodular adrenal hyperplasia (2) and primary pigmented nodular adrenal 

hyperplasia (1)] (Table 1). There was a female predominance in all causes of CS except 

EAS (female patients: 74% CD, 49% EAS, 86% AA, 80% ACC). Patients were treated with 

metyrapone between 1997 and 2013 (83% between 2007-2013). The average 

duration of treatment was eight months (median 3 months, range 3 days to 11.6 

years).  At initiation of treatment there was a wide age distribution, with 76% of 

patients aged 30-69 years (age range 1-81, median age 48, average age 49.6 +/- 15.7 
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years), and 32% of patients (n=63) were women in the reproductive ages 18 to 45 

(Figure 1).  Co-morbidities at presentation included hypertension (64.6%) and 

diabetes mellitus (35.3%). For patients with CD, baseline contrast-enhanced pituitary 

MRI was positive in all patients with a macroadenoma and in 53 out of 72 (73%) 

patients with a microadenoma. 

 

The main indication for metyrapone therapy was the control of severe symptoms of 

CS (CD 58%, EAS 77%, benign adrenal disease 44% and ACC 80%). Medical therapy was 

initiated as part of routine local practice in 8 out of 13 centers for the management of 

patients after diagnosis and prior to definitive therapy (e.g. surgery) regardless of the 

level of hypercortisolemia in a smaller number of patients (CD 25%, EAS 11%, benign 

adrenal disease 37%, ACC 0%). Delay in definitive treatment for CS (either due to 

medical reasons or requested by the patient) was a reason for starting medical 

therapy in 19% of patients. 25/195 patients (12.8%) received only cortisol-lowering 

treatment for their CS because of either inconclusive surgical target, palliation of 

aggressive malignancy (ACC or lung carcinoma), patients’ own preference, or high 

surgical risk. 

 

Biochemical changes during metyrapone treatment 

Monitoring data during metyrapone therapy were available for 193 patients. The 

frequency of the monitoring visits was variable with some centers opting for inpatient 

tests at the introduction of treatment and other centers using outpatient monitoring 

every few weeks. 81% of patients were treated with dose titration and 19% with 

‘block-and-replace’.  

 

Metyrapone monotherapy 

One hundred and sixty four patients received metyrapone monotherapy and all 

monitoring tests showed significant improvement during treatment (Table 2). At the 

last review, 55%, 43%, 46% and 76% of patients who had CDCs, UFCs, 09.00h cortisol 

<331nmol/L (12.0μg/dl) and 09.00h cortisol< ULN/600nmol/L (21.7μg/dl) were 

controlled.  
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Ninety-one patients were monitored with cortisol ‘day-curves’ during treatment; 

47/91 (52%) patients achieved a mean CDC < 300nmol/L (10.9μg/dl) during treatment 

(i.e. normalized cortisol target) and 81% of those who did not normalize had an 

improvement between the first and the last assessment on treatment (Figure 2a). 

Patients on a block-and replace regimen were more likely to achieve have a mean CDC 

< 150nmol/L. A total of 123 patients had 09.00h serum cortisol levels monitored; 

during treatment 83% (102/ 123) had a 09.00h serum cortisol bellow 600nmol/L 

(21.7μg/dl) or the ULN for the assay used and 56% (69/ 123) had a 09.00h level bellow 

331nmol/L (12.0μg/dl) with 86% of patients showing an improvement in cortisol levels 

(mean improvement 566nmol/L, median 467nmol/L) even if these biochemical 

targets were not achieved (Figure 2b).  

 

Effectiveness of metyrapone monotherapy before surgery 

The majority (124/164) of patients treated with metyrapone monotherapy received 

treatment before any surgical intervention (CD 81, EAS 11, benign adrenal disease 25, 

ACC 7) for an average of 4.0 months. There was a significant improvement in the 

biochemical targets during metyrapone therapy (Table 2). At the last review, 50%, 

35%, 40% or 72% of patients who had CDCs, UFCs, 09.00h cortisol <331nmol/L 

(12μg/dl) or 09.00h cortisol< ULN/600nmol/L (21.7μg/dl) were controlled (for dose 

see Table 3). 

 

At the time of the first normalization, 91% were treated with dose titration and 9% 

with block-and-replace.  In ACTH-dependent disease plasma ACTH levels were 

measured too sporadically to allow meaningful analysis.  10/18 (56%) patients who 

did not achieve a biochemical target also had a reduction of cortisol levels.  

 

Metyrapone monotherapy as secondary treatment 

Thirty-one patients (29 CD, 1 EAS, 1 benign adrenal disease) received metyrapone as 

secondary treatment following either surgery (21) or pituitary radiotherapy (17): 

21/31 as monotherapy; 10/31 as combination therapy. Of the patients who received 

metyrapone following primary surgery, 19 had pituitary surgery for CD (9 had a 

macroadenoma); one had a pancreatectomy for a neuroendocrine tumor; and one a 
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repeat adrenalectomy for an incomplete excision of an adrenal adenoma. Of the 

patients with CD 7/19 also received pituitary radiotherapy. For the patients on 

monotherapy (n=21), the mean starting dose of metyrapone was 1300mg (Table 3). 

Patients were treated for an average of 17.1 months. At the last review, 76%, 78% or 

94% of patients who had CDCs, 09.00h cortisol <331nmol/L (12μg/dl) or 09.00h 

cortisol <ULN/600nmol/L (21.7μg/dl) were controlled. At normalization 35% (6/17) of 

patients were treated with block-and-replace, and 65% (11/17) with dose titration.  

Biochemical tests (mean CDC and 09.00h cortisol) improved during treatment (Table 

2). Only four patients had UFCs during treatment, therefore the change in UFC for this 

group of patients was not analyzed. 

 

Long-term treatment with metyrapone monotherapy 

Monitoring data were available on 38 patients who received metyrapone 

monotherapy for longer than 6 months. The average duration of treatment was 18.6 

months and 6 patients had block-and-replace at some point during their treatment. 

Biochemical tests improved during treatment (Table 2). Overall, eucortisolemia was 

achieved in 72% (18/25) of patients who had CDCs, 77% (24/31) and 94% (29/31) of 

patients who had 09.00h cortisols (based on <331nmol/L or <ULN/600nmol/L cut-offs) 

or 64% (9/14) of patients who had UFCs. 

 

Starting and final dose (Table 3) 

Mean, median and range of doses on metyrapone monotherapy at the initiation of 

treatment and at final review are shown in Table 3. On ‘block-and-replace’ the starting 

dose of metyrapone was higher (mean dose 1432mg vs. 939.2mg, p<0.0001).  There 

were, however, no significant differences in the mean 09.00h serum cortisol levels 

during treatment or at the last review in the two groups [block-and-replace group 

during treatment 461.2nmol/L (16.7μg/dl) vs. dose titration group 507.8nmol/L 

(18.4μg/dl), p=0.50, last review 510.8nmol/L (18.5μg/dl) vs. 376.3nmol/L (13.6μg/dl), 

p=0.26]. 

 

Combination treatment 
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Twenty-nine patients were treated with a combination of metyrapone and other 

cortisol-lowering medication (mainly ketoconazole or mitotane, 7 patients had 

combination treatment from the start of therapy, whilst in 22 combination therapy 

was instigated after initial treatment with metyrapone). The CDC or 09.00h serum 

cortisol levels at diagnosis were not significantly different in the patients treated with 

combination compared with the patients treated with metyrapone monotherapy 

[CDC combination 830.8nmol/L (30.1μg/dl) vs. monotherapy 722.9nmol/L 

(26.2μg/dl), p=0.558, 09.00h cortisol, combination 1149nmol/L (41.6μg/dl), vs. 

monotherapy 882.9nmol/L (32.0μg/dl) p=0.077]. There was a significant improvement 

in CDC and 09.00h serum cortisol during treatment (Table 2). Only three patients on 

combination therapy had UFC monitoring, precluding analysis. At the last review, 47%, 

52% or 75% of patients who had CDCs, 09.00h cortisol <331nmol/L (12μg/dl) or 09.00h 

cortisol <ULN/600nmol/L (21.7μg/dl) were controlled. Patients who at the last review 

were controlled on a dose titration regimen based on CDCs and UFCs received 1850mg 

mean total daily dose (median 1500mg, range 750-6000mg). No subgroup analysis for 

efficacy was performed for this group due to small numbers.  

 

Safety considerations 

Side effects were noted in 48/195 patients (25%): 88% were managed as outpatients, 

whereas 12% (7/57 events) required either admission for evaluation or prolongation 

of a current admission.  The rate of adverse events in patients on therapy for 

>6months was 11% (4/38 patients). There were no pregnant women, and no deaths 

recorded due to an adverse event.  The average dose of metyrapone at the time of an 

adverse event was 1600mg. Gastrointestinal upset (23%) and hypoadrenalism (7% - 

symptoms of dizziness, hypotension, with biochemical confirmation) were the most 

common side effects. Most adverse events (39/56) occurred within 15 days of 

initiation of metyrapone or after a dose increase. Gastrointestinal upset and dizziness 

were the main reasons for discontinuing treatment. Patients with confirmed 

hypoadrenalism were managed either by addition of glucocorticoid (regimen change 

to a block-and-replace) or temporary cover with glucocorticoid and simultaneous 

reduction of metyrapone dose. In 15% of cases the metyrapone dose was reduced.  In 

12 cases (23%) metyrapone was withdrawn temporarily or permanently, with 11/12 
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showing full resolution, and in one symptoms continued but became less severe - 

muscle aches at presentation worsened during metyrapone therapy but returned to 

pre-treatment levels after drug withdrawal. Symptoms of hyperandrogenism were not 

frequent; hirsutism was not reported and there was only one case of worsening acne 

during treatment. Similarly edema was only reported in one case but the causative 

drug was thought to be a calcium channel blocker. Hypoglycemia was reported in 

three patients on diabetic medications and was associated with improvement of 

hypercortisolism. 

 

Potassium levels were monitored and actively treated at presentation and during 

therapy. In 138 patients on metyrapone monotherapy, with no other treatment 

interventions for their CS, mean potassium levels increased from 3.68nmol/L to 

3.90nmol/L (p=0.003) during treatment (Figure 3). 

 

 

Discussion  

We report the effectiveness of metyrapone in clinical practice for the treatment of CS.  

To our knowledge this is the largest study of metyrapone use as either monotherapy 

or metyrapone in combination with other cortisol-lowering medications.  Overall 

more than 80% of patients showed an improvement in levels of circulating cortisol 

with over 50% achieving biochemical eucortisolemia when on monotherapy when 

assessed by the stringent criterion of control on a CDC.  It is likely that additional 

therapies were added because of the severity of disease and clinician preference, but 

the retrospective and multicenter nature of our study precludes a formal assessment 

of this. Furthermore, our data support that metyrapone monotherapy is an effective 

treatment for hypercortisolemia either before or after surgical intervention to the 

primary cause of CS. 

 

Metyrapone is widely used in CS in the UK and other countries but less so in the USA. 

To date, the efficacy of metyrapone in reducing cortisol levels in CS has been described 

in case reports and small case series (13-16), with the largest series reported 25 years 

ago by Verhelst et al (10). In this single center experience, metyrapone was effective 
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in reducing cortisol levels in 75% of 91 patients with CD, EAS and ACC based on a mean 

CDC level <400nmol/L that is higher than the more stringent <300nmol/L level that we 

used in this study. Most patients in the Verhelst study received a short course of 

metyrapone except for 24 patients who had metyrapone for a median of 27 months 

following radiotherapy to the pituitary gland. Smaller studies have reported the 

efficacy of metyrapone in patients with CD undergoing radiotherapy (13-15) and EAS 

(17). Overall, in 200 cases of metyrapone monotherapy published in the English 

literature, biochemical control was achieved in 75% (18). We report similar efficacy. It 

is of note, however, that the majority of patients with CD in our study here were not 

treated in conjunction with pituitary radiotherapy, and there did not appear to be 

evidence of an escape of control phenomenon, although we cannot comment on 

plasma ACTH levels during monitoring. 

 

Ketoconazole, an antifungal agent and inhibitor of adrenal steroidogenesis, has also 

been widely used as a cortisol-lowering agent in CS. In the largest report to date, 

Castinetti et al reported biochemical control in 50% of patients with CS treated with 

ketoconazole monotherapy with biochemical improvement in 75% and evidence of 

regression of clinical features in up to 60% (4). Overall, in 456 published cases treated 

with ketoconazole monotherapy, 60% achieved control (18).  Combination treatment 

with metyrapone and ketoconazole is commonly used (19), especially for the rapid 

control of hypercortisolism prior to definite treatment. In 22 patients with severe 

hypercortisolism due to EAS (n=14) and ACC (n=8), combination treatment of 

metyrapone and ketoconazole dramatically improved UFC levels within a month of 

treatment, while half of the patients also started mitotane during this time (20). 

Kamenicky et al used a triple-medication protocol with simultaneous administration 

of ketoconazole, metyrapone and mitotane in 11 patients with hypercortisolism and 

life-threatening complications as an alternative to bilateral adrenalectomy; all 

patients showed rapid clinical and biochemical improvement (21). In both studies, the 

initial biochemical control is mainly due to the combination of ketoconazole and 

metyrapone as the onset of action of mitotane is usually delayed by several weeks 

due to accumulation in adipose tissue (22). In one of the few prospective studies of 

medical treatment of CD, Feelders et al used a stepwise approach to treat 17 patients 
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with CD with a combination of pituitary and adrenal-acting agents. Patients were 

initially treated with the somatostatin analog pasireotide, followed by cabergoline, 

and ketoconazole was later introduced if biochemical control was suboptimal. Nine 

out of 17 patients normalized with pasireotide/ cabergoline and ketoconazole induced 

biochemical control in 6/8 remaining patients (75%) within 20 days of treatment (23).  

 

Metyrapone increases cortisol metabolites in the serum and urine due to the 

predominant inhibition of 11β-hydroxylase, and to a lesser extent the other 

steroidogenesis enzymes (10,24). In particular, 11-deoxycortisol levels may become 

profoundly elevated in patients on metyrapone therapy, especially in patients with CD 

(25,26). 11-deoxycortisol is structurally very similar to cortisol and may cross-react 

with cortisol immunoassays resulting in an overestimation of serum cortisol values in 

patients on metyrapone (26). The importance of this is underscored by the fact that 

symptoms of adrenal insufficiency may overlap those of side effects of metyrapone. 

Thus, cortisol estimation by more accurate methods such as mass spectrometry is 

advisable, and should be used where available (27). Moreover, it is likely that our data 

may underestimate the efficacy of metyrapone therapy when assessing serum 

measurements of cortisol as the cross-reactivity in immunoassays results in 

approximate 20% elevated bias (25). 

 

Hypokalemia has been described as a potential serious complication of metyrapone 

therapy (24,28) due to the increase in steroid precursors with mineralocorticoid 

activity (11-deoxycorticosterone). Our data suggest clinicians using metyrapone are 

well aware of the importance of monitoring and managing serum potassium levels 

since we found that these increase significantly with supportive measures during 

treatment.  It is important to stress, however, that such active monitoring is required, 

as hypokalemia is also a potentially harmful feature of CS. The most common adverse 

effects observed were mild gastrointestinal symptoms and hypoadrenalism, the latter 

a positive response to treatment provided that it is recognized and managed early. 

Patients on long-term treatment are more likely those who tolerate metyrapone well, 

therefore the rate of adverse events was favorable in this subgroup. Interestingly, 

hirsutism was not reported. 
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This study carries the limitations imposed by its retrospective design. Furthermore, 

there is currently no standardized monitoring and dosing regimen for patients on 

metyrapone therapy. The monitoring of hypercortisolemia in patients with CS on 

medical treatment is important to ensure that patients are treated with the correct 

dose and that hypoadrenalism, if present, is recognized early; measurement of serum 

cortisol allows this. Even though the study was conducted in University centers with 

significant expertise in the management of CS, the choice of biochemical monitoring 

test and frequency of monitoring varied. This has affected the uniformity of the data 

presented. During the period of the study the common clinical practice was to aim for 

a 09.00h cortisol bellow the upper limit of normal for the assay used or less than 

600nmol/L. Any results above these levels would prompt up-titration of the dose or 

addition of a second agent.  Therefore we have reported these cut-offs as the criteria 

for normalization of hypercortisolemia. More stringent 09.00h serum cortisol levels to 

define control have been proposed recently (12), with suggested values below 331 

nmol/L (12μg/dL). It is not possible to know whether clinicians would have up-titrated 

the dose of metyrapone had this criterion been used, and therefore we can only 

speculate that the overall control when using this criterion might have been better if 

applied in practice.  

 

In conclusion, our data show that metyrapone is effective and safe in treating 

hypercortisolemia in patients with Cushing's syndrome. 
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Figures and Tables 

 
 
 
Figure 1 
Age of patients at initiation of metyrapone therapy and diagnosis of Cushing’s 
syndrome 
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Figure 2 
Mean serum cortisol day curve (CDC) and 09.00h serum cortisol levels during 
treatment with metyrapone monotherapy.  
 
a), Change in mean CDC in 91 patients treated with metyrapone monotherapy 

between the 1st review following initiation of metyrapone and the last review on 

treatment: 52% (47/91) patients achieved biochemical normalization, 89% showed an 

improvement).  

b), Change in the pre-treatment 09.00h cortisol level in 123 patients treated with 

metyrapone monotherapy and the last review on treatment: 86% showed an 

improvement; 102 (83%) patients had a 09.00h serum cortisol value below the ULN 

for the assay used or 600nmol/L (whichever was lowest) and 69 (56%) had a 09.00h 

level<331nmol/L. 
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Figure 3 

Potassium levels before and during metyrapone monotherapy in 138 patients.  
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Table 1 Baseline patient characteristics 
 

Etiology No of patients Female/ Male Average age at diagnosis 
(years) 

Average age at metyrapone 
onset (years) 

Cushing’s disease 
   Macroadenoma  
   Microadenoma   

115* 
37 
77 

85/30 45.9 47.4 

Ectopic ACTH syndrome  37 18/19 52.6 52.9 
Benign Adrenal Disease   

   Adrenal adenoma 
   AIMH    
   PPNAD   

33 
30 
2 
1 

27/6 
26/4 
1/1 
0/1 

50.3 51.2 

Adrenocortical Carcinoma  10 8/2 56.0 56.4 
*Size of adenoma not available in 1 patient 
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Table 2: Change in biochemical markers during metyrapone therapy (mean values) 
 

 Number of patients Pre-treatment During treatment1 At the last review on treatment1 
Monotherapy 
 
Overall 
Mean CDC2 

0900h serum cortisol 
Urinary free cortisol  
UFC:ULN3 

 
Before surgery  
Mean CDC 

0900h serum cortisol 
Urinary free cortisol 
UFC:ULN 

 
Secondary therapy  
Mean CDC 
0900h serum cortisol 
 
Long-term treatment4 
Mean CDC 
0900h serum cortisol 

 
 

164 
91 

123 
37 
37 

 
124 
70 
82 
25 
25 

 
21 
12 
17 

 
38 
24 
31 

 
 
 
722.9nmol/L (26.2μg/dl)  
882.9nmol/L (32.0μg/dl)  
1483nmol/24h (537μg/24h)  
7.2 
 
 
691.5nmol/L (25.1μg/dl) 
779.7nmol/L (28.3μg/dl)  
1318nmol/24h (478μg/24h) 
6.4 
 
 
478.5nmol/L (17.3μg/dl)  
659.6nmol/L (23.9μg/dl) 
 
 
451.4nmol/L (16.4μg/dl)  
734.2nmol/L (26.6μg/dl)  

 
 

 
396.4nmol/L (14.4μg/dl), p<0.0001 
527.8nmol/L (19.1μg/dl), p<0.0001 
1070nmol/24h (388μg/24h), p=0.588 
5.4, p=0.556 
 
 
407.7nmol/L (14.8μg/dl), p<0.0001 
508.0nmol/L (18.4μg/dl), p<0.0001 
1049nmol/24h (380μg/24h), p=0.704 
5.5, p=0.553 
 
 
311.0nmol/L (11.3μg/dl), p=0.001 
361.3nmol/L (13.1μg/dl), p=0.0001 
 
 
339.5nmol/L (12.3μg/dl) p=0.07 
428.2nmol/L (15.5μg/dl), p<0.0001 

 
 
 
348.6nmol/L (12.6μg/dl), p<0001 
491.1nmol/L (17.8μg/dl), p<0.0001 
453nmol/24h (164μg/24h), p=0.003 
2.5, p=0.020 
 
 
351.5nmol/L (12.7μg/dl), p<0.0001 
495.6nmol/L (18.0μg/dl), p<0.0001 
525nmol/24h (190μg/24h), p=0.008 
2.9, p=0.014 
 
 
248.9nmol/L (9.0μg/dl), p=0.001 
281.3nmol/L (10.2μg/dl), p=0.002 
 
 
366.2nmol/L (13.3μg/dl), p=0.35 
384.5nmol/L (13.9μg/dl), p<0.0001 

Combination therapy 
Mean CDC 
0900h serum cortisol 

29 
17 
20 

 
830.8nmol/L (30.1μg/dl)  
1149nmol/L (41.6μg/dl)  

 
314.2nmol/L (11.4μg/dl), p<0.0001 
522.9nmol/L (19.0μg/dl), p<0.0001 

 
278.7nmol/L (10.1μg/dl), p<0.0001 
471.9nmol/L (17.1μg/dl), p=0.003 

1 Statistical analysis is compared to the pre-treatment value 
2 Mean cortisol of a cortisol day-curve 
3 Urinary free cortisol to the upper limit of normal for the assay used 
4 More than 6 months 
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Table 3 Total daily dosage of metyrapone for patients treated with a dose titration regimen 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*given in 2-4 divided doses; mean/ median/ range 
 
 
 
 

 *Starting dose (mg) *Final dose (mg) 
Metyrapone monotherapy (n=164) 

CD (n=96) 
EAS (n=27) 
Benign adrenal disease (n=31) 
ACC (n=10) 
 

1040, 750, 250-3750 
1020, 750, 250-3000 
1260, 1000, 500-3750 
820, 1000, 250-2250 
1230, 1500, 750-2000 

1425/ 1500/ 500-4000 
1380/ 1375/ 500-3500 
1990/ 1500/ 500-3750 
1210/ 750/ 500-4000  
1190/ 1250/ 750-1500 

Pre-surgery (n=124) 
CD (n=81) 
EAS (n=11) 
Benign adrenal disease (n=25) 
ACC (n=7) 
 

1000, 750, 500-2250 
980, 750, 500-2250 
1200, 1500, 500-2000 
880, 750, 500-2250 
1250, 1500, 750-2000 

1440, 1500, 500-4000 
1400, 1500, 500-3500 
2120, 2250, 500-3750 
1230, 1000, 500-4000 
1080, 1000, 750-1500 

Secondary treatment (n=25) 
 

1300, 1125, 500-3000 1400, 1500, 500-2250 

Long-term treatment (>6months) (n=38) 940, 750, 500-3000 1560, 1500, 500-4000 
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5.2. Study 2: Medical therapy in Nelson’s syndrome 
	

A prospective longitudinal study of Pasireotide in Nelson’s syndrome.  

Published in: Pituitary  

2018; 21: 247. https://doi.org/10.1007/s11102-017-0853-3 

Link to the publication: https://link.springer.com/article/10.1007/s11102-017-0853-3 

Authors’ accepted copy of the paper is included in this thesis, pages 131 to 150. 
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Abstract  

	

Purpose: Nelson’s syndrome is a challenging condition that can develop following bilateral 

adrenalectomy for Cushing’s disease, with high circulating ACTH levels, pigmentation and an 

invasive pituitary tumor.  There is no established medical therapy.  The aim of the study was to 

assess the effects of pasireotide on plasma ACTH and tumor volume in Nelson’s syndrome. 

 

Methods: Open labeled multicenter longitudinal trial in three steps: 1) a placebo-controlled acute 

response test; 2) one month pasireotide 300-600μg s.c. twice-daily; 3) six months pasireotide long-

acting-release (LAR)  40-60mg monthly.  

 

Results: Seven patients had s.c. treatment and 5 proceeded to LAR treatment. There was a 

significant reduction in morning plasma ACTH during treatment (mean+/-sd; 1823+/-1286ng/l vs. 

888.0+/-812.8ng/l during the s.c. phase vs. 829.0+/-1171ng/l during the LAR phase, P<0.0001). 

Analysis of ACTH levels using a random intercept linear mixed–random effects longitudinal model 

showed that ACTH (before the morning dose of glucocorticoids) declined significantly by 26.1ng/l 

per week during the 28-weeks of treatment (95% CI -45.2 to -7.1, P<0.01). An acute response to a 

test dose predicted outcome in 4/5 patients.  Overall, there was no significant change in tumor 

volumes (1.4+/-0.9 vs. 1.3+/-1.0, P=0.86). Four patients withdrew during the study. Hyperglycemia 

occurred in 6 patients. 

 

Conclusions: Pasireotide lowers plasma ACTH levels in patients with Nelson’s syndrome. A longer 

period of treatment may be needed to assess the effects of pasireotide on tumor volume.   
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Introduction 

 

Nelson’s syndrome is a very challenging condition that can develop following bilateral 

adrenalectomy (BLA) for Cushing’s disease (CD), and is due to the development of a progressive 

tumor of the corticotroph cells in the pituitary (1). It occurs in up to 30% of patients with CD 

undergoing bilateral adrenalectomy (2) although progression of the size of a corticotroph tumor as 

assessed by MRI is more common and is detected in 50% of patients within 10 years of BLA for CD 

(3,4). The corticotroph tumor may be small in some cases but may also be extensive and locally 

invasive in others; patients can present with mass effects, headache, visual field defects, and 

external ophthalmoplegia (5,6). The hallmarks of the syndrome are skin hyperpigmentation and 

high plasma adrenocorticotropic hormone (ACTH) levels that reflect the activity of the tumor and 

are used for monitoring (7). Treatment of Nelson’s is restricted to pituitary surgery and 

radiotherapy only when there is an amenable anatomic target and the patient’s condition allows 

(8-10). In many patients with Nelson’s syndrome these conditions are not met; the levels of ACTH 

continue to rise, the symptoms persist and there are limited treatment options.  

 

There is currently no medical therapy that can consistently reduce plasma ACTH levels and 

corticotroph tumor growth, and there is a real need for an effective medical management for 

Nelson’s syndrome. The anti-epileptic sodium valproate was frequently used in the past with 

disappointing or variable results (11-16) and dopamine agonists such as cabergoline only 

occasionally result in satisfactory response (17-20). Peroxisome proliferator-activated receptor 

gamma (PPARγ) agonists such as rosiglitazone have also been studied: one report showed 

biochemical response in two out of three patients, but one of these subsequently escaped (21). 

Our group previously showed that even high doses of rosiglitazone (12mg/day) do not reduce 

plasma ACTH levels (5).  Temozolomide is a medical treatment for aggressive pituitary tumors, but 

is associated with significant toxicity limiting its use (22).   

 

Pasireotide exerts its pharmacologic effects by binding and activating multiple somatostatin 

receptor subtypes (1, 2, 3, and 5). In vitro experiments have shown that pasireotide inhibits ACTH 

secretion in cultured corticotroph adenoma cells (23) and prospective clinical trials have proved 
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effectiveness in lowering cortisol levels in patients with active Cushing’s disease (24-26). More 

recently, pasireotide LAR was used to treat a patient with an invasive corticotroph tumor resulting 

in clinical improvement, and reductions in tumor size and plasma ACTH levels (27).  

 

In light of these data we have performed a prospective multicenter clinical study aiming to 

investigate the effects of pasireotide on circulating plasma ACTH and tumor size in patients with 

Nelson’s syndrome. In particular, the study was structured to assess: 1) the acute effects of 

pasireotide on circulating levels of plasma ACTH after a single 600μg s.c. injection, and whether 

this would allow prediction of individual longer-term response, 2) the effects of four-weeks of 

pasireotide s.c. on circulating plasma ACTH, 3) the effects of pasireotide LAR given monthly for 6 

months on circulating plasma ACTH, and 4) the effect of pasireotide s.c. and LAR on tumor volume.  

 

 

Methods 

 

Study design 

This was an open labeled longitudinal trial over a 31-week period conducted in four tertiary centers 

in England, UK.  As there is currently no alternative treatment for Nelson’s syndrome, no control 

group was used. There were three parts to the study. Initially, an acute response of plasma ACTH 

to pasireotide was assessed in a placebo-controlled randomized single-blinded crossover 

intervention where patients received either a test dose of 600μg pasireotide s.c. or an equivalent 

volume of saline s.c. whilst omitting their glucocorticoid treatment to establish if an acute response 

predicts future efficacy. In the second part of the study, patients received short-term (4-weeks) 

open label treatment with pasireotide twice-daily s.c. (600μg b.d. or 300μg b.d. if dose reduction 

due to tolerability was necessary). In the last part of the study patients had long-term open label 

treatment with pasireotide LAR 60mg (or 40mg if reduced for tolerability) every 28 days for 24 

weeks (Figure 1).   
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Study endpoints 

Primary endpoint: Early morning plasma ACTH sampled before (0 hours), and 2 hours after morning 

glucocorticoid (GC) replacement during 4 weeks of pasireotide s.c. 1200 μg/day (or 600 μg/day if 

reduced for tolerability issues) compared with levels at these respective time points found at 

baseline and after chronic depot pasireotide LAR i.m. every 28 days. The response criteria were 

defined according to the fall in plasma ACTH prior to first morning dose of GC or the fall in plasma 

ACTH 2hours after the morning dose of GC. Complete success was defined as a fall in pre-GC plasma 

ACTH >400ng/l, or fall of >200ng/l 2 hours after GC; partial success a fall in pre-GC plasma ACTH 

<399ng/l >200ng/l, or 2 hours after GC <199ng/l >100ng/l; and not successful a fall in pre-GC 

plasma ACTH <199ng/l, or 2 hours after GC <99ng/l. The baseline value of the pre-GC ACTH was 

the mean of 4 values (from visits 1 to 4). The baseline of the post-GC ACTH was the value from visit 

1 (screening visit).  

 

Secondary endpoints: (1) Plasma ACTH before and at 2, 3, 4, 5, and 6 hours after an acute single 

dose of 600μg pasireotide or saline. (2) Changes in tumor volume at the end of the study 

determined by MRI. (3) Changes in skin pigmentation at the end of the study period compared with 

pre-treatment. (4) Change in HbA1c, fasting insulin and glucose levels during pasireotide s.c. and 

LAR treatment. (5) Tolerability and safety of pasireotide.  

 

Patients  

Patients with Nelson’s syndrome were eligible to take part in this study. All patients gave informed 

consent and the study was approved by the UK Health Research Authority (ref 10/H1005/53). The 

inclusion criteria were: male or female patients aged 18-80 years with signs, symptoms and 

biochemistry consistent with Nelson’s syndrome and a negative pregnancy test (where applicable). 

The exclusion criteria �were: (1) pituitary radiotherapy within the last year prior to study entry, (2) 

recent significant deterioration in visual fields or other neurological signs related to tumor mass 

requiring surgery, (3) severe liver disease, (4) symptomatic cholelithiasis, (5) clinically significant 

abnormal laboratory values, (6) a QTcF interval measured on the EKG >480ms, (7) pregnancy or 

lactation, (8) recent (last 6 months) history of alcohol or drug abuse, (9) concurrent administration 

of investigational drug for another study, (10) history of non-compliance, or inability to complete 
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the entire study for any reason. Skin pigmentation was assessed at screening, at the start and at 

the end of pasireotide LAR treatment. Patients received no previous medical treatment for NS; 

patient characteristics are provided in the Supplementary Table.   

 

Measurements 

Imaging 

Gadolinium-enhanced MRI of the pituitary was performed at the participating centers before and 

after treatment to assess the tumor volume. A blinded radiologist assessed the scans using 

standard volumetric techniques (28-30). Abdominal USS was performed at screening and at the 

end of the study to assess for the presence of cholelithiasis. 

 

Skin pigmentation 

An assessment of the pigmentation by the attending physicians and medical photographs of 

participants were performed at screening, at the start, and at the end of pasireotide LAR treatment. 

The photographs of all participants were collected and analyzed centrally.  

 

Assays 

Fasting insulin and ACTH samples were collected and analyzed at the central Clinical Chemistry 

laboratory. Insulin was measured with the Roche electrochemiluminescence immunoassay on a 

cobas e602 module (reference range 17.8-173pmol/L, CV 1.8% and 2.5% at values of 121 and 

2062pmol/L). ACTH was measured by chemiluminescent immunometric assay on the Siemens 

Immulite 2000 analyzer (reference range <46ng/L at 9am and <15ng/L at midnight, CV 5.56% and 

6.94% at values of 26.2 and 382ng/L).  

 

Statistical Analysis 

Sample size: A target of 17 patients was calculated taking into account the variability of ACTH levels 

and a 13% dropout rate which was recorded for a pasireotide phase 2 study (31). Accounting for a 
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within person variability of ACTH levels of approximately 400ng/l for the pre-GC dose and 250ng/l 

post-GC dose, 15 patients were needed to detect a clinically significant change of 200ng/l with a 

power of 80% with 5% significance and a further two patients to cover possible dropout (5).  

 

Statistical analysis was performed using GraphPad (6.0d GraphPad Software, La Jolla California 

USA), SPSS v22 (IBM Corp., Armonk, NY) and STATA (StataCorp., College Station, TX: StataCorp LP). 

The main aim of the analysis was to establish whether ACTH levels change over time after 

pasireotide therapy. ACTH levels at 0h (before morning glucocorticoid dose) and 2-post GC dose, 

were compared before onset of pasireotide treatment (‘baseline’), during s.c. and LAR pasireotide 

treatment using the Kruskal-Wallis non-parametric test; results are reported in mean+/-sd. 

Baseline ACTH levels at 0h were compared with baseline ACTH levels at 2h using a two tailed Mann-

Whitney non-parametric test.’ For the acute response test we calculated the relative decrease of 

ACTH levels at 2, 3, 4, 5, and 6 hours after a single s.c.  pasireotide dose from the mean pre-dose 

ACTH levels (time points were at -1, -0.5 and 0 hours before dose) as well as a mean relative 

decrease. Comparison of safety blood tests was with one-way ANOVA. The longitudinal data (ACTH 

levels) were analyzed using a linear mixed–random effects model. We report estimates for the 

coefficient(s) from these regression models along with their associated 95% confidence interval 

(CI). Tumor volumes before and after treatment were compared by paired t-test, assuming a 

normal distribution; results are reported in mean+/-sd. A p value <0.05 was considered statistically 

significant. 

  

 

Results  

Patients  

Eight patients were recruited, all females. Of the eight patients, two withdrew during the s.c. phase 

(1, 8) and two in the LAR phase of treatment (5, 7) and 4 patients (2, 3, 4, 6) completed all of the 

study visits (Table 1).  In all patients any radiotherapy had been administered at least 5 years prior 

to study entry. Patient 1 withdrew after 11 days of s.c. pasireotide 1200 μg b.d. due to abdominal 

cramps (resolved after stopping pasireotide). Patient 5 withdrew after completing the s.c. phase. 

Patient 7 withdrew during the LAR phase due to significant hyperglycemia that persisted at the end 
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of the study visit 2 months after stopping pasireotide but improved to baseline on longer follow-

up after study completion. Patient 8 withdrew during the first visit of the s.c. phase due to adverse 

events (felt unwell, drowsy, had a headache and was hypotensive during the visit); ACTH sampling 

from this visit was incomplete and therefore ACTH levels from this patient were not included in the 

statistical analysis. 

 

Plasma ACTH levels improved during pasireotide treatment  

ACTH levels at 0h prior to the morning glucocorticoid dose (ACTH 0h) at baseline were compared 

with ACTH 0h levels during the s.c. phase and ACTH 0h levels during the LAR phase. Overall, there 

was a significant reduction in ACTH 0h during treatment (mean baseline 1823 +/- 1286ng/l vs. 888.0 

+/- 812.8ng/l during the s.c. phase vs. 829.0 +/- 1171ng/l during the LAR phase, p<0.0001, H=20.93 

mean ranks 57.3 vs. 37.5 vs. 29.8) (Figure 2). Similarly, comparison of ACTH levels 2h after the 

morning glucocorticoid dose showed reduction of ACTH 2h levels during the two treatment phases 

(mean baseline 1100 +/- 987ng/l vs. 490.0 +/- 460.3ng/l during the s.c. phase vs. 262.2 +/- 219.4ng/l 

during the LAR phase, p=0.001, H=13.38 mean ranks 40.2 vs. 31.1 vs. 21.1). Baseline ACTH levels at 

0h and 2h post glucocorticoid dose were significantly different (p=0.04). In order to investigate the 

change of ACTH levels over time, plasma ACTH (0h pre-GC and 2h post-GC) at each study visit and 

for each individual patient were analyzed using a marginal Generalized Linear Model (GLM) for 

longitudinal data. There was a statistically significant decline in the ACTH 0h pre-GC levels 

throughout the study; ACTH 0h levels declined by 26.1 ng/l per week (95% CI -45.2 to -7.1; P 

<0.007). GLM analysis showed that plasma ACTH 2h post-GC levels did not significantly change over 

time; ACTH 2h levels declined by 4.0ng/l per week, 95% CI -12.58 to 4.49, p=0.35. 

 

Applying the a priori ACTH response criteria at the end of 4-weeks of s.c. pasireotide (or at the last 

visit if patient withdrew prior to the end of this phase) 5/8 patients had a complete response, 2/8 

had a partial response while one patient did not respond (Table 1). The patient who did not respond 

withdrew very early from the study after one s.c. dose of pasireotide (patient 8). At the end of 24-

weeks of pasireotide LAR treatment or at the last visit, 3/5 patients had a complete response, 1/5 

a partial response and 1/5 showed no response. Four patients completed the study; 3/4 had a 

complete response at the end of the study and 1/4 did not respond (Table 1). Overall, 6/8 patients 
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had complete or partial responses at their last biochemical assessment (either at the end of the 

study or last visit before withdrawal (Figure 3).  There was no clear relationship between dose 

administered and effect. 

 

Acute response to pasireotide test dose  

Six patients received the pasireotide/placebo test dose while omitting their glucocorticoid 

treatment (Figure 4); 5/6 patients showed a consistent reduction in plasma ACTH levels and one 

(patient 6) did not respond (patient 4 received her usual glucocorticoid dose during the test and is 

excluded). The mean relative decrease in plasma ACTH levels before and 2-6hours after a 

pasireotide test dose in the five patients who showed a positive response to the test was between 

25-84% (patient 2 79%, patient 3 25%, patient 4 84%, patient 5 53%, patient 7 70%); all patients 

with a positive acute response (i.e. reduction in ACTH levels post pasireotide test dose) showed a 

positive response at the s.c. phase of treatment. The maximum reduction was observed between 

4 to 6h for all patients; those with a maximum relative decrease of at least 42% of their baseline 

ACTH levels following a test dose showed some response (complete or partial) to pasireotide 

treatment.  

 

Change in tumor volume and skin pigmentation 

Tumor volume: Five patients had MRIs at screening and at the end of the study; four patients 

completed the 28-weeks of the treatment protocol (patients 2, 3, 4, 6) and one patient (patient 7) 

withdrew during the LAR phase. Overall, there was no significant change in tumor volumes 

between the pre-treatment and post-treatment scans (1.4+/-0.9 vs. 1.3+/-1.0, p=0.86). 

Skin pigmentation: There was no evidence of a change in skin pigmentation during the study as 

assessed by the independent assessor, although the attending physicians at the centers felt there 

was an improvement in 3 patients (patients 3, 6, 7).  

 

Hyperglycemia during treatment 



	 139	

Fasting blood glucose and Hba1c increased during therapy and 6 patients developed hyperglycemia 

(Figure 5). Fasting glucose: mean at baseline 4.6 +/- 0.6mmol/l vs. 6.9 +/- 1.6mmol/l during s.c. 

phase vs. 9.6 +/- 2.9mmol/l during LAR phase, p<0.01, Hba1c in mmol/mol: mean at baseline 

42.9+/-7.8 vs. 45.6+/-8.5 during s.c. phase vs. 60.0+/-13.6 during LAR phase, p<0.01. Patient 7 

withdrew from the study due to significant hyperglycemia after 16 weeks of treatment. Fasting 

insulin levels reduced during s.c. and LAR pasireotide treatment (mean baseline 118.1 +/- 23.70 vs. 

mean during s.c. treatment 51.09 +/- 12.52 vs. 64.94 +/- 111.90 during LAR phase, p=0.04). 

 

Adverse events  

During the study the majority of patients reported diarrhea (7 patients), nausea and headaches (6 

patients), dizziness (5), abdominal cramps (4), flu-like symptoms (4) and symptoms of 

hyperglycemia (4). There were no events attributed to cholelithiasis, no clinically significant events 

relating to baseline blood tests (electrolytes, renal and liver function tests). 

 

 

 

Discussion 

 

Nelson’s syndrome affects a significant number of patients treated with bilateral adrenalectomy 

for the management of hypercortisolism associated with Cushing’s disease, and can be severely 

debilitating and life threatening. Although Nelson’s syndrome is a condition that may be 

anticipated to occur after BLA, it poses a significant clinical management challenge, as there is 

currently no medical treatment that works consistently.  In this prospective clinical study we have 

shown that pasireotide significantly reduces plasma ACTH levels in patients with Nelson’s 

syndrome. All 7 patients treated with s.c. pasireotide (600 or 300μg b.d.) had a significant reduction 

in plasma ACTH levels  and 4 out of 5 patients who progressed to receive monthly LAR pasireotide 

treatment continued to show a biochemical response. Pasireotide could, therefore, be considered 

for the treatment of patients with Nelson’s syndrome especially if there is positive biochemical 
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response to s.c. pasireotide after a short 4-week treatment trial. Following this period patients that 

respond could continue on s.c. treatment or change to monthly LAR administration.  

 

In this 28-week study there were no conclusive changes in either skin pigmentation or tumor 

volume, although there was an indication of possible improvement in pigmentation in 3/7 patients 

and there was at least one patient with minimal improvement in tumor volume. It is reasonable to 

anticipate that a biochemical response would be followed by a reduction in tumor volume on long-

term treatment and our negative findings could be due to the small patient numbers or the short 

duration of treatment. A reduction of tumor volume with pasireotide treatment has been 

documented in patients with CD (24, 32) and a case report of a patient with Nelson’s syndrome 

treated with pasireotide LAR (27); similar to our findings, the reduction in ACTH in this case report 

was evident early, within one month of treatment with improvement of skin hyperpigmentation. 

Tumor shrinkage is also well documented in patients with acromegaly treated with first and second 

generation somatostatin analogs (33).  A longer period of treatment is needed to fully assess the 

effects of pasireotide on tumor volume in Nelson’s syndrome. 

 

In the advent of personalized medicine, predicting which patients are more likely to benefit from 

pasireotide treatment is extremely desirable as it could avoid expensive unnecessary treatment 

trials and exposure of patients to potential side effects. A positive acute response to pasireotide 

test dose (i.e. reduction in plasma ACTH levels following a single 600μg s.c. dose) may predict 

response to long-term treatment in the majority of patients, but a negative response does not 

exclude that a response will be seen; 5 out of 6 patients who had a consistent reduction in plasma 

ACTH after a test dose had a response to pasireotide treatment. Furthermore, patients that 

exhibited a decrease of plasma ACTH by at least 42% from baseline 4 to 6 hours after a pasireotide 

test dose showed some response (partial or complete) to pasireotide treatment. Histopathological 

analysis of tissue samples in patients with prior pituitary surgery looking specifically at the 

expression of somatostatin receptors (SSTR) could be assessed as a factor for predicting 

responsiveness. Unfortunately, the historical histological samples in this study were not available 

for re-examination but correlation of the SSTR expression patterns and biochemical response 

would have been interesting to examine and could help explain the differences in response 

between patients. However, it is also possible that SSTR expression from the original corticotroph 
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tumor is different than the active Nelson’s tumor, and potentially this might be affected by other 

modalities of therapy, including radiotherapy. Furthermore, recent molecular studies in patients 

with CD suggest that there is enhanced SSTR5 mRNA expression in corticotroph adenomas 

harboring somatic mutations of the USP8 gene, and it is possible that the presence of USP8 

mutations could help predict response to pasireotide treatment in Nelson’s tumors (34). In our 

study no clear dose response relationship was observed on the effect on plasma ACTH.  This may 

be due to varying expression of somatostatin receptors in the tumors or their signaling. 

Interestingly, there does not appear to be a dose response relationship for the effects of 

pasireotide in Cushing’s disease. 

 

The future place of pasireotide in patients with Nelson’s syndrome needs to be balanced by its side 

effects, especially hyperglycemia. Hyperglycemia was a frequent adverse event associated with 

pasireotide treatment in this study with six out of seven patients developing abnormal fasting 

glucose and either new or worsening diabetes. Fasting glucose and HbA1c continued to increase 

during treatment in spite of the clinicians’ attempts to treat this medically and one patient 

withdrew due to hyperglycemia. Similarly, high rates of hyperglycemia were reported in 49% of 

patients treated with LAR pasireotide (35) and 73% of patients treated with s.c. pasireotide (1200 

or 1800 μg daily) for CD (24); in this study 6% of patients discontinued treatment due to a 

hyperglycemia related adverse event and 46% had to start a new anti-diabetic medication. The 

significant fall in insulin levels observed in our study is consistent with suppression of insulin 

secretion from beta cells of the pancreas, in keeping with the known action of pasireotide at the 

somatostatin subtype 5 receptors on these cells (36). The observed hyperglycemia following 

pasireotide treatment is due to the suppression of insulin and incretin response (glucagon-like 

peptide 1 and glucose-dependent insulinotropic polypeptide) (36). Greater physician awareness of 

the pasireotide-associated hyperglycemia and more aggressive management of glucose-related 

AEs may make pasireotide more acceptable for managing this challenging condition (37). Active 

monitoring and management of glucose homeostasis is needed and patients counseled about this 

prior to therapy. 

 

The main limitations of this study are the small patient numbers, with this reflecting on overall 

generalizability, and the fact that half the patients did not complete the study.  Although the 
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recruitment target was not met, the results confirm a statistically significant biochemical effect 

even in this small patient size.  Plasma ACTH levels before the morning administration of 

glucocorticoid dose (ACTH 0h) are most commonly used for monitoring of patients with Nelson’s 

syndrome and our results show statistically significant reductions during treatment with the robust 

GLM test. A non-significant trend of reduction of plasma ACTH levels 2h post glucocorticoid dose 

with GLM is likely due to lack of power and lower baseline levels of ACTH after glucocorticoid 

administration (mean baseline ACTH 0h 1823 +/- 1286ng/l vs. mean baseline ACTH 2h 1100 +/- 

987ng/l). Three of the patients who showed response received radiation therapy 6-16 years prior 

to study entry and in the absence of historic ACTH levels a small lasting effect of radiation 

treatment on ACTH levels cannot be definitely excluded, but given the rapid fall in ACTH seen on 

treatment and the very long time period from radiation administration a significant contributing 

effect of radiation is unlikely. Treatment for periods longer than this study protocol (7 months) are 

likely needed to investigate the effect of treatment in tumor volume. The strengths of the study lie 

in the prospective design and the statistically significant evidence of biochemical response to 

medical therapy.  

 

In conclusion, pasireotide treatment (s.c. and LAR) was effective in reducing ACTH levels in Nelson’s 

syndrome and might represent a potential treatment on an individualized basis as treatment 

options are limited; the lack of complete consistency of response precludes making firm 

recommendations. If considered, active monitoring and management of glucose homeostasis is 

mandatory. The patients who responded did so soon after initiation of pasireotide, and thus it 

would be reasonable to consider a complete lack of response after two months of treatment as a 

failure of response and therapy be discontinued. The LAR preparation appears as effective as the 

s.c. preparation and is likely to be more acceptable to patients. It would seem reasonable to 

commence therapy at a lower dose and escalate if tolerated, as there appears to be no clear 

relationship between dose and effect. Our study is limited, however, by the small sample size and 

duration of therapy, precluding wide generalizability, and further studies are needed of longer 

duration (12-24 months) in greater numbers to formally assess the impact of pasireotide in 

Nelson’s syndrome. 
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Figure 1: Pasireotide treatment in Nelson’s syndrome: study design 
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Figure 2: Mean plasma ACTH at 0hours prior to the morning dose of glucocorticoids improved 
during pasireotide treatment (mean baseline 1823+/-1286ng/l vs. 888.0+/-812.8ng/l during the 
s.c. phase and vs. 829.0+/-1171ng/l during the LAR phase, p<0.0001) 
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Figure 3: Individual plasma ACTH changes during the study in eight patients (ACTH levels before 
the morning dose of hydrocortisone) 

 

 

 

Figure 4: Acute response of plasma ACTH levels to a single dose of pasireotide 600μg s.c. in 7 
patients [Patients (a) 2, (b) 3, (c) 4, (d) 5, (e) 6, (f) 7] 
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Figure 5a: Mean fasting glucose increased during pasireotide treatment (values from 7 patients 
included in the baseline mean value and s.c. phase, 5 patients for the LAR phase) 

 

 

 

 

 

Figure 5b: Mean HbA1c levels increased during pasireotide treatment (values from 7 patients 
during s.c. phase and 5 patients during LAR phase) 
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5.3. Study 3: Administration of Hydrocortisone through nasogastric tubes 
	

Accuracy of hydrocortisone dose administration via nasogastric tube.  

Published in Clinical Endocrinology  

2019; 90: 66– 73. https://doi.org/10.1111/cen.13876 

Link to the publication: https://onlinelibrary.wiley.com/doi/full/10.1111/cen.13876?af=R 

Authors’ accepted copy of the paper is included in this thesis, pages 152 to 173.  
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Abstract  

 

Objective: Hydrocortisone via nasogastric (NG) tube is used in sick children with adrenal 

insufficiency; however, there is no licensed formulation for NG administration.  

Methods: We investigated hydrocortisone recovery after passage through NG tubes in vitro 

for 3 formulations: liquid suspension, crushed tablets mixed with water, and hydrocortisone 

granules designed for oral administration to children. Cortisol was measured by LC-MS/MS. 

Results: Hydrocortisone content was variable and recovery low after preparation in syringe 

and prior to passage through NG tubes. For doses 0.5mg & 2.0mg mean percentage recovery 

was: liquid suspension 57% & 58%; crushed tablets 46% & 30%; and hydrocortisone granules 

78% & 71%. Flushing the administering syringe increased recovery. Hydrocortisone recovery 

after passage with flushing through 6-12Fr gauge NG tubes was variable: liquid suspension 

61-92%, crushed tablets 40-174%, hydrocortisone granules 61-92%. Administration of 

hydrocortisone granules occluded 6 & 8Fr NG tubes however administration using a sampling 

needle to prevent granules being administered gave a recovery of 74-98%. 

Conclusions: The administration of hydrocortisone through NG tubes is possible; however, 

current methods deliver a variable dose of hydrocortisone, generally less than that 

prescribed. Attention should be placed on the technique used to optimise drug delivery such 

as flushing of the administering syringe. Hydrocortisone granules block small NG tubes but 

behaved as well as the commonly used liquid suspension when prepared with a filtering 

needle that filters out granules. 

 



	 153	

Introduction 

 

Long-term treatment with hydrocortisone is required in children with adrenal insufficiency 

and treatment starts from birth in neonates with congenital adrenal hyperplasia. 

Replacement therapy with oral hydrocortisone is generally given in 3-4 daily doses (1-3). The 

administration of oral hydrocortisone in young children may require a nasogastric (NG) tube 

during inter-current illness, and treatment with hydrocortisone to reduce bronchopulmonary 

dysplasia in premature infants is becoming more popular (4); however, there are no licensed 

formulations for administration via NG tube.   

 

Hydrocortisone is poorly soluble in aqueous solutions and the suspension is viscous and 

therefore its delivery may be adversely affected when intervening equipment such as syringes 

and NG tubes are used (5). Inaccuracy in the hydrocortisone dose delivered leads to under- 

or over- replacement and is associated with poor disease control and potentially poor long-

term health outcomes (6-8). For hydrocortisone administration via the NG route, the 

preparations most commonly used in paediatric practice are liquid suspensions (syrup) 

available as special unlicensed formulations and tablets crushed into a fine powder and mixed 

with water (9-12). A multi-particulate immediate-release formulation of hydrocortisone, has 

been specifically developed for oral administration to neonates, infants and young children 

(13,14). This study investigated the in vitro recovery of hydrocortisone after passage through 

NG tubes of varying bore for three different hydrocortisone preparations; a liquid suspension 

(Rosemont Pharmaceuticals Ltd, UK), crushed hydrocortisone tablets mixed with water 
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(Auden McKenzie (Pharma Division) Ltd, UK), and hydrocortisone granules (Alkindi, Diurnal 

Ltd, UK). 

 

 

Methods  

 

Protocol development and hydrocortisone formulations tested: The experimental protocol 

was developed following consultation with adult and paediatric endocrine specialist nurses, 

senior neonatal intensive care nurses, paediatric pharmacists and a review of current clinical 

practice (9,15-18). In children, oral hydrocortisone is usually given in 3-4 daily doses from 

0.5mg upwards with the commonest dose being 2mg (2,3,13,19), so we chose to test doses 

of 0.5mg and 2.0mg (=target doses). Current practice in our institution is to use either liquid 

in suspension (100ml bottle at 5mg/5ml) or crushed 10mg hydrocortisone tablets. When 

using NG tubes in neonates the total drug administration volumes should be minimal with NG 

flushes up to 2ml (15,17), so we chose to give doses in maximum 2ml volume with 2ml flush 

in the NG tubes 6-8Fr that are used in this age group. The protocol was tested on the bench 

multiple times, timed and supervised by a paediatric endocrine nurse to ensure compliance 

with clinical practice. Two researchers performed the experiments and all stages were timed 

for standardisation. 
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Protocol for preparation of hydrocortisone formulations for administration:  

• Liquid hydrocortisone suspension: the bottle (100ml bottle at 5mg/5ml) was shaken 

vigorously and the required amount drawn into a sterile 10ml syringe.  

• Hydrocortisone tablets: one 10mg tablet was crushed using a tablet crusher into a fine 

powder, 10ml of sterile water were added and mixed and the required amount drawn 

into a sterile 10ml syringe.  

• Hydrocortisone granules: the contents of one capsule (0.5mg or 2mg) were suspended in 

2ml sterile water in a 10ml sterile syringe, the suspension was shaken vigorously for 30 

seconds, left on the bench for 15 minutes and then shaken again for 30 seconds. 

 

Hydrocortisone recovery at the nasal end of the NG tube: the experiment assessed the 

recovery of hydrocortisone in samples prepared for NG administration (but not administered) 

according to the above protocol. There were two parts in this experiment. In the first part 

two target doses, 0.5mg and 2mg were prepared as above and then expelled into bijou tubes. 

Six repeats were performed. The second part assessed whether the suboptimal recovery of 

hydrocortisone was due to dose remnants in the administering syringe: a second set of 

samples for the liquid suspension formulation was collected that included flushing of the 

administering syringe with 2ml water. The flushing liquid was collected together with the 

sample for hydrocortisone quantification and three repeats were performed. The samples 

were stored at 4°C prior to analysis. 
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Hydrocortisone administration through NG tubes:  NG tubes come in variable sizes and are 

measured using the French (Fr) scale, with smaller French values representing a narrower 

diameter and shorter length. A size 6Fr NG is used for long-term feeding in a small neonate 

and 12Fr is the adolescent and young adult size 16. Medicines and fluids are administered at 

the nasal end of the NG tube and exit through a small ovoid opening next to the gastric end. 

The administration of all three preparations was tested using transparent 6, 8, 10 and 12Fr 

NG tubes to cover the size range used across the paediatric population. Each NG tube was 

held in a ring stand, at a height of 30cm, with the lower end in a collecting tube. Each 

formulation was administered from the 10ml syringe used for preparation and using the same 

syringe each tube was then flushed with water (2ml for the 6Fr and 8Fr tubes, 5ml for the 

10Fr tubes and 10ml for the 12Fr tubes). The NG tubes were left to drain all administered 

materials into the collecting tube at the gastric end of each NG for 3 minutes (NG-passage 

sample). The experiment was repeated 6 times. Following hydrocortisone granules 

administration only, the NG tubes were observed for the presence of granules intraluminally. 

If any granules were present, the tube was flushed once more 30 minutes later; the patency 

of the tube was recorded but the liquid was not added to the previously collected NG-passage 

sample.  

 

Alternative method for preparation of hydrocortisone granules for administration: a second 

method of sample preparation for hydrocortisone granules was developed to test the 

feasibility of neonatal size (6Fr) NG administration and assess the recovery of hydrocortisone. 

In a bijou tube, 2mg of hydrocortisone granules were suspended in 2ml sterile water, the 

suspension was shaken vigorously for 30 seconds and allowed to rest on the bench for 0, 15, 
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30, 45, or 60 minutes, then shaken vigorously again for 30 seconds. Immediately afterwards, 

1ml of suspension (target dose 1mg) was aspirated into a 2.5ml sterile syringe through a 

metallic sampling needle used for aspirating drugs for oral administration that prevented any 

granules from entering the syringe (Nutrisafe2 sampling needle, external diameter 1.1mm 

and 52mm long, Vygon (UK) Ltd). The needle was then removed and the contents of the 

syringe were either pushed down a 6Fr NG tube or expelled into a small bijou tube (control 

sample). With the same syringe, 2ml sterile water were aspirated and then flushed into the 

NG tube (NG passage sample) or expelled into the control samples. The NG tubes were left to 

drain into the bijou tubes for 3 minutes and the experiment was repeated 5 times.  

 

Quantification of hydrocortisone by Liquid chromatography tandem mass spectrometry (LC-

MS/MS): All samples were labelled with a numerical code, stored at 4oC and transferred on 

ice for LC-MS/MS analysis of hydrocortisone at the Biochemistry Department, Manchester 

University NHSA Foundation Trust. Prior to analysis the samples were warmed in a hot bath 

for 5min, shaken and a 1:10,000 dilution with water was made. The LC-MS/MS method has 

been described elsewhere (20) but briefly, standard, quality control or hydrocortisone sample 

(20 μL) was manually pipetted directly into the well of a 96-deep well block (Thermo, Hemel 

Hempstead, UK). To this, 40 μL of 0.1 mol/L zinc sulphate was added. This was vortexed for 

10 s followed by the addition of 100 μL of internal standard. The block was heat-sealed 

(Thermo, Hemel Hempstead, UK) and vortexed for 1 min, then centrifuged at 8000 g for 5 

min. Following centrifugation, the plate was transferred directly to the autosampler for 

analysis; 10 μL of sample was injected into the liquid chromatography (LC) system using 

partial loop mode. LC-MS/MS was performed using an Acquity I Class coupled to a XEVO TQ-



	 158	

D detector (Waters, Wilmslow UK). The quantity of hydrocortisone in mg in each sample was 

calculated from the hydrocortisone concentration. The inter-assay imprecision (%CV) was 

13%, 9% and 5% at concentrations of 100, 400 and 800 nmol/L, respectively. The intra-assay 

imprecision was 12%, 7% and 9%. 

 

Data presentation and statistical analysis: Results are shown as mean±sd of the repeats. The 

data are expressed either as mean hydrocortisone content in mg or % hydrocortisone 

recovery i.e. the mean hydrocortisone content in each set expressed as a percentage of the 

dose administered (target dose). ANOVA with multiple comparisons was used for the analysis 

of differences between the 3 hydrocortisone formulations and between the bench time rest 

periods allowed for the alternative preparation method for hydrocortisone granules 

suspension (GraphPad 7, GraphPad Software, La Jolla California USA). Unpaired two-tailed t-

tests were performed for comparison of pre and post NG administration recovery for each 

time-point in the alternative method of preparation. A p value of <0.05 was considered 

significant. 

 

 

Results  

 

Recovery of hydrocortisone prior to NG administration (Figure 1): The recovery of 

hydrocortisone from all three preparations at the nasal end of the NG tube prior to NG 

administration was low: mean±sd % recovery of target dose for doses 0.5mg and 2.0mg was; 
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liquid suspension 57±7% & 58±18%, crushed hydrocortisone mixed with water 46±18% & 

30±5%, hydrocortisone granules 78±15% & 71±4%. The delivery of hydrocortisone with 

hydrocortisone granules was significantly better than crushed hydrocortisone for the 0.5mg 

dose (p<0.01) and the 2mg dose (p<0.01), and the liquid suspension was better than the 

crushed hydrocortisone for the 2mg dose (p<0.01) (Figure 1).  

 

The delivery of hydrocortisone in the pre-administration samples of the liquid suspension 

increased significantly following flushing of the administrating syringe; mean±sd % recovery 

of target dose; 0.5mg dose without flushing 57±7% vs. with flushing 147±31% (p<0.01); 2mg 

dose without flushing 58±18% vs. with flushing 105±8% (p<0.01, Figure 2). Based on these 

results syringes for all formulations were flushed for the experiments using the NG tubes. 

 

Hydrocortisone recovery after passage through NG tubes: In this in vitro setting, it was 

possible to administer hydrocortisone through neonatal, paediatric and adolescent size NG 

tubes using all three preparations, although the delivery was variable. Hydrocortisone 

granules and the liquid suspension showed similar results throughout the range of NG tube 

sizes whereas the crushed hydrocortisone tablets gave greater variability for both doses 

(Figure 3, Table 1). The delivery of hydrocortisone for the 0.5mg dose mean±sd % recovery of 

target dose for the 4 different size NG tubes was; liquid suspension 65±32% to 92±34%, 

crushed hydrocortisone 59±22% to 174±118%, hydrocortisone granules 66±13% to 83±17% 

and for the 2mg dose; liquid suspension 61±14% to 65±6%, crushed hydrocortisone 40±5% to 

96±34%, hydrocortisone granules 61±7% to 92±14%. 
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The possibility of mechanical tube occlusion due to administration of hydrocortisone granules 

was further explored. Following nasogastric administration of hydrocortisone granules the 

NG tubes were observed for granules; no remaining granules were visible in the 10Fr and 

12Fr. However, hydrocortisone granules were trapped within 6Fr and 8Fr tubes and the water 

flush did not remove them completely (Figure 4). Flushing the NG tubes immediately after 

administration of hydrocortisone granules was difficult although there was no complete 

occlusion of the NG tube during the administration phase. When NG tubes were left to drain 

for 30min and a second flush was attempted complete occlusion was observed in 10% of 6Fr 

NG tubes and 50% of 8Fr NG tubes. Fewer granules were observed to enter the 6Fr NG tube 

compared to 8Fr tube. 

 

Recovery of hydrocortisone from hydrocortisone granules using an alternative method of 

preparation: To avoid granules entering the NG tube from the administering syringe an 

alternative preparation method was developed and tested in the neonatal size (6Fr) NG tubes. 

Hydrocortisone granules were suspended in water for 0, 15, 30, 45 and 60 minutes to test if 

suspension time affected recovery. As shown in Figure 5, hydrocortisone recovery before and 

after administration down the NG tube was similar for each time point (p values 0.1 to 0.6). 

In the pre-administration control set, hydrocortisone recovery between the different time 

points significantly increased between time zero and 15 minutes of bench suspension 

(p<0.01) and the same was found for the post NG passage samples (p<0.01, Figure 5). For post 

NG tube passage the recovery was: 0 minutes 14±4%, 15 minutes 74±20%, 30 minutes 
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89±12%, 45 minutes 89±18%, 60 minutes 98±15%. No NG tube blockages were observed with 

this method.  

 

 

Discussion  

 

We have shown that it is possible to administer hydrocortisone via a nasogastric tube, 

however dose recovery at the gastric end of the nasogastric tube is very variable and generally 

less than that administered. Three hydrocortisone formulations were tested: a liquid 

suspension (Rosemont Pharmaceuticals Ltd, UK), crushed tablets mixed with water (Auden 

McKenzie (Pharma Division) Ltd, UK), and hydrocortisone granules (Alkindi, Diurnal Ltd, UK). 

At the nasal end of the NG tube recovery was poor for all three formulations, between 30-

78% unless the administering syringe was flushed. The recovery after passage down NG tubes 

with flushing was variable (40-174%) and generally <80% of the dose administered with the 

greatest variability seen for crushed tablets where in some cases recovery was <50% of the 

dose administered. Variability was least with hydrocortisone granules with recovery between 

61 and 92%. Recovery of the dose administered was not affected by tube size for the liquid 

suspension but for crushed tablets and hydrocortisone granules recovery was best with the 

largest tube (12Fr). Hydrocortisone granules blocked the smaller NG tubes but this was 

avoided by generating a hydrocortisone suspension from the granules by leaving in water for 

15 minutes and then using a sampling needle for drug aspiration that didn’t allow granules to 

be aspirated into the syringe.   
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Crushing oral medication to a fine powder is common practice for nasogastric administration 

in adults and children but it is an unlicensed use of the medication (21). Compounding from 

adult dose formulations is common in paediatrics when no dose appropriate formulation is 

available (13,22), it is undertaken by pharmacy as well as carers and can lead to therapeutic 

failure among other risks (23). Capsules prepared by pharmacy from compounded 

hydrocortisone tablets have been found to have unacceptably variable drug content in over 

20% of batches, and have led to clinically and biochemically evident glucocorticoid 

overtreatment (7,22). In our study, crushed hydrocortisone tablets mixed with water showed 

significant variability in the recovery of the administered hydrocortisone dose, usually with 

significantly low recovery but occasionally the recovery was above 100% of the target dose 

meaning that higher amount of hydrocortisone than the target dose (0.5mg or 2mg) was 

recovered in the sample. This likely reflects problems with the current practice of preparing 

small doses from 10mg adult dose tablets. Another factor could be the loss of active 

pharmaceutical ingredient that could be up to 10% of the mass during hydrocortisone 

compounding because hydrocortisone sticks in the equipment used for compounding (24). 

Furthermore, hydrocortisone is relatively insoluble in water (5,25), which means most 

hydrocortisone is in suspension not solution. 

 

Few studies have reported the administration of medications through NG tubes and none 

have reported on hydrocortisone (26-29). Our results show suboptimal recovery of 

hydrocortisone at the gastric end. High variability and low recovery of medications such as 

proton pump inhibitors administered through NG tubes was commonly observed in in vitro 

studies and recovery increased when higher volumes of solvent were used for drug 
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dissolution prior to NG administration and flushing of the equipment (17,26-28). Similar to 

our observation, formulations consisting of granules frequently cause NG tube obstructions 

(30,31).  

 

It is important to follow appropriate techniques when administering medications down NG 

tubes and this applies to patients and carers who can be trained to give medications through 

NG tubes in the community. However, medicines are usually used out of license and there is 

lack of data on the accuracy of drug delivery through this method (9,16,30). We found that 

flushing the equipment (syringes) improves delivery for liquid suspension hydrocortisone. 

This has implications in children treated with hydrocortisone via the oral route when 

intervening equipment such as syringes are used; flushing of devices is important to maximize 

recovery for hydrocortisone, which is poorly soluble in water and sticks to plastics (5,24). Our 

in vitro results demonstrate that specific methods need to be followed for different 

formulations of hydrocortisone to maximize recovery and accurate dosing and that most 

methods lead to under dosing. 

 

Hydrocortisone granules have been recently licensed in Europe for replacement therapy of 

paediatric adrenal insufficiency and according to the summary of product characteristics they 

are not suitable for administration through nasogastric tubes (13). Consistent with this we 

found that hydrocortisone granules blocked smaller NG tubes. Removing the granules by 

creating a suspension in a universal tube shaken and left for 15 min then aspirating using a 

sampling needle to avoid granules and administered down a NG tube resulted in a dose 

recovery of 74-98% which was comparable to and less variable than the other hydrocortisone 
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formulations; however, this is not a licensed method of administration for hydrocortisone 

granules. 

 

The strengths of this study are the protocol design that was developed to reflect current 

clinical practice in the administration of hydrocortisone in young children and the accurate 

method for estimating hydrocortisone concentration by liquid chromatography tandem mass 

spectrometry. The methods for the preparation of the three hydrocortisone formulations 

were different because we were comparing a liquid solution, tablets and granules that are 

available in clinical practice in different dose strengths (liquid 1mg/ml vs. tablets 10mg vs. 

granules 0.5mg and 2mg). These differences could affect the results for example the accuracy 

of hydrocortisone administration from crushed tablets might be better if a 5mg tablet was 

used for the chosen target doses 0.5 and 2mg rather than a 10mg tablet however a 5mg tablet 

is not available in Europe and therefore not tested. Two researchers performed the 

experiments and although the data were reviewed to check for operator-dependent trends 

there was no formal statistical comparison between the two and this is a limitation of the 

study. This was an in vitro study and the concentration of hydrocortisone at the end of the 

NG tubes, however accurate, does not necessarily reflect the plasma concentrations in vivo 

and our results should be viewed in this light.  

 

In conclusion, although delivery of hydrocortisone through NG tubes is possible, significant 

attention should be placed on the technique used to optimise drug delivery. The delivery of 

hydrocortisone with hydrocortisone granules was comparable with the currently used 

formulations and in fact granules seem to behave as well as the liquid suspension which is the 



	 165	

current standard and most optimal formulation for oral administration; however, it leads to 

tube occlusions in the smaller gauge NG tubes (6Fr and 8Fr). Using a sampling needle to 

prevent the administration of granules is an alternative technique that delivers 74-98% of the 

required target dose. 
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Figures 

 

Figure 1: Mean hydrocortisone content prior to NG tube administration. Three 

hydrocortisone formulations (liquid suspension, crushed 10mg tablets, and hydrocortisone 

granules) were prepared in syringes at 0.5 & 2.0 mg absolute dose and then expelled into a 

universal tube with hydrocortisone content in universal measured by LC-MS/MS.  (a) 0.5 

mg dose (b) 2.0 mg dose (*: p=0.004, **: p=0.001, ***: p<0.001). 
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Figure 2: Mean hydrocortisone content prior to NG tube administration after flushing of the 

syringe used to draw up the dose (Flush: pre-administration samples with 2ml flushing of 

the administrating syringe, N: pre-administration samples without flushing of the syringe, 

*: p<0.001, **: p=0.002).  
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Figure 3: Mean hydrocortisone content after preparation in a syringe, administration 

through NG tubes gauge 6-12 Fr followed by flushing (a) Hydrocortisone dose 0.5mg and (b) 

Hydrocortisone dose 2.0mg. 
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Figure 4: Hydrocortisone granules occluding 6Fr NG tube.  
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Figure 5: Recovery of hydrocortisone from hydrocortisone granule suspension in water 

(1mg/ml) pre- and post-administration through 6Fr gauge neonatal NG tube. 

Hydrocortisone granules was mixed with water and the samples were allowed 0, 15, 30, 45, 

and 60-minute bench rest before aspiration of the required dose using a syringe connected 

to a sampling needle that excluded aspiration of granules. (*: p<0.001 ANOVA analysis, 

post-hoc analysis shows significant difference between time 0 to all other time points). 
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5.4. Study 4: Biomarkers for monitoring hormone replacement in 
CAH 

	

Androgens correlate with increased erythropoiesis in women with congenital adrenal 

hyperplasia.  

Published in Clinical Endocrinology  

2017; 86(1): 19-25. doi:10.1111/cen.13148 

Link to the publication: https://onlinelibrary.wiley.com/doi/full/10.1111/cen.13148 

Authors’ accepted copy of the paper is included in this thesis, pages 175 to 196. 
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ABSTRACT 

Objective: Hyperandrogenism in congenital adrenal hyperplasia (CAH) provides an in 

vivo model for exploring the effect of androgens on erythropoiesis in women. We 

investigated the association of androgens with haemoglobin (Hb) and haematocrit 

(Hct) in women with CAH. 

Design: Cross-validation study 

Patients: Women with CAH from Sheffield Teaching Hospitals, UK (cohort 1, the 

training set: n=23) and National Institutes of Health, USA (cohort 2, the validation set: 

n=53). 

Measurements: Androgens, full blood count and basic biochemistry, all measured on 

the same day. Demographic and anthropometric data. 

Results: Significant age-adjusted correlations (P<0.001) were observed for Ln 

testosterone with Hb and Hct in cohorts 1 and 2 (Hb r=0.712 & 0.524 and Hct r=0.705& 

0.466), and remained significant after adjustments for CAH status, glucocorticoid 

treatment dose and serum creatinine. In the combined cohorts Hb correlated with 

androstenedione (P=0.002) and 17-hydroxyprogesterone (P=0.008). Hb and Hct were 

significantly higher in cohort 1 than those in cohort 2, while there were no group 

differences in androgen levels, glucocorticoid treatment dose or body mass index. In 

both cohorts women with Hb and Hct in the highest tertile had significantly higher 

testosterone levels than women with Hb and Hct in the lowest tertile.  

Conclusions: In women with CAH, erythropoiesis may be driven by androgens and 

could be considered a biomarker for disease control.  
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INTRODUCTION 

 

The effect of androgens on erythropoiesis is well described and initially came to light 

through the observation that men have higher levels of haemoglobin (Hb) than 

women (1). Pre-pubertal boys and girls have similar levels of Hb but boys acquire 

higher Hb levels following puberty that coincides with the surge in testosterone levels 

(2). Lower Hb levels in women are not due to chronic menstrual blood loss as this 

gender difference persists in non-menstruating women (3, 4). The evidence for an 

erythropoietic effect of testosterone led to its use as a treatment for anaemia in renal 

failure (4) and bone marrow failure (5) in the past before the invent of recombinant 

erythropoietin. In men intramuscular testosterone replacement, is often associated 

with polycythemia (6), which reverses with a dose reduction or discontinuation of 

therapy (7). Conversely, androgen deprivation therapy for prostate cancer leads to a 

reduction in Hb levels (8).  

 

Congenital adrenal hyperplasia (CAH) is the commonest genetic endocrine disorder 

and 21-hydroxylase deficiency accounts for more than 95% of the cases (9). In this 

condition, defective cortisol synthesis in the adrenal glands leads to the loss of 

negative feedback inhibition of ACTH secretion by the pituitary. The elevated ACTH 

leads to hyperplasia of the adrenal glands and excess production of adrenal androgens 

(9). Treatment with glucocorticoids aims to control the androgen excess and replace 

the steroid deficiencies; however, it is challenging to achieve the correct balance 
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between over and under-treatment. When patients are under-replaced, adrenal 

androgens are elevated and women are affected by symptoms of hyperandrogenism. 

With over-replacement adrenal androgens are suppressed.  

 

The effect of elevated adrenal androgens on erythropoietic markers in patients with 

CAH has been assumed but not studied in detail. Polycythaemia is seen in neonates 

with CAH (10) and there have been a few case studies reporting polycythemia in 

untreated men and women with CAH and androgen excess (11, 12). To the best of our 

knowledge, there are no studies examining the relationship of androgens and 

erythropoiesis in women with CAH. The present study investigates the association of 

androgens with Hb and haematocrit (Hct) in women with CAH in a cross-validated 

study. 

 

 

METHODS 

 

Study population 

This was a retrospective analysis of data from two cohorts of CAH patients managed 

in two tertiary centers with expertise on the management of CAH. Cohort 1 comprised 

of patients from Sheffield Teaching Hospitals, UK and cohort 2 from National Institutes 

of Health, Bethesda, USA.  
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Data gathering  

Demographic, anthropometric, biochemical, haematological and hormonal data 

measured on the same day were recorded. A total of 83 women (cohort 1: n = 30, 

cohort 2: n = 53) with CAH were eligible for recruitment. Seven women were excluded 

from cohort 1 prior to the analysis (four due to incomplete biochemical data and three 

due to medical conditions or medications known to affect the erythropoiesis or red 

cell parameters i.e. iron deficiency anaemia, vitamin B12 deficiency and methotrexate 

treatment). After screening for completeness, data of 76 women were used in the final 

analysis, 23 in cohort 1 and 53 in cohort 2. 

 

Biochemical data for androgens [total testosterone, androstenedione and 17-

hydroxyprogesterone (17-OHP)], full blood count, serum urea, creatinine and 

electrolytes were retrieved from electronic data systems. In cohort 1 the majority of 

samples were measured between 0800-1400hrs during clinic visits, after the morning 

dose of glucocorticoids, whereas for cohort 2 most samples were measured before 

the morning dose of glucocorticoids between 0700-0900hrs. The two laboratories had 

different reference ranges for Hb (cohort 1 110-147g/L, cohort 2 112g/L-157g/L). 

Hence, the tertiles were used for comparison between two cohorts in analysis. Age, 

height, weight, glucocorticoid treatment dose, CAH phenotype and smoking, medical 

and drug history were obtained from medical case notes. Body mass index (BMI) was 

calculated; weight (kg) divided by height (m) squared (kg/m2). Since patients were 

treated with different glucocorticoid regimens (hydrocortisone, 

prednisolone/prednisone and dexamethasone), those glucocorticoid doses were 
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converted to hydrocortisone equivalent dose using the ratio hydrocortisone: 

prednisolone: dexamethasone of 1:5:80 (13). The values used to calculate the 

hydrocortisone equivalent doses vary widely and we chose to use 5 times potency for 

prednisolone/prednisone, which is the widely accepted. For dexamethasone we chose 

that originally proposed by Wilkins in 1965 "The potency of this glucocorticoid in 

suppressing adrenal steroid biosynthesis relative to cortisol is about 80: 1” and 

partially evaluated in CAH by Rivkees (13).  

 

Hormonal assays  

In cohort 1, 17-OHP was measured by the Siemens Coat-a-Count radioimmunoassay 

(RIA) [inter-assay coefficient of variance (CV) 5.0-11%] until October 2014 and 

thereafter with Diasource RIA (inter-assay CV 6.3-16%). Androstenedione was 

measured using the Siemens Immulite 2000 chemiluminescence immunoassay (CLIA) 

(inter-assay CV 8.5-12.0%) until February 2014 and using the Beckman Coulter Active 

RIA  (inter-assay CV 4.5-16.9%) thereafter. Total Testosterone was measured using the 

Siemens Advia Centaur CLIA (inter-assay CV 6.8-13.3%) until January 2011 and by the 

Roche Cobas e602 electrochemiluminescence immunoassay (ECLIA) (inter-assay CV 

3.5-7.3%).  

 

In cohort 2 all the androgens were analyzed by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). From 2005 to 2012 assays were performed at Mayo 

Medical Laboratories, Rochester, MN; The androstenedione assay had a sensitivity of 
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15ng/dl; inter-assay CV of 7.9, 7.2, 8.7%; intra-assay CV of 13.9, 5.9, 2.6 at mean 

concentration of 112, 916, and 2281ng/dl respectively, and normal range of 40-

150ng/dl for males and 30-200ng/dl for females. The 17-OHP assay had an analytical 

sensitivity of 40ng/dl, inter-assay CV of 9.7, 8.7, 6.8%; intra-assay CV of 6.8, 2.9, 4.4% 

with a mean concentration of 111, 751, and 2006ng/dl, respectively, and normal range 

of less than or equal to 220ng/dl for males and less than or equal to 285ng/dl for 

females; 2012 onwards androstenedione and 17-OHP were measured by LC-MS/MS 

at National Institutes of Health, Bethesda MD; intra-assay CV ranged from 2.5-9.5% 

and inter-assay CV from 2.9 - 11.1%.  

 

Statistical analysis: 

Data were analyzed using SPSS v22. Group differences were determined by Student’s 

t-tests. Relationships of Hb and Hct with androgens were assessed by partial 

correlations to enable adjustments for confounding factors including age, study 

cohorts, glucocorticoid treatment dose, CAH status and renal function. Data for 

androgens and glucocorticoid treatment dose were logarithmically transformed due 

to being positively skewed.  
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RESULTS 

 

Characteristics of the study populations 

Mean age of women in cohort 1 was 35.3 (SD ±14) years (Table 1). Among this cohort 

of women, 17 (73.9%) had classic CAH, in whom 13 (73%) were salt wasting and 4 

(23%) simple virilizing subtypes, and 6 (26.1%) had non-classic CAH. The mean age of 

women in cohort 2 was 30.8 (SD ± 11.4) years. This cohort comprised mostly of women 

with classic CAH (n = 51, 96.2%), of whom 33 (65%) had the salt wasting and 18 (35%) 

the simple virilizing type. There was one (1.9%) patient with non-classic CAH and one 

(1.9%) with 11-β hydroxylase deficiency.  

 

In cohort 1 the majority received either hydrocortisone alone (n=10, 43.47%) 

administered twice or thrice daily, or prednisolone alone (n=9, 39.1%) administered 

once or twice daily. The remaining patients were treated with either dexamethasone 

once daily (n=2, 8.69%), or hydrocortisone and dexamethasone combined (n=2, 

8.69%). In cohort 2, the majority was treated with prednisone (n=21, 39.6%) 

administered twice daily, followed by hydrocortisone (n=14, 26.4%) thrice daily, and 

dexamethasone once daily (n=12, 22.64%). Hydrocortisone combined with either 

prednisone or dexamethasone and prednisolone alone was given in one patient each 

(1.89%). 
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Correlations of androgens with erythropoiesis 

The associations of testosterone with Hb and Hct in the two cohorts are shown in 

Figures 1 and 2. The regression slopes were similar in both cohorts but the intercepts 

were lower in cohort 2. In cohort 1, age adjusted Ln testosterone correlated positively 

with Hb and Hct (P <0.001) (Table 2). These relationships remained significant (P 

<0.01) after further adjustments for CAH status, glucocorticoid treatment dose and 

serum creatinine levels. The results from the cohort 2 confirmed these relationships 

but were less strong. These associations continued to persist after the two cohorts 

were analyzed together (Table 2). In both cohorts, the androgen precursors 

androstenedione and 17-OHP also correlated with Hb and Hct but the correlations 

were weaker than for testosterone. 

 

Androgens, glucocorticoid treatment dose and anthropometry of women with 

erythropoietic markers in the highest tertile were compared with those of women in 

the lowest tertile (Table 3). Women with Hb or Hct in the highest tertile had 

significantly higher testosterone levels compared with women with Hb or Hct in the 

lowest tertile in both cohorts. The same was true for androstenedione and 17-OHP in 

cohort 1 but only for androstenedione and Hb in cohort 2. In cohort 2 women in the 

highest tertile of Hb and Hct had a higher BMI and higher glucocorticoid treatment 

dose.  
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Comparisons between cohort 1 and cohort 2  

There were no group differences in age, anthropometric, BMI or glucocorticoid 

treatment dose between cohorts 1 and 2 (Table 1). Women in cohort 1 had 

significantly higher mean Hb (P = 0.031) and Hct (P = 0.035) levels than those in cohort 

2 (Table 1). Similarly, substantially higher proportions of women had Hb and Hct above 

the upper limit of the reference range in cohort 1 (Hb: 30.4%, Hct: 47.8%) compared 

with cohort 2 (Hb, Hct <4%). The levels of total testosterone and its precursors, 

androstenedione and 17-OHP and creatinine levels did not differ significantly between 

the two study cohorts. 

 

 

DISCUSSION  

 

We have demonstrated that androgen levels in women with CAH are positively 

associated with Hb and Hct, suggesting that these markers of erythropoiesis are a 

potential biomarker of androgen control in women with CAH. The findings strengthen 

the evidence for an action of androgens on erythropoiesis in women. 

 

The mechanism by which androgens promote erythropoiesis is not established (1, 14). 

There are conflicting results on the effect of testosterone on erythropoietin, the major 

regulator of erythropoiesis. Some studies have suggested that testosterone increases 
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erythropoietin production (1, 15), while others found no evidence to support these 

findings (6, 16). Other possible mechanisms by which testosterone might induce 

erythropoiesis include a direct effect on the bone marrow hematopoietic stem cells 

by stimulating insulin-like growth factor 1 and erythrocyte colony forming units (17), 

and increasing intestinal iron absorption and incorporation into erythrocytes (14).  

 

Exogenous androgens have been associated with an increase in erythropoiesis. Supra-

physiologic pharmaceutical doses of androgens cause an increase in Hb and Hct in men 

(18), which is dose-dependent and polycythaemia is a common but unwanted side-

effect of testosterone therapy in hypogonadal men (6). Similarly in women, androgen 

therapy was associated with an increase in Hb and erythroid cell hyperplasia in bone 

marrow aspirates (19). In gender reassignment, hormone therapy raising testosterone 

levels in female-to-male reassignment leads to an increase in Hb levels while 

suppressed testosterone levels in male-to-female reassignment leads to a decrease in 

Hb levels (20). The levels of endogenous androgens has also been associated with 

erythropoiesis; healthy adult men with low free testosterone levels have a lower 

haematocrit than men with normal free testosterone (21) and Hb levels correlate with 

total and bioavailable testosterone in men and women older than 65 years (22). 

 

Conditions associated with significant hyperandrogenism such as Cushing’s disease 

and androgen producing ovarian tumors may present with polycythaemia (23, 24). We 

hypothesized that lower chronic elevations of androgens may be associated with more 
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subtle increases in erythropoietic markers. Women with CAH have elevated levels of 

adrenal androgens if inadequately treated with glucocorticoids (25) and provide a 

free-living model for exploring the effect of androgens on erythropoiesis. Cortisol has 

been implicated to play a mediating role in erythropoiesis (26, 27). Activation of the 

glucocorticoid receptor promotes ‘stress erythropoiesis’ and maturation of erythroid 

progenitors in vitro (28). It is well documented that anaemia occurs in patients with 

hypocortisolism, e.g. Sheehan’s syndrome (29) and polycythemia in women with 

hypercortisolism (30). Correcting hypocortisolism with glucocorticoid replacement 

(31) or hypercortisolism by surgery (24) leads to normalization of Hb levels. 

Hypogonadal men with active Cushing’s disease have low erythroid parameters that 

improve slowly after correction of hypercortisolism in parallel with improvements in 

testosterone levels. In our study, glucocorticoid equivalent doses did not differ 

between women with normal and those with elevated haematological parameters. A 

previous study of testosterone replacement in two men with aromatase deficiency 

has shown that the action of testosterone on erythropoiesis does not require its 

aromatization to oestrogen (32).  

 

In our study, androgen precursors androstenedione and 17-OHP were weakly 

associated with erythropoietic markers compared with testosterone. Androgenic 

precursors exert their androgenic effect through conversion to testosterone and do 

not directly activate the androgen receptor, which may explain the weaker 

relationship with erythropoiesis. Free testosterone may have a stronger association 

with erythropoiesis but was not calculated in the present study because sex hormone 
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binding globulin (SHBG) was not measured. We have however adjusted our data for 

body mass index, which relates inversely to SHBG levels. It would be of interest to 

examine the association of Hb and Hct with dihydrotestosterone, which has tenfold 

greater affinity for androgen receptor than testosterone (33). However, 

dihydrotestosterone is not routinely measured in the clinical setting and therefore 

was not available in the present study. Chronic kidney disease is also associated with 

anaemia due to the reduction in renal production of erythropoietin (34). In the two 

cohorts presented here there were no subjects with chronic kidney disease and the 

relationship between androgens and markers of erythropoiesis continued to persist 

after adjusting for creatinine. 

 

The two cohorts of women could potentially have differences in genotypes and 

exposure to lifestyle factors, which could affect the outcomes, but our results were 

reproducible in the two cohorts. This is evident by the parallel regression slopes for 

the association of testosterone with Hb and Hct in the two study cohorts. Interestingly, 

mean Hb and Hct were higher in the UK cohort than in the US cohort with no 

differences in androgen levels, body mass index or glucocorticoid treatment dose 

between the two cohorts. This may indicate underlying genetic differences between 

the two cohorts that could affect the action of testosterone on erythropoiesis e.g. 

differences in androgen receptor CAG repeat lengths. Lifestyle factors such as smoking 

and dietary iron intake and menstruation status may be some other factors to 

consider, however both cohorts had similar mean age. Compliance with glucocorticoid 

treatment or error in reporting of treatment dose may also explain this difference. 
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Strengths and limitations of the present study: The strengths of the present study lie 

in its robust cross-validation study design and adjustments for a number of major 

confounding factors. The study is limited by its retrospective nature and sampling bias 

might have been introduced as data collection spanned across approximately ten 

years. Different assays had been used during this period, which might have affected 

the accuracy of the biochemical data and also the two cohorts have used different 

assay techniques for androgens, which limits the comparison between the two 

cohorts. Another limitation of the study is wide variation of androgen levels observed 

in both cohorts. However, this reflects the previous observations with poor disease 

control on current therapeutic regimens (9) and potentially affected by differences in 

time of blood sampling. Lifestyle factors such as diet and smoking history were not 

available given this was a retrospective study.  

 

In conclusion, the strong association of adrenal androgens with Hb and Hct in two 

cohorts of women with CAH suggests that these markers of erythropoiesis may be 

considered as biomarkers of disease control in women with CAH and in those with 

polycythaemia or anemia under or over suppression of adrenal androgens should be 

considered as a cause. Chronic over and under-treatment of CAH patients may have 

an effect on erythropoiesis, which can also potentially impact physical performance 

(35).  
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Tables and Figures 

 

 

Table 1. Characteristics of women with congenital adrenal hyperplasia in cohort 1, 
UK (n = 23) and cohort 2, US (n = 53). 

 

 

 Cohort 1 

(n = 23) 

Cohort 2 

(n = 53) 

Group difference 

(cohort 1 minus cohort 2) 

 Mean (SD) Mean (SD) Mean (95% CI) P 

 

Age (years) 35.3 (13.9) 30.8 (11.4) 4.4 (-1.6, 10.5) 0.148 

Haemoglobin (g/L) 140.4 (13.3) 134.1 (10.5) 6.3 (0.6, 11.9) 0.031 

Haematocrit (%) 41.7 (04.0) 39.9 (3.1) 1.8 (0.1, 3.5) 0.035 

17-OHP (nmol/L) 98.3 (151.4) 127.1 (150.1) -28.9 (-110.7, 53.0) 0.484 

Androstenedione (nmol/L) 12.4 (13.3) 15.4 (19.6) -3.0 (-12.3, 6.3) 0.519 

Testosterone (nmol/L) 3.2(6.1) 2.7 (5.5) 0.5 (-2.4, 3.4) 0.748 

Height (m) 1.58 (0.08) 1.57 (0.08) 0.00 (-0.03, 0.05) 0.687 

Weight (kg) 86.4 (27.2) 78.2 (29.0) 8.1 (-8.8, 24.4) 0.323 

Body mass index (kg/m2) 34.6 (11.4) 31.7 (12.1) 2.9 (-3.9, 9.7) 0.396 

Serum creatinine (µmol/L) 66.5 (13.1) 73.6 (14.4) -7.1 (-14.3, 0.10) 0.053 

Glucocorticoid treatment 
dose (mg/day) 

28.2 (11.2) 29.4 (13.4) -1.3 (-7.7, 5.1) 0.692 
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Table 2. Partial correlations of haemoglobin and haematocrit with androgens in women from two separate study cohorts. All analyses were 

adjusted for age. Further adjustments were made for glucocorticoid treatment dose, CAH status and serum creatinine.  

 Ln 17-OHP Ln Androstenedione Ln Testosterone 
 r P r P r P 
Cohort 1: Adjusted for age       
Haemoglobin 0.472 0.056 0.352 0.129 0.712 <0.001 
Haematocrit 0.508 0.037 0.485 0.030 0.705 0.001 

Cohort 2: Adjusted for age       
Haemoglobin 0.508 0.037 0.372 0.007 0.524 <0.001 
Haematocrit 0.176 0.211 0.298 0.032 0.466 <0.001 

Cohort 1: Adjusted for age + CAH status + Ln glucocorticoid treatment dose + serum creatinine 
Haemoglobin 0.524 0.066 0.555 0.032 0.797 <0.001 
Haematocrit 0.570 0.042 0.724 0.002 0.778 0.001 

Cohort 2: Adjusted for age + CAH status + Ln glucocorticoid treatment dose + serum creatinine 
Haemoglobin 0.301 0.038 0.363 0.011 0.491 <0.001 
Haematocrit 0.168 0.253 0.259 0.075 0.415 0.003 

Both cohorts: Adjusted for study group + age 
Haemoglobin 0.316 0.008 0.357 0.002 0.545 <0.001 
Haematocrit 0.260 0.031 0.349 0.003 0.497 <0.001 

Both cohorts: Adjusted for study group + age + CAH status + Ln glucocorticoid treatment dose + serum creatinine 
Haemoglobin 0.294 0.019 0.325 0.008 0.490 <0.001 
Haematocrit 0.225 0.076 0.314 0.010 0.438 <0.001 
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Table 3. Independent t-tests to assess differences in androgens, glucocorticoid treatment dose and anthropometry of CAH women with Hb 

or Hct in the highest tertile compared with those in the lowest tertile (Hb cut-offs at 137 and 147 g/l in cohort 1 and at 130 and 138 g/l in 

cohort 2; Hct cut-offs at 41.0 and 43.7% in cohort 1 and at 38.8 and 41.1% in cohort 2). 

 

 Hb: highest tertile minus lowest 
tertile 

Mean difference (95% CI) 

 
P 

Hct: highest tertile minus lowest 
tertile 

Mean difference (95% CI) 

 
P 

Cohort 1     

Ln 17-OHP (nmol/L) 
Ln Androstenedione (nmol/L) 
Ln Testosterone (nmol/L) 
Ln Glucocorticoid treatment dose (mg/day) 
Height (m) 
Body mass index (kg/m2) 

2.79 (0.94, 4.64) 
1.83 (0.36, 3.30) 
1.67 (0.20, 3.14) 
0.04 (-0.43, 0.51) 
0.01 (-0.08, 0.11) 
1.9 (-16.7, 20.4) 

0.007 
0.018 
0.029 
0.848 
0.755 
0.824 

2.61 (0.82, 4.39) 
2.15 (0.72, 3.57) 
1.59 (0.14, 3.03) 
0.08 (-0.41, 0.57) 
0.03 (-0.07, 0.13) 
-3.4 (-15.2, 8.4) 

0.006 
0.006 
0.034 
0.781 
0.509 
0.522 

 
Cohort 2 

    

Ln 17-OHP (nmol/L) 
Ln Androstenedione (nmol/L) 
Ln Testosterone (nmol/L) 
Ln Glucocorticoid treatment dose (mg/day) 
Height (m) 
Body mass index (kg/m2) 

1.44 (-0.12, 3.00) 
1.44 (0.54, 2.34) 
1.75 (1.02, 2.48) 
0.19 (-0.09, 0.48) 
-0.04 (-0.10, 0.02) 

10.1 (3.7, 16.5) 

0.069 
0.003 

<0.001 
0.181 
0.193 
0.003 

0.54 (-0.97, 2.05) 
0.76 (-0.17, 1.70) 
1.27 (0.52, 2.02) 
0.25 (0.01, 0.50) 

-0.04 (-0.10, 0.01) 
10.0 (3.7, 16.2) 

0.472 
0.105 
0.002 
0.043 
0.140 
0.003 
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Figure 1. Relationship between haemoglobin and testosterone levels in women with 
CAH (� and solid line indicate cohort 1; r and dashed line indicate cohort 2). 
Regression equations for cohort 1: Haemoglobin = 4.6 (95%CI: 1.5-7.8) x Ln 
Testosterone + 141 (95% CI: 137-145) (r2 = 31.5%) and for cohort 2: Haemoglobin = 4.4 
(95%CI: 2.4-6.5) x Ln Testosterone + 133 (131-136) (r2 = 27.5%). The slopes of regression 
did not differ between the two cohorts. 
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Figure 2. Relationship between haematocrit and testosterone levels in women with CAH 
(� and solid line indicate cohort 1; r and dashed line indicate cohort 2). Regression 
equations for cohort 1: Haematocrit = 1.4 (95%CI: 0.4-2.4) x Ln Testosterone + 42.0 (95% 
CI: 40.7-43.4) (r2 = 30.3%) and for cohort 2: Haematocrit = 1.2 (95%CI: 0.5-1.8) x Ln 
Testosterone + 39.7 (39.0-40.5) (r2 = 21.9%). The slopes of regression did not differ 
between the two cohorts. 
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5.5. Study 5: Pharmacokinetic analysis of Hydrocortisone granules 
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Abstract 

Background: Immediate-release hydrocortisone granules in capsules for opening in 

paediatric appropriate doses have recently been licensed for children with adrenal 

insufficiency. This study evaluated the bioavailability of hydrocortisone granules 

administered as sprinkles onto soft food and yoghurt compared to direct administration 

to the back of the tongue. 

Methods: Randomised, three-period crossover study in 18 dexamethasone-suppressed 

healthy men. In each period the fasted participants received hydrocortisone granules 5mg 

either directly to the back of the tongue, or sprinkled onto soft food (applesauce), or 

yoghurt, followed by 240mL of water. Serum cortisol was measured by LC-MS/MS.  

Results: The cortisol geometric mean Cmax and AUC for direct administration, sprinkles 

onto yoghurt, and sprinkles onto soft food were: Cmax 428, 426, 427 nmol/L & AUC0-inf 859, 

886, 844 h*nmol/L, & AUC0-t 853, 882, 838 h*nmol/L respectively. The 90% confidence 

intervals (CI) for the ratios of Cmax, AUC0-inf & AUC0-t for administration with soft food or 

yoghurt to direct administration were well within the bioequivalent range, 80-125%. 

Median Tmax was similar between methods of administration: 0.63h administered directly, 

0.75h on soft food and 0.75h on yoghurt. No adverse events occurred during the study.  

Conclusions: Hydrocortisone granules administered as sprinkles onto soft food or yoghurt 

but not mixed with are bioequivalent to those administered directly to the back of the 

tongue. Carers, parents or patients may choose to administer hydrocortisone granules 

either directly or sprinkled onto soft food or yoghurt.   
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Introduction 

 

Hydrocortisone is the standard treatment for children with adrenal insufficiency who 

need life-long glucocorticoid hormone replacement (1,2). Congenital adrenal hyperplasia 

is the commonest cause of adrenal insufficiency in children and hydrocortisone 

replacement therapy needs to be initiated at diagnosis in the neonate to avoid death due 

to an adrenal crisis. Hydrocortisone doses are calculated according to body surface area 

and require careful adjustment as children grow to prevent under- or over-treatment. The 

total daily dose is usually 8-15mg/m2 divided in 3-4 administrations with the highest level 

in the morning and doses as low as 0.5mg may be needed to appropriately titrate 

treatment (1-5).  

Currently, children are medicated with compounded tablets prepared by pharmacists or 

carers to achieve paediatric appropriate doses (3). However, studies of compounding 

hydrocortisone reported that up to 25% of batches from pharmacies and 50% by parents 

were out of specification leading to clinically evident under- or over- treatment (6-8). 

Immediate-release hydrocortisone granules in paediatric-appropriate doses of 0.5, 1.0, 

2.0 and 5.0mg have been shown to be well tolerated, easy to administer and to provide 

appropriate cortisol levels in neonates, infants and children with adrenal insufficiency (9). 

They have been designed for children with taste masking to cover the bitter taste of 

hydrocortisone. Administration is by opening the capsule and placing the granules onto a 

spoon or directly onto the child’s tongue (4). The granules have been recently approved 
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in the European Union for replacement therapy of adrenal insufficiency in infants, 

children and adolescents, from birth to < 18 years old.  

Co-administration or sprinkling of medications onto food is a commonly used practice 

that provides flexibility and ease of administration for caregivers, particularly of young 

children or children with difficulty swallowing medication (10-12). Sprinkling medication 

onto food could alter its pharmacokinetic characteristics and it is not known if co-

administration of hydrocortisone granules with food affects its bioavailability. This clinical 

study was performed in dexamethasone-suppressed healthy men to investigate if 

hydrocortisone granules administered sprinkled onto soft food or yoghurt are 

bioequivalent to hydrocortisone granules administered directly to the back of the tongue. 

 

 

Methods 

 

Study population: The target sample size was 18 participants. Between June 2017 and July 

2017 19 participants were enrolled. All participants signed an informed consent form and 

satisfied the inclusion and exclusion criteria. One participant withdrew for personal 

reasons after the second treatment period and was replaced. Serum cortisol 

concentration values from the 18 participants that completed all three treatment periods 
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were included in the pharmacokinetic  analysis and safety and tolerability data from all 

19 participants were collected and analysed (13). 

The inclusion criteria were: healthy men aged 18-45 years with no significant medical 

history and a satisfactory baseline physical examination, body mass index (BMI) 18-

30kg/m2, normal baseline safety tests (biochemistry, haematology, electrocardiography, 

vital signs, urine analysis), negative urine drug screen, negative viral serology for HIV, 

Hepatitis B and C and use of effective contraception. The exclusion criteria were: use of 

concomitant medications other than acetaminophen within 14 days prior to dosing, 

vaccination within the previous month, any significant medical history including history 

of any gastrointestinal disorder likely to affect drug absorption, history of infections such 

as current or past tuberculosis, systemic fungal or viral infection and acute bacterial 

infection, sensitivity or contraindication to hydrocortisone or dexamethasone and/or any 

of the ingredients contained in soft food or yoghurt, clinically significant history of drug 

or alcohol abuse, positive alcohol screen prior to dosing, participation in another clinical 

trial or blood donation or transfusion ≥450mL within the previous 3 months, smoking 

within 6 months prior to the study, inability to communicate well with the Investigator 

and shift work. 

 

Study design 

Open label, randomised, single-dose, single-centre, three-period crossover study in 

dexamethasone-suppressed healthy men to determine the bioavailability of three 
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methods of administration of hydrocortisone granules (Alkindi® Diurnal Ltd, UK): 1. 

Hydrocortisone granules administered directly to the back of the tongue; 2. 

Hydrocortisone granules sprinkled onto 5mL soft food (applesauce) and swallowed within 

3 minutes of preparation; 3. Hydrocortisone granules sprinkled onto 5mL yoghurt and 

swallowed within 3 minutes of preparation. All doses were followed by 240 mL of water. 

Primary endpoints were the pharmacokinetic parameters: Cmax (peak cortisol 

concentration), AUC0-t (area under the curve from the time of administration to the final 

time-point of serum cortisol measurement at 12h), AUC0-inf (area under the curve from 

the time of administration projected to infinity) of hydrocortisone granules 5mg 

administered as sprinkles onto soft food and yoghurt compared to hydrocortisone 

granules 5mg administered as dry granules to the back of the tongue. Secondary 

endpoints were Tmax (time to peak cortisol concentration), safety and tolerability. The 

study design was based on the European Medicines Agency and the United States Food 

and Drug Administration guidelines for the design, conduct and evaluation of 

bioavailability and bioequivalence studies and complied with the ethical standards laid by 

the Declaration of Helsinki and regulatory bodies (13-17). The study was reviewed and 

approved by the Wales Research Ethics Committee (reference number: 17/WA/0114). 

Clinical Trials Authorisation was obtained from the Medicines and Healthcare Regulatory 

Agency prior to the start of the study in accordance with Part 3, Regulation 12 of the 

United Kingdom (UK) Statutory Instrument. 

The study was performed at Simbec Research Ltd. All participants underwent successful 

screening and eligibility checks. They were admitted to the research facility on the 
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afternoon of the first day (Day -1) and were discharged on the evening of the second day 

(Day 0) of each of the three treatment periods.  Participants fasted from 22:00h on Day -

1 to 12:00h on Day 0 and received three doses of dexamethasone 1mg with 240mL water 

at 22:00h on Day -1, 06:00h and 12:00h on Day 0 for suppression of their endogenous 

cortisol production.  On Day 0 of each treatment period 5mg hydrocortisone granules 

were administered at 08:00h by one of the three administration methods. The sequence 

of administration methods for each participant was determined by a randomisation code 

generated by SAS® software version 9.3 (SAS Institute Inc., Cary, NC, USA). For each dosing 

one 5mg capsule was opened, the contents either poured out onto a spoon or sprinkled 

onto soft food or yoghurt, and the capsule inspected for residual granules. Participants 

remained seated upright for 4h after dosing. There was a 7 day washout between 

treatment periods which is longer than 5 elimination half-lives (the half-life of 

hydrocortisone is approximately 100min) (13). Post-study assessments were performed 

7 days after the last dose of hydrocortisone granules. Safety and tolerability assessments 

(adverse events, laboratory safety, vital signs and 12-lead electrocardiography) were 

recorded throughout the study. 

 

Sample collection and analysis 

Three blood samples were taken 5 minutes apart starting at 0.5h pre-dose to monitor 

cortisol suppression. Further blood was collected pre-dose and up to 12h post dosing on 

Day 0 for quantification of serum cortisol concentration (a total of 20 samples for each 
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individual and treatment period with post-dose samples at 0 (-2mins), 0.25, 0.5, 0.75, 1, 

1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 11, 12 hours). The blood samples were processed and 

kept at -20°C and analysed for serum cortisol concentration by liquid chromatography 

tandem mass spectrometry (LC-MS/MS) at Seirian Laboratories, Simbec Research Ltd, 

Cardiff, UK with assay performance data as previously reported (4). 

 

Pharmacokinetic parameters 

All participants received dexamethasone for suppression of endogenous cortisol levels to 

<1.8μg/dL (<50nmol/L). The mean of three samples taken 5 minutes apart 30 minutes 

pre-dose confirmed suppression and this mean determined the individual endogenous 

baseline serum cortisol. All serum cortisol concentrations thereafter were corrected for 

endogenous baseline levels by subtraction. Any negative baseline adjusted values or 

original concentrations below the limit of quantification were set to zero. The 

pharmacokinetic parameters were calculated following baseline cortisol correction and 

therefore reflect the concentrations achieved by the administration of hydrocortisone 

granules and not endogenous cortisol production (13). The pharmacokinetic parameters 

Cmax, Tmax, AUC0-t, AUC0-inf, λz (elimination rate constant), t1/2 (terminal half-life), 

CL/F (clearance), and Vz/F (apparent volume of distribution), were determined from the 

individual baseline adjusted serum cortisol concentration-time curve using WinNonlin 

Phoenix 6.3 (Certara L.P., St Louis, USA). The actual time of blood sampling was used in 

the calculation of the derived pharmacokinetic parameters.  
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Statistical analysis 

Statistical analysis was performed using SAS® software version 9.3 (SAS Institute Inc., 

Cary, NC, USA). For the comparative pharmacokinetic analysis the reference 

administration method was hydrocortisone granules placed directly to the back of the 

tongue and the test administration methods were hydrocortisone granules sprinkled onto 

soft food or yoghurt. Following logarithmic transformation Cmax, AUC0-t and AUC0-inf 

values were subjected to an analysis of variance (ANOVA) including fixed effects for 

sequence, period, treatment and subject nested within sequence. Point estimates and 

90% two-sided confidence intervals (CI) for the difference between administration 

methods were obtained using the residual mean square error obtained from the ANOVA 

model and back-transformed to give the CI for the ratio on the original scale (13). The 

administration methods were confirmed to be bioequivalent if the 90% CI of the ratio of 

the test to the reference administration method was within the 80 to 125% range (13). 

Tmax was compared between treatments using separate Wilcoxon Signed-Rank tests at 

the two-sided 5% significance level to test the differences and Hodges-Lehmann 

estimates of the median difference between treatments and corresponding 95% CIs were 

calculated.  
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Results 

 

Participants and demographics 

Nineteen male participants were randomised and received at least one dose of 

hydrocortisone granules and were eligible for the safety population. Of these, one 

participant withdrew from the study for personal reasons and was replaced. Eighteen 

participants completed the three sequences of this study and were eligible for the 

pharmacokinetic analysis population.   

Mean age (standard deviation sd, range) for the 19 participants who enrolled into the 

study was 31.4 years (8.71, 21 - 44) and mean BMI (sd, range) was 25.96 (2.75, 20.7 - 

29.7). All participants had adequate baseline cortisol suppression with mean pre-dose 

serum cortisol concentrations <1.8μg/dL (<50nmol/L) at each of the three treatment days 

(Day 0) prior to administration of hydrocortisone granules. Overall median baseline 

cortisol for each administration method (direct/ yoghurt/ soft food) (range) was 15.3 

(10.6, 72.4)/ 15.9 (12.5-26.6)/ 14.6 (9.85-81.8). 

 

Pharmacokinetic analysis  

Following a single 5mg dose of hydrocortisone granules the mean serum cortisol 

concentration over time curve was plotted for each of the three administration methods, 

to assess the rate and extent of absorption. Figure 1 shows the mean and the SD of the 
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serum cortisol concentration-time curves adjusted for baseline cortisol for administration 

as dry granules, sprinkles onto soft food, and sprinkles onto yoghurt. The curves were 

very similar between the 3 treatments; there was an initial rapid increase in cortisol 

concentration as expected for an immediate release formulation followed by a gradual 

decline.  

 

Pharmacokinetic parameters were calculated from the baseline adjusted serum cortisol 

concentration for each administration method and are shown in Table 1. For direct 

administration, administration onto yoghurt, administration onto soft food the maximum 

cortisol concentration Cmax nmol/L (geometric mean) was 428, 426, 427; AUC0-t 

(nmol*h/L) was 853, 882, 838; AUC0-inf (nmol*h/L) was 859, 886, 844. There was no 

statistical difference in Cmax or AUC between methods of administration. Tmax (median 

h, range) for dry granules was (0.625, 0.5-1.25), sprinkles onto soft food (0.75, 0.25-1.25), 

sprinkles onto yoghurt (0.75, 0.25-1.5) with no relevant difference between methods of 

administration. 

 

Comparative bioavailability  

The ratios of the geometric least square means of the pharmacokinetic parameters Cmax, 

AUC0-t, and AUC0-inf for the test (soft food or yoghurt) to the reference (dry granules) 

administration methods were calculated to compare the bioavailability between the 

administration methods. The 90% CI of the ratio for Cmax, AUC0-t, and AUC0-inf were 
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well within the 80-125% limits which confirmed that 5mg hydrocortisone granules 

administered as sprinkles onto soft food or yoghurt is bioequivalent to 5mg administered 

directly as dry granules (Table 2). Soft food to direct administration ratios and 90% CI 

were: Cmax 99.68 (93.98-105.72), AUC0-t 98.24 (94.42-102.21), AUC0-inf 98.21 (94.24-

102.36). Yoghurt to direct administration ratios and 90% CI were: Cmax 99.43 (94.33-

104.80), AUC0-t 103.33 (94.80-112.62), AUC0-inf 103.07 (94.55-112.35).  

 

Safety and tolerability 

Hydrocortisone granules were safe and well tolerated. There were no adverse events and 

no tolerability issues. Safety laboratory tests (biochemistry, haematology, urine analysis), 

vital signs, and 12-lead electrocardiography parameters were satisfactory at baseline and 

showed no relevant changes over time. There were no relevant physical examination 

findings during the study. All treatment periods exhibited similar safety profile and drug 

tolerability. 
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Discussion 

 

These data show that hydrocortisone granules sprinkled onto soft food and yoghurt are 

bioequivalent to granules administered directly to the back of the tongue in 

dexamethasone-suppressed healthy men. Test-to-reference ratios of the 

pharmacokinetic parameters Cmax, AUC0-t, and AUC0-inf were well within the 80-125% 

limits required to confirm bioequivalence. The peak and total cortisol exposure from 

hydrocortisone granules measured as Cmax and AUC was the same for the three 

administration methods and there was no relevant difference in the rate of absorption 

measured by Tmax. In this short study, hydrocortisone granules were safe and well 

tolerated, which confirms previous findings (4,9). 

 

Administration of a medication mixed with food is a drug manipulation and could affect 

the absorption of the active ingredient; for example, due to exposure to different pH (18). 

The medicines regulatory agencies in the US and Europe, the FDA and EMA respectively, 

recommend that any such manipulation of drug administration should be studied and 

verified ‘with respect to its potential impact on efficacy and safety’ which may include 

bioavailability studies to confirm if medications sprinkled onto food have the same 

bioavailability as direct administration (18,19). In accordance with this advice several 

studies have assessed the bioequivalence of sprinkles versus the intact form of the 

medication in children and adults (20-25). This study was designed to compare the 
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bioavailability of sprinkling the hydrocortisone granules onto food compared to the 

approved use as dry granules to the back of the tongue and confirmed that sprinkling 

hydrocortisone granules onto food does not change its pharmacokinetics. Mixing or 

stirring of hydrocortisone granules with food is not recommended and was not assessed 

due to hydrocortisone granules having a taste-masking layer added to neutralise the 

bitter taste of hydrocortisone which could dissolve if granules are stirred into food. The 

results on direct administration of dry granules in this study mirror previous findings by 

Whitaker et al who tested the pharmacokinetics of single administration of 

hydrocortisone granules in varying doses (0.5, 2.0, 5.0 and 10mg) in 16 dexamethasone-

suppressed healthy adult men (4). The dose tested in our study (5mg) is part of the dose 

range used to treat adrenal insufficiency both in paediatric and adult patients (4,26). In 

the paediatric population the pharmacokinetics of hydrocortisone granules have been 

studied in twenty-four young children with adrenal insufficiency (1month to 6 years old) 

with results comparable to the healthy adult men (9). The palatability of hydrocortisone 

granules was assessed in healthy men who found that the taste was neutral (neither good 

nor bad) (4). 

 

Administering medications to children can be challenging and many children report 

problems swallowing solid and liquid medicines in the absence of underlying neurological 

disease (27). Compounding of medications to administer as powder and mixing 

medication with food, juice, and sweeteners is a common approach that parents and 

paediatric nurses take to improve compliance especially when there are problems 
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swallowing or bitter tasting medications (10,12,28,29) and joint administration of 

medicines with food or drink is an effective strategy to ensure swallowing in children (11). 

Liquid formulations are favoured by young children and contain sweeteners to mask any 

bitter taste.  However, such hydrocortisone suspensions are not licensed, the 

hydrocortisone content may be inconsistent leading to treatment failures (30) and may 

contain sucrose that can have adverse effects on teeth with long-term use (31). Food is 

chewed to <2mm (32) therefore sprinkling beads of smaller size onto food should not 

cause problems swallowing. Furthermore, sprinkling of medication may have advantages 

in improving adherence and facilitate caregiving of patients with swallowing difficulties 

and this approach has been explored in children and elderly patients with potential 

swallowing and adherence difficulties such as in Alzheimer’s disease, attention-deficit 

hyperactivity disorder, and epilepsy (21,22,24,25). 

 

Dosing errors are common in young children and cause 20% of all medication errors in 

acute neonatal care (33). This is due to the lack of paediatric-appropriate dosage and the 

common use of unlicensed, ‘off-label’ and/or compounded medicines that don’t have 

appropriate labelling, safety or dosing data (33,34). In children adverse drug reactions are 

more common with unlicensed medications (35) and international initiatives have tried 

to address these issues and proposed approaches to improve availability of paediatric-

appropriate formulations and treatment outcomes (29,36). For children with adrenal 

insufficiency compounding hydrocortisone from adult tablets and splitting of adult tablets 

provides much needed flexibility in dosing however recent studies show significant 
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inaccuracy in the content of active ingredient leading to clinically significant 

consequences including Cushing’s syndrome (6-8).  

 

The FDA defines yoghurt products as having a pH of up to 4.6 (37) . The pH of fresh plain 

yoghurt is around 4.3-4.6 and this decreases rapidly with storage time to 4.0-4.2 (38-40). 

The pH of different yoghurt products vary within these ranges and is affected by the time 

since production, the initial dairy culture used, addition of fruit or fruit puree and the type 

of fruit added (38). The addition of sweeteners only slightly reduces pH (41) (range of pH 

3.94-3.98 vs 4.09-3.94). For comparison, the pH of applesauce is lower than yoghurt and 

is between 3.1-3.6. Since the pharmacokinetic analysis in our study showed 

bioequivalence between sprinkles on yoghurt and applesauce we believe that any 

commercial yoghurt product with a pH in the above ranges could be used as a vehicle for 

the sprinkling of hydrocortisone granules.  

 

The strengths of the study lie in the 3-period crossover design that ensures same within-

participant control and thus less variability of the data obtained. A double- blind design 

was not required as the primary objective of the study was to compare the bioavailability 

of hydrocortisone granules administered via 3 different methods. The pharmacokinetic 

parameters investigated were objective, and the sequence of administration methods 

was randomly allocated for each individual therefore the open label design conferred 

minimal risk of introducing bias into the study. Further strengths of this study are the 
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accurate measurement of cortisol with LC-MS/MS and the complete suppression of 

endogenous cortisol levels in all participants ensuring that cortisol measured was the 

result of treatment and not endogenous production. The study population was healthy 

young men and this can be a potential limitation as hydrocortisone granules are designed 

for the paediatric population; however, the absorption of hydrocortisone granules was 

previously studied in twenty-four young children and the results were comparable to the 

adult population (9). Children may have differences in physiology and pharmacokinetics 

but clinical studies are performed in children only under exceptional circumstances and 

this approach is considered adequate by regulatory agencies (13,15,17).  Dexamethasone 

has been reported in vivo and in vitro to induce CYP3A4 of which hydrocortisone is a 

substrate (42-44). It is possible that dexamethasone could alter the pharmacokinetics of 

hydrocortisone but as each limb of the trial was treated in the same way this shouldn’t 

affect the comparative bioavailability under different modes of administration. 

 

In conclusion it has been demonstrated that hydrocortisone granules can be administered 

either directly or sprinkled onto soft food (applesauce) or yoghurt which, when consumed 

within 3 minutes, did not result in any significant or clinically relevant change of overall 

drug exposure and rate of absorption. Based on the data shown patients have the 

flexibility of multiple administration methods and prescribers can safely recommend 

sprinkled administration of hydrocortisone granules. Carers and children may welcome 

the flexibility of different options for administering hydrocortisone to young children on 
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multiple-time daily dosing and it would be interesting to see if this flexibility improves 

adherence to treatment, disease management and clinical outcomes. 
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Figures and Tables 

 

 

Figure 1: Mean adjusted serum cortisol concentration and standard deviation over time 

after administration of hydrocortisone granules in 18 fasted, dexamethasone-

suppressed healthy men. The serum cortisol concentrations for each participant were 

corrected for endogenous baseline cortisol by subtraction of the mean pre-dose value. 
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 Table 1: Pharmacokinetic parameters calculated from baseline adjusted serum cortisol following a dose of 5mg hydrocortisone granules 
administered by three methods  

  Statistic Direct administration Soft food Yoghurt 

Cmax  (nmol/L) Geometric Mean 
SD 

428 
82 

427 
78 

426 
88 

AUC0-t    (nmol/L*h) Geometric Mean 
SD 

853 
203 

838 
198 

882 
161 

AUC0-inf   (nmol/L*h) Geometric Mean 
SD 

859 
204 

844 
197 

886 
162 

Tmax   (h) Median  
Range 

0.63 
0.5, 1.25 

0.75 
0.25, 1.25 

0.75 
0.25, 1.5 

λz (1/h) Geometric Mean 
SD 

0.48 
0.46 

0.53 
0.24 

0.55 
0.09 

t1/2 (h) Geometric Mean 
SD 

1.4 
0.6 

1.3 
0.4 

1.3 
0.2 

 

sd: standard deviation, cv: coefficient of variation, Geom: geometric mean, Cmax: maximum serum cortisol concentration after administration, 
Tmax: time to Cmax, AUC0-t: area under the serum cortisol concentration time curve from administration to the end of the sampling at 12h, 
AUC0-inf: area under the serum cortisol concentration time curve from administration extrapolated to infinite time, λz: terminal rate constant, 
t1/2: serum cortisol concentration half-life 
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Table 2: Bioequivalence comparison between the reference administration method (direct administration of dry hydrocortisone granules 
to the back of the tongue) and the test administration methods (hydrocortisone granules sprinkled onto yoghurt and sprinkled onto soft 
food) 

 Granules sprinkled onto soft food to direct 
administration of dry granules 

Granules sprinkled onto yoghurt to direct 
administration of dry granules 

 Geometric LSmean ratio 90% CI Geometric LSmean ratio 90% CI 

Cmax (nmol/L) 99.68 93.98-105.72 99.43 94.33-104.80 

AUC0-t (nmol/L*h) 98.24 94.42-102.21 103.33 94.80-112.62 

AUC0-inf (nmol/L*h) 98.21 94.24-102.36 103.07 94.55-112.35 

 

Cmax: maximum serum cortisol concentration after administration, Tmax: time to Cmax, AUC0-t: area under the serum cortisol 
concentration time curve from administration to the end of the sampling at 12h, AUC0-inf: area under the serum cortisol concentration 
time curve from administration extrapolated to infinite time. 
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6. Discussion 
 

Conditions of cortisol excess and deficiency have significant mortality and morbidity when 

inadequately treated and medical therapy is an essential part of therapy. This research 

examined whether it is possible to use medical therapy to normalise cortisol levels in cortisol 

excess and deficiency and five studies were designed to explore this. Study 1 is the largest 

reported cohort of patients with CS treated with the steroidogenesis inhibitor metyrapone. 

Study 2 is the first prospective study that reports efficacy of medical treatment in NS. Study 3 

is the only study in the literature to examine the accuracy of delivery of hydrocortisone through 

nasogastric tubes and study 5 examines whether co-administration with soft food affects the 

pharmacokinetic parameters of hydrocortisone granules. Study 4 investigates the correlation 

of haemoglobin and haematocrit with androgen levels in women with CAH.  

 

 

	

6.1. Why are physiological cortisol levels important? 

 

Abnormalities in cortisol secretion are associated with significant mortality and morbidity and 

there is evidence that the correction of hypercortisolism and hypocortisolism by medical or 

surgical methods significantly improves morbidity and mortality. Restoration of physiological 

cortisol levels is key to improving patients’ self-perceived health status and cognitive function, 

which are impaired in patients with conditions of cortisol excess or deficiency. Patients 

experience on-going symptoms and disability and have adverse clinical outcomes when 

therapy leads to under- or over-exposure to glucocorticoid hormones. 

 

At diagnosis, patients with cortisol excess have increased incidence of cardiovascular risk 

factors including hypertension and diabetes 535. There is an increased risk of mortality, 

cardiovascular events, peptic ulcers, thromboembolic disease, fractures, and infections in 

patients with overt cortisol excess due to benign adrenal or pituitary disease and prior to the 

introduction of cortisol-reducing treatment the mean survival of patients with CS was 5 years 
216, 535-537. This phenotype is linked to cortisol excess; higher levels of cortisol confer higher 



	

	 222	

risk for infections, mortality following surgical treatment for pituitary adenoma is higher in 

patients with CD than patients with non-functioning adenoma, and mortality in patients 

diagnosed with mild hypercortisolism due to adrenal adenoma improves after treatment for 

cortisol excess 223, 538-542. Patients with active cortisol excess have high mortality even after 

treatment of the glucocorticoid-associated complications with increased standardised 

mortality rate up to 5-fold higher than the general population 535, 538 and patients with persistent 

or recurrent disease have higher than expected mortality 538, 540, 543.  

 

Cortisol deficiency was associated with poor life expectancy prior to the introduction of life-

saving glucocorticoid therapy to restore cortisol levels 13. The introduction of adrenal gland 

extracts containing glucocorticoid steroids as treatment for patients with Addison’s disease 

improved 1.5-year survival from 35% to 55% and introduction of the first generation of 

synthetic glucocorticoids improved survival further to 85% 544. Prior to glucocorticoid 

replacement pregnancy was considered detrimental for female patients. Overall, most deaths 

occurred due to either an adrenal crisis caused by intercurrent illness or cardiovascular events 
545. Neonates with CAH invariably died in infancy and despite some improvement in survival 

following treatment with salt it was the introduction of cortisone therapy in the 1950s that 

improved survival and reduced androgen excess 546. Glucocorticoid replacement also 

improved symptoms of hypoadrenalism including gastrointestinal and hypoglycaemia, 

reduced fatigability, and promoted weight gain.  

 

Quality of life is reduced in active cortisol excess and hypoadrenalism. Persistent cortisol 

excess due to disease relapse or failure to control hypercortisolism is associated with worst 

QoL compared with biochemical cure 547, 548. Cortisol secretion abnormalities seem to be 

specifically associated with impairment in QoL; in patients with pituitary adenoma, those with 

cortisol excess had the worst QoL and least improvement following treatment compared with 

patients with GH or prolactin excess 548. There are deficits in most measurable aspects of QoL 

and cognitive function assessment with the exception of pain. Improvement in QoL occurs 

after surgical treatment of cortisol excess irrespective of the specific operation; QoL scores 

following bilateral adrenalectomy for CD are comparable to scores following remission from 

pituitary surgery 549, 550. Cognitive deficit has also been reported in patients with PAI 551. 

 

Treatment to reverse glucocorticoid deficiency or excess is therefore essential to improve 

prognosis and general health status. In cortisol excess this is best achieved with surgical 
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resection of the primary site of hormonal excess. After successful surgical treatment for 

cortisol excess the cardiovascular risk factors improve but remain high for years likely due to 

the metabolic sequelae of chronic exposure to glucocorticoid excess prior to definitive 

treatment 223, 535, 540, 543, 552-554. Restoration of eucortisolaemia improves glucocorticoid-

associated cardiovascular and metabolic risk factors such as obesity, hypertension, glucose 

tolerance, dyslipidaemia as well as quality of life, osteoporosis and psychiatric conditions in 

patients with cortisol excess 555. Left ventricular dysfunction and psychiatric morbidity also 

improve following restoration of eucortisolaemia in patients with CS 556. Overall there is 

evidence from long-term follow-up cohorts that mortality and morbidity improve when cortisol 

excess is successfully treated but remain higher compared to the general population’s and 

aggressive treatment of glucocorticoid-associated cardiac risk factors is necessary for patients 

with CS in remission 535, 543, 557-559. International guidelines state that for patients with overt 

cortisol excess there is benefit in giving medical treatment to normalise cortisol levels in the 

blood or at the receptor level to eliminate the signs and symptoms of CS 345. 

 

Similarly, correction of hypoadrenalism by glucocorticoid replacement therapy changed the 

prognosis and significantly improved survival in patients with adrenal insufficiency since its 

introduction in the 1940s 544, 545, 560. The total daily dose of replacement matters as under-

replacement and over-replacement are associated with adverse symptoms and signs. Current 

estimates of appropriate hydrocortisone equivalent total daily dose is around 15-20 mg. 

Under-replacement is associated with persistent fatigue, low quality of life and higher risk of 

adrenal crisis 284. Over-replacement is associated with high incidence of central adiposity, 

hypertension and dyslipidaemia and patients with CAH exposed to high glucocorticoid doses 

in childhood develop adverse metabolic features, cardiovascular risk factors and have higher 

than expected mortality as adults 318, 515, 561-563. Patients with primary or secondary 

hypoadrenalism on glucocorticoid replacement continue to have a 2-fold increase in the 

mortality compared to the general population with excess mortality due to infections, 

cardiovascular events and cancer and supra-physiological daily hydrocortisone doses above 

30 mg/day or 0.3 mg/kg are associated with higher mortality 493, 495, 501-503. Reduction of 

glucocorticoid replacement in patients with secondary hypoadrenalism and high total doses 

may improve body composition, adiposity and lipid profile 564. Non-physiological replacement 

with long-acting glucocorticoids that increase exposure to glucocorticoids at times when there 

is low physiological exposure also promotes an adverse metabolic profile 481. 
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Quality of life and cognitive function improve with treatment of cortisol excess and deficiency 

but do not normalise and recovery may take several years 549, 555, 565-567.  QoL improves in CS 

patients in remission compared to patients with hypercortisolism independent of treatment or 

underlying cause of CS 548, 550, 568. However, many years following biochemical cure for CD, 

patients report worst mental, cognitive, and physical scores (including anxiety, depression, 

fatigue, social and physical functioning) compared with healthy matched adults 550. In pituitary 

disease, QoL scores are worst in the presence of multiple hormone deficiencies, 

glucocorticoid deficiency, and history of cortisol excess with worst QoL impairment reported 

in GH-deficiency associated with CD compared to other causes of GH-deficiency 569, 570. There 

were cognitive deficits in patients cured from CD for many years (mean 13 years, 27% of 

patients received post-op radiotherapy and 58% had one or multiple pituitary hormone 

deficiencies) mainly in visual memory, verbal learning and executive function compared with 

matched controls. In the same study, patients cured from NFA had deficits in executive 

function compared with matched controls; post-op radiotherapy was given to 44% of patients 

cured from NFA and 93% had at least one pituitary hormone deficiency with 57% receiving 

glucocorticoid replacement. Overall patients with CD had higher cognitive impairment in 

memory and executive function than patients with NFA or controls and scores were better with 

longer duration of remission 571. In a different study, long-term residual QoL impairment was 

demonstrated in 23 patients with long-term remission from CD and this was not found to be 

associated with glucocorticoid replacement or previous radiotherapy 555. In contrast, in 11 

patients with GH deficiency and secondary hypoadrenalism a reduction of supra-physiological 

GC replacement dose was associated with improved QoL scores 564.  

 

Patients with cortisol deficiency due to PAI or CAH also have residual impairment in QoL 

despite adequate glucocorticoid replacement and this is not associated with the cause of AI 

or presence of concomitant disease 469, 492, 572. There were subtle cognitive function deficits 

related to verbal learning in 30 patients with long-term PAI on GC replacement (15-35 mg HC 

equivalent dose, mean 21 mg) compared to controls 573. Cognitive deficits affecting memory 

and executive skills were also demonstrated in 31 patients with PAI on hydrocortisone 

replacement (HC dose 12.2 mg/m4 BSA or mean weight-adjusted 0.28 mg/Kg) 574. Poor QoL 

in patients with disturbed diurnal secretion of cortisol or non-physiological replacement may 

be associated with effects of diurnal cortisol levels on sleep. The results of the above studies 

may indicate that a certain level of GC is essential for learning and normal cognitive function 

and that both cortisol excess and deficiency are related to cognitive defects 575. Alternatively, 

the results may reflect periods of over-replacement and their long-lasting effects on cognitive 

function.  
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There are widespread effects of glucocorticoids in the brain and it is possible that cortisol 

excess or deficiency may have long-standing neurological effects despite cure or adequate 

hormone replacement 576. Cortisol affects cognitive function and behaviour in complex ways 

and is important for neurocognitive adaptation to stress 575, 577. Cognitive deficits associated 

with cortisol excess include short-term memory, executive function, working memory and 

attention and these are associated with structural abnormalities and atrophy in the 

hippocampus, amygdala and frontal cortices of the brain 569, 576, 578-584. The hippocampus is 

important for memory and learning. Radiological evidence of loss of hippocampal volume was 

associated with a deficit in verbal learning and recall and high levels of hypercortisolaemia in 

patients with CS and reversal of cortisol excess was followed by an increase in hippocampal 

volume 576, 583. Generalised cerebral atrophy is prevalent in patients with CS of all ages and 

both endogenous and exogenous cortisol excess are associated with premature cerebral 

atrophy 584-586. Data on hypocortisolism are more limited but animal data suggest hippocampal 

neuronal death affecting the dentate gyrus following adrenalectomy which may suggest 

problems with learning and memory 587-589. Structural neurological changes are partially 

reversible after correction of cortisol excess however cognitive deficits persist and in children 

with CS cognitive function continued to decline for 1 year after biochemical cure 584, 585, 590, 591. 

Cognitive deficits persist in patients with CD cured with surgery years after treatment despite 

restoration of physiological circadian pattern of cortisol secretion and it is likely that some 

consequences of brain exposure to cortisol excess are reversible following restoration of 

normal cortisol levels and some persist 592.  

 

The current glucocorticoid replacement regimens cannot replicate the ultradian rhythmicity of 

endogenous cortisol secretion and this may contribute to low self-perceived QoL in patients 

with hypoadrenalism. There is evidence that pulsatile cortisol secretion is important for normal 

brain functioning and behaviour under non-stressed conditions including sleep quality, 

memory performance, and regulation of emotional responses 593. A study of glucocorticoid 

administration in dexamethasone-suppressed healthy men showed that lack of pulses of 

cortisol in a subcutaneous continuous HC infusion delivery system was associated with poorer 

working memory performance at times of high cognitive demands and quality of sleep 

compared with pulsatile HC infusion 593.  
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6.2. Can medical therapies restore physiological cortisol secretion?  

	

Restoration of physiological cortisol levels is central to improving survival and health status in 

patients with cortisol excess and deficiency. There are various treatment options to achieve 

this: surgical, radiation and medical therapy in CS and NS and medical therapy in primary 

adrenal insufficiency and Congenital adrenal hyperplasia. Medical therapy for these conditions 

has existed for decades however there are still unresolved issues of efficacy, safety, best 

treatment regimens and persistent symptoms.  

 

 

Cortisol deficiency 
The cornerstone of management of adrenal insufficiency is the replacement of glucocorticoids 

and there are various formulations with distinct pharmacokinetic properties and treatment 

regimens that set out to replace glucocorticoids according to the physiological pattern of 

cortisol secretion. Some regimens are more successful in doing this than others but overall 

the current treatment options that are available in clinical practice approximate the circadian 

pattern of cortisol secretion but do not replicate the ultradian pulsatility. The pulsatile pattern 

of cortisol secretion is considered important in cognitive function and lack of it may explain the 

low QoL scores in some patients with adequate glucocorticoid dose replacement. 

 

Current knowledge suggests that the optimal glucocorticoid replacement dose in adults is 10-

12 mg/m2/day, which is slightly higher than the calculated daily cortisol production of 6-8 

mg/m2/day to allow for 90-95% bioavailability and first pass hepatic metabolism of oral 

treatment. These calculations equate to the usual adult daily replacement doses of 

hydrocortisone-equivalent 15-25 mg 127, 475. There is significant variability of cortisol 

concentration post oral administration between individuals due to variable metabolism, age, 

gender, and levels of cortisol binding proteins and some patients may be over- while others 

may be undertreated with these doses therefore clinical assessment is vital 475.  

 

In the absence of a perfect replacement option the optimisation and individualisation of 

treatment seems the only solution. Under-replacement is avoided with adequate dose up-

titration driven by careful clinical assessment. Thrice-daily oral hydrocortisone regimens avoid 

dips in cortisol levels during the day that may cause fatigability. Short acting hydrocortisone-
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based regimens avoid overexposure of glucocorticoids during the quiescent period that 

increases risk of metabolic and cardiovascular complications 481. These regimens are also 

preferable in children as long-acting glucocorticoids are associated with growth suppression. 

Long-acting glucocorticoids tighten control of ACTH secretion in women with CAH seeking 

fertility optimisation and they are indicated for short-term use accepting they provide 

glucocorticoid over-replacement. At the same time until a perfect regimen is available it is 

necessary to address treatment-related morbidity with patient education and proactive and 

reactive actions; treat and prevent cardiovascular risk factors, promote weight-control and 

healthy lifestyle. 

 

New treatments set out to address the deficiencies of existing regimens; their theoretical and 

pharmacological advantages will be tested against time and clinical outcomes. There are high 

expectations as these treatments are designed to improve persistent symptoms with 

pharmacokinetic properties better suited to allow a better replication of circadian cortisol 

secretion, add convenience of administration and improve acceptance and compliance. 

Hydrocortisone pumps are being investigated to offer the closest replication of cortisol 

secretion and are the only treatment that can be programmed to replicate the pulses of cortisol 

secretion. The technology to optimise the pattern of glucocorticoid delivery is in sight with the 

compromise of an invasive mode of treatment delivery, demanding patient engagement and 

likely financial cost. New treatments are promising but will be more expensive and may drive 

an overall rise in the cost of glucocorticoid replacement.   

 

 

Cortisol excess 
There are specific indications for medical therapy in the treatment algorithm of cortisol excess. 

Overall medical therapy is frequently necessary to help control disease activity in patients with 

persistent disease or non-candidates for surgery, which is generally the first line therapy. The 

Endocrine Society guidelines recommend steroidogenesis inhibitors as second-line after 

surgery in CD, combined with radiotherapy for the same indication, first-line in ectopic ACTH-

secretion when surgery is not an option, and as adjunct in adrenocortical carcinoma 

associated with cortisol excess 345. New medications have been tested and approved in the 

last few years and are indicated in CD (pituitary-directed agents, pasireotide) and in cortisol 

excess-associated glucose intolerance (glucocorticoid receptor antagonist mifepristone). 
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Steroidogenesis enzyme inhibitors have been used to treat cortisol excess for many decades 

and are the first line agents.  They are the most commonly used medications and are very 

effective in reducing cortisol levels as monotherapy or in combination with other agents. 

Ketoconazole and metyrapone show 50-75% effectiveness, have a short duration of action 

and need to be given in multiple doses daily. We have shown in the largest reported cohort 

that normalisation of cortisol levels with metyrapone is possible with CDCs achieving the target 

of 150-300 nmol/L that reflects normal cortisol production which agrees with previous reports  
1, 6, 349.  

 

There has been no assessment of characteristics of cortisol secretion such as diurnal and 

pulsatile secretion pattern in this research 1. Rhythmicity in cortisol secretion has been 

reported to recover after successful surgery for CD 592. In 6 out of 12 patients with CD on 

medical therapy, the cortisol secretion pattern as grossly assessed by a 5-point serum CDCs 

showed recovering diurnal variation after 80-day treatment with pasireotide, cabergoline and 

ketoconazole 594. No differences in QoL existed between patients with rhythmicity 

improvement versus no improvement in this study. In patients with active CS there is no diurnal 

rhythmicity, nadir midnight cortisol, and quiescent period in the evening. An assessment of 

these characteristics of physiological secretion pattern would be useful to do in patients with 

cortisol excess who are likely to remain on medical therapy long-term and this is only a small 

subgroup of patients receiving treatment with steroidogenesis inhibitors. The short duration of 

action of metyrapone and ketoconazole provides in theory the opportunity to reduce cortisol 

using a fine-tuned dose titration regimen to mimic physiological production patterns. The 

highest dose of metyrapone can be given at bedtime with additional evening doses to achieve 

higher suppression of cortisol levels. Another option of restoring physiological pattern is to use 

a block and replace regimen with high doses of steroidogenesis enzyme inhibitors that block 

cortisol production completely and render the patient cortisol deficient and add glucocorticoid 

replacement similar to glucocorticoid replacement in endogenous adrenal insufficiency. The 

first approach is intensive and requires frequent clinical and biochemical assessments and the 

second tolerance of large doses of steroidogenesis inhibitors. In both cases access to 

accurate analytical methods for quantification of endogenous production such as LC-MS/MS 

is necessary. There are no previous studies in CS that examined if metyrapone with 

appropriate dosing could replicate physiological cortisol levels but the effects of such a fined-

tuned approach are worth investigating in patients who are likely to remain on medical 

treatment long-term and who are to receive longer-term benefit to counteract the intensive 

monitoring requirements. Such approach has been tried in patients with autonomous cortisol 

production due to an adrenal adenoma and has shown that a single evening dose of 
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metyrapone improved cortisol secretion profiles 595. It is therefore feasible to mimic 

physiological cortisol production in patients on medical therapy for cortisol excess and the task 

is to identify those who are likely to benefit from this approach.  

 

The quantification of efficacy of medical therapies depends on the definition of normalisation 

of cortisol levels and on the test chosen to assess this. Cortisol day-curves and UFC have 

been used to monitor therapy in cortisol excess but have disadvantages and they do not 

provide an accurate assessment of cortisol secretion pattern.  

 

	

Compliance and adequate dose titration 

The effectiveness of medical therapy is linked to correct and judicious administration. 

Medications work when patients take them as directed and there are many factors that affect 

compliance; dislike of medication form or size of tablets, complexity of regimen and high 

frequency of dosing, socioeconomic, individual health beliefs, and health behaviour 596, 597. 

Patient education of indication and side effects is key however compliance has presented a 

persistent and underrecognized health problem affecting the management of many patients 

treated with medical therapy for chronic conditions 598. Non-compliance with essential 

medication can be as high as 60% in patients with long-term diabetes and hypertension 597, 

599. Moreover, 71% of patients with epilepsy reported missing medication doses and 40% of 

patients with chronic conditions report taking their medications later than prescribed 600. Every 

increase in the frequency of doses increased the likelihood of dose omissions by one third 597, 

601. 

 

Children are a group of patients facing particular problems with compliance due to negative 

attitudes towards taking medications 602. The problems are multiple and include swallowing 

difficulty in young children, unpleasant taste of medications, and behavioural obstacles 

especially in young children. Designing medications to address these issues is essential in 

improving acceptability, ease of administration and accuracy of dose delivery and 

improvement in compliance should be expected to improve effectiveness and likely clinical 

outcomes.  
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Medical treatments for cortisol excess and deficiency need individualisation and there is no 

regimen that is suitable for all. Decisions on dose titrations are key to achieving the best 

treatment results that each regimen can provide. Dose titrations require engagement with 

monitoring, availability of accurate methods for monitoring, and frequent assessment of dose 

adequacy. There is some evidence that patients on steroidogenesis inhibitors may not have 

sufficient dose up-titration and efficacy of medical therapy may be reduced because of this 1, 

359. Pre-agreed monitoring protocols may encourage sufficient up-titration and will allow more 

accurate assessment of tolerance problems, adequate dose titration and effectiveness.  

 

 

Safety considerations 

The benefit of medical therapy is always weighed against its adverse effects. Metyrapone has 

been shown to be safe and well tolerated with a side effect profile that likely overlaps with 

symptoms of overtreatment. This is likely true with other steroidogenesis inhibitors such as 

ketoconazole and mitotane. Accurate and reliable biochemical assessment of treatment 

response can minimise overtreatment and likely improve tolerability but such accurate 

assessments are not widely available. The management of these patients should be done in 

specialist centres where there is adequate clinical experience to assess and manage the 

intricacies of medical therapy and improve safe use of medical therapy. 

 

Accurate characterisation of the safety and side-effect profile of medications is better done in 

prospective studies, which are not available for the most commonly used steroidogenesis 

inhibitors. Due to the mechanism of action metyrapone could cause accumulation of 

mineralocorticoid and androgen precursors and result in fluid retention and symptoms of 

hyperandrogenism in women, however, these concerns were not significantly reflected in the 

findings of Study 1. Ketoconazole causes hepatitis and very rarely acute liver failure and 

frequent monitoring of LFTs is essential. Because of the severity of these side effects, the use 

of Ketoconazole as an antifungal has been restricted and the dose for this indication was lower 

than the dose used in CS.  

 

Pasireotide causes hyperglycaemia in a significant number of patients treated with CD due to 

inhibition of insulin secretion through SSTR1,2, and 5 medicated signalling. In the majority of 
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patients treated with pasireotide there is worsening of diabetes control, new onset of diabetes 

or anti-glycaemic medications and patients need to be well-informed and closely monitored.   

 

 

	

	

6.3. Methodological challenges in studying conditions of cortisol excess 
and deficiency 

	

6.3.1. Assessing treatment effectiveness   

	

Medical therapies come with risks of side-effects and financial cost and should only be 

considered if there is reasonable expectation of benefit over no treatment. Documenting the 

effectiveness of treatment is important in clinical decision making such as weighting continued 

use over no treatment or change of treatment. There are various ways of assessing treatment 

effectiveness: biochemical monitoring of change in biomarkers, clinical monitoring of change 

in clinical features and symptoms, improvement in clinical outcomes in treated patients over 

time, improvement in self-perceived health status or quality of life. Ideally these measures 

must be validated and associated with long-term desirable patient outcomes in a 

representative population of patients. This high level of evidence requires prospective 

application of the measures of treatment effectiveness in a large patient sample, reflection 

and debate on their use, and confirmation in multiple cohorts. In practice, commonly used 

medical therapies have not been tested against all aspects of this vigorous process. 

 

Metyrapone has been used as a medical therapy for CS for many decades however clinical 

experience was mainly restricted to a few patients in tertiary centres. This is not surprising as 

CS is a rare condition and only some patients receive treatment with metyrapone. In the 

literature there has been no prospective studies on its use in improving cortisol levels in CS; 

there have been case reports, expert opinions, and a large retrospective study of 91 patients. 

For this reason, its use was not standardised; multiple biochemical tests were used and the 

frequency of biochemical monitoring and dose titration varied or no dose titration was done. 

The selection of an appropriate biochemical biomarker to monitor treatment response is 

essential in assessing treatment effectiveness. Verhelst et al. reported a single centre 
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experience of metyrapone where all patients were monitored by CDCs aiming a mean level 

between 150-300 nmol 349. Study 1, a multicentre retrospective study, included a large patient 

sample, almost equal in number to all previous cases reported in the literature, and showed 

that frequently other tests were used to assess efficacy; UFC and morning cortisol levels as 

well as CDCs. These three tests have not been compared directly in patients treated with 

metyrapone and it is not possible to say which one is preferable, performing all three is likely 

excessive. UFCs are commonly used to monitor treatment response in CS clinical trials aiming 

for normalisation but they are not useful in detecting adrenal insufficiency therefore they may 

not be useful in fine dose titration. Single morning cortisol levels are less time consuming than 

CDCs however the target range is not clear; is the aim of treatment the normalisation of levels 

or a specific value and is the sample pre or post morning dose? The cut-off levels proposed 

in Study 1 are based on expert opinion and reflect the clinical practice at the time but they are 

not validated against other biomarkers or patient outcomes.  

 

On the other hand, the biochemical target of the mean cortisol level in CDCs corresponds to 

the daily cortisol production rate in healthy volunteers and was associated with clinical 

improvement in the series described by Verhelst et al. However, to have accurate biochemical 

results the method used to quantify cortisol must be specific due to high levels of 11-

deoxycortisol, a cortisol precursor with molecular structure similar to cortisol that is 

significantly increased by metyrapone therapy and cross-reacts in cortisol immunoassays 

leading to overestimation of cortisol levels 430. Another option is abolishing the approach of 

dose titration in favour of a block and replace regimen where higher doses on metyrapone are 

used for complete blockage of cortisol production and glucocorticoids are added for 

replacement. This negates the requirement of regular monitoring of treatment response with 

the following assumptions; patients tolerate high metyrapone doses and are meticulous in 

compliance for all (multiple) tablets.   

 

In study 2, the use of ACTH as a biochemical biomarker of disease activity and response to 

treatment in NS was tested in a prospective study. The method of testing for ACTH was 

standardised allowing comparison between values over time; ACTH was measured before 

and after the morning glucocorticoid dose, at the same time intervals from the start of 

treatment and the response criteria and their interpretation were predetermined.  This 

standardised application of a biochemical biomarker increases the confidence in assessing 

response to treatment. ACTH levels show intra-individual variability and generally fall after a 

glucocorticoid dose therefore it was useful to monitor pre and post dose levels and test at 
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frequent intervals during the study. In this study together with biochemistry there were clinical 

and imaging markers of response; skin pigmentation and tumour volume on magnetic 

resonance imaging are consistent and measurable features of NS and improvement is a 

desirable clinical outcome. The study showed that the medical therapy tested reduced ACTH 

levels significantly over time. Pasireotide was effective and this response reached statistical 

significance despite the small patient sample, however, because of the small number of 

patients reproduction of these results in further studies are necessary before any firm 

conclusions for a positive treatment effect is made. 

 

In cortisol deficiency treated with glucocorticoid replacement there is no accepted biomarker 

to monitor disease response and usually patients receive a fixed dose, in some centres 

adjusted for weight and thereafter dose titrations depend primarily on clinical assessments. 

Quantification of the glucocorticoid used for replacement can be done with Hydrocortisone 

day-curves and prednisolone levels 166. The former is useful in detecting poor absorption and 

overtreatment and the latter is not widely available and should be done using LC-MS/MS 

technique. Clinical features are mainly used to assess response to treatment and these 

include absence of Cushingoid and hypoadrenal symptoms and signs. Adrenal crisis is an 

extreme presentation which is life threatening and its prevention is a primary aim of treatment; 

they are usually caused by infections unrelated to the cause of adrenal insufficiency but the 

frequency over time can help assess response especially in a large patient sample. 

Furthermore, changes in quality of life are important for patient perceived health status but are 

not formally part of dose assessment. Bone markers could be used as biomarkers of 

overtreatment rather than efficacy. Hair cortisol has been used in the assessment of chronic 

stress as a marker of long-term cortisol exposure and there are no obvious applications in 

guiding management of hypodrenal patients 603.  

 

 

 

6.3.2. Analytical biochemistry for measuring steroids 

The assessment of treatment response and on-going monitoring of conditions of cortisol 

excess and deficiency requires accurate analytical chemistry methods for measuring steroids 

and cortisol in particular. The three immunoassays used in Studies 1 and 2 were competitive 

binding chemiluminescence immunoassays (Roche Cobas, Siemens Centaur, and Abbott 



	

	 234	

Architect) with good specifications however they have cross-reactivity with steroid precursors 

(Table 8). A number of different techniques and methods are used for quantifying cortisol in 

biological samples and these are immunoassays, high performance liquid chromatography 

(HPLC) and gas or liquid chromatography coupled with mass spectrometry. 

 

The main challenges in the quantification of small steroids such as cortisol in biological 

samples are the specificity of antibodies used in immune-based methods, the presence of 

numerous structurally similar endogenous or exogenous steroids and steroid metabolites that 

can interfere with measurement, the binding of steroids to carrier proteins in the circulation 

and sex-specific differences 604. Analytical methods with positive identification overcome these 

issues at the expense of lengthier and more operator-intensive protocols but these techniques 

were not widely available in clinical laboratories. Growing concerns about the accuracy and 

precision of some steroid immunoassays, their effect in diagnosis and monitoring of patients, 

and the consequence in the reporting of studies in medical publications led to some publishers 

issuing guidance against the use of certain assays and a move towards harmonisation and 

standardisation of analytical methods. The Endocrine Society warned against the use of direct 

unextracted immunoassays for quantification of serum cortisol in manuscripts due to low 

sensitivity and possible cross-reactivity with exogenous glucocorticoids and the risk of cross 

reactivity of salivary cortisol with cortisone measured by immunoassays restricting their clinical 

application in the diagnosis of adrenal insufficiency or Cushing’s syndrome 605.  

 

Immunoassays are the most commonly used assays to quantify serum cortisol in clinical 

laboratories being simple to use and automated to have high throughput. However, 

immunoassays suffer from low specificity due to antibody specificity problems and cross-

reactivity from other steroid molecules. Endogenous steroid molecules and drugs that are 

structurally similar to the target hormone could cross react with the antibody in the 

immunoassay and an example is cortisol and its precursor molecule 11-deoxycortisol. Cross-

reaction can cause a clinically significant increase in cortisol quantification especially when 

the cross-reacting compounds are found in high concentrations such as in samples from 

patients suffering from conditions causing elevated steroid precursors, for example some 

forms of CAH, and patients treated with steroidogenesis enzyme inhibitors such as 

metyrapone 137. Immunoassays may also be affected by variable separation of cortisol from 

CBG, which affects cortisol quantification in conditions where CBG is elevated such as women 

who are pregnant or taking the oral contraceptive pill, and in these cases under-recovery of 

cortisol from CBG leads to under-estimation of total cortisol 28, 530. Furthermore, immunoassays 
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may have low sensitivity in low concentrations of circulating cortisol due to low-affinity of anti-

cortisol antibodies and sensitivity in saliva is also not acceptable at the low concentrations 

needed for measuring nadir cortisol levels in patients investigated for hypercortisolism due to 

interference by salivary cortisone 606.  

 

Radioimmunoassay used to be the gold standard for cortisol and steroid quantification but 

was labour-intensive and involved the use of radioactive isotopes. Modern chemiluminescent 

immunoassays are sensitive even to low concentrations of cortisol and have a linear 

relationship between the intensity of emitted light and amount of biological substance to be 

quantified. They are comparable to RAI in terms of sensitivity, specificity, precision and 

accuracy but more rapid and eliminating the need for radiation and have been the standard 

cortisol immunoassay in clinical practice 607. Direct cortisol immunoassays without extraction 

and pre-purification are not specific enough due to competition of plasma cortisol binding 

proteins with the assay antibody and interference with antisteroidogenic drugs. Immunoassays 

measuring cortisol in the urine have poorer performance due to dilution and the presence of 

large amounts of cortisol metabolites that cross-react with the assay and lead to 

overestimation of free cortisol concentration 608.  

 

HPLC is specific but not sensitive enough to quantify cortisol at physiological levels and has 

limited use unless paired with mass spectrometry. Gas chromatography mass spectrometry 

(GS-MS) is the gold standard method for steroid analysis and is used extensively for urinary 

steroid metabolome analysis	(506). It is an accurate method that involves sample preparation 

by extraction of steroids on a hydrophobic sorbent and purification by liquid-gel 

chromatography followed by computerised gas chromatography-mass spectrometry analysis 
609, 610. Gas chromatography separates organic compounds in a complex sample in the gas-

phase over time and mass spectrometry analyses compounds based on their structural 

properties and m/z ratio 611. GS-MS was developed six decades ago but is not used routinely 

in clinical practice and is mainly a research tool as it is time-consuming with long sample 

preparation and analysis 523, 612.  

In contrast, LC-MS/MS has emerged as an accurate method for glucocorticoid analysis, which 

is practical enough to be applied in research studies and routine clinical practice. It is sensitive 

and specific with results comparable to GC-MS but has faster analytical times and good 

specificity, higher than HPLC and immunoassay 140. The major advantages is that it can 

measure multiple forms of an analyte, multiple analytes, does not dependent on specialised 
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immunologic reagents and can be standardised across different laboratories 523, 613. The 

protocol for sample preparation is simple and only basic preparation is necessary as the 

technique is good at cutting out interferences. It has a low limit of detection in serum for 

steroids and can measure cortisol in a small amount of sample 527, 528. An LC-MS/MS 

methodology for quantification of cortisol has been standardised by the US National Institute 

of Standards and Technology and a number of candidate reference methods have been 

published that are accurate, specific and sensitive to low cortisol levels 614-616. Over the last 

decade there has been a development of improved LC-MS/MS protocols that allow rapid 

cortisol quantification and can be used in busy clinical laboratories  617.  

 

Compared with immunoassays, LC-MS/MS methods have lower intra- and inter-assay 

variability and are more accurate especially in extreme high or low values. Furthermore, serum 

samples from patients that receive synthetic steroids, as well as salivary and urinary samples 

have significant cross-reactivity in immunoassays and for accurate measurement should be 

analysed by LC-MS/MS 523. Commonly used immunoassays for cortisol quantification are not 

linear with LC-MS/MS and it is recommended that the results of immunoassays are validated 

against LC-MS/MS methods 523, 606, 613. A comparison of serum cortisol quantification by a 

reference LC-MS/MS method and the immunoassays used for quantification of cortisol in 

Study 1 showed that the three immunoassays had a bias of -4.9 to 18% in control men and 

non-pregnant women and significant inter and intra-assay variability whereas a routine LC-

MS/MS method used in clinical practice was more accurate 530. In this study, Hawley et al. 

found that compared to the reference method, the routine LC-MS/MS performed well but there 

was positive bias in all the immunoassays (mean bias 49.4, 182.2 and 161.5 nmol/L for the 

Abbott, Roche, and Siemens assay) which would lead to changes in clinical decisions, up-

titration of metyrapone dose when not necessary in some cases and overtreatment of patients 
530. 

 

A study comparing UFC by LC-MS/MS, GC-MS, and two commercial immunoassays showed 

that cortisol was grossly overestimated up to 2-fold by the two immunoassays due to 

interference from cortisol metabolites and that LC-MS/MS results correlated and performed 

well compared with the reference GC-MS method 140. Salivary cortisol levels measured by 

various commercial immunoassays and compared with LC-MS/MS showed that the values 

obtained by the different immunoassays were not comparable and had significant variation in 

absolute values proposing indirect comparison of values by conversion by an immunoassay 

specific factor score which is impractical as it requires frequent review 606. These results 
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suggest that when monitoring tests are analysed by the immunoassays there is a significant 

risk that the inaccuracy of the immunoassays due to cross-reactivity would change clinical 

decisions with possible implications on the patients, for example up-titration of dose when it is 

not needed.  

 

Immunoassays have significant inter-laboratory variability and this affects the comparability of 

patients’ biochemical monitoring between multiple laboratories or over-time within the same 

laboratory if there is an assay change  530, 618, 619. This is particularly a problem when reporting 

retrospective studies or multicentre studies where cortisol cut-offs must be different in each 

centre to reflect the characteristics of the local assay although commonly cut-offs from 

literature are followed without validation from the local assay. Immunoassays also generally 

overestimate cortisol concentrations especially after ACTH stimulation in the context of a SST 

and this may have clinical implications in the diagnosis of adrenal insufficiency increasing false 

positive results unless assay-specific cut-offs are used 619. 

 

 

 

6.3.3. Challenges in designing clinical trials for rare diseases 

Cortisol excess due to endogenous Cushing’s syndrome, Nelson’s syndrome, Primary adrenal 

insufficiency and CAH are rare diseases as classified by Public Health England 620. The 

Department of Health defines a rare disease as ‘a life-threatening or chronically debilitating 

disease that affects 5 people or fewer in 10,000 and requires special, combined efforts to 

enable patients to be treated effectively’ 621. The majority of about 5,000 to 8,000 rare diseases 

have a genetic cause and about 3 million people in the UK suffer from a rare disease 621. 

 

There are many methodological challenges associated with assessing treatment effectiveness 

for rare diseases primarily because of the small patient numbers. Recruiting sufficient 

numbers of patients to clinical studies is difficult due to slow enrolment and geographic 

dispersion of patients as demonstrated by Study 2. The optimal design of clinical trials involves 

having a control arm but there are ethical concerns about using placebo treatment arms in 

clinical trials when a disease is life-threatening with significant morbidity if untreated such as 
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CS, NS and hypoadrenalism and there are practical problems deciding what is standard 

treatment in conditions such as NS where effective medical therapy does not exist. Biomarkers 

are often used as surrogates of clinical outcomes in rare diseases but they may not be fully 

validated and used with un-established reliability 622. For example, in interventional studies in 

CS, UFC is usually used as the biochemical end-point for response however there is no 

universal agreement on the use of UFC or serum cortisol as a marker of cortisol normalisation, 

UFC alone does not provide information on change in cortisol-associated comorbidities that 

is a strong indication for treatment, and it has methodological disadvantages such as high 

variability that may affect interpretation of response in patients with mild disease 623. 

 

Due to the small population of patients affected there are also problems attracting funding for 
translational research into rare diseases including the conduction of costly prospective clinical 

trials. Such clinical studies are more acceptable if they pick up large treatment effects 

compared with studies performed with bigger patient numbers, for example interventions with 

a low number needed to treat in the order of 2 or 3 may be more acceptable in rare conditions 

which is in vast contrast with how effectiveness of an intervention is interpreted in common 

conditions 624, 625. Slow recruitment may delay implementation of effective therapies and to 

deliver a timely study with substantial patient numbers there may be the need for multiple 

sites, often in multiple countries, which requires co-ordination, expertise and financial 

resources 626.   

 

Nevertheless, to make clinical decisions that benefit patients we need evidence that these 

decisions are safe and effective. For the patient to make an informed decision on their 

treatment we need to know and discuss the disadvantages of the treatment options, the side 

effects and what their expected benefit is. To be able to navigate through these decisions we 

need an understanding of the short and long-term clinical issues and evidence. High quality 

evidence to answer these questions comes from interventional studies.  

 

Most of the evidence that guides the clinical management of rare diseases comes from 

observational studies. Observational studies are often retrospective and are useful in rare 

conditions where retrospective data collection is easier to perform and can be analysed to 

help determine the natural course of disease, draw associations, formulate hypotheses and 
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plan controlled trials to test them. Observational treatment studies have some inherent 

disadvantages affecting the quality of evidence they provide and suffer from selection bias 

(confounding by indication) 622. There are various statistical adjustments that can help reduce 

bias in observational studies such as multivariate analysis and matching of groups, however, 

not all confounding factors are known and overall the risk of bias is not eliminated.  

 

In retrospective observational studies the data collected depend on the recording in medical 

notes and the validity of the analyses and conclusions rely completely on the quality of data 

extracted. Lack of harmonisation of the sampling protocols for biomarkers used as measurable 

outcomes in studies on cortisol excess, ACTH excess and cortisol deficiency can add 

variability and affect comparison between different centres. Documentation of sampling times 

and association with other medications is essential in some cases and this is commonly lost 

in retrospective data collection and may affect the homogeneity of data compared. In Study 1, 

the data collection was standardised by using clinically-trained researchers trained in data 

abstraction and a validated and standardised data collection tool to enhance the quality of 

data 627. Retrospective observational studies in rare diseases may provide results 

generalisable to the patient population especially if it is possible to ensure all patients with a 

particular variable are included in the analysis; in Study 1, reviewing the records of all patients 

treated with metyrapone in thirteen UK centres was possible through pharmacy records as 

metyrapone is only available through secondary care pharmacies. In Study 3 all women with 

CAH treated in a specialist clinic were identified and included in the study as cohort 1.  

 

There are other study designs that provide higher quality of evidence such as randomised 

controlled trials (RCTs) and systematic reviews of RCTs, which are the optimal studies to test 

treatment effectiveness. Parallel groups randomised double-blind controlled trials are the best 

way to generate unbiased evidence and avoid confounding; if there is bias then this is due to 

chance and by increasing the sample size you reduce the probability that this occurs.	This trial 

design minimizes selection bias and distributes confounding factors between the treatment 

groups and this is achieved by using random allocation of a large number of participants-

patients who are closely monitored over a long-period of time 622. These studies provide high-

quality evidence and guide medical practice in most disciplines but are commonly unfeasible 

in rare diseases due to lack of large sample size and homogeneity of the patient population, 

funding, and importantly ethical concerns with study design such as blinding and use of 
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placebo for comparing treatment effects 628. Rarely clinical practice in rare diseases is guided 

by RCTs.  

 

The quality of evidence for treatment effectiveness is likely to improve with access to more 

and better-quality data. Analysis and reporting of clinical data from multiple patients can help 

unravel clinical problems and deficits in care, design safe treatment protocols, and plan 

studies to provide answers 629. Although there are centres of expertise in the management of 

rare diseases, many patients are monitored and treated by clinicians with limited number of 

similar patients 628. Dissemination of information could help guide clinicians and improve care. 

Patient registries using data entry from patients, clinicians and researchers or imported from 

electronic health-records can help collect information on demographic data, diagnosis and 

initial investigations, current treatment and history of treatments in a systematic and uniform 

manner. Clinical data from prospective international registries that collect information through 

authorised clinicians for rare diseases such as PAI and CAH, facilitate assessment of current 

practice, identify research questions, help design studies by assessing preliminary data and 

can even contribute to harmonisation and reduce inequalities in care 467, 624, 630. Prospective 

longitudinal studies with pre-defined protocols for treatment response and biochemical 

sampling can be based on existing registries of patients with CAH improving the quality of 

data collected. Registries for rare diseases can also be used for post-market safety-monitoring 

after introduction of new medical therapies which is required by regulatory bodies and helps 

improve long-term safety of therapeutic interventions, assess standardisation and quality of 

care, and collect data for longitudinal studies and epidemiological research 631, 632. Contact 

registries can be used for engagement with patients disseminating information regarding 

clinical research activities, identify participants and enhance enrolment in studies 633. 

Registration of clinical studies may also improve the recruitment and dissemination of data 

answering the specific questions irrespective of publication in a medical journal. 

 

Specific study designs are best suited to clinical research of rare diseases with small patient 

numbers. These study designs are unusual in the research protocols of common diseases but 

as recommended by the Institute of Medicine, the ‘appropriate use and further development 

of trial design and analytic methods tailored to the special challenges of conducting research 

on small populations’ is essential to accelerate research and product development for rare 

diseases 624. Examples of study designs that are more likely to be appropriate are cross-over 

studies, N-of-1 trials, trials with adaptive design, sequential design, or internal pilot design 634. 
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Study designs that avoid the use of placebo or no-treatment arm or reduce time on placebo 

arm are likely to be more acceptable to patients and clinicians due to ethical concerns of 

having placebo treatment in patients with high-morbidity disease such as cortisol excess. 

Randomisation in crossover studies is used for the selection of the sequence of treatment 

periods, which usually involve placebo or active comparator versus experimental treatment. 

There is a short washout period in-between the two treatment periods and measurement of 

outcomes after each treatment period. N-of-1 trials apply the cross-over design to a single 

patient alternating multiple periods of the active treatment versus control and offer exposure 

to active treatment to all participants and flexibility benefiting recruitment 634. Adaptive 

randomisation designs reduce time spent on control or placebo arms by changing the ratio of 

patient allocation between treatment groups during the trial. Other adaptive designs allow 

modifications of eligibility criteria, completion time, re-calculation of sample size, or treatment 

arms at pre-specified time-points during the trial based on a preliminary assessment of 

outcomes. Randomised withdrawal design are ‘enriched’ with responders; patients most likely 

to respond are selected early following exposure to experimental treatment, then randomised 

to experimental treatment or placebo and outcomes are monitored. In the randomised 

placebo-phase design patients are randomised to experimental treatment or control and 

spend a small period on control before change to experimental treatment, the measurable 

outcome is usually time to response or time to escape and it is based on the assumption that 

if the treatment is effective patients will respond sooner 622, 635. Internal-pilot designs allow the 

retention of patients included in the initial, and successful, pilot study.  

 

The quality of feasible clinical studies can be improved by paying careful attention to the study 

design. Different study designs offer different advantages and contribute the most when 

applied appropriately. The use of historical controls in observational studies could improve 

strength of evidence and has been used in studying inborn errors of metabolism however in 

cortisol excess and deficiency changes in cortisol assays and optimal glucocorticoid 

replacement doses make historical comparisons unhelpful 628. Use of active comparator group 

instead of placebo is more ethical and acceptable to clinicians and patients although the active 

comparator may be chosen as the only commonly accepted treatment without any previous 

rigorous assessment of its effectiveness. Cross-over and N-of-1 studies maximise data from 

small groups of patients, allow smaller participant size and always give exposure to the 

experimental treatment improving acceptability 634. They are suitable for chronic relatively 

stable and incurable diseases and therapies with rapid onset of action that disappears soon 

after cessation and short-term endpoints. The participants act as their own control minimising 
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variability and confounding but they are sensitive to dropouts, carryover and period effects 629, 

636, 637. The primary outcome of N-of-1 trials is usually to determine the treatment preference 

for the individual patient and are best indicated when the effectiveness of the treatment is in 

doubt 628. Data from patient registries, pharmacological characteristics, and results of previous 

clinical trials can help define response and measurable outcomes in randomised withdrawal 

studies and, in addition, duration of control phase in randomised placebo-phase studies 622. 

Finally, regulatory authorities offer advice in designing protocols for rare diseases to ensure 

best use of data and resources.  

 

Fulfilling recruitment targets is essential for high-quality data. Under-recruitment is a common 

problem in clinical research and only 31% of RCTs funded by the UK Medical Research 

Council achieved their recruitment targets within the original time-frame with the majority 

requiring an extension or revision of their recruitment target 638. In Study 2, the recruitment 

target was not met mainly due to the rarity of NS and the small number of patients at each of 

the four participating centres that could be enrolled to the study and this affected the 

generalisability of the positive treatment effect of pasireotide in patients with NS. Recruitment 

problems are complex and recruitment is usually slower than expected, eligible patients are 

usually fewer than expected and there are usually delays in the setting-up of trials 638. This is 

a particular problem in rare diseases due to the small overall patient number and the small 

number of patients per centre. Multicentre international studies are usually necessary to 

achieve recruitment targets and these studies are costly and complicated due to different 

national regulations often requiring up to 2 years to set up 626.  Patient involvement at an early 

stage helps identify enrolment issues, protocol concerns, logistic problems with participation 

and improve acceptability. Engagement with patients and patient-support societies and input 

from clinicians with expertise in the management of patients in the clinic in an early stage can 

help improve acceptability of protocols and increase screening numbers and recruitment 639.  

Homogeneity of the study population is important but in small overall patient numbers it may 

need to be weighed against achieving a larger sample size and the balance is reflected on the 

eligibility criteria 636. Examples of homogeneity concerns may include; studying ACTH 

dependent and independent CS together, studying both sexes together, studying mild and 

severe disease together (CS and CAH), studying patients who have previously received 

different forms of permanent treatment (radiotherapy in CD). Finally, the option for an open-

labelled extension of an interventional study ensures access to the treatment post trial when 

the medical therapy tested is under development and not otherwise available to participants 

and is likely to enhance acceptability and enrolment to a randomised prospective trial 622. 
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The correct use of statistical analysis can help interpret the outcome of clinical trials in rare 

diseases and make the most of the collected data. Conventional study designs use the p-

value to conclude effectiveness of an intervention as a measure of the size of effect and 

sample size and a surrogate for precision. Alternatively, Bayesian statistics applied to clinical 

trial designs allow use of prior probability based on expert opinion or previous studies such as 

early phase or studies in other populations, and incorporate the data from the clinical trial to 

come up with a posterior probability distribution which is not dependent on the sample size 
622. Statistical analysis of observational studies can help quantify and reduce selection bias 

through the use of a propensity score to create matched cohorts based on their baseline 

characteristics 622. Subgroup analysis of patients based for example on their response usually 

requires a larger patient sample to have statistical power to detect differences and this should 

be considered in the development of statistical methods 629. Statistical meta-analysis of 

multiple N-of-1 trials can help estimate overall population effects and increase the 

generalisability of treatment effect in a population making the most of small patient numbers 

in each centre 622.  

 

	

	

	

6.4. New biomarkers for monitoring treatment response 

	

Restoration of physiological levels of cortisol requires individualisation of treatment and for 

this to be achieved close monitoring of biochemistry is required. Biomarkers that are 

consistent, easy to measure and accurate are essential to aid assessment of adequacy of 

treatment. Multiple biomarkers are in use for this reason and in Congenital adrenal hyperplasia 

steroid precursors affected by the enzymatic defect are used for diagnosis and also monitoring 

of disease control. Biomarkers used for CAH due to 21-hydroxylase deficiency are 21-

hydroxyprogesterone, androstenedione, and renin. These biomarkers have a diurnal rhythm 

of secretion and are affected by the time of administration of glucocorticoids that needs to be 

considered during assessment of results. They require accurate quantification methods which 

usually takes time and commonly is not available at all the hospital sites.  
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Markers of erythropoiesis such as haemoglobin and haematocrit are widely available and their 

quantification is standardised and accurate. Many factors and hormones affect erythropoiesis 

and this effect takes time to reflect on haemoglobin levels therefore as a biomarker it reflects 

chronic control. The usefulness of a biomarker needs to be validated in relation to clinical 

outcomes and it would be interesting to assess the usefulness of haemoglobin for example in 

fertility related to CAH control where a biomarker reflecting chronic control may be particularly 

useful. Individual genetic determinants that affect individual haemoglobin levels may limit its 

usefulness. 

 

The development of biomarkers to guide glucocorticoid replacement is urgently required in 

clinical practice. Such biomarkers don’t exist and we rely on serum or salivary cortisol levels, 

which have disadvantages and do not reflect the glucocorticoid availability and activity in the 

tissues. There are no tissue-specific markers of glucocorticoid action that are validated and 

part of routine clinical practice yet, however, several have been identified. Some evidence 

exists for bone-formation markers. Osteocalcin, a peptide produced by osteoblasts, increased 

following glucocorticoid dose reduction in 19 patients with adrenal insufficiency who were 

initially on excessive glucocorticoid replacement doses and, in another study, osteocalcin 

levels correlated with glucocorticoid dose in prednisolone-treated asthmatic patients. 507, 640, 

641. The effects of glucocorticoids on osteocalcin levels appear dose-related and rapid, 

however, for routine glucocorticoid replacement dose changes may lie within a wide normal 

reference range 642, 643. Thrombospondin-1 is a glucocorticoid-responsive matricellular protein 

secreted by activated platelets and expressed by many other cells that is elevated in CS and 

increases rapidly with higher hydrocortisone doses in patients with hypoadrenalism 644, 645. 

Other potential targets for tissue-specific biomarkers of glucocorticoid sufficiency include 

factors that regulate tissue sensitivity to glucocorticoids and glucocorticoid-responsive 

proteins such as immune response or bone turnover proteins. Tissue-specific biomarkers 

have the potential advantage of reflecting the adversary effects of hypercortisolism on the 

tissues and clinical endpoints better rather than pre-tissue cortisol excess in the circulation.  
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7. Conclusions and recommendations for future research 
	

Clinical studies and laboratory experiments were performed to test whether it is possible to 

restore physiological cortisol and adrenocorticotrophin hormone levels in patients with 

disorders of cortisol and adrenocorticotrophin production. We found that medical therapy was 

an effective treatment for hypercortisolaemia either before or after first line surgical treatment 

in the largest reported cohort of patients with CS treated with metyrapone, improving cortisol 

excess in 80%. As monotherapy, metyrapone normalised cortisol levels in over 50% of 

patients monitored with CDCs. Medical therapy with pasireotide reduced plasma ACTH levels 

in patients with Nelson’s syndrome in a prospective clinical study and the response persisted 

after daily subcutaneous pasireotide was changed to long-acting monthly intramuscular 

injections. In optimising glucocorticoid replacement for conditions of cortisol deficiency, we 

found in a laboratory experiment that it is possible to deliver hydrocortisone through 

nasogastric tubes, however, there are variable drug loses due to interaction with the 

administering equipment that should be considered when treating patients. Administration 

protocols were developed and tested and showed that two hydrocortisone formulations 

performed better at delivering the intended dose; Hydrocortisone in liquid suspension and 

Hydrocortisone granules suspended in water delivered 61-92% of the drug dose at the gastric 

end of the nasogastric tube. We have also showed that Hydrocortisone granules can be 

administered sprinkled on soft food (apple sauce or yoghurt) or directly to the back of the 

tongue without change of the pharmacokinetic properties including peak drug concentration 

and rate of drug absorption, therefore, it is possible and safe for patients to take the medicine 

with any of these three administration methods. With regards to biochemical monitoring of 

medical therapy and disease control, we found that markers of erythropoiesis (haemoglobin 

and haematocrit) correlate positively with androgen and steroid precursor levels in women 

with CAH and could be used as easily accessible biomarkers to monitor adequacy of 

glucocorticoid replacement and disease control.  

 

Successful medical therapy preconditions the existence of a compound with appropriate 

chemical characteristics, a satisfactory safety profile, that can be administered in a method 

acceptable to patients, have sufficient absorption and achieve a satisfactory pharmacokinetic 

profile and clinical efficacy. The findings from the five studies presented in this thesis make 

the case that medical therapy is safe and effective in restoring cortisol and ACTH levels in 

cortisol and ACTH excess, can deliver accurate glucocorticoid dose replacement through 
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nasogastric tubes or co-administration with soft food, and that new easily available biomarkers 

can help monitor cortisol replacement in women with a genetic form of cortisol deficiency.  

 

The data presented in this thesis answer clinical questions and add knowledge that advances 

the management of patients with cortisol and adrenocorticotrophin excess and deficiency. 

During the studies and interpretation of results further questions were raised and areas of 

improvement were identified. It is proposed that future research should aim to expand 

knowledge and improve clinical practice in the following: 

1. Examining the effectiveness of metyrapone in restoring physiological cortisol levels in 

patients with CS in a prospective study using a standardised protocol for monitoring with 

pre-defined time-points for biochemical tests and dose titration and documentation of 

changes in morbidity and quality of life. 

2. Examining the long-term effects of treatment with pasireotide on corticotroph tumour 

volume in patients with Nelson’s syndrome. 

3. Exploring the role of haemoglobin and haematocrit as biomarkers of disease control in 

women with CAH seeking fertility. Could they be used to guide treatment titration in the 

preconception period? 

4. Exploring any benefits occurring from the flexibility in the administration methods of 

hydrocortisone granules on short and long-term compliance, patient or carer satisfaction 

and quality of life and any long-term treatment benefits.  
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Abbreviations 
	

17OHP 17-Hydroxyprogesterone 

3βHSD1 3β-Hydroxysteroid dehydrogenase type 1 

3βHSD2 3β-Hydroxysteroid dehydrogenase type 2 

A4  Androstenedione 

ACTH  Adrenocorticotrophin hormone 

AI  Adrenal insufficiency 

AMH  Anti-Mullerian hormone 

ARMC5 Armadillo repeat containing 5 gene 

BSA  Body surface area 

CAH    Congenital adrenal hyperplasia 

CBG  Cortisol binding globulin 

CD  Cushing’s disease 

CDC  Cortisol day-curve 

CS  Cushing’s syndrome 

CTNN1B beta-Catenin 

DHT  Dihydrotestosterone 

EGFR  Epidermal growth factor receptor 

EPO  Erythropoietin 

FSH  Follicle-stimulating hormone 

GC  Glucocorticoid 

GC-MS Gas chromatography-mass spectrometry  

GH  Growth Hormone 

GNAS   G stimulatory protein subunit alpha gene 
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GR  Glucocorticoid receptor 

HC  Hydrocortisone 

HPA  Hypothalamic-pituitary-adrenal axis 

HPLC  High performance liquid chromatography 

ITT  Insulin tolerance test 

LC-MS/MS Liquid chromatography tandem mass spectrometry 

LFT  Liver-function test 

LH  Luteinizing hormone  

MC  Mineralocorticoid 

MRM  Multiple reaction monitoring 

NFA  Non-functioning pituitary adenoma 

NS  Nelson’s syndrome 

ONDST Overnight dexamethasone suppression test 

PAI  Primary adrenal insufficiency 

PDE11A Phosphodiesterase 11A gene 

PPAR  Peroxisome proliferator-activated receptor gene 

PPNAD Primary pigmented nodular adrenocortical disease 

PRKACA Protein kinase cAMP-activated catalytic subunit alpha gene 

PRKAR1A Protein kinase cAMP-dependent type I regulatory subunit alpha gene 

QoL  Quality of life 

RAI  Radioimmunoassay 

RCT  Randomised controlled trial 

SST  Short synacthen test 

SSTR  Somatostatin receptor 

T  Testosterone 
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TART  Testicular adrenal rest tumour 

TR4  Testicular orphan nuclear receptor 4 

UFC  Urinary free cortisol 

USP8  Ubiquitin-specific protease 8 gene 
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Appendix 
A.1. Metyrapone data collection form 
	

	

P a g e  | 1  
 

 
 Hospital number:  

Use of Metyrapone in Cushing’s syndrome: Data collection form 
 

 

Centre ID:                             Patient ID:                             Gender:      F     /     M                 DOB: 
 

 
Diagnosis: 
 
�    Cushing’s disease 
 

�    Macroadenoma 
 

�    Microadenoma 
 

Baseline pituitary MRI findings:    
 
 
 
 
�    Ectopic ACTH        Cause:.......................... 
 
�    Adrenal Adenoma 
 
�    Adrenal Carcinoma 
 
�    PPNAD 
 

� Sporadic 
 

� Carney 
 
�    AIMAH 
 
�    McCune Albright 

 
 

Date of diagnosis: 
 
 

 
Intervention (with dates, details): 
 
� Primary definitive surgical therapy:  
 
 
 
� Additional surgical therapy: 
 
 
 
� Primary Radiation therapy: 
 
 
 
� Adjuvant Radiation therapy: 
 
 
 
� Chemotherapy: 
 
 
 
� Medical therapy only: 
 
 
 
� Other: 
 

 
� Pre-existing diabetes mellitus / IGT   ………………….....…         Hba1c....................          
 

� Pre-existing Hypertension    ....................................................................................... 

Biochemical monitoring and pre-treatment values 
 

Biochemical marker Value(s) and units           Date Normal range 
ACTH    
Potassium    
UFC    
9am cortisol 
 

 

Basal:   
 

Post LDDST:   
 

Post ONDST:   

  

Cortisol day  curve  
(please enter method 
according to local protocol 
and values if applicable) 

 
 
 

  

mean cortisol:  

 
Cortisol assay: ........................................................................... 
Please indicate if there is cross-reactivity with steroid precursors: 
 



	

	 253	

	

P a g e  | 2  
 

 
 Hospital number:  

 

Initiation of Metyrapone therapy 

 
Indication for Metyrapone therapy (with details if needed / if more than one applies) 
 
 
�   1.  Pre-definitive surgery 
 
�   2.  After definitive surgery 
 
�   3.  In conjunction with pituitary radiotherapy 
 
�   4.  Medical therapy without surgery (e.g. ectopic ACTH) 
 
 
 
Metyrapone was given: 
 

 

� As routine practice 
 
 

�     To control severe Cushing’s 

 
 

� Delay in surgery 
 

 

Medical factors for delay:  
     
 
 
 

Patient factors for delay: 
 
 
 

       
 

 
Drug interactions 
 
Co-administration of medications that could affect HPA axis / Metyrapone metabolism / steroid replacement/ oral 
oestrogens?        

                                                Yes           No 
             Details: 

 
 
 
 
 

 

 

Please complete Page 3: Metyrapone therapy monitoring table. Use extra sheets if 
required (mark: Page 3.1, 3.2, 3.3 etc) 
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P a g e  | 3  
 

 
 Hospital number:  

 

 

 
Metyrapone therapy monitoring 

 
 Pre-treatment Monitoring 
 Date Dates 
     

ACTH     

Potassium     

UFC 
 
 

    

9am cortisol 
 
 

    

Cortisol day curve 
 
 
(Please enter time, 
values and mean)    

 
 
 
 
 
Mean:............ 

 
 
 
 
 
Mean:............ 

 
 
 
 
 
Mean:............ 

 
 
 
 
 
Mean:............ 

Metyrapone dose 
 
 

Decision for 
treatment 

   

Reason for dose change 
(1)  Lack of clinical effect  
(2)  Incomplete 
biochemical  control 
(3)   Block and replace 
(4)  Other (details) 
 

Please enter 
appropriate number 
and comment if 
needed 

   

Response  Please comment on 
change in clinical 
features, BP and 
diabetes control/ 
Hba1c  
 

 
 
 
 

 

  

Adverse effects 
 

* Please complete 
safety section  

Yes*   /   No Yes*   /   No Yes*   /   No 

Block and replace 
regimen 

Please state type of 
replacement and 
dose 
 

Yes     /   No Yes     /   No Yes     /   No 
 
 

Concurrent treatment with 
Ketoconazole 

If Yes, please enter 
dose of medication 

Yes     /   No Yes     /   No Yes     /   No 
 
 

Cessation of treatment  Please enter date 
and reason for 
stopping  
Metyrapone  

   
 
 

Follow-up imaging Please enter repeat 
MRI findings for 
patients with 
Cushing’s disease 
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P a g e  | 4 
 

 

 Hospital number:  

Please complete Page 4 for every separate adverse effect observed. Please use extra sheets if 
required 

 

Use of Metyrapone in Cushing’s syndrome: Safety section 
 

 

Centre ID:                              Patient ID:                               DOB:                            Gender:    F     /     M 
 

 

Past medical history 
 

 

Concomitant medications 
 
 
 
 
 
 
Other suspected drugs: 
 

Date of onset of adverse reaction: 
 

Date  Metyrapone was started: 
 

Metyrapone dose: 
 

Date current dose was started: 
 

 

Description of adverse reaction 
 
 
 
 

Causality with Metyrapone 
 

       Not related    /    Unlikely    /    Possible    /    Probable    /    Certain    /    Not assessable         

 
 
 

Seriousness criteria 
Please circle if any of the following is true about the adverse reaction: 

 
Y    /    N          Life-threatening 

Y    /    N          Required hospitalisation or extension of existing hospitalisation 

Y    /    N          Resulted in persistent or significant disability or incapacity 

Y    /    N          Is a congenital anomaly or a birth defect 

Y    /    N          Is a medically important event, details: 

 
 

 

Action taken:   None   /   Metyrapone withdrawn   /   dose reduction   /   other measures taken: 

 
 
 

Outcome:   Recovered  / recovered with sequelae  /  continued effects  /  aggravation  /  death  /  unknown: 

 
 
 

Other comments:  
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A.2. Hydrocortisone measurement with LC-MS/MS protocol 
	

      Protocol for 1:10000 dilution with water 

 

1. Warm the samples in a hot bath for a few minutes 
2. Centrifuge the samples for 2min  
3. To make a 1:10,000 dilution of the samples: 

• Add water, methanol and water to 3 universal tubes 
• Use 1.5ml Eppendorf tubes in 2 rows 
• Add 1ml of water to all tubes (M1000 pipette) 
• In the first row, put 10μl of the sample and vortex the tubes (M10 

pipette) 
• Take 10μl from the first-row tubes and add to the tubes in the 

second row. Vortex. This is the 1:10000 dilution to use for the MS 
plate 

• Use the same pipette tip for all. Dry pipette tip before adding the 
content to the Eppendorf tubes. Between different samples wash 
pipette with water-methanol-water from the universal tubes and 
dry tip before continuing 

4. Place 20μl of samples in a new plate for MS analysis 
• For the first 7 wells use known concentrations of cortisol solutions 

(to draw the standard curve) 
• For the next 3 wells use the 3 known Quality Controls (labelled A, 

B, C)  
• Then use 20μl of a 1:10,000 dilution of the samples, in duplicates  

5. Add 40μl of zinc sulphate (repeat pipette, 0.1M)  
6. Add 100μl of a solution of pure methanol + internal standard (repeat 

pipette, 0.1M)  
7. Seal plate, mix and spin at 25000rpm for 5 min 
8. Add the plate to the MS machine  
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