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Abstract

Throughout this thesis we build on the central tenet of the seminal work by Taylor

(1963), which argued that the geophysically relevant limit for dynamo action within

the Earth’s outer core is one of negligibly small inertia and viscosity in the mag-

netohydrodynamic equations. Within this ‘magnetostrophic’ limit, he showed the

existence of a necessary condition, now well known as Taylor’s constraint, which re-

quires that the cylindrically-averaged Lorentz torque must everywhere vanish; mag-

netic fields that satisfy this condition are termed ‘Taylor states’.

We extend the use of this condition, to analyse the geomagnetic field and investigate

the underlying geodynamo process within Earth’s core, through several key strands

of work.

Firstly, we detail a general method that is the first to enable correct evaluation of

the instantaneous geostrophic flow for any 3D Taylor state, fully incorporating all

necessary boundary conditions.

Secondly, we explore the subsequent dynamics of Taylor state magnetic fields, calcu-

lating the field induced by these flows and hence the rate of change of magnetic field.

Importantly, we note the similarities and differences that arise between these mag-

netostrophic dynamo models and observationally derived geomagnetic field models.

We show that Taylor state magnetic fields that remain stable over geophysical time

scales are very rare.

Thirdly, we consider the prospect of the fluid in the outermost part of Earth’s core

being stratified. This leads to a necessary adaptation to the Taylor constraint, re-

sulting in the analogous condition within a stratified fluid, termed the ‘Malkus con-

straint’. Implementing this additional constraint allows us to construct a model for

the entirety of Earth’s outer core, matching observational geomagnetic field models

at the core surface, obeying the Malkus constraint in the stratified layer and sat-

isfying the Taylor constraint in the bulk of the core. The results from this model

suggest that the dynamics within the stratified layer may be distinct from the inner

convective part of the core, characterised not only by suppressed radial flow but by a

strong magnetic field. The present-day toroidal field strength immediately beneath

the CMB is estimated to be significantly stronger than that within the convective

region of the outer core.



v

Contents

List of Figures xiii

1 Introduction 1

1.1 Earth’s interior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Earth’s magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Origin of Earth’s magnetic field . . . . . . . . . . . . . . . . . 3

1.2.2 Core convection . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Paleomagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Magnetic field observations . . . . . . . . . . . . . . . . . . . . 7

1.2.5 Archeomagnetic models . . . . . . . . . . . . . . . . . . . . . 10

1.3 Dynamo theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Fluid dynamical equations . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Numerical Dynamo models . . . . . . . . . . . . . . . . . . . . 15

1.4 Data assimilation models . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Magnetostrophy 21

2.1 The Magnetostrophic approximation . . . . . . . . . . . . . . . . . . 21

2.2 Derivation of Taylor’s constraint . . . . . . . . . . . . . . . . . . . . . 22

2.3 Magnetostrophic Dynamo simulations . . . . . . . . . . . . . . . . . . 24

2.4 The magnetostrophic limit . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Mean field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 The segregation of time scales . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Torsional oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Determination of the instantaneous geostrophic flow within the

three-dimensional magnetostrophic regime 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Magnetic field and fluid velocity representations . . . . . . . . . . . . 34

3.2.1 A Galerkin representation . . . . . . . . . . . . . . . . . . . . 35

3.3 Solving for the ageostrophic flow . . . . . . . . . . . . . . . . . . . . . 36



vi

3.4 The initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Overview of time evolution and the geostrophic flow . . . . . . . . . . 38

3.6 Braginsky’s formulation . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Existing methods to determine the geostrophic flow . . . . . . . . . . 41

3.7.1 An axisymmetric first-order implicit method . . . . . . . . . . 41

3.7.2 A 3D fully implicit scheme . . . . . . . . . . . . . . . . . . . . 42

3.7.3 An instantaneous axisymmetric method . . . . . . . . . . . . . 44

3.7.4 Taylor’s 3D instantaneous method . . . . . . . . . . . . . . . . 45

3.8 Technical aside: higher order boundary conditions . . . . . . . . . . . 46

3.8.1 Higher order boundary conditions in the heat equation . . . . 46

3.8.2 The relevance for Taylor’s equation . . . . . . . . . . . . . . . 47

3.8.3 Schemes in which the boundary information is included . . . . 49

3.9 An appraisal of Taylor’s method . . . . . . . . . . . . . . . . . . . . . 49

3.9.1 An illustration of when Taylor’s method fails . . . . . . . . . . 49

3.9.2 Specific cases when Taylor’s method succeeds . . . . . . . . . 53

3.10 A generalisation of Taylor’s analysis . . . . . . . . . . . . . . . . . . . 55

3.10.1 A potential-based spherical transform method . . . . . . . . . 56

3.10.2 A potential-based Green’s function method . . . . . . . . . . . 58

3.10.3 A modal projection . . . . . . . . . . . . . . . . . . . . . . . . 58

3.11 Examples of the geostrophic flow in 3D . . . . . . . . . . . . . . . . . 60

3.12 Analytic approximation for an Earth-like field . . . . . . . . . . . . . 62

3.13 Singularities of ug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.13.1 Singularities at s = 0 . . . . . . . . . . . . . . . . . . . . . . . 65

3.13.2 Singularities at s = 1 . . . . . . . . . . . . . . . . . . . . . . . 66

3.13.3 Singularities off the s-axis . . . . . . . . . . . . . . . . . . . . 67

3.14 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Stable steady Taylor states 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Method for calculating instantaneous ug and magnetic induction 75

4.2.2 Time-dependent, implicit method for dynamically

evolving B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Searching for steady Taylor states . . . . . . . . . . . . . . . . . . . . 79

4.4 Dynamical magnetostrophic simulations in

search of stable Taylor states . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Simulations with single mode initial conditions . . . . . . . . . 82

4.4.2 Simulations with random mixed symmetry initial conditions . 84



vii

4.4.3 The evolution from a quasi-steady Taylor state . . . . . . . . . 85

4.4.4 The strength of the known symmetric solutions as attractors . 88

4.4.5 The dependence on the choice of α-effect . . . . . . . . . . . . 89

4.5 Comparison to observational models . . . . . . . . . . . . . . . . . . . 92

4.5.1 Comparison to other numerical dynamo simulations . . . . . . 93

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Stratified layer at the top of Earth’s core 99

5.1 Stratification in outermost part of core . . . . . . . . . . . . . . . . . 99

5.1.1 Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 The effect of a stratified layer on the observed geomagnetic field . . . 102

5.2.1 Compatibility of a stratified layer with geomagnetic simula-

tions and observations . . . . . . . . . . . . . . . . . . . . . . 103

6 Constraints on the magnetic field within a stratified outer core 107

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Derivation of Malkus’ constraint . . . . . . . . . . . . . . . . . . . . . 109

6.3 Geometry and representation of a stratified magnetostrophic model . 111

6.4 Discretisation of the constraints . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 The Taylor constraints . . . . . . . . . . . . . . . . . . . . . . 113

6.4.2 The Malkus constraints . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Existence of Malkus states . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5.1 Simple analytic states . . . . . . . . . . . . . . . . . . . . . . 118

6.5.2 General Malkus states . . . . . . . . . . . . . . . . . . . . . . 119

6.6 Earth-like Malkus states . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6.1 Magnetic field at 2015 . . . . . . . . . . . . . . . . . . . . . . 124

6.6.2 Time averaged field over the past ten millenia . . . . . . . . . 127

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.7.1 Do Malkus states exist? . . . . . . . . . . . . . . . . . . . . . 129

6.7.2 Can we tell from a snapshot of the geomagnetic field if a strat-

ified layer exists? . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.7.3 What might be the present-day internal structure of the geo-

magnetic field inside a stratified layer? . . . . . . . . . . . . . 130

6.7.4 Limitations and robustness . . . . . . . . . . . . . . . . . . . . 131

6.7.5 Ohmic dissipation . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Conclusions and future work 135

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Further extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



viii

A Derivation of an alternative form of the Taylor constraint 143

B Solution of a full sphere low-resolution Malkus state 147

C Basic theory 149

C.1 Toroidal and poloidal functions . . . . . . . . . . . . . . . . . . . . . 149

C.2 Solving Laplace’s equation . . . . . . . . . . . . . . . . . . . . . . . . 151

C.3 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.3.1 Equatorial symmetry . . . . . . . . . . . . . . . . . . . . . . . 153

C.3.2 Rotational symmetry . . . . . . . . . . . . . . . . . . . . . . . 153

C.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

C.5 Angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

C.6 Vector calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

References 174



ix

List of Figures

1.1 The interior structure of Earth. . . . . . . . . . . . . . . . . . . . . . 2

1.2 The phase PKiKP reflected at the inner core boundary (ray 5) is

observed in the shadow zone of the core (between rays 2 and 3), a

zone where no P-wave is supposed to arrive Souriau (2007). . . . . . . 3

1.3 Schematic of the fluid motions within convecting and stratified regions. 6

1.4 Vertical (downward) component of the magnetic field (in microtesla)

at the surface of the Earth in 1835 according to the Gauss model.

Figure from Kono (2015). . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Radial (outward) component of the magnetic field at the surface of

the Earth in 2015 according to the CHAOS-6 model (Finlay et al.,

2016). Visualised using the Mollweide projection and centred on the

Greenwich meridian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Vertical (downward) component of the magnetic field (in microtesla)

at the core mantle boundary of the Earth based on Gauss model

(1835). Figure from Kono (2015). . . . . . . . . . . . . . . . . . . . . 9

1.7 Radial (outward) component of the magnetic field at the CMB in

2015 according to the CHAOS-6 model (Finlay et al., 2016). . . . . . 10

1.8 Ekman - Magnetic Prandtl and Alfvén - Magnetic Prandtl regime

diagrams showing the currently possible range of simulation param-

eters. The Earth’s core lies far away beyond the bottom left corner

at E = 10−15, Pm = 10−6, A = 10−2. Figure from Schaeffer et al.

(2017) (to which the ‘this paper’ points refer.) . . . . . . . . . . . . 16

2.1 A schematic diagram illustrating the cylindrical surface within a spher-

ical domain and the closure this surface using the spherical caps

(dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Reynolds–Ekman regime diagram showing the different capabilities of

various methods of studying rotating convection and dynamo physics.

The regions of parameter space occupied by Earth and magnetostrophic

models are also indicated. Figure modified from Aurnou et al. (2015). 25

2.3 An illustration of some of the geostrophic cylinders over which Tay-

lor’s constraint is defined Livermore et al. (2008). . . . . . . . . . . . 32



x

3.1 A comparison of the cases where Taylor’s method fails and where it

succeeds. (a) Compares the solutions for the geostrophic flow for an

axisymmetric dipolar poloidal initial field. Red is the analytic solution

of the first order BWR equation (3.21), dotted blue is a numerical

solution of Taylor’s second order ODE (see text) and dashed black

is the solution using the implicit time step method with h = 10−9.

(b) Shows the geostrophic flow corresponding to a non-axisymmetric

l = 1, m = 1 purely-toroidal Taylor state, on which all methods agree. 52

3.2 A comparison of the absolute value of the polynomial spectral coef-

ficients Ai, defined in equation (3.20), against degree for numerical

solutions using the Braginsky-Wu-Roberts and Taylor formulations. . 53

3.3 The geostrophic flow for the non-axisymmetric l = 2, m = 2 poloidal

Taylor state of equation (3.46). Solutions using the spherical trans-

form method, the implicit timestep method with h = 10−9 and Tay-

lor’s ODE are compared. . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 The geostrophic flow for the l = 2, m = 1 non-axisymmetric mixed

Taylor state of equation (3.47). Solutions using the spherical trans-

form method, the implicit timestep method with h = 10−9 and Tay-

lor’s ODE are compared. Solutions for solely either the poloidal and

toroidal components of the Taylor state using the spherical transform

method are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 The geostrophic flow for a non-axisymmetric Earth-like Taylor state.

Numerical solution using the spherical transform method (red) is com-

pared to the analytic solution neglecting the boundary term (blue). . 64

3.6 Contour plots of (a) the total azimuthal flow uφ driven by the ax-

isymmetric poloidal field in §3.9.1, (b) the axisymmetric part of the

total azimuthal flow driven by the Earth-like field of (3.49). The az-

imuthal flow is shown to be approximately 50 times stronger in (b)

and similar to values expected in Earth’s core (Holme, 2015). . . . . 64

3.7 A plot of ∂s(ug/s) for solutions to a mixed axisymmetric Taylor state

consisting of the poloidal field of the example of §3.9.1 with a l = 1,

m = 0, n = 1 toroidal Galerkin mode, using the BWR and Taylor

equations. (a) Shows the whole domain, a singularity of the form s−1

is visible for both solutions at s = 0 and for Taylor’s solution only,

a weaker singularity also occurs at s = 1. (b) Zoomed-in plot of the

s = 1 singularity to show clearly that it only occurs when solving

Taylor’s equation; it has the form (1− s2)−
1
2 . . . . . . . . . . . . . . . 68



xi

4.1 Surface plot of the normalised instantaneous rate of change of mag-

netic field on the core surface, IS, as a function of the L = 1, N = 1

and L = 1, N = 2 coefficients values. The vertical red line corre-

sponds to the coefficient values of the known stable steady solution

of Li et al. (2018). The α-effect form (4.2) is used, with an above

critical magnitude of α0 = 18. (a) and (b) show the same 3D plot

viewed from a different angle. . . . . . . . . . . . . . . . . . . . . . . 81

4.2 The path taken as this single poloidal L = N = 1 mode Taylor state

evolves toward a stable steady state with vanishingly small IV , the

red data points are plotted a frequency of every one hundredth of a

magnetic diffusion time (500 yrs). . . . . . . . . . . . . . . . . . . . 82

4.3 Graph showing the evolution of IS with time for the suite of single

poloidal mode initial conditions . . . . . . . . . . . . . . . . . . . . . 83

4.4 Graph showing the evolution of IS with time for the suite of mixed

symmetry, with (a) all 1000 different random initial conditions shown,

(b) just 4 models with initial conditions plotted for clarity. . . . . . 85

4.5 The paths taken from two initial magnetic fields (coloured red and

blue) that are quasi-steady Taylor states. The fields diverge from

the initial states (green circles) before finally converging to the same

stable steady Taylor state. (a) and (b) show the same 3D plot viewed

from a different angle. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Surface plot of IS as a function of the L = 1, N = 1 and L = 1, N = 2

coefficients values. The vertical red line corresponds to the coefficent

values of the known stable steady solution of Li et al. (2018). The α-

effect form (4.2) is used, with an above critical magnitude of α0 = 16.

(a) and (b) show the same 3D plot viewed from a different angle. . . 90

4.7 Normalised instantaneous rate of change of magnetic field on the core

surface, IS, with α0 = 16, for 60 different random initial conditions

of mixed symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.8 Plot of IS over the last 100,000 years for CMB field data from the

GGF100k model (Panovska et al., 2018). . . . . . . . . . . . . . . . . 93

4.9 Plot of IS for core surface field data from Aubert’s simulation (a) at

ε = 1 (E = 3× 10−5), (b) at ε = 1× 10−5 (E = 3× 10−10). . . . . . 94

4.10 Plot of IS for the core surface field (a) comparing the axisymmetric,

degree 10 truncated data from Aubert’s simulation at ε = 1 (black)

with the GGF100k data (blue) and in (b) with our simulation results

(§4.4.2) too. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



xii

5.1 (a) Ray paths for SmKS (2 ≤ m ≤ 6) for a source (star) 550 km deep

to a station (triangle) at 155. (b) Core legs of ray path. As multiples

in core increase, bottoming depth in core decreases. S6KS bottoms

at 60km below the CMB, whereas S2KS bottoms 700 km below the

CMB (Helffrich and Kaneshima, 2013) . . . . . . . . . . . . . . . . . 100

6.1 (a) Earth-like spherical shell with radius rSL = 0.9R. A Malkus state

defined in a stratified layer surrounds an interior Taylor state. (b)

Geometry of constraint surfaces. . . . . . . . . . . . . . . . . . . . . . 111

6.2 This graph compares the number of constraints to degrees of freedom

(DOF) as a function of toroidal field spherical harmonic resolution

with Lmax = Nmax, given a fixed poloidal field of Lmax = 13. This

illustrates that for the non-axisymmetric linear system, the number of

degrees of freedom (blue circles) exceeds the number of independent

constraints (red triangles) for a toroidal field of resolution Lmax =

Nmax ≥ 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Magnetic field at the CMB based on the poloidal field fit to CHAOS-6

at epoch 2015. Visualised using the Mollweide projection and centred

on the Greenwich meridian. . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 The root mean squared azimuthal field strength (defined over solid

angle) Brms
φ =

√∫ 2π

0

∫ π
0
B2
φ sin θ dθ dφ, as a function of radius, com-

paring the strengths of the poloidal field (red) and toroidal field (blue,

green, magenta and cyan) for toroidal fields with maximum spheri-

cal harmonic degree, order and radial resolution, 13–16 respectively.

The poloidal field is the degree 13 field of minimum Ohmic dissipation

compatible with the CHAOS-6 model at epoch 2015 (Finlay et al.,

2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Minimal toroidal-energy solution (a,c) shown by the azimuthal com-

ponent, of a Malkus state (0.9R < r ≤ R) and Taylor state r ≤ 0.9R,

compared with the total azimuthal component (b,d). Figures (a,b)

show the field at a radius of r = 0.98R, close to where the maximum

rms azimuthal toroidal field occurs, while (c,d) show the inner region

at r = 0.7R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.6 Azimuthal field for an unstratified comparative case, for which the

magnetic field satisfies only Taylor’s constraint. . . . . . . . . . . . . 128

6.7 Magnetic field at the CMB based on the 10000-year time average field

from CALS10k.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



xiii

6.8 The azimuthal component of the Malkus state magnetic field within

the stratified layer at a radius of r = 0.97R, approximately the radius

of maximum rms azimuthal toroidal field. . . . . . . . . . . . . . . . 129

7.1 uφ, E = 10−6, Ra = 108, N0 = 0.0707 . . . . . . . . . . . . . . . . . . 139

7.2 Radial flow contours of the steady state, with a thermally stratified

layer in the region (r = 0.9− 1) . . . . . . . . . . . . . . . . . . . . . 140

B.1 Fully nonlinear Malkus state with Lmax = 3, Nmax = 3 with minimal

toroidal field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2 Linear Malkus state with minimal toroidal field, showing Bφ at r =

0.9R, using the method outlined in §6.5 and used for the Earth-like

solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



1

Chapter 1

Introduction

1.1 Earth’s interior

The interior of Earth is a complex, non-uniform environment, comprising four clearly

distinct layers: a solid inner core, a liquid outer core, a rocky mantle and a thin

crust at the surface. This is illustrated in figure 1.1. Each of these regions are

distinguishable due to the very different properties and dynamics present within

them. The inner core is predominately iron, which is in a solid state as a result

of the extremely high pressures near the centre of Earth that lead to freezing of

iron despite the high temperature environment. In contrast, within the outer core

conditions are such that the iron is in a molten state, where it is able to flow freely.

This is a vitally important region, and is the one we are most concerned with in

this thesis, as it is this fluid motion of an electrical conductor that is responsible for

generating and sustaining Earth’s magnetic field. Hence the features of the magnetic

field are highly dependent on the currently relatively poorly understood motion in

the outer core. Atop the core is the mantle, which is primarily silicate and as such

has a very small conductivity and to a reasonable approximation can be considered

an electrical insulator that contains no magnetic sources. Finally, there exists a

thin crust layer near the surface, which contains the tectonic plates and is made

up of rocks that are less dense than the mantle, notably some of which are weakly

magnetised, encapsulating the field present during their formation.

The formation of this well established basic picture of Earth’s interior

shown in figure 1.1 has relied heavily on seismology. The interior structure of Earth

can be sensed remotely through the use of teleseismic data, and since the first mea-

surement of an earthquake occurring, performed by Von Reuber Pachwitz in 1889,
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Figure 1.1: The interior structure of Earth.

seismological studies have revealed the structure of the Earth. Two types of particle

motion result in two types of body waves in the Earth’s interior: Pressure (P) and

Shear (S) waves. When an earthquake occurs, teleseismic records show two clear ar-

rivals: a P wave and an S wave. These seismic waves are waves of energy that travel

through the Earth. P waves are compressional waves that are longitudinal in nature.

These waves can travel through any type of material, including fluids, and can travel

at nearly twice the speed of S waves. S waves are shear waves that are transverse in

nature, they can travel only through solids, as fluids do not support shear stresses.

The propagation velocity of these body waves through the Earth are controlled by

the material properties of the medium they are travelling through, specifically the

density and elasticity. The density and elasticity, in turn, vary according to temper-

ature, composition, and material phase. Hence the different paths taken by waves

detected can reveal information about the structure of the Earth’s interior. During

the 20th century, seismic observations have led to many notable discoveries that have

increased our knowledge of the complex, non-uniform nature of Earth’s structure.

Oldham (1906) identified the existence of a distinct core through measurements of

the delayed arrival times of S waves, and within a few years, Gutenberg (1912) had

built on this work to determine the depth of the core-mantle boundary (CMB) to an

extraordinarily accurate estimate of 2,900 km, a value extremely close the current

best estimate of 2,891km (Dziewonski and Anderson, 1981). Lehmann (1936) then

showed that the core itself is not continuous through the detection of P waves in a

region called the ‘shadow zone’ where no P waves would arrive without reflection at

a discontinuity within the core. This was evidence that there must exist an inner

core, with different properties compared to the rest of the core and these waves,

known as PKiKP waves, must be reflected at the Inner Core boundary (ICB), see

figure 1.2.
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Figure 1.2: The phase PKiKP reflected at the inner core boundary (ray 5) is
observed in the shadow zone of the core (between rays 2 and 3), a zone where no
P-wave is supposed to arrive Souriau (2007).

This results in the simple ‘low resolution’ picture of Earth’s interior shown

in figure 1.1 of inner core, outer core, mantle and crust. However, in more recent

years, accuracy and resolution of seismic data has increased, and the layered core-

mantle system is seen to exhibit non-uniform structure within each region (Souriau,

2007; Kind and Li, 2015). Seismic body wave measurements of smaller wave veloci-

ties are found in this region immediately beneath the CMB, compared to the bulk

of the core. This has helped reignite a long standing debate over the presence of

a stratified layer at the outermost part of core (Bergman, 1993; Braginsky, 1984,

1987). This idea that the outermost part of the core may have a different density

and/or elasticity than the rest of the core, and therefore forms a stably stratified

layer, can have profound consequences for our understanding of the Earth’s inter-

nal structure and dynamics. This will be explored in this thesis, specifically with

reference to another key feature of the Earth, its magnetic field.

1.2 Earth’s magnetic field

1.2.1 Origin of Earth’s magnetic field

William Gilbert first identified that the origin of the Earth’s magnetic field was

inside the Earth after conducting a series of experiments and published his results

in the classic work De Magnete (1600). While this correctly located the origin,
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Gilbert incorrectly conjectured that the source was a permanent magnet at the

centre of the Earth. It was three centuries later that Larmor (1919) suggested that

large astronomical bodies might have magnetic fields maintained by a self-sustaining

dynamo process. He argued that the circulation of conducting fluid in the presence

of a magnetic field would induce an electric field and if a suitable path for electric

currents was created in the fluid then a stronger magnetic field could be sustained

indefinitely. While he was principally concerned with the sun, it was clear that the

same mechanism could be applicable to the Earth.

There are two key strands of evidence that support dynamo theory as

the regeneration mechanism responsible for producing the main geomagnetic field.

Firstly, paleomagnetic data shows that the field was present as early as 3.4 - 4.2 bil-

lion years ago (Tarduno et al., 2015) and has persisted since this epoch, hence this

necessitates the long term sustenance of the field. It would not be possible for perma-

nent magnetism to persist in the conditions of Earth’s interior as the ferromagnetic

properties of Earth materials means they would lose their permanent magnetisation

at the Curie temperature, which occurs at a few tens of kilometres below the Earth’s

surface (Maus et al., 1997). Secondly, the dynamic nature of Earth’s magnetic field

is not compatible with permanent magnetism, but is consistent with dynamo action

as its continued source, both in terms of short time scale secular variation, as well

as full magnetic polarity reversals, with the latter notably satisfying the feature of

the governing equations of dynamo theory, that if a magnetic field B is a solution

then so must −B.

There was a major setback for dynamo theory when the anti-dynamo the-

orem derived by Cowling (1933), which proves explicitly that no axisymmetric mag-

netic field can be maintained through a self-sustaining dynamo action by an axially

symmetric current, was over-interpreted. He claimed that “Since, then, fields pos-

sessing a general similarity to an axially symmetric field cannot be self-maintained,

we are led to conclude that the magnetic field of a sunspot is not self-maintained.

For the same reason the general magnetic fields of the Sun and the Earth cannot

be self-maintained, as was suggested by Larmor”. It has since been shown through

many example simulations (Glatzmaier and Roberts, 1995), that while this result

prohibits exactly axisymmetric dynamo action, it does not prevent the more general

asymmetric magnetic fields thought to be present within the Sun and the Earth.

Hence is now widely accepted today that the main geomagnetic field is produced by

a dynamo operating in the Earth’s fluid outer core.
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1.2.2 Core convection

Within Earth’s outer core, convection is responsible for driving the motion of elec-

trically conducting molten iron, which in the presence of a magnetic field then

generates electric currents. The Earth’s rotation breaks spherical symmetry, so that

the dynamics of convection favours motions in columns parallel to the rotation axis.

Hence, the existing magnetic field generates currents that have a favoured orien-

tation, which results in a positive feedback mechanism as they act to enhance the

magnetic field. This produces the large magnetic field we observe to be engulfing

our planet. One of the main sources of power driving the geodynamo is from the

Earth slowly cooling, as primordial heat left over from its formation is lost at the

surface. This flow of internal heat drives vigorous convection in the metallic liquid

outer core, thus powering the dynamo that sustains the magnetic field. Thermal

and compositional convection are normally thought to occur over the entirety of

the liquid outer core, except in thin boundary layers at the top and bottom (Jones,

2007). The Earth’s core is mainly composed of iron (around 85 wt.%), and a sig-

nificant fraction of its mass consists of a poorly constrained combination of lighter

elements including: silicon, nickel, sulfur, oxygen, carbon and hydrogen (Nimmo,

2007). It is conventionally assumed that vigorous convection leaves the outer core in

a well-mixed, adiabatic state on the timescales of interest, that are long compared

to convective motions and short compared to Earth’s slow evolution (Gubbins et al.,

2003). However, the presence of stably-stratified layers at the top and bottom of the

core significantly alters this traditional view of a completely mixed and homogenous

liquid core.

A stably stratified fluid is arranged in a stable configuration that is denser

at the bottom and lighter at the top. Stably stratified fluids are ubiquitous in

nature, and within geophysics the most comprehensively studied applications are

within atmospheric and oceanic fluid dynamics (Vallis, 2017). While it is relatively

simple to observe Earth’s stratified atmosphere, which divides naturally into layers

based on characteristics such as temperature and composition, it is more challenging

to identify such layers within Earth’s core. This is largely due to the remote nature

of Earth’s core, since thousands of kilometres of rock lie between us and the core

that evidently inhibits our ability to make direct measurements of the temperature,

pressure and composition. If stratified layers do exist within Earth’s core, then

they could have profound effects on core dynamics and our current understanding of

many geophysical phenomena. Stably stratified fluids are dynamically very different

from convecting regions. A key distinctive feature inherent to stratified layers is the

suppression of radial motion of the fluid, as illustrated in figure 1.3.
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Figure 1.3: Schematic of the fluid motions within convecting and stratified regions.

Radial motion is crucial for radial heat transport within the core to power

the geodynamo. This motion is important in the bulk of the liquid core, therefore

the existence of any layers in which no radial fluid motion exists would have profound

consequences on the nature of Earth’s dynamo. We know from the ‘toroidal theorem’

of Bullard and Gellman (1954) that a purely toroidal flow cannot drive a successful

dynamo. In fact this has been generalised by Proctor (2004) to show that a lower

bound on the ratio of the poloidal to toroidal velocity exists in order for dynamo

action to be possible. Also Busse (1975) independently derives a necessary dynamo

condition for the radial velocity in relation to the radial magnetic field. Hence no

magnetic field generation can be expected within such stratified layers where radial

flow is absent. It is important to note through, that this does not of course preclude

the geodynamo within the bulk of the core, but simply provide a physical separation

between the extent of the dynamo region and the CMB.

1.2.3 Paleomagnetism

Observations of Earth are able to show that not only does it have a magnetic field

in the present day, but has done so throughout much of its history. The evidence

for this comes from paleomagnetic data and dates back to the first observations

that some rocks were magnetised parallel to the Earth’s magnetic field, made by

Delesse in 1849 and Melloni in 1853. Folgerhaiter (1899) studied the magnetisation

of bricks and pottery and noted that upon firing in the kiln these objects acquired

a magnetisation and hence encoded a record of the Earth’s magnetic field at the

time and place of firing. It is this same idea which means that ancient rocks provide
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snapshots of the Earth’s magnetic field throughout history.

The study of rocks formed by lava flows led to a surprising result, as ma-

terial with natural remanent magnetisation approximately opposite to the present

field was discovered. This triggered the first speculation that the Earth’s magnetic

field had reversed during its past; Mercanton (1926) correctly identified that if a

reversal of the Earth’s magnetic field had taken place then examples of reversely

magnetised rocks should exist in all parts of the world and so spent much of his life

obtaining such samples from around the globe.

Paleomagnetism can not only identify polarity reversals but it can also

measure smaller variations in the intensity, inclination (the angle made with the

horizontal by the Earth’s magnetic field lines) and declination (the angle on the

horizontal plane between magnetic North and true North) of the Earth’s magnetic

field. Paleomagnetism is therefore an effective tool for measuring the geomagnetic

field over its long time scale evolution. However, due to the limited number of rock

samples available and the uncertainties in the estimates, this forms a relatively low

resolution picture, that it is not capable of capturing the smaller lengthscale and

shorter timescale features of Earth’s magnetic field.

1.2.4 Magnetic field observations

The procedure of taking direct magnetic field measurements at different locations

on Earth’s surface and at different times can reveal many of its spatial and temporal

features. These observations of the magnetic field’s properties at specific locations

in space and time provided the cornerstone for determining the Earth’s magnetic

field in the pre-satellite era. Ground station observatories and measurements taken

on ships, were used to build up a global picture of the geomagnetic field. In 1835

Gauss collated this information and constructed a model of the magnetic field at

the Earth’s surface; a visualisation of this from Kono (2015) is shown in figure 1.4.

Even these relatively sparse data give a sense that the Earth’s magnetic field is not

uniform but has some distinctive features.

The full dataset of surface observations of the geomagnetic field over the

four centuries up to the year 1990 was compiled by Jackson et al. (2000) to construct

the gufm1 model, which provided the most complete update to Gauss’ original

work. In recent decades satellite measurements have vastly improved global data

coverage and resolution and have allowed even more accurate models to be created,

for example the CHAOS-6 model by Finlay et al. (2016) shown in figure 1.5. This
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is based on the data from the Swarm satellite launched by the European Space

Agency in 2013, which continually measures all magnetic field components to a high

accuracy and spatial and temporal resolution.

Figure 1.4: Vertical (downward) component of the magnetic field (in microtesla) at
the surface of the Earth in 1835 according to the Gauss model. Figure from Kono
(2015).

−0.08 0.00 0.08
Br (mT)

Figure 1.5: Radial (outward) component of the magnetic field at the surface of the
Earth in 2015 according to the CHAOS-6 model (Finlay et al., 2016). Visualised
using the Mollweide projection and centred on the Greenwich meridian

The results of these two models visualised in figures 1.4 and 1.5 appear

very similar at the Earth’s surface with the primary large scale features agreeing,

such as the dominantly dipole nature. However, there is increased resolution in the

CHAOS-6 model of around 3000km or degree l ≈ 13 compared to the Gauss model

resolution of around 10000km or degree l ≈ 4. The small wavelength features, by

which these models differ, although not important at the Earth’s surface, are very

significant if the field is downward continued to the CMB, see figures 1.6 and 1.7.

In order to implement the downward continuation of the magnetic field,

we introduce the assumption that all material between the observations and the

CMB is electrically insulating, and then since conductivity is zero, by Ampére’s law

∇ × B = 0, and the magnetic field in the electrical insulator can be written as a

potential B = −∇V, where V is a scalar function.
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Figure 1.6: Vertical (downward) component of the magnetic field (in microtesla) at
the core mantle boundary of the Earth based on Gauss model (1835). Figure from
Kono (2015).

Since ∇ · B = 0, then ∇2V = 0 and the general solution of Laplace’s

equation in spherical coordinates gives

V = a
Lmax∑

l=1

l∑

m=0

(a
r

)l+1

(gml cos(mφ) + hml sin(mφ))Pm
l (cos θ),

where Pm
l is an associated Legendre function, a = 6371km is the Earth’s mean

radius, and gml and hml are the Gauss coefficients, which are determined by observa-

tions, allowing the magnetic field to be calculated from B = −∇V . Hence

Br =
Lmax∑

l=1

l∑

m=0

(l + 1)
(a
r

)l+2

(gml cos(mφ) + hml sin(mφ))Pm
l (cos θ), (1.1)

Bθ = −
Lmax∑

l=1

l∑

m=0

(a
r

)l+2

(gml cos(mφ) + hml sin(mφ))
dPm

l (cos θ)

dθ
, (1.2)

Bφ =
1

sin θ

Lmax∑

l=1

l∑

m=0

m
(a
r

)l+2

(gml sin(mφ)− hml cos(mφ))Pm
l (cos θ). (1.3)

It is the factor of (a
r
)l+2 in this expression for the radial magnetic field (1.1) that

is responsible for the effect mentioned above, where the higher degree terms are of

enhanced importance at smaller radii.

Downward continuation is an inverse problem, we have surficial observa-

tions of the field and we aim to determine the source at the CMB that results in

the observed surface field. Inversions can be complex due their ill-posed nature:

there are many sets of time-dependent Gauss coefficients that match the observa-

tions within a small error. As such the methods used seek a unique solution through

calculating a CMB field that minimises both the error to observations and model

complexity, resulting in the simplest model that can accurately describe the data.

As mentioned earlier the accuracy of the solution is heavily dependent on the ac-

curacy and resolution of observational data. However, despite substantial progress
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Figure 1.7: Radial (outward) component of the magnetic field at the CMB in 2015
according to the CHAOS-6 model (Finlay et al., 2016).

in satellite measurement technology, there is an additional inherent limitation on

the accuracy to which we can estimate the CMB field. This limit to the precision

achievable when using observations continued down to the CMB to determine the

magnetic field arises due to the Earth’s crust. Although very thin, the crust is a

source of magnetic field through the permanent magnetism present. It may have

only a small intensity in comparison to that from the core, but nevertheless due

to its proximity to the surface and hence the observation location, its intensity of

B ≈ 10nT is similar to the degree 13 terms from the core field. This means that for

degrees l > 13 there are two sources of comparable magnitude and hence it is not

possible to perfectly isolate and measure the contribution from the core.

1.2.5 Archeomagnetic models

Continuous magnetic field models over the long timescales of the human civilisation

can be devised through combining the direct observational data available since the

sixteenth century, with earlier paleomagnetic records from both geological materials

and archaeological artifacts. This allows the construction of models for the last

10-100 ka.

However, archeomagnetic and paleomagentic observations are difficult. The

samples are relatively sparse and even identifying the time and location of these sam-

ples requires estimation that can have significant uncertainty. The magnetic field

readings provided are then only of one or more components of the field at a specific

time and location. This discrete data series therefore needs to be interpolated to

create a field model, which normally involves a regularisation process in order to

prevent over-fitting, assuming simple consistent behaviour between the data points.
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An appropriate weighting is also attached to each data point based on its uncer-

tainty, in order to best achieve robustly accurate models. Uncertainties in the field

produced by these models can still be large though, particularly in comparison to

direct magnetic field observations (Panovska et al., 2012).

These models include the CALS10k.2 model from Constable et al. (2016)

and GGF100k model from Panovska et al. (2019), which provide global magnetic

field estimations, continuous in space and time over the last 10 ka and 100 ka re-

spectively. However, the temporal and spatial averaging required in order to achieve

such a complete model does have significant effects, most notably in spatial com-

plexity of the resultant field. Although the model is defined up to degree 10 it has

power concentrated mostly at degrees 1–4 because of strong regularisation of the

sparsely-observed ancient magnetic field structures. Rapid secular variation cannot

be deduced from these models either, as the data used have a relatively sparse tem-

poral resolution. These models are valuable when seeking comparisons for many

of the theoretically derived models we focus on in this thesis, as it is this slowly

evolving large scale field we are concerned with. Rapid and small scale dynamics

are directly omitted within many of the approximations made within the dynamo

models used.

1.3 Dynamo theory

1.3.1 Electromagnetism

The term “dynamo” coined by Michael Faraday in 1831 refers to the mechanism

by which kinetic energy is converted to magnetic energy. The underlying principles

facilitating this phenomenon are that motion of an electrical conductor in the pres-

ence of an existing magnetic field will induce electric currents within the conductor

and that all electric currents will produce their own magnetic fields.

This means that it is possible for such a process to result in growth of

an initial magnetic field and hence successful dynamo action. However, this is not

universally the case and is known to be geometry dependent. While successful

in some tightly constrained experiments, for example the homopolar disc dynamo

(Bullard, 1955), there is no guarantee that the fields will not merely decay for the

more complex situations of geophysical and astrophysical interest, which contain a

greater number of degrees of freedom for the electric current.
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The laws of electromagnetism govern the behaviour of these electric and

magnetic fields, which can be written concisely in the form of Maxwell’s equations

∇ · E =
ρc
ε0
, (1.4)

∇ ·B = 0, (1.5)

∇× E = −∂B

∂t
, (1.6)

∇×B = µ0J + ε0µ0
∂E

∂t
, (1.7)

where E is the electric field, B is the magnetic field, J is the electric current and ρc

is the charge density. The permittivity of free space ε0 and magnetic permeability

µ0 are constants, which are related to the speed of light c through the following

expression

c = (ε0µ0)−
1
2 . (1.8)

It is Faraday’s law (1.6) and Ampére’s law (1.7), which demonstrate the dynamo

mechanism described above, formalising the generation of magnetic field from elec-

tric field and vice versa, respectively. Hence the self-sustaining nature of the geo-

magnetic field is reliant upon the motion of the electrically conductive molten iron

within Earth’s core being sufficient such that it induces the magnetic field required

to produce the necessary current to maintain the same magnetic field.

In order to close the system of electromagnetic equations the empirically

derived closure relation, Ohm’s law, is introduced

J = σ(E + u×B), (1.9)

where u is the conductor velocity and σ is the electrical conductivity.

We are able to combine equations (1.4) to (1.7) and (1.9) in order to elim-

inate E and J and arrive at an equation solely for the evolution of the magnetic

field, known as the induction equation

∂B

∂t
=∇× (u×B) + η∇2B, (1.10)

where η = (µ0σ)−1 is the magnetic diffusivity. In order to do so we have made

what is known as the “MHD approximation”, which is valid provided all velocity

magnitudes are small in comparison to the speed of light and hence relativistic effects

can be neglected. We will use this approximation throughout, as it is generally valid

for planetary core dynamics; it is this which facilitates the neglection of the final

term in equation (1.7), as can be shown by a trivial scaling analysis (Desjardins and
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Dormy, 2007).

Equation (1.10) describes the conversion between kinetic and magnetic

energy, however in order to sustain both fields against dissipation, an external source

of energy is required. Within the Earth’s core this is the cooling and growth of the

inner core, driving thermochemical convection throughout the outer core, with the

continual source of energy responsible for the persistent powering of the dynamo

that sustains the geomagnetic field. This is represented by the following equation,

which arises from the requirement of conservation of energy

∂T

∂t
= −(u ·∇)T + S + κ∇2T, (1.11)

where T is Temperature, S is a heat source and κ is thermal diffusivity.

1.3.2 Fluid dynamical equations

In order to understand the Earth’s dynamo problem and accurately predict the

resulting magnetic field, we need a more general study of the motion of rotating

fluids under electromagnetic and buoyancy forces. Throughout this work we will

use the Boussinesq approximation, which assumes that changes in fluid density

are accounted for only in the buoyancy force. This approximation is reasonable in

Earth’s core (Gubbins and Roberts, 1987) and hence is widely used as it considerably

simplifies the governing equations and required numerical methods.

In a cylindrical coordinate system (s, φ, z) rotating with the Earth at angu-

lar speed Ω where the z-axis is the axis of rotation, the governing fluid equations aris-

ing from conservation of mass and momentum, when coupled with equations (1.10)

and (1.11), govern the evolution of fluid velocity u and magnetic field B.

From the requirement of conservation of mass, we have the Continuity

equation:

∇ · u = 0. (1.12)

Due to conservation of momentum, we have the Navier-Stokes equation:

ρ0
Du

Dt
= −∇p′ + µ∇2u− 2ρ0(Ω× u) + (J ×B) + ρ′g + ρ′Ω× (Ω× s), (1.13)

where g is gravitational acceleration, µ is dynamic viscosity, related to the later used

kinematic viscosity ν = µ/ρ0,
Du

Dt
=
∂u

∂t
+ u ·∇u is the material velocity derivative,

ρ0 is the background density and ρ′ is the density perturbation from ρ0.
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We can simplify this by defining the buoyancy force FB, which includes

both gravitational and centrifugal forces, is purely spherically radial and given by

FBr̂ = ρ′g + ρ′Ω× (Ω× s) = ρ′g + ρ′∇
(

1

2
(s×Ω)2

)
.

This reduces the Navier-Stokes equation to

ρ0
Du

Dt
= −∇p′ + µ∇2u− 2ρ0(Ω× u) + (J ×B) + FBr̂. (1.14)

Dimensionless variables indicated by bars can be introduced through factor-

ing out the characteristic global scales of each quantity, in order to non-dimensionalise

equation (1.14).

u = Uu, s = Ls, Ω = ΩΩ, p′ = ρ0ΩULp′, B = BB, J = σUBJ , FB = bFB.

The specific set of quantities for which characteristic scales of all quantities are

expressed in terms of, is not a unique choice, many such spanning sets exist. All

choices are physically equivalent, but can in turn lead to a different set dimensionless

control parameters. In this choice velocity is explicitly scaled, as opposed to time,

J is scaled according to Ohm’s law (1.9) and the buoyancy force is simply scaled by

b, a parameter introduced to explicitly represent this.

The non-dimensionalisation process is useful as it leads to a system influ-

enced solely by dimensionless parameters, which represent the relative importance

of different terms in the equations. It is then the magnitudes of these parameters,

which can be compared between a simulated problem and the physical problem of

interest, that can be used to deduce applicability. It also facilitates the construction

of reduced models, which utilise approximations devised to capture the essence of

the problem through the dominant force balance. Through this we arrive at the

dimensionless equation

Ro
Du

Dt
= −∇p′ + E∇2u− 2(ẑ × u) + El

(
J ×B

)
+RaFBr̂, (1.15)

where we have introduced four important dimensionless numbers: The Ekman num-

ber, Rossby number, Elsasser number and modified Rayleigh number. The Ekman

number E = ν
L2Ω

describes the ratio of viscous forces to rotational forces. Within

the setting of the Earth’s outer core this characterises the relative significance of

viscous forces within the molten iron and nickel fluid, and the Coriolis forces aris-

ing from the planetary rotation and is notably small, at approximately 10−15. The
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Rossby number Ro = U
LΩ

defines the ratio of inertial forces to rotational forces and

thus represents the importance of Coriolis accelerations due to the Earth’s rotation

and also has a small value of approximately 10−9. The Elsasser number El = σB2

ρ0Ω

defines the ratio of the Lorentz force to the Coriolis force and expresses the mag-

nitude of the Earth’s magnetic field in relation to its rotational forces, believed to

be around unity. The modified Rayleigh number Ra = b
UΩρ0

specifies the ratio of

buoyancy forces to rotational forces, it indicates the strength of convection body in

comparison to the Coriolis forces. In the vigorously convecting outer core fluid this

is estimated to be in the range of 1020 − 1030.

We note that it is also possible to express this system in an equivalent

manner using a combination of different dimensionless numbers to define parameter

space. The Reynolds number Re = UL
ν

, Magnetic-Prandtl number Pm = ν
η

and

Alfvén number A = U(µ0ρ0)1/2

B
are all widely used, with estimated values for the

Earth of 1015, 10−6 and 10−2 respectively.

1.3.3 Numerical Dynamo models

Numerical simulations of rotating magnetoconvection within a spherical shell do-

main, as governed by equations (1.10) to (1.12) and (1.14), are a very useful tool for

understanding the motion within Earth’s outer core. This has been a very active

field of research in the last 25 years, since the first self-consistent three-dimensional

geodynamo simulations were carried out by Glatzmaier and Roberts (1995) and

Kageyama and Sato (1995). Analysing these computational simulations has been

insightful in furthering knowledge of many properties of the geomagnetic field, from

rapid field fluctuations to full polarity reversals

Many spectral method codes have since been developed for the task of

simulating the coupled non-linear system of the Navier-Stokes, induction and tem-

perature equations (1.10), (1.11) and (1.14) for an incompressible fluid in a spherical

cavity. Some of the best examples include those by Schaeffer (2013); Aubert et al.

(2008); Hollerbach (2000); Tilgner and Busse (1997), which have been used for a

large range of numerical studies into the nature of dynamo action.

Great efforts have been made to best optimise these codes to achieve fast

convergence and run efficiently in parallel. However, despite this, even using modern

supercomputers does not allow one to run simulations with Earth-like parameters

(Roberts and Aurnou, 2011). This is because the motion in Earth’s outer core is in

the very extreme parameter range mentioned previously. Some forces are very small
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in comparison to others, specifically rotational forces are dominant over inertial and

viscous forces, which means the Ekman and Rossby numbers are inaccessibly small.

Recent simulations have been able to probe more Earth-like parameter

regimes than previously possible, however Ekman numbers of E = 10−7 − 10−8

(Schaeffer et al., 2017; Aubert, 2019) remain at the limit of computing power. De-

spite the progress, these simulations remain in parameter regimes vastly different to

that of the Earth (Christensen and Wicht, 2015), (also see figure 1.8). The prob-

lem of increased computational expense when attempting to move toward Earth

parameters arises because smaller E values require both fine spatial and temporal

resolution in order to fully resolve a direct numerical simulation. In spite of this sig-

nificant challenge, numerical models have been used with great success to simulate

aspects of the geodynamo, reproducing features such as torsional oscillations (Wicht

and Christensen, 2010) that are consistent with observational models (Gillet et al.,

2010), geomagnetic jerks (Aubert and Finlay, 2019) and allowing predictions of the

Earth’s magnetic field strength (Christensen et al., 2009). The inescapable question

of how representative of the Earth they really are is ever-present though, as force

balances can still vary significantly between the simulation regime and the correct

regime of the Earth (Wicht and Sanchez, 2019), with the ability to simultaneously

reproduce Earth-like field morphology and reversal frequency still beyond current

capabilities (Christensen et al., 2010). The assessments conducted by Sprain et al.

(2019) show that present geodynamo models are unable to satisfactorily reproduce

all aspects of Earth’s long term field behaviour. This highlights the potential value

in the alternative idealised models that we focus on in this thesis.

Figure 1.8: Ekman - Magnetic Prandtl and Alfvén - Magnetic Prandtl regime dia-
grams showing the currently possible range of simulation parameters. The Earth’s
core lies far away beyond the bottom left corner at E = 10−15, Pm = 10−6, A = 10−2.
Figure from Schaeffer et al. (2017) (to which the ‘this paper’ points refer.)
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1.4 Data assimilation models

Establishing an understanding of the flow and magnetic field inside the core has

proved a very challenging task as observations can only reveal information of the

exterior surface of the core. A method that has recently been developed to image

inside the core is using data assimilation to construct an inverse model. The principle

is to combine the knowledge from observational data and numerical simulations, in

order to seek the most likely core state accounting for the CMB field and secular

variation data, while being statistically compliant with the output of a numerical

model of the geodynamo. Using first principle dynamical equations, describing the

convective dynamo allows a construction of physical laws linearly connecting some

quantities of the system as well as the long-range statistical correlations that exist

between these quantities. This allows underlying properties of the internal core to

be inferred through knowledge of only surface observations.

Fournier et al. (2007) outlines how to implement this method and explains

why it may be a promising path to pursue as a way of translating knowledge of

the CMB magnetic field into information on the field dynamics interior to the core.

Subsequent studies have built upon this through the use of three-dimensional numer-

ical simulations of the geodynamo along with observational data of the geomagnetic

field and its secular variation at the CMB. For a fully convective core recent work

by Aubert and Fournier (2011); Aubert (2012, 2014) has implemented the inverse

geodynamo model and iteratively improved it to provide whole core inversions for

the three unknown physical fields characterising Earth’s core dynamics: the velocity,

density anomaly and magnetic fields, at snapshots where the main magnetic field, its

secular variation and their error statistics are supplied by observational geomagnetic

field data.

However, we note that the existence of a stratified layer has obvious impli-

cations for the applicability of this approach, which is founded on observations at

the CMB revealing the correct free stream magnetic field, whereas a stratified layer

would provide a disconnect between them. The force balance may differ consider-

ably within a stratified layer. The compatibility of classes of externally observable

magnetic fields with a stratified layer is something we consider in Chapter 6, as we

investigate whether all structures of exterior potential fields are consistent with an

assumed magnetostrophic balance and the presence of a strongly stratified layer.
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1.5 Thesis outline

How the geomagnetic field is generated in Earth’s liquid outer core by the geodynamo

remains one of the greatest outstanding problems in Earth science. This magnetic

field is important because it protects us from harmful radiation from solar and cosmic

rays. As we have discussed, observations from Earth’s surface can only constrain

the structure of the magnetic field at the edge of the core and the correct parameter

regime of the Earth is unachievable by numerical simulations and as a result many

unanswered questions remain.

The objective of this thesis is to advance our understanding of how the

geomagnetic field is generated in Earth’s liquid outer core by the geodynamo and

to constrain the possible structure of the field within the core. We approach this

through considering the limit of negligibly small inertia and viscosity, characterised

by E = Ro = 0, resulting in what is termed the magnetostrophic force balance. In

his seminal work, Taylor (1963) argued that this is the geophysically relevant limit

for dynamo action within the outer core. Within this limit, he showed the existence

of a necessary condition, now well known as Taylor’s constraint, which requires that

the cylindrically-averaged Lorentz torque must everywhere vanish; magnetic fields

that satisfy this condition are termed Taylor states. This provides the foundation

for much of our work, as we utilise the mathematical framework to develop a re-

alistic model of the large-scale background structure of the internal magnetic field

operating within this constrained dynamical system. We specifically extend cur-

rent understanding through considering temporal field evolution and investigating

the impact of a stratified layer, all while remaining consistent with geomagnetic

observations.

In chapter 2 we introduce in detail the necessary theory behind the mag-

netostrophic dynamo system, discussing the assumptions and features within the

model and the approaches that one can take to best apply this to the geodynamo.

In chapter 3 we consider the evolution of Taylor states, and develop the first com-

plete description of the fluid flows generated by a Taylor state magnetic field in

three-dimensions. As we show, it becomes necessary to separate the flow into an

ageostrophic flow, which has zero cylindrical average, and a geostrophic component

acting solely in the azimuthal direction u = ua + ugφ̂. It is the geostrophic flow ug,

which is challenging to solve for. We prove that the ordinary differential equation

(ODE) derived by Taylor (1963) is generally in error due to an incomplete treat-

ment of the boundary conditions. We provide a correction to this through the means

of an alternate solution method. In chapter 4 we consider the evolution of Taylor
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states. Through computing the magnetic fields induced by these correct instanta-

neous flows, as well as running dynamical magnetostrophic simulations with a range

of Taylor state initial conditions, we examine how rapidly these fields change. We

find that many Taylor states exist that have a comparable rate of change to that

of the geomagnetic field. However, very few steady stable Taylor states are found

to exist, that is Taylor states which are capable of remaining constant through self-

sustenance over prolonged periods of time.

In chapter 5 we summarise the evidence for and against the existence of a

stratified layer at the top of Earth’s core. We discuss how such a layer may have

formed and the possible implications of its presence for observations of the geomag-

netic field. The work presented in chapter 6 extends the concept of a Taylor state

to stratified fluids in order to account for any stratified layer in Earth’s core. This

leads to introducing the idea of “Malkus states”, building on the work by Malkus

(1979). We provide the first example of such fields and find solutions consistent with

geomagnetic observations, which reveals notable features of the required magnetic

field at the top of the Earth’s core, within such a stratified layer. Finally, in chapter

7 we conclude with a summary of our results and a discussion of possible future

work.
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Chapter 2

Magnetostrophy

2.1 The Magnetostrophic approximation

As we showed in §1.3.2, the full momentum equation which describes the motion of

a convectively driven, rotating, electrically conductive fluid, within the presence of

a magnetic field is:

Ro
Du

Dt
= −∇p′ + E∇2u− 2(ẑ × u) + El (J ×B) +RaFBr̂. (2.1)

This equation represents a balance of the forces acting on the fluid: inertia, pressure,

viscosity, Coriolis, Lorentz, and buoyancy. However, these forces are not always of

equal importance for impacting the fluid behaviour. In many systems there is a

hierarchy of force balances. The leading order balance is dominantly responsible for

governing the dynamics, while there also exists a series of subdominant balances,

which include different forces and modify the overall dynamics by a lesser degree.

This motivates the idea of obtaining a simpler system to analyse, which remains

accurate to a first order approximation, through neglecting those forces absent from

the dominant force balance.

The relative magnitude of these forces are encapsulated in the dimension-

less numbers. Within the Earth’s outer core the fluid is subject to rapid rotation,

while the inertia and viscosity of the fluid are comparatively small; this results in

E,Ro � 1 (estimates suggest E ≈ 10−15 and Ro ≈ 10−9 (Gubbins and Roberts,

1987)). The magnitude of the Elsasser number is not so obvious as both rotational

and magnetic forces can be large. However, it is argued that Lorentz forces in the
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core approximately balance with Coriolis forces, and although this is somewhat un-

certain, (not least due to incomplete knowledge of the toroidal field strength) best

estimates put El ≈ 1 (Fearn and Roberts, 2007), at least at the large scale of a

global force balance (Aurnou and King, 2017). Therefore is has been proposed that

the flow within Earth’s outer core falls within the dynamical regime characterised by

the so-called ‘magnetostrophic balance’, between the Coriolis, pressure, buoyancy

and Lorentz forces.

It is important to note that which forces are pre-eminent is often dependent

on the length and times scales of interest. Here we have nondimensionalised based

on the global length-scale of the core radius, so are focusing on the global force

balance. At smaller scales the scenario can differ considerably, for example viscous

effects are inversely correlated with length-scale so are key in very small scale fluid

behaviour.

The resulting dimensionless magnetostrophic regime then involves the fol-

lowing exact balance between the four remaining forces

2(ẑ × u) = −∇p′ + FBr̂ + (∇×B)×B, (2.2)

or

2(ẑ × u) = A+ FBr̂, where A ≡ −∇p′ + (J ×B). (2.3)

2.2 Derivation of Taylor’s constraint

From equation (2.2) an important constraint can be derived, which is a necessary

condition for the existence of a solution to the magnetostrophic system (Taylor,

1963) and a fundamental building block for the research area our work lies within.

Hence we outline here the derivation of the ‘Taylor constraint’ (Taylor, 1963) within

the simple geometry of a full sphere domain.

Consider a cylinder with radius s0, co-axial with the axis of rotation of a

full sphere domain. Integrate the azimuthal component of equation (2.2) (noting

that the buoyancy force has no φ component) over the part of the cylinder which

lies within the fluid sphere (as shown in figure 2.1)

2

∫

s=s0

(ẑ × u)φs dφdz =

∫

s=s0

sAφ dφdz,
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Figure 2.1: A schematic diagram illustrating the cylindrical surface within a spher-
ical domain and the closure this surface using the spherical caps (dashed lines).

since (ẑ × u)φ = us, we have

2

∫

s=s0

uss dφdz =

∫

s=s0

sAφ dφdz,

or

2

∫

s=s0

u · n̂ dΣ =

∫

s=s0

sAφ dφdz, (2.4)

where Σ is the surface of revolution of the cylinder and n̂ is the unit normal vector

to the surface.

Since u · n̂ = 0 over the spherical caps we can extend the integral from

being over the surface of revolution to being over the closed surface of the cylinder

plus the spherical caps. This means including the surfaces outlined with dashed lines

in figure 2.1. Now the surface is closed we can apply Gauss’ divergence theorem

∫
u · n̂ dΣT =

∫
∇ · u dV,

where ΣT is the closed surface of the surface of revolution of the cylinder plus the

spherical caps. Then equation (2.4) becomes

2

∫
∇ · u dV =

∫

s=s0

sAφ dφdz,

and since for an incompressible Boussinesq fluid ∇ · u = 0, we obtain the result

∫

s=s0

sAφ dφdz = 0 ⇒
∫

s=s0

Aφ dφdz = 0, (2.5)

or explicitly in terms of the magnetic field B, since pressure is single-valued its
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contribution is zero and we have that as a direct consequence of the magnetostrophic

balance, the magnetic field must obey at all times the condition

∫

C(s)

((∇×B)×B)φ dφdz = 0, (2.6)

for any right cylinder C(s) of radius s, coaxial with the rotation axis. Taylor (1963)

proved this result and hence that the couple on any annular cylinder co-axial with

the axis of rotation must be zero. The following theorem is what is known as, and

will be referred to throughout this thesis, as Taylor’s constraint, and any magnetic

field which exactly satisfies this is known as a Taylor state.

Theorem 2.2.1. If a rotating fluid is contained in a rigid envelope in the form of a

surface of revolution then for there to exist a velocity u compatible with the magne-

tostrophic system (2.2) it is necessary for the magnetic field to satisfy a constraint

which can be written as

T (s, t) ≡
∫

C(s)

((∇×B)×B)φ dφdz = 0. (2.7)

Taylor (1963) also proved that not only is this a necessary condition for the

existence of a solution for u, but it is also a sufficient condition, meaning that if it

is satisfied then a solution for u must exist. The search for such solutions however,

is a non-trivial task and is the focus of Chapter 3 of this thesis.

The geometry of Earth’s outer core is of course a spherical shell rather than

a full sphere. This leads to additional complications for Taylor’s constraint as shown

by Livermore et al. (2008). The presence of an inner core splits up the geostrophic

cylinders over which Taylor’s constraint applies into three distinct regions. Cylinders

of radii greater than the inner core (outside of what is known as the tangent cylinder)

remain unchanged, but within the tangent cylinder the north and south polar regions

are disconnected, and the geostrophic contours are partitioned into two distinct sets.

This results in a total of three separate sets of Taylor constraints, which makes

enforcing the condition more challenging. In the majority of work reported in this

thesis we restrict ourselves to a full sphere domain to avoid such difficulties.

2.3 Magnetostrophic Dynamo simulations

This approach of utilising an explicit assumption of an exact magnetostrophic bal-

ance (2.2) is not only useful for theoretical analysis but can also be used as the
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basis to formulate numerical models. These are an alternative to the full numer-

ical dynamo models discussed in §1.3.3, overcoming the difficulties caused by the

extreme parameter regime through using them in our favour to apply an a priori

magnetostrophic approximation. The advantage of this is that the challenging as-

pects of rapid timescales and very short viscous lengthscales are removed and this

approximation will likely lead to a computationally less demanding set of equations

to solve. The idea that this allows a different and geophysically relevant parameter

space to be explored is visualised in figure 2.2.

Figure 2.2: Reynolds–Ekman regime diagram showing the different capabilities of
various methods of studying rotating convection and dynamo physics. The regions of
parameter space occupied by Earth and magnetostrophic models are also indicated.
Figure modified from Aurnou et al. (2015).

This is a very new and actively developing field; dynamical models pro-

duced by evolving the magnetic field subject to Taylor’s constraint have appeared

very recently (Wu and Roberts, 2015; Roberts and Wu, 2018; Li et al., 2018). These

are currently restricted to axisymmetry, although the model of Li et al. (2018) is

general enough that it can be simply extended to a three-dimensional system. In

this framework, the full sphere model (neglecting the solid inner core), of the geo-

dynamo requires a solution of (2.2) alongside equations describing the evolution of

B and FB within the core, whose boundary conditions derive from the surrounding

electrically-insulating impenetrable overlying mantle.

However, as we cover in detail in Chapter 3, calculating the flow required

to maintain a magnetostrophic balance, specifically the geostrophic component of

the flow, is far from straightforward. Despite this, some methods to evolve the
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magnetostrophic equation have shown success. By treating a version of the Taylor

integral (2.7) that is specific to axisymmetry (Braginsky, 1970; Jault, 1995), Wu and

Roberts (2015) demonstrated that they could evolve the magnetostrophic system

by solving a first-order differential equation for the geostrophic flow, rendering the

Taylor integral zero to first order, and went on to apply it to a variety of examples.

In an independent line of investigation Li et al. (2018) showed that, by using control

theory, it is possible to find ug implicitly such that the Taylor integral is zero at the

end of any finite timestep.

The advancement of these models, which are currently in their relative in-

fancy, is a promising area of research within the community. A breakthrough here

would provide a valuable resource as a route to create a fully 3D model for simulating

dynamo action within a full three-dimensional sphere, which is capable of represent-

ing the Earth-like magnetostrophic force balance. This would act as an alternative

to the mainstream numerical models with weak viscosity and inertia. Additionally,

these models can be modified in order to probe the effect of re-introducing a linear

inertial force, permitting short timescale deviations from an exact magnetostrophic

balance and incorporating the behaviour driven by torsional waves (Roberts and

Wu, 2014; Li et al., 2018).

2.4 The magnetostrophic limit

There is a further, intermediate approach to investigating the approximately mag-

netostrophic geodynamo, through formally including viscosity and inertia and then

investigating the limit as both E and Ro become small (Jault, 1995). In such mod-

els, it is important that the Lehnert number, λ =
B

ΩL(µ0ρ0)1/2
(estimated to be

10−4 in Earth’s core) is small in order that inertial modes separate from magneto-

Coriolis waves and can be filtered out (Jault, 2008). It is also worth noting that

since a significant part of the Coriolis term may be balanced by the pressure gradi-

ent (e.g. Aubert et al., 2017), the simple estimates of the Rossby number reported

earlier may be too small. A different estimate of importance of inertia is the Alfvén

number (measuring the square root of the ratio of kinetic to magnetic energies),

whose small value of A ∼ 10−2 still supports neglecting the inertial term although

with weaker justification (Schaeffer et al., 2017). Arguably retaining inertia and

viscosity would result in models closer to geophysical reality than those that are

purely magnetostrophic as this is precisely the regime of the Earth’s core. A va-

riety of studies reported evidence of behaviour independent of E in the inviscid



27

Taylor-state limit, either from a direct solution (Fearn and Rahman, 2004), or from

solving the equations assuming asymptotically small E (Hollerbach and Ierley, 1991;

Soward and Jones, 1983). To date, all models of this type have been axisymmetric

and there have been no attempts at a general 3D implementation of these ideas.

One difficulty with treating asymptotically-small E is that the resulting equation

for ug is an extremely delicate ratio of two small terms, whose form is dependent

on the specific choice of mechanical boundary conditions (Livermore et al., 2016).

The convergence of magnetostrophic and asymptotically low-E models remains an

outstanding question, as it is unclear whether the limit is regular or singular.

2.5 Mean field theory

The geomagnetic field is observed to be approximately axisymmetric (figure 1.7),

with a dominant and stable axial dipole component. Therefore an obvious reduced

model to simply represent the geodynamo is one that is restricted to this symmetry.

The two-dimensional system, allows faster numerical computation and additional

theoretical analysis to be carried out. Unfortunately, the anti-dynamo theorem of

Cowling (1933) proved that it is not possible for an axisymmetric magnetic field

to be maintained through a self-sustaining dynamo action by an axially symmetric

current.

While problematic, this does not entirely preclude the use of axisymmetric

models. The theory of mean field electrodynamics first proposed by Parker (1955),

provides a mechanism to circumvent Cowling’s theorem. He provided the first simple

conceptual picture of how a two scale process might operate a dynamo. The concept

is that the velocity of small scale ‘cyclonic’ fluid motions are crucial for twisting

magnetic field lines, and therefore via Ampére’s law (1.6), inducing a component of

electromotive force (EMF) parallel to the original large scale magnetic field. This

simple but powerful model of Parker (1955) relies on the basic assumption, that it is

possible to decompose the flow and magnetic field into distinct large and small scale

components, and the generation of the small scale fluctuating parts of the magnetic

field, is proportional to the large scale averaged magnetic field.

Using this two-scale approach we split the full velocity u and magnetic

field B into mean and fluctuating components, denoted by overbars and primes

respectively,
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u = u + u′, B = B + B′.

The choice of averaging here can take many forms, but importantly it

must obey the Reynolds averaging rules: it must be a linear operation, commute

with differentiation, and once averaged, further averaging of that quantity must have

no effect.

Given a small scale turbulent flow and a large scale mean field, we can

average over an intermediate length scale. Similarly a temporal average can instead

be applied over an intermediate timescale, so long as the turbulence has a short

correlation time. Alternatively, for axisymmetric dynamo models we can average

over a particular coordinate, namely φ, such that the large scale field is entirely

axisymmetric, while non-axisymmetric fluctuations are present.

After applying the decomposition and a suitable average the induction

equation becomes

∂B

∂t
=∇× (u×B) +∇× (u′ ×B′) + η∇2B =∇× (u×B) +∇× ε+ η∇2B,

and

∂B′

∂t
=∇× (u′ ×B) +∇× (u×B′) +∇× (u′ ×B′)−∇× (u′ ×B′) + η∇2B′,

where ε = (u′ ×B′) is the mean EMF.

This is now a complicated equation that in general can not be solved ana-

lytically, so this is where it was proposed by Steenbeck et al. (1966) that we assume

B′ depends linearly on B and hence ε is a linear functional of B. Assuming the

simplest possible such relation allows us to write

εi = αijBj + βijk
∂Bj

∂xk
,

where the tensors αij and βijk depend only on the flow and are assumed to be

isotropic, and hence αij = αδij and βijk = βεijk.

This results in the mean field dynamo equations

∂B

∂t
=∇× (u×B) +∇× αB + (η + β)∇2B.
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The first term on the right hand side here represents the inductive effect of

large scale shear flow and is known as the ω-effect. The new second term represents

the crucial difference in this averaged version of the induction equation, it acts as a

source term for the mean field through the process of small scale turbulent motions

acting on a toroidal field to produce a source term for the averaged poloidal field and

vice versa, and is known as the α-effect. The β contribution can just be regarded as

an additional turbulent contribution to the diffusivity as shown in the third term.

It must be noted that this argument is very heuristic and difficult to rigor-

ously justify within the geophysical setting, and even if accepted, the way in which

to choose both the spatial form and magnitude of α for a given problem is fairly

arbitrary. One of the most commonly chosen forms for the spatially-dependent

prescribed scalar α is

α = α0
729

16
r8(1− r2) cos θ,

for some constant α0, which specifies the magnitude of the α-effect (Roberts, 1972;

Hollerbach and Ierley, 1991; Wu and Roberts, 2015; Li et al., 2018).

Despite its flaws, in the 1980’s in particular, the mean-field approach was

widely used with some success as a method with which to attack the dynamo problem

through focusing solely on the large scale hydromagnetic processes, with this α-effect

parameterizing the small scales (Krause and Rädler, 1980). The α-effect provides the

additional source required to circumvent the anti-dynamo theorem of Cowling (1933)

and therefore has proved particularly useful for studying simple dynamos. Within

the setting of a magnetostrophic balance this has been explored extensively. With

the α-effect term being the source of energy input to the system necessary to balance

diffusion and achieve successful dynamo action, removing the need to incorporate a

buoyancy force explicitly and solve the temperature equation (1.11). The α-effect

drives an inverse cascade of energy, where the small scales now fuel the large scales

rather than acting as an energy sink. This allows dynamic magnetostrophic model

simulations in the form of either α2 or αω dynamos (Soward and Jones, 1983; Abdel-

Aziz and Jones, 1988).

2.6 The segregation of time scales

We know that the internal geomagnetic field, which is produced by dynamo action,

is not constant in time. The evidence from geomagnetic observations unequivocally

shows that the field is constantly fluctuating. Not only this, but there are in fact

multiple different timescales associated with the variation of Earth’s magnetic field
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(Jackson and Finlay, 2007; Hollerbach, 2003).

For example, paleomagnetic data shows that on the long timescale of 100-

1000 ka the geomagnetic field undergoes polarity reversals, where the dominantly

dipole field that is aligned with the rotation axis, switches orientation (Constable,

2000). The large scale field is also evolving on somewhat shorter timescales, as it

is observed that it appears be migrating westward. This is referred to as ‘westward

drift’ and operates at a speed of around one degree in longitude per year (Jault et al.,

1988). Earth’s magnetic field is observed to vary considerably on a yearly timescale

too: these can take the form of periodic oscillations thought to be due to magnetic

waves, the movement of the geomagnetic pole (Livermore et al., 2020), and toward

the shortest end of the spectrum, so-called geomagnetic jerks, in which the second

time-derivative of the field changes abruptly within a single year (Bloxham et al.,

2002).

This makes it challenging to model the dynamo by resolving features across

this broad range of timescales. Ideally we would seek to model the geodynamo as a

fully continuous system capable of cross-interaction between processes on all scales.

However, given the difficulty in being able to do this, it is fruitful to adopt a practical,

discretized approach, similar to the separation of dynamics based on lengthscale

employed in mean field theory (§2.5) and seek to understand these features initially

under the assumption that they are fundamentally distinct.

The dominant force balance of the magnetostrophic equations, which ne-

glect inertial and viscous effects as discussed in §2.1, operates on a timescale governed

by the induction equation (1.10) and determined by Ohmic diffusion, of L2

π2η
≈ 104

years. Therefore one could argue that this is the theoretically predicted timescale

of a slowly evolving background state of Earth’s magnetic field. This is of course

the timescale on which the Taylor constraint acts, due to the derivation arising

directly from the magnetostrophic equations, so a Taylor state describes the back-

ground geomagnetic field but does not incorporate fast perturbations in the field.

This is the reason that a magnetostrophic dynamo requires coarser temporal reso-

lution to simulate, as discussed in §2.3. Such a model relies on the key assumption

that the variability in any rapid dynamics do not interfere with the slowly evolving

background they may perturb.

The theoretical basis for these rapid dynamics is in the form of magnetic

waves. These are small oscillations within an electrically conducting fluid under

the influence of inertial, Lorentz, Archimedean, and Coriolis forces. These waves

are predicted to have periods in variations in the geomagnetic field on the much
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shorter timescale of years to decades (Braginsky, 1979). It is this vast discrepancy

in timescales that stimulates the concept of distinguishing between a background

state and perturbations from it and considering these two features separately. How-

ever, it remains difficult to accurately study the faster mechanisms, because while

the shorter timescale dynamics aren’t thought to significantly affect the background

state, the converse is not believed to necessarily be true. Understanding the underly-

ing background state is the focus of the work in this thesis and is vitally important in

describing the full time evolving field, including as the correct foundation for study-

ing the rapid dynamics, which can be highly dependent on the choice of background

state that they perturb. Therefore to accurately model features of Earth’s secu-

lar variation, a time evolving background state, derived from the magnetostrophic

model we consider provides the appropriate foundation in order to then explore

rapid instabilities that are superimposed on such a state.

2.7 Torsional oscillations

Departures from a Taylor state result in Taylor’s constraint not being satisfied and

Taylor (1963) comments that “this would result in rapid torsional motion being set

up in which each concentric cylindrical annulus rotates as a rigid body, the adjacent

annuli are coupled together, as if by elastic strings, through the cylindrically radial

component of the magnetic field Bs. Because of this linkage the torsional motion

would modify the fields until a state is reached in which Taylor’s constraint is satis-

fied”. This is the excitation of so called torsional waves, which are essentially rigid

accelerations of cylindrical surfaces that seek to re-establish the state by stretching

radial magnetic field into azimuthal field.

Torsional waves consist of geostrophic motions and arise because the geostr-

ophic cylinders, as depicted in figure 2.3, are not free to rotate; each one is connected

to its neighbours by Bs so torsional waves form a pattern of nested cylinders of fluid

that rotate in different directions. Geostrophic flows depend only on the distance

to the rotation axis and any differential rotation between rigid geostrophic cylinders

shears the magnetic field causing the Lorentz force to result in a restoring magnetic

tension. This leads to the torsional waves propagating cylindrically radially similarly

to Alfvén waves and with the same timescale, which is both short (6-8 years for the

Earth’s core) and highly dependent on the background field.

Studies of such waves in the Earth’s interior have proved useful because ap-

plying inverse methods to geophysical data allows us to infer aspects of the structure
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Figure 2.3: An illustration of some of the geostrophic cylinders over which Taylor’s
constraint is defined Livermore et al. (2008).

and physical properties of the interior of the core that are otherwise inaccessible.

The use of numerical geodynamo simulations and geomagnetic data through the

data assimilation described in §1.4 can be further supplemented by our theoretical

understanding of the behaviour of specific features within the geodynamo, in par-

ticular the way these torsional waves propagate. An ensemble inversion of core flow

models can be applied, and since Bs threads the adjacent cylindrical fluid annuli

whose rotation represents torsional oscillations, then knowledge of the torsional wave

equation has been used by Gillet et al. (2010) to constrain Bs throughout the core

and obtain both strength and profile estimates. Buffett et al. (2009) use the same

principle by combining a time-dependent model of flow at the top of the core (Jack-

son, 1997) and a simple theory for torsional oscillations (Buffett and Mound, 2005)

to estimate the internal structure of the magnetic field. This method has proven

extremely useful as it allows us to “peer inside the core” and it has led to results for

the internal field, such as suggesting that somewhat surprisingly the magnetic field

induced by columnar convection is of similar strength in the interior of the core as

it is at the CMB, with a value of approximately 0.3 m T.
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Chapter 3

Determination of the

instantaneous geostrophic flow

within the three-dimensional

magnetostrophic regime

3.1 Introduction

Throughout this thesis we focus on utilising the ideas of Taylor (1963), who argued

in this seminal work that the geophysically relevant limit for dynamo action within

the outer core is one of negligibly small inertia and viscosity. In this approach, we

are in the magnetostrophic regime governed by equation (2.2), from which Taylor

(1963) showed the existence of a necessary condition, now well known as Taylor’s

constraint, which requires that the cylindrically-averaged Lorentz torque must ev-

erywhere vanish; that is, the magnetic field must obey at all times t the condition

T (s, t) ≡
∫

C(s)

([∇×B]×B)φ sdφdz = 0, (3.1)

for any right cylinder C(s) of radius s, coaxial with the rotation axis. Magnetic

fields that satisfy this condition are termed Taylor states.

While on the face of it, this is only a constraint on the magnetic field struc-

ture, in fact it also has important consequences for which fluid flows are compatible

with maintaining a magnetostrophic balance. Within this chapter we detail the cal-

culation of fluid flows necessary to maintain a Taylor state magnetic field, evaluate
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the validity of the method proposed by Taylor (1963) himself, and derive a more gen-

eral approach. In order to proceed it is expedient to partition the magnetostrophic

flow of (2.2), using a cylindrical average, into geostrophic and ageostrophic parts:

u = ug(s)φ̂+ ua(s, φ, z),

where ua is such that
∫
C(s)

ua · φ̂ dφdz = 0. For a magnetic field B, which is an

exact Taylor state it is possible to solve the magnetostrophic equation

2ẑ × u = −∇p′ + (∇×B)×B + FBr̂, (3.2)

to determine the ageostrophic part of the fluid velocity ua. This can be done either

through the integral method of Roberts and King (2013), the constructive method

of Taylor (1963) or the following spectral method outlined in §3.3. However we note

that the geostrophic flow is unconstrained by this equation as

ẑ × ug(s)φ̂ = −ug(s)ŝ = −∇
∫
ug(s) ds, (3.3)

and so, as it can be written as a gradient, it can be absorbed into the pressure term.

3.2 Magnetic field and fluid velocity representa-

tions

In our full sphere of unit radius, the position r is naturally described in spherical

coordinates (r, θ, φ), although the importance of the rotation axis also leads us to

use cylindrical coordinates (s, φ, z). The divergence free magnetic field B can be

written using a toroidal (T)-poloidal (S) framework

B =∇×∇× Sr̂ +∇× T r̂, (3.4)

with S and T expanded as

S =
∑

l,m

Sml (r)Y m
l (θ, φ), T =

∑

l,m

T ml (r)Y m
l (θ, φ),

where Y m
l is a spherical harmonic of degree l and order m. The functions S and T

must be chosen to satisfy both Taylor’s condition (3.1), along with the electrically

insulating boundary conditions at r = 1, which are shown in appendix C.4 to take
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the form
dSml
dr

+ lSml = T ml = 0. (3.5)

The fluid is assumed to be incompressible and hence the flow u can also be written

in a comparable form, and due to the absence of viscosity only satisfies an impen-

etrability condition: ur = 0 on r = 1. We cannot impose no-slip or stress-free

conditions, there being no boundary layer to accommodate any adjustment from

the free-stream inviscid structure.

3.2.1 A Galerkin representation

A simple way of constructing magnetic states is to take combinations of single-mode

toroidal or poloidal vectors, whose scalars are each defined in terms of a single

spherical harmonic:

B =
∑

l,m,n

aml,nT m
l,n + bml,nSml,n

where T m
l,n =∇×(χl,n(r)Y m

l r̂) and Sml,n =∇×∇×(ψl,n(r)Y m
l r̂) and the harmonics

are fully normalised over solid angle:

∮ [
Y m
l

]2
dΩ = 1.

We choose the scalar functions χl,n and ψl,n, n ≥ 1, to be of polynomial form and

match an electrical insulator at r = 1 (Li et al., 2010, 2011), defined in terms of

Jacobi polynomials P
(α,β)
n (x) (Szegö, 1939), by

χl,n = rl+1(1− r2)P
(2,l+1/2)
n−1 (2r2 − 1),

ψl,n = rl+1

(
c0P

(0,l+1/2)
n (2r2 − 1) + c1P

(0,l+1/2)
n−1 (2r2 − 1) + c2

)
, (3.6)

where

c0 = −2n2(l + 1)− n(l + 1)(2l − 1)− l(2l − 1),

c1 = 2(l + 1)n2 + (2l + 3)(l + 1)n+ (2l + 1)2,

c2 = 4nl + l(2l + 1). (3.7)
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These normalised vector modes then satisfy (A) the boundary conditions of equation

(3.5); (B) regularity at the origin and (C) L2 orthonormality of the form

∫

V

Sml,n · Sm
′

l′,n′ dV =

∫

V

T m
l,n · T m′

l′,n′ dV = δl,l′ δm,m′ δn,n′ ,
∫

V

Sml,n · T m′

l′,n′dV = 0, (3.8)

where all integrals are over the spherical volume V . These conditions reduce to the

equations (when l = l′, m = m′)

l(l + 1)

∫ 1

0

l(l + 1)

r2
ψnψn′ +

∂ψn
∂r

∂ψn′

∂r
dr = δn,n′ , and l(l + 1)

∫ 1

0

χnχn′ dr = δn,n′ .

For the velocity field, the ageostrophic flow satisfies only the impenetrable condition

ur = 0 on r = 1, which constrains only the poloidal representation. A modal set that

satisfies this boundary condition, regularity at the origin and L2 orthonormality is

given by Li et al. (2018)

u =
∑

l,m,n

cml,nt
m
l,n + dml,ns

m
l,n

where tml,n =∇×(ωl,n(r)Y m
l r̂) and sml,n =∇×∇×(ξl,n(r)Y m

l r̂). The radial functions

are given by

ξl,n = rl+1(1− r2)P
(1,l+1/2)
n−1 (2r2 − 1)

ωl,n = rl+1P
(0,l+1/2)
n−1 (2r2 − 1) (3.9)

for n ≥ 1.

3.3 Solving for the ageostrophic flow

The procedure to determine ua, given B and FB, firstly consists of taking the curl of

the magnetostrophic equation (3.2), which removes the pressure. Then due to the

condition that B is solenoidal, the poloidal-toroidal decomposition results in just 2

remaining scalar equations, from which the scalar modal coefficients can be solved

for.

r̂ ·∇× (2ẑ × u− (∇×B)×B + FBr̂) = 0,

r̂ ·∇×∇× (2ẑ × u− (∇×B)×B + FBr̂) = 0.

The trial form from §3.2.1 is then proposed for the fluid velocity u, in terms
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of modes with unknown coefficients. The choice of bases has ensured that each basis

function individually satisfies all the relevant boundary conditions and so we do not

need to explicitly include them when we solve the system. The flow and magnetic

field are then expanded in the appropriate spectral bases, as a linear sum of known

basis functions, which are orthonormal by the definition of equation (3.8). They are

substituted into the differential equations above and orthogonality of the equation

with respect to each basis function is imposed. Because ẑ is a constant vector and

B is based on Galerkin modes of polynomial form of known maximum degree, the

modal representation for the flow then also has a known maximum degree. The

unknown coefficients can then be found by either simply equating powers of r and

solving the resulting system analytically, as we shall do for the instantaneous flow

calculations in this chapter (with the assistance of computer algebra (Maple)), or

through back-projecting onto the set of velocity modes by integrating against the

basis functions defined above §3.2.1, as is done by Li et al. (2018).

This method provides a solution for u that is consistent with the mag-

netostrophic equation (2.2). However, it is important to note that such a solution

(obtained through any method solving (2.2)) is not unique. The geostrophic compo-

nent of u, that is, the component in the azimuthal direction that is solely a function

of the cylindrically radial coordinate, remains arbitrary, as we showed earlier (equa-

tion (3.3)). Hence, in order to ensure uniqueness for the geostrophic flow, any

solution for the flow from the magnetostrophic equation (2.2) must first be made

consistent. We achieve this through removing the cylindrically-averaged azimuthal

component of u to obtain the ageostrophic flow ua which contains zero geostrophic

component.

3.4 The initial state

All time-dependent magnetostrophic models, axisymmetric or 3D, require an initial

state from which the system evolves. Because the flow is defined completely by the

magnetic field and FB, only the initial structure of the magnetic field B(0) and FB(0)

are needed: there is no need to specify the initial flow. A general scheme for finding

an exact initial Taylor state using a poloidal-toroidal representation was described

in Livermore et al. (2008); in general it requires a highly specialised magnetic field

to render its integrated azimuthal Lorentz force zero over all geostrophic cylinders.

However, in a full sphere such cancellation can be achieved in a simple way by

exploiting reflectional symmetry in the equator (Livermore et al., 2009). Using

the Galerkin basis of single-spherical-harmonic modes that satisfy the boundary
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conditions (see §3.2.1), suitable simple modal expansions are automatically Taylor

states. The examples we consider in this chapter all fall into the following classes of

magnetic fields, which are guaranteed to be Taylor states

(A) any magnetic field based on a single spherical harmonic

(B) any axisymmetric purely toroidal or poloidal field

(C) any field that has a single harmonic of each wavenumber m

(D) any field that is either symmetric or anti-symmetric with respect to a rotation

of π radians about the x-axis (as defined in appendix C.3.2).

3.5 Overview of time evolution and the geostrophic

flow

Because of the absence of inertia, at each instant the magnetostrophic flow is entirely

determined by B and FB from equation (2.2): therefore the system, as a whole, only

evolves through time-evolution of the quantities FB and B. The evolution of FB is

assumed to be tractable and lies outside the scope of this study: for simplicity

we shall henceforth assume that FB = 0, although we note that all the methods

nevertheless apply in the case of non-zero FB. The evolution of the magnetic field

is described by the induction equation:

∂tB(r, t) = I(B,u) ≡∇×
[
u×B(r, t)

]
+ η∇2B(r, t) (3.10)

where η 6= 0 is the magnetic diffusivity (assumed constant) and ∂t = ∂/∂t. Assuming

that we can evolve B and FB (using standard methods), the major outstanding task

is then to determine the flow at any instant given B and FB.

In contrast to the relatively simple procedure for computing the three-

dimensional ageostrophic flow described above (§3.3), the structurally more elemen-

tary, geostrophic flow, depending only on s, is surprisingly difficult to compute,

owing to its key role of maintaining Taylor’s constraint. It is the requirement of this

constraint being continuously satisfied through time which prescribes the evolution

of the geostrophic flow. That is, it is the task of ug to keep the magnetic field on

the manifold of Taylor states (Livermore et al., 2011), where, in such a model, at all

times the flow is enslaved to B and FB.
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There are two ways in which the geostrophic flow may be found, which dif-

fer in philosophy. In the first, we may undertake an instantaneous analysis to find the

geostrophic flow that gives zero rate of change of Taylor’s constraint: ∂tT (s, t) = 0

(Taylor, 1963). Because of the resulting closed-form analytic description, such meth-

ods can be useful in computing snapshot solutions that elucidate the mathematical

structure of the geostrophic flow, for example, the presence of any singularities. How-

ever, as a practical time-evolution tool, their utility is not so obvious. For example,

the simple explicit time-evolution scheme, defined by assuming an instantaneous so-

lution is constant over a finite time interval, would lead to a rapid divergence from

the Taylor manifold (see Livermore et al., 2011, for an example).

In his 1963 paper, Taylor used the idea of this approach and a simple

methodology to show that (for a fully 3D system) the geostrophic flow was at every

instant the solution of a certain second order differential equation (ODE) (that given

in equation (3.24)) whose coefficients depend on B and FB. His elegant and suc-

cinct analysis has been reproduced many times in the literature. It may then come

as some surprise that in the intervening five decades there have been no published

implementations of his method (that we are aware of). Very likely, this is due to

a subtle issue concerning the treatment of the magnetic boundary conditions. As

we shall show, rather than being applicable to a general (Taylor state) B, Taylor’s

method is only valid for a small subset of Taylor states. Of crucial importance is that

this subset does not include those states likely to be realised in any analytical ex-

ample or in any practical numerical scheme to solve the magnetostrophic equations.

The main goal of this chapter is to describe why this happens, and to modify Tay-

lor’s method in order to obtain a general method for calculating the instantaneous

geostrophic flow.

In the second, alternative type of method, we may consider taking a time

step (of size h), determining the geostrophic flow implicitly by the condition that the

magnetic field B(t+h) satisfies Taylor’s constraint (Li et al., 2018; Wu and Roberts,

2015). In general, implicit and instantaneous methods will only produce the same

geostrophic flow in a steady state, or for a time-dependent state for infinitesimally

small h.

All methods to determine the geostrophic flow require solving an ordinary

differential equation for the quantity ug/s and hence introduce a constant of inte-

gration and the solution contains an arbitrary solid body rotation: ug = as. The

constant a can be found through requiring zero global angular momentum

∫ 1

0

∫ ZT

−ZT

∫ 2π

0

s(ua · φ̂+ ug) dφdzsds = 0, (3.11)
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where ZT =
√

1− s2 is the half-height of C(s). We also assume the geostrophic flow

is everywhere finite (although we permit singularities in the higher order derivatives),

which is implemented by additional conditions where necessary.

3.6 Braginsky’s formulation

Before discussing the determination of the geostrophic flow in more detail, we briefly

review a crucial alternative formulation of Taylor’s constraint due to Braginsky

(1970), which laid the foundations of many subsequent works on the subject (e.g.

Roberts and Aurnou, 2011; Wu and Roberts, 2015; Braginsky, 1975; Fearn and

Proctor, 1992; Jault, 2003). The Taylor integral (3.1) can be equivalently written

T (s, t) =
1

s

∂

∂s

[
s2

∫

C(s)

BφBsdφdz

]
+

s√
1− s2

∮

N+S

(BφBr)dφ, (3.12)

where N and S are the northern and southern, horizontal circular end caps of the

cylinder C(s) at the intersection with the spherical boundary at r = 1 (Bragin-

sky, 1970). The full derivation of this form of Taylor’s constraint is carried out in

appendix A.

It is also useful to consider the net magnetic torque on all fluid enclosed

within C(s), Γz, defined by

T (s, t) =
1

s

∂Γz
∂s

or Γz(s, t) =

∫ s

0

s′T (s′, t)ds′.

In our full-sphere geometry, it is clear that Γz(s, t) is zero if and only if T (s, t) is

identically zero, although in a spherical shell it is possible that a piecewise (non-

zero) solution exists for Γz. The condition Γz = 0 defines what we refer to as the

Braginsky constraint (Braginsky, 1970):

0 = Γz ≡ s2

∫

C(s)

BφBsdφdz +

∫ s

0

∮

N+S

s′2BφBr√
1− s′2

dφ ds′, (3.13)

which is equivalent to Taylor’s constraint, and simplifies for specific classes of mag-

netic fields that cause the boundary term to vanish. There are two such classes of

magnetic fields which have no sources in the exterior of r = 1: fields with no radial

component on r = 1 (e.g. toroidal fields) and fields that have a vanishing azimuthal

component on r = 1 (e.g. axisymmetric fields).

It is important to note the significant difference in the mathematical struc-
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ture between the constraints of Braginsky (3.13) and Taylor (3.1). In (3.13) there is

a clear partition between the two surface integral terms on the right hand side: the

first term is an integral defined over C(s) that is independent of the magnetic field

values on the end caps (these being a set of measure zero); the second end-cap term

depends only on the boundary values of the magnetic field. By contrast, although

ostensibly Taylor’s integral (3.1) is an integral over the surface C(s), the integrand

involves a spatial derivative (the curl of B) leading to a dependence on the boundary

values of the magnetic field. As we will see later, this hidden dependence on the

boundary conditions has a deep consequence on Taylor’s method for determining

the geostrophic flow.

3.7 Existing methods to determine the geostrophic

flow

Our modification of Taylor’s method described in §3.10 determines the instantaneous

geostrophic flow in a fully 3D geometry. In this section, we briefly review the existing

methods available to calculate the geostrophic flow. All these methods have different

working assumptions: either the field is assumed to be axisymmetric, or the methods

are designed to take a finite time step and are not instantaneous. Where there

is overlap in applicability, we will use these methods to numerically confirm our

solutions.

3.7.1 An axisymmetric first-order implicit method

As noted above, under axisymmetry Braginsky’s condition collapses to

Γz = 2πs2

∫ ZT

−ZT

BφBsdz = 0. (3.14)

This simple form was exploited by Wu and Roberts (2015) who considered taking a

single timestep of duration h, after which they required

Γz(s, t) + h
∂Γz(s, t)

∂t
= 0. (3.15)

The left hand side here approximates Γz(s, t+ h), so this ensures that (3.14) is sat-

isfied to first order. To find an equation for the geostrophic flow they differentiated

equation (3.14) with respect to time and used the fact that the geostrophic term in
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the induction equation reduces to

∇× (ug(s)φ̂×B) = sBs
d(ug/s)

ds
φ̂. (3.16)

They obtained the following first order ordinary differential equation describing the

geostrophic flow

sα0(s)
d

ds

(
ug(s)

s

)
= −S0(s)− Γz(s, t)

h
, (3.17)

where

S0(s) = 2πs2

∫ ZT

−ZT

(BsC
a
φ +BφC

a
s ) dz, α0(s) = 2πs2

∫ ZT

−ZT

B2
s dz,

and

Ca =∇× (ua ×B) + η∇2B. (3.18)

The subscripts of zero denote a restriction to axisymmetry of (more general) 3D

quantities that are defined subsequently (§3.7.4). Wu and Roberts (2015) imple-

mented this method by solving equation (3.17) using a finite difference scheme and

a Taylor state initial condition. It is worth remarking that this scheme allows small

numerical deviations from a Taylor state (since (3.15) is only approximate). Because

the method depends upon (3.14) which is tied to axisymmetry, their method is not

extendable to 3D.

3.7.2 A 3D fully implicit scheme

An alternative implicit scheme proposed by Li et al. (2018), was to seek a geostrophic

flow that ensured Taylor’s constraint is satisfied (without error) in a numerical

scheme after taking a single timestep h. By extending to multiple timesteps, this

method is suitable to describe fully 3D time-dependent dynamics. Although the

authors only demonstrated its utility on axisymmetric examples, in this thesis we

will show how the method applies to 3D with a single short time-step.

The key idea is to minimise (hopefully to zero) the target function

Φ =

∫ 1

0

T 2(s, t+ h)ds (3.19)

by optimising over all possible choices of ug, assumed constant throughout the inter-

val 0 ≤ t ≤ h. Although Li et al. (2018) set out a sophisticated algorithm to do this

in general based on control theory, here we describe a simplification of the method
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which is suitable for h � 1, which we can use to benchmark our instantaneous

solutions of the generalised 3D Taylor methodology.

We adopt a modal expansion of ug, of which a general form is

ug = s

I∑

i=0

AiTi(2s
2 − 1) +Bs ln(s), (3.20)

where Ti(2s
2 − 1) are even Chebyshev polynomials of the first kind, which are

chosen as they form a complete orthogonal system and because Chebyshev series

converge exponentially fast (Boyd, 2001). The additional logarithmic term has been

specifically added in order to directly exploit the form observed in our analytic

results in §3.9.1 (see also §3.13). The presence of weak logarithmic singularity at

the origin, has been detected within axisymmetry (Jault, 1995; Wu and Roberts,

2015; Fearn and Proctor, 1987). It is unclear from previous studies whether the

singularity is also a feature present within the fully three-dimensional system. We

shall examine this thoroughly in §3.13. In order to keep our representation as general

as possible, we use the same expansion in 3D as in axisymmetry. This includes the

ability to capture any singular features that may (or may not) be present and would

otherwise not be well represented by a purely polynomial series.

Because we plan to take only a single time step of size h� 1, we adopt a

very simple first order explicit Euler time evolution scheme

B(t+ h) = B(t) + h ∂tB(t)

which is then substituted into (3.19). For simplicity we assume that the ageostrophic

flow, calculated at t = 0, is also constant over the time-step. As a representation of

the magnetic field (and its rate of change), we use a Galerkin scheme (see §3.2.1),

which satisfies the boundary conditions (3.5) automatically. Practically, this means

that we use I (see equation (3.10)) in place of ∂tB, where the overbar denotes

the projection onto the Galerkin basis. The coefficients Ai and B are then found

through minimising Φ. We note that since B(t + h) is formally linear in ug(s),

T (s, t + h) is then quadratic and hence Φ quartic in the coefficients Ai and B. Li

et al. (2018) found the minimum using an iterative scheme, although we note that,

in general (and without a good starting approximation), finding such a minimum

may be problematic.

It is noteworthy, however, that in the axisymmetric case this analysis

is greatly simplified. Through equation (3.16) only the azimuthal component of

B(t+ h) depends on ug, and equation (3.12) shows that T (s) is now linear and Φ
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quadratic in ug, hence finding the minimum of Φ is more straightforward.

3.7.3 An instantaneous axisymmetric method

Wu and Roberts (2015) also presented a method for finding an instantaneous solution

for the geostrophic flow in axisymmetry. Through differentiating with respect to

time equation (3.14) they arrive at the following first order ODE, here referred to

as the BWR1 (Braginsky-Wu-Roberts) equation:

LBWR ≡ sα0(s)
d

ds

(
ug(s)

s

)
= −S0(s), (3.21)

which is the same as (3.17) without the final term. This gives ug(s) explicitly as

ug(s) = −s
∫ s

0

S0(s′)

s′α0(s′)
ds′. (3.22)

If α0(s) > 0 then this equation is integrable. A continuous solution for ug does not

exist, however, if B2
s is everywhere zero on a geostrophic cylinder C(s∗) (rendering

α0(s∗) = 0). Physically, this would mean that the magnetic field fails to couple

cylinders on either side of s = s∗, leading to a discontinuity in the geostrophic flow.

In all the cases we consider, (3.22) can be solved analytically (with the assistance of

computer algebra). The Taylor states B that we use are of polynomial form and it

then follows that S0 and α0 are also polynomial (up to a square root factor arising

from the geometry) and therefore ug can (in general) be found in closed form. We

note that, in general, S0/α0 is O(1) and so ug behaves as s ln(s) as s→ 0. A further

property of this equation is that, for a purely-poloidal axisymmetric magnetic field,

the solution ug is independent of the magnetic diffusivity η. This is because ∇2B is

also purely-poloidal and a purely-poloidal field has no azimuthal component. Thus

Bs(∇2B)φ = Bφ(∇2B)s = 0

and the diffusion term (within S0) then never appears in (3.21). This differs from the

case of a more general magnetic field with both toroidal and poloidal components,

where ug depends upon η.

We also observe that for an axisymmetric purely-toroidal field, since Bs = 0

1The name here is in recognition of two important contributions: that of the functional form
of the Taylor integral due to Braginsky (1970), and the subsequent application to the discovery of
the geostrophic flow due to Wu and Roberts (2015). We note that magnetic diffusion (included in
equation (4.8)) was neglected in Braginsky’s 1970 study on torsional waves, but was reinstated by
Wu and Roberts (2015).
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everywhere equation (3.21) is null because α0 = S0 = 0 reducing it to the tautology

0 = 0 and hence placing no constraint on the geostrophic flow.

3.7.4 Taylor’s 3D instantaneous method

We end this section by discussing the well known (instantaneous) method of Taylor,

who determined the unknown geostrophic flow by differentiating with respect to

time (denoted by the over-dot shorthand) the Taylor integral in equation (3.1) to

produce:

0 =

∫

C(s)

{
[∇× Ḃ]×B + [∇×B]× Ḃ

}
φ
s dφ dz. (3.23)

On substituting directly for Ḃ from equation (3.10) in addition to its curl (describing

∇× Ḃ), Taylor showed that for fully 3D Taylor states B the resulting equation for

the geostrophic flow can be written in a remarkably succinct form as the second

order ordinary differential equation

LT (ug) ≡ α(s)
d2

ds2

(
ug(s)

s

)
+ β(s)

d

ds

(
ug(s)

s

)
= G(s). (3.24)

In the above, the coefficients are

α(s) =

∫

C(s)

s2B2
s dφ dz, β(s) =

∫

C(s)

[
2B2

s + sB ·∇Bs

]
s dφ dz, (3.25)

and G(s) is a function describing the interaction of ua and the magnetic field defined

as

G(s) = −1

s

∂

∂s

[
s2

∫

C(s)

Ca
φBs +Ca

s Bφdφdz

]
.

Note the mistake in Taylor (1963) where a factor of s is omitted within the coefficient

β. The functions α0 and S0, previously defined, are simply axisymmetric variants

of α given above and S(s) defined as

S(s) = s2

∫

C(s)

(Ca
φBs + Ca

s Bφ)dφdz +

∫ s

0

s′
[

s′√
1− s′2

∮

N+S

(BφC
a
r +BrC

a
φ)dφ

]
ds′,

where Ca is as defined in equation (4.6). The fact that the coefficients α(s) and β(s)

are spatially dependent means that analytic solutions to (3.24) are very rare and in

general only numerical solutions are possible. Of crucial note is that the boundary

conditions played no part in the derivation above.
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3.8 Technical aside: higher order boundary con-

ditions

3.8.1 Higher order boundary conditions in the heat equa-

tion

Taylor’s method is based on the instantaneous evolution (which we can take to be

at time t = 0) of the magnetostrophic system whose magnetic field is prescribed and

must satisfy Taylor’s constraint. Here we discuss higher order boundary conditions,

the importance of which has so far been overlooked. We start by introducing this

concept in a simple PDE, then we discuss the relevance for Taylor’s equation.

Suppose we are interested in finding f(x, t) on x ∈ [0, 1], whose evolution

is described by the heat equation in the interior of the domain

∂f

∂t
=
∂2f

∂x2
,

to be solved with the boundary conditions f(0, t) = f(1, t) = 0. For this simple

equation, the general solution can be written in the form

f(x, t) =
∞∑

n=1

Ane
−n2π2 t sin(nπ x).

Let us now suppose we have an initial state:

f(x, 0) = x2(1− x)

which satisfies the boundary conditions. Its future evolution would be given by the

projection onto the normal modes as above.

In Taylor’s analysis, part of the integral in (3.1) could be converted to a

boundary term. Here we consider an analogy which is exactly integrable:

d

dt

∫ 1

0

∂f

∂x
dx =

d

dt
[f(1)− f(0)] = 0 (3.26)

using the boundary conditions. In Taylor’s derivation, he differentiated under the

integral sign and substituted directly for ∂f/∂t, in order to find the equation that

ug must satisfy using an instantaneous initial magnetic field. In our example, this
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produces

d

dt

∫ 1

0

∂f

∂x
dx =

∫ 1

0

∂2f

∂x∂t
dx =

∫ 1

0

∂3f

∂x3
dx = [fxx(1, t)− fxx(0, t)]. (3.27)

At t = 0, we evaluate the above expression as −6 (note that fxxx(x, 0) = −6)

resulting in an apparent contradiction with (3.26) and illustrating that this approach

is not generally valid.

The problem arises because the initial state does not satisfy the condition

fxx(0, t) = fxx(1, t) = 0, which arises from differentiating f(0, t) = f(1, t) = 0 with

respect to time and substituting the PDE. The condition fxx(0, t) = fxx(1, t) = 0

is called the first-order boundary condition (Evans, 2010). The consequence of the

initial state not satisfying the first-order boundary condition is that the solution is

not smooth at the boundary at t = 0. Specifically, the derivatives in (3.27) do not

exist and thus the above derivation is not valid. As a simple illustration of the is-

sue, note that the general solution implies that fxxx(x, 0) = −∑n n
3π3An cos(nπx),

which cannot represent the constant function fxxx(x, 0) = −6 associated with the

initial state. This lack of smoothness only occurs at the initial time t = 0. At any

later time (t > 0), the solution is infinitely smooth; this is the smoothing property

of the heat equation.

In the very special case that the initial state satisfies the first order bound-

ary conditions (e.g. f(x, 0) = x3(1− x)3) then there is no contradiction and (3.26)

and (3.27) are consistent. However, for a general initial condition, the procedure

adopted is not valid.

3.8.2 The relevance for Taylor’s equation

We now discuss the relevance of the above discussion of higher-order boundary con-

ditions in the context of the Earth’s magnetic field. In the derivation of Taylor’s

second-order ODE (3.24), it is implicitly assumed that B and all its time derivatives

are (initially) smooth everywhere. Although it is somewhat hidden in Taylor’s orig-

inal derivation, taking the time-derivative of the equivalent form of (3.12) makes

this explicit:

1

s

∂

∂s

[
s2

∫

C(s)

(ḂφBs +BφḂs)dφdz

]
+

s√
1− s2

∮

N+S

(ḂφBr +BφḂr)dφ = 0. (3.28)

Taylor substituted everywhere the induction equation (3.10), ∂tB = I(u,B), but in

view of the above discussion, we need to take care, particularly for the boundary
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terms.

We appeal to a reduced version of the magnetostrophic equations in order

to probe what can be said about the behaviour of B(t) on the boundary at t = 0.

Assuming that u(t) is given and is independent of B, the induction equation (3.10)

is of standard parabolic form (like the heat equation), so its solution is smooth for

all t > 0. If the initial condition B(0) is also smooth and satisfies the boundary

condition (3.5), then the solution is smooth also at t = 0, except possibly at r = 1.

For the solution to be smooth everywhere, including at r = 1, and for Taylor’s

substitution to be valid, we need the initial condition to satisfy not only the usual

boundary condition (also termed the zero order boundary conditions) but also the

first order boundary conditions: that ∂tB, given by I(B,u) of (3.10) satisfies the

boundary condition (3.5). Higher-order variants of the boundary conditions pertain

to higher-order time derivatives. Assuming that this analysis extends to the full

magnetostrophic equations, it provides strong constraints on the form of the initial

condition that produces a solution that is smooth for t ≥ 0 and all r ≥ 0.

This issue of lack of smoothness of B occurs only instantaneously at t = 0.

One may ask if it is possible to specify an initial field that satisfies Taylor’s constraint

and higher order boundary conditions, making it possible to use equation (3.24) di-

rectly. Although in principle the answer is yes, it would be practically impossible

because an evaluation of the first order boundary condition requires knowledge of

∂tB and therefore ug. The logic is therefore circular: we need to know ug in order

to check the method that enables us to find ug in the first place. It would seem

that some additional insight or good fortune would be required to find a geostrophic

flow that self-consistently satisfies the boundary conditions. The complication com-

pounds the already difficult task of finding an initial condition that satisfies the

necessary condition of being a Taylor state.

It is worth noting, however, that once the system has evolved past the initial

condition many of these problems vanish. For t > 0, solutions to parabolic systems

are smooth and so automatically satisfy all higher order boundary conditions. It

follows that equation (3.24) is valid for t > 0, although this does not help find the

geostrophic flow at t = 0.
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3.8.3 Schemes in which the boundary information is in-

cluded

These concerns described above regarding boundary conditions do not carry over

to the axisymmetric case, the plane layer situation nor the 3D implicit schemes

described. In the axisymmetric and Cartesian cases (e.g. Abdel-Aziz and Jones,

1988), the boundary conditions evaluate to zero and the boundary value of the

magnetic field or any of its time derivatives never enter any subsequent calculations.

In the 3D implicit scheme, because of the representation of all quantities (including

B and any of its time derivatives) in terms of a Galerkin basis, boundary conditions

to all orders are satisfied.

Thus in the axisymmetric and Cartesian cases, equation (3.21) and equa-

tion (3.17) are correct irrespective of the initial choice of Taylor state, as is the fully

implicit method of §3.7.2 for the 3D case. This is to be contrasted with (3.24) that

is valid only for the subset of Taylor states satisfying zero and first order boundary

conditions.

3.9 An appraisal of Taylor’s method

3.9.1 An illustration of when Taylor’s method fails

We are now in a position to provide a first explicit demonstration that Taylor’s ODE

equation (3.24) fails when using an initial Taylor state that does not satisfy first order

boundary conditions. We show this in two parts. Firstly, within axisymmetry, we

demonstrate that Taylor’s equation (3.24) is formally inconsistent with the BWR

equation (3.21); secondly, we plot an explicit solution of Taylor’s equation and show

that it does not agree with those derived from other methods known to be correct.

In sections 3.10 to 3.12 we will provide a generalised version of Taylor’s method,

which shows agreement among all methods.

In all of the examples considered here, we have non-dimensionalised and

scaled to ensure a magnetic field strength of B ≈ 1.7 − 2.4 mT, consistent with

the estimate of the geomagnetic field strength of Gillet et al. (2010). Length is

scaled by L, the outer core radius 3.5 × 106 m, time by the Ohmic diffusion time

τ , (50 kyr) (Davies et al., 2015), and speed by U = Lτ−1 ≈ 2 × 10−6 m s−1. The

scale used for the magnetic field is B = (2Ω0µ0ρ0η)
1
2 (Fearn, 1998), where for Earth

the physical parameters take the following values: angular velocity Ω0 = 7.272 ×
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10−5 s−1, permeability µ0 = 4π×10−7 N A−2, density ρ0 = 104 kg m−3 and magnetic

diffusivity η = 0.6–1.6 m2 s−1. (These parameters lead to the non-dimensional

parameters Ro = η/(2ΩL2) ≈ 10−9 and E = ν/(2ΩL2) ≈ 10−15, whose small values

motivate neglecting the terms they multiply.) We then use dimensionless magnetic

fields with toroidal or poloidal components of rms (root mean squared) strength

of unity. This corresponds to a dimensional rms magnitude of 1.7 mT for purely

toroidal or purely poloidal fields and 1.7
√

2 ≈ 2.4 mT for mixed states. Using U ,

this choice enables the immediate interpretation of the dimensional scale of any flow

that we show.

First, we consider the simple case of the dipolar, single spherical harmonic

l = 1 axisymmetric poloidal magnetic field

B =∇×∇× Ar2(30r4 − 57r2 + 25) cos(θ)r̂,

where A =
√

231/20584 is a scaling constant (see non-dimensionalisation above).

We note that B satisfies the electrically insulating boundary conditions (3.5), and

is an exact Taylor state owing to its simple symmetry.

The ageostrophic flow (determined for example by the method described

in §3.3) has only an azimuthal component given by

uφ = A2
[
9120s7 + (50400z2 − 26184)s5 + (50400z4 − 95760z2 + 23888)s3 +

(16800z6 − 47880z4 + 42000z2 − 6824)s
]
. (3.29)

For this choice of B, equation (3.21) then provides an exact expression

for the first derivative of ug. Substituting this into Taylor’s second order equa-

tion (3.24) renders it unbalanced, demonstrating its invalidity. From equation (3.21),

the geostrophic flow satisfies

d

ds

(
ug(s)

s

)
= − S0(s)

sα0(s)
= − Q5(s2)

sQ2(s2)
(3.30)

where we have used

α0(s) = α(s) =
198

2573
s4π(1− s2)3/2(640s4 − 1168s2 + 535),

S0(s) = S(s) =− 66528

86064277
s4π(1− s2)5/2(46387200s8 − 138624000s6+

142265512s4 − 57599212s2 + 7255185),
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and where, for typographic purposes, QN(s2) is used for brevity to represent a

polynomial of order N in s2. Substituting these into Taylor’s equation (3.24), along

with

β(s) = − 198

2573
s3π(1− s2)1/2(7680s6 − 17440s4 + 12456s2 − 2689),

leaves an unbalanced equation: the left and right hand sides of (3.24) are the distinct

quantities √
1− s2Q9(s2)

Q2(s2)
, and

√
1− s2Q7(s2),

where

Q9(s2) =− 66528πs2

86064277
(504692736000s16 − 3112801075200s14 + 8179698058240s12

− 11895688291968s10 + 10389468804472s8 − 5513724758708s6

+ 1702884326747s4 − 270157468073s2 + 15627668490),

Q2(s2) = 640s4 − 1168s2 + 535,

Q7(s2) =− 66528πs2

86064277
(788582400s12 − 3424588800s10 + 5871698056s8

− 5008127804s6 + 2183964721s4 − 440479243s2 + 28950670).

Therefore none of the solutions of the first order ODE (3.21), satisfy the second

order ODE (3.24).

This specific case (which is illustrative of the general case) shows that

equation (3.24) and equation (3.21) are inconsistent: in particular the first order

equation (3.21) is not simply the first integral of the second order equation (3.24).

The reason why they are not consistent is that although the ODEs are derived

from the equivalent forms (3.13) and (3.1), the boundary terms are used to derive

(3.21) but not (3.24). Thus the two equations embody different information. In

this example, Taylor’s method is equivalent to the erroneous replacement of ∂tBφ

(which is zero) in the boundary term of (3.28), by Iφ 6= 0. This can be seen in

the expression for the coefficient β given in equation (3.39), where the boundary

term is such that it does not vanish in the axisymmetric case. While the initial

magnetic field has been chosen such that it satisfies the boundary condition (3.5),

through computing ∂tB we can show that, based on Taylor’s solution, the initial

rate of change of the magnetic field violates this boundary condition.

To confirm that Taylor’s method is not generally valid, we now directly

compare solutions from various methods. Integrating equation (3.21) analytically
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gives the solution

ug = A2s
918060

[
9926860800 s6 − 32213813760 s4 + 37855940880 s2 + C −

11143964160 ln s+ 30664844
√

21 arctan
(
(80 s2 − 73) /

√
21
)

+

101695629 ln (640 s4 − 1168 s2 + 535)

]
. (3.31)

We note that the solution is a sum of odd polynomials, an s ln(s) term and additional

(and non-singular) ln and arctan terms. The constant C is determined through en-

forcing zero solid body rotation (equation (3.11)). The solution for ug is everywhere

continuous and finite, only at s = 0 is there a weak singularity: ∂s(ug/s) ∼ 1/s. We

also observe that there is no singularity at s = 1. A comparable analytic solution

but for a quadrupolar axisymmetric magnetic field was given in Li et al. (2018),

which is also regular everywhere except for a weak s ln(s) singularity at s = 0.
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Figure 3.1: A comparison of the cases where Taylor’s method fails and where it
succeeds. (a) Compares the solutions for the geostrophic flow for an axisymmetric
dipolar poloidal initial field. Red is the analytic solution of the first order BWR
equation (3.21), dotted blue is a numerical solution of Taylor’s second order ODE
(see text) and dashed black is the solution using the implicit time step method with
h = 10−9. (b) Shows the geostrophic flow corresponding to a non-axisymmetric
l = 1, m = 1 purely-toroidal Taylor state, on which all methods agree.

That the analytic expression (3.31) is indeed the true solution is confirmed

by figure 3.1a which compares it to the geostrophic flow given by the independent

3D implicit scheme of section 3.7.2; the two solutions over-plot. A contour plot of

the total azimuthal flow is shown in §3.12 (figure 3.6a).

We now directly compare this solution with that obtained by solving Tay-

lor’s equation (3.24), shown as the blue line of figure 3.1a. This solution is found by
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adopting the expansion (3.20) and minimising the integrated squared residual

∫ 1

0

[
LT (ug)−G(s)

]2
ds. (3.32)

with respect to the spectral coefficients, whose truncation is increased until the

solution converges. Although all solutions agree at small s, Taylor’s solution shows

significant differences from the others for s > 0.8.
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spectral degree i
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|Ai|

BWR
Taylor

Figure 3.2: A comparison of the absolute value of the polynomial spectral coeffi-
cients Ai, defined in equation (3.20), against degree for numerical solutions using
the Braginsky-Wu-Roberts and Taylor formulations.

It is also of interest to assess numerical convergence to solutions of equa-

tions (3.21) and (3.24). Although we have an analytic solution to (3.21), we use the

same numerical method as given above but now applied to (3.21) by minimising

∫ 1

0

[
LBWR(ug) + S0(s)

]2
ds. (3.33)

Figure 3.2 demonstrates that convergence of the solution is faster for the correct,

first order equation (3.21) than for Taylor’s equation (3.24). Therefore, aside from

Taylor’s equation being generally inapplicable, it seems that converged solutions are

also relatively more difficult to find.

3.9.2 Specific cases when Taylor’s method succeeds

For arbitrary purely-toroidal Taylor states bounded by an electrical insulator, B

vanishes on r = 1 and in this special case Taylor’s methodology is correct. This
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is because the boundary term involving BφBr (see equation (3.13)) has a “double

zero” and so, when considering its time derivative, erroneous substitution for ∂tB

leaves it invariant as zero.

Taking the time derivative of (3.13), noting that the boundary term is zero,

we obtain

s2

∫

C(s)

(
∂Bφ

∂t
Bs +Bφ

∂Bs

∂t

)
dφdz = 0. (3.34)

From the 3D extension of (3.16), the geostrophic induction is

∇× (ug(s)φ̂×B) = sBs
d(ug/s)

ds
φ̂− ug

s

∂1B

∂φ
, (3.35)

where ∂1/∂φ is a derivative with respect to φ that leaves invariant the unit vectors

(see e.g. Jault, 2003). Substituting this into (3.34), the terms involving ug become

s2

∫

C(s)

((
sBs

d(ug/s)

ds
− ug

s

∂Bφ

∂φ

)
Bs +Bφ

(
−ug
s

∂Bs

∂φ

))
dφdz = 0

Therefore

s
d

ds

(
ug(s)

s

)∫

C(s)

B2
sdφdz −

ug
s

∫

C(s)

∂

∂φ
(BφBs) dφdz = 0.

Noting that the last integral is zero, we obtain an equation (that holds in 3D) that

can be written in terms of α(s) and S(s) (defined in §3.7.4), and is of the same form

as the axisymmetric BWR equation (3.21)

sα(s)
d

ds

(
ug(s)

s

)
= −S(s). (3.36)

As an illustration we consider the non-axisymmetric l = 1, m = 1 toroidal

magnetic field

B =∇× Ar2(1− r2) cos(φ) sin(θ)r̂,

where A is a scaling constant which takes the value 3
4

√
105. The ageostrophic flow

is

ua =
A2

3
s sinφ cosφ(5s4 − 6s2z2 − 3z2 − 3z4 − 10s2 + 6z2 + 5)ŝ

+
A2

15
(cos2 φ(105s5 − 30z2s3 − 130s3 − 15z4s+ 30z2s+ 25s)− 56s5 + 72s3 − 16s)φ̂

+
4A2

3
s2z(3s2 + z2 − 3) cosφ sinφẑ, (3.37)
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and, solving (3.36), the geostrophic flow is

ug(s) = A2

(
97

30
s5 − 77

15
s3 + sC1

)
, (3.38)

where C1 is determined through considerations of angular momentum. Note the

absence of singularities in this solution.

This geostrophic flow is shown in figure 3.1b, and we note that the 3D

implicit method and Taylor’s method give the same solution (not shown).

It is in fact simple for us to show analytically that for any purely toroidal

field, Taylor’s equation (3.24) and equation (3.36) are equivalent, up to the re-

quirement of a further boundary condition for the second order differential equa-

tion (3.24).

We note that via integration by parts, (3.25) can be written in the follow-

ing way, which allows identification of the boundary term present within Taylor’s

method, as the second term in the following expression for the coefficient β

β(s) =
1

s

d

ds
(sα(s)) +

s2

ZT

[∮
BsBr dφ

]ZT

−ZT

. (3.39)

We observe that since Br = 0 for a purely toroidal field, then the boundary term

within equation (3.39) will always vanish in this case, reducing Taylor’s equation

(3.24) to the BWR equation (3.36).

3.10 A generalisation of Taylor’s analysis

To modify the method of Taylor so that it applies to a magnetic field that does

not satisfy the first order boundary conditions, we use (3.28) to impose stationarity

of the Taylor constraint. Equally, we could impose stationarity of the equivalent

equation (3.13) but it is simpler to avoid the additional integral in s. Bearing in

mind our discussion in §3.8, we take particular care to ensure correct handling of

the boundary term.

The magnetic field matches continuously (since η 6= 0) with an external

potential field within the mantle r ≥ 1. Note that our assumption of a globally con-

tinuous solution differs from the case when η = 0, for which horizontal components

of B may be discontinuous on r = 1 (Backus et al., 1996). In our setting where
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η 6= 0, the field matches continuously but not necessarily smoothly across r = 1.

We note however that owing to ∇ · B = 0, the radial component of B (and all its

time derivatives) are always smooth at r = 1 (see e.g. Gubbins and Roberts, 1987):

thus only the horizontal components Bθ and Bφ are not in general smooth.

Thus, in the first term of equation (3.28) we may substitute at t = 0

∂tBs = Is(u,B), 0 ≤ r < 1,

∂tBφ = Iφ(u,B), 0 ≤ r < 1. (3.40)

For the second (boundary) term, we may substitute ∂tBr = Ir(u,B) but the initial

value of ∂tBφ at r = 1 is not specified by Iφ alone, as assumed in Taylor’s derivation.

The key remaining issue is then to find the initial boundary value of Ḃφ,

for which we present three methods below. Having done this, all terms are defined

and (3.28) provides an implicit determination of ug up to the usual considerations

of solid body rotation and regularity.

We observe that the form of equation (3.28) differs markedly from equa-

tions (3.21) and (3.24): in addition to the spatial derivatives of ug (in the leftmost

term), there is an explicit boundary term. For the general case, this boundary term

must be retained, although it may be neglected under certain circumstances: e.g.

those of sections 3.9.2 and 3.12.

We remark that the above instantaneous method can be amended to a first

order implicit scheme (akin to equation (3.17)) by considering

1

s

∂

∂s

[
s2

∫

C(s)

(ḂφBs+BφḂs)dφdz

]
+

s√
1− s2

∮

N+S

(ḂφBr+BφḂr)dφ = − 1

hs

∂Γz(s, t)

∂s
,

(3.41)

As before, this equation is applicable even when Γz 6= 0, that is, if the solution is

close but not exactly on the Taylor manifold.

3.10.1 A potential-based spherical transform method

One way to find Ḃφ on r = 1 is to note that it is the azimuthal component of the

potential field in r ≥ 1

Ḃ = −∇V̇ , ∇2V̇ = 0.

The potential V̇ is itself determined through continuity of the radial component

Ḃr at r = 1 and thus depends upon ug. This method of determining Ḃφ has been
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introduced in the study of torsional waves by Jault (2003), but is implemented here

for the evaluation of the geostrophic flow.

The time derivative of the potential V̇ can be written in terms of orthonor-

mal spherical harmonics Ylm with unknown coefficients alm as

V̇ =
∑

l,m

ȧlmr
−(l+1)Ylm,

where 0 ≤ l ≤ Lmax and −l ≤ m ≤ l and

ȧlm =
1

l + 1

∮

r=1

ḂrYlmdΩ,

where Ω is an element of solid angle. It follows then that on r = 1

Ḃφ = − 1

sin θ

∑

l,m

ȧlm
∂Ylm
∂φ

.

Key to the implementation of this method here is a spectral expansion

of ug, for example (3.20), because it allows Ḃr (which depends on the I + 2 spec-

tral coefficients of ug) to be evaluated everywhere on the boundary, as required in

the above spherical transform. This is to be contrasted for example with a finite

difference representation of ug where no such evaluation is possible.

To find ug, we note that all time-derivative terms in the left hand side

of (3.28), including those evaluated on the boundary, are linear in the unknown

coefficients (A0, A1, . . . , AI , B), and hence the residual is of the form

R(s) =
I∑

i=0

Aiai(s) +Bb(s) + c(s)

for some functions ai, b and c that depend on B and ua. We formulate a single

equation for the coefficients defining ug by minimising the quantity
∫ 1

0
R2ds (which

is quadratic in the coefficients that we seek). Note that the solution is approximate

and depends on two parameters I and Lmax, which represent the truncation of the

expansion used and care must be taken to ensure we achieve convergence in each.
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3.10.2 A potential-based Green’s function method

An alternative method for determining the potential V̇ at the core mantle boundary

is through the use of a Green’s function convolved with Ḃr on r = 1. Following

Gubbins and Roberts (1983); Johnson and Constable (1997), the relevant Green’s

function associated with the Laplace equation in the exterior of a sphere with Neu-

mann boundary conditions is

N(x, µ) =
1

4π

(
ln

(
f + x− µ

1− µ

)
− 2x

f

)
,

where x = 1
r
, f = (1−2xµ+x2)

1
2 , µ = cos θ cos θ′+sin θ sin θ′ cos(φ−φ′). This can be

expressed as N(x, µ) = N
(

1
r
, θ, θ′, φ− φ′

)
, which is the potential at location (r, θ, φ)

in r ≥ 1 due to a singularity of unit strength in the radial field at (θ′, φ′) on the

core-mantle boundary. Making use of the periodicity of φ, the magnetic potential

in the region r ≥ 1 can then be written as

V̇ =

∫ 2π

0

∫ π

0

Ḃr(1, θ
′, φ− φ′)N

(
1

r
, θ, θ′, φ

)
sin θ′dθ′dφ′,

and so

Ḃφ(1, θ, φ) = − 1

r sin θ

∫ 2π

0

∫ π

0

∂Ḃr(1, θ
′, φ− φ′)
∂φ

N

(
1

r
, θ, θ′, φ′

)
sin θ′dθ′dφ′.

Like the previous method, this procedure of evaluating Ḃφ on r = 1 requires an

integral over all solid angle. Using again our spectral expansion (3.20) this results

in Ḃφ being a linear function of the unknown spectral coefficients; thus using equa-

tion (3.28) the geostrophic flow can then be determined as in section 3.10.1.

3.10.3 A modal projection

A further alternative method to find Ḃφ on r = 1, which does not rely on a magnetic

potential, is to employ a modal basis set for the magnetic field that is complete and

satisfies the required boundary conditions. Here we adopt a numerically expedient

Galerkin basis set (see §3.2.1 for details), whose orthonormal poloidal and toroidal

modes are written respectively as Sml,n and T m
l,n.

By using such a representation, boundary conditions to all orders are auto-

matically satisfied and therefore a direct substitution of the projected representation
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of I,

I =
∑

l,m,n

cml,nSml,n + dml,nT m
l,n, (3.42)

for ∂tB in all three components for the whole sphere r ≤ 1 is justified. In the above,

l is bounded by Lmax, 0 ≤ n ≤ Nmax and x indicates the modal projection of x.

This projection we require here is that of a divergence-free magnetic field

B onto the magnetic Galerkin basis up to a truncation Lmax in spherical harmonic

degree and Nmax in radial index:

B =
Lmax∑

l=1

l∑

m=−l

Nmax∑

n=1

aml,nT m
l,n + bml,nSml,n

Determination of the coefficients aml,n and bml,n can either be accomplished through

use of the 3D integral (3.8) directly, or equivalently by first taking the transform in

solid angle to find the toroidal and poloidal parts of B

T ml (r) =
r2

l(l + 1)

∮
(∇×Bm

l )r Y
m
l (θ, φ) dΩ, Sml (r) =

r2

l(l + 1)

∮
(Bm

l )r Y
m
l (θ, φ) dΩ,

(3.43)

where dΩ = sin θdθdφ, and secondly integrating in radius to give

aml,n =

∫ 1

0

T ml χl,n dr, bml,n =

∫ 1

0

l(l + 1)

r2
Sml,nψl,n +

∂Sml
∂r

∂ψl,n
∂r

dr.

As before, key to the method here is the spectral representation (3.20) for

ug; the coefficients cml,n and dml,n, found by integration, then depend linearly on the

unknown coefficients Ai and B.

Equation (3.28) can be then written as the following, in which ug appears

explicitly

1

s

d

ds

[
s α(s)

d

ds

(
ug(s)

s

)]

+
s√

1− s2

∮

N+S

[
Bφ

{
∇× (ugφ̂×B)}r +Br

{
∇× (ugφ̂×B)}φ

]
dφ = G̃(s)

(3.44)

and

− G̃(s) =
1

s

∂

∂s

[
s2

∫

C(s)

(Ca
φBs +Ca

s Bφ)dφdz

]
+

s√
1− s2

∮

N+S

Bφ(Ca
r +Br[Ca]φ)dφ,

(3.45)
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where the modal projection onto the Galerkin basis is required for an accurate

representation of Ḃφ within the boundary term. Note that it is not necessary to

project the term representing Ḃr, due to the fact that the radial component of a

divergence-free field must be smooth at the boundary.

This approach may be considered as the most direct generalisation of the

BWR equation (3.21) to three-dimensions. We note that under the assumption of

axisymmetry, equation (3.44) can be directly integrated to obtain the BWR equation

(3.21).

Although on one level a simpler method than those previously presented

because we do not need to calculate V̇ , in fact the method is more computationally

expensive for two reasons. First, we need to check convergence in three parameters:

I, Lmax, Nmax, rather than just the first two; second, because the orthonormality

requires an integration over radius, in addition to the integration over solid angle

required by both methods.

3.11 Examples of the geostrophic flow in 3D

We now give some examples to illustrate our generalised methodology for comput-

ing the instantaneous geostrophic flow associated with 3D Taylor states, using our

spherical-transform method, as explained in §3.10.1. These will be compared with

the solution obtained using the fully implicit 3D method with a very small timestep

of h = 10−9; in all cases the solutions overplot. In none of the cases is an analytic

solution available for comparison. For further comparison we plot also the solution

of Taylor’s ODE (see equation (3.32)).

We consider firstly an example of a non-axisymmetric l = 2, m = 2 poloidal

magnetic field

B =∇×∇× A45
√

3

4
r3(7− 5r2) sin2 θ cos 2φ r̂ (3.46)

where A = 1/(6
√

390). Figure 3.3 shows that the implicit and instantaneous so-

lutions agree, whereas similarly to the axisymmetric case of figure 3.1a we can see

that Taylor’s solution differs significantly particularly near s = 1.

For all our three-dimensional solutions the expansion for ug differs from

that in axisymmetry given in equation (3.20). We now don’t include a logarithmic

term. As discussed in §3.13.1, the logarithmic behaviour is not expected outside of
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axisymmetry and would violate the assumed regularity of the magnetic field.

The approximate polynomial solution, with coefficients rounded to 5 sig-

nificant figures, is

ug = −94.079s+ 550.14s3 − 2196.4s5 + 3292.7s7 − 2178.4s9 +

11996s11 − 35435s13 + 42961s15 − 24113s17 + 5248.3s19,

where the expansion has been truncated at s19 and convergence achieved with pa-

rameters I = Lmax = 20.

0.0 0.2 0.4 0.6 0.8 1.0

s
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0
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Spherical transform
Taylor
Implicit

Figure 3.3: The geostrophic flow for the non-axisymmetric l = 2, m = 2 poloidal
Taylor state of equation (3.46). Solutions using the spherical transform method, the
implicit timestep method with h = 10−9 and Taylor’s ODE are compared.

We secondly consider a more complex example of a non-axisymmetric mag-

netic field, which contains both l = 2, m = 1 toroidal and poloidal components

B =∇× At
√

3r3(1− r2) sin θ cos θ cosφ r̂

+∇×∇× Ap
45
√

3

2
r3(7− 5r2) sin θ cos θ cosφ r̂ (3.47)

where At = 5
4

√
21 and Ap =

√
7/262440. Figure 3.4 shows that again the solu-

tion using the instantaneous method is validated by the implicit method, whereas

Taylor’s solution deviates as s → 1. The figure also shows the geostrophic flow

generated separately by either the purely-toroidal, or purely-poloidal magnetic field

component, each individually a Taylor state. As anticipated by the structure of the

equation for ug (nonlinear in B), the geostrophic flow driven by the total field does

not equal the sum of the individually driven geostrophic flows.
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Figure 3.4: The geostrophic flow for the l = 2, m = 1 non-axisymmetric mixed
Taylor state of equation (3.47). Solutions using the spherical transform method, the
implicit timestep method with h = 10−9 and Taylor’s ODE are compared. Solutions
for solely either the poloidal and toroidal components of the Taylor state using the
spherical transform method are also shown.

3.12 Analytic approximation for an Earth-like field

Based on the present structure of the geomagnetic field, various studies show that

it is reasonable to neglect the boundary term in equation (3.13) in an Earth-like

context (Roberts and Wu, 2014; Roberts and King, 2013). This is because not only

is the magnetic field likely much stronger inside the core than on r = 1, but also

because only the non-axisymmetric field contributes to the boundary term and it

is relatively weak. The estimated strength of the magnetic field inside the core is

5 mT, and that of the non-axisymmetric field on r = 1 is 0.5 mT; therefore the

relative magnitude of the boundary to the interior terms is about 1/102 or 1%. The

negligible effect of the boundary term has been verified in the case of related studies

of torsional waves (Jault and Légaut, 2005; Roberts and Aurnou, 2011).

Should we neglect the boundary term entirely, then the geostrophic flow is

described by the same equation (3.36) that pertains to a purely-toroidal field, whose

solution is

ug(s) = −s
∫ s

0

S(s′)

s′α(s′)
ds′. (3.48)

We note that, in general, S/α is O(1), therefore similar to the axisymmetric case

described in §3.7.3, this approximate solution for ug behaves as s ln(s) as s→ 0.
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This is despite an exact non-axisymmetric solution being regular at the origin, as

explained in §3.13.1.

As an example of this approach, here we construct an Earth-like Taylor

state comprising an axisymmetric poloidal mode and a non-axisymmetric toroidal

mode, scaled such that the magnitude of the asymmetric part is 20% of the magni-

tude of the axisymmetric part, but that the total rms field strength is unity:

B =∇×
[
At

√
3

2
r3(1−r2) sin2 θ cos 2φ

]
r̂+∇×∇×

[
Ap

21

2
r2(5−3r2) cos θ

]
r̂ (3.49)

where At =
√

28875/4 and Ap = 1/
√

966. The analytic solution of (4.7) is

ug(s) =
s

1185586336

[
− 3645348420

√
10626 arctan

(
(5 s2 − 5)

√
10626

42

)

+ 9801464537150 s6 − 12073529601375 s4

− 633064443000 s2 − 25808428800 ln (s)

+ 25531026444 ln
(
6325 s4 − 12650 s2 + 6367

)
+ 1185586336C1

]
,

which is shown in figure 3.5 and compared to our solution by the method in §3.10.1

in which full account is taken of the boundary terms. As anticipated, the two

solutions are very similar and diverge only close to s = 1 (where the boundary term

has most effect), with an rms difference of about 1%, all of which occurs very close

to the outer boundary. This validates the neglect of the boundary term for this

example, and indicates the significance of equation (4.7) which can be used with

confidence to analytically approximate the geostrophic flow generated by an Earth-

like field. However, we note the presence of a logarithmic singularity that (in view of

an earlier comment) we do not expect in a non-axisymmetric case; this is discussed

in the following section.

Finally figure 3.6(b) shows contours of the total azimuthal component of

the flow. Of note is the much higher amplitude of flow associated with the increased

complexity of the magnetic field compared to the single-mode magnetic field exam-

ple of figure 3.6(a). The scale of this flow is as would be expected geophysically:

maximum dimensionless velocities are of order 100, corresponding to dimensional ve-

locities of order 10−4 m s−1 consistent with large-scale core flows inferred by secular

variation (Holme, 2015).
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Figure 3.5: The geostrophic flow for a non-axisymmetric Earth-like Taylor state.
Numerical solution using the spherical transform method (red) is compared to the
analytic solution neglecting the boundary term (blue).
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Figure 3.6: Contour plots of (a) the total azimuthal flow uφ driven by the axisym-
metric poloidal field in §3.9.1, (b) the axisymmetric part of the total azimuthal flow
driven by the Earth-like field of (3.49). The azimuthal flow is shown to be ap-
proximately 50 times stronger in (b) and similar to values expected in Earth’s core
(Holme, 2015).

3.13 Singularities of ug

A key benefit of having an instantaneous description of the geostrophic flow is to

make explicit its analytic structure, which then motivates spectral expansions such

as (3.20) for use with other methods. Assuming α(s) > 0, because the equation

describing ug is smooth and regular, ug is expected to be an odd (Lewis and Bellan,
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1990) finite function on 0 < s < 1. There are three places however where the solution

may be singular: (i) s = 0; (ii) s = 1 and (iii) in the complex plane s = x+ iy, away

from the real axis (y 6= 0). We discuss each in turn.

3.13.1 Singularities at s = 0

Firstly we consider the presence of a singularity at s = 0. In axisymmetry, it is well

established that ug ∼ s ln(s) as s → 0, resulting in a s−1 singularity in ∂s(ug/s)

(Jault, 1995; Wu and Roberts, 2015; Fearn and Proctor, 1987), reproduced in our

example (3.31). However it has not been quite clear whether the logarithmic singu-

larity pertains to a general asymmetric Taylor state: in particular, in axisymmetry

s = 0 is a singular line of the coordinate system, whereas in 3D spherical coordinates

the only singular point is the origin r = 0. Roberts and Wu (2014) showed that

either by neglecting the boundary term (their (25a)) or considering Taylor’s ODE

directly, which we have shown to be of limited validity, (see their Appendix B) leads

to a general logarithmic behaviour.

At first inspection it appears that the boundary term is negligible as s→ 0.

For a general 3D field, both B and Ḃ are O(1) on s = 0, suggesting that the interior

term in equation (3.28) is O(1), whereas the boundary term is O(s) as s → 0.

Motivated by the example in §3.12, this suggests that a full treatment (including

the boundary term) retains the singularity in 3D — however, we do not find this

to be the case. Significant cancellation in the interior term occurs and while the

integrand is O(1), the integral itself is O(s), as expected since we know that the

interior term and boundary term must sum to zero for all s. Therefore, there is

no evidence that the 3D case has a logarithmic singularity at s = 0, and indeed

all our numerical solutions and analytic solutions are regular there. In the purely

toroidal field explored in §3.9.2, the analytic solution given in equation (3.38) is

purely polynomial, with no singular behaviour at the origin. This assertion can be

strengthened into a theorem.

Theorem 3.13.1. The assumption of a magnetic field that is regular initially and re-

mains so for all time places a restriction on the permitted behaviour of the geostrophic

flow. In axisymmetry, the space of solutions allows a weak singularity in the geo-

strophic flow at s = 0. However, in three dimensions it is required that the geostrophic

flow is regular at the origin in order to maintain regularity of the magnetic field.

Proof. This result directly follows from the form of the geostrophic term in the

induction equation. In axisymmetry this is given by equation (3.16), from which it
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is clear that it is permissible for ug to contain a weak logarithmic singularity while

maintaining a regular B. In 3D the geostrophic term in the induction equation is

given by equation (3.35). In the presence of a non-axisymmetric magnetic field, any

logarithmic singularity in ug would render ∂tB non-regular. Hence the assumption

of regular B(t) is incompatible with such a singular solution.

While the analytic approximation in §3.12 is shown to produce accurate

geostrophic flows for Earth-like magnetic fields, it should be used with caution, since

the analytic structure of the solution will contain an s ln s dependence, that does not

persist when the full balance including the boundary term is considered. For axisym-

metric magnetic fields this weak logarithmic singularity is not a significant concern

since the geostrophic flow only enters the induction equation through ∂s(ug/s) and

so the magnetic field remains regular everywhere. By contrast, in 3D the structure

of the geostrophic term in the induction equation (given in equation (3.35)) means

that the logarithmic singularity is imparted to the magnetic field itself, causing the

magnetic field to diverge at the rotation axis and violating the standard assumption

of a regular field. Thus, in a practical implementation, such singular behaviour must

be filtered out of ug.

3.13.2 Singularities at s = 1

We also address the possible existence of a singularity at s = 1. For the specific

case of an axisymmetric dipolar magnetic field, Roberts and Wu (2014) presented

an argument that ∂sug ∼ (1 − s2)−1/2, although they conceded that this was not

supported by their numerical examples. The same form of singular behaviour for ug

has been predicted for torsional waves (Schaeffer et al., 2012; Maffei and Jackson,

2016), perturbations to Taylor states, whose eventual steady state at t = ∞ would

be exactly magnetostrophic (if indeed steady Taylor states exist, a topic considered

in the research presented in Chapter 4 of this Thesis). However, there is no reason

why the analytic structure of the oscillations should mirror that of the underlying

background state, particularly as the manner of how the limit t→∞ is reached at

the end points where the wave speed may vanish is unclear (Li et al., 2018; Roberts

and Wu, 2018).

Although we are not in a position to prove one way or the other the ex-

istence of singular behaviour at s = 1, we demonstrate by example that it is not

generally present.
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We find no singularity at s = 1 in the non-axisymmetric example of §3.11.

A similar regular behaviour is shown in figure 3.7 (red curve) for an axisymmetric

example. Interestingly, for this latter case, the application of Taylor’s ODE (which

is invalid for this example) gives a solution that does show a singularity at s = 1

(blue curve). In this instance, singular behaviour is simply an artifact of applying

Taylor’s ODE when it is not valid, and we have found no cases where a solution to

our more general analysis behaves singularly at s = 1.

This observation may help explain why the prediction of a singularity at

s = 1 (Roberts and Wu, 2014) is not borne out in any numerical examples. They

themselves discussed this discrepancy and hypothesized that a key issue is the lack of

boundary information contained within Taylor’s equation. We speculate that should

their magnetic field satisfy not only Taylor’s constraint and the boundary conditions

but also crucially the first order boundary conditions, that this singular behaviour

will vanish and the geostrophic flow will remain regular at s = 1. We note however

that certain magnetic forcing terms can render the geostrophic flow singular at s = 1:

for example, that of a non-polynomial mean-field α-effect described in Appendix F

of Li et al. (2018).

Finally, we remark that for a dipolar axisymmetric Taylor state, both Li

et al. (2018) and Roberts and Wu (2018) showed evidence of non-singular but abrupt

boundary-layer like behaviour close to s = 1, possibly because the equation describ-

ing the geostrophic flow is null at the equator (i.e. α = S = 0). A similar result

was also found by Fearn and Proctor (1987) who abandoned constraining their

geostrophic flows near s = 1 due to anomalous behaviour. We note, however, in our

analytical solutions, we find no evidence of such behaviour: for example figure 3.1a

shows a smooth solution at s = 1.

3.13.3 Singularities off the s-axis

Finally, inspecting an example solution (3.31) shows that there can be either branch

cuts or logarithmic singularities away from the real line. These do not affect the

solution itself (defined on the real interval 0 ≤ s ≤ 1) but can influence convergence

of the numerical method used to find ug (Boyd, 2001). The closer the singularities

lie to the real interval [0, 1] the slower the convergence. In general, we speculate that

such singularities can lie arbitrarily close to the real line, possibly being associated

with the breakdown of the magnetostrophic balance, for example, torsional waves

etc.
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Figure 3.7: A plot of ∂s(ug/s) for solutions to a mixed axisymmetric Taylor state
consisting of the poloidal field of the example of §3.9.1 with a l = 1, m = 0, n = 1
toroidal Galerkin mode, using the BWR and Taylor equations. (a) Shows the whole
domain, a singularity of the form s−1 is visible for both solutions at s = 0 and for
Taylor’s solution only, a weaker singularity also occurs at s = 1. (b) Zoomed-in plot
of the s = 1 singularity to show clearly that it only occurs when solving Taylor’s
equation; it has the form (1− s2)−

1
2 .

3.14 Discussion

In this chapter we have discussed in some detail how the geostrophic flow, a funda-

mental part of any magnetostrophic dynamo, might be determined. Of particular

note is that we have shown why the method introduced by Taylor (1963) fails in

most cases, because of its intrinsic (and, to date, unrecognised) assumption that the

initial magnetic field structure must satisfy a higher-order boundary condition (that

is, both the magnetic field and its time derivative must satisfy matching conditions

pertaining to an exterior electrical insulator). We presented a generalised version

of Taylor’s method valid for an arbitrary initial magnetic Taylor state that is not

subject to higher order boundary conditions. In many of our examples, the mag-

netic fields of dimensional scale 1.7 mT drive flows of magnitude about 10−4 m s−1,

comparable to large-scale flows inferred for the core (Holme, 2015). Thus, in concert

with weakly-viscous models, inviscid models also produce Earth-like solutions.

A broader point of note is the extent to which the restriction on the va-

lidity of Taylor’s approach impacts the related derivation of the equation describing

torsional waves (Roberts and Aurnou, 2011). A general treatment of torsional waves

includes boundary terms, whose proper evaluation would require a method such as

described in Jault (2003). However, the troublesome boundary terms are usually

neglected, either because of axisymmetry or because of arguments based on the rel-
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ative size of the asymmetric magnetic field (Roberts and King, 2013). Either way,

these approaches remain unconstrained by any consideration of higher order bound-

ary conditions on the magnetic field and the theoretical description remains correct.

However, in §3.13.1 we describe the danger of neglecting the boundary term, this

leading to a logarithmic singularity not present in solutions of the full equation. This

has potential implications for analysis of torsional waves, for which the avoidance of

a logarithmic singularity may require the full boundary term.

It is worth noting that the weak logarithmic singularity ug ∼ s ln(s) as

s → 0 in axisymmetric magnetostrophic models stands in contrast with weakly

viscous models which are anticipated to be regular everywhere. For example, in

axisymmetry for both no-slip and stress-free boundary conditions, the formulae for

ug from Livermore et al. (2016) are

ug(s) = −E1/2 (1− s2)
1/4

s2

d

ds

(
s2

∫ ZT

0

S dT
dz

dz

)
,

and

ug(s) = E−1

(
s

∫ 1

s

(
1

ρ
√

1− ρ2

∫ ZT

0

S dT
dz

dz

)
dρ+ sC1

)
,

respectively, and since Bs, Bφ ∼ s as s→ 0 this means that the asymptotic structure

within axisymmetry for both boundary conditions is ug = O(s). While, in non-

axisymmetry the asymptotic formulae from Hollerbach (1996) gives

ug(s) = −E1/2 (1− s2)
1/4

4πs

∫

C(s)

([∇×B]×B)φ dφdz,

and through the properties of general vectors described by Lewis and Bellan (1990),

we have that ([∇×B]×B)φ ∼ s and hence ug = O(1).

The presence of a weak logarithmic singularity is therefore a feature unique

to the axisymmetric inviscid case, and serves to distinguish the exact magnetostrophic

balance (with zero viscosity) from models with arbitrarily small but non-zero viscos-

ity. However, in 3D there is no such distinction between the structure of ug between

E = 0 and E � 1: in both cases ug is regular.

We note that the instantaneous analysis of the induction equation consid-

ered here is akin to the kinematic dynamo framework of examining magnetic field

evolution based solely on a pre-defined flow. This has important implications for

the applicability of our theorem, which states that in three dimensions it is required

that the geostrophic flow is regular at the origin in order to maintain regularity of
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the magnetic field. If an s ln s singularity were present in ug then this would result

in an s−1 singularity in the azimuthal component of equation (3.35) and therefore

through the induction equation (3.10), a logarithmically singular induced magnetic

field. However, as Roberts and Wu (2020) explain, within a fully dynamic MHD

system, it is possible for a regular magnetic field to be maintained in spite of singular

geostrophic flow. This is crucial in evading the disastrous consequences of violating

regularity of the magnetic field at s = 0.

Given that the geometry of the outer core of the Earth is a spherical shell

rather than a full sphere, a natural question to ask is how we would calculate the

flow within this domain. The method for determining the ageostrophic flow would

remain comparable although it could be discontinuous or singular across the tangent

cylinder C, the geostrophic cylinder tangent to the solid inner core (Livermore and

Hollerbach, 2012). As for the geostrophic flow, in the absence of viscosity, there is

no reason why it must be continuous across C. Roberts and Wu (2020) have recently

shown how singularities in both the zonal and other components of the fluid velocity,

are related to the specified flow forcing function (the total force due to the Lorentz

and buoyancy forces), and how flow discontinuities on the tangent cylinder can be

determined by that function.

Although supplying an analytic structure of the evolving magnetostrophic

flow, an instantaneous determination of the geostrophic component is not itself

of practical use within a numerical method using finite timesteps of size h, as the

solution will immediately diverge from the solution manifold (Livermore et al., 2011).

However, as for the axisymmetric-specific method of Wu and Roberts (2015), our 3D

instantaneous methods generalise simply to schemes that are accurate to first order

in h, thus presenting a viable method for numerically evolving a 3D magnetostrophic

dynamo. A direct comparison of this method with the fully implicit (3D) method of

Li et al. (2018) would be an interesting study. Indeed, our 3D first-order-accurate

solutions could be used as a starting guess for their nonlinear iterative scheme,

enabling much larger timesteps to be taken for which the geostrophic flow does not

need to be close to its structure at the previous step.
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Chapter 4

Stable steady Taylor states

4.1 Introduction

Earth’s magnetic field is observed to be a stable, consistent feature, existing continu-

ously over the past 3.4 - 4.2 billion years (Tarduno et al., 2015). Over this time-span

the geomagnetic field has undergone significant changes, including full geomagnetic

reversals and the short time scale perturbations of secular variation. However, some

field features, such as the longstanding dominance of the dipole moment, appear in-

herently maintained and consistent throughout time. Hence the question of whether

the geodynamo process and resultant geomagnetic field is in a stable configuration,

which is only slowly varying, is a non-trival one to address.

Variations in the geomagnetic field have been observed on a range of

timescales from archeomagnetic and paleomagnetic data (sections 1.2.3 and 1.2.5).

Fast dynamics have also been reproduced in many state of the art dynamo simu-

lations (Aubert, 2020; Schaeffer et al., 2017), however the computational expense

of such simulation means they are restricted to short temporal ranges and hence

the ability to investigate the evolution and stability of the background field is very

limited. Simulations over longer timescales have been carried out in attempts to

reproduce the longer term secular variation of the geomagnetic field (Davies and

Constable, 2020). However, the price for this temporal range is in decreased resolu-

tion and hence a restriction to using parameter value further from those of the Earth

(E > 10−5). The more fundamental question of whether the underlying physics of

the dynamo process is intrinsically unstable has been explored by Zhang and Gub-

bins (2000), who suggest that the value of Ekman number is of crucial importance,

with more unstable behaviour expected at lower Ekman numbers. In all these nu-
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merical dynamo simulations where the Ekman number is of course finite and large in

comparison to the Earth, this inflated significance of the role of viscosity is expected

to be providing an artificially stabilizing effect, not present within Earth’s core.

Here we will consider the magnetostrophic limit, deemed geophysically rel-

evant as the asymptotic limit of Earth’s dynamo, in which viscosity plays no role.

The theoretically predicted timescale associated with this force balance describes

the slow evolution of the magnetic field (as discussed in §2.6). This is of course

the timescale on which the Taylor constraints act, due to their derivation arising

from the magnetostrophic equations. A Taylor state (a field which satisfies Tay-

lor’s constraint) therefore describes the background geomagnetic field and does not

incorporate fast perturbations in the field.

Recent studies by Livermore et al. (2008, 2009) have provided and imple-

mented a complete algorithm for the non-trival procedure of constructing a magnetic

field such that it exactly satisfies Taylor’s constraint (a Taylor state). This method

is described in §6.4 and solved in a geophysical setting in figure 6.6. This work gives

an insight into the potential structure of the magnetic field inside Earth’s core.

However, it only provides a methodology for creating instantaneous Taylor states,

where due to the nature of the method, there is no consideration of the way in which

the magnetic field will evolve. This time dependence is of course vitally important,

because the Taylor state fields will drive flows within the fluid, which will induce

magnetic field and perturb the Taylor state.

It is also noteworthy that the space of Taylor states is large. It is this

lack of uniqueness, which makes it so challenging to know whether any one solution

is representative of the Earth. Here we are in search of those Taylor states that

are most realistic, which are self-sustaining and do not change more rapidly than

the geomagnetic field. We seek Taylor states which are ‘quasi-steady’, that is, the

instantaneous rate of change of magnetic field is close to zero.

This requires the computation of the flows generated by any given Taylor

state field, which consists of both the ageostrophic flow, which is uniquely deter-

mined from the magnetostrophic equation and the more problematic geostrophic flow

(see Chapter 3), which is only specified uniquely through the requirement that the

Taylor constraint continues to be satisfied through time. In order to do this we com-

pute the ageostrophic flow by using the procedure outlined in §3.3. We also calculate

the geostrophic component of the flow exactly, through implementing the approach

described in chapter 3. This method is valid within the fully three-dimensional

system relevant for the convectively driven planetary dynamo problem. However,
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in this work we focus on the axisymmetric problem, for which the geostrophic flow

calculation is greatly simplified (Wu and Roberts (2015) and chapter 3). In axisym-

metry the geostrophic flow can be calculated analytically without the need for the

implementation of the more complex numerical methods of §3.10. Also the numer-

ical magnetostrophic dynamo code of Li et al. (2018), which we will utilise, is, in

its pre-existing state, restricted to axisymmetry (despite the fundamental method

being extendable to 3D). This is of course not as general as the fully 3D system

representative of Earth’s core, and it should be noted that some features may be

different when restricted to axisymmetry (Fearn and Rahman, 2004). Nevertheless,

this axisymmetric study will serve as a useful first foray into investigating Taylor

state dynamics.

In this chapter we will seek to determine if any steady Taylor states exist

and if so how abundant they are and what common properties they may have. Also,

we will investigate the long time evolution and stability of Taylor states and compare

their rate of change to geomagnetic observations.

4.2 Methodology

Our analysis consists of two approaches. Firstly, we focus on steady Taylor states,

carrying out a systematic search over a chosen subset of the space of axisymmetric

Taylor state magnetic fields. Computing the instantaneous rate of change, finding

any steady Taylor states, and determining the sensitivity of this rate of change to

small differences in some magnetic field coefficients.

Secondly, we analyse stability of Taylor states. We run a suite of dynam-

ical simulations with different initial magnetic fields conditions. For each of these

starting points, as the simulation evolves, satisfying Taylor’s constraint at every

timestep, we analyse the path through the space of magnetic fields and ultimately

to what solution, if any, the field converges. Thereby examining the stability of a

given Taylor state initial condition and revealing any such stable states that may be

converged to.

These approaches, although distinct, are complementary in our investiga-

tion of the evolution of Taylor states. The results from our calculations of magnetic

fields whose instantaneous rate of change is small, termed ‘quasi-steady’ are not

necessarily stable (unless the rate of change is precisely zero, which is impossible

to numerically obtain), since any small initial change may lead to unstable growth.
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However, they do provide prime candidates for stable steady Taylor states, since be-

ing ‘quasi-steady’ is a necessary condition for being a stable steady state. Therefore

part of our study will involve these fields being directly used as initial conditions in

dynamical simulations to test their stability.

For both of these methodologies the focus is to examine the rate of change

of the magnetic fields. The equation that describes this is of course the induction

equation

∂tB =∇× (u×B− J). (4.1)

We restrict attention to the axisymmetric case, and therefore as explained

in §2.5, an α-effect is required in order to facilitate successful dynamo action.

The form of any α-effect that is chosen is not unique, in fact the arbitrary

nature of this is a notable model limitation (which we address in §4.4.5). The

majority of results presented utilise the commonly used ‘Braginsky’ form (Roberts,

1972; Hollerbach and Ierley, 1991; Wu and Roberts, 2015; Li et al., 2018)

α = α0
729

16
r8(1− r2) cos θ, (4.2)

where the constant α0 specifies the magnitude of the α-effect and a sufficiently

high value is required to sustain a dynamo. This is a necessary condition for any

energetically stable or growing magnetic fields to exist as it provides the means to

balance Ohmic diffusion. The critical value above which dynamo action occurs for

this structure of alpha within a magnetostrophic dynamo is α0 = 13.1 (Li et al.,

2018).

The induction equation in full, which represents the instantaneous rate of

change in magnetic field, now becomes

∂tB(r, θ, φ) =∇×
[
(ua(r, θ, φ))×B(r, θ, φ)− J + α(r, θ)B

]
+ sBs

d(ug/s)

ds
φ̂, (4.3)

where the contributions of the geostrophic and ageostrophic flow are explicitly dis-

tinguished.

The ageostrophic component of the flow is purely a function of the input

magnetic field B and can be solved for from the magnetostrophic equation (2.2), as

described in §3.3. What remains is then the more complex task of explicitly solving

for the geostrophic flow.
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4.2.1 Method for calculating instantaneous ug and magnetic

induction

In Chapter 3 various different methods for determining the geostrophic flow in dif-

fering circumstances are described. We utilise that work here; specifically it is the

instantaneous geostrophic flow within axisymmetry that we seek here, which can be

determined using the method outlined in §3.7.3.

In order to evaluate the induction equation we calculate the three compo-

nents of
∂B

∂t
separately. The terms

(
∂B

∂t

)

r

and

(
∂B

∂t

)

θ

are independent of the

geostrophic flow and hence are calculated from the magnetic field and ageostrophic

flow, while the α-effect also provides an additional energy source of energy. Hence

(
∂B

∂t

)

r

= (∇× (ua ×B− J + α(r, θ)B))r,

and (
∂B

∂t

)

θ

= (∇× (ua ×B− J + α(r, θ)B))θ.

The induction in the azimuthal direction comprises two parts, the ageostrophic

induction, which takes the same form as for the other components, but also, the

geostrophic induction, which is shown in equation (3.16), in axisymmetry to be

sBs
d(ug/s)

ds
φ̂. This results in

(
∂B

∂t

)

φ

= (∇× (ua ×B− J + α(r, θ)B))φ + sBs
d(ug/s)

ds
. (4.4)

Evaluating the geostrophic induction term first requires the computation of the

intermediate quantities

S0(s) = 2πs2

∫ ZT

−ZT

(BsC
a
φ +BφC

a
s ) dz, α0(s) = 2πs2

∫ ZT

−ZT

B2
s dz, (4.5)

where

Ca =∇× (ua ×B) +∇2B. (4.6)

It is then possible to explicitly calculate the geostrophic flow

ug(s) = −s
∫ s

0

S0(s′)

s′α0(s′)
ds′. (4.7)

However, in practicality, within axisymmetry it is not required to carry out this

integration in s and directly compute the geostrophic flow. If one merely seeks the
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magnetic induction due to the geostrophic flow then it is only the following quantity

that is of interest
∂(ug(s)/s)

∂s
= − S0(s)

sα0(s)
. (4.8)

There is a complication here of using two different coordinate systems. The natural

coordinates within a spherical domain, are generally spherical coordinates, therefore

the magnetic field B and ageostrophic flow ua are computed in this coordinate sys-

tem. However, the geostrophic flow ug(s), purely a function of cylindrical radius, is

best expressed in cylindrical coordinates. Care needs to be taken when transforming

these quantities between coordinate systems. To calculate the geostrophic induc-

tion, cylindrical components of B and Ca need to be determined in order to find

S0(s) and α0(s). The cylindrical components of vectors within spherical coordinates

can easily be calculated from the spherical components:

Bs(r, θ, φ) = Br(r, θ, φ) sin θ +Bθ(r, θ, φ) cos θ,

Bφ(r, θ, φ) = Bφ(r, θ, φ),

Bz(r, θ, φ) = Br(r, θ, φ) cos θ +Bθ(r, θ, φ) sin θ.

The transformation between coordinate systems themselves is more complex; we

carry this out via mapping to spectral space. All quantities for which this is neces-

sary, can then be converted from physical space in spherical coordinates, to spectral

space in terms of the Worland polynomials (Livermore et al., 2007) (which have no

boundary condition embedded). This includes Ca, for which the curl operation is

conducted in spectral space (as described in section 2.4.2 of Li (2012)) and encom-

passes the diffusion term, since through using the solenoidal condition we can write

Ca =∇× (ua×B−J). The integrands in the expressions for S0(s) and α0(s) (4.5)

are also converted into spectral space, such that the integration in z can be carried

out on each spectral mode function, using Gauss quadrature, e.g.

∫
Bφdz =

∑

k

wkBφ(si, φj, zk),

where wk is the Gauss-Legendre quadrature weight and zk is the Gauss-Legendre

location within [−ZT , ZT ]. Each spectral mode here is integrated and then the

products with the corresponding coefficients are summed. The resolution of the

cylindrical grid used is determined through the requirement of Gauss quadrature

being exact. When a polynomial is integrated between two limits, Gauss quadra-

ture is exact for a polynomial of degree n if n/2 − 1 points are used. Hence it is

the maximum degree of any polynomial that will be integrated which provides the

number of cylindrical grid points we need to use. Since all integrations that we
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carry out are in the z direction, this does not provide a strict bound on the number

of points in s, but we choose to use the same number of points, with the locations

related by z =
√

1− s2.

Finally, for the induction equation (4.4), the geostrophic induction needs

to be converted back to spherical coordinates (via spectral space) such that it can

be added to the ageostrophic induction.

This allows us to now calculate the value of
∂B

∂t
. However, in order to

meaningfully compare the scale of the rate of change of different magnetic fields and

ultimately carry out any parameter sweep or optimisation procedure in search of

a steady Taylor states, we must represent this with a scalar quantity that takes a

single value for a given field. This requires the spatial integration of the square of

the previously calculated vector field.

The two quantities we consider to represent the rate of change in magnetic

field are then the volumetric integral over the entire spherical domain
∫
Ḃ2dV ,

and the surface integral over the core surface
∫
Ḃ2dS, which allows a more direct

comparison to the observational geomagnetic models that are limited to the CMB.

These quantities also need to be normalised by the magnetic field strength in order

to truly represent the rate of magnetic field variation without any effect due to the

magnitude of the field itself. Therefore we arrive at the quantities

IV =

∫
Ḃ2 dV∫
B2 dV

,

and

IS =

∫
Ḃ2 dS∫
B2 dS

,

which we use throughout our analysis as measures of the normalised instantaneous

rate of change of magnetic field.

This method acts as a useful tool to quickly and directly compute the in-

stantaneous rate of change associated with any axisymmetric Taylor state magnetic

field. However, it is a crucial point to note that in anything but a perfectly steady

state then the solution for an instantaneous geostrophic flow, and associated rate

of change of magnetic field, is not necessarily consistent with exactly maintaining a

Taylor state over any finite timestep (Livermore et al., 2011), since the value of a

constant ug over the timestep that is required to remain on the manifold of Taylor

states, can differ from the instantaneous solution. Therefore there is a subtle but

vital distinction between ‘quasi-steady’ magnetic fields calculated from this method,



78

which have a small initial rate of change but given sufficient time may substantially

change, and a magnetic field which we know will remain of the same form for a

very long time, which we denote as a ‘stable steady state’. In order to investigate

the stability of Taylor states we need to be able to evolve the fields with time and

measure magnetic field change.

4.2.2 Time-dependent, implicit method for dynamically

evolving B

It is possible for us to probe the time-dependence of any Taylor state and there-

fore test their stability, through a numerical, dynamical, magnetostrophic dynamo

simulation. Within this approach, any stable steady Taylor states should become

apparent, as we expect the magnetic field to converge towards them, and once there

remain steady indefinitely. Such a dynamical code relies on an implicit method of

determining the geostrophic flow, which guarantees that Taylor’s constraint is sat-

isfied at the end of each timestep. One such method would be the axisymmetric

first-order implicit method of Wu and Roberts (2015) described in §3.7.1. Another,

is the one developed by Li et al. (2018); it is this one that is used here.

Li et al. (2018) introduced a new methodology that uses control theory

to solve for the geostrophic flow, through setting up an optimisation problem at

each timestep. In this method the value of ug is determined implicitly such that

the Taylor constraint is satisfied at end of each finite timestep. This is of course

a numerical approach, which can give results that differ to the value of the exact

instantaneous geostrophic flow determined by the method in the previous section.

However, for sufficiently small timesteps then there will be convergence between

these two solutions. (For further details of this code please see Li et al. (2018).)

4.2.3 Symmetry

Any magnetic field can be considered as the sum of symmetric and antisymmetric

components, with respect to the equator. These are referred to as quadrupole and

dipole symmetries respectively. Magnetic fields that fall entirely into one of these

symmetry classes provide simple cases for us to consider. Importantly they have the

feature that, provided α is suitably chosen (e.g. (4.2)), the symmetry is preserved

as time evolves. An initial field that is purely dipole/quadrupole symmetric will

induce a purely dipole/quadrupole symmetric magnetic field, so the symmetry will
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never change or become mixed, (as shown in Appendix A of Li et al. (2018)).

4.3 Searching for steady Taylor states

The total magnetic field is decomposed into the sum of two orthogonal components

in the toroidal (T)-poloidal (S) framework (see §3.2)

B =∇×∇× Sr̂ +∇× T r̂.

In this section we consider the simple situation of imposing a fixed poloidal field, and

varying only the toroidal field. This has the significant advantage that the Taylor

constraints reduce to a linear system of equations for the toroidal coefficients.

The choice of poloidal field is a free one, as indeed we know that any

arbitrary poloidal field can be modified into a Taylor state with the addition of a

suitably chosen toroidal field (theorem 6.5.1). Our chosen poloidal field here is the

one of the known stable steady Taylor state solutions from Li et al. (2018) within

dipole symmetry. Therefore the space of Taylor states explored will include this

stable steady solution and magnetic fields which are small to large perturbations

from this. This choice is a useful one as it ensures that there will be at least this one

steady Taylor state within the domain that we explore. This means crucially, that

we have the opportunity to examine the behaviour immediately surrounding steady

points, addressing the question of how isolated they may be, while also confirming

that we are searching in a region in which it is at least possible for steady Taylor

states to exist.

We are then able to sweep through many toroidal fields that are within the

space of Taylor states compatible with the imposed poloidal field. As the toroidal

field varies, then the associated induction, due to the total magnetic field will also

change. Hence through modifying the toroidal field in a systematic way and calcu-

lating the instantaneous rate of change of magnetic field (as described in §4.2.1), we

determine the nature of the surface of IS. This allows us to find the locations within

parameter space of magnetic fields for which the rate of change is small (quasi-steady

Taylor states), while also examining the behaviour in close proximity to the known

stable steady state.

In order to visualise this we carry out a complete search over two param-

eters, of the largest scale toroidal mode coefficients and visualise the surface of IS

within this space, with all other coefficients solved for through requiring a Taylor
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state. This process is represented by the following expression for the magnetic field:

B = S0 + βT 1 + γT 2 + T 3(β, γ,S0) + T 0, (4.9)

where S0 is the imposed poloidal field, β and γ are free parameters that are system-

atically varied (the coefficients of the chosen independent toroidal modes) and T 3

is the remainder of the toroidal field, which is solved for by requiring that Taylor’s

constraint is satisfied. However, as there are more degrees of freedom than con-

straints then this does not result in a unique solution for T 3. To enable a unique

solution, before solving for T 3 a number of the highest degree toroidal mode coeffi-

cients (equal to the number of excess degrees of freedom) are fixed to be those of the

stable solution from which the poloidal field is used (Li et al., 2018), contributing the

additional toroidal component T 0. In the example presented here, the truncation of

the magnetic field used is at degree L = 20, N = 10. The means in the toroidal field

there are 2 independently varied free parameters (β and γ), 160 coefficients of the

smallest scale modes fixed as T 0 and the remaining 38 toroidal mode coefficients

solved for through Taylor’s constraints (to construct T 3). At this truncation the

imposed field (S0 + T 0) is suitably resolved field, the energy spectrum has a drop

of 9 orders of magnitude between degrees 1 and 20.

The results are illustrated in figure 4.1, where the axisymmetric version of

the standard expansion §4.2.1 is used, and the coefficients of the L = 1, N = 1 and

L = 1, N = 2 modes are varied and the magnitude of the normalised instantaneous

rate of change of magnetic field on the core surface, IS is plotted. This provides

a visual representation of the shape of the surface of IS as a function of these two

parameters, in the proximity of a stable steady state demarcated by the vertical red

line. We note how this point lies within an extended trough and hence that there

are many Taylor states within this (restricted) parameter space for which IS is small

enough to represent a rate of magnetic field change no larger than that of the Earth

(< 10−6 yrs−2, (see figure 4.8)). This is a key and not a priori obvious result, that

demonstrates the abundance of ‘quasi-steady’ Taylor states.

The bottom of the valley seen in figure 4.1, appears to have a ‘spiked’ na-

ture, with significant variation in some neighbouring evaluations, despite the smooth

broader trends. This is likely not to be of geophysical interest but rather merely

be an artefact of the uniform, finite resolution grid that has been used. Despite

being high resolution (1000 × 1000), the steepness of the valley edge and the lack

of alignment between the trough and the grid leads to a relatively large amount of

fluctuations.
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(a) (b)

Figure 4.1: Surface plot of the normalised instantaneous rate of change of magnetic
field on the core surface, IS, as a function of the L = 1, N = 1 and L = 1, N = 2
coefficients values. The vertical red line corresponds to the coefficient values of the
known stable steady solution of Li et al. (2018). The α-effect form (4.2) is used,
with an above critical magnitude of α0 = 18. (a) and (b) show the same 3D plot
viewed from a different angle.

4.4 Dynamical magnetostrophic simulations in

search of stable Taylor states

Here we run dynamical simulations of the magnetostrophic equations to evolve Tay-

lor state magnetic field with time. All of these simulation use the code of Li et al.

(2018) and are conducted at the sufficiently high resolution of maximum spherical

harmonic degree L = 50. Throughout the majority of our simulations (all those

reported in sections 4.4.1 to 4.4.4), the α-effect form (4.2) is used, with an above

critical magnitude of α0 = 18. The sensitivity of our results to this choice are then

considered in §4.4.5.

There are several strands to our approach here. Firstly, we begin with

simple initial conditions, purely within either the dipole or quadrupole symmetry.

We analyse the progress of these Taylor states, tracking the magnitude of the rate of

change of magnetic field throughout time and observing which end stable states are

converged to. Secondly, we generalise this approach to a mixed symmetry situation

for which no known stable Taylor states exist with energy in both symmetry classes,

and search a large number of complex initial conditions in pursuit of a simulation

that will converge to the first such example. Thirdly, we utilise our findings in §4.3

that we have found many ‘quasi-steady’ Taylor states that exist and seek to test the
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stability of these fields, since we know that being ‘quasi-steady’ is a prerequisite of

a stable steady Taylor state.

4.4.1 Simulations with single mode initial conditions

The path taken from the initial condition toward an end steady state is mapped

out for the dipole symmetric single mode poloidal L = N = 1 initial condition in

figure 4.2. The evolution through the space of Taylor states is represented by the

toroidal and poloidal energy of the magnetic field. Initially the rate at which the field

changes is fast, with large changes in the poloidal and toroidal energies between each

one hundredth of a magnetic diffusion time, indicated by the red data points plotted.

This is inextricably linked to relatively large values of normalised instantaneous rate

of change of magnetic field throughout the domain IV . The field progresses from

this initial state towards a stable steady Taylor state with vanishingly small value of

IV . The initial evolution is not in a direction of purely monotonically decreasing IV ,

but the system approaches the location of a stable point relatively rapidly, achieving

a value of < 10−9 yrs−2 within a magnetic diffusion time before progressing down

further to approach < 10−15 yrs−2, where it is only limited by machine precision.

Figure 4.2: The path taken as this single poloidal L = N = 1 mode Taylor state
evolves toward a stable steady state with vanishingly small IV , the red data points
are plotted a frequency of every one hundredth of a magnetic diffusion time (500
yrs).

The reduction in IV as the field evolves with time seen for the single initial

condition shown in figure 4.2, is also observed in IS and illustrated for a large suite

of single poloidal mode initial conditions in figure 4.3. Single modes are used here

as they allow us to explore a range of initial fields with different spatial scales that
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are always strictly in either dipole or quadrupole symmetry, while being guaranteed

to be an exact Taylor state (§6.5).

The field evolution along the manifold of Taylor states shows that within

two magnetic diffusion times (105 yrs), the initial fields have all converged to attract-

ing steady states. The poloidal and toroidal energy of these final steady states for

a range of initial conditions show that there are two clear stable states, in terms of

energies, which correspond to the solutions within dipole symmetric and quadrupole

symmetries, found by Li et al. (2018). We recall that the symmetry of the initial

condition is preserved through time, so it is this that determines the end state, the

convergence in these two cases occurs at slightly differing rates, as shown when they

are distinguished by colour in figure 4.3. We do note that technically there are

four distinct stable steady Taylor states, with each of the stable states found by

Li et al. (2018) having anti-symmetric counterparts, representing the two possible

configurations of B and −B.

Figure 4.3: Graph showing the evolution of IS with time for the suite of single
poloidal mode initial conditions

It is significant though that we find that for all the single poloidal mode

initial conditions we have used, the solution will always converge to one of these

four states. This suggests that stable Taylor states are rare, and that few or no

others exist within these symmetries (or these specific states are overwhelmingly

attracting, a possibility that is explored in §4.4.4), in contrast to the large number

of quasi-steady Taylor states found in §4.3.
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4.4.2 Simulations with random mixed symmetry initial con-

ditions

In order to broaden out our search for the existence of stable steady Taylor states,

we now use the most general form of initial conditions and construct random Taylor

states that have mixed symmetry and a combination of toroidal and poloidal modes,

from which the magnetic field is free to evolve.

Here we have an initial condition of a large scale Taylor state magnetic

field of maximum degree L = 4, N = 2, this has 16 degrees of freedom and 6

Taylor constraints that need to be satisfied. Hence we assign the coefficients of

the 10 largest scale modes to be randomly chosen from within the domain [−1, 1].

We then solve the linear system of constraints for the remaining 6 coefficients such

that Taylor’s constraints are satisfied. The magnetic field in this example has the

following components:

B =a1,1S1,1 + a1,2S1,2 + a2,1S2,1 + a2,2S2,2 + a3,1S3,1 + a3,2S3,2

+ a4,1S4,1 + a4,2S4,2 + b1,1T 1,1 + b1,2T 1,2 + b2,1T 2,1

+ b2,2T 2,2 + b3,1T 3,1 + b3,2T 3,2 + b4,1T 4,1 + b4,2T 4,2, (4.10)

where a1,1, a1,2, a2,1, a2,2, a3,1, b1,1, b1,2, b2,1, b2,2, b3,1 are the coefficients that are

assigned randomly and the coefficients of the higher degree modes a3,2, a4,1, a4,2,

b3,2, b4,1, b4,2 are calculated through solving Taylor’s constraints.

These initial conditions then comprise a set of randomly structured large

scale Taylor states, therefore each of them will evolve along a different path, and in

doing so search through a large variety of possible field configurations, for a solution

state that is stable.

The magnitude of IS for each of these Taylor states as a function of time

is plotted in figure 4.4. The fact that none of our large suite of models find a stable

Taylor state reinforces the evidence that these states are very rare. In the general

case considered in this section, when no restriction to a specific symmetry class is

made, we fail to find any stable Taylor states. This is important as it is undoubtedly

the situation of most geophysical interest, as the Earth’s magnetic field is complex

and of mixed symmetry, rather than confined to any one.

Another notable feature from these results is the plethora of troughs in the

rate of change of magnetic field as the field evolves. The solution passes through

fields which are ‘quasi-steady’ as IS becomes smaller than 10−9 yrs−2. This confirms
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the results of the instantaneous rate of change of magnetic field results in the previous

section, where we observed many different fields that were ‘quasi-steady’, but what

we show here is that these fields are in general not stable and given time will diverge.

Figure 4.4 also appears to show a maximum value of IS of approximately

10−5 yrs−2 for all simulations. A theoretical basis for this is unclear, although one

might expect some limitation on the strength of field that can be induced from

the flow driven by a field of a given magnitude. The nature of these dynamos, as

driven by a mean field α-effect of a fixed constant magnitude may also be responsible

through providing a maximum bound on the driving force.

Focusing in more detail on the path taken in these simulations, it can

be seen more clearly when the number plotted is reduced in figure 4.4b, that the

variation in IS is not random, indeed it has a quasi-periodic form. The magnetic field

in these simulations is rapidly oscillating in a reoccurring pattern. Never remaining

in a state with a small IS for a significant amount of time and failing to converge

over long timescales toward a stable steady state.

(a) (b)

Figure 4.4: Graph showing the evolution of IS with time for the suite of mixed
symmetry, with (a) all 1000 different random initial conditions shown, (b) just 4
models with initial conditions plotted for clarity.

4.4.3 The evolution from a quasi-steady Taylor state

The apparent rarity, or even entire absence, of stable Taylor states for the general

mixed symmetry case motivates a more targeted approach than the simulations

with random initial conditions used in the previous section. This consists of firstly,

actively searching for ‘quasi-steady’ Taylor states, using an optimisation method

to hone in on the regions where local minima are, followed by using these found
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‘quasi-steady’ Taylor states as initial conditions in dynamical simulations to test

their stability.

The calculations of IS shown in figure 4.1 reveal many locations where the

fields are ‘quasi-steady’, and IS takes a small value within the parameter space of

varying just two coefficients explicitly. Since a Taylor state being ‘quasi-steady’

is a prerequisite for being a stable steady Taylor state, this highlights a number

of fields that are candidates and can be examined further. Dynamical simulations

carried out using the method of §4.2.2, evolving from these specifically chosen initial

conditions examines the long term stability of these fields. This should allow us to

either discover, such stable steady Taylor states, or more definitively rule out their

existence.

To improve generality, we wish to expand the domain being surveyed here,

therefore this is extended to allow direct variation in more coefficients. The Taylor

state construction method here is an extension to the method described in §4.3,

where the magnetic field components were as shown in equation (4.9). Here the

magnetic field has the constituent parts shown in equation (4.11). The poloidal

field is still fixed to that of the stable dipole symmetric solution reported in Li

et al. (2018), S0. However, no toroidal coefficients are taken from this solution

anymore, importantly removing any favouritism for producing a field similar to

that. The toroidal field is constructed by the m largest scale modes being assigned

a randomly chosen value from within the domain [−1, 1], and the rest of the toroidal

field determined through solving the linear system of Taylor’s constraints.

B =S0 + a1T 1 + a2T 2 + ...+ amT m + am+1(a1, a2, ..., am,S0)T m+1 + ...

+ an(a1, a2, ..., am,S0)T n. (4.11)

Here, it is the largest scale mode coefficients that are imposed and then the remain-

ing smaller scale modes which are determined through solving Taylor’s constraints.

This is the principle we have chosen throughout this chapter, which is directly imple-

mented in the expansion of equation (4.10), and even in the more complex situation

of the expansion used in equation (4.9), it is the reason why the the large scale T 1

and T 2 are imposed and the smaller scale T 3 solved for. The reasons for adopt-

ing this approach are twofold. Firstly, it broadens the diversity of fields within

our search space, as the large scale modes contain the bulk of the magnetic energy

in our converged energy spectrum, so independently varying these modes can lead

to substantially different fields. Secondly, we did experiment with the reverse ap-

proach and encountered numerical solvability difficulties, with the need for inverting

pseudo-singular matrices, this is thought to be due to a general issue with the po-
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tentially ill-posed nature of attempting to modify a small scale magnetic field into

a Taylor state through the addition of purely large scale modes.

The expansion (4.11) allows an m-dimensional space to be explored, as

opposed to the 2-dimensional space considered in §4.3. In addition, a more sophisti-

cated method for searching for minima in instantaneous IV is utilised. A neighbour-

hood algorithm optimisation (Sambridge, 1999) is implemented to more efficiently

locate the regions of small IV than our uniform grid evaluations described in §4.3.

The neighbourhood algorithm works as an optimisation scheme, seeking to minimise

IV . This method requires varying the spherical harmonic coefficients of B subject

to satisfying all of Taylor’s constraints. Hence the field remains on the manifold of

Taylor states at each point that IV is evaluated in pursuit of its minimisation. The

algorithm involves a random selection of p points being chosen, distributed through

the m-dimensional parameter space and then IV being evaluated at each location.

The domain is then divided up into p ‘Voronoi’ cells surrounding each point and the

q regions with the smallest values retained to be explored further through repeating

the process of evaluations of the objective function at new points obtained by a uni-

form random walk within each of these cells. This process is then iterated x times,

where p, q and x are input parameters suitably chosen to balance computational

time, global generality of minima, and accuracy of the precise minima locations.

The specific example reported here has a resolution defined by a maximum

degree of L = 10, N = 5; this means there are n = 50 degrees of freedom and

n −m = 18 Taylor constraints that need to be satisfied. Hence the coefficients of

the m = 32 largest scale modes are independently varied in search of minimising IV .

The Neighbourhood algorithm parameter values used to explore this 32-dimensional

space are: p = 20, q = 10, x = 5. This results in a number of different magnetic

fields, all of which correspond to local minima of IV . The selection of which of these

quasi-steady Taylor states are promising enough to test the stability of is chosen to

be those that fall below a threshold of 10−8 yrs−2. This results in 68 magnetic fields,

which are used as initial conditions in dynamical simulations.

Significantly we find that none of the quasi-steady Taylor states found are

in fact stable. Figure 4.5 shows the entire evolutionary path for a sample of two of

these quasi-steady Taylor state magnetic fields. The path consists of diverging from

the initial state before eventually converging to what is the known stable steady

Taylor state within dipole symmetry identified by Li et al. (2018).
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(a) (b)

Figure 4.5: The paths taken from two initial magnetic fields (coloured red and blue)
that are quasi-steady Taylor states. The fields diverge from the initial states (green
circles) before finally converging to the same stable steady Taylor state. (a) and (b)
show the same 3D plot viewed from a different angle.

4.4.4 The strength of the known symmetric solutions as at-

tractors

The stable steady Taylor states that we observe are few in number, just a single

case per symmetry, polarity and α-effect (only results with one single choice of α-

effect have been presented thus far, but different α-effects have also been explored,

as discussed in §4.4.5). It can be instructive to examine the attractiveness of these

states, for there are two obvious explanations as to why these states are so persis-

tently arrived at: either they are the only stable states or they are so dominantly

attractive that they prevent any other state from being found. The analysis of §4.4.1

strongly favours the former explanation, as these fields that have mixed symmetry

fail to converge to any stable state, despite the option of collapsing into a specific

symmetry class.

Here, we start with initial conditions that are small perturbations from the

known stable steady Taylor state solution within dipole symmetry (Li et al., 2018).

Perturbations which consist of a magnetic field that is either purely poloidal or

purely toroidal and has an opposite symmetry to the unperturbed field will provide

zero additional contribution to the Taylor integral. It is therefore guaranteed that

the resultant, perturbed magnetic field will also be a Taylor state. Here we make

a careful choice of modes in the perturbation such that we can take advantage of

this. This allows us to perturb the magnetic field by varying some specific modal

coefficients arbitrarily, independent of the rest, which hence can remain fixed. This
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is because the dipole symmetric field from the steady Taylor state found from the

dynamic code (as in Li et al. (2018)), which is used as the basic state, consists

purely of odd poloidal modes and even toroidal modes. Therefore the addition of

any odd toroidal modes, (which themselves are of quadruple symmetry), will have

zero impact on the Taylor interaction, due to the absence of any interaction with

the existing modes. Therefore this allows an entirely free choice of coefficients for

these modes while maintaining a Taylor state field. This approach does have the

drawback of a lack of true generality, but is a pragmatic approach which allows us to

arbitrarily vary these coefficients in a pre-determined fashion, without the existing

modes needing to vary. Therefore it provides a fair and transparent way to impose a

perturbation of a chosen magnitude. The perturbation magnitude is measured by δ,

defined as the magnitude of the imposed quadrupole field as a ratio to the original

dipole field. The perturbation is achieved through setting all the odd toroidal model

coefficients (which are otherwise zero in the stable steady Taylor state from Li et al.

(2018)) to take the same non-zero value.

The results of this analysis show that the threshold for a perturbed field

returning to the stable state is around δ = 10−2 − 10−3. For initial conditions with

δ > 10−2 then the field fails to converge, as was seen in §4.4.1. This suggests that the

transformation of collapsing to a specific symmetry class is an unfavoured scenario

within the dynamo model. Therefore, combined with the absence of any stable

Taylor states within the case of mixed symmetry then this suggests that general

dynamo models would not be expected to arrive at a stable Taylor state.

4.4.5 The dependence on the choice of α-effect

The arbitrary nature of the way that any α-effect is chosen can be considered a

little less satisfactory than we would desire. It is a valuable approach when study-

ing dynamos within simple and axisymmetric settings, but it remains difficult to

rigorously justify its applicability to the real geophysical situation of Earth’s core.

In order to ensure some generality in our results it is useful to explore varying both

the magnitude and the spatial structure of the α-effect to test the sensitivity with

respect to these.

Magnitude of α0

The analysis of §4.3 is repeated with a reduced strength of α-effect from α0 = 18,

to α0 = 16 (which remains above the critical value of α0 = 13.1). The equivalent
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plot as figure 4.1 is shown in figure 4.6, with the stable solution of Li et al. (2018)

at this new value of α0 = 16 indicated by as the red line.

(a) (b)

Figure 4.6: Surface plot of IS as a function of the L = 1, N = 1 and L = 1, N = 2
coefficients values. The vertical red line corresponds to the coefficent values of the
known stable steady solution of Li et al. (2018). The α-effect form (4.2) is used,
with an above critical magnitude of α0 = 16. (a) and (b) show the same 3D plot
viewed from a different angle.

Similarly, we repeat the dynamical simulations of §4.4.2, now with α0 = 16

but using the same random mixed symmetry initial conditions as figure 4.4. This

time we find that instead of remaining in a periodic state and failing to converge,

the fields do appear to converge to a steady state. In fact what we observe is the

convergence to the known solutions in dipole and quadrupole symmetry as reported

by Li et al. (2018). Therefore we have still failed to find any stable steady Taylor

state that has the complexity of a mixed dipole and quadrupole symmetry. The

difference for the case of α0 = 16 is merely that the strength of attraction of these

stable points appears stronger and therefore enables convergence from arbitrary

initial conditions, unlike for α0 = 18, where we found that in order for the system

to collapse to a symmetry class and hence find the stable point, the initial condition

was required to be sufficiently close.
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Figure 4.7: Normalised instantaneous rate of change of magnetic field on the core
surface, IS, with α0 = 16, for 60 different random initial conditions of mixed sym-
metry.

As α0 is increased further above critical (e.g. α0 = 25), these strongly

forced models result in a rapidly growing magnetic field energy. This results in nu-

merical stability difficulties in our simulations, due to the large and rapidly growing

magnetic field. This effect may be confined to the axisymmetric problem we are

studying, as found by Fearn and Rahman (2004). They report that in the full three-

dimensional problem non-linear interaction limits the field strength overcoming this

issue.

In summary what we observe is no fundamental change in the conclusions

of abundance of ‘quasi-steady’ Taylor states, but a scarcity of stable steady Taylor

states (and a complete absence in mixed symmetry). The difference discerned is

merely that less strongly driven models allow magnetic fields to more easily collapse

into dipole/quadrupole symmetry and hence converge to these specific stable steady

states from a wider range of initial conditions.

Structure of the α-effect

Alternative structures of the α-effect are also considered and the same simulations

beginning with mixed symmetry initial conditions conducted. The forms used are

the following

α = α0

√
7

3

334

48
r3(1− r2)2 cos(3θ),

and

α = α0 cos(θ),
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which are normalised by the maximum value such that max|α| = α0. This helps to

allow a fair comparison, although note that this does not require the critical value

of α0 to be the same. It has been calculated that the critical value takes the slightly

smaller value of α0 = 12.5 (Li et al., 2018) for the former and α0 = 13.1 (Fearn and

Rahman, 2004) for the latter (the same as for the form of equation (4.2)).

Qualitatively similar results are observed for all α-effect structures, we

observe four types of behaviour dependent of the magnitude of α0: at values of α0

below critical, dynamo action fails and the field decay via magnetic diffusion; slightly

above critical our models converge toward one of two stable states, of either dipole

or quadrupole symmetry; more strongly forced models have continually and rapidly

varying rates of change and fail to converge to a stable state (as shown in figure 4.4);

while significantly super-critical values of α0 lead to a divergent magnetic field rate

of change toward very large magnetic field energies.

4.5 Comparison to observational models

Earth’s magnetic field is itself not entirely static, but is evolving on a range of

timescales. While features such as the longstanding dominance of the axially sym-

metric dipolar component of the field appear stable, there are many fluctuations in

the geomagnetic field.

In order to assess the Earth-like credentials of a Taylor state magnetic field,

we need to compare to the secular variation of the Earth’s magnetic field over the

same magnetostrophic timescale.

We calculate the CMB averaged rate of change of magnetic field according

to the CHAOS-6 model, at epoch 2015, itself based on satellite and ground-based

data (Finlay et al., 2016) to be 2.4×10−4 yrs−2. This is notably larger than many of

the results we present. However, this is to be expected, due to short time scale secu-

lar variation dominating the observational signal. These fast dynamics are explicitly

excluded from our magnetostrophic model that neglects inertia and viscosity, so this

value is more representative of the perturbations to a Taylor state, as opposed to

the background evolution of the state itself.

Archaeomagnetic data allow us to estimate the Earth’s magnetic field over

the long timescales necessary to be compatible with a Taylor state. Using the

GGF100k model (Panovska et al., 2018) we can calculate the secular variation of the

Earth’s magnetic field throughout the previous 100,000 years, with a yearly temporal
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resolution. This allow us to calculate
∂B

∂t
and hence the normalised measure of the

rate of change of magnetic field on the CMB surface, IS, as a function of time. This

useful geophysical benchmark, which allows a comparison of the normalised rate of

change of our Taylor state magnetic fields is plotted in figure 4.8,

Figure 4.8: Plot of IS over the last 100,000 years for CMB field data from the
GGF100k model (Panovska et al., 2018).

4.5.1 Comparison to other numerical dynamo simulations

Numerical dynamo simulations also provide a useful source of data for comparison.

We use data from simulations run by Julien Aubert, using the dynamo code Aubert

et al. (2017) at a range of parameters (shared via personal communication). These

results from simulations carried out at E = 3× 10−5 and E = 3× 10−10 are shown

in figure 4.9; we note that they are not sensitive to the choice of parameter values

as they are modified along the ‘path’ towards the Earth defined by Aubert et al.

(2017), with the position along this path indicated by the parameter ε and Earth’s

core believed to be located at ε = 10−7.

Our dynamo simulations are all constrained to axisymmetry, due to the

current capability of the model. The geomagnetic observational model of GGF100k

is truncated at degree 10 as a result of observational limitations and uncertainties.

Therefore in figure 4.10 we restrict ourselves to both these limiting factors and make

a direct comparison of all three data sets for the axisymmetric component of the

magnetic field in degrees up to 10.

Figure 4.10 shows that the range of values of IS from observational models,

and other numerical geodynamo models that include viscosity and inertia, lie within

that of our model. This suggests that arguably, our magnetostrophic dynamo model

is consistent with representing the dynamo operating in Earth’s core. However, we

do also note, the apparent greater variability in the rate of change of magnetic field
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(a) (b)

Figure 4.9: Plot of IS for core surface field data from Aubert’s simulation (a) at
ε = 1 (E = 3× 10−5), (b) at ε = 1× 10−5 (E = 3× 10−10).

(a) (b)

Figure 4.10: Plot of IS for the core surface field (a) comparing the axisymmetric, de-
gree 10 truncated data from Aubert’s simulation at ε = 1 (black) with the GGF100k
data (blue) and in (b) with our simulation results (§4.4.2) too.

in the magnetostrophic system. The significance of this, and potential reasons for

it, are discussed in more detail in the following section.

4.6 Discussion

It has been previously shown that there is a large space of magnetic fields that exactly

satisfy Taylor’s constraint (§6.4, Livermore et al. (2009)). However, these theoreti-

cally derived snapshots are free from physical considerations and can be inconsistent

with features of Earth’s magnetic field and geodynamo production mechanism. A

magnetic field can be made to satisfy all criteria at a snapshot in time but the
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broader question of dynamical self-consistency is more challenging. Will the flows

driven by this field, in turn modify the field into an unphysical state, irreconcilable

with geomagnetic observations? Here we have addressed this question in our study

of the dynamics of Taylor states.

Firstly, we have been able to show that there exists a large space of Taylor

states with a rate of change of the core surface field IS that is comparable to models

derived from geomagnetic observations at the Earth’s CMB. The approximate value

of 10−7 yrs−2 shown in figure 4.8 can be easily achieved as an instantaneous rate of

change as illustrated in figure 4.1.

Secondly, we find that stable steady Taylor states are very rare. Within

specific imposed symmetries of either dipole or quadrupole, only a single stable state

is found. While in the more general and physically relevant situation, without any

symmetrical restrictions then our extensive search for any stable states is fruitless.

This suggests that it may be the case that no stable steady Taylor states with a

mixed symmetry exist.

Of course despite using a wide range of initial conditions, across a range

of spatial scales, we can not rule out the possibility that some stable Taylor states

do exist, but that they are merely not sufficiently strong attractors to be arrived at.

Also, we emphasise that all our calculations are restricted to axisymmetry, the full

three-dimensional setting should also be considered, to investigate whether it yields

different results.

If however, this absence of any stable steady Taylor states is confirmed it

poses serious challenges for magnetostrophic dynamo models that seek to realistically

replicate the evolution of the geomagnetic field. These idealised models may be

hampered by often resulting in a larger rate of change of magnetic field than that

which is observed for the Earth. This contrasts to traditional dynamo models that

include inertial and viscous effects, which are able to produce magnetic fields that

remain consistent with geomagnetic observations, as shown in figure 4.10.

The more extreme rate of field changes experienced in our simplified mod-

els, with both periods of relatively large IS and brief periods of very small IS (quasi-

steady points), could be due to the complex impact of the combination of effects

excluded. Inertia often acts as a restoring force, acting on short timescales and

causing a rapid response to perturbations in the system. For example, it permits

torsional waves, as discussed in §2.7, which act to re-establish the unperturbed

state. In the absence of this correction mechanism, deviations from the long term

equilibrium state do not result in a large rate of change B, but rather, may be ex-
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pected to persist, with the perturbations then only slowly suppressed on the longer

magnetostrophic timescale. Viscosity causes diffusion of all pronounced features in

the fluid, this diffusive effect acts to damp out extreme characteristics and poten-

tially hinder substantial variation. Therefore inviscid models such as ours, might

be expected to contain faster and more extreme variations. The mean field α-effect

used to provide the driving force for our axisymmetric dynamos, acts as a non-ideal

proxy for buoyancy. It results in a linear interaction and a non-adaptive buoyancy

force. Solving the full temperature equation equation (1.11) within a coupled system

would facilitate more complex non-linear interactions with direct system feedback.

Alternatively, as a more direct and simple extension to our model, buoyancy non-

linearities can also be introduced through α-quenching. Where the value of α is

no longer fixed but allowed to evolve subject to the magnetic feedback leading to

deformation of the turbulence (Rüdiger and Kichatinov, 1993). The addition of a

quenching of the α-effect, is of course a non-ideal way of truly representing this

physical phenomenon, as the actual form may be more sophisticated than the cho-

sen model. However, the inclusion of a simple algebraic form, such as α = α0

1+B2/B2
0

of Moss et al. (2008), where B0 is the equipartition field strength, would allow an

initial study into any stabilising effect.

The stability of mean field dynamos has been previously examined within

finite viscosity models. Fearn and Rahman (2004) study the α2-dynamo model

at (relatively large) finite Ekman numbers of 3.5 − 4 × 10−4 and compare the be-

haviour within a three-dimensional non-axisymmetric nonlinear system and the two-

dimensional axisymmetry case. They report very different behaviour in these two

situations, in the axisymmetric case the magnetic energy grows quickly as the forc-

ing α0 is increased (for values above critical). This agrees with our findings in §4.4.5

that axisymmetric and strongly forced models result in very strong magnetic fields

that become increasingly computationally expensive and less physically relevant.

Whereas the non-linear interaction between the field and the flow driven by the

Lorentz force in the three-dimensional case more representative of the geodynamo,

results in an instability that constrains the strength of the magnetic field generated.

Therefore caution is required when interpreting axisymmetric studies such as ours

in the context of the three-dimensional geomagnetic field.

The variability of stability as a function of Ekman number has been studied

by Hollerbach and Ierley (1991), who have investigated the asymptotically small

limit of viscosity in an α2-dynamo model. For all α-effects considered their solutions

do approach a Taylor state in this limit. However, the manner of the transition from

the viscous to inviscid regime does vary. The formal limit E → 0 is seen to not

always be well behaved, sometimes requiring a discontinuous jump. The subsequent
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inviscid equilibration does however result in a stable field that is either steady or

oscillatory.

There have been many suggestions of a marked difference in the fluid be-

haviour in magnetostrophic and finitely viscous models (McLean et al., 1999). While

not definitively proven, the plausible intuition remains that the dynamo is particu-

larly unstable as E → 0 (Zhang and Gubbins, 2000), as in the absence of viscous

damping to suppress evolution stable states are less likely to be sustained. Insta-

bility can arise due to dynamo action being extremely sensitive to the vigour of

convection by which it is driven (the difference between the Rayleigh number and

its critical value). Zhang and Gubbins (2000) showed that at small Ekman numbers

then the critical Rayleigh number is increasingly sensitive to the poloidal magnetic

field. Therefore small fluctuations in the magnetic field will directly lead to rapid

variations in the strength of convection and significantly alter the progression of

the dynamo. The nature of the Earth’s core being at an unattainable value of

E = 10−15 therefore makes it very challenging to accurately model the stability of

the geodynamo. While magnetostrophic models (at E = 0) may be over-sensitive

to instabilities, all present finite viscosity (E > 10−9) models have the opposing

problem of inherently being more stable that the geodynamo itself.
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Chapter 5

Stratified layer at the top of

Earth’s core

5.1 Stratification in outermost part of core

The question of whether or not the fluid at the top of Earth’s liquid outer core is

stratified, either compositionally or thermally, has long been debated (Whaler, 1980;

Braginsky, 1967, 1987; Hardy and Wong, 2019; Gubbins, 2007). In this chapter we

discuss the range of evidence on this topic. It is useful for us to explore this in

detail before proceeding with constructing a representative model of Earth’s core in

Chapter 6.

Seismic body wave measurements have provided a key strand of evidence

for the non-uniform nature of Earth’s outer core. Any perturbation in the estimated

velocity of detected waves is suggestive of a different density and/or elasticity. It has

been noted that within the region immediately beneath the CMB wave velocities

appear smaller than in the rest of the core, indicative of a layer compositionally

distinct from the bulk.

These observations rely on a specific type of waves, known as SmKS waves

which propagate as a S wave in the mantle and as a P wave in the liquid core. The

discontinuity at the CMB, which has a density jump of 4.3× 103 kg m−3 causes this

SmKS wave to undergo m − 1 reflections at the underside of the CMB (as many

as five reflections have been observed) as shown in figure 5.1. The significance of

this is that it means the majority of the travel time of this wave is spent in the

outermost part of the core and so the SmKS wave allows investigation of this layer
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to determine stratification.

A large number of studies have observed this deviation in the travel times of

SmKS waves, which pass through this layer several times, as they undergo multiple

reflections at the CMB, with waves that undergo more reflections spending more

time closer to the CMB, as illustrated in figure 5.1.

Many independent analyses of the travel times of various SmKS waves

have led to estimates of a stratified layer at the top of the outer core, in which wave

velocities are lower, of thickness approximately 200 km (Helffrich and Kaneshima,

2013; Lay and Young, 1990) to 300 km (Helffrich and Kaneshima, 2010), with some

are as large as 800 km (Kaneshima, 2018; Souriau and Poupinet, 1991).

Figure 5.1: (a) Ray paths for SmKS (2 ≤ m ≤ 6) for a source (star) 550 km deep to
a station (triangle) at 155. (b) Core legs of ray path. As multiples in core increase,
bottoming depth in core decreases. S6KS bottoms at 60km below the CMB, whereas
S2KS bottoms 700 km below the CMB (Helffrich and Kaneshima, 2013) .

However, as the large discrepancy in estimated layer depths suggests, this

evidence is far from conclusive. There remains uncertainty due to poor knowledge

of the properties of liquid iron alloys at the extreme pressures and temperatures

that exist in the Earth’s core. Also, while a perturbation in velocity is expected

within a layer of differing composition, the sign of the observed change is counter-

intuitive. The velocity measured is lower than the rest of the core, which is the

opposite to what we might expect if the density is smaller, since wave velocity is

inversely proportional to the square root of density. This is of course problematic
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and not well understood.

It is possible that the elastic properties of liquid mixtures can behave non-

intuitively on account of mixing non-ideality. Helffrich (2012) finds that under cer-

tain conditions this can result in scenarios where wave speeds in liquids decrease as

more of a ‘faster’ component is added. Theoretically this means that the assumption

of a linear variation of wave speed with concentration is generally invalid, but the

high temperature, high pressure, conditions in Earth’s core would be expected to

inhibit any non-ideal mixing. Brodholt and Badro (2017) estimate the composition

required to explain seismic observations at the top of the core. When considering

the conditions present at the CMB, they find that increasing the concentration of

any light elements always increases velocity and so a low-velocity and low-density

layer cannot be made by simply increasing light element concentration. While a

low-velocity and low-density layer could exist at the top of Earth’s core, this would

require a delicate combination of an increase in the concentration of some light ele-

ments and a relative decrease in others.

The difficulty in explaining the conclusions drawn from seismological ob-

servations, may lead one to question their validity. There are inherent difficulties

in inverting seismic wave travel times to determine wave velocities within this re-

mote and relatively shallow region. In fact some argue that the velocities estimated

agree with the well mixed model of PREM to within the observational uncertainties.

Alexandrakis and Eaton (2010) claim that there is insufficient evidence to suggest

that an anomalous layer exists at the top of the core. Also, the latest results for the

elastic parameters of the outer core from Irving et al. (2018), predict a steeper wave

velocity gradient with depth in the core, which enables SmKS wave travel times to

be explained without requiring an anomalously slow layer at the top of the core.

Hence, while the majority of current seismic evidence is in favour of this stratified

layer, unequivocal evidence does not exist.

5.1.1 Formation

Various mechanisms have been suggested to explain why the upper reaches of the

core could have become stably stratified, either compositionally or thermally. A

buoyant compositional layer could form through the accumulation of light elements

underneath the CMB. There are many possible theories for how a higher proportion

of lighter elements could end up in this region. Light material could be diffused

inwards across the CMB or created due to chemical reaction with the mantle (Jean-
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loz, 1990; Buffett and Seagle, 2010). Alternatively light elements could enter from

below by the process of barodiffusion (the tendency of light elements to diffuse along

a pressure gradient) after being either expelled outwards from the freezing inner core

(Braginsky, 2006; Bouffard et al., 2019), or precipitated out of the bulk of the outer

core mixture (Gubbins and Davies, 2013). However, barodiffusion alone can not be

solely responsible as this would result in a high-velocity, low-density layer, rather

than the low-velocity, low-density layer observed. Additionally, due to inadequate

knowledge of the early Earth, we can not rule out the possibility of inheritance. Per-

haps the stratified layer is a remnant of the early Earth, as a result of incomplete

mixing in the core following an impactor. This possibility was recently explored in

depth by Landeau et al. (2016). A compositionally stratified layer would be stable

to convection penetrating from fluid below (Buffett and Seagle, 2010) and would

grow at the rate determined by the ratio of the net supply of light elements and any

entrainment from the bulk.

Lastly, thermal heterogeneity can arise even in the absence of chemical or

boundary effects. If current estimates of the thermal conductivity of iron (which

are significantly larger than previously thought) are correct (Pozzo et al., 2012),

then this results in an adiabatic heat flux at the CMB which is higher than most

estimates based on mantle convection models. This creates sub-adiabatic conditions

at the top of the core, meaning a thermally stratified layer must exist. The complex

interaction of both thermal and chemical effects may be important in the formation

of this layer, as highlighted by Davies et al. (2015), and incorporated in the recent

thermo-chemical model by Nakagawa (2018).

5.2 The effect of a stratified layer on the observed

geomagnetic field

In this section we consider the effect that the presence of a stratified layer at the

top of the core may have on the observed geomagnetic field. There are two distinct

key effects: the impact as a passive, diffusive filter of the observed surface magnetic

field, and the active role of modifying the boundary effects for the dynamo region.

A stratified layer at the top of the core may affect the magnetic field signal

we observe as it would provide a physical separation between the region in which

the dynamo action produces the field and the location at which observational data

is known (the CMB). This layer would place the convective region further from the
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surface and act as a diffusive spatial filter of the magnetic field signal, enhancing the

ratio of the dipole component to smaller-scale components in the surface magnetic

field. This means that, although the dominantly dipolar nature of Earth’s field

is clearly intrinsic to the dynamo mechanism, a stratified layer would magnify its

observed preeminence.

In terms of using observations of the changing internal geomagnetic field

as a window on the dynamics within the core, the existence of a stratified layer is

crucial because motion confined to the stratified layer such as waves may have a

pronounced geomagnetic signature, which may be falsely interpreted as emanating

from the large-scale dynamo process ongoing beneath.

This is important for modelling core dynamics because observational mea-

surements of the Earth’s magnetic field are downward continued to the CMB, and

this is interpreted as the magnetic field at the outer edge of the convective region

generating the dynamo action. However, the presence of a stratified layer below

the CMB means this may differ from the field in the convective region, raising the

question of whether the effects of any CMB heterogeneity, whether topographical,

electromagnetic or thermal, would directly translate through the stratified layer,

or be damped? Such a layer may disconnect the Ekman boundary layer from the

free-stream flow, leading to a partial or even full suppression of the boundary-driven

zonal flow, due to a competition between stratification and boundary forcing that

results from heterogeneous outer boundary conditions (Cox et al., 2019).

5.2.1 Compatibility of a stratified layer with geomagnetic

simulations and observations

A key approach to understanding the observational signature of a stratified layer is

by numerical simulation of a stratified geodynamo model (Nakagawa, 2011). Models

of outer core dynamics have demonstrated that dynamo action can be sensitive to

variations in the assumed background state of a fully convective outer core, and

that the presence of stably stratified layers can significantly alter the dynamics and

morphology of the resultant magnetic field (Glane and Buffett, 2018; Christensen,

2018; Olson et al., 2018). Hence comparisons between the magnetic fields from strat-

ified models with the geomagnetic field can be used to infer compatibility with the

presence of a stratified layer. This has been used to constrain the possible thickness

of a stratified layer such that it is consistent with geomagnetic observations. Yan
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and Stanley (2018) find that unstratified dynamo simulations significantly under-

predict the octupolar component of the geomagnetic field. Their model endorses

the presence of a thin stably stratified layer, as the resultant magnetic field can be

rendered Earth-like by the inclusion of 60-130 km layer. However, the results are

rather sensitive to both the strength of stratification and layer depth, with a thicker

layer of 350 km resulting in an incompatible octupole field. Similarly Olson et al.

(2017) find that stratified model results compare favorably with the time-averaged

geomagnetic field for partial stratification in a thin layer of less than 400 km, but

unfavorably for stratification in a thick 1000 km layer beneath the CMB.

Additionally, in terms of dynamics, a stratified layer at the top of the liquid

core behaves differently; it supports distinct waves that in principle are observation-

ally visible. One such class are magnetostrophic (MAC) waves, which arise from the

interplay between magnetic, buoyancy (Archimedean) and Coriolis forces, whose

equilibrium forms the dominant balance in Earth’s core. These waves typically have

a timescale of 104 − 105 years in the absence of a stratified layer. However, due

to the dynamics within stratified fluids, principally the suppressed radial motion, a

different suite of waves are supported, which means that if a stably stratified layer

exists at the top of the outer core it would introduce MAC waves of much shorter

timescales (Braginsky, 1993). Buffett (2014) modelled these waves and appears to

confirm Braginsky’s idea by finding MAC waves with a period of 60 years. This is

consistent with observations of secular variation in the geomagnetic field that have

identified periodic fluctuations on a period of 60 years (Roberts et al., 2007). This

adds to the weight of evidence that the top of the fluid core is stably stratified and

reveals an effect that this has on the magnetic field. The model of Buffett et al.

(2016) suggests that MAC waves underneath the CMB are also able to account for

a significant part of the fluctuations in length of day (LOD) (Gross, 2001; Holme

and De Viron, 2005) through explaining the dipole variation, but are contingent on

the existence of a stratified layer at the top of the core with a thickness of at least

100 km.

However, despite the evidence for the presence of this stratified layer out-

lined above, there is still no consensus on its existence. Not all stratified dynamo

model results champion this scenario for the Earth. It has been found that the in-

clusion of a thin stable layer in numerical models can act to destabilise the dynamo,

through generating a thermal wind which creates a different differential rotation pat-

tern in the core (Stanley and Mohammadi, 2008), also the magnetic field structure

is seen to differ due to the suppression of non-axisymmetric magnetic field com-

ponents (Christensen and Wicht, 2008). This apparent contradiction, with many

distinctive features of the observed geomagnetic field not reproduced in stratified
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models, remains significant and troublesome to resolve. Geomagnetic observations

find strong local variations in magnetic field strength, called reverse flux patches,

where the magnetic field in a small region has opposite polarity to the dominant

polarity in that hemisphere. These regions grow or shrink and move location with

time. This secular variation can only be explained by radial flows close beneath the

CMB, which are accelerated locally or by very strong poloidal field gradients (Gub-

bins, 2007). However, radial flows are not expected to exist in stratified layers, so

it is difficult to explain the geomagnetic observations if a stratified layer does exist

at the top of the core. Strongly stratified dynamo models result in magnetic fields

without any such reverse flux patches (Mound et al., 2019; Christensen and Wicht,

2008). Gubbins (2007) shows that the toroidal flux expulsion associated with the

observed secular variation of flux patches requires vertical flow within 100 km of the

core surface in the absence of steep poloidal field gradients immediately beneath the

CMB, for which no convincing justification has been made. This suggests an upper

limit on the thickness of this layer, at least in the regions where reverse flux patches

exist.

Overall, observational geomagnetism has offered equivocal evidence for

stratified layers. Time dependent observational models can be explained by sim-

ple core flow structures on the core-mantle boundary (CMB) which have either no

layer (Holme, 2015; Amit, 2014) (upwelling at the CMB is permitted), or a strongly

stratified layer (in which all radial motion is suppressed) (Lesur et al., 2015). Lesur

et al. (2015) examined whether it is possible to produce the observed secular vari-

ation, from a large scale purely toroidal flow, permissible within a stratified layer.

They found that in this idealised case of pure toroidal flow and no diffusion it is not

possible to fit the CHAMP satellite data, but including a small amount of poloidal

flow allows models that accurately describe secular variation observations. In real-

ity, within Earth’s core, although stratification may be strong, it would not entirely

prevent all poloidal flow, so it is not possible to conclude that secular variation

observations violate the hypothesis that the outermost part of the core is stably

stratified.

The existence of this stratified layer remains very much still an open ques-

tion, as reconciling geomagnetic observations with seismological evidence has proved

extremely challenging. One alternative hypothesis is the possibility of a non-global

stratified layer, which instead of spanning the whole CMB, leaves space for regions

of active radial flows (Mound et al., 2019). While more research is required, this

plausibility of a stratified layer being present at the top of Earth’s core motivates

the work of Chapter 6, where we examine how the magnetic field may be expected

to differ within such a layer.
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Chapter 6

Constraints on the magnetic field

within a stratified outer core

6.1 Introduction

Mounting evidence from both seismology and numerical experiments on core compo-

sition suggests the existence of a layer of stably stratified fluid at the top of Earth’s

outer core (as summarised in the previous chapter). In such a layer, radial fluid

motion is suppressed and importantly this provides a condition on the flow, which

in turn limits the space of possible magnetic fields. In this chapter we consider how

this can be combined with the existing constraints on the magnetic field structure

for dynamo action within a magnetostrophic force balance.

The previously derived (2.7) Taylor constraint

T (s, t) ≡
∫

C(s)

((∇×B)×B)φ sdφdz = 0, (6.1)

applies in the general case for fluids independent of stratification. It was first shown

by Malkus (1979) how this can be refined within a stratified layer of constant depth,

which in the limit of zero radial flow leads to a more strict constraint. This constraint

now applies on every axisymmetric ring coaxial with the rotation axis that lies within

the layer (see figure 6.1b) and is known as the Malkus constraint

M(s, z, t) ≡
∫ 2π

0

((∇×B)×B)φ dφ = 0,

for any s and z within the layer; thus for the stratified case a single Taylor constraint
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on a cylinder transforms into an infinite number of Malkus constraints. A full

derivation of this constraint is given in the following section §6.2. Magnetic fields

that satisfy the Taylor or Malkus constraints respectively are termed Taylor or

Malkus states.

In this chapter we consider from a theoretical standpoint the structure of

the geomagnetic field within any such strongly stratified layer and we explore the

use of both the Taylor and Malkus constraints as a tool for probing instantaneous

structures of the magnetic field throughout Earth’s core. This method ignores any

dynamics and asks simply whether we can find a set of magnetic fields which satisfy

the necessary constraints.

Our task is a challenging one: even finding magnetic fields that exactly

satisfy the comparatively simple case of Taylor’s constraint has proven to be dif-

ficult in the 55 years since the seminal paper of Taylor (1963), although notable

progress has been made in axisymmetry (Hollerbach and Ierley, 1991; Soward and

Jones, 1983) and in 3D (Jault and Cardin, 1999) subject to imposing a specific sym-

metry. Recently, significant progress has been made in this regard by presenting

a more general understanding of the mathematical structure of Taylor’s constraint

in three dimensions (Livermore et al., 2008). This method was implemented by

Livermore et al. (2009) to construct simple, large scale magnetic fields compatible

with geomagnetic observations. It is this which provides the foundation for the work

presented here.

While exploring the theoretical implications of the Malkus constraints, we

will aim to address the following objectives:

1. Do exact or approximate Malkus states exist? It is not a priori obvious

whether or not there are enough degrees of freedom within any magnetic field

to satisfy all required constraints.

2. Does any snapshot of the geomagnetic field convey information about whether

there is a strongly stratified layer at the top of the core?

3. What might be the present-day internal structure of the geomagnetic field

inside a stratified layer?

The remainder of this chapter is structured as follows. In §6.2 we present a

new, more general derivation of the condition required to be satisfied with a stratified

layer of fluid, which under an idealised limit reduces to what is known as Malkus’

constraint. In sections 6.3 to 6.5 we summarise a method for constructing Malkus
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states, applying it to a snapshot of the present day field in sections 6.6 and 6.7; we

conclude in §6.8.

6.2 Derivation of Malkus’ constraint

Within stably stratified fluids radial flows are suppressed, hence in the limit of strong

stratification radial fluid velocities are negligibly small (Braginsky, 1999; Davies

et al., 2015). We proceed within this idealised limit and require that ur = 0 within

a region of stratified fluid that is a volume of revolution: we represent the proposed

stratified layer within Earth’s core as a spherically symmetric layer of constant

depth. We assume further that the system is in magnetostrophic balance; that is,

rapidly rotating with negligible inertia and viscosity. The resulting constraint was

first derived by Malkus (1979), however, here we present an alternative and more

straightforward derivation courtesy of Dominique Jault (personal communication).

We use the condition for incompressible flow that ∇ · u = 0 and the

standard toroidal poloidal decomposition within spherical coordinates (r, θ, φ). From

the condition that there is no spherically-radial component of velocity then u must

be purely toroidal and hence can be written as

u =∇× (T (r, θ, φ)r̂) =
1

r sin θ

∂T
∂φ
θ̂ − 1

r

∂T
∂θ
φ̂.

Therefore the cylindrically-radial velocity, written in spherical coordinates, is

us = sin θur + cos θuθ =
cos θ

r sin θ

∂T
∂φ

and so ∫ 2π

0

us dφ =
cos θ

r sin θ

∫ 2π

0

∂T
∂φ

dφ = 0.

Now, since φ̂ · (ẑ × u) = us then, from the azimuthal component of the magne-

tostrophic equation (2.2) we have

2us = −∂p
′

∂φ
+ ((∇×B)×B)φ.

Integrating in φ around any circle of constant (s, z) , as illustrated by the red rings in

figure 6.1b, and using the single-valued nature of pressure, gives Malkus’ constraint,
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2

∫ 2π

0

us dφ

︸ ︷︷ ︸
=0

= −
∫ 2π

0

∂p′

∂φ
dφ

︸ ︷︷ ︸
=0

+

∫ 2π

0

((∇×B)×B)φ dφ = 0,

or equivalently requiring that the Malkus integral M is zero:

M(s, z, t) ≡
∫ 2π

0

((∇×B)×B)φ dφ = 0. (6.2)

We are also able to generalise this constraint from considering the idealised

limit of requiring ur = 0 within the stratified fluid to the more general situation of

permitting ur 6= 0, where we express the Malkus integral in terms of the radial flow.

Now, the flow u is no longer purely toroidal and hence

M(s, z, t) = 2

∫ 2π

0

us dφ =

∫ 2π

0

2uθ cos θdφ+

∫ 2π

0

2ur sin θ dφ. (6.3)

We now use the condition for incompressible flow that ∇ · u = 0,

0 =∇ · u =
1

r2

∂(r2ur)

∂r
+

1

r sin θ

∂(uθ sin θ)

∂θ
+

1

r sin θ

∂uφ
∂φ

⇒
∫ 2π

0

(
sin θ

r

∂(r2ur)

∂r
+
∂(uθ sin θ)

∂θ

)
dφ = −

∫ 2π

0

∂uφ
∂φ

dφ = 0.

Now integrating over [0, θ] we find

∫ 2π

0

uθdφ =
1

sin θ

∫ θ

0

sin θ′

r

∫ 2π

0

∂(r2ur)

∂r
dφdθ′

= − 1

r sin θ

∫ θ

0

sin θ′
∂

∂r

(
r2

∫ 2π

0

urdφ

)
dθ′

⇒M = − 2

r tan θ

∫ θ

0

∂

∂r

(
r2

∫ 2π

0

ur sin θ′dφ

)
dθ′ +

∫ 2π

0

2ur sin θ dφ.

In the above derivation, no assumption has been made about stratification

and this equation holds as an identity in the magnetostrophic regime independent

of stratification. In the case considered by Malkus, M = 0 is recovered in the limit

of ur → 0.

It is clear that Malkus’ constraint is similar to Taylor’s constraint except

now not only does the azimuthal component of the Lorentz force need to have zero
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average over fluid cylinders, it needs to be zero for the infinite set of constant-z

slices of these cylinders (here termed Malkus rings, see figure 6.1b) that lie within

the stratified region. In terms of the flow, the increased restriction of the Malkus

constraint arises because it requires zero azimuthally-averaged us at any given value

of z, whereas Taylor’s constraint requires only that the cylindrically averaged us

vanishes and allows outward flow at a given height to be compensated by inward

flow at another. We note that all Malkus states are Taylor states, but the converse

is not true.

(a) (b)

Figure 6.1: (a) Earth-like spherical shell with radius rSL = 0.9R. A Malkus state
defined in a stratified layer surrounds an interior Taylor state. (b) Geometry of
constraint surfaces.

6.3 Geometry and representation of a stratified

magnetostrophic model

The physical motivation for applying Malkus’ constraint arises from seeking to find a

realistic model for the magnetic field in the proposed stratified layer within Earth’s

outer core. Hence we compute solutions for the magnetic field in the Earth-like

configuration illustrated in figure 6.1a, consisting of a spherical region in which

Taylor’s constraint applies, representing the inner convective region of Earth’s core,

surrounded by a spherical shell in which Malkus’ constraint applies, representing the

stratified layer immediately beneath the CMB. Our method allows a free choice of

inner radius rSL; in order to agree with the bulk of seismic evidence (Helffrich and

Kaneshima, 2010, 2013; Lay and Young, 1990), the value rSL = 0.9R is chosen for

the majority of our solutions, where R is the full radius of the core (3845 km). How-

ever due to the uncertainty which exists for the thickness of Earth’s stratified layer

(Kaneshima, 2018), we also probe how sensitive our results are to layer thickness,

considering rSL = 0.5R, 0.85R, 0.95R, 0.99R and 0.999R as well. The Earth’s inner

core is neglected throughout, since incorporating it would lead to additional intrica-
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cies due to the cylindrical nature of Taylor’s constraint which leads to a distinction

between regions inside and outside the tangent cylinder (Livermore and Hollerbach,

2012; Livermore et al., 2008; Roberts and Wu, 2020). Since the focus here is on the

outermost reaches of the core, we avoid such complications.

The method used to construct the total solution for the magnetic field

throughout Earth’s core that is consistent with the Taylor and Malkus constraints

is sequential. Firstly, we use a regular representation of the form shown in equa-

tion (6.6) to construct a Malkus state in the stratified layer. Secondly, we construct

a Taylor state which matches to the Malkus state at r = rSL; overall the magnetic

field is continuous but may have discontinuous derivatives on r = rSL. We note that

any flow driven by this magnetic field through the magnetostrophic balance may

also be discontinuous at r = rSL because in general ur 6= 0 in the inner region but

ur = 0 is assumed in the stratified region. In a fully consistent model, where all the

fluid velocities associated with the magnetic fields are determined, it would be ap-

propriate for one to require that ur = 0 at the interface and therefore that the radial

velocity in the inner region smoothly tends towards zero at the boundary. However,

considerations of such dynamics lie outside the scope of the present study focussed

only on the magnetic constraints, but imposing continuity of ur for example would

clearly require additional constraints.

As a pedagogical exercise we also construct some Malkus states within a

fully stratified sphere (rSL = 0), as detailed in appendix B. Without the compli-

cations of matching to a Taylor state, the equations take a simpler form and we

present some first examples in appendix B. Dynamically, sustenance of a magnetic

field within a fully stratified sphere is ruled out by the theory of Busse (1975), which

provides a strictly positive lower bound for the radial flow as a condition on the ex-

istence of a dynamo. Nonetheless it can be insightful to first consider the full sphere

case, as it facilitates the consideration of fundamental principles of the magnetic

field and Malkus constraint structure, and allows direct comparisons to be made

with similar full sphere Taylor states.

In what follows we represent a magnetic field by a sum of toroidal and

poloidal modes (as introduced in §3.2) with specific coefficients

B =
Lmax∑

l=1

l∑

m=−l

Nmax∑

n=1

aml,nT m
l,n + bml,nSml,n (6.4)

where T m
l,n = ∇ × (Tl,n(r)Y m

l r̂), Sml,n = ∇ ×∇ × (Sl,n(r)Y m
l r̂), Nmax is the radial

truncation of the poloidal and toroidal field. In the above, Y m
l is a spherical harmonic
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of degree l and order m, normalised to unity by its squared integral over solid angle.

Positive or negative values of m indicate respectively a cosmφ or sinmφ dependence

in azimuth. The scalar functions Tl,n and Sl,n, n ≥ 1, are respectively chosen to be

the functions χl,n and ψl,n composed of Jacobi polynomials (Li et al., 2010, 2011).

They are orthogonal, and obey regularity conditions at the origin and the electrically

insulating boundary condition at r = R (derived in appendix C.4)

dSml
dr

+ lSml /R = T ml = 0. (6.5)

We note that this description is convenient but incomplete when used within the

spherical shell, for which the magnetic field does not need to obey regularity at

the origin. For simplicity, we nevertheless use this representation in both layers,

although restricting the domain of the radial representation to [0, rSL] for the in-

ner region. The use of these full sphere, regular radial basis functions throughout,

is overly restrictive, since it requires that any Malkus state solved for within the

stratified layer is consistent with a possible Malkus state field in the interior region.

While, as explained above, the interior fields in our solutions are determined sepa-

rately, having the additional freedom of only needing to satisfy Taylor’s constraint,

the field in the stratified layer remains overly-constrained in this process. Therefore

it is important to note that it is not possible to rigorously know that we always

find the simplest or most extremal field possible after optimising with respect to a

quantity of interest (see equation (6.13)).

6.4 Discretisation of the constraints

6.4.1 The Taylor constraints

Since the Malkus constraint forms a more restrictive constraint which encompasses

the Taylor constraint it is useful for us to first summarise the structure of the Taylor

constraint in a full sphere. The integral given in equation (6.1), which Taylor’s

constraint requires to be zero, is known as the Taylor integral. Although applied on

an infinite set of surfaces, Livermore et al. (2008) showed that Taylor’s constraint

reduces to a finite number of constraint equations for a suitably truncated magnetic

field expansion

Sml (r) = rl+1

Nmax∑

j=0

cjr
2j and T ml (r) = rl+1

Nmax∑

j=0

djr
2j, (6.6)
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which is an expanded version of (6.4) for some cj and dj, which are linearly dependent

on constants aml,n and bml,n. The Taylor integral itself then collapses to a polynomial

of finite degree which depends upon s2 (Lewis and Bellan, 1990) and the coefficients

aml,n, b
m
l,n, and takes the form

T (s) = s2
√
R2 − s2QDT

(s2) = 0, (6.7)

for some polynomial QDT
of maximum degree DT .

Taylor’s constraint is now equivalent to enforcing that the coefficients of

all powers of s in the polynomial QDT
equal zero, as this ensures T (s) vanishes iden-

tically on every geostrophic contour. This translates into CT = Lmax + 2Nmax − 2

conditions after the single degeneracy due to the electrically insulating boundary

condition is removed (Livermore et al., 2008), transforming the infinite number of

constraints to a finite number of simultaneous, coupled, quadratic, homogeneous

equations. This reduction is vital as it gives a procedure for enforcing Taylor’s con-

straint in general, and allows the implementation of a method to construct magnetic

fields which exactly satisfy this constraint, known as Taylor states, as demonstrated

by Livermore et al. (2009). In the next section we see how, with some relatively sim-

ple alterations this procedure can be extended to the construction of exact Malkus

states.

6.4.2 The Malkus constraints

Along similar lines as we showed for Taylor’s constraints, we now outline some gen-

eral properties of the mathematical structure of Malkus’ constraints. On adopting

the representation (6.4) the Malkus integral reduces to a multinomial in s2 and z

(Lewis and Bellan, 1990) and we require

M(s, z) = QDM
(s2, z) = 0

for some finite degree multinomial QDM
in s and z. Note that the Taylor integral

(6.7) is simply a z-integrated form of QDM
. Equating every multinomial term in

QDM
(s2, z) to zero results in a finite set of constraints that are nonlinear in the

coefficients aml,n and bml,n.

The number of constraints can be quantified for a given truncation fol-

lowing a similar approach as that employed by Livermore et al. (2008) for Taylor’s

constraint, by tracking the greatest exponent of the dimension of length. Here, we
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calculate the maximum possible exponent in dimension of length within the Malkus

integral and since each constraint equation arises from ensuring a coefficient of a dif-

ferent exponent vanishes, enumerating all possibilities gives the maximum number

of constraints.

There are three possible non-zero interactions whose sum comprises the

Malkus integral, toroidal-toroidal, toroidal-poloidal and poloidal-poloidal as defined

in equation (6.12). Since the poloidal field definition contains two curls whereas the

toroidal field only one, then this extra derivative reduces the maximum exponent

by one for interactions involving a poloidal field as opposed to a toroidal one. This

means that the maximal case is determined by the toroidal-toroidal interaction,

[T 1,T 2]. Since the Malkus integrand is identical to the Taylor integrand, we observe

that the maximum radial exponent in the Malkus integrand ((∇ × T 1) × T 2)φ is

2Lmax + 4Nmax − 1, as derived by Livermore et al. (2008). This is then reduced by

two due to the property that the interaction of two toroidal harmonics that have

identical spherical harmonic degrees and orders is zero (Livermore et al., 2008).

This requires that one of the two modes has an Lmax of at least one smaller than

the other, hence resulting in a maximum possible degree in r of 2Lmax + 4Nmax− 3.

Now under a transform in coordinate systems we note that rn in spherical

coordinates can be expressed as sjzk in cylindrical coordinates, where n = j + k.

Since only even values of j are present this results in Lmax + 2Nmax − 2 = CT non-

trivial constraint equations in this dimension. There is no such restriction on k,

which can take all values up to the maximum of 2Lmax + 4Nmax − 3 = 2CT + 1.

Each one of the constraints arises from a coefficient of a term with a differ-

ent combination of exponents in s and z, explicitly, these terms have the following

form:

(ACT ,0z
0 + ACT ,1z)s2CT + (ACT−1,0z

0 + ACT−1,1z + ACT−1,2z
2 + ACT−1,3z

3)s2(CT−1)

+ (ACT−2,0z
0 + · · ·+ ACT−2,5z

5)s2(CT−2) + . . .

+ (A1,0 + · · ·+ A1,2CT−1z
2CT−1)s2 + (A0,0 + · · ·+ A0,2CT +1z

2CT +1). (6.8)

Hence from the summation of the total number of these terms for every combination

of j and k, with j even, such that j + k ≤ 2CT + 1 we have the following expression

for the maximum number of Malkus constraints,

CM = 2

CT∑

n=0

(n+ 1) = (CT + 1)(CT + 2) = C2
T + 3CT + 2. (6.9)
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Therefore we find that as expected the Malkus’ constraints are more nu-

merous than Taylor’s constraints. It is significant to notice that CM � CT and in

particular for high degree/resolution systems CM ≈ CT
2.

In order to satisfy these constraints, the magnetic field has

2LmaxNmax(Lmax + 2) degrees of freedom (this being the number of unknown spec-

tral coefficients within the truncation of (Lmax, Nmax)). In axisymmetry the number

of degrees of freedom reduces to 2NmaxLmax.

If we truncate the magnetic field quasi-uniformly as N = O(Lmax) ≈
O(Nmax), then we observe that at high N the number of constraints (O(N2) Malkus

constraints; O(N) Taylor constraints) is exceeded by the number of degrees of free-

dom of N3. A simple argument based on linear algebra suggests that many solutions

(for both Taylor and Malkus states) exist at high N , however this may be mislead-

ing because the constraints are nonlinear and it is not obvious a priori whether any

solutions exist, or if they do, how numerous they might be. We will discuss this

further in the next section, but first we present a simple example, which is insightful

for showing the structure of the constraint equations that arise.

Here we consider a simple example of an axisymmetric magnetic field in a

full sphere, consisting of four modes: a toroidal l = 1, n = 1 mode, a toroidal l = 1,

n = 2 mode, a poloidal l = 1, n = 1 mode and a poloidal l = 1, n = 2 mode, each

of which has an unspecified corresponding coefficient αl,n and βl,n for toroidal and

poloidal modes respectively. Through this we demonstrate the form of the linear

constraints which arise from Malkus’ constraint in this case. It is significant to note

the vital role of degeneracy within these constraints in permitting a solution.

Using the formula for CM derived above we can calculate that the max-

imum number of constraints in a system with Lmax = 1, Nmax = 2 is CM = 20.

However, the restriction to axisymmetry means the actual number of constraints

here is significantly smaller than this upper bound. Through computing the Malkus

integral and enforcing that this is zero for all values of s and z by requiring that

the coefficients of all powers of s and z vanish we obtain a series of simultaneous

equations:

(
−11

8
β1,2 + 2β1,1

)
α1,2 −

253

140

(
77

69
β1,2 +

56

759
β1,1

)
α1,1 = 0,
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(
319

84
β1,2 −

10

3
β1,1

)
α1,2 −

253

70
β1,2α1,1 = 0,

(
−165

56
β1,2 + β1,1

)
α1,2 −

253

140
β1,2α1,1 = 0,

(
319

84
β1,2 −

10

3
β1,1

)
α1,2 −

253

70
β1,2α1,1 = 0,

(
−165

28
β1,2 + 2β1,1

)
α1,2 −

253

70
β1,2α1,1 = 0,

(
−165

56
β1,2 + β1,1

)
α1,2 −

253

140
β1,2α1,1 = 0.

The 6 equations here arise from the coefficients of the exponents s4z, s2z, s2z3, s0z1,

s0z3, s0z5, the only coefficients that are not trivially zero, due to the interactions

of the limited modes present. Although there are 6 equations here, it is clear that

there are only two independent conditions:

α1,1β1,2 +
5

2
α1,2β1,2 = 0, and α1,2β1,1 +

11

7
α1,2β1,2 = 0.

If both β1,2 and α1,2 are nonzero, then these become linear constraints.

Hence, in this case we can see that there are 4 degrees of freedom, 6 con-

straint equations but only 2 independent constraints. This means that while on

first inspection the system appears to be overconstrained with no solution, there are

in fact multiple Malkus state solutions, with the solution space being spanned by

two degrees of freedom (β1,2, α1,2) with the other coefficients determined in terms of

these by the relationships:

α1,1 = −5

2
α1,2 and β1,1 = −11

7
β1,2.

Despite the significant degeneracy in the Malkus constraints, they are no-

tably more restrictive than the Taylor constraints for this truncation of Lmax = 1,

Nmax = 2, for which the Taylor integral is identically zero and so provides no re-

striction.

The example highlights that many of the Malkus constraints are linearly
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dependent: the constraint degeneracy plays a far more significant role for the Malkus

constraints compared with the Taylor constraints, which only have a single weak

degeneracy due to the electrically insulating boundary condition (Livermore et al.,

2008). While this degeneracy effectively lowers the number of constraints (making

it easier to find a solution), due to the complex nature of the nonlinear equations at

present we have no predictive theory for the total number of independent constraints.

6.5 Existence of Malkus states

In this section we address the question of: when do Malkus states exist? We proceed

in two parts. First we give some analytic examples of non-geophysical but simple

and exact Malkus states. Second, we show how a Malkus state can be constructed

that matches any exterior potential field, thereby markedly extending the class of

known Malkus states.

6.5.1 Simple analytic states

Simple Malkus states may be constructed by exploiting the analytic form of the

integrand defining the Malkus constraint (see theorem 6.5.1) and the symmetries

inherent in the spherical harmonics that define our basis representation for the

magnetic field. In order of simplicity, we present a list of some simple Malkus

states:

(A) any magnetic field based on a single spherical harmonic because of symmetry

in the azimuthal integration

(B) any axisymmetric purely toroidal or poloidal field since the integrand itself

((∇×B)×B)φ is zero

(C) equatorially symmetric purely toroidal or poloidal field comprising either only

cosine or only sine dependence in azimuth, as the resultant integrand is anti-

symmetric with respect to a rotation of π radians in azimuth and hence van-

ishes under azimuthal integration over [0, 2π].

The last example plays an important role in the more general discussion of Malkus

states (and see theorem 6.5.1).
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6.5.2 General Malkus states

We now investigate whether it is possible to find much more general Malkus states;

specifically we address whether we can find a Malkus state that matches at the edge

of the core any given exterior potential magnetic field

Bext = −∇V ; V = R
Lmax∑

l=1

l∑

m=0

(
R

r

)l+1

(gml cos(mφ) + hml sin(mφ))Pm
l (cos θ),

(6.10)

where Pm
l is an associated Legendre polynomial and gml and hml are the Gauss

coefficients.

In the following, we set out one procedure for finding such a Malkus state.

Following the method of Livermore et al. (2009) which describes how to find anal-

ogous Taylor states, we also choose to completely specify the poloidal field within

the core, downwards continuing the exterior potential field inside the core r ≤ R by

assuming a profile for each poloidal harmonic of degree l that minimises the Ohmic

dissipation within the modelled core, compatible both with an electrically insulating

outer boundary and regularity at the origin (Backus et al., 1996):

(2l + 3)rl+1 − (2l + 1)rl+3. (6.11)

It is the rl+1 factor here that is crucial for ensuring that for all modes there is a

factor of at least r2, resulting in regularity at the origin; note that the poloidal scalar

differs from the magnetic field components themselves by a similar r2 factor, which

are hence are permitted to remain finite and non-zero extending to the origin (see

figure 6.4).

Because the core’s toroidal field is hidden from external view, we are now

free to choose it without affecting the matching to Bext. The question is two fold:

whether there are sufficient degrees of freedom in the toroidal field to exceed the

number of independent nonlinear constraints, and whether a solution can be found.

These issues are addressed in the following theorem, in which we prove that

it is indeed possible to find such a toroidal field that renders any given poloidal field

a Malkus state, by identifying a judicious choice of toroidal modes which result in a

linear (rather than a non-linear) system whose solution is then straightforward.

Theorem 6.5.1. Any arbitrary, prescribed, polynomial poloidal field can be trans-

formed into a Malkus state through the addition of an appropriate polynomial toroidal
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field.

Proof. We prove below that by considering an arbitrary, prescribed, truncated poly-

nomial poloidal field, the addition of a specific choice of toroidal modes renders the

Malkus constraints linear in the unknown toroidal coefficients. By taking a suffi-

cient number of such modes such that the degrees of freedom exceed the number of

constraints, it follows that for the general case (barring specific degenerate cases)

by solving the linear system the resultant magnetic field is a Malkus state.

To show this, because the Malkus constraint is quadratic in the magnetic

field, we introduce the concept of a magnetic field interaction. In general there

are three possible field interactions within the Malkus integral, toroidal-toroidal,

poloidal-poloidal and toroidal-poloidal, respectively

M =
Lmax∑

l1,l2

Lmax∑

m

(
[Tm
ll
,Tm

l2
] + [Smll ,S

m
l2

] + [Tm
ll
,Sml2 ]

)
,

where

[Tm
ll
,Tm

l2
] =

∫ 2π

0

l1(l1 + 1)T mll T ml2
r3 sin θ

(
Y m
ll

∂Y m
l2

∂φ

)
s dφ+ sc, (6.12)

[Smll ,S
m
l2

] =

∫ 2π

0

l1(l1 + 1)Smll ( d2

dr2
− l2(l2 + 1)/r2)Sml2

r3 sin θ

(
Y m
ll

∂Y m
l2

∂φ

)
s dφ+ sc,

[Tm
ll
,Sml2 ] =

∫ 2π

0

1

r3

(
l1(l1 + 1)Tmll

dSml2
dr

Y m
l1

∂Y m
l2

∂θ
−l2(l2 + 1)Sml2

dTml1
dr

Y m
l2

∂Y m
l1

∂θ

)
s dφ,

where sc is the symmetric counterpart given by interchanging the vector harmonics

and hence the positions of l1 and l2 (Livermore et al., 2008). Note that there is

no poloidal-toroidal interaction since the curl of a poloidal vector is toroidal and

(T 1 × T 2)φ = 0, for any two toroidal vectors T 1 and T 2.

For the situation we consider of a given poloidal field, then the only non-

linearity within the unspecified coefficients arises from the toroidal-toroidal interac-

tions, which results in quadratic dependence, just as for the general case with unpre-

scribed poloidal field. However, by restricting attention to toroidal fields that result

in no toroidal-toroidal interaction, the unknown toroidal coefficients appear only in

a linear form through the toroidal-poloidal interactions. Axisymmetric modes are

the simplest set of toroidal modes which are non-self-interacting (that is, no modes

interact with any other modes in the set), however there are too few of them (within

the truncation) to solve the resulting linear system which is over-constrained (see
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figure 6.2). This is not surprising, since perfect axisymmetry vastly reduces the

ability of a magnetic field to satisfy the Malkus constraint, no longer can there be

any cancellation within the integral over φ. The Malkus integral (6.2) is only zero

when the integrand itself vanishes.

Therefore we require additional non-axisymmetric toroidal modes, which

we choose such that the total set of toroidal modes remains non-self-interacting.

This is achieved by exploiting the previously noted observations that any single

harmonic is a Malkus state and that the set of equatorially symmetric toroidal modes

T ll is a Malkus state (and therefore has no self-interaction). Owing additionally to

azimuthal symmetry, the modes

T 0
1 , T

0
2 , · · · , T−1

1 , T 1
1 , T

−2
2 , T 2

2 , . . . ,

that is, the modes Tml with m = 0 or m = ±l, have no self-interactions. Each

harmonic mode may be expanded in radial modes up to the truncation Nmax. The

non-interacting nature of the modes may be confirmed from equation (6.12).

The addition of these nonaxisymmetric modes increases the number of

degrees of freedom from the axisymmetric case by a factor of three such that it

is now larger than the number of constraints (which are now all linear). This can

be shown in general since for a toroidal field truncated at L1, N1 and a poloidal

field truncated at L2, N2 the number of Taylor constraints is equal to half of the

maximum degree of the polynomial in s, (i.e. CT = 1
2
(L1 + L2 + 2N1 + 2N2) − 2)

(Livermore et al., 2008) and the maximum number of Malkus constraints we have

shown is given in terms of CT by equation (6.9). This results in a situation where

if the poloidal field is fixed at a chosen resolution then for a toroidal field truncated

quasi-uniformly as N = O(Lmax) ≈ O(Nmax), the number of Malkus constraints

scales as 9
4
N2, which grows slower than the number of degrees of freedom for the

non-axisymmetric linear system which scales as 3N2. Hence it is guaranteed that

at a sufficiently large resolution toroidal field representation then there will be more

degrees of freedom than constraints.

Therefore, barring degenerate cases, Malkus states exist. Compared with

the case of a purely axisymmetric toroidal field, the number (but not the specific

form) of linear constraints remains unaltered by the addition of these extra non-

axisymmetric modes.

It is worth noting that the depth of the stratified layer does not enter into

above derivation. The magnetic field solution in fact satisfies the Malkus constraints

everywhere within its region of definition: in our case, this is the full sphere 0 ≤
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r ≤ R.

We do note the lack of full generality in the above deviation, as it is based

upon a polynomial representation, which is sufficient for our purposes here. However,

we know that any continuous function defined on a closed interval can be uniformly

approximated as closely as desired by a polynomial function, and hence it can be

extended to include an arbitrary magnetic field structure by expressing the relevant

scalars in a polynomial basis of suitably large truncation.

Figure 6.2 illustrates what we have proven: the existence of solutions of

this special class of Malkus states. It provides a specific example of the number

of constraints given Bext of degree 13 and demonstrates three important things.

Firstly, that due to degeneracy the independent linear constraints (red triangles)

are much fewer than the full set of linear constraints (red squares). Secondly, that

the number of degrees of freedom exceed the number of independent constraints at

Lmax = Nmax ≥ 10 if we consider our preferred non-axisymmetric toroidal basis

(described in the proof of theorem 6.5.1, blue circles); in particular if we adopt a

toroidal field of the same degree as the poloidal field Lmax = Nmax = 13 then we find

an infinite set of Malkus states. Thirdly, a laterally complex toroidal field is required

to find a Malkus state. Here this is demonstrated by the fact that any attempt to

find a Malkus state by adding to the poloidal field an axisymmetric toroidal field

will fail, because the number of degrees of freedom (blue stars) is always exceeded

by the number of independent constraints.

Having found a Malkus state defined within the stratified layer, we then

need to match to a Taylor state in the region beneath. One way of proceeding is

to simply extend the polynomial description (already known) of the Malkus state

beneath the stratified layer (where the solution also satisfies Taylor constraint);

however this effectively imposes additional constraints on the inner region and is

overly restrictive. Instead, we apply a similar procedure as for the Malkus states

to the inner solution: we use the same poloidal profile and expand the unknown

toroidal field in the same way. Because the Taylor constraints are also now linear,

this allows for an inner Taylor state to be found. This procedure can be applied to

find a Malkus/Taylor state defined by any depth of stratification.

Even within these geomagnetically consistent Malkus states, there are nev-

ertheless multiple degrees of freedom remaining. This raises the question of which

of the multiple possible solutions are most realistic for the Earth, and motivates us

to incorporate additional conditions to distinguish ‘Earth-like’ solutions.
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Figure 6.2: This graph compares the number of constraints to degrees of freedom
(DOF) as a function of toroidal field spherical harmonic resolution with Lmax =
Nmax, given a fixed poloidal field of Lmax = 13. This illustrates that for the non-
axisymmetric linear system, the number of degrees of freedom (blue circles) exceeds
the number of independent constraints (red triangles) for a toroidal field of resolution
Lmax = Nmax ≥ 10.

We determine specific solutions through choosing the toroidal field T that

minimises either its Ohmic dissipation or its energy, respectively

Q =
η

µ0

∫

V

(∇×T)2dV, E =
1

2µ0

∫

V

T2dV, (6.13)

where η ≈ 1 m2s−1 is magnetic diffusivity and µ0 = 4π × 10−7 NA−2 is the perme-

ability of free space. Both of these target functions are quadratic in the magnetic

field, and so seeking a minimal value subject to the now linear constraints is straight-

foward. In our sequential method to find a matched Malkus-Taylor state, we first

optimise the Malkus state, and then subsequently find an optimal matching Taylor

state.

Of the dissipation mechanisms in the core: Ohmic, thermal and viscous,

the Ohmic losses are believed to dominate. On these grounds, the most efficient

arrangement of the geomagnetic field would be such that Ohmic dissipation Q is

minimised. It is worth noting that in general this procedure is not guaranteed to

provide the Malkus state field with least dissipation, but only an approximation to

it, since we effectively separately, rather than jointly, optimise for the poloidal and

toroidal components. However, we will present our solutions of finding a Malkus

state with minimum toroidal field energy, this is particularly useful in allowing us

to determine the weakest toroidal field which is required in order to transform the

imposed poloidal field into a Malkus state. Therefore providing the geophysically
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interesting quantity of a lower bound on toroidal field strength.

6.6 Earth-like Malkus states

We now present Malkus states found using the method explained above with minimal

toroidal energy, applied to two external field models. First, we use the CHAOS-6

model (Finlay et al., 2016) at epoch 2015 evaluated to degree 13, the maximum

obtainable from geomagnetic observations without significant interference due to

crust magnetism (Kono, 2015). Second, we use the time-averaged field over the last

10000 years from the CALS10k.2 model (Constable et al., 2016), which although

defined to degree 10, has power concentrated mostly at degrees 1–4 because of strong

regularisation of sparsely-observed ancient magnetic field structures. Recalling that

the magnetostrophic state that we seek is defined over millenial timescales, this

longer average provides on the one hand a better approximation to the background

state, but on the other a much lower resolution.

The geometry assumed here is as illustrated in figure 6.1a, with a Malkus

state in the stratified layer in the region 0.9R < r ≤ R, matching to an inner

Taylor state. The strength of the externally-invisible but important toroidal field

will be shown by contour plots of its azimuthal component. We note that the radial

component of the magnetic field is defined everywhere by the imposed poloidal field

of equation (6.11).

6.6.1 Magnetic field at 2015

We begin by showing in figure 6.3 both the radial and azimuthal structure, Br and

Bφ, of the poloidal CHAOS-6 model at epoch 2015 on the CMB, r = R. Of note

is that at the truncation to degree 13, the azimuthal component is about half as

strong as the radial component.
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(a) Br at the CMB, (max value = 0.91
mT).

−1 0 1
Bφ (mT)

(b) Bφ at the CMB, (max value = 0.46
mT).

Figure 6.3: Magnetic field at the CMB based on the poloidal field fit to CHAOS-6 at
epoch 2015. Visualised using the Mollweide projection and centred on the Greenwich
meridian.

Figure 6.4 summarises the strength of the toroidal field in our solutions

as a function of radius, this being the minimum energy toroidal field necessary to

construct a Malkus state. Different toroidal truncations Lmax = Nmax are shown

to demonstrate convergence. The toroidal field is required to be four orders of

magnitude stronger in the stratified layer in order to satisfy the more restrictive

Malkus constraints, compared with the inner region in which the weaker Taylor

constraint applies, and adopts a profile that is converged by degree 13. The strong

toroidal field throughout the stratified layer occurs despite the electrically insulating

boundary condition (6.4) at the outer boundary that requires the toroidal field to

vanish. Within the stratified layer, the azimuthal toroidal field strength attains a

maximum rms value of 2.5 mT at a radius of about 0.98R or a depth of about

70 km, about double the poloidal component of azimuthal field value observed at

the CMB, and exceeding the locally imposed azimuthal poloidal magnetic field of

rms 0.28 mT at this radius. Within the convective region, small oscillations in the

toroidal component of Brms
φ as a function of radius are noticeable in figure 6.4. It is

not obvious as to the exact cause of these and whether they are due to a limitation

of the model or a physical phenomenon, as we find that the amplitude of period of

these variations appear to be independent of both radial resolution and stratified

layer thickness. However, we do not dwell on this, as we re-emphasise that the

toroidal field in this region is not an estimate for the geomagnetic field, but rather

that the very small magnitude of this lower bound merely demonstrates the lack of

restrictiveness of our model within this region.

Figure 6.5 shows Bφ for both the total field and the toroidal component

in isolation, using a toroidal truncation of 13 (corresponding to the blue line in fig-
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Figure 6.4: The root mean squared azimuthal field strength (defined over solid

angle) Brms
φ =

√∫ 2π

0

∫ π
0
B2
φ sin θ dθ dφ, as a function of radius, comparing the

strengths of the poloidal field (red) and toroidal field (blue, green, magenta and
cyan) for toroidal fields with maximum spherical harmonic degree, order and radial
resolution, 13–16 respectively. The poloidal field is the degree 13 field of minimum
Ohmic dissipation compatible with the CHAOS-6 model at epoch 2015 (Finlay et al.,
2016).

ure 6.4.) The top row shows the structure at the radius of maximum rms toroidal

field (r = 0.98R), demonstrating that the additive toroidal field component (of

maximum 8 mT) dominates the total azimuthal field. The bottom row shows a

comparable figure at r = 0.7R, in the inner region where only Taylor’s constraint

applies. Plotted on the same scale, the required additive toroidal component is tiny

compared with the imposed poloidal field. This results in a maximum value of the

toroidal magnetic field within the outer layer which is about 100 times larger com-

pared to that in the inner region. This highlights again that the Malkus constraint

is much more restrictive than the Taylor constraint.

For comparison, figure 6.6 shows an equivalent solution to figure 6.5(a,b)

but in the absence of stratification (where the magnetic field satisfies only Taylor’s

constraint). Despite the imposed poloidal field being the same, the toroidal contri-

bution to the azimuthal field is very weak here (note the colourbar range is reduced

from that of figure 6.5(a,b) from 8 to 0.04 mT) and it is of very large scale. This

further highlights the weakness of the Taylor constraints compared with the Malkus

constraints.
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(a) Toroidal field Bφ at r = 0.98R,
(max value = 7.74 mT, RMS = 2.50 mT).
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(b) Total field Bφ at r = 0.98R,
(max value = 7.80 mT, RMS = 2.53 mT).
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(c) Toroidal field Bφ at r = 0.7R,
(max value = 0.012 mT)
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(d) Total field Bφ at r = 0.7R,
(max value = 0.41 mT)

Figure 6.5: Minimal toroidal-energy solution (a,c) shown by the azimuthal compo-
nent, of a Malkus state (0.9R < r ≤ R) and Taylor state r ≤ 0.9R, compared with
the total azimuthal component (b,d). Figures (a,b) show the field at a radius of
r = 0.98R, close to where the maximum rms azimuthal toroidal field occurs, while
(c,d) show the inner region at r = 0.7R.

6.6.2 Time averaged field over the past ten millenia

Here we show results for a poloidal field that is derived from the 10000-year time

averaged field from the CALS10k.2 model (Constable et al., 2016), which is as shown

in figure 6.7. The model is only available up to spherical harmonic degree 10, hence

we adopt a truncation of Lmax = Nmax = 10 for the toroidal field. Due to the

absence of small-scale features in the field (caused by regularisation) the maximum

value of Br is reduced to about 1/2 of the comparable value from the degree-13

CHAOS-6 model from epoch 2015, and similarly the azimuthal field to about 1/6

of its value. We note that over a long enough time span, Earth’s magnetic field is

generally assumed to average to an axial dipole: a field configuration that is both

a Malkus state and one in which the azimuthal component vanishes. Thus a small

azimuthal component is consistent with such an assumption.
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−0.04 0.00 0.04
Bφ (mT)

(a) Toroidal field Bφ at r = 0.98R,
(max value = 0.034 mT)

−0.3 0.0 0.3
Bφ (mT)

(b) Total field Bφ at r = 0.98R,
(max value = 0.29 mT)

Figure 6.6: Azimuthal field for an unstratified comparative case, for which the
magnetic field satisfies only Taylor’s constraint.

−1 0 1
Br (mT)

(a) Br, max value = 0.50 mT.

−1 0 1
Bφ (mT)

(b) Bφ, max value = 0.085 mT.

Figure 6.7: Magnetic field at the CMB based on the 10000-year time average field
from CALS10k.2

Contours of the azimuthal field within the stratified layer (at r = 0.97R)

are shown in figure 6.8, which is approximately the radius at which the maximum

rms azimuthal toroidal field occurs. As before, the toroidal field dominates the

azimuthal component whose maximum value (1.66 mT) is about 20 times that on

the CMB (0.085 mT) and 4 orders of magnitude larger than in the interior core.

Although this value is less than the 8 mT found in the 2015 example above, this is

consistent with the overall reduction in structure of the imposed poloidal field.

6.7 Discussion

Having presented our results, we now begin our discussion by addressing in turn the

three objectives listed at the beginning of the chapter.
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−2 0 2
Bφ (mT)

(a) Toroidal field Bφ at r = 0.97R,
(max value = 1.60 mT)

−2 0 2
Bφ (mT)

(b) Total field Bφ at r = 0.97R,
(max value = 1.66 mT)

Figure 6.8: The azimuthal component of the Malkus state magnetic field within the
stratified layer at a radius of r = 0.97R, approximately the radius of maximum rms
azimuthal toroidal field.

6.7.1 Do Malkus states exist?

We have shown that many exact Malkus states exist, both by imposing specific

symmetries and by constructing states with a given poloidal field by solving linearly

for a suitable toroidal field. We note that even within our linearised framework that

ignores a significant part of the toroidal field, there are many such solutions. Owing

to the nonlinearity and the difficulty in enumerating the number of independent

Malkus constraints, we have no way of quantifying the space of solutions, but it is

surely large.

Moreover, the abundance of exact Malkus states also implies the existence

of a plenitude of approximate Malkus states. These may indeed be more relevant

for the Earth, where some of our idealised assumptions, for example an exact mag-

netostrophic force balance or zero radial flow, are relaxed.

6.7.2 Can we tell from a snapshot of the geomagnetic field

if a stratified layer exists?

We have shown in this work that any exterior potential field can be matched to a

Malkus state. In fact our result is much stronger (see theorem 6.5.1), namely that

we can fit a potential field to either a Taylor state (no stratification assumed), or a

Malkus state (defined within a stratified layer of arbitrary depth). Thus if the core

is in an exact magnetostrophic balance, then using only considerations of Malkus

constraints means that instantaneous knowledge of the geomagnetic field outside

the core cannot discriminate between the existence, or not, of a stratified layer.
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However, incorporating considerations of the time-dependence of the geo-

magnetic field, from either a theoretical or observational perspective, may indeed

provide additional information. For example, one might consider the evolution of

a dynamo-generated time-dependent Malkus state, that satisfies all relevant con-

straints as time progresses. It is possible that examples of exterior fields are realised

by the Earth that cannot match a time-dependent Malkus state. Furthermore,

geomagnetic secular variation may provide an avenue to discriminate between ob-

servational signatures that are, or are not, compatible with a stratified layer: it

may be that dynamics that are guided by stratification (such as waves) provide con-

vincing evidence for such a layer, in a similar vein to the evidence from torsional

waves (e.g. Gillet et al., 2010) which suggests that Earth’s core is close to a Taylor

state. Unfortunately a rigorous examination of the dynamics (and perturbations)

of Malkus states is out of the scope of this work.

6.7.3 What might be the present-day internal structure of

the geomagnetic field inside a stratified layer?

Estimating the magnetic field strength inside the core is challenging, because obser-

vations made on Earth’s surface, using a potential-field extrapolation, only constrain

the poloidal magnetic structure down to the CMB and not beneath. Furthermore,

even this structure is visible only to about spherical harmonic degree 13.

By constructing a Malkus state with minimal azimuthal field, we have

estimated that for the modern (epoch 2015) field then within the stratified layer (at

radius r = 0.98R or a depth of about 70 km) a maximum azimuthal component of

around 8 mT is found. This value is consistent with other estimates of internal field

strength that range between 1 – 100 mT (Zhang and Fearn, 1993; Sreenivasan and

Narasimhan, 2017; Gillet et al., 2010; Hori et al., 2015; Shimizu et al., 1998; Buffett,

2010; Gubbins, 2007), relying on studies of numerical models, waves, electric field

measurements, tides and reversed flux patches, which indicates that the assumptions

underpinning our model are consistent with other approaches. Nevertheless, the

strong toroidal field of 8 mT, about 8 times stronger than the observed radial field

of 1 mT on the CMB, has significant implications for dynamics within the core. One

important example is the speed of Magneto-Coriolis waves, which depends upon the

average squared azimuthal field strength, as shown explicitly by Hori et al. (2015).

Thus a stratified layer could support fast waves, for example the equatorial waves

suggested by Finlay and Jackson (2003), driven in part by the stratification itself

but possibly also by the stronger required magnetic field (Hori et al., 2018).
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A key second result is that the azimuthal component of our solution within

the inner unstratified region is about 100 times weaker than within the stratified

layer. This demonstrates the extent to which Malkus’ constraint is far more restric-

tive than Taylor’s constraint, and requires a more complex and stronger magnetic

field. If the Earth has a stratified layer, this suggests that the magnetic field within

the layer would likely be quite different from that of the bulk of the core. This

has profound implications on what can be inferred about deep-core dynamics such

as large-scale flows (e.g. Holme, 2015), since any inferences are based only on the

magnetic field at the edge of the core, at the top of the layer. Indeed, if the magnetic

field has a two layer structure, then the dynamics that it drives will also likely be

different within each layer. The deeper dynamics would then be effectively screened

from observation by the change in magnetic structure demanded by the stratified

layer. Inverting this logic suggests that if deep core structures can be inferred by

surface observations, that there can be no stratified layer. Relevant evidence for

this line of argument comes from the close correspondence between changes in the

length of day and the angular momentum carried by core flows, particularly between

1970-2000 (e.g. Barrois et al., 2017), although the link is not so well defined in the

last few decades during the satellite era.

6.7.4 Limitations and robustness

Our model does not produce a formal lower bound on the azimuthal component

of a magnetic field that satisfies both the Malkus and Taylor constraints in their

relevant regions along with matching conditions at the CMB. Instead, our results

give only an upper bound on the lower bound (e.g. Jackson et al., 2011) because we

have made a variety of simplifying assumptions, the most notable of which are (i)

we have restricted ourselves to a subspace of Malkus states for which the constraints

are linear (ii) we have imposed the entire poloidal profile and (iii) we have used a

regular basis set for all magnetic fields even within the stratified layer when this is

not strictly necessary. However, we show for the example considered in appendix B

that in this case assumption (i) does not have a significant impact and our estimate is

close to the full nonlinear lower bound. Also with regard to assumption (ii), we have

experimented with some slightly different poloidal profiles, with the result being only

small (less than 10%) variations in our azimuthal field estimates, indicating some

generality of our results. It may be that the other assumptions also do not cause

our azimuthal field estimates to deviate significantly from the actual lower bound.

There remains much uncertainty over the depth of any stably stratified
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layer at the top of the Earth’s core (Hardy and Wong, 2019). Hence it is natural to

consider how our results may change if the layer were to be of a different thickness

to the 10% of core radius used, as such we also calculated minimum toroidal-energy

solutions matched to CHAOS-6 in epoch 2015 for a range of layer thicknesses. We

find very little dependence of the field strengths internal to the layer on the depth of

the layer itself, with our root mean square azimuthal field taking peak values of 1.9,

2.7, 2.5, 2.4 and 2.1 mT for thicknesses of 1%, 5%, 10%, 15% and 50% respectively.

However for extremely thin layers such as a layer depth of 0.1%, the resulting peak

is only of magnitude Bφ = 0.12 mT and actually occurs beneath the stratified layer.

This much smaller value is due to the immediate proximity of the boundary at which

the toroidal field must vanish.

The resolution of poloidal field also impacts significantly our optimal so-

lutions. This has already been identified in the comparison between the degree-13

2015 model, and the degree-10 10,000-yr time-averaged model, that respectively

resulted in rms azimuthal field estimates of 2.5 and 1.2 mT. We can further test

the effect of resolution by considering maximum poloidal degrees of 6 and 10 for

the 2015 model to compare with our solution at degree 13. We find that our es-

timates for the root mean square azimuthal field (taken over their peak spherical

surface) were 1.6 and 2.2 mT respectively. In all these calculations, the spherical

harmonic degree representing the toroidal field was taken high enough to ensure

convergence. Thus stronger toroidal fields are apparently needed to convert more

complex poloidal fields into a Malkus state. This has important implications for

the Earth, for which we only know the degree of the poloidal field to about 13 due

to crustal magnetism. Our estimates of the azimuthal field strength would likely

increase if a full representation of the poloidal field were known.

6.7.5 Ohmic dissipation

Our method can be readily amended to minimise the toroidal Ohmic dissipation,

rather than the toroidal energy. In so doing, we provide a new estimate of the

lower bound of Ohmic dissipation within the core. Such lower bounds are useful

geophysically as they are linked to the rate of entropy increase within the core, which

has direct implications for: core evolution, the sustainability of the geodynamo, the

age of the inner core and the heat flow into the mantle (Jackson et al., 2011).

The poloidal field with maximum spherical harmonic degree 13 that we

use, based on CHAOS-6 (Finlay et al., 2016) and the minimum Ohmic dissipation

radial profile (Backus et al., 1996) has by itself an Ohmic dissipation of 0.2 GW.
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Jackson and Livermore (2009) showed that by adding additional constraints for the

magnetic field, a formal lower bound on the dissipation could be raised to 10 GW,

and even higher to 100 GW with the addition of further assumptions about the

geomagnetic spectrum. This latter bound is close to typical estimates of 1 - 15 TW

(Jackson and Livermore, 2009; Jackson et al., 2011).

The addition of extra conditions derived from the assumed dynamical bal-

ance, namely Taylor constraints, were considered by Jackson et al. (2011) by adopt-

ing a very specific magnetic field representation. These constraints alone raised their

estimate of the lower bound from 0.2 to 10 GW, that is, by a factor of 50. In view

of the much stronger Malkus constraints (compared to the Taylor constraints), we

briefly investigate their impact here.

We follow our methodology and find an additive toroidal field of minimal

dissipation (rather than energy) that renders the total field a Malkus state. The

dissipation is altered from 0.2 to 0.7 GW. That this increase is rather small (only a

small factor of about 3) is rather disappointing, but is not in contradiction to our

other results. It is generally true that the Malkus constraints are more restrictive

than the Taylor constraint, but this comparison can only be made when the same

representation is used for both. The method of Jackson et al. (2011) assumed a

highly restrictive form, so that in fact their Taylor states were apparently actually

more tightly constrained than our Malkus states and thus produced a higher estimate

of the lower bound. Despite our low estimate here, additional considerations of the

Malkus constraints may increase the highest estimates of Jackson and Livermore

(2009) well into the geophysically interesting regime.

6.8 Conclusion

In this study we have shown how to construct magnetic fields that are consistent

with a strongly stratified layer and the exact magnetostrophic balance thought to

exist within Earth’s core. We have found that these Malkus states are abundant, so

much so that one can always be found that matches any exterior potential field (for

example as derived from observational geomagnetic data).

However, despite this, the Malkus constraints derived here are proven to

be significantly more restrictive than the equivalent conditions within an unstrat-

ified fluid, those of the well known Taylor constraints. The structure of magnetic

fields that satisfy the Malkus constraints gives insight into the nature of the Earth’s
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magnetic field immediately beneath the CMB, where a layer of stratified fluid may

be present. We find that the increased restrictions in the constraints requires an

enhanced magnetic field within the layer. We estimate that for the present-day, the

toroidal field within the stratified layer is about 8 mT. This suggests that the strat-

ified layer may be distinct from the inner convective part of the core, characterised

not only by suppressed radial flow but by a strong magnetic field, and may support

different dynamics to those of the bulk of the core.
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Chapter 7

Conclusions and future work

7.1 Summary

In this thesis the geodynamo and Earth’s magnetic field have been investigated

through focussing on the limit of negligibly small inertial and viscous forces. This

magnetostrophic regime is of great interest due to its proximity to the force bal-

ance within Earth’s core, but despite this, little is known about the ‘Taylor state’

magnetic fields that exist within this idealised model. Throughout this thesis the

properties of the magnetic fields that arise within this regime, the fluid dynamics re-

quired to sustain them and the magnetic field evolution have been studied. This has

always been conducted in the context of enhancing knowledge of the Earth’s core.

Therefore Earth-like conditions have been imposed wherever possible, from ensuring

consistency with geomagnetic observations at the CMB, to stipulating constraints

on fluid motion within a stratified layer.

In chapter 3 a new and completely general methodology to calculate the

instantaneous fluid flow generated by any given Taylor state magnetic field has

been developed. This is the first generally correct method, as the previous method

of Taylor (1963) has been shown to fail in many circumstances, particularly for

many geophysically relevant choices of boundary conditions within a fully three-

dimensional domain. This correct analytical formulation of the geostrophic flow

reveals key properties of the flow, specifically the presence, or otherwise, of any

singularities: it has been proven that in 3D, in contrast to previous suggestions

(Roberts and Wu, 2014), a regular initial magnetic field will drive a regular flow

(theorem 3.13.1).

The evolution of Taylor state magnetic fields is considered in chapter 4. It
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is shown that there exist many Taylor states that have a rate of change comparable to

the slowly evolving geomagnetic field that is observed. However, it is also established

that Taylor states that are stable are very rare, with our model unable to find a

single stable Taylor state with the general mixed symmetry situation applicable to

the Earth.

In chapters 5 and 6 the possibility that a layer of stratified fluid may exist

at the top of Earth’s core has been discussed and the implications that this may

have, have been considered. The concept of a Malkus state magnetic field has been

introduced, as a direct extension of the previously known idea of a Taylor state,

within stratified fluids. It has been shown that Malkus states do exist, with the first

example of such fields given. A general methodolgy for constructing Malkus states

is outlined along with a theoretical analysis of the restrictiveness of the Malkus

constraints. This leads to a proof that in many general situations such states are

numerous (theorem 6.5.1).

Through analysing Malkus states compatible with geomagnetic observa-

tions, the impact that a stratified layer may have on the core field is deduced.

Interesting features that are revealed include the requirement of a strong azimuthal

magnetic field immediately beneath the CMB. The toroidal magnetic field within

the stratified layer is as much as 100 times stronger compared to that in the convec-

tive core, taking a maximum value of 8 mT at a core depth of 70 km. The dynamical

regime of such a layer, modulated by suppressed radial motion but also a locally

enhanced magnetic field, may therefore be quite distinct from that of any interior

dynamo.

7.2 Further extensions

The research carried out in the thesis could be extended by future studies in many

ways, we outline some of the most promising avenues here.

The Malkus states we computed in chapter 6, which match to exterior

potential fields, provide a plausible background state at the top of the core. It is

worth noting though, that we have investigated only static Malkus states without

consideration of dynamics: we do not require the magnetic field to be either steady

or stable, both of which would apply additional important conditions. An obvious

extension to this work then is to investigate the fluid flows which are generated

by the Lorentz force associated with these magnetic fields. This would then allow
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a consideration of how such flows would modify the field through the induction

equation. These dynamics are however still relatively poorly known even for the

much simpler problem of Taylor states. We have made progress in this regard with

the work in chapter 3, which now allows a full calculation of the flow driven by a

Taylor state and the work in chapter 4 which analyses the rate of change of these

fields. This provides a general way to discover steady and stable Taylor states

comparable with geomagnetic observations through the use of the time-stepping

scheme of Li et al. (2018).

There is much similarity between the two cases of Taylor and Malkus state

dynamics. In both cases, the magnetostrophic equation (2.2) fails to provide a

complete solution for the entire flow. A component that is vital for satisfying the

constraint remains arbitrary and must be determined separately. In the unstratified

situation, this takes the form of an azimuthally directed and solely cylindrically radi-

ally dependent geostrophic flow ug(s)φ̂, which plays the important role of maintain-

ing a Taylor state, and can be determined through enforcing that the time derivative

of the Taylor constraint is satisfied. For the situation of a stratified fluid then the

requirement of the time derivative of the Malkus constraint being zero should also

inform one about the component of the flow unspecified by the magnetostrophic

equation. One might expect that instead of being a z-invariant geostrophic flow,

it should describe the flow on ‘Malkus rings’ of constant z values (illustrated in

figure 6.1b), but it also seems intuitive to believe that the flow of adjacent rings

would be not be entirely independent, but related to each other. Formalising the

detail of this into a rigorous theoretical description is a pre-requisite for enabling the

development of a code to dynamically simulate the regime of Malkus states, that is,

maintaining an exact magnetostrophic balance while incorporating a stratified layer

and ensuring all constraints are maintained.

Within rapidly rotating unstratified systems, invariance in the vertical di-

rection is maintained by inertial waves. Any perturbation is distributed along the

axis of energy propagation of these inertial waves maintaining the z-invariance of

the Taylor-Proudman theorem. In the (theoretical) case of infinitely strong stratifi-

cation, which is the situation for the Malkus constraint, then it is gravity waves that

dominate, maintaining the layered stratification through horizontal energy propaga-

tion. In the more realistic scenario of rapid rotation and finite stratification (finite

radial flow), both these features are present. Now a perturbation in B at a point

would lead to inertial-gravity waves enforcing invariance in an inclined direction.

This may make the constraint geometry more complex, no longer taking the simple

form of a right cylinder, as in the unstratified case, or a horizontal ring, as for the

infinitely stratified case.
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Simulations of the full dynamo equations (including finite viscous and iner-

tial forces) can be utilised to investigate the behaviour within a stratified layer. We

have conducted some preliminary calculations using the XSHELLS dynamo code

(Schaeffer, 2013; Schaeffer et al., 2017), with the following approach. The poloidal

field is fixed from the observational geomagnetic field model Chaos-6 (Finlay et al.,

2016), and the radial profile of minimum ohmic dissipation (6.11) (Backus et al.,

1996), similar to in Chapter 6. Electric currents are then generated from the poloidal

field, which provide a force to generate flow that will generate toroidal and poloidal

field. However, the poloidal field at the core surface is held constant in order to

maintain the observational field. Stratification is enforced through a stably strat-

ified temperature field, which provides a restoring force to any deviations. The

temperature field is then uniform throughout the bulk of the core and has a lin-

ear gradient imposed within the outer 10% of the domain. This system is initially

transient, but evolves to a steady state, which is what is of interest to analyse.

Here the Taylor or Malkus constraints are not enforced, as both viscous

and stratification effects remain finite. It would then be of interest to compare the

resultant fields of B and u to a Malkus state, within the stratified region. This can

give some insight into the importance of the terms that are neglected a priori in

other idealised models, and provide some physical intuition on the magnetic field

and the fluid behaviour within a finitely stratified layer beneath the CMB.

Viscous, thermal and magnetic diffusivities are all set to unity: ν = 1,

κ = 1, η = 1. Therefore Prandtl number Pr = 1 and magnetic Prandtl number

Pm = 1. This aids numerical simplicity and efficiency, they are achievable conditions

that are approximately Earth-like. The radial flow is examined as a function of three

dimensionless parameters: the Ekman number, the Rayleigh number and the ratio

of the buoyancy frequency to the Coriolis frequency within the stratified region N0,

which is defined as

N0
2 =

N2

Ω2
=
E2Ra

Pr

∂T

∂r
,

where the buoyancy frequency for Earth is estimated to be approximately N =

2 × 10−4 s−1 (Christensen, 2018; Helffrich and Kaneshima, 2010). Therefore, since

Ω0 = 7.272× 10−5 s−1, it is believed that for Earth, N0 ≈ 2.75.

The initial simulation reveal some qualitative features. The fluid flows in

the steady final state field are shown in figures 7.1 and 7.2, from these we firstly

note the expected columnar structures observed for rapidly rotating convection,

particularly prominent in the azimuthal flow (figure 7.1), but also notable in the

radial flows (figure 7.2). This becomes increasingly apparent as the ratio of Ekman
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number to Rayleigh number is reduced and the Coriolis force becomes dominant

over radial buoyant convection.

Secondly, focusing on the stratified region (r = 0.9 − 1), then it is clear

how the radial flow is vastly smaller than it is in the bulk of the core (r = 0− 0.9),

with this effect considerable for values of N0 > 1. It is this feature that is important,

when assessing the validity of the assumption necessary for the Malkus constraint

that ur = 0, within the layer. A more complete systematic and quantitative study

using this model’s setup would provide a firmer basis for the parameter space in

which the Malkus constraint is applicable.

Figure 7.1: uφ, E = 10−6, Ra = 108, N0 = 0.0707

The work of Chapter 4 can also be built on with a full investigation of

the impact of viscosity on the stability of the Taylor state magnetic fields. A dy-

namo simulation code such as XSHELLS (Schaeffer, 2013) could be used to further

investigate the evolution from a Taylor state magnetic field. This would provide a di-

rect comparison with the magnetostrophic dynamo simulations we have conducted,

one would expect the results from these approaches to converge as the Ekman and

Rossby numbers tend to zero. Also this would explicitly test the stability of Taylor

states to the perturbation of including small viscous effects, a question that is vitally
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(a) ur, E = 10−3, Ra = 105, N0 = 7.07 (b) ur, E = 10−4, Ra = 107, N0 = 7.07

(c) ur, E = 10−4, Ra = 106, N0 = 2.236 (d) ur, E = 10−5, Ra = 107, N0 = 0.2236

(e) ur, E = 10−6, Ra = 108, N0 = 0.0707 (f) ur, E = 10−6, Ra = 109, N0 = 0.2236

Figure 7.2: Radial flow contours of the steady state, with a thermally stratified layer
in the region (r = 0.9− 1)
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important for the physical situation of the dynamo within Earth’s core.

The well established test used to determine whether the appropriate mag-

netostrophic force balance is achieved within numerical dynamo simulations is ‘Tay-

lorisation’, which represents a normalised measure of the magnitude of the Taylor

integral equation (6.1) and hence the departure from the geophysically relevant,

magnetostrophic regime (e.g. Takahashi et al., 2005). This would be an important

metric for consideration here, measuring how rapidly it may grow, whether this

growth is unstable or stable and oscillatory, and how it may depend on the value of

the Ekman number.

When considering a stratified fluid then we propose an analogous quantity

to Taylorisation, termed ‘Malkusisation’ defined in the same way, in terms of the

Malkus integral:

Malkusisation =
|
∫ 2π

0
([∇×B]×B)φdφ|∫ 2π

0
|([∇×B]×B)φ|dφ

This quantity is expected to be very small within a stratified layer adja-

cent to a magnetostrophic dynamo, provided stratification is sufficiently strong. The

recently developed dynamo simulations of Olson et al. (2018); Christensen (2018);

Gastine et al. (2020), which incorporate the presence of a stratified layer, can utilise

the computation of this quantity to access the simulation regime. Additionally, mag-

netic fields from these dynamo simulations could be incorporated into our modelling

of Chapter 6 through providing a poloidal field to a resolution beyond the degree 13

exterior potential field. It would be interesting to discover how these may change

the resultant bound on the required toroidal field and how this value compares to

both that within the simulation and indeed the existing estimates for the Earth.

It may be interesting for future work to investigate how waves thought to

exist within such a stratified layer (e.g. Buffett, 2014) may behave when considered

as perturbations from such a background state, and whether they remain compatible

with the observed secular variation in the geomagnetic field. Similarly, combining

our analysis with constraints on Bs from torsional wave models (Gillet et al., 2010)

may be insightful, and would combine aspects of both long and short-term dynamics.

Finally, we note that the appropriate description of a stratified layer may in

fact need to be more complex than a single uniform layer that we assume. Numerical

simulations of core flow with heterogeneous CMB heat flux by Mound et al. (2019)

find that localised subadiabatic regions that are stratified are possible amid the
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remaining actively convecting liquid. If indeed local rather than global stratification

is the more appropriate model for the Earth’s outermost core then the condition of

requiring an exact Malkus state would not apply, and the constraints on the magnetic

field would be weakened by the existence of regions of non-zero radial flow. This is

also supported by the recent study by Chi-Durán et al. (2020), who suggest non-

uniform layer thickness. Their analysis of secular acceleration data from the Chaos-6

model finds evidence for waves within equatorial and high-latitude regions that are

compatible with a stratified fluid.
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Appendix A

Derivation of an alternative form

of the Taylor constraint

It is possible to derive an expression for the Taylor constraint, which instead of

being in the standard form of a single integral term comprises contributions from

two distinct terms (Braginsky, 1970). This form proves to be particularly useful

for highlighting the significance of incorporating the boundary conditions correctly

when solving for the geostrophic flow, as described in Chapter 3. This is as a result

of enabling the contributions of the interior domain and the boundary conditions to

be separated and clearly identified.

The Lorentz force is given by F = q(E+v×B), so considering a continuous

charge distribution we have dF = dq(E + v ×B) over a volume dV and therefore

the force per unit volume

f =
dF

dV
= ρ(E + v ×B) = J ×B =

1

µ0

(∇×B)×B,

in the absence of an electric field, where ρ is the charge density and J = ρv is the

current density. From Gauss’ magnetism law ∇ ·B = 0⇒ (∇ ·B)B = 0, therefore

we can add a term of this form to f without changing its value. We write

f =
1

µ0

((∇ ·B)B−B× (∇×B)) ,

and using the vector identity

B× (∇×B) =
1

2
∇(B ·B)− (B ·∇)B,
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we can write

f =
1

µ0

(
(∇ ·B)B + (B ·∇)B− 1

2
∇(B ·B)

)
=

1

µ0


∇ ·


BiBj −

1

2
δijB

2

︸ ︷︷ ︸
≡µ0Mij





 ≡∇·M .

Substituting this into the Taylor constraint equation (2.6) gives

∫

C(s)

(∇ ·M )φ sdφdz = 0 ⇒
∫

C(s)

(∇ ·M)φ dφdz = 0. (A.1)

Now expanding the integrand and using the symmetry of M gives

(∇·M )φ =
∂Msφ

∂s
+

1

s

∂Mφφ

∂φ
+
∂Mzφ

∂z
+

1

s
(Msφ+Mφs) =

∂Msφ

∂s
+

2

s
Msφ+

1

s

∂Mφφ

∂φ
+
∂Mzφ

∂z
,

and by the chain rule we know that

1

s2

∂(s2Msφ)

∂s
=

1

s2
(2s)Msφ +

∂Msφ

∂s
=

2

s
Msφ +

∂Msφ

∂s
.

Substituting this into equation (A.1) gives

∫

C(s)

1

s3

∂(s2BφBs)

∂s
+

1

2s2

∂Bφ
2

∂φ
+

1

s

∂(BφBz)

∂z
dφdz = 0

and ∫ z1

−z1

∫ 2π

0

∂Bφ
2

∂φ
dφdz =

∫ z1

−z1

[
Bφ

2
]2π

0
dz = 0,

where z1 =
√
r2

0 − s2 and r0 is the radius of the sphere. Hence

∫ z1

−z1

∫ 2π

0

1

s3

∂(s2BφBs)

∂s
+

1

s

∂(BφBz)

∂z
dφdz = 0,

and by the Leibniz integral rule

∫ z1

−z1

∂

∂s
(s2BsBφ) dz =

∂

∂s

∫ z1

−z1
(s2BsBφ) dz − s2(BφBs)

∣∣
z1

∂z1

∂s
− s2(BφBs)

∣∣
−z1

∂z1

∂s
.

Therefore

1

s3

∫ 2π

0

(
−s2(BφBs)

∣∣
z1

∂z1

∂s
− s2(BφBs)

∣∣
−z1

∂z1

∂s
+

∂

∂s

∫ z1

−z1
(s2BsBφ) dz

)
dφ

+
1

s

∫ 2π

0

[BφBz]
z1
−z1 dφ = 0,
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and since
∂z1

∂s
= − s

z1

,

substituting this in yields

1

s

∂

∂s

(
s2

∫ z1

−z1

∫ 2π

0

BφBs dφdz

)

+s

∫ 2π

0

Bφ

(
s

z1

Bs

∣∣
z1

+Bz

∣∣
z1

+
s

z1

Bs

∣∣
−z1
−Bz

∣∣
−z1

)
dφ = 0.

The radial unit normal vector is n̂ = 1
r0

(s, 0, z) and thereforeBr = B · n̂ = s
r0
Bs + z

r0
Bz

which means that r0Br

∣∣
z1

= sBs

∣∣
z1

+ z1Bz

∣∣
z1

and r0Br

∣∣
−z1

= sBs

∣∣
−z1

+ z1Bz

∣∣
−z1

.

Hence

1

s

∂

∂s

(
s2

∫ z1

−z1

∫ 2π

0

BφBs dφdz

)
+
r0s

z1

∫ 2π

0

BφBr

∣∣
z1

+BφBr

∣∣
−z1

dφ = 0

or
1

s

∂

∂s

(
s2

∫

C(s)

BφBs dφdz

)
+
r0s

z1

∮

N+S

BφBr dφ = 0,

where N and S are the circles where C(s) meets the spherical caps that close off

the volume that C(s) contains, at its northern and southern ends respectively.

Therefore we arrive at the condition (3.12) that for a sphere of radius

r0 = 1, Taylor’s constraint is equivalent to

1

s

∂

∂s

(
s2

∫

C(s)

BφBs dφdz

)
+

s√
1− s2

∮

N+S

BφBr dφ = 0, (A.2)

where the first term is the contribution from the domain’s interior and the second

term is the contribution from the boundary conditions.
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Appendix B

Solution of a full sphere

low-resolution Malkus state

We present a simple non-trivial solution of a Malkus state, without making any

simplifying assumptions as to the form of the toroidal field. Here we consider a full

sphere magnetic field truncated at Lmax = 3, Nmax = 3, and impose a minimum

Ohmic dissipation poloidal profile that matches the CHAOS-6 model (to degree 3)

at the CMB (r = R). We seek a toroidal field using all spherical harmonic modes

within the truncation Lmax = 3, Nmax = 3 (described by 45 degrees of freedom)

that when added to this poloidal field satisfies the Malkus constraints. Of the

72 nonlinear constraint equations, only 42 are independent. Thus the number of

degrees of freedom exceed the number of independent constraints, although since

the constraints are nonlinear it is not immediate that a solution exists. However,

using the computer algebra software Maple, we find the solution that minimises

toroidal field strength as well as satisfying all the constraints, which is visualised in

figure B.1. We cannot generalise this procedure to higher resolutions because of the

numerical difficulty in finding optimal solutions in such a nonlinear problem.
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−1 0 1
Br (mT)

(a) Br at r = 0.9R

−1 0 1
Bφ (mT)

(b) Bφ at r = 0.9R

−1 0 1
Br (mT)

(c) Br at r = 0.8R

−1 0 1
Bφ (mT)

(d) Bφ at r = 0.8R

Figure B.1: Fully nonlinear Malkus state with Lmax = 3, Nmax = 3 with minimal
toroidal field.

For comparison (see figure B.2) we also compute the solution using the

method described in §6.5, which owing to the specific choice of toroidal spherical

harmonic modes results in a linear system. The solutions are qualitatively and

quantitatively similar, with rms values of Bφ of 0.21 and 0.23 mT for the non-linear

and linear solutions respectively, suggesting that the optimised linear solutions we

have found are close to those optimal solution based on the full non-linear system.

−1 0 1
Bφ (mT)

Figure B.2: Linear Malkus state with minimal toroidal field, showingBφ at r = 0.9R,
using the method outlined in §6.5 and used for the Earth-like solutions.
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Appendix C

Basic theory

C.1 Toroidal and poloidal functions

The magnetic field and fluid velocity representations defined in §3.2, which are used

throughout this thesis and widely within the geodynamo community, result in an

expansion in terms of toroidal, poloidal and spherical harmonics functions. Here we

highlight some interesting properties of these functions.

The toroidal component of magnetic field in spherical coordinates is

∇× (Y m
l (θ, φ)T ml (r)r̂) = 0r̂ +

T ml (r)

r sin θ

∂Y m
l (θ, φ)

∂φ
θ̂ − T

m
l (r)

r

∂Y m
l (θ, φ)

∂θ
φ̂, (C.1)

While the poloidal component, when written out explicitly, similarly be-

comes

∇×∇× (Y m
l (θ, φ)Sml (r)r̂)

=
L2Sml (r)Y m

l (θ, φ)

r2
r̂ +

1

r

∂Y m
l (θ, φ)

∂θ

∂Sml (r)

∂r
θ̂ +

1

r sin θ

∂Y m
l (θ, φ)

∂φ

∂Sml (r)

∂r
φ̂,

(C.2)

where the result derived in appendix C.6 has been used to expand the double curl

and express this in terms of the angular momentum operator L. Applying this
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operator, using the result L2f = l(l + 1)f derived in appendix C.5, gives

∇×∇× (Y m
l (θ, φ)Sml (r)r̂)

=
l(l + 1)Sml (r)Y m

l (θ, φ)

r2
r̂ +

1

r

∂Y m
l (θ, φ)

∂θ

∂Sml (r)

∂r
θ̂ +

1

r sin θ

∂Y m
l (θ, φ)

∂φ

∂Sml (r)

∂r
φ̂.

(C.3)

Toroidal vectors have no radial component, as seen by equation (C.1), so they are

confined to spherical surfaces of constant radius. This allows us to relate the radial

component of the magnetic field and the poloidal function.

(Bm
l )r =

l(l + 1)

r2
Sml (r)Y m

l (θ, φ)⇒ Sml (r) =
r2

l(l + 1)

∮
(Bm

l )rY
m
l (θ, φ) dΩ,

where the integral is over all solid angles dΩ = sin θ dθ dφ.

Taking the curl of equation (3.4) interchanges toroidal and poloidal vectors.

Since the curl of the toroidal vector is obviously poloidal and by the vector identity

∇×∇×A =∇(∇ ·A)−∇2A we have

∇×∇×∇× (S r̂) = −∇2∇× (S r̂). (C.4)

This allows us to directly relate the radial component of the curl of the

magnetic field and the toroidal function.

((∇×B)ml )r =
l(l + 1)

r2
T ml (r)Y m

l (θ, φ)⇒ T ml (r) =
r2

l(l + 1)

∮
((∇×Bm

l )r)Y
m
l (θ, φ) dΩ

The rate of change of the toroidal and poloidal scalars are similarly related

to the magnetic induction by

∂T ml (r)

∂t
=

r2

l(l + 1)

∮ (
∇× ∂Bm

l

∂t

)

r

Y m
l (θ, φ) dΩ, (C.5)

∂Sml (r)

∂t
=

r2

l(l + 1)

∮
∂(Bm

l )r
∂t

Y m
l (θ, φ) dΩ, (C.6)
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C.2 Solving Laplace’s equation

Laplace’s equation

1

r2

∂

∂r

(
r2∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2(sin θ)2

∂2V

∂φ2
= 0, (C.7)

describes the potential field V within an electrical insulator (e.g. the mantle). This

partial differential equation can be solved analytically in spherical coordinates using

the method of separation of variables, by using the substitution

V (r, θ, φ) = R(r)Θ(θ)Φ(φ).

After dividing equation (C.7) by RΘΦ and collecting terms dependent of each vari-

able we have

(
r2(sin θ)2

R

d2R

dr2
+

2r(sin θ)2

R

d

dr

)
+

(
1

Φ

d2Φ

dφ2

)
+

(
cos θ sin θ

Θ

dΘ

dθ
+

(sin θ)2

Θ

d2Θ

dθ2

)
= 0.

(C.8)

Since the second bracket is the only term dependent on φ, this must be equal to a

constant, allowing us to solve for Φ

1

Φ

d2Φ

dφ2
= −m2 ⇒ Φ(φ) = Ame

imφ.

Substituting this back into equation (C.8) and dividing by (sin θ)2 now gives us an

equation in the two remaining unknowns.

(
r2

R

d2R

dr2
+

2r

R

d

dr

)
+

1

(sin θ)2

(
cos θ sin θ

Θ

dΘ

dθ
+

(sin θ)2

Θ

d2Θ

dθ2
−m2

)
= 0. (C.9)

Now the first bracket is the only term dependent on r and hence must be equal to

a constant and R can be similarly solved for

r2

R

d2R

dr2
+

2r

R

d

dr
= l(l + 1).

This is a standard Euler ordinary differential equation, which can be solved through

the substitution R = rc leading to c = l, −l − 1 and

R(r) = Alr
l + Clr

−l−1,
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where Al and Cl are constant coefficients. Substituting this back into equation (C.9)

we now have the ordinary differential equation in Θ

d2Θ

dθ2
+

cos θ

sin θ

dΘ

dθ
+

(
l(l + 1)− m2

(sin θ)2

)
Θ = 0,

which we can write in the form of the general Legendre equation

1

(sin θ)2

d

dθ

(
(1− (cos θ)2)

dΘ

dθ

)
+

(
l(l + 1)− m2

1− (cos θ)2

)
Θ

=
d

dx

(
(1− x2)

dΘ

dx

)
+

(
l(l + 1)− m2

1− x2

)
Θ = 0,

where x = cos θ and |m| = 0, . . . , l. The solutions of which are the associated

Legendre polynomials Pm
l (cos θ). Therefore, in terms of these, the complete solution

is

V =
∞∑

l=0

l∑

m=−l

(Alr
l + Clr

−l−1)Pm
l (cos θ)e−imφ,

or in terms of spherical harmonics

V =
∞∑

l=0

l∑

m=−l

(Alr
l + Clr

−l−1)Y m
l (θ, φ).

C.3 Spherical Harmonics

The associated Legendre functions are orthogonal functions Pm
l defined on the do-

main [−1, 1] as

Pm
l (x) =

(−1)m

2ll!
(1− x2)

m
2
dl+m

dxl+m
(x2 − 1)l

From the definition of spherical coordinates it is obvious that we can express any

axisymmetric function, which has no dependence on φ, in terms of the associated

Legendre functions by mapping θ into the [−1, 1] domain using cos θ.

The set of sine and cosine functions also form a set of orthogonal functions.

Therefore, in order to provide orthogonality for non-axisymmetric functions, the

associated Legendre functions for the θ dependence are combined with the sine and

cosine functions for the φ dependent part, resulting in the formal definition of a

spherical harmonic of degree l and order m of

Y m
l (θ, φ) = Pm

l (cos θ)





sin(mφ)

cos(mφ)



 . (C.10)
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These spherical harmonics are a complete set of orthogonal functions on a sphere,

and thus can be used to represent functions defined on the surface of a sphere.

C.3.1 Equatorial symmetry

A scalar s is equatorially symmetric if s(r, π − θ, φ) = s(r, θ, φ), and equatorially

antisymmetric if s(r, π − θ, φ) = −s(r, θ, φ).

A vector v is equatorially symmetric if v(r, π − θ, φ) = [vr,−vθ, vφ](r, θ, φ), and

equatorially antisymmetric if v(r, π − θ, φ) = [−vr, vθ,−vφ](r, θ, φ).

Spherical harmonics have the symmetrical property that

Y m
l (π − θ, φ) = (−1)(l−m)Y m

l (θ, φ).

Since each curl operation switches the equatorial symmetry then T ml is anti-symmetric

to its Y m
l whereas Sml is symmetric to its Y m

l . This means that T ml is equatorially

symmetric when l −m is odd and equatorially antisymmetric when l −m is even,

while Sml is equatorially symmetric when l − m is even and equatorially antisym-

metric when l −m is odd.

C.3.2 Rotational symmetry

From equation (C.10) and the knowledge that sinφ is antisymmetric and cosφ is

symmetric, we find that

Y ms
l (π − θ,−φ) = (−1)(l−m+1)Y ms

l (θ, φ),

and

Y mc
l (π − θ,−φ) = (−1)(l−m)Y mc

l (θ, φ),

where the superscripts s and c refer to the individual sine and cosine components.

Since curl operations leave the rotational symmetry unchanged then T ml and Sml
have the same symmetry as their Y m

l . So T msl and Smsl are rotationally symmetric

when l−m is odd and rotationally antisymmetric when l−m is even, while T mcl and

Smcl are rotationally symmetric when l −m is even and rotationally antisymmetric

when l −m is odd.
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C.4 Boundary conditions

At the exterior of the outer core is a boundary with the electrically insulating man-

tle, known as the core-mantle boundary (CMB). Certain quantities including the

magnetic field B must remain continuous across any surface. This includes surfaces

across which conductivity is discontinuous, which is the case for the CMB. There-

fore we need to apply the magnetic field boundary conditions across a perfectly

insulating surface

[B] = n̂ · J = 0, at r = 1,

where n̂ is the unit normal vector to the surface and the notation [B] means the

jump of the field B across the boundary surface. From the continuity of B it is clear

that there must be zero jump in all components at the boundary, as well as zero

jump in the gradient of any components normal to the boundary

[T ml ] = 0, [Sml ] = 0,

[
dSml
dr

]
= 0, at r = 1, (C.11)

where, since for a quantity to be continuous over the boundary then all its spherical

harmonic components must also be continuous, we have extended the condition of

continuity down to individual components.

If conductivity is zero then by Ampére’s law ∇×B = 0, so the magnetic

field in an electrical insulator can be written as a potential B = −∇V where V is

a scalar function and ∇2V =∇ ·B = 0.

By using the result of equation (C.4) we have that

∇×B =∇×∇× (T r̂) +∇× (−∇2S r̂),

and hence, in an insulator

∇×B = 0 ⇒ T = 0, ∇2S = 0. (C.12)

From equation (C.11) we require T ml to be continuous at the boundary r = 1 and

we have seen that in an insulator T = 0⇒ T ml = 0 therefore this must be the case

at the boundary and provides the boundary condition for the toroidal component

of the magnetic field.

Deriving the poloidal condition requires a little more effort, but can be
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done as follows. As a vector identity the poloidal component can be expressed as

∇×∇× (S r̂) =∇ (∇ · S r̂)− r̂∇2S.

Therefore, due to equation (C.12), the total magnetic field in an insulator can be

written as

B =∇× (T r̂) +∇×∇× (S r̂) =∇ (∇ · S r̂) ,

and hence

V = −∇ · S r̂.

As derived in appendix C.2, the general solution of Laplace’s equation

∇2V = 0 in spherical coordinates is

V =
∞∑

l=0

l∑

m=0

(
Aml r

l + Cm
l r
−l−1

)
Y m
l (θ, φ),

where Aml and Cm
l are constant coefficients and for our problem of the insulator

surrounding a conducting sphere we require that B → 0 as r → ∞ and hence

Aml = 0. Therefore

V =
∞∑

l=0

l∑

m=0

Cm
l r
−l−1Y m

l (θ, φ),

and

S = −
∫
V dr =

∞∑

l=0

l∑

m=0

Cm
l

r−l

l
Y m
l (θ, φ).

This means that within the external insulator

Sml (r) = Cm
l

r−l

l
.

Returning to the continuity conditions (C.11), for the poloidal component we re-

quire Sml and
dSml
dr

to be continuous at CMB boundary. This provides the external

boundary conditions for the core that must be satisfied at r = 1,

Sml =
Cm
l

l
,

and
dSml
dr

= −Cm
l .

Both these conditions are in terms of the unknown scalar Cm
l , so we combine them

to eliminate Cm
l and give one condition. The complete boundary conditions for the
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magnetic field on the core-mantle boundary of Earth are

dSml
dr

+ lSml = 0, T ml = 0, at r = 1 (C.13)

C.5 Angular momentum

Angular momentum is defined classically as L = r × p, for position vector r and

linear momentum p. The result of applying the angular momentum operator L2

to a function f can be derived through a simple quantum mechanical calculation.

Working in units where the reduced Plank constant ~ = 1, the one dimensional linear

momentum operator p̂ = −i ∂
∂x

, where i =
√
−1 is the unit imaginary number. The

three Cartesian components of angular momentum are

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx,

with commutators

[Lx, Ly] = −
((

y
∂

∂z
− z ∂

∂y

)(
z
∂

∂x
− x ∂

∂z

)
−
(
z
∂

∂x
− x ∂

∂z

)(
y
∂

∂z
− z ∂

∂y

))

= −y ∂
∂x

+ x
∂

∂y
= iLz,

[Ly, Lz] = −
((

z
∂

∂x
− x ∂

∂z

)(
x
∂

∂y
− y ∂

∂x

)
−
(
x
∂

∂y
− y ∂

∂x

)(
z
∂

∂x
− x ∂

∂z

))

= −z ∂
∂y

+ y
∂

∂z
= iLx,

[Lz, Lx] = −
((

x
∂

∂y
− y ∂

∂x

)(
y
∂

∂z
− z ∂

∂y

)
−
(
y
∂

∂z
− z ∂

∂y

)(
x
∂

∂y
− y ∂

∂x

))

= −x ∂
∂z

+ z
∂

∂x
= iLy,

and

[L2, Lz] = [L2
x, Lz] + [L2

y, Lz] + [L2
z, Lz]︸ ︷︷ ︸
=0

.

Now using the identity [AB,C] = A[B,C] + [A,C]B and [A,B] = −[B,A]

we have

[L2
x, Lz] = Lx(−iLy) + (−iLy)Lx = −i(LxLy + LyLx),
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and

[L2
y, Lz] = Ly(iLx) + (iLx)Ly = i(LxLy + LyLx),

⇒ [L2, Lz] = 0. This means that L2 and Lz commute, and therefore L2 has simulta-

neous eigenfunctions with Lz. This means we can define L2f = λf and Lzf = mf

where f is a joint eigenfunction of L2 and Lz, with respective eigenvalues λ and m.

Using Dirac notation (Dirac, 1939), with raising and lowering operators

defined as L+ = Lx + iLy and L− = Lx − iLy respectively,

〈λ,m|L2 − Lz2 |λ,m〉︸ ︷︷ ︸
λ−m2

= 〈λ,m|Lx2 |λ,m〉︸ ︷︷ ︸
≥0

+ 〈λ,m|Ly2 |λ,m〉︸ ︷︷ ︸
≥0

,

⇒ λ ≥ m2. This means that there must exist an upper state such that L+ |λ,mmax〉 = 0,

with mmax = l, for a positive integer l. Therefore L−L+ |λ,mmax〉 = 0. We also

know that L−L+ = (Lx − iLy)(Lx + iLy) = L2
x + L2

y + i[Lx, Ly] = L2 − L2
z − Lz.

Combining these results gives

(L2 − L2
z − Lz) |λ, l〉 = λ− l2 − l = 0⇒ λ = l(l + 1).

Therefore we arrive at the final result for the L2 operator

L2f = l(l + 1)f, (C.14)

where importantly for us, the spherical harmonics (C.10) are eigenfunctions of L2

and Lz, with eigenvalues l(l + 1) and m respectively.

C.6 Vector calculus

The double curl of a radial vector can be expanded through some vector calculus

manipulations.

The standard vector identity allows us to write

∇×∇× Ar̂ =∇(∇ · Ar̂)−∇2(Ar̂) (C.15)

for any scalar A, and the first term on the right hand when expanded is

∇(∇ · r̂A) =
1

r2

∂

∂r

(
r2∂A

∂r

)
r̂ +

1

r

∂

∂θ

∂A

∂r
θ̂ +

1

r sin θ

∂

∂φ

(
∂A

∂r

)
φ̂
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Defining the angular momentum operator

L2 = −
(

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

(sin θ)2

∂2

∂φ2

)
,

allows us to write the Laplacian operator in terms of this as

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2(sin θ)2

∂2

∂φ2
=

1

r2

∂

∂r

(
r2 ∂

∂r

)
− L

2

r2
.

Therefore the second term on the right hand side of equation (C.15) can be written

as

∇2(Ar̂) =

(
1

r2

∂

∂r

(
r2∂A

∂r

)
− L2A

r2

)
r̂.

Substituting these expansions back into equation (C.15), results in the following

form, which proves useful when expanding a poloidal field

∇×∇× Ar̂ =
L2A

r2
r̂ +

1

r

∂

∂θ

∂A

∂r
θ̂ +

1

r sin θ

∂

∂φ

(
∂A

∂r

)
φ̂.
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