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Abstract 

This thesis studies the application of reinforcement learning to Medium Access Control (MAC) 

protocol design for underwater acoustic networks. 

The underwater environment constantly changes due to many factors which have a significant 

impact on wire free communications. Therefore it is of interest to explore whether reinforcement 

learning can provide benefits in the underwater environment since reinforcement learning is 

capable of interacting and adapting to a changing environment. 

Due to the limited bandwidth of acoustic signals, underwater networks have fundamentally low 

channel capacity and the slow propagation speed of the signals makes it very difficult to achieve 

high channel utilisation. MAC protocols play a key role in achieving efficient use of a shared 

channel since they govern the achievable channel utilisation and the corresponding quality of 

service required by the applications. 

This thesis applies the reinforcement learning approach to the MAC protocol operating in the 

time-varying underwater channel. To utilise reinforcement learning effectively in underwater 

networks, three new schemes are proposed: asynchronous operation because time synchronisation 

is costly in the underwater environment, refinement of frame size for the desired channel 

utilisation, and finally a new random back-off scheme for better benefits from the reinforcement 

learning approach. Reinforcement learning based protocols can provide convergence for fixed 

networks and desirable channel utilisation and adaptability for mobile networks.  

Intensive simulation results show that the proposed reinforcement learning based protocols in this 

thesis outperform existing protocols and can provide an agnostic solution for different underwater 

networks such as those comprising different types of nodes. This is achieved by applying 

reinforcement learning to remove the need for complex or inefficient operations that many 

existing protocols use to deal with the slow propagation delay of acoustic signals and 

environmental changes in the networks.  
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1 Introduction 

1.1 Background 

The market value of coastal resources is estimated to be 3 trillion USD per year [1], contributing 

1.5 trillion USD annually to the global economy [2]. Therefore, the marine environment has 

become central to a vast diversity of industries and areas of scientific importance. Examples of 

applications using underwater networks include disaster alarm systems from tsunami monitoring 

networks far off coast [3], natural resource exploration using seabed networks for gas or oil [4], 

underwater surveillance military networks [5], and ocean cleaning including ocean plastics [6]. 

However, most of the ocean is still unexplored: most of the underwater realm is unseen by human 

eyes because ocean exploration has been hampered by the hostile and harsh environment for both 

people and equipment. To deal with the challenges of the underwater environment, wire free 

communication is necessary in order to explore the oceans more effectively and to do so remotely, 

continuously and potentially in real time. 

1.2 Current underwater networks 

Current underwater networks have several limitations. To deploy sensor nodes, they need to be 

moved to the sea by ship and deployed on the sea bed or in the water column. Then the devices 

collect data for the mission period. After the mission, sensors needs to be taken back to the data 

centre, and finally the data sensed by nodes can be analysed. For example, in 2009, Air France 

flight 447 crashed in the equatorial Atlantic Ocean. The salvage was conducted through five 

phases for nearly two years. Multiple REMUS (Remote Environment Monitoring UnitS) 6000 

Autonomous Underwater Vehicles (AUVs) [7] were used during phase 3 and phase 4 and the first 

plane wreckage was detected by the AUV side scan sonars 10 days into phase 4. Each AUV 

weights approximately 880 kg and a REMUS6000 mission includes the preparation, launch, 

descent, seafloor search, ascent, recovery, and data download. There are number of disadvantages 

of this existing approach which leads to the need for effective wireless communication in the 

underwater environment [8]: 

• Real time monitoring is not possible. 

• No interaction is possible between onshore control systems and monitoring instruments. 

• If misconfiguration, failure, or loss occurs it may not be possible to detect such issues: 

they are not adaptable and not reconfigurable. 

• Ocean data collection is limited by the duration of the mission. 
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1.3 Challenges 

This section provides reasons why wire free communications are limited in their ability to achieve 

good performance in underwater networks. 

1.3.1 Uncertainty 

The underwater environment constantly changes due to many factors, notably variable wave 

motion which has a significant impact on wireless communications. This means that the 

underwater networks are situated in a time-varying environment. Therefore, it is required that 

underwater networks are capable of being adaptive to continuous environmental changes. 

1.3.2 Energy sources 

Energy sources are a challenge in the underwater environment as solar energy cannot be exploited 

because water absorbs much of the spectrum of sunlight, even though blue-green light is the last 

portion of the spectrum to be absorbed. Renewable underwater energy sources such as wave, tidal, 

and ocean thermal energy have been intensively studied nowadays but the underwater energy 

stations are not common and practical at the current time.  Therefore, the underwater sensors have 

to be carried to the land or a ship for battery recharging. 

1.3.3 Time synchronisation 

Most wireless networks in the terrestrial environment use time synchronisation for data 

transmissions since it is easy and cheap to achieve. However, GPS signals are not available 

underwater because they are absorbed by water. Therefore, the reliance on time synchronisation 

for data communication in underwater networks becomes costly and increases the complexity of 

the system, especially the periodic applications. Although it may be feasible in some instances to 

synchronise nodes prior to development, clock drift is likely to be a problem for the envisaged 

long term monitoring applications. Moreover, the lack of GPS also restricts options for navigation 

and tracking. 

1.3.4 Inefficient channel use 

Wireless Sensor Networks (WSNs) using radio technology have been widely used to collect data 

in many applications. Unfortunately, this technology cannot be directly applied under water since 

radio waves are absorbed by water. Acoustic signals are the most viable means of communicating 

underwater due to their longer propagation distance compared with alternatives such as radio or 

optical signals. However, the slower propagation speed of acoustic signals in water compared to 

radio signals in the air leads to poor channel utilisation in underwater networks, and the limited 
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and distance dependent bandwidth brings about low fundamental capacity based on Shannon's 

channel capacity theory [9]. 

1.3.5 Costs 

The components for underwater networks tend to be bulky and expensive because of the housing 

requirements to deal with high pressures, the presence of salt, other minerals in the water, etc. For 

example, a simple underwater cable connector typically costs over one hundred USD [10]. Not 

only components but also deployment costs, for example, the cost of oceanographic research 

vessels supporting missions is significant even for a single days use [11]. 

1.4 Scope of the thesis 

This thesis investigates whether reinforcement learning can be used in MAC protocols for mobile 

underwater networks as a means of improving performance and providing a flexible topology 

agnostic solution in particular, considering challenges of environment uncertainty, lack of GPS 

signal, limited channel, and the inefficient channel use discussed in sections 1.3.1, 1.3.3, and 1.3.4. 

MAC protocols play a key role in making efficient use of a multiple access channel since their 

operation governs the achievable channel utilisation and corresponding quality of service. Many 

state of the art MAC protocols designed for mobile underwater networks were originally designed 

for fixed sensor networks, and they were extended to mobile networks. The extension incorporates 

additional functions to deal with node movement, such as carrier sensing, transmission prediction 

schemes, or more frequent control message exchanges. Those existing MAC schemes can play a 

role of coordinating multiple accesses from mobile nodes, however their performance is 

significantly limited because those additional approaches are not optimal operations in the 

underwater environment and they are workarounds to deal with node movement rather than to 

improve network resilience and adaptability. Moreover, applying reinforcement learning to the 

medium access control problem in underwater networks is a new research area in so far that 

existing MAC protocols based on reinforcement learning only support networks comprising fixed 

nodes and cannot provide efficient learning. Therefore, this thesis proposes a set of reinforcement 

learning schemes to improve underwater resilience and adaptability. The work of this thesis falls 

into two main areas: firstly, the application of reinforcement learning to fixed networks and 

secondly, applying it to mobile networks. Using the fundamental nature of reinforcement learning, 

based upon trial-and-error interaction with a changing environment, the newly proposed protocol 

called UW-ALOHA-QM can achieve high channel utilisation without the need for time 

synchronisation and with a very low level of overheads. Results show that UW-ALOHA-QM 
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outperforms other existing protocols and achieves a significant improvement in channel 

utilisation in a number of distinct and representative scenarios. 

1.5 Hypothesis 

Reinforcement learning techniques are powerful means of providing an agnostic solution in 

different scenarios such as free floating networks, anchored or moored networks, AUV assisted 

networks, and AUV networks for medium access control in underwater networks. 

1.6 Structure of the thesis 

This thesis is defined into six chapters and the contents are outlined in this section. Chapter 2 

provides a brief comparison of available signals which can be used for underwater 

communications and covers fundamental knowledge of multiple access techniques and MAC 

protocols. This chapter then provides a detailed literature review, describing state of the art 

protocols in detail, focusing on their features and relative merits in the underwater environment. 

Moreover, a Q-learning algorithm is introduced which is used in the UW-ALOHA-Q and UW-

ALOHA-QM protocols which are proposed in chapters 4 and 5.  Finally this chapter motivates 

the use of reinforcement learning for the medium access control problem and reviews the existing 

research literature on reinforcement learning based MAC protocols in both terrestrial and 

underwater environments.  

Chapter 3 describes the ALOHA-Q protocol which was designed for WSNs and compares the 

initial simulation results of the protocol in terrestrial and underwater environments. The purpose 

of the initial simulation is to examine whether the reinforcement learning based protocol can be 

used in the underwater environment. Initial simulation results shows that there is a significant 

decrease in channel utilisation when ALOHA-Q is operated in the underwater environment. 

Chapter 4 introduces UW-ALOHA-Q for underwater networks consisting of fixed sensor nodes. 

This protocol includes three novel schemes which are designed by considering the properties of 

underwater acoustic networks, notably the costs of time synchronisation and inefficient channel 

utilisation. This chapter provides a depth of understanding of the protocol and presents simulation 

results which demonstrate that the proposed protocol provides high channel utilisation as well as 

network convergence through the reinforcement learning approach. 

Chapter 5 extends UW-ALOHA-Q to UW-ALOHA-QM in order to deal with significant and 

continuous changes in a network caused by mobile nodes. UW-ALOHA-QM is the first 



 

17 

 

reinforcement learning based MAC protocol for mobile nodes in underwater sensor networks. 

Simulation results show that UW-ALOHA-QM can increase network resilience and adaptability 

and hence can achieve a higher channel utilisation than existing protocols designed for underwater 

mobile networks. 

Chapter 6 presents the conclusions of this thesis and provides suggestions for future work.
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2  Literature review 

2.1 Signals underwater 

This section explains and compares features of radio, optical, and acoustic signals in the 

underwater environment. 

2.1.1 Radio signals 

Radio signals range between 3 kHz to 3 THz in the electromagnetic spectrum. High frequency 

radio bands facilitate networks requiring large bandwidths for high data rate applications and 

lower frequencies generally benefit from more favourable propagation for non-line of site and 

long distance communication in the terrestrial environment. However, radio waves are attenuated 

severely underwater and thus are not able to travel long distances. 

2.1.1.1 Path loss 

When a signal propagates in any channel, the loss increases with an increase in distance. The 

degradation over a particular distance from the transmitter to receiver is denoted by a term called 

path loss. The relationship between signal power and distance can be expressed as: 

Pr ∝ d-n                                                            (2-1) 

where, Pr is received signal power, d is distance, and n is the path loss exponent. The path loss 

exponent is the loss of signal strength when it propagates in different environments and a higher 

values represent more lossy environments. Table 2-1 shows the practical values in different 

environments.  

Environments Path loss exponent (n) 

Free space 2 

Urban area 2.7 to 3.5 

Suburban area 3 to 5 

Indoor (Line of Sight) 1.6 to 1.8 

Underwater (Line of Sight) 2 to 4 

Table 2-1. Path loss exponent of radio signals for different environments [12] 
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2.1.1.2 Absorption loss 

The primary reason for path loss in the underwater medium is the radio signal property of water 

(conductivity) which behaves differently over different frequency bands. Therefore, frequency 

has a significant influence on the radio wave propagation distances underwater. The electrical 

conductivity (δ) of the medium is measured in the unit of Siemens per meter (S/m). 

As shown in Table 2-2, the conductivity of fresh water is typically around 0.001 S/m, sea water 

commonly 4 S/m (400 times higher), and the Red Sea is 8 S/m. An increase in conductivity results 

in an increase in attenuation, such that the higher the conductivity of the water, the shorter the 

propagation range. 

Water Conductivity values (S/m) 

Fresh water 0 ≤ δ < 1 

River water 1 ≤ δ < 2 

Sea water 2 ≤ δ 

Table 2-2. Water conductivity [12] 

2.1.2 Optical signals 

Optical signals are defined in the range from 400 THz to 700 THz (400nm to 700nm). The main 

characteristic of the signals underwater is the availability of a lot of bandwidth for high data rate 

communication, which can be achieved over distances of the order of a few hundred meters 

depending on the turbidity of the water. Different wavelengths of light are absorbed differently 

in water, for example, blues and greens penetrate deepest as shown in Figure 2-1 [13]. This leads 

to research subject projects being undertaken on the use of blue-green light for underwater 

communications [14-15]. Unlike the case of radio signals, conductivity does not play a major role 

in optical underwater communication [16]. 

2.1.2.1 Scattering 

The propagation of optical signals through a medium is affected by absorption, emission, and 

scattering processes. Scattering is a dominant loss mechanism of optical signals and it is 

environmentally dependent and unknown, which means the available propagation distance of 

optical signals depends significantly on the environmental conditions. Moreover, transmission of 

optical signals requires high precision in directing the narrow laser beams. Therefore, optical 

signals are not appropriate to medium or large underwater networks. 
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Figure 2-1. Characteristics of optical signals underwater: taken from [13] 

2.1.3 Acoustic signals 

The characteristics of radio and optical signals are significantly different in the terrestrial and 

underwater environments as discussed in sections 2.1.1 and 2.1.2. Acoustic signals which fall 

between 20 Hz and 20 kHz are considered to be more appropriate for underwater communication 

since they can propagate over longer distances than radio and optical signals.  

2.1.3.1 Speed of acoustic signals in oceans 

The speed of sound in sea water depends on its temperature, as well as on the salinity and 

hydrostatic pressure. For calculation of the speed of sound, Wilson's empirical formula offered in 

1960 is in common use [17]. Wilson's formula is accepted by the National Oceanographic Data 

Centre (NODC) in the USA for computer processing of hydrological information. Equation (2-2) 

shows the simplified version of Wilson’s formula: 

c = 1449 + 4.6 T – 0.055 T2 + 0.0003 T3 + 1.39 (S-35) + 0.017 D                   (2-2) 

where, c is speed of sound (m/s), S is salinity (Practical Salinity Unit), T is temperature (°C), and 

D is depth (m). Using Equation (2-2), a sound speed profile underwater can be derived as shown 
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in Figure 2-2 [18]. Between surface and a depth of 100 m, the sound speed is approximately 1,500 

m/s. 

  

Figure 2-2. Depth profiles of sound speed: taken from [18] 

This slow propagation speed impacts on MAC protocols for underwater networks. Existing 

protocols designed for wireless sensor networks in the terrestrial environment assume a high 

propagation speed (≈ 3 × 108 m/s) and therefore the existing protocols cannot be directly applied 

to underwater networks. The slow propagation speed must be considered in the design of MAC 

protocols for underwater networks since the large propagation delay brings about low channel 

utilisation and high latency in the network. 

2.1.3.2 Transmission loss 

Transmission loss is the accumulated decrease in acoustic intensity between a transmitter and a 

receiver and the loss consists of spreading and attenuation. Attenuation can be divided into 

absorption and scattering. Scattering depends on frequency and a dominant factor below 100 Hz. 

Spreading and absorption are primary causes of transmission loss of acoustic signals through 

underwater above 100 Hz. In shallow water, the transmission loss can be expressed by cylindrical 

spreading (spreading factor) plus absorption: 
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Transmission loss = cylindrical spreading + absorption = 10 log r + α r × 10-3        (2-3) 

where, r is range in meters and α is the absorption coefficient in dB/km. The absorption coefficient 

depend on acoustic frequency, pressure, acidity, temperature, and salinity in the sea water.  

In a similar way, the direct path model in deep water can be expressed as: 

Transmission loss = spherical spreading + absorption = 20 log r + α r × 10-3         (2-4) 

The propagation distances of sound waves depends to a great extent on frequency in the 

underwater environment. Therefore, acoustic signals at a higher frequency travel a shorter 

distance due to high transmission loss whilst at lower frequencies, they travel longer distances. 

Consequently, the available bandwidth of acoustic signals is limited and this leads to fundamental 

low channel capacity according to Shannon’s theory [9]. 

2.1.4 Discussion 

Section 2.1 compares features of radio, optical, and acoustic signals in the underwater 

environment. Each type of signal has its own pros and cons. However, acoustic signals are more 

feasible for use in underwater communications than other alternative signals due to their longer 

propagation distances. Table 2-3 summarises the characteristics of the three signals. 

 Acoustic Radio Optical 

Frequency 500 Hz (long range) to 

50kHz (medium range) 

100 Hz (up to 100m) to 

100 kHz (few m) 

Blue-green: 1014 Hz 

Noise 

sources 

Rain, marine lives, 

thrusters, electronic 

preamplifier noise 

Motor, lightning, pump, 

solenoid 

electromagnetic noise, 
electromagnetic 

preamplifier nose 

Sunlight, detector short, 

preamplifier noise 

Latency High 

1450-1550 m/s 

Frequency dependent 

1500 m/s (1Hz) 

1e6 m/s (1MHz) 

Fixed low 

2.25e8 m/s 

Absorption 

loss 

Low (frequency 

dependent) 

0.05 dB/m (150 kHz) 

0.0001 dB/m (1.5 kHz) 

High (frequency 

dependent) 

5.4 dB/m (25 kHz) 

1.1 dB/m (1 kHz) 

High (turbidity 

dependent) 

0.1 dB/m (deep ocean) 

10 dB/m (shallow 

coastal) 
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Data rate 10s bps to 10s kbps 10s bps to 100 kbps 100s kbps to several 10s 

Mbps 

Antenna 

size 

cm (medium range) 

few 10s cm (long range) 

Few 10s cm to several 

meters 

Up to 10 to 20 cm 

Practical 

range 

Meters to 10s km at 

kbps 

Less than 10 m at kbps 10 m to 100 m 

Antenna 

aspect 

Omnidirectional and 

directional  

Requires appropriate 

antenna orientation 

Directional and narrow 

beam 

Application 

examples 

Long rang 

communication, long 

range sensor networks 

Short range 

communication, short 
range cross media and 

NLOS communication 

(air-water, water-

bottom), short range 

sensor networks 

Short range high 

bandwidth data rate 
uplift, real time video 

command control 

Table 2-3. Summary of signals 

Based on the characteristics of the three types of signals underwater, the benefits and limitations 

are considered in Table 2-4. 

 Acoustic Radio Optical 

Benefits Most widely used 

underwater wireless 

communication 
technology, long 

communication range 

over 100s of km 

Relatively smooth 

transition to cross air 

and water boundaries, 
more tolerant to water 

turbulence and 

turbidity, loose 

pointing requirements 

Ultra-high data 

transmission range (up to 

Gbps), immune to 
transmission latency, 

higher communication 

security 

Limitations Low data transmission 

rate (on the order of 

kbps), large 
communication latency 

(on the order of second), 

not proper to 

applications of real time 
large volume data 

exchange 

Short link range (a few 

meters at extra low 

frequencies 30 to 300 
Hz), huge transmission 

antenna 

Cannot cross water and 

air boundary easily, suffer 

from severe absorption 
and scattering, moderate 

link range (up to ten of 

meters), transmission of 

optical signals requires 
high precision in pointing 

the narrow later beams 

Table 2-4. Benefits and limitations 

Figure 2-3 [19] summaries the available propagation distances of different signals and shows 

experimental results using them. While optical signals and radio signals provide higher capacities 

than acoustic signals, the available transmission range is much shorter than acoustic signals. 

Regarding the huge size of oceans and the cost of devices, acoustic communication is most 
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suitable for underwater networks but even so two critical limitations exist. First, the slower 

propagation speed (≈ 1,500 m/s) of acoustic signals in water compared to radio signals in the air 

(≈ 3 × 108 m/s) invariably leads to poor channel utilisation and inefficient channel use in 

underwater networks. Secondly, the limited and distance dependent bandwidth brings about low 

fundamental channel capacity. 

 

 

Figure 2-3. Comparison of the different underwater communication channels: taken from 

[19] 

2.2 Medium access control 

The International Standards Organisation (ISO) defines a reference model for packet switched 

networks called the Open Systems Interconnection (OSI) model [20]. The model consists of seven 

layers and the second layer is the called data link layer which is divided into Logical Link Control 

(LLC) and Medium Access Control (MAC). The MAC layer is positioned over the first physical 

layer and transforms the bit string into messages as shown in Figure 2-4. In the figure, H stands 

for Header of a message. 

The objective of the MAC layer is to make efficient use of the available channel capacity in a 

network. At the same time, MAC protocol design has a notable impact on delivering the Quality 

of Service (QoS) requirements of applications, for example, packet error rate, end to end delay, 

energy consumption, throughput, etc. MAC protocols can achieve these objectives by assigning 



 

25 

 

channel capacity to multiple users and by coordinating and regulating their data transmissions on 

the shared channel. 

 

Figure 2-4. OSI seven layer model 

Underwater acoustic channels are significantly limited in terms of bandwidth as described in 

section 2.1.3, hence the available capacity must be used effectively. The achievable utilisation 

efficiency is governed by the underlying MAC protocol. Therefore, the MAC layer can play a key 

role in underwater acoustic networks to handle the inefficient channel use which is due to the 

slow propagation speed. 

2.2.1 Multiple access techniques 

The required roles of the MAC layer vary depending on the needs of applications and how the 

applications are implemented. First, the MAC layer provides a multiple access technique(s) which 

enables multiple user access to a shared medium. According to the system implementation, either 

frequency, time, or codes are used to allow multiple users fundamentally to share the channel 

resources. Second, the MAC layer provides the process regulating and governing multiple access 

to the channel. This is the software control organising multiple access based on the multiple access 

technique(s) implemented. Section 2.2.1 explains multiple access techniques and section 2.2.3 

reviews the associated medium access control protocols. 

2.2.1.1 Frequency Division Multiple Access (FDMA) 

FDMA divides a shared channel into a number of sub-frequency bands and these are assigned to 

individual nodes. All nodes can transmit packets simultaneously so that FDMA is appropriate for 
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constant bit rate traffic. However interference can be caused to other users operating on adjacent 

channels. This problem can be solved by inserting appropriate guard bands as shown in Figure 

2-5. 

 

Figure 2-5. Frequency division multiple access 

The FDMA technique was tried in some experiments as a key part of the Seaweb project early on 

in underwater communication system development in the 1990s [21]. Due to the lack of acoustic 

signal bandwidth as discussed in section 2.1.3, a FDMA system can only provide a very limited 

number of channels, so FDMA is not a dominant technology in underwater networks. The results 

of the experiments are available in the reports [21], and the maximum achievable data rate was 

50 bits per second in 1999. 

2.2.1.2 Code Division Multiple Access (CDMA) 

A CDMA system uses (binary) codes to modulate the information stream in a spread spectrum 

fashion using different spreading sequences which have low cross-correlation. User information 

signals are multiplied by a unique wide bandwidth spreading code and the resulting signals from 

multiple users are modulated onto a common carrier frequency. All transmissions take place 

simultaneously on the shared channel, and CDMA is more robust than FDMA since the entire 

frequency band is used by all nodes. The received signal is multiplied by an identical spreading 

code to reproduce the original data, hence code synchronisation is required between a sender and 

a receiver. The spreading codes allocated to users must exhibit very low cross-correlation to 

effectively reject unwanted signals at the receiver. Other uses cause some interference due to 

residual correlation properties between spreading codes. Therefore, as the number of users in the 

system increases, the total level of interference increases, degrading the channel performance. 
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Studies of MAC protocols using the CDMA technique for underwater networks began to be 

published in the 2000s. Early studies [22-24] show initial experiments of CDMA in an underwater 

acoustic channel and later studies [25-27] propose MAC protocols based on CDMA. For example, 

Protocol for Long latency Access Networks – MAC (PLAN-MAC) [25] uses CDMA as a multiple 

access technique and a handshaking reservation scheme (refer to section 2.2.3.2.2) as a multiple 

access protocol. 

2.2.1.3 Time Division Multiple Access (TDMA) 

Time in TDMA systems is divided into time slots. Generally, slots have an identical and fixed 

time duration and one time slot is allocated to a single node for data transmission in each frame. 

Like CDMA, TDMA can be also more resistant to frequency selective fading than FDMA since 

one user uses the full bandwidth. Figure 2-6 shows an example of a basic TDMA system in an 

underwater network. 

 

  Figure 2-6. Basic TDMA time slot 

The duration of the time slot includes the duration of a packet, and a guard time which consists 

of the maximum propagation time, with some additional allowance for synchronisation errors, 

and clock drift. Different from FDMA and CDMA, all nodes in a TDMA system need to be time 

synchronised so that the duration of guard time should be decided, considering the possible 

differences in time synchronisation of each node. Depending on the quality of the clocks, it may 

be feasible to synchronise devices prior to deployment and maintain adequate synchronisation 

during deployment. For less accurate clocks and/or longer term deployment, it is necessary to 

conduct time synchronisation after a deployment stage or as a separate initialisation stage leading 

to an additional cost for TDMA. There are a range of time synchronisation techniques for 

underwater networks [28-30]. 
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The propagation distances need be considered to determine an appropriate duration of guard time 

in an underwater network to guarantee the data packet delivery to a node at the edge of the network. 

However, the increase in guard time of a slot results in low channel utilisation since the channel 

remains idle as for long periods of time shown in Figure 2-6. Therefore, TDMA can be inefficient 

for long range underwater networks due to the slow propagation speed of acoustic signals. 

However, TDMA provides good flexibility with more dynamic allocation of slots, in terms of 

being able to adapt the number of available time slots assigned to nodes based on the number of 

nodes and their changing requirements. Many studies [31-33] of MAC protocols are based on 

TDMA in underwater networks. 

2.2.1.4 Space Division Multiple Access (SDMA) 

SDMA is based on the use of multiple antennas or an antenna array where antenna elements are 

physically separated, either at the transmitter, the receiver, or both such as the SIMO, MISO, or 

MIMO systems. It is commonly used in terrestrial systems, as a means of providing diversity 

because multipath propagation links between different antenna elements will independently vary 

over time. In terrestrial communication systems, base stations usually have location information 

for the connected nodes. Therefore, using antenna techniques such as beam forming, the base 

station can focus the power of their signals in the directions of the associated users rather than 

radiating broadly to ensure wide area coverage which wastes energy and generates unnecessary 

interference. However, in the underwater network, the localisation information is costly as we 

discussed in section 1.3.3 and it is more difficult in mobile underwater networks. Therefore, 

SDMA is not the major multiple access technique in underwater networks. 

2.2.2 Discussion 

There are different opinions of how to define the role of the MAC layer in general and the roles 

vary based on the application requirements or implementation of systems in practice. There are 

no fundamental capacity differences between sharing a single channel in time, code, or frequency. 

However, this thesis focuses on TDMA because TDMA is practically more flexible in terms of 

network configuration. As we discussed in section 1.3.4, underwater acoustics have very limited 

bandwidth. Therefore, as the number of nodes increases, the limited frequency must be divided 

into very narrow bands. Moreover, CDMA requires precise power control and code 

synchronisation management, which could be less flexible in terms of varying time allocation in 

some scenarios and in providing topology agnostic solutions for underwater networks. Finally, 

for the practical assumption, this thesis focuses on the distributed networks where node location 
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information is unknown and GPS and time synchronisation are not supported for each node. 

Therefore, SDMA is not of concern of this thesis. 

2.2.3 Medium access control protocols 

MAC protocols can be categorised in various ways. This thesis categorises MAC protocols into 

centralised and distributed protocols. Centralised networks usually have a central node to 

coordinate channel accesses in a network. The central nodes are responsible for determining a 

transmission order of nodes in a network, therefore centralised protocols can achieve good 

channel utilisation through collision-free centralised scheduling. Centralised protocols are more 

appropriate for static networks in which a coordinating node knows (or can gather) relevant 

information form the network nodes, for example, locations, transmission priorities, or traffic 

loads. Therefore, transmission scheduling can be relatively static and potentially pre-defined by 

a central node. 

However, such information about all nodes and network configurations is not usually available 

beforehand for most applications and node locations are not constant in a mobile networks. 

Therefore, distributed protocols are necessary for networks where centralised scheduling is not 

feasible. However, significant additional overheads are incurred in distributed scheduling, for 

example to conduct neighbour discovery, to reserve channels/slots using a handshaking 

mechanism which a sender initiates whenever it starts a new transmission, or to sense a channel 

in order to help reduce the probability of collision. These signalling overheads of distributed 

protocols can impair channel utilisation in particular, when the propagation delay is significant 

such as in underwater networks. 

2.2.3.1 Random access based protocols 

Random access protocols are uncoordinated or employ minimal coordination, therefore it is more 

appropriate to distributed networks where there is a lack of centralised infrastructure. Random 

access based protocols allow nodes to decide when to transmit a data packet on the shared channel. 

If more than one node tries to send a data packet simultaneously on the shared channel, it results 

in a collision on the channel. This section reviews the history of distributed MAC protocols which 

commenced with a random access approach and developed towards channel reservation 

approaches. 
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2.2.3.1.1 Pure ALOHA  

The simplest and earliest MAC protocol in wireless networks is called ALOHA. It was developed 

in the 1970’s at the University of Hawaii [34]. The university was located on several islands, so 

a wireless network to exchange data between colleges was desired. Therefore, Norman Abramson 

and his team started a project to develop the wireless packet switched network based upon 

ALOHA, which is the first random access scheme. Using this scheme, each node accesses a 

channel as soon as they have a data packet to transmit. It is a feasible natural approach for 

distributed networks because individual nodes determine when to access the radio channel. The 

study [35] of ALOHA induces Equation (2-5) specifying the theoretical performance of the 

ALOHA system: 

Channel utilisation (U) of pure ALOHA = G • e-2G                             (2-5) 

In Equation (2-5), the highest theoretical performance value of ALOHA system is 0.18 (1/2e) 

Erlangs when the traffic load (G) is 0.5 Erlangs (as shown in Table 2-5) under assumptions: 

• There are a large number of transmission nodes. 

• Packet are generated according to a random Poisson arrival process [107] with average 

time between packets. 

• All packets have the same length and same transmission time. 

• At any instant in time, each node has no more than one packet to transmit. 

• All lost packets are due to packet collisions. 

• Any overlap in packet transmission times causes the complete packet to be lost.  

The unit of Erlang corresponds to the fractional proportion of time during which a channel (e.g. 

telephone wire, radio channel) is active. 1 Erlang therefore corresponds to the fundamental 

capacity of a single channel. 

2.2.3.1.2 Slotted-ALOHA 

Slotted ALOHA is an extended version of pure ALOHA in which time is divided into slots. For 

the time slots, time synchronisation across all nodes in a network is required. Users randomly 

access the channel at the beginning of a fixed time slot and if more than two nodes select the same 

time slot, a collision occurs at the receiver (in the case where the propagation delays are very 

small as they are for typical terrestrial radio systems). Whilst packets collide with pure ALOHA 
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if they overlap even partially, with slotted ALOHA, packets either overlap completely or not at 

all. In other words, the slotted access can limit the probability of a collision within a slot and as a 

result, slotted ALOHA has a lower probability of a collision than pure ALOHA. The vulnerable 

period during which no other terminal should transmit in order to avoid collision at the receiver 

is reduced from twice the packet duration to exactly one packet duration as illustrated in Figure 

2-7. Therefore, the maximum theoretical channel utilisation of slotted ALOHA is double that of 

pure ALOHA. ALOHA reaches 0.18 Erlangs of channel utilisation when the offered load is 0.5 

Erlangs whilst slotted ALOHA reaches 0.36 Erlangs at 1 Erlang of offered load. Table 2-5 

summaries the performance of pure ALOHA and slotted ALOHA. 

Channel utilisation (U) of slotted ALOHA = G • e-G                          (2-6) 

 

Figure 2-7. Vulnerable period 

Protocol Offered load (G) Throughput rate 

to offered load 

Max channel 

utilisation (U) 

Offered load at 

the maximum U 

Pure ALOHA G e-2G 0.18 G = 0.5 

Slotted ALOHA G e-G 0.36 G = 1 

Table 2-5. Comparison of channel utilisation 

Figure 2-8 shows the pure ALOHA and slotted ALOHA performance with different propagation 

speeds of 3 × 108 m/s in the terrestrial environment and 1,500 m/s in the underwater environment. 

Note that Figure 2-8  is generated by the Riverbed modeler simulation tool in which pure ALOHA 

and slotted ALOHA in the terrestrial and underwater environments are implemented. MATLAB 

is used to plot the simulated and theoretical results. The Simulation tool, Riverbed modeler is 

discussed in the Appendices. The parameters of the simulation are presented in Table 2-6. 

As Figure 2-8 (b) depicts, the benefit of slotted ALOHA (i.e. less time vulnerability) is lost by the 

effect of the slow propagation speed. The reason for this is that although a transmitter sends a 
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packet at the beginning of the time slot (synchronised), it will not arrive at the beginning of the 

time slot at a receiver (not synchronised) due to the long propagation delay when nodes are 

deployed with different propagation distances in a network. Therefore, the performance of slotted 

ALOHA shows the same performance level as pure ALOHA (0.18 Erlangs at G = 0.5) in the 

underwater environment. 

 

Figure 2-8. Channel utilisation of pure and slotted ALOHA in different environments 

Simulation parameters Value 

Number of transmitting nodes 100 nodes 

Number of receiving nodes 1 node 

Distance from transmitters to receiver Up to 100 m 

Duration of simulations 5 hours 

Results collected after 30 minutes 

Channel bandwidth 1 kHz 

Channel data rate 1,000 bps 

Packet size 32 bits 

Packet duration 0.032 seconds 

Slot duration 0.0324 seconds 

Packet size distribution Constant 

Table 2-6. Simulation attributes for Riverbed modeler 
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Slotted ALOHA is a baseline scheme of a protocol which this thesis proposes. Therefore, the 

purpose of Figure 2-8 is to provide the baseline performance and to validate the underlying 

simulation model of the protocol and the reception process with the binary collision model. The 

reason for selecting ALOHA approach for the baseline protocol rather than opportunistic 

networks is that the current underwater system is practically not the opportunistic system. The 

join/leave to/from the network is not as frequent as in terrestrial networks: this difference is 

discussed in section 2.3.4.3. Moreover, due to the high deploy cost as discussed in section 1.3.5, 

it is a more practical assumption that usual underwater sensor networks are not commonly 

opportunistic. Chapter 4 will provide comparison of the underlying random access techniques 

with the protocol on which the reinforcement learning techniques are built to validate the 

developed simulation models. 

2.2.3.1.3 Framed Slotted ALOHA 

Framed slotted ALOHA [36] was designed in 1977 for the satellite system. Frame slotted ALOHA 

adds the concept of frame to slotted ALOHA. Time is divided into repeating frames and slots. 

Each node randomly chooses one slot in a frame to transmit one data packet. Figure 2-9 shows an 

example of a framed slotted ALOHA network in which four nodes are deployed in a random 

topology network using four slots in a frame. In the example, four nodes are located within a 

certain size of a network (with radius, R) and they are time synchronised. Framed slotted ALOHA 

has been used for different applications, for example it is a primary protocol in Radio Frequency 

Identification (RFID) tag systems [37] because the low computational complexity of framed 

slotted ALOHA is appropriate to the very limited power requirement of the RFID system. 

 

Figure 2-9. An Example of framed slotted ALOHA network and frame structure 
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The channel utilisation of framed slotted ALOHA can be calculated using Equation (2-7) [36]. 

We consider of N nodes into S slots. For a given time slot, the number of nodes allocated into the 

slot is a binominal distribution with N Bernoulli experiments and 1/S occupied probability. Under 

a condition that the frame size (S) is large enough (i.e. S >> 1), framed slotted ALOHA achieves 

the maximum channel utilisation of 0.36 Erlangs when the number of generating nodes (N) is 

equal to the frame size (S). 

Channel utilisation (U) of framed slotted ALOHA =  
𝑁

𝑆
× (1 − 

1

𝑆
)

(𝑁−1)

               (2-7) 

In Figure 2-9, a data transmission is successful only when one node transmits a data packet in a 

slot and all other nodes do not select the same slot. Since there is no means of coordinating the 

transmission order of generating nodes, collisions and empty slots occur regularly leading to 

unreliable and inefficient channel use. 

2.2.3.1.4 CSMA 

CSMA [38] was suggested in the 1970s by Leonard Kleinrock and Fouad Tobagi. CSMA stands 

for Carrier Sensing Multiple Access implying that each node senses the medium whenever it is 

ready to send a data packet. If the medium is sensed as busy, the node waits for a random time 

and retries (senses) again until the channel is sensed as idle. Therefore, carrier sensing can reduce 

the probability of collision with respect to the ALOHA schemes in the terrestrial environment. 

However, due to the long propagation delay in the underwater network, carrier sensing potentially 

requires a long guard time to sense the signals in the channel properly which deteriorates the 

achievable channel utilisation, so carrier sensing can be ineffective in underwater networks. 

Figure 2-10 compares the channel utilisation of pure ALOHA, slotted ALOHA, and CSMA in the 

terrestrial environment. Figure 2-10 is generated by the Riverbed modeler where pure ALOHA, 

slotted ALOHA, and CSMA in the terrestrial environment are implemented. MATLAB is used 

to plot the theoretical results. 
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Figure 2-10. Channel utilisation comparison in the terrestrial environment 

2.2.3.2 Reservation based protocols 

The main feature of the random access approach is that the sender decides when to transmit a data 

packet, making them inherently distributed. The benefits of the random access approach is the 

simplicity of the protocols which means that they can be used in any type of distributed network. 

However, they achieve low channel utilisation due to the residual contention in the channel. 

Therefore, reservation based approaches are designed to avoid collisions in the channel. Instead 

of sending a data packet when a sender is ready to transmit, the sender reserves a channel first by 

exchanging small size control packets and then subsequently transmits one or more data packets. 

This section discusses some problems of CSMA and reviews a representative channel reservation 

protocol. 

2.2.3.2.1 Hidden node problem and exposed node problem 

Carrier sensing systems have problems known as the hidden node problem and the exposed node 

problem. In Figure 2-11 (a), nodes A and C want to send a packet to node B so node A and node 

C sense the channel before transmitting. The channel is sensed idle because they cannot hear each 

other, however there can be a collision at B (at the receiver) and this problem is called hidden 

node problem. In the case of Figure 2-11 (b), node B is sending a packet to node A and node C 

wants to send a data to node D. When node C senses the channel, the channel seems busy as node 

C senses the transmission from node B. Although a transmission from node C to node D would 
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not disturb the reception at node A, node C will defer the transmission, resulting in time being 

wasted in the use of a channel. This problem is called the exposed node problem. 

 

Figure 2-11. Hidden node problem and exposed node problem 

2.2.3.2.2 Handshaking channel reservation 

Channel reservation schemes employing handshaking attempt to solve the two problems 

described in section 2.2.3.2.1. Channel reservation uses short control packets or special control 

tones before transmitting data packets. The preceding reservation shall reduce the probability of 

collisions of data packets and thereby compensate for the additional traffic, delay, overheads, and 

complexity introduced through the use of control packets or tones. 

Multiple Access with Collision Avoidance (MACA) [39] proposed a basic concept of 

handshaking in the 1990’s. Instead of carrier sensing, the sender transmits a Request To Send 

(RTS) packet, and neighbours who hear the sender’s RTS remain idle and avoid transmitting on 

the channel. As soon as the intended receiver receives the RTS, it sends a Clear to Send (CTS) 

packet, and neighbours who hear the receiver’s RTS can also defer their transmissions. Therefore, 

the chances of a free channel between the sender and the receiver significantly increases and the 

sender sends a data packet to the receiver and the receiver replies with ACK if the packet is 

successfully accepted. 

MACA was proposed for terrestrial communications and if MACA is used directly for an 

underwater network, there is the possibility of collisions in the environment due to the long 

propagation delay. Figure 2-12 shows an example of a possible collision condition if MACA is 

employed in the underwater environment. 
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Figure 2-12. MACA problem in the underwater environment 

In the example of Figure 2-12, nodes are deployed with different communication distances 

between them, which results in differing propagation delays. Node A and node C are senders and 

node B is a receiver. Node A is located closer to node B whilst node C is located further away. 

Node B sends a CTS responding to the RTS from node A than the transmission of an RTS from 

node C, however it is possible that node C cannot listen to the CTS due to the long propagation 

delay. Therefore, node C sends its RTS assuming the RTS does not disturb other transmissions 

because node C does not hear any RTS and CTS messages, therefore the RTS sent from node C 

can collide at the receiver node B. There are several studies [40-42] proposed to solve this problem 

in underwater networks, however their solutions are fundamentally based upon waiting for a 

longer time to receive control messages (i.e. RTC and CTS), which brings about poorer channel 

utilisation in the underwater environment. 

2.2.4 Discussion 

Random access and handshaking based protocols are reviewed in section 2.3.3. Pure ALOHA is 

the earliest and simplest protocol for wireless packet data transmissions. Slotted ALOHA is the 

extended version of pure ALOHA and it uses time synchronisation which leads to twice the 

channel utilisation by reducing the vulnerable period. Framed slotted ALOHA adds the concept 

of frames and it exhibits the best channel utilisation when the number of slots in a frame is equal 

to the number of nodes in a network. Carrier sensing is used to reduce collisions in the channel, 

however it leads to two problems which are called the hidden node problem and the exposed node 

problem. Therefore, the reservation approach is used to solve the problems and it also reduces the 

collisions by reserving the channel before data transmission by exchanging control message. 
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Random access and handshaking based protocols offer a great deal of flexibility such that they 

can be used for any type of distributed network and are relatively easily modified in terms of the 

available number of nodes in a network. However in the underwater environment, additional 

challenges arise due to the slow propagation speed. Carrier sensing requires sufficient guard band 

time which impairs channel utilisation. Moreover, frequent control packet exchange such as 

handshaking creates significant idle time in the channel due to the slow propagation speed so that 

the protocol performance becomes highly dependent on the propagation distance. 

2.2.5 MAC protocols for underwater networks 

Underwater networks are not limited to fixed deployments and nowadays mobile networks are 

emerging due to the increasing consideration of AUVs and Unmanned Underwater Vehicles 

(UUVs) for underwater exploration. The mobility of nodes brings high complexity in a protocol 

since the mobility factors such as movement patterns, speed, or directions need to be considered 

in designing a MAC protocol. Therefore, there have been studies [43-48] considering node 

mobility in underwater networks.  

Location based TDMA Mobile MAC (LTM-MAC) [43] is an extension version of Location based 

TDMA MAC (LT-MAC) [49]. LT-MAC is designed for fixed networks and LTM-MAC is 

designed to support the use of Autonomous Underwater Vehicles (AUVs) in conjunction with 

fixed nodes. LTM-MAC assumes time synchronisation and adds carrier sensing to support data 

packet transmission from the AUVs. First, the reliance on time synchronisation in the underwater 

environment is potentially costly and complex since GPS signals are not available. Although it 

may be feasible in some instances to synchronise nodes prior to development, clock drift is likely 

to be a problem for the envisaged long term monitoring applications. Moreover, the carrier 

sensing mechanism added to cope for AUV mobility requires long guard bands due to the long 

propagation delay, otherwise it cannot operate effectively. This represents a significant overhead 

with respect to channel utilisation. 

Delay-aware Opportunistic Transmission Scheduling (DOTS) [44] is a distributed protocol which 

is designed primarily for fixed node deployments, but this paper in investigates the protocol in 

mobile networks as well. Nodes overhear one-hop neighbour transmissions for neighbour 

discovery and build a propagation delay map. Using the map, the protocol is able to appropriately 

schedule concurrent transmissions. However, the map quickly becomes out of data if a node 

moves continuously, hence DOTS uses guard bands in the scheduling to accommodate some 



 

39 

 

changes after the map is updated. It uses RTS-CTS handshaking for channel reservation and 

requires time synchronisation across all nodes in a network. Adaptive MAC [45] uses RTS-CTS 

handshaking but one CTS packet can correspond to multiple RTS messages received during a 

RTS waiting period in order to reduce the number of control messages exchanged. Load-adaptive 

CSMA/CA MAC [46] is designed for single-hop networks and uses RTS-CTS handshaking. It 

has two operational modes based on traffic load. In the high-load mode, one node can send two 

data packets after one handshaking process to decrease the number of control message exchanges. 

As the protocol name suggests, this protocol uses carrier sensing. If the channel is sensed busy, a 

Binary Exponential Back-off (BEB) algorithm is used, which reduces achievable channel 

utilisation. Juggling-like Stop and Wait (JSW) based MAC [47] also uses RTS-CTS handshaking 

and assumes multi-channel use. 

Asymmetric Propagation Delay aware TDMA (APD-TDMA) [48] is designed for AUV networks 

and is an extension of Transmit Delay Allocation – without time synchronisation MAC (TDA-

MAC) [50] for fixed underwater networks. During the initialisation phase, a centralised node 

exchanges control packets with mobile nodes until the node obtains location estimates for all 

mobile nodes. During the transmission phase, the centralised node broadcasts a control message 

indicating the packet transmission schedule, then mobile nodes transmit data packets according 

to the timing indicated in the schedule packet. After receiving data packets from all nodes, the 

central node predicts the future locations of mobile nodes based on the packet reception times and 

broadcasts the updated control packet indicating the next transmission schedule. Whenever the 

number of data packet collisions at the sink node is greater than a certain level, the protocol 

conducts the initialisation phase to get the location information of sensor nodes. This prediction 

approach for future location of nodes is not appropriate to dynamic movements of mobile nodes 

since the dynamic changes raise frequent initialisation phases which can significantly reduce the 

overall channel utilisation, moreover location errors exist because mobile nodes move during the 

long initialisation phase. 

2.2.6 Discussion 

Most protocols [44-47] use handshaking processes to reserve the channel, but the duration of such 

procedures means that this process can struggle to keep up with the topology changes in networks 

comprising mobile nodes. Also, frequent control message exchanges for neighbour discovery or 

channel reservation can lead to long idle times in the channel, high overheads, and low channel 

utilisation, especially in underwater acoustic networks due to the slow propagation speed. 
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Moreover, in the case of JSW [47], the required multi-channel operation is not easily realisable 

for underwater acoustic networks since the channel bandwidth is so limited, especially over longer 

distances. APD-TDMA [48] is a distinct protocol because it estimates the future locations of 

nodes, however it is not an efficient scheme when nodes moves at variable speeds or directions 

because it estimates the  future locations of AUVs based on the latest data packet arrival time at 

the central node. 

Most of existing protocols [43-48] for mobile underwater networks are extended versions of MAC 

protocols designed for networks comprising fixed nodes. They add extra functions such as 

frequent control message exchanges or carrier sensing with long guard bands to handle node 

mobility. However, these solutions incur high propagation delay or low channel utilisation hence 

they are not efficient in underwater networks. Rather than these supplementary measures to deal 

with node mobility, the learning approach provides network adaptability, therefore can achieve 

good channel utilisation, low overheads, and low complexity in the face of changes in the network. 

2.3 Reinforcement Learning based MAC 

With the proliferation in demand to connect wireless networks, traditional and centralised systems 

cannot provide efficient solutions for problems such as resource management and mobility 

management in complex network configurations. As a key technique for enabling Artificial 

Intelligence (AI), machine learning is capable of solving complex problems. Motivated by its 

successful application to many practical tasks [51], both industry and academia have advocated 

the application of machine learning in wireless communication. 

Machine learning is generally categorised into supervised learning, unsupervised learning, and 

reinforcement learning. Supervised learning and unsupervised learning require data sets for 

training and the outcomes (i.e. optimal strategy) is highly dependent on the data sets. However, 

agents in reinforcement learning learn through interaction with the environment, therefore the 

learning result depends on heuristic information obtained by trial-and-error experiences. 

The key features of reinforcement learning are 1) it can potentially enable full self-organisation 

and high adaptability in distributed networks and 2) it does not require a priori knowledge of the 

operating environment as a model which can hardly be assumed to be available in practice for our 

purpose. This thesis concerns distributed protocols which provide medium access control without 

specific network topology or scenario limitations, so that it is desirable that nodes (i.e. learning 

agents) in a network are capable of learning to adapt to the environment through such interactions. 
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Therefore, reinforcement learning is appropriate to support the purpose of protocol design hence 

this section reviews reinforcement learning and how it is applied in MAC protocols in terrestrial 

and underwater environments. 

2.3.1 Q-learning 

Reinforcement learning can be categorised into model-based and model-free approaches. This 

thesis uses Q-learning, one method of model-free reinforcement learning because its approach 

matches the purpose of this thesis: to provide a scenario agnostic MAC protocol solution for 

distributed underwater networks. Therefore, model-free reinforcement learning is more 

appropriate because it does not require estimation of the operating environment model which is 

necessary for model-based reinforcement learning. Moreover, in the model-free reinforcement 

learning category, Q-learning is an off-policy method where optimal actions are based on the best 

possible value estimated through trial-and-error, whilst the learning agent of on-policy methods 

such as SARSA [52] needs to derive the policy function from trial-and-error experiences. 

The fundamental reinforcement learning approach is designed by three functions: a policy 

function, a reward function, and a value function. The policy function maps the states of the 

operating environment to actions which need to be taken in the states. States and actions are 

explained in Equation (2-8). This function is developed through the experience of trying different 

actions in each state. However, Q-learning is a model-free reinforcement learning method, 

therefore the policy function is replaced by a Q-table which is estimated by rewards. 

Each state-action pair receives a numerical reward which indicates its desirability. Calculating 

the reward for each state-action pair is handled by the reward function. The value function for Q-

learning is a Q-function described in Equation (2-8) which maps each state-action pair to the total 

discounted sum of rewards. The reward function is relatively easy to design, since it is only 

concerned with immediate and explicit benefits of taking a certain action in a certain state whilst 

estimating value function (i.e. Q-function) requires prediction of the future of the system to some 

extent in order to design the function. 

Each Q-learning agent updates a particular state-action pair at time t using the Q-function defined 

in Equation (2-8). The function enables agents to learn an optimal action through trial-and-error 

interaction in an environment and future actions are determined by prior experience [53]. 

Q(st+1,at+1) ← Q(st,at) + α [rt(st,at) + r  𝑚𝑎𝑥
𝑎𝑡+1

  Q(st+1,a t+1) – Q(st,at) ]                  (2-8) 
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• Q(st, at): the Q-value of the current state-action pair at time t 

• t ϵ T: decision epochs (t = 1, 2, 3…) 

• st ϵ S: the current state of the system 

• at ϵ A: the action taken in the current state 

• rt (st, at) ϵ R: the numerical value from the reward function for the current action taken in 

the current state 

• 𝑚𝑎𝑥
𝑎𝑡+1

  Q(st+1,a t+1): the maximum Q-value out of all actions in the next state st+1 

• 0 ≤ α ≤ 1: the learning rate determines to what extent newly acquired information 

overrides old information. For example, in Equation (2-8), if the learning rate is 0, the 

agent learns nothing and exclusively exploits prior knowledge, Q(st,at). However, if the 

learning rate is 1, the agent considers only the most recent information, rt(st,at) + 

r  𝑚𝑎𝑥
𝑎′

  Q(st+1,a t+1). 

• 0 ≤ r ≤ 1: the discount factor determines the importance of future rewards. If the discount 

factor is 0, the learning becomes myopic by only considering the current reward, rt(st,at), 

whilst the factor value of 1 leads to long term rewards. 

• This is the case of a full exploitation policy learning. Exploitation will be discussed in 

section 2.3.1.3. 

2.3.1.1 Convergence 

Convergence is a characteristic of Q-learning. Convergence of Q-learning is mathematically 

proven in the Markov Decision Process (MDP) domain [54]. Figure 2-13 illustrates the concept 

of network convergence status. This figure is a simulation result which will be discussed in 

chapter 5. At the beginning of the scenario, learning agents (i.e. sensor nodes) learn the new 

environment where they are deployed and achieve steady state operation when the network 

performance graph becomes flat as shown in the figure. After convergence, there are three major 

changes in the scenario and the learning agents continue trial-and-error learning and hence can 

provide the steady (converged) performance in the scenario. 
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Figure 2-13. Learning and convergence 

2.3.1.2 Learning speed 

The learning speed primarily depends on the combination of a discount factor (r) and a learning 

rate (α) in Equation (2-8); there also are studies of algorithms offering rapid learning speed [55, 

56]. A faster convergence speed benefits more from the reinforcement learning approach 

especially when the learning environment changes quickly. However, rapid learning increases 

levels of complexity in the learning algorithm. First, model-based reinforcement learning requires 

transition probability vectors of the operating environment since the learning speed can be 

improved. However, it increases the complexity of the algorithm and is also impractical for some 

networks where this type of information is unknown in priori. For the best learning performance 

with model-based reinforcement learning, each node needs to know the other user’s state in each 

time epoch. Exchanging this information incurs significant communication overheads. Secondly, 

some studies [104, 105] conduct multiple learning in a single epoch to improve the learning speed. 

However, the complexity of solving a MDP is proportional to the cardinality of its state space S 

which increases exponentially with the number of nodes. To moderate this problem, the number 

of nodes in the network needs to decrease, however this solution is not practical. 
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2.3.1.3 Exploitation and exploration 

Exploitation and exploration is another trade-off feature of reinforcement learning. Q-learning 

exploits the experienced knowledge, known as the greedy policy. However, a learning agent also 

needs to explore its environment, particularly crucial when the environment is not stationary. The 

balance between exploration and exploitation is an important factor in reinforcement learning. In 

each state, reinforcement learning faces a trade-off between exploration and exploitation 

according to the policy underlined in the below pseudo code. 

Q-learning algorithm 

Initialise Q-table arbitrarily 

while the learning episode has not finished do 

Detect present state st 

while present state is not terminal do 

Choose current action a according to action selection policy 

Take this action at and observe the reward rt and next state st+1 

Update Q-table entry for current state-action pair using Equation (2-8) 

Store the next state as the present state 

end while 

end while 

 

Choosing a previously known action which guarantees the best reward amongst all other known 

actions is the greedy policy. In this greedy policy, the system is exploiting its current knowledge. 

On the other hand, exploration is choosing a previously unknown action which is likely to have a 

lower reward than the greedy action but there is also a probability of it being better and becoming 

the new greedy action. In this case the system is exploring new possibilities. 

Table 2-7 compares well known policies used for Q-learning. Greedy selection implies that each 

agent always chooses the action with the highest Q-value (exploitation) whilst an e-greedy agent 

generates a random value between 0 and 1 (called ɛ) and then each agent selects a random action 

(explores) with the probability of ɛ, otherwise exploits with that of (1 - ɛ). 

 Exploration Exploitation 

Greedy selection No Yes 

ɛ -greedy selection Probability of ɛ Probability of 1- ɛ 

Table 2-7. Balance policy between exploration and exploitation 
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2.3.2 Discussion 

Section 2.3.1 has reviewed Q-learning and explained its main characteristics. Good adaptability, 

which is a characteristic of model-free and off-policy Q-learning, suits the scenario agnostic 

purpose of this thesis. Agnostic protocols aim to provide good performance in various distributed 

networks and scenarios rather than the best (optimised) performance in a specific network 

scenario or topology. Moreover, Q-learning is more computationally efficient than other 

reinforcement learning methods due to its simplicity. The next section will provide a summary of 

relevant literature on how reinforcement learning is applied to wireless communication networks 

in both terrestrial and underwater environments. 

2.3.3 Reinforcement learning based approach for terrestrial networks 

In the terrestrial environment, there have been various studies of reinforcement learning based 

protocols where each node independently acts as a learning agent in order to solve complex 

problems in the network, for example either improve the energy consumption, channel selection 

policy, or channel utilisation. The three main functions of reinforcement learning discussed in 

section 2.3.1 are designed in different ways according to application requirements in the literature. 

Relevant literature is summarised and reviewed under appropriate sub-headings which focus on 

the distinct factors of reinforcement learning such as the state, action, and reward function. 

2.3.3.1 Energy consumption 

This section introduces two reinforcement learning protocols designed for WSNs to improve 

energy efficiency. Q-Learning based MAC (QL-MAC) [57] is designed to reduce the level of 

energy consumption for WSNs. The protocol divides the time into frames and slots and 

reinforcement learning is used for each node (i.e. a learning agent) to decide whether it is better 

to be in an active or sleep mode during a slot to achieve low energy use. 

The study suggests that the ideal protocol designed for energy efficiency should consider the 

network traffic conditions and then it can calculate the minimum active time to cover that data 

traffic. Therefore, the reward function of QL-MAC considers network traffic: not only the traffic 

of a single node, but also the traffic from neighbouring nodes. Hence, the reward function of QL-

MAC includes a parameter of the total number of packets to which an agent is able to hear during 

one slot. The parameter is separated into the number of packets intended for the agent and to its 

neighbours and then different weights are applied to those two parameters in the reward function. 

QL-MAC considers two simulation scenarios: a grid topology and a random topology consisting 

of 16 sensor nodes. The simulation results show that QL-MAC achieves better energy efficiency 
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than T-MAC [58] and S-MAC [59]. Table 2-8 summarises the reinforcement learning features of 

QL-MAC.  

Reinforcement Learning based MAC (RL-MAC) [60] is also designed for energy efficient WSNs. 

The agents learn the amount of active time (within a slot) during which each agent is active to 

receive data packets before it goes into the sleeping mode. Similar to QL-MAC, the amount of 

traffic is considered, but RL-MAC uses different parameters in the reward function such as the 

number of packets in a queue at the beginning of each frame. A single-hop star topology with 4 

sensor nodes and a sink node, and a multi-hop chain topology with 10 sensor nodes are used for 

simulation and RL-MAC provides better energy efficiency than S-MAC [59]. 

The two protocols are designed to save energy by reinforcement learning but there are two main 

differences in the way the Q-function is designed. First, RL-MAC uses the basic (i.e. state-based) 

Q-learning discussed in section 2.3.1, which means the Q-value of the protocol is based on the 

reward function according to state-action pair. However, QL-MAC uses a stateless scheme (which 

will be discussed in section 3.2), so that the Q-value is updated directly by the reward value of 

the current action. Stateless reinforcement learning [61] is appropriate to the applications which 

need to weight instant learning, for example when the operating environment constantly changes 

as with underwater networks. 

Second, QL-MAC does not has discounted rewards since QL-MAC is designed based on stateless 

Q-learning whilst RL-MAC uses discounted rewards, which implies that RL-MAC weights long 

term rewards in the learning process, considering the environment where the network is deployed. 

The Q-function of RL-MAC includes discounted rewards which is a zero or negative value in this 

paper. A negative reward is called punishment and the discounted punishment of RL-MAC is the 

discounted sum of the expected number of packets that have failed to be received in the next 

frame during the non-active duration based on the current action (i.e. the active time in a slot). 
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 QL MAC [57] RL MAC [60] MAC protocol with 

SARSA algorithm [62] 

Medium 

access 

Slotted ALOHA + 

CSMA/CA 

Slotted ALOHA + 

carrier sensing 

Non-persistent CSMA 

State Stateless State based 

The number of packets 
queued for transmission 

at the beginning of a 

frame 

State based 

Each agent (cognitive 

node) 

Action If Q-value is larger than 
a certain value, an agent 

(node) is active during 

the slot s  

The active time in a 

frame 

Select a channel to 
sense and send data 

transmissions 

Learning 

rate 

0.05 0.1 0.5 

Reward 

function 

The number of packets 

one agent can listen to 

and send in a slot 

Depends on current 

active time, current 

state, buffer size, etc. 

Success or fail result of 

sensing and transmitting 

Current 

award 
Yes Yes Yes 

Discounted 

reward 

No Punishment 

Depends on the 

expected number of 

packets failed due to 

early sleeping  

Q-value of previous 
action (based on 

channel that the user 

took during the previous 

epoch) 

Discount 

factor 
No 0.5 0.1 

Aim Active / sleep mode 
selection for a slot 

duration 

Optimal active time in a 

frame 

Optimal channel to 

sense and transmit 

Performance 

enhancement 

Energy consumption Energy consumption Throughput and delay 

Table 2-8. Terrestrial reinforcement learning MAC protocols 

2.3.3.2 Channel selection 

There is a study [62] which applies reinforcement learning to multi-channel and distributed 

cognitive wireless networks for the purpose of optimal channel selection for data transmission. 

The considered scenario of the study has 40 channels and 50 cognitive users and each user (i.e. 

learning agent) conducts carrier sensing amongst the 40 channels to send data transmissions. The 

protocol applies reinforcement learning in two ways: 1) stateless Q-learning with the learning rate 
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0 and 2) State Action Reward State Action (SARSA) [52] which is a model-free reinforcement 

learning method. SARSA is an on-policy method and it is very similar to Q-learning. Q-learning 

chooses the best action in the next state, r  𝑚𝑎𝑥
𝑎𝑡+1

  Q(st+1,a t+1) for the counted reward (refer to 

Equation (2-8)) whilst SARSA uses the action actually chosen in the next state, r Q(st+1,a t+1). 

Simulation results of non-learning, stateless Q-learning, and SARSA learning are compared and 

results of reinforcement learning based protocols outperform non-learning protocols in terms of 

throughput and normalised delay since the learning schemes reduce the probability of collision in 

the networks. 

2.3.4 Reinforcement learning based approach for underwater networks 

We have discussed studies applying reinforcement learning schemes to protocols for different 

wireless networks in the terrestrial environment in the previous section 2.3.3. This section reviews 

reinforcement learning based protocols designed for underwater acoustic networks. Applying 

reinforcement learning for MAC protocols is a new research subject for underwater networks as 

the first related study was published in 2018 [63] by this author. Therefore, there has been limited 

research into underwater reinforcement learning based MAC protocols whilst more studies have 

been published for reinforcement learning based routing protocols [64-68] for underwater 

networks. 

2.3.4.1 Reinforcement learning based cross layer protocols in the underwater environment 

The majority of communication systems are traditionally designed based on layered architecture, 

typically based on the principles of the OSI reference model [20]. This layered structure reduces 

the complexity of design and it has allowed people to work predominantly on one layer with 

clearly defined interfaces linked to adjacent layers to make communication in design more 

manageable. However, in practice, communication systems are often designed with fewer layers 

such as the TCP/IP model [69]. There is some merit in cross layer design and being able to use 

information at one layer to inform decisions at another layer. There is one study of reinforcement 

learning based cross layer protocol for WSNs proposed in [70] for extending the lifetime of a 

network by reinforcement learning. Reinforcement learning is not used for medium access control 

in this study. The medium access is conducted by a basic slotted CSMA/CA scheme. Each slot is 

used for a learning epoch, but reinforcement learning is used to decide upon a suitable 

transmission power (physical layer), a transmission channel (data link layer), and the next 

neighbour to forward a data packet to (network layer). 
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This study uses a transition probability vector for learning processes and this type of 

reinforcement learning is categorised in model-based reinforcement learning which requires 

estimation of the operating environment in the form of a matrix [71]. Model-based learning 

improves the learning speed as the insight into the environment is explicitly built upon the 

knowledge from the transition probabilities as discussed in section 2.3.1.2. However, model-

based reinforcement learning is appropriate for a specific network scenario and is less flexible 

than model-free learning methods. 

This study focuses on energy saving, therefore the transmission power value is used as one factor 

in reward function. Table 2-9 summarises the reinforcement learning parameters of the study. 

 Slotted CSMA/CA based reinforcement learning approach [70] 

Medium access Slotted ALOHA + CSMA/CA 

State A node related to packet p 

Action Transmission through a selected sub-channel 

Learning rate 1/t (t = 1, 2, 3…) 

Reward function Transmission power factor, neighbour factor, and channel factor 

Current reward Yes 

Discount factor 0.5 

Aim Optimal (less) transmission power, optimal sub-channel, and 

optimal (less number) relay node  

Performance 

enhancement 

Energy efficiency 

Significant parameter The number of sub channel and slot duration 

Table 2-9. Underwater reinforcement learning approach for energy consumption 

2.3.4.2 Discussion 

This study assumes multi-channel communication. The lack of bandwidth in acoustic signals is 

the major challenge of underwater networks as we discussed in sections 1.3.4 and 2.1.3. A multi-

channel system in this study shows improved energy consumption, however this protocol is 

limited to scenarios having a small number of nodes in a network due to the limited number of 

available channels. Moreover, this paper mentioned that due to the narrow sub-channel, the 

fragmentation process takes place frequently which leads to long end to end delays in the 



 

50 

 

underwater network. Therefore, this protocol is limited to use in a network where a small number 

of nodes is deployed, the application is highly delay tolerant, but requires improved channel 

utilisation. 

Since collisions occur at the receiver, carrier sensing at the transmitter cannot completely 

eliminate collisions even though the sensed channel is detected to be idle in the underwater 

network.  Due to the long propagation delay, carrier sensing potentially requires long guard times 

in order to sense the signals in the channel properly which reduces the achievable channel 

utilisation, otherwise carrier sensing is ineffective in the underwater network. 

Every sensor node need to know its neighbours’ location information by periodic control message 

exchanging. This neighbour discovery causes a significant reduction in channel efficiency due to 

the slow propagation speed of acoustic signals. Moreover, time synchronisation is assumed in this 

study thus the protocol becomes more complex since the time synchronisation techniques need to 

be employed. 

2.3.4.3 Reinforcement learning based MAC protocols in the underwater environment  

This section reviews reinforcement based MAC protocols in the underwater environment. This 

research subject is a very new subject and only 6 related papers have been found, with two of 

them published by this author which will be introduced in chapters 3 and 4. This section reviews 

the remaining studies which were recently published between 2018 and 2020. Reinforcement 

learning is used for medium access control, i.e. to coordinate scheduling of multiple nodes to 

efficiently use the shared channel. [70] was published in 2013 however the study uses 

reinforcement learning for optimal decisions in the physical layer, the data link layer, and the 

network layer rather than the MAC layer as discussed in section 2.3.4.1. 

A conference paper [72] proposes a reinforcement learning based protocol for WSNs. It uses 

slotted ALOHA as a framework and assumes time synchronisation across the network. A large 

enough slot is divided into a data transmission phase and an ACK phase as Figure 2-14 shows. 

Stateless Q-learning is used for this protocol, however the paper does not reveal the reinforcement 

learning related parameters such as the learning rate (α) or reward functions. Using reinforcement 

learning, each node learns the transmission order. Once the order is determined, the protocol omits 

the ACK phase and can increase channel utilisation up to 0.4 Erlangs. This protocol focuses on 

only an initialisation stage to decide the transmission order, but does not consider future changes 
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after the network converges. Therefore, the protocol is highly vulnerable to any future 

environmental changes in the network and is not appropriate for mobile sensor networks. 

 

Figure 2-14. Reinforcement learning based MAC protocol for underwater networks: taken 

from [72] 

The simulation scenario has five fixed sensor nodes and one sink node is deployed in the centre 

of them. The simulation results compare its performance with pure ALOHA and slotted ALOHA 

and the learning based protocol shows better performance in terms of channel utilisation and end 

to end delay. 

Two conference papers [73, 74] were recently published in the international conference on 

Underwater Networks & Systems (WUWnet 2019) and both papers were inspired by one journal 

paper [75] which discusses Deep Reinforcement Learning (DRL) for heterogeneous wireless 

networks in the terrestrial environment. However, terrestrial and underwater environments are 

totally different, so problems arise if protocols designed for radio networks are directly applied 

to the underwater networks as discussed in chapters 1 and 2. These two papers [73, 74] are good 

examples of those problems. 

The study [75] assumes location information, time synchronisation, high propagation speed, and 

heterogeneous and mobile devices in a radio terrestrial network. Moreover, the mobile nodes 

frequently trigger the join or leave processes to/from the network as Figure 2-15 shows. Therefore, 

the author justifies the reason for the use of Deep Neural Networks (DNN) under the complex 

network circumstances to approximate the Q-function since the state-action space becomes too 

large and complex. 
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Figure 2-15. Heterogeneous multiple access system: taken from [75] 

First of all, both conference papers [73, 74] require the locations of all nodes to be known before 

the data transmission phase. They obtain the information through control packet exchange, 

however the propagation speed is slow in the underwater environment, and therefore the channel 

efficiency of two protocols must be low. Moreover, to receive feedback (i.e. reward or punishment) 

from a sink node for the learning process, ACKs must be delivered to sensor nodes, and this 

impairs the performance of those protocols due to the slow propagation speed. To solve this 

problem, one conference paper [73] ignores the propagation delay of ACK transmissions from 

the sink node and simulation results show that channel utilisation becomes more than 1 Erlang 

which is not practical. Another conference paper [74] uses delayed ACKs for the current action 

to avoid the long propagation delay to get current feedback, which means the scope of the learning 

history for the current action does not include recent rewards. This workaround only works in 

fixed node networks, otherwise the delayed ACK approach cannot function in mobile node 

networks because the previous learning environment has been changed. 

Secondly, both studies [73, 74] 1) assume only fixed nodes in the underwater network and 2) do 

not consider frequent join or leave device processes, which means network configuration is not 

as complex as in [75]. In the simpler learning environment, using DNN wastes computing 

resources since it is more efficient when it is used in complicated circumstances. [73] and [74] 

assume a small size of network for example, where less than 10 fixed nodes are deployed in 

simulation scenarios and protocols just need to learn the transmission order of the 10 nodes. Lastly, 

the two papers are basically time synchronised. As we discussed earlier in section 1.3.3, 
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maintaining time synchronisation challenging in the underwater environment and incurs a lot of 

overheads. 

The most recent study [86] has been published in September 2020. It proposes the use of deep 

learning for channel selection in a multi-channel underwater system. For the simulation, two fixed 

nodes are deployed in a single-hop network where a sink node is located in the centre. The 

protocol uses the slotted ALOHA structure and assumes time synchronisation. The two sensor 

nodes select one channel among the available three channels in every slot and transmit a data 

packet. The simulation compares results from the learning scheme, random selection, and 

optimised traditional selection which requires the network information in advance. Random 

selection shows the worst channel utilisation and the optimised selection shows the best 

performance during the simulation. The learning approach does not achieve the best throughput 

at the beginning of the simulation, however it catches up the optimised throughput after sufficient 

iterations of learning. The study also wastes computing resources for deep leaning in that it merely 

selects one channel in a slot. Moreover, the acoustic channel is very limited so that the multi-

channel system is not ideal for underwater communications. 

2.3.4.4 Discussion 

The recent studies applying reinforcement learning to the MAC problem for WSNs have been 

reviewed. These essentially provide some capability to learn appropriate medium access from 

multiple nodes in the underwater environment using reinforcement learning. However, they still 

rely on time synchronisation or are designed for very specific purposes. 

First, the studies do not deal with the slow propagation speed appropriately. Deleting the feedback 

phase, ignoring the feedback propagation delay, or excluding very recent rewards causes 

problems such that networks become vulnerable to any changes in the operating environment. 

Secondly, reinforcement learning is not efficiently designed in the existing studies [27-24] [86]. 

The major benefit of reinforcement learning is that it provides flexibility and adaptability through 

trial-and-error experiences. The protocols in those studies are not capable of adapting to any future 

changes once networks are converged.. To improve the underwater channel utilisation, those 

studies 1) remove feedback (ACKs), 2) ignore the propagation delay of feedback (ACKs), or 3) 

exclude the most feedback (ACKs), which implies their design does not utilise the benefit of 

reinforcement learning in an effective way for further changes after network convergence. 
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Moreover, applying DNN for a relatively simple decision wastes the computational recourses and 

increases the complexity of the protocols. 

Moreover, all existing reinforcement learning based protocols designed for underwater networks 

consider networks comprising fixed nodes. Reinforcement learning is potentially effective in a 

mobile networks since it provides inherent adaptability based on continued interaction with an 

environment. With regard to underwater networks comprised of mobile nodes, we cannot seek 

convergence and the learning process will continue with oscillation as nodes move. However, the 

benefit of the reinforcement learning approach is that it still can achieve better performance than 

non-learning schemes. The effectiveness of such an approach boils down to whether the learning 

algorithm is able to adapt at a sufficient speed with respect to key environmental changes. 

Lastly, the prior studies relay on time synchronisation. Given the challenges of time 

synchronisation underwater due to lack of GPS and navigation difficulties for long term sensor 

node deployment, it is interesting to try to develop an asynchronous protocol that will still offer 

a reasonable QoS. 

Based on these observations from literature, this thesis presents new work in chapter 4 that has is 

geared towards achieving good medium access using reinforcement learning without the need for 

synchronisation in underwater networks consisting of fixed sensor nodes. Reinforcement learning 

is more efficient when it responds to changes in networks. Therefore it can be utilised at the MAC 

layers for mobile networks. Thus, chapter 5 proposes a reinforcement learning based protocol for 

mobile underwater sensor networks without the need for time synchronisation. 
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3 ALOHA-Q in terrestrial and underwater environments 

3.1 ALOHA-Q 

ALOHA-Q [76] is a reinforcement learning based MAC protocol which is designed for Wireless 

Personal Area Networks (WPANs) in a terrestrial environment consisting of fixed sensor nodes. 

The main idea of the study is applying reinforcement learning for each node (agent) to learn the 

preferred slot in a frame and to send a data packet in framed slotted ALOHA structure as depicted 

in Figure 3-1. The major benefit of ALOHA-Q is that it can achieve a very high channel utilisation 

(up to 0.95 Erlangs) in the terrestrial environment without any form of centralised scheduling. 

Channel access starts as framed slotted ALOHA, but nodes are able to learn to avoid each other 

on the channel and a scheduled outcome can be achieved through the fully distributed 

reinforcement learning process. 

 

Figure 3-1. ALOHA-Q frame and slot flow in time 

An extended version of ALOHA-Q [77] was published for energy efficiency and a new scheme 

called Informed Receiving (IR) is added to ALOHA-Q. IR estimates the expected number of 

epochs that a node will continue to use the same slot in a frame based on the known information 

being embedded by the transmitter in the data packet. One of the assumptions of ALOHA-Q is 

that the number of nodes deployed in a network (N) and the number of slots in a frame (S, called 

frame size) are known. ALOHA-Q sets the number of slots per frame (S) to equal the number of 

sensor nodes (N) for the best throughput (as framed slotted ALOHA in section 2.2.3.1.3), which 

is reasonable for a single-hop system. However for more complicated deployments for example, 

when the number of nodes within interfering range is unknown or nodes are successively 

deployed in a more ad-hoc fashion, it would be difficult to predict the appropriate frame size (S) 

for the network. Using too many slots in a frame wastes channel capacity because each node of 

ALOHA-Q is designed to use one slot per frame. On the other hand, using too few slots results in 

residual contention and cannot converge in these fixed systems. 
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The key benefit of ALOHA-Q is providing very high channel utilisation, however, it is reliant on 

knowing the number of nodes (N) to be deployed in a network. Therefore [78] developed a 

mechanism to additionally allow learning of the frame size (S). This study specifically looks at 

using reinforcement learning to adapt the frame size (S) rather than assuming a fixed frame 

structure which cannot be known in advance. Further works [79] were undertaken to do some 

practical experiments to demonstrate ALOHA-Q in hardware and proposed solutions for the 

practical issues for example by improving the reward factors of the Q-function. Note that [78] 

and [79] comes from the same research group of the author. 

ALOHA-Q is the fundamental protocol used to propose a new underwater protocol in this thesis, 

hence details will be discussed in this section. ALOHA-Q uses framed slotted ALOHA (refer to 

the section 2.2.3.1.2) as a framework, therefore all nodes of ALOHA-Q are time synchronised. 

Time is divided by repeating frames and slots in the same manner as framed slotted ALOHA does. 

Figure 3-1 shows the frame and slot structure of ALOHA-Q. 

The data transmission flow of ALOHA-Q is shown in Figure 3-2 where a frame consists of two 

slots, i.e. frame size (S) = 2. One slot duration (Ts) is sufficient to accommodate a data packet 

(Tdp), propagation delay (τp), an ACK (Ta), and a guard time (Tg). A slot duration (Ts) can be 

calculated by Equation (3-1). An individual slot is designed to support the transmission of a data 

packet to a receiver and to receive the ACK back. To achieve this, the slot duration (Ts) needs to 

account for the maximum propagation delay from a fixed sensor node to a receiver in both 

directions. This small guard band (Tg) is merely for the case that the maximum delay is 

underestimated and to account for potential clock drift. 

 

Figure 3-2. An example of ALOHA-Q when frame size and the number of nodes are two 
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Ts = (Tdp + Ta + Tg) + 2 × τp                                                 (3-1) 

ALOHA-Q uses ACKs for two reasons. ALOHA-Q aims to provide reliable data transmission, 

therefore ACKs are used to ensure the data packet is delivered. After sending a data packet, if the 

generating node does not receive an ACK from the sink node before the guard time ends, the 

transmission is assumed to have failed and retransmission must be initiated. Moreover, the ACKs 

are used to determine the reward or punishment in the Q-learning process of ALOHA-Q. 

Therefore, reserving enough time to receive ACKs in a slot are important for ALOHA-Q and it is 

not a problem for ALOHA-Q in the terrestrial environment since the propagation delays are very 

small. The most significant element which impacts on slot duration (Ts) is the propagation delay 

(τp) in Equation (3-1). Therefore, in the underwater environment, the network needs long slots to 

accommodate the long propagation delay which introduces a lot of idle time to the slots and results 

in low channel utilisation in the underwater network, as shown in Figure 3-2. 

3.2 Stateless Q-learning 

Stateless Q-learning [61] is used in the ALOHA-Q protocol. Stateless Q-learning was proposed 

for some problems where an environment does not have to be represented by state. The learning 

agents are stateless and only the action space and a one-dimensional Q-table is considered. The 

job of reinforcement learning becomes simpler and the aim of stateless Q-learning is to estimate 

an expected value (Q-value) of a single reward for each action available to the learning agent. 

The advantage of stateless Q-learning is the significant reduction in the number of Q-values that 

need to be estimated by the learning agent. Therefore there is a potentially dramatic reduction in 

the number of trials needed for it to learn an optimal action. Such a significant increase in the 

learning speed directly translates into the higher adaptability of reinforcement learning. 

The principle of ALOHA-Q is a slotted structure in time. Please note that ALOHA-Q uses time 

synchronisation since it is easy to obtain in the terrestrial environment. Nodes make decisions on 

which slot to pick at the start of each frame. The baseline scheme is one of random selection, 

essentially a framed version of slotted ALOHA. However, more intelligent selection of a slot can 

be carried out based on Q-learning. ALOHA-Q uses stateless Q-learning at each node as a means 

of determining which slot should be selected by maintaining weight values, one per slot, updated 

every frame based on the experience in the last frame. The principle is for nodes to select a 

transmission slot having a largest Q-value based on the stored Q-value in the Q-table. All nodes 
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have a Q-table which contains the individual Q-value for each slot in a frame as Figure 3-3 shows. 

In this example, four different sensor nodes (called N1 to N4 respectively) are deployed at random 

locations within communications range of the sink node. Four nodes collect data and transmit the 

collected information to a sink node which is located in the centre of a network. The standard 

implementation of ALOHA-Q uses frame size (S) equal to the number of nodes deployed in a 

network (N). For example, Figure 3-3 uses four slots in a frame (frame size, S=4) for the four 

nodes in a network (N=4). Therefore, one node has a chance to transmit collected data once in a 

frame and needs to select one slot in a frame to transmit a data packet. 

 

Figure 3-3. Example Q-table for ALOHA-Q for a four node network 

All Q-values are initialised to 0 so it is initially random access, however Equation (3-2) defines 

how the weights are updated based on that initial trial. If a node transmits in a slot that it has 

picked, and it successfully gets a positive reward, it subsequently increases the weight value for 

that slot so it will then pick the same slot in the next frame. Alternatively, if the node does not get 

ACK, it receives a negative reward and the weight associated with that slot will then become 

negative such that the node will then pick one of the other slots (those with a weight value of 0) 

at random in the next frame. This process continues according to Equation (3-2) which defines 

the stateless Q-learning process used to determine how Q-values are updated in ALOHA-Q when 

the ith node has sent a data packet in the sth slot in a frame: 

Qt+1(i, s) = Qt(i, s) + α (r – Qt(i, s))                                      (3-2) 

where, Qt is the Q-value at time t, t is a time epoch (i.e. a frame), α is a learning rate, and r is 

reward. A standard implementation of ALOHA-Q [76] uses α = 0.1 and r = 1 if the transmission 
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is successful, (i.e. a transmitting node successfully receives an ACK) otherwise, r = -1. More 

detailed information is described in Equation (2-8). 

Considering the example in Figure 3-4 in more detail, since all Q-values in the Q-table are initially 

zero in Figure 3-4, a node randomly selects a slot in the next frame for data packet transmission. 

If the node receives a positive ACK before the guard time ends, meaning the transmission was 

successful, the Q-value for the 1st slot in the Q-table becomes updated to 0.1 through the 

application of Equation (3-2). Thus, after one frame, the Q-table has Q-values of 0.1/ 0/ 0/ 0 and 

the 1st slot has the highest Q-value in the node's Q-table. 

 

Figure 3-4. Example of Q-table update process of N3 for the first three frames 

At the start of the second frame, the node transmits a data packet in the 1st slot, since the Q-value 

of the slot has the highest value (i.e. 0.1) in the node's Q-table. If the node does not receive an 

ACK packet before the guard time ends, the node assumes that the transmission has failed and 

the Q-value for the 1st slot in the Q-table is updated to -0.01. Therefore, after the second frame, 

the Q-values of the Q-table are -0.01/ 0/ 0/ 0. 

At the beginning of the third frame, the node selects a slot number randomly since the 2nd, 3rd, 

and 4th slots all have the same highest Q-value of zero. By repeating this trial-and-error learning, 

and as long as there are sufficient slots in a frame, it can be shown that individual nodes are able 

to find distinct slots to transmit in, and thereby avoid collisions with other nodes in the same 

network. 

Table 3-1 summarises reinforcement learning features of ALOHA-Q. Agents (i.e. sensor nodes) 

learn a distinct slot in a frame, hence the protocol can reduce collisions based on its historical 

learning experiences. 
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 ALOHA-Q [76] 

Medium Access Framed slotted ALOHA 

State Stateless 

Action Select a slot in a frame 

Learning rate 0.1 

Reward function Reward: 1 (Transmission success) 

Punishment: -1 (Transmission failure) 

Current reward Yes 

Discounted reward No 

Discount factor No 

Aim Slot allocation 

Performance enhancement Channel efficiency 

Significant parameter Slot duration (Ts) 

Table 3-1. ALOHA-Q learning summary 

3.3 ALOHA-Q in the terrestrial environment 

Figure 3-5 and Table 3-2 shows the status when an ALOHA-Q network converges: the node 

transmission order has been determined by learning and therefore, there are no collisions or empty 

slots at the sink node (compared to Figure 2-9). Node 3 uses the third slot in Figure 3-5 because 

the Q-value of the third slot has the highest Q-value in its Q-table (Table 3-2). Before the 

convergence, the node 3 experience the changes of Q-value as Figure 3-4 describes for the first 

three frames at the beginning. Then the Q-value for the third slot increases as 0.1 → 0.19 → 0.271 

→ 0.3439 → 0.40951 → 0.468559 → 0.5217031 → 0.56953279 → 0.612579511 → 0.65132156 

→ 0.686189404 → 0.717570464 → 0.745813417 → 0.771232075 → 0.794108868 → 

0.814697981 → 0.833228183 → 0.849905365 → 0.864914828 → 0.878423345 at every 

successful transmission based on Equation (3-2). Figure 4-8 will show this increase in graph at 

the learning rate of 0.1. Please note that ACK transmissions are omitted in Figure 3-5. 

This author implemented ALOHA-Q using Riverbed Modeler for validation purposes and the 

typical parameters of ALOHA-Q used for the implementation of ALOHA-Q shown in Table 3-3. 

Channel utilisation is measured during the simulation at the sink node using Equation (3-3): 
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Channel Utilisation (U) when a network is not converged = 
𝐷

𝑟 × 𝑇
                     (3-3) 

where, D is the total amount of data in bits received by the sink node, r is the data rate in bps in 

Table 3-3, and T is the total period of time in seconds during which to calculate the channel 

utilisation (U). ALOHA-Q achieves 0.95 Erlangs of channel utilisation and the remaining 0.05 

Erlangs accounts for the fixed overheads in the frame (i.e. Ta and Tg). 

 

Figure 3-5. Concept of ALOHA-Q when network converges 

Slot1 Slot2 Slot3 Slot4 

-0.01 0 0.878 0 

Table 3-2. Example of the Q-table of node 3 

Assuming the propagation delay (τp) is negligible, the expected theoretical maximum channel 

utilisation of ALOHA-Q can be calculated by Equation (3-4) which means that the network 

achieves the steady state (converged) and hence channel utilisation of one slot can represent the 

overall channel utilisation of ALOHA-Q under convergence since the identical slot is repeated at 

the sink node as shown in Figure 3-5.  

Theoretical channel utilisation (U) of ALOHA-Q when network converges = 
𝑇𝑑𝑝

𝑇𝑠
            (3-4) 
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Parameters Value 

Duration of a data packet of 1044 bits (Tdp) 4.176 ms 

Duration of an ACK of 20 bits (Ta) 0.08 ms 

Duration of a guard time of 36 bits (Tg) 0.144 ms 

Duration of a slot (Ts) 4.4 ms 

Network size in radius (R) 12.9 m 

Tx and Rx data rate (rtr) 250,000 bps 

The number of generating nodes in a network (N) 50 nodes 

Propagation speed (vtr) 3 × 108 m/s 

Propagation delay (τp) Negligible 

Topology Single-hop, star topology 

Table 3-3. Typical ALOHA-Q parameters for terrestrial use 

3.4 Limitations of ALOHA-Q for underwater acoustic networks 

It is expected that a reinforcement learning based protocol can offer underwater networks the 

capability of adapting through constantly interacting with the time-varying underwater conditions. 

Moreover, ALOHA-Q uses stateless Q-learning which provides high adaptability and simplicity 

and this characteristic of ALOHA-Q matches that of the scenario agnostic protocols. Therefore it 

is of interest to explore the possibility that ALOHA-Q can be used in the continuously changing 

underwater environment. However, this section will show that ALOHA-Q provides low channel 

utilisation in the underwater environment because the design of ALOHA-Q did not consider the 

characteristics of underwater acoustic communications. 

An initial simulation of ALOHA-Q in terrestrial and underwater networks has been undertaken 

using Riverbed Modeler. The purpose of the initial simulation is to compare the performance of 

ALOHA-Q in both terrestrial and underwater environments. The considered network comprises 

50 fixed sensor nodes in a single-hop star topology with one sink node located centrally. All nodes 

are considered to be within interfering range. The packet inter-arrival time is exponentially 

distributed and a collision-based error model is used for reception in the simulation the same as 

does the standard ALOHA-Q [76]. Table 3-4 shows the simulation parameters used for ALOHA-

Q in the underwater environment. 
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The identical simulation parameters in Table 3-3 are used in so far as possible, but two notable 

parameters for the underwater network have been changed for fair comparison: the propagation 

speed of 1500 m/s is used for acoustic signals under water and the use of a state of the art 

underwater modem which is currently on the market with a data rate of 62,500 bps [80] is 

considered. 

In order to initially demonstrate and validate ALOHA-Q implementation in Riverbed Modeler 

and also to provide some initial comparisons between simulation results of ALOHA-Q in 

terrestrial and underwater environments, only key parameters related to the underwater 

environments (i.e. ruw and vuw) have been changed as mentioned above. Therefore, not all 

parameters are realistic for a practical underwater deployment, for example 12.9 m network size 

(R) in Table 3-4, which is taken and exactly the same as published by [76]. Beyond this initial 

comparison, realistic parameters are used for underwater network simulations. 

Parameters Value 

Duration of a data packet of 1044 bits (Tdp) 16.704 ms 

Duration of an ACK of 20 bits (Ta) 0.32 ms 

Duration of a guard time of 36 bits (Tg) 0.576 ms 

Duration of a slot (Ts) 34.8 ms 

Network size in radius (R) 12.9 m 

Tx and Rx data rate (ruw) 62,500 bps 

The number of generating nodes in a network (N) 50 nodes 

Propagation speed (vuw) 1,500 m/s 

Propagation delay (τp) 8.6 ms 

Topology Single-hop, star topology 

Table 3-4. Typical ALOHA-Q parameters for underwater use 

The result of the simulation is that ALOHA-Q can be operated in the underwater environment but 

the protocol only provides a channel utilisation of 0.48 Erlangs when network converges, much 

lower than the 0.95 Erlangs which achieved by the same protocol within a terrestrial environment 

when the network converges [76]. Channel utilisation is measured at the sink node using Equation 

(3-3) 
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The slow propagation speed of acoustic signals is the primary cause for low channel utilisation 

since it makes the duration of slot (Ts) much greater in the underwater networks. Equation (3-1) 

shows the calculation for the duration of a slot (Ts) and the propagation delay (τp) is the significant 

element. During the propagation of the data packet and ACK, the channel remains in an idle state 

which consequently causes a decrease in achievable channel utilisation. Therefore, chapters 4 and 

5 propose new methods to improve the performance of ALOHA-Q in the underwater environment. 
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4 UW-ALOHA-Q for fixed underwater sensor networks 

This chapter proposes the new protocol UW-ALOHA-Q [81] which to the best knowledge of the 

author, is the first reinforcement based MAC protocol for the underwater environment. Three 

improvements are proposed in this chapter to address the limitation of low channel utilisation 

which was discussed in section 3.4. The new protocol: 1) includes asynchronous operation to 

eliminate the challenges associated with time synchronisation under water; 2) offers an increase 

in channel utilisation through refinement of the frame size; 3) achieves collision free scheduling 

by incorporating a new random back-off scheme. UW-ALOHA-Q is discussed in detail in this 

chapter. Note that UW-ALOHA-Q assumes that 1) the number of nodes deployed in the network 

(N) and 2) the network distance (R) in terms of radius in meters are known in advance. 

4.1 Asynchronous operation 

The cost of synchronisation is considerable in the underwater environment, especially for long 

term deployments, because GPS signals are not available and distributed synchronisation 

introduces notable overheads and complexity. Therefore, this thesis considers the situation where 

all nodes are not time synchronised. This section describes how the asynchronous operation can 

be applied to ALOHA-Q for the purpose of underwater communication. 

In the terrestrial environment, asynchronous operation reduces the channel utilisation in networks 

because of the vulnerable period as shown in Figure 2-7. To avoid collisions, a packet being 

received should not overlap with any others at the receiving node for twice the duration of one 

slot (Figure 2-7(a)). However, in the time synchronised network in Figure 2-7(b), the vulnerable 

period decreases by half due to the benefit of synchronisation and the probability of collisions in 

the network is halved. The difference the throughput between pure ALOHA (0.18 Erlangs) and 

slotted ALOHA (0.36 Erlangs) shows this clearly in section 2.2.3.1. 

Figure 4-1 compares the simplified structures of (a) the standard (synchronised) ALOHA-Q 

protocol and (b) the protocol where asynchronous operation is applied. All nodes in the 

synchronised ALOHA-Q network use a global time reference. Using global time synchronisation 

in the network, the protocol can reduce the probability of collisions by reducing the vulnerable 

period. In terms of the underwater environment, however, global time synchronisation is difficult 

and costly to achieve. Therefore, this section considers asynchronous operation as depicted in 

Figure 4-1(b). Each node has its local clock, so it calculates its own slot and frame times. However, 

because its clock is not globally synchronised, each node’s frame starts at different times and each 
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node works independently, which means that there is no need for nodes to know their neighbours’ 

clock information. Nodes are assumed to start the frame at a uniform randomly distributed time 

within the range of zero to the duration of one frame. 

 

Figure 4-1. ALOHA-Q with and without time synchronisation 

Figure 4-2 shows the flow of the asynchronous operation in UW-ALOHA-Q. The two generating 

nodes N1 and node N2 start their frame in different moments and a sink node does not need to 

work within a frame structure compared to Figure 3-2. UW-ALOHA-Q does not use duty-cycle 

and is in a half-duplex mode. 

 

Figure 4-2. Data transmission process with asynchronous operation 

Figure 4-3 compares the difference in reception patterns of data packets at sink nodes of the 

ALOHA-Q protocol in the two different environments. In Figure 4-3(a), the terrestrial set-up with 

minimal propagation delay is efficient when synchronised, which is also easy to achieve. 

Therefore, data packets arrive close in time to each other at the sink node and channel utilisation 

is high. However, if asynchronous, the system does not work well due to the increased vulnerable 
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period as discussed in section 2.2.3.1.2. In the underwater environment, however, the long 

propagation delays result in long slots and significant idle time (Figure 4-3(b)). This makes the 

system inefficient when synchronised so channel utilisation becomes low. When asynchronous 

operation is considered, however, the idle time is sufficient to avoid overlapping reception, so the 

protocol is not prone to experiencing collisions. Even if packets overlap at the receiving sink node, 

nodes can learn and find the distinct slot number in the frame by reinforcement learning to avoid 

such overlap. 

 

Figure 4-3. Slot reception at the sink node in two different environments 

Figure 4-4 shows an example of the way that reinforcement learning enables nodes to avoid 

collisions without time synchronisation in an UW-ALOHA-Q network. Four generating nodes 

are deployed in a star topology and one sink node is located in the centre of the star topology. The 

standard ALOHA-Q protocol uses framed slotted ALOHA as a baseline and hence ALOHA-Q 

uses the number of slots in a frame equal to the number of nodes deployed in a network for the 

maximum channel utilisation as discussed in section 2.2.3.1.3.  In this example, four sensor nodes 

are deployed in a network so one frame principally consists of four slots. Four nodes have to 

choose one slot among slot1, slot2, slot3, or slot4 for their transmission in each frame. They are 

not synchronised, so the frame start timing for each node is different. In the first frame, node 1 
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randomly chooses slot2 and transmits a data packet in the slot, node 2 in slot1, node 3 in slot3, 

and node 4 in slot2. At the sink node, packets from node 1 and node 2 overlap with each other 

and therefore collide in their first frame. The two nodes do not therefore receive an 

acknowledgement (ACK) from the sink node. As a result, the Q-values of the slots in the Q-table 

are updated to negative values (i.e. -0.1 according to the Equation (3-2)), thus the two nodes 

change slot numbers for the next transmission, based on the operation of the Q-learning algorithm 

and the slot selection policy with the highest weigh value at the start of each frame. If more than 

two Q-values are identical and highest in the Q-table, the node randomly selects one slot as 

explained in section 3.2 in particular in the example in Figure 3-4. Hence node 1 chooses the slot1 

and node 2 chooses the slot2.The new order does not incur overlapping data packets from node 1 

and node 2 anymore. On the other hand, node 3 and node 4 continue to use the same slots that 

they used for their initial transmissions, because they were successful. By repeating the learning 

scheme, the four nodes are able to learn which slot number they need to use and finally all four 

packets can arrive at the sink node without interfering with transmissions from other nodes in the 

network. 

 

Figure 4-4. Asynchronous operation for UW-ALOHA-Q in the underwater environment 

4.2 Discussion 

The UW-ALOHA-Q protocol does not necessarily experience any reduction in channel utilisation 

despite nodes operating in an asynchronous fashion in the underwater environment. Utilising the 

idle time at the sink node caused by the slow propagation speed which is depicted in Figure 4-2 

and Figure 4-3, UW-ALOHA-Q can still achieve collision free reception by reinforcement 
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learning as illustrated in Figure 4-4. The idle time at the sink node is sufficient to avoid 

overlapping reception and reinforcement learning allows nodes to find the distinct slot which can 

fill in the gap (the idle time at the sink node) so that a data packet can be successfully received by 

the sink node. Table 4-1 compares the relevant utilisation of the standard ALOHA-Q protocol 

with and without time synchronisation in the two different environments. The second column in 

the table (i.e. With time synchronisation) summarises simulation results in sections 3.3 and 3.4 

and related parameters are defined in Table 3-4 and Table 3-4. ALOHA-Q in the terrestrial 

network can achieve very high utilisation (0.95 Erlangs) due to negligible propagation delays 

whereas the underwater network cannot (0.48 Erlangs) because of the slow propagation speed 

which means that the network has large slots to accommodate a data packet, an ACK and large 

idle times. 

Unit: Erlangs With time 

synchronisation 

Without time 

synchronisation 

Ratio 

Terrestrial 0.95 0.64 ≈ 0.67 

Underwater 0.48 0.48 1 

Table 4-1. ALOHA-Q and UW-ALOHA-Q channel utilisation in different environments with 

and without time synchronisation 

Now this thesis looks at and considers the channel utilisation that is achievable without time 

synchronisation. Using the same simulation settings and configurations in section 3.3 and 3.4, 

only the asynchronous operation is applied. Asynchronous operation reduces channel utilisation 

of the ALOHA-Q protocol in the terrestrial environment because the vulnerable period increases 

and the probability of collisions at the sink node thereby increases as discussed in section 2.2.3.1.2. 

The channel utilisation should be half of the synchronised ALOHA-Q, however, the learning 

scheme of the protocol increases the channel utilisation (Table 4-1: 0.95 vs 0.64). On the other 

hand, asynchronous operation in the underwater environment does not result in any loss of 

channel utilisation (Table 4-1: 0.48 vs 0.48). 

However, the ALOHA-Q protocol in the underwater environment continues to have a lower 

utilisation (Table 4-1: 0.64 vs. 0.48). Therefore, a new scheme for refining the frame size (S) in a 

network is proposed in the next section 4.3 to increase the channel utilisation in underwater 

networks. 
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4.3 Reduced frame size 

The standard ALOHA-Q protocol shows the best performance when the frame size (S) and the 

number of generating sensor nodes (N) in the network are the same in the terrestrial environment 

as discussed in section 2.2.3.1.3. However, if the frame size (S) is identical to the number of nodes 

(N) in the underwater environment, the sink node has significant idle time (Figure 4-3(b)) caused 

by the long propagation delays (τp). To increase the channel utilisation, this thesis proposes a new 

scheme which fills the spare space (in time at the sink node) by reducing the number of slots per 

frame (S). 

Figure 4-5 shows an illustrative example of how convergence could be achieved, corresponding 

to all nodes finding transmission times which avoid any overlap/collision at the sink node. In this 

example, two slots are used per frame to support four generating nodes (the optimal and 

converged case in this example). Comparing Figure 4-4 and Figure 4-5, it is obvious that channel 

utilisation is better when a small number of slots is used because the amount of idle time at the 

sink node is decreased. For this collision free reception to achievable in practice, it is additionally 

important for nodes to be able to adjust their (initially random) frame start times and this will be 

discussed in section 4.6. 

 

Figure 4-5. Reduced frame size (S) for UW-ALOHA-Q to improve channel utilisation 

4.4 Simulation 

This simulation is based on the full set of parameters shown in Table 3-4 and with channel 

utilisation measured by Equation (3-3). In addition, the asynchronous operation is added. Figure 

4-6 compares the channel utilisation between the standard synchronised ALOHA-Q and UW-
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ALOHA-Q protocols depending on the frame size (S) in the underwater network. As a baseline 

scheme, the performance of framed slotted ALOHA is also shown for comparison. 

The standard (synchronised) ALOHA-Q protocol shows the highest channel utilisation when the 

frame size (S) is the same as the number of nodes in the network (N = 50). As the frame size (S) 

is reduced from 50, the utilisation also decreases because there are then insufficient slots for 

individual nodes to have an independent slot, therefore there has to be residual contention and 

associated retransmissions. However, the UW-ALOHA-Q protocol can achieve its highest 

channel utilisation when the frame size (S) is 38, with 50 generating nodes in the underwater 

network, because asynchronous operation and reinforcement learning make the protocol able to 

utilise the idle time more effectively at the sink node. 

Compared to the baseline protocol (i.e. framed slotted ALOHA), UW-ALOHA-Q shows 

significant improved channel utilisation. This is a key message of this thesis that, in the identical 

network configuration, applying the learning approach has great potential to improve the channel 

utilisation for underwater networks. 

 

Figure 4-6. Channel utilisation according to frame size (S) with 50 sensor nodes 
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An appropriate frame size (S) of UW-ALOHA-Q can be determined for a network depending on 

the application requirements. With the parameters given in Table 3-4, the data packet corresponds 

to approximately half a slot in duration, such that around half the capacity is unused. 

Mathematically the frame size (S) can be reduced by up to N/2, where N is the number of nodes 

in the underwater network. N/2 comes from the ratio of ≈ 1:1 between the packet duration (Tdp = 

16.704 ms) and the idle time in one slot (2 × τp = 17.2 ms) in one time slot (Ts = 34.8 ms). Therefore, 

a frame size (S) between [N/2 and N] is feasible in the UW-ALOHA-Q protocol. 

When more slots in a frame are used, channel capacity is wasted because each node of ALOHA-

Q and UW-ALOHA-Q is designed to transmit a data packet in one slot per frame. Therefore the 

channel utilisation of three protocols decreases when the frame size (S) is larger than the number 

of nodes (N = 50) as seen in Figure 4-6. 

4.5 Discussion 

By refining the frame size (S), UW-ALOHA-QM can achieve a higher channel utilisation than 

the standard ALOHA-Q protocol in the underwater environment, and a similar level of utilisation 

when asynchronous operation is applied (for example, 0.63 Erlangs in Figure 4-6). Despite good 

channel utilisation one significant problem occurs and it is almost impossible for UW-ALOHA-

Q to achieve network convergence and collision free scheduling in a network where fixed nodes 

are deployed. The reason of the problem is a reduced frame size (S) since a possibility arises that 

the network cannot converge due to the randomly inherited frame start time which cannot be 

changed. This limits the use of the protocol because it cannot be used for applications which 

require a good level of QoS regardless of the high channel utilisation in average achieved. 

Therefore, it is necessary to design an underwater protocol which can allow network convergence 

in a fixed environment. The next section will discuss this problem deeply and propose a new 

scheme which can provide the network convergence for underwater networks comprising fixed 

or pseudo static sensor nodes. 

4.6 Uniform random back-off scheme 

Incorporation of the first two improvements provides the potential for high channel utilisation to 

be achieved underwater. However, using a reduced frame size (S), it is highly probable that the 

network cannot converge due to the randomly inherited frame start time which cannot be changed. 

A new time based random back-off scheme is proposed to address this problem and allow 

convergence to be achieved. 
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Traditionally, in wireless communication networks, when a transmission fails, a node does not 

send the retransmission immediately, but delays it in order to avoid a potential collision. This 

delay is called back-off and the delayed time is often calculated as a number of slots. As an 

example, the back-off algorithm in the IEEE 802.11 Wireless Local Area Networks (WLANs) 

standard [82] delays retransmissions based on the number of slots in a contention window with 

an exponential increase in the window size in response to successive failures. 

However, if the same slot based strategy is applied to UW-ALOHA-Q with the two proposed 

improvements in the underwater environment, the possibility of non-convergence continues to 

exist since the structure of frames and slots still uses a fixed frame start time. Therefore, a uniform 

random back-off scheme is proposed in this section. This scheme operates independently from 

the slot learning process (which is described in section 3.2) and allows the nodes to adapt their 

frame start times. Using this scheme, subsequent to every collision, nodes randomly delay the 

next frame start time according to a uniform distribution. By repeated trial-and-error learning, all 

nodes can discover an appropriate frame start time and the preferred slot to use in successive 

frames.  

Operation of the proposed uniform random back-off scheme is illustrated in Figure 4-7. This new 

random back-off scheme technically provides chances for node to adjust their transmission timing 

and find a gap for successful transmission. The two sensor nodes in this example start their frames 

at different times due to the asynchronous operation. Node 1 sends a data packet in slot1 of a 

frame X and node 2 in slot 2 of its frame X-1. The two packets collide at the sink node. The two 

nodes therefore invoke the uniform random back-off scheme which adjusts their frame times. 

Node 1 and node 2 do not change their slot number as it is assumed that the currently selected 

slots still retain the highest Q-values in the Q-table, despite the collision. This explains how the 

learning process and the back-off scheme work independently. After moving their frame time, 

node 1 and node 2 can find an appropriate frame start time to transmit their data packet 

successfully in frame X+1 and in frame X respectively. Node 2 will not adjust its frame time for 

frame X+1 since the node should receive an ACK successfully from the sink node in frame X. 

For the same reason, it is predicted that node 1 maintains its current frame cycle for the next frame 

X+2.To understand Figure 4-7 easier, it is helpful to point out the weakness of UW-ALOHA-Q: 

1) the number of nodes in the network (N) and 2) the network size in terms of the radius in meters 

(R) need to be known in advance. Therefore, future work 6.3.7 will discuss the frame adaptation 

scheme.  
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Figure 4-7. Uniform random back-off scheme for UW-ALOHA-Q 

Inclusion of this scheme leads to collision free scheduling and permits convergence in UW-

ALOHA-Q underwater acoustic networks comprising fixed nodes under the assumption that any 

underestimation of maximum delay can be covered by the guard duration (Tg). 

This section 4.6 and Figure 4-7 does not discuss simulation results. This section illustrates the 

concept of the uniform random back-off scheme. Therefore, there are no specific parameters to 

be described for Figure 4-7. Nodes of UW-ALOHA-Q are designed to send one data packet per 

frame, which means that the periodicity of the data transmission always equals the frame duration: 

Ts × S. Convergence will be discussed in the future sections 4.8.2 in particular Table 4-3 and 

Table 4-4. Section 4.8.2 shows that the number of slots (S) in a frame significantly impacts on 

convergence. As the number of slots per frame increases, the chance of network convergence 

increases and vice versa. In summary, the proposed reinforcement learning based UW-ALOHA-

Q scheme can achieve high channel utilisation and network convergence using very low 

overheads without the need of time synchronisation and any centralised controller in the 

underwater environment. The next section 4.7 will provide more detailed analysis and 

investigation of Q-values. Following this, the simulations in section 4.8 will demonstrate the 

behaviour of UW-ALOHA-Q with different network configurations and topologies and serve to 

validate the envisaged channel utilisation capability of the protocol. 

4.7 Impact of reduced frame size (S) on Q-value 

For simulations in this thesis, ALOHA-Q and UW-ALOHA-Q systems are implemented in 

Riverbed Modeler. The Q-value significantly impacts on network convergence measurement for 
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simulation results. Therefore, it is important to understand and predict the trend of Q-value 

changes during the operation of learning based MAC protocols. 

Previous studies of ALOHA-Q [83] for terrestrial radio networks use a frame size (S) equal to the 

number of nodes (N), which is appropriate when trying to achieve maximum channel utilisation 

in single-hop wireless networks. When the frame size (S) is equal to the number of generating 

nodes (N) in a network, once a Q-value of one slot becomes negative at the first data transmission 

attempt (based on Equation (3-2)), the slot is unlikely to be selected again in a greedy learning 

policy. In this case, a sufficiently large Q-value in a Q-table can be a criterion of simulations to 

judge nodal convergence in the implemented ALOHA-Q system. Therefore, the simulation of 

ALOHA-Q [83] makes a judgement as to whether the implemented system is converged when all 

nodes maintain the use of a particular slot for at least 20 consecutive frames. 

The way in which the Q-values of ALOHA-Q are adjusted is shown Figure 4-8 where the Q-value 

rapidly rises because the number of slots (S) is sufficient for the number of nodes (N). Using 

Equation (3-2), the Q-value reaches 0.878 after 20 consecutive successful transmissions with the 

learning rate (α) = 0.1 and the Q-value is reasonable enough to judge nodal convergence for the 

ALOHA-Q implementation. The previous study [84] carried out the analysis of Q-value in a radio 

wireless network and shows the same result. 

 

Figure 4-8. Q-value increase without collision 
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However, due to the specific requirements of asynchronous UW-ALOHA-Q schemes from a 

channel utilisation perspective, it is important to have a small number of slots (S) for a given 

number of nodes (N). Consequently nodes compete for the small number of slots and hence the 

level of contention is high, which leads Q-values of UW-ALOHA-Q nodes rapidly becoming 

negative (i.e. punishment). 

Therefore the criterion of terrestrial ALOHA-Q to judge network convergence (i.e. 20 consecutive 

uses of a particular slot) is not appropriate for the implemented UW-ALOHA-Q system which 

have a smaller frame size (S) than the number of nodes (N) in the network since the number of 

available slots is not enough for all learning nodes. Figure 4-9 shows an example of one node’s 

Q-table when the reduced frame size (S) is 2 for 10 fixed generating nodes, which are deployed 

in a network with the Uniform Random Back-off (URB) scheme. The line with squares is the 

changes in the Q-value of slot1 for one node in the network and the line with stars is the Q-value 

of slot2 of the same node. Compared to Figure 4-8, the trend of Q-value changes of UW-ALOHA-

Q is much more arbitrary and random due to the lack of slots for all nodes in the network and the 

URB scheme. The two Q-values actually get negatively reinforced quickly at the initial stage 

because of contention in the network. The fluctuation of the Q-value represents the learning 

process where the node is trying to find the particular slot and an appropriate frame time through 

trial-and-error experiences. 

If the same measure of ALOHA-Q is used in the simulation of UW-ALOHA-Q, nodal 

convergence would be measured much earlier, which would lead to a wrong simulation result. 

Due to the significant difference in the Q-value changing features between ALOHA-Q and UW-

ALOHA-Q, an appropriate criterion is required for UW-ALOHA-Q to judge system convergence 

for the network having a smaller number of available slots than there are learning nodes. 

Therefore, this thesis proposes to use the absolute value for UW-ALOHA-Q rather than the 

number of consecutive transmissions in a distinct slot. UW-ALOHA-QM simulations judge nodal 

convergence when one Q-value is greater than 0.9 in the Q-table and network convergence when 

all nodes achieve nodal convergence. 
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Figure 4-9. Example of Q-value changes of one node in UW-ALOHA-Q 

4.8 Simulation 

Simulations have been carried out to understand the baseline channel utilisation of UW-ALOHA-

Q. Referring to the EPSRC funded project named ‘USMART’ [85], simulations in this section 

consider underwater networks comprising either 25 or 50 nodes, as well as with propagation 

distances varying from 100 m to 1,000 m networks. 

This section first introduces the parameters and performance measures and then discusses an 

important trade-off of the UW-ALOHA-Q system. Simulation results showing channel utilisation 

and end to end delay are analysed according to the different network sizes. Moreover, the 

convergence features of UW-ALOHA-Q are looked at in detail. Lastly, the performance of UW-

ALOHA-Q in a random topology is shown. 

4.8.1 Parameters and performance measures 

Mostly, channel utilisation (U) is measured which is evaluated as the fractional amount of time 

in which data traffic is successfully received at the sink node and is calculated by Equation (3-3). 
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We also define three parameters for simulation analysis. They are related to frame size (S) since 

the frame size is the important parameter which has a significant impact on the performance of 

UW-ALOHA-Q. 

• Scvg: the convergence frame size which permits convergence to be achieved (as defined) 

for a certain size of network 

• Smax: the frame size which can achieve the maximum channel utilisation for a certain 

size of network 

• Index B: this ratio represents the theoretically available space at the sink node to be used 

for reception of data packets related to the total duration of the data carrying capacity in 

a frame as described in Equation (4-1). Because reducing frame size is proposed in section 

4.3, the frame size is smaller than the number of nodes (i.e. S < N). We consider cases 

where the index (B) is greater than 1. 

B = 
𝑆 ×(2 × 𝜏𝑝+ 𝑇𝑑𝑝)

𝑁 × 𝑇𝑑𝑝
                                                        (4-1) 

where, the potential range of frame size (S) considered in this thesis is 0 < S < N. 

Figure 4-10 provides the concept for the index B. If there are 4 sensor nodes in the network, the 

aim of the network is to successfully receive 4 data packets in a frame. The 4 data packets must 

successfully arrive at the sink node. At the sink node, the available time to be used for the data 

packet reception can be calculated. The sink node cannot receive the data packet during the time 

that it sends ACK packets because it is a half-duplex mode. Moreover, the guard time is reserved 

for the case in which the maximum delay is underestimated and to account for potential clock 

drift so that the guard time must be remain idle. Therefore, the rest of the time in a frame of the 

sink node can be used to receive data packets from 4 sensor nodes. The rest of the time is the 

denominator of Equation (4-1) during which the 4 data packets from 4 sensor nodes need to 

successfully arrive at the sink node for good channel utilisation. If the index B increases, the 

available time at the sink to be used for data packet receptions increases, therefore the potential 

number of collisions decreases but channel utilisation decreases due to the idle time at the sink 

node and vice versa. One aim of this simulation section is to find an appropriate index B between 

the trade-off of channel utilisation and network convergence. 



 

79 

 

 

Figure 4-10. The ratio index B of the sink node 

4.8.2 The trade-off between channel utilisation and convergence 

This section provides simulation results of channel utilisation of UW-ALOHA-Q according to the 

frame size (S) and highlights a trade-off between channel utilisation and the probability of 

convergence. This section particularly shows simulation results with and without the uniform 

random back-off scheme to examine the capability of slot learning process with and without the 

scheme. Table 4-2 lists details of simulation parameters in this section.  

Parameters Value 

Duration of a data packet of 1044 bits (Tdp) 16.704 ms 

Duration of an ACK of 20 bits (Ta) 0.32 ms 

Duration of a guard time of 36 bits (Tg) 0.576 ms 

Duration of a slot (Ts) 150.933 ms 

Network size in radius (R) 100 m 

Tx and Rx data rate (ruw) 62,500 bps 

The number of generating nodes in a network (N) 25 nodes 

Propagation speed (vuw) 1,500 m/s 

Propagation delay (τp) 66.67 ms 

Topology Single-hop, star topology 

Table 4-2. Simulation parameters 
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Table 4-3 shows the simulated channel utilisation of UW-ALOHA-Q when the frame size (S) 

varies, for a network comprising 25 generating nodes (N) equally spaced around a 100 metre 

radius star topology with a central receiver. The simulations in Table 4-3 include the first two 

improvements (in sections 4.1 and 4.3) and exclude the uniform random back-off scheme (in 

section 4.6) in order to particularly understand the impact of changing the frame size (S). For each 

value of frame size (S), 100 simulations are carried out and one simulation comprises 5,000 

frames to ensure sufficient time to converge.  

The index ratio (B) in Table 4-3 is defined by Equation (4-1). When 4 slots in a frame (S) is used 

for 25 nodes (N) in Table 4-3, the index (B) is 1.44 which means that the idle time at the sink 

node has 44% more time compared to the total 25 data packet durations. 

As the frame size (S) increases, the idle time at the sink node increases (so its index ratio (B) 

increases as well), and therefore the channel utilisation measured at the sink node is reduced due 

to the long idle time. However, the idle time at the sink node is used to receive data packets in the 

network, such that the chance of network convergence increases because generating nodes are 

likely to find an appropriate gap at the sink node through reinforcement learning. If the frame size 

(S) decreases, channel utilisation increases to a certain level as the available time at the sink node 

is reduced, but the possibility of collisions would increase since nodes cannot find a distinct slot 

in a frame. Therefore, there is a trade-off between average channel utilisation and the chance of 

network convergence according to frame size (S). 

Frame 

size (S) 

Index 

ratio (B) 

The number of simulation trials where the 

network converges (times) 

Average channel 

utilisation (Erlangs) 

4 1.44 1 0.44 

5 1.80 28 0.46 

6 2.16 63 0.42 

7 2.51 80 0.36 

8 2.87 97 0.34 

… … … … 

25 8.98 100 0.11 

Table 4-3. Channel utilisation according to the frame size (S) 
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For example, during the simulations in Table 4-3, each of the 25 nodes uses reinforcement 

learning to find a distinct slot in a frame which does not interfere with the transmission of any of 

its neighbours. Increasing the frame size (S) up to 8 slots per frame increases the flexibility in the 

selection of any particular slot and it is therefore easier for the network to converge through the 

learning process, despite a relatively low channel utilisation of 0.34 Erlangs. However, as shown 

in the results, a trade-off is observed when the frame size (S) is lowered from 8 to 5, the highest 

average of channel utilisation is achieved at 0.46 Erlangs but with convergence occurring less 

frequently: the UW-ALOHA-Q network converges 28 times out of 100 simulation trials. 

Therefore, it is observed that UW-ALOHA-Q shows a trade-off between average channel 

utilisation and the chance of convergence as the frame size (S) varies. 

As stated earlier, the simulations in Table 4-3 do not include the new back-off scheme to examine 

the impact on the learning capability in relation to the frame size (S). As shown in Table 4-3, the 

network fails (base on the convergence criteria of 0.9 discussed in section 4.7) to converge on 3 

occasions out of 100 trials when a frame size (S) of 8 is used. This low probability of convergence 

failure can be overcome by the uniform random back-off scheme by finding the appropriate frame 

start time, and thereby allowing the UW-ALOHA-Q protocol to converge every time. 

Applying the uniform random back-off scheme, nodes which cannot find a distinct slot are able 

to adjust their frame start time. Consequently, all nodes can find an appropriate frame start time 

and a distinct slot. However, during this process, the scheme disturbs nodes which already find 

their own distinct slot and thus triggers additional learning processes. Therefore, overall network 

convergence takes more frames (i.e. more trial-and-error learning processes) than UW-ALOHA-

Q without the back-off scheme. 

Table 4-4 compares simulation results with and without the uniform random back-off scheme. It 

shows that UW-ALOHA-QM overcomes the non-convergence issue by applying the uniform 

random back-off scheme with the frame size of 8 (Scvg) in this network configuration (i.e. 25 

nodes in 100 m size network). Applying the uniform random back-off scheme, UW-ALOHA-QM 

can achieve network convergence 100 times out of 100 trials so the frame size of 8 is the 

convergence frame size (Scvg) in this network. However, more learning iterations are required to 

learn not only a distinct slot but also the appropriate frame start time. 
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Frame 

size (S) 

URB 

scheme 

The number of 

simulation where the 

network converges 

Average channel 

utilisation 

(Erlangs) 

Average number of frames 

used when the network 

converges (frames) 

8 No 97 0.34 20.04 

8 Yes 100 0.35 158.51 

Table 4-4. Simulation results with and without the uniform random back-off scheme 

Simulations of UW-ALOHA-Q have also been carried out using 25 nodes with different 

propagation distances varying from 100 m to 1000 m. Two key observations were found. First, 

an identical trade-off is observed under the condition that the index ratio (B) is greater than 1.5 in 

simulation results of all different network sizes. This also implies that the highest average channel 

utilisation of UW-ALOHA-Q is achievable under a condition of the index ratio (B) equal to 1.5. 

Therefore, we call this frame size Smax which is the smallest frame size meeting this condition. 

Moreover, simulation results show that UW-ALOHA-QM achieves network convergence when 

the index ratio (B) is greater than 2.6 in all different size networks having 25 nodes. UW-ALOHA-

Q is fundamentally able to achieve network convergence in a fixed node network and therefore it 

is important to understand the required amount of time at the sink node for network convergence 

in relation to the total amount of data packet duration in the network. Importantly these simulation 

results show that 2.6 times more space is required at the sink node for UW-ALOHA-Q to achieve 

network convergence. 

4.8.3 Channel utilisation as a function of network size 

In terms of network deployment, the size of a network (R) and the number of nodes (N) in the 

network are determined by the requirements of individual applications. Therefore, it is necessary 

to predict the channel utilisation of UW-ALOHA-Q across a range of different size networks (R) 

in order to define the baseline performance which UW-ALOHA-Q can provide for a range of 

different applications. Network configurations in Table 4-5 are used for the simulations and the 

uniform random back-off scheme is applied for network convergence. Convergence is measured 

when all nodes have at least one Q-value greater than 0.9 as discussed in section 4.7. 

Figure 4-11 illustrates the simulated channel utilisation of UW-ALOHA-Q following 

convergence in a star topology where the network size varies from a 100 m to 1000 m radius with 

25 nodes. These results present the detailed UW-ALOHA-Q behaviour based on the index ratio 

(B). As discussed in section 4.8.2, Scvg is the smallest frame size (S) under the condition where 
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the ratio index (B) is greater than 2.6. Network convergence is achievable when the index ratio 

(B) is greater than 2.6 as Figure 4-11 specifies. The convergence frame size (Scvg) varies from 1 

to 8 as the network size decreases.  

Parameters Value 

Duration of a data packet of 1044 bits (Tdp) 16.704 ms 

Duration of an ACK of 20 bits (Ta) 0.32 ms 

Duration of a guard time of 36 bits (Tg) 0.576 ms 

Duration of a slot (Ts) Varies according to network size (R) 

Network size in radius (R) 100 m to 1000 m 

Tx and Rx data rate (ruw) 62,500 bps 

The number of generating nodes in a network (N) 25 nodes 

Propagation speed (vuw) 1,500 m/s 

Propagation delay (τp) Varies according to network size (R) 

Topology Single-hop, star topology 

Table 4-5. Simulation parameters 

In longer distance networks the propagation delay (τp) primarily accounts for one slot (Ts) as 

referred to by Equation (3-1) and during the propagation delay (τp), the channel is idle. Therefore 

increasing or decreasing frame size (S) significantly impacts channel utilisation due to the idle 

time. For example, in the longer distance networks such as those with a 900 m and 1000 m radius, 

the amount of idle time in one slot (Ts) is sufficient for 25 nodes to find a distinct time period for 

transmission. Therefore, the network can converge and achieve collision free scheduling when 

the frame size (S) is 1 (Scvg). However, the amount of available time (τp) in one slot for 25 nodes 

in an 800 m network is insufficient, therefore adding one more slot in a frame is necessary so that 

the network achieves convergence when the frame size (S) equals 2 (Scvg). Adding one more slot 

in a frame, however, causes a significant drop in channel utilisation due to redundant idle time 

(τp). This change in channel utilisation is termed ‘the effect of a slot’. This effect becomes smaller 

in smaller networks because the propagation delay accounts less for a slot and therefore there are 

small drops although the frame size (Scvg) increases in the smaller networks. 
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Figure 4-11. Channel utilisation of UW-ALOHA-Q at a variable network size 

For the same reason, when the convergence frame (Scvg) continues to be identical (for example, 

networks between 400m to 800m), the channel utilisation decreases as the network size increases 

because the greater propagation delay accounts for a slot as the network size increases. 

Overall, an UW-ALOHA-Q network converges when the ratio (B) is greater than 2.6. When the 

number of nodes (N) in a network remains 25, channel utilisation is higher if the index (B) is 

smaller as it indicates less idle time at the sink node whereas the larger ratio (B) implies a greater 

amount of idle time at the sink node resulting in lower channel utilisation. 

Once a network has converged, all nodes use the same slot numbers and timing in a frame. 

Therefore, a centralised data transmission pattern is formed and this pattern is repeated as long as 

convergence is maintained. Based on this, the theoretical channel utilisation under network 

convergence can be determined by considering the proportion of time available for data 

transmission in just a single frame, as given by Equation (4-2). The theoretical maximum channel 

utilisation shown in Figure 4-11 is calculated using Equation (4-2) and it can be seen that a very 

close match is obtained. 
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Theoretical channel utilisation (U) of UW-ALOHA-Q when converged = 
𝑁 × 𝑇𝑑𝑝

𝑆 × 𝑇𝑠
            (4-2) 

Figure 4-12 illustrates simulation results of channel utilisation of UW-ALOHA-Q using 50 nodes 

in a star topology and shows a similar trend to the channel utilisation results obtained when 25 

nodes are used. The convergence frame size (Scvg) varies from 2 to 17 as the network size (R) 

decreases and is achieved when the index ratio (B) is larger than 3.0. ‘The effect of a slot’ is 

moderated in the network with 50 nodes compared to the network with 25 nodes, because a greater 

number of data packets compensates for the inefficient use of time in a frame. 

 

Figure 4-12. Channel utilisation with 50 nodes in variable network size star topology 

For a comparative analysis, simulation results of framed slotted ALOHA and ALOHA-Q are also 

shown in Figure 4-12 when the frame size (S) of 50 and convergence frame size (Scvg) are used. 

Framed slotted ALOHA and ALOHA-Q are chosen for comparison since they are the baseline 

schemes for UW-ALOHA-Q. UW-ALOHA-Q achieves a much higher channel utilisation 

compared to ALOHA-Q when the frame size (S) is equal to the number of nodes (i.e. 50). This 

result demonstrates the great benefits of UW-ALOHA-Q particularly in large networks where 

most underwater acoustic networks struggle due to the increasing propagation delay in the 
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acoustic channel. Compared with framed slotted ALOHA (refer to section 2.2.3.1.3), UW-

ALOHA-Q shows lower channel utilisation. However, framed slotted ALOHA cannot guarantee 

collision free communication and requires time synchronisation. When framed slotted ALOHA 

is simulated using the convergence frame size (Scvg), most cases show almost zero channel 

utilisation. 

4.8.4 End to end delay 

One of characteristics of UW-ALOHA-Q is the reduced frame size (S), whereas ALOHA-Q and 

framed slotted ALOHA use a frame size (S) which is equal to the number of nodes (N) as  shows. 

The frame size (S) for 25 nodes of ALOHA-Q and framed slotted ALOHA is shown as an example 

in Figure 4-14 and 50 nodes equivalently need 50 slots per frame. The reduced frame size results 

in a better end to end delay of UW-ALOHA-Q compared to framed slotted ALOHA and ALOHA-

Q. 

In any size of network, because of the longer frame size, one node of ALOHA-Q needs to wait 

for a much longer time for the next transmission than is the case with UW-ALOHA-Q and this 

becomes more serious in the underwater environment. For example, in a 1,000 m network 

consisting of 25 nodes, a slot duration (Ts) is 1.35 seconds calculated by Equation (3-1). As shown 

in Table 4-6, UW-ALOHA-Q uses only one slot (Scvg) to accommodate 25 nodes in a frame, so 

the frame duration is 1.35 seconds. However, ALOHA-Q needs 25 slots in a frame, hence the 

frame duration becomes 33.75 seconds. Using the reduced number of slots per frame, UW-

ALOHA-Q can provide the significantly lower end to end delay than ALOHA-Q as shown in 

Table 4-6. The table shows the average end to end delay and channel utilisation of 100 simulation 

trials for each result. 
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Figure 4-13. The frame size (S) used for UW-ALOHA-Q in different sizes of network (R) 

Protocol Frame size (S) Network size (m) The average end to end delay of 

successfully delivered data packets 

(seconds) 

UW-ALOHA-Q 1 (Scvg) 1,000 271 

ALOHA-Q 25 (S=N) 1,000 6787 

Table 4-6. End to end delay of UW-ALOHA-Q and ALOHA-Q when 25 nodes are deployed 

When 50 nodes are deployed, this benefit of UW-ALOHA-Q is magnified as shown in Table 4-7. 

UW-ALOHA-Q uses 2 slots in a frame (Scvg) for a 1,000 m size network whilst ALOHA-Q 

needs 50 slots in a frame (S). 

Protocol Frame size (S) Network size (m) The average end to end delay of 
successfully delivered data packets 

(seconds) 

UW-ALOHA-Q 2 (Scvg) 1,000 555 

ALOHA-Q 50 (S=N) 1,000 13576 

Table 4-7. End to end delay of UW-ALOHA-Q and ALOHA-Q when 50 nodes are deployed 
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By reducing the frame size (S), UW-ALOHA-Q improves channel utilisation and decreases the 

end to end delay. Moreover, the protocol guarantees network convergence using uniform random 

back-off scheme with very low overheads (i.e. ACKs) and without the need of time 

synchronisation. Notably, greater benefits can be obtained in longer distance networks using a 

greater number of nodes in a network. These results demonstrate that UW-ALOHA-Q becomes 

more efficient in large scale networks where high propagation delay exists. 

4.8.5 Network convergence 

It is useful to see a clearer picture of how the channel utilisation varies over time, to better 

understand the impact of the network being able to converge. Figure 4-14 shows the channel 

utilisation as a function of time of UW-ALOHA-Q with and without the uniform back-off scheme 

and compares with ALOHA-Q in a 200 m network where 25 nodes are deployed. Please note that 

each graph in Figure 4-14 shows a typical example of four individual results rather than the 

average of multiple simulation trials. Three asterisk marks in Figure 4-14 indicate the times at 

which the network converges. Channel utilisation is measured using Equation (3-3) from the first 

frame at the end of every frame. 

UW-ALOHA-Q without the uniform random back-off scheme shows fast convergence so that the 

network reaches the maximum channel utilisation rapidly. However, there is a small possibility 

that the network cannot converge due to the randomly inherited frame start time which cannot be 

changed. In that case, the network never converges hence the channel utilisation remains low. It 

is because there is a high instance of collisions in the channel and these collisions are not 

avoidable using the fixed frame start time. As shown in section 4.8.2, the back-off scheme solves 

this problem. 

Given the network configuration in this section (i.e. 200 m network having 25 nodes), UW-

ALOHA-Q using 4 slots per frame (Scvg) needs more iterations (i.e. more frames) to converge 

since the uniform back-off scheme disturbs nodes which achieves nodal convergence and 

consequently triggers multiple additional learning processes. However, applying the scheme, the 

protocol can provide network convergence and collision free scheduling. The channel utilisation 

of UW-ALOHA-Q using 4 slots per frame (Scvg) in Figure 4-14 fluctuates when the simulation 

starts and this fluctuation shows that nodes are learning the optimised frame start time and a 

distinct slot through trial-and-error learning processes. Once the network converges, the result 

shows an increase in channel utilisation due to collision free scheduling. 
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Figure 4-14. Real time channel utilisation as a function of time (25 nodes used) 

The fluctuation implies that UW-ALOHA-Q is able to learn and operate in the time-varying 

environment. If environmental changes occur, the channel utilisation and the end to end delay 

performance fluctuate temporarily but UW-ALOHA-Q is capable of adapting and maintaining a 

good level of performance overall. 

UW-ALOHA-Q achieves much higher channel utilisation than standard ALOHA-Q in the 

underwater environment when it converges, and its channel utilisation performance remains 

superior to ALOHA-Q even in a situation where it does not converge. Standard ALOHA-Q using 

the frame size (S) which equals the number of node (N) exhibits low channel utilisation due to 

the propagation delay (τp), however ALOHA-Q achieves network convergence in a short time 

since the sufficient number of slots allow the network to converge easier. 

This section validates the network performance following convergence where collision free 

scheduling is achieved. Collisions occur during the initial learning process, but this period of time 

is very small with respect to the period over which such a network would be operational. The 

achievable channel utilisation following convergence is therefore a more important metric hence 
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performance metrics during the learning process are not considered, such as collision ratio during 

the learning process. 

4.8.6 Random topology 

The position of each sensor node can be determined depending on the application purposes and 

requirements. This feature of underwater applications necessitates UW-ALOHA-Q simulations 

in a random topology to determine whether the protocol can function in the topology. 

For simulations of a random topology, generating nodes are located randomly within a circle of 

each network of radius (R). Simulation results show that UW-ALOHA-Q achieves convergence 

using the appropriate frame size (Scvg) described in Figure 4-13. This is the interesting benefit 

of UW-ALOHA-Q since the protocol can provide the identical baseline performance in the 

random topology. Figure 4-15 shows channel utilisation of UW-ALOHA-Q when 25 nodes are 

deployed in different sizes of networks. Full simulation parameters are described in Table 4-5 and 

the duration of a slot (Ts) varies according to the network size (R) since the duration of slot  (Ts) 

is calculated by Equation (3-1). 

A successful data packet transmission is determined by an ACK packet if it is delivered before 

the guard time ends. Therefore, UW-ALOHA-Q operates identically irrespective of whether the 

nodes are equally spaced or not. Each graph of Figure 4-14 shows the average value of 100 

simulation runs and the simulation results are measured from network convergence, which means 

the network is in a steady-state such as the TDMA system. Therefore, once network is converged, 

UW-ALOHA-Q provides the constant channel utilisation in the fixed network. Nodes conduct 

ordinary trial-and-error learning and can find an appropriate frame start time and a slot number 

for data transmission in a random topology. A random topology in a circle is simulated, but in 

principle the random topology in a spherical area also can achieve the identical performance.  

Figure 4-16 shows the real time channel utilisation of ALOHA-Q and UW-ALOHA-Q in the 

random topology (200 m network, 25 nodes). This shows four individual results rather than the 

average value and the similar trend is shown as same as the UW-ALOHA-Q in a star topology. 

The results demonstrate that UW-ALOHA-Q is robust and tolerant in networks with varying inter-

node distances. 
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Figure 4-15. Channel utilisation of UW-ALOHA-Q in two different topologies 

 

Figure 4-16. Real time channel utilisation in a random topology (25 nodes used) 



 

92 

 

4.9 Discussion 

This chapter has proposed a reinforcement learning based MAC protocol for underwater acoustic 

sensor networks, namely UW-ALOHA-Q. ALOHA-Q is designed for the terrestrial environment 

and this chapter has transformed the protocol to UW-ALOHA-Q for use in underwater acoustic 

networks comprising fixed (or pseudo static) nodes. Three improvements are proposed for UW-

ALOHA-Q: asynchronous operation, reduction in the number of slots per frame, and a uniform 

random back-off scheme. Simulation results show that UW-ALOHA-QM achieves network 

convergence, desired channel utilisation, and good end to end delay in the fixed underwater 

network. 

End to end learning is achieved by the interaction using ACK packet reception between generating 

nodes and a sink node. UW-ALOHA-Q takes the benefits of ALOHA-Q which are low 

complexity and low overheads to achieve collision free high channel utilisation for distributed 

networks where centralised scheduling is not feasible and distributed scheduling introduces 

significant signalling overheads and complexity. Due to the very low overheads and complexity, 

hardware computation for UW-ALOHA-Q requires minimum integer values of Q-learning and 

little storage for Q-values of one frame. Moreover, UW-ALOHA-Q significantly improves 

performance for use in underwater networks without the need for time synchronisation. A 

comprehensive simulation study shows that UW-ALOHA-Q has considerable potential for use in 

practical random and large scale underwater applications. 
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5 UW-ALOHA-QM for mobile underwater sensor networks 

Mobility always causes complexity in a network since it brings a lot of variability to the network 

including more significant time-varying channel conditions, changes in connectivity, and 

propagation delays. Therefore, node mobility represents a specific challenge which needs to be 

addressed in the design of MAC protocols [87]. 

For static topologies, it has been shown that it is possible to achieve a scheduled outcome from 

initial random access, through the learning process, to achieve a high channel utilisation. The 

merit of employing such an approach lies in the inherently distributed nature of typical algorithms 

such that there is no reliance on infrastructure, making it a useful approach for a wide range of 

network topologies and potentially those with changing connectivity over time. Typical 

algorithms are also characterised by low signalling overheads and low complexity. In a mobile 

network, convergence is unlikely to be achieved, and it would otherwise be very short lived. 

Therefore, network resilience needs to be considered in the mobile network. We consider network 

resilience to be the ability to provide and maintain a good level of service in the face of changes 

to normal operation [88]. Reinforcement learning provides a means of adapting to a time-varying 

environment, with nodes learning from their experience. If the learning process can be sufficiently 

rapid with respect to the changing environment, then reinforcement learning based MAC 

protocols can provide useful adaptation in dynamic environments and achieve superior 

performance with respect to the alternative approaches that are known in the literature. 

The desired capability of a reinforcement learning based MAC protocol for mobile networks is to 

provide more effective adaptation to the time-varying environmental conditions such that an 

improved level of performance (e.g. channel utilisation) can be achieved with respect to baseline 

protocols that do not incorporate learning. Superior channel utilisation performance can be 

potentially achieved with respect to alternative state of the art protocols owing to the minimal 

signalling overheads and absence of inefficient handshaking procedures. For example, in Figure 

5-1, it is expected that a standard distributed protocol which is designed with the appropriate 

guard time is able to withstand any envisaged changes in environments. For example, if the 

propagation delay changes through mobility, it is expected that the protocol has sufficient guard 

bands to deal with that mobility. On the other hand, with the learning scheme, it is expected that 

the learning process iterates for nodes in a static or pseudo-static environment and the learning 

approach is able to converge on a stable solution. However, if there are any changes in the 

environment convergence cannot be maintained. Figure 5-1 shows the example where there are 
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probably quite significant changes in the environment at discrete times. This will cause the 

learning process to be disturbed and the performance would be expected to drop. However, the 

learning approach can then start to improve the situation again until there is another significant 

change in the network. 

 

Figure 5-1. Network resilience 

5.1 7 - Uniform random back-off 

When there are sufficient slots in a frame (i.e. S=N), UW-ALOHA-Q nodes need to learn only a 

distinct slot in a frame in order to avoid collisions at the sink node. However, having a reduced 

frame size, nodes additionally need to learn the appropriate frame start time to fill in the gap at 

the sink node. Therefore, URB is proposed in section 4.6 to help nodes adjust their frame start 

time, but it significantly decreases the channel utilisation in the network comprised of mobile 

nodes because of two reasons. First, the action currently taken is based on learning conducted in 

different network circumstances in the past, which means neighbour nodes have moved so that 

their locations have changed. Therefore, the largest Q-value (Qt) in the Q-table is not always the 

best action for a node and transmitting a data packet in the selected slot can generate collisions in 

the mobile network. Moreover, mobility makes learning of UW-ALOHA-Q ‘myopic’ [89]. Every 

collision initiates URB and moving the frame start time brings about a new network configuration 
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for a node. This frequent URB wastes historical experience since the optimal action is based on 

heuristic awards and punishment. Therefore in the mobile network, URB (the new frame start 

time) causes a situation that all nodes must learn the new environment from scratch in every frame 

resulting in inefficient and unnecessary learning processes. 

Therefore, the URB design needs to be modified for mobile networks to achieve more efficient 

learning. The URB must be initiated only when a node can determine that the current highest Q-

value is not the optimum action. Using Equation (3-2), we can calculate when a node needs to 

trigger a new learning process. Assuming a node experiences a collision at every transmission 

because of mobility and setting the initial Q-value to 1 (i.e. Q0 = 1), the Q-value is changed from 

1 → 0.8 → 0.62 → 0.458 → 0.3122 → 0.18098 → 0.062882 and to -0.043406 after the 7th 

consecutive collision. Seven consecutive failures causes the Q-value to return to ≈ zero at a 

learning rate (α) of 0.1 as shown in Figure 5-2. The previous study [84] carried out the analysis 

of Q-value in a radio wireless network and shows the same result. 

 

Figure 5-2. Level of resilience to loss of convergence 

Therefore, based on the results of verified studies about Q-learning in ALOHA-Q [84], this thesis 

proposes the 7-Uniform Random Back-off (7-URB) scheme which invokes the URB scheme after 



 

96 

 

seven consecutive collisions for the mobile network. 7-URB utilises the experienced Q-value and 

removes unnecessary learning processes. [78] analyses Q-value changes in a Q-table for ALOHA-

Q, which is designed for WPANs, however underwater properties (for example the slow 

propagation speed) do not impact on the Q-value changes. The stateless Q-learning function, 

Equation (3-3), does not include any variables related to terrestrial and underwater environments. 

Therefore, the Q-value study [78] can be applied to UW-ALOHA-QM. 

In summary, a technique for nodes to adjust their frame start times is required for UW-ALOHA-

Q because there is a much smaller number of slots in a frame than the number of nodes (N) in the 

networks. Therefore, URB is considered for nodes to find appropriate timing to send a data packet 

so the packet can be received by the sink node when it is idle. However, URB at every frame in a 

mobile network causes a serious problem, very high collisions due to the unnecessary learning 

processes and myopic learning. Therefore, 7-URB is proposed to make sure the current best Q-

value cannot represent optimal action anymore. 7-URB reduces the unnecessary learning 

processes and adjust the frame start time for data packets to arrive during the idle time at the sink 

node. Mobile nodes can learn a best timing and slot number in a frame by efficient learning 

iterations. 

5.2 Simulations 

Simulations have been carried out in order to evaluate the capability of this reinforcement learning 

based MAC protocol, UW-ALOHA-QM for mobile underwater acoustic networks. Four distinct 

scenarios have been modelled and the performance is evaluated in these scenarios. The purpose 

of these four different scenarios is provide evaluation of UW-ALOHA-QM for wide range of 

different characteristics of mobile scenarios. 

These scenarios broadly are 

• Moored or anchored sensor network 

• Free floating sensor network [44] 

• AUV assisted network [43] 

• AUV sensor network [48]. 
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The first scenario is a reference scenario for illustration of the fundamental operation of UW-

ALOHA-QM with typical parameters. The subsequent three scenarios and their corresponding 

parameters are defined in other MAC protocol studies, [44], [43], and [48] which are reviewed in 

section 2.2.5. These four scenarios have been considered to provide a comprehensive evaluation 

of UW-ALOHA-QM and have been chosen for two primary reasons: 1) to provide very distinct 

mobility setups and cases, and also to provide a wide evaluation of the capability of UW-ALOHA-

QM and 2) to allows direct comparison of UW-ALOHA-QM with other state of the art schemes 

based on results presented in their papers. For each scenario, results from the respective paper 

from which the scenario is taken have been extracted. This typically includes the scheme which 

was proposed by the authors and also some other comparative schemes. In addition, UW-

ALOHA-QM is simulated in their scenario in order to evaluate UW-ALOHA-QM and the results 

figures show all these combined. Channel utilisation of UW-ALOHA-QM is measured at the sink 

node using Equation (3-3).  

5.2.1 Moored or anchored sensor networks 

This scenario represents underwater networks which consists of moored or anchored nodes. To 

show the network resilience of UW-ALOHA-QM, this discontinuous movement scenario is 

considered where anchored or moored nodes move due to wave motion with the assumption that 

nodes are spatially correlated. Spatial correlation is generally used as a fundamental assumption 

for studies of underwater node localisation [28-30] and it means that when one node moves, the 

other nodes also move in a related pattern. The parameters for UW-ALOHA-QM used for this 

scenario are listed in Table 5-1. Data packet size, ACK size and guard time size in bits are derived 

from previous studies [76]. For practical underwater environment settings, the data rate (ruw) of 

13,900 bps is chosen by referring to an underwater modem which is currently on the market [90]. 
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Parameters Value 

Duration of a data packet of 1044 bits (Tdp) 75.108 ms 

Duration of an ACK of 20 bits (Ta) 1.439 ms 

Duration of a guard time of 36 bits (Tg) 2.59 ms 

Duration of a slot (Ts) 212.27 ms 

Network size in radius (R) 100m 

Tx / Rx data rate (ruw) 13,900 bps 

The number of nodes in a network (N) 25 nodes 

Propagation speed (vuw) 1500 m/s 

Propagation delay (τp) 66.667 ms 

Frame size (Smax) 14 

Maximum theoretical channel utilisation 0.631 Erlangs 

Node speed 2-4 m/s 

Table 5-1. Typical UW-ALOHA-QM parameter for underwater use 

A number of studies have been undertaken to measure tidal currents at sea, such as those devoted 

to tidal energy research devoted to discovering sites of fast current movements for harnessing 

effective tidal energy resources. One example is [91] which refers to a velocity profile at tidal-

stream energy sites in the sea between Ireland and Britain. It shows that the tidal stream speed is 

less than 4 m/s between 0 to 40 m above the seabed as Figure 5-3 shows. This data is used to 

provide realistic mobility levels for sensor nodes in the moored and anchored scenario. 
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Figure 5-3. Tidal velocity profile of the Irish Sea 

Figure 5-4 shows the trajectories of nodes in this scenario. There are 25 sensor nodes in a single-

hop topology in a circular area with one sink node located centrally. Nodes will start at a uniformly 

distributed random position, within the 100 m radius circle (R). All nodes are considered to be 

within the interfering range. We assume packets are generated according to a random Poisson 

arrival process as the baseline model. Referring to the previous ALOHA-Q [76], each transmitter 

is designed to generate constant size packets with exponentially distributed packet inter-arrival 

times at the same rate as all the other transmitting nodes. At any instant in time, each node has no 

more than one data packet to transmit and the queue size of each node is 200. All lost packets are 

due to the packet collisions. To provide a worst case model, any overlap in packet reception times 

causes the complete packet to be lost.  

In Figure 5-4, each movement happens every 30 min, i.e. at 30 min (at frame 605), 60 min (at 

frame 1,210), and the last one at 90 min (at frame 1,805). 30 min between each movement is 

sufficient to allow the network to converge. Nodes move in a random direction at a random speed 

which is in the range between 2 to 4 m/s and the actual value is uniformly distributed. The 

movement direction is randomly chosen in a 0 to 2/π radius. 
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Figure 5-4. Discrete movement of 25 nodes in a random topology of 100 m network size 

Figure 5-5 shows the changes in channel utilisation of UW-ALOHA-QM over time and 

demonstrates the network resilience of the protocol. As soon as the network is deployed, all nodes 

initiate a learning process and can achieve the theoretical channel utilisation. After 30 minutes, 

all nodes simultaneously start to move and this leads to changes in node locations and hence 

topology and propagation delays are changed as well in the network. Therefore, nodes need to 

learn the new environment and can achieve the maximum channel utilisation again. This 

demonstrates UW-ALOHA-QM is able to learn and adapt to changes in the network without a 

coordinating node or additional control message exchanges. 
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Figure 5-5. Real time channel utilisation of UW-ALOHA-QM 

5.2.2 Free floating sensor networks 

This type of mobile network is characterised by floating by current or wave movements. UW-

ALOHA-QM is evaluated and compared to DOTS [44] which is designed for free floating sensor 

networks. DOTS uses time synchronisation and the Meandering Current Mobility (MCM) model 

[92] for node movement. More details of DOTS are described in literature review in section 2.2.5. 

DOTS is originally designed for networks comprising fixed nodes, however, it was evaluated for 

networks comprising mobile nodes. DOTS uses RTS-CTS-DATA-ACK processes but allows 

concurrent transmissions exploiting temporal and spatial reuse. Nodes overhear one-hop 

neighbour transmissions and obtain neighbour node propagation delay information from the MAC 

headers. The MAC headers include a time stamp indicating when the data packet is sent from a 

sender in order to estimate the propagation delay between a sender and a receiver. This 

information is stored in a map in each node and then each node can build a delay map of its one-

hop neighbours and calculate the expected time for a response back to the sender of the packet 

overheard. Parameters defined by DOTS are described in Table 5-2. The maximum node speed 

is restricted to 0.3 m/s [92]. The study shows that DOTS achieves 0.2 Erlangs of channel 
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utilisation when the offered load is greater than 1. For a fair comparison, UW-ALOHA-QM is 

simulated using the parameters suggested by DOTS [44]. 

Scenario Free floating 

Defined by DOTS [44] 

The number of nodes (N) 10 mobile nodes 

Network size (R) 430 m 

Data rate 50,000 bps 

Packet size 512 bytes 

Maximum node speed 0.3 m/s 

Maximum channel utilisation 0.2 Erlangs 

Simulation time 50 runs × 1 hour 

Table 5-2. Parameters used for free floating scenario evaluation 

Figure 5-6 compares the simulated channel utilisation of UW-ALOHA-QM to the other protocols 

as reported in [44]. Channel utilisation is measured in a consistent manner as the average value 

of 50 simulation runs with each simulation run lasting 1 hour. Nodes in the UW-ALOHA-QM 

evaluation start to move as soon as the simulation commences until the end of a simulation with 

the constant speed of 0.3 m/s. The only difference is that DOTS uses time synchronisation whilst 

UW-ALOHA-QM does not need to. The theoretical maximum channel utilisation of UW-

ALOHA-QM in this network configuration is 0.624 Erlangs [81] but the protocol achieves 0.617 

Erlangs due to the node mobility. The small difference in channel utilisation stands out given that 

one network comprises mobile nodes moving at the slow speed. Nodes of UW-ALOHA-QM are 

designed to transmit one data packet in a frame which implies a periodic data transmission, and 

its period time is fixed to the duration of frame (Tf). Although the loaded traffic from the 

application layer increases, the nodes does not change the periodicity therefore the channel 

utilisation continues to remain rather to increase. 
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Figure 5-6. Channel utilisation according to different traffic (G) 

Table 5-3 provides parameters for UW-ALOHA-QM in the network configurations defined by 

[44]. Given a network of 430 m size with 10 nodes [44], the smallest frame size under a condition 

that B is greater than 1.5 is 2 (Smax) for the maximum channel utilisation. In this network 

configuration, B is 1.6, which means a sink node has 60% more capability than a total of 10 data 

packet durations. In other words, the sink node is able to receive 16 data packets if the network is 

time synchronised and scheduled. 

Duration of a data packet (Tdp) 0.08192 seconds 

Duration of a slot (Ts) 0.0656373 seconds 

Duration of a frame (Tf) 1.312747 seconds 

Frame size (Smax) 2 

Index ratio (B) 1.6 

Table 5-3. UW-ALOHA-Q parameters for free floating scenario evaluation 
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Figure 5-7 show the packet reception at the sink node at different frames. The sink node actually 

does not have the time slot and frame structure as shown in Figure 4-2, but it is illustrated in 

Figure 5-7 for an easy understanding of the theoretical concept of UW-ALOHA-QM. 10 sensor 

nodes send a data packet to the sink node and they are not time synchronised, therefore 10 packets 

arrive at the sink node in a random time. When the node speed is 0.3 m/s, a sensor node moves 

0.39 meters during a frame which results in 0.00026 seconds change in the propagation delay per 

frame. This change accounts for merely 0.04% of a frame, which is very small compared that one 

data packet accounts for 6.24% of a frame. Therefore, the 60% more idle time at the sink node 

functions as a guard band to deal with the small changes in propagation delay caused by the slow 

node mobility. 

For example, in Figure 5-7, N1 moves away from the sink node at 0.3 m/s speed and the data 

packet sent from N1 of frame X+1 arrives slightly later than the previous frame X. However, the 

idle time at the sink node allows reception of the packet without a collision. N5 moves away from 

the sink node and N8 moves toward the sink node and their packets are collided in frame X+1, 

and if the collision continues for 7 consecutive frames, the two nodes will trigger 7-URB and then 

they attempt a different frame start time to find the proper gap at the sink node. Therefore, with 

slow node movement (0.3 m/s), UW-ALOHA-QM can maintain good channel utilisation. 

 

Figure 5-7. Data packet reception at the sink node 

Figure 5-8 compares the channel utilisation of the different protocols using various node speeds 

from 0.3 m/s to 3 m/s. All nodes always move during the simulation time for one hour. DOTS 

shows 0.2 Erlangs channel utilisation regardless of the node speed because DOTS incorporates 

guard bands of sufficient duration to accommodate changes in reception timing caused by node 
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mobility and the impact this has on propagation delay. However, there is a 12% decrease in the 

average channel utilisation of UW-ALOHA-QM with respect to the theoretical maximum channel 

utilisation, with nodes moving at 3 m/s speed.  This is because the relative timing of packet 

reception from the different nodes at the sink changes more rapidly and the learning algorithm 

because less effective at adapting to the changes. The preferred slot is subject to reduction in its 

Q-value. 

 

Figure 5-8. Channel utilisation according to different node speeds 

7-URB is triggered more often as the node speed increases. Table 6 provides the average 

frequency with which 7-URB is invoked across the 50 simulation runs for each speed. As the 

node speed increases, the 60% extra time at the sink node is not sufficient to deal with the high 

mobility. When the node speed is 0.3m/s, 7-URB is triggered on average every 86 frames whereas 

it is triggered more frequently (every 8 frames on average) when the node speed is 3m/s, in an 

attempt to find an appropriate frame start time for successful transmission. 
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 0.3 m/s 1 m/s 2 m/s 3 m/ 

Average number 

of times 7-URB 

is triggered 

32.4 134.1 267.1 362 

7-URB is 

triggered every 

85.6 frames 20.7 frames 10.4 frames 7.7 frames 

Table 5-4. The average number of times 7-URB is triggered 

In summary, the simulation results shows that UW-ALOHA-QM always provides a respectable 

channel utilisation and outperforms DOTS and other protocols in the free floating node scenario 

despite the asynchronous operation of UW-ALOHA-QM. DOTS uses a sufficient guard time to 

deal with the node movement and handshaking therefore the channel utilisation is low. However, 

UW-ALOHA-QM uses the learning approach where all nodes independently learn and fine a 

distinct slot and appropriate frame time through interacting with a time-varying environment, 

which brings about better adaptability and higher channel utilisation than other existing protocols.  

Figure 5-6 and Figure 5-8 also can explain features of different MAC approaches. S-FAMA [109] 

is a synchronized underwater MAC protocol based on RTS/CTS handshaking. The main idea of 

S-FAMA is to time slot exclusive access to the channel medium so that the time duration of each 

slot is long enough to ensure that any frame transmitted at the start of the slot will reach the 

destination before the slot duration ends. CS-ALOHA [110] with ACK is ALOHA adapted for 

the underwater environment, where each node transmits whenever the channel is idle after 

performing carrier sensing without the handshaking process. 

CS-ALOHA uses random access and the channel utilisation is therefore heavily dependent on 

traffic load (G) but is not dependent on the node speed. The DOTS, DCAP, and S-FAMA 

protocols conduct handshaking before the data transmissions and their performance is not effected 

by environmental changes (i.e. node speed in this scenario) since the handshaking scheme does 

not require prior information of the environment nor interaction with environmental changes. 

However, due to frequent control message exchange, the underlying performance of those 

protocols is very low and the handshaking process potentially fails if nodes move at a high speed 

during the process in the mobile network. On the contrary, the channel utilisation of the learning 

approach is related to the environmental changes since it interacts with the environment. High 

speed mobility implies that the network environment changes quickly. Consequently, the node 

speed impacts on performance of UW-ALOHA-QM. However, it can be seen that for this 
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particular environment, the learning scheme is able to allow the network to adapt sufficiently 

rapidly to the environmental changes and achieve network adaptability. Therefore, the channel 

utilisation of UW-ALOHA-QM can be significantly higher than other protocols. 

5.2.3 AUV assistant networks 

These networks consist of fixed sensor nodes and one or more AUVs. The LTM-MAC [43] and 

Load adaptive CSMA/CA [46] protocols are designed for this type of mobile network. 

LT-MAC [49] was proposed for small-scale static underwater networks and LTM-MAC [43] is 

an extended version for the extra AUV in the fixed underwater networks. LTM-MAC assumes 

the AUV has enough knowledge about the network topology to support the fixed sensor nodes. 

Basically, carrier sensing is added for LTM-MAC protocol to handle the mobility of the AUV. 

However, the carrier sensing mechanism added to cope for AUV mobility requires long guard 

bands due to the long propagation delay, otherwise it cannot operate effectively in the underwater 

environment. LT-MAC and LTM-MAC are based on TDMA, therefore, time synchronisation is 

required and the transmission order of static nodes is decided before the data transmission. 

However, those protocols use dynamic time slot durations for each node based on the results 

obtained in the latency detection phase before the data transmission phase. Therefore, all nodes 

should broadcast a control message to indicate the slot duration before each data transmission. 

In this AUV assisted network scenario, one AUV keeps moving throughout each simulation run 

whilst other nodes are static on the seabed. UW-ALOHA-QM uses the identical network 

configurations and parameters described in [43], however asynchronous operation is applied. 

With a frame size (Smax) of 6, the theoretical maximum channel utilisation of UW-ALOHA-QM 

is 0.58 Erlangs with a saturated traffic model in this scenario [81]. Table 5-5 summarise the 

parameters used in the AUV assisted scenario and they are defined in [43]. 
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Scenario AUV assisted 

Defined by LTM-MAC [43] 

The number of nodes (N) 7 static node + 1 AUV 

Network size (R) 1,500 m 

Data rate 2,000 bps 

Packet size 500 bytes 

Node sped 1 to 3 knots (0.51 m/s to 1.54 m/s) 

Simulation time 1,000 seconds 

Table 5-5. Parameters used for AUV assisted scenario evaluation 

Figure 5-9 compares channel utilisation at the different traffic loads (G). LTM-MAC was 

evaluated for a 1,000 second period for one simulation trial, but the AUV only moves 1,540 m if 

there is a speed of 3 knots used during the simulation time. Considering a network size of 1,500 

m, it is not sufficient to visit every node located randomly in a circle, therefore for the UW-

ALOHA-QM evaluation, additional simulations are executed with a longer simulation time of 

100 frame durations for UW-ALOHA-QM as well as 1,000 seconds (40 frames). 

 

Figure 5-9. Channel utilisation according to different traffic (G) 
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When the traffic load (G) is very small, UW-ALOHA-QM exhibits a lower channel utilisation 

than LTM-MAC. If the frequency of data transmission is very small, there are insufficient trials 

for UW-ALOHA-QM to be able to find a suitable slot and frame start time in order to achieve 

collision free reception. 

For the same traffic load levels, when the simulation time is longer (100 frames), UW-ALOHA-

QM shows better performance since it has a longer period in which to find an appropriate 

transmission time. In a practical deployment, the duration of operation would of course be much 

longer than this and the results demonstrate that with the mobility levels in this scenario, UW-

ALOHA-QM can provide higher channel utilisation than the alternatives for all but very low 

traffic load levels. 

5.2.4 AUV sensor networks 

AUV networks consist of AUVs having sensing functionality. Path planning is generally used, 

for example, searching for wreckage in a zig-zag path in a crash area [7]. Therefore, the movement 

models are different depending on the application requirements. The AUV speed is usually 

limited in order to save the energy needed for the propulsion of the AUVs. The speed of AUVs 

varies typically from 1 to 5 knots (5 knots: 2.572 m/s) [93]. The scenario described in APD-

TDMA [48] is the AUV network and UW-ALOHA-QM is compared with the protocol in the 

scenario. 

APD-TDMA [48] is designed for AUV sensor networks and it is an extension of the TDA-MAC 

protocol [50] designed for static networks. APD-TDMA consists of two phases: initialisation and 

transmission. APD-TDMA requires enough control message exchanges during the initialisation 

phase to get all AUV locations and then it can be ready to start the transmission phase for the data 

packet transmissions. A transmission phase consists of cycles which is a similar concept to frames 

of UW-ALOHA-QM but APD-TDMA does not use ACKs. During transmission phases, 

whenever the number of data packet losses at the sink node is greater than a certain value, APD-

TDMA repeats the initialisation phases. 

Table 5-6 provides AUV network configurations defined by APD-TDMA and Figure 5-10 

compares channel utilisation of existing protocols with a different numbers of node (N) in a 

network. APD-TDMA measures channel utilisation only during the transmission phases and does 

not reveal the certain level of packet loss for the re-initialisation, hence it is difficult to estimate 

how many times the re-initialisation occurs. Therefore, it is not fair to directly compare APD-
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TDMA and UW-ALOHA-QM since the channel utilisation of UW-ALOHA-QM is measured 

from the start of one simulation trial to the end. However, we compare those two protocols when 

the number of nodes (N) in a network is smaller, on the basis that fewer collisions are likely to 

occur using a smaller number of nodes. UW-ALOHA-QM shows lower channel utilisation, 

however it is predicted that, if the channel utilisation of APD-TDMA is measured also together 

with the multiple initialisation phases, UW-ALOHA-QM may provide better performance than 

APD-TDMA. 

Scenario AUV network 

Defined by APD-TDMA [48] 

The number of nodes (N) 5, 10, 15, and 20 AUVs 

Network size (R) 1,500 m 

Data rate 8,000 bps 

Packet size 500 bytes 

Maximum node speed 5m/s 

Simulation time 10,000 cycles (frames) × 10 

Table 5-6. Parameters used for AUV network scenario evaluation 

The theoretical maximum channel utilisation of UW-ALOHA-QM is calculated by Equation (4-

2). The channel utilisation of UW-ALOHA-QM depends primarily on the network size (R) and 

also the optimum frame size (Smax). The growth of theoretical channel utilisation of UW-

ALOHA-QM shapes the step increases in a given network size (R) and the number of nodes (N) 

because the frame size (S) is significantly impacts on the theoretical channel utilisation. Therefore, 

UW-ALOHA-QM shows the zig-zag style shape in Figure 5-10 which is typical feature as 

explained in section 4.8.3. Table 5-7 provides theoretical channel utilisation of UW-ALOHA-QM 

in different settings in the AUV network scenario.  

An initialisation phase is required for APD-TDMA and many other protocols to obtain the mobile 

nodes’ location information in the underwater environment and then schedule the data 

transmissions. However, UW-ALOHA-QM does not need such a phase, because nodes do not 

need prior information for data transmissions and only the Q-value based on learning experience 

is important, which is independent from other nodes in the network. Although APD-TDMA 

knows the location information of AUVs, it becomes invalid quickly because AUVs continue to 
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move. Therefore, the prediction approach of APD-TDMA based on the initialisation or the current 

data transmission receive timing is only reasonable for constant movements rather than random 

direction and speed movements. UW-ALOHA-QM, however does not use prediction but learns 

and adapts to the changing environment, therefore UW-ALOHA-QM can be used in the network 

where nodes moves in an unpredictable manners. 

 

Figure 5-10. Channel utilisation in an AUV network 

Network size (R) The number of 

AUVs (N) 

Optimum frame size 

(Smax) 

Maximum theoretical 

channel utilisation 

(Erlangs) 

1,500 m 5 2 0.5 

1,500 m 10 3 0.66 

1,500 m 15 5 0.6 

1,500 m 20 6 0.66 

Table 5-7. Theoretical maximum channel utilisation of UW-ALOHA-QM with different N 

and Smax 
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5.3 Discussion 

UW-ALOHA-QM shows good performance for a range of different mobility scenarios. Most of 

published MAC protocols are typically designed to provide their best performance in a particular 

scenario or a certain type of network configuration and environment since each protocol aims at 

a specific application requirement. It does not necessarily follow that such protocols can provide 

a good performance in other scenarios.  

UW-ALOHA-QM can be flexible and adaptable in its application to different scenarios, 

topologies, or network configurations since it is not geared to one specific type of scenario. UW-

ALOHA-QM does not rely on specific scheduling, traffic, or channel assumptions. This scenario 

agnostic feature is achievable by the reinforcement learning approach. 

The potential weakness of UW-ALOHA-Q is that two parameters need to be known: the number 

of nodes in the network (N) and network size in distance (R). In the underwater environment this 

assumption can be practical because sensor nodes are usually taken by ship to the sea and then 

deployed and therefore the two parameters are known before the network is deployed. 

Due to the energy limitations, the speed of underwater nodes is also commonly limited by 5 knots: 

2.572 m/s [93]. UW-ALOHA-QM shows lower channel utilisation as the node speed increases; 

however, UW-ALOHA-QM still outperforms non-learning protocols in the underwater 

environment. 

If the number of node increases, the probability of collisions will increase as the number of 

packets which are attempted to be transmitted on the channel increases. This leads more learning 

iterations to find an optimal decision for each node. Therefore, as the number of nodes in the 

network increases, UW-ALOHA-QM will take more time to achieve the desired channel 

utilisation in the mobile network or network convergence will take longer in the fixed networks. 

Having looked at the simulation results for four different scenarios, it is clear that UW-ALOHA-

QM offers benefits and is an effective for topology agnostic solution. It does not solve all 

problems and it is not necessarily as effective in low load conditions, but overall it works 

effectively in many different scenarios. 

Most existing protocols designed for mobile underwater networks are built upon their original 

protocols which were designed for fixed networks. Many use RTS-CTS handshaking which 

impairs channel utilisation, or carrier sensing which requires large guard bands. ADP-TDMA [48] 
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uses a unique approach without requiring time synchronisation but it requires multiple re-

initialisation process and is appropriate only for scenarios where nodes move at a constant speed 

in a constant direction. 

UW-ALOHA-QM can be used for any networks, in particular fully distributed networks where 

centralised scheduling is not feasible and frequent control message exchanges are inhibited by 

long propagation delays. Moreover, UW-ALOHA-QM is also appropriate for networks where 

node communication takes place over different propagation distances since nodes potentially do 

not move in a constant manner. Pure ALOHA (refer to section 2.2.3.1.1) is the common option 

which can be used in any network without any specific requirements. UW-ALOHA-QM can 

replace the role of pure ALOHA but at the same time provide much better performance in any 

network scenarios. 

This thesis does not argue that UW-ALOHA-QM always provide high channel utilisation in any 

types of networks. UW-ALOHA-QM cannot provide high channel utilisation in some scenarios 

for example, the scenario where the traffic load is very low. In this scenario, UW-ALOHA-QM 

has insufficient learning iterations, and can therefore only provide a lower channel utilisation 

capability. However, UW-ALOHA-QM provides a flexible and adaptable scenario agnostic 

solution using the reinforcement learning approach which can be effective for a wide range of 

scenarios. 

The main idea and simulation results of this chapter are in preparation for journal submission. 
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6 Summary and future work 

6.1 Summary 

This thesis has presented a detailed description of the Ph.D. research undertaken from 2016 to 

2020. The primary concern of this work is concerned with providing a topology agnostic approach 

to medium access control by improving network resilience, adaptability, and flexibility using 

reinforcement learning. 

Chapter 1 discusses challenges in underwater communication. The major issue is the ineffective 

utilisation of limited acoustic bandwidth due to the slow propagation speed of acoustic signals. 

Chapter 2 provides a detailed literature review. First, section 2.1 explains that acoustic signals are 

the most viable means for underwater communication since they propagate longer distance than 

radio and optical signals. However, using acoustic signals raises issues in that existing techniques 

for terrestrial communication cannot be directly apply to underwater networks. Section 2.2 

introduces medium access techniques and the essentials of MAC protocols. It highlights that 

MAC protocols play a key role in underwater networks since the aim of MAC layer is efficient 

use of a shared channel and the achievable utilisation efficiency is governed by the underlying 

MAC protocol. This section also explains node mobility which is a major issue in the underwater 

networks. The literature review of MAC protocols designed for mobile underwater networks 

show that existing protocols are built up on methods used for static networks and that many 

propose additional means such as frequent control message exchanges to deal with node mobility 

rather than increasing network adaptability. Section 2.3 outlines reinforcement based learning 

protocols and shows that reinforcement learning is capable of interacting with network 

environment and improve the network adaptability through trial-and-error iterations. However, 

most existing reinforcement learning based protocols assume a fixed network or time 

synchronisation. 

Therefore it is necessary to design a new reinforcement learning based MAC protocol for 

underwater acoustic networks in different scenarios since the reinforcement learning approach 

can replace the existing methods which significantly impair channel utilisation in the underwater 

environment. Chapter 3 compared the use of the ALOHA-Q protocol in the terrestrial and 

underwater environment and simulation results show a significant decrease in channel utilisation 

in the underwater environment primarily due to the slow propagation delay of acoustic signals. 

Therefore, chapter 4 proposes a new MAC protocol called UW-ALOHA-Q. This protocol applies 
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novel approaches on top of reinforcement learning taking account of the characteristics of the 

underwater environment. This new protocol achieves good channel utilisation and can guarantee 

network convergence by applying the learning processes in a network consisting of static nodes. 

The most notable benefits of UW-ALOHA-Q are that the protocol does not require time 

synchronisation and it achieves good performance regardless of the topology configuration with 

low overheads. 

However, UW-ALOHA-Q exhibits poor performance in a mobile network due to the uniform 

random back-off scheme since it wastes the heuristic learning results obtained through learning. 

Therefore, chapter 5 proposes a new back-off scheme, called 7-URB which arises only when an 

agent is expected to lose convergence hence, UW-ALOHA-QM can reduce unnecessary learning 

processes. As a result, UW-ALOHA-QM achieves much higher channel utilisation compared to 

existing protocols by increasing network resilience and adaptability through reinforcement 

learning in different types of scenarios of mobile networks. Moreover, the new protocol is not 

limited by movement direction or speed. 

6.2 Conclusion 

Reinforcement learning techniques provide a means of scenario agnostic solution for medium 

access control in underwater acoustic wireless sensor networks. Through the ability to interact 

with the learning environment, reinforcement learning provides adaptability to UW-ALOHA-QM. 

Using stateless Q-learning, UW-ALOHA-QM achieves respectable channel utilisation without 

time synchronisation with low overheads compared to existing protocols which employ 

inefficient underwater solutions to deal with the slow propagation delay and node mobility. The 

limitation of UW-ALOHA-QM is that it requires enough iterations to learn the operating 

environment, however considering the typical long deployment time of underwater networks, the 

required iteration duration is not significant.  

6.3 Novel contributions 

The conference paper [63] by this author was the first attempt to apply reinforcement learning for 

channel access scheduling in underwater sensor networks. The UW-ALOHA-Q [81] built up on 

[63] is the first published MAC protocol aiming to provide good channel utilisation and 

convergence in underwater networks comprising fixed networks. UW-ALOHA-QM is the 

extended protocol from UW-ALOHA-Q [81] for mobile networks and can provide scenario 

agnostic solutions and high channel utilisation. UW-ALOHA-QM utilises the benefits of 
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reinforcement learning and considers the properties of the underwater acoustic channel and the 

underwater environment. Intensive simulation results provide an understanding of how the 

protocol operates and shows that the reinforcement learning approach outperforms the existing 

traditional schemes. 

6.4 Recommendations for future work 

6.4.1 Learning and node movement analysis 

A theoretical analysis of the relationship between learning factors and the speed of node 

movement would be helpful to an understanding of UW-ALOHA-QM. Node movements bring 

unpredictable changes to the network such as changes in propagation distances/delays and the 

timing of transmissions/receptions. Therefore UW-ALOHA-QM needs to learn through 

interactions and to adapt quickly enough to these changes. This thesis shows that UW-ALOHA-

Q is capable of achieving such adaptation for a range of typical mobility levels but a more analysis 

is necessary to understand the capabilities of such an approach and to provide a more informed 

choice of learning related parameters. 

For example, further research could include an analysis of nodal channel utilisation, fairness, the 

number of necessary interactions (frames), and 7-URB (how fast the slot timing is changing) 

according the different node speeds, different learning rates (α), different the discount factors, and 

different reward policies. These values are expected to continue to fluctuate due to the node 

mobility, and such research would provide useful analysis in terms of upper or lower bounds. 

6.4.2 Full duplex UW-ALOHA-QM 

Recently, studies have been undertaken into the feasibility of a full duplex physical layer [94-97] 

for underwater networks. However, there are only a couple of studies on MAC protocols designed 

to support full duplex [98, 99]. UW-ALOHA-QM is designed for distributed networks and its use 

is not limited by the feature of full duplex or half duplex scenario. However, it is predicted that 

the performance of UW-ALOHA-QM would not significantly increase with a the full duplex 

physical layer, since a very low level of control messages (ACKs) are used in UW-ALOHA-QM. 

Therefore, further analysis and enhancement design are required to utilise the channel resource 

of the full-duplex efficiently in the underwater networks and the full duplex UW-ALOHA-QM is 

expected to have potential benefits in distributed peer-to-peer underwater networks where data 

needs to travel bi-directionally. 
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6.4.3 Power consumption 

Energy saving is a critical issue in underwater networks as we discussed in section 1.3.2. 

Therefore, UW-ALOHA-QM needs to also consider energy efficiency. There is a previous study 

[77] which introduces Informed Receiving (IR) for ALOHA-Q to provide information about how 

many times each node plans to use the current slot based on Equation (3-2). However, this study 

assumes a static network and this approach is not appropriate to mobile networks since the highest 

Q-value is not always optimal due to the node mobility. Therefore, new energy consumption 

models are required for appropriate sleep, listen, and transmission rules of sensor nodes in mobile 

networks. Energy efficiency issue can be investigated by applying two different modes to UW-

ALOHA-Q: periodic data transmission and event driven transmission for different application 

requirements. 

6.4.4 Exploration and exploitation in learning of UW-ALOHA-QM 

The balance of exploration and exploitation is an important feature of reinforcement learning as 

we discussed in section 2.3.1.3, especially in underwater networks in which the environment 

constantly changes. Potential future work in this area is very visible, since three balancing 

methods for exploration and exploitation were investigated for ALOHA-Q [79] in the terrestrial 

environment: greedy, ɛ -greedy, and decreasing e-greedy as Table 6-1 shows.  

 Exploration Exploitation 

Greedy selection No Yes 

ɛ -greedy selection Probability of ɛ Probability of 1- ɛ 

Decreasing ɛ -greedy 

selection 

Probability of Qvalue before 

the convergence 

Probability of Qconvergence after 

the convergence 

Probability of 1-Qvalue before 

convergence 

Probability of 1-Qconvergence 

after convergence 

Table 6-1. Balance policy between exploration and exploitation 

ALOHA-Q [76] employs a greedy selection which means each agent always chooses the action 

with the highest Q-value (exploitation). Using an ɛ -greedy policy, an agent generates a random 

value between 0 and 1 called ɛ and explores with the probability of ɛ and exploits with probability 

1- ɛ. When ALOHA-Q is implemented in hardware sensor devices, due to the limited capacity of 

the device, the sink node cannot immediately transmit ACK packets after receiving a data packet, 

which lead to the loss of ACK packets. Therefore, a study [79] proposes the decreasing ɛ-greedy 

policy to solve this problem and can achieve network convergence using the new policy. 
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6.4.5 Frameless protocol – one slot in a frame 

UW-ALOHA-QM is based on framed slotted ALOHA. The disadvantage of the protocols is that 

the number of nodes (N) in a network needs to be known in order to determine an appropriate 

frame size (S) based on the application requirements. To alleviate this problem, the framed slotted 

ALOHA framework can be replaced by the slotted ALOHA protocol (refer to section 2.2.3.1.2). 

We consider a large enough slot called a super frame which meets the protocol requirement of B 

> 1.5. Theoretically, all nodes can learn where to send their data packet in a slot by repeating 

learning processes. With this new approach, UW-ALOHA-QM is supposed not to have the step 

shape channel utilisation for example in Figure 4-11 and frameless UW-ALOHA-QM is expected 

to provide the theoretical maximum channel utilisation achievable in the fixed network. In a fixed 

network convergence is achieved by more learning iteration than frame based UW-ALOHA-QM 

since the number of available actions (at) can go to infinity. However, it is still necessary to know 

the number of nodes (N) beforehand to determine the super frame duration. 

6.4.6 Join and leave frequent scenarios 

The advantage of UW-ALOHA-QM is that there is no need to execute any processes to join/leave 

to/from a network – no registration or withdrawal control message exchanging because all sensor 

nodes work independently. Frequent join/leave operations are practical assumption since the 

underwater environment dynamically changes for example, floating sensor nodes move in/out of 

range or nodes may become lost. It is predicted that UW-ALOHA-QM is robust against to the 

small number of new joining and leaving nodes since its design aims the scenario agnostic. 

However, it is necessary to study some extreme cases where the ratio (B) becomes very small or 

large when the channel is cannot efficiently used to figure out the limit of UW-ALOHA-QM. 

6.4.7 Frame size adaptation 

A new approach to adapt frame size (S) is required for the problem that the number of nodes (N) 

needs to be known prior to deploy UW-ALOHA-QM networks. For WSNs, distributed frame size 

selection is proposed [78], which uses a distributed method to select the size (S) for ALOHA-Q. 

The concept of a window is introduced in the protocol. A window consists of a number of frames 

and frames have the same number of slots in one window. At the end of second last frame, the 

algorithm decides to increase or decrease the number of slots for the next window until the frame 

size (S) reaches steady state. Using this solution, results show that agents can adapt their frame 

size (S) for the best channel utilisation so that it is not required to know the number of node (N) 

beforehand. However, the solution [78] assumes negligible propagation delay and hence the study 
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can propose to use a large window size (e.g. initial window size is 200) and this can cause very 

slow adaptation speed in the underwater environment due to the slow propagation speed. 

Therefore, a new design of a fast frame size adaptation scheme is required for future work 

considering underwater characteristics. Frame size adaptation can provide the solution of the issue 

described in section 6.4.5. 

6.4.8 Multi-hop scenario 

Multi-hop is more complex than single-hop since the routing feature needs to be considered into 

the design of MAC protocols. This thesis provides simulation results of single-hop networks, 

however UW-ALOHA-QM can fundamentally support the multi-hop scenario as well since its 

design focuses on being scenario agnostic rather than a specific single-hop data communication. 

However, in the multi-hop scenario, channel utilisation of UW-ALOHA-QM is expected to be 

impaired due to more interference signals by one-hop range neighbours. Therefore, it is necessary 

to investigate UW-ALOHA-QM in different multi-hop scenarios in different topologies such as 

tree topology or chain topology. There are previous studies [100] which propose multi-hop 

ALOHA-Q in the terrestrial environment and their results are promising. 

6.4.9 Heterogeneous networks 

Underwater devices can vary in a network and the different groups of sensor nodes (for example, 

static, mobile, moored or drifting nodes) can collect different types of data (for example, pictures, 

videos, or text type database) according to application requirements. Therefore, heterogeneous 

network studies are necessary to deal with different kinds of data transmission requirements in a 

single network. Traffic load, periodicity, priority, or data size are needed to be considered in UW-

ALOHA-QM. 

6.4.10 Other scenarios 

This thesis considers scenario where sensor nodes collect data and send to the sink node. However, 

there can be other application requirements for communication types for example, any node to 

any node communication in a network. UW-ALOHA-QM fundamentally can support different 

types of communication scenarios, but future work is required to conduct more simulations to 

understand the underlying performance of UW-ALOHQ-QM in different types of communication. 

6.4.11 Practical underwater channel environment 

It is important to apply the practical channel environment to simulations to understand practical 

limitations and results of a protocol. Although simulations for UW-ALOHA-QM account for the 
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1,500 m/s propagation speed of acoustic signals in the underwater communication environment 

(refer to Table 3-4), other practical channel features are not considered. For example, we discuss 

Sound Speed Profile (SSP) in section 2.1.3.1, and the depth dependent SSP causes refraction of 

the acoustic waves resulting in curved propagation trajectories [18]. The trajectories can be 

obtained using the BELLHOP which is a beam tracing model for predicting acoustic pressure 

fields in ocean environment [101]. Also there are studies [102, 103] to collaborate BELLHOP 

and Riverbed Modeler (refer to the Appendices) which could be used to obtain more practical 

simulation results by applying realistic channel conditions. 

6.4.12 More simulation results according to the node speed 

This thesis focuses on channel utilisation because the limited bandwidth and the inefficient 

channel use is a major challenge in underwater networks. UW-ALOHA-QM cannot guarantee 

network convergence in mobile underwater networks. In this case the packet loss and hence the 

end to end delay are important factors to evaluate the network performance in particular, 

according to the node speed. Moreover, current simulation results need to be extended to make 

more generalisable results. For example, the optimal values for the learning process such as the 

learning rate (a) and reward values (r) need to be researched and simulated to optimise settings 

according to the node speed rather than fixed values for UW-ALOHA-QM. 
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Appendices 

A. Protocol simulation using Riverbed Modeler ®  

Most results presented in this thesis have been obtained through simulations in Riverbed Modeler. 

It used to be called Opnet Modeler until it was acquired in 2012. Riverbed Modeler is a network 

design and protocol simulation tool developed by Riverbed Technologies ®  and supports 

modelling and simulating wired systems, satellites, mobile, and fixed radio systems. 

 

Figure (1) The radio transceiver pipeline 

In order to evaluate packet transmission over a radio channel, Riverbed modeler executes a series 

of computational stage which constitute the radio transceiver pipeline. The pipeline consists of a 
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14 stage radio link model as shown in Figure (1). Details of the pipeline can be found in Riverbed 

tutorial [108] and this thesis explains stages which need to be modified for UW-ALOHA-QM 

simulation modelling. 

First, receiver group needs to be updated at every time due to the node mobility. In a static network, 

the receiver group is executed once at simulation time 0 as described in Figure (1). However, the 

receiver group needs to keep updated due to the node mobility at the beginning of every frame to 

handle node mobility. 

In order to set the slow propagation delay, pipeline stage 5 needs to be modified to the acoustic 

propagation speed of 1,500 m/s. 

/* dra_propdel.ps.c */  

/* Default propagation delay model for radio link Transceiver Pipeline */ 

/* propagation velocity of radio acoustic signal (m/s) */ 

#define PROP_VELOCITY 3.0E+08 1500 

 

For the Reception model at the sink node, pipeline 13 stage is modified for collision-based error 

model. This model arises a packet collision if there is an overlapped moment between data packets 

received at the sink node. The code from the default ecc stage is shown in normal font and the 

additional code added to create the modified ecc stage is highlighted in italic. 

/* dra_ecc.ps.c */ 

/* Default error correction model for radio link Transceiver Pipeline */ 

#include <opnet.h> 

void 

pdm_ra_ecc (pkptr) 

 Packet*  pkptr; 

    { 

 int  pklen, num_errs, accept; 

 Objid  rx_ch_obid;  

 double  ecc_thresh; 

 /** Determine acceptability of given packet at receiver. **/ 

 FIN (pdm_ra_ecc (pkptr)); 

 /* Do not accept packets that were received */ 
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 /* when the node was disabled. */ 

 if (op_td_is_set (pkptr, OPC_TDA_RA_ND_FAIL)) 

 { 

     accept = OPC_FALSE; 

 }   

 else 

        { 

     /* Obtain the error correction threshold of the receiver. */ 

     ecc_thresh = op_td_get_dbl (pkptr, OPC_TDA_RA_ECC_THRESH); 

     /* Obtain length of packet. */ 

     pklen = op_pk_total_size_get (pkptr); 

     /* Obtain number of errors in packet. */ 

     num_errs = op_td_get_int (pkptr, OPC_TDA_RA_NUM_ERRORS); 

     /* Test if bit errors exceed threshold. */ 

  if (pklen == 0) 

  { 

      accept = OPC_TRUE; 

         } 

  else 

         { 

             if( op_td_get_int(pkptr, OPC_TDA_RA_NUM_COLLS) > 0 ) 

             { 

                 accept = OPC_FALSE; 

             }    

             else 

             { 

                 accept = OPC_TRUE; 

             }    

                }   

  } 

 /* Place flag indicating accept/reject in transmission data block. */ 

 op_td_set_int (pkptr, OPC_TDA_RA_PK_ACCEPT, accept); 

 /* In either case the receiver channel is no longer locked. */ 

 rx_ch_obid = op_td_get_int (pkptr, OPC_TDA_RA_RX_CH_OBJID); 

 op_ima_obj_attr_set (rx_ch_obid, "signal lock", OPC_BOOLINT_DISABLED); 

 FOUT; 

    } 
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B. Performance validation metrics  

To verify performance of UW-ALOHA-QM, several performance metrics are collected and 

measured during simulations. 

Channel utilisation (U) 

Channel utilisation is a very important matric to underwater networks since acoustic channel 

struggles with the low efficiency due to the slow propagation speed and limited bandwidth. 

Therefore, this thesis primarily focuses on improving channel utilisation of underwater mobile 

networks and measures it using a unit called Erlang. Erlang corresponds to the fractional 

proportion of time during which data traffic is usefully received at a sink node. Therefore, 1 Erlang 

represents the fundamental capacity of the channel. The concept of channel utilisation can be 

described as: 

Channel utilisation (U) = 
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑖𝑠 𝑢𝑠𝑒𝑓𝑢𝑙𝑙𝑦 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠)

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑟𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠)
 

The numerator can be calculated as the total number of data packets successfully received at the 

sink node (D) during a simulation • 1044 bits / data rate (ruw) bps. 

The denominator can be expressed by the total simulation time since a simulation time is counted 

by the number of frames in this thesis. Therefore, it can be calculated as the total number of frames 

in a simulation (M) • frame size (S) • slot length (Ts). 

Various parameters are involved to calculate channel utilisation, hence channel utilisation can be 

expressed in different ways according to the network configuration and the environment. 

• ALOHA-Q in the terrestrial environment when network converges 

The propagation delay is negligible in the terrestrial environment, therefore the propagation delay 

(rtr) in a slot can be ignored, which brings about high channel utilisation of radio networks. 

Moreover, ALOHA-Q uses the identical frame size (S) for the number of nodes (N) in a network, 

thus when a network converges, D and (M × S) become identical. Therefore, the theoretical 

maximum channel utilisation of ALOHA-Q can be simply measured: 

Channel utilisation (U) of ALOHA-Q = 
𝑇𝑑𝑝

𝑇𝑠
 = 

1044 𝑏𝑖𝑡𝑠

1100 𝑏𝑖𝑡𝑠
 = 0.95 Erlangs in steady state 
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Data packet duration (Tdp) in seconds = 
1044 𝑏𝑖𝑡𝑠

𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 (𝑟𝑡𝑟) 𝑏𝑝𝑠
 

Slot duration (Ts) in seconds = 
1100 𝑏𝑖𝑡𝑠

𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 (𝑟𝑡𝑟) 𝑏𝑝𝑠
 

• ALOHA-Q in the underwater environment when network converges 

In the underwater environment, the propagation delay (rwu) is significant, therefore it needs to be 

considered to calculated channel utilisation. 

Channel utilisation (U) of ALOHA-Q = 
𝑇𝑑𝑝

𝑇𝑠
= depends on network size (R) 

Data packet duration (Tdp) in seconds = 
1044 𝑏𝑖𝑡𝑠

𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 (𝑟𝑢𝑤) 𝑏𝑝𝑠
 

Slot duration (Ts) in seconds = 
1100 𝑏𝑖𝑡𝑠

𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 (𝑟𝑢𝑤) 𝑏𝑝𝑠
 + 2 ×

𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑠𝑖𝑧𝑒 (𝑅)

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑 (1500 𝑚/𝑠)
 

• UW-ALOHA-Q when network converges 

UW-ALOHA-Q reduces the frame size (S) to improve channel utilisation therefore, a slot cannot 

represent the overall channel utilisation of the system. However, a frame is repeated under 

network convergence status, thus channel utilisation of a frame can represent the overall channel 

utilisation of UW-ALOHA-Q in a fixed network. The frame size (S) is decided by the network 

size (R) and the number of nodes (N) deployed in a network. Channel utilisation depends on the 

network size (R), frame size (S), and the number of nodes (N). 

Channel utilisation (U) of UW-ALOHA-Q = 
𝑁 × 𝑇𝑑𝑝

𝑆 × 𝑇𝑠
 

This equation is for the theoretical maximum channel utilisation of UW-ALOHA-QM. UW-

ALOHA-QM is designed for mobile networks hence channel utilisation is supposed to vary at 

every time. Therefore, channel utilisation of UW-ALOHA-QM (and other protocols mentioned 

above during learning processes), needs to be calculated by Equation (3-4). 

End to End Delay 

Delay is an important metric for time critical applications such as tsunami detection far off the 

sea. This thesis measures average end-to-end delay in section 4.8.4, which is the time between 

the generation of a data packet and the time that the packet successfully arrives at the sink node. 
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Network size (R), the number of nodes in a network (N), and frame size (S) significant impact on 

delay performance. 

double [end to end delay] and initial value is 0; 

[packet generated time] is capsulated in a data packet; 

When a node receives an ACK 

[total end to end delay] = [total end to end delay] + [current time] – [packet generated time] – 

[propagation delay]; 

At the end of simulation 

[average end to end delay] = [total end to end delay] / [total number of packets successfully 

received at a sink node] 

 

Convergence  

UW-ALOHA-QM is not limited to be used for mobile networks but can be also used for 

applications which require reliable communication having fixed nodes on the seabed. Therefore, 

the ability to guarantee that all nodes can find their distinct slot and appropriate frame start time 

is the valid matric for the static networks. This thesis measures network convergence when 

absolute Q-values of all nodes are greater than 0.9 as discussed in section 4.7. Moreover, the 

duration from the start of learning and to the convergence can be considered as an important 

metric since it can be used to measure the learning speed in fixed networks. In sections 4.8.2 and 

4.8.5, convergence speed is measured by the number of frames used to achieve the theoretical 

maximum channel utilisation of UW-ALOHA-Q in each scenario since the nodes interacts with 

the network by trial-and-error iterations during the learning process. 

C. Pseudocode 

Q-learning 

Compared to Equation (3-2), Q-learning update is easy to understand and this pseudocode shows 

when data transmission is successfully delivered. 

When I receive an ACK destined to my address before the guard time expires. 

Number of received ACK ++; 

Number of successful data transmission ++; 

Number of consecutive collision = 0; 
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Number of consecutive success ++; 

Retransmission count = 0; 

 

/* Update Q-table */ 

Current slot number = transmission slot number; 

Q-value temp = Q-value in a Q-table [current slot number]; 

Q-value temp = Q-value temp + learning rate * (reward – Q-value temp); 

Q-value in a Q-table [current slot number] = Q-value temp; 

 

Asynchronous operation 

Nodes are assumed to start the frame at a uniform randomly distributed time within the range of 

zero to the length of one frame. 

When all nodes are initiated 

Asynchronous operation index = rand()%1000; 

Asynchronous operation delay = (double) asynchronous operation index / 1000 * frame 

duration 

Start the first frame at (current time + asynchronous operation delay) 

 

7 - Uniform Random Back-off scheme 

When a node does not receive an ACK until the guard times expires 

The number of collision ++; 

Packet retransmission count ++; 

Number of consecutive collision ++; 

Number of consecutive success = 0; 

 

/* Update Q-table */ 

Current slot number = transmission slot number; 

Q-value temp = Q-value in a Q-table [current slot number]; 

Q-value temp = Q-value temp + learning rate * (punishment – Q-value temp); 

Q-value in a Q-table [current slot number] = Q-value temp; 

 

If the number of retransmission count > 6,  
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Destroy the delivered packet; 

Packet retransmission count = 0; 

 

If (Number of consecutive collision %7 == 0) 

URB index = rand()%1000; 

URB delay = (double) URB index / 1000 * frame duration; 

Start the next frame at (next frame start time + URB delay); 

else, start the next frame at the next frame time; 
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Glossary 

ACK Acknowledgement 

AI Artificial Intelligence 

APD-TDMA Asymmetric Propagation Delay Aware TDMA 

AUVs Autonomous Underwater Vehicles 

BEB Binary Exponential Back-off 

CDMA Code Division Multiple Access 

CSMA Carrier Sensing Multiple Access 

CSMA/CA Carrier Sensing Multiple Access / Collision Avoidance 

CTS Clear To Send 

DNN Deep Neural Networks 

DOTS Delay aware Opportunistic Transmission Scheduling 

DRL Deep Reinforcement Learning 

EPSRC Engineering and Physical Sciences Research Council 

FDMA Frequency Division Multiple Access 

GPS Global Positioning System 

IEEE Institute of Electrical and Electronics Engineers 

IR Informed Receiving 

ISO International Organisation for Standard 

JSW Juggling-like Stop and Wait 

LLC Logical Link Control 
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LOS Light Of Sight 

LT-MAC Location based TDMA MAC 

LTM-MAC Location based TDMA Mobile MAC 

MAC Medium Access Control 

MACA Multiple Access with Collision Avoidance 

MCM Meandering Current Mobility 

MDP Markov Decision Process 

MIMO Multiple Input Multiple Output 

MISO Multiple Input Single Output 

ML Machine Learning 

NLOS Non Line Of Sight 

NODC National Oceanographic Data Centre 

OSI Open System Interconnection 

OFDMA Orthogonal Frequency Division Multiple Access 

PDF Probability Density Function 

PLAN-MAC Protocol for Long latency Access Networks – MAC 

QL-MAC Q-Learning based – MAC 

QoS Quality of Service 

REMUS Remote Environment Monitoring UnitS 

RFID Radio Frequency IDentificaiton 

RL-MAC Reinforcement Learning based – MAC 
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RTS Request To Send 

SARSA State Action Reward State Action 

SDMA Space Division Multiple Access 

SIMO Single Input Multiple Output 

SSP Sound Speed Profile 

S-MAC Sensor MAC 

TCP/IP Transmission Control Protocol / Internet Protocol 

TDA-MAC Transmit Delay Allocation – MAC 

TDMA Time Division Multiple Access 

T-MAC Timeout MAC 

URB Uniform Random Back-off 

UUVs Unmanned Underwater Vehicles 

WLANs Wireless Local Area Networks 

WPANs Wireless Personal Area Networks 

WSNs Wireless Sensor Networks 

7-URB 7-Uniform Radom Back-off 
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