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A B S T R A C T

As software testing is a laborious and error-prone task, automation
is desirable. Search-based unit test generation applies evolutionary
search algorithms to generate software tests and, in the context of unit
testing object-oriented software, Genetic Algorithms (GAs) are fre-
quently employed to generate unit tests that maximise code coverage.

Although GAs are effective at generating tests that achieve high
code coverage, they are still far from being able to satisfy all test goals
(e.g., covering all branches). While some general limitations are known,
there is still a lack of understanding of the search behaviour during
the optimization, making it difficult to identify the factors that make a
search problem difficult.

Therefore, this thesis aims to investigate the search behaviour when
GAs are applied to generate object-oriented unit tests and, more
specifically, identify the reasons why the search fails to achieve the
desired test goals. This is achieved by investigating (1) the fitness
landscape structure and the impact of its features on the generation of
unit tests and (2) the influence of population diversity on generating
potential unit tests. Based on the outcome of this investigation, the
impact of test case reduction on the landscape features and population
diversity is also investigated.

Our results reveal that classical indicators for rugged fitness land-
scapes suggest well searchable problems in the case of unit test genera-
tion, but the fitness landscape for most problem instances is dominated
by detrimental plateaus. However, increasing diversity does not have
a beneficial effect on coverage in general, but it may improve coverage
when diversity is promoted adaptively. In fact, increasing diversity
has a negative impact on the individual length, which can also be
mitigated with the adaptive diversity. Applying the test case reduc-
tion seems to be promising in improving the landscape structure and
reducing the negative side effects of diversity on length, but have no
considerable impact on the search performance.
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1
I N T R O D U C T I O N

"Software eventually and necessarily gained the same respect
as any other discipline."

Margaret H. Hamilton, 2014 [74]

It all started in the mid of 1800s when the mathematician Ada
Lovelace created the first computer program to calculate a sequence of
Bernoulli numbers to be carried out on an early computing machine
known as Analytical Engine. Later, in 1948, Tom Kilburn [114] wrote
the first piece of software that was intended to perform the calculation
of the greatest divisor of 218 on a digital computer, despite the fact
that the term software was not coined until 1958 by John Tukey [167].

From that time onwards, software became an inevitable solution
that many businesses and industries rely on to provide efficient ser-
vices, especially in recent decades where it becomes an ever-present
necessity in humankind’s daily activities (e.g., education, banking, and
communication activities). In fact, in the digital era of today, software
plays an important role in safety-critical systems such as air traffic con-
trol systems, medical-supporting systems, and nuclear control systems.
Such systems require the development of very complex software due
to the complexity of their demands. However, software development is
not always guaranteed to deliver high-quality software as errors may
occur throughout the development process, and in the case of critical
systems, this can lead to extremely serious consequences. For example,
it has been reported that a bug in the software that controls a radiation
therapy machine led to increasing in the quantities of beta radiation
that caused the death of more than five patients [99]. Another serious
incident that was experienced is when a financial firm lost more than
$400 million because of an error in using a software flag that caused
undesired code to be executed [143].

Therefore, it is important to ensure that the developed software is
high-quality and reliable software, and that can be achieved through
testing the software. Software testing is a process that is not merely con-
sidered to find errors but also to ensure that the software conforms to
the requirements. Testing is an important activity during the software
development cycle that mainly aims to detect as many bugs as possible
in the software. This, in fact, makes it the most expensive activity that
consumes up to 50% of the software development resources [118],
especially with the increase in software complexity. Furthermore, soft-
ware testing tends to be a manual process that possibly leads to further
development costs and human errors. Thus, automating the testing

1



2 introduction

process becomes more desirable as it is more cost-effective and reliable
than manual testing.

The automated generation of test cases requires the generation of
(i) test data, i.e., inputs to execute the software, and (ii) test oracles,
i.e., assertions that are used to verify whether executing test inputs
reveals software faults. For over the past decades, several approaches
have emerged to automate the generation of test data such as random
testing where software is exercised with randomly generated data,
symbolic execution testing where software is tested by executing as
many program paths as possible with a set of concrete inputs, and
search-based testing where metaheuristic search algorithms are applied
to generate adequate test inputs. A well-known search algorithm is the
Genetic Algorithm (GA) that mimics the process of natural selection
and reproduction to generate test inputs with the aid of an objective
function.

It has been demonstrated that the search-based approach is often
effective in generating test inputs that satisfy testing goals, especially
when considering a GA [109]. In the context of unit testing object-
oriented software, where tests are sequences of calls on a class under
test, GAs have been successfully applied for generating tests. Several
studies [62, 128] have shown that GAs are effective at generating tests
that achieve high code coverage. When the test goal is based on branch
coverage, an effective GA is the one that generates tests that cover
as many branches in the source code as possible, and therefore an
optimal test is the one that covers all the branches.

1.1 motivation

Despite the success of GAs in generating tests that achieve high code
coverage, they are still far from being able to satisfy all test goals (e.g.,
covering all branches) [149]. To illustrate that, consider the following
example of a Java class along with its test case that is automatically
generated using a GA.

JCLO is an open-source Java Command Line Option package 1

that parses command line options based on a given class object to
assign values to the class’s variables. It simply extracts variables from
a class object using reflection and then gives values to these variables
based on their names and types. The parse method (Listing 1.1) is an
essential method in the main JCLO class that parses the command line
options (i.e., arguments) by assigning the values in these options to
the variables of a class. The options cannot be parsed if their format
is not valid (i.e., a valid format can be "--a=x" or "-a x"). Assume a
class with three fields; int a, boolean b, and float c, one possible
command line would be "--a=8 --b --c=5.2415". Therefore, a valid
test input that conforms to the format of command line options must
be created to test the parse method.

1 https://github.com/drsjb80/JCLO

https://github.com/drsjb80/JCLO


1.1 motivation 3

public class JCLO {

....

public void parse(String[] args){

// an example of args: --a=8 --b --c=5.2415

....

for (int i = 0; i < args.length; i++){

String key = getKey(args[i]); // e.g., a, b, and c

Field field = getField(key); // e.g. boolean b

if (field == null){

throw new IllegalArgumentException("No such option:"
+key);

}

Class type = field.getType(); // e.g. boolean

String name = type.getName(); // e.g. boolean

....

String value = null;

if (name.equals("boolean")) {

value = getBooleanValue(args[i]);

}

}

}

....

private String getBooleanValue(String arg){

if (hasEquals){

arg = arg.replaceFirst("[^=]∗=", "");
if ((arg.equalsIgnoreCase("true")) ||

(arg.equalsIgnoreCase("yes"))) {

return "true";
}

return "false";
}

return "true";
}

}

Listing 1.1: parse and getBooleanValue methods in the JCLO class

To automate the generation of test inputs, a test generation tool
can be used. Among the popular tools that generate tests for Java
programs using a GA is EvoSuite [59]. It generates JUnit test suites
for a given Java class under test (CUT) and target coverage criterion
(e.g., branch coverage) using different GAs, with the Many-Objective
Sorting Algorithm (MOSA) being the most effective algorithm for JUnit
test generation [34, 128]. Running EvoSuite on a CUT usually results
in a test suite of test cases that are best in covering the branches of the
CUT. When running the JCLO class, many test cases are generated,
and one test case that achieves the highest branch coverage is shown
in Listing 1.2.
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@Test(timeout = 4000)

public void test05() throws Throwable {

JCLO jCLO0 = new JCLO("−vNv@%MHagJX {5bEyg",
"$tyv$y.FZPXB2>A");

String[] stringArray0 = new String[4];

stringArray0[0] = "−vNv@%MHagJX {5bEyg";
try {

jCLO0.parse(stringArray0);

fail("Expecting exception: IllegalArgumentException");
} catch(IllegalArgumentException e) {

verifyException("edu.mscd.cs.jclo.JCLO", e);

}

}

Listing 1.2: An automatically generated test case that covers 42% of the
branches in the JCLO class

The test case creates an object with two options (i.e., arguments)
where only one option is used to exercise the parse method. Although
this input covers many branches within the parse, getField, and
getKey methods, it still does not cover the other branches, especially
those branches in the getType, getName, and getBooleanValue meth-
ods because of the thrown exception caused by this test input. In other
words, this test input causes an exception to be thrown, and thus any
code after that if-statement that throws an exception is not covered.
In fact, there are different test inputs in other test cases that cover
the rest of the branches in the getKey method, however, there is no
test input in the whole test suite that executes the branches in the
getBooleanValue method (Listing 1.1). While many runs of EvoSuite

are made on this class, the GA is still unable to find test inputs that
lead to the execution of branches in the getBooleanValue method.

While some general limitations are known (e.g., the challenges
of generating complex parameter objects [149] and the flag prob-
lem [109]), there is still uncertainty about what makes it difficult for
GAs to satisfy the desired goal (i.e., finding test inputs that achieve
high code coverage). In general, GAs do not always behave similarly
when they are applied to solve different optimisation problems. It
has been argued [82] that the GA performance (i.e., the final branch
coverage in our case) is not enough to give insights into how the
GA behaves during the search and what makes difficult with certain
problems. This is because each optimisation problem has features
that influence the behaviour of a GA, and such influence cannot be
understood by only looking at the GA performance. Therefore, there is
a need for a deep understanding of the optimisation problem features
and their influence on the search behaviour. Such an understanding
can be provided by investigating the underlying structure of the search
space and the influence of its features on the optimisation process.
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The concept of fitness landscape is a common metaphor that is used
to give an intuitive understanding of the search space structure and
its influence on the search behaviour. The analysis of the fitness land-
scape helps in understanding how the problem features relate to the
problem difficulty and how such features affect the GA performance.
Hence, the fitness landscape analysis becomes an appropriate choice
to decide which GA configurations are more suitable to solve a certain
optimisation problem. However, previous studies identified several
fitness landscape features that influence the search, and two main
features that are known to have a great influence on the optimisation
process are ruggedness and neutrality [104]. Ruggedness is a feature that
depicts a landscape with many optima and less correlated neighbour-
ing solutions while neutrality is a feature that refers to the amount
of neutral areas (i.e., plateaus) in the landscape. In fact, an increase
in the ruggedness makes the search for an optimal solution harder
as the algorithm might get trapped in local optima and result in
sub-optimal solutions. Therefore, in order to ensure that the search
space is well explored and to avoid stagnation in local optimum, the
individuals of the search population must be diverse enough (i.e., not
similar individuals).

The loss of population diversity is a well-known issue that occurs
during the GAs search. If the individuals of the search population
all become very similar and lack diversity, then the search may pre-
maturely converge on a local optimum of the objective function or
even a non-optimal point, especially with a rugged landscape. This
reduces the effectiveness of the GA, and in the case of search-based
test generation, premature convergence would imply a reduced code
coverage. Therefore, it is important to maintain diversity in the popu-
lation during the evolution to avoid such premature convergence and
ensure that the search space is well explored [44].

Also, population diversity is strongly related to the size of indi-
viduals, and an important issue that has been identified during the
evolution of GAs is known as the bloat problem [25]. Bloat is a phe-
nomenon that denotes the rapid growth in the size of individuals
when evolution progresses with no considerable effect on the fitness,
which occurs when a GA considers an individual representation of
variable length. In the domain of unit test generation, bloat means
more unnecessary statements are added to test cases or even unneces-
sary test cases are added to an individual test suite. This has a negative
impact on the search as evolving longer individuals leads to nega-
tive consequences, for example, slowing down the search progress as
longer individuals need more evaluation time and thus result in a few
generations. Although this problem has been investigated with the
problem of unit test generation, it is important to investigate whether
the bloat problem has an effect on the fitness landscape features and
the level of population diversity.
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1.2 thesis aim and objectives

The aim of this thesis is to investigate the search behaviour when
GAs are applied to generate object-oriented unit tests and, more
specifically, identify the reasons of why the search fails to achieve the
desired test goals (i.e., finding test inputs that achieve high branch
coverage). Therefore, this thesis provides enhanced knowledge and
understanding of how the three issues mentioned previously affect
the generation of potential unit tests, and this can be fulfilled by the
following objectives:

1. To perform an in-depth analysis of the fitness landscape structure
and investigate the impact of its two features (i.e., ruggedness
and neutrality) on the generation of object-oriented unit tests.

2. To identify the underlying properties of Java source code that
influence the features of the fitness landscape.

3. To empirically investigate the impact of population diversity on
the generation of unit tests.

4. To empirically evaluate the impact of mitigating the bloat prob-
lem (i.e., test case reduction) on fitness landscape features and
the level of population diversity, and thus the performance of
GAs.

1.3 thesis structure and contributions

This section presents the structure of this thesis along with the contri-
butions of this research.

chapter 2 : "literature review" presents a literature survey of
the research topics studied in this thesis. It begins with introducing the
fundamental terminologies of software testing and, more specifically,
unit testing. Then, the automation of test data generation problem
is presented and its existing approaches are reviewed. In particular,
the Single-Objective and Multi-Objective GAs to generate test data
for object-oriented program are thoroughly reviewed. The chapter
then focuses on the challenges and limitations of the use of GAs from
a practical point of view (e.g., the problem of complex parameter
objects generation), and from a theoretical point of view as well (e.g.,
the features of the fitness landscape and the population diversity
problem).

chapter 3 : "causes and effects of fitness landscapes in

unit test generation" investigates the fitness landscape struc-
ture and the impact of its two features (ruggedness and neutrality) on
the generation of unit tests. As an initial step towards understanding
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the influence of the fitness landscape on the generation of unit tests,
we first analyse the two landscape features when considering each of
the two well-known test generation approaches in our domain: the
archive-based Whole Suite approach (WSA) and the Many-Objective
Sorting Algorithm (MOSA). Then, we investigate how the two land-
scape features affect the search performance with the two approaches
(i.e., how ruggedness and neutrality affect the branch coverage). The
results of this analysis based on the two approaches (WSA and MOSA)
are statically compared in order to better understand whether an in-
dividual representation influences the landscape structure. Moreover,
our study investigates the factors that cause the fitness landscape
properties by analysing the underlying properties of the Java source
code. Therefore, the contributions of this chapter are as follows:

(1) A detailed analysis of the fitness landscape structure and its two
features (ruggedness and neutrality) with the WSA and MOSA
approaches.

(2) A detailed analysis of the impact of the landscape features on
the performance of GAs (WSA and MOSA).

(3) An evaluation of how an individual representation influences the
features of the fitness landscape when comparing the influence
on the two GAs (WSA and MOSA).

(4) An in-depth analysis of what aspects of the underlying Java
source code that affect the landscape features.

chapter 4 : "measuring and maintaining population di-
versity in unit test generation" empirically investigates the
impact of population diversity on the generation of object-oriented
unit tests, and see whether maintaining sufficient population diversity
level during the evolution improves the generation of tests that achieve
high branch coverage. We first adapt common diversity measurements
based on phenotypic and genotypic representation to the search space
of unit test cases. Measuring diversity is an essential step that helps in
understanding its effect on the search behaviour. In order to promote
population diversity, we apply well-known diversity maintenance tech-
niques and analyse their influence on population diversity and GAs
performance. Furthermore, we adapt the idea of adaptive diversity
that works by applying a diversity maintenance technique only when
the diversity level drops below a certain threshold, and evaluate its
effectiveness against the naive diversity approach and default GAs.
Similar to the previous chapter, we investigate and compare the im-
pact of population diversity when generating unit tests using the two
approaches WSA and MOSA to understand how diversity influences
the performance of each algorithm, and see whether the individual
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representation affects the diversity during evolution. Therefore, the
contributions of this chapter are as follows:

(5) Adapting three diversity measurements based on phenotypic
and genotypic representation to the search space of unit tests.

(6) An analysis of how default GAs (WSA and MOSA) maintain
population diversity during evolution.

(7) A study into the impact of diversity maintenance techniques on
the diversity level and GAs performance.

(8) An empirical evaluation of the effect of adaptive diversity on the
maintained diversity level and GAs performance.

(9) An evaluation of how an individual representation influences
the population diversity when comparing the influence on the
two GAs (WSA and MOSA).

chapter 5 : "an analysis of the effects of test case re-
duction on unit test generation" presents a study that
investigates the bloat problem and, more specifically, whether remov-
ing redundant statements in unit test cases influences the landscape
features, population diversity level, and GAs performance. First, we
present the test case reduction approach and how it works. Then, we
conduct an empirical study that investigates the impact of the reduc-
tion approach on the landscape structure where the results of this
study are compared to the results of the landscape analysis conducted
in Chapter 3. Similarly, we investigate how the reduction approach af-
fects the population diversity level during the evolution and compare
if the effect on diversity differs from what is reported in Chapter 4. Fi-
nally, we compare the performance of default GAs (WSA and MOSA)
to their performance when applying the reduction approach (i.e., does
the reduction approach affect the branch coverage?). Therefore, the
contributions of this chapter are as follows:

(10) An approach named test case reduction that is adapted to object-
oriented unit tests.

(11) An analysis of how the test case reduction approach affects the
landscape features with the WSA and MOSA approaches.

(12) An analysis of how the test case reduction approach affects the
level of population diversity during the evolution with both
GAs.

(13) An empirical evaluation of the effectiveness of WSA and MOSA
when considering the test case reduction approach.
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chapter 6 : "conclusion and future work" concludes the
conducted research in this thesis and summarises the findings pre-
sented in each chapter. Then, we present possible ideas that extend
the existing work of this thesis as future research work.





2
L I T E R AT U R E R E V I E W

This chapter explores the literature and research relating to the con-
cepts considered in this thesis. We first introduce the concepts and
definitions related to the software testing, and discuss why the au-
tomation of testing task is needed. Then, we review the previous
studies that address the challenges imposed by using Evolutionary
Algorithms to solve optimisation problems, more specifically the pop-
ulation diversity loss and the impact of fitness landscape properties.

2.1 software testing

During the software development lifecycle, faults occur and defects
are inevitably introduced. Testing a software system is an important
process to be carried out to detect and remove these faults, and thus to
ensure a successful software development. Software testing involves
a wide spectrum of tasks that are performed along the development
lifecycle, starting from testing individual components of the source
code to evaluating the system’s compliance with the initial require-
ments. In the simplest term, finding defects in software requires the
creation of different tests that are intended to thoroughly exercise the
software with different test inputs. This means that the quality of the
created tests substantially affects the fault-revealing ability of software
testing. To better understand how tests are created and executed, the
following section describes the generic concepts that are related to
software testing.

2.1.1 Related Concepts

An essential step towards testing software is to create a set of test
cases, usually called test suite. A test case is simply a function that
evaluates the behaviour of one or more functions in the software
under test using test inputs that invoke the function(s) and test oracles
that indicate whether the expected behaviour is met. A test oracle is
often an executable assertion that determines the correctness of the test
result. The execution of a test case leads to two possible states that are
(i) the execution result meets the expected outcome, or (ii) both are
not met. The latter case reveals a defect, also known as a bug or a fault,
in the software [161]. The concept of defect refers to a design fault or
an incorrect implementation that is revealed when a test case throws a
failure or an error. A failure is the observable behaviour of the software
that contradicts the expected behaviour (i.e., behaviour contrary to the
software specification), which can be observed by a test oracle.

11
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public class Math{

public int multiply(int x, int y) {

int result = x + y; // bug in the operator, should be x * y

return result;

}

}

Listing 2.1: A simple Java method that multiplies two integers

class MathTest{

@Test()

public void testMultiply() {

Math math_0 = new Math();

assertEquals(6, math_0.multiply(3, 2));

}

}

Listing 2.2: A JUnit test case that tests the Multiply method

Simply, a failure is caused because of the software not being able to
perform the required functions within the specified requirements due
to the occurrence of a defect. An error is a deviation from the actual
and the expected behaviour within the software boundary such as
reaching an unexpected system state or reporting syntax error during
runtime, which is often difficult to be revealed by a simple test oracle
(i.e., assertions).

To illustrate the aforementioned concepts, consider the Multiply

method shown in Listing 2.1 that is supposed to multiply two integers
but contains a bug. One possible unit test case to test the Multiply

method is shown in Listing 2.2 where the test inputs are 3 and 2

that are used to test the correctness of multiplication conducted by
the method. The assertEquals is used to test the equality of two
objects where, in our case, two integers are compared. The order of
the parameters within the assertion is the expected value followed by
the actual value. In our scenario, the expected value is 6 whereas the
actual value is the one that is returned by the Multiply method such
that A call to Multiply(3, 2) returns 5, which is not the expected
value. The result of this call represents a failure that is due to the defect
at line 3 in Listing 2.1 caused by the incorrect mathematical sign.

Testing techniques can be divided into two different approaches [118]:
black-box approach and white-box approach. The black-box approach,
also known as functional testing, is a method of testing the software
and its functionalities based on the requirements specifications. This
type of testing is independent of the internal structure of the software.
Testers, in this case, do not need to be aware of the internal imple-
mentation to derive the test cases. On the other hand, the white-box
approach, also known as structural testing, is a testing technique that
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examines the internal structure and the implementation of software
and derives test cases based on the code structure. However, it is
obvious that the aim of black-box testing is to test the software be-
haviour and ensure that the final product of the software meets the
users’ requirements whereas the white-box testing aims to find the
implementation failures and to ensure the implemented source code
works as expected.

An important aspect of software testing involves deciding whether
enough testing has been performed. This raises questions such as:
Are we generating enough tests that ensure the software has been
tested thoroughly enough? Are the generated inputs able to reveal
the presence of faults, especially with a large input space? Answering
such questions has been research interest in recent years, and many
techniques have been developed to measure the quality of created test
cases [183]. The next section presents a review of these techniques.

2.1.2 Test Adequacy

When testing software, there must be some criteria that ensure the
generated tests are sufficient enough to terminate the testing process
with a level of confidence. In practice, the adequacy criterion focuses
on specific features in the software under test that should be exercised
by the generated tests. For example, when the focus of the adequacy
criterion is to exercise a structural property (e.g., statement or branch),
then there must be at least a test case that executes each property to
consider the whole test suite as an adequate suite. Several studies
have identified and studied different criteria to assess the adequacy
of tests [183]. The two most widely-studied test adequacy criteria are
coverage analysis and mutation analysis.

2.1.2.1 Coverage Analysis
Coverage analysis is a white box testing technique that measures the
effectiveness of a test suite based on the coverage of a specific structural
criterion [118]. A structural criterion represents one structural aspect
of the source code under test such as a statement or a branch that
should be covered by at least one test case. In this case, the ratio of
covered aspects to the total number of aspects in the source code
represents the coverage value where a high coverage value indicates
more of the source code has been executed by the test suite.

One basic and simple structural criterion is the statement coverage
that requires all the statements in the source code are executed at least
once. This coverage criterion is satisfied when all the statements in
the source code have been executed by the test suite. The statement
coverage is very useful with sequential statements but less useful with
decision statements. To explain that, consider the function shown in
Listing 2.3 where two possible test cases are needed to achieve 100%
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statement coverage, which are 〈a=true, b=false, and c=true〉 and
〈a=false, b=false and c=true〉. While these two test cases execute
every statement in the source code, the false condition of the second
if statement is not yet tested. In this scenario where conditional ex-
pressions exist in the source code, the branch coverage becomes an
important criterion to consider.

public boolean foo(boolean a, boolean b, boolean c) {

boolean result = false;

if(a || b) {

result= true;

} else {

if(c) {

result= true;

}

}

return result;

}

Listing 2.3: A motivation example to illustrate the concept of different
coverage criteria

The branch coverage criterion (also known as decision coverage)
aims to ensure that each branch of each control structure is executed
at least once by a test case, and thus all reachable source code is tested.
In this case, at least one more test case is needed to achieve full branch
coverage in the example shown above, which is 〈a=false, b=false,

c=false〉 to execute the false branch of the second if statement that is
not executed by the statement coverage.

To improve upon branch coverage, condition coverage is used to test
sub-expressions in conditional statements where logical operands
are considered. This coverage criterion ensures that each condition
in a conditional statement must be executed at least once to reach
full coverage. Applying this criterion to the example shown above
requires one more test case to achieve 100% condition coverage, which
is 〈a=false, b=true〉 to execute the other condition in the first if
statement.

2.1.2.2 Mutation Analysis

As the purpose of software testing is to detect faults in the software
under test, it is important to measure how well the test suites are
in detecting faults. One popular fault-based technique is Mutation
analysis [86] that works by seeding artificial faults into the program
under test and check if any test case within the test suite is capable of
detecting these faults. The version of the program that contains the
faults is called mutant. When the output of running test cases with the
original version and the mutant version are different, then the mutant
is killed, and hence the test cases are powerful in detecting faults.
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Otherwise, the mutant is alive, and test cases that kill the mutant must
be created. In this case, the mutation score is defined as the percentage
of killed mutants to the total number of mutants.

Previous studies show that mutation analysis is very effective in
predicting the quality of test suites and more precisely detecting actual
software faults [10, 11]. There is empirical evidence that test suites
that reveal the artificially-seeded faults can reveal more real faults,
which indicates that mutation analysis can be used to evaluate the
fault revealing ability of test suites [87]. However, mutation analysis
is computationally expensive to perform and very complex to im-
plement; it still leads to high measurement overhead even when it
is considered with a small program that possibly might have thou-
sands of mutatns [66]. Researchers therefore most often consider code
coverage criteria to evaluate the effectiveness of test suites.

Although coverage criteria evaluate how well test suites are in
satisfying testing requirements (e.g., covering branches), it is still
important to look at how effective these coverage criteria are in terms
of fault detection (i.e., how well they predict the real-fault detection of
test suites). This, in fact, motivated several studies to investigate the
relationship between code coverage and fault-revelation and analyse
the effectiveness of different coverage criteria in estimating mutation
scores of generated test suites [36].

Gligoric et al. [66, 67] evaluated the effectiveness of branch and
statement coverage in predicting mutation scores. In their study, they
considered mutation testing to generate artificial mutants and evalu-
ated the generated test suites for Java and C programs in terms of code
coverage and how many mutants are killed. Their results suggest that
measuring test coverage (i) has low runtime overhead when compared
to mutation testing and (ii) performs well in fault revelation as there
is a correlation between coverage and mutation scores (i.e., high cover-
age correlates to high mutation scores), especially when considering
branch coverage. Similarly, Gopinath et al. [70] investigated whether
statement, block, branch, and path coverage leads to better estimation
of fault detection. Their evaluation of the generated test suites of Java
programs reveals that there is a significant increase in fault revelation
once a high level of coverage is attained, and more specifically with
statement coverage. The conclusion drawn from these studies (i.e.,
coverage criteria perform well in evaluating the quality of generated
test suites) is confirmed by the findings reveals in other studies [36,
58, 87].
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2.2 automation of test generation

Writing sufficient tests becomes laborious and more difficult with
complex software, and more error-prone task when written manually.
This, in fact, makes the testing task frequently accounts for 50% of
the total cost of software development [118]. To reduce the manual
efforts, automating the process of test generation becomes a necessity
to ensure the accuracy and the quality of the software under test [53].
However, automating the generation of test cases usually raises two
main issues that must be addressed. The first is the test data gen-
eration problem (which test inputs cause the software execution to
reveal faults?), and on the other hand, the test oracle problem (does
the generated test inputs result in a behaviour that is similar to the ex-
pected behaviour?). As both issues make the test automation difficult,
each has been research interest in the past years [24, 41], and they still
impose a challenge to the automated test generation that is not yet
solved.

For over the past decades, several approaches have emerged to auto-
mate the generation of test data [53, 113]. In general, these approaches
fall broadly into three groups: (i) random approaches that rely on
the source code to generate random tests, (ii) static approaches that
generate tests based on the decision paths in the software under test
with no need to the source code, and (iii) dynamic approaches where
the software under test needs to be executed to determine how close
the generated tests are to satisfy testing requirements.

The rest of this section provides an overview of the most common
approaches for the automated test data generation that belong to the
aforementioned groups. These are random testing (random approach),
symbolic execution-based testing (static approach), and search-based
software testing (dynamic approach). Then, the test oracle problem is
presented and discussed.

2.2.1 Random Testing

Random testing is the simplest and best known test generation ap-
proach [18]. Testing software using this approach is simply performed
by randomly sampling test inputs from the input domain, i.e., the
set of all possible inputs to the software under test, and then using
these inputs to execute the software and observe its output. Random
testing is often easy to implement and has been demonstrated to de-
tect faults at low cost [17], which makes it the practical choice with
incomplete specifications or unexpected security problems as with
fuzz testing [69]. This, in fact, makes it often used as a benchmark to
be compared with other test generation approaches, as in [150].

However, the random testing approach generates test inputs without
following any pre-established testing guidelines, as selecting such
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inputs from the input domain is based on a probability. For example,
there is a low probability of selecting two equal random inputs from a
considerably large input domain to test the equality of two variables
such as if (x == y). Therefore, this approach is considered to be
sufficient with small software, but not with more complex software.

In the context of object-oriented unit testing where a test case is a
sequence of method calls to the class under test, random test gener-
ation has been considered by Csallner and Smaragdakis [45] where
they proposed the JCrasher tool that generates random unit tests for
Java classes. It works by creating random sequences of method calls
and then reporting violated method calls (i.e., calls that only throw
specific types of exceptions because of faults in the class under test).

Due to the limitations of the random testing approach, Pacheco et
al. [123] proposed further improvements over the pure random ap-
proach by using a feedback-directed approach, which is implemented
in a tool called Randoop [122] to generate unit tests for Java classes.
The idea behind this approach is to use the feedback obtained by
executing previously generated test inputs to guide the generation
of new random inputs to avoid redundant and invalid test inputs. In
the case of object-oriented unit testing, method calls are incremen-
tally generated where each method call is selected randomly. The
sequence of calls is then executed to provide feedback to (i) avoid
the generation of inputs that, e.g., result in illegal behaviour or (ii)
generate assertions that validate future changes. To improve upon
feedback-directed approach applied in Randoop, the Guided random
testing (GRT) [101] extends the feedback-directed approach with static
and dynamic analysis performed on the class under test to provide
further guidance to the random generation.

Sampling random inputs from a large input domain might result
in inputs that are in contiguous areas, which could not be enough
to detect faults in the software under test. Therefore, Chen et al. [37]
proposed a more systematic random testing approach known as Adap-
tive Random Testing (ART) that guides the generation towards more
distributed inputs (i.e., numerical inputs) within the input domain.
To achieve that, the test inputs that are far from the previously gener-
ated inputs are preferred to be selected to increase the likelihood of
detecting more faults. ARTOO is an approach that applies the ART on
object-oriented programs [38] where distance is calculated between
object inputs rather than numerical inputs. The calculation of the
objects distance is based on their direct values, types, and distance to
other objects. Despite the success of ART approach over pure random
search in generating potential tests, Arcuri and Briand [15] showed
that ART imposes high computational cost because of the distance
calculation among test inputs, which in practice makes this approach
less attractive.
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2.2.2 Symbolic Execution based Testing

Symbolic Execution (SE) is one popular test generation approach that
tests a software program with symbolic values instead of concrete
data [89]. The program is presented as an execution tree that consists
of different paths where each path, i.e., a conditional branch in the
program, is a path constraint to be satisfied. To illustrate that, consider
the example shown in Listing 2.4.

public boolean compare(int x){

int y = x / 2;

if(y == 10)

return true;

else

return false;

}

Listing 2.4: A simple method that compares two integers

When using concrete data to test the compare method, it would read
a concrete input value (e.g., 8) and assign it to x. The exeuction, in
this case, results in y = 4 which makes the conditional branch (line 3)
evaluates to false. However, when considering SE, the compare method
is called with a symbolic value (e.g., δ). In this case, the expression
δ / 2 is assigned to x, and the condition to be evaluated (line 3) results
in two path constraints that are δ / 2 == 10 for the true branch and
δ / 2 6= 10 for the false branch. The two path constraints are then
solved by generating two concrete values for δ using a constraint
solver such as Z3 [47]. For that, two possible values are δ = 20 to solve
the first path constraint and δ = 14 to solve the other constraint.

Despite the success of the SE approach in generating tests that are
capable of finding software bugs [134] and improving code cover-
age [32], it still suffers from several limitations that make it unsuitable
in practical scenarios [33]. SE simply executes all the feasible paths of
a simple program under test, but that does not scale to large programs.
This results in an issue known as Path Explosion where the number of
paths grows exponentially with an increase of program complexity,
and the SE approach, in this case, becomes unable to execute all the
feasible paths. The growth in the number of paths can be a result of
the loops in the program under test where unbounded loop iterations
might possibly make the number of paths infinite. To address this
issue, several attempts have been made such as (i) detecting and prun-
ing redundant paths (i.e., paths that produce similar results to the
previously explored paths) [26], and (ii) parallelizing the execution of
independent paths [158].

Besides the aforementioned issue, the use of a constraint solver
makes this approach inefficient as some complex constraints are diffi-
cult to satisfy by a constraint solver. Also, symbolic values of external



2.2 automation of test generation 19

codes (e.g., third-party libraries) are difficult to execute [9]. There-
fore, to improve upon the SE approach, Dynamic Symbolic Execution
(DSE) has been proposed [68]. The idea behind this approach is to
combine the symbolic execution with the concrete execution where
the program under test is executed with symbolic values until these
values become difficult to be solved by the constraint solver, which are
replaced with concrete values. This approach has been successfully
applied to generate tests that achieve remarkable code coverage [31,
181].

The SE and its dynamic version (DSE) approach received attention in
the domain of object-oriented unit testing [160, 162, 180]. An example
is the Symstra approach [180] that generates unit tests using the SE
approach where method calls are generated using symbolic values.
Another example is the MSeqGen approach [160] that relies on both
random testing and DSE to generate unit tests.

Although the approaches that rely on the SE and its dynamic ver-
sion (DSE) are effective in generating potential tests, they face some
challenges, especially in the case of object-oriented programs. For
example, these approaches may not scale to programs where there is
an interaction with public APIs as the state of the program needs to
be modified by calls to an API rather than directly setting test inputs.

2.2.3 Search-Based Software Testing

In 2001, Harman and Jones [75] introduced the term Search-Based
Software Engineering that describes the application of search-based
optimisation approaches to solve different problems related to the
activities of software engineering, which are found to be success-
ful in solving such problems [39, 40], especially the problem of test
generation [77]. Applying optimisation approaches to generate soft-
ware tests, which has become known as Search-Based Software Testing
(SBST), has received great attention in recent decades [110]. Miller and
Spooner [116] were the first to apply an optimisation approach to gen-
erate test data where they replaced the Symbolic Execution approach
with a numerical maximisation approach to generate floating-point
inputs that cover manually-specified program paths. A few years later,
Korel [94] extended the approach of Miller and Spooner where ran-
dom test inputs are used to execute the program under test. When
the execution diverges from the desired path, a local search is applied
to generate test inputs using a computed branch distance from that
desired path. Since then there have been numerous studies published
in this direction [109].
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2.2.3.1 Metaheuristic Search Algorithms

Metaheuristic search algorithms are a set of high-level approaches
that apply a heuristic in order to find sufficiently better solutions
to a given optimisation problem. They are problem-independent ap-
proaches which can be easily adapted to a given problem by changing
configurations such as how a solution is encoded. In this case, the
search explores a sample of similarly encoded solutions (i.e., search
space) to find an optimal solution. However, to efficiently explore
the search space, each solution is evaluated using a problem-specific
objective function, called fitness function. The fitness function evaluates
the performance of each candidate solution with regard to the current
optimum where better solutions are rewarded better fitness value
and vice versa. The selection of individuals for reproduction is based
on their assigned fitness values. Therefore, the search prefers fitter
solutions that are close to achieving the search goal.

There are many metaheuristic algorithms that have been most
widely applied for solving optimization problems, more specifically
the test generation problem [109]. They are classified based on the type
of search strategy they apply. Hill Climbing and Simulated Annealing
apply a local search (i.e., searching through a local neighbourhood of
candidate solutions), whereas Genetic Algorithms apply a global search
(i.e., searching for a globally optimal solution in the whole population).
These three algorithms are reviewed in the following sections.

2.2.3.2 Hill Climbing

Hill Climbing algorithm is a well-known local search algorithm that
iteratively improves a single solution during the search [76]. The search
starts with an arbitrary solution chosen from the search space, and
then its neighbourhood is investigated. If one neighbour has better
fitness, the search replaces the current solution with that neighbour.
In this case, each solution is replaced with its better neighbour until
no further better neighbours are found, and that last better solution is
considered as the local optimum.

The movement from one solution to another can be based on dif-
ferent strategies [109]. For example, the steepest ascent strategy applies
the fitness evaluation to all the neighbours and the neighbour with
the best fitness is chosen (i.e., if bette than the current solution). An-
other strategy is the first ascent where only one random neighbour is
evaluated and chosen if it has better fitness.

However, due to the nature of the search landscape where multiple
peaks might exist, the search may end up with a sub-optimal solution.
To illustrate that, Figure 2.1 shows an example of a search landscape
with many peaks and troughs where Hill Climbing is applied. The
search climbed a hill that results in a candidate solution that is locally
optimal, which is not the best solution in the search space (i.e., the
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Figure 2.1: An example of Hill Climbing landscape [110]

one that is globally optimal). A possible way to overcome this issue is
to restart the search from a different point in the search space to get
a better knowledge of the search landscape, and thus increasing the
possibility of getting better solutions.

2.2.3.3 Simulated Annealing

To reduce the dependency on the initial solution, the Simulated An-
nealing algorithm is proposed, which works similarly to Hill Climb-
ing [91]. The main difference between the two algorithms is that
Simulated Annealing accepts worse solutions during the search, as
shown in Figure 2.2, which makes the movements in the search space
less restricted. However, the acceptance of worse solutions is deter-
mined by a control parameter called temperature that depends on the
difference in the fitness value between the current solution and the
neighbour being considered.

Similar to the process of annealing in metallurgy, the search is
started with a relatively high temperature value to allow for more
exploration of the search space and avoid being trapped in a local
optimum. Then, the temperature is gradually decreased as the search
continues to progress. However, if the temperature is rapidly de-
creased, then the search becomes unable to explore more of the search
space, and thus might get trapped in a local optimum as with Hill
Climbing.
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Figure 2.2: An example of Simulated Annealing landscape [110] with possible
movements to worse solutions

2.2.3.4 Single-Objective Genetic Algorithm

Genetic Algorithms (GAs) are well-known type of Evolutionary Algo-
rithms (EAs) that is inspired by Darwin’s theory of natural evolution
to solve an optimisation problem [81]. In a GA, a population of po-
tential solutions is gradually evolved toward an optimal solution. The
solutions are considered as individuals or chromosomes, analogous to
the biological chromosomes. The algorithm typically starts with a
population of random individuals that will be iteratively evolved over
many generations.

On each generation, mimicking the process of natural selection,
every individual in the population is evaluated by the fitness function,
and only two individuals are selected as parents for reproduction.
There are different selection processes, which all aim to select the best
individuals to be parents in the next generation including (i) roulette
wheel selection where the probability of an individual being selected
for reproduction is proportionate to its fitness value. Individuals with
low fitness will have a small probability to be selected. In general, a
common problem with this selection algorithm is that an individual
with a better fitness value will dominate the selection, and (ii) rank
selection where the individuals of the population are ranked according
to their fitness, and the probability of an individual being selected is
calculated based on the rank, rather than the fitness value. This avoids
that individuals with higher fitness values dominate selection (i.e., low
selective pressure).
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Then, the two genetic operators, crossover and mutation, are applied
to the selected individuals to form the next generation. Crossover is
the process of breeding two parents chromosomes to produce new
offspring by combining parts of the two chromosomes, whereas the
mutation is the process of randomly modifying different genes in
both offspring based on some probability. Mutation is used to main-
tain genetic diversity within the population, and possibly reduce the
similarity between the individuals from one generation to the next.
However, the search terminates when either a maximum number of
generations is reached, or another pre-defined stopping criterion is
met.

2.2.3.5 Multi-Objective Genetic Algorithm

Many real-world optimisation problems, especially complex engineer-
ing problems, involve multiple objectives that often conflict with each
other [93]. These problems are known as multi-objective optimization
problems. Minimising cost while maximising performance is one exam-
ple of a multi-objective problem with two objectives to be optimised. In
practice, there could be a large number of objectives. With a nontrivial
problem, optimising one objective might impair other objectives as
there is no one solution that simultaneously satisfies all the objectives.
Therefore, an ideal solution to this problem is to find a set of solutions
that are the best trade-off solutions between the conflicting objectives,
where this is determined by the dominance of the solutions in the
search space.

To illustrate the dominance concept, a solution x is said to dominate
another solution y (also written as x � y) if x is not worse than y in
all the objectives, and x is better than y in at least one objective. In this
case, the solution x is said to be Pareto optimal if it is not dominated
by other solutions, and the set of all non-dominated solutions in the
search space are called Pareto optimal set. The corresponding fitness
values of the Pareto optimal set in the objective space are known as
the Pareto front.

As GAs are well studied in solving optimisation problems with
a single-objective, they also have been extensively applied to solve
multi-objective optimisation problems [93, 184] where multi-objective
GAs have been proposed. The main difference among different multi-
objective GAs relies on how the fitness is assigned to the individuals
on the search space. The Vector Evaluated GA (VEGA) [145] was
the first multi-objective GA to approximate the Pareto optimal set. It
works by randomly dividing the population into M subpopulations
of equal size where M is the number of objectives to be optimised.
Then, each individual in each subpopulation is assigned a fitness
value based on the considered objective function. Once the fitness
is assigned, all the individuals of the subpopulations are combined,
and the genetic operators are applied on the combined population.
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However, this approach is not promising to well explore the search
space and thus find the desired Pareto optimal set, as the selected
individuals are better in satisfying one objective but not others. In
other words, VEGA does only find the extreme individuals of every
single objective that makes it difficult to find the best trade-off among
all objectives.

Fonseca and Fleming [57] proposed the first multi-objective GA
that explicitly utilises the Pareto ranking in the fitness assignment, and
named their algorithm Multi-Objective Genetic Algorithm (MOGA). In
each generation, each individual in the population is assigned a rank
according to its dominance, where the individual’s rank corresponds to
the number of individuals in the population by which it is dominated.
In this case, the non-dominated individuals are always assigned a
similar rank, whereas the dominated individuals are given ranks
based on the surrounded population density. The fitness of each
individual is then derived based on the assigned rank. Moreover, a
niche formation method (i.e., Fitness sharing) is integrated into the
algorithm to ensure enough population diversity is maintained, and
thus the search is encouraged toward exploring the solutions in the
Pareto-optimal region. However, it has been argued that this type of
fitness assignment is more likely to result in a large selection pressure
that might make the search converges faster [48].

Later, Srinivas and Deb [157] developed the Non-dominated Sort-
ing Genetic Algorithm (NSGA) that also uses the concept of Pareto
dominance for fitness evaluation. In this algorithm, the individuals
are ranked based on their non-dominance into fronts where each front
contains individuals that share the same non-domination level. To
illustrate that, Figure 2.3 shows an example of how individuals are
sorted into fronts where two objectives are optimised.

Individuals in the front 1 are the non-dominated individuals in the
current population, which are nominated to be the Pareto optimal so-
lutions. For the individuals in the front 2, we say that these individuals
dominate the other individuals in front 3 and front 4 but not those in
front 1. In this case, the fitness is assigned per each front using the
fitness sharing method where better fitness is given to individuals in
higher fronts such that the fitness of individuals in fronti is better than
of those individuals in fronti+1.

Despite the efficiency of NSGA in solving the multi-objective op-
timization problems, it has been noticed that NSGA is computation-
ally expensive because of the complex computation needed for non-
dominated sorting and finding the best sharing parameter to promote
population diversity. To overcome these issues, a modified version
of NSGA has been proposed, known as NSGA-II [49]. The NSGA-II
improves the non-dominated sorting by reducing the computational
requirements needed to sort the individuals. It also considers the
elitism (i.e., copying the best individuals to the population of next gen-
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Figure 2.3: An example of non-dominant fronts in the NSGA [55]

eration) to improve the performance of the algorithm, and to reduce
the probability of losing the better solutions that are found. Moreover,
it does not require any user-defined parameters as it replaces the
fitness sharing with a new mechanism called crowding distance. The
crowding distance provides an estimate of the density of individuals
that are in the boundaries of a specific individual. In this case, each
individual is assigned a value that is based on how close it is to other
individuals in the same front. However, the selection in NSGA-II does
not only depend on the fitness, but it also depends on the rank and the
crowding distance. Both criteria are used in the tournament selection
for reproduction. Therefore, the more desirable individual is the one
that has a higher rank and higher crowding distance value.

Besides the aforementioned algorithms, different algorithms have
been proposed to enhance the efficiency of the search and obtain a
good approximation of an exponentially large Pareto front, especially
with an increase in the number of objectives to be optimised. Examples
of these algorithms include ε-dominance MOEA (ε-MOEA) [97] and
Indicator Based Evolutionary Algorithm (IBEA) [185] that replaces the
Pareto dominance with hypervolume indicator during the selection.

2.2.3.6 Test Data Generation Using Genetic Algorithms

In the domain of SBST, GAs have been successfully applied to generate
test data [109]. An early work that considers GAs to generate test data
is the approach proposed by Pargas et al. [129] that targets branch
and statement coverage. In their work, the control dependent nodes
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of each test goal (i.e., statement of a branch) are used to guide the
search to cover the test goal. The objective function, in this case, is the
number of executed control dependent nodes to cover a specific goal.
However, the formulation of their objective function does not really
provide guidance to the search to find test inputs that are closer to
cover a specific test goal, as the number of executed control dependent
nodes is not enough to tell how close an input is to reach the desired
test goal. To overcome this issue, and to further improve the objective
function, the branch distance is used [21], which estimates a distance
for a given conditional statement to become true or false.

Miller et al. [115] presented a new approach to automatically gener-
ate test data using a GA and program dependence graphs. The idea
behind this approach is to select each path that leads to the desired
branch with the help of the program dependence graph, and then
collect all the constraints in the selected path. The GA is then applied
to generate test data that satisfy these constraints, and thus reach the
branch in the selected path. The approach has been compared to the
random testing and other approaches that only use GA, and showed
that it can generate potential tests that achieve high branch coverage.

In the case of object-oriented unit-test generation, the study con-
ducted by Tonella [164] introduced GAs to generate unit tests. In this
work, an individual is represented as a test case that is a sequence
of constructor and method invocations with input values and asser-
tion statements. Each branch in the class under test (CUT) is targeted
individually, and the GA generates test cases to cover the targeted
branches using the fitness function that evaluates the distance between
each test case and the targeted branch. Once the search terminates,
all the generated test cases are combined into a single test suite. This
approach may work well with small subjects, especially with feasible
branches, but it would not scale to large subjects with infeasible goals.
This is due to the fact that targeting a difficult or infeasible branch
makes the search less effective as most of its effort is wasted on this
type of branches. Also, the size of the resulting test suite may grow
tremendously when the number of branches in the CUT increases,
which is not desirable. The approach, however, is not fully automated
as assertions are inserted manually.

whole suite approach

To overcome the limitations in Tonella’s approach, Fraser and Ar-
curi [60] proposed the Whole Suite approach (WS) that optimises all
the test goals simultaneously instead of considering one test goal at
a time, and applies a single-objective GA (i.e., Monotonic GA) that
evolves individuals of test suites. Their approach is implemented in
their tool EvoSuite [59] that generates unit tests for Java programs.

The applied GA is described in Algorithm 1. As shown, the GA
starts by generating random test suites as an initial population (Line 3).
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Algorithm 1: The Monotonic GA applied in EvoSuite

1 Input: Population size n, Stopping criterion C, Crossover
probability cp, Mutation probability mp

2 Output: A best individual test suite T
3 P← GenerateRandomPopulation(n)
4 while ¬C do
5 Z ← Elitism(P)
6 while |Z| 6= |P| do
7 p1, p2 ← RankSelection(P)
8 o1, o2 ← Crossover(cp, p1, p2)
9 Mutation(mp, o1)

10 Mutation(mp, o2)
11 fp = GetMinimumFitness(p1, p2)
12 fo = GetMinimumFitness(o1, o2)
13 if fo ≤ fp then
14 Z ← Z ∪ {o1, o2}
15 else
16 Z ← Z ∪

{
p1, p2

}
17 end
18 end
19 P← Z
20 end
21 return T

Then, the evolution is performed over successive generations until a
desired solution is found or the allocated search budget (e.g., search
time or a number of generations) is consumed. In each iteration, the
population of the new generation is initialised with the best individ-
uals of the previous generation (Line 5). Following that, two parents
are selected from the current population using the rank selection
(Line 7) to generate new offspring using the two genetic operators.
The crossover is applied to the two parents based on a given proba-
bility to generate two offspring (Line 8). Then, the new offspring are
mutated according to some mutation probability (Line 9-10). After
that, both parents and offspring are evaluated (Line 11-12) to decide
which of the two will be added to the population of next generation
(Line 13-17).

To better understand this algorithm, its four key elements are de-
fined as follows:

Representation: A solution in the case of unit tests is represented
as a test suite τ which is a set of test cases (t1, t2, . . . , tn). Each test
case ti = 〈s1, s2, . . . , sn〉 is a sequence of calls sj on the CUT. That is,
each sj is an invocation of a constructor of the CUT, a method call
on an instance of the CUT, a call on a dependency class in order
to generate dependency objects, or it defines a primitive value (e.g.,
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number, string, etc.). As the ideal test suite size is not known a priori,
the number of tests in a test suite and the number of statements in a
test case is variable and can be changed by the search operators.

Fitness function: The fitness function used to guide the search is
based on code coverage. Various different criteria as well as combina-
tions of criteria have been previously proposed [139]. One of the most
common coverage criteria in practice is the branch coverage [60]. The
practical interpretation of this criterion is that, for each conditional
statement in the source code, there has to be at least one test case
where the condition evaluates to true, and at least one where it evalu-
ates to false. For each condition, it is possible to estimate a distance to
it becoming true or false; this branch distance [94] is the basis of many
coverage-based fitness functions. For example, when the if-condition
if(x == 42) is executed with x equal to 0, then the distance to the
condition evaluating to true is |42− x| = 42, whereas if x is 40, then
the distance is |42− x| = 2. If the condition evaluates to true, then
the distance is 0. Similarly, the distance to the condition evaluating to
false can be calculated. The overall fitness value of a test suite is the
sum of normalised branch distance values for all the branches B in
the CUT, so that a test suite with 100% branch coverage has a fitness
value of 0. In this case, the fitness function for a test suite T and a set
of branches B to minimise is:

f (T, B) = ∑
b∈B

d(T, b) (2.1)

where d(T, b) is the distance between the test suite T and an indi-
vidual branch b, which is defined as:

d(T, b) =



0 if branch b has been covered,

v(dmin(t ∈ T, b)) if the predicate has been

executed at least twice,

1 otherwise.

(2.2)

where v(x) is the normalization function and dmin(t ∈ T, b) is the
minimum distance from a test case t to a brach b.

Crossover: The crossover operator in the context of test suite opti-
mization works as follows: Given two parent test suites τ1 and τ2, a
random value x in the range (0, 1) is selected. The first offspring will
contain the first x× |τ1| tests from τ1, followed by the last (1− x)× |τ2|
tests from τ2. On the other hand, the second offspring will contain the
first x× |τ2| tests from τ2, followed by the last (1− x)× |τ1| tests from
τ1. As the size of individuals is variable, this operator ensures that
offspring do not grow larger than their parents during the crossover.

Mutation: When a test suite τ is mutated, then with a certain prob-
ability new test cases are inserted, and with a certain probability the
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existing test cases are modified. Each test in τ is mutated with prob-
ability 1

|τ| . When a test case is mutated, three operations are applied
in order: remove, change, and insert statements. Each statement in
a test t is deleted or edited with probability 1

|t| , whereas insertion is
applied repeatedly with a certain probability. A particular challenge
lies in ensuring that these operations maintain the syntactic validity
of the test cases. For example, inserting a method call requires all de-
pendency objects to instantiated before the location of the method call.
When dependency objects need to be created, this is typically done by
recursively inserting calls that create and modify these objects.

One major issue when generating unit tests is the length of tests, as
shown in Tonella’s approach. When the search progresses, and after
many generations, the length of the test cases becomes longer, which
consumes more memory and execution time. Therefore, controlling the
test length has been investigated and found to be useful in improving
the search performance [61]. Based on that, EvoSuite incorporates
the length of a test suite as a secondary objective such that a shorter
test suite is preferred over a test suite with a similar fitness but longer
length.

To improve upon the performance of the Whole Suite approach,
Rojas et al. [140] found out that keeping an archive of those goals that
are already covered along with their covering tests, and concentrating
the search effort on reaching those uncovered goals leads to better
coverage results. Their approach is known as archive-based WS Appraoch
(WSA).

many-objective sorting algorithm

Recently, Panichella et al. [126] proposed a novel many-objective GA to
generate JUnit tests, called Many-Objective Sorting Algorithm (MOSA)
that targets each test goal (e.g., a branch) as an independent objective
to be optimised. The motivation behind this approach is that (i) aggre-
gating multiple target goals into a single objective is detrimental to
the search efficiency, and (ii) considering a many-objective approach
is more efficient than a single-objective approach when solving a com-
plex problem [92] such as the branch coverage problem. As traditional
many-objective algorithms are not scalable to a large number of ob-
jectives [126], MOSA considers a different selection scheme known as
preference criterion that assigns a preference order to non-dominated
test cases. The preference criterion simply identifies a subset of test
cases that have the lowest fitness values for uncovered branches among
all non-dominated test cases. In addition, MOSA considers a second
population, called archive, that stores the best test cases that cover new
uncovered branches, which are used to form the final test suite.

MOSA, as shown in Algorithm 2, starts with an initial population
of randomly generated test cases (Line 4), and applies standard ge-
netic operators (Line 7). To generate the next generation, parents and
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Algorithm 2: Many-Objective Sorting Algorithm (MOSA)

1 Input: Population size n, Stopping criterion C
2 Output: An archive of best test cases T
3 t← 0 . current iteration

4 Pt ← GenerateRandomPopulation(n)
5 T ← GetArchive(Pt)
6 while ¬C do
7 Po ← GenerateOffspring(Pt)
8 Pu ← Pt ∪ Po

9 F ← PreferenceSorting(Pu)
10 r ← 0
11 Pt+1 ← {}
12 while |Pt+1|+ |Fr| ≤ n do
13 AssignCrowdingDistance(Fr)
14 Pt+1 ← Pt+1 ∪ Fr

15 r ← r + 1
16 end
17 CrowdingDistanceSort(Fr)
18 Pt+1 ← Pt+1 ∪ Fr . size n− Pt+1

19 T ← UpdateArchive(T, Pt)
20 t← t + 1
21 end
22 return T

offspring are combined (Line 8) and sorted using the preference cri-
terion and non-dominance relation (Line 9). The test cases that are
identified by the preference criterion (i.e., those that are the closest
to cover uncovered branches) are assigned rank 0, while the tradi-
tional non-dominated sorting used by NSGA-II is applied to rank
the remaining test cases into further fronts. Selection is then applied
based on the assigned ranks starting at the first front, until reaching
the population size n (Lines 12-16). When the number of selected test
cases exceeds the population size n, the individuals of the current
front Fr are sorted based on the crowding distance (Line 17) and only
those individuals with higher distance are selected. At the end of
each generation, MOSA updates an archive with test cases that cover
uncovered branches with the lowest possible length (Line 19).

Unlike the whole suite approach, MOSA evolves individuals of test
cases rather than test suites, and therefore the four key elements of
MOSA are defined as follows:

Representation: A solution that is represented as a test case τ con-
sists of a sequence of calls τ = 〈s1, s2, . . . , sn〉 on the CUT. That is, each
sj is an invocation of a constructor of the CUT, a method call on an
instance of the CUT, a call on a dependency class in order to generate
or modify dependency objects, or it defines a primitive value (e.g.,
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number, string, etc.). As the ideal test case size is not known a priori,
the number of statements in a test case is variable and can be changed
by the search operators.

Fitness function: In the many-objective representation of the unit
test generation problem, each branch in the CUT is considered as a
single objective to be optimised. In this case, the fitness function of a
branch bi is typically calculated as follows:

f (τ, bi) = al(bi, τ) + α(bd(bi, τ)) (2.3)

Here τ is an individual test case to be evaluated, bd is the branch
distance, α is a normalisation function that normalises the branch
distance in the range [0, 1] [14], and al is the approach level [174]. The
approach level is defined as the distance between the closest control
dependency of the target node executed by a test and the target node
in the control dependency graph. The branch distance for f (τ, bi) is
calculated for this control dependency. Therefore, the overall fitness
of an individual τ is a vector of n fitness values, called fitness vector,
such that:

f (τ) = < f1, f2, ...., fn > =


f (τ, b1)

...

f (τ, bn)

 (2.4)

where n is the number of branches in the CUT, and each value in
the fitness vector corresponds to a fitness value fi for a single branch
bi that is calculated using Equation 2.3. In this context, a test case x is
said to be better than a test case y if and only if x has a lower approach
level + branch distance for one or more branches, and not worse for
the rest of the branches.

Crossover: The common crossover operator in the context of test
case optimization works as follows: Given two parent test cases τ1

and τ2, a random value x in the range (0, 1) is selected. The first
offspring will contain the first x · |τ1| statements from τ1, followed
by the last (1 − x) · |τ2| statements from τ2. The second offspring
will contain the first x · |τ2| statements from τ2, followed by the last
(1− x) · |τ1| statements from τ1. As the size of individuals is not fixed,
this operator ensures that offspring do not grow larger than their
parents during crossover. Since there can be dependencies between
statements within a test, the crossover possibly needs to repair the
offspring to ensure validity, e.g., by generating additional statements
for missing dependencies.

Mutation: When a test case τ is mutated, each statement in τ is
deleted or edited with probability 1

|τ| , whereas insertion is applied
at a random position with probability σ; if a statement is added,
then another one is inserted with probability σ2, then with σ3, etc. A
challenge lies in ensuring that these operations maintain the syntactic
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validity of the statements, for example by recursively inserting calls
that create and modify dependency objects.

However, there might be a case where some targets (i.e., branches)
have a structural dependency on other targets such that the targets in
the former case can only be reached if and only if the targets in the
latter case are already satisfied. This case is not considered in MOSA,
as it only treats all targets as independent objectives to be optimised.
Therefore, the authors extended MOSA to dynamically select coverage
targets based on their control dependency, and named their approach
DynaMOSA [127]. The search, in the case of DynaMOSA, simply starts
by only selecting independent targets that have no dependency on
other targets. During the search, when any of these targets is covered,
then its uncovered control dependent targets are considered to be
optimised in the subsequent generations.

Another approach that uses a multi-objective GA to generate object-
oriented unit test cases is TestFul that was proposed by Baresi et al. [22].
The approach maximises the statement and branch coverage of the
CUT. It combines the GA with a hill climber to work at the class
and method levels. Unlike other search-based approaches, TestFul
considers the internal states of objects to explore the search space. In
other words, TestFul generates tests by deriving and reusing useful
state configurations and exploring these states to exercise the actual
behaviour and reach uncovered branches in CUT. When TestFul was
compared against other approaches that work on stateful systems
such as jAutoTest (a Java version of AutoTest [112]), Randoop [122],
and ETOC [164], TestFul was able to generate tests with higher branch
coverage.

The principle of SBST is not only restricted to the test data gener-
ation for object-oriented software, but also can be applied to other
types of test generation. For example, SBST is applied to automate
the testing of Android applications as in [7, 103, 106]. Also, it can be
applied to automatically generate tests for Graphical User Interfaces
(GUIs) such as EXSYST appraoch [72] that generate system test for the
GUIs of Java programs.

2.2.4 Test Oracle Problem

The purpose of generating test data is to detect faulty behaviours
of software under test. However, exercising the software with the
generated test data does not distinguish the correct behaviour from
potentially incorrect software behaviour without the use of test oracles.
Test oracles allow validating the functional correctness of software
under test by comparing the output of applying the generated test
data on the software with the expected output. In the case of object-
oriented unit tests, test oracles are typically assertions that must be
included in the generated test cases. However, the construction of test
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oracles can be a challenging task to the automation of test generation
because of the difficulty in determining the correct output for a given
test input. To construct an oracle, there must be a reliable source (e.g.,
formal specifications) that can be used to derive the expected software
behaviour which is compared to the actual behaviour when executing
test inputs. When no source is provided, the oracle construction be-
comes difficult and thus human must be involved to construct manual
oracles (i.e., check whether the observed behaviour is correct), which
makes it a time-consuming process. This is known as the test oracle
problem [24].

There have been several attempts to automate the generation of
test oracles [24, 146]. Test oracles can simply be generated based on
informal software specifications that describe how software should
behave, which can be analysed based on natural language analysis [8,
73]. They can also be generated using formal specifications such as
software environment constraints and functional properties that are ex-
pressed as logical expressions which must be satisfied by software [51].
Z language notations [52] and Abstract Machine Notations [1] are
other examples of formal specifications that can be used to derive test
oracles. However, the issue with this approach is that software speci-
fications are not always guaranteed to be available with all software
systems or they might be available but can be too abstract to be useful.

Another approach is to consider independent versions of the soft-
ware under test where various implementations of the software under
test are developed to apply the same functionalities [105]. One version
is known as the gold version that is a trusted version that results in
the correct software behaviour. These versions serve as test oracle
where they all run with the generated test inputs to check whether the
software under test results in similar behaviour to the other versions.
If all versions result in similar behaviour to the gold version, then the
behaviour of the software under test meets the expected behaviour.
Otherwise, the software contains faults that lead to undesired be-
haviour. However, this approach is very expensive that requires extra
efforts, especially with large and complicated software. To reduce the
cost of this approach, the M-Model program testing approach [105]
is proposed where only versions of specific functions to be tested are
implemented instead of implementing the whole software.

Besides the previously mentioned approaches, there are other ap-
proaches that consider Artificial Intelligence techniques to derive test
oracles based on simulating the correct software behaviour, for exam-
ple, by using the Info Fuzzy Network that is developed to represent
the functional requirements as a directed graph and determine the
set of input variables that relevant to the outputs [96]. Although these
approaches provide considerable improvements over the generation
of test oracles, constructing complete and accurate test oracles that
are capable of detecting faulty software behaviours is still a main
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challenge that affects the overall test automation. However, it should
be mentioned that the focus of this research thesis is only on the
generation of test data.

2.2.5 A Review of Existing Studies

As of yet, several GAs that generate unit tests for object-oriented
programs are introduced and discussed. There are several studies
that have systematically investigated their effectiveness in generating
potential unit tests. This was done by comparing their performance on
a reasonably large number of CUTs with a high number of branches.

Table 2.1 summarises the recent studies that investigate the influ-
ence of the state-of-the-art search algorithms on the generation of
object-oriented unit tests. To better understand their performance,
the algorithms are compared based on the reported results of branch
coverage they achieved using different stopping criteria and differ-
ent corpus of Java projects. Overall, MOSA and its extended version
(DynaMOSA) are superior to the other algorithms as they yield better
branch coverage, whereas the non-guided random search seems to
result in the lowest coverage although Shamshiri et al. [151] reported
that random search is more effective than the GA with a certain type
of branches.

Initially, Fraser and Arcuri [60] evaluated the Whole Suite (WS)
approach against the traditional Single Branch Strategy (SBS) [164]
using a large set of CUTs. The results of their evaluation show that the
WS approach is able to improve the branch coverage with 6%, as the
overall coverage with WS is 83% and SBS is 77%. Besides, the WS has
been shown to be effective in (i) generating smaller test suites than the
SBS approach, and (ii) reducing the effects of the infeasible branches
on the final coverage.

Later, Fraser and Arcuri [62] conducted a larger experiment to
confirm that the findings of their previous study can be generalised
to other Java programs. To do that, they empirically evaluated Evo-
Suite based on the WS approach using a corpus of 110 open-source
projects (i.e., 100 randomly selected and 10 most popular Java projects),
called SF110 corpus, that consists of more than 23,000 Java classes,
and more than 800,000 branches. The reason behind the selection of
such a high number of classes is to effectively demonstrate the influ-
ence of different software artefacts on the experimental results. As a
result, EvoSuite was found to be efficient with many CUTs, as the
achieved branch coverage was in the range of 20% to 67% per project
and average of 71% per class. However, the results revealed that soft-
ware systems with environmental dependencies (e.g., connecting to
networks or databases) have a negative impact on the branch coverage.

To further investigate the capability of the WS approach in gener-
ating potential unit tests, Rojas et al. [140] empirically studied the
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influence of the WS approach on coverage goals such as branch cov-
erage, line coverage, and weak mutation. More specifically, the aim
of their study was to (i) characterise which coverage goals are easy
to cover by either SBS approach or WS approach, and (ii) to analyse
the performance of WS approach when focusing the search for uncov-
ered goals only (i.e., considering an archive). Using a corpus of 100

Java classes, WS results in higher branch coverage (78%) than the SBS
(63%), i.e., WS is better on 1410 branches while SBS is better with 255

branches. However, using a test archive (WSA) leads to better results
when considering more complex CUTs as WSA is better with 6288

branches while WS is better with 4196 branches. For the other two
goals, the WS approach is able to cover more lines and mutants than
the SBS approach.

Besides the previously mentioned studies, Shamshiri et al. [150, 151]
conducted a study that shed light on the effectiveness of the GA and
the random search on the generation of unit test suites. The aim of
this study is to investigate the performance of two EAs: the GA using
the WSA approach and the Chemical Reaction Optimization (CRO)
algorithm (i.e., a metaheuristic algorithm inspired by the process of
the chemical reactions), and compare both algorithms to the random
search. The authors studied two versions of random search; the default
random search (Pure random), and random search that utilises seeds
obtained from the CUT (Random+). The four algorithms were em-
pirically evaluated using a subset of 975 classes including more than
26,000 branches. In general, the GA using WSA approach achieves
slightly higher branch coverage (69%) than CRO (68.87%), and both
algorithms result in better coverage than the two random search ver-
sions (68.76% with Pure random and 65% with Random+). For the
cases where CRO is significantly better than Random+, the GA mostly
outperforms the Random+, and in contrast, when CRO is worse than
Random+, both CRO and GA achieve a similar coverage which indi-
cates that both EAs have relatively similar performance. However, it
has been noticed that the GA and Random+ achieve the same coverage
level with a high number of CUTs (i.e., 648 CUTs), and also both CRO
and Random+ result in a similar coverage with 630 CUTs. One possible
reason behind that is such classes are mostly trivial and all algorithms
can easily achieve full branch coverage. Furthermore, as part of their
investigation, the authors analyse how different branch types affect
the performance of the algorithms where two groups of branches are
observed; gradient branches and plateau branches. The first group
includes branches that provide guidance to the search through the
branch distance such as comparing two integers, whereas the second
group includes branches that do not guide the search to the desired
input as not much distance information is given, for example, evaluat-
ing boolean predicates. Their findings confirm that the two EAs result
in higher coverage than Random+ with the gradient branches, while
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Random+ shows better performance with plateau branches than the
GA and CRO.

In the study presented by Panichella et al. [126] where MOSA was
proposed, the performance of WS was compared to the performance
of MOSA in a similar manner to how WS was previously evaluated, ex-
cept that only 64 Java classes are considered. Their experiment shows
that MOSA increases the branch coverage with 42 CUTs, while WS
increases the coverage with 9 CUTs. For the remaining 13 classes, the
two algorithms result in relatively similar branch coverage. However,
the authors reported that when both algorithms result in similar cov-
erage, MOSA reaches the coverage level faster than WS. This confirms
that the use of the many-objective algorithm is more effective than
using an aggregated single-objective algorithm.

When Panichella et al. [127] extended MOSA with a dynamic selec-
tion of coverage goals based on their dependency (DynaMOSA), they
assessed the performance of their approach with respect to MOSA and
WSA approaches using three coverage goals: branch, statement, and
strong mutation. In their empirical study, they considered a corpus
of 346 complex and non-trivial Java classes that mostly belong to the
SF110 benchmark. The complexity of the selected classes is intended
to ensure that their branches are not covered easily in the initial popu-
lation. The results of the study indicate that DynaMOSA shows better
performance in regard to branch coverage with 93 CUTs whereas WSA
is better than DynaMOSA on only 10 CUTs. Also, DynaMOSA out-
performs its preceding approach (MOSA) on 64 CUTs. However, the
authors investigated particular CUTs where no significant difference
in the coverage is observed between the three approaches, and found
out that DynaMOSA is able to converge to the coverage level in a
shorter time than MOSA and WSA, while MOSA is faster than WSA
in reaching such a coverage level. For example, the three approaches
result in a branch coverage of 96% for one specific CUT, but the ob-
served difference is that DynaMOSA reaches this coverage level in
less than 10 seconds of the search, while MOSA consumes nearly 30

seconds to converge to the same coverage level, and WSA consumes
almost 50 seconds until it reaches the same coverage level. In the case
of statement and mutation coverage, DynaMOSA is superior to the
other two approaches in achieving higher statement and mutation
coverage.

Later, Panichella et al. [128] conducted a thorough analysis of the
performance of the state-of-the-art single-objective and multi-objective
search algorithms. This includes the SBS, WSA, and LIPS (Linearly
Independent Path-based Search) as single-objective algorithms, and
MOSA, DynaMOSA, and MIO (many-objective local search) as multi-
objective algorithms. Using a corpus of 180 non-trivial classes with
more than 34,000 branches, the single-objective algorithms achieve
the lowest branch coverage when compared to the other algorithms.
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Overall, the achieved branch coverage is 52%, 50%, 40%, 48%, 48%,
and 21% with DynaMOSA, MOSA, LIPS, WSA, MIO, and SBS algo-
rithms, respectively. It is obvious that the multi-objective algorithms
are superior to the single-objective ones, more specifically the best
performance is achieved by DynaMOSA which confirms the finding
in the previous study [127]. In terms of efficiency, the single-objective
algorithms are not as efficient as the multi-objective algorithms where
the SBS takes a longer time to reach the maximum coverage within
the limited search budget. The only case where SBS becomes more
efficient than the alternative algorithms is when the branches of a CUT
can be covered easily by random individuals of the initial population.
This is because the initialization process is faster with SBS than with
the others, especially WSA as it evaluates test suites rather than test
cases. For the other two single-objective algorithms, LIPS becomes
more efficient than WSA when a CUT includes branches that are
easy to cover. In the case of multi-objective algorithms, DynaMOSA
produces better efficiency than MOSA and MIO as it reaches the max-
imum coverage faster than the other two algorithms. Moreover, it has
been observed that the multi-objective algorithms are more effective
and efficient than the single-objective ones when dealing with more
complex CUTs.

The analysis of single-objective and multi-objective algorithms in
the generation of unit tests has recently received further attention
from the study conducted by Campos et al. [34]. In this study, an
in-depth analysis is performed by considering more algorithms to be
evaluated (total of 13 algorithms), and optimising based on (i) a single-
criterion (i.e., branch coverage) and (ii) multi-criteria (i.e., line, branch,
exception, weak-mutation, output, method, method-no-exception, and
context-dependent branch coverage). Besides the algorithms inves-
tigated in the previously mentioned studies, the other algorithms
include variants of the standard GA (e.g., Monotonic GA, Steady State
GA, (1 + (λ, λ)) GA, etc.), and the random testing algorithm as well.
The authors carried out the empirical study on the corpus of 346

classes from the DynaMOSA study [127], and its findings are as fol-
lows: First, there is no one single-objective algorithm that is superior
to the others when either optimising single-criterion and multi-criteria.
Second, when comparing single-objective algorithms against random
search and random testing, the GAs are found to perform better than
both random approaches, and random search outperforms random
testing. Third, the DynaMOSA achieves higher coverage than the other
multi-objective algorithms with both single-criterion and multi-criteria
optimisation, and also has better performance than single-objective
algorithms and the random approaches. As the focus of this thesis is
optimising the branch coverage, we only show the coverage of algo-
rithms based on the single-criterion (i.e., branch coverage) in Table 2.1.
Although DynaMOSA and MOSA result in the highest branch cover-
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age (82%), the DynaMOSA outperforms MOSA with the multi-criteria
optimisation.

In summary, GAs are effective at generating tests that achieve high
code coverage in which they behave differently, depending on the com-
plexity of the classes and the types of the branches. It has been shown
that representing the branch coverage problem as a multi-objective
optimisation problem is promising to generate test data that increase
the branch coverage, especially with more complex CUTs. On the other
hand, the single-objective approach is, in many cases, not as effec-
tive as the multi-objective approach but still better than the random
search, in particular, the archive-based Whole Suite approach (WSA).
However, despite the effectiveness of these algorithms in generating
potential tests, there is no algorithm that is always capable of satisfy-
ing all coverage goals, as shown in the aforementioned studies. This,
in fact, raises the question as to what inhibits the search algorithm
from achieving high coverage. The next section discusses the possible
answers to this question.

2.2.5.1 Challenges and Limitations in GAs for Unit Testing

While investigating the performance of different GAs in the generation
of optimal test suites, several challenges arise that have detrimental
effects on the code coverage. One well-known challenge is the gener-
ation of complex parameter objects [64, 149]. There might be a case
where reaching a specific branch requires finding inputs for complex
data types, for example, a complex input string that constructs a con-
trol flow graph object or requires a certain sequence of calls. Another
challenge is the external method call problem [179] where invoking a
method to an external library either causes an exception to be thrown
or returns a value that is not guaranteed to cover the desired branch.
Despite the attempts made to overcome these challenges [63, 179], they
are still open challenges for the search algorithms.

Another encountered challenge is known as the flag problem [109]
that is caused by evaluating a branch predicate when involving a
boolean variable (called flag variable). The evaluation of such pred-
icate results in two values that represent two plateaux in the fitness
landscape, which in this case makes the search unguided and random
as no gradient is provided to guide the search to the true branch. As a
solution to this problem, the program transformation approach can
be used to remove flag variables from branch predicates by replacing
them with expressions that make them flag-free [78]. However, one
issue related to this approach is that the flag variables that are in loops
make it difficult to transform a program.

Moreover, the performance of the GAs can be affected by features
related to the software system as reported by Oliveira et al. [120].
Authors investigated whether different features of Java CUTs influence
the effectiveness of different GAs (i.e., Random testing, WSA, and



40 literature review

MOSA). As a result, they found out that the number of methods, the
coupling between object classes, and the response for a class have a
great impact on the performance, and more specifically the branch
coverage.

Although efforts have been made to mitigate these challenges and
improve the code coverage, there is still uncertainty about what causes
a low code coverage, especially with state-of-art algorithms. A crucial
issue when considering a GA to solve an optimisation problem is
that there is no indication of why the search fails to reach the desired
goal (i.e., finding test inputs that achieve high code coverage in our
case), which occurs because of the lack of understanding of the search
behaviour during the optimisation. Such an understanding can be
provided by investigating the underlying structure of the search space
and the influence of its features on the optimization process, and that
is by considering the fitness landscape analysis. Analysing the fitness
landscape helps in identifying the search properties that are related to
the problem difficulty [117].

However, the features of the underlying structure are not the only
factor that influences the search efficiency, but the search space may
not be well explored by the individuals of a population [44]. One
reason to why this occurs is the lack of diversity in the population,
which leads to a well-known issue known as premature convergence. If
the individuals of the search population all become homogeneous and
lack diversity, then the search may converge on a local optimum of
the objective function or even a non-optimal point. This reduces the
effectiveness of the GA, and in the case of search-based test generation,
premature convergence would imply a reduced code coverage.

In fact, maintaining the population diversity is particularly impor-
tant with a rugged fitness landscape (i.e., a landscape with many
optima) to avoid stagnation in local optimum. GAs tend to lose diver-
sity during the evolution, and in the case of a landscape with multiple
optima, it is not guaranteed to reach the global optimum (i.e., the
optimal solution among all possible solutions). Therefore, population
diversity is beneficial to ensure that all individuals are spread all over
the search space and thus explore all landscape optima [177].

As the focus of this thesis is on the investigation of the impact of
the fitness landscape and the population diversity on the generation
of unit tests, the two topics will be discussed thoroughly in the rest of
this chapter.
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2.3 fitness landscape analysis

A greater understanding of the behaviour of combinatorial optimiza-
tion algorithms comes from a thorough analysis of the underlying
topological structure of the search space. This topological structure
over which the search is being executed is known as the fitness land-
scape, a term that was first introduced by Sewall Wright [178]. More
formally, a fitness landscape (S, f , N) of a problem instance for a given
optimization problem consists of a set of genotypes S that repre-
sent the problem solutions, a fitness function f : S → R that maps
each genotype to a numerical fitness value, and a genetic operator N
that defines the neighbourhood relationship between the genotypes
(i.e., assigning a set of neighbours to each solution). Given a specific
landscape structure, an optimization algorithm can be thought of as
navigating this structure in order to find optimal or near-optimal
solutions.

The structure of a fitness landscape is completely defined by several
landscape features [104] that could influence the performance of the
search algorithm. Studying the features of the fitness landscape (also
known as landscape properties) allows assessing the problem difficulty
by investigating the relationship between the landscape features and
the algorithm behaviour. This, in fact, provides insights on which
landscape features have an effect on the algorithm performance, and
the suitability of the algorithm to solve a given optimisation problem.
However, these features are associated with the optima in terms of their
number, size, and distribution across the landscape. For example, the
modality is one feature that evaluates the number of optima and their
density in the search space. A fitness landscape with a single optimum
(i.e., unimodal landscape) is easy to search in which a deterministic
hill climbing algorithm is suitable, whereas a landscape with many
optima (i.e., multimodal landscape) is more challenging. Looking at
the frequency of optima in the landscape is not always an indicator of
problem hardness, as Horn and Goldberg [83] reported that there is a
case where a multimodal landscape with many local optima is easier
to search than the unimodal one.

Unlike the modality, ruggedness and neutrality provide more infor-
mation about the landscape, and have an explicit impact on the ability
of the optimization algorithm at finding optimal solutions [65].

2.3.1 Ruggedness

Ruggedness is an important feature of the fitness landscape that
contributes to the problem hardness. A fitness landscape is said to be
rugged if the landscape contains multiple local optima surrounded by
deep valleys and an isolated global optimum. In a rugged landscape,
the neighbouring solutions are less correlated as the difference in their



42 literature review

fitness values is high. In this case, the search for an optimal solution
is thought to become harder as the algorithm might get trapped in
local optima and result in sub-optimal solutions. Ruggedness can
be analyzed based on different types of landscape walks [133], i.e.,
randomized explorations of the search space. Among these walks is
the random walk, which is a very efficient way to represent the structure
of the fitness landscape, regardless of the starting point [175].

random walk

A random walk is a mathematical formalization that describes a path
of successive random steps on a mathematical space. The walk in
such space is unbiased as it moves in a direction that is independent
of other directions explored previously. The random walk was first
introduced in 1905 by Karl Pearson [130], and has been applied in
various scientific disciplines as a fundamental approach to describe
the behaviour of the applied stochastic processes.

In the case of combinatorial optimisation problems, the random
walk starts at a randomly initialized solution in the landscape and
then arbitrarily moves to a neighbouring solution using the genetic
operator N. After that, the same process is repeated at each step of the
walk (i.e., moving randomly from one solution to its neighbour) until
a required number of steps is reached. As a result, a sequence of M
fitness values is obtained when the random walk terminates where
M corresponds to the number of steps. Several studies show that the
random walk is effective to be used with statistical measures that
analyse the features of the fitness landscape [104, 175], i.e., statistical
fitness landscape analysis metrics rely on the outcomes of the random
walk to analyse the landscape features.

2.3.2 Neutrality

Ruggedness alone is not enough to measure the search difficulty if
equilibrium periods dominate the process of evolution. Such periods
result in a set of neighbouring genotypes that have the same fitness
value. The presence of these periods in a landscape defines the concept
of neutrality [136]. A neutral fitness landscape can be depicted by a
landscape with plateaus. A plateau in the landscape can be described
as a flat terrain where all neighbouring solutions are of equal fitness.
In this case, the mutation in a neutral fitness landscape produces
much more movements in genotype space with no effects on fitness.
A solution x is said to be a neutral neighbour of a solution y if
f (x) = f (y). The existence of neutral areas in a landscape can be
detrimental to the search as no gradients are provided to the search
to follow, which possibly makes the search stagnates. In contrast,
neutrality can be beneficial as it can help in escaping from nearly local
optimal solutions. In order to obtain a comprehensive picture of a
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Algorithm 3: The pseudocode of neutral walk

1 x0 ← GetInitialRandomSolution

2 neutral_solutions← x0

3 α← GetNeighbour(x0)
4 θ ← φ

5 while α 6= θ do
6 if f (x0) = f (α) then
7 neutral_solutions← append(α)
8 α← GetNeighbour(α)
9 else

10 α← θ

11 end
12 end
13 return neutral_solutions

neutral landscape, a neutral walk can be used, which is a variation of
a random walk that remains within a neutral area.

neutral walk

Algorithm 3 demonstrates how a neutral walk is applied. Similar to
the random walk, a neutral walk starts with an initial random solution
(Line 1). Then, a genetic operator is applied on the initial solution in
order to find its neighbour (Line 3). If the fitness of the neighbouring
solution is similar to the fitness of the initial solution (Line 6), the
neighbouring solution is considered as a neutral neighbour of the
initial one and thus can be appended to the sequence of neutral
neighbouring solutions of the neutral walk (Line 7). This is repeated
by finding the neighbour of each newly generated neutral neighbour
(Line 8) until no more neutral neighbours can be found.

2.3.3 Fitness Landscape Measurements

The sequence of fitness values that are obtained from a landscape
walk can be used to analyse the structure of the fitness landscape.
Based on that, different statistical measures have been proposed [133]
to measure both ruggedness and neutrality:

2.3.3.1 Measure 1: Autocorrelation

A well-known measure of ruggedness is the autocorrelation function
that was introduced by Edward Weinberger [175]. Autocorrelation
(AC) is applied to the sequence of fitness values that are obtained
from the random walk to measure the correlation between the fitness
of each two individuals that are i steps away. A low value of AC results
from less similar fitness values, which indicates a rugged landscape.
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In contrast, more similar fitness values result in a high AC value and,
in this case, neutral areas seem to dominate much of the landscape.
The AC is calculated as follows:

r(s) =
∑N−s

i=1 ( fi − f )( fi+s − f )

∑N
i=1( fi − f )2

(2.5)

where N is the total number of the individuals of the random walk,
s is the step size, fi is the fitness of the ith individual, and f is the
mean fitness of all the individuals. The resulting value is in the range
of −1 to 1 where the landscape is more rugged when the AC value is
close to −1.
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(b) A smooth development of fitness val-
ues

Figure 2.4: Two examples of different fitness values resulted from a random
walk of six steps

To illustrate how the AC is applied on a series of fitness values
that are obtained by the random walk, consider the two examples
of random walks that are shown in Figure 2.4. Looking at the case
shown in Figure 2.4a, it indicates a rugged landscape as the fitness
values are more fluctuated. This is confirmed by the AC function that
returns a value of -0.83, which is very close to -1. On the other hand,
the landscape in the case shown in Figure 2.4b is flatter as many of the
individuals of the random walk result in similar fitness values, which
indicate the presence of plateaus. In this case, the resulted value of the
AC is 0.65 that can be interpreted as many neutral areas dominate the
landscape.

2.3.3.2 Measure 2: Neutrality Distance

The Neutrality Distance (ND) is one measure of neutrality in a land-
scape. It measures the number of neutral steps made at the start of
the walk as it continues only within a neutral area trying to con-
tinuously increase the distance to the starting individual. More for-
mally, for a walk x1, x2, . . . , ND is the largest t such that f (x1) =

f (x2) = · · · = f (xt). For example, consider the following two se-
quences of fitness values that are obtained by a walk on two dif-
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ferent landscapes: S1 =
{

ft
}7

t=0 = {0.3, 0.3, 0.3, 0.2, 0.2, 0.7, 0.7} and

S2 =
{

ft
}7

t=0 = {0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.4}. The output of calculat-
ing the ND with the first sequence S1 is 3 as the first 3 individuals
in the walk are considered as neutral neighbors since they result in a
similar fitness. On the other hand, the ND in the case of the second
sequence S2 is 6. The interpretation of the two results is that the land-
scape of S2 seems to be dominated by neutral paths according to the
result of ND.

2.3.3.3 Measure 3: Neutrality Volume

The Neutrality Volume (NV) is another measure of neutrality based
on the number of neighbouring areas of individuals with equal fitness
during the random walk. This measure provides more information
about the neutrality in the landscape as it estimates the size of neutral
areas in the landscape. For example, the NV of the sequence of fitness
values

{
ft
}7

t=0 = {0.3, 0.3, 0.3, 0.2, 0.2, 0.7, 0.7} is 3 as there are 3 areas

of equal fitness with values 0.3, 0.2, and 0.7. The NV of
{

ft
}7

t=0 =

{0.3, 0.3, 0.1, 0.2, 0.2, 0.7, 0.4} is 5. The interpretation of the two cases
is that the landscape in the first example is expected to be flatter than
of the second example as more of the fitness values are equal.

Besides these measures, additional measures to gain further infor-
mation about the structure of the landscape have been proposed [171]
based on information analysis. These measures, known as information-
based measures, depend on the sequence of the fitness values that are
obtained from the random walk. However, instead of directly using
the fitness values of the random walk, the following steps are applied:

Step 1: The sequence of fitness values
{

ft
}n

t=1 is first transformed into a
series of fitness changes:

∆
{

ft
}n

t=1 :=
{

ft − ft−1
}n

t=2 (2.6)

Step 2: The series of fitness changes is represented as an ensemble of
objects that can be defined as a string S(ε) = s1, s2, . . . , sn of
symbols si ∈

{
1̄, 0, 1

}
given by:

si =


1̄, if x < −ε

0, if |x| ≤ ε

1, if x > ε

(2.7)

where x corresponds to each of the fitness changes that are
resulted from equation 2.6. The parameter ε is a real number
that is taken from the interval [0, ln], where ln is the length of
the interval of the fitness values that are obtained by the random
walk.
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To illustrate how the last two steps are applied, consider the follow-
ing sequence of fitness values [171]

{
ft
}5

t=0 = {0, 0.01, 0.05, 0.2, 0.21, 0.9}.
The ε value should be in the interval [0, 0.9]. Assuming ε = 0.01, the
string S(ε) resulting from Step 2 is {01101}. Then, the obtained string
S(ε) is further analysed by applying the following measures:

2.3.3.4 Measure 4: Information content

The Information content (IC) is designed to capture the variety of
shapes in the string S(ε) in order to analyse the ruggedness of the
landscape. It is an entropy measure of the number of consecutive
symbols that are not equal in the string S(ε). It can be calculated using
the formula:

H(ε) = − ∑
p 6=q

P[pq] log6 P[pq] (2.8)

The probabilities P[pq] are frequencies of the possible blocks pq of

elements from the set
{

1̄, 0, 1
}

, and are defined as:

P[pq] =
n[pq]

n
(2.9)

where n[pq] is the number of occurrences of each pq in the string

S(ε). The value of H(ε) increases with an increase in the number of
peaks in the landscape (i.e., a rugged landscape), and, in contrast,
it decreases when plateaus dominate the landscape. Applying this
measure on the example shown earlier, the only possible sub-blocks
of the string symbols are 01 and 10 since the symbol 1̄ is not shown
in the string S(0.01). In this case, the probabilities are P[01] = 2/5
and P[10] = 2/5. Note that the first number in the string S(ε) is
considered as the last string as well since the string is taken with
periodic boundary conditions. The result of H(ε) is approximately
0.4091, which indicates that the landscape path is not entirely rugged.

2.3.3.5 Measure 5: Partial Information content

The purpose of the Partial Information Content (PIC) measure is to
analyse the modality of the landscape by filtering the string S(ε) into
S′(ε) removing all zeros and all symbols that equal their preceding
symbol. In this case, the new string S′(ε) has the form

{
1̄, 1, 1̄, . . .

}
.

The PIC can then be calculated as:

M(ε) =
µ

n
(2.10)

where µ is the length of the string S′(ε) and n is the length of the
string S(ε). If the landscape path is maximally multimodal, M(ε) is 1

as the string S′(ε) is identical to S(ε) (i.e., S(ε) cannot be modified).
In contrast, the landscape path is flat when the M(ε) is 0 as there
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are no slopes in the landscape path. When the PIC is applied on the
example above, the M(0.01) = 1/5, which implies that the landscape
is partially flat.

2.3.3.6 Measure 6: Density-basin Information

In contrast to the IC measure, Density-basin Information (DBI) mea-
sure estimates the variety of flat areas in the landscape. It captures
the information of smooth points by only considering the equal con-
secutive symbols in the string S(ε). In this context, the only possible
sub-blocks of the string symbols are 00, 11, 1̄1̄, and the entropic mea-
sure is defined as:

h(ε) = − ∑
p=q

P[pp] log3 P[pp] (2.11)

Therefore, a high value of h(ε) indicates a low density of peaks in
the landscape, and thus that the landscape structure is dominated by
flat areas.

2.3.4 Fitness Landscape Analysis in Test Generation

There have been several studies that attempt to investigate the fitness
landscape in the domain of SBST in order to understand how the
landscape features affect the success of search algorithms in generating
potential test inputs.

An early study that implicitly studied the fitness landscape of struc-
tural testing was conducted by McMinn [109] where he investigated
the fitness landscape of different objective functions, and identified
certain problems that lead to the existence of plateaus in the landscape.
More specifically, analysing the fitness landscape of different objective
functions that target the branch coverage demonstrates that the objec-
tive function that considers the number of executed control-dependent
nodes results in more plateaus in the objective fitness landscape. This
occurs because such an objective function does not give guidance to
the search, especially when diverging away from the target node, as
no distance information is provided. When the branch distance is in-
corporated into the objective function, the formation of many plateaus
in the landscape is prevented.

However, a plateau can be introduced in the landscape when the
branch predicate involves a boolean variable (i.e., flag variable), as
mentioned in section 2.2.5.1. To illustrate the flag problem, consider
the example shown in Listing 2.5 where covering the true branch is
only achieved when the flag is true. In this case, when x is set to any
other value than zero, the flag will always be false, and the fitness
value will be higher than zero (i.e., minimised objective function). This,
in fact, results in large plateaus in the fitness landscape, as shown in
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Figure 2.5: The fitness landscape of the objective function when applied on
the flag example

Figure 2.5, since the objective function does not provide guidance to
the search as to how far the true value is from current false value.

boolean flag = (x == 0);

if(flag)

output = 0;

else

output = x * y;

Listing 2.5: Flag problem example

There are many approaches that have been proposed to overcome
the flag problem such as using a program transformation [78] and
extracting the sequence of nodes that must be executed to reach the
branch predicate containing the flag [20]. Despite their success in
showing better performance when dealing with the flag problem, they
are not always capable for solving this problem (e.g., when the flag
variable is involved in a loop).

In a very related study, Aleti et al. [6] investigated the fitness land-
scape in the whole test suite generation (WSA), and study how the
two genetic operators (i.e., crossover and mutation) influence the test
generation. In this study, the properties of the fitness landscape were
analysed using information acquired during the evolution, such as the
sequence of fitness values of the best individuals and the number of fit-
ness improvements, and then correlated with the resulting branch and
method coverage of two versions of the GA; a GA with the mutation
only and a GA with both crossover and mutation. The study results
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suggest that the fitness landscape is dominated by plateaus that are
detrimental to the search, and using crossover in such a landscape is
not beneficial as it fails to escape local optima. An important finding
is that adding a test case to the individual test suite that does not lead
to better coverage induces a plateau in the landscape. On the other
hand, adding a test case that improves the coverage might conflict
with an existing test case, which negatively affects the individual test
suite and results in a local optimum. It was also observed that many
iterations of the search explore the flat areas in the landscape, which
thus worsens the search efficiency.

Recently, Vogel, Tran, and Grunske [172] studied the fitness land-
scape of test suite generation for mobile applications using a multi-
objective evolutionary search algorithm known as Sapienz. Their
fitness landscape analysis focuses on the global topology of the land-
scape, i.e., how individuals are distributed over the search space, and
not on local structure, i.e., ruggedness and neutrality. The analysis
is based on 11 metrics that characterize the Pareto-optimal solutions,
population, and connectedness of Pareto-optimal solutions with re-
spect to the genotypic similarity among all individuals. These metrics
are applied after every generation of the algorithm, revealing that the
search convergences because of the lack of diversity. This is observed
when the search after a few generations (i.e., almost 25 generations)
becomes unable to find new non-dominated individuals that dom-
inate existing local non-dominated ones. Also, the search stagnates
because of the duplicity of solutions in the population that leads to
the loss of genetic variation among the individuals. Most importantly,
the distribution of Pareto-optimal solutions over the search space is
another reason of low population diversity, as these solutions tend to
group in one cluster in the search space and are not spread in many
areas of the space. This, in fact, led the authors to extend their study
to investigate the problem of population diversity.

However, the study conducted in [172] showed that the search stag-
nates after almost 25 generations, which is observed when running
Sapienz with a limited number of apps (i.e., 10 apps), few repetitions
(i.e., 20 repetitions), and a limited number of generations (i.e., 10 gen-
erations was used only to experiment Sapienz when enabling diversity
promotion). This motivated the authors to extend their study [173]
in order to gain a thorough understanding of the fitness landscape
by considering extra apps under test (i.e., 34 apps), a high number
of repetitions (i.e., 30 repetitions), and performing the search over 40

generations. Using the same 11 metrics in the previous study with the
new configurations, the results still confirm that the search stagnates
after nearly 25 generations.
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2.4 population diversity in evolutionary algorithms

Despite the success of Evolutionary Algorithms (EAs) in solving com-
plex optimisation problems, they still suffer from a well-known prob-
lem known as premature convergence. This problem occurs when
the search prematurely converges to local optima because of the lack
of population diversity. Maintaining population diversity during the
evolution of EAs is crucial for avoiding premature convergence [107].
The term "diversity" refers to the variety in a population based on
the differences at the genotype (i.e. structural) or phenotype (i.e. be-
havioural) levels. The term genotype refers to genetic characteristics of
an organism (individual) while the phenotype refers to the observable
characteristics in individuals (e.g., the fitness value of an individual).
The relationship between genotype and phenotype can be seen as
any change in organism’s genes (genotype) will cause an observable
change in the observable characteristics of the organism (phenotype).
Population diversity has been seen as an important research topic in
the area of EAs, because of its impact on the EA performance [44, 159].
In general, the genetic search is motivated when the individuals of a
population are more diverse. A diverse population is also beneficial
during the exploration phase to avoid premature convergence and
to escape local optima, and thus ensure that the search space is ad-
equately explored. The rest of this section covers different diversity
measures, maintenance, and control techniques.

2.4.1 Population Diversity Measurement

Population diversity measures are intended to quantify the variety
of a population’s individuals based on structural (i.e., syntactic) or
behavioural (i.e., semantic) levels. These levels differ among different
domains [29], e.g., the structure of an individual in the case of Genetic
Programming (GP) is not similar to the one with other EAs. One
important benefit of considering diversity measures is to understand
the behaviour of an EA during the evolution, especially when any
of the diversity control techniques is applied. Moreover, diversity
measures can be used to guide the search in EAs; an example is
the Diversity-Control-Oriented Genetic Algorithm [152] that uses a
diversity measure based on Hamming distance to calculate a survival
probability for the individuals. The selection in this algorithm is based
on the survival probability; the low distance between an individual
and the current best individual leads to a low survival probability of
this individual, and vice versa. In contrast, Burke et al. [29] showed
that diversity measures do not always improve the search process as
there is not always a positive correlation between diversity measures
and improving the fitness in GP.
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In general, there are three different levels of diversity measure-
ment [44]: Genotype level, Phenotype level, and Composite measures.
The genotypic diversity measures the structural (i.e., syntactic) differ-
ences among the individuals of a population. In contrast, the pheno-
typic diversity is based on the behavioural (i.e., semantic) differences
in the population’s individuals. Finally, composite measures are a
combination of genotypic and phenotypic measures. However, the per-
formance of the genotype-based and phenotype-based measures is not
always consistent. Their performance varies when they are applied to
different types of problems [166]. In fact, phenotype-based measures
are found to be more promising than the genotype-based measures.
For example, Tsutsui et al. [166] noticed that their phenotypic measure
maintained a proper balance in the exploration and exploitation of dif-
ferent populations, and showed better performance than the genotypic
measure. In GP, Burke et al. [29] showed that the phenotype-based
measure is easier and less costly than the genotype-based measure.

However, several diversity measures have been proposed in the
literature for different EAs problems [30, 44, 80] and classified into the
following two categories:

2.4.1.1 Phenotype Measures

The phenotypic diversity measures aim to measure the differences
between individuals of a population based on their behaviour, which
in practice is measured based on the fitness value of each individual
in the population; the diversity rate is based on the spread of fitness
values [80]. A well-known fitness-based measure is the entropy mea-
sure, first proposed by Rosca [142]. The entropy represents the amount
of disorder in a population, where an increase in entropy leads to an
increase in diversity in the population. Rosca defines diversity based
on the entropy as follows:

E(P) = −∑
k

pk · log pk (2.12)

where the population P is partitioned according to the fitness value
which will result in a proportion of the population pk that is occupied
by the partition k.

However, behaviour can also be measured without the need to con-
sider the fitness values. For example, in GP the phenotypic diversity
can be measured based on the observed behaviour of the individuals
that are represented as programs when they are executed during the
evolution [84]. Another example can be seen in the Diversity-Guided
EA that was proposed by Ursem [168], which utilises a semantic
measure to alternate between the exploration and exploitation. The
measure considers the distance of each individual in the population
to the average point of the population.
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2.4.1.2 Genotype Measures

In contrast to phenotypic diversity measures, genotype-based mea-
sures attempt to measure the structural differences between individ-
uals of a population. Counting different genotypes is one way to
measure the structural differences [44]. For example, Koza [95] con-
sidered the number of different programs in a GP (i.e., a program
is represented as syntactic tree) as a structural difference among the
individuals. Angeline et al. [12] extended the previous approach to
consider the variety of subtrees by counting unique subtrees to mea-
sure the diversity. Another way to measure the genotypic diversity
is to measure the differences between two individuals based on an
edit distance [80]. When this measure is applied to GAs, the distance
between two individuals is measured by how many bits are needed
to transform one individual to another (i.e. Hamming distance can
be used here). In the case of GPs, the representation of individuals
(e.g. trees and graphs) is more complicated than GAs. Therefore, pre-
vious studies attempted to use different distance-based measures to
calculate the genotypic diversity [80]. For example, O’Reilly [119] used
Levenshtein distance to measure the amount of syntactic differences
between two trees based on the shortest cost sequence of three op-
erations (i.e. single node insertions, deletions and substitutions) to
transform two trees to be equal in their structure and content. De Jong
et al. [46] also used a similar edit distance in a multiobjective method
that calculates the syntactic distance between two trees as the sum of
the distance of the corresponding nodes. The corresponding nodes are
the nodes in both trees that are in the common area when they are
aligned.

As mentioned previously, the diversity measures can be used to
guide the evolutionary search as they provide feedback to improve the
search. However, there are several diversity techniques that utilise the
provided feedback to guide the evolution process, which are known
as diversity control techniques. Also, there exist other techniques that do
not rely on the feedback provided by the diversity measures, and only
maintain a proper level of diversity during the search that are known
as diversity maintenance techniques [44].

2.4.2 Population Diversity Maintenance Techniques

Many diversity maintenance techniques have been proposed in the
past for different EAs [54]. A recent survey by Črepinšek et al. [44]
classified these techniques into two categories: niching techniques
and non-niching techniques. Niching techniques aim at maintaining
enough diversity in the population and reducing the effects of genetic
drift by segmenting the population into subpopulations to locate
multiple optimal solutions. Non-niching techniques maintain diversity
without the need to maintain sub-populations, for example, increasing
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population size, changing selection pressure, or applying replacement
restrictions. Both niching and non-niching techniques are capable of
preserving diversity in a population.

2.4.2.1 Niching Techniques

In this section, two well-known niching techniques, i.e., Fitness Sharing
and Clearing, are presented:

fitness sharing

Fitness sharing is the most popular approach among the niching
techniques [144] and theoretical studies have proven it to be effective
on pseudo-Boolean benchmark problems [121]. It aims to find multiple
peaks in the solution space, where each subpopulation around a peak
represents a niche where individuals share the same resource (i.e.,
fitness value). The idea behind fitness sharing is to decrease the value
of the resource that is shared by the individuals of a niche when
the number of individuals is high, and increase it when there are
few individuals in a niche, which gives these individuals a higher
probability to be selected for next generations. The shared fitness of
each individual is calculated as follows:

f
′
i =

fi

mi
(2.13)

where mi is the niche count which is the number of individuals that
share the fitness fi. The niche count mi is calculated by summing the
sharing function (sh) for all the individuals in the population

mi =
µ

∑
j=1

sh(dij) (2.14)

where µ represents the population size and dij is the distance be-
tween individual i and individual j (e.g. Euclidean distance [144]).
The sh measures the distance between each two individuals in the
population as follows:

sh(dij) =

1− (dij/σs)α, d < σs

0, otherwise
(2.15)

where σs is the peak radius (i.e., sharing radius) and α is the param-
eter that regulates the form of the sharing function, commonly equal
to 1.

clearing

Clearing is similar to fitness sharing, except that it shares the available
resources among the best individuals of each subpopulation rather
than among all individuals of a subpopulation. That is, it keeps the
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fitness of the best individuals (i.e., dominants) in each subpopulation
as they are, and the fitness of the other individuals is cleared (e.g., set
to zero) when maximising. The dominants take all rather than sharing
resources with the other individuals of the same niche as is done in the
sharing method. This technique is found to be promising for solving
challenging multimodal functions [43] and, in addition, it outperforms
fitness sharing in dealing with genetic drift [132]. In recent empirical
work [42] it outperformed other diversity mechanisms and it was the
only mechanism found able to tunnel through fitness valleys.

2.4.2.2 Non-Niching Techniques

There are different non-niching techniques that are used to promote
population diversity during evolution. Among these techniques are
the following:

increasing population size

One simple technique is to increase the population size to allow for
more new individuals that more likely enhance the diversity level.
Despite its simplicity, increasing the population size is not always
guaranteed to maintain the diversity [111].

infusion approach

New individuals are randomly generated and inserted after a certain
number of generations. One simple approach that is used by Grefen-
stette [71] is to seed the population with new randomly generated
individuals every generation. Koza [95] presented an infusion tech-
nique, called decimation, where a high proportion of a population is
replaced by new random individuals at regular intervals. However,
there are infusion approaches that do not insert new random indi-
viduals, for example, the concept opposition that was introduced by
Rahnamayan et al. [135] where the opposite individuals of the current
individuals are inserted rather than inserting new random individuals.

duplicate elimination

The purpose of this technique is to remove the similarity between
individuals of the population, which has been shown to enhance
population diversity and GA performance [35, 141]. Two individuals
are considered similar when their distance to each other is zero. To
ensure enough diversity in the population, the eliminated individual
is either mutated [107] or replaced with a new generated individual.

diverse initial population

The initial population is known to have an impact on convergence [102,
165], and its diversity can potentially enhance the performance of the
GA [50]. The initial population is diversified by generating a popula-
tion of random individuals with size m larger than the intended pop-
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ulation size n, and then selecting the most distant n individuals from
the population of m individuals based on a diversity measure [172].

2.4.3 Population Diversity Control Techniques

As mentioned earlier, the diversity control techniques rely on the
feedback that is provided by the population diversity measures to
steer the evolution towards better exploration and exploitation of
the search space. Population diversity can be controlled through the
selection and the two genetic operators (i.e. crossover and mutation).

An early attempt to adapt the diversity control through selection is
the selection criterion in the Diversity-Control-Oriented Genetic Algo-
rithm (DCGA) [153]. It depends on measuring the distance between
an individual and the best individual to determine the selection prob-
ability for this particular individual (i.e., an individual with higher
distance is preferable). Later, Chaiyaratana et al. [35] extended the
DCGA to include a fitness-based measure to the selection criterion. In
this case, an individual has a higher selection probability if its fitness
is high enough and has a higher structural difference from the best
individual.

Healthy population diversity (HPD) is another approach that is
presented in the work of McGinley et al. [108], which is a measure
of the diversity of healthy (high-fitness) individuals in a population
that is used to control the diversity. This measure is used to adaptively
control the selection pressure through adapting the tournament size
(i.e. the tournament size is increased to promote the survival probabil-
ities of the fittest individuals). The selection, in this case, is based on
the healthy diversity contribution and the fitness of each individual.

Adaptively changing mutation and crossover rates [44, 131] based
on the diversity level is thought to help to avoid convergence to a local
optimum. The idea is to set the crossover and mutation rates based
on a current diversity level. One simple approach that is applied by
Whitley and Starkweather [176] is to adaptively change the mutation
rate according to the genotypic measure of Hamming distance between
individuals to preserve the population diversity.

Srinivas and Patnaik [156] presented a customised GA, known as
Adaptive Genetic Algorithm, that adapts the crossover and mutation
rates depending on the diversity level that is based on the difference in
fitness values of the individuals. In this case, the crossover and muta-
tion rates are increased when the population converges to local optima
and, on the other hand, rates are decreased when the population is
scattered within the search space.

Another approach that utilises the fitness values to dynamically
adapt the two rates is applied by Vasconcelos et al. [170]. Their diver-
sity measure is calculated as the ratio between the mean and maximum
values of the fitness for each generation, which results in a value in the
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range [0,1]. When the resulted value is one, most of the individuals
tend to have the same genetic structure (i.e. low diverse individuals)
and, consequently, the GA converges too quickly. In this case, the mu-
tation rate is increased to allow for more exploration and the crossover
rate is decreased. In contrast, when the diversity is high, the crossover
rate is increased to allow for more exploitation and the mutation rate
is decreased.

Using a diversity measure such as fitness entropy measure is also
used to control the two genetic operator rates, as with the adaptive
genetic algorithm with diversity-guided mutation [100]. This algorithm
combines adaptive probabilities of crossover and mutation, which
shows better performance with multimodal test functions, and was
found to be capable of avoiding premature convergence.

Another recent approach that dynamically controls crossover and
mutation rates based on a phenotypic measure that utilizes the Eu-
clidean distance is proposed by McGinley et al. [108]. Here the crossover
rate is increased when diversity is high to allow for more exploitation,
whereas the mutation rate is increased when diversity is low to allow
for more exploration. This approach demonstrates that the dynamic
control of the two operators leads to better search performance, and
maintain a proper level of diversity is beneficial to the search as well.

The aforementioned techniques work towards achieving a proper
level of population diversity when the target is a single objective
to be optimised. However, in the case of multi-objective optimisa-
tion, diversity techniques are applied to achieve a well-distributed
tradeoff front. For example, the Multi-Objective Genetic Algorithm
(MOGA) [57] applies fitness sharing on the population of individuals
in every generation. Similarly, fitness sharing is also considered in
the Non-dominated Sorting Genetic Algorithm (NSGA) [157] but is
applied to each front’s individuals rather than the whole population.
To overcome the issue of the user-defined sharing parameter in fitness
sharing, NSGA-II [49] replaces fitness sharing with the crowding dis-
tance approach that provides an estimate of the density of individuals
that are in the boundaries of a specific individual (i.e., how close an
individual to others in the same front).

Although these multi-objective GAs apply the diversity techniques
implicitly for the purpose of maintaining diversity during evolution,
there are other algorithms that consider diversity as an explicit objec-
tive to be optimised. For example, the Genetic Diversity Evaluation
Method (GeDEM) [163] uses a distance-based diversity to be consid-
ered as an objective during the optimisation process. GeDEM considers
a two-objective non-dominated sorting to rank individuals that are
based on the rank with respect to the objective function values and
the assigned diversity values. The diversity is measured based on
Euclidean distance in the objective function space and the Hamming
distance in the string space.
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2.4.4 Population Diversity in Test Generation

The topic of diversity in EAs has been extensively investigated with
different domains, as shown in the previous sections. In the context of
test generation, there have been several studies on generating diverse
test cases [147]. Some of these studies aim for the tests within the
final test suite to be diverse, rather than the individuals in the search
population. The rest of this section presents different studies that
investigate the population diversity in the domain of test generation.

Feldt et al. [56] presented test diversity metrics to find diverse and
meaningful tests to human software developers. The metrics depend
on a theoretical model for test variability (VAT) with points of vari-
ations (i.e., aspects on which two tests might differ). One metric is
the Universal test diversity that measures the diversity based on infor-
mation distance between each two test cases; information about the
actual execution of a test for all the variation points in the VAT model.
The second metric measures the diversity based on the Normalized
Compression Distance (i.e., depending on test information) between
tests. The authors conducted an initial experiment to evaluate the
second metric against human subjects to cluster 25 Ruby test cases
and fount that the metric is able to provide better clustering of test
cases in a way that is intuitive to humans.

Kifetew et al. [88] aim to control the diversity of the generated tests
by considering the orthogonal exploration mechanism of the search
space, which is the estimation of the evolution directions via Singular
Value Decomposition (SVD). Evolution directions help in guiding the
evolution towards promising directions (i.e. directions that best indi-
viduals follow) and exploring new regions in the search space. Based
on that, they presented three different schemes of SVD-based GA;
one scheme considers the history of populations encountered during
evolution, another scheme considers a random direction instead of an
orthogonal direction when the search gets stuck in a local optimum,
and the combination of the last two schemes is presented as a separate
scheme. When evaluating the three schemes against the basic GA with
a variety of Java classes, the three schemes are more effective (i.e.,
achieve better coverage) and more efficient (i.e., consume less search
time) than the basic GA, and the best among the three schemes is the
combined application of the first two schemes.

Bueno et al. [28] proposed a new test data generation technique,
called Diversity Oriented Test Data Generation, that attempts to gen-
erate diverse test sets by considering GA, Simulated Annealing, and
a proposed metaheuristic called Simulated Repulsion. The later ap-
proach generates test data by "simulating particle systems subject
to electrical repulsion forces". The diversity measure that is applied
considers the distance (i.e., Euclidean distance) among the test data in
the program input domain to compute the diversity for test sets. To
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evaluate their technique, they performed a Monte Carlo simulation to
assess how the test set size and failure rate affect the effectiveness of
the proposed technique. In addition, they evaluated the coverage and
mutation scores that are achieved by the technique. The evaluation
has been conducted using the three metaheuristics against random
testing and, as a result, the proposed technique with the Simulated
Repulsion improves the coverage in most cases.

Recently, Palomba et al. [124] presented a study to measure the
textual similarity between test cases for the purpose of reducing the
test coupling (i.e., higher diversity) and increasing the test cohesion
(i.e., lower test length). To achieve that, they proposed two quality
metrics to detect cohesion and coupling issues at the test case level; the
first is the coupling between test methods and the other is the lack of
cohesion of a test method. Both metrics rely on Information Retrieval
methods to measure test cohesion and test coupling. The two metrics
have been incorporated into the MOSA algorithm within the selection
mechanism as a secondary objective. When they experimented MOSA
including the two metrics against the default MOSA and the default
strategy in EvoSuite (i.e., WSA), they found that the proposed metrics
are able to improve the branch coverage and reduce the size of tests.
More importantly, the generated test cases using the two metrics are
more cohesive and less coupled.

In the study presented by Shahbazi et al. [148], the fitness function
in a multiobjective GA is modified to be based on the diversity of
black-box string test cases. The fitness function, in this case, measures
the diversity of a test set as the distance between every test case and
its nearest test case (i.e., higher fitness value indicates more diverse
test cases). The authors examined different string distance functions
such as Levenshtein, Hamming, Cosine, Manhattan, Cartesian, and
LSH distance functions. They found that the LSH distance function
performs better in measuring the string distance between test cases.
However, when comparing the performance of the considered GA
(i.e., with diversity-based fitness function) against the random testing,
the former is found to be promising in increasing the diversity of test
cases, which is indicated by its performance in producing effective
tests that increase the fault detection ability.

When Vogel et al. [172] studied the fitness landscape of test suite
generation for mobile applications, the analysis of the fitness land-
scape indicates that the search converges after few generations, and
thus the loss of population diversity occurs. Therefore, they extended
the study to examine the behaviour of the considered multiobjective
GA when promoting population diversity during the evolution. To
do that, they incorporate four approaches into the algorithm. The
first approach is the Diverse Initial Population that is applied at the
initialisation. The second is the adaptive diversity control that aims
to control the generation of offspring based on the current diversity
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level such that (i) if the diversity level drops below a certain diversity
threshold, new individuals are generated as offspring and only most
distant individuals are selected from the combination of population
and offspring, whereas (ii) the offspring is obtained using the default
crossover and mutation operators when the diversity level is higher
than the threshold. To overcome the issue of solutions duplicate iden-
tified by the landscape analysis, the Duplicate Elimination approach
is applied after reproduction and before selection. In addition, the
selection is extended to make the diverse individuals are preferable to
be selected. However, the diversity is measured based on the average
of pairwise genotypic distances between all the individuals.

The diversity-enabled version of their GA (Sapienz
div) is evaluated

in terms of the achieved coverage and the faults found, and as a result,
promoting diversity does not have an effect on coverage, but it finds
more faults. Moreover, increasing diversity is found to have a negative
impact on the length of tests (i.e., longer test sequences). In terms
of efficiency, the diversity-based GA (Sapienz

div) leads to an extra
runtime when compared to the standard GA (Sapienz). These findings
are confirmed by the extended empirical study [173] where longer
runs of search (i.e., 40 generations) are given in order to investigate
the impact of Sapienz

div on the obtained results when the Sapienz

search stagnates.

2.5 summary

This chapter gave a literature review of the research topics studied in
this thesis. The focus of the review was on the automation of software
testing, and, more specifically, the test data generation problem. We
reviewed the existing approaches for the automated test generation,
and showed how such approaches achieve the testing goals. As the
Search-Based Software Testing (SBST) approach demonstrates better
performance in terms of branch coverage, we thoroughly reviewed
the existing Single-Objective and Multi-Objective Genetic Algorithms
(GAs) that are applied to generate test data for object-oriented pro-
grams, and discussed their performance with a different corpus of Java
classes. Despite the success of these algorithms in generating potential
tests that achieve high branch coverage, there are still cases where
they do not perform well, and thus does not always generate test data
that achieve full branch coverage. Therefore, we shed the light on the
challenges and limitations of the use of GAs from a practical point of
view (e.g., the problem of complex parameter objects generation), and
from a theoretical point of view as well (e.g., the features of the fitness
landscape and the population diversity problem).

As the focus of this thesis is to understand the search behaviour
when optimising unit tests, we dedicated the rest of this chapter to the
main two topics that have a great influence on the search behaviour;
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fitness landscape analysis and population diversity. We first intro-
duced the fitness landscape and its the two features of the landscape
(i.e., ruggedness and neutrality). Then, we presented possible measure-
ments of these two features, and how they affect the search. After that,
we provided an overview of the population diversity problem, and
showed how maintaining enough diversity level during the evolution
is beneficial to the search. For that, we looked at several diversity
measurements and diversity promoting mechanisms.

Although much research has been performed examining the impact
of the fitness landscape features and the population diversity problem
on test generation, they received little attention in the domain of
object-oriented unit test generation, and there remain open questions
that need further research. For instance, how do the two features of
fitness landscape influence the search ability in finding test data that
achieves full branch coverage, especially with fine-grained objective
function on a branch level? How do the underlying properties of the
Java source code affect the landscape features? When considering the
state-of-the-art algorithms to generate unit tests, what effect does the
population diversity have on the search performance? How effective
are diversity maintenance and control techniques when applied during
the evolution?

In order to answer these fundamental questions, we conducted two
main empirical studies that aim to (i) investigate the causes and effects
of fitness landscape features in unit test generation, and (ii) investigate
the evolution of unit tests and whether maintaining the population
diversity during the search has an influence on the performance of
GAs. Both studies are presented in the following chapters; the study
of the fitness landscape is shown in Chapter 3 and the study of
population diversity is shown in Chapter 4.



3
C AU S E S A N D E F F E C T S O F F I T N E S S L A N D S C A P E S
I N U N I T T E S T G E N E R AT I O N

The content of this chapter is based on work undertaken dur-
ing this PhD by the author, which has been published at The
Genetic and Evolutionary Computation Conference (GECCO)
2020 [4]. The work presented in this chapter extends the pub-
lished work with an extra experiment on WSA along with its
results (Section 3.2).

3.1 introduction

As discussed in the previous chapter, Genetic Algorithms (GAs) have
been successfully applied for generating object-oriented unit tests,
and several studies [34, 62, 128] have shown that GAs are effective
at generating tests that achieve high code coverage. However, they
are still far from being able to satisfy all test goals (e.g., covering all
branches) [34, 149]. While some general limitations are known (e.g.,
the challenges of generating complex parameter objects [64, 149]),
there is a lack of understanding of the search behaviour during the
optimisation, making it difficult to identify the factors that make a
search problem difficult.

In theory, GAs usually behave differently with different optimisation
problems and their behaviour cannot be understood by only looking
at their performance (i.e., the final branch coverage in our case), as
the algorithm performance is not enough to give insights into how it
behaves during the search and what makes it difficult with a given
problem. The reason behind that is each optimisation problem has fea-
tures that influence the behaviour of a GA and its performance. In this
case, the GA performance does not advance our understanding and
knowledge of how such features affect its hehaviour [82]. Therefore,
there is a need for a deep understanding of the optimisation problem
features and their impact on the search behaviour. Such an under-
standing can be provided by investigating the underlying structure of
the search space and the influence of its features on the optimisation
process.

The concept of the fitness landscape is among the most commonly
used metaphors to give an intuitive understanding of the search space
structure and help in predicting search behaviour with different search
problems. Analyzing the fitness landscape helps in identifying the
properties that are related to the problem difficulty [6]. The two main

61
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properties of fitness landscapes that are known to have a great influ-
ence on the optimisation process are ruggedness and neutrality [104].
The interplay of these properties has motivated the development of
several techniques that study the structure of fitness landscapes.

The aim of this chapter is to analyse the fitness landscape and
to investigate the impact of its properties on the generation of unit
tests. More specifically, we study the influence of the two landscape
properties, ruggedness and neutrality, on unit test generation. To gain
a better understanding of the influence the fitness landscape on the
generation of unit tests, we consider the two well-known approaches
in our domain that are the archive-based Whole Suite approach (WSA)
and the Many-Objective Sorting Algorithm (MOSA). In particular,
we analyse the fitness landscape with the objective function that is
defined for WSA (i.e., aggregating multiple target goals into a single
objective) to gain insights of what makes it less effective to the search
when compared to the fine-grained objective function on a branch
level, which is defined for MOSA. Also, we intend to investigate
whether the representation of individuals influences the properties of
the search landscape; an individual of a test suite with WSA and a
single test case with MOSA. Moreover, we extend our investigation to
understand what underlying properties of source code that influence
the fitness landscape features.

Fitness landscape analysis uses different proxy measurements to
gather evidence on these properties, usually by analyzing the way
fitness values change while randomly walking across the search space.
In this chapter, we apply the six most common such measurements,
defined in Section 2.3.3, to investigate random walks on a selection
of 331 Java classes. By contrasting the resulting metrics with the
performance of a GA on generating tests for these problem instances,
we can identify how they affect the search, and what aspects of the
underlying source code causes these properties.

Our experiments suggest that the landscape structure is mostly
dominated by neutral areas, i.e., plateaus, which makes it harder for
the search to find test inputs. Although ruggedness is often considered
a negative property of the fitness landscape, in the case of unit test gen-
eration and the scale of ruggedness observed there, we find that higher
ruggedness is an indicator of more informative landscapes, resulting
in better performance of the search. A closer look at the causes of neu-
trality suggests that influential factors are (1) whether the target code
is contained in private methods, for which there is no direct guidance
provided by the fitness function; (2) whether the code has precondi-
tions that are difficult to satisfy and cause exceptions when violated;
and (3) the prevalence of boolean flags, which provide no guidance
to the search. This suggests that the search could be improved by
enhancing the existing fitness functions to consider inter-procedural
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distance information, by addressing the problem of generating valid
complex objects, and by applying testability transformations.

Our findings conform to the findings of Aleti et al. [6], more specifi-
cally the fact that the search space has many plateaus that are detri-
mental to the search. However, we considered a more fine-grained
objective function on a branch level, rather than aggregating all the
branches into a single objective function. Moreover, our study investi-
gates the factors that cause the fitness landscape properties such as
the underlying properties of the source code.

As the study of the fitness landscape is conducted on two different
approaches, the investigation of the fitness landscape when consider-
ing the WSA approach is presented in Section 3.2, while the investi-
gation of the fitness landscape when considering MOSA is presented
in Section 3.3. In both sections, we describe the experimental setup
and procedure followed to conduct the experiment. Then, we present
and discuss the experimental results and the answers to the research
questions. To better understand the impact of both approaches on the
fitness landscape, we compare and present an overall discussion of the
results in the previous two sections in Section 3.4. Finally, we provide
a detailed analysis of the underlying properties of source code that
influence the fitness landscape properties in Section 3.5.

3.2 fitness landscape analysis with the whole suite ap-
proach

The purpose of this study is to analyse how unit test generation using
WSA approach is influenced by the fitness landscape. This requires
investigating the landscape properties (i.e., ruggedness and neutrality)
when the GA considers this specific approach, and then examining
how these properties affect the search performance (i.e., the final
coverage). Therefore, we design the study to answer the following
research questions:

RQ 1.1: What are the properties of the fitness landscape for the JUnit test
generation problem when considering the WSA?

RQ 1.2: How do the fitness landscape properties affect the search be-
haviour when the GA considers the WSA?

Our assumption is that the underlying landscape structure is dom-
inated by plateaus, as confirmed by the findings of Aleti et al. [6],
since mutating an individual of a test suite is expected to result in few
changes in fitness values during the random walk, which indicates
the existence of plateaus in the landscape. A landscape that highly
dominated by plateaus is expected to have a negative effect on the GA
search as plateaus do not offer enough guidance to the search to find
better test inputs in the search space [109].
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3.2.1 Experimental Setup

3.2.1.1 Selection of Classes Under Test

Choosing a diverse set of classes is important in studying the prop-
erties of the fitness landscape since the features of Java classes might
have an impact on the landscape properties. Therefore, we used the
selection of 346 complex and non-trivial classes from the DynaMOSA
study [127] where the complexity of classes ranges from 2 to 7939

branches. The complexity of the selected classes is intended to ensure
that their branches are not covered easily in the initial population.

3.2.1.2 Unit Test Generation Tool

Among the popular tools that generate tests for Java programs using
an evolutionary algorithm is EvoSuite [59]. It generates JUnit test
suites for a given Java CUT and target coverage criterion using dif-
ferent evolutionary algorithms, with the MOSA algorithm, described
in Section 21, being the most effective algorithm for JUnit test gen-
eration [34, 128]. By default, EvoSuite applies a Monotonic GA that
considers the archive-based WS approach (WSA), as described in
Section 2.2.3.6.

3.2.1.3 Experiment Procedure

To better understand the influence of the fitness landscape properties
on the generation of JUnit tests, we conducted an experiment that in-
volves (i) applying random walks on each CUT, and then (ii) applying
all the six fitness landscape measures (described in Section 2.3.3) on
the sequence of fitness values obtained by the landscape walks. To per-
form a walk on a landscape, we applied the corresponding mutation
operator in order to move from one landscape point to another where
each point in a landscape corresponds to one step of the walk.

In order to perform the experiment, we implemented and run ran-
dom walk in EvoSuite. We also ran the Monotonic GA in order to
compare its performance against the fitness landscape measures. To
minimise the influence of other optimizations, we used a "vanilla"
configuration [59] and default settings [16] with only branch coverage
as target criterion. The search stopping criterion was set to be a one
minute timeout, which is EvoSuite’s default search budget. As a re-
quired step to run a random walk, we consider the most commonly
used number of random walk steps in the literature, which is 1000 [23].
We ran EvoSuite 30 times on each class in order to account for the
randomness of the algorithm under consideration and the landscape
walk.

Running this experiment on the corpus of 346 classes resulted in
data for only 331 classes. This is due to the environmental dependen-
cies of 8 classes that are difficult to fulfil by EvoSuite, and the search
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timeout was reached for 7 classes because of constraints that cannot
be solved within a specific time [62].

3.2.1.4 Experiment Analysis

RQ1.1 Analysis: Applying a landscape walk of m steps on a class
X is defined as a sequence x1, x2, . . . such that xi+1 is the outcome
of a mutation applied to xi where an initial individual x1 is created
randomly by applying the insertion mutation repeatedly until the
fixed number of test cases is reached (i.e., 100 test cases). In this case,
the final outcome of the walk consists of m fitness values, which are
used by each landscape measure to analyse the properties of the fitness
landscape. To answer RQ1, we consider the distribution of the average
values per each measure (i.e., the average of values resulting from 30

runs) across all the classes.
RQ1.2 Analysis: The impact of fitness landscape properties on the
search behaviour can be understood by analysing the correlation
between the search performance and the landscape measures. The
search performance is usually measured in terms of the resulting
branch coverage where a high coverage indicates better performance
and vice versa. Therefore, we apply the Spearman correlation on both
branch coverage and each of the landscape measures for every single
run of a class.

3.2.2 Threats to Validity

To control threats of the stochastic behaviour of both techniques, i.e.,
Monotonic GA and a random walk, we repeated the experiment 30

times. Although we used a selection of 331 complex classes with
a diverse number of branches, which was also used by previous
studies [127], our results may not generalize to other classes. The
search budget used in running Monotonic GA is based on EvoSuite’s
default search budget of one minute, which is examined previously to
assess the performance of Monotonic GA [34]. We chose EvoSuite as a
test generation tool as it is the most effective and state of the art JUnit
generation tool [125] although the results may not generalise to other
coverage-driven test generation tools.

In regards to the random walk, choosing the number of steps of a
random walk as 1000 is common practice [23]. It should be noted that
a high number of random walk steps (i.e., > 1000) has been tested
and, as a result, there is no difference in the obtained results when
compared to the random walk of 1000 steps. Since the random walk is
performed based on the mutation operator defined in EvoSuite, the
outcomes of the random walk may vary when considering different
mutation probabilities (i.e., insert, change, and remove test cases/state-
ments probabilities) or even considering a different mutation operator.
To investigate the impact of the fitness landscape properties on the
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test generation, we considered the branch coverage as a proxy mea-
surement of the quality of the generated tests, however, it is likely that
results would not be similar when considering different coverage crite-
ria. Since the objective function influences the landscape structure, any
further improvements upon the current objective function might lead
to change in the obtained results. Furthermore, the results reported in
this study are thoroughly dependent on the six statistical landscape
measurements, described in Section 2.3.3, which are sufficient and
very effective in analysing the structure of the fitness landscape. How-
ever, the obtained results in this study may not generalise to other
landscape measurements although we believe other measurements
will most likely confirm our findings.

3.2.3 Experimental Results

This section presents the results of the conducted experiments and
discusses the answers to the two research questions.

3.2.3.1 RQ1.1 — What are the properties of the fitness landscape for the
JUnit test generation problem when considering the WSA?

As our investigation of the fitness landscape properties relies on
the performed random walk on each CUT, we first demonstrate the
results of applying a random walk on Java classes by showing various
examples of random walk runs with some classes.
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Figure 3.1: Three different runs of a random walk performed on three classes
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Figure 3.2: Results of the six fitness landscape measures applied on the 331

classes with the WS approach

Figure 3.1 shows three different runs of a random walk for three
classes where each run represents the change in the fitness within
1000 steps of a random walk. We observe that the fitness trajectory
of each random walk for each class is unlike the fitness trajectories
with the other classes. In fact, this is the case when a random walk
is applied on the same class several times (i.e., applying the random
walk on one class more than once will most likely not result in a
similar fitness trajectory). This can be interpreted as every random
walk explores a different path in the landscape, which certainly results
in a different sequence of fitness values except on a flat landscape.
Therefore, applying multiple random walks (e.g., 30 runs) on every
single class possibly gives an indication of the landscape properties.

The series of fitness values that are obtained by the random walk
are analysed using the six landscape measures, and their results are
shown in Figure 3.2. In general, all the measures indicate that the
fitness landscape is mostly dominated by plateaus (i.e., flat areas
dominate most of the landscape structure). First, the AC measure with
most of the classes results in values that are higher than 0.9, which
is interpreted as highly correlated fitness values of the random walk,
and thus indicate a flat landscape.

In the case of neutrality measures, the ND measure shows that
nearly the first 45% of the random walk steps are all neutral steps (i.e.,
the median is nearly 45%), which supports the evidence that plateaus
dominate the landscape. Looking at the NV measure, we clearly see
that there is a small number of neighbouring areas of individuals
with equal fitness during the random walk, i.e., NV ≈ 3, which is
interpreted as the landscape is highly dominated by plateaus since a
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Figure 3.3: Four classes with runs that result in low AC values

low number of neighbouring areas of neutral individuals indicates the
existence of plateaus in a landscape.

For the information-based measures, the IC measure is designed
to analyse the ruggedness of the landscape where a value close to 1

indicates an increase in the number of peaks in the landscape, i.e.,
a rugged landscape. Our results show that the IC with most of our
classes is almost 0.01, which means that the landscape in our scenario
has a few peaks, and thus many flat areas. This is also confirmed by
the PIC measure that estimates the modality in a landscape where
a high PIC value is a result of a multimodal landscape, i.e., a high
number of optima, whereas a landscape with many plateaus results in
a low PIC value. In our case, the results reveal that the PIC values with
many classes are lower than 0.005, which indicates that the landscape
is highly dominated by plateaus and has few slopes. In contrast to
IC and PIC, the DBI measure that analyses the variety of flat areas
in the landscape where the density of peaks in the landscape is low
and the flat areas are more prominent when the DBI is high, i.e., close
to 1. The results of DBI measure in our scenario confirm the results of
the other measures as the landscape seems to be dominated with flat
areas as most of the classes result in DBI higher than 0.95.

Although the fitness landscape of a large number of classes is
dominated by plateaus, several classes seemed to point to the existence
of rugged areas in their fitness landscape. This can be seen with the
classes where the landscape measures result in lower values such as
the case with the AC (< 0.8), and higher values such as the case with
the IC (> 0.3). Figure 3.3 shows an example of four classes with runs
that result in low AC values. It is obvious that a high number of runs
with the four classes achieve high AC values, i.e., AC > 0.95, and very
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Figure 3.4: The Spearman correlation of branch coverage with each of the six
measures for all the 331 classes with . The correlation coefficient
of branch coverage and AC is -0.16, ND is -0.14, NV is 0.25, IC is
0.16, PIC is 0.16, and DBI is -0.17

few runs that result in AC values < 0.85. This, in fact, indicates that
the landscape is still flat with these classes, and these few runs with
slightly low AC values do not confirm that the landscape structure is
highly dominated by rugged areas.

RQ 1.1: Neutrality seems to dominate much of the fitness landscape for
most of the classes, although there are some exceptions of few runs that

indicate the presence of rugged areas in the fitness landscapes.

3.2.3.2 RQ1.2 — How do the fitness landscape properties affect the search
behaviour when the GA considers the WSA?

In order to understand the impact of the fitness landscape properties
on the test generation, we investigate the Spearman correlation of the
branch coverage and each of the landscape measures, as shown in
Figure 3.4. Each hexagon represents a set of runs of different classes in
which the hexagon density increases with an increase in the number
of runs in the same hexagon.

There is always a significant correlation between the branch coverage
and each of the measures with p-value < 0.001, but the difference lies
in the strength of the correlation (i.e., the correlation coefficient). The
strongest correlation, although it is a weak correlation, is observed
between the branch coverage and NV (0.25) where a high coverage
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value corresponds to a slightly high NV value. A high NV value means
that there are more neighbouring areas of neutral individuals in the
landscape, and thus few flat areas in the landscape. Based on that, and
the correlation of branch coverage and NV, there is a slight possibility
that the branch coverage increases with the increase of the number
of neighbouring areas of neutral individuals in the landscape (i.e.,
classes with high branch coverage tend to have slightly higher degrees
of neutrality in the landscape structure).

Looking at the correlation of the branch coverage and IC (0.16), a
high branch coverage value corresponds to a slightly high IC value.
Since a high IC value indicates a large number of peaks in the land-
scape, this suggests there is a possibility that a landscape with more
rugged areas and few plateaus makes it easier for the search to cover
branches. This is also shown in the correlation between the branch
coverage and PIC (0.16) where a high branch coverage value somewhat
corresponds to a high PIC value. Based on this correlation, the branch
coverage possibly increases with a multimodal landscape as a high
PIC value indicates a high landscape modality.

A negative correlation can be seen with the AC, ND, and DBI where
a high branch coverage corresponds to low measure value. In the case
of AC, the negative correlation between the branch coverage and AC
(−0.16) suggests there is a slight possibility that the branch coverage
increases with a rugged landscape, i.e., a landscape of less correlated
fitness values. The correlation of branch coverage and ND (−0.14)
shows that a large neutrality distance (that is, long sequences of neutral
steps in the random walk) might make it difficult to improve the
branch coverage. This also can be seen with the correlation of branch
coverage and DBI (−0.17) where a high branch coverage slightly
corresponds to a low DBI value. According to the definition of DBI, a
low DBI value is an indicator of a high density of peaks and few flat
areas in the landscape. Then, the negative correlation between branch
coverage and DBI suggests that it is possible that branches can be
covered easily with a more rugged landscape.

RQ 1.2: Neutrality seems to have a negative effect on the GA performance,
while ruggedness does not seem to decrease the GA performance.

3.3 fitness landscape analysis with the many-objective

sorting algorithm

In this section, we present the study of how unit test generation
using MOSA is influenced by the fitness landscape. We investigate
the two landscape properties (i.e., ruggedness and neutrality) when
considering the objective function that is used by MOSA, and analyse
their impact on the search performance. Similar to the study from the
previous section, we design the study to answer the following research
questions:
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Table 3.1: An example of applying the random walk of 6 steps on a class
with 5 branches

Step b1 b2 b3 b4 b5

1 1.5 0.99304409 0.5 0.9375 0.2235

2 1.5 0.99304409 0.5 0.9315 0.2233

3 1.4 0.99304261 0.4 0.9315 0.2229

4 1.4 0.99304261 0.4 0.9363 0.2229

5 1.4 0.99304409 0.5 0.9363 0.2229

6 1.5 0.99304409 0.5 0.9315 0.2225

RQ 2.1: What are the properties of the fitness landscape for the JUnit
test generation problem when considering the objective function
used by MOSA?

RQ 2.2: How do the fitness landscape properties affect search behaviour
when considering the objective function used by MOSA?

Similar to our assumption shown in Section 3.2, the landscape
structure is still expected to be dominated by plateaus but they are not
as large as with the WSA approach (i.e., MOSA’s objective function
reduces the neutrality degree in the landscape) since mutating an
individual of a test case is expected to result in more changes in fitness
values than with an individual of a test suite. The existence of plateaus
in the fitness landscape is still anticipated to be detrimental to the GA
search (i.e., reducing code coverage).

3.3.1 Experimental Setup

In this study, we consider a similar set of classes under test to those
mentioned in Section 3.2.1.1 where the complexity of the non-trivial
classes ranges from 2 to 7939 branches. We also used the EvoSuite

tool as a unit test generation tool that is described in Section 3.2.1.2.
The experiment procedure that we followed in this study is similar to
the procedure described in Section 3.2.1.3 except that we ran MOSA
instead of Monotonic GA to compare its performance against the
fitness landscape measures. However, the experimental analysis in
this study differs from the analysis in Section 3.2.1.4 as the objective
function under consideration in this study is of a multiobjective form
(i.e., each branch is considered as a single objective function), which is
explained in the next section.
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3.3.1.1 Experiment Analysis

RQ2.1 Analysis: Given a class X with n branches, a landscape walk
of m steps on X is defined as a sequence x1, x2, . . . such that xi+1 is
the outcome of a mutation applied to xi where an initial individual
x1 is created randomly by applying the insertion mutation repeatedly.
For each step in the walk, there will be n fitness values as there
are n branches in the CUT. Table 3.1 contains an example random
walk of 6 steps on a class with 5 branches, resulting in 5 fitness
values for each step. Each of the landscape measures is applied to the
sequence of 6 fitness values for each branch. For example, applying
the AC measure on the sequence of fitness values results in 0.1668
for branch 1, 0.166415 for branch 2, 1.667 for branch 3, −0.20905 for
branch 4, and 0.3064 for branch 5. To answer RQ1, we consider the
distribution of these values across all branches.
RQ2.2 Analysis: In order to understand the influence of the landscape
properties on the search behaviour, we want to understand how it
affects the ability of the GA to cover the branches. While the overall
performance of the search is usually measured in terms of the resulting
branch coverage, we need to consider individual branches, where the
outcome is dichotomous (i.e., either the branch is covered, or it is
not). We define a Success Rate (SR) for MOSA for each branch as the
fraction of runs in which MOSA covers the branch at least once. For
example, if we run MOSA five times and in two cases branch bi is
covered by the resulting test suite, then the SR equals 2/5 = 0.4.
However, correlating the SR value for one branch with the m values
of a landscape measure of that specific branch requires the use of an
appropriate measure of central tendency such as the average of the m
values. This results in a single value of the landscape measure that can
be correlated with the SR value. For example, consider the following
results of the AC measure with the two branches where each of the
five results represents the AC value of a single run of random walk:
b1 → {0.90, 0.92, 0.84, 0.89, 0.90} and b2 → {0.84, 0.90, 0.76, 0.56, 0.97}.
In this case, the average of the five runs for each branch is correlated
with the SR value of that branch: b1 → {SR : 0.2, AC : 0.89} and
b2 → {SR : 1, AC : 0.81}.

3.3.2 Threats to Validity

Controlling the threats to the internal and external validity is similar
to Section 3.2.2 except that the considered GA in this study is MOSA
instead of Monotonic GA.
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Figure 3.5: Results of the six fitness landscape measures applied on the
branches of the 331 classes

3.3.3 Experimental Results

In this section, we present the results of the conducted experiments
and discuss the answers to the two research questions.

3.3.3.1 RQ2.1 — What are the properties of the fitness landscape for the JU-
nit test generation problem when considering the objective function
used by MOSA?

The results of applying the six fitness landscape measures on the series
of fitness values obtained by the random walk are shown in Figure 3.5.
In general, all the measures indicate that the fitness landscape is mostly
dominated by plateaus, i.e., that the landscape is flat. Looking at the
results of the AC measure, the AC values for most of the branches
are higher than 0.6, which is interpreted as highly correlated fitness
values of the random walk, and thus indicate a flat landscape.

The ND measure indicates that, on average, the first 20% steps of
the random walk are all neutral steps, which is strong evidence of
plateaus in the landscape. The NV measure indicates a small number
of neighbouring areas of individuals with equal fitness during the
random walk with most of the branches, i.e., the median of NV is ≈ 5,
which also indicates a landscape with flat areas.

For the information-based measures, the IC measure is meant to
characterize the ruggedness of the landscape where a value close
to 1 indicates a large number of peaks in the landscape, i.e., a rugged
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landscape. Our results show that the IC with many branches is close to
0.1. This indicates a landscape with a low number of peaks, and thus
many flat areas. The PIC measure is an estimate of modality in the
landscape where PIC = 0 when the landscape is flat and has no slopes,
whereas PIC = 1 when the landscape is maximally multimodal, i.e.,
the number of optima is high. Our results reveal that the PIC values
with most of the branches are lower than 0.04, indicating that the
landscape is mostly flat and has few slopes. In contrast, the DBI
measure estimates the variety of flat areas where the density of peaks
in the landscape is low and the flat areas are more prominent when
the DBI is high, i.e., close to 1. Our results show that most of the
branches result in DBI higher than 0.9, indicating a landscape with a
low density of peaks.

Although the fitness landscape of a large number of branches is
dominated by plateaus, several branches seemed to point to the exis-
tence of rugged areas in their fitness landscape. This can be seen with
the branches where the landscape measures result in lower values
such as the case with the AC (< 0.4), and higher values such as the
case with the IC (> 0.4), although they do not indicate a fully rugged
landscape [171].

RQ 2.1: Neutrality seems to dominate much of the fitness landscape for
most of the branches, although there are some exceptions of branches with

more rugged fitness landscapes.

3.3.3.2 RQ2.2 — How do the fitness landscape properties affect the search
behaviour when considering the objective function used by MOSA?

In order to understand the impact of the fitness landscape properties
on the test generation, we investigate the Spearman correlation of the
SR and each of the landscape measures, as shown in Figure 3.6. Each
hexagon represents a set of runs of different branches in which the
hexagon density increases with an increase in the number of runs in
the same hexagon.

There is always a significant correlation between the SR and each
of the measures with p-value < 0.001, but the difference lies in
the strength of the correlation (i.e., the correlation coefficient). The
strongest correlation, although it is a moderate correlation, is observed
between the SR and IC (0.488); a high SR value corresponds to a high
IC value. Since a high IC value indicates a large number of peaks in
the landscape, this suggests that branches with slightly rugged land-
scape tend to be covered easily. This is also shown in the correlation
between the SR and PIC (0.476) as a high SR value corresponds to a
high PIC value. A large PIC value indicates a high landscape modality.
This correlation between SR and PIC indicates that on a multimodal
landscape it might be easier to find the test input that covers a branch.
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Figure 3.6: The Spearman correlation of SR with each of the six measures for
all the branches of 331 classes. The correlation coefficient of SR
and AC is 0.04, ND is -0.34, NV is 0.41, IC is 0.488, PIC is 0.476,
and DBI is -0.481

The third measure that shows a moderate correlation with SR is
the NV (0.41) where a high SR value corresponds to a high NV value.
A high NV value means that there are more neighbouring areas of
neutral individuals in the landscape, and thus few flat areas in the
landscape. Based on that, and the correlation of SR and NV, the
possibility of covering a branch becomes higher when the number of
neighbouring areas of neutral individuals in the landscape is high.

A negative correlation can be seen with the two measures that esti-
mate the variety of flat areas in the landscape, ND and DBI. A negative
correlation means a high SR value corresponds to low measure value.
In the case of ND, the negative correlation between SR and ND (−0.34)
suggests that a large neutrality distance (that is, long sequences of
neutral steps in the random walk) slightly makes it difficult to cover
a branch. However, this correlation is weaker than the correlation
between the SR and each of IC, PIC, and NV measures. The negative
correlation between SR and DBI (−0.481) indicates that a high SR
value corresponds to a low DBI value. According to the definition of
DBI, a low DBI value is an indicator of a high density of peaks and
few flat areas in the landscape. The negative correlation between SR
and DBI suggests that such branches might become easier to cover.

Note that the correlation between the SR and the AC measure (0.04)
is weaker than the correlation between SR and the other measures.
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Figure 3.7: Comparison of the six fitness landscape measures applied on the
random walks with the objective functions of WSA and MOSA.

The reason behind that is that measuring the correlation between the
fitness values of the random walk is not always helpful in predicting
the problem difficulty [90, 133], i.e., the correlation between the fitness
values of the random walk does not always anticipate whether a
branch is easy to cover.

The above evidence suggests that neutrality makes the search harder
to find test inputs, while ruggedness seems to have a more positive
effect on the search. A possible explanation is that there might be
gradients in the fitness landscape that lead to the high variability of
fitness during the random walk. Many fitness landscape measures
might be reporting a high degree of ruggedness since gradients may
appear like a rugged landscape to a blind random walk.

RQ 2.2: While neutrality seems harmful for search performance,
ruggedness does not seem to decrease search performance.

3.4 a comparison of the impact of fitness landscape

properties on wsa and mosa

The study of the two fitness landscape properties (i.e., ruggedness
and neutrality) with two different objective functions (i.e., functions
used by WSA and MOSA) reveals that the degree of each of the
two properties of the landscape structure differs with each objective
function. This is confirmed by the results of analysing the landscape
measures based on the series of fitness values that are obtained by the
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Table 3.2: Average effect size Â12 with p-values computed for each landscape
measure with both objective functions

Measure Â12 p-value

AC 0.81 ≤ 0.001

ND 0.67 ≤ 0.001

NV 0.51 ≈ 0.05

IC 0.83 ≤ 0.001

PIC 0.75 ≤ 0.001

DBI 0.77 ≤ 0.001

random walk, as shown in Figure 3.7. In order to determine whether
there is significant difference between the landscape measures with
the two objective functions, we computed the Vargha-Delaney’s Â12

effect size measure [169] for each class and then calculated the average
effect size for each measure as Âxy where x is the landscape measure
with MOSA and y is with WSA. When Âxy > 0.5, then MOSA is better
in reducing landscape plateaus than WSA, and vice versa. We also
considered the Wilcoxon Mann-Whitney statistical test at a level of
α = 0.05 to determine if there is statically significant difference in the
landscape structure with the two functions. Table 3.2 shows the results
of this statistical analysis.

Overall, the outcomes of the landscape measures indicate that
plateaus dominate the landscape structure with both objective func-
tions, and only a few cases show a possible increase in the degree
of ruggedness. However, the degree of neutrality (i.e., presence of
plateaus in the landscape) varies with each of the objective functions
as the use of an aggregated single-objective function (WSA-based func-
tion) results in larger plateaus in the landscape than the fine-grained
objective function on a branch level (MOSA-based function). This is
confirmed by the results shown in Figure 3.7 and Table 3.2 where
all the measures with MOSA-based function indicate a significant
decrease in the presence of plateaus in the landscape when compared
to the measures with the WSA-based function, except the NV mea-
sure that indicates both functions have nearly similar effect on the
landscape.

The strongest difference is observed with the IC measure where
the IC with MOSA-based function (≈ 0.1) is higher than its output
with the WSA-based function (≈ 0.01) where a high IC indicates low
flat areas in the landscape. As a neutrality measure, the ND measure
shows that the number of neutral steps that are made with the WSA-
based function (≈ 45%) is higher than the number of neutral steps with
the MOSA-based function (≈ 20%). One possible conjecture of why
MOSA-based function does not produce more plateaus is that applying
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Figure 3.8: Comparison of the Spearman correlation of branch coverage/SR
with each of the six measures based on the objective functions of
WSA and MOSA.

the mutation on an individual of a test case is more likely to result in
a change that affects the fitness. This is less likely when mutating an
individual of a test suite as with the WSA-based function, since the
chance of mutating one statement in a test case that leads to a change
in the fitness is less likely with this representation. Therefore, the
consequent mutations (i.e., mutations applied on successive steps of
the random walk) that result in equal fitness become neutral mutations
that produce plateaus in the landscape.

Investigating the impact of the landscape properties on the search
performance demonstrates that a landscape with a high degree of
neutrality has a more negative effect on the search, and such effect
is reduced with the increase of the degree of ruggedness in the land-
scape. This is shown by the correlation of the branch coverage and the
landscape measures, as discussed in Section 3.2.3.2 and Section 3.3.3.2
where an increase in the landscape neutrality mostly leads to a de-
crease in the branch coverage, and vice versa. This correlation is, in
fact, stronger when considering MOSA-based function and weaker
with the WSA-based function, as shown in Figure 3.8.

It is obvious that there is a high correlation between branch coverage
and each of the landscape measures with MOSA-based function, ex-
cept the AC measure the correlation is slightly higher with WSA-based
function. The strongest correlation coefficient is observed with the IC
measure where the correlation in the case of MOSA-based function
(0.488) is considerably higher than the correlation coefficient in the
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Figure 3.9: Four groups of the branches based on their coverage by MOSA
and random walk (RW) where a large bubble size indicates a high
number of branches

case of WSA-based function (0.16). From a landscape point of view,
one possible explanation of why the search performance with the
WSA approach is not as efficient as with MOSA is that the WSA-based
function results in more plateaus in the landscape that negatively af-
fect the branch coverage, and therefore the aggregation of all objective
functions into a single function is detrimental to the search.

Although MOSA-based objective function is more effective in al-
leviating the presence of plateaus in the landscape structure, it still
produces plateaus in the fitness landscape with most of the branches.
This leads to the question of what causes such plateaus in the fitness
landscape, and one possibe way to answer this question is by looking
closely at the aspects of the code under test that possibly influence
the landscape properties. Therefore, we conduct a further investiga-
tion that aims to understand how the landscape properties relate to
features of Java classes, and more specifically what aspects of the
underlying source code causes these properties. This is thoroughly
discussed in the next section.

3.5 what are the underlying properties of source code

that influence the fitness landscape?

Having seen that landscape properties can influence the effectiveness
of the search, the question now is what aspects of the code under test
influence these landscape properties. In order to distinguish between
cases where the search is successful simply because the problem is
easy, and cases where the reason is the effectiveness of the search
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Table 3.3: The average values of the six landscape measures for the branches
of the four groups

Group AC ND NV IC PIC DBI

Easy 0.651833 114 9 0.401357 0.092291 0.871883

Search 0.828804 129 5 0.125164 0.057825 0.903901

Hard 0.898022 516 2 0.075532 0.027528 0.960161

RW 0.851833 258 4 0.098439 0.039814 0.928281

algorithm, Figure 3.9 plots the success rate of the search (MOSA) for
each branch vs. the number of times that branch was covered by the
random walk within the 30 repetitions. That is, the value 0 means a
branch is never covered and 1 means a branch is covered by all 30 runs
of either of the two techniques. Notably, a large share of the branches
is either always covered (top right corner) or never covered (bottom
left corner). However, there is also a substantial share of the branches
on which the search is effective but the random walk is not (top left
corner) – these are cases with a benign fitness landscape. Surprisingly,
there are a few cases also in the bottom right corner of the plot, which
were covered during the random walks, but not by the search. Based
on these observations, we partition the branches into four groups
based on whether they were covered by more than 50% of the runs of
the search and random walk, illustrated in Figure 3.9.

Table 3.3 shows the mean values of the fitness landscape metrics for
the four partitions of Figure 3.9. The metrics show that branches that
are always covered (easy group) result in a more rugged landscape
than branches that are never covered (hard group), where the fitness
landscape seems to be dominated by plateaus. Branches covered only
by the search (search group) appear to result in a substantially more
challenging fitness landscape than those always covered (easy), yet
the landscape metrics confirm there are fewer plateaus than in the
most challenging hard group. Branches in the odd RW group are
somewhere in between according to the metrics, and there are likely
reasons unrelated to the fitness landscape that cause the search to fail
here.

There can be multiple reasons for plateaus in the fitness landscape. A
fundamental question is whether the methods containing the branches
were executed in the first place – as the fitness function only considers
intra-procedural information, the fitness landscape would by definition
represent a plateau as long as a method is not called. Figure 3.10 shows
how often the method containing the branch was actually executed
during the random walk. Very clearly, methods in the easy group
(covered by both, search and random walk) are executed far more
often than in the other groups. The methods containing branches
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Figure 3.10: Number of method executions during the random walk for each
branch in the four groups

covered by the search are executed substantially less often, but still
more often than those that are hard to cover.

To understand better why methods are not called, we look at their ac-
cessibility, and whether they are methods or constructors (Figure 3.11):
Notably, the easy branches contain substantially more constructors and
public methods than branches in the hard and search groups. Interest-
ingly, the few cases in the fourth group are all in public methods. Very
notably, private methods are predominantly in the hard group, and
thus not covered at all. Consequently, accessibility is a primary influ-
ential factor for the fitness landscape. This also suggests that a refined
fitness function that considers inter-procedural distance information
could transform the fitness landscape into a more benign one and thus
improve the performance of search-based algorithms. An example of
this case is the getBooleanValue method in Listing 1.1 where all its
branches belong to the hard group.
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public void process(Node externs, Node root) {

Preconditions.checkArgument(

NodeUtil.isValidCfgRoot(root), "Unexpected control flow
graph root %s", root);

.....

// The following branches are not executed

if (shouldTraverseFunctions) {

for (DiGraphNode<Node, Branch> candidate :

cfg.getNodes()) {

Node value = candidate.getValue();

if (value != null && value.isFunction()) {

prioritizeFromEntryNode(candidate);}

}

}

}

Listing 3.1: A method with complex paramter objects that cause an exception
to be thrown in the ControlFlowAnalysis class

In those cases where methods are actually called, the branch dis-
tances could in principle provide a more nuanced fitness landscape.
Since plateaus nevertheless dominate, there are two possible conjec-
tures: Either the executions never even reach relevant branches that
could provide a gradient but instead cause exceptions to be thrown
by invalid complex parameter objects [149], or the source code is dom-
inated by branches comparing references or boolean flags [79] which,
by definition, do not provide gradients. As an example of the first case,
consider the method process that is part of the ControlFlowAnalysis

class from the Closure Compiler project in Listing 3.1. In order to
reach the branches within the method, the root parameter requires
the creation of a complex control flow graph object, and must be
validated by the checkArgument method. This, in fact, is difficult to
be created automatically as the test generator cannot initialise such a
complex data structure. In this case, when the method is executed, the
checkArgument method throws an exception, and thus the code after-
wards is not reached (i.e., covering the branches becomes impossible).
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Figure 3.12: Number of exceptions thrown by methods containing each
branch in the four groups

Figure 3.12 shows the number of exceptions thrown by the methods
containing the branches during the random walk. As expected, the
hard branches are in methods that are much more likely to result in
exceptions (42% of methods calls), while the easy branches hardly
result in exceptions (8% of methods calls). Branches in group search
lie in between these two groups (28% of methods calls), and no ex-
ceptions at all were observed for the few methods only called by
the random walks. Thus, exceptional behaviour clearly is an impor-
tant factor. A possible cause for such exceptions are dependencies on
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Figure 3.13: Number of discrete fitness values obtained by the random walk
for each branch in the four groups

complex objects that are notoriously difficult to configure into valid
configurations [149]. Methods may often have implicit preconditions
on particular configurations of such valid complex objects, and the
fitness function usually provides no guidance for reaching this. Fitness
is typically measured only directly on the CUT and not dependency
classes; a possible way to improve the fitness landscape would thus be
to also consider the code underlying the dependencies, such that there
is guidance towards producing valid object configurations. Alternative
strategies could include improving the search operators to increase
chances of producing valid object configurations, or seeding [138]
valid object configurations [85, 160].

To investigate the influence of the branch types, we first look at the
number of discrete fitness values observed (Figure 3.13). Intuitively,
any gradients along the execution to a target branch would lead to
many small variations in the fitness values. This, in fact, is observed
with the branches of the search group, which explains why the search
performs well on these branches, but the random walk does not.
Interestingly, however, the number of discrete fitness values is also
relatively high for branches in the group that are only covered by the
random walk. A possible conjecture is that these are branches requiring
specific object configurations that are very difficult to produce, and
only happen by chance. Since the search tries to minimise test cases
as a secondary criterion while the random walk is likely to invoke
many more methods on individual objects, the chances of accidentally
producing a valid object configuration then simply are higher for
the random walk. It is interesting to see that branches in the easy
group result in very few distinct fitness values; it is likely that they
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Figure 3.14: Classifications of the branch types in the four groups

are not embedded within complex conditional code constructs, and
depend on well explored parameters. The ruggedness suggested by
the fitness landscape analysis in these cases thus likely is not the result
of gradients, but of frequently flipping if-conditions, such as easy
reference or null comparisons.

To investigate this hypothesis, Figure 3.14 shows the types of if-
conditions, based on their underlying Java bytecode instructions, using
the classification by Shamshiri et al [150]: The most common branch
type among all four groups is the “Integer-Zero” category, which is
produced by the Java compiler mainly for boolean predicates such as
if(x), where x is a boolean variable (Figure 3.15a). It is well known
that such boolean predicates result in plateaus in the fitness land-
scape [109]. The search group contains slightly more “Integer-Integer”
branches that compare two integers (Figure 3.15a), which is the only
category of branches that can possibly result in gradients. As expected,
the easy group contains the most “Reference-Reference” branches that
compare two object references (Figure 3.15c) and “Reference-Null”
branches that involve the comparison of an object reference to null
comparisons (Figure 3.15d), thus contributing to their low difficulty
and a low number of discrete fitness values. The branches covered
only by the random walk consist of only “Integer-Null” (i.e., boolean)
branches, supporting the conjecture that these are if-conditions query-
ing properties of complex objects that are difficult to produce. Conse-
quently, many of the difficult aspects of the fitness landscape could
thus potentially be overcome using testability transformations [79] to
remove the boolean flags.
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public void foo(int x){

if(x == 5){

// perform an operation

}

}

(a) Integer-Integer branch example

public void foo(int x){

boolean y = false;

if(x == 5) y = true;

if(y){

// perform an operation

}

}

(b) Integer-Zero branch example

public void foo(int x){

Object y = null;

if(x == 5) y = this;

if(this == y){

// perform an operation

}

}

(c) Reference-Reference branch ex-
ample

public void foo(int x){

Object y = null;

if(x == 5) y = new

Object();

if(y == null){

// perform an operation

}

}

(d) Reference-Null branch example

Figure 3.15: Examples of branch types classified by Shamshiri et al [150]

As a conclusion, plateaus in the fitness landscape are caused by lack
of inter-procedural guidance, the difficulty of satisfying preconditions
on complex objects, and the prevalence of boolean flags.

3.6 summary

Understanding the performance of evolutionary algorithms in gener-
ating unit tests requires understanding the underlying structure of the
fitness landscape. To this purpose, we studied the fitness landscape
in terms of its ruggedness and neutrality. Our study showed that the
fitness landscape is highly dominated by neutral areas, i.e., plateaus.
Branches that have a large degree of neutrality in their landscape
seem to be harder to cover, whereas branches that have a small de-
gree of neutrality in their landscape seem to be easy to cover. Indeed,
for this particular search problem, ruggedness does not seem to be
detrimental to the search as it indicates the existence of gradients that
make a branch easy to cover by GA, and possibly harder to cover by a
random walk. The main causes for the often neutral fitness landscapes
we identified in our analysis are (1) accessibility of the methods that
contain the branches (i.e., private methods are difficult to cover), (2)
the difficulty of satisfying the preconditions of methods (i.e., calling
them without causing exceptions), but also (3) the classic flag problem
(i.e., boolean comparisons offering no guidance) in search-based soft-
ware testing, which conforms to the findings of previous studies [109].
These insights offer a potential avenue to improving the fitness land-
scape, for example by adding inter-procedural distance information
and testability transformations.



4
M E A S U R I N G A N D M A I N TA I N I N G P O P U L AT I O N
D I V E R S I T Y I N U N I T T E S T G E N E R AT I O N

The content of this chapter is based on work that has been
published at The Symposium on Search-based Software Engi-
neering (SSBSE) 2017 [3] and recently in SSBSE 2020 [5].

4.1 introduction

As software testing is a laborious and error-prone task, automation
is desirable. Genetic Algorithms (GAs) are frequently employed to
generate tests, especially in the context of unit testing object oriented
software. However, a common general issue when applying GAs is
premature convergence: If the individuals of the search population
all become very similar and lack diversity [44, 154, 155], then the
search may converge on a local optimum of the objective function.
This reduces the effectiveness of the GA, and in the case of search-
based test generation, premature convergence would imply a reduced
code coverage.

To avoid such premature convergence, it is important to maintain
diversity in the population. Different techniques have been proposed
to achieve this at the genotype and the phenotype levels [44, 155].
For example, diversity can be achieved by scaling an individual’s
fitness based on the density of its niche or by eliminating duplicate
individuals from the population. While diversity maintenance has
been extensively investigated within different domains of evolutionary
algorithms (e.g., [44]), much less is known about diversity in search-
based unit test generation.

In this chapter, we empirically investigate the impact of population
diversity on the generation of unit tests for Java programs. More specif-
ically, we aim to see whether increasing population diversity leads
to a better GA performance, i.e., generating unit tests that achieve
higher code coverage. In order to achieve that, we first adapt common
diversity measurements based on phenotypic and genotypic repre-
sentation to the search space of unit test cases. We then study the
effects of different diversity maintenance techniques on population
diversity and code coverage. Similar to the studies presented in the
previous chapter, we investigate the impact of population diversity
when generating unit tests using the two approaches WSA and MOSA.

87
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Our experiments confirm that the effects of different diversity main-
tenance techniques on population diversity are in-line with other
search domains as they lead to improve diversity during the evolution.
However, higher population diversity does not lead to higher code
coverage but, surprisingly, higher individual length. This negative
effect can be mitigated when diversity is adapetively maintained (i.e.,
applying a diversity maintenance technique only when diversity drops
below a certain threshold).

The chapter is organised as follows. First, we present the empirical
study of the effects of population diversity on the search-based unit
test generation when considering the WSA approach in Section 4.2.
Then, we present a more thorough analysis and extension of study-
ing the effects of population diversity when considering MOSA in
Section 4.3. In both sections, we describe the diversity measurements
that are applied to measure the diversity level during the evolution,
and the diversity maintenance techniques that are used to promote
population diversity during the evolution. Thereafter, we detail our
experimental setup and procedure, and then discuss the experimental
results and the answers to the research questions.

4.2 an investigation of population diversity with the

whole suite approach

In this section, we focus exclusively on investigating the impact of
population diversity on the generation of unit tests when using the
WSA approach. In order to determine the influence of the diversity
of populations of test suites, a prerequisite is to measure diversity.
For this, we adapted three diversity measures that are based on the
phenotypic and genotypic levels: We measure the phenotypic diversity
based on the fitness entropy and test execution traces, and we define
a genotypic measurement based on the syntactic representation of
test suites. These diversity measures are thoroughly discussed in the
following section.

4.2.1 Measuring Population Diversity in Test Suite Generation

4.2.1.1 Fitness Entropy

The entropy measure adapts the aforementioned principle of fitness
entropy. It constructs buckets that correspond to the proportions of
population that are partitioned based on the fitness values of test cases
τs in the population µ as:

Bucket( f )← |
{

τi | fitness(τi) ∈
[

f
′
, f
′′
]}
| (4.1)

where f is the fitness value that partitioning is based on and τi is each
individual in the population whose fitness value in the same fitness
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Table 4.1: An example of two test suites (TS1 and TS2) containing different
test cases (ti) that vary in how often they execute the predicates
(pj) of the CUT.

TS1 p1 p2 p3 p4 TS2 p1 p2 p3 p4

t1 2 1 0 3 t1 3 5 2 1

t2 1 3 0 2 t2 2 3 0 2

t3 0 1 0 1 t3 2 1 2 3

P1 3 5 0 6 P2 7 9 4 6

interval of f (i.e., the interval of fitness values that are the same in
the first five decimal points). In this case, each bucket of fitness holds
the number of individuals that are in the same fitness interval. The
entropy is then calculated based on each bucket of fitness as:

Entropy =
B

∑
i=1

Bucketi

µ
· log

(
Bucketi

µ

)
(4.2)

where B is the number of buckets. As a result, a high value of entropy
indicates a high diversity of the population.

4.2.1.2 Predicate Diversity

As the fitness value in test suite generation is mainly based on the
branch distance (and other similar measurements), there is the poten-
tial issue that fitness entropy is dominated by a few statements that
achieve the best coverage. For example, the fitness value considers
only the minimal branch distance for each branch, but ignores all
other executions of the same branch. Therefore, we define an alter-
native phenotypic diversity measurement that takes more execution
details into account. The idea behind this measure is to quantify the
diversity of the individuals based in terms of an execution profile of
the conditional statements in the class under test. To illustrate this,
assume two individuals (TS1 and TS2), where each individual consists
of three different test cases (ti) and the class under test (CUT) has four
conditional statements (pj). Each test case covers each predicate in the
CUT as shown in Table 4.1.

The diversity in this case is measured based on how often each
predicate is executed by each individual, e.g. p3 is covered 4 times by
TS2, while it is not covered by any test case in TS1. Predicate diversity
is calculated by counting the number of times each predicate pj in
CUT is covered by all the test cases ti in TSi, resulting in vectors P1

and P2. The distance between TS1 and TS2 is calculated using the
Euclidean distance between P1 and P2 for each pair of individuals in
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the population. The use of Euclidean distance as a population diver-
sity measure is shown to be effective in measuring the behavioural
diversity, and controlling the evolution process [2, 137]. Therefore, the
overall population diversity is the average of all pairwise distances
between all individuals, and is calculated as follows:

diversity(P) =
∑|

P|
i=0 ∑|

P|
j=0,j 6=i dist(Ti, Tj)

|P| (|P| − 1)
(4.3)

where P is the population of individual test suites and dist is the
Euclidean distance between a pair of test suites. A high value of
diversity(P) indicates a high predicate diversity level among the indi-
viduals of the population P. However, the overall diversity in the case
shown in the example above is 6.92.

4.2.1.3 Statement Diversity

Genotypic diversity aims to measure the structural differences among
the individuals of a population. In our case, the genotype are the
sets of sequences of statements. As the tests in an individual are
not ordered and the representation has a variable size, direct simi-
larity measurement based on edit distance are difficult. We therefore
measure syntactic difference based on the profile of statements, with
normalised variable names. This is important since identical state-
ments at different positions of tests will have different variable names.
To illustrate that, consider the two test cases of two different test suites
in Figures 4.1a,4.1c: Line 5 and 7 in TC1 and Line 9 in TC2 are identical
but have different variable names; similarly Line 4 in TC1 and Line 8

in TC2, Line 6 in TC1 and Line 10 in TC2, and Line 8 in TC1 and
Line 11 in TC2 are the same except for variable names. To normalise
a statement, all variable names are replaced with a placeholder, as
shown in Figures 4.1b,4.1d. For example, both Line 5 and 7 in TC1

become identical as the variable name in Line 7 (i.e., boolean1) is
replaced with a placeholder (i.e., boolean0). This is also the case with
all the statements of both test cases where variable names become
identical, and the difference relies on the assigned values (e.g., all the
statements the define an integer variable in TC2 have a similar variable
name and they differ in the assigned values).

To calculate the distance between two test suites TS1 and TS2, we de-
termine the set of normalised statements contained in both test suites,
and then create two vectors representing the number of occurrences
of each statement. For the two test cases in the example shown in
Figure 4.1, the two vectors are: V1 → {3:1, 4:1, 5:2, 6:1, 7:2, 8:1, 9:0,
10:0, 11:0}, V2 → {3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1}) where the
number preceding the colon is the line number in a test case and
the number after that is the number of occurrences of this statement
in the test case (e.g., 5:2 in V1 indicates that the statement in Line 5

appears twice in TC1; both Line 5 and 7). However, the statements of
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one test case that do not appear in the second test case are assigned a
number of occurences of zero, for example, Line 9-11 in V1 represent
the first three lines in TC2 that do not appear in TC1. The distance
between two test suites is calculated as Euclidean distance between
these two vectors (i.e. 2.23), and the overall diversity is the average
distance between all pairs of test suites in the population.

4.2.2 Maintaining Population Diversity in Test Suite Generation

In order to understand the impact of population diversity on the test
generation, the population diversity should be maintained during
the evolution process. Increasing diversity can be achievied by using
different diversity maintenance and control techniques, as discussed
in Chapter 2. In general, the diversity maintenance techniques are
classified into non-niching and niching techniques [44]. The purpose
of niching techniques is to alleviate the effects of genetic drift by seg-
menting the population into subpopulations to locate multiple optimal
solutions. On the other hand, the non-niching techniques maintain
diversity in other ways, for example, by increasing the population
size, changing the selection pressure, or applying replacement restric-
tions. Morover, the population diversity can be controlled based on the
feedback provided by the population diversity measures, for example,
adaptively changing the mutation and crossover rates based on the
maintained diversity level to avoid convergence to a local optimum.
In our study, we consider a combination of maintenance and control
techniques that are described as follows:

4.2.2.1 Fitness Sharing

To promote the diversity in the generated test suites, we applied
the concept of fitness sharing as described in Section 2.4.2.1. The
main idea behind fitness sharing is to penalise individuals that have
multiple copies in the population, by dividing its raw fitness value by
its niche count. This assumes that the fitness of the individuals with
less number of copies in the population will be maximised to survive.
However, in our setting the fitness function is minimised, therefore
we replaced the division in Equation 2.13 with a multiplication, i.e.,
f
′
i = fi ·mi. Replacing the division by multiplication will maximise the

shared fitness of the individuals that are dominant in the population
and make them less attracted for selection. On the other hand, the
shared fitness of fewer individuals will be minimised and encouraged
to be selected.

The niche count can be based on any type of distance measure-
ment. In the basic version, the distance is defined as the difference
between fitness values (FS-fitness); for predicate diversity the distance
between the predicate execution vectors is used to determine niches
(FS-predicate), and for statement diversity the distance in statement
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Algorithm 4: The modified Monotonic GA applied in Evo-
Suite to incorporate diversity techniques

1 Input: Population size n, Stopping crietrion C, Crossover
probability cp, Mutation probability mp, Large population
size m

2 Output: A best individual test suite T
3 Pi ← GenerateRandomPopulation(m)
4 P← getMostDistantIndividuals(Pi , n)
5 Di ← MeasureDiversity(P) . initial diversity level

6 while ¬C do
7 Dp ← MeasureDiversity(P) . current diversity level

8 P← ApplySharing(P) . fitness sharing or clearing

9 cp ← CalculateAdaptiveCrossoverRate(Dp)
10 mp ← CalculateAdaptiveMutationRate(Dp)
11 Z ← Elitism(P)
12 while |Z| 6= |P| do
13 p1, p2 ← RankSelection(P)
14 o1, o2 ← Crossover(cp, p1, p2)
15 Mutation(mp, o1)
16 Mutation(mp, o2)
17 fp = GetMinimumFitness(p1, p2)
18 fo = GetMinimumFitness(o1, o2)
19 if fo ≤ fp then
20 Z ← Z ∪ {o1, o2}
21 else
22 Z ← Z ∪

{
p1, p2

}
23 end
24 end
25 P← EliminateSimilarIndividuals(Z)
26 end
27 return T

counts (FS-statement). To apply the fitness sharing, we modify the
Monotonic GA by applying fitness sharing on the population of each
generation (Line 8 in Algorithm 4). This ensures that sharing is ap-
plied on the fitness of the individuals in the initial population and the
population after each generation.

4.2.2.2 Clearing

Clearing is another niching technique that works similar to fitness
sharing except that sharing is limited to the best individuals of a
subpopulation. In practice, there are k individuals in a niche that are
considered as winners (i.e., dominant individuals) since they result in
the highest fitness values. In this case, clearing preserves the fitness



94 measuring and maintaining population diversity in unit test generation

of the dominant individuals and reset the fitness of the remianing
inidividuals in the same niche. Since we are minimising and the
optimal fitness is zero, we set the fitness of cleared individual to a
higher fitness value other than zero (e.g., Integer.MAX_INT). In order
to define a niche, we use the distance between the predicate execution
vectors for predicate diversity (CL-predicate), and the distance in
statement counts for statement diversity (CL-statement). Note that the
distance cannot be defined as the difference between fitness values
since a niche in this case contains only individuals with a similar
fitness, and applying the clearing on such individuals leads to keep
all the inidividuals as there are no k individuals with higher fitness
values that the others. Similar to fitness sharing, clearing is applied
on the population of each generation including the initial population
(Line 8 in Algorithm 4).

4.2.2.3 Diverse Initial Population

Population diversity is not only important to be maintained during
the evolution, it is also important to maintain the diversity of the
initial population. Therefore, we consider to generate a diverse initial
population by generating a population of random individuals with a
size m larger than the intended population size n, and then selecting
the most distant n individuals from the population of m individuals
based on a diversity measure. To achieve that, the distance is calculated
from each individual to the others in the population, and then the
overall distance is calculated for each individual as the sum of its
distances from m− 1 individuals. For example, consider the five test
suites in Table 4.2 that are generated randomly as an initial population
(i.e., m = 5) along with their distance to each other. Assume that the
intended population size is set to 3 individuals (i.e., n = 3), therefore
we are only interested to select 3 individuals that result in the highest
distance values. Looking at the total distance of each test suite in the
table, we can clearly see that TS1, TS3, and TS5 are the most distant
individuals where TS5 has the highest distance from the other test
suites (20.6), and in contrast TS2 is the most similar test suite to the
others (10.4).

In order to calculate the distance between individuals, we use the
distance between the predicate execution vectors for predicate diver-
sity (DIP-predicate), and the distance in statement counts for statement
diversity (DIP-statement). In Algorithm 4, instead of generating n ran-
dom initial individuals, we generate random individuals of size m
(Line 3) and then select only the most n distant individuals to form P
(Line 4).
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Table 4.2: An example of the distance values calculated between five test
suites

TS1 TS2 TS3 TS4 TS5

TS1 - 3.5 5 2.8 8

TS2 3.5 - 1.9 3 2

TS3 5 1.9 - 2.6 7

TS4 2.8 3 2.6 - 3.6

TS5 8 2 7 3.6 -

Total 19.3 10.4 16.5 12 20.6

4.2.2.4 Adaptive Crossover and Mutation Rates

Adaptively changing mutation and crossover rates based on the di-
versity level is thought to help avoiding convergence to a local opti-
mum [44]. This technique is an important diversity control technique
that relies on the feedback provided by the diversity measures. The
crossover probability is increased when diversity is high to allow for
more exploitation, whereas the mutation probability is increased when
diversity is low to allow for more exploration [108]. The crossover
probability is adapted (Line 9 in Algorithm 4) as:

Pc =

[(
PD

PDmax
· (K2 − K1)

)
+ K1

]
(4.4)

where K2 and K1 define the range of Pc, PD is the current diver-
sity level, and PDmax is the possible maximum diversity level. The
mutation probability is adjusted (Line 10 in Algorithm 4) using the
following equation:

Pm =
PDmax − PD

PDmax
· K, (4.5)

where K is an upper bound on Pm.
Since a variable size representation tends to have multiple different

mutation types, i.e., adding, changing, removing statements, the prob-
ability of these three operations is adapted by increasing by a random
value when the mutation probability increases, and vice versa. The two
rates can be adaptively changed based on the predicate diversity mea-
sure (AR-predicate), the statement diversity measure (AR-statement),
and the entropy measure (AR-entropy).
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4.2.2.5 Duplicate Elimination

The lack of population diversity is primarily caused by a high sim-
ilarity between the individuals of a population. Two individuals in
the population are considered similar when their distance to each
other is zero. Therefore, to ensure enough diversity in the population,
one of the two similar individuals is eliminated and replaced with a
new generated individual. However, the two similar individuals are
evaluated, and the one with the best fitness is kept. The similarity
between the individuals can be calculated based on the differences
in predicates executions (DE-predicate) and the differences in the
sequences of statements (DE-statement). This technique is applied
after generating the offspring, and more specifically on the union of
population and offspring (Line 25 in Algorithm 4).

4.2.3 Empirical Study

Our goal in this study is to analyse how unit test generation is in-
fluenced by test suite diversity, and whether maintaining diversity
during the search has an influence on the branch coverage. We there-
fore designed our study to answer the following research questions:

RQ 1.1: How does population diversity change throughout evolution
when considering the WSA approach?

RQ 1.2: How effective are diversity maintenance techniques with the
WSA?

RQ 1.3: What are the effects of increasing population diversity in the
WSA?

As our hypothesis, we predict that the default Monotonic GA does
not maintain enough population diversity during evolution since the
convergence behaviour seems to happen when it is applied to generate
unit tests (i.e., certain maximum branch coverage is reached at an
early stage of the search that indicates a possible convergence). As
mentioned in Section 4.1, the convergence occurs when there is a lack
of population diversity which possibly have a negative impact on the
code coverage. However, applying diversity maintenance techniques
with the WSA is expected to increase population diversity during the
evolution, which possibly leads to better code coverage (i.e., increasing
diversity motivates better exploration of the search space which might
result in better test inputs that increase the code coverage).
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4.2.3.1 Experimental Setup

As the scope of our study considers the diversity of test suites that
are generated for Java programs, we used EvoSuite to generate JUnit
test suites for a given Java CUT and target coverage criterion using
the Monotonic GA, which applies the WSA approach. To minimise
the influence of recent optimisations, we use a “vanilla” configura-
tion [59] with only branch coverage as target criterion [139] and no test
archive [140]. Besides, we used all the default settings in EvoSuite [16],
including elitism (copying the best individual). Since open source Java
code contains many classes that are either trivially easy to cover, or
impossible to cover by EvoSuite [62], we used the selection of 346

complex classes from the DynaMOSA study [127].

4.2.3.2 Experiment Procedure

To better understand the influence of the population diversity on the
generation of JUnit tests, we conducted an experiment that involves (i)
applying each of the three diversity measures defined in Section 4.2.1
on each CUT to measure the diversity level throughout the evolution,
(ii) applying each of the diversity maintaining techniques defined in
Section 4.2.2 on each CUT to promote the diversity throughout the
evolution. Each of diversity maintaining techniques is integrated into
Monotonic GA where its performance compared to the performance
of the default Monotonic GA, i.e., without using diversity techniques.
Note that each of the diversity techniques is run separately, and
therefore the total number of runs is 6 (i.e., a single Monotonic GA
run with each of the 5 techniques and one run of default Monotonic
GA). During each of the executions of EvoSuite, we tracked the three
diversity measures at 30s intervals throughout the search, together
with other relevant measurements (size and coverage).

Running this experiment on the corpus of 346 classes resulted in
data for only 311 classes. Besides the environmental dependencies
of 8 classes that are difficult to fulfil by EvoSuite, search timeout
was reached with 27 classes because of the constraints that cannot
be solved with 7 classes and the extra computation time needed for
diversity metrics with 20 classes that makes it difficult to complete 30

runs.

4.2.3.3 Parameter Setting

We used the following values for the parameters of the diversity
techniques based on preliminary experiments: The sharing radius σs

= 0.1; the number of dominants for clearing is set to 1; the parameters
of the diverse initial population are m = 80 and n = 50; the parameters
of adaptive mutation rate are K1 = 0.6 and K2 = 0.8 and the adaptive
crossover rate was set to K = 0.8.
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4.2.3.4 Threats to Validity

One threat to the internal validity of this study is the random be-
haviour of the Monotonic GA, which is mitigated by repeating each
experiment 30 times and applying rigorous statistical procedures to
evaluate the obtained results. While we used EvoSuite as a JUnit test
generation tool to perform the experiments, the results may differ if
the considered GA is applied to other tools. Another threat to internal
validity stems from the classification of the classes under test based on
the development of coverage described in Section 4.2.3.5. To mitigate
this threat, we validated that all the classes are classified correctly with
many repetitions of the experiment.

To cope with possible threats to external validity, we used a selection
of 346 complex classes from 117 open-source Java projects that are
used by previous studies [127] although results may not generalise
to other subjects. Threats to construct validity may possibly result
from only considering the branch coverage as an indicator of how
increasing population diversity affects the GA performance. The use
of other criteria may not lead to similar results as to branch coverage.
Past experiments with EvoSuite considered search durations of 1-2
minutes, however, this might not be enough to investigate the effects on
convergence. Therefore, we used a substantially larger search budget
of 30 minutes. It should be noted that we considered running an
experiment with the search budget higher than 30 minutes (e.g., 60

minutes), and as a result, there is no obvious difference in the obtained
results.

In regards to population diversity maintenance, the results reported
are limited to the previously mentioned diversity maintenance tech-
niques used in the experiments. These techniques are found to be
effective in improving population diversity during the evolution when
considered with different problem domains [44]. They are also rep-
resentative of the general classification of diversity techniques (i.e.,
niching and non-niching techniques). However, the results obtained
from applying these techniques on the considered corpus of Java
classes with the Monotonic GA may not be generalised to other diver-
sity maintenance techniques.

4.2.3.5 How does population diversity change throughout evolution when
considering the WSA approach?

A first step towards understanding the influence of population di-
versity on the evolution is to measure how the diversity is changed
throughout the evolution. For that, we measure the diversity in the
Monotonic GA to get an idea of whether Monotonic GA is able to
maintain a high level of diversity during the search. However, as differ-
ent CUTs result in different patterns of coverage during the evolution,
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Figure 4.2: Average values for coverage and population diversity throughout
evolution in Monotonic GA for the four groups of CUTs.

it is necessary to look at the diversity based on the different coverage
patterns.

Past experiments with EvoSuite considered search durations of
1-2 minutes; in order to study the effects on convergence we use
a substantially larger search budget. We first performed runs of 30

minutes to observe the development of coverage (the best coverage
achieved in the current population) over a long period of time and we
used this data to classify CUTs into four disjoint groups as follows:

• Evolving contains CUTs where the coverage after 30 minutes is
higher (by more than 0.01) than after 10 minutes (84 CUTs).

• Flat is the set of CUTs where the coverage never changes (45

CUTs).

• Stagnating contains CUTs for which the coverage stagnates after
10 minutes: it is higher than after 2 minutes, but increases by
less than 0.01 from 10 minutes to 30 minutes (36 CUTs).

• Plateauing contains the remaining CUTs for which the coverage
after two minutes is constant (146 CUTs).

We then started 30 runs for each CUT with a search budget of 10

minutes and applied our proposed measures defined in Section 4.2.1
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to measure the diversity level for each of the four groups, as shown in
Figure 4.2. It is obvious that the diversity behaviour is different among
the four groups, and the difference can be seen with the three diversity
measures. Overall, there is a decrease in the diversity after one minute
search time regardless to the state of the coverage; whether coverage
keeps growing or stagnates.

For the evolving group, the coverage keeps growing throughout the
entire 10 minutes, but the population diversity drops sharply after
one minute according to the three diversity measures. Despite the
decrease in diversity, this group still achieves better semantic diversity
level when compared to the other groups as shown by the entropy
and phenotye diversity, but less genotype diversity level than other
groups except the stagnating group.

In the case of the flat group, the coverage is the lowest among all
other groups. Similar to the evolving group, the population diversity
does not improve after one minute although the entropy measure
shows almost a constant diversity level during the entire search. As the
branch coverage indicates few predicates are covered with this group,
we expect a low behavioural diversity (i.e., low entropy and phenotype
diversity). This is confirmed by the entropy measure despite the slight
difference in entropy diversity between this group and the stagnating
and plateauing groups, but not by the phenotype measure. In the
genotype diversity, the structural differences among the individuals
becomes constant after one minute.

For the stagnating group, we can clearly see that the diversity level
with all the diversity measures drops once the coverage increase slows
down. A possible reason to the drastical decrease in diversity is that
when the coverage stagnates, individuals become moslty similar in
terms of fitness and predicates execution that lead to low entropy and
phenotype diversity. In this case, when two individuals result in a
similar fitness value, the EvoSuite’s ranking mechanism prefers the
shorter one (i.e., the one with few number of statements), which thus
results in low genotype diversity.

Looking at the plateauing group, the diversity level becomes constant
during the search once the coverage convergences, as shown with the
three diversity measures. In terms of behavioural diversity, this group
is the lowest in the phenotype diversity while it is almost the lowest in
the entropy diversity. This indicates that only very few predicates are
covered when compared to the predicates execution by other groups.
Also, the structural differences between individuals is similar to the flat
group, which indicates that the constant coverage leads to a constant
genotype diversity.

RQ1.1: Monotonic GA using WSA approach does not maintain sufficient
diversity in the population during the evolution.
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Table 4.3: Average diversity over time when applying diversity maintenance
techniques based on different distance measures, and the average
effect size Â12.

Technique Phenotype Â12 Genotype Â12 Entropy Â12

AR (fitness) 0.367 0.49 0.3496 0.46 0.4626 0.49

AR (predicate) 0.3367 0.48 0.3429 0.44 0.4537 0.43

AR (statement) 0.3694 0.52 0.3628 0.54 0.4853 0.54

CL (predicate) 0.5001 0.53 0.3667 0.63 0.4701 0.54

CL (statement) 0.5507 0.58 0.3922 0.74 0.4911 0.61

DIP (predicate) 0.533 0.56 0.3689 0.51 0.4481 0.46

DIP (statement) 0.4413 0.53 0.4095 0.72 0.4611 0.49

DE (predicate) 0.8616 0.57 0.9594 0.82 0.9452 0.82

DE (statement) 0.8627 0.61 0.9437 0.85 0.9519 0.83

FS (fitness) 0.858 0.71 0.9498 0.80 0.9383 0.90

FS (predicate) 0.627 0.59 0.7089 0.68 0.8192 0.81

FS (statement) 0.4701 0.55 0.5666 0.69 0.8295 0.82

Monotonic GA 0.3009 - 0.2178 - 0.3537 -

4.2.3.6 How effective are diversity maintenance techniques with the WSA?

We observed in RQ1.1 that the Monotonic GA using WSA does not
maintain well diversity level throughout the evolution. This raises a
question of whether applying the diversity maintenance techniques
leads to an increase in the population diversity. Therefore, we apply
the diversity maintenance techniques presented in Section 4.2.2 on
each CUT.

Table 4.3 summarises the results of the average diversity among the
four groups with each technique based on different distance measures
(i.e., predicate, statement, and fitness). To observe the similarity in the
diversity achieved by the Monotonic GA and each of the diversity tech-
niques, we consider the effect sizes computed with Vargha-Delaney’s
Â12 measure [169]. The effect size estimates the probability that a
single run of Monotonic GA with a diversity technique results in
higher diversity than the default Monotonic GA (i.e., with no diversity
techniques). The computation of this measure is conducted using the
diversity that is calculated as the average diversity achieved in each
run of the technique. Since the population diversity is measured using
three different measurements, there are three different Â12 values with
each technique. However, a value of Â12 = 0.5 indicates that there
is no difference in the diversity level achieved by both techniques,
whereas a value of Â12 = 1 indicates all the runs of the Monotonic
GA with a diversity technique results in better diversity level than the
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default Monotonic GA. In contrast, a value of Â12 = 0 is an indicator
of a better diveristy level with the default Monotonic GA.

From the table, we can obviously see that all the diversity techniques
are able to promote higher population diversity than the default
Monotonic GA, as confirmed by the three diversity measures. However,
the increase in diversity level differs among different techniques where
the fitness sharing (FS) and the Duplicate Eliminate (DE) achieve the
highest diversity among all the diversity techniques. Looking at the
entropy measure, the two versions of DE (i.e., DE-predicate and DE-
statement) increase diversity the most although the fitness-based FS
(FS-fitness) result in the largest effect size. This is also the case with
the phenotype measure where the two versions of DE result in the
highest diversity level but the FS-fitness has the largest effect size.
The genotype measure also confirms that the highest diversity is
achieved by the DE-predicate, DE-statement, and FS-fitness where the
DE-statement has the largest effect size.

To investigate the diversity behaviour with each technique, Fig-
ure 4.3 shows the diversity level achieved throughout the evolution for
each of the five techniques. For each technique, the resulting diversity
is shown by the three diversity measures (i.e., entropy, phenotype,
and genotype). Looking at the niching techniques, the FS is obviuosly
better than Clearing (CL), which is also confirmed by the results in
Table 4.3. The FS-fitness maintains better diveristy level during the
evolution than the other two versions of FS (i.e., FS-predicate and FS-
statement). This can be clearly seen with the three diversity measures
in Figures 4.3a −4.3c where the population diversity with FS-fitness
is higher than FS-predicate and FS-statement, especially with the
phenotype and genotype measures where diversity keeps increasing
with FS-fitness. For the other two versions of FS, the use of predicate-
based distance (FS-predicate) leads to better diversity level during
the evolution than the use of statement-based distance (FS-statement),
except the entropy measure that shows almost a similar diversity level
with both versions. This is also the case in CL where the entropy
and genotype measures (Figures 4.3d and 4.3f) show that there is
a trivial difference between the diversity achieved by CL-predicate
and CL-statement where the latter results in slightly higher diversity
during the evolution. The phenotype measure (Figures 4.3e), however,
indicates that the population diversity with CL-statement is almost
better than with CL-predicate.

Similar to CL, the Diverse Initial Population (DIP) demonstrates a
similar diversity behaviour during the evolution where DIP-statement
results in almost better diversity level than DIP-predicate, as shown by
the entropy and genotype measures (Figures 4.3h and 4.3j). However,
the phenotype measure (Figures 4.3i) indicates that DIP-predicate is to
some extent able to achieve higher diversity than DIP-statement. For
the Adaptive Crossover and Mutation Rates (AR) where the rates of
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crossover and mutation are adaptively changed based on the diversity
level during the evolution, there is no obvious difference between
the diversity achieved by using the three measures (i.e., AR-entropy,
AR-predicate, and AR-statement) although the results in Table 4.3
shows that the diversity with AR-statement is slightly higher than the
other two versions of AR.

More interestingly, the difference in the diversity achieved by the
default Monotonic GA and the two versions of DE is clearly high.
One possible reason of why this technique promotes higher diversity
when compared to the other techniques is the removal of similar
individuals that result from selecting shorter tests when the coverage
convergence and replacing them with newly generated individuals;
EvoSuite prefers to select shorter tests when coverage convergences,
which leads to decrease in the diversity level as shown with default
Monotonic GA. However, the three diversity measures (Figures 4.3o −
4.3q) indicate that there is no obvious difference in the diversity level
when considering both distances; DE-predicate and DE-statement.

RQ1.2: Diversity maintenance techniques are able to increase diversity
during the evolution, and Fitness Sharing and Duplicate Eliminate achieve

the highest diversity level.
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(a) FS – Entropy
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(b) FS – Phenotype
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(c) FS – Genotype
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(d) CL – Entropy
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(e) CL – Phenotype
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(f) CL – Genotype
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(h) DIP – Entropy
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(i) DIP – Phenotype
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(j) DIP – Genotype
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(k) AR – Entropy
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(l) AR – Phenotype
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Figure 4.3: Diversity throughout the evolution with Monotonic GA and the
five diversity maintenance techniques based on different distance
measurements.

4.2.3.7 What are the effects of increasing population diversity in the WSA?

Ultimately, code coverage is the goal of the search in our context, and
thus the main point of interest is whether increasing diversity leads
to the desired effect on higher coverage. Therefore, we look at the
achieved coverage throughout the evolution and also the average size
of the individuals in the population to gain a better understanding
on the impact of diversity on the performance of Monotonic GA.
Figure 4.4 shows the results of the best coverage in the population and
the average length of all test suites in the population for Monotonic GA
with and without each of the five diversity maintenance techniques
during the evolution. In general, the Monotonic GA with all diversity
techniques either result in lower or similar coverage to the default
Monotonic GA. Figure 4.4a and 4.4c demonstrate that both niching
techniques (i.e., FS and CL) result in lower branch coverage than the
default Monotonic GA where the Â12 values with the FS-entropy,
FS-predicate, and FS-statement are 0.46, 0.44, and 0.38, respectively,
whereas the Â12 value is 0.45 with CL-predicate and 0.39 with CL-
statement.

For the remaining techniques, there is no obvious difference between
the coverage achieved by the default Monotonic GA and the coverage
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Table 4.4: Spearman correlation between the diversity achieved by the five
diversity techniques based on different distance measures and
length.

Technique Phenotype Genotype Entropy

AR (fitness) 0.4999 0.6175 0.7168

AR (predicate) 0.5117 0.6278 0.6810

AR (statement) 0.5104 0.6390 0.6690

CL (predicate) 0.5589 0.6228 0.6723

CL (statement) 0.5546 0.6315 0.6620

DIP (predicate) 0.5378 0.5815 0.7059

DIP (statement) 0.5506 0.5783 0.7025

DE (predicate) 0.4406 0.6890 0.7176

DE (statement) 0.4526 0.6376 0.7300

FS (fitness) 0.5502 0.5915 0.7426

FS (predicate) 0.4602 0.6196 0.6915

FS (statement) 0.5265 0.6007 0.6603

Monotonic GA 0.5740 0.6195 0.7200

achieved by the GA with each of the diversity techniques, as shown
in Figures 4.4e, 4.4g, and 4.4i. In the case of DIP technique, both
DIP-predicate and DIP-statement have a similar Â12 value that is 0.49.
While the three versions of AR have the Â12 values of 0.51 with AR-
entropy, 0.48 with AR-predicate, and 0.47 with AR-statement. The Â12

value is 0.51 with DE-predicate and 0.49 with DE-statement.
Looking at Figure 4.4, we can clearly see that increasing diversity

leads to an increase in the length (i.e., the total number of statements
in a test suite). In fact, the length for the techniques with higher di-
versity show longer individuals, as shown by FS (Figure 4.4b) and DE
(Figure 4.4j). This conjecture is supported by looking at the correlation
between diversity and length; Table 4.4 presents the Spearman correla-
tion between the average diversity throughout evolution and average
test suite length in the population, averaged per class, for each diver-
sity technique with different distance measures. The entropy measure
shows a strong correlation between the diversity achieved by each
technique and the length where the highest correlation is observed
with FS-fitness and DE-statement. However, the correlation is slightly
lower between diversity and length in terms of genotype measure,
and it is even lower but still moderate correlation in the case of pheno-
type measure. The larger individuals affect the exploration, since on
average only one statement in a test case is mutated, independently of
the length.



108 measuring and maintaining population diversity in unit test generation

●●

●●

●●

●●
●●
●●●
●●●●

●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Time (minutes)

 

(a) FS – Coverage
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(b) FS – Length
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(c) CL – Coverage
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(d) CL – Length
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(e) DIP – Coverage
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(f) DIP – Length
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(g) AR – Coverage
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(h) AR – Length
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(i) DE – Coverage
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(j) DE – Length
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Figure 4.4: Coverage and length over time with Monotonic GA and the five
diversity maintenance techniques based on different distance
measurements.
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As applying a diversity maintenance technique has a negative im-
pact on the achieved branch coverage, we consider to apply an adaptive
version of a naive application of a diversity technique. That is by apply-
ing the diversity technique only when diversity drops below a certain
threshold, and once the diversity level exceeds the threshold, the diver-
sity technique is not applied. We empirically determined a threshold
of 60%. The idea behind this approach is to measure the population
diversity level within each generation (Line 6 in Algorithm 4), and
whenever the diversity level drops below 60% of the initial population
diversity level (i.e., Dp ≤ 0.6 ∗ Di), the diversity technique is then
applied until the level exceeds the threshold (i.e., Dp > 0.6 ∗ Di). As
a diversity technique, we focus on the fitness sharing (using all three
diversity measures), since RQ2 and the previously discussed results in
this RQ suggested that this is the most effective technique to increase
diversity. Therefore, we compare the performance of the Monotonic
GA when considering the three versions of naive FS and, in addition,
three versions of adaptvie FS (i.e., AFS-fitness, AFS-predicate, and
AFS-statement).

To better understand the difference in the impact of the naive and
adaptive FS on the performance of the Monotonic GA, we look at the
coverage and length during the evolution for the Monotonic GA with
and without the naive and adaptive application of FS for each of the
four groups of CUTs, as shown in Figure 4.5. For the flat group, the
three adaptive versions of FS, especially the AFS-predicate, result in
higher coverage than the default Monotonic GA and the naive FS. The
negative effect of increasing diversity on the length is reduced when
applying the adaptive approach with this group; the non-adaptive
versions of FS lead to longer individuals than the adaptive versions
where FS-predicate results in the largest length and, in contrast, AFS-
fitness has the smallest effect on length.

For the evolving group, it is obvious that the difference in the
achieved coverage among all the configurations is trivial although
the default Monotonic GA results in the highest coverage. The length
plot shows that the largest size is achieved by the FS-predicate whereas
the default Monotonic GA results in the smallest size during the evolu-
tion. However, the small effect of the adaptive diversity on length (i.e.,
reducing length more than the naive diversity) is not distinguishable
with this group, as the FS-statement leads to slightly lower length than
the three versions of the adaptive FS.

Looking at the stagnating group, the default Monotonic GA leads
to a higher coverage and smaller size than the naive and adaptive
versions of FS. The three versions of the adaptive FS achieve slightly
higher coverage than the naive FS. However, the effect on the length is
slightly similar to the effect observed in the evolving group except that
the AFS-statement leads to a little lower length than the FS-statement.
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Figure 4.5: Coverage and length over time with Monotonic GA, fitness shar-
ing (FS), and adaptive fitness sharing (AFS) per four groups of
CUTs
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Table 4.5: Number of classes where adaptive fitness sharing has an in-
creased/decreased/equal coverage compared to Monotonic GA,
the average effect size Â12 and the number of classes for which
this comparison is statistically significant (α = 0.05).

Technique
increased coverage decreased coverage equal

#classes #sig. Â12 #classes #sig. Â12 #classes

Fitness 51 5 0.52 112 29 0.47 148

Predicate 37 1 0.51 116 53 0.49 158

Statement 43 3 0.51 138 41 0.46 130

For the plateauing group, the three versions of the adaptive FS result
in better coverage than the default Monotonic GA, which also results
in higher coverage than the three versions of the naive FS. In this
group, a similar observation to the effect on length in flat group is
found with this group where the adaptive versions of FS leads to
smaller size than the naive FS except that the FS-predicate and FS-
fitness result in larger length than other versions, and FS-fitness leads
to slightly similar length to the AFS-predicate.

We have seen so far that there are cases where the adaptive FS
leads to higher coverage than the default Monotonic GA. To see
whether adaptive FS is always beneficial, Table 4.5 shows the number
of classes where it increases, decreases, or results in equal coverage
with Monotonic GA. In general, the number of classes that decrease
coverage is higher than the number of classes that increase coverage,
but the number differs among the three techniques. It is obvious
that the adaptive fitness-based sharing (AFS-fitness) has the highest
number of classes that increase coverage (51 classes) and also the
lowest number of classes that decrease coverage (112 classes). This
is also the case when comparing the number of classes that show
significant increase where AFS-fitness has the highest number of
classes with significant increase (5 classes) when compared to the other
two techniques, and also the lowest number of classes with significant
decrease (29 classes). However, both cases show a small difference
between the performance of Monotonic GA with and without this
technique (i.e., Â12 = 0.52 with increased coverage and Â12 = 0.47
with decreased coverage). For the other two techinques, the adaptive
statement-based sharing (AFS-statement) has more increasing classes,
especially with significant increase, than the adaptive predicate-based
sharing (AFS-predicate), but the number of decreases is higher in the
latter.

The negative effect of diversity on coverage can be explained by
the increase in length: Execution of longer tests takes more time, thus
slowing down the evolution. Within the time limit of 10 minutes,
Monotonic GA executed 764 generations on average. Always applying
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fitness sharing decreases the average number of generations (479, 456,
and 369 generations with FS-fitness, FS-predicate, and FS-statement
respectively), but these figures improve when using the adaptive ap-
proach (668, 569, and 531 generations with AFS-fitness, AFS-predicate
and AFS-statement, respectively).

RQ1.3: Promoting population diversity constantly leads to an increase in
the inidividual size and a decrease in the coverage. However, promoting
diversity adapetively reduces the negative impact on length and possibly

improve coverage.

4.3 an investigation of population diversity with the

many-objective sorting algorithm

This section provides the study of the impact of population diversity
on the generation of unit tests when considering MOSA. Similar
to the previous section, we measure the population diversity level
during the evolution in order to understand the effect of diversity
on the performance of MOSA. Also, we apply different diversity
maintenance techniques to see whether increasing diversity leads
to similar performance as with the Monotonic GA. The rest of this
section follows the same structure in Section 4.2 where we first present
the diversity measures and the diversity maintenance techniques we
consider in the experiment, and then we provide the experiment
procedure along with the results.

4.3.1 Measuring Population Diversity in Test Case Generation

In this study, we consider similar diversity measures to the three
measures presented in Section 4.2.1 that measure the phenotypic
diversity based on the fitness entropy and test execution traces, and the
genotypic diversity based on the syntactic representation of test cases.
As MOSA is a multiobjective algorithm and has different individual
representation (i.e., test case rather than test suite), there are some
modifications that must be applied to the measures, which are:

• In the fitness entropy measure, the fitness entropy is applied on
a set of buckets that is constructed for each objective, and then
all entropies are added up to calculate the overall entropy.

• The calculation of predicate diversity is based on the execution
of a test case rather than a test suite. In this case, the predicate
diversity is calculated by counting the number of times each
predicate in a CUT is covered by an individual test case, and not
by all test cases of a test suite.
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• In the statement diversity, statements of an individual test case
are considered to measure syntactic difference between the indi-
viduals.

4.3.2 Maintaining Population Diversity in Test Case Generation

To study the impact of population diversity on the test case generation,
we consider similar diversity maintenance techniques to those we used
in Section 4.2.2. Besides the five techinuqes we presented previously,
we consider two more techniques that are designed specifically for
MOSA; Diversity-based Ranking (Section 4.3.2.6) and Diversity-based
Selection (Section 4.3.2.7). In this section, we review the techniques as
to how they are adapted in a multiobjective context and how they are
applied in MOSA.

4.3.2.1 Fitness Sharing

Recall that the idea behind fitness sharing is to maximise the fitness
value that is shared by the individuals of a niche when the number of
individuals is high, and minimise it when there are few individuals in
a niche, which gives these individuals higher probability to be selected
for next generations. In a multiobjective context, fitness sharing is
calculated for each objective, and when the niche count is based on
fitness (i.e., fitness-based sharing), the distance is computed based
on fitness values of each objective. To incorporate fitness sharing into
MOSA, it is applied on the initial population (Line 6), and on the
union of parents and offspring population (Line 16) in Algorithm 5.

4.3.2.2 Clearing

In a multiobjective scenraio, clearing is calculated for each objective,
and applied on the initial population (Line 6), and on the union of
parents and offspring population (Line 16) in Algorithm 5.

4.3.2.3 Diverse Initial Population

Similar to the idea presented in Section 4.2.2.3, in order to generate
a diverse initial population with MOSA, we modify Line 4 in Algo-
rithm 5 to generate random individuals of size m and then select only
the most n distant individuals to form Pt (Line 5).

4.3.2.4 Adaptive Crossover and Mutation Rates

The crossover probability is increased when diversity is high to allow
for more exploitation, whereas the mutation probability is increased
when diversity is low to allow for more exploration. In MOSA, the two
probabilities are adaptively set based on the current diversity level
(Line 11 and Line 12 in Algorithm 5).
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Algorithm 5: The modified MOSA applied in EvoSuite to
incorporate diversity techniques

1 Input: Population size n, Stopping criterion C, Large
population size m

2 Output: An archive of best test cases T
3 t← 0 . current iteration

4 Pi ← GenerateRandomPopulation(m)
5 Pt ← getMostDistantIndividuals(Pi, n)
6 Pt ← ApplySharing(Pt) . fitness sharing or clearing

7 Di ← MeasureDiversity(Pt) . initial diversity level

8 T ← GetArchive(Pt)
9 while ¬C do

10 Dp ← MeasureDiversity(Pt) . current diversity level

11 cp ← CalculateAdaptiveCrossoverRate(Dp)
12 mp ← CalculateAdaptiveMutationRate(Dp)
13 Po ← GenerateOffspring(Pt)
14 Pu ← Pt ∪ Po

15 Pt+1 ← EliminateSimilarIndividuals(Pt+1)
16 Pu ← ApplySharing(Pu) . fitness sharing or clearing

17 F ← PreferenceSorting(Pu) . ranking based on diversity

18 r ← 0

19 Pt+1 ← {}
20 while |Pt+1|+ |Fr| ≤ n do
21 AssignDistance(Fr) . predicate/statement distance

22 Pt+1 ← Pt+1 ∪ Fr

23 r ← r + 1
24 end
25 CrowdingDistanceSort(Fr)
26 Pt+1 ← Pt+1 ∪ Fr . size n− Pt+1

27 T ← GetArchive(T, Pt+1)
28 t← t + 1
29 end
30 return T
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4.3.2.5 Duplicate Elimination

As presented in Section 4.2.2.5, the Duplicate Elimination (DE) is
applied after generating the offspring, and more specifically on the
union of parents and offspring (Line 15 in Algorithm 5).

4.3.2.6 Diversity-based Ranking

In the ranking assignment, test cases are selected to form the first non-
dominated front based on their objective values such that a test case x
is preferred over a test case y if fi(x) < fi(y) where fi(x) denotes the
objective score of test case xi for branch bi. When two test cases result
in a similar lowest fitness value for a given branch bi, one of them
is chosen randomly to be included in the first non-dominated front.
Instead of the random selection, we modify the selection to be based
on the diversity such that the test case with high distance from other
individuals in the population is preferred to be selected. The distance
can be based on the predicate execution vectors (DR-predicate) or the
statement counts (DR-statement). To apply this technique, we modify
the PreferenceSorting function in Line 17 in Algorithm 5 to be as
shown in Algorithm 6. When selecting the best test case that covers
uncovered branch (Line 5) results in more than one best test case (i.e.,
test cases with the lowest fitness values) , only the test case with higher
distance from other test cases is selected (Line 8).

4.3.2.7 Diversity-based Selection

Once a rank is assigned to all candidate test cases, the crowding
distance is used to make a decision about which test case to select. The
basic idea behind the crowing distance is to compute the Euclidean
distance between each pair of individuals in a front based on their
objective value. In this case, the test cases having a higher distance
from the rest of the population are given higher probability of being
selected. To investigate the influence of distance-based measures on the
selection, we replace the crowding distance with our two measures, i.e.,
statement-based (DS-statement) and predicate-based (DS-predicate)
measures, to calculate the distance between any pair of individuals
in each front. Therefore, we replace the AssignCrowdingDistance in
Line 21 in Algorithm 5 with a new function called AssignDistance

that calculates the statement/predicate distance from each individual
test cased to the other individuals.
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Algorithm 6: The modified PreferenceSorting

1 Input: A set of candidate test cases T
2 Output: Non-dominated ranking assignment F

3 F0 . first non-dominated front

4 for bi ∈ B and bi is uncovered do
5 tcandidate ← SelectBestTestCase(T) . to cover bi
6 tbest . test case in T with minimum fitness for bi
7 if |tcandidate| > 1 then
8 tbest ← SelectMostDistantTestCase(tcandidate)
9 else

10 tbest ← tcandidate
11 end
12 F0 ← F0

⋃
{tbest}

13 end
14 T ← T − {tbest}
15 if T is not empty then
16 G←

Fast-Nondominated-Sort(T,
{

b ∈ B|b is uncovered
}

)
17 d← 0 . first front in G

18 for All non-dominated fronts in G do
19 Fd+1 ← Gd
20 end
21 end

4.3.3 Empirical Study

The purpose of this study is similar to the study conducted in Sec-
tion 4.2.3 which is to investigate the influence of test case diversity
on the generation of unit tests. In particular, we aim to analyse the
influence of population diversity on the performance of MOSA, and
whether maintaining diversity during the search has an influence on
the branch coverage. We therefore designed our study to answer the
following research questions:

RQ 2.1: How does population diversity change throughout evolution
when considering MOSA?

RQ 2.2: How effective are diversity maintenance techniques with MOSA?

RQ 2.3: What are the effects of increasing population diversity in MOSA?

In regards to the ability of MOSA in maintaining population diver-
sity, our assumption is that MOSA is more likely to maintain better
diversity level than the WSA approach during the evolution. This
is because of its properties that are explicitly designed to maintain
better population diversity (e.g., the use of crowding distance). Also,
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we expect that the individual representation of a test case increases
the population diversity as the difference among test cases can be
more obvious than the difference among test suites. However, we still
anticipate that applying diversity maintenance techniques with MOSA
leads to improve the population diversity level during the evolution,
which possibly affects the code coverage negatively.

4.3.3.1 Experimental Setup and Procedure

In this study, we consider similar experimental setup to the one men-
tioned in the previous section (Section 4.2.3.1) where EvoSuite is used
to generate JUnit test suites for a given Java CUT using MOSA, the
corpus of 311 complex classes from DynaMOSA study [127] is used
(i.e., similar to the classes were run in the previous study).

Also, we follow the experiment procedure that is applied in the
study of population diversity using WSA approach (Section 4.2.3.2)
where we conduct an experiment that involves applying each of the
three diversity measures on each CUT to measure the diversity level
and then applying each of the diversity maintenance techniques de-
fined in Section 4.3.2 to promote the population diversity throughout
the evolution. In a similar manner to WSA, we integrate each diversity
technique into MOSA and compare its performance to the default
version. However, the total number of MOSA runs is 8 (i.e., a single
MOSA run with each of the 7 techniques and one run of default
MOSA). For the parameters setting, we used similar values for the
parameters of the diversity techniques as in Section 4.2.3.3.

4.3.3.2 Threats to Validity

Controlling the threats to the internal and external validity is similar
to Section 4.2.3.4 except that the considered GA in this study is MOSA
instead of Monotonic GA.

4.3.3.3 How does population diversity change throughout evolution when
considering MOSA?

In order to understand the influence of population diversity on the
test generation, we measure the diversity level that is maintained by
MOSA during the evolution. That is to get an idea of whether MOSA
is able to maintain a proper level of diversity during the search. To
achieve that, we look at the diversity based on the different coverage
patterns that previously introduced in Section 4.2.3.5. We therefore
followed a similar procedure to classify the CUTs into different groups
by performing runs of 30 minutes to observe the development of
coverage with MOSA. This results in similar four groups as with the
previous study except the difference in the number of CUTS:
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Figure 4.6: Average values for coverage and population diversity throughout
evolution in MOSA for the four groups of CUTs.

• Evolving contains CUTs where the coverage after 30 minutes is
higher (by more than 0.01) than after 10 minutes (93 CUTs).

• Flat is the set of CUTs where the coverage never changes (60

CUTs).

• Stagnating contains CUTs for which the coverage stagnates after
10 minutes: it is higher than after 2 minutes, but increases by
less than 0.01 from 10 minutes to 30 minutes (43 CUTs).

• Plateauing contains the remaining CUTs for which the coverage
after two minutes is constant (115 CUTs).

Then, we started 30 runs for each CUT with a search budget of
10 minutes and applied the three diversity measures defined in Sec-
tion 4.3.1 to measure the diversity level for each of the four groups,
as shown in Figure 4.6. It is obvious that the diversity behaviour
is different among the four groups, and the difference can be seen
with the three diversity measures. For the evolving group, coverage
keeps growing throughout the entire 10 minutes, and this group also
shows a continuous growth of entropy and phenotype diversity. In
terms of genotype diversity, there is a reduction after an initial sharp
growth phase, but less than in all other groups. For the flat group,



4.3 an investigation of population diversity with the many-objective sorting algorithm 119

Table 4.6: Average diversity over time when applying diversity maintenance
techniques based on different distance measures, and the average
effect size Â12.

Technique Phenotype Â12 Genotype Â12 Entropy Â12

AR (fitness) 0.70 0.51 0.79 0.61 0.91 0.59

AR (predicate) 0.57 0.45 0.78 0.55 0.91 0.58

AR (statement) 0.67 0.48 0.77 0.53 0.70 0.52

CL (predicate) 0.87 0.61 0.94 0.81 0.87 0.65

CL (statement) 0.83 0.59 0.90 0.79 0.85 0.63

DE (predicate) 0.76 0.53 0.93 0.80 0.86 0.53

DE (statement) 0.70 0.52 0.90 0.79 0.80 0.52

DIP (predicate) 0.76 0.52 0.65 0.49 0.69 0.51

DIP (statement) 0.71 0.49 0.68 0.48 0.70 0.52

DR (predicate) 0.79 0.51 0.77 0.63 0.73 0.52

DR (statement) 0.61 0.46 0.77 0.62 0.67 0.48

DS (predicate) 0.87 0.67 0.93 0.82 0.74 0.51

DS (statement) 0.83 0.63 0.90 0.80 0.85 0.55

FS (fitness) 0.88 0.63 0.74 0.51 0.95 0.76

FS (predicate) 0.88 0.61 0.90 0.78 0.93 0.75

FS (statement) 0.88 0.61 0.93 0.79 0.88 0.73

MOSA 0.72 - 0.68 - 0.67 -

the phenotype diversity is overall lowest; this is because only very
few predicates are covered in the first place, as shown in the coverage
plot, and the low entropy. For the stagnating group, once the coverage
increase slows down, all three diversity measurements go down as
well. For the plateauing group, once the search converges all diversity
measurements drop sharply, and notably the genotypic diversity is
lowest of all groups. Overall it seems that, as long as coverage grows,
MOSA does well at maintaining diversity. Once coverage stagnates,
the population loses diversity. To some extent, this can be explained
by EvoSuite’s ranking mechanism: If two individuals have the same
fitness value, then the shorter of the two is preferred; this is also
used in MOSA’s rank-based preference sorting. Shorter individuals by
construction will have less diversity.

RQ2.1: MOSA maintains high diversity while coverage increases, but
diversity drops once a maximum coverage has been reached.
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4.3.3.4 How effective are diversity maintenance techniques with MOSA?

In RQ1 we saw a general tendency that diversity drops once the cover-
age stops increasing. We therefore would like to see which diversity
maintenance techniques succeed at increasing the population diversity
during evolution. For that, and similar to the procedure followed in
Section 4.2.3.6, we apply the techniques mentioned in Section 4.3.2 on
all classes. Table 4.6 summarises the results of the average diversity
among the four groups with each technique based on different dis-
tance measures (i.e., predicate, statement, and fitness). The effect size
estimates the probability that a single run of MOSA with a diversity
technique results in higher diversity than the default MOSA (i.e., with
no diversity techniques).

We can clearly see that the three diversity measures indicate that
many of the diversity maintenance techniques are able to promote
diversity higher than MOSA. The entropy measure indicates that di-
versity is the lowest with MOSA compared to all other techniques
although the difference is negligible when compared to the statement-
based Diversity-based Ranking (DR-statement) with the smallest effect
size, and fitness-based fitness sharing (FS-fitness) increases entropy
the most with the largest effect size. A similar trend can be observed
for phenotypic diversity, where FS-fitness results in the overall high-
est diversity although predicate-based Diversity-based Selection (DS-
predicate) has the largest effect size. In contrast to entropy, not all
techniques succeed in increasing phenotypic diversity; for example,
predicate-based Adaptive Rates (AR-predicate) results in the lowest di-
versity and the smallest effect size. The genotype measure indicates a
wide range of effectiveness, with Clearing based on predicate distance
(CL-predicate), the statement-based fitness sharing (FS-statement), and
DS-predicate as the most successful in promoting genotypic diver-
sity, especially the DS-predicate as it results in the largest effect size.
However, several other techniques lead to a reduction on genotypic
diversity, surprisingly in particular the two versions of Diverse Initial
Population (DIP) where DIP-statement has the smallest effect size.

To investigate how each technique affects the diversity level during
evolution, Figure 4.7 shows the diversity level achieved throughout
the evolution for each of the five techniques. For the two niching
techniques (i.e., FS and CL), the resulting diversity by both techniques
differs among the three diversity measures. The entropy measure
(Figures 4.7a and 4.3d) shows that FS is better than CL where the three
versions of FS result in higher diversity than the two versions of CL,
which is confirmed by the results in Table 4.6. However, the phenotype
measure (Figures 4.7b and 4.7e) indicates that the difference between
the two techniques is negligible except the FS-fitness that is slightly
better than the two versions of CL. The genotype measure (Figures 4.7c
and 4.7f) shows that both techniques lead to high increase in diversity
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when compared to the default MOSA, which is confirmed by the
largest effect size, except the drastic drop with FS-fitness.

In the case of DIP measure, the three measures (Figures 4.7h − 4.7j)
demonstrate no obvious difference between the diversity achieved by
the two versions of DIP and the default MOSA except the potential
increase in diversity by DIP-predicate in the phenotype measure.
Looking at the AR measure, the entropy measure (Figures 4.7k) shows
that both AR-fitness and AR-predicate lead to higher diversity than
AR-statement and even more higher than the default MOSA. This
is also the case with genotype measure (Figures 4.7m) except that
the AR-fitness is slightly better than the AR-predicate and the latter
is very similar to AS-statement. However, the phenotype measure
(Figures 4.7l) indicates a drop in the diversity after 50% of the search
time with the three versions of AR although AR-fitness reaches almost
similar diversity level to the default MOSA.

The three diversity measures demonstrate different diversity level
with the two versions of Duplicate Eliminate (DE) technique. In the
entropy measure (Figures 4.7o), the DE-predicate increases diversity
more than DE-statement and default MOSA, except after 75% of the
search time where DE-statement inconstantly increases diversity. The
phenotype measure (Figures 4.7p) shows that both versions of DE
lead to similar increase in diversity, especially after 50% of the search
time. However, there is obvious increase in diversity by both versions
that is shown by the genotype measure (Figures 4.7q) where the DE-
predicate results in the considerable increase in diversity, which is also
confirmed by the largest effect size (Â12 = 0.80).

For the two techniques that are adapted specifically for MOSA,
the Diversity-based Ranking (DR) and Diversity-based Selection (DS)
result in different effect on diversity during the evolution. The entropy
measure (Figures 4.7r and 4.7v) demonstrates that the DS technique is
slightly better than the DR where DS-statement results in the highest
diversity despite the drop in the last 20% of the search time. The DR-
predicate, however, is quite similar to the default MOSA except in that
period of time where DS-statement drops. In the case of DR, the DR-
predicate leads to many improvements in diversity when compared to
the DR-statement, which is very similar to default MOSA. Looking at
the phenotype measure (Figures 4.7s and 4.7w), DS results in higher
diversity than DR where the highest increase is observed with the
DS-predicate followed by DS-statement. This is also the case with the
two versions of DR where DR-predicate achieves better diversity than
the default MOSA, but DR-statement is worse than default MOSA.
The genotype measure (Figures 4.7t and 4.7x) shows that both versions
of DS keeps increasing diversity while the two versions of DR lead to
decrease in diversity, but still better than default MOSA.
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RQ2.2: Most diversity maintenance techniques succeed at increasing
diversity, but there are exceptions. Fitness sharing achieves the most

consistent increase.
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(a) FS – Entropy
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(b) FS – Phenotype
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(c) FS – Genotype
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(d) CL – Entropy
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(e) CL – Phenotype
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(f) CL – Genotype
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(h) DIP – Entropy
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(i) DIP – Phenotype

●

●
●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0.6

0.7

0.8

0.9

1.0
1 2 3 4 5 6 7 8 9 10

Time (minutes)

 

(j) DIP – Genotype
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(k) AR – Entropy
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(l) AR – Phenotype
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(p) DE – Phenotype
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(v) DS – Entropy
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Figure 4.7: Diversity throughout the evolution with MOSA and the seven
diversity maintenance techniques based on different distance
measurements.

4.3.3.5 What are the effects of increasing population diversity in MOSA?

To investigate the impact of diversity on the performance of MOSA, we
look at the achieved coverage and the average size of the individuals in
the population throughout the evolution. Figure 4.8 shows the results
of the best coverage in the population and the average length of all
individuals in the population for MOSA with and without each of the
seven diversity maintenance techniques during the evolution. Overall,
the performance of MOSA with the diversity techniques either similar
or lower than the defaull MOSA in terms of branch coverage. We can
clearly see that the diversity techniques that result in high increase in
diversity lead to lower branch coverage than the default MOSA such
as CL and DS.

In the case of FS, two versions of FS (i.e., FS-predicate and FS-
statement) reduce the coverage, but the FS-fitness results in slighlty
similar coverage to default MOSA where the Â12 values with the
FS-entropy, FS-predicate, and FS-statement are 0.49, 0.47, and 0.46,
respectively. However, the coverage with the two version of CL is
considerably lower than default MOSA where Â12 is 0.39 with both
versions. The two versions of DIP perform similarly as they result in
lower coverage than the default MOSA in almost the first five minutes
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Table 4.7: Spearman correlation between the diversity achieved by the seven
diversity techniques based on different distance measures and
length.

Technique Phenotype Genotype Entropy

AR (fitness) 0.3338 0.5060 0.6075

AR (predicate) 0.2496 0.4008 0.6857

AR (statement) 0.3098 0.4541 0.7203

CL (predicate) 0.4301 0.4272 0.6403

CL (statement) 0.4527 0.2249 0.6373

DE (predicate) 0.3195 0.3165 0.7744

DE (statement) 0.3113 0.3534 0.6120

DIP (predicate) 0.3444 0.3398 0.5624

DIP (statement) 0.3880 0.4286 0.5248

DR (predicate) 0.4383 0.3647 0.3489

DR (statement) 0.4158 0.3594 0.3669

DS (predicate) 0.5729 0.3684 0.5970

DS (statement) 0.5023 0.4677 0.5353

FS (fitness) 0.2564 0.1301 0.2348

FS (predicate) 0.4393 0.5504 0.5839

FS (statement) 0.3791 0.3376 0.5581

MOSA 0.3211 0.4444 0.4957

of the search and then achieve similar coverage to default MOSA;
Â12 = 0.49 with DIP-predicate and Â12 = 0.485 with DIP-statement.
For the AR technique, Figure 4.8g suggests that the adaptive crossover
and mutation rates seem to have a negative impact on coverage as
the three versions of AR lead to lower coverage than default MOSA
where the Â12 with the three versions is almost 0.45. This is also the
case with the DE and DS where there is an obvious difference in the
achieved coverage by the two versions of each technique and default
MOSA; Â12 = 0.47 with DE-statement, Â12 = 0.46 with DE-predicate,
DS-predicate, and DS-statement. However, the DR technique performs
similar to default MOSA except that the latter achieves higher coverage
in the first two minutes of the search; Â12 ≈ 0.49 with both versions
of DR.

The negative effect of diversity on the length is observed with all
the techniques, as shown in Figure 4.8. We can obviously see that in-
creasing diversity leads to longer test cases. In this case, we expect that
those techniques that lead to higher diversity also lead to longer indi-
viduals. To validate this conjecture, and similar to what we consider
in Section 4.2.3.7, we look at the Spearman correlation between the
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(a) FS – Coverage
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(b) FS – Length
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(c) CL – Coverage
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(d) CL – Length
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(e) DIP – Coverage
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(f) DIP – Length
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(g) AR – Coverage
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(h) AR – Length
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(j) DE – Coverage
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(l) DR – Coverage
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(m) DR – Length
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Figure 4.8: Coverage and length over time with MOSA and the five diversity
maintenance techniques based on different distance measure-
ments.
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average diversity throughout evolution and average test case length
in the population, which is shown in Table 4.7. Based on the entropy
measure, we can observe that there is a strong correlation between
diversity and length with some techniques where the strongest cor-
relation is with DE-predicate, but however the correlation with other
techniques is not as strong as with FS-fitness, which indicates that
increasing diversity does not necessarily always lead to an increase in
length. The phenotype and genotype measures show slighlty weaker
correlation between diversity and length, especially the FS-fitness
with genotype measure that indicates higher diversity does not result
in longer tests. This, in fact, is confirmed by the genotype diversity
shown in Figure 4.7c and the length in Figure 4.8b.

To follow the procedure we apply in Section 4.2.3.7, we consider
to apply the adaptive version of fitness sharing and compare its per-
formance to the naive application of fitness sharing and the default
MOSA. The adaptive diversity approach work by applying the fitness
sharing only when diversity drops below a certain threshold (i.e.,
60% of the initial population diversity level), and once the diversity
level exceeds the threshold, the diversity technique is not applied.
Figure 4.9 shows the results of the best coverage in the population and
the average length of all test cases in the population for MOSA with
and without fitness sharing (FS (fitness/predicate/statement)) during
the evolution.

For the flat group, there is a small difference in coverage as MOSA
and fitness-based fitness sharing result in slighlty higher coverage
than the other techniques. The length plot shows how MOSA removes
all redundancy from the population, while adding diversity leads to
larger individuals. In particular, genotype-based fitness sharing has
quite dramatic effects on size. Fitness-based sharing (adaptive and
non-adaptive) has the smallest effects on size.

For the evolving group, MOSA achieves the highest coverage, while
maintaining a somewhat constant population size. Generally, fitness
sharing slightly increases size, quite dramatically so for genotype-
based fitness sharing. Adaptive fitness-based sharing even leads to
smaller individuals than MOSA. Non-adaptive fitness sharing using
genotype and phenotype diversity leads to a notably lower coverage.

For the stagnating group, the non-adaptive fitness sharing using
genotype and phenotype diversity again lead to a notably lower cover-
age and larger size. This time, however, adaptive fitness-based sharing
consistently leads to a higher average coverage than MOSA, and even
smaller individuals than MOSA.

The plateauing group shows similar results to the stagnating group,
with larger coverage improvement of adaptive phenotype-based shar-
ing. While genotype and phenotype based non-adaptive sharing again
lead to lower coverage initially, in this group the size remains large
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Figure 4.9: Coverage and length over time with MOSA, fitness sharing (FS),
and adaptive fitness sharing (AFS) per four groups of CUTs
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Table 4.8: Number of classes where adaptive fitness sharing has an in-
creased/decreased/equal coverage compared to MOSA, the av-
erage effect size Â12 and the number of classes for which this
comparison is statistically significant (α = 0.05).

Technique
increased coverage decreased coverage equal

#classes #sig. Â12 #classes #sig. Â12 #classes

Fitness 99 6 0.52 87 27 0.48 125

Predicate 52 2 0.51 141 39 0.48 118

Statement 77 4 0.51 116 33 0.49 118

but constant, and the coverage catches up and even overtakes MOSA
in the end.

Adaptive fitness sharing leads to higher coverage when the search
in MOSA stagnates (e.g., when coverage does not increase). To see
whether adaptive fitness sharing is always beneficial, Table 4.8 shows
the number of classes where it increases, decreases, or results in
equal coverage with MOSA. Adaptive fitness-based sharing (AFS-
fitness) increases coverage on 99 classes and decreases it on 87 classes,
albeit having only 6 significant increases as opposed to 27 significant
decreases. For adaptive sharing based on predicate (AFS-predicate)
and statement (AFS-statement) differences we found more decreases
than increases.

The negative effect of diversity on coverage can be explained by
the increase in length where the execution of longer tests takes more
time, thus slowing down the evolution. During the 10 minutes search
limit, MOSA executed 629 generations on average. The naive fitness
sharing decreases the average number of generations (457, 344, and
339 generations with FS-fitness, FS-predicate, and FS-statement respec-
tively), but these figures improve when using the adaptive approach
(631, 538, and 519 generations with AFS-fitness, AFS-predicate and
AFS-statement, respectively). Our conjecture is that the low number of
generations is a result of a high number of statements that take long
time to execute. To validate this conjecture, we take a step further in
our investigation and look at the average number of executed state-
ments with all generations, and surprisingly we found out that the
number of executed statements with naive fitness sharing techniques
is lower than MOSA (206710, 181844, 153249, and 22451 statements
with MOSA, FS-predicate, FS-fitness, and FS-statement respectively),
whereas the adaptive approach results in more executed statements
than MOSA (300934 with AFS-statement, 268043 with AFS-predicate,
and 217835 with AFS-fitness).

To gain a further understanding of the impact of increasing diver-
sity on the individual length, we look at the types of the executed
statements with each diversity technique. This allows us to see the
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Figure 4.10: The average count of executed statements types with MOSA,
fitness sharing (FS), and adaptive fitness sharing (AFS)

distribution of different statement types over different techniques, and
whether there is a biased increase of certain types of statements that
happens with enforced diversity (i.e., does promoting diversity lead
to an increase in specific statement types?). Therefore, and based on
the well-known Java statement types, we first classify the statements
into the following types:

• Array statement is a statement that declares an array such as
byte[] byteArray0 = new byte[5].

• Assignment statement is to assign a value to a specific variable
such as byteArray0[0] = byte0.

• Constructor statement is to initialize an object such as
ImprovedTokenizer improvedTokenizer0 = new ImprovedTokenizer(string0).

• Field statement is to initialize a field such as
StringBuffer stringBuffer0 = improvedTokenizer0.myBuffer

• Functional Mock statement is to create a mock object that simu-
lates the behaviour of class or the behavior of its dependencies.
For example, initializing the constructor of the Response class
requires the use of an abstract class (i.e., HttpURLConnection)
such as:
Response(HttpURLConnection connection). In this case, a mock
object can be used to provide a simulation for every method in
the mocked HttpURLConnection class such as:
HttpURLConnection httpURLConnection0 = mock(HttpURLConnection.class).
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• Method statement is to invoke a method in the CUT such as
String string0 = improvedTokenizer0.next().

• Null statement is to assign a null value to a variable such as
String string0 = null.

• Primitive statement is to initialize a variable of primitive type
such as char char0 = ’a’.

We then apply this classification on the executed statements re-
sutling from the conducted experiment and count the number of
statements with each type as shown in Figure 4.10. It is obvious that
the number of statements of each type differs among all the techniques
where higher number of statements is observed with the adaptive FS
and, in contrast, lower number of statements is with the naive FS
whereas the default MOSA is in the middle. In general, the dominant
statement type among all the techniques is the Method type followed
by the Constructor and Assignment types although the number of
statement that belong to these three types is different with each tech-
nique. The highest number of Method statements is observed with
AFS-fitness while AFS-statement has the highest number of Construc-
tor statements and Assignment statements. In fact, the AFS-statement
leads to the highest number of statements that belong to the Array,
Field, Functional Mock, Null, and Primitive types when compared to
the other techniques. Therefore, we conclude that there is no obvious
statement type that dominates the executed statements when promot-
ing population diversity, and thus the increase of individual length
seems to be a general increase that is independent of certain statement
types.

RQ2.3: Promoting diversity generally leads to larger tests and reduces
coverage. However, when coverage stops growing, adding diversity may

improve MOSA.

4.4 a comparison of the impact of population diversity

on wsa and mosa

Investigating the influence of population diversity on the generation
of unit tests reveals that there is a difference in the degree of how
population diversity affects the search when considering the two algo-
rithms; Monotonic GA using WSA approach and MOSA. Therefore,
this section reviews the difference in the impact of population diver-
sity on the search when using the two algorithms by comparing how
diversity influences the performance of each algorithm.

As an initial step towards understanding how population diversity
affects the search, we investigate whether each of the two algorithms
is able to maintain sufficient population diversity level during the



134 measuring and maintaining population diversity in unit test generation

64%65%

46%

83%

26%

69%

56%

86%

50%

67%

26%

16%

43%
40%

5%
12%

31%
39%

22%

5%

43%

60%

28%

5%

67%

75%

29%

49%

22%

61%

21%

47%

Plateauing Stagnating

Evolving Flat

Cov. Ent. Gen. Phen. Cov. Ent. Gen. Phen.

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

 

 MOSA WSA

Figure 4.11: Average coverage (Cov.) and population diversity throughout
evolution in both Monotonic GA using WSA and MOSA for
the four groups of CUTs where a value close to 100% indicates
high coverage/diversity. The diversity is measured based on the
three measures: Entropy (Ent.), Genotype (Gen.), and Phenotype
(Phen.).

evlution, as shown in Section 4.2.3.5 and Section 4.3.3.3. For better un-
derstanding, Figure 4.11 compares the average coverage and diversity
based on the three measures (i.e., phenotype, genotype, and entropy)
throughout the evolution with both algorithms.

We can clearly see that the achieved coverage and diversity by both
algorithms during the evolution differs among the four groups. For
the coverage, MOSA results in higher coverage than Monotonic GA
using the WSA approach with the four groups. The highest difference
between the coverage achieved by both algorithms is noticed with the
plateauing group (Â12 = 0.42) whereas the smallest difference is with
the evolving group (Â12 = 0.49).

In terms of diversity, it is obvious that each of the three mea-
sures indicates different results of the achieved diversity as there
are cases where Monotonic GA is able to reach higher diversity level
than MOSA. For example, the entropy measure shows that the di-
versity level achieved by Monotonic GA with the flat and evolving
groups is higher than the level achieved by MOSA (Â12 = 0.62 and
Â12 = 0.54 respectively). In the case of genotype measure, all the
groups demonstrate that MOSA maintains considerably higher diver-
sity level than Monotonic GA except the plateauing group although
there is no significant difference between the two algorithms with this
group (Â12 = 0.51). Also, the phenotype measure shows that MOSA
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promotes higher diversity during the evolution than the Monotonic
GA with all the groups except the flat group where Monotonic GA
significantly increases diversity more than MOSA (Â12 = 0.65).

Based on the results of the three measures, we see that MOSA seems
to be superior to Monotonic GA in maintaining higher diversity level
during the evolution, and a possible reason behind that is MOSA
has its own properties that are explicitly designed to maintain better
population diversity such as the crowding distance that is used to
decide which test case to be selected for the next generation (i.e.,
the test case whigh higher distance from other test cases has higher
probability to be selected). Also, the individual representation plays
an important rule as the similarity between individual test suites is
expected to be higher than with individual test cases (i.e., the test suite
representation is bound to have more redundancy).

In Section 4.2.3.6 and Section 4.3.3.4, we investigate whether ap-
plying the diversity maintenance techniques with each of the two
algorithms can improve the diversity level during the evolution. To
compare the impact of each of these diversity techniques on the two
algorithms, Figure 4.12 presents a comparison of the diversity level
achieved by the two algorithms when applying the diversity mainte-
nance techniques.

Overall, we observe that both algorithms achieve different diversity
level with every diversity technique, and no one algorithm that always
maintaines higher diversity than the other algorithm. In fact, applying
many of the diversity techniques with MOSA leads to an increase in
the diversity more than when they are applied to the Monotonic GA.
This can be seen with all the versions of AR, CL, and DIP techniques
where the highest difference between the diversity achieved by both
algorithms is observed with the CL-predicate based on the genotype
diversity measure (Â12 = 0.73). In contrast, the two versions of the DE
technique maintains higher diversity level when they are applied to
Monotonic GA where the DE-statement based on phenotype diversity
measure shows that highest diversity between the two algorithms
(Â12 = 0.57). The fitness sharing based on predicate and statement
distances achieves higher diversity with MOSA except the fitness-
based version where the genotype diversity measure indicates an
increase in diversity is achieved with the Monotonic GA (Â12 = 0.55).

To better understand how the diversity maintenance techniques
affect the diversity level during evolution, we compare the diversity
achieved by each algorithm (i.e., the default GA) with the resulting
diversity level when incorporating each of the diversity techniques
with the algorithm. In the case of Monotonic GA, we observe that the
diversity techniques always lead to an increase in the diversity where
the highest significant increase is achieved by the DE-predicate based
on the genotype diversity measure (Â12 = 0.82). However, applying
the diversity maintenance techniques with MOSA does not always
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Table 4.9: Coverage and Length resulting from Monotonic GA using WSA
and MOSA when considering the diversity maintenance tech-
niques.

Technique
Coverage Length

WSA MOSA WSA MOSA

AR (fitness) 64.67% 62.42% 135 15

AR (predicate) 64.16% 62.93% 125 18

AR (statement) 64.07% 62.04% 127 16

CL (predicate) 60.84% 56.57% 101 19

CL (statement) 60.18% 56.50% 92 19

DE (predicate) 65.06% 61.43% 114 22

DE (statement) 63.87% 64.42% 110 21

DIP (predicate) 63.43% 70.38% 111 18

DIP (statement) 63.72% 69.87% 118 19

DR (predicate) - 69.70% - 16

DR (statement) - 67.77% - 15

DS (predicate) - 64.10% - 18

DS (statement) - 63.96% - 23

FS (fitness) 62.10% 69.97% 108 11

FS (predicate) 62.63% 66.17% 112 15

FS (statement) 61.87% 63.64% 97 28

AFS (fitness) 64.36% 70.11% 91 10

AFS (predicate) 63.92% 69.57% 89 11

AFS (statement) 63.18% 68.93% 90 13

Default GA 64.64% 70.48% 81 9

lead to an increase in the diversity as the genotype diversity measure
indicates a decrease in diversity when applying techniques such as
the three versions of AR. Moreover, when comparing the increase
in diversity that results from applying the diversity techniques with
MOSA to the increase resulting from Monotonic GA, we can clearly
see that the increase with MOSA is not as high as with Monotonic
GA. A possible reason behind that is the default Monotonic GA is not
as efficient as the default MOSA in promoting higher diversity, and
therefore applying a diversity maintenance technique will definitely
result in a better diversity level than the level achieved by the default
one.

In order to understand the impact of population diversity on the
performance of the two algorithms, we compare the final coverage
and length that are resulted from applying each diversity maintenace
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technique on both algorithms, as shown in Table 4.9. In general, we
clearly see that applying diversity techniques to both algorithms re-
duce coverage and increase length although there are techniques that
result in slightly similar or better coverage (e.g., DE-predicate achieves
trivial increase in coverage when compared to the default Monotonic
GA). When comparing the performance of each technique with both
algorithms, there are techniques that lead to better branch coverage
when applied with the Monotonic GA such as AR and CL despite
the small difference in the coverage with both algorithms, while the
other techniques result in higher coverage when applied with MOSA.
However, it is not possible to compare the resulting length from both
algorithms as the length in the WSA refers to the statements of an indi-
vidual test suite while the length in MOSA is the number of statements
of an individual test case.

One important part of our investigation is to look at the influence
of the adaptive diversity on the performance on both algorithms.
In Table 4.9, it is obvious that the adaptive diversity reduces the
negative impact on length and possibly improve the coverage. The
fitness-based adaptive version leads to slightly similar coverage to the
default GA although there is no considerable difference between the
coverage achieved by this version and the others, but still result in
better coverage than the naive diversity. In terms of length, applying
the diversity adaptively does not increase the length as with the naive
diversity approach, and this is the case with both algorithms.

Our findings regarding the effect of diversity on coverage and length
conform to those obtained in the study by Vogel et al. [172, 173] where
increasing diversity does not have an effect on coverage, but it finds
more faults. Also, increasing diversity is found to have a negative
impact on the length of tests (i.e., longer test sequences).

Despite the importance of understanding the influence of popu-
lation diversity on the generation of unit tests, it is also important
to understand how the landscape structure affects the population
diversity. As mentioned in Section 2.2.5.1, maintaining population di-
versity can be beneficial, especially with a rugged landscape, to avoid
stagnation in local optimum and ensure that the search space is well
explored. This leads to the question of whether the landscape structure
has an impact on the diversity level (i.e., does an increase in landscape
ruggedness/neutrality negatively affect the diversity of population?).
Therefore, the next section investigates how the landscape features
influence the diversity level, especially with an increase in ruggedness.
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Figure 4.13: The Spearman correlation of entropy based on default MOSA
with each of the six measures for all the branches of 331 classes.
The correlation coefficient of entropy and AC is −0.028, ND is
−0.58, NV is 0.61, IC is 0.66, PIC is 0.64, and DBI is −0.59.

4.5 how does the landscape structure affect the popu-
lation diversity?

In order to understand the impact of the landscape structure on the
population diversity, we investigate the Spearman correlation of the en-
tropy measure and each of the six landscape measures (Section 3.3.3.1)
when considering MOSA. In this case, the entropy and each landscape
measure are calculated for each objective (i.e., branch) and the two
resulting values are then correlated, as shown in Figure 4.13.

There is always a significant correlation between the entropy and
each of the measures with p-value < 0.001, but the difference lies in
the strength of the correlation (i.e., the correlation coefficient) where
the strongest correlation is observed with the IC measure (0.66) and
the weakest correlation is observed with the AC (−0.028). In general,
we clearly see that an increase in population diversity tend to correlate
to an increase in landscape ruggedness (i.e., high entropy indicates
high diversity) which is confirmed by all the measures except AC.
It should be noted that an increase in landscape ruggedness does
not necessarily cause the population to be more diverse. Looking at
the ND measure, the negative correlation between entropy and ND
(−0.58) suggests that cases with a large neutrality distance (that is,
long sequences of neutral steps in the random walk) tend to have a
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Figure 4.14: The Spearman correlation of entropy based on AFS-fitness with
each of the six measures for all the branches of 331 classes. The
correlation coefficient of entropy and AC is −0.045, ND is −0.64,
NV is 0.65, IC is 0.72, PIC is 0.71, and DBI is −0.70.

lower level of population diversity. The correlation between entropy
and NV (0.61) indicates that the increase in neighbouring areas of
neutral individuals (i.e., few flat areas in the landscape) relates to
higher diversity level.

For the information-based measures, the correlation between en-
tropy and IC (0.66) indicates that a high entropy value corresponds to
a high IC value, which means that an increase in landscape ruggedness
relates to an increase in population diversity. This is also shown in the
correlation between the entropy and PIC (0.64) as a high entropy value
corresponds to a high PIC value. A large PIC value indicates a high
landscape modality. This correlation between entropy and PIC indi-
cates that population can be more diverse on a multimodal landscape.
The negative correlation between entropy and DBI (−0.59) indicates
that a high entropy value corresponds to a low DBI value. According
to the definition of DBI, a low DBI value is an indicator of a high
density of peaks and few flat areas in the landscape. The negative
correlation between entropy and DBI suggests that there might be
a possibility that population diversity increases with an increase in
rugged areas in the landscape.

As the correlated entropy is based on the default MOSA (i.e., with-
out incorporating any diversity maintenance techniques), we ask a
question of whether promoting diversity makes any difference in the
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correlation between the landscape measures and entropy. Therefore,
we consider the entropy when applying the adaptive fitness sharing
based on fitness differences (AFS-fitness) and correlate it with the
landscape measures, as shown in Figure 4.14.

It is obvious that there is still a correlation between entropy and
each of the landscape measures as the correlation still indicates that
an increase in landscape ruggedness correlates to higher population
diversity. In fact, promoting diversity shows a stronger correlation
between entropy and the landscape measures, which is observed with
all the measures. For example, the correlation coefficient between
entropy and IC when promoting diversity is 0.72 while the correlation
coefficient with the default MOSA is 0.66.

Therefore, based on these results, landscape plateaus seem to de-
crease the population diversity and ruggedness can be beneficial to
diversity. A possible reason of why ruggedness leads to an increase
in population diversity is that ruggedness indicates the existence of
gradients that usually lead to many small variations in the fitness val-
ues, which is the case that is observed with the branches that are easy
to cover by GAs (Section 3.5). Thus, it is expected that the frequent
change in fitness values caused by the existence of gradients leads to
high entropy.

4.6 summary

The loss of population diversity is a common problem that occurs
during the search of a GA. This often leads to prematurely converge
on suboptimal solutions that might not even be local optimal solutions.
This reduces the effectiveness of the GA, and in the case of search-
based test generation, the code coverage is reduced. Therefore, it is
important to maintain the diversity of population to avoid this issue.
In this chapter, we investigate the impact of population diversity on
the generation of unit tests by (i) measuring the diversity level during
the evolution with both algorithms (Monotonic GA using WSA and
MOSA), (ii) applying diversity maintenance techniques to enhance the
population diversity, (iii) studying the impact of increasing diversity
on the generation.

Measuring the diversity of generated unit tests based on entropy,
genotypic, and phenotypic levels suggest that (i) the default Monotonic
GA is not as efficient as the default MOSA in maintaining higher
diversity and (ii) applying diversity maintenance techniques on the
two algorithms are very effective at promoting diversity throughout
the evolution, which is more obvious with Monotonic GA as the
increase in diversity caused by these techniques with MOSA is not as
high as with Monotonic GA.

Looking at their effect on the performance of GAs, we see that
increasing diversity leads to (i) reduced coverage although there are



142 measuring and maintaining population diversity in unit test generation

techniques that result in slightly similar coverage, and (ii) a possible
increase in the length. However, the results of applying the adaptive
approach suggest that adaptive diversity reduces the negative impact
on length and, to some extent, improves the coverage, especially
with the adaptive fitness-based sharing (AFS-fitness). The increase
in the individual length is caused by adding more statements to an
individual test that eventually leads to a decrease in the number of
executed generations during the search, which is more obvious with
the naive diversity approach. Investigating the type of statements that
are added when increasing diversity reveals that there is no a specific
statement type that happens with enforced diversity.

Finally, investigating whether the landscape structure influences
population diversity reveals that an increase in landscape ruggedness
leads to higher population diversity.



5
A N A N A LY S I S O F T H E E F F E C T S O F T E S T C A S E
R E D U C T I O N O N U N I T T E S T G E N E R AT I O N

5.1 introduction

In the last two chapters, we observe that the individual representation
is an important constituent of the GA that influences the generation
of unit tests. This can be seen when analysing the fitness landscape
where an individual of a test suite leads to generate more plateaus
in the fitness landscape than an individual of a test case. Also, the
individual representation has an impact on the population diversity
where the GA with a test case representation (MOSA) promotes higher
diversity level than the GA with a test suite representation (Monotonic
GA using WSA).

However, despite the success of the test case representation in reduc-
ing the presence of plateaus in the fitness landscape, it still produces
plateaus that are detrimental to the search. This, in fact, led us to con-
duct further investigation of what makes consequent mutations during
the random walk result in equal fitness, which indicates the presence
of plateaus in the landscape. This implies that applying the mutation
on an individual test case does not lead to an effective change that
affects the fitness. Investigating the reasons behind this issue reveals
that the test case representation has structurally non-effective code.
This non-effective code is a result of the mutation operator that, for
example, inserts statements that might seem to be useless, and have
no positive impact on the final fitness value. Such statements are just
duplicates of other statements in a test case in a way that they both
perform similarly (e.g., both call one method with the exact test input).
We call these statements as redundant statements in the test case. To
illustrate that, consider the test case in Listing 5.1 that is a result of a
mutated test case.

Looking at the statements of the test case, it is obvious that each of
the four test inputs (i.e., int0, int1, int2, and int3) is used multiple
times to test the foo method. This means that the mutation either
inserts or changes statements that test the foo method with a test input
that is already used before to test the same method. For example, the
statement in Line 4 performs exactly to the statement in Line 3 where
they both test the foo method with the input int0. This is also the case
with the statements in Line 9, 12, and 13, which are the redundant
statements in this test case.

143
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1. ArtClass artClass0 = new ArtClass();

2. int int0 = (-4643);

3. boolean boolean0 = artClass0.foo(int0);

4. boolean boolean1 = artClass0.foo(int0);

5. int int1 = 2115;

6. boolean boolean2 = artClass0.foo(int1);

7. int int2 = (-2139);

8. boolean boolean3 = artClass0.foo(int2);

9. boolean boolean4 = artClass0.foo(int0);

10. int int3 = (-2220);

11. boolean boolean5 = artClass0.foo(int3);

12. boolean boolean6 = artClass0.foo(int1);

13. boolean boolean7 = artClass0.foo(int2);

Listing 5.1: A test case with redundant statements

1. ArtClass artClass0 = new ArtClass();

2. int int0 = (-4643);

3. boolean boolean0 = artClass0.foo(int0);

4. int int1 = 2115;

5. boolean boolean2 = artClass0.foo(int1);

6. int int2 = (-2139);

7. boolean boolean3 = artClass0.foo(int2);

8. int int3 = (-2220);

9. boolean boolean5 = artClass0.foo(int3);

Listing 5.2: A test case without redundant statements

Moreover, this issue is observed when applying a diversity main-
tenance technique where higher population diversity leads to an
increase in the individual length. Investigating such increase in the
length demonstrates that there are many redundant statements that
are just duplicates of other statements in the test case, similar to the
case shown in the example above. Besides the negative impact of
these statements on the length, their existence in the test case makes
it harder for the mutation to apply the change operation effectively.
In other words, there is a low probability that the mutation changes a
statement that possibly improves the fitness, for example, changing
the test input in one of the four statements (Line 2, 5, 7, and 10) to
test the foo method with a new test input that might lead to cover
an uncovered branch. This, in fact, leads to the intuition that such
statements should be removed in order to reduce the negative impact
on length and mutation during the evolution. Applying this intuition
to the test case shown above results in the updated test case shown in
Listing 5.2.
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Therefore, and based on the idea mentioned above, we adapt the
approach of test case reduction that removes redundant statements
after each test case mutation during the evolution. In particular, the
aim of this chapter is to investigate whether removing redundant
statements leads to (i) decrease the presence of plateaus in the fitness
landscape, (ii) reduce the negative effect on length when promoting
population diversity, and thus (iii) improve the performance of the GA
in achieving better branch coverage.

This chapter is organised as follows: Section 5.2 presents related
concepts to the test reduction and their applications to different do-
mains. Section 5.3 defines in detail the rules that are followed when
applying the test reduction approach. Section 5.4 presents the research
questions in which this chapter aims to address and the conducted
experiments to answer these questions. Finally, Section 5.5 gives an
overall discussion of the findings of this investigation.

5.2 background

The individual representation is an important aspect of Evolutionary
Algorithms (EAs) that plays an important role in solving an opti-
misation problem. However, when an EA considers an individual
representation of variable length, a problem known as bloat may oc-
cur [25]. Bloat is a phenomenon that denotes the rapid growth in the
size of individuals when evolution progresses with no considerable
effect on the fitness. This leads to several issues such as the consump-
tion of resources that are available to run the EA (e.g., machine RAM),
the slow search progress as longer individuals need longer time to
evaluate and thus result in few generations, and in the domain of
test generation, the difficulty in understanding the final test suite that
needs to be manually evaluated.

Genetic Programming (GP) is a well known form of EAs that suffers
from the bloat problem [95] where programs are evolved such that a
program is represented as a syntactic tree. When evolving programs,
they tend to have unnecessary subtrees (also known as introns) that
increase the individual size with no contribution to the program fitness.
Although the presence of introns can be beneficial (i.e., avoiding the
destructive effect of the crossover operator), their removal is found
to be promising in improving the GP performance [27]; introns are
detected and removed during evolution.

In the domain of test case generation, the bloat problem has been in-
vestigated where different techniques are applied during the evolution
to control bloat [61]. For example, the bloat is prevented by (i) giving a
high rank to tests that are shorter when considering the rank selection
and (ii) setting a maximum length of a test case where an upper limit
of the number of statements cannot be exceeded, especially when
inserting new statements by the mutation operator.
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Avoiding lengthy test cases is not only important during the search,
it is also essential that the final test suite should be as short as possible
to make it more understandable for users. This is known as test
suite minimisation that can be applied as removing each unnecessary
statement in each test case one at a time and then re-executing the
reduced test suite to ensure the coverage does not decrease [13]. This
process is repeated until reaching the minimum length of the reduced
test suite that achieve similar coverage to the non-reduced test suite.
However, the test suite minimisation approach is not only applied
to remove statements of test cases, it is also considered to eliminate
duplicate test cases that have no effect on the test suite coverage. The
latter case is referred to as test suite reduction that aims to reduce the
size of a test suite while maintaining its effectiveness by selecting a
minimal subset of test cases from the test suite that satisfies the testing
goals that are satisfied by the original test suite [182]. For example,
when branch coverage is the considered testing goal, the reduced test
suite is the minimal subset of test cases that achieve similar branch
coverage as to the non-reduced test suite. To achieve that, different
test suite reduction techniques have been proposed [182] such as the
greedy approach that iteratively selects a test case that satisfies as
maximum unsatisfied goals as possible. Other studies also proposed
different approaches, especially in the unit test generation, that result
in minimised unit tests that are effective in detecting defects, for
example, using the program slicing and delta debugging [98].

The previously mentioned approaches attempt to reduce the length
of an individual and minimize the final test suite as a post-processing
step, except the bloat control techniques that are applied within the
generation process [61]. Our approach is similar to the test suite
minimisation approach that is applied on the final test suite [13] except
that only unnecessary statements are removed without removing
unnecessary test cases and the removal occurs during the evolution.
The reason why we focus on removing redundant statements from test
cases during the evolution is to mainly investigate that effect of such
reduction on the fitness landscape and the performance of diversity
maintenance techniques.

5.3 test case reduction rules

In this section, we demonstrate how test case reduction is applied,
and more specifically the rules of removing redundant statements
(reduction rules) are explained. In general, the removal of a statement
from a test case relies on the statement type, its dependency with
the other statements in the test case, and its redundancy. As there
are different possible types of statements in a test case, we define the
reduction rules based on three generic statement types that are:
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• Constructor statement that creates a new object such as the
statement in Line 1 in Listing 5.3.

• Assignment-by-value statement that explicitly initialises a new
value that is used as a test input. This includes primitive, array,
and null statements. An example is the statement in Line 2 in
Listing 5.3.

• Assignment-by-return statement that implicitly initialises a new
value by, for example, calling a method that returns a value such
as the statement in Line 3 in Listing 5.3. Note that the declared
variable in such statements (e.g., boolean0) might be used as
a test input by other statements, for that it is considered as an
implicit initialisation.

1. ArtClass3 artClass3_0 = new ArtClass3(); //Constructor

2. String string0 = "9|Xo #{"; //Assignment-by-value

3. int int0 = artClass3_0.zoo(string0); //Assignment-by-return

4. boolean boolean0 = artClass3_0.foo(int0);

5. int int1 = artClass3_0.zoo(string0);

6. String string1 = "G/]@WL-N7pT4r.-9H4c";
7. int int2 = artClass3_0.zoo(string1);

8. int int3 = artClass3_0.zoo(string1);

9. boolean boolean1 = artClass3_0.foo(int1);

10. int int4 = artClass3_0.zoo(string0);

11. boolean boolean2 = artClass3_0.foo(int3);

12. String string2 = null;

13. int int5 = artClass3_0.zoo(string2);

Listing 5.3: A test case with redundant statements to explain the reduction
rules

Another important factor that must be considered before removing a
statement is the dependency between this particular statement and the
other statements in the test case. This is because removing a statement
(e.g., initialising a new value as test input) that other statements
depend on (e.g., calling a method with that particular test input)
causes a failure in the test case. There are two types of dependency
between the statements of a test case. A statement x depends on a
statement y such that y either creates an object or initialises a test
input used by x, for example, the statement in Line 3 in Listing 5.3
depends on the statements in Lines 1 and 2. In this case, the statement
x (Line 3) is called dependent statement. In contrast, the statement y
(Line 1 and 2) is called dependee statement as it is depended on by the
statement x.

Besides the statement type and dependency, the statement redun-
dancy is another factor to be considered to decide whether a statement
is removed or kept. A statement is considered redundant if it performs
similarly to other statements such as calling a method with one exact
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Figure 5.1: An overview diagram that demonstrates the reduction rules

test input. For example, both statements in Line 3 and 5 in Listing 5.3
test the foo method with the same test input string0. In this case,
both statements are called redundant statements in the test case. How-
ever, the removal of a statement cannot only be based on the type,
dependency, or redundancy (i.e., relying only on one of these three
factors to remove the statement), but in fact, all the three factors must
be considered to decide if the statement should be removed, which
define the reduction rules as explained in Figure 5.1.

The removal of a statement in a test case follows five rules that
rely on the statement type, dependency, and redundancy. For each
statement, we first look at its type; if the statement is Constructor or
Assisgnment-by-value then the statement is not removed as the created
object or the initialised test input is possibly used by statements that
are either inserted or changed during the mutation applied in later
generations (Rule 1). In case the statement is Assisgnment-by-return
then we look at its dependency where there are three possible cases; if
the statement is dependee (i.e., depended on by other statements) then
the statement is not removed since removing such a statement causes
the failure of the test case (Rule 2). When the statement is dependent,
there are two possible cases that are either (i) the statement is also
dependee (e.g., statement in Line 3 in Listing 5.3) in which the statement
is not removed (Rule 3) or (ii) the statement is not dependee such that
no other statements depend on this one, and in this case, we look at
its redundancy. If the statement is non-redundant then the statement is



5.3 test case reduction rules 149

not removed (Rule 4), otherwise the statement is removed since it is a
duplicate of other statements (Rule 5).

To better understand the reduction rules, we apply the six rules on
the statements of the test case shown in Listing 5.3. For simplicity,
we refer to each statement by the line number such as statement
1 refers to the statement in line 1. Statement 1 cannot be removed
according to the first rule. Statements 2, 6, and 12 cannot also be
removed according to the first rule. However, the other statements
follow the remaining rules where they all of Assisgnment-by-return
type. In the case of statement 3, it is dependent and dependee as
well since statement 4 considers its initialised input, which makes it
difficult to remove this statement based on the third rule. The same
rule is also followed with statement 8 as statement 11 depends on it,
and thus cannot be removed. Moreover, statement 4, 11, and 13 are
dependent but not dependee and when looking at their redundancy,
they all are non-redundant; statement 4 is is the only statement that
tests foo method with the input int0, statement 11 is non-redundant
because no other statements test foo method with the input int3, and
statement 13 is the only the statement that tests zoo method with
the input string2. Therefore, and according to the fourth rule, these
three statements are not removed. When looking at statement 9, one
would expect that this statement should not be removed as it meets
the requirements of the fourth rule. In practice, this statement can be
removed as it is redundant since it test the foo method with the input
int1 (statement 5) that is exactly like the input int0 (statement 3),
which is already tested by statement 4. In this case, both statement 5

and 9 are removed as they conform to the fifth rule. Finally, statements
7 and 10 can be removed as they are redundant (i.e., statement 7

is a duplicate of statement 8 whereas statement 10 is a duplicate of
statement 3) according to the fifth rule. Therefore, the reduced version
of the test case is as follows:

ArtClass3 artClass3_0 = new ArtClass3();

String string0 = "9|Xo #{";
int int0 = artClass3_0.zoo(string0);

boolean boolean0 = artClass3_0.foo(int0);

String string1 = "G/]@WL-N7pT4r.-9H4c";
int int3 = artClass3_0.zoo(string1);

boolean boolean2 = artClass3_0.foo(int3);

String string2 = null;

int int5 = artClass3_0.zoo(string2);

Listing 5.4: The reduced version of the test case in Listing 5.3

Note that variables such as int3, int5, and boolean2 are changed
to int1, int2, and boolean1, respectively, according to the new order
of the statements, but they are not changed in the reduced test case to
make it easier for comparison.
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5.4 empirical study

The aim of our study is to understand the impact of test case reduc-
tion on the individual size during the evolution and the performance
of the GA, and whether reducing test cases avoids the presence of
detrimental plateaus in the fitness landscape and the negative influ-
ence on length when increasing population diversity. Therefore, we
design our study to answer the following research questions:

RQ 1: How does the test case reduction affect the fitness landscape
properties?

RQ 2: How does the test case reduction affect the population diversity
during evolution?

RQ 3: What is the effect of test case reduction on the performance of
WSA and MOSA?

The test case reduction is expected to have a positive impact on
the landscape structure as it is more likely to reduce the presence of
plateaus in the landscape since removing redundant statements will
possibly increase the chance of successful mutations (i.e., mutations
that lead to changes in fitness values during the random walk). In
terms of its impact on population diversity, we expect that applying the
test case reduction approach possibly decreases the diversity, especially
the genotype diversity as removing statements might increase the
similarity between individuals. However, it is expected to alleviate the
negative impact of increasing population diversity on the length as
the reduction approach removes statements that possibly increase the
individual length. Finally, the effect of test case reduction approach
on the GA performance is anticipated to be a positive effect since
removing redundant statements is more likely to enhance the mutation
of tests that possibly improves the fitness during the evolution.

5.4.1 Experimental Setup

As this study is related to the studies that are presented in the last two
chapters, we therefore consider a similar experimental setup to what
is considered in those studies. We used EvoSuite to generate JUnit
test suites for a given Java CUT and target coverage criterion using the
Monotonic GA, which applies the WSA approach, and MOSA. Besides
the default settings in EvoSuite [16], we consider branch coverage as
target criterion, and no test archive when running the Monotonic GA.
As a corpus of classes, we use the selection of 346 complex and non-
trivial classes from the DynaMOSA study [127] where the complexity
of classes ranges from 2 to 7939 branches.
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5.4.1.1 Experiment Procedure

To answer the three research questions, we conducted similar experi-
ments to those conducted in the last two chapters but with applying
the test case reduction approach. More specifically, we first ran an ex-
periment to understand the effect of test case reduction on the fitness
landscape properties, similar to the experiment in Section 3.2.1.3 and
Section 3.3.1, where the random walk is applied on each CUT and
then the six fitness landscape measures are applied on the sequence
of fitness values obtained by the landscape walks. The difference with
this experiment is that the test case reduction is applied on each test
case, and each test case of an individual test suite, of every step in the
random walk.

Then, we ran another experiment to investigate whether the test
case reduction approach affects the diversity level during the evolu-
tion, especially the individual length, when promoting population
diversity, which is similar to the experiments in Section 4.2.3.2 and
Section 4.3.3.1. However, this experiment only considers the adaptive
fitness sharing based on fitness differences (AFS-fitness) as it seems
the most promising technique in increasing diversity with the lowest
negative effect on length. In this case, we run four versions of the GA;
the default GA, the GA with the reduction approach, the GA with
AFS-fitness, and the GA with AFS-fitness and reduction. The test case
reduction approach is applied on each test case (i.e., including test
cases of an individual test suite) after applying the mutation operator.

These two experiments involve running the default versions of the
two algorithms (i.e., Monotonic GA using WSA and MOSA) in order
to compare their performance against the random walk in the first
experiment and the performance of the diversity technique in the
second experiment when considering the test case reduction approach.
However, running the two algorithms with the reduction approach is
required to answer the third research question in which the perfor-
mance of the default version of the two algorithms is compared to their
performance when applying the reduction approach (i.e., whether the
reduction approach affects the branch coverage).

For a fair comparison, we consider the same 331 classes that resulted
from running the fitness landscape analysis experiment on the corpus
of 346 classes with the first experiment. We also consider the same 311

classes that are used in the population diversity analysis experiment
with the second experiment. This allows to compare the results of the
previous experiments (without the reduction approach) to the results
of the new experiments (with the reduction approach).

5.4.1.2 Experiment Analysis

In order to decide whether the reduction approach influences the land-
scape structure, we statistically compare the results of each landscape
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measure obtained from the two versions of random walks, for example,
we compare the result of AC measure when applied on the default ran-
dom walk (i.e., ACd) to its result when applied on the reduction-based
random walk (i.e., ACr). For that, we use the Vargha-Delaney’s Â12

effect size to evaluate whether a reduction-based landscape measure
x (e.g., ACr) indicates better improvement in the landscape structure
than the default landscape measure y (e.g., ACd); when Âxy > 0.5
then the reduction approach is better in reducing plateaus, which is
considered as an improvement in the landscape, whereas Âxy < 0.5
indicates the default version is better than the reduction approach.
Furthermore, we consider the Wilcoxon Mann-Whitney statistical test
at a level of α = 0.05 to determine if there is statically significant
difference in the landscape structure with a high number of classes.

To observe the similarity in the diversity achieved by the default
GA and each of the other three techniques (i.e., GA-reduction, AFS-
default, and AFS-reduction), we use the Vargha-Delaney’s Â12 effect
size measure. When Âxy > 0.5 then the other techniques results in
better diversity level than the default GA, and vice versa. This is also
considered to evaluate the difference based on coverage and length.
To analyse the effect of test reduction on the performance of a GA,
we consider the branch coverage as the main measurement of a GA
performance (i.e., whether the reduction approach increases/decreases
the coverage). Therefore, we use both Vargha-Delaney’s Â12 effect
size measure and Wilcoxon Mann-Whitney statistical test to statically
validate whether there is a difference in the achieved coverage between
the default GA and its reduction-based version.

5.4.1.3 Threats to Validity

To control threats of the stochastic behaviour of the considered tech-
niques, i.e., Monotonic GA, MOSA, and a random walk, we repeated
the experiment 30 times. In order to have a fair comparison with the
results obtained in Chapter 3 and Chapter 4, we considered a similar
corpus of 346 Java classes and similar search budget. Since the test
case reduction approach is applied on each individual test after being
mutated, the results of applying the test case reduction may vary
when considering different mutation probabilities (i.e., insert, change,
and remove test cases/statements probabilities) or even considering
a different mutation operator. Moreover, the scope of this study is
limited to apply the test case reduction only when a test case is mu-
tated and therefore it is likely that the obtained results differ when
applying the test case reduction on each offspring resulting from the
crossover or any newly generated individuals during the evolution. To
investigate the impact of test case reduction on population diversity,
we considered the best technique in achieving high diversity with the
minimum negative effect on coverage and length. However, consid-
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Figure 5.2: Comparison of the six fitness landscape measures with the WSA
approach based on the default and reduction versions of the
random walk.

ering other diversity maintenance techniques may result in slightly
different outcomes.

5.4.2 Experimental Results

This section presents the results of the conducted experiments and
discusses the answers to the three research questions.

5.4.2.1 How does the test case reduction affect the fitness landscape proper-
ties?

In order to understand the effect of test case reduction on the structure
of the fitness landscape, we compare the results of the fitness landscape
measures when applied on the two versions of the random walk; the
default version (i.e., no reduction) and the reduction-based version. As
we consider two different algorithms, this comparison is considered
with each algorithm where Figure 5.2 shows the results with the WSA
approach and Figure 5.3 shows the results with MOSA. In general,
we observe that almost all the measures indicate that applying the
reduction approach leads to a slight improvement in the structure
of the landscape such that plateaus are smaller with the reduction
version that with the default version.

In the case of the WSA approach, all the measures show that there is
little decrease in the size of landscape plateaus except the AC measure.
This is also confirmed in the results shown in Table 5.1 where the
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Figure 5.3: Comparison of the six fitness landscape measures with the MOSA
based on the default and reduction versions of the random walk.

average effect size over the classes demonstrates that the reduction
of unnecessary statements appears to slightly avoid the presence of
plateaus and, in addition, increases the number of classes that show
significantly better results than the default version. The AC measure in-
dicates that the use of the reduction approach still results in values that
are higher than 0.9 and thus does not make changes in the structure
of the fitness landscape. In fact, it shows that the reduction approach
removes those cases that indicate the existence of rugged areas, which
probably leads to Â12 = 0.48 that is the default is somewhat better
than the reduction version. In the case of neutrality measures, the ND
measure shows that the number of neutral steps made at the start of
the random walk with the reduction version (42%) is slightly lower
than the default version (45%). Moreover, the reduction approach is
able to slightly increase the number of neighbouring areas of individ-
uals with equal fitness during the random walk as shown by the NV
measure where the NV ≈ 3 with the default version and NV ≈ 6 with
the reduction version.

For the information-based measures, the IC measure indicates that
the use of reduction approach slightly increases the size of beneficial
rugged areas and decreases flat areas in the landscape where IC with
the reduction version (≈ 0.01) is a little higher than with the default
version (≈ 0.04). This also can be seen with the PIC measure where the
reduction approach can, to some extent, increase the modality of the
landscape, and thus minimise plateaus as PIC is slightly increased with
the reduction version. As a high value of DBI indicates a landscape
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Table 5.1: Number of significant classes for the comparison of landscape
measures with and without reduction when considering the two
algorithms, and the average effect size Â12.

Number of sig. classes

Algorithm Measure Â12 Total
Default

better

Reduction

better

WSA AC 0.48 63 40 23

WSA ND 0.52 85 31 54

WSA NV 0.53 71 15 56

WSA IC 0.57 138 62 76

WSA PIC 0.56 122 53 69

WSA DBI 0.54 58 21 37

MOSA AC 0.54 72 49 23

MOSA ND 0.50 1 0 1

MOSA NV 0.51 4 1 3

MOSA IC 0.55 63 28 35

MOSA PIC 0.58 116 38 78

MOSA DBI 0.57 91 9 82

dominated by plateaus, the results of DBI with the reduction approach
demonstrates that considering the test case reduction helps in slightly
minimising the size of plateaus in the landscape since the reduction
version results in lower DBI values than the default version. However,
it should be noted that the three information-based measures suggest
that the use of reduction approach result in cases that seem to point
to the existence of rugged areas in the landscape, for example, there
are few cases with the reduction version that result in higher PIC than
the with the default version.

In the case of MOSA, all the measures indicate that the reduction
approach positively affects the landscape structure in slightly decreas-
ing the presence of plateaus except the ND measure that demonstrates
no difference in the landscape properties between the default and re-
duction versions. The AC measure shows that the reduction approach
leads to slightly few flat areas in the landscape than the default ver-
sion with no effect on the cases that point to the existence of rugged
areas in the landscape (i.e., those cases with AC < 0.33). The ND
measure, however, indicates that the reduction approach does not
affect the number of neutral steps made at the start of the random
walk when compared to the default version, while the NV measure
shows a trivial increase in the number of neighbouring areas of indi-
viduals with equal fitness during the random walk when considering
the reduction approach where NV ≈ 5 with the default version and
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NV ≈ 7 with the reduction approach. In fact, the NV measure shows
that the reduction approach results in cases with high NV values (i.e.,
NV > 0.05) that indicate more rugged areas in the landscape. The
three information-based measures demonstrate that considering the
reduction approach results in slightly few flat areas in the landscape,
and in addition, more cases that seem to point to the existence of
rugged areas in the landscape where the PIC measure shows the
highest difference between the default and the reduction version.

RQ1: The test case reduction approach seems to affect the landscape
properties by slightly decreasing plateaus and, to some extent, increasing

ruggedness.

5.4.2.2 How does the test case reduction affect the population diversity
during evolution?

In this section, we look at how applying the test case reduction ap-
proach affects the population diversity level during the evolution. For
that, we measure the diversity when the reduction approach is applied
to each of the two algorithms, and compare it to the default version
(i.e., no-reduction). This includes the achieved coverage throughout
the evolution and also the average size of the individuals in the popu-
lation.

Figure 5.4 shows the achieved coverage, length, and the three diver-
sity measures throughout the evolution when considering the default
and reduction versions of both the Monotonic GA using WSA and the
adaptive fitness-based sharing (AFS). In terms of coverage, we clearly
see that there is no difference between the four techniques as they
achieve similar coverage during the search, which is confirmed by the
average effect size shown in Table 5.2 where the difference between
the coverage achieved by the default Monotonic GA and the coverage
achieved by the other three techniques is trivial. In the case of the
length, it is obvious that applying the reduction does not lead to a
considerable decrease in the size of test suites during the evolution
since the difference in the length between the default AFS and its
reduction-based version is very small although the latter resulted in
slightly lower length during the first five minutes of the search, and in
addition, there is no high difference between length with the default
Monotonic GA and its reduction-based version.

In terms of diversity, the three diversity measures demonstrate
similar behaviour achieved by each of the four techniques (i.e., similar
resulting diversity level with each diversity measure). Overall, the
default AFS seems to achieve the highest diversity level during the
evolution and its reduction-based version is slightly lower whereas the
difference between the default Monotonic GA and its reduction-based
version is trivial, which is confirmed by the average effect size shown
in Table 5.2.
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Table 5.2: The average effect size Â12 computed for coverage, length, and the
diversity measures with the default GA and default AFS/reduction-
based GA/reduction-based AFS.

Algorithm Technique Cov. Len. Ent. Phen. Gen.

WSA AFS (default) 0.49 0.42 0.63 0.62 0.58

WSA AFS (reduction) 0.48 0.43 0.61 0.64 0.57

WSA GA (reduction) 0.49 0.51 0.48 0.5 0.5

MOSA AFS (default) 0.48 0.49 0.56 0.53 0.54

MOSA AFS (reduction) 0.47 0.64 0.54 0.51 0.48

MOSA GA (reduction) 0.47 0.65 0.49 0.47 0.43

Looking at the case of MOSA in Figure 5.5, we see that there is no
considerable difference in the coverage as all the techniques reach sim-
ilar branch coverage during the evolution except the reduction-based
AFS that results in slightly lower coverage. Interestingly, the reduction
approach has an obvious impact on the length as the reduction-based
versions of MOSA and AFS result in smaller test suites than their
default versions, which is confirmed by the effect size where the reduc-
tion versions are better in minimizing length. In the case of diversity,
the entropy measure demonstrates that the four techniques achieve
similar diversity level to the level achieved with the Monotonic GA
except that there is no high difference between the diversity resulting
from the two versions of AFS and the versions of MOSA; the default
AFS is the highest followed by its reduction-based version and the
default MOSA is slightly higher than its reduction-based version. The
phenotype measure indicates nearly similar diversity level achieved by
the four techniques to what is shown by the entropy measure except
that default MOSA seems to achieve slightly better diversity than
the reduction-based AFS. However, the genotype measure shows that
the reduction versions of both MOSA and AFS lead to drop in the
diversity level where the reduction-based MOSA results in the lowest
diversity level whereas the reduction-based AFS is higher but still
lower than the two default versions.
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Figure 5.4: Coverage, length, and diversity measures over time with Mono-
tonic GA using WSA and adaptive fitness-based sharing (AFS),
and their reduction-based versions.
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Figure 5.5: Coverage, length, and diversity measures over time with MOSA
and adaptive fitness-based sharing (AFS), and their reduction-
based versions.

RQ2: The test case reduction approach leads to (i) no considerable effect on
coverage, (ii) decrease in the length with MOSA but not with WSA, and

(iii) a slight decrease in diversity except the genotype diversity with MOSA
that shows a large decrease.
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7 79 162 54 9

11 104 148 42 6

MOSA

WSA

Red. Sig. Higher Red. Higher Equivalent
Red. Lower Red. Sig. Lower

Figure 5.6: Comparison the performance of the Monotonic GA using WSA
and MOSA based on the branch coverage ("Red. Sig. Higher" is
the number of classes where reduction-based GA achieved significantly
higher coverage than its default version, "Red. Higher" is the number
of classes where reduction-based GA achieved higher coverage (but not
significantly), "Equivalent" is the number of classes where both versions
of the GA result in similar coverage, and both "Red. Sig. Lower" and
"Red. Lower" represent the classes where the reduction-based GA results
in lower coverage than the default.)

5.4.2.3 What is the effect of test case reduction on the performance of WSA
and MOSA?

As the test case reduction is applied to the two algorithms, it is
important to find out whether the reduction approach affects their
performance, more specifically, by looking at the obtained branch
coverage. Although we investigated the coverage in RQ2, we still
need to perform an in-depth analysis of the achieved coverage on
the class level. Figure 5.6 summarises the number of classes in which
the reduction-based version of the two GAs achieve higher coverage
than the default versions, and vice versa. We clearly see that there
is a variety in the number of classes between the two algorithms
where, for example, the number of classes for which the reduction-
based version achieves higher coverage is not similar between the two
algorithms. In general, there is a high number of classes for which the
reduction-based GA results in a similar coverage to the default GA
(i.e., Equivalent classes includes the classes that achieve full coverage).
When comparing the two versions of the GA, we observe that the
reduction-based GA achieves lower coverage with more classes (i.e.,
115 classes with WSA and 86 classes with MOSA) than the default
GA, but only a few classes for which the reduction-based GA result
in significant decrease in the coverage (i.e., 11 classes with WSA and
7 classes with MOSA). In contrast, the number of classes for which
the reduction-based GA achieves higher coverage is lower than the
number of classes where the reduction results in lower coverage (i.e.,
48 classes with WSA and 63 classes with MOSA where the significant
increase in coverage is observed with only 6 classes in WSA and 9

classes in MOSA).
It should be noted that the difference in the achieved coverage

between the two versions of the GA is mostly small with most of
the classes. For example, the coverage in the case of XmlElement class
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is 0.8 with the reduction-based Monotonic GA and 0.78 with the
default version (i.e., α > 0.05 and Â12 = 0.52). However, there are
some classes where the difference in the achieved coverage is slightly
large, and this is mostly the case with most of the classes that show
significant increase/decrease in coverage. An example can be seen
with the AttributeModelComparator class for which the coverage is
0.68 with the reduction-based MOSA and 0.54 with the default version
(i.e., α < 0.05 and Â12 = 0.56).

RQ3: The test case reduction has no considerable impact on the branch
coverage although there are few cases that show little influence on the

coverage.

5.5 discussion

The study of test case reduction with the two algorithms reveals that
there is a difference in the effect of reducing test cases (i.e., removing
redundant statements) when considering different individual repre-
sentations. The results that are presented in the last three sections
demonstrate that the effect of the reduction approach is more obvious
with MOSA than with WSA. When analysing the impact of test case
reduction on the landscape structure, we see that the reduction ap-
proach leads to a slight increase in the beneficial ruggedness and, to
some extent, a decrease in the size of plateaus with MOSA more than
with WSA; the increase in ruggedness is more obvious with MOSA as
shown by the NV, IC, PIC, and DBI measures in Figure 5.3. A possible
explanation is that an individual of a test case is more sensitive to
the changes made by the reduction than an individual of a test suite
(i.e., removing statements from test cases of an individual test suite
does not show as large changes as when removing statements from
an individual test case), which thus leads to possible changes in the
fitness of an individual that affect the landscape structure.

This effect is also observed when analysing the impact of test re-
duction on the population diversity where applying the reduction
approach with MOSA leads to a slight decrease in the diversity than
with WSA, especially the genotype diversity that demonstrates a con-
siderable drop in diversity (Figure 5.5e). Our conjecture of why the
reduction approach decreases diversity with the test case representa-
tion is that removing statements, even if they are unnecessary, from an
individual test case raises the possibility that individuals become more
similar. In other words, the reduction approach possibly removes those
statements that introduced further differences between the individuals,
and this what makes the genotype diversity is highly affected.

When looking at the impact of test case reduction on the length, we
also see that there is a remarkable decrease in the length of individual
test cases more than the length of individual test suites. This confirms
our finding that the test case representation shows more changes with
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the reduction than the test suite representation. However, this differ-
ence between the two representations is not really observed when
analysing the effect of reduction on the achieved branch coverage as
the reduction has no considerable impact on the branch with both
algorithms. This suggests that removing redundant statements is not
guaranteed to enhance the performance of the algorithm in achieving
higher coverage. One reason behind that is the low number of muta-
tions that lead to successful reduced test cases. The reduced test cases
are considered successful if applying the mutation on them results in
test cases that improve the fitness, and thus increase the coverage.

5.6 summary

During the evolution, individuals tend to get bigger because of many
statements that are added by the genetic operators. In our research, we
observe that, during the random walk, the mutation operator inserts
statements that might seem to be useless, and have no positive impact
on the final fitness value. We also notice that diversity maintenance
techniques lead to an increase in the length where many unnecessary
statements are added to test cases, which cause such an increase in
length. These extra statements are found to be just duplicates of other
statements in a test case; both perform exactly (i.e., calling one method
with the exact test input), and have no effect on the fitness.

As these statements seem to have a negative impact on the landscape
structure and the individual length, we consider applying the test case
reduction approach that works by removing these statements based
on predefined rules. We explicitly examine the effect of this approach
on the landscape properties (i.e., ruggedness and neutrality), the
diversity level during the evolution, the individual length, and the
achieved branch coverage. To achieve that, we compare the default
techniques (i.e., without considering reduction) to their versions when
applying the reduction. As a result, the reduction approach seems to
(i) affect two properties of the landscape, especially with the test case
representation, as there is a slight decrease in plateaus and increase
in rugged areas (i.e., increase in the fitness changes), (ii) decrease
the length with the test case representation and a slight decrease in
diversity and more obviously the genotype diversity, and (iii) have no
considerable impact on the achieved branch coverage by the GA.
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C O N C L U S I O N A N D F U T U R E W O R K

This thesis focuses on the problem of the automated generation of
object-oriented unit tests using search-based optimisation algorithms.
Despite the success of these algorithms in generating unit tests that sat-
isfy test goals (e.g., achieve high branch coverage), there are still cases
where these algorithms fail to achieve the desired test goals. Therefore,
this thesis aimed to investigate the reasons why search-based algo-
rithms, more specifically GAs, cannot always generate potential unit
tests that improve the branch coverage by investigating the following
high-level research questions:

• Does the underlying structure of the search space affect the
optimisation of unit tests? In particular, how do the features of
the fitness landscape influence the generation of unit tests?

• How do the underlying properties of source code influence the
fitness landscape features?

• What is the impact of population diversity on the generation of
unit tests? and does improving diversity have a positive impact
on the performance of GAs?

• How does the removal of unnecessary statements in unit test
cases affect the fitness landscape features and the population
diversity, and thus the performance of GAs?

6.1 summary of contributions

This section summarises the answers to the previously mentioned
questions, which present the contributions achieved in each chapter.

6.1.1 Fitness Landscape Analysis

In Chapter 3, we conducted an in-depth analysis of how unit test
generation is influenced by the fitness landscape, and understand how
the landscape properties relate to features of Java classes. We first
investigated the features of the fitness landscape for the JUnit test
generation problem using six fitness landscape measures applied to
the series of fitness values obtained by the random walk. An empirical
evaluation on 331 non-trivial Java classes reveals that fitness landscape
is highly dominated by neutral areas, i.e., plateaus and the degree of
neutrality increases with WSA approach (i.e., the test suite represen-
tation). When investigating the impact of landscape features on the
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search performance, branches that have a large degree of neutrality
in their landscape seem to be harder to cover, whereas branches that
have a small degree of neutrality in their landscape seem to be easy to
cover. Ruggedness is found to be beneficial to the search as it indicates
the existence of gradients that make a branch easy to cover by GA,
and possibly harder to cover by a random walk.

The analysis of how the underlying properties of source code influ-
ence the fitness landscape features indicates that the main causes for
neutral fitness landscapes are (1) the accessibility of the methods that
contain the branches where branches in private methods are difficult
to cover, (2) the difficulty of satisfying preconditions on complex ob-
jects, and (3) the prevalence of boolean flags (i.e., boolean comparisons
offering no guidance).

6.1.2 Population Diversity Analysis

Chapter 4 presented a study of the impact of population diversity
on the generation of unit tests that mainly investigates whether the
effectiveness of the GA is influenced by the diversity level during
the evolution. We first measured the diversity in both algorithms
(Monotonic GA and MOSA) to get an idea of whether both GAs are
able to maintain a high level of diversity during the search. Measuring
the diversity of generated unit tests based on entropy, genotypic, and
phenotypic levels suggest that the default Monotonic GA is not as
efficient as the default MOSA in maintaining higher diversity.

Then, we applied well-known diversity maintenance techniques
to see whether they succeed at increasing the population diversity
during evolution. As a result, applying these techniques on the two
algorithms are found to be effective at promoting diversity throughout
the evolution, which is more obvious with Monotonic GA as the
increase in diversity caused by these techniques with MOSA is not as
high as with Monotonic GA.

Investigating the effect of population diversity on the performance of
GAs reveals that increasing diversity leads to (i) decrease the coverage
although there are techniques that result in slightly similar coverage
to the default GAs and (ii) a possible increase in the length. However,
the negative effect of increasing diversity on coverage and length is
reduced when considering the adaptive diversity approach, especially
with the adaptive fitness-based sharing (AFS-fitness). As enhancing
diversity results in adding more statements to an individual test, we
investigated the type of statements that are added to see whether a
specific statement type is favoured by the diversity techniques, and
as a result, there is no dominant statement type that happens with
enforced diversity.
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6.1.3 An Analysis of Test Case Reduction Approach

In the last two chapters, we observed that test cases tend to have redun-
dant statements (i.e., statements are just duplicates of other statements)
that have no positive impact on the fitness of an individual. This is
observed when applying the random walk where the mutation keeps
adding unnecessary statements or even changing existing statements
and also when applying a diversity maintenance technique where
such redundant statements are added that lead to an increase in the
length. Therefore, we asked a question of whether removing such state-
ments affects both the landscape features (i.e., decrease the presence
of plateaus) and population diversity level (i.e., reduce the negative
effect on length) by applying the test case reduction approach with
the two algorithms (WSA and MOSA).

To answer this question, we empirically evaluated the effect of this
approach on the landscape features by applying the random walk with
enabling the reduction approach and comparing it against the default
random walk. As a result, the reduction approach seems to have an
influence on the landscape features as there is a slight decrease in
plateaus and increase in rugged areas, especially with the test case
representation. We also evaluated the impact of the reduction approach
on the population diversity by applying and comparing the diversity
maintenance technique, more specifically the AFS-fitness, with the
reduction approach to the default version of the diversity technique.
The outcomes of this evaluation confirm that the reduction approach
seems to decrease the length with the test case representation and
slightly decrease the maintained diversity level that is more obvious
the genotype diversity. However, evaluating the effect of the reduction
approach on the performance of the two GAs indicates that the test
reduction has no considerable impact on the achieved branch coverage
by the GA.

6.2 future work

The research conducted in this thesis raises many questions that
remain open and need to be explored in future research. In this section,
we present these questions and suggest several ideas.

6.2.1 Fitness Landscape Improvement

In Chapter 3, we observed several causes for the detrimental neutral
landscape such as the methods accessibility, the difficulty of satisfying
the preconditions of methods, etc. Based on that, we recommend some
potential ideas that possibly improve the fitness landscape. First, refin-
ing the fitness function that considers the inter-procedural distance
information to overcome the issue of methods accessibility. Testability
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transformations can also be used to remove the boolean flags that usu-
ally result in plateaus in the fitness landscape. As fitness is typically
measured only directly on the class under test and not dependency
classes, it is important to consider the code underlying the depen-
dencies, such that there is guidance towards producing valid object
configurations. Also, the search operators can be improved in order
to increase chances of producing valid object configurations. Seeding
also can be improved to ensure that valid object configurations are
generated.

6.2.2 Improved Versions of MOSA

In this thesis, our investigation was mainly to investigate the search
behaviour when considering Monotonic GA using WSA approach and
MOSA. Recently, there have been further improvements introduced
to MOSA that aim to improve its performance, and thus achieving
better branch coverage. There are two extended versions of MOSA.
First, DynaMOSA [127] extends MOSA with a dynamic selection of
coverage targets based on their control dependency. Second, Parallel
MOSA [19] that is a parallelised version of MOSA where a population
is distributed among a number of semi-isolated sub-populations. Both
versions were found to be effective in achieving higher branch cov-
erage than default MOSA. Therefore, we recommend extending the
experiments we conducted in this thesis to consider the two versions
of MOSA that is by (i) investigating the impact of the landscape fea-
tures on the test generation when considering each of the two versions,
(ii) analysing the impact of population diversity and (iii) the test case
reduction on the performance of each version.

6.2.3 Coverage Criteria

The investigation conducted in this thesis mainly targeted the branch
coverage criterion. In literature, other coverage criteria are considered
to guide the generation of unit tests [139] such as Weak Mutation,
Output Coverage, Direct Branch Coverage, Exception Coverage, etc.
These criteria are implemented as fitness functions to optimise the
generation of test suites. Furthermore, these criteria can be combined,
for example, by combining the branch coverage with the weak muta-
tion that results in a combined fitness function. Therefore, we believe
it is necessary to see how the fitness landscape changes for these fit-
ness functions and understand the changing fitness landscape created
by the combined fitness functions. Also, the effect of these fitness
functions on the population diversity needs to be evaluated and see
whether diversity, especially the phenotype and entropy diversity,
changes when considering these functions.
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6.2.4 Fault Finding Effectiveness

The focus of this thesis was on how the fitness landscape features,
population diversity, and test case reduction affect the branch coverage.
An important aspect of testing is to detect faults in the software under
test, and ensuring that the generated tests can detect faults becomes a
necessity, which can be achieved by considering the mutation analysis
(Section 2.1.2.2). One possible idea is to extend our experiments to
assess the potential impact on fault finding-capability through mu-
tation analysis. That is to (i) investigate how the landscape features
affect the achieved mutation score, (ii) see whether increasing diversity
results in better mutation score, and (iii) understand the impact of test
reduction on the mutation analysis.

6.2.5 Alternative Diversity Techniques

On search problems where the individual representation has a variable
length, establishing distances between individuals for rewarding di-
versity most likely result in bloating problems. Therefore, it would be
better to define novel and specialised diversity techniques that do not
have such undesired side effects. For example, rewarding individuals
that execute uncommon statement sequences/structures. Furthermore,
applying adaptive fitness sharing is found to be beneficial to the search,
but the question of when it does improve the search needs further
investigation.

6.3 overall conclusion

Genetic algorithms (GAs) have been demonstrated to be effective in
generating unit tests. Despite the success of GAs in generating tests
that achieve high branch coverage, there are still cases where they
fail to improve the coverage. Understanding why the GA search does
not always find test inputs that cover branches is still an open re-
search question that needs to be investigated. Therefore, this thesis
aims to study the search behaviour when applying GAs to generate
object-oriented unit tests by investigating the impact of (1) the un-
derlying structure of the search space, (2) population diversity, and
(3) controlling the bloat problem on the generation of unit tests. The
findings of this investigation confirm that (1) the fitness landscape is
mostly dominated by plateaus that are detrimental to the search, (2)
promoting population diversity consistently leads to a negative impact
on the coverage and length as it decreases coverage and increases
length which is mitigated when diversity is promoted adaptively, and
(3) removing redundant statements in test cases has a slightly positive
impact on the landscape structure (i.e., reducing plateaus) and the
population diversity (i.e., avoiding length increase) but has no impact
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on the performance of GAs. These insights provide an explanation of
why MOSA performs better than Monotonic GA using WSA approach
as MOSA does not produce more plateaus in the landscape structure
and it is more efficient in maintaining population diversity that does
not increase length. This also supports the fact that evolving test cases
is better than evolving test suites.
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