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Thesis Abstract 
 

Neural oscillations are intrinsically linked with attention, vigilance and featural 

sensitivity and therefore often associated with visual perception. However, the neural 

oscillation literature remains conflicted on several issues. Here, I describe four 

experiments investigating these conflicts using a variety of experimental and analysis 

techniques.   

 

We first explored the relationship between the inhibitory neurotransmitter GABA and 

gamma frequency oscillations in the rodent visual cortex. We found no evidence that 

synaptic and extrasynaptic GABA concentration altered gamma oscillations, 

suggesting that GABAergic inhibition cannot be linked directly to GABA 

concentration and instead depend on postsynaptic receptor kinetics. 

 

The second chapter examined how spontaneous alpha activity related to 

performance in an orientation discrimination task. Alpha amplitude was a significant 

predictor of reaction time but not task accuracy. The results suggested that alpha 

can modulate visual perception through top-down mechanisms. Interestingly, we 

also found that the relationship between alpha activity and task accuracy was 

determined by the subject’s task expertise. 

 

The third chapter examined how exogenous rhythms (generated by chromatic 

gratings) within visual cortex may interact with ongoing endogenous oscillations. 

Univariate analysis of single EEG channels revealed significantly higher endogenous 

power during chromatic than achromatic stimulation. An additional multivariate 

classifier showed distinct patterns of activity at very high frequencies, suggesting 

phase coupling between exogenous and endogenous signals. This finding was 

extended in the final chapter, which examined the neural correlates of rapid 

chromatic stimulation. Robust BOLD responses were found even when stimuli 

flickered above the consciously perceptible frequency, indicating that the temporal 

filtering stage limiting perception is later than V4. Additionally, chromatic preference 

in ‘colour area’ V4 was strongly dependent on stimulus frequency.  
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1 Chapter 1: Introduction to 

endogenous oscillations and their 

role in visual perception 
 

1.1 Introduction to neural oscillations 
 

Neural oscillations are periodic cycles of electrical activity originating from the central 

nervous system. These oscillations can be evoked through multiple mechanisms and 

are generally divided into two categories: exogenous oscillations, which are 

produced directly in response to external stimulation and endogenous oscillations, 

which are mostly produced by interactions between different neuronal networks. Due 

to the lack of a periodic regulator, endogenous oscillations are more spontaneous in 

nature than exogenous activity. They are thought to provide temporal frameworks for 

synchronising activity between spatially distinct areas of the cortex during multiple 

cognitive processes (Lakatos et al., 2005).  

 

The earliest descriptions of endogenous rhythms are found in the work of Hans 

Berger, who made the first human electroencephalography (EEG) recording in 1924. 

Since then, endogenous rhythms have been explored widely in different fields, such 

as Parkinson’s disease (Holt et al., 2019; Little & Brown, 2014) and brain-computer 

interfaces for both clinical and neurotypical populations (Han et al., 2019; Popescu et 

al., 2007; Sellers & Donchin, 2006; Silvoni et al., 2009). A main reason for the 

extensive research on endogenous rhythms is the idea that endogenous neural 

oscillations can inform us of the subject’s internal state. Endogenous oscillations are 

typically categorised into functional bands based on their temporal frequency. 

Commonly, faster rhythms like alpha (8-12Hz), beta (13-25Hz) and gamma (25-

80Hz) are related to conscious perception, attention and sensory stimulation (Busch 

et al., 2004; Hanslmayr et al., 2007; Meador et al., 2002; Romei et al., 2008), while 
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slower rhythms, such as delta (0.5-4Hz) and theta are associated with sleep, 

memory consolidation and passive, repetitive behaviour (Cajochen et al., 1999; 

Rasch & Born, 2013; Vanderwolf, 1969). Studies often measure a subject’s 

endogenous activity using neuroimaging or electrophysiology techniques and relate 

those measurements to that individual’s experience and behaviour. 

 

1.1.1 Production of neural oscillations 
 

Neurons function and communicate through electrical signals, which are the 

transmitted when the neuron reaches critical membrane potential. An action potential 

is then generated: a temporarily induced change in membrane potential that can 

travel away from the neuron’s body along the axon. Once an action potential has 

been generated, the neuron enters a temporary inhibitory post-synaptic potential 

(IPSP) state where further firing is unlikely. The neuronal membrane is regulated by 

inputs from both excitatory and inhibitory receptors, which, in turn, bind inhibitory and 

excitatory neuromodulatory chemicals released from other neurons. These receptors 

change the neuronal membrane potential through the influx or release of positively 

charged or negatively charged ions. Neurons typically have a resting potential of -

70mV and action potential threshold of -55mV, meaning an increase in voltage 

towards zero (or ‘depolarisation’) is excitatory as it brings the neuron closer to the 

firing threshold. In comparison, a decrease in neuron membrane potential (also 

known as hyperpolarisation) would be considered as an inhibitory mechanism.  

 

Endogenous oscillations are produced when neuronal ensembles shift between 

excitatory and inhibitory states even in the absence of time-locked external stimuli. 

Unsurprisingly, the properties of endogenous rhythms are highly dependent on the 

synaptic excitation to inhibition ratio (Brunel & Wang, 2003; Whittington et al., 1995). 

In particular, their frequency is determined by the amount of time required for each 

round of IPSP to decay, while the amplitude is determined by the size of the neuron 

cluster that is firing in synchrony. Neuronal firing can occur spontaneously and 

independently, but the firing of a single neuron is not detectable using non-invasive 

recording techniques. Endogenous oscillations measured with EEG or 
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magnetoencephalography (MEG) are the product of clusters of large numbers of 

cortical neurons firing in synchrony.  

 

1.2 Conflicts in the literature: endogenous 

rhythms and visual perception 
 

Cognitive sciences often consider endogenous rhythms to be a marker of internal 

state. Internal states are intrinsically linked with neuronal mechanisms, and all three 

parameters are regulated by inhibitory and excitatory mechanisms. Many studies 

describing the impact of endogenous oscillations on visual processing focus on 

alpha (8-12Hz) and gamma (25-80Hz) rhythms. Both endogenous rhythms are 

thought to provide temporal synchronisations between spatially distinct areas of the 

brain (Palva & Palva, 2011) and are regulated by sensory inputs into the system. 

Alpha is the dominant endogenous activity in the occipital cortex and associated with 

visual attention. Gamma rhythms are more task specific: predominantly studied in 

the hippocampus, which performs cognitive functions that often require 

synchronisation between distinct brain regions, such as memory retrieval (Colgin & 

Moser, 2010). Visual gamma oscillations are said to be involved in feature binding, 

where low-level components of a visual input are integrated to form a global 

perception (Gray et al., 1989). These rhythms provide a means of communication 

between clusters of neurons and visual attention modulations and those found in 

early visual areas are involved in feedforward mechanisms involved in bottom-up 

information processing (Pascal Fries, 2009; van Kerkoerle et al., 2014a). 

 

Previous experiments have demonstrated repeatedly that performance during 

working memory (Chen et al., 2014), somatosensory (Gaetz et al., 2011; Monto et 

al., 2008) and auditory (Wehr & Zador, 2003) tasks can be manipulated by changing 

the amount of inhibitory drive within the system. Similarly, sensitivity to low-level 

visual features itself are also dependent on the level of inhibition in the neural 

network. Contrast level, for example, correlates positively with the frequency (Ray & 

Maunsell, 2011) and amplitude (Hall et al., 2005) of gamma in V1. This relationship 

was also found for stimulus size, where an increase in stimulus size is linked to an 
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increase of averaged gamma band power (Busch et al., 2004; Gieselmann & Thiele, 

2008). Finally, stimulus eccentricity is also related to gamma activity: where peak 

gamma frequency is found with foveal stimulation and decreases as the stimulus 

gradually move towards the periphery (Lima et al., 2010; van Pelt & Fries, 2013).  

 

With many of these studies suggesting a simple, monotonic relationship between 

gamma activity and stimulus intensity, the role of endogenous rhythm in visual 

perception appears relatively straightforward. However, the literature remains 

conflicted on several issues, which extend across neurophysiological, 

electrophysiological and behavioural domains. This thesis examines some of these 

questions. The topics that will be discussed in this introduction include the role of 

GABA in gamma rhythm production, the modulation of visual perception by alpha 

rhythms and the interaction between endogenous activity with externally driven 

responses. 

 

1.2.1 The role of GABA in gamma oscillations 
 

As previously mentioned, due to their well-documented relationship with visual 

mechanisms, gamma oscillations are one of the most commonly studied 

endogenous rhythms in visual neuroscience. The production of gamma oscillation is 

thought to be regulated by the chemical gamma-aminobutyric acid (GABA), one of 

the primary inhibitory neurotransmitters found in the mammalian nervous system. 

The main function of GABA is to control the timing of action potentials by temporarily 

‘halting’ neuronal firing through a process of hyperpolarisation. GABA molecules are 

released by a presynaptic GABAergic interneuron into the synaptic space, where 

they diffuse and bind onto postsynaptic GABA receptors. This causes the opening of 

channels on the postsynaptic neuron membrane, specifically: chloride channels for 

GABAA subtype and potassium channels for GABAB subtype. In the first case, the 

postsynaptic neuron experiences an influx of mainly negatively charged chloride ions 

known as the inhibitory postsynaptic current (IPSC). As a result, the postsynaptic 

neuron’s electrical potential becomes more fixed at chloride reversal potential (-

70mV for most neurons) and the neuron is hindered in reaching action potential 

threshold. A single interneuron can evoke this negative electrical state or IPSP 
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simultaneously in multiple GABA-mediated neurons. As a result, the silenced cells all 

fire in synchrony once the IPSP has terminated, producing the oscillatory signals 

common to all neurons in the local interconnected network.  

 

The relationship between resting GABA concentration and gamma oscillations in 

humans has been studied repeatedly but with conflicting results. In an influential 

study by Muthukumaraswamy et al. (2009), resting GABA concentration was 

quantified by magnetic resonance spectroscopy (MRS) and visual gamma 

oscillations were induced using a grating stimulus and measured with MEG. The 

authors found that the frequency of visual gamma oscillations correlated positively 

with visual cortex resting GABA concentration. Additionally, both visual gamma 

frequency and visual GABA concentration correlated negatively with corresponding 

BOLD amplitudes (see Fig. 1.1 A – C). The same group extended their 

neurobiological findings by examining how they affected visual perception (Edden et 

al., 2009). Gamma frequency and GABA concentration were found to be significant 

predictors of orientation sensitivity in human observers: higher GABA concentration 

and gamma frequency were associated with lower orientation thresholds (see Fig. 
1.1 D – E). The authors proposed two explanations for their findings: first, inhibition 

which can arise from GABAergic interneurons has been linked to tighter orientation 

tuning in neurons. This is because the width of tuning curves is governed in part by 

inhibition of off-tuned responses. Secondly, gamma band rhythms are widely 

regarded as a critical component of feature binding, where the activity of neuronal 

clusters processing different visual features are synchronised, producing a global, 

coherent percept of a visual stimulus (Christoph, 2011; Honkanen et al., 2015; 

Morgan et al., 2011; Samonds & Bonds, 2005). An increase in resting GABA might 

reflect a more optimal environment for feature binding, which can result in a general 

improvement of visual task performance.  
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The striking results discussed above have not, however, been easy to replicate 

(Cousijn et al., 2014). Despite recruiting a larger sample of participants (12 

compared to five in Muthukumaraswamy et al. (2009)) and replicating key details 

such as only recruiting male participants, Cousijn et al. (2014) found no significant 

associations between GABA concentration, glutamate concentration or GABA-

glutamate ratio and gamma frequency or amplitude (see Fig. 1.2). The difference in 

findings demonstrates that while GABA has been repeatedly shown to play a critical 

 
Fig. 1.1 A – C from Muthukumaraswamy et al. (2009). Relationship between 
peak gamma frequency versus GABA concentration, BOLD response magnitude 
and GABA concentration and BOLD response magnitude and peak gamma 
oscillation frequency respectively. (A) shows a positive correlation between 
GABA level and gamma frequency. D – E from Edden et al., (2009): Orientation 
discrimination thresholds as a function of GABA concentration and gamma 
frequency respectively. Variances of the data (averaged across participants) are 
represented by crosshairs in the upper right corner. Variance is calculated as the 
average SEM for the four subjects with repeated data for gamma frequency, 
averaged difference between two GABA concentrations tested in the same 
session for GABA and averaged SEM of last ten staircase reversals for 
orientation thresholds. 
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role in gamma rhythm production, the exact relationship between resting GABA 

concentration in humans and gamma oscillations is not straightforward.  

 

 
 

Studies of the role of GABA in multiple sensory modalities and cognitive functions 

extended beyond visual cortex. But similarly, these experiments did not provide a 

unified framework of how GABA concentrations correlated with gamma or how this 

impacted on the individual’s behaviour. For example, one study found that GABA 

and gamma frequency (not amplitude) within the motor cortex demonstrated a 

strong, linear relationship (Gaetz et al., 2011). Another study, however, found that 

gamma frequency was only related to GABA concentrations during encoding phase 

of a working memory task, and instead, gamma amplitude was correlated 

significantly with GABA concentrations during all stages of the working memory task 

(Chen et al., 2014). This correlation survived in both control and schizophrenic 

patients, even with lower baseline gamma amplitudes in the clinical group. A third 

study found no relationship between GABA or glutamate concentration, or the ratio 

between these two metabolites with gamma responses in the auditory cortex (Wyss 

et al., 2017). It is possible that the GABA-gamma relationship is simply unique to 

specific task demands. However, a later study which found that gamma oscillations 

in the visual cortex shared significant correlations with the density of GABAA receptor 

instead of GABA concentrations alone (Kujala et al., 2015) meant that the differing 

findings could also be explained by unreliable GABA measurements. Furthermore, 

 
Fig. 1.2 Adapted from Cousijn et al. (2014): Scatterplots showing no correlation 
between GABA concentration and (A) gamma peak frequency (Hz) based on the 
peak activation and (B) gamma peak frequency (Hz) in the MRS voxel where 
GABA was measured.  
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high between-subject variability for visual gamma frequency were common in human 

studies (Kujala et al., 2015; Wyss et al., 2017). 

 

Ultimately, these conflicts reflect two unresolved issues in the field: the mechanisms 

of gamma production networks and methodological issues surrounding MRS. MRS is 

commonly criticised for being vulnerable to ‘macromolecule contamination’, where 

signals from macromolecules are detected and mistaken for that of the intended 

neurotransmitter. The aforementioned studies used different MRS sequences and 

voxel sizes, which may contribute to the differences in findings. Nevertheless, 

addressing the biology of gamma wave generation is especially critical, because 

while theories agree that GABA is involved in generating gamma rhythms, different 

computational networks conjecture almost opposite effects on gamma oscillations 

when GABA level is changed.  

 

One of the primary models for producing gamma band oscillations is described in 

(Brunel & Wang, 2003). The authors propose intrinsic neuronal ‘loops’ consisting of 

excitatory pyramidal cells and inhibitory interneurons, where activation of the former 

prompts the simultaneous firing of multiple inhibitory interneurons. The inhibition 

generated then suppresses the excitatory neurons, which will produce subsequent 

cycles of gamma rhythms once the inhibition wears off. The frequency of the 

resultant gamma oscillation, known as pyramidal-interneuronal gamma (PING), is 

hence modulated by the ratio of excitatory to inhibitory interconnections and their 

excitatory postsynaptic potential (EPSP) or IPSP time frame respectively. The model 

anticipates that stronger inhibition would disrupt the excitation-inhibition balance and 

result in faster oscillations, which is supported by the results from 

Muthukumaraswamy et al. (2009). Additionally, the Brunel and Wang model 

suggests that the production of gamma oscillations does not require individual 

interneurons to fire at gamma band rates as this endogenous rhythm emerges from 

the synchronised firing of inhibitory and excitatory neuronal clusters. This is a 

common feature of population rhythms and has been observed in the macaque V1, 

where peak local field potential (LFP) amplitude corresponded to gamma frequency 

band independently of the spiking rate of individual neurons (Henrie & Shapley, 

2005).  
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On the other hand, earlier studies involving hippocampal slice recordings showed 

that individual interneurons could transiently exhibit similar gamma band firing 

profiles (Traub et al., 1996; Whittington et al., 1995). When the inhibitory effect of 

GABA was attenuated using bicuculline (GABA antagonist), the gamma frequency of 

the hippocampal neurons increased. Mu opioids demonstrate a similar effect, 

reducing the probability of GABA release from presynaptic terminals receptors. As 

shown in Whittington et al. (1998), the administration of mu opioids can cause an 

increase of frequency and decrease of amplitude in endogenous oscillations. Both 

studies indicated that rhythm frequency is determined by inhibition strength: smaller 

IPSPs attenuate spiking for less time than larger IPSPs. These observations 

required an extension of the Brunel and Wang model and suggested that the 

relationship between GABA and endogenous gamma rhythm is more complex. 

 

One of the primary methods of measuring metabolite concentrations in human 

electrophysiology studies is MRS. MRS uses carefully designed pulse sequences to 

detect a range of different metabolites within a selected voxel. When exposed to a 

magnetic field, different chemical nuclei exhibit different spins around their axes. This 

allows the metabolite to be identified based on its unique response (Tognarelli et al., 

2015).  

 

Despite being a popular GABA measuring technique, MRS has been met with 

several criticisms over the years. The problem can be summarised in two stages. 

Firstly, it is hard to optimise MRS sequences to measure glutamate or glutamatergic 

processes. This becomes an issue as GABA and glutamate are intrinsically linked: 

glutamate is the primary source of excitation for GABAergic neurons and many 

GABAergic functions depend on the excitatory-inhibitory balance between GABA 

and glutamate (Stagg et al., 2009, 2011b). Studies linking neurochemical data to 

behaviour should be able to account for glutamate levels as well, but this is not 

always the case. These concerns were mentioned in Cousijn et al.'s (2014) study, 

but also raised frequently in recent years (Duncan et al., 2019; Puts & Edden, 2012; 

Stagg, 2014; Stagg et al., 2011a), and even acknowledged in the paper they 

criticised (Muthukumaraswamy et al., 2009). 
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Secondly, GABA within a neuron exists in two ‘pools’: cytoplasmic, produced mainly 

from glutamate through tonic activation, and vesicular, which in itself is split into 

multiple ‘sub-pools’. Only the ‘readily releasable’ sub-pool of vesicular GABA (usually 

found in close proximity to the synapse) is relevant for synaptic transmission, the 

others mainly exist as a reserve (Martin & Rimvall, 1993). In fact, the consensus is 

that cytoplasmic GABA is involved predominantly in metabolism while vesicular 

GABA is involved in neuronal inhibition. Small doses of GABA found outside of 

neurons are thought to play a role in tonic cortical inhibition (Belelli et al., 2009). A 

main issue of MRS is that is can only inform the total GABA concentration within the 

selected voxel and is unable to distinguish between different pools of GABA. This 

suggests that it is inaccurate to attribute specific behavioural or electrophysiological 

observations to MRS-quantified GABA.  

 

In fact, a number of pharmacological experiments have been focused on examining 

the effect of GABA on gamma oscillations. Many of these involve the use of GABA 

agonists, which enhance postsynaptic GABAA responses directly, while others 

controlled the concentration of synaptic GABA using reuptake inhibitors. Since they 

do not alter total GABA concentration, MRS would remain insensitive to these two 

mechanisms. However, their roles in gamma rhythm production are extremely 

different. Enhancing inhibition by manipulating postsynaptic GABA receptors 

consistently cause a reduction in the frequency of gamma oscillations. In one such 

study, participants consumed alcohol after gamma oscillations were induced visually 

and motorically (Campbell et al., 2014). Alcohol both increases inhibition at GABAA 

receptors and decreases excitation at N-methyl-D-aspartate (NMDA) receptors and 

the authors, as predicted, reported a decrease in gamma frequency and increase in 

gamma amplitude. This finding was corroborated by Lozano-Soldevilla et al. (2014), 

who found that increasing dosages of lorazepam (a benzodiazepine that binds onto 

GABAA receptor, amplifying GABAergic inhibition) led to reduced gamma frequency. 

Furthermore, the moderation of gamma activity was only observed in the visual 

cortex, even though lorazepam did not specifically target the visual system. This 

suggested a unique relationship between the agonistic effects of lorazepam and 

visual gamma production. Additionally, the findings of these human subject studies 

concurred with those performed using animal models (Traub et al., 1996; Whittington 

et al., 1995): both showing that greater inhibition leads to IPSCs with longer decay 
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periods, which results in slower but stronger gamma activity (Gonzalez-Burgos & 

Lewis, 2012).  

 

We might naturally assume that any method leading to a GABA increment in the cell 

environment would produce similar outcomes, but this is not true. The effects of 

GABA agonists are specifically attributed to the enhancement of postsynaptic GABA 

effects through activating GABAA receptors. This process is not guaranteed when we 

manipulate GABA concentrations by administering GABA reuptake inhibitors or 

increasing GABA exogenously. Furthermore, the properties of GABA receptors are 

dependent on the GABA receptor configurations, which are made up of three out of 

19 different proteins (Olsen & Sieghart, 2008). Each unique combination is known as 

a subtype, with different density in different cells (Ade et al., 2008; Brickley et al., 

2001; Hamann et al., 2002; Porcello et al., 2003; Santhakumar et al., 2010). Some 

GABA receptor subtypes drive the early phase of IPSP, while others drive the late 

phase of IPSP. 

 

The response of GABA receptors to changes in synaptic GABA concentration is 

dependent on the subtype, and an increase in synaptic GABA only seems to affect 

receptors responsible for the late phase of IPSPs. This was evidenced in an early 

paper directly compared the effects of manipulating postsynaptic receptor kinetics 

and reducing reuptake of GABA (Dingledine & Korn, 1985). While both early and late 

decay phases of the IPSP were prolonged by lengthening the opening period of 

postsynaptic chloride channels, reducing reuptake of GABA only affected only late 

decay phases. This is important, as gamma oscillations are timed specifically by the 

early phases of IPSP (Gouwens et al., 2010). Clearly, the amount of GABA that 

actively contribute towards gamma oscillation production is highly dependent on their 

location as well as subtype, and our understanding of the GABA-gamma relationship 

should not be built entirely on studies that modulate the kinetics of postsynaptic 

receptors in general. 

 

Human electrophysiology studies on the effect of reuptake inhibitors have yielded 

conflicting results. For example, tiagabine, a well-known GABA reuptake inhibitor, 

was shown to have no significant effect on the frequency or amplitude of visually 

evoked gamma (Muthukumaraswamy et al., 2013). The lack of impact was not 
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discussed in terms of the different mechanisms precipitated by GABA agonist and 

GABA reuptake inhibitors. Instead, the authors noted that similar observations were 

made in Hall et al., (2011), who attributed their observation to the variation in signal 

strength of movement related gamma synchronisation. Gamma synchronisation 

starts out strong but becomes increasingly hard to measure (Muthukumaraswamy, 

2010), impairing any observable GABA driven effects. Interestingly, the same group 

reanalysed their data with improved methods (Magazzini et al., 2016). They then 

found that gamma band frequency did decrease with tiagabine, as observed in 

animal models and in humans using GABA agonists. The authors’ interpretations of 

their data were driven strongly by the assumption that increasing synaptic GABA 

concentration would cause greater GABAergic drive. However, as previously 

mentioned, reuptake kinetics are downstream from the inhibitory mechanisms that 

control neuronal spike timings, meaning they were unlikely to have affected gamma 

frequency.  

 

Additionally, human electrophysiology is limited in its granularity when assessing 

intrinsic neural mechanism. Gamma rhythms in human electrophysiology studies are 

often defined by a broadband frequency range, which only allow for estimations of 

intrinsic neural processes based on shifts in broadband endogenous power. For 

example, the GABAA agonist propofol can slow gamma frequency rhythms down to 

beta frequency rhythms (Fisahn et al., 1998; Whittington et al., 1996), causing an 

increase in beta band activity that is detectable by EEG. However, based purely on 

the EEG results, it would be unclear whether this is a direct enhancement of beta 

band activity, or slowing of gamma band activity to beta. Similarly, another study 

found that while increasing propofol did not significantly change gamma band 

frequency, the amplitude of visually induced gamma was increased by 60% (Saxena 

et al., 2013). This might be attributed to the fact that propofol acts effectively on 

lengthening IPSPs generated by individual interneuron networks, while gamma 

oscillations generated by PING are often powerful enough to remain within gamma 

frequency range (Faulkner et al., 1998; Whittington et al., 2000). However, this level 

of detail is not observable in purely MEG or EEG recordings.   

 

Ultimately, these conflicts indicate that the effect of tiagabine on gamma oscillations 

should be revisited using a simpler model. The effect of GABA concentration on 
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visual gamma oscillations should be investigated with consideration to the following 

changes. First, MRS recording techniques should be bypassed, and GABA 

concentrations should be controlled pharmacologically instead. This would allow us 

to monitor both total and localised GABA concentrations, which is crucial to the 

second change: examining how (1) exogenously increasing ‘total’ GABA 

concentration and (2) reducing GABA reuptake changes gamma oscillations. Since 

studies have repeatedly shown how manipulating GABA effects at the postsynaptic 

site reduces gamma frequency, the focus should be on comparing such findings with 

the results from these two methods (which do not directly increase postsynaptic 

GABA functions).  

 

1.2.2 The role of endogenous oscillations in 

visual perception 
 

The rest of this introduction will describe the role of endogenous oscillations in 

human perception and behaviour. Endogenous rhythms can impact externally driven 

visual responses in two stages, the first being prior to stimulus presentation, which 

can affect how the stimulus is received, and the second being after stimulus onset, 

which can affect the stimulus-generated responses.  

 

1.2.2.1 Prestimulus alpha activity and detection of near-

threshold targets 
 

The ability to perceive and respond to visual stimuli is dependent not only on 

stimulus properties, but also the internal state of the observer. This internal state can 

be modulated by endogenous rhythms (for example, alpha band and theta band 

frequencies at 8-12Hz and 4-7Hz respectively). Recent evidence reveals a 

relationship between these signals and well-understood cortical networks that play 

important roles in sensory perception and performance (Beckmann et al., 2005; 

Leopold et al., 2003). 

 



 27 

The links between endogenous state and visual perception have often been studied 

using stimuli displayed at the observer’s detection threshold: the stimulus intensity 

where the detection of the stimulus is just above chance (Gardner & Martin, 2000). 

However, at threshold, subject performance fluctuates from moment to moment. The 

stochastic perception of near-threshold stimuli suggests the involvement of a 

fluctuating modulator. Earlier works found that a lack of concentration can cause 

observers to miss near-threshold stimulations (Block, 1996; Rock et al., 1992), but 

the coherence of endogenous neuronal firing can also predict performance, for 

example, stronger and more synchronised neural activity in the primate visual cortex 

has been observed prior to successful detection of a threshold-level stimulus (Supèr 

et al., 2003). Clearly, the observer’s internal neuronal state, especially in task-

relevant cortical areas, may be crucial to near threshold percepts.   

 

Alpha band EEG modulations are measured robustly over occipital regions and are 

widely regarded as an indication of both attentional state and cortical excitability. All 

endogenous rhythms can provide the temporal frameworks for cortical functions 

(Buzsáki & Draguhn, 2004), but evidence that alpha plays a unique, active role in 

information processing and cortical information is emerging. Generally, greater alpha 

activity is associated with a higher inhibitory drive (Foxe & Snyder, 2011; 

Pfurtscheller, 2001, 2003), which has been supported by numerous studies showing 

inhibitory tasks like withholding responses or suppressing task-irrelevant information 

to be concurrent with enhanced alpha (Jensen & Mazaheri, 2010). This led to the 

well-known link between alpha and attention, since cortical inhibition is also a vital 

component of visual attention. Both neuroimaging (Heinemann et al., 2009) and 

single-cell electrophysiology studies (Sundberg et al., 2012) have found that 

attention powerfully modulated endogenous rhythms, even in the absence of visual 

stimuli. In all, these findings supported the view that alpha has an active role in 

information processing and attention modulation (Klimesch, 2012) in addition to 

being a pacemaker for cognitive processes.  

 

Hence, many of the studies examining how alpha activity predicted psychophysical 

performance involved experimentally manipulating the viewer’s attention using visual 

cues. An increase in conscious attention within a specific location in the visual field 

causes an attenuation of alpha activity in the corresponding cortical region. This 
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induces a temporary bias towards processing of stimuli in the attended visual field. 

For example, peripheral attentional cues that successfully induced a change in alpha 

activity resulted in both faster and more accurate detections of visual targets in 

hemifields contralateral to alpha desynchronisation (Thut et al., 2006). This 

supported an earlier study with a similar paradigm, although in this earlier study 

visual cues could be valid or invalid (Sauseng et al., 2005). Sauseng et al., (2005) 

found that validly cued attention modulated occipital alpha activity, which 

subsequently improved performance in the attended hemifield. 

 

The usage of visual cues to direct attention in their participants was criticised for 

incorporating a deterministic factor in the resulting alpha power, which compels 

alpha activity to increase in the contralateral hemisphere to the attended hemifield 

(Boncompte et al., 2016). Recent models on mechanism of attention often 

highlighted a spontaneity in the direction of visual attention, where strength, 

placement and responses of attention followed probabilistic representations (Koike & 

Saiki, 2006; Pang et al., 2008; Vul et al., 2009). Similarly, endogenous regulation of 

attention can occur in the absence of external visual inputs, indicating to have been 

exerted from higher-order cortical areas through top-down mechanisms (Kastner et 

al., 1999; Luck et al., 1997). Hence, it was argued that endogenous alpha that is not 

directed using an external visual cue should provide a more realistic representation 

of attentional modulations and how the visual system functions (Pang et al., 2008). 

Endogenous alpha modulations that are not directed by attentional cues are called 

‘spontaneous’ and several studies have examined whether such endogenous activity 

changes correlate with performance. The results were largely consistent with that of 

directed attention-modulated alpha: spontaneous alpha band power averaged across 

‘missed trials’ in a target detection task was significantly higher than that of detected 

ones, despite no difference in the overall power of other endogenous frequency 

bands (Ergenoglu et al., 2004). This showed that spontaneous alpha band activity 

correlates with the detection of low-intensity stimuli.  

 

This effect was however, not replicated in a later study. Participants had to report 

whether they saw a persistent, moving target among visually identical distractors in 

the absence of attentional cues. The findings indicated that while alpha power was 

predictive of detection rate, there was no difference in the aggregated alpha power 
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for detected and undetected targets (Boncompte et al., 2016). Instead, the 

relationship was driven by a difference in pattern of alpha activity between 

contralateral and ipsilateral hemispheres. Alpha from both locations increased before 

stimulus presentation but enhanced ipsilateral alpha correlated positively with target 

detection, while enhanced contralateral alpha correlated negatively. This 

contradicted previous findings (Cosmelli et al., 2011; Sauseng et al., 2005; Thut et 

al., 2006) and was theorised to represent either involuntary shifts in attention or the 

participant’s approximation of where the oncoming target would be.  

 

There are also studies that do not find this negative relationship between alpha 

power and performance. For example, Linkenkaer-Hansen et al., (2004) found that 

lower alpha did not necessarily correlate with better task performance. Higher alpha 

band amplitudes arising from the sensorimotor cortex were linked with enhanced 

conscious detection and faster reaction times when observers were presented with 

near-threshold somatosensory stimuli (Linkenkaer-Hansen et al., 2004). The authors 

also found that the best performance followed strong alpha in parietal regions, which 

could be interpreted as the disruption or inhibition of task-irrelevant areas or 

involvement of the parietal region in controlling the attention required for completing 

the task. In all, the study revealed two things: first, alpha that is the most predictive of 

performance might not originate from the cortex that directly processes the stimulus. 

Second, alpha band power might have a non-linear relationship with cortical 

inhibition. This highlighted the importance of conducting trial-by-trial analysis when 

examining the relationship between alpha and cortical states, as this effect can be 

lost if the data were averaged across all trials, as in Ergenoglu et al. (2004). In fact, a 

later study did find that visual inputs were more likely to be perceived if they 

coincided with a trough in the alpha cycle or a peak in the high beta or gamma 

responses (Hanslmayr et al., 2007). The coupling between phase and stimulus 

response is strong enough to predict the outcome on a trial by trial basis and 

supporting the association between alpha activity and perception of transient visual 

stimuli without averaging across trials.  

 

Clearly there is strong evidence for a relationship between endogenous alpha activity 

and visual perception. However, there is no single study that adequately addresses 

these following issues. 
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Firstly, measurements of endogenous alpha were localised to the posterior visual 

areas. While basing their findings on occipital alpha activity (Sauseng et al., 2005), 

the same group had previously found posterior alpha activity to be controlled by 

prefrontal regions in an earlier study (Sauseng et al., 2005). The role of prefrontal 

cortex in attention modulation had been repeatedly demonstrated (Nobre et al., 

2004; Rosen et al., 1999; Small et al., 2003), but this new finding was the first to link 

posterior alpha band power with this process. This prompted the question of whether 

alpha band activity calculated across the scalp would more accurately reflect the 

observer’s attentional state, or other task-related networks, than occipital alpha 

alone.  

 

Secondly, performance interacts with reaction time. Faster reaction times could 

indicate a more alert, vigilant internal state but speeding up reactions might also lead 

to worse performance. Reaction time is also associated with endogenous activity.  

As mentioned, Hanslmayr et al. (2007) demonstrated that enhanced alpha activity 

inhibited visual perception, while enhanced beta and gamma activity improved it. 

This difference in relationship of alpha and non-alpha endogenous activity with 

perception was later extended to response time, where macaques performing a 

visuomotor task showed a significant correlation between increased prestimulus 

alpha activity and longer reaction time (Zhang et al., 2008). The authors also found 

increased beta activity in the frontal cortex was associated with shorter response 

times and that regions that are part of the same network tend to show similar 

relationships between endogenous states and external performance. Even so, only 

some studies in this field had considered response time as a measurement of task 

performance alongside accuracy. A more comprehensive investigation might look at 

both simultaneously. 

 

Finally, previous studies found a hemispheric dissociation where receiving a visual 

cue in one hemifield not only decreased alpha activity in the contralateral occipital 

region (Sauseng et al., 2005; Thut et al., 2006), but also induced a resynchronisation 

of alpha activity in the ipsilateral cortex (Kelly et al., 2006; Worden et al., 2000). 

Considering conflicting results of previous experiments (Boncompte et al., 2016; 

Cosmelli et al., 2011), it would be interesting to investigate whether contralateral 
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desynchronisation and ipsilateral resynchronisation of alpha activity persists 

especially in the absence of a visual cue, and if the alpha-perception relationship is 

stronger in either hemifield as compared to the whole brain.  

 

1.2.2.2 Interaction between endogenous oscillations and 

visually evoked responses 
 

In addition to informing about the observer’s internal state before stimulus onset, 

endogenous oscillations can also interact with visually evoked responses. Some 

studies have indicated that steady-state potentials, instead of being purely stimulus-

driven responses, are endogenous rhythms that have been phase-locked to the 

external rhythm (Makeig et al., 2002; Sayers et al., 1974). The exogenous and 

endogenous frequency do not have to match to produce powerful entrainments: the 

most efficient stimulus frequency depends on the stimulus features. For example, 

responses to face stimuli are the most optimal at 6Hz (Alonso-Prieto et al., 2013). 

These findings suggested a top-down influence of visual perception by endogenous 

rhythms, as well as the need to investigate endogenous entrainment using a wide 

range of stimulus frequencies.  

 

Previous investigations of endogenous-exogenous interactions often consisted of 

attempting to phase-lock the endogenous component to a periodic stimulus and 

measuring performance in simple visual detection tasks (Hanslmayr et al., 2007; 

Spaak et al., 2014). These studies rarely involved the use of chromatic visual inputs, 

which, we argue below, may have an important relationship to some endogenous 

rhythms.  

 

The human visual system is trichromatic, and the properties of visual pathways that 

process chromatic information have been studied extensively. The human retina 

contains three classes of cones, namely short- (S), medium- (M) and long- (L). Each 

cone type has a different spectral sensitivity profile: S-cones optimally absorb light at 

a wavelength of 420nm, M-cones 530nm and L-cones 570nm. The signals from 

these cones are combined at the retinal ganglion cell (RGC) stage to form additive 

and opponent channels. These are an achromatic luminance channel (L+M), which 
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processes signals from L and M cones in an additive way (S cone signals do not 

contribute to luminance), an isoluminant blue-yellow system (S-(L+M)) that is 

modulated by on- and off- S-cone inputs, and an isoluminant red-green pathway (L-

M), which processes L and M signals in an antagonistic way (MacLeod & Boynton, 

1979; Perry et al., 1984; Shapley & Perry, 1986). These channels define the axes of 

three dimensions of the DKL and MacLeod Boynton colour spaces (De Valois et al., 

2000; Derrington et al., 1984; MacLeod & Boynton, 1979). 

 

The signals from these channels are projected from the retina to anatomically distinct 

layers in the lateral geniculate nucleus (LGN). The relationship between anatomically 

defined channels (parvo-, magno- and koniocellular pathways) and the functional 

chromatic channels is not entirely straightforward. Large parasol RGCs primarily 

input into the magnocellular (MC) layers in the LGN which carries almost entirely 

achromatic information. But the midget RGCs which drive parvocellular (PC) LGN 

layers carry both L-M and L+M signals information, and small bistratified ganglion 

cells which both project to the koniocellular (KC) layers and can carry S-cone 

initiated signals may also have inputs from other cone types  (Dacey, 2000; Dacey & 

Lee, 1994; Lee et al., 1988). While achromatic, blue-yellow and red-green signals do 

not map perfectly onto the MC, KC and PC pathways respectively, it is true that PC 

and KC neurons respond preferentially to red-green chromatic signals and opponent 

blue-yellow signals respectively (Kaiser et al., 1990; Kremers et al., 1993; Lee et al., 

1988; Lee, 2011).  

 

The chromatic properties of LGN layers allow these anatomical visual pathways to 

be reasonably isolated using coloured stimuli. This means that entrainment between 

stimulus-evoked responses within the LGN and endogenous activity could, in 

principle, be used as a marker to reveal functional and physiological connections 

between LGN and the oscillating structure. The LGN is located in the posterior 

region of the thalamus, and therefore initial investigations began with the other 

structures in the thalamus. The thalamus plays an essential role in regulating sleep-

wake rhythms and consciousness, producing a characteristic slow oscillation that 

corresponds to delta and theta frequency bands (Coulon et al., 2012) and previous 

research has shown that midbrain structures, such as the superior colliculus that 

regulate vigilance and eye movement, have strong connections with KC layers but 
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not PC or MC (Casagrande, 1994; Feig & Harting, 1994; Harting et al., 1991; Hendry 

& Reid, 2000). 

 

More relevant to our work here, we note that a marmoset study had previously 

demonstrated a relationship between LGN activity and the thalamus (Cheong et al., 

2011a). Multi-electrode recordings showed that KC activity experienced more 

fluctuations than PC or MC neurons. However, activity of individual KC neuron was 

highly synchronised (Fig. 1.3 A – C) and fluctuations were highly coordinated over a 

time period of 15s (Fig. 1.3 D). Both observations implicated the presence of an 

endogenous oscillation that modulated the activity of KC neurons exclusively. 

 

Additionally, the authors found that KC spike rates were inversely correlated with 

slow (<10Hz) endogenous activity in the absence of external stimulation (Fig. 1.3 E 

and F). This correlation was unique to both KC and slow endogenous rhythms: PC 

and MC spike rates did not correlate with <10Hz signals, and KC spike rates were 

unaffected by endogenous activity above 10Hz. This finding extended the first by 

showing that KC neurons were synchronised to a slow, rhythmic modulation that is 

normally characteristic of the superior colliculus within the midbrain.  
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This paper prompted us to ask if non-invasive techniques could also provide insights 

with regards to deep cortical responses in humans. Since the responses were 

unique to KC neurons, we wondered if S-cone driven responses would display signs 

of association with slow endogenous activity. In addition, we asked if responses to 

other chromaticities might also exhibit similar interactions with other endogenous 

activities. We could not measure signals from the LGN directly, but if interactions 

were occurring there, we might be able to measure their effects in cortex by 

examining non-linear response terms in the EEG. 

 

A system processing signals of different frequencies can produce intermodulation 

terms when these frequencies interact in a nonlinear manner. Intermodulation terms 

manifest as power at the low-order sums and differences of the interacting 

frequencies. Depending on the frequencies of the endogenous activity and stimulus, 

 
 
Fig. 1.3 Figures adapted from Cheong et al., (2011). The spike rates of (A) two P 
cells, (B) two M cells and (C) one K cell and one P cell. KC responses showed 
greater fluctuation over time period as opposed to MC or PC neurons. (D) Strong 
correlation between spike rates of two neurons selected from KC layer. (E) 
Activity recorded from a KC neuron and (F) relative power of delta (0.3-5Hz) and 
theta (5-10Hz) activity (to EEG power between 10-50Hz). Power of low frequency 
endogenous activity show a distinct inverse correlation with KC spike rate in (E). 
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these nonlinear responses can appear almost anywhere across a wide frequency 

range.  

 

Considering that high temporal frequency responses in the system can come from 

an interaction between flickering stimuli and endogenous activity, we ask a follow-up 

question: can the network support high temporal frequency responses driven directly 

by external stimuli? To investigate this question, we first reviewed the literature on 

the temporal response profiles of the visual system.  

 

As previously mentioned, visual signals are projected into distinct layers in the LGN. 

This early separation of information naturally led to assumptions that processing 

would remain segregated until the signals terminate in higher visual areas. For 

example, many earlier works documented an apparent dichotomy between stimulus 

properties and corresponding processing streams, where motion and luminance 

were processed in dorsal regions and chromatic information were processed in 

ventral areas (Goodale & Milner, 1992; Mishkin et al., 1983; Mishkin & Ungerleider, 

1982; Zeki, 1990). Eventually, the topographical details of these areas were mapped 

out using fMRI (McKeefry & Zeki, 1997): a region on the ventral occipitotemporal 

cortex was activated by presentation of colourful stimuli, independently of V3 and 

dorsal V5. This area was mapped out in even greater detail in a later study (Bartels 

& Zeki, 2000) (Fig. 1.4).  
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The clear functional distinction between these higher-order areas inspired more 

research on human contrast sensitivity to chromatic and achromatic stimuli through a 

variety of neuroimaging methods, some with more complex chromatic stimuli to test 

additional cognitive responses (Brewer et al., 2005; Engel et al., 1997a; Liu & 

Wandell, 2005; Wade et al., 2008). Some research resulted in new definitions of 

visual areas, such as V8 (Hadjikhani et al., 1998) which bore similarities with V4α in 

Bartels & Zeki, (2000) (Fig. 1.4).  

 

The precortical chromatic channels also inherit unique temporal sensitivity profiles, 

where the chromatic pathways largely respond more to slower temporal modulations 

as compared to achromatic pathways (Kelly, 1983). Temporal sensitivities differ 

between chromatic channels as well: psychophysical studies have shown that a 

10Hz isoluminant red-green flicker is easily visible, but an isoluminant blue-yellow 

flicker at the same frequency would be almost invisible.  

 

 
Fig. 1.4 Fusiform gyrus regions that are responsive towards colour. Area V4 and 
area V4α from posterior and anterior regions respectively. Both areas show 
retinotopic organisation. (A) SPM of comparison between chromatic and 
achromatic stimulation on glass-brain projection (left) and anatomical images 
(right). (B) Comparing upper (white) and lower (black) visual field responses of 
chromatic stimulation against achromatic stimulation. (C) ICA separated the 
entire V4 complex (V4 and V4α). Figure adapted from Bartels & Zeki (2000), 
based on a reanalysis of data from McKeefry & Zeki (1997).    
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Many of these studies have verified the temporal properties of the early visual 

pathways, but two aspects of the chromatic response profiles are still debated. 

Firstly, colour and luminance processing pathways are not entirely distinct. 

Achromatic information, for example, can be carried via both P- and MC pathways 

(Derrington et al., 1984; Derrington & Lennie, 1984; Leventhal et al., 1981; Perry et 

al., 1984; Reid & Shapley, 2002). In contrast, MC neurons have exhibited properties 

of PC neurons, producing first-harmonic responses to slower red-green stimuli and 

strong second harmonic responses to faster ones (Lee & Sun, 2009). The chromatic 

information transmitted by MC neurons may not be limited to red-green signals: 

conflicting reports with regards to MC neurons carrying S-cone isolating signals have 

also been found (Chatterjee & Callaway, 2002; Sun et al., 2006). Moreover, the 

motion of a purely chromatic stimulus can be perceived consciously. Some argued 

that this was due to the transmission of chromatic information through the MC 

pathway to neurons in MT (Cavanagh & Anstis, 1991; Thiele et al., 1999). Evidence 

has also shown that the PC neurons inputs into area MT, although to a lesser extent 

than MC (Maunsell et al., 1990). 

 

Furthermore, the processing of temporal information is partly determined by stimulus 

colour, in addition to other visual features such as contrast, eccentricity and spatial 

frequency (Hartmann et al., 1979; Hecht & Verrijp, 1933; Tyler, 1985). But even 

under optimal conditions, the conscious perception of individual flicker attenuates 

above specific temporal frequencies. This threshold is known as the critical flicker 

fusion frequency (CFFF) and is approximately 50Hz for luminance, 15-25Hz for 

chromatic red-green and 10Hz for S-cone isolating stimuli (Eskew et al., 1994; 

Holcombe & Cavanagh, 2001; Kelly, 1983; Lee et al., 1990; Matin, 1968; Wisowaty, 

1981). Clearly, visual inputs are temporally filtered at some stage before perception, 

but where are the anatomical locations of the filtering stages? Considering how 

chromatic pathways have a more limited temporal response range than luminance 

processing channels, it is likely that filtering occurs after the segregation of chromatic 

and achromatic signals.  

 

Initially, it was proposed that rapid signals were filtered at the earliest opportunity, as 

a way to conserve energy in the visual system. The temporal sensitivities of 

precortical structures were investigated, and it became clear that some filtering does 
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occur in precortical visual structures. Studies revealed that phasic and tonic ganglion 

cells were highly responsive to flicker between 20-40Hz (Lee et al., 1990) while LGN 

neurons were optimally activated by a lower, more limited frequency range between 

4-10Hz (Derrington & Lennie, 1984; Solomon et al., 1999). However, this did not 

mean that fast signals are entirely filtered out in the LGN. Firstly, MC responses are 

transient and can convey motion information to later visual areas. The middle 

temporal (MT) cortical area, for example, receives much stronger MC inputs than PC 

(Maunsell et al., 1990). Secondly, earlier work on the filtering of rapid signals 

measured response heterogeneity across individual neurons (Tolhurst et al., 1983; 

Werner & Mountcastle, 1963). This was based on the idea that high variations in one 

stage’s neuronal activity would weaken the signal and make it harder to transmit to 

subsequent visual areas. Despite the relative heterogeneity of cell types and 

ganglion cell connections in the retina, single cell activity in both LGN and retina 

were found to be relatively homogenous within layers (Croner et al., 1993; Gur et al., 

1997; Schiller & Colby, 1983). This suggested that the signal was not weakened and 

was likely conveyed to higher-order visual areas. In summary, while the temporal 

range that LGN neurons respond to is noticeably smaller than that found in the 

RGCs, evidence suggests that some rapid signals are still present in cortex. 

 

Additionally, another study found the majority of sampled colour opponent cells 

within numerous V1 layers exhibited frequency matched responses up to 30Hz and 

for three cells up to 60Hz (Gur & Snodderly, 1997). This implied that rapid signals 

not only reach the cortex, but that the early visual cortex is capable of processing 

these rapid signals. The final stages of temporal filtering for these signals might 

therefore occur even later in the visual stream, possibly in extrastriate visual areas. 

 

One method of tracing these rapid signals involved measuring psychophysical 

thresholds after adaptation. Isoluminant flicker modulating at beyond the CFFF was 

invisible (Farrell et al., 1987; Zlody, 1965), but prolonged adaptation to such invisible 

flicker nevertheless produced adaptation effects (Shady et al., 2004) (see Fig. 1.5 for 

visualisation). Similar adaptation effects were found for both chromatic and 

achromatic conditions, and adaptation showed particular interocular transfer 

implicating the involvement of multiple filtering stages up to and including the cortex. 
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Since, to a first approximation, adaptation to high frequency flicker only happens in 

the cortex (exception being Solomon et al., (2004)), evidence of invisibly fast flicker 

leading to this process revealed two things. First, the magnitude of the effect caused 

 
Fig. 1.5 (A). Log scaled contrast sensitivity to increasing frequency in chromatic 
red-green flicker. The two figures show data collected from two subjects. 
Contrast sensitivity was used here as a measurement of conscious perception. 
Higher contrasts were required to maintain conscious perception as the flicker 
frequency increases. However, conscious perception of flicker stops at 20Hz for 
both subjects, after which the stimuli entered the ‘invisible’ frequency range. (B) 
Adaptation effect as a function of adapter flicker frequency. Adaptation effect 
was obtained by having subjects fixate on a flickering stimulus for two minutes, 
then measuring the level of contrast they require to see a probe. The figures 
showed that adapter flicker of 5Hz generated high adaptation effects, which 
gradually weakened as frequency was increased to 10Hz and 20Hz. This effect 
continues even when the adapter flicker entered the ‘invisible’ range of 30 Hz: 
demonstrating that participants showed adaptation effects despite not being able 
to consciously perceive the flicker. This demonstrated cortical modulations of this 
fast flicker. Figures adapted from Shady et al. (2004). 
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by invisible flicker can be estimated from the extent of adaptation. In this case, the 

modulation transfer function followed a similar trajectory in both visible and invisible 

zones, which suggested that the degree of adaptation effect caused by invisible 

flicker appeared comparable to that of visible flicker. Secondly, imperceptibly fast 

signals reach the cortex and are not filtered out entirely in precortical region, refuting 

earlier theories.  

 

One of the most comprehensive neuroimaging studies on this topic (Jiang et al., 

2007) examined chromatic red-green flicker at various frequencies and contrasts. 

The authors measured responses in several visual areas (V1, V2, V3/VP, V3a, 

hV4/V4v and the region anterior to hV4, labelled VO) and found that all visual areas 

apart from VO produced comparable BOLD responses to full contrast flicker, 

regardless of temporal frequency (Fig. 1.6 A). While all flicker frequencies generated 

standard contrast response functions in all visual areas (BOLD signal decreases with 

contrast), responses to 30Hz flicker in VO never rose above baseline, regardless of 

contrast (Fig. 1.6 C). Overall, the findings indicated that we should expect ‘invisible’ 

fast flicker to generate responses in visual areas up to V4, although magnitude of 

responses might gradually attenuate as flicker frequency increases.  
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Fig. 1.6 (A) Chromatic red-green flicker at 5 Hz (consciously perceptible ‘visible’ 
frequency) and 30 Hz (imperceptible ‘invisible’ frequency) produced statistically 
significant increases in BOLD responses in comparison to static control in the 
primary visual cortex, V2, V3A and V4. VO (anterior to hV4) was the only area 
that showed a distinction between the two stimuli, responding greatly to the visible 
flicker only. To ensure that the responses are truly dependent on temporal 
frequencies, the authors included a 5 Hz chromatic flicker with subthreshold 
contrast in the paradigm. This flicker while being slow enough for conscious 
perception, is perceptually indistinguishable from a 30 Hz ‘invisible’ chromatic 
flicker due to its low contrast. None of the areas which responded powerfully to 
the latter did so for this subthreshold flicker: demonstrating that the temporal 
frequency was critical in driving the responses. Rapidly modulating inputs are able 
to generate rapidly modulating signals beyond the primary visual cortex. (B) The 
averaged BOLD signal plotted as a function of stimulus frequency for three tested 
contrast levels (25, 50 and 100%) in visual areas V1, hV4 and VO. Increasing 
temporal frequency resulted in a decrease in BOLD responses for all visual areas. 
(C) The average BOLD signal plotted as a function of stimulus contrast level for 
three tested frequencies (5, 15, and 30Hz). The relationship between response 
magnitude, frequency and contrast are similar for all visual areas, with the 
exception of VO, which showed no significant responses at 30Hz regardless of 
contrast. Error bars indicate ± 1 SEM. Figures adapted from Jiang, Zhou, & He 
(2007). 
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Historically, relatively little attention has been paid to the temporal characteristics of 

the KC pathway. This might be due to the earlier idea of chromatic information being 

conveyed exclusively by the PC system (Troscianko et al., 1996). The KC neurons 

are relatively temporally low-pass and ‘sluggish’:  S-cone driven responses typically 

peak below 10Hz (Engel et al., 1997b). This temporal low-pass nature is reflected in 

cortical responses as well: a recent study (Spitschan et al., 2016) found that V1 and 

V2/V3 responded more to faster, achromatic signals (luminance, 16Hz) than slower, 

chromatic signals (red-green, 8Hz), matching observations in psychophysics 

performance. MT is the most responsive to fast flicker regardless of chromaticity and 

while S-cone responses were limited to V1 and V2/V3, peaking at lower frequencies 

(around 4-8Hz) (Fig. 1.7).  

 

 
 

 
 
Fig. 1.7 BOLD fMRI responses in V1, V2/V3, lateral occipital cortex (LOC) and 
MT plotted against flicker frequencies (Hz) for cone pathways. The temporal 
transfer functions are plotted for L+M+S, L-M and S. Shaded region indicates +/- 
1 SEM across the three subjects. Solid line is a fourth-order polynomial fit to the 
data and red bars highlight the frequency range of peak BOLD responses. Figure 
adapted from Spitschan et al. (2016). 
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However, some psychophysical experiments have shown that S-cone signals can 

convey significant information about motion at more rapid modulation rates 

(Cavanagh & Anstis, 1991; Dougherty et al., 1999; Lee & Stromeyer, 1989). S-cone 

isolating and purely luminance stimuli moving at 12Hz generated comparable 

patterns of neural activity around 200ms after stimulus onset, with a surprising, 

additional early response in the S-cone condition at approximately 50-90ms (Morand 

et al., 2000). This suggests that S-cone signals may have a fast, privileged way of 

accessing lateral visual cortex (perhaps area MT) (Barberini et al., 2005; Dobkins & 

Albright, 1994; Seidemann et al., 1999; Sincich & Horton, 2005; Thiele et al., 1999; 

Wandell et al., 1999). S-cone signals serve different purposes in different cortical 

regions. Those in colour-processing areas contribute to colour perception, while it is 

possible that S-cone inputs to other locations provide information about ambient light 

intensity  - perhaps aiding shape, edge and motion processing (Conway, 2014). An 

earlier neuroimaging study supported this theory, showing that while responses 

within the LGN to both chromatic flicker (red-green and S-cone isolating) were 

similar (attenuating at 12Hz), their cortical temporal response functions differed 

(D’Souza et al., 2011). Specifically, normalised S-cone driven BOLD responses 

within MT showed a marked increase with increasing temporal frequency up to 10Hz 

as compared to luminance or red-green stimuli (Fig. 1.8). The activation of V3a was 

higher than that of earlier areas like V1, but not as great as MT. This finding added to 

the growing body of evidence suggesting that S-cone driven signal pathways have 

the potential to signal relatively fast modulations.  
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1.3 Rationale for the current thesis 
 

The current literature clearly demonstrates the involvement of endogenous 

oscillations in cognitive functions. Certain aspects, such as occipital alpha 

modulation using attentional cues and the role of GABA in gamma rhythm, have 

been validated repeatedly. But with the rapid expansion of research in this field, 

several important questions still need to be addressed.  

 

Firstly, the relationship between resting GABA concentration and gamma frequency 

remains inconsistent, especially in human studies. These experiments often estimate 

GABA concentrations using MRS, but an increasing amount of evidence is 

suggesting that total GABA concentration within a voxel is not proportionate to the 

amount of GABA actually involved in gamma production. Secondly, endogenous 

alpha activity can predict an observer’s detection of a near-threshold target. 

However, such experiments often induce alpha using attentional cues. It remains 

unclear if this quality of alpha activity would persist if alpha were measured 

spontaneously, and whether spontaneous alpha shared different relationships with 

task accuracy and response time. Similarly, we wanted to know if the function of 

 
 
Fig. 1.8 Adapted from D’Souza et al. (2011): Normalised fMRI responses in V1, 
V2d, V3d, V3a (denoted by green arrow) and MT (denoted by red arrow) to red-
green, luminance and S-cone isolating stimuli. S-cone isolating stimulus 
generated a marked increase fMRI response at higher temporal frequencies, 
reaching a peak at 10Hz for MT and V3a. This was not seen in any other 
chromatic conditions.  
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alpha activity was consistent between individuals. Thirdly, the relationship between 

endogenous oscillations and colour vision remains relatively unexplored. Precortical 

visual pathways have well-established temporal and spatial tuning profiles and can 

be reasonably isolated using chromatic inputs. Any interactions between 

endogenous activity and chromatic inputs can act as markers for the mechanisms 

underpinning endogenous activity. Finally, ‘invisibly’ rapid flicker had previously 

caused adaptation effects within the cortex, but fMRI studies had only modulated 

chromatic stimuli up to 30Hz. We aimed to examine the neural correlates of 

responses driven directly by rapid stimuli. 

 

Each chapter in this thesis was therefore designed to address these issues using 

alternative experimental or analysis paradigms. The first chapter investigated the 

relationship between GABA concentration and gamma oscillations. This involved 

increasing extrasynaptic and synaptic GABA concentrations through 

pharmacological agents in rodent cortex slice preparations. The second chapter 

investigated whether spontaneous alpha activity in humans prior to stimulus 

presentation was predictive of their accuracy and response time in an orientation 

discrimination task. In the third chapter, we modulated achromatic and chromatic 

flicker selected along the Macleod-Boynton colour axes and looked for signatures of 

interaction between exogenous and endogenous activity. This was performed first 

through a univariate analysis using averaged EEG power, then through a 

multivariate analysis using both phase and amplitude information. Lastly, we 

conducted an fMRI experiment examining the filtering stages of very rapid chromatic 

flicker within the visual cortex. This extended both the findings of the third chapter 

(showing entrainment at very high frequencies) as well as previous fMRI 

experiments with more limited temporal and chromatic ranges.  

 

We specified five research questions, namely: 

  

1. Does increasing synaptic or extrasynaptic GABA concentrations change 

gamma oscillation properties?  

2. Can spontaneous alpha activity predict task performance?  

3. What does alpha represent? 
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4. Do endogenous activity and stimulus driven activity interact? Specifically, with 

regards to chromatic stimulation from the axes of Macleod Boynton.  

5. Does the human visual cortex respond to very rapid stimulation? Where are 

the signals filtered out? 
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2 Chapter 2: The effects of GABA 

and tiagabine on kainate-induced 

gamma oscillations in rodent 

visual cortex slices 
 

2.1 Abstract 
 

GABA is an inhibitory neurotransmitter that has an established role in the production 

of resting-state and stimulus-induced gamma band (> 25Hz) neural oscillations in 

animals (Bartos et al., 2007; Buzsáki & Wang, 2012; Chen et al., 2014). Higher 

concentrations of resting GABA are often associated with faster gamma rhythms in 

the visual cortex (Edden et al., 2009; Muthukumaraswamy et al., 2009), but a more 

recent study found no correlation between the two (Cousijn et al., 2014). Likely 

explanations for these conflicting results include fundamental disagreements about 

the mechanisms of gamma production (Brunel & Wang, 2003; Traub et al., 1996), 

limitations in the spatial resolution of GABA measurement techniques (Duncan et al., 

2019; Puts & Edden, 2012; Stagg et al., 2011; Stagg, 2014), and the inherently low 

signal-to-noise ratio (SNR) of gamma oscillations in extracranial measurements of 

neural rhythms (Yuval-Greenberg & Deouell, 2009, 2011).  

 

To address these issues, the current experiment investigated the relationship 

between GABA and gamma oscillations using in vitro recording techniques. This 

simpler, reduced system simultaneously allows for greater control over the paradigm 

and fewer uncontrolled variables, which leads to more straightforward data 

interpretation as compared to in vivo and other non-invasive studies. Gamma 

rhythms were induced in rodent primary visual cortex slices using kainate (Fisahn, 

2005), after which we either (a) increased GABA concentration by exogenous 
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application to the slice bathing medium or (b) administered tiagabine: a GABA 

reuptake inhibitor. Our null hypothesis, consistent with the results of Cousijn et al. 

(2014), was that we would observe no changes to gamma oscillations despite the 

increased net concentration of GABA in the slice, as the modification of extracellular 

GABA does not guarantee a change in releasable synaptic GABA concentration (the 

most critical for gamma production networks). On the other hand, tiagabine is 

predicted to cause a decrease in gamma frequency as it retains the rodent’s pre-

existing GABA in the synaptic space, prolonging the time postsynaptic neurons are 

inhibited and delaying each round of synchronised neuronal firing (Roepstorff & 

Lambert, 1994; Thompson & Gähwiler, 1992). However, it has also been argued that 

an increase in synaptic GABA will not change gamma frequency, as its effects are 

limited to the late phase of IPSP (Dingledine & Korn, 1985). 

 

The results supported our first hypothesis: we found no significant linear relationship 

between gamma frequency or amplitude when increasing extracellular GABA 

concentration. On the other hand, we found that only two of four animals showed a 

gradual decrease in frequency after the application of tiagabine, while the others 

were either ambiguous or showed a slight increase. Longer recordings of the slices 

showed that frequency (and amplitude) fluctuated greatly for at least an hour after 

tiagabine administration. In a follow-up analysis, we observed that kainate-induced 

gamma band oscillations showed a negative relationship between frequency and 

amplitude and that this changed to a positive relationship after applying tiagabine.  

 

Our findings validated concerns raised in Cousijn et al. (2014): that experiments 

examining the effects of GABA must differentiate between releasable synaptic GABA 

and non-synaptic GABA. However, the conflicting outcomes following tiagabine 

administration indicated we must consider other sources and mechanisms of GABA 

action on visual gamma oscillations, such as extracellular GABA, homeostatic 

mechanisms that moderate excessive GABA as well as the role of GABA-induced 

postsynaptic currents in spike probability timing. The fluctuations in gamma 

frequency and amplitude also suggest caution when interpreting readings taken 

across long experiments. 
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2.2 Introduction 
 

GABA is an inhibitory neurotransmitter that plays a vital role in the production of 

gamma oscillations within the visual cortex. Presynaptic neurons release GABA 

molecules into the synaptic space, where they might attach onto corresponding 

postsynaptic GABA receptors. Successful attachment causes the postsynaptic 

membrane potential to shift towards chloride reversal potential (-70mV), which 

decreases firing rate in postsynaptic neurons temporarily. When the inhibition wears 

off, the ‘halted’ neurons will fire together, producing gamma oscillations.  

 

This mechanism is relatively straightforward, but the relationship between GABA 

concentration and gamma oscillations is not. An assumption held frequently by 

human or non-human primate MEG studies is that higher concentration of GABA 

would cause greater inhibition and result in stronger and faster gamma oscillations. 

One of the most prominent studies in this field was conducted by 

Muthukumaraswamy et al., (2009), where gamma activity was induced in subjects 

and resting GABA concentration was measured using MRS. The authors found a 

positive correlation between gamma frequency and resting GABA concentration, 

which supported the theory. This finding was soon extended by another experiment 

showing that GABA concentration also predicted orientation sensitivity within 

subjects (Edden et al., 2009). These findings unanimously supported a simple, linear 

relationship between gamma and GABA concentration and demonstrated how this 

might affect visual performance. Yet, replications of this result had been difficult. A 

study aimed at replicating these findings found no significant associations between 

GABA concentration with gamma frequency as well as no relationship between 

glutamate or GABA-glutamate ratio and gamma frequency (Cousijn et al., 2014). 

Such disputes were not limited to the visual cortex: the relationship between GABA 

concentration and gamma oscillations within the motor cortex (Gaetz et al., 2011), 

working memory (Chen et al., 2014) and auditory cortex (Wyss et al., 2017) have 

also varied between experiments.  

 

A literature review suggested that these conflicts comprised two issues. Firstly, there 

are multiple computational models explaining the process of gamma production, 
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where outcomes are sometimes in direct opposition to one another. For example, the 

model described in Brunel & Wang, (2003) states that gamma rhythms are produced 

by intrinsic loops between excitatory and inhibitory drives. In contrast, a second 

model described by (Traub et al., 1996; Whittington et al., 1995) proposed that 

individual inhibitory interneurons can form loops irrespective of excitatory pyramidal 

cells. The first model predicts that the frequencies of resultant rhythms are tightly 

regulated by the ratio of excitation to inhibition and increasing inhibitory drive would 

cause an increase in frequency, while the second asserts that an increase in 

inhibitory drive would be followed by a decrease in oscillation frequency. Both 

models have been supported by evidence from human and rodent experiments 

(Muthukumaraswamy et al., 2009; Whittington et al., 1998), and the lack of 

consensus means that the effect of increased inhibition on endogenous frequency 

remains unclear. 

 

Secondly, studies are expressing concerns about measuring inhibitory drive using 

MRS (Cousijn et al., 2014; Duncan et al., 2019; Muthukumaraswamy et al., 2009; 

Puts & Edden, 2012). These included fundamental technical issues, such as a lack 

of standardisation in MRS sequences across studies, the sequences not being 

optimised to measure other metabolites (e.g. glutamate) involved in rhythmogenesis, 

and its vulnerability to metabolite contamination.  

 

But more importantly, MRS measures the total GABA concentration within a selected 

voxel, which is not an accurate estimation of inhibitory drive. GABA is divided into 

several ‘pools’ within a neuron such as cytoplasmic or vesicular. Out of these pools, 

only a subset of vesicular GABA is released during synaptic transmission (Martin & 

Rimvall, 1993), where some of them stimulate inhibitory processes that lead to 

gamma oscillations. This disparity between the amount of GABA that actually 

contributes to inhibitory potentials and the total GABA concentration within a voxel 

highlights how unsuitable MRS measurements are for inferring inhibitory drive.  

 

Additionally, the process is made more complicated by the fact that gamma 

oscillations are driven by early phases of IPSP (Gouwens et al., 2010), which unlike 

late phases are not affected by an increase of synaptic GABA concentration 

(Dingledine & Korn, 1985). This finding is widely supported by the literature. Multiple 
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pharmacological studies that successfully manipulated inhibitory drive often involved 

the application of GABA agonists (Campbell et al., 2014; Gonzalez-Burgos & Lewis, 

2012; Lozano-Soldevilla et al., 2014). GABA agonists directly affected postsynaptic 

GABA receptors and increases inhibition of subsequent neurons. These studies 

found that by directly enhancing GABAergic process at the postsynaptic receptors, 

gamma activity reduced in frequency but increased in amplitude. On the other hand, 

studies that have used GABA reuptake inhibitors have produced less consistent 

results. A study that administered tiagabine to its subjects found no significant effect 

on frequency and amplitude of gamma oscillations (Muthukumaraswamy et al., 

2013), which was congruous with earlier papers (Dingledine & Korn, 1985; Gouwens 

et al., 2010). However, a later reanalysis of the same dataset reported that tiagabine 

caused a decrease in gamma frequency (Magazzini et al., 2016). This observation 

was explained by likening increased synaptic GABA concentration to increased 

postsynaptic GABA dynamics, which highlighted two important matters. First, 

synaptic GABA concentration does not provide a robust assessment of postsynaptic 

kinetics, and second, that this assumption is still held by researchers. 

 

Together, these issues illustrated the complexity of gamma production and 

consequently a need to examine the GABA-gamma relationship. The current study 

aimed to understand the relationship between GABA concentration and gamma 

oscillations originating from the visual cortex. Instead of MRS, we used an in vitro rat 

model, which permitted direct and precise control over GABA concentrations. While 

the current research question does not require us to work with GABA agonists, 

previous success in using animal models for pharmacological studies justify the use 

of rodent models: comparable effects of benzodiazepines were observed in both 

human (Lozano-Soldevilla et al., 2014) and animal (Faulkner et al., 1998; Traub et 

al., 1996; Whittington et al., 1995) models. Gamma band oscillations were evoked 

using kainic acid, a glutamate agonist. To validate the MRS-related concerns of 

previous studies, we introduced GABA in increasing dosages to the cortical slices 

while simultaneously recording extracellular field potential in the animal’s primary 

visual cortex in this first part of the study. Our aim was to investigate whether 

increasing the total GABA concentration would modulate gamma oscillations. We 

hypothesised that increasing GABA concentration would not increase gamma 



 52 

frequency, as GABAergic effects are only enhanced if the additional GABA 

successfully activate postsynaptic receptors. 

 

In addition to disproving that total GABA concentration is correlated with gamma 

frequency, we investigated how gamma was affected by GABA reuptake inhibitors 

and whether the effect would be different from experiments that directly manipulated 

postsynaptic kinetics (Campbell et al., 2014; Lozano-Soldevilla et al., 2014). In the 

second part of the study, we administered one fixed dosage of the GABA reuptake 

inhibitor tiagabine, a selective and potent inhibitor of GABA transporter (GAT-1) on 

the presynaptic neuron (Magazzini et al., 2016; Muthukumaraswamy et al., 2013). 

Since reuptake inhibitors only prolong the late phase of IPSP (which does not affect 

gamma production), we predicted that tiagabine would not change gamma band 

frequency and amplitude.  

 

2.3 Methods 
 

2.3.1 Rodent model 
 

We obtained coronal slices with a thickness of 450μm from the visual cortex of 18 

adult male Wistar rats (weighing approximately 200g). During the experiment, the 

slices were maintained in an interface chamber flushed with oxygenated (95%/5% 

O2/CO2) artificial cerebrospinal fluid (ACSF), which is composed of (in mM) 126 

NaCl, 3 KCl, 1.25 NaH2PO4, 0.6 MgSO4, 1.2 CaCl2, 24 NaHCO3 and 10 glucose, at 

34°C. All experimental procedures were performed under the United Kingdom Home 

Office government licence with local ethical review board approval and conformed to 

regulations described in the UK Animals (Scientific Procedures) Act (ASPA), 1986. 

 

2.3.2 Drugs 
 

This experiment used Kainic acid (1-500nM), GABA and (3R)-1-[4,4-Bis(3-methyl-2-

thienyl)-3-butenyl]-3-piperidinecarboxylic acid hydrochloride (tiagabine 
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hydrochloride). All drugs were applied to the bathing solution (i.e. 50ml of 

oxygenated ACSF) circulating the interface chamber. In order to generate gamma 

oscillations, kainate (0.8μM, or 40μl of 1mM concentration in a 50ml volume of 

bathing solution) was always applied first after slices were prepared and stabilised. 

We then waited for the slices to reach equilibrium, which takes between 60-90 

minutes. GABA or tiagabine was introduced to the bathing medium upon detecting 

gamma band oscillations. Slice preparations that failed to oscillate after the allotted 

time were discarded at this point.  

 

GABA and tiagabine solutions were made at the start of each experimental week. 

For GABA solution, we mixed 103.12μg of GABA with 1ml deionised water, 

producing a solution of 1mM concentration. Tiagabine solution was made by mixing 

3.75mg in 1ml deionised water, producing a solution of 10mM concentration. Kainic 

acid was obtained from Sigma-Aldrich (Poole, UK) and GABA and tiagabine were 

obtained from Tocris Bioscience (Avonmouth, UK). 

 

2.3.3 Extracellular recording 
 

We performed extracellular recording at a sampling frequency of 2000Hz using one 

micropipette (2-5 MΩ) filled with ACSF per slice. Data were acquired from within 

layer IV in the primary visual cortex (V1) of prepared cortical slices (see Fig 2.1) 

using the Axograph X software package (Axon Instruments, Foster City, CA). A 

bandpass filter of 0.1 to 200Hz was applied during data acquisition. Each recording 

lasted for 60 s normally with the only exception being the last session, where we 

took longer recordings of 60 minutes. This was performed on two slice preparations 

taken from one rat, using two micropipettes on the same slice approximately 3mm 

apart. The first micropipette (E1) recorded from layer II/III and the second from layer 

IV (E2).  
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2.3.4 Experimental procedure 
 

Slices were prepared at the start of each experimental day and left to rest at room 

temperature in an oxygenated, ACSF filled chamber for approximately 1 hour. We 

then brought the slices up to 34°C and placed our prepared micropipettes on the 

recording sites in V1 (see Extracellular Recording for detail). We took one to three 

initial recordings to obtain baseline activity before applying the kainate solution. The 

cortical slices were further monitored every approximately 15 minutes for 60 to 90 

minutes until gamma band oscillations were detected. We did not proceed further if 

the slice showed no evidence of gamma band oscillation after 90 minutes.  

 

To test the effect of GABA, we administered a dosage of GABA every 60 minutes 

after establishing gamma oscillations. Experimental duration was less than six hours 

for each slice. The exact concentrations tested are listed in Table 2.1. We took one 

recording 60 minutes after each GABA administration to allow sufficient time for the 

agent to take effect.   

 
Fig. 2.1 Adapted from Yan et al. (2011): Histology diagram of single slice of a rat 
visual cortex with V1 and V2 labelled. The current experiment recorded from 
layer IV within V1, which is indicated by the red arrow.  
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Table 2.1 The GABA concentrations (μM) tested on six separate experimental 
sessions.  

 
Experimental Session (Date) GABA Concentrations tested (μM) 

Session 1 (07/03/17) 10, 100, 500, 1000 

Session 2 (21/03/17) 200, 500, 1000, 2000 

Session 3 (04/04/17) 100, 200, 500, 1000, 2000 

Session 4 (12/06/17) 10, 20, 50, 100 

Session 5 (13/06/17) 1, 2, 5, 10, 20 

Session 6 (16/06/17) 1, 2, 5, 10 

 

To examine the effect of tiagabine, we administered a single 10μM dosage of 

tiagabine (50μl of 10 mM solution in a 50ml bath) after confirming the presence of 

gamma oscillations. We then took one recording every 15 minutes (for 90 minutes) 

after administering tiagabine to monitor the condition of the slices. This was repeated 

for all tiagabine experimental sessions but one, where we recorded for 60 continuous 

minutes after tiagabine administration.  

 

Out of the 18 experimental sessions, six tested the effect of GABA and the remaining 

twelve tested the effect of tiagabine. 

 

2.3.5 Data analysis 
 

Data were analysed using Matlab 9.4 (R2018a, MathWorks Inc., Natick, MA, USA). 

Electrophysiology recordings were fast Fourier transformed (FFT) and results were 

plotted in the frequency domain. To extract the peak frequency and amplitude from 

each recording, we used Matlab’s default curve fitting tool fit with the following 

parameters: fittype: ‘gauss1’, fitoptions: ‘Method’, ‘NonlinearLeastSquares’. We 

restricted the data range of curve fitting function to optimise the procedure for both 

speed and accuracy after visualising the amplitude spectrum (frequency: 15-70 Hz 

and amplitude: 0.10-inf μV). As an example, we plotted the frequency domain data 

from one 60s recording in blue dots and the reconstructed fitted curved in red (Fig. 
2.2).  
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We excluded any recording where the fitted curve had an r2 (variance explained) of 

less than .10, or 10% – in other words, where there was no significant peak present 

in the gamma range. This left us with N = 5 out of six for GABA sessions and N = 5 

(including the session where recordings lasted 60 minutes) out of twelve for the 

tiagabine recordings. We obtained the peak frequency (Hz) and the corresponding 

amplitude (μV) of these recordings and plotted them in the figures below.  

 

2.4 Results  
 

2.4.1 Overview of data 
 

Recordings prior to the addition of kainate often appeared as 1/f noise with a peak at 

mains noise frequency (50Hz). Biologically relevant peaks are formed after adding 

kainic acid and allowing slice preparations to reach equilibrium. Frequency domain 

figures revealed that kainate-generated gamma oscillations were often centred 

around 25-35Hz (example seen in Fig. 2.3, left).  

 
Fig. 2.2 Data from one electrophysiology recording plotted in the frequency 
domain. This particular curve fit explained 0.74 or 74% of the variance and 
has a peak frequency of 27.5Hz and an estimated amplitude of 1.33μV. 
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2.4.2 The effect of increasing GABA dosages on 

gamma oscillations 
 

A linear mixed-effects model with GABA concentration as the predictor and gamma 

frequency as the dependent variable showed an overall non-significant effect: F(1, 

45) = 1.33, p = .254, marginal R2 = .028, conditional R2 = .028). To examine whether 

GABA altered the amplitude of peak frequency (as opposed to the frequency itself) 

of the gamma oscillations, we ran a second linear mixed-effects model with GABA 

concentration as the predictor and the amplitude of peak gamma frequency as the 

 
 
Fig. 2.3 Amplitude spectrums (ranging 1-100Hz) for three selected 
electrophysiology recordings. Orange bars highlight the gamma frequency range 
25-80Hz. Left figure shows kainate-generated gamma oscillations emerging as a 
peak centred at 28Hz prior to administering GABA (control). Top right figure 
shows the same peak after administering 2μM GABA and bottom right figure 
shows activity of a different slice after administering 500μM GABA. 
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dependent variable and also found an overall non-significant effect of GABA: F(1, 

44.79) = 0.08, p = .780, marginal R2 < .01, conditional R2 = .11) (see Fig. 2.4).  

 

 
 

2.4.3 The effect of tiagabine on gamma 

oscillations  
 

Similar to the previous analysis, we only analysed data from recordings where the 

fitted curve explained more than 10% total variance. This restricted our sample to 

four separate sessions. Peak frequencies and amplitudes of these recordings were 

not normally distributed. Median peak frequency increased for two samples and 

decreased for two samples, while median amplitude increased for one sample and 

decreased for three. Descriptive statistics are summarised in Table 2.2.  

 

Table 2.2 Median and interquartile range (IQR) of peak frequency and amplitude 
before and after tiagabine application.  

 
Fig. 2.4 (A) Frequency (Hz) of endogenous rhythms measured in the visual cortex 
as a function of log-scaled GABA concentration. (B) PSD (μV) of signal peak 
frequency shown in (A). The last column displays data collated across all five 
sessions. Peak frequencies and corresponding amplitudes rendered onto the 
same figure and different colours are used to indicate data from each of the five 
sessions. Overall, we found that GABA concentration did not consistently cause 
an increase peak gamma band frequency or amplitude. 
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 Between kainate and tiagabine 

application 

After tiagabine application 

 Frequency Amplitude Frequency Amplitude 

Session 1 Median = 

37.73, IQR = 

2.88 

Median = 0.63, 

IQR = 0.25 

Median = 

45.68, IQR = 

1.54 

Median = 

0.56, IQR = 

0.01 

Session 2 Median = 

34.13, IQR = 

0.64 

Median = 0.41, 

IQR = 0.03 

Median = 

26.88, IQR = 

2.86 

Median = 

0.28, IQR = 

0.06 

Session 3 Median = 

45.66, 

IQR = 1.85 

Median = 0.41, 

IQR = 0.15 

Median = 

40.46, 

IQR = 1.09 

Median = 

0.52, 

IQR = 0.09 

Session 4 Median = 

40.04, 

IQR = 17.04 

Median = 0.95, 

IQR = 1.37 

Median = 

52.35, 

IQR = 6.49 

Median = 

0.60, 

IQR = 0.25 

 

We made violin plots to visualise these inconsistent changes to frequency and 

amplitudes before and after tiagabine administration (Fig 2.5). This provided further 

insights, especially with changes to amplitudes in Session 4. Changes in amplitudes 

are also inconsistent: with two showing attenuation, one showing an increase and 

another showing virtually no changes. These conflicts implied that GABA reuptake 

inhibitor tiagabine did not ensure increased postsynaptic GABAergic drive.  

 

What is the reason for this heterogeneity? Our readings are taken over short 

intervals at relatively arbitrary times before and after the administration of the 

pharmacological agent. To examine how stable were our measurements over time, 

we plotted the frequency and amplitude extracted from each recording as a function 

of time (Fig 2.5). We noted that the two observed decreases in frequency were 

consistent and relatively monotonic after the administration of tiagabine. However, 

we noted the general presence of significant pre- and post-administration changes in 

both frequency and magnitude, suggesting that multiple measurements of these 

quantities are necessary to obtain reliable readings.    
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To visualise how tiagabine modulated visual gamma oscillations during the 

equilibration period, we recorded two slice preparations using two micropipettes 

each for 60 minutes. One minute of data every three minutes was extracted and 

processed. The reconstructed fitted curves showing peak frequency and amplitude 

 
Fig. 2.5 (A) Violin plots of frequency (Hz) and amplitude (μV) before tiagabine 
application (blue) and after (orange). Out of four rats, two showed a decrease in 
frequency and two showed an increase after tiagabine application. Similarly, three 
rats decreased in amplitude and one rat increased. Violin plots in the last column 
show the distribution of median frequencies and amplitudes for before and after 
tiagabine application. (B) The frequency and amplitude of V1 slice recorded 
during experiment. Each dot represents a single reading taken from the slice. 
Specifically, red dots indicate the pre-tiagabine, post-kainate recordings and blue 
line and dots illustrate the results of subsequent recordings. The figure 
demonstrates how frequency and amplitude changes as a function of time. Green 
shaded regions indicate periods 30 minutes after tiagabine administration (i.e. 
minimum time needed for slice preparations to equilibrate). Two out of four 
rodents showed decreases in gamma frequency after tiagabine administration 
while all four showed decreases in amplitude. 
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were plotted in Fig. 2.6 A. These values were then plotted across time in Fig. 2.6 B, 

revealing fluctuations of both signal properties. However, we did not observe any 

significant relationship between the activity recorded within the same cortical slice: 

Spearman’s rho revealed non-significant correlations for both slice one (frequency: r 

= 0.15, p = .561; amplitude: r = -0.45, p = .060) and slice two (frequency: r = -0.21, p 

= .413; amplitude: r = 0.01, p = .964), as seen in the last column of Fig. 2.6 B. 
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Finally, we ran Spearman’s rho correlations collectively on all measurements of 

frequencies and amplitudes and found that prior to the addition of tiagabine, 

frequency and amplitude were negatively correlated (r = -.47, p = .026) and positively 

correlated after (r = .75, p < .001) (Fig. 2.7).  

 

Fig. 2.6 Data from two slices of cortex taken from a single rat. Data were 
collected continuously for 60 minutes immediately after applying tiagabine. We 
extracted 60 seconds of data every three minutes and fitted curves to this data 
using the same parameters as earlier analyses. We then reconstructed the 
curves based on the output parameters, shown in (A). (B) showed changes in 
frequency (Hz) and amplitude (μV) as a function of time from the reconstructed 
activity, with blue indicating data from the first micropipette (E1) and orange 
from the second micropipette (E2). The figures showed that both frequency and 
amplitude fluctuate continuously after administering tiagabine. To more clearly 
illustrate the relationship of frequency and amplitude recorded from E1 and E2, 
we plotted each data point on scatterplots. The scatterplots indicated that the 
LFPs were uncorrelated.  
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2.5 Discussion 
 

We increased GABA concentration in slice preparations of rodent visual cortex 

pharmacologically to examine the effect on endogenous gamma oscillations. We 

found no significant changes in frequency or amplitude of kainate induced gamma 

activity suggesting that total GABA concentration (as measured, for example, by 

MRS) does not necessarily correlate with gamma production. As a follow-up, we 

reduced GABA reuptake without changing the total GABA concentration using 

tiagabine. As increasing synaptic GABA concentration does not necessarily enhance 

 

 
 
Fig. 2.7 (A) Scatterplot illustrating correlation between frequency and magnitude 
before adding tiagabine and after adding tiagabine. Colour of dots indicate 
different rodents (or experimental sessions). (B) The same data as in (A) but 
plotted as a kernel density estimate. In both plots, we observed gamma oscillation 
exhibit a clear negative relationship between frequency and amplitude prior to 
tiagabine administration and a clear positive relationship after.  
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postsynaptic potentiation, we expected tiagabine to also have no effect on gamma 

frequency. The data showed inconsistent results with two cases of gamma frequency 

decrease, one ambiguous, and one increase. On the whole, there was no clear 

effect of tiagabine on gamma frequency, leading to our conclusion that gamma 

oscillations are not critically dependent on the total or synaptic GABA concentration.  

 

2.5.1 The movement of GABA molecules after 

exogenous application of GABA  
 

As previously mentioned, the involvement of GABA molecules in GABAergic 

processes are highly dependent on their locations within the cell environment. When 

GABA is applied in abundance as in first part of this study, a large proportion of it 

gathers in the extrasynaptic space, which allows access to extrasynaptic receptors 

such as GABAB and GABAA tonic receptors containing alpha- and delta-subunits 

(Brickley & Mody, 2012; Richardson et al., 2011). Despite reaching a higher total 

GABA concentration as compared to the control, the concentration of synaptic GABA 

is hardly affected. In other words, the observations made from administering GABA 

solution are likely caused by kinetics of extrasynaptic GABA receptors. In contrast, 

GABA reuptake inhibition does not alter the total GABA concentration within the slice 

preparations but significantly increases the amount of synaptic GABA. Interestingly, 

some of this excess GABA can leak into extrasynaptic spaces when synaptic 

concentration becomes sufficiently high (Scanziani, 2000). This means that any 

changes to gamma activity from tiagabine should mainly come from an increase in 

synaptic GABA and spill-over to extrasynaptic GABA. It should be also noted that 

synaptic GABA pools are much smaller than extrasynaptic pools, meaning we 

cannot obtain a fair estimate of synaptic GABA concentration from total 

concentration. 

 

The lack of effect on gamma frequency suggests that the mechanisms involved in 

gamma rhythmogenesis are not significantly regulated by overall GABA 

concentration. So, what happens instead? While inhibitory currents mediated by 

postsynaptic GABAA receptors are phasic in nature and are characterised by shorter 
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IPSPs, extrasynaptic GABAA receptors mediate tonic inhibitions, which are 

characterised by more persistent, longer IPSPs. Tonic inhibition occurs when 

extrasynaptic GABAA receptors are exposed to a sufficiently high level of GABA. In 

general, GABAA receptors containing delta-subunit or alpha5-subunit are the primary 

drivers of tonic inhibition. Activation of delta-subunit GABAA receptors can cause 

hyperpolarisation which decreases probability of neuronal firing (Farrant & Nusser, 

2005; Nusser & Mody, 2002). Or, in certain cases, these receptors can evoke 

shunting, where an inhibitory current occurring in close proximity to an excitatory 

current causes the cell to be less receptive to the excitatory current. This cancels the 

excitatory effect. Tonic inhibition has been demonstrated to decrease the frequency 

of gamma oscillations caused by phasic excitation-inhibition, or at least those 

induced through NMDA receptor activation (Mann & Mody, 2010). While this is 

observed in the data of Sessions 2 and 3 examining tiagabine, the overall effect was 

not reliable enough to be conclusive. Additionally, studies have found that tonic 

conductance generated by alpha-subunit GABAA receptors modulate spiking rates of 

pyramidal neurons in the hippocampus (Caraiscos et al., 2004; Glykys & Mody, 

2007). This indicated that tonic conductance more accurately reduces the neuronal 

baseline excitability without net effect on the dynamics.  

 

2.5.2 Effects of increasing synaptic GABA 

concentration 
 

Similarly, the GABAergic drive is determined predominantly by GABA receptors and 

not the GABA concentration (Dingledine & Korn, 1985). Having more available 

GABA is only impactful if the excessive synaptic GABA reach and activate the 

postsynaptic sites. Neurons have homeostatic GABA regulation mechanisms that 

protect the normal GABAergic functions from excessive synaptic GABA. Increasing 

GABA concentration can cause channels to open for a longer time, owing to a shift in 

opening ‘types’ from brief to more sustained states (Macdonald & Olsen, 1994). 

However, this effect is temporary and the GABA receptors become desensitised to 

excessive GABA after a period of time (Cash & Subbarao, 1987). Presynaptic GABA 

receptors might also stop releasing GABA (Olsen & DeLorey, 1999), leading to a 
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decrease in synaptic GABA and restoring normal IPSP durations. It is likely that 

gamma activity will change if GABA were modulated in the appropriate locations and 

dosages, but this detail was not considered in this part of the study, or MRS in 

general.  

 

2.5.3 Correlation between gamma amplitude 

and frequency 
 

We first observed that gamma frequency and amplitude were negatively correlated 

before tiagabine administration and positively correlated after. This data contradicted 

the observations made in Muthukumaraswamy et al. (2009), which stated that 

gamma frequency and amplitude were uncorrelated. Further investigations using 

kernel density plots revealed that this change in correlation originates from a shift in 

peak frequency. While there are two peak frequencies (approximately 25-35Hz and 

50-60Hz) throughout the experiment, kainate-induced gamma was dominated by the 

lower gamma frequency range and while activity measured after adding tiagabine 

were dominated by the higher band.  

 

A recent computational model demonstrated that our observations can be explained 

by neuronal clusters with different postsynaptic potential time scales, even within the 

same network (Keeley et al., 2016). Other work suggest that the activity centred at 

these two frequency bins most likely originated from different subtypes of interneuron 

networks. The slower rhythms are mediated by somatostatin-expressing 

interneurons, while faster rhythms are mediated by parvalbumin-expressing 

interneurons (Chen et al., 2017). Largely, the evidence argued somatostatin 

interneurons’ critical role in visually induced gamma oscillations (Hakim et al., 2018; 

Veit et al., 2017) and parvalbumin’s critical role in faster networks with great 

precision in spike timings (Cardin et al., 2009; Kohus et al., 2016). In other words, 

the shift in peak frequency might depend on the engagement of different subtypes of 

interneuron. 
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Like many human studies examining visual gamma rhythms, the current experiment 

made no distinction between slower and faster rhythms within the gamma range. 

This can have a significant effect on our findings, because low and high gamma 

activity are sensitive to reuptake inhibitors in different ways. As mentioned in the 

introduction, reducing uptake of GABA molecules has a greater effect GABA 

receptor subtypes with slower kinetics, such as delta-subunit containing GABA 

receptors. These subtypes dominate the late phase IPSP, or IPSCs further from the 

peak, leading to a greater effect on frequency for lower frequencies (longer period 

length rhythms) than higher ones. The two distinct gamma peaks might also explain 

the large between-subject variability within gamma frequencies in many human EEG 

and MEG studies. 

 

Any study of gamma rhythms is further complicated by the fact that gamma 

oscillations are often nested in the activity of slower frequency bands. Nesting refers 

to the amplitude regulation of faster oscillations by the phase of slower endogenous 

rhythms. The phase-coupling between gamma and theta activity had been 

demonstrated repeatedly (Belluscio et al., 2012; Bragin et al., 1995; Colgin et al., 

2009; Lundqvist et al., 2011), including studies which found interneurons evoking 

inhibitory potentials in hippocampal pyramidal cells at theta frequency, despite 

receiving excitatory pulses at gamma frequency (Gillies et al., 2002; Gloveli et al., 

2005). Interestingly, tiagabine is extremely effective in amplifying theta rhythms (Feld 

et al., 2013; Taranto-Montemurro et al., 2017). This means that the observations we 

made in gamma band amplitude might be a consequence of tiagabine’s modulation 

of theta rhythms, and not directly from the reduction of GABA uptake. It is difficult to 

know the impact this process had on the current data, especially considering how the 

slice works exhibited two distinct gamma rhythms.  

 

2.5.4 Future directions 
 

So far, the non-significant effects of exogenously applied GABA and GABA reuptake 

inhibitors on gamma activity refute the assumption that overall GABA concentration 

is a reliable indication of actual GABAergic processes. But additionally, the data also 

highlighted some issues that should be considered in future experiments, namely the 
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fluctuations in gamma frequency and amplitude over time and physiological 

limitations of slice work.  

 

We observed persistent fluctuations in gamma band frequency and amplitude over 

the course of an hour after tiagabine administration (shown in Fig. 2.6 B). As our 

slice preparations were stable physically, we suspect that these fluctuations are 

caused by complex interactions between multiple homeostatic processes. The peak 

frequency and amplitude observed at any moment may reflect whichever mechanism 

was dominant at time of data acquisition, which highlighted the fact that readings 

were highly dependent on when the slice preparations were sampled. The 

constructed trajectories of gamma activity in Fig 2.5 might overlook more fine-

grained modulations of the slices. Aside from allowing sufficient time for slices to 

stabilise, studies should take multiple readings at matched time points to obtain a 

more accurate picture of the slice’s behaviour.   

 

In vitro pharmacological studies allow us to measure neuronal responses for long 

periods of time and control the pharmacological environment. However, they come 

with certain limitations. The current experiment cannot provide information about the 

role of long-range endogenous networks that are involved either in non-visual areas 

of the brain or visual neuron clusters separated by slicing. Gamma band rhythms are 

widely regarded as a means of synchronising activation of spatially discrete groups 

of neurons (Schoffelen et al., 2005; Womelsdorf et al., 2007) and many vital, 

precortical visual structures, such as the retina, rely heavily on GABA (Wu & Maple, 

1998; Yang, 2004). It is possible that GABAergic drive was disrupted or highly 

abnormal due to networks being confined to one slice alone. Slice work is also time 

sensitive: the physiological health of the slices inevitably deteriorates over the course 

of the experiment, decreasing reliability in later readings. In fact, a significant amount 

of data was rejected due to poor variance explained by the curve fitting function. 

These issues can be overcome with larger sample sizes, or in vivo techniques.  

 

2.5.5 Conclusion 
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We demonstrated that gamma oscillations can remain unchanged during an increase 

in GABA concentration in both extrasynaptic and synaptic spaces. The non-

significant and inconsistent effects of exogenously applied and GABA reuptake 

inhibitors on gamma activity respectively highlights two important issues. Firstly, it 

refutes the assumption that overall GABA concentration is a reliable indication of 

actual GABAergic processes. Gamma production is highly dependent on the kinetics 

of GABAA receptors themselves and not on concentration. Although this information 

is commonly acknowledged in neurophysiology, it is often omitted in human and non-

human primate neuroimaging studies. GABA-dependent processes are often linked 

directly with GABA estimation carried out using MRS, a technique that cannot 

distinguish between synaptic, extrasynaptic and unreleased cytoplasmic GABA. This 

confounds the results on two levels: not identifying GABA based on their location 

and not differentiating GABA receptor kinetics from GABA concentration. The current 

findings highlighted the need to consider this in the future. 

 

The second issue involves distinguishing between gamma activity arising from 

different neuronal subpopulations. We found evidence for the shift of peak frequency 

from 25-35Hz to 50-70Hz after administering tiagabine. Furthermore, GABA 

reuptake produced highly inconsistent results across the sample: two showed 

decreases in gamma frequency, one increase and one ambiguous. On one hand, 

this might be the product of numerous physiological defence mechanisms regulating 

the excessive synaptic GABA. However, it might also reflect different responsivity 

profiles of lower or higher gamma to reuptake inhibitors. Future experiments on this 

phenomenon should consider monitoring networks involving different interneuron 

subtypes separately.  
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3 Chapter 3: Can prestimulus alpha 

power predict performance 

accuracy and reaction time in an 

orientation discrimination task? 
 

3.1 Abstract 
 

Endogenous oscillations of the alpha frequency band are often found in the occipital 

cortex and have been shown to modulate visual perception. While the literature 

generally agrees on alpha activity desynchronising (i.e. decreases in power) with 

visual attention, an increasing number of studies have questioned the cortical 

specificity of this relationship as well as whether other features of the alpha activity, 

like phase, might be more predictive of behaviour and perception than power. The 

current study examines the strength and consistency of the relationship between 

alpha band activity and visual perception. Specifically, we asked if the amplitude of 

prestimulus alpha power or scalp-level differences in alpha activity pattern can 

predict psychophysical performance in a low-level orientation discrimination task. 

 

Seven healthy participants completed a long series of four-alternative forced choice 

(4AFC) orientation discrimination tasks where they were selected the spatial location 

of an ‘odd one out’ tilted grating (with the mean target tilt set at each participant’s 

personal orientation threshold). EEG responses were recorded during the 

psychophysics session and alpha power in the 500ms preceding stimulus onset was 

computed as the predictor variable for subsequent analyses. To analyse both large-

scale and visual responses separately, we worked with data computed from two 

groups of electrodes: all 64 EEG sensors and occipital sensors (POz, Oz, O1, O2). 

 



 71 

We found significant but inconsistent relationships between prestimulus alpha power 

with score and response time across the seven participants. Subsequent linear 

mixed effects models revealed that as a group, prestimulus alpha computed across 

all 64 EEG sensors significantly predicted reaction time but not scores. Interestingly, 

we found that a significant correlation between participant’s orientation thresholds 

and degree to which prestimulus alpha predicted performance. We also found no 

difference between how response time correlated with prestimulus alpha activity 

measured in the contralateral and ipsilateral hemisphere (respective of the hemifield 

where the target appeared).  

 

We then asked if the pattern (rather than the localised amplitude) of alpha band 

activity across the entire head could predict psychophysical performance and trained 

a support vector machine (SVM) with a linear kernel using responses computed from 

all EEG channels. We found that the machine was significantly more accurate in 

classifying hits and misses when trained on EEG activity centred at the alpha 

frequency range approximately 500-1250ms after stimulus onset. The timing of this 

high classification performance implied that the result was likely due to a change in 

the participant’s emotional or vigilance state, pending their most recent performance. 

It also confirmed our previous finding, that spontaneous prestimulus alpha was not 

predictive of the score.  

 

Overall, spontaneous prestimulus alpha power predicted reaction time on a group 

level, but not score. However, we also found an interaction between prestimulus 

alpha effects and overall orientation thresholds suggesting the presence of 

significant individual differences relating to expertise. This suggests a need to 

regulate participant’s sensitivity to relevant visual features in similar future studies. 

Lastly, we found that the pattern of alpha band activity after stimulus onset can 

strongly predict the outcome of the trial, which might be due to a change in internal 

state based on the participant’s most recent performance or feedback. 

 

3.2 Introduction 
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Alpha activity can be measured within the visual cortex and has been regarded as a 

marker for attention and cortical excitability for decades (Block, 1996; Rock et al., 

1992). Both properties are essential to visual function and has led to increasing 

amount of research examining the role of alpha in visual perception. More recent 

studies have evidenced that attention is a robust driver of alpha (Heinemann et al., 

2009; Klimesch, 2012; Sundberg et al., 2012) but also that alpha is more generally 

an indication of cortical inhibition, and is prevalent during tasks that require the 

subject to actively suppress information (Foxe & Snyder, 2011; Jensen & Mazaheri, 

2010; Pfurtscheller, 2001, 2003).  

 

The association between alpha and attention has prompted many studies to induce 

higher alpha using attentional cues. The subject’s attention is directed to a specific 

location within the visual field, causing a decrease in alpha activity within the cortical 

area corresponding to the visual field. Items presented in the attended visual field 

have a higher chance of being detected than the unattended visual field (Sauseng et 

al., 2005; Thut et al., 2006). Despite a clear association between better performance 

and alpha desynchronisation, the use of attentional cues was criticised by many 

studies for being artificial. Visual attention in natural circumstances is spontaneous 

and its strength and direction follow more probabilistic distributions than when cued 

(Koike & Saiki, 2006; Pang et al., 2008; Vul et al., 2009). As a result, an increasing 

amount of research is investigating the relationship between spontaneous alpha 

(alpha activity measured without cues) and visual perception instead. 

 

The relationship between spontaneous alpha and detection of low-intensity stimuli 

has not been as consistent: one study demonstrated similar trends as attention 

modulated alpha (Ergenoglu et al., 2004) while another did not (Boncompte et al., 

2016). The latter observation was, however, made based on aggregated alpha 

power. When alpha power in the two hemispheres were considered separately, the 

authors found contralateral alpha activity negatively correlated with detection rate 

while ipsilateral alpha activity positively correlated with detection rate. This result 

implied that the relationship between alpha and visual perception was consistent but 

would rely on random shifts in attention without a cue.  
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On the other hand, higher alpha power can also precede improved task 

performance. This was evidenced within the sensorimotor cortex, where detection 

and response time towards a haptic stimulus was linked with higher alpha band 

power (Linkenkaer-Hansen et al., 2004). Interestingly, the authors found that alpha 

activity within the parietal cortex was even more predictive of performance than 

alpha measured from the sensorimotor cortex. This suggested that alpha activity was 

likely inhibiting task-irrelevant cortical areas, and implied that the activity that most 

strongly predict task performance is not necessarily found in task-relevant cortical 

areas. This was supported by a later study which found that prefrontal regions 

significantly modulated occipital alpha activity during a visual task (Sauseng et al., 

2005). Both findings drove at the possibility that alpha activity measured across the 

scalp is a stronger indication of performance than alpha activity measured from a 

single task-relevant region. 

 

Additionally, very few studies have examined response time in conjunction with task 

success. Response time can inform us of the individual’s vigilance state and clearly 

interacts with task accuracy (hasty responses can produce more ‘mistakes’). A 

strong positive relationship had been demonstrated between prestimulus alpha 

power and response time (Zhang et al., 2008), suggesting that in addition to 

inhibition and attention, alpha is also indicative of vigilance state. We believed that a 

more comprehensive model predicting task performance using alpha should 

consider both task accuracy as well as response time.  

 

Our understanding of the alpha-performance relationship can hence be extended by 

investigating how endogenous alpha activity measured from either parieto-occipital 

region or across the scalp might predict visual task performance. Task performance 

should also be broken down into accuracy and response time and considering recent 

theories about attention (Koike & Saiki, 2006; Pang et al., 2008; Vul et al., 2009), 

alpha activity should not be driven using visual cues. Additionally, spontaneous 

alpha from either hemisphere should be analysed separately, considering the 

hemispheric dissociation found in previous experiments (Kelly et al., 2006; Sauseng 

et al., 2005; Thut et al., 2006; Worden et al., 2000). This might reveal a difference 

between the relationship of hemispheric or aggregated alpha with task performance.  
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The current experiment investigated the relationship between spontaneous 

prestimulus alpha power and performance in an orientation discrimination task. We 

conducted our analyses separately for alpha activity localised to the occipital region 

and alpha activity computed from all available sensors. We first asked if prestimulus 

alpha power significantly and consistently predicted accuracy and response time on 

a trial-by-trial basis. We also examined if the modelled relationship differed between 

contralateral and ipsilateral electrodes. Lastly, we trained an SVM classifier with a 

linear kernel to predict the outcome of a trial given the pattern of electrical activity 

across all sensors. 

 

3.3 Methods 
 

3.3.1 Participants 
 

We recruited seven neurotypical participants (age range: 22 to 47 years, three 

female) from the University of York. All participants had normal or corrected-to-

normal visual acuity and all participants but ARW were naïve to the aims of the 

experiment. All procedures were approved by the University of York Department of 

Psychology Ethics Committee and all subjects’ informed consent was obtained prior 

to data collection.  

 

3.3.2 EEG recording and apparatus 
 

The stimuli were displayed on a gamma corrected 22.5” ViewPixx display monitor 

(VPixx Technologies, Saint-Bruno, Canada) at 1920 x 1200 pixels resolution. The 

monitor has a 120 Hz screen refresh rate and mean luminance of 250 cd/m2. 

Calibrations were done using a NIST-traceable Jaz USB photospectrometer with 

2nm resolution (Ocean Optics, Dunedin, FL). Participants viewed the screen from 57 

cm, resulting in the four stimuli subtending 5° visual angle vertically and horizontally.  
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We recorded electrophysiology data using 64-channel Waveguard EEG caps and 

ASA analysis software from ANT Neuro (ANT Neuro, Netherlands) using a 10/20 

montage. Vertical electrooculogram data were collected using self-adhesive 

electrodes placed above the left eyebrow and on the left cheek of participants. The 

EEG data were sampled at 1000 Hz with a notch filter at 50Hz. The electrode 

impedance was kept below 10 kΩ. An Arduino Uno (Arduino Inc.) was used to 

convert serial output from the display system to TTL, generating triggers 

synchronised to each trial onset. 

 

3.3.3 Stimulus design 
 

Stimuli were created using Psykinematix Visual Psychophysics GPU 2.0.1 software 

(KyberVision, Japan). The task was designed to test the participant’s orientation 

discrimination abilities using a four-alternative forced choice paradigm. In each trial, 

four Gabor gratings were shown at the same time in four corners of a square 

extending 5° visual angle. The choices were presented spatially instead of 

temporally so as to reduce any effect of memory on the performance, and four 

choices were used instead of two to reduce the effect of guessing (performance at 

chance reduced to 25% from 50%) and internal bias. 

 

Prior to the experiment, each participant’s orientation discrimination threshold was 

obtained using a Bayesian staircase paradigm. The task for obtaining threshold was 

identical to that of the main experiment: the participants were instructed to select the 

interval containing the grating that was not vertical using the keyboard. Keys ‘q’, ‘a’, 

‘p’ and ‘l’ indicated top left, bottom left, top right and bottom right intervals 

respectively. The tilted grating had a 0.25 probability for appearing in any of the four 

locations (see Fig. 3.1 A for visualisation). A low contrast dot in the centre of the 

screen indicated the start of a new trial. This was followed by a pre-stimulus delay of 

approximately 650ms and presentation of stimuli for 200ms. The participant then had 

approximately 500ms to respond and was given feedback (high beep tone for right 

interval selected, low beep tone for wrong) (see Fig. 3.1 B for visualisation). There 

was a 200ms inter-stimulus interval (ISI) between each trial. Each trial (excluding ISI) 

lasted approximately 1400ms. 
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The orientation of the gratings during the initial threshold blocks ranged from vertical 

(0°) to diagonal (45°), tilting anti-clockwise and gradually converged on a threshold 

value after 40 trials. We repeated this task three times and calculated the average 

threshold tilt value which was subsequently used in the experiment. Participants then 

completed 1400 continuous trials for the main experiment.  

 

 
 

3.3.4 EEG data processing and artifact removal  
 

The data were processed in Matlab 9.4 (R2018a, MathWorks Inc., Natick, MA, USA). 

Approximately 1% of triggers were faulty and not recorded by the EEG system. We 

identified the affected trials by locating the triggers which were more than 1.2 times 

the expected duration apart from each other and removed them from the final data 

analysis.  

 

EEG data were preprocessed using the FieldTrip toolbox for EEG/MEG-analysis 

(Oostenveld et al., 2011). Continuous EEG data were bandpass filtered between 

2Hz and 40Hz. We then applied independent component analysis (ICA) (Bell & 

Sejnowski, 1995) using the Fieldtrip command ft_componentanalysis on the 

 
Fig. 3.1 (A) Example of a single trial during the experiment. In this case, the 
bottom-left interval contains the tilted grating and participants who correctly identify 
this target should press ‘a’. (B) Breakdown of the components within a single trial: 
stimulus cue, prestimulus delay, stimulus presentation, response period and ISI. 

Pre-stimulus delay 
500ms (+/- 10ms)

Response and auditory 
feedback
600ms

Inter-stimulus interval
200ms

Stimulus presentation
200ms

Stimulus cue
100ms

A B
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remaining data to identify noisy components caused by muscle movements. All 

components were inspected visually and those clearly manifesting blink- or cardiac 

artifacts were removed before reconstructing the time series.  

 

The processed EEG data were then segmented into trials, each containing 1650 

samples (750ms pre-stim and 900ms after stimulus onset). We Fourier transformed 

the 500 samples (or 500ms) of EEG data prior to stimulus onset and computed the 

RMS amplitude of the frequencies between 8Hz and 12Hz inclusive as an estimate 

of alpha power during this period. EEG data were then averaged across four sets of 

electrodes for the univariate analyses: (1) across all 64 channels, (2) across the four 

posterior-most electrodes, covering the occipital cortex (Oz, O1, O2 and POz), (3) 

across occipital electrodes on the left hemisphere (O1, PO3, PO5) and (4) across 

occipital electrodes on the right hemisphere (O2, PO4, PO6).  

 

3.3.5 Psychophysics data processing 
 

We measured psychophysical performance on two attributes: task accuracy and 

reaction time. To calculate epoched scores, we ran a sliding window (with a window 

size of 10 trials) along a vector of responses (‘hits or ‘misses’) and calculated the 

proportion of ‘hit’ trials out of ten. For ease of analysis, we binned reaction time into 

12 ‘reaction time categories’ ranging from 200ms to 800ms with a bin size of 50ms. 

As an example: a reaction time of 430ms would be classed as category ‘5’.   

 

3.3.6 Data analysis 
 

To investigate the relationship between prestimulus alpha and psychophysical 

performance, we first built linear regression models based each participant’s data. 

To do this, we grouped each participant’s psychophysical performance by bins and 

obtained the corresponding average prestimulus alpha power. This was followed up 

by a linear model based on the grand average prestimulus alpha at each bin (across 

all participants).  
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We used a generalised linear mixed effect model for the final analysis. The linear 

mixed effect model is similar to a linear regression model but allows for both fixed 

effects (in this case, the relationship between prestimulus alpha and psychophysical 

performance) and random effects (participants) of variables. The linear mixed effect 

model, unlike an ANOVA or linear regression, also includes all unaggregated 

observations from each participant, which makes it a powerful statistical test that is 

able to explain a higher proportion of variance.  

 

Simple linear regressions were modelled in IBM SPSS Statistics for Macintosh 

(version 25.0) and linear mixed effect models were modelled in R (version 3.4.3, R 

Core Team, 2013) using the lmer function in lme4 (Bates et al., 2015) and summary 

and anova functions in lmerTest (Kuznetsova et al., 2017) to obtain p-values through 

Likelihood Ratio Tests (LRT). Lastly, we calculated the proportion of variance 

explained by fixed effects only (marginal R2) and proportion of variance explained by 

fixed and random effects (conditional R2) using the r.squaredGLMM function in the 

MuMIn package (version 1.43.15, Barton, 2014).  

 

3.4 Results  
 

The results are organised in three parts. We first describe some initial visualisations 

of the data, followed by univariate analyses involving EEG responses averaged 

across visual electrodes. Lastly, we present the findings of a multivariate 

classification paradigm, predicting ‘hits’ and ‘misses’ with prestimulus alpha patterns. 

 

We plot epoched alpha power (standardised within individual participants) recorded 

at occipital visual electrodes (Fig. 3.2 A), binned scores (Fig. 3.2 B) and reaction 

time (Fig. 3.2 C) across the duration of the experiment. All three variables appeared 

to vary significantly during the experiment and are uncorrelated across subjects. We 

also plot single trial data for the same electrodes averaged across individual trials for 

each subject in Fig. 3.2 D, which shows a distinct visually evoked component at the 

point of stimulus onset (which starts at approximately 750ms and ends at 

approximately 950ms within each trial). Using Fig. 3.2 D, we estimated that the 

visually evoked potential (VEP) averages fewer than 8 cycles per second. This 
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indicates that it is slower than alpha range and will not be a confounding factor when 

we calculate alpha power later.  We also plot prestimulus and poststimulus alpha 

power collected at each electrode for each possible score bin. The results show a 

strong positive correlation between pre- and poststimulus alpha power suggesting 

that our estimate of poststimulus alpha power is not entirely controlled by the 

deterministic VEP (Fig. 3.2 E). 

 

 
 

 

 
Fig. 3.2 (A) Standardised alpha power, (B) binned scores and (C) reaction time 
across all trials for each of the participant. We observed great variation in these 
metrics across the experimental session. (D) Time series of averaged alpha 
power recorded at occipital visual electrodes (Oz, O1, O2 and POz), averaged 
across all participants for each trial. Blue shaded area denotes error of 1 SEM 
and green shaded area denotes stimulus presentation. We observe a 
stereotypical VEP is generated by the stimulus presentation. (E) Correlation plot 
between prestimulus and poststimulus alpha power. Blue denotes visual 
electrodes; gradient indicates scores with higher scores presented in darker 
colours. Figure shows a high correlation between pre- and poststimulus alpha 
levels. 
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3.4.1 Univariate analyses: linear regression and 

mixed effect model 
 

Mean alpha power varies across subjects and we are concerned primarily with 

deviations from the mean. We therefore calculated the standardised alpha power 

within each participant by z-scoring the raw alpha power. The z-scored alpha power 

formed the predictor variable in the following models. We fitted linear regression 

models to each participant’s data separately as well as the group mean, using 

standardised alpha power to predict either binned scores or reaction time (Fig. 3.3 

and Fig. 3.4 respectively). 

 

3.4.1.1 Statistical analysis of binned scores 
 

First, we asked whether there was a statistical relationship between alpha power and 

task accuracy. Task accuracy, or binned score, was defined by the proportion of 

correctly identified intervals out of ten trials.  
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β = 1.98
p = .003

β = -1.78
p = .025
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β = -0.95
p = .305

β = -1.14
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β = -1.61
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β = 0.65
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β = 0.98
p = .133

β = 2.53
p < .001

β = -2.19
p = .015

β = .038
p = .678

β = -2.01
p = .025

β = -2.16
p = .009

β = 0.23
p = .818

β = -0.26
p = .808
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3.4.1.1.1 Linear regression models 
 

3.4.1.1.1.1 Individual data 
 

We ran separate linear regression models for each participant’s data. We found four 

out of seven models significantly predicted binned scores using prestimulus alpha 

power for both data averaged across all electrodes (AKS: R2 = .13, F(1,8) = 1.20, p = 

.305; ARW: R2 = .09, F(1,9) = .89, p = .371; AVB: R2 = .26, F(1,8) = 2.80, p = .133; 

MK: R2 = .65, F(1,9) = 16.81, p = .003; PC: R2 = .45, F(1,9) = 7.22, p = .025; RM: R2 

= .56, F(1,9) = 11.56, p = .008; TN: R2 = .47, F(1,9) = 8.08,  p = .019) and visual 

electrodes (AKS: R2 = .02, F(1,8) = 0.19, p = .023; ARW: R2 = .01, F(1,9) = 0.06, p = 

.818; AVB: R2 = .01, F(1,8) = 0.06, p = .808; MK: R2 = .83, F(1,9) = 43.86, p = <.001; 

PC: R2 = .50, F(1,9) = 9.05, p = .015; RM: R2 = .45, F(1,9) = 7.27, p = .025; TN: R2 = 

.55, F(1,9) = 11.03,  p = .009). Details of linear regression models based on each 

participant’s data can be found in Appendices (Table 3.6 and Table 3.7). 

 

3.4.1.1.1.2 Group averaged data 
 

The standardized alpha power across (Table 3.1) all electrodes or (Table 3.2) visual 

electrodes only were averaged across all seven participants and a simple linear 

 

 
 

Fig. 3.3 Scatterplots of the relationship between performance accuracy on the 
orientation discrimination task and the alpha power in the 500ms period before 
stimulus onset from (A) all 64 electrodes or (B) occipital visual electrodes only. 
Each electrode is denoted by a single colour. Left column represents responses 
at individual electrode and contains a jitter of 0.25 standard deviation (range * .01) 
for better visualisation. Right columns show averaged alpha power at each binned 
score from those electrodes with a best fit straight line. Shaded region represents 
bootstrapped 95% confidence interval. 

 

β = -0.32 
p = .202

β = -0.56 
p = .122
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regression was computed to predict binned scores based on this averaged 

prestimulus alpha power. We found that averaged prestimulus alpha power was not 

a significant predictor of binned scores for either sets of electrodes (all electrodes: R2 

= .17, F(1,9) = 1.89, p = .202; visual electrodes: R2 = .24, F(1,9) = 2.91, p = .122).  

 

Table 3.1 Details of the linear regression model for data averaged across all 
participants (all electrodes). 

 

Variable b SE β t p 

Intercept 

(Constant) 

0.28 0.14  1.12 .290 

Standardised 

alpha power 

-0.32 0.24 -.417 -1.38 .202 

 

Table 3.2 Details of the linear regression model for data averaged across all 
participants (visual electrodes). 

 

Variable b SE β t p 

Intercept 

(Constant) 

0.28 0.19  1.44 .183 

Standardised 

alpha power 

-0.56 0.33 -.49 -1.71 .122 

 

3.4.1.1.2 Linear mixed effect model  
 

We ran two linear mixed effects models on the combined data of all seven 

participants using standardised prestimulus alpha power as the fixed effect predictor, 

participant as the random effect and binned score as the dependent variable. 

Prestimulus alpha power in the first model is calculated from all electrodes across 

the scalp, while the second model was built from responses in the occipital region. 

As the relationship between alpha and performance clearly vary between 

participants, we allowed for random intercept as well as random slope. The inclusion 

of random effects of participant resulted in a greater proportion of variance explained 

(from < 1% to 35%), as shown by the increase in conditional R2 from marginal R2. 
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Both linear mixed effects models revealed non-significant effects of prestimulus 

alpha power on binned score (all electrodes: F(1, 9947) = 0.76, p = .384, marginal R2 

< .001, conditional R2 = .36; visual electrodes only F(1, 9947) = 0.43, p = .510, 

marginal R2 < .01, conditional R2 = .35). This showed that prestimulus alpha power 

did not predict binned scores in a linear manner.  

 

3.4.1.2 Statistical analysis of reaction time 
 

Performance can interact with reaction time: hasty decisions will produce shorter 

reaction times but might also increase error rate. On the other hand, alpha power 

might primarily alter reaction times while participants maintain the same performance 

level. To investigate this possibility, we repeated the regression analysis using 

reaction time as the dependent variable.  

 

3.4.1.2.1 Linear regression models 
 

3.4.1.2.1.1 Individual data 
 

We ran separate linear regression models for each participant’s data with reaction 

time as the outcome variable. We found one out of seven models significantly 

predicted reaction time using responses recorded at all electrodes (AKS: R2 = .75, 

F(1,10) = 29.37, p < .001; ARW: R2 = .06, F(1,10) = 0.67, p = .432; AVB: R2 = .13, 

F(1,10) = 1.54, p = .242; MK: R2 = .17, F(1,8) = 1.63, p = .237; PC: R2 = .25, F(1,10) 

= 3.24, p = .102; RM: R2 = .25, F(1,10) = 3.31, p = .099; TN: R2 = .10, F(1,10) = 1.13,  

p = .312) and visual electrodes (AKS: R2 = .75, F(1,10) = 29.18, p < .001; ARW: R2 = 

.02, F(1,10) = 0.16, p = .701; AVB: R2 = .04, F(1,10) = 0.40, p = .543;  MK: R2 = .26, 

F(1,8) = 2.86, p = .130; PC: R2 = .16, F(1,10) = 1.96, p = .192; RM: R2 = .29, F(1,10) 

= 4.08, p = .071; TN: R2 = .42, F(1,10) = 7.14  p = .023). Details of linear regression 

models can be found in Appendices (Table 3.8 and Table 3.9). 
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3.4.1.2.1.2 Group averaged data 
 

We ran a similar linear regression model to predict reaction time based on averaged 

prestimulus alpha power. We found that in prestimulus power was a significant 

predictor of reaction time for both sets of electrodes (all electrodes: R2 = .45, F(1,10) 

= 8.29, p = .016; visual electrodes: R2 = .442, F(1,10) = 7.91, p = .018) (see Table 
3.3 and Table 3.4). 

 

Table 3.3 Details of the linear regression model for data averaged across all 
participants (all electrodes). 

 

Variable b SE β t p 

Intercept 

(Constant) 

-0.36 0.15  -2.50 .031 

Standardised 

alpha power 

0.06 0.02 .67 2.88 .016 

 

 

 

 
 
Fig. 3.4 Scatterplots of the relationship between reaction time for the orientation 
discrimination task and the alpha power in the 500ms period before stimulus 
onset from (A) all 64 electrodes or (B) occipital visual electrodes only. Each 
electrode is denoted by a single colour. Left column represents responses at 
individual electrode and contains a jitter of 0.25 standard deviation (range * .01) 
for better visualisation. Right columns show averaged alpha power at each binned 
score from those electrodes with a best fit straight line. Shaded region represents 
bootstrapped 95% confidence interval. 

 

β = 0.06 
p = .016

β = 0.06 
p = .018

Reaction Time Category Reaction Time Category Reaction Time Category Reaction Time Category
0                      5                     10 0                      5                     10
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Table 3.4 Details of the linear regression model for data averaged across all 
participants (visual electrodes). 

 

Variable b SE β t p 

Intercept 

(Constant) 

-0.34 0.14  -2.43 .035 

Standardised 

alpha power 

0.06 0.02 .67 2.81 .018 

 

3.4.1.2.2 Linear mixed effect model  
 

Similar to binned scores, we ran two linear mixed effect models to examine how 

prestimulus alpha (from all electrodes and from visual electrodes only) predicted 

reaction time with the allowance of random intercept and random slope. The models 

revealed that prestimulus alpha power summed over the entire scalp was a 

significant predictor of reaction time: F(1, 9571.40) = 7.78, p = .005, marginal R2 = 

.001, conditional R2 = .22), but this effect was not found for alpha rhythms in the 

occipital cortex F(1, 9581.40) = 3.07, p = .080, marginal R2 < .001, conditional R2 = 

.23) (see Table 3.5 for detail). 

 
Table 3.5 Details of the significant linear mixed effect model predicting reaction time 
from prestimulus alpha.   

 

Variable b SE β t p 

Intercept 

(Constant) 

0.54 0.01  26.07 <.001 

Standardised 

alpha power 

0.02 <0.01 -0.13 2.79 .005 

 

3.4.2 Relationship between alpha power and 

orientation threshold 
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We decided to run an additional analysis looking at how the direction and strength of 

relationship between prestimulus alpha and task accuracy might change in 

accordance with orientation discrimination threshold. The relationship between alpha 

and psychophysical performance is represented by the standardised coefficient 

(beta) produced by the linear regression models described previously. We ran a 

Pearson’s correlation and found a strong significant correlation between orientation 

discrimination threshold and unstandardised coefficients for binned scores (r = -.86, 

p = .014) but not for reaction time (r = .18, p = .692). This effect was only significant 

for all electrodes, but not for responses gathered at visual electrodes only (r = -.65, p 

= .111; r = .01, p = .982; see Fig. 3.5). 

 



 89 

 
 

3.4.3 Laterality of alpha power modulation 
 

Previous studies on alpha and attention often involve cuing the participant to one 

hemifield then comparing how alpha from the hemisphere contralateral or ipsilateral 

to the target differed in predicting performance (Kelly et al., 2006; Sauseng et al., 

2005; Thut et al., 2006; Worden et al., 2000). To investigate whether this distinction 

is important with spontaneous alpha, we separated targets based on their location 

 

 
 
Fig. 3.5 Standardised coefficients (betas) from linear regression models and 
participant’s corresponding orientation discrimination threshold (measured in tilt 
°). Participants who require smaller tilts to detect differences have lower 
orientation discrimination thresholds (i.e. higher sensitivity to changes in 
orientation). We found an association between participant’s orientation 
discrimination threshold and direction of relationship between alpha power and 
scores: participants with higher orientation discrimination thresholds exhibit more 
negative correlations between prestimulus alpha and scores for responses 
gathered from all electrodes (A) but not responses gathered from visual 
electrodes only (C). Similarly, no significant correlation was found between alpha 
and reaction time with orientation discrimination thresholds (B and D).  

A
r = -.86 

p = .014
r = .18 

p = .692

B

r = -.65 
p = .111

r = .01 
p = .982

C D
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(left or right hemifield) before analysing responses from the corresponding 

contralateral and ipsilateral occipital regions. We asked if the relationship between 

behaviour and alpha power depended on the laterality of the sensors (ipsi- vs contra-

lateral). The results are plotted per participant and summarised below (Fig. 3.6).  

 

 
 

Similar to the previous analysis on orientation thresholds, we quantified the 

relationship between alpha and behaviour using the unstandardised beta from each 

participant’s linear regression model. We ran two-tailed paired sample t-tests and 

found that unstandardised betas for both alpha predicting binned scores: t(13) = -

0.99, p = .339 and alpha predicting reaction time: t(13) = 0.17, p = .869 were non-

significant. Together with a visualisation of the data in Fig. 3.6, the data showed that 

neither contralateral nor ipsilateral spontaneous alpha power predicted behavioural 

data.  

 

3.4.4 Multivariate analysis: SVM 
 

The data above are based on univariate measures of mean alpha from defined sets 

of electrodes (all 64 sensors or occipital electrodes POz, Oz, O1, O2). However, it is 

 
Fig. 3.6 Box plots indicate the relationship (quantified by unstandardized beta 
from linear regression models) between binned scores (left) and reaction time 
(right) with alpha band responses found in either the ipsilateral (blue) or the 
contralateral (red) electrodes. Paired sample t-tests revealed that contralaterally 
measured alpha power did not predict performance differently from ipsilaterally 
measured alpha power for binned scores and reaction times.  

 
 

A B
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possible that performance is related more to the pattern of alpha amplitudes across 

the scalp: Perhaps, for example, the relative amplitudes of frontal and occipital alpha 

are more informative than their absolute levels? To address this, we asked whether 

we could classify performance (‘hits’ versus ‘misses’) based on the multivariate alpha 

amplitudes at different points across a trial – using the alpha power computed in a 

sliding 500ms window.  

 

We ran a SVM using the ‘libsvm’ function (Chang & Lin (2011); software available at 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/), with a linear kernel function and 

calculated classification accuracy using a leave-one-out cross validation methods. 

The task of the pattern classifier was to predict performance (correct / incorrect) on 

each trial. To avoid bias effects, we bootstrapped the data by randomly selecting an 

equal sample of 108 ‘hits’ and 108 ‘misses’ without replacement, arranging them into 

subgroups of 18 values each and using the mean of each subgroup. We repeated 

this process 100 times and obtained the averaged classification accuracy 

(percentage correct) at each output frequency across the frequency range per 

subject per bin. The chance (guessing) level was 50% as there were two possible 

outcomes. The data plotted are the averaged performance measures across all 

subjects.  

 

Fig. 3.7 A shows the mean accuracy of the pattern classification algorithm for 500ms 

bins starting at -2000ms before the stimulus onset and ending approximately 

2000ms after with the trial occurring at 0ms. Fig. 3.7 B shows the result of the same 

procedure applied to datasets with scrambled labels.  

 

We find that classification is significantly above chance for bins in the frequency 

band centred on 11Hz at time points between approximately 100 and 800ms after 

stimulus onset. As these data are based on the incoherently averaged power during 

each bin, we do not know whether poststimulus performance is driven by the phase 

locked VEP or the phase randomised endogenous alpha power.  
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3.5 Discussion 
 

Prestimulus alpha power of each participant was used to predict binned scores and 

reaction time. We found that approximately half the participants showed significant 

relationships between prestimulus alpha power and scores. Because this effect had 

different polarities for different subjects, it was not significant at the group level. In 

addition, we found a significant relationship between alpha and reaction time at the 

group level.  

 

A visualisation of Fig 3.3 revealed that some participants’ alpha power correlated 

positively with scores while others correlated negatively. This relationship was stable 

across different electrode groups (all and occipital). We quantified each participant’s 

relationship between prestimulus alpha and psychophysical performance by the 

linear regression’s unstandardized beta values (i.e. slope of the model) and found 

 
Fig. 3.7 (A). Heatmap of classification accuracy for incoherently averaged EEG 
data. This method of averaging is phase-insensitive and preserves phase-
randomised endogenous band power. Coloured lines indicate stimulus epochs: 
cyan -100ms stimulus cue, lime green - start of 500ms prestimulus delay, pink - 
200ms stimulus display, blue - start of 600ms response period and green - start 
of 200ms ISI. High accuracies were found when training the machine on 
signals of around 11Hz found 400 to 1200ms after stimulus onset, 
corresponding mostly to response period and ISI immediately after. (B) 
Heatmap with the same parameter as (A) but with scrambled labels (‘hits’ and 
‘misses’ randomly chosen). Classification accuracy was consistently as chance 
level across the frequency range and bins tested.     
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that these were significantly modulated by the participant’s orientation thresholds. In 

contrast, orientation threshold values did not change prestimulus alpha’s prediction 

of response time. Finally, we grouped response by visual electrodes contralateral or 

ipsilateral to the visual hemifield where target was presented. While we did not 

observe any differences between contralateral and ipsilateral responses within 

subjects, we observed that contralaterally recorded prestimulus alpha appeared to 

have more positive relationships with reaction time.   

 

We found a peak of classification accuracy approximately 500-1250ms after stimulus 

onset in the alpha frequency range (centred at 11Hz). Interestingly, classification 

accuracy was at chance in the 500ms prior to stimulus onset, which implies that 

while averaged prestimulus alpha power amplitude corresponded to task 

performance in some participants, there was no distinct spatial pattern of activity 

prior to hits or misses.  

 

To summarise, we find that psychophysical performance was not consistently 

predicted by prestimulus alpha at a group level, but subsequent experiments should 

consider differences in alpha-based modulations based on the subject’s sensory 

thresholds. Unlike attention-driven alpha activity, spontaneous alpha measured from 

both contralateral and ipsilateral sensors did not differ significantly in terms of 

predicting task behaviour. The spatial pattern of alpha band activity approximately 

500ms after stimulus onset accurately predicted hits and misses. Since this activity 

occurs after the stimulus presentation, it is unlikely to reflect attention or arousal and 

may, instead, be driven by the auditory feedback component of the psychophysical 

trial.  

 

3.5.1 Relationship between expertise and alpha 
 

Perceptual learning is the process where an individual gradually improves in low-

level visual task performance after ample practice. While task aspects like study 

design (Kuai et al., 2005) and feedback (Aberg & Herzog, 2012; Petrov et al., 2006) 
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strongly influence the rate of perceptual learning, participants who have had more 

practice are more likely to perform better during future hyperacuity tasks.  

 

Assuming orientation discrimination to be a measurement of task expertise or 

experience, the strong relationship between orientation discrimination thresholds and 

unstandardised betas might be evidence for task-expert dependent internal state. 

Repetitive tasks in predictable conditions are correlated with increased engagement 

of the default mode network (Vatansever et al., 2017). Participants who have been 

trained by similar experiments before might enter an ‘autopilot’ mental state during 

the current experiment, which produces rapid, accurate responses. This is only 

possible in task experts who are extremely familiar with the task, while those who are 

unfamiliar with the task exert more effortful conscious attention.  

 

One explanation for the inconsistencies between participants’ alpha–psychophysical 

performance relationships might be that prestimulus endogenous power indicates 

conscious awareness. Conscious awareness is not necessarily reflected in task 

performance: a recent study showed that prestimulus endogenous signals were 

strong predictors of self-reported awareness scores (lower awareness associated 

with higher prestimulus alpha) but not participant’s accuracy in a contrast 

discrimination task (Samaha et al., 2017). Similarly, reaction time might be more 

dependent on vigilance, which does not necessarily correspond to alpha power (van 

Dijk et al., 2008). Furthermore, although cortical excitability might be most strongly 

reflected in alpha band activity, there is no reason alpha rhythms should modulate 

stimulus-driven activity differently from endogenous neural noise (Samaha et al., 

2017). Any effect alpha activity has on stimulus-driven responses should also 

influence the global neural noise, resulting in no difference in the SNR.  

 

Contradictory alpha–performance relationships may be related to the source of the 

alpha activity. Local field potential and multiunit recordings have shown that alpha 

generated in V2 and V4 came from all examined layers: supragranular (superficial), 

granular, and infragranular (deep), while alpha generated in the inferotemporal 

cortex was found only in supragranular and infragranular layers (Bollimunta et al., 

2011). The functional correlates of alpha varied with regards to where the primary 

alpha generator was located: those predominantly generated in the deep layers (as 
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for the visual areas) reflected functional inhibition, while those generated in the 

superficial layers (as with inferotemporal cortex) corresponded to cortical excitability. 

These spatial differences may explain some of the differences in findings across the 

EEG literature.    

  

Considering the strong evidence for alpha modulating visual performance, we take 

into account two differences in methods that might have contributed to our current 

observations. First, previous literature has shown that the power spectrum of the 

period right before stimulus onset is significantly smaller with better performance 

(Busch et al., 2009). Unsurprisingly, this included alpha band activity, where 

summed power was much greater for instances where participants failed to identify 

the stimulus. This effect was the most robust at approximately -600ms to -300ms 

before stimulus onset, indicating the possibility that there is a more optimal time 

period for extracting prestimulus alpha. However, a smaller sampling window would 

further decrease the frequency resolution of the frequency domain data, making it 

difficult to isolate alpha band signals precisely. Secondly, previous studies also drew 

a distinction between the functions of lower frequency and higher frequency alpha 

(Pfurtscheller, 2003; Pfurtscheller et al., 2000). Only alpha activity of frequency 

between 10-12Hz correlated significantly to memory performance, surprisingly with 

greater alpha power correlating positively with performance (Vogt et al., 1998). 

Additionally, a recent study had observed that performance following higher and 

lower alpha power were virtually identical, while intermediate alpha power reliably 

predicted accuracy and reaction time (Linkenkaer-Hansen et al., 2004). The current 

experiment did not make a distinction between frequency bands within the alpha 

range, which might have concealed an association between alpha and performance 

that is exclusive to higher, intermediate or lower alpha. Post-hoc selection of 

subdivided alpha bands is also potentially susceptible to statistical multiple 

comparisons errors. 
 

Although contralateral and ipsilateral alpha power was not significantly different 

within each participant, we found that contralateral alpha power exhibited a 

significantly positive relationship with reaction time. Since no visual prestimulus cues 

were provided in this experiment, this finding revealed the strong association 
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between spontaneous alpha power, as opposed to attention-modulated alpha power, 

with reaction time.  

 

The SVM classification results confirmed that prestimulus alpha contains little 

information about subsequent trial performance (hits and misses). While the region 

of very high classification accuracy is centred around the alpha frequency band, it 

occurs approximately 500ms to 1250ms after stimulus onset. The timing of the high 

classification accuracy implied some dependency on the outcome of the trial just 

passed, which leads to our proposal that the high classification accuracies were 

caused by performance- or feedback-dependent changes in the participant’s internal 

state after completing each trial.  

 

A recent study has shown that emotional states can significantly alter alpha in the 

frontal cortex (Rajabi et al., 2017). In addition, numerous studies have evidenced the 

interconnections between vigilance (Davis & Whalen, 2001), motivation (Begleiter et 

al., 1983; Hömberg et al., 1981) and stress (Hancock & Warm, 1989) with 

endogenous state and maintenance of long-term attention (Oken et al., 2006). 

Hence, we interpreted the classification results as a change in internal state following 

task performance reflected in alpha band activity. Unfortunately, we do not know 

exactly how feedback or perceived performance alters the internal state of each 

participant. Successful trials might lead to a brief ‘relaxation’ – or an increase in 

motivation. Conversely, after a miss, some subjects might experience in decline in 

motivation while others feel the need to ‘do better’. 

 

3.5.2 Future Directions 
 

3.5.2.1 Phase 
 

An aspect of alpha oscillation this study did not consider is the phase. Literature 

suggest that the likelihood of perceiving a near-threshold target depends on the 

phase of the endogenous oscillation at the time of visual input – possibly because 

alpha power reflects modulations in mean population membrane potentials.  Along 
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with amplitude, the phase of endogenous rhythms also reflect local electrical field 

potentials (Buzsáki & Draguhn, 2004). In fact, the phase of slower oscillations 

regulates both the rate at which neurons fire as well as several faster oscillations. 

This means that depending on the endogenous phase at which near-threshold inputs 

arrives, the responses generated by the system can be enhanced or attenuated, 

which then affects the likelihood this stimulus would be perceived (Schroeder & 

Lakatos, 2009). One example of this is in the Active Visual Sensing Hypothesis 

(Leszczynski & Schroeder, 2019): where phases of endogenous oscillations are 

reset using saccades, which ensures high excitability when the observer fixate, 

giving the visual input arriving in that moment a better chance of being perceived. 

 

Due to the fast, temporally precise nature of the visual system, some authors argue 

that alpha phase offers a more appropriate modulation of visual perception than 

alpha amplitudes. Alpha band activity is linked with information transmission from the 

LGN to the visual cortex. Observer’s sensitivity to changes in the stimulus is 

synchronised with the phase of endogenous alpha rhythms. The relationship is 

strong enough to predict observer’s performance on discriminating near-threshold 

stimuli: phase angles could predict ‘hits’ and ‘misses’ and alpha band signals were 

strongest at approximately 500ms prior to stimulus presentation (Busch et al., 2009) 

 

3.5.2.2 Frequency 
 

Reaction time is also correlated with alpha frequency measured from contralateral 

electrodes and faster alpha band rhythms coincided with quicker and more accurate 

visual perception of stimuli presented in quick succession (Samaha & Postle, 2015). 

This clearly demonstrates the stochastic conscious perception of the observer at 

certain time points during stimuli presentation, depending on the frequency of alpha 

signals. While the current study did not find an association between alpha power and 

task accuracy, these studies imply that alpha phase and frequency might be more 

appropriate at predicting trial success.  

 

Some recent studies contend that psychophysical performance indicates changes in 

internal decision criterion and not spontaneous fluctuations in threshold. In a yes/no 
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task, lower alpha power correlated with more liberal decision criterion. Participants 

reported stimulus detection more often, but not necessarily more accurately 

(Limbach & Corballis, 2016). Similarly, participants’ self-reported confidence 

correlated negatively with alpha power, independent of task accuracy (Samaha et 

al., 2017). Responses to constant stimulus properties is determined by a dynamic, 

varying internal criterion and endogenous state. A valuable future endeavour could 

involve constructing a variable for internal bias in order to distinguish between shifts 

in criterion from shifts in visual perception (Roy et al., 2018). 

 

Many studies suggest that attention-modulated alpha effects may be exerted through 

top-down control and are a direct product of the system’s anticipation and 

preparation for an incoming stimulus. This naturally strengthens the relationship 

between prestimulus alpha and successful detection of near-threshold stimuli (Busch 

et al., 2009; Ergenoglu et al., 2004; Romei et al., 2008; van Dijk et al., 2008). 

Instead, our findings offered insights to mechanisms behind spontaneous alpha 

modulation of psychophysical behaviour. An observer’s relationship between 

prestimulus alpha and task performance can be dependent on how familiar they are 

with the task. Future experiments should account for the observer’s expertise before 

associating endogenous states with behaviour.  

 

3.5.3 Conclusion 
 

In conclusion, we examined whether prestimulus alpha power significantly predicted 

task performance in a 4AFC orientation discrimination paradigm. We found that 

firstly, the relationship between prestimulus alpha and performance varied greatly 

between participants. Follow-up analyses revealed that (1) this relationship was 

significantly dependent on the participant’s orientation discrimination for scores, but 

not reaction time and (2) prestimulus alpha did significantly predicted reaction time. 

Interestingly, the relationships were only significant for whole brain alpha power and 

not for occipital cortex. This implied the involvement of other non-visual cognitive 

networks that modulate alpha band activity. Lastly, we found evidence that the scalp-

level pattern of activity in a time period after stimulus onset was highly predictive of 
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hits and misses. This is likely due to a change in the participant’s mood and vigilance 

following feedback on performance for the most recent trial. 
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4 Chapter 4: Frequency domain 

classification of chromatic SSVEP 

signals 
 

 

4.1 Abstract 
 

Periodic visual stimuli generate time-locked, ‘frequency-tagged’ steady state visually 

evoked potentials (SSVEPs) at the scalp. The amplitudes of these responses at 

harmonics of the input frequency provide a rich source of information about the 

neuronal computation that are driven by exogenous inputs. The human brain also 

generates endogenous rhythms: spontaneous, ongoing oscillations of neuronal 

population responses that generate broader but robust peaks in the EEG power 

spectrum. Such oscillations are typically invisible in an SSVEP analysis because 

phase information of endogenous rhythms is random from moment to moment. As a 

result, their time-locked amplitude averages to near-zero.  

 

In this study, we ask whether information about chromaticity is present at 

frequencies other than the low-order harmonics of the inputs that are typically 

studied. This could happen for two reasons. First, we examine whether endogenous 

activity is modulated by visual inputs and if so, if that modulation depends on 

chromaticity. If there are nonlinear interactions between inputs and endogenous 

rhythms, then information about the chromaticity of a periodic stimulus might be 

present at non-harmonics of the input. Second, we ask whether information about 

the chromaticity of the input is present in higher order harmonics of the input above 

the critical flicker fusion (CFF) threshold. If so, then it is possible that ‘invisible’ 

information about flickering inputs is maintained in the visual system with very high 

temporal precision even in the absence of awareness. 
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We presented square-wave contrast modulating (on-off) stimuli composed of 

sinusoidal chromatic contrast gratings defined along the three axes of the Macleod-

Boynton colour space (achromatic luminance, isoluminant L-M and S-cone isolating). 

The stimuli flickered at three modulation frequencies (5, 12 and 16 Hz) while we 

recorded each subject’s steady-state responses using a 64-channel EEG system. 

For each input frequency condition, we examined the response spectrum from 

posterior electrodes using both an incoherent (phase insensitive) and coherent 

(phase sensitive) analysis pipeline. We also used the pattern of complex frequency 

domain responses to train a support vector machine (SVM) (libsvm with linear basis 

function kernels) to classify chromaticity.  

 

The results contained two surprising findings. Firstly, each stimulus chromaticity 

generated a different level of endogenous EEG power across a wide range of 

frequencies. In particular, theta and alpha band power were elevated significantly in 

isoluminant chromatic conditions compared to achromatic conditions. 

 

The multivariate analysis revealed that the SVM was able to categorise stimulus 

colour at a range of individual frequencies extending, in some cases, beyond the 

CFFF. The importance of this finding is two-fold: the significant classifications we 

found at the input frequencies (and subsequent harmonics) demonstrated that slowly 

flickering stimuli generate harmonics that extend up to very high frequencies. 

Specifically, we found instances of achromatic flicker driving response in the visual 

system up to 100Hz and isoluminant chromatic flicker up to 50Hz. These are far 

above CFFF for their respective colours. On the other hand, the significant 

classifications we found at non-input and non-harmonic frequencies indicated phase-

locked intermodulation terms. We theorised that these were generated by non-linear 

interactions between chromatically driven responses and more prominent 

endogenous theta and alpha rhythms. 

 

4.2 Introduction 
 

The brain produces endogenous rhythms, which are defined as ongoing, internal 

neural oscillations that persist (and are sometimes amplified) in the absence of 



 102 

external visual input. Endogenous rhythms are functionally categorised by their 

frequencies (delta 1-4 Hz, theta 4-8 Hz, alpha 8-12 Hz, beta 12-25 Hz, gamma 25-80 

Hz), with established roles in attention (Klimesch et al., 2007), feature-binding and 

visual working memory (Berens et al., 2008; Honkanen et al., 2015). On the other 

hand, the visual system also constantly receives external sensory inputs, which 

undergo various stages of temporal and spatial filtering as they travel from the 

sensor to the cortex. These sensory inputs generate exogenous rhythms of neural 

activity that are stimulus-locked, meaning that inputs with a stable temporal structure 

would generate electrical activity that inherit that temporal structure. As a result, we 

can tag, identify and recover responses to a periodic input by conducting spectral 

analyses and looking at the input frequency and corresponding harmonics (Norcia et 

al., 2015).  

 

Many studies have evidenced that endogenous and exogenous signals interact in 

some capacity during visual processing. Earlier works suggested SSVEP to be 

phase-locked endogenous activity (Makeig et al., 2002; Sayers et al., 1974) but the 

mechanisms of these entrainments largely remain an active area of research (Keitel 

et al., 2014). More recent studies suggested that occipital alpha activity was 

modulated by a 10Hz periodic stimuli (Klimesch et al., 2007; Spaak et al., 2014), and 

entrainment of alpha can subsequently impact detection of near-threshold stimuli by 

both amplitude and phase (Busch et al., 2009; Graaf et al., 2013). The evidence 

suggests that cortical rhythms are modulated by periodic inputs, and understanding 

this interaction using non-invasive techniques will give us better insights into how 

these neural mechanisms work. 

 

The chromatic and temporal properties of LGN layers have been extensively 

modelled (Baseler & Sutter, 1997; Derrington & Lennie, 1984; D’Souza et al., 2011; 

Liu & Wandell, 2005; Livingstone & Hubel, 1987; Mullen et al., 2010). Activation of 

precortical pathways can provide greater insights into the interactions between 

exogenous and endogenous signals. This paradigm was used in a primate study, 

which showed spike activity of KC neurons to inversely correlate with slow 

endogenous waves between 0.5-10Hz (Cheong et al., 2011). The authors found that 

stimulus-driven spike rates in koniocellular neurons were negatively correlated with 

the amplitudes of slow endogenous waves within delta and theta ranges (defined as 
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0.5-5Hz and 5-10Hz respectively in this particular study). Modulation of koniocellular 

activity persisted both in the absence and presence of visual stimulation, suggesting 

that both stimulus-driven and endogenous koniocellular activity were coupled to slow 

deep brain rhythms. This finding supported previously discovered physiological 

connections between the superior colliculus structures and the koniocellular pathway 

that were unique to this cell type (Casagrande, 1994; Feig & Harting, 1994; Harting 

et al., 1991; Hendry & Reid, 2000). It also demonstrated the potential in studying 

deep brain responses using non-invasive methods. The interactions were restricted 

to one precortical pathway with a unique, chromatic signature, which prompted the 

question of whether chromatic SSVEP signals generated by other colours (or purely 

luminance stimuli) would reveal similar couplings with endogenous activities.  

 

The current experiment investigated the relationship between endogenous activity 

and isoluminant chromatic responses in the human visual system. Chromatic 

processing channels have well-established temporal low-pass natures, which we 

expect would regulate the standard temporal responses of colour-selective neurons. 

On the other hand, since endogenous activity can modulate as fast as 80Hz, we 

wondered if we could find signatures of chromatic interactions within a wider 

frequency range.  

 

We aimed to answer two research questions. Firstly, we asked over what range of 

frequencies can we detect the effects of achromatic and isoluminant chromatic 

flickering stimuli? Specifically, we examined stimulus-driven responses in terms of 

significant power at the flicker’s (1F) frequency and subsequent harmonics (nF - i.e. 

multiples of the input frequency). Secondly, we asked if the flickering stimuli 

interacted with endogenous rhythms. This analysis was carried out in two ways. We 

began by identifying any modulations of endogenous rhythms within incoherently 

averaged EEG responses. This analysis is sensitive to non-phase-locked 

interactions between the two frequency sources – for example, a general 

amplification of an ongoing alpha rhythm by the presence of an exogenous input. 

Secondly, we repeated the analysis while maintaining the complex (phase-sensitive) 

information in the signals throughout the averaging procedure. This analysis is very 

sensitive to phase-locked interactions (because the phase-randomised noise 
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components are expected to average to zero) but blind to phase-randomised 

interactions of the type examined in the first analysis. 

 

Because the visual system contains nonlinear (for example, threshold nonlinearity) 

as well as linear stages, even pure sine-wave inputs generate higher harmonics 

(McKeefry et al., 1996). In addition, non-linear interactions between neuronal signals 

generate ‘intermodulation’ terms: signals at the sums and differences of the signal 

frequencies (Norcia et al., 2015; Regan & Regan, 1988) between inputs and 

endogenous rhythms are therefore also expected to contain multiple temporal 

components.  

 

In the current study, we examined the effect of stimulus colour on individual output 

frequencies within the power spectrum. Because endogenous frequencies are not 

tightly confined to a single frequency, we looked for ‘hillocks’ of significance that 

might indicate intermodulation terms, specifically between 5-10Hz endogenous 

signals and S-cone driven responses. We also removed stimulus-driven responses 

at input frequency and harmonics and examined the effect of stimulus colour on 

broadband endogenous EEG power. 

 

Finally, considering how evidence of entrainment might be contained in amplitude 

and phase information spread across multiple EEG sensors, we used a sensitive 

SVM pattern classifier to compare classification accuracies for magnitude (phase 

removed) data and complex (phase retained) data.  

 

4.3 Methods 
 

4.3.1 Participant  
 

We recruited 16 neurotypical subjects (age range: 18 to 45-year-old, eight female) 

from the University of York. All participants had normal or corrected-to-normal visual 

acuity and normal colour vision as tested by Ishihara plates (24 plates edition). All 
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procedures were performed after obtaining approval from the Department of 

Psychology Ethics Committee.  

 

4.3.2 EEG recording and apparatus 
 

Scalp EEG responses were recorded at a sampling rate of 1KHz using the ASA 

software and 64-channel Waveguard EEG caps from ANT Neuro (ANT Neuro, 

Netherlands) with a standard 10/20 montage array. The data were notch filtered in 

hardware at 50Hz at acquisition to remove line noise. 

 

The stimuli were displayed using a gamma corrected 22.5” display monitor 

(ViewPixx, VPixx Technologies) at the spatial resolution of 1920 x 1200 pixels, with a 

120 Hz refresh rate and mean luminance of 250 cd/m2. The calibration was made 

with NIST-traceable Jaz USB photospectrometer with a 2nm resolution. Subjects 

viewed the display from 57cm. The displayed subtended 37.5° of visual angle 

horizontally. 

 

4.3.3 Stimulus design 
 

Stimuli were created in Matlab with the Psychophysics Toolbox extensions (Brainard, 

1997; Kleiner et al., 2007; Pelli, 1997) and consisted of horizontally oriented, phase 

randomised 1 cycle/degree sinusoidal gratings. These gratings varied along two 

features: temporal frequency (square wave modulation at 5, 12 and 16 Hz) and 

chromaticity (luminance, S-cone isolating and red-green). Stimuli were created using 

the Stockman-Sharpe 10° cone fundamentals (Stockman & Sharpe, 2000) to 

compute cone excitation. Chromaticity of coloured stimuli varied on a subject-by-

subject basis to ensure isoluminance using values measured by a pre-experiment 

heterochromatic minimum flicker task (Lee et al., 1988). Stimuli were windowed 

using a Gaussian envelope (full width at half maximum = 30°). To avoid changes in 

the isoluminant settings caused by macular pigment, the central 2° was replaced by 

a grey Gaussian blob (see Fig. 4.1 A for visualisation). 
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4.3.4 Experimental Procedure 
 

Participants were instructed to fixate the centre of the screen and perform a free-

running central fixation task (detecting changes to the shape of a small fixation 

target) to ensure that they maintained an approximately constant attentional state 

throughout the experiment. Stimuli were displayed in trials of 12s with 1s inter-

stimulus intervals (ISI) (see Fig. 4.1 B). There were 15 repetitions of all nine 

conditions. 

 

4.3.5 EEG data processing 
 

The 12-second EEG responses to each trial were segmented into 1s bins. The first 

and last bin were discarded to remove onset and offset transients, leaving 150 bins 

of data per condition for each subject (15 repetitions of ten bins per trial).  

 

 
Fig. 4.1 (A) Red-green (top) and S-cone isolating (bottom) stimuli presented 
during the experiment. (B) Experimental paradigm showing three trials and 
two ISI with red-green and luminance stimuli as examples.  
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Our research questions required analysis of both magnitude and complex data. This 

meant that after Fourier transformation we had to average each bin coherently or 

incoherently, according to the question we were investigating.  

 

4.3.5.1 Incoherent averaging 
 

Incoherent averaging computes the mean of the Fourier amplitude spectrum without 

consideration of the phase information (by taking the magnitude of each component). 

Because phase-randomised noise is maintained in this analysis, this reduces the 

SNR of the resultant frequency domain data but is helpful in identifying constant, 

phase-randomised components within the signal.  

 

4.3.5.2 Coherent averaging 
 

Coherent averaging computes the mean of the complex Fourier transform of each 

bin. This maintains information about the phase of the signal at each frequency. 

Because phase-randomised noise will average away under this analysis, any phase-

locked signals evoked by periodic stimuli have high SNR. In other words, coherent 

averaging reveals the presence of exogenously driven signals (and endogenous 

signals that are phase-locked to the input) while removing the influence of 

endogenous rhythms and noise. 

 

We model these interactions in Fig. 4.2. 
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In our experiments, we generated inputs at 5, 12 and 16Hz. Based on the stimulus 

and endogenous frequency that interacted with koniocellular activity (Cheong et al., 

 

 
Fig. 4.2 An example of a synthetic signal containing a 7Hz phase-locked 
component (blue) and a 12Hz phase-randomised component (red): 
represented separately and the resulting combined signal after a weak, non-
linear interaction (purple). (B) Signal in (A) after Fourier transformation and 
incoherent averaging or coherent averaging. Incoherent averaging reveals 
intermodulation terms at the sums and differences of the dominant 
frequencies (i.e. 5 and 19Hz), generated by the non-linear interaction denoted 
in green. Coherent averaging averages away phase-randomised 
intermodulation terms but reveals the phase-locked input and its harmonics 
with high SNR. 
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2011), we summarised the possible frequency range of intermodulation terms in the 

table below (Table 4.1). 

 

Table 4.1 Predicted intermodulation term frequencies based on input signal 
frequency and 5-10Hz endogenous activity.  

 

Stimulus Frequency Predicted Intermodulation Terms 

5Hz Sum 10-15Hz 

Difference 1-5Hz 

12Hz Sum 17-22Hz 

Difference 2-7Hz 

16Hz Sum 21-26Hz 

Difference 6-11Hz 

 

4.3.6 Data analysis 
 

We ran three analyses on the data. The first analysis was a repeated measured 

ANOVA, looking for an effect of stimulus colour on broadband endogenous power, 

The second analysis was similar to the first, but examining the effect of stimulus 

colour on the EEG power at individual output frequencies (within a range of 1-100Hz) 

instead of broadband power. This additional level of detail also allowed us to 

examine evidence of intermodulation terms in the power spectrum and stimulus-

driven responses at the input frequency and harmonics. Finally, we ran a multivariate 

classification analysis on the complex data to understand if entrainment could be 

evidenced in the spatial pattern of magnitude and phase information across the 

scalp.  

 

4.3.6.1 ‘Broadband’ EEG power analysis 
 

We ran a repeated measures ANOVA examining the effects of chromatic conditions 

on each endogenous frequency band. To compute the power of endogenous 

frequency bands, we removed EEG magnitudes at stimulus temporal frequency and 

corresponding harmonics. We then calculated the root mean square (RMS) power 
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within the frequency ranges of interest: theta (4-7Hz), alpha (8-12Hz), beta (13-

25Hz) and gamma (25-80Hz). Delta (1-3.5Hz) band data was excluded from the 

analysis as our recordings had a typical 1/f noise profile meaning that they contained 

relatively high levels of low-frequency noise.  

 

4.3.6.2 ‘Narrowband’ EEG power analysis  
 

We examined how each of the nine combinations of temporal frequency and 

chromaticity affected EEG power measured in the frequency domain (1-100Hz). This 

was performed for both coherently and incoherently averaged EEG power: the 

former showed stimulus-locked responses and the latter to identify non-phase-locked 

intermodulation terms that would indicate an interaction between the input rhythm 

and endogenous activity between 5-10Hz.   

 

4.3.6.3 SVM classification 
 

We analysed the nine conditions individually for each participant. Each condition 

yielded 150 one-second bins of EEG data per participant. To obtain confidence 

intervals on our classification results, we bootstrap resampled our data by first 

randomly shuffling the bins then averaging them in groups of five. This resulted in 30 

averaged bins per condition, which we then fast Fourier transformed and classified 

based on individual frequency components.  

 

We asked the classifier to identify stimulus colour (luminance, S-cone isolating or 

red-green) based on the averaged bins of evoked responses for each temporal 

frequency (5, 12 or 16 Hz). Confidence intervals were obtained through 

bootstrapping, which consisted of 1000 independent trials. Within each trial, 

datapoints were first shuffled before we computed classification accuracy using a 

ten-fold cross validation procedure. The dataset was divided into ten parts before 

training the machine on nine and testing it with the remaining novel dataset to 

establish an accuracy. The resulting accuracy score represents that of a single 

participant, a single temporal frequency and a single comparison of chromaticity. The 

analysis was conducted at each frequency between 1-100Hz for all three 
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chromaticities. We also performed pairwise comparisons to examine any effects 

between one colour condition and another.  

 

4.4 Results 
 

4.4.1 Univariate analyses 
 

Each bin of raw EEG data was Fourier transformed and the amplitudes were 

averaged coherently (preserving amplitude and phase information) and incoherently 

(preserving amplitude information only). We plotted the power spectra from 1-100Hz 

in Fig. 4.3. The data demonstrated several expected signatures of the chromatic 

SSVEP, such as stronger responses at the fundamental frequency of stimulus that 

decreased in the second harmonic. We also observed higher SNR in coherently 

averaged data as well as a persistent alpha peak in incoherently averaged power. 
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Fig. 4.3 Spectrum of log transformed (-log10) group mean EEG power, averaged 
coherently (top) and incoherently (bottom). Orange bars denote the harmonics of 
input frequencies. As we expected, we observed higher SNR in the coherently 
averaged power spectrum and a bump of high EEG power at alpha frequency 
range in the incoherently averaged power spectrum.  
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4.4.1.1 ‘Broadband’ EEG Power Analysis 
 

We removed EEG responses at input frequencies and harmonics to stimulus-driven 

responses before calculating the RMS of incoherently averaged power within theta, 

alpha, beta and gamma bands. We then performed a repeated measures ANOVA on 

the data, asking if there were any main effects of endogenous band or stimulus 

colour on the magnitude of EEG responses. Mauchly’s test indicated that the data for 

colour did not violate assumptions of sphericity (p = .294). However, the data for 

endogenous bands and interaction between stimulus colour and endogenous band 

did (p < .001 for both cases), resulting in the using of Greenhouse-Geisser 

corrections for the effects of these two features. 

 

We found a significant main effect of endogenous band: F(1.50, 22.47) = 77.63, p < 

.001, partial η2 = 0.84 which reflects the 1/f nature of the EEG signal. More 

interestingly, we also found a significant effect of stimulus colour: F(2, 30) = 16.27, p 

< .001, partial η2 = 0.52 as well a significant interaction between colour and 

frequency band: F(2.55, 38.18) = 10.77, p < .001, partial η2 = 0.42 (see Fig. 4.4). 

We performed post hoc analyses using paired-sample t-tests, where we compared 

the responses to each stimulus colour within an endogenous frequency band. The 

data revealed that within every endogenous band tested, RMS EEG responses to 

luminance flicker were significantly lower than the response to S-cone isolating 

flicker (theta: t(15) = -2.53, p = .023; alpha: t(15) = -6.52, p < .001; beta: t(15) = -

4.04, p = .001; gamma: t(15) = -4.96, p < .001) and red-green flicker (theta: t(15) = -

4.07, p = .001; alpha: t(15) = -6.34, p < .001; beta: t(15) = -5.45, p < .001; gamma: 

t(15) = -2.66, p = .018). In contrast, no significant differences were found between 

the two chromatic conditions (theta: t(15) = 0.18, p = .860; alpha: t(15) = -1.64, p = 

.123; beta: t(15) = -1.55, p = .141; gamma: t(15) = 0.32, p = .753).  
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As a control, we ran the same ANOVA on four frequency bands composed of 

frequencies that are randomly selected from 1-80 Hz (with no overlaps). The ANOVA 

revealed no effects of colour and interaction between colour and endogenous 

frequency bands on EEG power (p = .487 and p = .431 respectively).  

 

4.4.1.2 ‘Narrowband’ EEG Power Analysis 
 

We then ran one-way repeated measures ANOVA on the EEG power at output 

frequencies (1-100Hz) individually, again examining whether there was a significant 

main effect of stimulus colour on the EEG power. Unlike the previous analysis, which 

was only performed on incoherently averaged EEG power, this analysis was carried 

out on both coherently and incoherently averaged EEG power. We had two aims for 

 
 
Fig. 4.4 Boxplots of RMS EEG power of endogenous theta, alpha, beta and 
gamma bands averaged across participants as a function of stimulus chromaticity. 
We found significant main effects of endogenous band, colour as well as a 
significant interaction. Post hoc comparisons revealed significant differences 
between luminance and either chromatic conditions within an endogenous band, 
denoted by asterisks.  
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this analysis: first, it allowed us to identify any broader peaks of EEG power at the 

sums and differences of the input and endogenous frequencies that might indicate 

non-linear interactions between the two signals. These broad peaks or ‘hillocks’ 

would have been masked within broadband endogenous power. Secondly, by not 

removing the responses at harmonics of the stimulus frequency, we can provide 

statistical evidence for the stimulus-driven responses we observe in Fig. 4.3.  

 

 

We were particularly interested in the coherently averaged responses at the 

fundamental stimulus frequency and its harmonics, which would inform us of the 

presence of neural signals driven by the stimulus (red bars in Fig. 4.5). We were 

also interested in finding clusters of high significance, which might indicate 

intermodulation terms originating from nonlinear interactions with endogenous 

frequency bands.  

 



 116 

 
 

4.4.1.2.1 Coherently averaged EEG power 
 

Lower-bound estimates were used if Mauchly’s test revealed violations of sphericity. 

We found significant effects of colour on EEG power at the first four harmonics 

regardless of stimulus temporal frequency, as well as at isolated non-harmonic 

frequencies. Post-hoc comparisons revealed significant differences in responses 

between luminance and coloured flicker (details are summarised in Appendices 

Table 4.2). This data trend was visible in Fig. 4.3: high frequency luminance and 

red-green flicker produced higher responses than S-cone isolating flicker.   

 

 
Fig. 4.5 Log transformed (-log10) p-values produced by one-way ANOVAs 
looking for significant main effects of stimulus chromaticity on EEG power. This 
was performed separately for coherently averaged and incoherently averaged 
EEG power. Red bars indicated harmonics of stimulus temporal frequency. 
Orange line indicated where p-value = .05 and green line indicated where p-value 
= .01. Intermodulation terms may appear as groups or ‘hillocks’ of significant p-
values in the incoherently averaged EEG power spectrum. We observed this in 
alpha frequency range for 12Hz flicker, but not for 5Hz or 16Hz flicker. 
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4.4.1.2.2 Incoherently averaged EEG power 
 

Analyses of incoherently averaged EEG power revealed similar results to those 

found for coherently averaged data in terms of stimulus-driven EEG responses. 

However, the lower SNR meant that in 12Hz and 16Hz conditions, responses were 

significant only up to the third and second harmonics respectively. We found a 

cluster of significant EEG power for 12Hz flicker at approximately the alpha 

frequency range. Post hoc tests revealed no significant differences between stimulus 

colours at any frequency despite the significant main effect (details are summarised 

in Appendices Table 4.3). 

 

4.4.2 Multivariate analysis 
 

In the previous sections we observed strong effects of stimulus colour on the EEG 

power at the flicker frequency F and nF as well as broadband endogenous power but 

did not find evidence of intermodulation terms in the incoherently averaged 

spectrum. The analysis here was extended using a multivariate classification 

paradigm. The paradigm was conceptually similar to time-domain multivariate 

pattern analysis EEG signal processing in King & Dehaene (2014), but instead of 

performing our analysis across time points, we asked if the pattern of activity at each 

sensor changed consistently with stimulus colour at any given frequency. Given the 

univariate results, we expected significant classifications up to the fourth harmonic of 

stimulus frequencies.  

 

We used an SVM classification paradigm (libsvm with a linear kernel) to analyse the 

distribution of activity across the scalp. We adopted a conservative approach in this 

analysis: we first asked whether a three-way classification was significant at each 

frequency. Significance would indicate some consistent difference between 

responses patterns as a function of chromaticity (similar to looking at main effects in 

ANOVAs). Then, at frequencies where three-way classification was significant, we 

performed pairwise analyses. This allowed us to examine all three comparisons 

between stimulus colours (luminance and S-cone isolating, luminance and red-
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green, S-cone isolating and red-green) and understand which colours were 

contributing to the effect of colour (analogous to post hoc comparisons).  

 

The data revealed that three-way classification of complex EEG data was 

significantly above chance at multiple harmonics of the stimulus frequencies, as well 

as clusters of non-harmonic frequencies. The highest frequencies of significant 

classification were close to 50Hz for 5Hz flicker and 100Hz for 12 and 16Hz flicker 

respectively – far higher than the CFFF of any stimulus colour (Fig. 4.6).  
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4.4.2.1 Visualisation of variations in pattern of electrical 

activity  
 

Significant classification accuracies indicated that each stimulus colour evoked a 

distinct pattern of electrical activity. However, the classification paradigm itself did 

not provide information on the source where this distinct pattern had emerged. In 

 
Fig. 4.6 Mean and SEM of classification accuracy plotted across output 
frequencies for three-way comparisons (left) and pairwise comparisons (right). 
Scatter points along the top of the figure indicated the frequencies where 
accuracy was significantly above chance: 33.3% for three-way, 50% for pairwise 
(indicated by the red line) after Bonferroni corrections. Red scatter points 
indicated harmonics of stimulus frequency. Frequencies where pairwise 
classification was significant but three-way classification was not had been 
discarded in the diagram.  
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order to visualise the multivariate results, we performed an additional set of t-tests 

using the complex data recorded at each of the 64 sensors.  

 

Because the 12Hz stimulation paradigm appeared to provide the richest set of 

responses, we simplified our analysis by restricting to just this paradigm. We 

compared each sensor’s electrical pattern and asked if there was a significant 

difference between the stimulus colours. This was repeated for all three pairings of 

stimulus colours at nine frequencies: fundamental frequency (i.e. 12Hz) up to the 

eighth harmonic with an additional non-harmonic frequency (75Hz) as control. The t-

tests were performed on an individual basis for each participant before being 

averaged across the group using Fisher’s Method to attain a group mean. All p-

values were adjusted using Benjamini-Hochberg corrections (Benjamini & Hochberg, 

1995) for multiple comparisons before being averaged.  

 

We found that 12Hz flicker of different colours evoked significantly distinct patterns of 

activity across the scalp (see Fig. 4.7 for example of one participant). The difference 

between luminance and either chromatic flicker was clearly significant up to the 

eighth harmonic, while the difference between chromatic flicker was significant only 

up to the fourth harmonic. Distinct patterns of electrical activity were mainly found in 

the occipital and parietal regions for comparisons between S-cone isolating and red-

green conditions, but more evenly distributed across the scalp in luminance versus 

chromatic comparisons. Meanwhile, the control at 75Hz showed no significant 

difference between stimulus colours.  
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4.5 Discussion 
 

Overall, across all experiments, we found significant EEG power both at the 

fundamental frequency (F) and higher harmonics of the input (nF) - including at 

frequencies beyond CFFF. This demonstrated that external visual stimuli could drive 

and entrain responses in the visual system at high frequency. We also found 

significant effects of stimulus colour on broadband endogenous power, even with 

stimulus-driven responses removed. While this implied an interaction between 

exogenous and endogenous activity, we did not find any strong evidence of 

intermodulation terms within the incoherently averaged (phase-insensitive) power 

spectrum. However, after broadening the data pool to include all 64 sensors and 

phase information, we could classify stimulus colours with significant accuracies at 

harmonic and certain clusters of non-harmonic frequencies. After visualising the 

pattern of electrical activity using scalp topography, we concluded that these results 

 
Fig. 4.7 Scalp topography showing responses generated by stimulus colour. 
Significance was denoted using colour: lighter colours indicated higher 
significance and darker colour indicated low significance. Asterisks indicated 
significant t-test results (p < .05). We found that the pattern of activity generated 
by luminance flicker differed greatly with both chromatic S-cone isolating and 
chromatic red-green flicker up to the eighth harmonic. Chromatic conditions were 
only significantly different within themselves up to the fourth harmonic. This 
analysis allowed us to visualise the source of distinct complex responses that led 
to significant classification accuracies within the SVM analyses. 
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indicated entrainment of endogenous activity and exogenously driven signals. 

However, evidence for this entrainment was only available when we considered 

phase information in addition to magnitude, and the disparity was greater between 

achromatic and either colour than between the two chromatic conditions themselves 

– suggesting that the classifier was essentially driven by the presence of absence of 

signal in the achromatic condition.  

 

In general, we found evidence in coherently averaged EEG signals that chromatic 

inputs evoked strong responses in all three experimental conditions up to the fourth 

harmonic. Further post hoc comparisons showed signatures of the visual pathways 

driven by each stimulus colour. For example, luminance stimuli generated greater 

EEG responses when modulated at higher temporal frequencies, showing distinct 

frequency doubling responses for 16Hz flicker. These were typical of magnocellular 

responses: large receptive fields of parasol ganglion cells are associated with 

greater sensitivity to high contrast, low spatial frequencies and high temporal 

frequencies (Dacey, 2000). In contrast, this dominant second harmonic component 

was not prominent in chromatic conditions. Higher EEG responses were found for 

slower S-cone isolating stimuli consistent with the temporal low-pass nature of the 

koniocellular pathway, where neurons fire preferentially to sustained as opposed to 

transient stimulation. The optimal stimulation frequency for S-cone isolating stimuli 

was at centred around 10 Hz, due to the disparity in the temporal properties of centre 

and surround fields of midget cells (Derrington et al., 1984). Overall, we observed 

stronger second harmonic component in achromatic as compared to chromatic 

responses, which being well-established trait of the luminance processing channel 

(McKeefry et al., 1996), validated our methodology. Additionally, we could infer the 

quality of stimulus calibration: the difference in responses towards S-cone isolating 

and luminance stimuli suggested that the colour processing channels were 

successfully isolated with minimum luminance leakage. 
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4.5.1 ‘Broadband’ EEG: significant interactions 

between stimulus colour and broadband 

endogenous power 
 

We found that mean EEG signals averaged incoherently across endogenous 

frequency bands (ignoring multiples of the input frequencies) were modulated by 

stimulus colour. More specifically, chromatically evoked responses were greater than 

achromatic responses within each endogenous frequency band.  This effect was 

strongest within the alpha range, which might be related to its dominance within the 

occipital region (Groppe et al., 2013). While statistically significant, the difference 

between chromatic and achromatic responses were noticeably reduced in activity 

with higher frequencies, such as gamma. Since other parameters such as stimulus 

frequency were controlled, the results implied that this interaction between 

endogenous frequencies and colour might originate from the visual pathways. 

 

This theory was proposed in an earlier literature review (Sewards & Sewards, 1999). 

With increasing evidence demonstrating the involvement of alpha and gamma 

activity in visual awareness (Adrian & Matthews, 1934; Schanze & Eckhorn, 1997; 

Young et al., 1992), the authors proposed that the involvement of these endogenous 

rhythms must be matched with visual processing in terms of the temporal qualities  

(Nealey & Maunsell, 1994; Van Essen & Gallant, 1994). Alpha band activity, being 

the slower of the two, would dominate parvocellular pathway. In contrast, the 

magnocellular layers might be associated with faster gamma band activity. The 

current results are consistent with these hypotheses: chromatic stimuli producing 

higher alpha band activity as they are processed by the same precortical layers, with 

the effect weakening with more rapid endogenous activity.  

 

4.5.2 ‘Narrowband’ EEG: no intermodulation 

terms in incoherently averaged EEG data 
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There were significant effects of stimulus colour on incoherently averaged EEG 

power at approximately alpha frequency range in response to 12Hz flicker. This did 

not coincide with any of our predicted intermodulation term frequency ranges in 

Table 4.1. The hillocks were inconsistent between stimulus frequencies, and no 

effect was found for 5Hz flicker, which in theory should generate stronger responses 

due to the low-pass nature of S-cone processing channels. Intermodulation terms 

should also result in higher EEG power at both the sums and differences of two 

original frequencies: meaning we should see two peaks in the frequency domain, not 

one. Finally, the results could be accounted for by an overlap between the 

frequencies of alpha activity (dominant in occipital lobe) and the stimulus. Linear 

summation of the endogenous power and fundamental component power might have 

resulted in higher EEG power. Considering these details, we conclude that there 

were no intermodulation terms in the incoherently average power spectrum.  

 

This, however, did not necessarily mean that there being no stimulus-driven 

modulation of endogenous rhythms. The lack of intermodulation terms might be 

explained by several factors. Firstly, entrainment with slower endogenous rhythms 

might be more difficult in the current experiment. The previous study that observed a 

correlation between S-cone signals and slow endogenous activity had administered 

surgical anaesthesia to the marmosets (Cheong et al., 2011). Anaesthesia enhances 

slower endogenous rhythms (Chauvette et al., 2011), which can cause their 

relationship with koniocellular spike rates to be more pronounced. In contrast, the 

current experiment instructs participants to maintain attention using a fixation task. 

The awake brain is not only less prone to generating slow rhythms, but likelier in 

generating beta and gamma rhythms due to the potentiation processes required in 

communication between the cortex and geniculate (Wróbel, 2000). This shift in 

dominant EEG activity frequency range could make it more difficult to detect and 

entrain slower endogenous rhythms. Lastly, detecting interaction through amplitude 

can be tricky depending on the coupling strength between oscillators. Weak 

entrainment might not produce detectable changes in the amplitude of the 

synchronised rhythm (Kuramoto, 1984). 
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4.5.3 Multivariate analysis: significant 

classification of complex EEG data  
 

We found that three-way (and pairwise) classifications using complex data from all 

64 sensors were highly accurate at most harmonics of the stimulus frequency and 

even within sporadic clusters of non-harmonic frequencies. Significant classification 

accuracies at stimulus frequency and harmonics suggested that flickering stimuli of 

relatively slow flicker rate could drive the visual system robustly at rates far higher 

than the CFF threshold, reinforcing our earlier results. Further analyses showed that 

different stimulus colours generated different spatial patterns of electrode responses 

at particular frequencies. This effect persisted at high harmonics (again, beyond 

CFFF) but not for a control frequency (75Hz) that was not a harmonic of the input. 

The SVM was highly accurate in distinguishing luminance generated responses from 

those for either chromatic condition but was unable to accurately classify responses 

to S-cone isolating and red-green stimuli after approximately 50Hz. This supported 

the broadband EEG power analysis and suggested that activity from chromatic and 

luminance channels interact uniquely with endogenous frequency bands. We also 

observed that the difference in pattern between luminance and colour extended 

across the scalp while the difference between the two colours were concentrated 

mainly in the occipital region. This indicated that achromatic and chromatic 

processing might extend and involve different cortical areas beyond the visual 

cortex. 

 

The clusters of significantly accurate classification at non-harmonics indicated 

phase-locked components between endogenous activity and stimulus-driven 

responses. Similar observations had been made previously: rhythmic visual inputs 

were shown to reset endogenous oscillations with the entrained hemifield (Spaak et 

al., 2014). The entrained signal was strong enough to predict behaviour (i.e. the 

detection of near-threshold targets), and the effect phase sensitive. Spaak et al 

found entrainment of alpha activity specifically but significant classification 

accuracies in the current experiment were found at high frequencies (>50Hz). 

Similarly robust, high frequency cortical responses had been demonstrated before 



 126 

(Shady et al., 2004), and considering the frequency range, our results might indicate 

gamma phase resetting. Gamma oscillations are prevalent in layer 4 of V1 during 

earlier stages of visual processing and provides a feedforward mechanism from V1 

to V4 (van Kerkoerle et al., 2014). While it is difficult to confirm this theory, the 

results showed how phase information could be valuable in understanding signal 

entrainment. It offered another dimension of information, which was not available in 

phase-insensitive, incoherently averaged EEG power. 

 

4.5.4 Conclusion 
 

We found evidence that luminance and isoluminant chromatic flicker drives the visual 

system powerfully, not only at the fundamental frequency but also at multiple 

harmonics. The robust stimulus-driven responses interacted significantly with 

broadband endogenous EEG power, most strongly with alpha band activity. The 

effect of stimulus colour on alpha band power persisted when we examined each 

frequency bin individually. However, we did not find intermodulation peaks or 

consistent evidence of interaction between endogenous band and stimulus-driven 

responses in the Fourier domain of incoherently averaged data. This did not 

necessarily demonstrate a lack of interaction between exogenous and endogenous 

activity, as entrainment might be evidenced in phase information rather than 

amplitude alone.   

 

Multivariate classifications using both phase and amplitude information produced 

high accuracies of classifying stimulus colours at certain clusters of output 

frequencies. The high temporal frequency of these signals (far beyond CFFF) 

suggests two conclusions. First, despite the irregularity of significant classification 

accuracies: the high frequencies at which they occur (in coherently averaged data) 

demonstrated phase-locked components and phase-resetting of endogenous 

rhythms by the flickering stimuli. Second, chromaticity of stimuli affects each 

endogenous band activity differently: chromatic stimuli (S-cone isolating and red-

green) generated higher alpha power. This suggested that endogenous rhythms are 

driven uniquely by different visual pathways. Our study also offered a novel method 
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of identifying entrainment between endogenous and exogenous rhythms that 

incorporated complex data.  
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5 Chapter 5: Neural responses to 

visible and invisible chromatic 

flicker. 
 

5.1 Abstract 
 

Temporal contrast sensitivity is either bandpass (luminance) or lowpass (chromatic) 

with sensitivity typically decreasing as the rate approaches an upper bound: the 

critical flicker fusion frequency (CFFF). Stimuli modulating faster than the CFFF are 

not consciously perceived. Yet, both behavioural and neuroimaging studies have 

shown that such imperceptible fast flicker was able to drive neural activity in multiple 

visual areas. While these results are robust, the existing studies are limited in two 

ways. Firstly, the stimulus frequencies used in these studies were often restricted by 

the framerate of their display equipment (for example, the Nyquist limit of a 60Hz 

refresh rate monitor is 30Hz). However, the occipital cortex appears capable of 

responding at much higher frequencies (>100Hz), as evidenced in both the previous 

chapter (Classification of chromatic steady-state visually evoked potentials (SSVEP)) 

and some recent literature. This makes the neural modulations of very rapid flicker 

an interesting but unexplored topic. Secondly, due to the temporal low-pass nature of 

the koniocellular (KC) pathway, most previous studies included only luminance 

and/or chromatic red-green stimuli. However, there is evidence to show that the KC 

system shares unique interconnections with motion sensitive areas, implicating that 

rapid modulations of S-cone stimuli can, in theory, drive the visual system through 

these alternate pathways.  

 

We ran a functional magnetic resonance imaging (fMRI) block design study, where 

participants viewed a five-primary LED light source (subtending 1.56° of visual 

angle) which could generate flicker at arbitrary frequencies – in principle up to 

500Hz. High contrast stimuli with a Gaussian spatial profile were modulated at five 
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temporal frequencies (2, 8, 32, 64 and 125Hz) and along three different directions in 

MacLeod-Boynton space (luminance, S-cone isolating and red-green) with an 

additional 2 Hz subthreshold contrast condition for each colour. To extend our 

understanding of the neural correlates of fast chromatic flicker, we examined the 

mean amplitude of BOLD responses in V1, V3a and V4 in three participants. We 

asked if (1) responses to flicker modulating at beyond CFFF were significantly 

greater than the null condition for all chromaticities and (2) if rapid S-cone isolating 

stimuli (32Hz and above) evoked a greater response in V3a than in V1. Additionally, 

we were also interested in understanding how the chromatic preference of a visual 

area interacted with the stimulus frequency within the slow visible range.  

 

Despite the small stimulus size, we found that faster flicker evoked measurable 

responses, especially in higher-order visual areas. Red-green stimuli elicited the 

strongest neural responses, although we also found evidence of S-cone responses 

above 32Hz modulation. V3a responses were stronger than responses in V1 and V4, 

but this was true of all three stimulus colours, meaning V3a did not show a unique 

preference for rapid S-cone signals. Overall, despite clear heterogeneity in 

responses across subjects, we found some limited evidence for responses to super-

threshold flicker frequencies that tended to be outside the primary visual cortex.  

 

Finally, we observed that relative responses to chromatic and achromatic flicker in 

V1 and V4 depended on stimulus frequency. Again, these differences varied across 

subjects but indicated that attempts to classify areas according to their chromatic 

sensitivity might be overly simplistic: ‘colour areas’ might not appear to be 

chromatically selective and vice-versa depending on the temporal properties of the 

retinal input. 

 

 

5.2 Introduction 
 

The human visual system is highly robust in processing inputs of varying intensity 

and features. The types of feature processed by a visual neuron is dependent on its 

physiological properties. For example, parasol RGC have large receptive fields and 
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thicker myelination, which support their low spatial resolution and fast responses 

respectively. Midget RGC have smaller receptive fields and processes L and M cone 

signals in an opponent manner, which result in a higher spatial resolution and the 

ability to carry red-green chromatic signals.  

 

The RGC and LGN layers they project to also differ in terms of how they respond to 

a pulsating stimulus. MC neurons that receive mostly parasol RGC input respond to 

both stimulus-on and off sequences while PC neurons where most midget RGC 

project respond in a more tonic manner (Shapley & Perry, 1986). Temporal response 

functions therefore depended on stimulus chromaticity. Responses to chromatic 

stimuli generally peak at lower temporal frequencies while responses to achromatic 

stimuli peak at higher temporal frequencies. Achromatic stimuli also produce a 

distinct second harmonic component in the frequency domain as compared to 

chromatic stimuli, due to their transient nature (McKeefry et al., 1996). 

 

Nevertheless, individual flicker of a temporally modulated stimulus cannot be 

perceived consciously past a certain temporal frequency threshold, even under 

optimal conditions. This threshold, or CFFF, is dependent on the chromaticity of the 

stimulus. Luminance channels are able to consciously perceive flicker up to 50Hz, 

while chromatic channels have lower thresholds: approximately 25Hz for red-green 

and 10Hz for S-cone isolating (Eskew et al., 1994; Holcombe & Cavanagh, 2001; 

Kelly, 1983; Lee et al., 1990; Matin, 1968; Wisowaty, 1981). The disparity between 

input and perception indicates that fast temporal information is filtered out at certain 

stages within the visual pathway. The disparity between chromatic and achromatic 

temporal sensitivity spectrums indicates that filtering arises after chromatic channels 

are separated.  

 

Many earlier works investigated precortical visual areas as filtering stages, with the 

argument that there is no evolutionary purpose to process signals that would 

ultimately be excluded. Studies revealed that RGC are able to respond to a wider 

frequency range than LGN neurons (Derrington & Lennie, 1984; Lee et al., 1990; 

Solomon et al., 1999), which suggests temporal information is filtered between the 

two structures. However, another study evidenced that V1 neurons respond at 
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stimulus-matched frequencies up to 60Hz (Gur & Snodderly, 1997), which implicated 

rapid signals not only reach the cortex but are likely filtered out in higher-order areas.  

 

This argument had been further supported with behavioural evidence, in particular 

using adaptation effects. Adaptation is defined as an attenuation in sensitivity to 

visual stimulus after prolonged exposure and takes place in the cortex, making it a 

marker for where the adaptive signal travels within the visual system. A study in 

2004 found that flicker modulating above CFFF caused adaptation effects despite 

the absence of conscious perception (Shady et al., 2004), therefore indicating that 

rapid temporal frequencies are not filtered prior to V1. This effect was supported by a 

chromatic orientation adaption study (Vul & MacLeod, 2006), where chromatic 

gratings above CFFF caused orientation aftereffects despite not being seen.  

 

These findings were supplemented by a neuroimaging study examining responses to 

chromatic red-green stimuli (Jiang et al., 2007). A comparison of the visual areas 

revealed distinct BOLD responses to 30Hz red-green flicker from V1 to hV4. BOLD 

amplitude decreased at higher frequencies as compared to slower contrast-matched 

flicker. This observation was congruent with the earlier adaptation studies where 

strength of adaptation decreased as the adapting flicker rate increased (Shady et al., 

2004). Both observations suggested that responses to flicker are reduced as 

frequency increase within the ‘invisible’ range, similar to the trajectory within the 

‘visible’ range. The only area where response matched conscious perception was 

VO, suggesting this is where processing of temporal information above CFFF 

terminates.  

 

Overall, these studies provided valuable insights into how temporal signals are 

processed within the cortex. However, we propose two ways the results can be 

made more comprehensive. Firstly, the neuroimaging experiment should be 

repeated with more chromaticities, specifically luminance (achromatic) and S-cone 

isolating (blue-yellow). As compared to the chromatic red-green channel, the KC 

channel processing S-cone signals had received less attention. KC responses are 

widely regarded as ‘sluggish’, with lower and more limited temporal response range  

(Casagrande, 1994; Engel et al., 1997; Spitschan et al., 2016). However, several 

more recent findings have indicated not only that S-cone signals can convey motion 
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information, but that they may do so through an alternate pathway (Cavanagh & 

Anstis, 1991; Dobkins & Albright, 1994; Dougherty et al., 1999; D’Souza et al., 2011; 

Morand et al., 2000; Thiele et al., 1999). This unique temporal response function of 

KC neurons should be included in the investigation of chromatic filtering stages 

within the visual cortex.  

 

Secondly, the modulation range of the neuroimaging study was somewhat limited. 

Extrapolating from our findings in Chapter 4, entrainment can occur at frequencies 

far beyond 50Hz, but few attempts have been made to drive the visual system 

directly at such high frequencies. Directly driving the visual cortex at high 

frequencies can provide further insight into the temporal filtering occurring at each 

visual area, instead of the general responsiveness of the occipital region. 

Additionally, considering the upper limit of reported CFFF for red-green inputs is 

25Hz (Kelly, 1983), a modulation of 30Hz might be on the brink of conscious 

perception for some participants. For a more definite ‘invisible’ frequency range, we 

might include frequencies that are many times higher than the CFFF.  

 

Our current study investigated the activity in visual areas V1, V3a and V4 when 

observers fixate on chromatic and achromatic targets flickering at one of a wide 

variety of frequencies – including frequencies that appeared to be invisible. We 

aimed to extend the existing work in two ways: first, expanding the frequency range. 

Previous experiments have typically used LCD monitors and projectors for stimulus 

display, which were limited in the maximum temporal frequency they could render: 

the maximum (Nyquist) stimulus frequency is half the monitor’s refresh rate. Here, 

we trialled the use of an LED-based colour display device, which allowed us to 

modulate our stimuli well beyond 100Hz. Secondly, we selected stimulus 

chromaticities from all three axes of the Macleod-Boynton colour space. Given the 

evidence for potential high-frequency S-cone driven responses outside V1, (D’Souza 

et al., 2011; Stockman et al., 1991), we wondered if we could infer a unique 

sensitivity to faster S-cone signals in V3a responses as compared to other visual 

areas. 

 

We were primarily interested in neural responses to stimuli modulating beyond the 

CFFF. For each stimulus chromaticity, we asked if responses to these invisible rapid 
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flicker were greater than a control, which had the same cue and trial structure but no 

flicker. We also asked if rapid S-cone isolating signals drove V3a more strongly than 

V1 and V4. Finally, we asked whether the chromatic preference of a visual area 

interacted with stimulus frequency. We expected that interaction between stimulus 

colour and frequency would entail the preference in area V4 for colour at certain 

flicker rates but not others.  

 

5.3 Methods 
 

5.3.1 Participants 
 

We recruited three participants (one female; aged 24 - 48 years old) from the 

Department of Psychology at the University of York. Two out of three participants 

(RE and MS) were naïve to the study. All participants had normal colour vision 

(tested using Ishihara plates, 24 plates edition) and normal or corrected-to-normal 

visual acuity.  

 

We obtained each participant’s personal CFFF for each stimulus chromaticity prior to 

scanning. Participants completed 70 trials of two-interval forced choice task 

Bayesian staircase paradigm, where they had to indicate the target with the flicker. 

Participants’ CFFF ranged from 36.3-49Hz for luminance stimuli, 20.5-23Hz for S-

cone isolating stimuli and 24.8-27.1Hz for red-green stimuli, ensuring that the 

frequency range tested included both perceptible and consciously imperceptible 

stimuli for all participants. We also acquired the participant’s contrast threshold for 

stimuli of all colours at 2Hz. This value was halved and used to customise 

subthreshold contrast visual inputs for each participant. Each participant then 

completed four 1-hour scanning sessions. The experiment was approved by the York 

Neuroimaging Centre Board of Ethics and all participants gave written informed 

consent before taking part in any experimental procedures. 
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5.3.2 Apparatus 
 

All stimuli were developed and ran from Matlab 8.5.0 (2015a, The MathWorks Inc., 

Natick, MA, USA). An Arduino Due device (Arduino LLC) was used to transmit 

stimulus specifications from Matlab to a Prizmatix FC5-LED projector (Prizmatix Ltd, 

Israel). The projector contained five LED outputs, each relayed by a fibre optic cable 

branch. All outputs were merged into a single fibre optic cable (12mm, plastic core, 

2mm diameter), which feeds into an IS-200 integrating sphere (Thorlabs, Inc., 

Newton, NJ) through a CCSA1 cosine corrector (Thorlabs, Inc., Newton, NJ). The 

integrating sphere mixes the LED outputs perfectly to produce one homogenised 

light, which was finally projected onto a 3x3cm sheet of volumetric light shaping 

diffuser (Luminit, CA) using a structurally identical fibre optic cable as before. A 

square of black paper with a 6mm hole was attached onto the diffuser on the same 

side as the fibre optic to remove aberrations around the edges of the projected light. 

Attentional task responses were made using a five-button fibre-optic response pad 

(Current Designs, Philadelphia, PA). The experiment was controlled from a Shuttle 

PC with Intel Core i7-4790K processor at 4.0 GHz and an NVIDIA GeForce GTX970 

graphics card with 4 GB DDR5 memory.  

 

5.3.3 Stimulus design 
 

Stimuli were created using the silent substitution method (Estévez & Spekreijse, 

1982), which involves controlling stimulus primaries (LED outputs in this case) in a 

way that activate selected cones in isolation. Cones that are not activated are 

effectively silenced. This required us to first determine a transformation matrix 

between the LED outputs amplitudes and how they drove each cone type, then 

inversing this matrix to compute the LED amplitude required. For example, for a red-

green stimulus, we would multiply the inverted matrix by the cone activations of our 

target: [L, M, S] activation levels of [1, -2, 0].  

 

The transformation matrix was first calculated between the LED primaries’ spectra 

and cone fundamentals. Both were sampled to within the same wavelength range 
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and step size (390-720nm and 1nm respectively). LEDn values denoted the intensity 

of each LED output and L, M and S values denoted sensitivity of each cone type. 

This transform matrix was inverted using the pseudoinverse function (pinv) in Matlab. 

 

𝐿𝐸𝐷2𝐶𝑜𝑛𝑒 = *
𝐿!"#$%& ⋯ ⋯ 𝐿!'($%&
𝑀!"#$%& ⋯ ⋯ 𝑀!'($%&
𝑆!"#$%& ⋯ ⋯ 𝑆!'($%&

. × 0

𝐿𝐸𝐷1!"#$%& ⋯ 𝑛𝐿𝐸𝐷!"#$%&
⋮ ⋮ ⋮
⋮ ⋮ ⋮

𝐿𝐸𝐷1!'($%& ⋯ 𝑛𝐿𝐸𝐷!'($%&

3 

 

 

𝐶𝑜𝑛𝑒2𝐿𝐸𝐷 = 𝐿𝐸𝐷2𝐶𝑜𝑛𝑒)* 

 

The LED spectra were calibrated using a NIST-traceable Jaz USB 

photospectrometer with a 2nm resolution (Ocean Optics, Dunedin, FL). Calibrations 

were performed on the LED output (at maximum amplitude) projected onto the light 

diffuser. Stockman and Sharpe (2000) L-, M- and S-cone 2° cone fundamentals in 

0.1nm step size were obtained from the CVRL website (www.cvrl.org). The data 

were resampled for 1nm step size between wavelength range 390-720 nm.   

 

The stimulus temporal modulation was performed using the Pulse Width Modulation 

(PWM) technique, where LEDs are dimmed and brightened rapidly during stimulus 

presentation. The perceived brightness of the LED is dependent on the proportion of 

bright to dim periods over the presentation. This method is commonly implemented 

in experiments using microcontrollers. The current study utilised an Arduino Due, 

which has 12 analogue inputs, providing 4096 different intensity values at a 

modulation rate of 200Hz. 

 

To compute the final intensities, we multiplied the transform matrix Cone2LED by a 

vector denoting cone activation ratios for each opponent pathway of the Macleod-

Boynton colour space, where [L, M, S] = [1 1 1] for L+M+S, [0 0 1] for S-cone 

isolating and [1 -2 0] for L-M. Background or null LED is to [0.5 0.5 0.5]. After 

determining the chromaticity, luminance, S-cone isolating, and red-green stimuli 

were scaled to modulate at the appropriate contrast levels: 85%, 69% and 14% 

respectively for full contrast conditions and half of each participant’s threshold or 

approximately 1.5%, 1.5% and 0.5% respectively for subthreshold contrast 
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conditions. We modulated stimuli at the following temporal frequencies: 2Hz, 8Hz, 

32Hz, 64Hz and 125Hz.  

 

5.3.4 MRI parameters 
 

5.3.4.1 Anatomical imaging 
 

T1-weighted anatomical data were collected on a GE 3T Signa HDx Excite MRI 

scanner with a 8-channel whole-head phased-array coil (MRI Devices Corporation) 

using standard parameters (TR = 7.8ms; TE = 3.0ms; flip angle = 20°; FOV = 290 x 

290 mm2; matrix size = 256 x 256; voxel resolution = 1.13 x 1.13 x 1.0 mm3, 176 

slices in total).  

 

5.3.4.2 Functional imaging 
 

Functional imaging data were collected on the same GE MRI scanner with a 16-

channel posterior surface coil (Nova Medical, Wilmington, MA) to improve SNR in 

the occipital region. The scan sequence was identical for each of the four 

experimental sessions the participants completed. Firstly, we completed a proton 

density (PD) anatomical scan to register functional data to MNI space, using a 

prescription identical to that used in the functional scans (TR = 2000ms; TE = 30ms; 

flip angle = 80°; FOV = 240 x 240 mm2; matrix size = 128 x 128; voxel resolution = 2 

x 2 x 2.5 mm3, 26 slices). Slices were taken semi-axially, covering the occipital lobe 

and the ventral surface along the temporal lobe.  

 

This was followed by six blocks of gradient-echo EPI scans, each with 12 runs of 

flickering stimuli (TR = 2000ms; TE = 30ms; flip angle = 80°; FOV = 240 x 240 mm2; 

matrix size = 128 x 128; voxel resolution = 2 x 2 x 2.5 mm3, 26 slices). Each block 

started with three ‘dummy’ volumes (lasting 3 TRs) to allow signals to reach 

magnetic equilibrium.   
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5.3.5 fMRI procedure and task 
 

Participants completed both the temporal threshold and the contrast threshold tasks 

prior to scanning. The stimulus was viewed from a distance of 22cm and 

subtended1.56° of visual angle. Lights within the scanning room were switched off or 

concealed before starting the experiment to maximise stimulus visibility.  

 

Stimuli were presented in a block design, with each block consisting of 10 TRs (20s) 

of stimulus presentation followed by a 5 TRs (10s) interstimulus interval (ISI). The 

stimulus presented in each block was randomly chosen from 19 shuffled conditions 

(full contrast: 2Hz luminance, 2Hz S-cone isolating, 2Hz red-green, 8Hz luminance, 

8Hz S-cone isolating, 8Hz red-green, 32Hz luminance, 32Hz S-cone isolating, 32Hz 

red-green, 64Hz luminance, 64Hz S-cone isolating, 64Hz red-green, 125Hz 

luminance, 125Hz S-cone isolating, 125Hz red-green, subthreshold contrast: 2Hz 

luminance, 2Hz S-cone isolating, null condition) prior to the scan. Each fMRI scan 

consisted of ten blocks, taking 6 minutes 30s. In each session, a participant would 

complete six scans.  
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To maintain the participant’s attention, the LED output was programmed to dim 

briefly just before the stimulus presentation on randomly selected trials. Participants 

were asked to push any button on the response pad upon observing this.  

 

5.3.6 Regions of interest (ROI) 
 

5.3.6.1 Mapping of ROI 
 

The participants had all completed retinotopic scanning prior to the current 

experiment using the standard retinotopic mapping procedure of rotating wedge and 

expanding ring stimuli. V1, V3a and V4 were identified using phase reversal 

techniques. Areas immediately adjacent to stimulus-driven regions can produce 

negative BOLD responses (Wade & Rowland, 2010) and combining responses from 

positive and negative regions can lower the apparent response to the stimulus. In 

addition, penumbral cones (those in the shadow of blood vessels) can cause 

 
Fig. 5.1 Stimulus configuration for a single block. First, baseline light is 
presented, followed by a brief dimming as part of the attentional task. This is 
succeeded by ten blocks of stimulus presentation, each one lasting 10 TRs (or 
20 s) and a 5 TRs (10 s) ISI.  

+

+

+ 

Gabor dims to cue stimulus onset 

Stimulus 
20 s

Time

ISI
10 s+
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significant noise (Spitschan et al., 2015) because they generate errors in the 

estimates of cone excitation spectra. To address these issues, we first limited each 

visual area to the central 3° of visual field (where blood vessels are rare or absent).  

We then ran a contrast to identify regions within this area that were responsive to 2-

64Hz modulations of all three colours in comparison to the control condition. These 

areas were selected as our final regions of interest. 

 

5.3.6.2 Analysis of ROI 
 

We analysed data from individual participant in Matlab 8.5.0 (2015a, The MathWorks 

Inc., Natick, MA, USA) using the mrVista software 

(https://web.stanford.edu/group/vista/cgi-bin/wiki/index.php/Software; Vista Lab, 

Stanford University). Three dummy volumes included at the start of each scan were 

discarded and motion correction was performed within each scan. We used the 

FAST-corrected and BET-extracted PD scans within each session as a reference to 

align functional data with the participant’s anatomical detail using an information 

maximisation algorithm (Nestares & Heeger, 2000). Cortical grey and white matter 

boundaries were reconstructed using Freesurfer v5.3 and we limited BOLD activity in 

subsequent analyses within the grey matter. 

 

We suspected that a sudden onset of bright light in the dark scanning room might 

generate atypical BOLD responses. Hence, the first trial of each scan was coded as 

a separate condition regardless of stimulus properties. We also discarded the sixth 

scan for participant RE due to an artefact that persisted after motion compensation. 

 

We combined the functional data from all four experimental sessions for each 

participant before running a general linear model (GLM) analysis on the combined 

sequences for all 20 (19 + 1) conditions. We modelled the time course from each 

ROI using the stimulus matrix convolved with a weighted hemodynamic response 

function (the ‘difference of Gammas’ hemodynamic response function from the SPM 

8 toolbox (http://www.fil.ion.ucl.ac.uk/spm/)). This produced a beta weight per 

condition within each ROI. We then subtracted the beta weight of the control 

condition from the beta weights of the rest. The GLM also yielded the percentage of 
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variance explained for each ROI per participant. We excluded one set of beta 

weights (MS, V3a) from further analysis as it explained less than 2% of variance. 

 

5.4 Results 
 

5.4.1 Overview of the data 
 

We ran a GLM on the data combined across all four sessions for participants 

separately and estimated the mean amplitudes (beta weights) in each condition. 

Mean amplitude for the null condition was then subtracted from the beta values of all 

conditions. The results are plotted in Fig. 5.2, Fig. 5.3 and Fig. 5.4 for ARW, RE and 

MS respectively). We observed some signatures of chromatic BOLD responses, 

such as greater responses to slow flickering, high contrast stimuli that attenuates 

with increasing frequencies.  

 

We ran one-sample t-tests comparing null adjusted mean amplitudes of each 

condition to the test value of 0 (i.e. null condition) for participants separately (see 

Fig. 5.2, Fig. 5.3 and Fig. 5.4 and Table 5.1, Table 5.2, and Table 5.3 in 

Appendices for detailed statistics). We found high inter-subject variances in 

responses, but participants largely responded significantly to low temporal frequency 

high contrast stimuli. 
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Fig. 5.2 BOLD amplitude (GLM betas) recorded at ARW’s ROIs with null 
subtracted. Error bars denote ±1 SE. Green shaded area denotes conditions where 
either temporal frequency or contrast is below threshold and participant cannot 
consciously perceive the stimuli. Asterisks denote conditions with significant 
difference between amplitudes and the control (i.e. 0% BOLD).  
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Fig. 5.3 BOLD amplitude (GLM betas) recorded at RE’s ROIs with null subtracted. 
Error bars denote ±1 SE. Green shaded area denotes conditions where either 
temporal frequency or contrast is below threshold and participant cannot 
consciously perceive the stimuli. Asterisks denote conditions with significant 
difference between amplitudes and the control (i.e. 0% BOLD). 
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5.4.2 Neural responses to ‘visible’ stimuli   
 

In general, we observed a relationship between contrast sensitivity and temporal 

frequency, where responses to high contrast stimuli were stronger for lower temporal 

frequencies and decreased as the flicker became faster. We plotted the group 

averaged amplitudes for ‘visible’ stimuli at 2Hz for full and subthreshold contrast 

conditions. Expectedly, full contrast conditions evoked higher BOLD amplitudes for 

flicker of all stimulus colours than subthreshold conditions. 

 

 
Fig. 5.4 BOLD amplitude (GLM betas) recorded at MS’s ROIs with null 
subtracted. Error bars denote ±1 SE. Green shaded area denotes conditions 
where either temporal frequency or contrast is below threshold and participant 
cannot consciously perceive the stimuli. Asterisks denote conditions with 
significant difference between amplitudes and the control (i.e. 0% BOLD). 
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5.4.3 Neural responses to ‘invisible’ stimuli   
 

Based on our research questions, we first compared the data for ‘invisible’ flicker 

conditions to contrast and chromatically matched ‘visible’ flicker to find out if visible 

flicker generated significantly greater BOLD activity. We then examined if responses 

to invisible flicker were greater than the null condition. Lastly, we compared the 

responses between the two ‘invisible’ frequencies (32 and 64Hz) in chromatic 

conditions to determine if responses simply decline with increasing temporal 

frequencies. These conditions were chosen to match and extend on the findings in 

Jiang, Zhou, & He (2007)’s paper. 

 

We found for purely luminance stimuli, visible flicker at 2Hz consistently generated 

greater responses than invisible flicker of 64Hz in all visual areas. We also observed 

this trend in chromatic conditions, where both 32 and 64Hz flicker produced much 

smaller responses than 2Hz flicker. Flicker modulate at above CFFF also produced 

higher BOLD responses than the null conditions. Within the invisible frequency range 

for chromatic flicker, BOLD responses increased with higher temporal frequencies. 

All means and standard deviations are summarised in Table 5.4 in the Appendices. 

All comparisons can be visualised in Fig. 5.5. 
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5.4.4 Neural responses to rapid S-cone flicker 
 

We also asked if BOLD responses to S-cone isolating stimuli evoked greater BOLD 

amplitudes in V3a as compared to the other temporal frequencies. The results 

 
Fig. 5.5 Mean amplitude (beta weights) from GLMs averaged across three 
participants. Green shaded region denotes the ‘invisible’ frequency range where 
flicker rate is above participants’ CFFF. The data showed that full contrast 2Hz 
stimuli consistently evoked greater BOLD responses than subthreshold contrast 
stimuli. As compared to full contrast 2Hz flicker, responses towards full contrast 
‘invisible’ flicker were always weaker for purely luminance stimuli (64Hz). This 
attenuation was also observed for all 32Hz chromatic flicker, but chromatic 
responses showed unexpected increases at 64Hz. 
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showed that while S-cone driven responses were indeed greater in V3a than V1 and 

V3, this trend was also observed for luminance and red-green driven responses. 

This finding was depicted in Fig. 5.6.  

 

 
 

5.4.5 Interaction between stimulus frequency 

and colour in V1 and V4 
 

 
 
Fig. 5.6 Mean amplitude (beta weights) in V1, V3a and V4 averaged across ARW 
and RE (MS V3a data excluded) for S-cone isolating stimuli. Grey lines represent 
data for luminance flicker, blue lines represent data for S-cone isolating flicker and 
red represent data for red-green flicker. Green shaded region denotes the 
‘invisible’ frequency range where flicker rate is above participants’ CFFF. V3a was 
consistently more responsive than V1 across all chromaticities. In general, BOLD 
amplitudes decreased as a function of increasing temporal frequencies, with the 
exception of red-green flicker. We also saw an increase in BOLD amplitude to 
rapid S-cone isolating flicker at 64Hz. However, this was not unique to V3a, 
implying a bottom-up amplification of neural responses that affects all the activity 
of all visual areas. 
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We examined the mean amplitude in V1 and V4 for 2Hz and 8Hz stimuli and asked if 

there was an interaction between colour and temporal frequency. The results 

indicated that responsiveness to a chromatic stimulus was dependent on the 

temporal frequency. In Fig. 5.7, for example, responses to 2Hz chromatic stimuli are 

greater than that for 2Hz achromatic stimuli in both V1 and V4. However, this 

difference became less distinct with 8Hz stimuli, where responses to all three 

chromaticities were almost identical in V4. 

 

 
 

 
 
Fig. 5.7 Participant ARW’s data rendered onto a brain surface mesh using 
mrMeshPy, showing neural responses as a result of running contrast between 
luminance and chromatic (S-cone isolating and red-green) conditions for (A) 2Hz 
flicker and (B) 8Hz flicker. Cool tones indicate greater activation for chromatic 
than luminance stimuli and warm tones indicate greater activation for luminance 
than chromatic stimuli. Visual areas are denoted by coloured outlines: V1 in red, 
V2 in green, V3a in blue and V4 in pink. Visual areas outlined here are identified 
based on retinotopic mapping and are not restricted to the central 3 degrees. (C) 
Averaged BOLD signals across visual areas for the conditions illustrated above. 
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This was not the case for the other participants, who showed greater responses to 

2Hz luminance and red-green stimuli in both V1 and V4. This response pattern was 

also observed for 8Hz stimuli in RE (Fig. 5.8), but MS showed a distinct preference 

for luminance stimuli in V1 and chromatic red-green stimuli in V4 (Fig. 5.9).  

 

 
 

 
Fig. 5.8 Participant RE’s data rendered onto a brain surface mesh using 
mrMeshPy, showing neural responses as a result of running contrast between 
luminance and chromatic (S-cone isolating and red-green) conditions for (A) 2Hz 
flicker and (B) 8Hz flicker. Blue indicate greater activation for chromatic than 
luminance stimuli and orange tones indicate greater activation for luminance than 
chromatic stimuli. Visual areas are denoted by coloured outlines: V1 in red, V2 in 
green, V3a in blue and V4 in pink. Visual areas outlined here are identified based 
on retinotopic mapping and are not restricted to the central 3 degrees. (C) 
Averaged BOLD signals across visual areas for the conditions illustrated above. 
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BOLD activation averaged across all three participants showed that luminance 

(mean = 0.24, SD = 0.12) and chromatic flicker (mean = 0.24, SD = 0.11) at 2Hz 

generated a roughly 1:1 ratio in V1. This pattern of BOLD activation was also found 

in V4 for 8Hz conditions (luminance: mean = 0.21, SD = 0.11, chromatic: mean = 

0.20, SD = 0.11). In contrast, chromatic 2Hz flicker (mean = 0.32, SD = 0.09) evoked 

higher BOLD amplitudes in V4 than achromatic ones (mean = 0.24, SD = 0.06) and 

achromatic 8Hz flicker (mean = 0.24, SD = 0.06) evoked higher BOLD amplitudes in 

V1 than chromatic ones (mean = 0.13, SD = 0.08) (Fig. 5.10). 

 

 
Fig. 5.9 Participant MS’s data rendered onto a brain surface mesh using 
mrMeshPy, showing neural responses as a result of running contrast between 
luminance and chromatic (S-cone isolating and red-green) conditions for (A) 2Hz 
flicker and (B) 8Hz flicker. Blue tones indicate greater activation for chromatic 
than luminance stimuli and orange tones indicate greater activation for luminance 
than chromatic stimuli. Visual areas are denoted by coloured outlines: V1 in red, 
V2 in green, V3a in blue and V4 in pink. Visual areas outlined here are identified 
based on retinotopic mapping and are not restricted to the central 3 degrees. (C) 
Averaged BOLD signals across visual areas for the conditions illustrated above. 
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5.5 Discussion 
 

BOLD responses to chromatic and achromatic stimuli have been extensively 

researched, but often with a stimulus modulation frequency range that is limited by 

the framerate of the display system. The current study overcame this obstacle using 

a novel 5-primary LED system to generate our stimuli. We were primarily interested 

in whether flicker modulating above CFFF generated clear BOLD responses as 

compared to null conditions. But, additionally, we also searched for evidence that 

fast S-cone signals enhanced activity in motion sensitive, non-chromatic areas like 

V3a, and whether responses of V1, V3a and V4 to chromatic inputs changed with 

the temporal frequency of the stimulus.  

 

 

 
 

Fig. 5.10 Group averaged BOLD signals across visual areas for 2 and 8Hz 
achromatic and chromatic flicker: (A) showing all three chromaticities separately 
and (B) showing luminance and coloured stimuli. 
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5.5.1 BOLD responses to ‘visible’ and ‘invisible’ 

stimuli 
 

Overall, we found some evidence of high temporal frequency flicker driving V1, V3a 

and V4. Both individual and group averaged responses showed that high contrast, 

low frequency stimuli generated higher BOLD amplitudes as compared to low 

contrast, high frequency stimuli. However, on an individual basis, we found one 

participant (ARW) that responded significantly to multiple ‘invisible’ flicker conditions, 

demonstrating a high heterogeneity in the results. The comparisons between group 

averaged data suggested that selected ‘invisible’ flicker conditions (32, 64Hz for S-

cone isolating and red-green, 64Hz for luminance) evoked responses that were 

smaller than colour- and contrast-matched ‘visible’ 2Hz conditions, but greater than 

null. We also found that although responses to fast S-cone isolating stimuli were 

generally greater in V3a than V1 and V4, this trend was not unique to S-cone 

isolating stimuli. Lastly, we found a clear interaction between temporal frequency and 

stimulus colour in visual areas. Specifically, chromatic preference was demonstrated 

by V4 responses only for 2Hz flicker, and 8Hz luminance responses were much 

higher than chromatic responses.  

 

We also noted that the red-green stimuli, which were used in the previous fMRI study 

by Jiang et al. (2007), often generated the strongest responses. Our data also 

showed that grouped averaged responses to invisible flicker in V4 were greater than 

those in the null condition. This suggested that signals modulating above the CFF 

were not filtered out before V4, which was consistent with the findings of the 

previous study.  

 

On the other hand, we observed a much higher level of variability between subjects 

than expected (Fig. 5.2, Fig. 5.3 and Fig. 5.4), suggesting that the situation might 

not be that simple. While two out of three subjects showed non-significant BOLD 

responses to high frequency flicker, one subject (ARW) showed robust responses to 

invisible flicker: some of which were similar or even higher than the colour-matched 
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visible stimuli. We considered possible mechanisms that might have caused 

significant responses to invisible flicker aside from bottom-up visual processing. 

 

One possibility would be that the activity we measured for chromatic stimuli was 

partially due to luminance ‘leakage’ or ‘splatter’ (Spitschan et al., 2014). We 

modulated the stimuli at very high contrasts (i.e. the maximum provided by the 

relatively pure LED primaries). This made the resultant flicker more salient, but with 

an increased probability that they were not rendered perfectly at isoluminance. 

Normally, isoluminant flicker modulating above CFFF would fuse and appear 

perceptually identical to the background. A stimulus ‘splatter’, however, could 

provide an additional chromatic filter to a perceptually invisible flicker. Additionally, 

the mechanisms of the early visual system are not perfectly linear, such as retinal 

computation (Chichilnisky & Kalmar, 2002; Schwartz & Rieke, 2011). This means 

that even if our estimates of cone spectral sensitivities were perfectly accurate, the 

non-linearities in the visual pathway might lead to residual ‘DC’ colour perception 

when the mean luminance of alternating flicker does not sum to zero (Rider et al., 

2018; Stockman et al., 2017).  

 

Furthermore, the ventral stream is linked with top-down colour imagery in addition to 

bottom-up stimuli (Chao & Martin, 1999). Direct interactions between perception and 

memory have been evidenced repeatedly (Hansen et al., 2006; Olkkonen et al., 

2008). Greyscale images of objects with conventional colour schemes (e.g. 

bananas) could also induce chromatic biases, moving the achromaticity baseline 

closer towards the implied colour (Lee & Mather, 2019). In a similar way, static 

images that contained motion cues may activate motion sensitive cortical areas 

(Kourtzi & Kanwisher, 2000) as well as evoke motion aftereffects (Winawer et al., 

2008). Attention to subthreshold motion may even be sufficient in driving motion 

areas (Huk & Heeger, 2002). We extrapolate from these findings that tiny flashes of 

colour leakage can theoretically lead to an amplified response in visual areas if the 

observer was cued to think about colour or remember colour stimuli rather than 

consciously perceiving it. Although the current stimuli were void of semantic 

information, it is possible that a hint of colour drove the visual system through similar 

top-down mechanisms. 
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On the other hand, if luminance leakage were contributing to the high BOLD 

responses in ‘invisible’ conditions, we would expect to see even bigger responses 

towards achromatic luminance stimuli, which we do not (Fig. 5.2). Additionally, 

luminance ‘splatter’ is determined by the bit depth of signal specification: with the 

RMS cone contrast of isoluminant patterns being about 7%, our estimates of 

luminance ‘splatter’ for red-green stimuli would be no more than 1% contrast even 

with a 5% error. Even if responses were contaminated by luminance splatter, it 

would be by a negligible amount. Furthermore, the GLMs conducted using ARW’s 

data consistently produced the highest variance explained amongst the participants, 

suggesting that the finding was robust despite being unusual. The small sample size 

and lack of group level statistical testing made it difficult to speculate further, but in 

general, the data indicated that responses to rapid signals were possible and might 

be more prevalent if experiment was repeated with more subjects and focused on 

fewer frequencies.  

 

We aimed to extend the findings of Jiang et al. (2007) by investigating how BOLD 

signal amplitudes changed with increasing frequency within in the invisible range. 

Despite not being tested for significance, the BOLD responses for 64Hz chromatic 

flicker were consistently higher than that for 32Hz (see Fig. 5.5). This conflicted with 

our predictions based on the attenuated adaptation effects (Vul & MacLeod, 2006), 

where within the ‘invisible’ range, a faster flicker would drive the visual system less 

powerfully than a slower flicker, and also with our general intuition that faster flicker 

must drive the visual system less strongly than slower ones in general.  

 

If the increase at 64Hz is real, what could cause it? One possibility is an interaction 

with an existing endogenous rhythm – perhaps gamma. Visual detection reaction 

times have previously shown strong correlations with the gamma activity within V4 

(Womelsdorf et al., 2006, 2007; Womelsdorf & Fries, 2007), adding to a growing pool 

of evidence for the role of gamma activity in attention synchronisation (Engel et al., 

2001; Steinmetz et al., 2000). A more recent experiment demonstrated that this 

effect can be essentially emulated by exogenously driving the visual system at 

gamma frequency range. The authors found that flicker of gamma range frequencies 

beyond CFFF (>50Hz) was able to direct attention, which resulted in better target 

detection and discrimination (Bauer et al., 2009). Interestingly, this effect was limited 
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to the mid-gamma range and not found for flicker below 35Hz, in accord to the range 

most suitable for the enhancement of postsynaptic kinetics (Fries et al., 2001). The 

current findings offer some weak support to this theory, as responses to 32Hz flicker 

and greater responses to 64Hz flicker through attention direction in the absence of 

conscious awareness.    

 

Finally, we saw more larger ‘invisible’ BOLD responses in V4 than in earlier visual 

areas. This indicated that signals were not strongly temporally filtered prior to arriving 

in V4. Instead, responses becoming significantly higher than null in V4 than V1 

suggested an amplification of signals progressing through the visual areas. Our data 

contradicted some previous findings which showed V4 activation to be restricted by 

the temporal frequency of stimuli (D’Souza et al., 2011; Mullen et al., 2010) but 

agreed broadly with Jiang et al. (2007)’s findings of significant ‘invisible’ flicker 

responses on the ventral surface. Instead, rapid chromatic and achromatic signals 

were likely filtered out in later extrastriate areas, possibly VO (Jiang et al., 2007). 

 

5.5.2 Rapid S-cone flicker 
 

Curiously, we observed higher BOLD responses to rapid S-cone isolating stimuli 

(>2Hz) in V3a when compared to V1 or V4. Although we initially suspected that this 

might have been a genuine effect, we found that activation within V3a was the 

strongest regardless of chromaticity. This implied that rapid S-cone signals did not 

preferentially activate V3a as compared to other visual areas. Instead, our data bore 

some resemblance to the temporal response functions described in D’Souza et al., 

(2011). The authors showed that V3a responses normalised to that of 2Hz were 

higher than V1 responses across the entire tested frequency range (up to 12Hz). 

This was supported by a more recent study using repetitive transcranial magnetic 

stimulation (rTMS), which showed that speed perception of both S-cone isolating and 

red-green signals were disadvantaged when rTMS was applied to V3a and MT 

(McKeefry et al., 2010). Area V3a’s ability to process motion information in chromatic 

signals are not limited to S-cone isolating stimuli as previously thought (Lee & 

Stromeyer, 1989; Morand et al., 2000). 

 



 155 

5.5.3 Interaction between stimulus frequency 

and colour in V1 and V4 
 

Our data also showed an interaction between stimulus colour and temporal 

frequency. We found a strong preference for chromatic flicker in V4, a well-known 

‘colour’ area, but only when flicker frequency was at 2Hz. At 8Hz, the BOLD 

amplitude evoked by achromatic and chromatic stimuli were almost identical. In 

contrast, we found that luminance flicker at 8Hz generated noticeably higher 

response in V1 as compared to V4, which was consistent with luminance channel’s 

ability to process motion (Livingstone & Hubel, 1987). The finding supported multiple 

studies that demonstrated the distinct temporal properties of chromatic and 

luminance processing channels (D’Souza et al., 2011; Liu & Wandell, 2005; 

Spitschan et al., 2016). The present-day chromatic retinotopic mapping are usually 

conducted with 2Hz stimuli and the Mondrian pattern in seminal research was shown 

at 1Hz (McKeefry & Zeki, 1997). Had it been shown at a faster frequency, perhaps 

the region in the fusiform gyrus would not have been as active.  

 

5.5.4 Future directions 
 

The current experiment extended our understanding of the temporal response 

functions in multiple visual areas by modulating the stimuli at much higher 

frequencies than before. However, it is clear that the experiment could be altered to 

produce more robust results in the future. Firstly, we experienced an unexpectedly 

high level of inter-subject variability. While our main interest was in responses 

generated by flicker above CFFF, we expected to see standard contrast response 

functions clearly across the data of all participants for the slower, perceptible 

frequency range. This was true of our chromatic responses, which were almost 

always greater at 2Hz than 8Hz (consistent with a temporal low-pass filter). 

However, we also observed instances where our expectations were not met, for 

example: non-significant V1 responses to fast luminance stimuli (MS, 32Hz) and 

non-significant V4 responses to slow S-cone isolating stimuli (RE, 2Hz). The lack of 
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clear signatures for chromatic flicker indicated that results of subsequent analyses 

might not be robust and reliable.   

 

Taking into account the overall low variance explained by the GLMs, future 

experiments should aim to create more powerful stimulation. This can be achieved 

by increasing the stimulus size or intensity. The current stimulus extended 1.56° 

visual angle, while those in previous experiments ranged from 3-3.5° (Jiang et al., 

2007; Shady et al., 2004) to 21° in the neuroimaging study that established the S-

cone temporal frequency response functions in V3a and MT (D’Souza et al., 2011). 

Since a smaller stimulus size would indicate fewer strongly activated voxels, the 

signal we obtained after averaging across the voxel group would inevitably be 

weaker. We also experienced some difficulties when defining ROIs. Overlaps 

between the regions activated during the stimulus presentation and predefined visual 

areas were small. In fact, the dataset with >2% variance explained (MS, V3a) 

revealed no overlap between the left hemisphere ROI and activated area. We 

suspected that this might be due to tiredness causing a lack of central fixation, which 

can lead to not just a lack of foveal activation, but foveal suppression if fixation 

moved into the peripheral visual field. Foveal stimuli are restricted by the difference 

in cone fundamentals between foveal and peripheral vision (Stockman & Sharpe, 

2000), so future experiments might consider using larger annulus stimuli. 

Additionally, decreasing the number of frequencies tested and recruiting more 

participants for shorter testing periods would also provide a more sensible trade-off 

between testing time and reliability of results and allow us to compute more robust 

group statistics. 

 

5.5.5 Conclusion 
 

In conclusion, we found substantial responses to high temporal frequency 

modulations in group averaged data. Additionally, red-green flicker drove the visual 

system more robustly than the other chromaticities and responses in V4 were more 

significant than responses in V1, which indicated amplification of the initial V1 neural 

responses. On an individual basis, however, only one subject exhibited significant 

responses to invisible rapid flicker. This might be a ‘real’ effect but could also 
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implicate some input from top-down mechanisms. Despite the high inter-subject 

variability and low variance explained, we believe that rapid, invisible signals can 

drive the visual cortex. Future endeavours should consider recruiting a larger sample 

size and more focused temporal frequency range to conduct statistical testing.  

 

We also found that all three chromaticities activated V3a most strongly, which meant 

that we could not conclude V3a processing rapid S-cone driven signals through an 

alternate pathway. Significant rapid S-cone responses found by previous 

experiments in MT may originate from a direct input to that area rather than being 

found throughout the motion processing pathway. Lastly, we observed that visual 

areas exhibited different chromatic sensitivity depending on the frequency of the 

stimulus (2 or 8Hz): the chromatic preference in V4 was clear with 2Hz flicker but 

absent at 8Hz.  
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6 Chapter 6: General discussion 
 

6.1 Summary of key findings 
 

The general objective of this thesis was to understand the relationship between 

cortical rhythms and visual perception. Currently, the research on endogenous 

activity remains conflicted on several fundamental issues, including their production 

and their functions. The study of rhythmic cortical activity extends across multiple 

disciplines, and so to address these questions, our work approached the topic from 

several directions. Specifically, we investigated the mechanisms of endogenous 

rhythmogenesis and involvement of endogenous activity with visual perception and 

stimulus-driven responses. Our key research questions included changes to visual 

cortex gamma activity after modulating synaptic and extrasynaptic GABA 

concentration, predicting psychophysical performance using prestimulus alpha 

activity and looking for signatures of interaction between chromatic SSR and 

endogenous rhythms in general. Finally, we examined the neural correlates of 

periodic, high frequency responses using fMRI, examining the filtering stages of very 

fast visual input.  

 

We demonstrated in the first experimental chapter that gamma oscillations in slice 

preparations of rodent visual cortex were not affected by increasing GABA 

concentration either extrasynaptically (through application of GABA solution) or 

synaptically (using GABA reuptake inhibitor tiagabine). The data also revealed 

substantial fluctuations in both frequency and amplitude of gamma rhythms after 

administering tiagabine and that ‘gamma-band’ endogenous activity was consistently 

centred at two distinct frequencies. The findings implicated three things. Firstly, 

voxel-based GABA concentration cannot be accurate estimations of GABAergic 

drives: GABA production, storage and usage are deeply interlinked and can only be 

quantified accurately by considering postsynaptic GABA receptor kinetics. Secondly, 

the properties of gamma oscillations are extremely time-sensitive (at least in slice 

preparations), which makes it important to standardise or indicate when recordings 
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were taken across different studies. Lastly, gamma activity can include subtypes of 

distinct frequency bands which arise from different networks and have different 

reactivity to chemical agents. These subtleties are often disregarded in human 

electrophysiology and neuroimaging studies, which inevitably contribute to 

inconsistencies in the literature regarding the GABA-gamma relationship. 

 

The second experimental chapter looked at predicting psychophysical performance 

using alpha activity. As previous studies often modulated alpha activity using 

attentional cues, this chapter focused on spontaneous alpha, which was more 

stochastic in nature. We found that spontaneous alpha power predicted reaction time 

but not accuracy during an orientation discrimination task. Surprisingly, trial success 

(‘hits’ and ‘misses’) could only be predicted by the pattern of alpha activity after 

stimulus presentation, and the relationship between alpha power and task accuracy 

changed as a function of the subject’s orientation discrimination threshold. Overall, 

the results suggested that spontaneous alpha is a more accurate marker of vigilance 

than of feature sensitivity. Alpha activity might also indicate emotional state as the 

timing of high classification accuracy corresponded to when subjects received 

feedback. Finally, prior experience might engage different cortical networks that 

oscillate at the same frequency band. This highlights the importance of controlling for 

the subject’s task experience in future psychophysics experiments.  

 

The third chapter explored endogenous oscillations and their interactions with 

stimulus driven responses. The stimuli in question were chosen from the three axes 

of the Macleod-Boynton colour space (MacLeod & Boynton, 1979): luminance 

achromatic and isoluminant chromatic blue-yellow and red-green. The data exhibited 

several SSVEP signatures, such as strong responses at fundamental frequencies 

and stronger second harmonic components in luminance than chromatic responses 

(McKeefry et al., 1996). Robust responses were often evident at high order 

harmonics of the inputs, suggesting the presence of nonlinearities in the visual 

system.  

 

We also found an effect of stimulus colour on the four broadband EEG power tested: 

theta, alpha, beta, gamma, with alpha being the strongest. However, the power 

spectrum did not reveal clear intermodulation terms that would be the signatures of 
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nonlinear interactions between S-cone isolating signals and sub-alpha range 

(<10Hz) activity. Considering the possibility that the interaction was too weak to be 

seen in the power spectrum, we extended the data to include phase information and 

trained a classifier to predict stimulus colour based on the pattern of activity across 

the scalp. We found clusters of high classification accuracies and post hoc tests 

revealed that differences in electrical activity mostly emerge from comparisons 

between either chromatic conditions with the achromatic condition. Overall, the 

results did not support any distinct relationship between koniocellular and 

endogenous sub-alpha range activity (Cheong et al., 2011). However, complex data 

revealed unique patterns of activity at non-harmonic frequencies above CFFF, which 

indicated that (1) phase information can offer more insight about signal interactions 

than amplitude data alone and (2) phase coupling occurs and differs specifically 

between endogenous rhythms and pathways processing either chromatic or 

achromatic. 

 

The high frequencies of significant classification accuracies demonstrated that the 

brain can sustain rapid phase-locked signals in response to external stimulation. 

Together with previous psychophysical and neuroimaging evidences (Jiang et al., 

2007; Shady et al., 2004), we extended this finding in the fourth chapter. We 

presented rapid flicker to the observers directly and examined BOLD activation in 

three visual areas that we expected to have very different chromatic response 

profiles (V1, V3a and V4). Chromatic and achromatic flicker was selected from the 

Macleod-Boynton colour space and modulated across five temporal frequencies 

using a 5-primary LED system with no framerate restrictions. Even without conscious 

perception, many flicker beyond CFFF drove V1, V3a and V4 robustly, with red-

green responses being the most powerful in both ‘visible’ and ‘invisible’ frequency 

ranges. There was no indication of bias towards rapid S-cone signals however, 

suggesting that potential MT responses to fast S-cone inputs might occur through a 

more direct pathway (D’Souza et al., 2011; Morand et al., 2000). Finally, the ratio of 

chromatic to achromatic contrast sensitivity was clearly dependent on temporal 

frequency: V4 responses were only greater for chromatic than achromatic inputs at 

2Hz. This finding supports the idea that chromatic and achromatic inputs stimuli may 

be multiplexed in some areas commonly thought to be highly specialised for colour 
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and that it may be more appropriate to talk about neuronal chromatic sensitivity in 

the context of temporal (and perhaps also spatial) frequency.   

 

6.2 Future directions 
 

This thesis addressed a wide range of research questions pertaining to endogenous 

rhythms. Using a wide variety of measurement techniques and analysis methods, the 

results highlight the complexity of neural oscillations at multiple levels. 

Measurements of endogenous rhythms are often modulated by external stimulation, 

and they do not necessarily share simple linear relationships with neurochemical 

agents used to regulate them. Furthermore, the function and mechanisms inferred 

from endogenous activity are not determined solely by their frequency. Incorporating 

these details will inevitably improve the consistency and accuracy of future studies.  

 

To avoid misinterpreting measurements of endogenous oscillations, future projects 

should use more precise methods when measuring or manipulating endogenous 

drive. This might involve finding more suitable markers for neuronal activity. For 

example, GABAergic inhibition is almost entirely driven by postsynaptic receptor 

kinetics, which can be more accurately inferred from postsynaptic GABAA receptor 

density than voxel-based concentration. Manipulating GABAergic process is more 

efficient through appropriate pharmaceutical agents like GABA agonists as they 

directly affect postsynaptic kinetics. As biological systems have homeostatic defence 

mechanisms that resist changes in membrane potentials, it is impossible to monitor 

endogenous rhythms perfectly. Nonetheless, these methods would produce more 

realistic estimates of endogenous activity than some of the current techniques.  

 

The data also illustrated some unexpected sensitivities of endogenous activity to 

attention and task expertise. We reported high inter-subject variability in two datasets 

(Chapter 3 and Chapter 5), which we suspect were influenced by the subject’s prior 

experience with the task and their engagement during the experiment. Specifically, 

subjects who were highly familiar with visual psychophysics showed evidence of 

correlation between stronger alpha activity and more accurate visual discrimination 

(Chapter 3), as well as more robust BOLD responses to high rates of chromatic 
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flicker (Chapter 5). Neural responses can be amplified through top-down attentional 

modulations (Pessoa et al., 2003) which meant that the more robust responses 

might be caused by simply being more attentive during the task. This is a question to 

be addressed with more formal assessments of prior experiences, attention and 

interest. Nevertheless, the current work demonstrated a need for controlling for these 

factors.  

 

The result also challenges the idea that the function of endogenous activity is clearly 

defined by its frequency. We showed that gamma band oscillations can be slowed 

down to beta frequency by increasing inhibition (Fisahn et al., 1998; Whittington et 

al., 1996), but there is no clear consensus on whether this signal would be 

considered ‘gamma’ by its origin, or ‘beta’ by its oscillatory rate. Similarly, a decrease 

in alpha power can signify increased attention (Klimesch, 2012) or decreased 

inhibition of task-irrelevant areas (Pfurtscheller & Lopes da Silva, 1999), thus having 

opposite consequences on the subject’s performance. In fact, multiple networks can 

oscillate within the same frequency band. High and low gamma for example, have 

different behavioural correlates and postsynaptic potentials despite being in within 

the gamma range (>25Hz).  

 

Moreover, endogenous oscillations might not be related to cognitive processes at all. 

Gamma band activity is commonly acknowledged as being a temporal guideline to 

many cognitive functions. But there is also compelling evidence to suggest the time 

courses of gamma oscillations are more tightly linked with micro-saccades in the 

eyes instead of neural oscillatory activity (Bosman et al., 2009; Yuval-Greenberg et 

al., 2008; Yuval-Greenberg & Deouell, 2009, 2011). Frequency and amplitude of 

endogenous activity are also extremely time-sensitive: as shown in Chapter 3, the 

timeframe for this fluctuation can be as short as three minutes. Reporting and 

standardising time intervals between sampling (and, potentially, measuring eye 

movements) would be helpful in future human experiments.  

 

6.3 Final conclusions 
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This thesis addressed several key issues regarding endogenous oscillations and 

high frequency responses in the visual system. Our main findings are summarised 

as: 

 

1. Involvement of GABA in the production of gamma oscillations is not 

dependent on concentration alone (synaptically or extrasynaptically). We 

cannot meaningfully infer GABAergic inhibitory drive from the total GABA 

concentration measured within a voxel. 

2. Spontaneous alpha power prior to visual stimulation is a good indicator of how 

fast the subject would respond, but not how accurately. This suggests that 

spontaneous alpha activity, unlike attention-modulated alpha, might be more 

associated with vigilance than orientation sensitivity.  

3. Alpha activity might be related to task expertise, indicating activation of default 

mode network in experts and disengagement with the task in novices.  

4. Interaction between endogenous activity and stimulus-driven responses was 

observed in averaged broadband EEG power and complex data.  

5. Very rapid modulations can drive the visual cortex powerfully. Responses to 

flicker above CFFF were smaller as compared to slower, high contrast flicker, 

but still robust, indicating that high temporal frequencies are partially filtered 

before V4 but terminate in even higher-order areas. Response towards 

stimulus chromaticity is dependent on temporal frequency within the visible 

range. 

 

These findings provided a clearer depiction of how endogenous rhythms work with 

regards to visual processing and how they interact with visual inputs. Existing 

conflicts in the literature were revisited using multiple techniques and analyses. We 

found that while there is a pivotal association between endogenous activity and 

visual perception, the strength and characteristic of this association are highly 

dependent on physiological and behavioural factors. The current work also extended 

research on the temporal filtering stages within the visual cortex using a novel multi-

primary LED display system and found evidence of invisible rapid signals as high as 

V4. This implicated that neuronal processes up to extrastriate areas can be 

modulated unconsciously by flicker beyond CFFF.  
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Abbreviations  
 

4AFC   Four-alternate forced choice  

ACSF   Artificial cerebrospinal fluid 

ANOVA  Analysis of variance 

ASPA   Animals Scientific Procedures Act 

BOLD   Blood oxygen level-dependent 

CFF    Critical flicker fusion 

CFFF   Critical flicker fusion frequency 

DC   Direct current 

DKL space  Derrington, Krauskopf and Lennie colour space 

EEG   Electroencephalography 

EPSP   Excitatory postsynaptic potential 

fMRI   Functional magnetic resonance imaging 

FFT   Fast Fourier transform 

FOV   Field of view 

GABA   Gamma aminobutyric acid 

GAT-1   Gamma aminobutyric acid transporter 1 

GLM   Generalised linear model 

hV4   Fourth visual area in humans 

ICA   Independent component analysis 

IPSC   Inhibitory postsynaptic current 

IPSP   Inhibitory postsynaptic potential 

ISI   Interstimulus interval 

KC   Koniocellular 

L or L-cone  Cones with peak sensitivity long wavelengths (~564nm) 

LED   Light-emitting diode 

LFP   Local field potentials 

LGN   Lateral geniculate nucleus 

LRT   Likelihood ratio test 

M or M-cone  Cones with peak sensitivity medium wavelengths (~534nm) 

MC   Magnocellular 



 165 

MEG   Magnetoencephalography 

mM   Millimolar 

MRI   Magnetic resonance imaging 

MRS   Magnetic resonance spectroscopy 

MT/V5   Middle temporal area in primates or V5 

NMDA   N-methyl-D-aspartate receptor 

PC   Parvocellular 

PD   Proton density 

PING   Pyramidal-interneuron network gamma 

rTMS   Repetitive transcranial magnetic stimulation 

RGC   Retinal ganglion cell 

RMS   Root mean square  

ROI   Region of interest 

S or S-cone  Cones with peak sensitivity short wavelengths (~420nm) 

SEM   Standard error of the mean 

SNR   Signal to noise ratio 

SPM   Statistical parametric mapping 

SSVEP  Steady-state visually evoked potential 

SVM   Support vector machine 

TE   Echo time 

TR   Repetition time 

V1   Primary visual cortex 

V2   Second visual area 

V3   Third visual complex 

VP   Ventral posterior area or ventral V3 

V3a   Visual area V3a 

V4   Fourth visual area 

VO   Ventral occipital lobe, anterior to hV4 

VEP   Visually evoked potential 
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Appendices 
 

Table 3.6 Details of linear regression model for each participant, averaged across all 
electrodes predicting binned scores from prestimulus alpha power.  

 

i. Subject: AKS  

Variable b SE β t p 

Intercept 

(Constant) 

0.52 0.54  .96 .368 

Standardised 

alpha power 

-0.95 0.87 -.36 -1.10 .305 

 

ii. Subject: ARW  

Variable b SE β t p 

Intercept 

(Constant) 

-0.33 0.41  -.80 .447 

Standardised 

alpha power 

0.65 0.69 .30 .94 .371 

 

iii. Subject: AVB  

Variable b SE β t p 

Intercept 

(Constant) 

-0.44 0.31  -1.41 .196 

Standardised 

alpha power 

0.98 0.59 .51 1.67 .133 

 

iv. Subject: MK 

Variable b SE β t p 

Intercept 

(Constant) 

-0.99 0.29  -3.47 .007 

Standardised 

alpha power 

1.98 0.48 .81 4.10 .003 
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v. Subject: PC 

Variable b SE β t p 

Intercept 

(Constant) 

0.89 0.39  2.27 .049 

Standardised 

alpha power 

-1.78 0.66 -.67 -2.68 .025 

 

vi. Subject: RM 

Variable b SE β t p 

Intercept 

(Constant) 

0.57 0.20  2.87 .018 

Standardised 

alpha power 

-1.14 0.34 -.75 -3.40 .008 

 

vii. Subject: TN 

Variable b SE β t p 

Intercept 

(Constant) 

0.80 0.33  2.40 .040 

Standardised 

alpha power 

-1.61 0.57 -.69 -2.84 .019 

 

Table 3.7 Details of linear regression model for each participant, averaged across 
visual electrodes predicting binned scores from prestimulus alpha power.  

 

i. Subject: AKS 

Variable b SE β t p 

Intercept 

(Constant) 

-0.20 0.54  -0.38 .717 

Standardised 

alpha power 

0.38 .87 .15 0.43 .678 

 

ii. Subject: ARW 



 205 

Variable b SE β t p 

Intercept 

(Constant) 

-0.12 0.58  -0.20 .846 

Standardised 

alpha power 

0.23 0.99 .08 0.24 .818 

 

iii. Subject: AVB 

Variable b SE β t p 

Intercept 

(Constant) 

0.12 0.56  0.21 .837 

Standardised 

alpha power 

-0.26 1.04 -.09 -0.25 .808 

 

iv. Subject: MK 

Variable b SE β t p 

Intercept 

(Constant) 

-1.27 0.23  -5.60 <.001 

Standardised 

alpha power 

2.53 0.38 .91 6.62 <.001 

 

v. Subject: PC 

Variable b SE β t p 

Intercept 

(Constant) 

1.10 0.43  2.54 .032 

Standardised 

alpha power 

-2.19 0.73 -.71 -3.01 .015 

 

vi. Subject: RM 

Variable b SE β t p 

Intercept 

(Constant) 

1.01 0.44  2.28 .049 

Standardised 

alpha power 

-2.01 0.75 -.67 -2.70 .025 
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vii. Subject: TN 

Variable b SE β t p 

Intercept 

(Constant) 

1.08 0.39  2.81 .020 

Standardised 

alpha power 

-2.16 0.65 -.74 -3.32 .009 

 

Table 3.8 Details of linear regression model for each participant, averaged across all 
electrodes predicting reaction time from prestimulus alpha power.  

 

i. Subject: AKS 

Variable b SE β t p 

Intercept 

(Constant) 

-1.26 0.28  -4.59 .001 

Standardised 

alpha power 

0.23 0.04 .86 5.42 <.001 

 

ii. Subject: ARW 

Variable b SE β t p 

Intercept 

(Constant) 

-0.27 0.39  -0.69 .504 

Standardised 

alpha power 

0.05 0.06 .25 0.82 .432 

 

iii. Subject: AVB 

Variable b SE β t p 

Intercept 

(Constant) 

0.36 0.34  1.05 .317 

Standardised 

alpha power 

-0.07 0.05 -.37 -1.24 .242 

 

iv. Subject: MK 
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Variable b SE β t p 

Intercept 

(Constant) 

-0.52 0.44  -1.17 .276 

Standardised 

alpha power 

0.08 0.06 .41 1.28 .237 

 

v. Subject: PC 

Variable b SE β t p 

Intercept 

(Constant) 

-0.74 0.49  -1.53 .158 

Standardised 

alpha power 

0.13 0.08 .50 1.80 .102 

 

vi. Subject: RM 

Variable b SE β t p 

Intercept 

(Constant) 

-0.44 0.28  -1.54 .154 

Standardised 

alpha power 

0.08 0.04 -.50 1.82 .099 

 

vii. Subject: TN 

Variable b SE β t p 

Intercept 

(Constant) 

0.26 0.29  0.90 .389 

Standardised 

alpha power 

-0.05 0.05 -.32 -1.06 .312 

 

Table 3.9 Details of linear regression model for each participant, averaged across 
visual electrodes predicting reaction time from prestimulus alpha power.  

 

i. Subject: AKS 

Variable b SE β t p 



 208 

Intercept 

(Constant) 

-1.32 0.29  -4.58 .001 

Standardised 

alpha power 

0.24 0.04 .86 5.40 <.001 

 

ii. Subject: ARW 

Variable b SE β t p 

Intercept 

(Constant) 

-0.16 0.47  -0.33 .745 

Standardised 

alpha power 

0.03 0.07 .12 0.40 .701 

 

iii. Subject: AVB 

Variable b SE β t p 

Intercept 

(Constant) 

0.26 0.49  0.53 .605 

Standardised 

alpha power 

-0.07 0.08 -.20 -.63 .543 

 

iv. Subject: MK 

Variable b SE β t p 

Intercept 

(Constant) 

-0.63 0.41  -1.55 .161 

Standardised 

alpha power 

0.10 0.06 .51 1.69 .130 

 

v. Subject: PC 

Variable b SE β t p 

Intercept 

(Constant) 

-0.62 0.52  -1.19 .263 

Standardised 

alpha power 

0.11 0.08 .41 1.40 .192 
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vi. Subject: RM 

Variable b SE β t p 

Intercept 

(Constant) 

-0.74 0.43  -1.71 .118 

Standardised 

alpha power 

0.14 0.07 .54 2.02 .071 

 

vii. Subject: TN 

Variable b SE β t p 

Intercept 

(Constant) 

0.66 0.29  2.26 .047 

Standardised 

alpha power 

-0.12 0.05 -.65 -2.67 .023 
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Fig. 3.8 Reaction time plotted against binned scores. Positive correlation likely 
demonstrates a trade-off between taking longer to respond and being more 
accurate at the task. This might be a way to assess the autopilot mode in people: 
positive correlation could mean that the task takes up more conscious effort, and 
no positive correlation (or negative correlation) could indicate that scores are not 
due the fact that they’re taking longer and being more careful.  
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Fig. 3.9 Scatterplots of the left hemisphere visual electrodes (top row) and right 
hemisphere visual electrodes (bottom row) with (A) binned scores and (B) 
reaction time. Data were grouped by whether the target in that particular trial 
appeared in the left visual field or the right. Blue denotes responses from 
ipsilateral electrodes and red denotes responses from contralateral electrodes in 
respect of the target location. Data that did not reach significance were paled 
out.  
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Table 4.2 Detail of ANOVAs showing significant effect of stimulus colour on 
individual frequency bins for coherently averaged EEG data with Bonferroni-
corrected p-values. Last three columns show post-hoc tests analysing the difference 
between stimulus colours. Asterisks (*) denote significant differences between 
stimulus colours. 

 

Stimulus 

Frequency 

(Hz) 

Power 

Spectrum 

Frequency 

(Hz) 

ANOVA Luminance 

and S-

cone 

isolating 

Luminance 

and red-

green 

Red-green 

and S-

cone 

isolating 

5 5 F(2, 32) = 6.04, 

p = .026 

.277 .025 * .483 

10 F(2, 32) = 5.82, 

p = .028 

.046 * .999 .043 * 

15 F(2, 32) = 5.65, 

p = .030 

.894 .317 .145 

20 F(2, 32) = 

17.78, p < .001 

.299 .986 .230 

30 F(2, 32) = 8.76, 

p < .001 

.020 * .929 .007 * 

33 F(2, 32) = 4.58, 

p = .048 

.001 * .069 .185 

40 F(2, 32) = 9.70, 

p = .007 

.005 * .481 .085 

65 F(2, 32) = 7.62, 

p = .014 

.013 * .122 .607 

12 12 F(2, 32) = 5.37, 

p = .034 

.050 * .233 .725 

24 F(2, 32) = 

10.52, p = .005 

< .001 * .001 * .747 

36 F(2, 32) = 

14.65, p = .001 

.660 .104 .454 

37 F(2, 32) = 5.89, 

p = .028 

< .001 * < .001 * .762 
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48 F(2, 32) = 

19.76, p < .001 

.021 * .009 * .942 

51 F(2, 32) = 4.62, 

p = .047 

.066 .252 .770 

60 F(2, 32) = 4.55, 

p = .049 

.006 * .077 .583 

16 16 F(2, 32) = 

14.73, p = .001 

< .001 * < .001 * .993 

24 F(2, 32) = 7.81, 

p = .013 

< .001 * .001 * .934 

32 F(2, 32) = 

13.04, p = .002 

.103 .965 .059 

36 F(2, 32) = 7.35, 

p = .015 

.126 .769 .405 

48 F(2, 32) = 

15.80, p = .001 

.034 * .055 .979 

51 F(2, 32) = 3.55, 

p = .040 

.702 .033 * .183 

64 F(2, 32) = 5.96, 

p = .027 

.032 * .011 * .916 

65 F(2, 32) = 4.87, 

p = .042 

.103 .997 .121 

98 F(2, 32) = 5.02, 

p = .040 

.298 .048 * .625 

 

 

Table 4.3 Detail of ANOVAs showing significant effect of stimulus colour on 
individual frequency bins for incoherently averaged EEG data with Bonferroni-
corrected p-values. Last three columns show post-hoc tests analysing the difference 
between stimulus colours. Asterisks (*) denote significant differences between 
stimulus colours. 
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Stimulus 

Frequency 

(Hz) 

Power 

Spectrum 

Frequency 

(Hz) 

 
ANOVA 

Luminance 

and S-

cone 

isolating 

Luminance 

and red-

green 

Red-green 

and S-cone 

isolating 

5 5 F(2, 32) = 8.11, 

p = .012 

.303 .151 .915 

10 F(2, 32) = 7.84, 

p = .013 

.799 .965 .921 

12 F(2, 32) = 5.01, 

p = .040 

.672 .782 .982 

15 F(2, 32) = 9.47, 

p = .007 

.945 .441 .635 

20 F(2, 32) = 6.75, 

p = .019 

.514 .882 .805 

21 F(2, 32) = 3.39, 

p = .046 

.104 .953 .185 

12 
 

6 F(2, 32) = 5.88, 

p = .007 

.511 .934 .730 

8 F(2, 32) = 6.96, 

p = .018 

.619 .888 .884 

9 F(2, 32) = 6.17, 

p = .024 

.582 .757 .956 

10 F(2, 32) = 

10.04, p = .006 

.788 .972 .902 

11 F(2, 32) = 

12.23, p = .003 

.892 .438 .219 

12 F(2, 32) = 5.53, 

p = .032 

.429 .992 .363 

24 F(2, 32) = 7.38, 

p = .015 

.644 .977 .769 

36 F(2, 32) = 

10.07, p = .006 

.066 .996 .055 
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16 
 

8 F(2, 32) = 7.22, 

p = .016 

.853 .819 .998 

10 F(2, 32) = 6.89, 

p = .018 

.607 .718 .982 

15 F(2, 32) = 8.59, 

p = .010 

.986 .910 .966 

16 F(2, 32) = 

16.69, p = .001 

.174 .809 .461 

18 F(2, 32) = 6.87, 

p = .018 

.644 .856 .929 

24 F(2, 32) = 5.14, 

p = .012 

.150 .272 .939 

32 F(2, 32) = 9.36, 

p = .007 

.739 .839 .983 

40 F(2, 32) = 6.80, 

p = .003 

.915 .917 .999 

 

 

 

Table 5.1 Details of one-sample t-tests comparing BOLD amplitudes of each 
condition to null for participant ARW. 

 

Colour Temporal 

Frequency 

(Hz) 

V1 V3a V4 

Luminance 2 t(16) = 1.71, 

p = .107 

t(16) = 2.35, 

p = .032 

t(16) = 2.29, 

p = .036 

8 t(12) = 4.19, 

p = .001 

t(12) = 4.59, 

p < .001 

t(12) = 5.10, 

p < .001 

32 t(12) = 2.68, 

p = .020 

t(12) = 2.65, 

p = .021 

t(12) = 3.91, 

p = .002 

64 t(15) = 3.39, 

p = .004 

t(15) = 2.56, 

p = .022 

t(15) = 5.10, 

p < .001 
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125 t(14) = 0.39, 

p = .704 

t(14) = 0.79, 

p = .441 

t(14) = 3.71, 

p = .002 

2 (subthreshold 

contrast) 

t(10) = 1.88, 

p = .260 

t(10) = 3.21, 

p = .009 

t(10) = 3.03, 

p = .013 

S-cone 

isolating 

2 t(13) = 4.06, 

p = .001 

t(13) = 5.67, 

p < .001 

t(13) = 8.00, 

p < .001 

8 t(11) = 2.00, 

p = .071 

t(11) = 2.59, 

p = .025 

t(11) = 4.60, 

p<.001 

32 t(14) = 1.69, 

p = .114 

t(14) = 1.98, 

p = .068 

t(14) = 2.09, 

p = .055 

64 t(16) = 3.57, 

p = .003 

t(16) = 2.63, 

p = .018 

t(16) = 2.92, 

p = .010 

125 t(20) = -0.14, 

p = .888 

t(20) = 0.30, 

p = .766 

t(20) = 0.70, 

p = .490 

2 (subthreshold 

contrast) 

t(15) = 1.90, 

p = .077 

t(15) = 1.56, 

p = .140 

t(15) = 2.16, 

p = .048 

Red-green 2 t(12) = 4.22, 

p = .001 

t(12) = 3.58, 

p = .004 

t(12) = 5.00, 

p<.001 

8 t(16) = 2.73, 

p = .015 

t(16) = 1.73, 

p = .104 

t(16) = 3.25, 

p = .005 

32 t(17) = 0.34, 

p = .735 

t(17) = 1.26, 

p = .226 

t(17) = 2.41, 

p = .028 

64 t(18) = 3.54, 

p = .002 

t(18) = 3.05, 

p = .007 

t(18) = 4.64, 

p < .001 

125 t(8) = 2.56, p 

= .034 

t(8) = 1.98, p 

= .083 

t(8) = 3.02, p 

= .017 

2 (subthreshold 

contrast) 

t(14) = 2.21, 

p = .044 

t(14) = 0.73, 

p = .475 

t(14) = 1.35, 

p = .200 

 

 

Table 5.2 Details of one-sample t-tests comparing BOLD amplitudes of each 
condition to null for participant RE. 
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Colour Temporal 

Frequency 

(Hz) 

V1 V3 V4 

Luminance 2 t(10) = 2.46, 

p = .034 

t(10) = 1.88, 

p = .090 

t(10) = 2.27, 

p = .034 

8 t(13) = 3.09, 

p = .009 

t(13) = 1.93, 

p = .075 

t(13) = 0.67, 

p = .009 

32 t(13) = 3.02, 

p = .010 

t(13) = 1.38, 

p = .190 

t(13) = 0.85, 

p = .010 

64 t(14) = 0.29, 

p = .779 

t(14) = 0.28, 

p = .787 

t(14) = 0.02, 

p = .779 

125 t(14) = 0.39, 

p = .704 

t(14) = -1.66, 

p = .119 

t(14) = 0.58, 

p = .704 

2 (subthreshold 

contrast) 

t(13) = -1.02, 

p = .847 

t(13) = 2.85, 

p = .014 

t(13) = 3.07, 

p = .009 

S-cone 

isolating 

2 t(12) = -1.02, 

p = .326 

t(12) = -1.46, 

p = .170 

t(12) = 0.47, 

p = .644 

8 t(12) = 2.32, 

p = .039 

t(12) = 0.31, 

p = .765 

t(12) = 0.99, 

p = .344 

32 t(14) = -0.03, 

p = .979 

t(14) = -0.96, 

p = .353 

t(14) = -1.36, 

p = .197 

64 t(13) = 1.08, 

p = .302 

t(13) = 0.20, 

p = .845 

t(13) = 0.68, 

p = .510 

125 t(12) = 0.78, 

p = .450 

t(12) = 1.77, 

p = .101 

t(12) = 2.62, 

p = .022 

2 (subthreshold 

contrast) 

t(14) = -0.98, 

p = .343 

t(14) = -0.37, 

p = .717 

t(14) = 0.30, 

p = .769 

Red-green 2 t(13) = 5.50, 

p<.001 

t(13) = 3.36, 

p = .005 

t(13) = 5.42, 

p<.001 

8 t(13) = 0.18, 

p = .864 

t(13) = -0.67, 

p = .518 

t(13) = 2.69, 

p = .019 

32 t(14) = -0.78, 

p = .447 

t(14) = -1.43, 

p = .174 

t(14) = -0.58, 

p = .568 
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64 t(22) = 0.63, 

p = .538 

t(22) = 0.74, 

p = .465 

t(22) = 2.13, 

p = .045 

125 t(14) = -0.34, 

p = .736 

t(14) = -0.08, 

p = .938 

t(14) = 1.25, 

p = .233 

2 (subthreshold 

contrast) 

t(14) = 0.06, 

p = .957 

t(14) = 0.12, 

p = .903 

t(14) = 0.73, 

p = .476 

 

 

Table 5.3 Details of one-sample t-tests comparing BOLD amplitudes of each 
condition to null for participant MS. 

 

Colour Temporal 

Frequency (Hz) 

V1 V4 

Luminance 2 t(11) = 3.61, p = .004 t(11) = 4.59, p < 

.001 

8 t(15) = 0.11, p = .910 t(15) = 0.30, p = 

.769 

32 t(11) = 0.44, p = .667 t(11) = 1.54, p = 

.153 

64 t(15) = -1.94, p = 

.071 

t(15) = -1.74, p = 

.102 

125 t(14) = 0.82, p = .429 t(14) = 0.90, p = 

.384 

2 (subthreshold 

contrast) 

t(13) = -0.98, p = 

.344 

t(13) = -0.34, p = 

.741 

S-cone 

isolating 

2 t(14) = 0.52, p = .611 t(14) = 2.02, p = 

.063 

8 t(11) = 0.46, p = .651 t(11) = -0.17, p = 

.872 

32 t(15) = -1.52, p = 

.150 

t(15) = -0.82, p = 

.427 

64 t(15) = 0.48, p = .641 t(15) = 0.93, p = 

.367 
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125 t(12) = 0.44, p = .667 t(12) = 0.77, p = 

.458 

2 (subthreshold 

contrast) 

t(14) = -1.42, p = 

.177 

t(14) = 0.10, p = 

.926 

Red-green 2 t(14) = 2.76, p = .015 t(14) = 3.44, p = 

.004 

8 t(15) = 1.39, p = .184 t(15) = 1.72, p = 

.106 

32 t(15) = -1.98, p = 

.066 

t(15) = -0.93, p = 

.367 

64 t(23) = -0.23, p = 

.818 

t(23) = 0.15, p = 

.882 

125 t(14) = -0.69, p = 

.499 

t(14) = 0.65, p = 

.526 

2 (subthreshold 

contrast) 

t(14) = 0.12, p = .908 t(14) = 0.37, p = 

.718 

 

 

Table 5.4 Mean and standard deviations of BOLD responses (averaged across all 
participants) for all stimulus colours, contrast and frequencies in V1, V3a and V4.  

 

Stimulus 

Colour 

Contrast Stimulus 

Frequency 

(Hz) 

V1 V3a V4 

Luminance 

Subthreshold 2 0.06 (0.03) 0.17 (0.01) 0.13 (0.06) 

Full 

2 0.24 (0.12) 0.30 (0.18) 0.24 (0.06) 

8 0.24 (0.06) 0.33 (0.04) 0.21 (0.11) 

32 0.18 (0.04) 0.21 (0.04) 0.20 (0.09) 

64 0.11 (0.11) 0.21 (0.03) 0.15 (0.15) 

125 0.05 (0.06) 0.01 (0.10) 0.12 (0.08) 

S-cone 

isolating 

Subthreshold 2 0.02 (0.10) 0.04 (0.12) 0.08 (0.09) 

Full 
2 0.21 (0.15) 0.24 (0.20) 0.30 (0.13) 

8 0.11 (0.08) 0.16 (0.10) 0.16 (0.14) 
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32 0.05 (0.11) 0.09 (0.14) 0.06 (0.12) 

64 0.13 (0.08) 0.18 (0.06) 0.15 (0.06) 

125 0.04 (0.07) 0.14 (0.02) 0.09 (0.10) 

Red-green 

Subthreshold 2 0.08 (0.05) 0.10 (0.01) 0.12 (0.04) 

Full 

2 0.27 (0.06) 0.33 

(< 0.01) 

0.34 (0.06) 

8 0.15 (0.09) 0.17 (0.10) 0.23 (0.09) 

32 0.06 (0.05) 0.12 (0.08) 0.14 (0.06) 

64 0.14 (0.10) 0.20 

(< 0.01) 

0.17 (0.12) 

125 0.13 (0.13) 0.15 (0.15) 0.21 (0.11) 

 

 

 

 


