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Abstract 

Mathematics anxiety is a feeling of apprehension and, sometimes, fear, that arises in 

people when they engage in mathematical tasks and has a negative relationship with 

mathematical performance. A possible reason for this relationship could be that mathematics 

anxiety might have a detrimental effect on working memory, which then could cause a drop in 

performance during mathematical tasks. I first assessed the relationship of mathematics anxiety 

with working memory and inhibition efficiency in university students during mathematical and 

neutral situations (Chapter 2). Participants with high mathematics anxiety had lower working 

memory spans and lower inhibition efficiency but being in a mathematical situation or not had 

no effect on working memory.  I then developed a new working memory capacity task and 

reassessed the relationship between mathematics anxiety and inhibition efficiency using an 

extreme group design in university students (Chapter 3). Here, participants with high 

mathematics anxiety tended to have lower inhibition efficiency. Moreover, I carried out a 

longitudinal study in secondary school students assessing concurrent and longitudinal 

relationships of mathematics anxiety with mathematical performance, working memory, 

inhibition efficiency, and mathematics self-belief. In Chapter 4 I describe the significant 

concurrent relationships between mathematics anxiety, mathematical performance, mathematics 

self-belief, and working memory. In the longitudinal analysis in Chapter 5 mathematics self-belief 

did not show a significant longitudinal relationship with mathematics anxiety despite a strong 

concurrent relationship. This suggests that although mathematics self-belief is a relevant factor to 

assess when studying mathematics anxiety, it might play a smaller role in the development of 

mathematics anxiety. In contrast, inhibition efficiency and mathematical performance were 

significant longitudinal predictors of the development of mathematics anxiety. Overall, my 

results highlight that poor inhibition efficiency is related to mathematics anxiety in adults and 

might contribute directly and indirectly to the increase of mathematics anxiety during secondary 

school.  
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Chapter 1 - Literature Review 

 

1.1 Introduction 

Underachievement in mathematics is a very common problem (Cragg & Gilmore, 2014), 

both during development (Gross, 2007) and in adults (Williams et al., 2003; in Cragg & Gilmore, 

2014). Additionally, mathematical competence is a key aspect for successful and high earning 

jobs (Ancker & Kaufman, 2007; S. L. Beilock & Maloney, 2015; Rubinsten et al., 2015; Vukovic 

et al., 2013). These findings suggest the study of numerical cognition is an important area of 

research as it might lead to insights on how to develop evidence-based approaches to improve 

the quality of mathematical teaching in schools. However, although deficits in mathematical 

abilities have a more negative effect on employability than reading deficits (Bynner, 2002), 

research on mathematical difficulties is much less developed than research on reading difficulties 

(Bishop, 2010). 

Understanding how numerical skills are acquired and mathematical concepts develop is 

an important goal for educational psychology. A better understanding will hopefully provide a 

foundation for success for many of the students that currently struggle with mathematics.  

 

1.2 Mathematics anxiety 

Learning mathematics is a complex process that requires the acquisition of competences 

over many years, relies on many different skills and is affected by many components such as 

cognitive components (e.g., working memory; Passolunghi et al., 2008), motivational 

components (e.g., self-efficacy and self-concept; Pajares & Kranzler, 1995; Pietsch et al., 2003), 

and affective components (e.g., anxiety; Hembree, 1990). In a longitudinal study, Passolunghi 

and colleagues (2008) assessed working memory and mathematical performance in students 
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during Year 1 and Year 2 (Italian students start Year 1 at the age of 6, so the participants were 6- 

and 7-years olds). The authors observed that working memory in Year 1 had a significant 

positive direct effect on mathematical performance in Year 2 (β = 0.44). Pajares and Kranzler 

(1995) assessed mathematics self-efficacy and mathematics achievement concurrently in high 

school students (from Year 9 to Year 12 students) and found that the participants’ confidence in 

solving mathematical tasks influenced the participants’ performance in that task. Similarly, 

Pietsch and colleagues (2003) found that in high school students (from Year 9 to  Year 10 

students) mathematics self-efficacy and mathematics self-concept were significant predictors of 

concurrent performance in mathematical tasks. Finally, Hembree (1990) produced a meta-

analysis highlighting how mathematics anxiety consistently shows a moderate negative 

relationship with mathematical performance. This last factor, mathematics anxiety, is currently 

the most studied affective component affecting mathematical performance (Dowker et al., 2016).  

Mathematics anxiety is a personal experience of apprehension that arises in people that 

have to deal with mathematics. Since Hembree’s (1990) meta-analysis most of the research in 

mathematics anxiety found a negative relationship between mathematics anxiety and 

mathematical performance (e.g., Dowker et al., 2016; Hembree, 1990; Ma, 1999; Passolunghi et 

al., 2016). In fact, the relationship is so common that some teachers might view mathematics 

anxiety as a synonym of “being bad at math” (Beilock & Willingham, 2014). However, 

mathematics anxiety is not a mere synonym for “being bad at math”. For example, there are 

individuals with high performance in mathematics who still suffer from mathematics anxiety 

(Lee, 2009). Because mathematics anxiety is not a synonym of being bad at math, it is important 

to study how mathematics anxiety develops and why it shows a negative relationship with 

mathematical performance. 

Mathematics anxiety can have physical repercussions and long term effects (Lyons & 

Beilock, 2012b; Suaŕez-Pellicioni et al., 2013). Suaŕez-Pellicioni and colleagues (2013) found that 
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participants with high levels of mathematics anxiety perceived numerical errors (i.e., in this case 

responding to the bigger in font size than in magnitude) as more salient than regular errors in a 

classical (i.e., non-numerical) Stroop task compared to participants with low mathematics anxiety. 

The authors proposed that this abnormal error monitoring can be perceived as a painful 

experience. Accordingly, Lyons and Beilock (2012) assessed brain activation before and during 

mathematical tasks and found that anticipation of mathematical tasks activates the pain network 

in participants with high levels of mathematics anxiety. 

Multiple models (Ashcraft & Moore, 2009; Carey et al., 2016; Rubinsten et al., 2018) have 

been developed trying to explain the genesis and development of mathematics anxiety. For the 

current set of studies, it is useful to briefly introduce the model developed by Maloney and 

colleagues (Maloney, 2020, May). The model can be seen in Figure 1.1. 

 

Figure 1.1. Maloney’s model of mathematics anxiety (Maloney, 2020, May) 
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Maloney’s model suggests that the first step is the presence of either numerical or spatial 

processing difficulties. Because spatial and numerical processing are important factors in 

mathematical processing, these difficulties can cause lower mathematical performance. The lower 

mathematical performance then is a risk factor for the genesis and the development of 

mathematics anxiety. The development of mathematics anxiety can lead to avoidance behaviours 

and an online reduction of working memory capacity. The avoidance behaviours mean that the 

person will avoid mathematical situations and thus lose learning opportunities and show less 

improvement than their peers, which will also cause further growth of their mathematics anxiety. 

Online working memory reduction is due to the presence of anxious thoughts and rumination 

during the processing of mathematical information (Maloney, 2020, May). These thoughts and 

ruminations work as a second task putting extra load on the cognitive resources, making it more 

difficult for the person to process the mathematical material. The added difficulty means that the 

person will be more likely to fail the task, causing further growth of the mathematics anxiety.  

Maloney’s model includes another factor that influences both mathematics achievement 

and mathematics anxiety: social influences, such as the role that parents and teachers have on the 

development of mathematics anxiety. For example, if parents or teachers feel insecure about 

their own mathematical skills, they might influence the person to feel insecure in front of 

mathematical material. Another interesting model that has been developed to explain 

mathematics anxiety was developed by Rubinsten and colleagues (2018). This model has some 

points in common with the model presented above, such as the importance of social factors and 

numerical skills but includes a more detailed and complete list of factors that influence 

mathematics anxiety, such as genetic risk factors and brain functions. However, the main 

purpose of Rubinsten’s model is to offer a wide all-encompassing framework to study 

mathematics anxiety and much of it is beyond the scope of the current thesis which focuses on 
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the role of working memory for mathematics anxiety. For these reasons it will not be discussed 

further here. 

Of the factors proposed in Maloney’s model, this thesis will focus on the cognitive 

factors such as mathematical performance and working memory, and the affective factors, such 

as mathematics anxiety. The current work will include some affective factors not included in 

Maloney’s model: trait (or general) anxiety, test anxiety, and mathematics self-belief. 

 

1.2.1 Measurements of mathematics anxiety 

Given the importance of understanding how mathematics anxiety works, researchers 

have been developing different measures to assess this complex factor. Most research uses self-

report questionnaires, but there are also examples of behavioural measures (physiological 

measures and implicit measures) of mathematics anxiety. I will now present an overview of these 

measures. 

Questionnaires: The most common method to assess mathematics anxiety is through the 

use of questionnaires. Questionnaires used in mathematics anxiety research are usually self-

report scales, meaning that the participant needs to assess how they feel during specific 

situations. The descriptions involve situations in which the participant needs to deal with 

mathematical information (e.g., calculating the tip at a restaurant, or having to sit a mathematical 

test). The self-assessment is usually through the use of a Likert scale that should help the 

participant to anchor the amount of anxiety perceived in the specific situation. The scale usually 

goes from one extreme (no anxiety) to the other extreme (highest level of anxiety experienced in 

their own life).  

The first questionnaire developed to assess mathematics anxiety was the Mathematics 

Anxiety Rating Scale (MARS; Richardson & Suinn, 1972). This questionnaire is comprised of 98 
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items and the participants can answer on a 5-point Likert scale how anxious they feel in specific 

situations. For each item, the scale goes from 1 (not anxious) to 5 (very anxious). An example of 

situations can be ‘to solve 976 + 777 in their own head’. The scale is supposed to be used only in 

adults. To overcome this limitation, in 1982 the MARS items were simplified and items involving 

secondary school situations were added. This process allowed the creation of the MARS-A 

(Suinn & Edwards, 1982; in Gilmore et al., 2018). Moreover, in 1988 the MARS was adapted to 

be used with primary school students from Year 4 through Year 6 (MARS-E, Suinn et al., 1988; 

in Wu et al., 2012). Furthermore, because MARS is a lengthy and complex questionnaire with 98 

items, more recent versions tried to make it shorter and easier to use. Alexander and Martray 

developed the shortened MARS (sMARS, Alexander & Martray, 1989) with 25 items. Another 

short version was created by Suinn and Winston (2003). The instructions are the same as the 

MARS and involve expressing how anxious the participants feel during various situations. 

Examples of the questions are: “Studying for a mathematic test”, “Getting ready to study for a 

mathematic test”, “Figuring the sales tax on a purchase that costs more than $1.00” (Suinn & 

Winston, 2003, p. 169). Finally, it can be interesting to mention the Revised Mathematics Anxiety 

Rating Scale (MARS-R; Plake & Parker, 1982), which is a shorter version of the MARS that 

consists of 24 items to be used with adults.  

Another questionnaire that is widely used in mathematics anxiety research is the 

Abbreviated Math Anxiety Scale (AMAS; Hopko et al., 2003). The AMAS is a shortened version 

of the MARS-R. With only 9 items it is a very quick and slim questionnaire with high test-retest 

reliability (r = .85) and good reliability (Cronbach’s α of .90). Given its shortness and its 

reliability, it is widely used as a fast and efficient way to measure mathematics anxiety. Although 

it is developed to be used with adults, some researchers use it also with secondary school 

students (Passolunghi et al., 2016), and even with primary school students (Hill et al., 2016).  



23 
 

Most of the questionnaires that were presented up to this point were developed to be 

used with adult participants or older students. Because the language used and the situations 

depicted are not always appropriate for younger samples, some researchers decided to develop 

questionnaires specifically for younger participants. An example is the Scale for Early 

Mathematics Anxiety (SEMA; Wu et al., 2012), which is based on the MARS and the MARS-E, 

but it was developed to be used with children in Year 2 and Year 3. It is composed of 10 items 

based on the typical US mathematical curriculum of Year 2 and Year 3, and 10 items based on 

math-related social and testing situations that are common for children in Year 2 and Year 3. 

The questionnaire showed high internal consistency (Cronbach’s α of .87) and good reliability 

(split-half reliability of .774; Wu et al., 2012). 

Another questionnaire for younger participants is the Math Anxiety Questionnaire 

(MAQ; Thomas & Dowker, 2000; in Dowker et al., 2016), which is used to assess mathematics 

anxiety in children from 6 to 9 years old and has 28 items. Some researchers suggest that 

mathematics anxiety can be divided into two aspects: cognitive and affective mathematics anxiety 

(Dowker et al., 2016). This division in cognitive and affective mathematics anxiety was first 

observed by Wigfield and Meece (1988) with exploratory and then with confirmatory factor 

analysis. The cognitive dimension refers to the cognitive consequences, for example, the 

worrisome thoughts that accompany the experience. The affective dimension instead refers to 

the emotions that accompany the anxious experience. Dowker suggests that MARS and its 

derivations tap more on the affective aspects, whereas MAQ “places more emphasis on the 

cognitive (“worry”) aspect of mathematics” (Dowker et al., 2016, p.9). 

Physiological measures: Self-report measures are not always accurate, as our own perceptions 

might be biased (Gilmore et al., 2018). Moreover, answers to self-report questionnaires can be 

controlled, hence participants can lie to conform to norms, or to give a specific idea of 

themselves (Mammarella et al., 2019). To overcome this obstacle, some authors developed new 
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measures that do not rely on self-report and memory. One type of these newly developed 

measures are the implicit measures that we will discuss later on, and another type are the 

physiological measures. One example of a physiological measure is measuring cortisol secretion, 

which is believed to be a response to stress (e.g., Mattarella-Micke et al., 2011). Mattarella-Micke 

et al. (2011) observed that mathematical performance in participants with high mathematics 

anxiety and high working memory was dependent on the increase of cortisol secretion during the 

task. Other physiological measures are reported in a review by Dowker and colleagues (2016). 

The authors reported heart rate, skin conductance, and brain imaging as physiological measures. 

Heart rate is considered a measure of arousal, hence the higher is the heart rate of a person in a 

given moment, the higher their arousal will be. If we measure heart rate during the execution of 

mathematical tasks and compare it to heart rate during a baseline task, any change in heart rate 

between the baseline task and the mathematical task might be partly due to mathematics anxiety. 

Skin conductance is also a measure of arousal level, with higher skin conductance associated with 

higher levels of arousal (Hopko et al., 2003). Regarding brain imaging, there are studies using 

EEG (Electroencephalogram), and fMRI (functional Magnetic Resonance Imaging) (for a 

review, see Dowker et al., 2016). For example, fMRI studies recorded different brain activation 

patterns between participants with high and low mathematics anxiety (Lyons & Beilock, 2012b; 

Young et al., 2012).  

While results from brain imaging techniques such as EEG and fMRI do not seem 

appropriate for the independent measure of mathematics anxiety, other physiological measures, 

such as pupillometry (Caviola & Szűcs, 2018), heart rate variability, and skin conductance, might 

emerge in the future as useful independent measures of mathematics anxiety. For example, heart 

rate variability is the measure of the variation of the interval between two heartbeats (Laborde et 

al., 2017), and is a measure that can be used to assess stress levels. The reduction of the 

variability is associated with higher levels of stress (Dishman et al., 2000), and it has been found 

to correlate with different types of anxiety. Kawachi and colleagues (1995), for example, 
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observed that reduced heart rate variability has been found in participants with specific phobias. 

Accordingly, Miu, Heilman, and Miclea (2009) found reduced heart rate variability in participants 

with high test anxiety. These results seem to suggest that heightened arousal could be associated 

with reduced heart rate variability. For this reason, it could be an interesting future area to 

investigate in the quest to find more appropriate physiological measures for mathematics anxiety. 

Implicit measures: implicit measures are used to assess automatic cognitive processes. Given 

the automatic nature of these processes, the participants are not aware of them, so self-report 

measures would not be able to assess them. One example of an implicit measure is affective 

priming. Affective priming can be used, for example, to evaluate the implicit valence of 

mathematics by assessing the effect of an attentional prime on the target stimulus. A prime is a 

stimulus that should be ignored, but that is supposed to actually influence the response to a 

succeeding stimulus (Rubinsten & Tannock, 2010). Similarly, Rubinsten and Tannock (2010) 

described the affective priming. Affective priming involves an emotionally charged stimulus that 

can help the processing of future stimuli if they are affectively related. For example, words that 

are associated with positive emotions will allow faster processing of other words that are 

associated with positive emotions. At the same time, they will render the processing of words 

that are associated with negative emotions more difficult. In participants with high mathematics 

anxiety, for example, arithmetical primes could work as affective primes and should facilitate the 

processing of negative words, meaning that for individuals with high mathematics anxiety words 

related to mathematics are words associated to negative emotion. Rubinsten and colleagues 

(2012) suggested that the negativity effect of arithmetical primes can be used as an implicit 

measure of mathematics anxiety. Another way to implicitly measure mathematics anxiety is 

through the use of emotional Stroop tasks. Using either neutral stimuli or math-related words we 

can assess the difference in processing time between the two conditions to assess the cognitive 

effects of mathematics anxiety. Suárez-Pellicioni and colleagues (2015) observed that participants 

with high mathematics anxiety are slower than the participants with low mathematics anxiety 
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when the words are math-related. Importantly, implicit and explicit measures of mathematics 

anxiety are not significantly related to each other (Daches Cohen & Rubinsten, 2017), hence it 

can be suggested that future studies might want to assess implicit and explicit measures 

separately to better understand the specific relationships with other constructs. Although the 

implicit measures of mathematics anxiety do not seem to be significantly related to explicit 

measures of mathematics anxiety (i.e., self-report questionnaires), the further development of 

these measures can be useful because implicit measures of mathematics anxiety are related to 

other environmental factors and might show novel relationships with relevant factors giving new 

insights in the mechanisms that underlie the development of mathematics anxiety. 

 

In conclusion, at the moment most research in mathematics anxiety still use self-report 

questionnaires. One reason why questionnaires are still used is that they show good reliability 

(e.g., SEMA Cronbach’s α = .87; MARS Cronbach’s α = .94; for a review, see Dowker et al., 

2016). Questionnaire results are typically summarised as a single total score, although factor 

analyses suggest that the questionnaires usually assess multiple factors (Lukowski et al., 2016; 

Rounds & Hendel, 1980). For example, Rounds and Hendel (1980) analysed the factor 

composition of the MARS and found two different factors, test anxiety and numerical anxiety. 

Based on that analysis the authors constructed two different scales each with 15 items from the 

MARS. The two scales showed a moderate relationship (r = .34). More recently, Lukowski and 

colleagues (2016) assessed the MARS-E and concluded that it was measuring three different 

factors; calculation anxiety, test anxiety, and classroom anxiety. Because each questionnaire is 

different from the others, different questionnaires might measure different factors, hence it is 

always important to choose carefully which measure to use.  

In the behavioural studies with adult participants, I will use the AMAS. I decided on the 

AMAS because it is a reliable and fast method to assess mathematics anxiety, and this has been 



27 
 

particularly useful in collecting big samples, such as the screening phase of the second 

behavioural study. The AMAS is reported in Appendix A.3. A typical item asks the participant, 

for example, to rate from 1 to 5 how anxious they would feel while listening to a lecture in a 

math class. In the longitudinal study with secondary school students, I will adapt the Revised 

Mathematics Anxiety Rating scale (RMARS; Taylor & Fraser, 2013) to be used with students in 

Year 7. I decided on this questionnaire because it showed good reliability (Cronbach’s alpha > 

.90) and is supposed to allow a more sensitive measure given that with 27 items there is more 

chance for variability. Further information on the RMARS can be found in the methods section 

of the Time 1 analysis (please see chapter 4.2.2.1, page 135). 

 

1.2.2 Mathematics anxiety and its relationship with other types of anxiety 

Fear is a part of the human’s emotional nature and usually is a “healthy adaptive response 

to a perceived threat or danger to one’s physical safety and security” (Clark & Beck, 2011, p.4). 

Normally fear is useful since it prepares the body to respond to a threat, but it can be 

maladaptive when it occurs in non-threatening situations. Fear in non-threatening situations is 

called anxiety (Clark & Beck, 2011). Anxiety is defined as a future-oriented emotion, with 

feelings of uncontrollability and unpredictability over only potentially aversive events (instead of 

actually dangerous events) and is accompanied by a rapid shift of the attentional focus to threat-

related events and/or the personal response to these events. Another distinction between fear 

and anxiety is that while fear is a response of contact with a stimulus (therefore is transitive), 

anxiety is a more stable and longer state of perceived threat (Clark & Beck, 2011).  

The studies presented in this thesis focus on one type of anxiety: mathematics anxiety. 

Mathematics anxiety, according to Zettle (2003), should be seen as a specific ‘phobia’ since 

mathematics anxiety is characterized by fear toward very specific objects or situations. Zettle’s 

view is supported by Young and colleagues' (2012) work, in which they suggest that mathematics 
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anxiety is stimulus- and situation-specific. Mathematics anxiety overlaps with other types of 

anxiety; more specifically it has been suggested that mathematics anxiety shares variance with test 

anxiety and general anxiety. Test anxiety is anxiety about testing situations. Hembree (1990) 

reported a strong and positive relationship between mathematics anxiety and test anxiety (r =  

.52). General anxiety, also called trait anxiety, instead is a more stable tendency of the person to 

experience anxiety. Mathematics anxiety is also significantly related to trait anxiety. For example, 

Hembree (1990) reported a significant positive correlation between trait anxiety and mathematics 

anxiety (r = .35). These findings suggest that trait and test anxiety are relevant factors that should 

be considered when addressing the development and the effects of mathematics anxiety. 

 

1.2.3 Prevalence of mathematics anxiety 

Generally speaking, anxiety is a very common problem with roughly 25~30% prevalence 

of at least one anxiety disorder in the general population at a certain point in the life-time (Clark 

& Beck, 2011). However, assessing the prevalence of mathematics anxiety is a more complex 

task. Mathematics anxiety is not a recognized disorder and there are no specific recommended 

cut-off values of the self-report questionnaires that would pinpoint where it starts being 

problematic, and where it is not. Thus, it is important to report the chosen cut-off values. 

Nevertheless, some researchers give estimates of the prevalence of mathematics anxiety. For 

example, Cornoldi (1999) reported that 38% of students in primary school felt uneasy during 

mathematical tests, and 62% showed fear of mathematics. The 2003 PISA report showed that 

more than 50% of the 15-year-old students that participated reported feelings of anxiety when 

asked to solve mathematical problems (Suaŕez-Pellicioni et al., 2013). Even though there is not a 

specific definition for a mathematics anxiety disorder, the data presented here suggest that 

mathematics anxiety is very common. 
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1.2.4 Mathematics anxiety and gender 

Studies suggest that females tend to experience higher levels of mathematics anxiety 

(Goetz et al., 2013; Hill et al., 2016; Jain & Dowson, 2009). For example, Goetz and colleagues 

(2013) assessed mathematics anxiety in two different studies, examining students from Year 5 to 

Year 11. The authors observed a significant difference between the scores reported by males and 

females in mathematics anxiety in both studies. Accordingly, Hill and colleagues (2016) found 

that in their study female participants scored higher on the AMAS questionnaire than male 

participants. Jain and Dowson (2009) assessed mathematics anxiety in Indian Year 8 students 

and observed that female students reported higher levels of mathematics anxiety than their male 

schoolmates. But does that mean there is a difference in mathematics anxiety between males and 

females, or is it due to a difference in the tendency to self-report difficulties? Rubinsten’s study 

using affective priming tried to assess this (Rubinsten et al., 2012). Rubinsten’s findings suggest 

that -while there might be a higher tendency to report anxiety issues in females (Egloff & 

Schmukle, 2004), there is also evidence from implicit measures of mathematics anxiety that there 

seems to be higher mathematics anxiety in female participants. This suggests that the higher 

levels of mathematics anxiety recorded by most researchers is due to actual differences in 

mathematics anxiety and not to self-report bias.  However, not all research agrees in finding 

higher levels of mathematics anxiety in females. In fact, some researchers failed to find 

significant gender differences between males and females (Ramirez et al., 2013). Ramirez and 

colleagues (2013) assessed mathematics anxiety in students in Year 1 and Year 2. The authors did 

not observe a significant difference in the levels of mathematics anxiety in female and male 

students. Given the differences in the age of the participants between those studies, the gender 

differences may be age-dependent. There may be no gender difference in the first two years of 

primary school, but gender differences might emerge over later school years.  

Moreover, as discussed in more detail later in this literature review, most available 

literature suggests a relationship between mathematics anxiety and mathematical performance. 
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The strength of this relationship might also be different between males and females; although 

how gender interacts with this relationship is still under debate. For example, some studies 

suggest that mathematics anxiety has stronger effects on males’ mathematical performance than 

on females’ one (Hembree, 1990; Miller & Bichsel, 2004). In contrast, Devine and colleagues 

(2012) assessed mathematics anxiety and mathematical performance in secondary school 

students and found that the relationship was significantly stronger for female than for males 

students. Finally, Ma's (1999) meta-analysis failed to find any significant gender differences in the 

relationship between mathematics anxiety and mathematical performance. Accordingly, also 

Meece and colleagues (1990) did not observe a significant difference in this relationship between 

female and males students. This argument will be further discussed in Chapter 4, to attempt to 

shed more light into the effect of gender in the mathematics anxiety – mathematical performance 

relationship. At the moment, however, it can be argued that there are reasons to believe that the 

relationship between mathematics anxiety and mathematical performance might be different 

between females and males and that for this reason, it is important to investigate gender effects 

in any study of mathematics anxiety. 

One of the reasons why it is so important to study the gender differences in mathematics 

anxiety and mathematical performance is that researchers suggest that the gender gap in 

mathematics anxiety is one of the main reasons for the underrepresentation of women in STEM 

areas (e.g., Wu et al., 2012). 

 

1.2.5 Mathematics anxiety and mathematics self-belief 

Mathematics anxiety has also shown strong relationships with other self-measures that 

are important when studying mathematical performance. Between the self-measures, the most 

relevant for the current work are two measures of mathematics self-belief: mathematics self-

efficacy and mathematics self-concept.  
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Mathematics self-efficacy is based on Bandura’s (1997) self-efficacy construct. Self-efficacy is 

the self-assessment of our own competence, i.e., how effective we think we are in tackling 

different tasks. Bandura’s theory suggests that behaviour changes in response to one’s self-

efficacy expectations, and these expectations can be either strengthened or weakened by the 

feedbacks that the individuals receive. Mathematics self-efficacy is how competent and effective 

a person perceives themselves to be in solving mathematical tasks. Participants with higher levels 

of self-efficacy are more confident in their ability, and this confidence will likely result in better 

performances compared to people with a lower level of self-efficacy. Past research found indeed 

that mathematics self-efficacy is an important predictor of mathematical performance, with 

standardized β-values that vary between .27 (Pajares & Graham, 1999) to .55 (Pajares & Miller, 

1994). Moreover, zero-order correlations also suggest a significant positive relationship between 

mathematical performance and mathematics self-efficacy (r = .59; Pajares & Graham, 1999). 

Mostly, self-efficacy has been studied in adults, but as Jain and Dowson (2009) point out, the 

developmental differences between adults and children may result in differences in the 

relationship between self-efficacy and performance, thus suggesting that studying self-efficacy 

developmentally and in younger participants might lead to deeper insights about the 

aforementioned relationship.  

Available evidence suggests that mathematics self-efficacy and mathematics anxiety are 

inversely related (Jain & Dowson, 2009; Mcmullan et al., 2012; Pajares & Graham, 1999; Pajares 

& Miller, 1994), i.e., typically for higher levels of mathematics self-efficacy people show lower 

levels of mathematics anxiety. McMullan and colleagues (2012) reported a strong and negative 

relationship between mathematics anxiety and mathematics self-efficacy (r = -.63). Jain and 

Dowson (2009) assessed the concurrent relationship between mathematics anxiety and self-

efficacy in Year 8 students and found that self-efficacy was a significant predictor of mathematics 

anxiety (β = -.43). In line with these results, Pajares and Miller (1994) and Pajares and Graham 

(1999) also reported a strong and significant negative relationship between mathematics anxiety 
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and mathematics self-efficacy (r = -.56 & r = -.61 respectively). These findings suggest that 

mathematics self-efficacy is an important factor to consider when studying mathematics anxiety. 

Mathematics self-concept is similar to self-efficacy because it is also related to a person’s 

perception of their own mathematical ability. However, it differs from self-efficacy by being 

measured at a broader level, whereas self-efficacy is measured at a specific level (Pajares & Miller, 

1994). Whereas self-efficacy is supposed to assess one’s own perceived capabilities in a specific 

situation (e.g., performing an addition), self-concept assesses the perceived competence of 

oneself in a general area of behaviour (e.g., mathematics in general). Similarly to what we 

observed for mathematics self-efficacy, mathematics self-concept is also inversely related to 

mathematics anxiety. Pajares and Miller (1994) observed that there was a strong negative 

relationship between mathematics self-concept and mathematics anxiety (r = -.87). In line with 

these results, a strong negative relationship between mathematics anxiety and mathematics self-

concept was also found in Pajares and Graham's (1999) study (r = -.68) and in Lee's (2009) study 

(r = -.67). 

Mathematics self-concept and mathematics self-efficacy assess similar and related 

concepts. Accordingly, research has suggested a strong positive relationship between these 

factors. Pajares and Graham (1999) observed a significant positive relationship between 

mathematics self-efficacy and mathematics self-belief (r = .66) as did Pajares and Miller (r = .61; 

1994) and Lee (r = .52; 2009). Moreover, mathematics self-concept is also positively related to 

mathematical performance. For example, Kung (2009) observed concurrent (γ = .69) and 

longitudinal (β = .37) paths from mathematics self-concept to mathematical performance.  

Given the strength of the relationships between mathematics anxiety, mathematics self-

efficacy, and mathematics self-concept, it is worth to assess whether the three constructs are 

separate factors, or whether they are different sides of the same coin. Lee (2009) used the data 

from the 2003 PISA study to assess the factor composition of the three concepts. Results from 
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an exploratory factor analysis as well as from a confirmatory factor analysis suggested a three-

factor solution with separate factors for mathematics anxiety, for mathematics self-belief, and for 

mathematics self-efficacy. 

 

1.2.6 The development and potential causes of mathematics anxiety 

Mathematics anxiety is not a stable and immutable factor, but research has suggested that 

it develops during the primary and secondary school years, plateauing and stabilising in late 

adolescence (Hembree, 1990; Ramirez et al., 2013; Young et al., 2012). An influential work on 

the development of mathematics anxiety is the meta-analysis by Hembree (1990). Hembree 

suggested that mathematics anxiety tends to increase during development, reaching its peak 

during high school years (Year 9 to Year 10) and levels off after that. However, this meta-analysis 

offered little insight into when mathematics anxiety starts to develop. In fact, Ramirez and 

colleagues (2013) suggested that “although math anxiety has been extensively studied, little is 

known about the emergence of math anxiety in young children.” (Ramirez et al., 2013, p.188). It 

is however becoming clearer and clearer that mathematics anxiety is already present in primary 

school students, and that students as early as in Year 1 and Year 2 of primary school already 

report experiencing mathematics anxiety (Ramirez et al., 2013; Young et al., 2012). It is still 

unclear and important to understand, however, what causes the emergence and development of 

mathematics anxiety. One factor that seems important is mathematical performance. Literature 

has suggested that better mathematical performance might work as a longitudinal protective 

factor against the development of mathematics anxiety as early as during the first and second 

years of primary school (Gunderson et al., 2018). Similar findings have been found for Year 6 to 

Year 7 students (Geary et al., 2019) and secondary school students (Wang et al., 2020). These 

results suggest that mathematical performance is an important factor to consider when 

investigating the development of mathematics anxiety. Other factors that have been suggested as 
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relevant in the development of mathematics anxiety are the teachers’ teaching methods, parents’ 

attitudes toward mathematics, and fear of failure (for a review, see Mammarella et al., 2019). 

These factors can be considered part of the social factors in Maloney’s model of mathematics 

anxiety (Maloney, 2020, May). As discussed in Maloney’s model, these social factors might have 

direct effects on mathematics anxiety, and at the same time indirect effects as they might 

influence mathematical performance which then influences mathematics anxiety. 

There might also be neurodevelopmental risk factors for the development of 

mathematics anxiety. For example, Young and colleagues (2012) assessed mathematics anxiety 

and brain activation pattern in children aged 7 to 9 years while they were performing 

mathematical tasks (i.e., additions and subtractions). Children with high mathematics anxiety 

showed different patterns of brain activation. The high mathematics anxiety children presented 

higher activation in, and abnormal effective connectivity of, the amygdala compared with their 

low mathematics anxiety peers. This finding is not surprising as the amygdala is a brain region 

involved in the processing of fearful stimuli and negative emotions (such as anxiety). However, 

the authors observed also an abnormal activation in areas involved in cognitive processes in 

children with high mathematics anxiety when compared with children with low mathematics 

anxiety. In fact, high mathematics anxiety children showed lower activation of the IPS 

(Intraparietal Sulcus), an area that has been implicated in the processing of numerical stimuli 

(Dehaene et al., 2003; in Young et al., 2012). The authors also observed lower activation of the 

right dorsolateral prefrontal cortex. The right dorsolateral prefrontal cortex is an area implicated 

in the ability to make choices while situations are changing, specifically through inhibition 

mechanisms (Konishi et al., 1999). This suggests that the observed brain activation pattern could 

be an expression of lower inhibition in the participants.  Moreover, abnormal patterns of brain 

activation were also observed in the premotor cortex, in the bilateral caudate, in the putamen, 

and in the ventromedial prefrontal cortex (Young et al., 2012). The premotor cortex is an area 

involved in space perception, action understanding, and imitation (Rizzolatti et al., 2002). The 
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bilateral caudate is an area that has been implied in decision making and in supporting the 

planning and execution of strategies and behaviours that are required for achieving complex 

goals (Grahn et al., 2008). The putamen has been suggested as the area where stimulus-response 

functions are processed (Grahn et al., 2008) and the ventromedial prefrontal cortex is an area 

that has been implied to be involved in the regulation of negative emotions (Etkin et al., 2010; in 

Young et al., 2012). However, these differences in brain activation could be causes or 

consequences of having mathematics anxiety, the results are purely correlational and cannot 

inform the questions about causality regarding the development of mathematics anxiety. Still, 

these results suggest that specific neural pathways show abnormal activation in children with 

mathematics anxiety.  

Some authors also propose that there might be genetic causes for mathematics anxiety, 

such as Wang and colleagues (2014). Wang and colleagues suggested that genetic risk factors 

related to general anxiety and mathematical problem solving might play a significant role in the 

development of mathematics anxiety. In line with Wang and colleagues, other large scale studies 

with twins (e.g., Malanchini et al., 2017) found estimates of heritability of mathematics anxiety. 

Wang and colleagues (2014) observed that 9% of the variance in mathematics anxiety is 

associated with genetic influences shared with general anxiety. Moreover, the author observed 

that 12% of the variance in mathematics anxiety is associated with genetic influences shared with 

mathematical problem-solving. In addition to these findings, Malanchini and colleagues (2017) 

observed that 58% of the shared variance between mathematics and general anxiety is due to 

shared genetic factors, and 42% is due to environmental factors.  

Finally, mathematics anxiety has troubling long-term effects. One consequence of 

mathematics anxiety that has been observed is global avoidance (Hembree, 1990; Hopko et al., 

2003), i.e., people with high mathematics anxiety are more likely to avoid mathematical tasks. For 

example, students with high mathematics anxiety might avoid doing mathematics homework and 



36 
 

thus may miss many mathematical learning opportunities (Passolunghi, 2011). Support for the 

global avoidance comes, for example, from studies showing that mathematics anxiety is 

negatively related to intrinsic motivation to study mathematics (r = -.33; Daches Cohen & 

Rubinsten, 2017). Global avoidance can also drive people away from math-related university 

courses and, eventually, careers (Hembree, 1990). Because mathematics anxiety does not 

disappear in adulthood, it is important to study mathematics anxiety and to find effective ways to 

reduce the impact of mathematics anxiety in both children and adults. 

 

1.3 Mathematics anxiety and mathematical performance 

Another reason why it is important to study mathematics anxiety is that mathematics 

anxiety has consistently been found to show a moderate negative relationship with mathematical 

performance (e.g., Ashcraft & Kirk, 2001; Hembree, 1990; Mammarella et al., 2019; Passolunghi 

et al., 2016). Most research in mathematics anxiety investigates the relationship between 

mathematics anxiety and a wide range of mathematical tasks (Ashcraft & Faust, 1994; Ashcraft & 

Kirk, 2001; Hembree, 1990; Maloney et al., 2010). For example, Ashcraft and Faust (1994) 

reported that participants with low mathematics anxiety were significantly faster and more 

precise in answering complex mathematical problems. Hembree’s (1990) meta-analysis reported 

a significant moderate negative relationship between mathematics anxiety and performance on 

different mathematical tasks [from mathematics anxiety and mathematical computation (r = -.25; 

Hembree, 1990) to mathematics anxiety and abstract reasoning (r = -.40; Hembree, 1990)]. On 

the other hand, some authors focused on the relationship between mathematics anxiety and 

specific types of mathematical tasks(Miller & Bichsel, 2004; Passolunghi et al., 2016; Vukovic et 

al., 2013). For example, Miller and Bichsel (2004) assessed the relationship between mathematics 

anxiety and two different types of mathematical performance. The first task assessed basic 

mathematical performance by asking participants to process mathematical problems from simple 
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additions to complex geometry and trigonometry. The second task assessed applied 

mathematical performance by requiring the participants to answer to an applied mathematical 

problem presented orally (e.g., calculate how many miles a car has travelled given a certain 

amount of speed and time). The authors found that mathematics anxiety was negatively related 

to both applied mathematical performance (r = -.32) and basic mathematical performance (r = -

.41). Similarly, Passolunghi and colleagues (2016) assessed the difference between secondary 

students with high mathematics anxiety and secondary students with low mathematics anxiety 

using different types of mathematical tasks. Students with high mathematics anxiety showed 

lower performance in tasks that required complex calculations (i.e., written calculation and fact 

retrieval sub-tests), but neither in tasks with approximate calculations nor in their ability to 

process syntactical number information (i.e., place-value comprehension). Vukovic and 

colleagues (2013) assessed mathematical and geometrical reasoning and found a relationship 

between mathematics anxiety and mathematical reasoning (r = -.36), but not between 

mathematics anxiety and geometrical reasoning (r = -.12).  

While it is clear that mathematics anxiety and mathematical performance are typically 

correlated in secondary school students and adults (e.g., Hembree, 1990; Hill et al., 2016; 

Passolunghi et al., 2016), it is currently still unclear when that relationship emerges. In fact, 

although it is becoming evident that mathematics anxiety can already be present in primary 

school, whether mathematics anxiety is already negatively related to mathematical performance 

in primary school is still under debate. On one hand, some studies  (e.g., Hill et al., 2016; 

Krinzinger et al., 2009) did not find a significant relationship between mathematics anxiety and 

mathematical performance in primary school students. On the other hand, other authors did find 

a relationship between mathematics anxiety and mathematical performance in primary school 

students (e.g., Harari et al., 2013; Wu et al., 2012). Hill and colleagues (2016) assessed 

mathematics anxiety and mathematical performance in primary and secondary school students. 

The authors found that in female primary school students there was already a significant negative 
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relationship between mathematics anxiety and mathematical performance. However, this 

relationship was no longer significant once the effect of general anxiety was partialled out. 

Moreover, zero-order correlations between mathematics anxiety and mathematical performance 

in male primary school students showed no significant relationship. These results suggest that 

the relationship between mathematics anxiety and mathematical performance was not present in 

primary school students. Additionally, Krinzinger and colleagues (2009) assessed mathematics 

anxiety and mathematical performance from Year 1 through Year 3. The authors did not observe 

concurrent significant relationships between mathematics anxiety and mathematical performance 

in Year 1 students. On the other hand, Harari and colleagues (2013) found a significant negative 

relationship between mathematics anxiety and mathematical performance. More specifically, 

mathematics anxiety had a significant negative relationship with students’ counting skills (β = -

.23) and mathematical concepts (β = -.34). Finally, Wu and colleagues (2012) also suggested that 

mathematics anxiety is already present in primary school students and that it already shows a 

relationship between mathematics anxiety and mathematical performance, even after partialling 

out trait anxiety and IQ (β = -.26).  

To sum up, overall, higher mathematics anxiety is often related to lower mathematical 

performance even after other types of anxiety have been controlled for. However, it is still an 

area of active debate whether lower mathematical performance causes higher mathematics 

anxiety or whether higher mathematics anxiety leads to lower mathematical performance or 

both. The current debate can be categorised into three different approaches: the Deficit Theory, 

the Debilitating Anxiety Model, and the Reciprocal Theory (Carey et al., 2016).  

 

1.3.1 The Deficit Theory 

According to the deficit theory (Carey et al., 2016) mathematics anxiety is the result of a 

basic mathematical deficit and consequent common experiences of failures in mathematical 
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tasks. Experiencing repeated failure in mathematical tasks is proposed to lead to the 

development of mathematics anxiety. According to this theory, people with high mathematics 

anxiety show also poor mathematical performance simply because they are bad at mathematics. 

This framework can be considered as a skill development approach (Abu-Hilal, 2000); meaning 

that according to this approach, affective variables (in this case mathematics anxiety) are the 

consequences of differences in achievement. Support for the deficit theory comes from some 

longitudinal studies of typically developing children and studies on children with mathematical 

learning disabilities (e.g., Ma & Xu, 2004; Passolunghi, 2011; Rubinsten & Tannock, 2010). For 

example, Ma and Xu (2004) assessed mathematics in students in Year 7 and followed them until 

Year 12. The authors observed that mathematics achievement had a consistent negative 

longitudinal effect on the development of mathematics anxiety; i.e., lower mathematical 

performance at Time 1 was associated with higher mathematics anxiety at Time 2; and lower 

mathematical performance at Time 2 was associated with higher mathematics anxiety at Time 3, 

and so forth. On the other hand, the authors observed that mathematics anxiety had no 

longitudinal effects on the development of mathematical performance. In line with these results, 

Rubinsten and Tannock (2010) suggested that in students with developmental dyscalculia 

mathematics anxiety might stem from unpleasant memories of previous failures during 

mathematical tasks in the class. In line with these suggestions, Passolunghi (2011) observed that 

children with developmental dyscalculia had higher levels of mathematics anxiety compared to 

normally developing children, but normal levels of anxiety for other school participants. The 

results of these studies are interpreted as meaning that the deficit in processing numerical 

information (i.e., Developmental Dyscalculia) causes poor mathematical abilities that cause 

mathematics anxiety, as it is unlikely that mathematics anxiety is a cause of developmental 

dyscalculia. 
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1.3.2 The Debilitating Anxiety Model 

The second approach proposes that mathematics anxiety has a direct causal effect on 

mathematical performance. This framework can be considered as a self-enhancement approach 

(Abu-Hilal, 2000), in which the affective variable, in this case mathematics anxiety, has a causal 

effect on achievement. This model does not focus on explaining the development of 

mathematics anxiety. Instead, it concentrates on the consequences of mathematics anxiety and 

proposes that mathematics anxiety reduces mathematical performance on three different levels: 

the pre-processing, the processing, and the retrieval of information. 

The pre-processing level refers to the events happening before the processing of 

mathematical material. There is evidence that students avoid math-related situations when they 

have high levels of mathematics anxiety (Hembree, 1990), thus learning less mathematics. 

Because these students avoid situations leading to the learning of mathematics, they show lower 

performance on mathematical tasks (i.e., global avoidance).  

The second level, the processing level, refers to the processes that happens during the 

processing of mathematical information. And the third level refers to the retrieval of mnesic 

information. A processing mechanism is, for example, local avoidance. Local avoidance is the 

tendency of individuals with high mathematics anxiety to try to “hurry” when doing 

mathematical tasks to finish them as soon as possible so to not having to deal with mathematics 

anymore. For example, Ashcraft and Faust (1994) found that adults with high mathematics 

anxiety were faster in answering mathematical questions than adults with low mathematics 

anxiety. In addition, Morsanyi and colleagues (2014) observed that in secondary school students 

and university students mathematics anxiety was associated with reduced cognitive reflection and 

that university students with higher mathematics anxiety showed a  tendency to rush through 

problems. These results suggest that participants with high mathematics anxiety try to hurry 

through mathematical tasks to reduce the time they are experiencing the unpleasant effects of 
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mathematics anxiety. Another possible way in which mathematics anxiety affects mathematical 

performance at the processing level is the fact that there are reasons to believe that mathematics 

anxiety causes interference during the processing of mathematical information and during the 

retrieval of memories during mathematical tasks (Faust et al., 1996; Maloney et al., 2011); 

together they can be referred to as the online effect of mathematics anxiety on mathematical 

performance. Faust and colleagues (1996) assessed mathematical performance in participants 

with high and low mathematics anxiety. The authors observed that the highly anxious 

participants showed slower reaction times than the participants with low mathematics anxiety. 

The more difficult the task was, the more pronounced the difference was. The authors 

concluded that there were online effects of mathematics anxiety that interfered with 

mathematical performance. Although this seems in contradiction to local avoidance, these are 

two different arguments. Local avoidance refers to the fact that individuals with high 

mathematics anxiety tend to rush through mathematical tasks, meaning that participants tend to 

try to avoid answering the questions and rush through the task. In contrast, interference refers to 

the finding that when participants with high mathematics anxiety engage in mathematical tasks, 

they need more time to perform them than their colleagues with low mathematics anxiety 

because they need cognitive resources to deal with their negative feelings. Regarding reaction 

times, in line with the findings from Faust and colleagues, Maloney and colleagues (2011) 

observed a similar relationship. The authors assessed the relationship between mathematics 

anxiety and performance on a numerical comparison task and observed that mathematics anxiety 

was positively related to reaction times. This suggests that the higher the participant’s 

mathematics anxiety was, the longer it took them to compare two magnitudes. This possible 

mechanism will be further discussed later on (please see chapter 1.4.3, page 49). For now, it is 

useful to understand that researchers interpret these findings as providing evidence that 

mathematics anxiety causes an interference in working memory, and this interference makes it 

harder to process numerical information and to retrieve information from memory. 
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Support for a causal effect of mathematics anxiety on mathematical performance comes 

also from longitudinal studies. For example, Ching (2017) assessed primary school students in 

Hong Kong and observed a significant longitudinal effect of mathematics anxiety on 

mathematical performance. The author concluded that mathematics anxiety has a causal 

relationship in the development of mathematical performance.  

 Further evidence of a causal effect of mathematics anxiety on mathematical performance 

comes also from studies that manipulate mathematics anxiety. For example, mathematics anxiety 

can be manipulated through the use of the stereotype threat, which is when a negative stereotype 

about the participant’s ingroup is made salient and the participant feels at risk of confirming the 

negative stereotype. For example, some people believe that females are not good at mathematics. 

While testing female participants, they can be made aware of the stereotype about them by 

presenting it as a fact. This would make the stereotype salient and cause anxiety in the 

participants because they will worry about confirming the stereotype (Dowker et al., 2016). Galdi 

and colleagues (2014) observed that 6- to 7- years-old girls showed poorer mathematical 

performance under stereotype threat compared to the stereotype-inconsistent condition (this 

condition was achieved by activating the idea that girls can be good in math). These results 

suggest that raising mathematics anxiety levels has a negative effect on mathematical 

performance. However, because the authors did not assess mathematics anxiety it is possible that 

the manipulation did not actually influence mathematics anxiety but other related concepts (e.g., 

the manipulation might have reduced the participants’ mathematics self-belief). Park and 

colleagues (2014) used the opposite manipulation. They used “Expressive Writing”, a technique 

that requires participants to freely write about their deepest thoughts and feelings (Clark & Beck, 

2011), to lower mathematics anxiety and investigated its effect on mathematical performance. 

Existing research suggested that expressive writing is effective in reducing anxiety (Klein & 

Boals, 2001). In Park and colleagues' (2014) study students were allocated to an expressive 

writing group or a control group before a mathematical test. Students in the expressive writing 
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group were instructed to write for 7 minutes openly about their feelings about the mathematical 

test, students in the control group were asked to wait quietly for 7 minutes. The authors found 

that during mathematical tasks with high working memory demand, participants with high 

mathematics anxiety in the expressive writing group performed better (faster reaction times and 

lower error rates) compared to the participants with high mathematics anxiety in the control 

group.  

 

1.3.3 The Reciprocal Theory 

There seems to be evidence for both, a possible causal effect from mathematical 

performance to the development of mathematics anxiety and that mathematics anxiety 

influences the performance on mathematical tasks. The reciprocal theory combines both 

previous approaches by proposing a reciprocal relationship between mathematics anxiety and 

mathematical performance (e.g., Pekrun, 2006). Pekrun (2006) discussed the control-value theory 

in regard to anxiety in general. According to this theory, academic achievement and appraisal 

emotions are linked in a reciprocal relationship feeding into each other. This theory proposes 

that appraisals of the performance and of the value of the task influence the arousal of 

achievement emotions, such as enjoyment and frustration, and of outcome emotions, such as 

joy, pride, and anxiety. Anxiety, in turn, can affect academic performance, which in turn will 

influence the appraisal of the performance, creating a loop. Support for this hypothesis comes 

from studies that find a reciprocal relationship between mathematics anxiety and mathematical 

performance. For example, Gunderson and colleagues (2018) observed a significant longitudinal 

reciprocal relationship between mathematics anxiety and mathematical performance in primary 

school students. The fact that Year 1 mathematics anxiety had a significant effect on Year 2 

mathematical performance while controlling for Year 1 mathematical performance suggests that, 
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at least at the beginning of formal schooling, mathematics anxiety affects the development of 

mathematical performance. 

Carey and colleagues (2016) in their review argue that the current research on the topic is 

not able to answer the question about the causal relationship. In fact, although some research has 

started to consider the possibility of a reciprocal theory (Gunderson et al., 2018), most 

researchers try to prove one theory or the other, without considering both alternatives at the 

same time (Carey et al., 2016). This situation is probably due to the difficulty of controlling for a 

reciprocal theory due to methodological constraints. In fact, the deficit theory might work 

through long-term mechanisms, i.e., the influence of poor mathematical performance on the 

development of mathematics anxiety might not be immediate, but it might require the repetition 

of failures that cause an additive effect on mathematics anxiety. On the other hand, the 

debilitating anxiety model could be supported by short-term mechanisms, for example, the 

online effect of mathematics anxiety on mathematical performance might have no long-term 

repercussions, so it can only be observed by concurrent analysis. This is even more evident if we 

consider that most longitudinal studies tend to support the deficit theory, and that experimental 

studies (e.g., studies that manipulate mathematics anxiety) support the debilitating anxiety model 

(Galdi et al., 2014; Hembree, 1990; Park et al., 2014). In light of this, a model in which both 

mechanisms are at work will likely be able to best express the nature of the mathematics anxiety 

– mathematical performance relationship. On the other hand, another possible explanation of 

the discrepancy between the findings is that different age groups might show different 

relationships. Future research might try to use mixed designs to try to capture longitudinal 

effects and short-term effects and try to see if the data fits this model and include different age 

groups to assess if the relationships observed are stable across development or not. For this 

reason, this thesis will investigate the relationship between mathematics anxiety and 

mathematical performance in adults and secondary school students. Moreover, I will attempt at 
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addressing directionality by manipulating mathematics anxiety and by studying the longitudinal 

relationships between the two factors. 

 

1.4 Working memory, mathematics anxiety, and mathematical performance 

Maloney (2020, May) in her model proposed that mathematics anxiety influences 

working memory and that the influence on working memory indirectly affects mathematical 

performance. The reason why influence on working memory can affect mathematical 

performance is that it is widely agreed that there is a significant positive relationship between 

mathematical performance and working memory (Friso-van Den Bos et al., 2013; Hawes et al., 

2019; Hawes & Ansari, 2020). Given the possibility of this relationship between mathematics 

anxiety and working memory and given that this relationship might play a detrimental role in 

mathematical performance, we need to investigate these relationships. 

 

1.4.1 Working memory 

Working memory is a system that allows the temporary retention and manipulation of 

information. Moreover, this system allows the performance of complex tasks by allowing the 

storing and the processing of information (Baddeley et al., 2015). 

The three most important components of working memory are the phonological loop, 

the visuo-spatial sketchpad, and the central executive. The phonological loop is used for verbal 

and probably acoustic information. The visuo-spatial sketchpad is used for visual and spatial 

information. The central executive is the system that takes care of attentional control and the 

processing of information. Recently one more system was added to the model, the episodic 

buffer ( Baddeley et al., 2015), but the research on this construct is still unclear, and for the scope 
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of the current thesis we will concentrate on the central executive, the phonological loop, and the 

visuo-spatial sketchpad. 

 

1.4.2 Working memory and mathematical performance 

Working memory has a relevant role in the processing of numerical and mathematical 

information. For example, Hoard and colleagues (2008, in Meyer et al., 2010) and Passolunghi 

and colleagues (2008) found that the children who excel in mathematics are the ones with higher 

working memory.  

Although evidence suggests that working memory is a relevant factor in mathematical 

performance, exactly which system is relevant and how they support mathematical performance 

is still under debate. Indeed, there is evidence that visuo-spatial working memory is a predictor 

of mathematical performance (De Smedt et al., 2009; Hawes et al., 2019; Hawes & Ansari, 2020; 

Miller & Bichsel, 2004; Passolunghi & Mammarella, 2012; Szucs et al., 2013).  Miller and Bichsel 

(2004) found that in adults’ high visuo-spatial working memory was associated with better basic 

and applied mathematical performance (β = 0.28 & β = 0.23 respectively). Accordingly, 

Passolunghi and Mammarella (2012) found that children with either a calculation deficit or a 

problem-solving deficit showed also a deficit in spatial processing, suggesting that the visuo-

spatial sketchpad is involved in mathematical performance. Moreover, Szucs and colleagues 

(2013) found that children with Developmental Dyscalculia had lower performance in the visuo-

spatial sketchpad and inhibition processes. Accordingly, De Smedt and colleagues (2009) also 

found that the visuo-spatial sketchpad was significantly related to mathematical achievement. 

Interestingly, however, this relationship was significant for Year 1 students, but not for Year 2 

students. This result suggests that the involvement of the visuo-spatial sketchpad might change 

with age and might be more relevant during some developmental timepoints and less during 

some others. Moreover, Hawes and colleagues (2019) assessed children from the age of 4 to the 



47 
 

age of 11 concurrently in visuo-spatial working memory and mathematical performance. The 

visuo-spatial working memory included two different tasks. The authors observed that 

mathematical performance was significantly positively related to both the forward visuo-spatial 

working memory span (r = .57), and the backward visuo-spatial working memory span (r = .63). 

Finally, Hawes and Ansari's (2020) review suggested that visuo-spatial working memory may play 

a role in numerical tasks where the participants need to maintain and recall the information, 

whereas other tasks might involve different systems. 

Verbal working memory also appears to have a significant relationship with mathematical 

performance (Friso-van Den Bos et al., 2013; Miller & Bichsel, 2004). In Miller and Bichsel 

(2004)’s study, verbal working memory was also a significant predictor of basic and applied 

mathematical performance (β = 0.26 & β = 0.19 respectively). In line with these results, Friso-

van Den Bos and colleagues (2013) carried out a meta-analysis and found an overall medium 

positive relationship between verbal working memory and mathematical performance (r = .31).  

Finally, the central executive seems to be a relevant factor to consider when assessing 

mathematical performance. For example, Purpura and colleagues (2017) assessed inhibition 

efficiency, which is one of the processes of the central executive. The author observed that 

inhibition efficiency was significantly positively related to the performance in basic (r = .50 

between inhibition and subitizing) and more complex mathematical tasks (r = .51 between 

inhibition and solving of story problems). Findings in a study by Passolunghi and Cornoldi 

(2008) also suggest that the central executive is important for mathematical performance. The 

authors observed that students with developmental dyscalculia showed lower performance on 

active working memory tasks and lower efficiency in inhibition processes than normally 

developing peers. Also, Friso-van Den Bos and colleagues (2013) observed a significant positive 

relationship between inhibition efficiency and mathematical performance (r = .27). The 

importance of central executive processes, and especially the inhibition of irrelevant information, 
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for mathematical success, has been found by several other authors. For example, Blair and Razza 

(2007) found that in 5- to 7-year-old children inhibition and shifting efficiency were significant 

predictors of mathematical performance. Finally, De Smedt et al. (2009) also found that the 

central executive was a significant unique predictor of mathematics achievement of students in 

Year 1 and Year 2 (r = .52 & r = .53 respectively). Moreover, when all three systems (i.e., verbal 

and visuo-spatial working memory and central executive) were included in a multiple regression 

model, only visuo-spatial working memory (β = .38) and central executive (β = .35) were 

significant predictors of mathematical performance, suggesting that these two systems are the 

most relevant for mathematical performance. 

A possible explanation for the plethora of different findings existing in literature is that 

different mathematical tasks require different cognitive systems. For example, Lee and Kang 

(2002) argued that different operations are carried out in different parts of the working memory. 

The authors asked the participants to perform three mathematical tasks, one where they had only 

to perform the mathematical task, one where at the same time the participants needed to 

perform a phonological suppression task (continuously repeat a non-word), and finally, one 

where at the same time the participants needed to perform a visuo-spatial suppression task 

(needed to keep in mind the shape and spatial location of an abstract shape). The mathematical 

tasks required the participants to perform multiplications and subtractions. For multiplications, 

the authors observed that the participants were significantly slower while performing a 

multiplication concurrently with the phonological task than in the other two situations. For 

subtraction, the authors observed that the participants were significantly slower while performing 

a subtraction concurrently with the visuo-spatial task than in the other two situations. In sum,  

the phonological dual tasks disrupted the performance on multiplications but not subtractions, 

and the visual dual task disrupted the performance on subtractions but not multiplications. 

These results suggest that multiplications take place in the phonological loop, whereas 

subtractions use the visuo-spatial sketchpad. This might explain some discrepancies found in the 
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literature. Another possibility is that the involvement of each system changes with development. 

For example, the involvement of the visuo-spatial working memory changed from Year 1 to 

Year 2 students in De Smedt and colleagues study (2009). While the focus of this thesis is not on 

the relationship of working memory and mathematical performance per se, but on the 

relationship between working memory and mathematics anxiety, it is clearly important to keep in 

mind that working memory is an important factor for mathematical performance which is 

associated with mathematics anxiety. 

 

1.4.3 Working memory and mathematics anxiety 

The literature suggests that there is a significant relationship between mathematics 

anxiety and working memory. In fact, as discussed above, some researchers suggest that 

mathematics anxiety causes interference in working memory during the processing and the 

retrieval of mathematical information. For example, Faust and colleagues (1996) observed that 

participants with high levels of mathematics anxiety had a higher deficit in mathematical 

performance when the problems were more difficult compared to when the problems were 

easier. However, when the participants had to complete the same problems without time 

limitation, the performance difference between the high mathematics anxiety group and the low 

mathematics anxiety group in easier and more difficult problems was no longer significant, i.e., 

the participants with high mathematics anxiety performed similarly to the participants with low 

mathematics anxiety. Subsequently, Ashcraft & Kirk (2001) assessed mathematical performance 

and working memory in participants with high, medium, and low levels of mathematics anxiety 

with multiple experiments. In the first experiment, the authors found that participants with high 

mathematics anxiety showed lower performance in verbal working memory tasks. In the second 

experiment, the researchers assessed the relationship between mathematics anxiety and working 

memory by including a mathematical task. The design required the participants to perform 
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simple and complex additions while maintaining a letter in memory. The results suggested that 

the participants with high mathematics anxiety were outperformed by the participants with low 

mathematics anxiety in complex additions. In easier tasks, the difference in performance between 

the participants with high mathematics anxiety and the participants with low mathematics anxiety 

was markedly smaller. The results of these two studies were explained in light of the processing 

efficiency theory. The processing efficiency theory (Eysenck & Calvo, 1992) suggests that anxiety 

causes interference in working memory leading to an efficiency deficit, but not necessarily to a 

performance deficit, i.e., people with higher anxiety need longer to perform a task, but perform 

at the same level as people with low anxiety when they have enough time. In line with the 

processing efficiency theory, participants with high mathematics anxiety showed longer reaction 

times (meaning that it took them longer to perform a mathematical task), but not a significantly 

different performance when time restraints were lifted. These findings are in line with the 

debilitating anxiety model and predict an interference in the processing of mathematical 

information. However, it is unclear which working memory system is affected by mathematics 

anxiety. For example, Ashcraft and Kirk’s study assessed verbal working memory and found a 

significant relationship between complex verbal working memory and mathematics anxiety (r = -

.40). Moreover, Passolunghi and colleagues (2016) found that secondary school students with 

high mathematics anxiety had significantly lower scores in the Word Span Forward task, which 

measures verbal working memory. In addition, Mammarella and colleagues (2015) tested primary 

students with developmental dyscalculia, with high mathematics anxiety, and typically developing 

students. The three groups were matched in reading comprehension, general anxiety, and IQ. 

The authors found that students with high mathematics anxiety showed worse verbal working 

memory than typically developing participants. However, the authors assessed also visuo-spatial 

working memory and observed that high mathematics anxiety students had also lower visuo-

spatial working memory than the typically developing students. In contrast, Miller and Bichsel 

(2004) found that mathematics anxiety was inversely related with visuo-spatial working memory 
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(r = -.25) but the relationship with verbal working memory was non-significant (r = -.11). It is 

possible that depending on the mathematical task and the age of the participants, mathematics 

anxiety has different relationships with different aspects of working memory.  

Whichever working memory system we are talking about, a possible relationship between 

working memory and mathematics anxiety could be one of the reasons why there is a 

relationship between mathematics anxiety and mathematical performance. In fact, according to 

Ashcraft and Moore’s ‘affective drop in performance’ (Ashcraft & Moore, 2009), mathematics 

anxiety causes a working memory deficit, which then is the cause for the mathematical deficit. 

The authors state that the drop in performance in individuals with high mathematics anxiety can 

be termed as an affective drop, as it can be attributed to the growth in arousal due to 

mathematics when the individuals are in high stakes mathematical situations and it is not due to 

numerical or other general cognitive difficulties. Essentially, it has been suggested that the 

working memory deficit leaves the person with fewer cognitive resources to deal with the 

mathematical task. Fewer resources then mean that the person with high mathematics anxiety is 

more likely to fail, or that in any case, they will take longer to process the mathematical 

information. This can be referred to as the ‘online effect’ of mathematics anxiety (Devine et al., 

2012). Overall, the ‘affective drop in performance’ approach provides an interesting framework 

for studying and interpreting the results of studies of mathematics anxiety. However, this 

approach relies on the processing efficiency theory to explain the anxiety – performance 

relationship, but new evidence suggests a slightly different story. 

 

1.4.4 Attentional control theory, inhibition and mathematics anxiety 

The processing efficiency theory was further updated to reflect new findings, and 

Eysenck and colleagues (2007) proposed the attentional control theory. According to this theory, 

anxiety causes a deficit specifically in the inhibition and shifting processes which then causes the 
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processing efficiency deficit. According to this theory, we should find significant effects of 

mathematics anxiety on measures that involve the central executive and, more importantly, in 

measures that assess the efficiency of the inhibition and the shifting processes, but not on other 

working memory components.  

Indeed, it is possible that a reduced efficiency of inhibition processes could account for 

the relationship between mathematics anxiety and mathematical performance. This idea is based 

on the inhibition theory (Hasher & Zack, 1988; in Hopko et al., 1998) suggesting that during the 

execution of tasks, inhibition processes are put in place to control and inhibit distracters, which 

would otherwise use cognitive resources and that this leaves less free resources for the task at 

hand. When these processes are working properly, participants show adequate performance. 

However, when inhibition processes are less efficient, working memory resources will be drained 

by task-irrelevant data, and participants perform worse. Hence, the fact that participants with 

high levels of mathematics anxiety find themselves with worrisome intrusive thoughts (Hunt et 

al., 2014) might be a result of faulty inhibition mechanisms. In line with this prediction, Hopko 

and colleagues (1998) found that participants with high mathematics anxiety were slower to read 

and showed worse text comprehension when there were distracters in the text compared to 

participants with low mathematics anxiety. Hopko and colleagues (1998) gave people with low, 

medium, or high levels of mathematics anxiety a text to read. Part of the text was italicized, and 

another part of the text was not italicized. Participants were instructed to only read the italicized 

text and to ignore any text that was not italicized. Participants with medium and high levels of 

mathematics anxiety had significantly longer reading times than participants with low levels of 

mathematics anxiety. This extra time was not used to gain a better understanding and memory of 

the text. The authors suggested that the participants took longer to read the italicized text 

because they could not inhibit the irrelevant text and actually had to read it. Interestingly, this 

effect was found for both texts with and without mathematical content suggesting this effect was 

not specific for the mathematical content. The authors suggested that the presence of intrusive 
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worrisome thoughts in individuals with high mathematics anxiety are the consequence of a more 

general impairment in the inhibition processes. This deficit of the inhibition processes in 

individuals with high mathematics anxiety could overload the working memory with irrelevant 

information as they are not able to successfully inhibit environmental distracters. The saturation 

of the working memory capacity could then lead to more difficulties during mathematical tasks. 

Hopko and colleagues do not explain why this deficit in inhibition specifically causes 

mathematics anxiety. However, an explanation why this deficit is more likely to cause 

mathematics anxiety resides in the very nature of mathematics. The inhibition deficit and its 

consequent waste of cognitive resource with irrelevant information is likely to cause lower 

performances in different aspects of everyday and academic life, such as mathematical tasks 

(Passolunghi et al., 2016), but also in reading comprehension tasks (Hannon, 2012). The reason 

why the deficit is more likely to cause the development of mathematics anxiety than reading 

anxiety is that an error in mathematics is very evident, whereas an error in the comprehension of 

written text is less evident and sometimes open to different interpretations (Cornoldi, 1999). 

Moreover, there is the commonly held belief that being good at mathematics is a synonym of 

being smart, a belief that is not held for other academic material (Cornoldi, 1999). A history of 

repeated difficulties and mistakes in mathematics might cause the individual to develop 

mathematics anxiety as they fear more of failing mathematical tasks than they fear to fail in other 

tasks. Recently, Passolunghi and colleagues (2016) found that, in accordance with the ‘affective 

drop in performance’ approach, secondary school children with high levels of mathematics 

anxiety indeed had worse mathematical performance, and worse measures of verbal working 

memory and working memory capacity. More interestingly though, children with high 

mathematics anxiety made more intrusion errors during active working memory task than 

children with lower mathematics anxiety. Intrusions during active working memory tasks are 

believed to be a measure of the efficiency of the inhibition processes (Passolunghi & Siegel, 

2001, 2004). More intrusions would indicate lower efficiency of the inhibition processes. In line 
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with Passolunghi and colleagues’ results, Georges and colleagues (2016) also found that 

mathematics anxiety was associated with weaker inhibitory control in University students. These 

results, in line with the inhibition theory, suggest the need to update the framework as the deficit 

is not only in the passive storage, but there appears to be a deficit in the central executive, which 

could also explain the deficits observed in the verbal and in the visuo-spatial systems.  

More support for the involvement of inhibitory processes in mathematics anxiety comes 

from neurophysiological studies. Lyons and Beilock (2012a), for example,  investigated 

participants with high mathematics anxiety who performed well on mathematical tasks. The 

authors observed that the participants with high mathematics anxiety who managed to perform 

well on the mathematical tasks showed higher activation of frontal regions of the brain, such as 

the inferior frontal junction, an area that has been suggested as involved in cognitive control 

(Derrfuss et al., 2005, 2009; in Lyons & Beilock, 2012a). The authors suggested that the 

participants with high mathematics anxiety who performed well on mathematical tasks were able 

to recruit extra cognitive resources to perform the mathematical task. If it is true that 

mathematics anxiety causes the presence of irrelevant information in the working memory due to 

lower inhibition efficiency, the recruitment of extra resources could have allowed the participants 

to overcome the system overflow.  

In conclusion, the data presented in this review suggest that there is a significant and 

negative relationship between mathematics anxiety and mathematical performance in secondary 

school students and adults. This relationship could be explained by a self-enhancement 

approach, a skill development approach, or a reciprocal relationship approach. Interestingly, the 

role of cognitive resources in this relationship has received little attention. This will be a key 

question for the studies presented in this thesis. 
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1.5 Brief overview of the studies 

In this thesis, I will present three different studies. The first two studies are with adult 

participants, and the last study is a longitudinal study with secondary school students. The first 

study is a within-participant experiment involving the assessment of working memory in 

mathematical and in non-mathematical situations. I expected to find that the participants with 

high mathematics anxiety would show a significant deficit in the performance in the working 

memory tasks compared with the participants with low mathematics anxiety. Moreover, I 

expected that this deficit would be found only in mathematical situations, whereas it should be 

absent in non-mathematical situations. In the second study, I aimed to replicate the findings of 

the first study, using an extreme group design (high versus low mathematics anxiety) and a more 

sensitive measure for inhibition efficiency. The last study is a longitudinal study in secondary 

school students that aimed at assessing the reciprocal concurrent and longitudinal relationships 

between mathematics anxiety, mathematical performance, and mathematics self-belief over one 

school year. In chapter 4 I will present the concurrent relationships for the first time-point of 

this study, whereas in chapter 5 I will focus on the longitudinal relationships.  
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Chapter 2 - Is the relationship between working memory and 

mathematics anxiety context-dependent? 

 

2.1 Introduction 

In this chapter, I am presenting a study with adults investigating whether being in a 

mathematical situation affects different working memory systems (phonological loop, visuo-

spatial sketchpad, and central executive) and whether the size of these effects is related to 

mathematics anxiety. 

 

2.1.1 Anxiety and cognitive resources 

Working memory was introduced in the literature review (please see chapter 1.4.1, page 

45) as a system that allows the temporary storage and manipulation of information. Literature 

suggests a significant negative relationship between anxiety and performance (Eysenck et al., 

2007; Eysenck & Calvo, 1992). Eysenck and Calvo’s (1992) review suggested that this negative 

relationship is due to working memory interferences of anxious origin. Based on these findings, 

the authors proposed the processing efficiency theory (PET) that theorized that worrisome 

thoughts reduce working memory’s processing efficiency and storage capacity. Processing 

efficiency is defined as the relationship between performance effectiveness (the quality of the 

performance; e.g., the accuracy on the task) and the amount of cognitive resources used to attain 

that level of performance (Derakshan & Eysenck, 2009); the higher the efficiency, the lower the 

amount of cognitive resources that are needed to achieve the same performance. A key 

distinction presented in the processing efficiency theory is between effectiveness and efficiency. 

Effectiveness is the quality of the performance in the task (e.g., response accuracy on the task), 

whereas efficiency refers to the relationship between the performance and the resources used to 
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reach the performance. The same performance might need different amounts of resources from 

two people. For example, accuracy in a task might be the same for two people, but one person 

needed significantly more time than the other to complete the task. The person that needed 

more time used more cognitive resources to reach the same performance, hence showed lower 

efficiency (Eysenck & Calvo, 1992).  Lower efficiency is not associated with lower accuracy 

performance in normal situations. The problem arises in high stake and high working memory 

demanding tasks, in which the available resources are not enough to overcome the system’s 

reduced capacity (Berggren et al., 2012). Berggren and colleagues (2012) observed that cognitive 

demands influenced anxious participants’ performance as in a visual search task, the introduction 

of a counting task did not affect the reaction times of low anxiety participants, but reaction times 

of anxious individuals were significantly longer. 

Building on the processing efficiency theory, Eysenck and colleagues (2007) developed 

the attentional control theory intending to explain which processes of the central executive are 

involved in the relationship between anxiety and performance. The attentional control theory 

(ACT) stated that the cognitive deficit that is found in highly anxious participants is due to the 

effects of deficits in two processes of the central executive: the inhibition of the irrelevant 

information and the attentional shifting. Inhibition is the ability to inhibit irrelevant information 

and has two components: the inhibition of prepotent responses which is defined as motor or 

response inhibition, and the resistance to the interference from distractors which is defined as 

semantic or attentional inhibition (Friedman & Miyake, 2004; Tiego et al., 2018). The attentional 

control theory proposes that anxiety is involved in the reduction of both types of inhibitory 

control (Eysenck et al., 2007). For example, Calvo and Eysenck (1996) found that highly anxious 

participants showed poorer text comprehension, when compared with participants low in 

anxiety, when the text was heard in concurrence with articulatory suppression or irrelevant 

speech, but not when there was no interference. The authors suggested that the drop in 

performance observed when the participants were hearing additional information was due to the 
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participants’ inability to inhibit the irrelevant additional information. The second process of the 

central executive that is affected by anxiety is shifting. Shifting consists of the function of the 

central executive that is responsible for shifting the attentional focus between multiple tasks 

(Miyake et al., 2000). In the literature it is also referred to as “task switching” or “attention 

switching”, and it is required when we need to shift our attentional focus from one aspect of the 

world (e.g., the screen in front of yourself) to a different aspect (e.g., the words coming out of 

the mouth of a colleague). Santos and colleagues (2006) found that highly anxious participants 

are slower in switching tasks compared with participants with low anxiety.  

These results suggest that anxiety, in general, seems to have a detrimental effect on the 

efficiency of the processing of information and that individuals with high levels of anxiety might 

struggle more in tasks that require the intensive use of cognitive resources. 

 

2.1.1.1 Working memory and performance on mathematical tasks 

Literature suggests the presence of a positive relationship between working memory and 

mathematical performance (please see chapter 1.4.2, page 46). However, researchers are still 

arguing about the specific involvement of the different working memory systems. 

For example, some researchers argued that in adults the retrieval of strategies to solve 

problems require limited cognitive resources. In fact, for example, Imbo and Vandierendonck 

(2007) found that the use of retrieval strategies require progressively less working memory 

resources with the development of mathematical skills. Moreover, the phonological loop is 

probably simply involved in the encoding and maintaining of arithmetical operands, but not in 

the calculation as such (Fürst & Hitch, 2000). Fürst and Hitch (2000) found that suppression of 

articulation (repeating continuously the word “the”) did not impair the addition of two numbers 

when these were visible. On the other hand, articulatory suppression significantly impaired the 
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performance when the numbers were presented only briefly and then needed to be remembered. 

Other authors found a significant positive relationship between visuo-spatial working memory 

and mathematical performance (r = .63; Hawes et al., 2019). 

On the other hand, other researchers (e.g., Hubber et al., 2014) showed that in adults 

central executive processes are critical for mathematical performance, more so than visuo-spatial 

manipulation. In their study, Hubber and colleagues (2014) used an addition task that involved 

three different strategies to solve the mathematical problem: a retrieval strategy, a decomposition 

strategy, and a counting strategy. The retrieval strategy required participants simply to remember 

the correct solution. The decomposition strategy required participants to decompose the 

addition in two parts. For example, to solve 7+6=?,  the instructions were to add 3 onto 7 and 

then add the remaining units to get the answer. Finally, the counting strategy required to count 

up the units from the first number on the second number to reach the answer. In the 7+6=? 

example, this would mean to count six times starting from 7. The authors found that loading the 

central executive (i.e., asking participants to generate random letters) produced slower and less 

accurate responses in concurrent mathematical tasks than simply loading the visuo-spatial 

sketchpad (i.e., asking participants to remember where 4 dots were on a 4 by 4 grid). Moreover, 

they found that counting was the strategy most affected by the load on the central executive and 

that the more demanding the operation was (i.e., double-digit addition versus single-digit 

addition), the more the load affected the performance. The finding that also retrieval of the 

solution was influenced by the central executive is in contrast to the findings of Imbo and 

Vandierendonck (2007) in which the involvement of working memory in retrieval decreased with 

the development of mathematical abilities. These findings also are in contrast with previous 

literature (Lee & Kang, 2002) showing that the visuo-spatial sketchpad is involved in arithmetical 

operations. However, Lee and Kang (2002) used multiplications and subtractions, and not 

additions. Moreover, the authors found that the phonological loop was involved in the 
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performance on multiplications, whereas the visuo-spatial sketchpad was more involved in 

subtractions.  

Overall, these findings suggest that the phonological loop is involved in the maintenance 

of the operands of the problems and multiplications. The visuo-spatial sketchpad appears to be 

involved in subtractions, and the central executive in additions and counting. However, Lee and 

Kang (2002) did not control for the effect of the central executive in multiplications and 

subtractions, so the central executive may be also involved in those operations. 

 

2.1.2 Mathematics anxiety and mathematical performance 

Mathematics anxiety is negatively related to mathematical performance, i.e., individuals 

with high mathematics anxiety tend to perform poorly in mathematical tests (Hembree, 1990; 

Justicia-Galiano et al., 2017). Hembree’s influential meta-analysis (1990) reported a significant 

negative correlation between mathematics anxiety and mathematical performance in High school 

students (r = -.30). Accordingly,  Justicia-Galiano and colleagues (2017) observed a significant 

negative correlation between mathematics anxiety and mathematical problem solving (r = -.27) 

and between mathematics anxiety and teacher’s assessment of mathematical performance (r = -

.27). 

However, the mechanisms underlying this relationship are still unclear. As discussed in 

the literature review (please see chapter 1.3, page 36), there are currently three proposed 

explanations for this relationship in the literature; 1) the deficit theory, 2) the debilitating anxiety 

model, and 3) the reciprocal theory (Carey et al., 2016). The deficit theory proposes that poor 

mathematical performance causes the development of mathematics anxiety and is supported by 

longitudinal studies (Ma & Xu, 2004) and from studies on students with developmental 

dyscalculia (Passolunghi, 2011). In contrast, the debilitating anxiety model states that 

mathematics anxiety causes a drop-in performance in mathematical performance. This theory is 
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supported by studies that observed global and local avoidance in individuals with high 

mathematics anxiety (Faust et al., 1996; Hembree, 1990; Morsanyi et al., 2014). Moreover, 

support for this thesis comes from studies that suggested the presence of an online effect of 

mathematics anxiety on mathematical performance (Ashcraft & Kirk, 2001; Ashcraft & Krause, 

2007). Finally, the reciprocal theory combines both previous hypotheses and proposes that 

mathematics anxiety and poor mathematical performance are in a vicious cycle of a reciprocal 

relationship (Carey et al., 2016). The model proposes that on one hand poor mathematical 

performance is involved in the development of mathematics anxiety and on the other hand that 

mathematics anxiety is involved in lower mathematical performance in the participants who 

suffer from it (Carey et al., 2016). Support for the reciprocal theory comes from the finding that 

there is strong evidence for both other models and that they are not mutually exclusive. Hence, 

in early years poor mathematical performance may be one of the causes of the development of 

mathematics anxiety. But this does not exclude that once established, mathematics anxiety causes 

more deficits in the mathematical performance.  

 

2.1.3 Mathematics anxiety, working memory, and mathematical performance 

The online effect of mathematics anxiety on mathematical performance can work 

through different methods (please see chapter 1.3.2, page 40). Of relevance for the current work 

is the proposed mechanism by which the online effect is caused by interference from anxiogenic 

thoughts in the working memory. This interference supposedly diminishes cognitive resources 

for the mathematical task, working as a dual-task (Ashcraft & Moore, 2009; Ashcraft & Kirk, 

2001; Ashcraft & Krause, 2007; Faust et al., 1996). This mechanism was, for example, suggested 

by Ashcraft and Kirk (2001; for a description, please see chapter 1.4.3, page 49).  

On the other hand, recent research questioned the online effect previously described, by 

finding deficits in basic numerical processing and proposing that the mathematics anxiety – 
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mathematical performance relationship cannot be explained by a deficit in working memory 

(Maloney et al., 2010). The authors found that participants with high mathematics anxiety 

showed a deficit in counting but not in subitizing tasks compared to participants with low 

mathematics anxiety. Counting and subitizing are two different processes involved in the 

enumeration. Subitizing happens when the numerosity is between 1 and 4. The authors observed 

a small increase in Reaction Times (RTs) and no difference in accuracy when the participants 

needed to enumerate the number of 1-4 objects in a group. Counting happens when the 

numerosity is 5 or more, and RTs becomes greater as the number of objects increase and at the 

same time accuracy decreases. The authors observed that participants with high mathematics 

anxiety were slower than participants with low mathematics anxiety in the counting range. 

Moreover, the difference between the two groups grew with the increase of the target number. 

According to Maloney and colleagues (2010), the fact that a basic process like counting is 

affected by mathematics anxiety shows that individuals with high mathematics anxiety have a 

basic numerical processing deficit, not just a specific deficit for difficult tasks. However, as 

discussed earlier (Hubber et al., 2014), working memory might be involved in the process of 

counting, hence it is not surprising that counting performance was affected by mathematics 

anxiety. 

Finally, it has been hypothesised that in accordance to the attentional control theory, 

mathematics anxiety research should focus on the central executive processes instead of passive 

working memory systems (Passolunghi et al., 2016). Indeed, Passolunghi and colleagues found 

that in secondary school students, participants with higher mathematics anxiety had lower 

performance in verbal working memory tasks (in both passive and active working memory 

measures) and lower efficiency of the inhibition processes of the central executive. These 

findings suggest the involvement of the central executive processes (in this case inhibition 

processes). 
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So far, to the best of my knowledge, no study investigated all three main working 

memory systems together (phonological loop, visuo-spatial sketchpad, and central executive) in 

the same study to understand the effect of mathematics anxiety on each system. In addition, no 

study measured these working memory systems in mathematical and non-mathematical 

situations to allow for comparisons between these measures and evaluate the effect that being in 

a math-related situation might have on working memory. For this reason, I designed a study in 

which participants participated in two different sessions. One was a mathematical session in 

which the participants were informed that they would be tested on mathematics and before the 

mathematical tasks they were tested on working memory and mathematics anxiety. The second 

session was a non-mathematical session in which participants were informed that it was simply 

about trait anxiety and working memory and were tested only on trait anxiety and working 

memory. 

Based on Passolunghi and colleagues (2016) findings, I expected to find lower efficiency 

in the inhibition processes and a lower span of active working memory measure (i.e., Listening 

Span) for participants with high levels of mathematics anxiety. Moreover, I expect to find this 

pattern specifically in mathematically related situations. 

 

2.2 Methods 

2.2.1 Participants  

A total of 44 students of a University in the North Yorkshire participated in this study. 

Of these, 36 (12 males, mean age 20.53 years, age range 18 – 32 years) completed both sessions 

and were included in the analysis. Of the remaining 8, 7 did not come to one of the sessions and 

1 was excluded because their age was significantly different from the age range of the sample (55 

years old). 
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Ethical approval was obtained from the ethics committee of the Psychology Department 

of the University of York. Participants could choose between receiving payment (6£ per hour) or 

receiving participation hours (1 hour per hour of participation). 

 

2.2.2 Materials 

The following tasks were designed to assess working memory and were administered to 

all participants in both sessions: 

 

Verbal working memory 

To assess verbal working memory, I decided to use a passive measure of verbal short-

term memory that would not involve the presence of numbers. To achieve this goal, I developed 

a Letter Span task. The task requires participants to repeat a series of letters after hearing them 

spoken aloud, in the same order as they heard them. The span starts with 2 letters and ends with 

8 letters. For each level of the span, there are two series. The presentation ends either when the 

participant reaches the end, or when the participant cannot recollect both series of a span level. 

The span measure recorded is the number of trials correctly recollected (Min = 0; Max = 14). 

The choice of letters used was driven by the need to avoid phonological similarities 

between letters (e.g., “m” and “n”). To avoid phonological similarity between letters, I used 

Conrad‘s table (Conrad, 1964) and chose the letters with the lowest phonological similarity 

between them. I chose the following letters: F, R, H, J, Y, Z, M W, Q (for the task, see Appendix 

A.1). 

The score showed good a correlation between the two sessions (correlation letter span 

scores in mathematical and non-mathematical sessions: r = .62).  
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Visuo-spatial working memory 

To assess visuo-spatial working memory, I used the Corsi Span task forward (subtest of 

the Wechsler Memory Scale, WMS-3) (Wechsler, 1997). In this task participants are asked to 

touch a series of blocks in the same order as they were touched by the examiner before them. 

The span starts with 2 blocks and ends with 9 blocks. For each level of the span, there are two 

series. The presentation ends either when the participants reach the end, or when the participants 

cannot recollect both series of a span level. The score is the number of series correctly 

recollected (Min = 0; Max = 16). The Corsi Span task was adopted from the Wechsler Memory 

Scale III (WMS-III), which report a good overall test-retest reliability (r = .71) in the test manual. 

 

 

Working memory capacity  

Working memory capacity can be considered a complex measure that includes the 

passive storage of information and the cognitive control aspects that can influence this passive 

storage (Shipstead et al., 2016). I decided to use a Listening Span task (Daneman & Carpenter, 

1980) as an active measure of working memory that can assess working memory capacity. The 

task required the participants to listen to a set of sentences (for example: “Chocolate is eaten on 

spaghetti”; see Appendix A.2 for the full list). For each sentence participants need to decide if 

the statement is true or false and remember the last word of the sentence. At the end of the set 

of sentences participants are asked to repeat the last words of each sentence in the same order as 

they were presented. Hence the participant is engaged in a dual task. The set of sentences starts 

with 2 sentences and ends with 6 sentences per set. Each level has two different sets of 
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sentences. The presentation is concluded after all sets of sentences have been presented, 

meaning that there is no discontinuation rule. 

This task allows two different measures: Words, indicating the number of last words 

correctly remembered during the whole presentation (Min = 0; Max = 40) which refers to the 

working memory capacity; and Intrusions, indicating the number of non-target words erroneously 

recollected (e.g.: from the sentence “Chocolate is eaten on spaghetti” the participant remember 

chocolate or tomato sauce) (Min = 0; Max = 40). The intrusions measure is believed to assess 

the inverse of the efficiency of inhibition processes (Passolunghi et al., 2016) since an intrusion is 

the effect of the failure to inhibit a word that should have been inhibited. 

The span score showed good correlation between the two sessions (correlation listening 

span scores in mathematical and non-mathematical sessions: r = .65).  

 

The following tasks were administered only during the Mathematical session: 

 

Mathematics anxiety 

To assess mathematics anxiety, I used the Abbreviated Math Anxiety Scale (AMAS; 

Hopko et al., 2003). AMAS is a self-report questionnaire (see Appendix A.3) that is composed of 

9 items associated with different math-related situations (in school and everyday life; an example 

of a situation: “Watching a teacher work an algebraic equation on the blackboard”). In the 

AMAS, the participant needs to rate the feelings during those situations using a 5-point Likert 

scale from 1 – No bad feelings to 5 – Worst feelings (Min AMAS score = 9; Max = 45). The 

AMAS shows good internal consistency (α = .90) and good two-week test-retest reliability (r = 

.85) in adults (Hopko, Mahadevan, et al., 2003). I used the scores on the AMAS to divide 

participants into two groups; a high mathematics anxiety group and a low mathematics anxiety 



67 
 

group. The design involved the creation of the groups based on a median split design. To divide 

the participants, I used a median split based on the median in the current sample (Mdn = 18). 

Participants with an AMAS score below the median were allocated to the low mathematics 

anxiety group (N = 17); participants with an AMAS score above the median were allocated to 

the high mathematics anxiety group (N = 15). Participants with an AMAS score equal to the 

median (N = 4) were excluded from the analysis. 

 

Mathematical performance 

To assess the participants’ mathematical proficiency I used the mathematical subtest of 

the Wide Range Achievement Test (WRAT-4; Wilkinson & Robertson, 2006) blue form. The 

math computation subtest includes 30 mathematical problems of increasing difficulty. It 

measures participants’ ability to perform basic mathematical computations through the solving 

of problems with additions, subtractions, multiplications, divisions, fractions, use of decimals, 

and algebra. In adults, the math computation subtest scores 1 point for each correct operation 

and 0 for each empty or wrong operation. There are 40 operations, and the final score is reached 

by adding 15 points if there are at least 5 correct responses in the task (Min = 0; Max = 55). The 

blue form of the math computation subtest of the WRAT-4 shows good overall reliability (α = 

.89) and a good average immediate retest reliability with the alternate form (green form; r = .88) 

(Wilkinson & Robertson, 2006). 

 

Arithmetical fluency 

To assess participants’ fluency in arithmetic I used the Simple Calculations task. The task 

requires the participant to solve as many calculations as possible within a specific time limit. The 

task includes three subtests, addition, subtraction, and multiplication. For each type of operation, 
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there are two subtests: 1) an easy page with 25 items (15 seconds to complete as many items as 

possible for addition and subtraction, 20 seconds for the multiplications); 2) a difficult page with 

25 items (45 seconds to complete as many items as possible for addition and subtraction, 2 

minutes for the multiplications) which has more difficult operations (see Appendix A.4). 

Operations use single-digit operands for the easy task and single- and double-digit operands for 

the difficult task. Each page has 25 items, but the easy page of each operation has two examples. 

Consequently, the maximum score for each of the easy tasks is 23, whereas the maximum score 

for each difficult tasks is 25. The final score is a sum of all tasks to get a measure of arithmetical 

fluency (Max = 144). The test was adapted from the simple addition and subtraction test from 

Westwood and colleagues (Westwood et al., 1974). 

 

The following tasks were administered only during the Non-mathematical session: 

 

Trait anxiety 

To assess participants’ trait anxiety, I used the GAD-7 (General Anxiety Disorder – 7; 

see Appendix A.5) questionnaire (Spitzer et al., 2006). The GAD-7 is a short questionnaire 

composed of 7 items (e.g., “Over the last 2 weeks, how often have you been bothered by not 

being able to stop or control worrying?”) that assess general anxiety levels and proved valid and 

efficient in screening and assessing the severity of the general anxiety disorder (Spitzer et al., 

2006). Items are rated on a 4-point Likert scale from “Not at all” (score of 1) to “Nearly every 

day” (score of 4). The minimum score is 7, the maximum score is 28. GAD-7 shows good 

convergent validity with the Beck Anxiety Inventory (r = .72) and with the anxiety subscale of 

the Symptom Checklist-90 (r = .74) in adults (Spitzer et al., 2006).  
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2.2.3 Design and Procedure 

A repeated measures design involved two different sessions; a Mathematical session and 

a Non-mathematical session. Sessions took place on different days with 48 – 1007 (Mean = 

184.26) hours between the two sessions. The order of the two sessions was counterbalanced 

between participants. 

 

Mathematical session 

In the mathematical session, participants were told beforehand that the study investigated 

the involvement of working memory in the relationship between mathematics anxiety and 

mathematical performance. The tasks were given in the following order: 1. AMAS; 2. Letter span 

task; 3. Corsi span task; 4. Listening span task; 5. WRAT-4 mathematical computation subtest; 6. 

Simple calculations. 

 

Non-mathematical session 

In the non-mathematical session, participants were told that the study investigated the 

relationship between trait anxiety and working memory. The tasks were given in the following 

order: 1. Letter Span task; 2. Corsi Span task; 3. Listening Span task; 4. GAD-7. 

 

2.3 Results 

2.3.1 Descriptive Statistics 

Table 2.1 reports the descriptive statistics divided by session (i.e., mathematical session 

versus non-mathematical session) for the full sample (N = 36).  



70 
 

 

 

 

 

 

 

Table 2.1. Descriptive statistics divided by session 

 

 

In this sample, mathematics anxiety ranged from 11 to 33 with a median of 18 (N = 36). 

I divided the participants into two groups, low and high mathematical anxiety. Table 2.2 reports 
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the descriptive statistics for the two groups (N = 32). Analysis of mean mathematics anxiety in 

the two groups showed that the average difference between the low mathematics anxiety group 

(LMA; M = 15.18; N = 17) and the high mathematics anxiety group (HMA; M = 24.13; N = 15) 

was low compared with the range of the questionnaire scores (Range = 9 - 45), although 

independent t-test showed that the difference was significant, t (30) = 8.02, p < .001.  
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 Table 2.2. Descriptive statistics and group differences of anxiety and mathematics measures. 
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2.3.2 Group Differences 

Table 2.2 reports the results of the independent samples t-tests of the differences 

between the low mathematics anxiety and the high mathematics anxiety groups on the 

background measures. Mathematical performance was significantly different between the two 

groups and descriptive statistics show that participants with high mathematics anxiety had lower 

mathematical performance compared with participants with low mathematics anxiety. The 

independent samples t-test for arithmetical fluency show that participants with high mathematics 

anxiety performed significantly worse than participants with low mathematics anxiety. 

Interestingly trait anxiety was also significantly different between the two groups, with the low 

mathematics anxiety group also showing lower levels of trait anxiety. 

In particular, I wanted to assess the differences between the groups in the working 

memory measures. Specifically, I wanted to assess if there were significant differences in working 

memory spans between the two groups and between the two sessions (for the descriptive 

statistics see Table A.1 in Appendix A.6). To answer this question, I carried out 3 separate 2-way 

mixed ANOVAs, one for each working memory span measure, with the within-subject factor 

session (mathematical and non-mathematical) and the between-subject factor group (low 

mathematics anxiety and high mathematics anxiety). The results can be seen in Table 2.3. 
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Table 2.3. Mixed ANOVA for working memory and session 

 

 

There was no main effect of session in any of the ANOVAs, i.e., working memory spans 

did not differ between being in a mathematical or in a non-mathematical situation. However, 

there were significant main effects of group for the verbal working memory and for the working 

memory capacity. There was also a marginally significant effect of group on the visuo-spatial 

working memory. Participants with high mathematics anxiety performed worse than the 

participants with low mathematics anxiety on all working memory span tasks (see Figure 2.1). 

None of the interactions were significant, suggesting that session did not influence the 

differences between groups. The means and standard errors of the span measures by group and 

session can be seen in Figure 2.1. 



75 
 

 

Figure 2.1. Working memory measures in the two sessions divided by mathematics anxiety group (low versus 

high). 

 

Because Intrusion scores showed flooring effect (please see Table A.1, Appendix A.6), I 

decided to not include this measure in the ANOVA but ran separate non-adjusted non-

parametric tests. Wilcoxon signed-rank test for intrusion showed no significant differences 

between the non-mathematical session (Mdn = 1.00) and the mathematical session (Mdn = 1.00) 

for the low mathematics anxiety group, U = 26.00, p = .527. Moreover, Wilcoxon signed-rank 

test for intrusion showed no significant differences between the non-mathematical session (Mdn 

= 1.00) and the mathematical session (Mdn = 1.00) for the high mathematics anxiety group, U = 

36.00, p = .383. A Mann-Whitney U-test for intrusions in the non-mathematical session found 

no significant difference between the low mathematics anxiety group (Mdn = 1.00) and the high 

mathematics anxiety group (Mdn = 1.00), U = 131.00, p = .911. Moreover, in the Mathematical 

session, the median number of intrusions for the low mathematics anxiety group (Mdn = 1.00) 
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was not significantly different from the high mathematics anxiety group (Mdn = 1.00), U = 

158.50, p = .246. The boxplots of the intrusions for the different groups can be seen in Figure 

2.2. Although the non-parametric analysis was not significant, the boxplots suggest that there 

might be some differences in the efficiency of the inhibition processes between the groups. 

 

Figure 2.2. Intrusion boxplots divided by session and group. 

 

2.3.3 Predicting mathematical performance 

I wanted to investigate the differences between the high and low mathematics anxiety 

groups. However, because the differences in mathematics anxiety between the two groups were 

small compared to the range of the questionnaire, I decided to include the whole sample and ran 

a correlational analysis (please see Table 2.4 for the whole correlational matrix). 
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Table 2.4. Whole correlation matrix 
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The first goal was to assess which factors best predict mathematical performance. To do 

this, I ran regression analyses on the whole sample. Firstly, given the known relationship 

between mathematics anxiety and trait anxiety (please see chapter 1.2.2, page 27) I wanted to 

investigate the individual influences of mathematics anxiety and trait anxiety on mathematical 

performance. I computed a stepwise linear regression with mathematics anxiety and trait anxiety 

as predictors of mathematical performance. The analysis showed mathematics anxiety as the only 

significant predictor of mathematical performance (β = -.43, p = .009). The model explained 18% 

of the variance and was significant, F(1,34) = 7.67, p = .009.  

After evaluating the relationship between mathematical performance and anxiety, I 

investigated working memory measures to assess which working memory components predicted 

mathematical performance. I ran a regression analysis with the three spans measures in the 

mathematical situation as predictors, and mathematical performance as outcome. Stepwise linear 

regression indicated that working memory capacity was the only significant predictor of 

mathematical performance (β = .39, p = .018). The model explained 15 % of the variance and 

was significant, F(1, 34) = 6.20, p = .018. 

To compare the relative contributions of mathematics anxiety and working memory 

capacity, I ran a regression analysis to test whether the two variables are still significant 

predictors of mathematical performance when considered together in the same regression model. 

Stepwise linear regression showed mathematics anxiety as the main predictor of mathematical 

performance. Including working memory capacity did not significantly improve the fit of the 

model, hence the resulting model included only mathematics anxiety as a significant predictor of 

mathematical performance (β = -.43, p = .009). The resulting model explained 18% of the 

variance and proved significant, F(1, 34) = 7.67, p = .009.  

Arithmetical fluency was excluded from the analysis because it did not show a significant 

relationship with mathematics anxiety (see Table 2.4). 
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2.3.4 Predicting working memory 

In the next step I assessed which factors best predicted working memory by running 

regression analyses on the whole sample.  

First, I ran a regression analysis to control the influence of mathematics anxiety and trait 

anxiety. Regarding the verbal and the visuo-spatial working memory, I did not run regression 

analysis because the measures, although significantly different between the two groups, did not 

show a significant relationship with mathematics anxiety (see Table 2.4). 

Working memory capacity as assessed by the listening span task, on the other hand, 

showed significant relationships in both sessions. I computed a stepwise linear regression with 

mathematics anxiety and general anxiety as predictors of working memory capacity in the non-

mathematical session. The analysis showed mathematics anxiety as a significant predictor (β = -

.51, p = .001), but not trait anxiety. The resulting model showed that mathematics anxiety 

explained 26% of the variance and that the model was a significant predictor of working memory 

capacity, F(1, 34) = 12.22, p = .001. 

I then computed a stepwise linear regression with mathematics anxiety and trait anxiety 

as predictors of working memory capacity in the mathematical session. The analysis showed 

mathematics anxiety as a significant predictor (β = -.52, p = .001), but not trait anxiety. The 

resulting model showed that mathematics anxiety explained 27% of the variance and that the 

model was a significant predictor of working memory capacity, F(1, 34) = 12.51, p = .001. 

Given that I was comparing the same construct in two different situations (mathematical 

and non-mathematical), and the only significant predictor is the same construct in both models, I 

decided to compare the confidence intervals of the standardized coefficients in the two models. 

In this way, I can assess if the relationship between mathematics anxiety and working memory 
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capacity is significantly different between the two sessions or not. The regression coefficients for 

the two models are presented in Table 2.5 with 95% confidence intervals. 

Table 2.5. Regression coefficients with 95% confidence intervals 

 

 

As we can see from Table 2.5, the confidence intervals overlap by more than 50%; this 

suggests that the two models are not significantly different. Comparison between correlation 

coefficients also suggested that the relationship between mathematics anxiety and working 

memory capacity in the two sessions was not significantly different, z = 0.06, p = .952. 

 

2.4 Discussion 

Previous literature addressed the relationship between mathematics anxiety, mathematical 

performance, and working memory (e.g., Dowker, Sarkar, & Looi, 2016). However, to the best 

of my knowledge, the current study is the first study in which the three working memory systems 

have been investigated concurrently in the context of mathematics anxiety. The main aim of this 

study was to assess the differences in three working memory systems  and in the inhibition 

efficiency between participants with high and low mathematics anxiety, and between 

mathematical and non-mathematical situations. Moreover, I investigated if being in a math-

related situation affected participants’ working memory spans. 
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2.4.1 Group Differences and Session 

Replicating previous findings (e.g., (Ashcraft & Kirk, 2001; Faust et al., 1996; Hembree, 

1990; Passolunghi et al., 2016), I found that participants with high mathematics anxiety 

compared to participants with low mathematics anxiety showed significantly lower mathematical 

performance and arithmetical fluency. Interestingly, both mathematical performance and 

arithmetical fluency were significantly different between the two groups. Indeed, the WRAT-4 

mathematical subtest is a complex task; it is designed to allow the assessment of mathematical 

performance from young children to older adults without ceiling effects. Hence, the findings are 

in line with the idea that participants with high mathematics anxiety have trouble with difficult 

tasks (debilitating anxiety model; Carey et al., 2016). On the other hand, my data showed 

significant differences also for the arithmetical fluency task, that measures performance with 

simple calculations. According to most of the literature, participants with high mathematics 

anxiety should not show a significant deficit in simple mathematical tasks when compared with 

participants with low mathematics anxiety (e.g., Ashcraft & Kirk, 2001). However, this task is 

stressful for the participants and requires the processing of many operations in a limited time 

frame. Hence, the finding of group differences on this task in this study is in accordance with 

findings by Faust and colleagues (1996) that suggests a specific impairment on mathematical 

performance for time-restricted situations. The results on the group differences on mathematical 

performance and arithmetical fluency are in line with the literature and suggest that the 

participants with high mathematics anxiety perform worse than the participants with low 

mathematics anxiety in mathematical tasks. 

Moreover, the participants with high mathematics anxiety showed significantly lower 

spans in verbal and visuospatial working memory and lower working memory capacity in 

comparison with participants with low mathematics anxiety. Results on the verbal working 

memory and working memory capacity tasks are in line with Passolunghi and colleagues (2016), 

although the researchers tested secondary school students. Moreover, in accordance with Ganley 
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and Vasilyeva (2014), I found that mathematics anxiety was associated with lower visuo-spatial 

working memory. These results suggest that there might be a relationship between mathematics 

anxiety and working memory, and this relationship, at least for the verbal working memory and 

the working memory capacity, might be present across different ages.  

In contrast to the significant group differences on the working memory span measures, 

there was no significant effect of group on the number of intrusions. This suggests that the 

efficiency of the inhibition processes might not have been affected by group. However, the 

measure showed a flooring effect with most participants showing no intrusion or just one 

intrusion. Visual inspection of the boxplots shows a hint of a possible difference between 

groups. It is possible that the measure was not sensitive enough to detect any possible 

differences. Hence, I suggest studying the efficiency of the inhibition processes using measures 

with higher sensitivity and that are better suited to use with adults. 

Contrary to my predictions, I did not find an effect of session. I will discuss this further 

in the general discussion, once we take into consideration also the regression analyses. However, 

for the current discussion it can be interesting to point out that mathematics anxiety is supposed 

to refer to feelings that arise in the presence of mathematical material. For this reason, the fact 

that the working memory deficit is present in participants with high mathematics anxiety 

regardless of situation does not support the idea that mathematics anxiety causes the deficit, as it 

is present also when mathematics anxiety should not be present. The current data instead could 

suggest that a deficit in working memory might be a causal factor in the development of 

mathematics anxiety. 

Finally, higher trait anxiety accompanied having higher levels of mathematics anxiety. 

Which is in accordance with previous literature that reports a positive relationship between 

mathematics anxiety and trait anxiety (Dowker et al., 2016). 
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These findings suggest that participants with high levels of mathematics anxiety show 

lower performance in mathematical tasks and that they have lower working memory spans. 

However, the lower working memory spans are not related to being in a mathematical situation 

or not. 

 

2.4.2 Mathematics anxiety as a continuous predictor 

As discussed in the previous section there was a significant negative correlation between 

mathematics anxiety scores and mathematical performance (r = -.43). The direction and size of 

this correlation are in line with previous findings (Hembree, 1990; Justicia-Galiano et al., 2017). 

If anything, my results show a slightly larger negative correlation between mathematics anxiety 

and mathematical performance than reported in the literature. Moreover, the regression analysis 

suggested that this relationship is significant after controlling for the effect of trait anxiety, which 

in itself was not a significant predictor of mathematical performance. This is in line with the idea 

that mathematics anxiety has a unique relationship with mathematical performance that is not 

due to trait anxiety (Dowker et al., 2016). On the other hand, the correlation between 

mathematics anxiety and mathematical fluency was non-significant, even though there were 

significant differences between the groups. This might be due to the lack of power in my sample, 

as correlation analysis tends to need bigger samples than group differences (Conway et al., 

2005)1. 

The regression analysis also showed that working memory capacity was a significant 

predictor of mathematical performance. This is in line with the findings by Hubber and 

colleagues (2014), suggesting that the central executive is an important factor in mathematical 

 
1 Mathematics anxiety and arithmetical fluency showed a non-significant moderate negative 
relationship (r = -.29). Power analysis suggests that for an effect size of r = .29 to be correctly 
identified with α = .05 and β = .80 I would need a sample of 88 participants. My sample size was 
N =  36, i.e. , the results might have been not-significant due to lack of power. 
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performance. Moreover, the multiple regression on mathematical performance with the three 

working memory measures suggested that only the central executive was significantly involved in 

mathematical performance. However, as discussed earlier, it might be that my sample was not 

big enough to show all the significant relationships, hence I cannot conclude that the other two 

working memory systems are not involved. It would be interesting to design a similar study in 

which all three systems are compared, but with bigger sample size. In any case, my data suggests 

that once all three systems are considered together, only the central executive proves to be 

involved in the performance of mathematical tasks.  

The final regression model showed, however, that once the variance explained by 

mathematics anxiety was controlled for, working memory capacity was no longer a significant 

predictor of mathematical performance. Given my small sample, this finding needs to be 

replicated in a bigger sample. However, this result points towards a relationship between 

mathematics anxiety and working memory and suggest that the relationship between working 

memory and mathematical performance might be largely driven by differences in mathematics 

anxiety. To the best of my knowledge this finding is new in the literature. However, it seems to 

suggest that working memory and mathematical performance are not related and that the 

relationship found in some studies, and in my data, might be driven by differences in 

mathematics anxiety, which in turn cause differences in mathematical performance and working 

memory measures. 

 

2.4.3 Conclusions 

One of the first findings of the current study was that although both mathematical 

performance and arithmetical fluency were significantly lower in the group with high 

mathematics anxiety, only mathematical performance was significantly related to mathematics 

anxiety in the whole sample, but not arithmetical fluency. Mathematical performance was related 
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to working memory capacity, whereas arithmetical fluency was not. The finding that numerical 

processing in participants with high mathematics anxiety was lower only in tasks that are also 

related to working memory is in accordance with the majority of the literature (Faust, Ashcraft, 

& Fleck, 1996; Ashcraft & Kirk, 2001; Ashcraft & Krause, 2007), but in contrast with the 

findings of Maloney and colleagues (2010). However, the groups were significantly different in all 

three working memory spans and in both mathematical performance and arithmetical fluency. 

This suggests that although I found evidence for the involvement of working memory in the 

relationship between mathematics anxiety and mathematical performance, as suggested by 

Ashcraft and Krause (2007), my results might be the result of not enough power. It is possible 

that with a larger sample there would be significant relationships with the other two working 

memory systems (i.e., the phonological loop and the visuo-spatial sketchpad), and with 

arithmetical fluency. It would be interesting to investigate, eventually, whether there is a 

mediation effect of working memory measures on any of the two types of mathematical tasks 

and if the relationships between the two types of mathematical tasks and mathematics anxiety are 

significantly different. 

Moreover, I found that the relationship between mathematical performance and working 

memory capacity is no longer significant once I control for the variance explained by 

mathematics anxiety. This suggests that, in my study, at least part of the relationship between 

working memory measures and mathematical performance (Hubber et al., 2014) is due to the 

relationship that both constructs have with mathematics anxiety; or that at the very least, that 

mathematics anxiety is a variable that needs to be considered every time we investigate the 

relationship between mathematical performance and working memory. Mediation analysis could 

be useful for understanding these findings, and to disentangle the nature of the relationship 

between mathematics anxiety, mathematical performance, and working memory. 



86 
 

In this study, I was also interested in assessing the effects that being in a math-related 

situation has on working memory spans. Contrary to my predictions, I did not find an effect of 

the session. On the other hand, I did find that all three subsystems (i.e., verbal and visuo-spatial 

working memory and working memory capacity) were significantly impaired in participants with 

high mathematics anxiety. This finding seems to suggest that participants with high mathematics 

anxiety suffer from a basic deficit in their working memory capacity. On the other hand, Eysenck 

and colleagues (2007) specified that one assumption of the attentional control theory is that 

anxiety impairs attentional control even when there are no threat-related stimuli. In this case, it 

might be that mathematics anxiety impairs attentional control even when there are no 

mathematical-related stimuli. No other studies found evidence of this in mathematics yet, hence 

more studies are needed to replicate the current findings. Moreover, if these findings are 

accurate, it could be interesting to evaluate if reducing mathematics anxiety also improves 

attentional control or not. As will be further discussed in the general discussion (please see 

chapter 6, page 225), future studies could investigate attentional control in participants with high 

mathematics anxiety before and after a session of expressive writing (Park et al., 2014), or before 

and after some sessions of systematic desensitization (Hembree, 1990), and see the effect that 

reducing mathematics anxiety has on attentional control. 

On a different note, although significant, the difference in mathematics anxiety between 

the two groups was small compared to the range of the questionnaire and the studies presented 

in the literature. For example, in Maloney, Ansari, and Fugelsang (2011), participants in the low 

mathematics anxiety group had AMAS scores below 20, and in the high mathematics anxiety 

group, they had AMAS scores over 30. Often an extreme group design has been used in the 

literature (Maloney et al., 2011; Passolunghi et al., 2016), and a comparison with those studies 

suggests that the difference in mathematics anxiety between my groups was rather small and 

perhaps not large enough to detect subtle differences. It might be that future studies with an 

extreme group design might find different effects of group and session. 
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Conclusions: In conclusion, my study suggests that mathematics anxiety is negatively 

related to working memory capacity, but that this relationship is not limited to situations in 

which the participants need to deal with numerical material. More studies need to address this 

finding. However, possible reasons for this could be that poor working memory capacity is 

involved in the genesis of mathematics anxiety, or that anxiety impairs attentional control even 

when there are no threat-related stimuli (Eysenck et al., 2007). 
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Chapter 3 - Mathematics anxiety, working memory, and inhibition 

efficiency: extreme groups differences. 

 

3.1 Introduction 

Results from the previous chapter suggested that there could be a relationship between 

mathematics anxiety and inhibition processes, but the design had two main flaws; the task I used 

showed a floor effect for intrusions and thus was not sensitive enough to detect potential group  

differences and the design used a median split to form the two groups resulting in overall rather 

small group differences in mathematics anxiety. Additionally, it is reasonable to expect an 

indirect effect of mathematics anxiety on mathematical performance through working memory 

(Skagerlund et al., 2019). In fact, the authors, assessed working memory and mathematical 

performance in adult university students. Then they assessed direct and indirect effects of 

mathematics anxiety on mathematical performance (both numeracy and arithmetic) and found 

that mathematics anxiety showed a significant direct effect on both numeracy (β = -.15) and 

arithmetic (β = -.28). Moreover, the authors observed an indirect effect of mathematics anxiety 

on numeracy through working memory (β = -.14) and on arithmetic through working memory (β 

= -.15). 

Regarding task sensitivity, visual inspection of the boxplots and the descriptive data 

showed that the number of intrusions showed a strong flooring effect, with many participants 

with either zero or one intrusion. Flooring and ceiling effects are known to attenuate cross-

sectional effect estimation (Weuve et al., 2015) hence my pairwise comparisons were not reliable. 

The second limitation in my design was that I used a median split to form the two groups (high 

versus low mathematics anxiety). As we will see in the next section, it is possible that the overall 

differences in mathematics anxiety between the two groups in the previous study were not large 
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enough to show clearer effects. These two factors together suggest that a follow-up study would 

be interesting to run to have stronger and clearer results to interpret. So, I decided to run a 

follow-up study with different design and a different measure for intrusions. 

 

3.1.1 Study design 

Based on previous research a better design for large group differences might be the 

creation of two extreme groups based on mathematics anxiety. Much of the available literature 

on mathematics anxiety either used an extreme groups design (Maloney et al., 2011; Passolunghi 

et al., 2016), or used three groups (i.e., low mathematics anxiety, medium mathematics anxiety, 

and high mathematics anxiety; Ashcraft & Kirk, 2001). For example, Maloney and colleagues 

(2011) administered the AMAS questionnaire during a mass testing session with undergraduate 

students. From the whole sample, the authors selected the participants whose AMAS score was 

either lower than 20 (24 participants), or higher than 30 (24 participants). The ones with an 

AMAS score below 20 were considered in the low mathematics anxiety group. The ones with a 

score over 30 were considered in the high mathematics anxiety group. More recently Passolunghi 

and colleagues (2016) used AMAS to measure mathematics anxiety in secondary school students. 

From 135 tested students, the authors selected two different groups of participants based on 

their AMAS score, trait anxiety (measured with RCMAS-2) and Primary Mental Abilities – 

Verbal subscale. Participants selected for the low mathematics anxiety group were the students 

that showed scores around the mean on all three measures. Participants selected for the high 

mathematics anxiety group were the students that showed scores of 1 standard deviation or more 

above the mean on the AMAS, and scores around the mean for the other tasks. Finally, Ashcraft 

and Kirk (2001) used sMARS (short Mathematics Anxiety Rating Scale) to measure mathematics 

anxiety in 66 college students. Participants were divided into three groups based on the score on 

the sMARS. Participants with scores at least 1 standard deviation below the mean were 
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considered in the low math anxiety group. Participants with scores between -0.5 and +0.5 

standard deviations from the mean were considered in the medium mathematics anxiety group. 

Participants with scores at least 1 standard deviation above the mean were considered in the high 

mathematics anxiety group.  

Moreover, Conway and colleagues (2005) suggest that extreme group comparisons are 

efficient in detecting the presence of relationships between working memory and other 

constructs. The authors report a mathematical example of how an extreme group design tends to 

slightly overestimate the effect size of a relationship, with moderate effects being the ones with 

the highest overestimation. This means that although there is a slightly enhanced risk of type 1 

error, the use of an extreme group design is cost-efficient because it allows the detection of 

effects with a lower number of participants. 

My goal in designing the study was to detect differences if there were present. As we saw, 

an extreme group design would be more in line with the existing literature and it would allow 

easier detection of differences. Hence, I decided to use an extreme groups design (please see 

chapter 3.2.1, page 96 for a description of the grouping criterion). 

 

3.1.2 Performance and Anxiety 

In the previous study, I used the GAD-7 questionnaire to test trait anxiety. Trait anxiety 

is defined as a relatively stable tendency of being prone to anxiety (Spielberger, 1983). Since trait 

anxiety is a stable tendency, it might be better to add a measure of how anxious the participants 

are during the testing session. This decision was based on previous studies which suggest that 

when investigating task performance, other than trait anxiety, it is important to control for state 

anxiety. State anxiety refers to the current condition and feelings of apprehension, nervousness, 

and worry (Spielberger, 1983). In fact, Eysenck and Calvo's review (Eysenck & Calvo, 1992) 

concluded that individuals with high state anxiety showed poorer efficiency of attentional 
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processing because much of their attentional resources are wasted on anxious thoughts. Their 

predictions were supported by Calvo and colleagues' (1994) findings that participants with high 

test anxiety took longer in reading tests than participants with low test anxiety. However, the two 

groups did not differ in text comprehension. Moreover, Zohar (1998) found that state anxiety 

was negatively correlated with test performance in academic situations. In his study, Zohar 

investigated the relationship between the performance in the SAT-I (which is an Israeli college 

entrance exam) and state anxiety. The SAT-I includes three different exams; quantitative skills, 

verbal skills, and an English test. They found significant negative relationships between state 

anxiety and all three subtests relationship (state anxiety: with the quantitative exam subtest r = -

.25; with the verbal exam subtest r = -.32, with the English exam subtest r = -.48). Together, 

these results suggested a negative relationship between state anxiety and test performance. 

Finally, Seipp (1991) found that state anxiety can be used as an indicator of the participant’s 

anxiety levels during test-taking. These reasons prompted me to add a measure of state anxiety 

(please see chapter 3.2.2.2 page 98) in the current study.  

 

3.1.3 Reasoning Abilities 

Extreme group designs are susceptible to bias (Field, 2013). Because the division in 

groups is not randomly assigned, but based on a characteristic, third variables may be causing the 

effect that is detected. This type of problem is hence a source of potential bias. For this reason, it 

is important to control for variables that are known to relate to the variables of interest. We saw 

in the previous paragraph that I measured trait and state anxiety because they are related to 

mathematics anxiety (please see Chapter 1.2.2 page 27). Another factor that needs to be 

considered is reasoning abilities. There are two different reasons why I decided to control for the 

effect of reasoning abilities.  
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The first reason is that available literature suggests a relationship between learning 

mathematics and IQ. McGrew and colleagues (1997) found a relationship between mathematics 

and fluid reasoning (the ability to reason and to solve problems using new information and 

procedures). More recently Taub and colleagues (2008) used a subsample of participants from 

the Woodcock Johnson III standardization sample. This subsample was composed of 

participants aged 5 to 19 years. The authors measured fluid reasoning with the subtests 

Numerical Reasoning, Concept Formation, and Analysis-Synthesis. They also measured 

mathematics achievement with the subtests Applied Problems and Calculation of the WJ III 

ACH. They found that fluid reasoning showed significant and large direct effects on 

mathematics achievement. These results are in line with longitudinal data from Primi and 

colleagues (2010). The authors used a multilevel growth curve to look at the relationship between 

fluid intelligence (measured with the Differential Reasoning Tests Battery) and math 

achievement (measured with the 3EMat). The authors found that in Year 7 students there are 

relationships between mathematics and reasoning abilities. Moreover, by using longitudinal data 

they found that at the end of the Year 8 mathematical rate of learning was positively correlated 

with scores on the fluid intelligence task (Primi et al., 2010). 

The second reason is that there is evidence of a relationship between working memory 

capacity tasks and IQ measures. Baddeley’s model of working memory (Baddeley et al., 2015) 

states that there are two slave systems called the phonological loop and the visuo-spatial 

sketchpad. These two systems are usually referred to as the short term memory, a simple storage 

component (Engle et al., 1999). On the other hand, working memory is that storage component 

with the addition of an attentional component (Engle et al., 1999). In Engle's review (2002) it 

was suggested that when we use working memory capacity measures we are measuring these two 

different constructs, the short term memory component and the attentional component. Engle’s 

conclusion derived from previous work (Engle et al., 1999) where the authors used structural 

equation modelling to look at the relationships between short-term memory, working memory, 
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and fluid intelligence. The latent variable analysis suggested that only working memory capacity 

tasks (namely operation span, reading span, and counting span) showed a relationship with fluid 

intelligence measures(Engle et al., 1999). Engle (2002) then suggested that intelligence is an 

important factor to control for when investigating working memory capacity differences. 

 

3.1.4 Reading and Listening Span tasks 

In the previous study intrusions in the listening span task showed a flooring effect. This 

prompted me to develop a more sensitive measure that would be able to detect individual and 

group differences if present. I decided to prepare a reading span task. This new task needed to be 

more sensitive to the efficiency of the inhibition processes. 

First, I decided to make the task more challenging. To this end, I used different 

sentences in the reading span to make the co-occurring process of sentence comprehension even 

more cognitively demanding. The result was that I created new sentences with a more complex 

structure and that were based on concepts that require more attention to answer. For example, in 

the listening span, one sentence was: “Chocolate is eaten on spaghetti”. Conversely, one 

sentences of the reading span was: “Lawyers are people that spend their lives studying the law, so 

that they can use their knowledge to work in courtrooms and orchards”. The second sentences 

has a more complex structure compared with the first one. It is also important to note that both 

sentences can be answered with general knowledge, but that the second one requires more 

cognitive resources to understand its meaning.  

A second factor that needs to be considered is the effect of subvocal rehearsing. 

Subvocalization refers to the speech, often internal, that is sometimes used to read (Reber & 

Reber, 2001). Listening span tasks can be aided by subvocal rehearsing (Baddeley et al., 2015). 

This means that in retaining the information, the participant can keep the memory trace active by 

subvocally repeating the words that he/she needs to remember. On the other hand, the reading 
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process suppresses this possibility, as the subvocal rehearsing mechanism is used to read. For 

this reason, I decided to use a reading span task. 

Thirdly, I considered semantic similarity. Semantic similarity refers to when two or more 

words have a similar meaning. In regular span measures, this is not a problem, because it shows 

interference effect only in delayed recall (Baddeley et al., 2015). However, the reading span task 

has a maximum of six sentences. When presented with a list of six sentences, there is some delay 

between the presentation of the first word that needs to be remembered and the cue for recall. 

For this reason, I decided that it was best to reduce this possible source of bias and eliminate the 

sentences where the last word was semantically similar to other words in the same series or 

adjacent series.  

Finally, I considered proactive interference (PI). Proactive interference refers to a 

memory mechanism by which what is learned now will influence the performance on future 

tasks (Quinlan & Dyson, 2008). In this task, more proactive interference increases the chance of 

having intrusions. In fact, when we are processing and keeping active one list, the inhibition 

mechanism needs to inhibit previous irrelevant information to avoid intrusions. The higher the 

amount of previous information, the higher the chance of the presence of errors from the 

inhibitory mechanisms. For example, in Keppel and Underwood (1962) participants had to retain 

a syllable for either 3 or 18 seconds. Syllables from the earlier part of the task were remembered 

regardless of time. However, the further into the trial, the fewer syllables could be remembered 

after 18 seconds compared with 3 seconds delay, suggesting that previous trials caused proactive 

interference in the retention of the mnesic material. More recently,  Lustig and colleagues (2001) 

found that reading span scores were affected by the order of presentation of the material. The 

authors prepared long (four sets of sentences), medium (three sets of sentences), and short (two 

sets of sentences) trials. The design required two different procedures for presenting the trials. 

The normal procedure starts with the short trials and progressively arrives in the long trials. The 
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descending procedure presented the long (four set of sentences) trials first and ended with the 

short trials. When the participants deal with the long set trials, in the descending procedure there 

is no proactive interference from previous trials. In the normal procedure instead, participants 

deal with the long set after going through the short set ones. In the descending procedure, 

performance on the long sets was significantly better compared with performance on long sets in 

the normal procedure. This suggests that proactive interference can have a significant effect on 

the performance on long sets of trials. Hence, I decided to add more sentences to enhance the 

proactive interference effect of the task. However, the span of unrelated words is around five 

items (Baddeley, 2010), and a span task with more items starts to require the recruitment of long-

term memory processes. Although the goal was to stress the working memory system, I should 

avoid bias from long-term memory. To avoid long-term memory bias in the measure, I used a 

maximum of six sentences per set. To have a higher number of trials without exceeding six 

sentences per set, I added more trials with six sets of sentences. The resulting task has two trials 

for each set of sentences from two sentences to five sentences. After these set of sentences, the 

task presents six sets with six sentences (please see chapter 3.2.2.2, page 99 for a more complete 

review on the construction of the reading span task).  

The newly developed Reading span task was piloted together with the listening span task 

in 10 participants. I found that the listening span showed a ceiling effect (with 1 out of 10 

participants at ceiling), whereas no participant managed to remember all words in the reading 

span. I also found that the intrusion measure showed a flooring effect for the listening span. The 

reading span instead showed no flooring effect in the intrusion measure. The reading and the 

listening span tasks were not significantly correlated (rs = -.11, p = .762), prompting me to decide 

to include both measures in the study. Moreover, after we piloted the new Reading span task, we 

observed that nine items showed semantic similarity as they were referring to similar concepts 

and were removed and replaced. Finally, I found that seven sentences were too complex (e.g., 

“The Hawaiian Islands have formed thanks to a long series of eruptions from the earth and 
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reached altitudes over 5000 meters above the sea level), and were simplified to reduce bias from 

reading comprehension (i.e., “The Hawaiian Islands have formed thanks to a long series of 

volcanic eruptions.”).  

 

3.1.5 Hypotheses 

In the previous study, I found a significant difference between participants with high 

mathematics anxiety and participants with low mathematics anxiety in simple verbal and visuo-

spatial working memory tasks. Accordingly, I expected to find significantly higher simple 

working memory spans for the participants in the low mathematics anxiety group than for the 

participants in the high mathematics anxiety group. My previous study also showed that the 

participants with low mathematics anxiety showed a significantly higher complex working 

memory span compared with the participants with high mathematics anxiety. However, in the 

current study, I added the reading span task. I decided to replicate the finding with both 

measures, i.e., the listening and the reading span task. This also ensures that any potential 

differences in findings between this and the previous study cannot be due to using only a new 

measure of complex working memory. Consequently, I expect to find significantly higher span 

scores in the low mathematics anxiety group compared with the high mathematics anxiety group 

in the listening and the reading span tasks. Finally, the main reason for this follow-up study was 

to investigate the effect of mathematics anxiety on the efficiency of the inhibition processes. The 

previous study concluded that listening span task was not sensitive enough to detect high 

number of intrusions in adults. Moreover, visual inspection of the data suggested that there 

could be a difference in intrusions. I am now using the new reading span task developed to be 

more sensitive to detect intrusions. Accordingly, I expect to find a difference in the number of 

intrusions between the participants in the two groups in the reading span task. 
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3.2 Methods 

3.2.1 Participants  

Participant screening: I screened 192 first- and 77 second-year Psychology students at a 

University in the North Yorkshire using the Abbreviated Math Anxiety Scale (overall AMAS 

mean 20.10, AMAS range 9-43). The mean AMAS score for first-year students (mean age 18.83, 

age-range 18-32, 158 females) was 19.61(range 9-43) and for second-year students (mean age 

20.19, age-range 19-51, 70 females) was 21.32 (range 11-35).  

For the follow-up laboratory testing, I selected only female participants because gender 

might be an important factor in mathematics anxiety (Hill et al., 2016). Furthermore, 82.29% of 

participants in my screening sample were female, rendering it difficult to control for gender 

effects in other ways. Moreover, I selected only native English speakers, to avoid potential 

differences in the working memory tasks caused by fluency differences in English (in the 

screening sample there were overall 226 native English-speakers: 164 in Year 1 and 62 in Year 2). 

I also excluded all participants whose age deviated by three or more standard deviations 

from the screening sample mean (N=6), because age is related to performance on working 

memory measures (Salthouse, 1992). 

 

Laboratory testing: To select the participants for the laboratory testing, I invited screened 

participants based on their AMAS score in the screening.  

1st Year students: For the first-year students, based on the distribution of their AMAS 

scores, I invited the 25 participants with the lowest AMAS scores (AMAS < 16) and the 25 

participants with the highest AMAS scores (AMAS > 25) to take part in the laboratory testing. 

Of those students, 19 first-year students with low AMAS scores (mean age 18.37 years, age range 
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18 – 20 years) and 16 first-year students with high AMAS scores (mean age 18.50 years, age 

range 18 – 21 years) took part in the laboratory testing session. 

2nd Year students: For the second-year students, I invited all participants with AMAS scores 

below 16 or above 25 to take part in the laboratory testing. I used the same AMAS cut off scores 

as for the first-year students. Of the 14 second-year students with low AMAS scores that were 

invited, seven (mean age 19.57 years, age range 19-21 years) took part in the laboratory testing 

session. Of the 23 second-year students with high AMAS scores that were invited 12 (mean age 

19.75 years, age range 19-22 years) participated in the laboratory testing session. 

Full Sample: A total of 54 participants engaged in both sessions of the study (mean age 

18.87 years, age range 18 – 22). For the descriptive statistics of the full sample divided by group 

(LMA: low mathematics anxiety, HMA: high mathematics anxiety) see Table 3.1. 

Ethical approval was obtained from the ethics committee of the Psychology Department 

of the University of York. The screening session lasted for approximately 10 minutes, and all 

participants were awarded course credit (0.25 hours). The testing session lasted for 

approximately 1.5 hours, and participants either received a monetary reward (8.5 £) or course 

credit (1.5 hours). 

 

3.2.2 Materials 

3.2.2.1 Screening 

Mathematics anxiety 

To assess the participants’ mathematics anxiety, I used the Abbreviated Math Anxiety 

Scale (AMAS; Hopko, Mahadevan, Bare, & Hunt, 2003). AMAS is a self-report questionnaire 

(see Appendix A.3) that is composed of 9 items associated with different math-related situations 

related to school and in everyday life (e.g., “Watching a teacher work an algebraic equation on 
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the blackboard”). Participants were asked to rate their feelings during those situations using a 5-

point Likert scale, from 1 – No bad feelings; to 5 – Worst feelings (AMAS Min = 9; Max = 45). 

The AMAS showed good internal consistency in my sample (α = .88), and good two-week test-

retest reliability (r = .85) reported by Hopko et al. (2003) in undergraduate students. 

 

First-year students were screened in the computer lab. I used the software Qualtrics to 

display the AMAS items on a computer. Second-year students were screened during a lecture 

using a paper-and-pencil version of the same questionnaire. Although in this case the AMAS was 

given with a different medium, I do not expect an effect of media. In fact, Jones and colleagues 

(2012) found that there was a strong correlation (r = .91) between a paper and pencil and an 

online version of the AMAS taken one week apart. Moreover, Cipora and colleagues (2017) 

compared an online study and a paper and pencil study and found only small differences 

between them (Cohen’s d = 0.15). 

 

3.2.2.2 Laboratory testing 

Verbal working memory 

To assess verbal working memory, I used a letter span task (Marcel, 1974) developed by 

myself. The task requires participants to repeat a series of letters after hearing them spoken, in 

the same order as they heard them. I used the same task as in the first study, so for the details 

please see chapter 2.2.2, page 64. 

 

Visuo-spatial sketchpad 
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To assess visual working memory, I used the Corsi Span task forward (a subtest of the 

Wechsler Memory Scale, WMS-III) (Wechsler, 1997). In this task, participants are asked to touch 

a series of blocks in the same order as the examiner touched them. I used the same task as in the 

first study, so for the details please see chapter 2.2.2, page 64. 

 

Central executive  

As dual tasks, I decided to use a Listening Span task and a Reading Span task (Daneman 

& Carpenter, 1980). The tasks require the participants to listen to or read a set of sentences (for 

example: “Chocolate is eaten on spaghetti”; see Appendix A.2 for the full listening span). For 

each sentence, participants have to decide if the statement is true or false and remember the last 

word of the sentence. At the end of the set of sentences, the participant is asked to repeat the 

last word of each sentence, in the same order as they were presented. Because in this way the 

participant needs to actively process two types of information, namely the last words of each 

sentence and the sentence itself to decide whether it is true or false, the participant is engaged in 

a dual task. 

A set of sentences details how many sentences the participant will listen to (or read) 

before prompted to recollect the last words. For example, a set of two sentences will require the 

participant to listen to two sentences (e.g., “Chocolate is eaten on spaghetti” and “Bees make 

honey”) before being prompted to recollect the two last words (i.e., spaghetti and honey). A set 

of three sentences will require the participant to listen to three sentences before being prompted 

to recollect the three last words, and so forth. The set of sentences starts with two sentences and 

ends with six sentence per set. Each level has two different sets of sentences, i.e., the first level 

will present four sentences, two times a set of two sentences and the last levels (with six 

sentences per set) will present twelve sentences each level; six for each set. The presentation is 

concluded after all sets of sentence have been presented, i.e., there is no discontinuation rule. 
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This task allows two different measures: Words, indicating the number of last words 

correctly remembered during the whole presentation (for the listening span task, Min = 0; Max = 

40; for the reading span task, Min = 0, Max = 64) and Intrusions indicating the number of non-

target words erroneously recollected (e.g., from the sentence “Chocolate is eaten on spaghetti” 

the participant remember chocolate or tomato sauce) (for the listening span task, Min = 0; Max 

= 40; for the reading span task, Min = 0; Max = 64). In the current study, performance in the 

listening span and the reading span showed a good correlation.2 I will report the measures of 

number of correct trials as working memory capacity, whereas the number of intrusions can be 

considered the inverse of inhibition efficiency (i.e., more intrusions, lower efficiency). 

 

Reasoning ability 

To assess participants’ reasoning skills, I used the Matrix Reasoning subtest of the 

Wechsler Abbreviated Scale of Intelligence – Second Edition (WASI-II, Wechsler, 2011).  The 

matrix reasoning subtest includes 30 incomplete matrixes or series of increasing difficulty. For 

each incomplete matrix, the participants need to find the option that completes it in the correct 

way. In adults, one point is given for each correct option identified. There are 30 matrixes, the 

administration is stopped after three consecutive errors (Max score= 30). 

The internal consistency reliability coefficients show on average high reliability (17 to 19 

years, r = .85; 20 to 24 years, r = .87, Wechsler, 2011). Moreover, the scale showed high test-

retest reliability (r = .82, Wechsler, 2011). The matrix reasoning subtest also shows a strong 

 
2In my study, the span scores showed a medium to large correlation (r = .45, p = .001). I 
expected the measures to not show a perfect correlation, because in the listening span task 
participants can use subvocal rehearsal techniques; whereas in the reading span task these 
techniques are not possible. 
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correlation with other intelligence measures (e.g., strong correlation with Wechsler Adult 

Intelligence Scale-Fourth Edition (WAIS-IV; r = .70; Wechsler, 2011). 

 

Mathematical performance 

To assess the participants’ mathematical proficiency, I used the blue form of the 

mathematical subtest of the Wide Range Achievement Test (WRAT-4, Wilkinson & Robertson, 

2006). The task was the same used in the first study, so for the details please see chapter 2.2.2, 

page 64. 

 

Arithmetical fluency 

To assess participants’ fluency in arithmetic I used the Simple Calculations task. The task 

required the participant to solve as many calculations as possible within a specific time limit. The 

task included three operations: addition, subtraction, and multiplication. I used the same items as 

in the first study, so for the details please see chapter 2.2.2, page 64. 

 

State anxiety 

To assess participants’ state anxiety, I used the State-Trait Anxiety Inventory Form Y-1 

(Spielberger, 1983). The form Y-1 has 20 items that assess the current levels of anxiety of the 

participant. Each item requires the participant to refer to how they feel at the moment (e.g., at 

the moment “I feel secure”) on a scale from “Not at all” to “Very much so”. Items are rated on 

a 4-point Likert scale from 1 (not at all) to 4 (very much so); however, some items (e.g., items 8 

and 10) are inverted, meaning that an answer as “very much so” is coded as 1, and a “not at all” 

answer would be coded as a 4. The minimum score is 20, the maximum score is 80. The alpha 
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coefficient for female college students shows high reliability (α = .93) and high reliability for 

females in the 19 to 39 years range (α = .93; Spielberger, 1983). 

 

Trait anxiety 

To assess participants’ trait anxiety, I used the GAD-7 (General Anxiety Disorder – 7; 

see Appendix A.5) questionnaire. The GAD-7 is a short questionnaire of 7 items. The same 

questionnaire was used in the first study, so for the details please see chapter 2.2.2 page 64. 

 

3.2.3 Design and Procedure 

A between-subjects design involved the creation of two different groups: one group that 

had low levels of mathematics anxiety (low mathematics anxiety, LMA), and one group with high 

levels of mathematics anxiety (high mathematics anxiety, HMA), as described in the participants' 

section. The selected participants were then called back to participate in the testing session. 

Testing took place in a quiet room within the Psychology department of the University of York. 

The tasks were given in the following order: 1. letter span task; 2. Corsi span task; 3. listening 

span task; 4. WASI matrix reasoning subtest; 5. reading span task; 6. WRAT-4 math computation 

subtest; 7. simple calculations; 8. State-Anxiety Inventory; 9. GAD-7. The administration order 

of the listening span task and the reading span task was counterbalanced between participants 

within each mathematics anxiety group separately, and the answers were audio-recorded to help 

to code the data. Because participants were divided into groups based on their AMAS score that 

was recorded during the screening session, participants were not given another math anxiety 

questionnaire during lab testing. 
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3.3 Results 

3.3.1 Descriptive Statistics 

For the full sample of the laboratory testing (N = 54), Table 3.1 reports the descriptive 

statistics divided by group (low mathematics anxiety vs high mathematics anxiety). See Appendix 

B.1 for a report on the correlations between the measures. 
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Table 3.1. Descriptive statistics divided by group and differentiated between background and anxiety measures. 

 

 

There were no significant group differences in reasoning ability between the low 

mathematics anxiety and the high mathematics anxiety groups. In contrast, mathematical 

performance was significantly lower in the high mathematics anxiety than in the low mathematics 

anxiety group when using a one-tailed test. In the literature there is evidence for a negative 

relationship between mathematical performance and mathematics anxiety, justifying the use of a 

one-tailed test here.  It is important to note that the effect size is in the medium range (Cohen, 

1988), which is in line with literature. Performance in simple arithmetical calculations, however, 

is not significantly different between the two groups. 

On the other hand, not only mathematics anxiety (which was the group selection 

criterion) but also the two other anxiety measures (general and trait anxiety) showed significantly 

higher levels of anxiety in the high mathematics anxiety group. Thus, in relevant analyses I will 
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control for the effect of trait and state anxiety, otherwise, they could influence any group 

differences found. 

 

3.3.2 Differences in simple working memory 

At first I assessed the group differences in verbal and visuo-spatial working memory. The 

results can be seen in Figure 3.1.  

Figure 3.1. Number of correct trials on the two simple working memory span measures. The scores are divided 

between participants with low mathematics anxiety (LMA) and participants with high mathematics anxiety 

(HMA). Error bars show ± 1 standard error. 

 

To control for the effect of trait and state anxiety on simple working memory measures I 

ran an ANCOVA on the number of correct trials. Previous literature suggests that the covariates 

should be independent from the factors (Field, 2013). However, there is no strictly statistical 

reason for this independence and the ANCOVA can be biased when there is no temporal 
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additivity (Field, 2013; Senn, 2006). I have no reason to not assume temporal additivity in my 

sample neither for the simple nor the complex measures; hence, I do not expect this to be a 

source of bias.  

The 2 (Type of simple working memory) X 2 (Group) mixed ANCOVA revealed a 

marginal main effect of working memory type F(1, 50) = 3.84, p = .056, ηp
2 = .07. This marginal 

result seems to suggest that there might be a difference between the scores in the two tasks, 

although the effect size is small. The analysis showed no main effect of Group, F(1, 50) = 0.35, p 

= .555 ηp
2 = .01, and no significant interaction between type of simple working memory task and 

mathematics anxiety group, F(1, 50) = 0.77, p = .386, ηp
2 = .02. These results indicate that despite 

their significant differences in mathematics anxiety, there are no significant differences between 

the groups on the simple working memory measures. 

Moreover, the ANCOVA showed that trait anxiety was not a significant covariate, F(1, 

50) = 2.46, p = .123, ηp
2 = .05, with no significant interaction with number of correct trials, F(1, 

50) = 2.07, p = .157, ηp
2 = .04. Finally, also state anxiety was not significant as covariate, F(1, 50) 

= 2.41, p = .127, ηp
2 = .05, with no significant interaction with number of correct trials, F(1, 50) 

= 0.1, p = .909, ηp
2 < .01. 

 

3.3.3 Differences in complex working memory 

Next, I decided to assess the group differences in working memory capacity using the 

number of recalled words in the listening span and in the reading span task. The results can be 

seen in Figure 3.2.  
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Figure 3.2. Number of correctly recalled words on the two complex working memory span measures. The scores are 

divided between participants with low mathematics anxiety (LMA) and participants with high mathematics 

anxiety (HMA). Error bars show ± 1 standard error. 

 

To control for the effect of trait and state anxiety I ran an ANCOVA. The 2 (Type of 

complex working memory) X 2 (Group) mixed ANCOVA revealed a main effect of span 

measure, F(1, 50) = 4.36, p = .042, ηp
2 = .08. These results suggest that overall, the performance 

on the reading span was significantly higher than the performance on the listening span. On the 

other hand, the analysis revealed no main effect of Group, F(1, 50) = 0.53, p = .469, ηp
2 = .01, 

and no significant interaction, F(1, 50) = 0.21, p = .646, ηp
2 < .01. These results suggest that the 

groups show no significant differences in complex working memory; as can be seen in Figure 

3.2. Moreover, the analysis showed that trait anxiety was not a significant covariate, F(1, 50) = 

0.04, p = .852, ηp
2 < .01 with no significant interaction, F(1, 50) = 1.89, p = .176, ηp

2 = .04. 

Finally, also state anxiety was not significant as covariate, F(1, 50) = 0.48, p = .491, ηp
2 = .01, with 

no significant interaction, F(1, 50) = 0.53, p = .469, ηp
2 = .01. 
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3.3.4 Differences in the number of intrusions 

From the complex working memory measures, I also obtained the number of intrusions. 

This is the number of wrongly recollected words during complex working memory tasks. Results 

can be seen in Figure 3.3 for the number of intrusions in the listening span task and Figure 3.4 

for the number of intrusions in the reading span task. 

Listening span. The measure of the intrusions in the listening span task showed a 

strong flooring effect and Shapiro-Wilk normality tests showed a problem with normality for the 

high mathematics anxiety group (p = .001) and the low mathematics anxiety group (p < .001). 

Moreover, skewness and kurtosis also suggested that the distribution was indeed not normal 

(skewness = 1.69; kurtosis = 4.11). For this reason, I used a non-parametric test for the analysis 

of the intrusions in the listening span task and could not perform the ANCOVA that I originally 

planned to use. A Mann-Whitney test showed that the number of intrusions in the low 

mathematics anxiety group (Mdn = 1, IQR = 1) was not significantly different than the number 

of intrusions in the high mathematics anxiety group (Mdn = 1, IQR = 2), U = 338.50, p = .642. 

The distribution of intrusions for the two groups can be seen in Figure 3.3. 
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Figure 3.3. Boxplot showing the number of intrusions in the listening span task. The scores are divided between 

participants with low mathematics anxiety and participants with high mathematics anxiety. 

 

Reading span. Shapiro-Wilk normality tests showed a problem with normality for the 

low mathematics anxiety group (p = .004). However, the ANOVA is a robust test, and skewness 

and kurtosis are within the acceptable limits for this measure (skewness = 0.91; kurtosis = 0.68). 

For this reason, I decided to run an ANCOVA with general and state anxiety as covariates. 

Moreover, Osborne and Overbay (2004) suggest removing outliers of a specific group instead of 

the whole sample. For this reason, since two participants of the low mathematics anxiety group 
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were clear outliers (i.e., score more than 3 SDs above the group mean), I removed them from the 

analysis. I only removed them from this analysis as they were clear outlier for their low 

mathematics anxiety group, but in the other comparisons did not show such different 

performance, hence I decided to not exclude these two participants from the rest of the analyses. 

The two participants excluded were the participant number three and the participant number 34. 

Participant number three was 18 years old, had low mathematics anxiety (AMAS = 12), average 

reasoning abilities (Reasoning abilities = 25), and average mathematical performance (WRAT-4 

mathematical subtest = 47). Participant number 34 was 18 years old, had low mathematics 

anxiety (AMAS = 15), average reasoning abilities (Reasoning abilities = 24), and average 

mathematical performance (WRAT-4 mathematical subtest = 40). The one-way ANCOVA 

showed that Group was a significant factor in the number of intrusions for the reading span task, 

F(1, 48) = 7.14, p = .010, ηp
2 = .13. Both trait anxiety, F(1, 48) = 0.44, p = .509, and state anxiety, 

F(1, 48) = 0.05, p = .824, were not significant covariates of number of intrusions in the reading 

span task. In Figure 3.4 we can see that the number of intrusions is significantly higher in the 

high mathematics anxiety group compared with the low mathematics anxiety group in the 

reading span task. These results suggest that higher levels of mathematics anxiety are associated 

with a higher number of intrusions during the completion of the reading span task. This 

relationship is independent of general and state anxiety. 
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Figure 3.4. Mean number of intrusions in the reading span task. The scores are divided between participants with 

low mathematics anxiety (LMA) and participants with high mathematics anxiety (HMA). Error bars show ± 

1 standard error. 

 

3.4 Discussion 

Based on results presented in chapter 2, in the current study I used an extreme group 

design to further investigate the following predictions: 

1) The high mathematics anxiety group will show lower scores in verbal and 

visuo-spatial working memory than the low mathematics anxiety group; 
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2) The high mathematics anxiety group will show a lower performance on 

the listening and the reading span tasks (Total score) than the low mathematics anxiety 

group; 

3) The high mathematics anxiety group will show a higher number of 

intrusions in the reading span task, but no significant difference in the listening span task, 

than the low mathematics anxiety group. 

Results show that high mathematics anxiety and low mathematics anxiety groups did not 

show significant differences in simple and complex working memory tasks. The number of 

intrusions in the listening span task was also not significantly different between the two groups. 

On the other hand, the participants with high mathematics anxiety showed significantly more 

intrusions in the reading span task compared with the participants with low mathematics anxiety. 

This difference was still significant after controlling for the effect of general and state anxiety. 

 

3.4.1 Simple Working Memory 

The first hypothesis in this study stated that there would be a significant difference in 

simple working memory spans between the low mathematics anxiety group and the high 

mathematics anxiety group (Ganley & Vasilyeva, 2014; Passolunghi et al., 2016). For example, 

Passolunghi and colleagues (2016) found significant differences in a verbal working memory task 

and Ganley and Vasilyeva (2014) found a significant difference in a visuo-spatial working 

memory task; hence, I expected similar findings with my participants. In line with the literature, 

in the previous study (please see chapter 2) I did find significant differences between the two 

groups in verbal and visuo-spatial working memory. However, against my predictions, the 

participants of the current study in the low mathematics anxiety group did not show a 

significantly different span from the participants in the high mathematics anxiety group in either 

of the measures. A possible explanation could be that I used a different study design. In chapter 



114 
 

2.3.1 the groups were created based on a median split, whereas in the current investigation I 

opted for an extreme group design. Some theories propose an  inverted U relationship between 

anxiety and performance (Mair et al., 2011). This hypothesis, also known as the Yerkes-Dodson 

law (Corbett, 2015), states that low and high levels of arousal are associated with lower levels of 

performance. According to this hypothesis, by cutting away part of the distribution, I excluded 

the area where I could have found the differences. However, the results from the literature do 

not suggest that this is the case for mathematics anxiety. Miller and Bichsel (2004), for example, 

suggested a linear relationship between mathematics anxiety and mathematical performance. On 

a broader level, Westman and Eden (1996) in their study found support for a negative linear 

relationship between arousal and performance. In general, many authors (e.g., Corbett, 2015; 

Jamal, 2007) think that the inverted U hypothesis is no longer a good explanation of the 

relationship between anxiety in general and performance. 

Moreover, it is possible that the results in the previous study were a spurious finding. 

Because the sample was of 32 participants it is possible that random effects drove significant 

results (e.g., some participants in the high mathematics anxiety might have had lower working 

memory scores for reasons unrelated to mathematics anxiety). If this was the case, it is possible 

that simple working memory span is not related to mathematical anxiety. Indeed, previous 

reports of differences in simple working memory between groups with low mathematics anxiety 

versus high mathematics anxiety are mixed. Several found group differences for visuo-spatial but 

not verbal working memory. Mammarella and colleagues (2015) measured simple verbal and 

visuo-spatial working memory in Year 6 to 8 students with forward word span and forward 

matrices. The authors found that the students with high math anxiety showed poorer scores in 

the forward matrices task (simple visuo-spatial working memory) but not in the forward word 

span. However, Mammarella and colleagues’ study tested primary school students and there may 

be differences in the relationship between working memory and mathematics anxiety between 

adults and children. Verbal and visuo-spatial working memory might be related to mathematics 
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anxiety in primary school students, but not in adults. Interestingly, in university students, 

Georges and colleagues (2016) also found no significant differences in verbal working memory 

(backward digit span) between groups with high versus low mathematics anxiety. Thus, finding 

no difference in the verbal working memory in my study might not be entirely unexpected, even 

though I did find a difference in the verbal working memory in Study 1.  

On a different note, it is interesting that neither trait anxiety nor state anxiety were 

significant covariates. This suggests that neither of these factors influence performance on 

simple working memory tasks. However, this does not mean that trait and state anxiety were not 

related to mathematics anxiety, it only means they did not affect working memory. Existing 

literature suggests a relationship between mathematics anxiety and other types of anxiety 

(Dowker et al., 2016), and my sample is in line with these results showing significant 

relationships between mathematics anxiety and trait anxiety (r(53) = .36, p = .008) and between 

mathematics anxiety and state anxiety (r(53) = .27, p = .047).  For the complete correlation 

matrix of the current study, see Table B.1 in Appendix B.1.  

 

 

3.4.2 Complex Working Memory 

The second hypothesis in this study was that there would be significantly higher complex 

working memory spans (i.e., listening and reading span) in the participants with low mathematics 

anxiety compared with the participants with high mathematics anxiety. I found a significant 

effect on the listening span in the previous experiment and the listening span task was the same 

task that I used as a complex working memory measure in the previous study. Besides, I 

expected also an effect on the reading span. I developed this task to have a more sensitive 

measure, in particular for the number of intrusions. While the reading span indeed was more 

sensitive to intrusions (see next section), against my predictions, I did not find a significant 
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difference in the number of words correctly recollected between the participants in the two 

groups for either complex working measure.  

In both tasks the differences between the low mathematics anxiety and the high 

mathematics anxiety groups were non-significant. There are different possible explanations for 

these results. A possibility is that males and females show different relationships with 

mathematics anxiety. In fact, the literature suggests a significant difference in the relationship 

between mathematics anxiety and mathematical performance between females and males 

(Hembree, 1990; Miller & Bichsel, 2004). It is possible that the same could be the case for the 

relationship between mathematics anxiety and working memory. Indeed, when selecting only 

female participants from the sample of the previous study reported in Chapter 2, the analysis 

showed that the differences in the listening span between the groups with high and low 

mathematics anxiety were no longer significant3. The analysis reported in footnote 3 shows that 

indeed the relationship between mathematics anxiety and complex working memory span is 

different between males and females. Females did not show a significant relationship, whereas 

males showed a significant relationship. In fact, although the p-value is only marginally 

significant, the effect size suggests a large effect. Hence, the non-significance may be due to the 

sample size being too small. Put together, the current results and the results from the previous 

study might suggest that although males with mathematics anxiety show a reduced span in 

complex working memory tasks, females might not show this effect. To the best of my 

knowledge, this option has not been assessed yet, and future studies might want to address this 

question further to understand the reasons behind this potential difference between females and 

males. 

 
3 Female Listening Span: The 2 (Group) X 2 (Session) ANOVA show that there is not a significant effect 
of group on the span with LMA (M=32.83; SD=3.49) showing non-significantly higher span than HMA 
(M=29.46; SD=6.12) participants, F(1, 18) = 2.16, p = .159 ηp

2 = .11. 
Male Listening Span: The 2 (Group) X 2 (Session) ANOVA show that there is a marginally significant 
effect of group on the span with LMA (M=34.19; SD=4.28) showing a higher span than HMA 
(M=29.00; SD=3.24) participants, F(1, 10) = 4.50, p = .060 ηp

2 = .31. 
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Another possible reason why I did not find a significant difference could be that 

previous results were spurious findings and there is no significant difference in the population. 

Indeed, some researchers found significant differences in complex working memory span 

between individuals with high and low mathematics anxiety (Mammarella et al., 2015) while other 

researchers didn’t find significant differences (Miller & Bichsel, 2004; Ashcraft & Kirk, 2001). 

Mammarella and colleagues (2015), for example, found significant differences in backward word 

span and backward matrices span between participants with high and low levels of mathematics 

anxiety. However, the authors tested Year 6 to 8 students. Other authors tested adults and found 

no significant differences between participants with low and high levels of mathematics anxiety 

when using non-mathematical stimuli. For example, Miller and Bichsel (2004) found no 

significant relationship between reading span and mathematics anxiety in university students. 

Interestingly, the reading span task they used was similar to the reading span used in the current 

study. Moreover, Ashcraft and Kirk (2001) used a Listening Span task (L-Span) and a 

Computation Span task (C-Span). Both tasks were significantly related to mathematics anxiety, 

but once the relationship was controlled for the common variance between both tasks, only the 

C-Span was significantly related to mathematics anxiety. In Experiment 3 the authors showed 

that only the C-Span, and not the L-Span, showed a significant decline with the increase of 

mathematics anxiety, suggesting that the relationship between mathematics anxiety and working 

memory is more evident when numerical instead of neutral material is used. These results 

suggest that there might be differences in the relationship of mathematics anxiety and working 

memory between adult university students and primary and secondary school students. Possibly 

there are no differences in complex working memory measures using non-mathematical material 

(like in my case) between groups with high and low mathematics anxiety in university students.  

This finding was unexpected. An alternative explanation could be that university students 

with high mathematics anxiety might have developed strategies to overcome their difficulties and 

possibly recruited more cognitive resources, to compensate for their lower efficiency. There is 
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some evidence from neuroimaging studies (Lyons & Beilock, 2012a) that between the 

participants with high mathematics anxiety, the ones that performed well on mathematical tasks 

showed higher recruitment of frontoparietal regions involved with high-level control functions 

(e.g., inhibition processes) when preparing for a math task. This was interpreted as supporting 

evidence that participants that can recruit more cognitive resources show less detrimental effects 

of mathematics anxiety. The psychology department of the University where I tested has strict 

acceptance rules. To be a student in the department where I tested you need to have a history of 

academic success. To be successful in academia the students might have developed coping 

mechanisms to overcome their deficits. In fact, Reis and colleagues (2000) found that students 

with learning disabilities can succeed in college by developing compensation strategies. 

Investigating differences in strategy use between individuals with high mathematics anxiety and 

low mathematics anxiety might be an interesting idea for future studies. 

 

3.4.3 Intrusions 

The third hypothesis in this study regards the number of intrusions in the complex span 

tasks. For the listening span task, I did not expect to find significant differences between low and 

high mathematics anxiety groups, because I used the same task as in Chapter 2 and there were no 

significant effects of mathematics anxiety on intrusions in the listening span task. In line with the 

previous findings, I did not find a significant difference in the number of intrusions between the 

two groups.  

Because of the flooring effect on the listening span reported in the previous chapter, I 

created a new measure of intrusions, a reading span, with the aim of increased sensitivity to 

measuring intrusions. I predicted that this increase in sensitivity would allow the recording of an 

effect if there were one. For this reason, I expected that there would be a significantly lower 

number of intrusions in the reading span task for the participants in the low mathematics anxiety 
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group compared with the participants in the high mathematics anxiety group. Indeed, this is 

what I found, suggesting that the sensitivity manipulation was successful. While overall the 

number of intrusions was still low in both groups, the group with high mathematics anxiety 

made on average 1.05 (37.91%) more intrusion errors than the group with low mathematics 

anxiety.  

It is plausible that participants with high mathematics anxiety show more intrusions in 

the reading span because their cognitive control processes are deficient. Cognitive control refers 

to the processes that allow voluntary control over stimuli, cognition, and behaviours. Moreover, 

it refers to the capacity to selectively focus on specific stimuli and cognitions (Tiego et al., 2018). 

That participants with high mathematics anxiety have lower efficiency of the cognitive control 

processes is supported by studies showing differences in cognitive control between participants 

with high and low levels of anxiety behaviourally (Shields et al., 2016). The authors induced 

anxiety in one group of their participants by making them write an autobiographical essay about 

an anxiety-inducing situation. Then the authors compared the scores on the Berg Card Sorting 

Test (BCST, a task that loads on executive functions in general, on working memory, cognitive 

flexibility, and inhibition) for this group with a group of participants who wrote a neutral essay. 

Results showed that the anxious participants showed significantly lower cognitive control, a 

difference that remained significant after controlling for the effect of baseline executive 

functions. Moreover, this interpretation is in line with some neuroimaging studies. For example, 

Young and colleagues (2012) found that while performing mathematical tasks, participants with 

high mathematics anxiety showed reduced activation in a brain area that is supposed to be 

involved in cognitive control processes, the dorsolateral prefrontal cortex, compared with 

participants with low mathematics anxiety.  

My results suggest that participants with high mathematics anxiety have a specific form 

of cognitive control deficit: a lower efficiency of the inhibitory processes. In fact, the number of 
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intrusions is thought to be a measure of the efficiency of the inhibition processes (De Beni et al., 

1998; Passolunghi et al., 2016). One possible explanation could be that individuals with high 

mathematics anxiety fail to inhibit information that has recently been relevant but is no longer 

relevant. This would be a similar mechanism to the mechanism proposed in poor text 

comprehenders. In fact, De Beni and colleagues (1998) found that poor text comprehenders 

showed significantly more intrusion errors in a listening span task than good text 

comprehenders. Moreover, they replicated the results while using a simple string of words 

instead of sentences. The authors suggested that poor comprehenders maintain information 

active in their working memory that is no longer relevant. Moreover, De Beni and colleagues 

suggested that the reason why this occurs is that poor comprehenders have lower efficiency of 

the inhibition processes. The lower efficiency leads to some information that was relevant but 

that now needs to be inhibited to be still represented as active information. Just as this suggests 

the lower efficiency of inhibition processes might explain poor comprehension this might also be 

a factor in mathematics anxiety. Moreover, the results of the study presented in this chapter are 

in line with previous research that found a lower inhibition efficiency in participants with high 

mathematics anxiety. Indeed, Hopko and colleagues (1998) found that participants with medium 

and high levels of mathematics anxiety had more difficulties in inhibiting irrelevant texts (with 

and without mathematical content) and took longer to read relevant texts as a consequence. 

Existing literature suggests that trait (or general) anxiety is associated with lower 

efficiency of the inhibition processes (Moser et al., 2012). The authors found that when 

performing a visual search task, there was a significant positive relationship (r = .43) between 

distractor cost (the difference in reaction times between the distractor condition and the no-

distractor condition) and trait anxiety (Moser et al., 2012). On the other hand, results suggest that 

state anxiety does not lead to lower performances in working memory tasks (Walkenhorst & 

Crowe, 2009). The authors divided participants in high and low worry. The participants were 

then tested on four different tasks, the backward digit span task, the spatial span backward task, 
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a dual-task where they were required to perform a digit span task with a tracking task, and 

Daneman and Carpenter’s reading span task (Daneman & Carpenter, 1980). The authors found 

no significant effect of worry on the tasks (Walkenhorst & Crowe, 2009). My results build on 

previous literature as although the high mathematics anxiety and low mathematics anxiety groups 

showed different levels of state and trait anxiety, in line with Walkenhorst and Crowe findings 

(2009) state and trait anxiety levels did not significantly influence the number of intrusions in the 

reading span task,. Thus, for the current study, we can exclude the possibility that the group 

differences in intrusions were driven by differences in state or trait anxiety. 

 

3.4.4 Limitations and Strengths 

Previous literature suggests that mathematics anxiety is more common in females than in 

males (Hembree, 1990). If we were to construct a sample based only on AMAS score, we might 

have had a different composition of males and females in the two groups. On the other hand, 

roughly 80% of Psychology students in the department where I tested are females, rendering it 

difficult to construct groups with equal gender division. To make sure that my results were not 

biased by the gender composition of the group, I included only female participants. However, in 

this way, I excluded all male participants from the laboratory testing, thus that my findings have 

limited generalizability. Moreover, to enhance the power of the study, I included only 

participants with the highest and lowest scores on the AMAS score. This means that the analysis 

did not include part of the distribution of mathematics anxiety. Although this is a limitation, the 

use of an extreme group design is also a strength of the study. In fact, by using an extreme group 

design I improved the efficiency of the study. 

Moreover, I included three different measures of working memory, to inspect the 

different systems together. To the best of my knowledge, no study attempted to include this 

variety of measures.  
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In the current study  I also included two different anxiety measures that are related to 

mathematics anxiety and are possible sources of bias (Eysenck & Calvo, 1992; Zohar, 1998). By 

controlling for their effects, I can exclude that the relationships I found were driven by these 

third variables. Finally, by controlling for the effect of reasoning abilities I excluded another 

known possible source of bias (Engle, 2002; Engle et al., 1999). In conclusion, although I did not 

manipulate mathematics anxiety experimentally in this study, I controlled many of the possible 

confounding variables in the design, improving the quality of my results. 

 

3.4.5 Conclusion 

My data suggest that, at least in university students, there are no differences in working 

memory scores between participants with high mathematics anxiety and low mathematics 

anxiety. On the other hand, the results suggest that participants with high mathematics anxiety 

have lower efficiency of the inhibition processes as measured with intrusions in the reading span 

task. This lower efficiency is influenced neither by general nor by test anxiety; thus, suggesting 

that mathematics anxiety alone has a strong relationship with lower efficiency of the inhibition 

processes. In light of the finding of the previous study that there were no differences between a 

mathematical session and a non-mathematical session, this seems to suggest that people with 

high levels of mathematics anxiety tend to have lower efficiency of the inhibition processes in 

general.   
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Chapter 4 - Concurrent predictors of  mathematics anxiety and 

mathematical performance in secondary school students. 

 

4.1 Introduction 

The two previous studies presented in this thesis were behavioural studies with adults. 

The next two chapters will focus on a longitudinal study with students in Year 7. The current 

chapter will focus on the concurrent data from Time 1 of the study. The relationships between 

mathematics anxiety, mathematical performance, working memory, and mathematics self-belief 

will be explored, and the effect of gender will be investigated. 

 

4.1.1 The relationship between mathematics anxiety and mathematical performance in 

primary and secondary school students 

There is strong evidence that the negative relationship between mathematics anxiety and 

mathematical performance is already present in secondary school students. In fact, Hill and 

colleagues (2016) used the AMAS to measure mathematics anxiety in primary and secondary 

school students. The authors found that, after partialling out trait anxiety, mathematics anxiety 

was still significantly negatively related to mathematical performance in secondary school 

students (males r = -.22; females r = -.28). On the other hand, mathematics anxiety was no 

longer a significant predictor of mathematical performance in primary school students (males r = 

-.04; females r = -.11) suggesting that, at least from secondary school onwards, mathematics 

anxiety is significantly related to mathematical performance. Moreover, Passolunghi and 

colleagues (2016) divided secondary school students in a high mathematics anxiety group and a 

low mathematics anxiety group. The groups were paired in trait anxiety and verbal IQ. The 

authors found that the group with low mathematics anxiety outperformed the group with high 
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mathematics anxiety in the written calculation task and in the number knowledge task. 

Additionally, Hembree’s meta-analysis (1990) summarised the relationship between mathematics 

anxiety and mathematical performance in 151 studies and found that there was a moderate 

negative relationship between the two factors (r = -.34 in Years 7 to 11).  

In contrast, the evidence for the presence of the relationship between mathematics 

anxiety and mathematical performance in primary school students is mixed. On the one hand, 

some authors found a significant negative relationship between mathematics anxiety and 

mathematical performance also in primary school students (Haase et al., 2012; Vukovic et al., 

2013; Wood et al., 2012; Wu et al., 2012). On the other hand, several other studies did not find a 

significant relationship between mathematics anxiety and mathematical performance in primary 

school students (Dowker et al., 2012; Hill et al., 2016; Krinzinger et al., 2009). 

Haase and colleagues (2012) found that in students aged 7 to 12 years old (primary 

school in Brazil), mathematics anxiety was a significant predictor of mathematical performance 

(β = -.35). Moreover, Vukovic and colleagues (2013) assessed mathematics anxiety in a 

longitudinal study in Year 2 and 3 students. They also measured calculation ability, solving of 

mathematical story problems, solving of algebraic equations, and solving of probability and data 

analysis problems. After controlling for reading ability, early numeracy, and visual working 

memory, the authors still found that mathematics anxiety was a significant predictor of 

mathematical performance in all four mathematical tasks. Additionally, Wood and colleagues 

(2012) found a significant relationship between mathematical performance and mathematics 

anxiety in Brazilian and German primary school students. This relationship was significant even 

after controlling for the effect of verbal and visuo-spatial working memory. In Brazilian students, 

the authors also investigated the performance in simple and complex speeded calculations and 

found that there was a significant negative relationship between mathematics anxiety and 

performance on the speeded calculation tasks. However, this relationship was significant only for 
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complex calculations (complex subtractions, simple and complex multiplications), not for simple 

calculations (simple and complex additions, simple subtractions). Recently, Orbach and 

colleagues (2020) assessed state mathematics anxiety in fifth and fourth graders (mean age for 

Year 4 students = 10 years old; mean age for Year 5 students = 11 years old) and found that it 

was a significant negative predictor of mathematical performance (β = -.16), while inhibition (β = 

.12), cognitive flexibility (β = .13), working memory capacity (β = .10), and global central 

executive functions (β = .15) were positive predictors of mathematical performance. Moreover, 

the authors assessed the mediation effect of inattention and working memory capacity in the 

relationship between mathematics anxiety and mathematical performance. The authors found 

that mathematics anxiety showed a significant direct effect on mathematical performance (β = -

.10), but at the same time that it showed a significant indirect effect through inattention (β = -

.03) and through inattention and working memory capacity (β = -.004). Finally, Wu and 

colleagues (2012) investigated the relationship between mathematics anxiety and mathematical 

performance in Year 2 and 3 students. The authors used the SEMA (Scale for Assessing Early 

Mathematics Anxiety) and the WIAT-II mathematical subtest. The authors found a significant 

negative relationship between mathematics anxiety and mathematical performance even after 

ruling out the effect of trait anxiety and IQ (β = -.26). Moreover, trait anxiety was not a 

significant predictor of mathematical performance.  

Conversely, as we saw earlier, Hill and colleagues' (2016) results suggested that the 

relationship between mathematics anxiety and mathematical performance in Italian primary 

school students was not significant once the effect of trait anxiety was ruled out. Also, 

Krinzinger and colleagues (2009) investigated mathematics anxiety with a longitudinal design in 

students from the end of Year 1 until the middle of Year 3. The authors measured mathematics 

anxiety with the MAQ (Thomas & Dowker, 2000) and mathematical performance with simple 

and complex additions and subtractions. The concurrent analysis showed no significant 

correlation between mathematics anxiety and calculation ability in all three years. Moreover, in a 
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Structural Equation Model, there were no significant longitudinal effects of mathematics anxiety 

on calculation ability. 

These findings prompted me to focus on secondary school students in the current study. 

Because the study aimed to assess the longitudinal relationships between mathematics anxiety 

and mathematical performance, I wanted to make sure that there was a relationship to assess. 

Moreover, I decided to start the study at the beginning of secondary school. In this way, the 

study can assess if the relationship is already present at the beginning of the secondary school, or 

if it emerges during the early stages of secondary school (Hill et al., 2016). 

 

4.1.2 The relationship between mathematics anxiety and mathematical performance in 

female and male participants 

Literature suggests that gender might interact with the relationship between mathematics 

anxiety and mathematical performance. Indeed, some studies suggest that female participants 

show a lower relationship between mathematics anxiety and mathematical performance. For 

example, Hembree's (1990) meta-analysis found that the correlation between mathematics 

anxiety and mathematical performance in female participants was lower compared with the 

relationship in males (females’ r = -.30; males’ r = -.36). More recently, Miller and Bichsel’s 

(2004) analysis showed a significantly steeper regression slope for male than female participants. 

On the other hand, there is evidence for the opposite, and there are studies that suggested that 

the relationship is stronger in females than in males (Devine et al., 2012). Devine and colleagues 

(2012) measured mathematics anxiety in secondary school students. Participants were told to 

solve as many arithmetical problems as they could in 5 minutes. The authors analysed the 

relationship between mathematics anxiety and mathematical performance separately for female 

and male participants. The results showed that mathematics anxiety and mathematical 

performance were moderately negatively correlated in both females (r = -.35) and males (r = -
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.18), but the difference in r-values between female and male participants was significant, 

suggesting that the relationship was stronger in females than in males.  

There is also a third option, which is that the relationship is not significantly different 

between females and males (Ma, 1999; Meece et al., 1990). Ma's (1999) meta-analysis found no 

significant difference between males and females in the relationship between mathematics 

anxiety and mathematical performance. Meece and colleagues (1990) investigated the relationship 

between mathematics anxiety and mathematical performance in Year 7 and 9 students. 

Interestingly, the authors used grades in mathematics as a measure of mathematical achievement. 

In accordance with Ma’s findings, the authors noted that the relationship between mathematics 

anxiety and mathematical performance was not significantly different between female and male 

participants. These mixed results prompted me to include gender in the current analysis when 

analysing the relationship between mathematics anxiety and mathematical performance.   

 

4.1.3 The relationship between mathematics anxiety and working memory 

Previous literature suggests that mathematics anxiety has a negative relationship with 

working memory (please see chapter 1.4.3, page 49 for the evidence).  

Although most studies show a negative relationship between mathematics anxiety and 

working memory (for a review, see Dowker et al., 2016), it is still not clear if the relationship is 

between mathematics anxiety and verbal working memory, or between mathematics anxiety and 

visuo-spatial working memory, or between mathematics anxiety and both working memory 

systems. Some authors found a significant negative relationship between mathematics anxiety 

and verbal working memory. For example, Passolunghi and colleagues (2016) found that those 

with higher mathematics anxiety showed lower performances on the Word Span Forward task. 

Other authors found a significant effect of mathematics anxiety on visuo-spatial working 
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memory tasks. For example, Miller and Bichsel (2004) found that mathematics anxiety was 

inversely related with performance on a visuo-spatial working memory task.  

A third option is that there is a relationship between mathematics anxiety and both slave 

systems of working memory. In fact, Mammarella and colleagues (2015) reported how 

participants with high mathematics anxiety showed lower performance in both verbal and visuo-

spatial working memory tasks than typically developing students matched for reading 

comprehension, trait anxiety and IQ. However, there was no evidence for differences in verbal 

or visuo-spatial working memory between groups of adults with high versus low mathematics 

anxiety in the study discussed in the previous chapter. 

The fourth and final option is that mathematics anxiety is related to poorer performance 

of the central executive and that in turn the slave systems in students are affected by the lower 

amount of resources available. Evidence for this hypothesis comes from studies that find 

significantly lower performance in tasks that involve the central executive in students with high 

mathematics anxiety compared with participants with low mathematics anxiety. In Passolunghi 

and colleagues (2016), for example, secondary school students with high mathematics anxiety 

showed poorer performance on a working memory capacity task than students with low 

mathematics anxiety. Given this array of findings, I included measures for all three working 

memory systems when investigating the relationship between mathematics anxiety and working 

memory.  

 

4.1.4 Mathematics anxiety and mathematics self-belief 

Self-beliefs, in general, refer to the perception that people have about their own 

competencies/abilities when completing a task, such as solving a mathematical problem or 

understanding a written text (Stankov et al., 2012). For a review of these two constructs, please 

see chapter 1.2.5, page 30. The most common way to measure mathematics self-belief is through 
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questionnaires. Most questionnaires are short and quick to administer; for example, Lee (2009) 

used the PISA data where the questionnaire included 5 questions for mathematics self-efficacy 

and 5 questions for mathematics self-concept. However, some studies used longer 

questionnaires. For example, Justicia-Galiano and colleagues (2017) used the Self Description 

Questionnaire (SDQ I), which consists of 64 items that assess self-perceptions on academic and 

non-academic areas.  

The existing literature suggests a relationship between mathematics self-beliefs and 

mathematics anxiety (Hoffman, 2010; Mcmullan et al., 2012; Pajares & Graham, 1999; Pajares & 

Miller, 1994). For instance, Mcmullan and colleagues (2012) found a significant and strong 

negative relationship (r = -.63) between mathematics anxiety and mathematics self-efficacy in 

second year nursing students. Pajares and Miller (1994) found a significant negative relationship 

between mathematics anxiety and mathematics self-efficacy (r = -.56). Moreover, the authors 

found a strong negative relationship between mathematics anxiety and mathematics self-concept 

(r = -.87). Finally, in their study mathematics self-efficacy and mathematics self-concept were 

strongly positively related to each other (r = .61). Pajares and Graham (1999) measured 

mathematics self-efficacy, mathematics self-concept, and mathematics anxiety in Year 6 students 

(the first year of middle school). The authors found that self-efficacy showed a strong negative 

relationship with mathematics anxiety (r = -.61) and a strong positive relationship with self-

concept (r = .66). Moreover, the authors also found that self-concept showed a strong negative 

relationship with mathematics anxiety (r = -.68). Finally, Hoffman (2010) measured mathematics 

anxiety with the Mathematics Anxiety Scale and mathematics self-efficacy with self-reported 

confidence in solving eight different multiplication problems. The author found a strong 

negative correlation between mathematics anxiety and mathematics self-efficacy (r = -.48).  

However, although the relationships between mathematics anxiety and mathematics self-

belief reported in literature seem to be strong, existing literature suggests that mathematics 
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anxiety, mathematics self-concept, and mathematics self-efficacy are three different constructs  

(Lee, 2009). Lee (2009) obtained the 2003 PISA data on mathematics self-concept, mathematics 

self-efficacy, and mathematics anxiety. Each of the three constructs was measured with a 

questionnaire with five items. The author used data from the 41 participating countries. An 

exploratory factor analysis suggested the presence of three separate factors: mathematics self-

concept, mathematics self-efficacy, and mathematics anxiety. The resulting factors still showed 

high correlations between them. Mathematics self-concept showed a strong positive correlation 

with mathematics self-efficacy (r = .52) and a strong negative correlation with mathematics 

anxiety (r = -.67). Mathematics self-efficacy also showed a medium to strong negative 

relationship with mathematics anxiety (r = -.45).  

Studies that investigate the relationship between mathematical performance and 

mathematics self-belief found a positive relationship between the constructs (Pajares & Graham, 

1999; Pajares & Miller, 1994). There are different theories on the directionality of the 

relationship between mathematics self-belief and mathematical performance (for a review, see 

Huang, 2011). The directionality will be discussed further in the next chapter (please see chapter 

5.1.2, page 177); for the current chapter, it is relevant to record that there is a positive 

relationship between the factors and that this relationship might be relevant in the assessment of 

the relationship between mathematics anxiety and mathematical performance. In fact, Pajares 

and Graham (1999) found that when including mathematics self-efficacy, mathematics anxiety, 

and mathematics self-concept in a regression model predicting mathematical performance, only 

mathematics self-efficacy was a significant predictor of mathematical performance. These results 

might suggest that the relationship between mathematics anxiety and mathematical performance 

is a spurious correlation. If by controlling the effect of mathematics self-belief, the relationship 

between mathematics anxiety and mathematical performance is no longer significant, it could 

mean that mathematics anxiety has no direct relationship with mathematical performance. 

Accordingly, Hoffman (2010), showed mostly moderate to strong positive relationships between 
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mathematics self-efficacy and accuracy in solving problems (r = .46 for easy problems; r = .42 

for hard problems). Moreover, mathematics anxiety showed moderate relationships with 

accuracy in solving problems (r = -.38 for easy problems; r = -.42 for hard problems). But, when 

mathematics anxiety, mathematics self-efficacy, and working memory capacity were considered 

together as predictors of accuracy on easy problems, only self-efficacy was a significant predictor. 

However, Hoffman also investigated which factors were the best predictors of performance in 

solving difficult problems. In this case, a multiple regression with mathematics self-efficacy, 

mathematics anxiety and working memory capacity as predictors and accuracy on hard problems 

as outcome measure found mathematics anxiety and working memory capacity were significant 

predictors of mathematical performance, but not self-efficacy. This might mean that 

mathematics anxiety is not a significant predictor for performance on easy mathematical tasks, 

but only for performance on difficult mathematical tasks, as suggested in the literature (e.g., 

Passolunghi et al., 2016). It is important to note that most studies (e.g., Hoffman, 2010) use 

multiple regression techniques. However, it is important to note that given the high covariance 

between the constructs, using multiple regression is not recommended as the b-values might be 

biased, as well as the individual importance of a single predictor (Field, 2013). For this reason, it 

is important to control covariance with collinearity statistics before running the analysis, and in 

any case, to interpret the results with caution. 

It might also be important to consider gender when investigating self-belief. Previous 

studies suggest that female participants tend to have lower mathematics self-efficacy (Morony et 

al., 2013; Pajares & Miller, 1994; Villavicencio & Bernardo, 2016). Villavicencio and Bernardo 

(2016) measured self-efficacy and mathematics achievement in 1345 engineering students, and 

found a significant relationship between mathematics self-efficacy and gender, suggesting that 

males had a higher sense of self-efficacy. Morony and colleagues (2013) assessed mathematics 

self-efficacy, mathematics self-concept, and mathematical performance in students across 

Europe and Asia. The authors observed that female students had lower scores in mathematics 
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self-efficacy and mathematics self-concept than their male counterparts. Finally, Pajares and 

Miller (1994) found that female participants in their study showed significantly lower scores in 

mathematics self-efficacy. However, contrary to Morony and colleagues’ results, Pajares and 

Miller did not find a significant difference between male and female participants in mathematics 

self-efficacy. Given this discrepancy, it might be interesting to further assess the relationship 

between gender and mathematics self-belief. 

The literature reviewed in this section suggests that mathematics self-belief and 

mathematics anxiety are constructs that share a large amount of variance. They might even be 

the same construct. However, most research in mathematics anxiety does not yet take 

mathematics self-belief into account. For this reason, I decided to include self-belief measures in 

the current study. I wanted to test whether mathematics self-concept, mathematics self-efficacy, 

and mathematics anxiety are separate constructs or not.  

 

4.1.5 Inhibition and the Go/No-Go task 

Inhibition is the suppression of thoughts, actions, and emotions (Verbruggen & Logan, 

2008). It is believed to be an attentional process, and hence it is one of the processes of the 

central executive (Baddeley, 1996). Inhibition is part of selective attention, allowing us to attend 

selectively to one stream of information (for example, to the mathematical information presented 

in front of us) while discarding/inhibiting others (e.g., irrelevant thoughts of how much we are 

dreading that situation; Baddeley, 1996). Inhibition “involves being able to control one’s 

attention, behaviour, thoughts, and/or emotions to override a strong predisposition or external 

lure, and instead do what’s more appropriate or needed” (Diamond, 2013, p. 136). 

In the previous studies, I used intrusions during a complex span task as a measure of the 

quality of inhibition processes. A higher number of intrusions should be an indicator of lower 

inhibition efficiency. Intrusions, however, might measure semantic inhibition, as the task requires 
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the inhibition of irrelevant information. In the current study, I wanted to include another 

measure of inhibition that would show better sensitivity and have a lower risk of a flooring effect 

that was encountered for the intrusions in previous studies. For this reason, I decided to use a 

Go/No-Go task. A Go/No-Go task, however, is considered to be a measure of inhibition of 

motor responses (Hershey et al., 2010). A Go/No-Go task requires participants either to 

respond to a stimulus (the “Go” stimulus) as quickly as possible or to refrain from the response 

when another stimulus is present (the “No-go” stimulus). The No-go stimulus is typically less 

frequent than the Go stimulus (Gonzalez Alam et al., 2018). Correct responses to the task 

require the recruitment of different cognitive systems and processes, such as working memory, 

stimulus-driven attention, error monitoring, top-down control processes, and response inhibition 

(Chikazoe, 2010). For example, Chikazoe’s review (2010) highlighted that areas such as the 

ventrolateral prefrontal cortex (VLPFC) and the pre-supplementary motor area (pre-SMA) are 

important for the performance in Go/No-Go tasks. These two areas have been proposed as 

regions implicated in the response inhibition processes (Chikazoe, 2010). Performance on the 

Go/No-Go task can be analysed using signal detection theory (Hershey et al., 2010). According 

to signal detection theory, decision-making is based on a state of uncertainty, which can be 

measured with the analysis of the correct responses (hit rate) and the number of incorrect 

responses (false alarms). The hit rate refers to the proportion of Go trials with correct responses. 

The number of correct hits, or inversely, the number of omissions on Go trials, is believed to be 

a measure of attention (Schulz et al., 2007). Reaction times are supposed to be a measure of 

behavioural execution (Schulz et al., 2007). False alarms instead are when a Go response is given 

on a No-go trial (Hershey et al., 2010). The number of false alarms is used as a measure of the 

quality of the inhibitory control, whereas the number of correct hits and the reaction times are 

not considered a good index of inhibitory control (Diamond, 2013). More specifically, a higher 

number of false alarms suggest a lower efficiency of the inhibition processes (Schulz et al., 2007).  
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4.1.6 Hypotheses 

I expected to find a significant negative relationship between mathematics anxiety and 

mathematical performance in the current dataset in both male and female participants.  

I expected higher mathematics anxiety to be related to lower working memory for all 

three working memory systems as low resources from the central executive could affect 

performance in the slave systems. In particular, I expected a lower efficiency of the inhibition 

processes in pupils with higher mathematics anxiety. Finally, I expected mathematics anxiety, 

mathematics self-concept, and mathematics self-efficacy to be three separate constructs albeit 

with strong correlations between them. I predicted mathematical performance to be higher in 

pupils with higher mathematics self-concept and with higher mathematics self-efficacy. 

 

4.2 Methods 

In this chapter, I report the data from time point 1 (T1) of a longitudinal study. These 

data were collected at the beginning of the academic year from students in Year 7.  

 

4.2.1 Participants  

I tested 168 students at the beginning of Year 7 from a school in Yorkshire. The school 

was rated “Good” by Ofsted in 2017 and has a non-selective admission policy. The school 

currently has more than 1000 students, of which roughly half are female. 7.8% of the students 

have special needs, and 3.6% of the students do not have English as their first language. 19.7% 

of the students are eligible for free school meals. Of the 168 students, three students were 

excluded from the analysis, because the school started a fire drill while I was testing them 

individually. An additional eight students were excluded because they did not want to participate 

in the individual testing. In the end, the sample for the analysis was composed of 157 
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participants (79 females; age range: 11-12 years old, mean age = 11.34 years, SD = 0.48) who 

completed all the testing. Of these, the computer started an automatic update during the 

computerised individual testing in five cases. This caused the loss of the scores for these five 

students for computer tasks. Because these scores were missing completely at random4, I 

included their data and used the expectation-maximization algorithm to replace the missing 

values.  

I decided to use opt-out consent from the parents as this allows for higher participation 

from the participants. However, aware of the ethical issues involved with this type of consent, I 

gave parents four weeks to decide whether they wanted their child to participate or to opt-out 

their child from the study. I also sought verbal consent from the participants and written consent 

from the headteacher. At every stage, I made clear that the participants were voluntarily taking 

part in the study and that they should in no way feel obliged to continue. I made sure that the 

participants were comfortable and that no harm was done to them. Every situation was handled 

to reduce the stress to the participants to a minimum. Participants were tested either in the 

classroom or in an empty corridor in the school. Ethical approval was granted by the University 

of York Psychology Department’s ethics committee.  

 

4.2.2 Materials 

 

4.2.2.1 Classroom testing 

Mathematics anxiety 

To assess the participants’ mathematics anxiety, I used the Revised Mathematics Anxiety 

Rating scale (RMARS; Taylor & Fraser, 2013). RMARS was developed for high school students, 

 
4 Little’s MCAR test: χ2

(191) = 201.48, p = .288. 
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so I adapted the items to be comprehensible and relatable to secondary school students (e.g., 

“Watching a teacher work an algebra equation on the blackboard” from the original RMARS, 

became “Watching a teacher work out an arithmetic equation on the board.”).  RMARS is a self-

report questionnaire composed of 24 items associated with different math-related situations (in 

school and everyday life; an example of a situation: “Watching a teacher work an arithmetic 

equation on the board”). Participants are asked to rate their feelings during those situations using 

a 5-point Likert scale (From 1 – No bad feelings; to 5 – Worst feelings) (Min RMARS score = 

24; Max = 120). The RMARS showed good internal consistency in the current sample (α = .96). 

 

Mathematical performance 

To assess the participants’ mathematical proficiency I used the blue form of the 

mathematical subtest of the Wide Range Achievement Test (WRAT-4; Wilkinson & Robertson, 

2006). The WRAT-4 mathematical subtest showed high internal reliability in the current sample 

(α = .86). 

The task was the same used in the first study, so for the details please see chapter 2.2.2, 

page 64. 

 

Arithmetical fluency 

To assess participants’ fluency in arithmetic I used the Simple Calculations task. The task 

required the participant to solve as many calculations as possible within a specific time limit. The 

task included three operations: addition, subtraction, and multiplication. 

I used the same items as in the first study, so for the details please see chapter 2.2.2, page 

64 and Appendix A.4. 
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Trait anxiety 

To assess participants’ trait anxiety, I used the trait anxiety questionnaire from the State-

Trait Anxiety Inventory for Children (STAIC; Spielberger, Edwards, Lushene, Montuori, & 

Platzek, 1973). I decided to use this questionnaire instead of the GAD-7 because the sample was 

composed of 11- to 12-year-old students, and I wanted to use a child-friendly test. The trait 

anxiety inventory has 20 items that assess the general level of anxiety of the participant. Each 

item (e.g., “I worry about making mistakes”) requires the participant to choose how often they 

show this behaviour/have this feeling on a scale from “hardly ever” to “often”. Items are rated 

on a 3-point Likert scale with 1 (hardly ever), 2 (sometimes) and 3 (often). The minimum score is 

20; the maximum score is 60. In previous studies, the alpha coefficient showed good reliability 

for female elementary school students (α = .87) and for male elementary school students (α = 

.82) ( Spielberger et al., 1973). In the current sample, I also found high internal reliability (α = 

.91). 

 

Mathematics self-efficacy 

To assess participants mathematics self-efficacy, I decided to use the mathematics self-

efficacy scale from Stankov and colleagues (2012). The scale requires the participants to answer 

to 5 items how much they agree with the statements on a 5-point Likert-scale, from strongly 

disagree (1), to neither agree nor disagree (3), until strongly agree (5). An example of an item is 

“Even if the work in mathematics is hard, I can learn it.”. The scale showed good reliability in 

my sample (α = .83). 

 

Mathematics self-concept 
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To assess participants mathematics self-concept, I decided to use the mathematics self-

concept scale from Stankov and colleagues (2012). The 4 item-scale requires the participants to 

answer how much they agree with each item on a 5-point Likert-scale, from strongly disagree (1), 

neither agree nor disagree (3), to strongly agree (5). An example of an item is “I learn 

mathematics quickly”. The scale shows good reliability in my sample (α = .81). 

 

4.2.2.2 Individual testing 

Verbal working memory 

To assess verbal working memory, I used a letter span task (Marcel, 1974) developed by 

myself. The task requires participants to repeat a series of letters after hearing them spoken 

aloud, in the same order as they heard them. 

I used the same task as in the first study, so for the details see chapter 2.2.2 page 64 and 

Appendix A.1. 

 

Visuo-spatial working memory 

To assess visuo-spatial working memory, I used a computerized task to assess visual 

working memory load (McNab & Klingberg, 2008). In this task, participants are exposed to 16 

squares displayed in a circle. In each trial, there is a red dot on either 3, 4, or 5 of the squares. 

The squares are presented for 3 seconds, after which there is a masking period of 3 seconds. 

During the masking period, participants need to retain visual information. After the masking 

period, the squares reappear, and the dots are not present anymore. Instead, one of the squares 

has a question mark in it. The question mark can be either in a square that previously had a red 

dot or next to a square that previously had a red dot. The participant has 3 seconds to press one 
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of two buttons to indicate whether the question mark is in a square that previously had a dot in it 

(Numpad 1) or not (Numpad2). The instructions given to the participants ask them to be as 

precise as possible. The time of 3 seconds for each visual presentation was chosen after piloting 

the measure with the participants. In fact, I used the first 5 participants to assess the feasibility of 

the measure with students of that age (participants that were not included in the analysis). As the 

original measure required participants to reply after 1 second, I noticed that  1 second was not 

long enough for students and the task was causing stress in the participants, so I decided to find 

the best solution to not stress the participants, but at the same time to keep it a timed task.  

The measure includes 45 trials, 15 for each load (i.e. for load 3, 4 and 5). In random 

order, participants are exposed to three red dots 15 times, four red dots 15 times, and five red 

dots 15 times. For each load, I calculated the k-value (McNab & Klingberg, 2008).  K-values are 

calculated by taking the number of correct hits (the number of times the participants correctly 

pressed Numpad 1) and the number of false alarms (the number of times the participants 

pressed the Numpad 1 instead of the Numpad 2). The number of false alarms is subtracted from 

the number of correct hits. The resulting number is then multiplied by the array size (or load; i.e. 

3, 4, or 5 dots). The resulting value is the k-value for that load. For each participant, I then 

averaged across k-values for each load to obtain an average k-value score over all load 

conditions.  

 

Inhibition processes 

To assess participants’ efficiency of the inhibition processes, I used a Go/No-Go task. 

The version used is an adaptation of the task used in Gonzalez Alam and colleagues (2018), of 

which, I used only the figure subset. The figures used where the ones included by the 

researchers. Participants see an image of either a living or a non-living object. Participants are 

instructed to press the spacebar each time there is a picture of a non-living object and to not do 



140 
 

anything when there is a picture of a living object. The participants are instructed to be as 

accurate and as fast as possible. Each image appears for one second (during which they should 

press the spacebar in the Go trials), after which there is masking of one second and then another 

picture appears. Participants are given a practice block where they are given feedback if they 

make a mistake in pressing or not pressing the spacebar. The practice trials consist of 14 

pictures, 12 non-living objects (Go) and two living objects (No-Go). After the practice trials, the 

participants start the experimental block. In the experimental block, there are 210 pictures. 

Presented in random order, 40 of these are pictures of living objects (No-Go), whereas the 

remaining 170 are of non-living objects (Go). From this measure, I calculated the number of 

correct responses (correct Go and correct No-Go), mean reaction time of the correct Go 

responses, and the number of false alarms. The number of false alarms is considered a measure 

of the efficiency of the inhibition processes. However, it has an inverse relationship with 

efficiency inhibition, as the higher the number of false alarms recorded, the lower the 

participant’s inhibition efficiency.  

 

Conceptual understanding 

To assess participants’ understanding of mathematical concepts I used the mathematical 

conceptual understanding task developed by Gilmore and Cragg (available at 

http://reshare.ukdataservice.ac.uk/852106/). Participants are presented with an arithmetical 

equation with the correct answer. Once the participants read the equation, they pressed return 

and a second equation without the answer was shown. Participants then had to decide whether 

the first equation could help them (the equations are related) or not (the equations are not 

related) to answer the second equation by pressing 1 or 2 on the numerical keypad respectively. 

The equations could be related by the subtraction-complement principle (e.g., if 113 – 59 = 54; 

113 – 54 = ?), they could be inverse operations (e.g., if 74 + 57 = 131; 131 – 74 = ?), and they 

http://reshare.ukdataservice.ac.uk/852106/
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could be commutative operations (e.g., if 63 + 68 = 131; 68 + 63 = ?). Importantly, participants 

were instructed not to solve the equation, but simply to state whether the first equation could 

help them or not to solve the second equation. The participants first had a practice block with 4 

items. After the practice block, there were 30 more items, 18 of which were related and 12 were 

not related. I recorded the number of correct trials. 

 

4.2.2.3 Testing apparatus 

Computerized tasks were performed on two different computers used by the two 

experimenters. The first computer was an ASUS R556L 15.6” with a screen resolution of 1920 x 

1080 pixels. CPU was Intel Core i5-5200U (2.2 GHz) and 8GB DDR3 RAM. The second 

computer was a TOSHIBA SATELLITE PRO C660-150 15.6” with a screen resolution of 1366 

x 768 pixels. CPU was Intel Celeron T3500 (2.1 GHz) and 4 GB DDR3 RAM. Both computers 

run Windows 10 64-bit Professional. All participants used an external USB keyboard for their 

responses.  

The visual working memory task and the conceptual understanding task were developed 

and assessed using PsychoPy for Windows ver. 1.85.3. The Go/No-Go task was developed and 

assessed using Python for Windows ver. 3.5.4. 

 

4.2.2.4 Design and Procedure 

Participants were tested in two separate sessions on separate days; the classroom session 

and an individual session. The classroom sessions started with the experimenters introducing 

themselves and giving the WRAT-4 mathematical subtest, the Arithmetical Fluency task, the 

mathematical self-concept and self-efficacy questionnaires, the RMARS questionnaire, and the 

trait anxiety questionnaire. During the individual session, each participant was taken out of the 
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classroom individually and sat at a table in an empty hallway of the school with the experimenter. 

The letter span task was administered using a recording of the task. After this task, participants 

were introduced to the computer and performed the inhibition task, the visual working memory 

task, and the conceptual understanding task. At the end of the session, participants re-entered 

the class.  

 

4.3 Results 

4.3.1 Descriptive Statistics 

 

 

 

 

 

 

 

 

 

Table 4.1. Descriptive Statistics divided by gender 
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Table 4.1 reports the descriptive statistics divided by gender. Gender comparisons are 

assessed with non-adjusted independent t-tests. There were no significant differences in 

mathematical performance and conceptual understanding between male and female participants. 

The same can be said for mathematics anxiety and almost all other measures included. The only 

two tasks with significant differences between male and female participants were arithmetical 

fluency (female participants performed significantly worse) and mathematics self-efficacy (female 

participants showed significantly lower scores). It should be also discussed that mathematics self-

concept is borderline significantly different between male and female participants (with female 

participants scoring on average lower scores). In all the cases the effect size is in the small to 
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medium range (Cohen, 1988). Please see Appendix C.1 for a full partial correlation matrix 

(controlling for trait anxiety). 

 

4.3.2 Relationship between mathematics anxiety and mathematical processing 

I wanted to investigate if there was a relationship between mathematics anxiety and 

mathematical processing at the beginning of secondary school. For this reason, I assessed the 

relationship between mathematics anxiety and different types of mathematical processing. I also 

controlled for the effects of trait anxiety and gender. 

 

4.3.2.1 Mathematics anxiety and mathematical performance 

The first relationship that I assessed was the relationship between mathematics anxiety 

and mathematical performance. I computed a stepwise linear regression with mathematics 

anxiety and trait anxiety as predictors of mathematical performance. Mathematics anxiety was a 

significant predictor of mathematical performance (β = -.33, p < .001), but not trait anxiety. The 

resulting model showed that mathematics anxiety explained 11% of the variance and that the 

model was a significant predictor of mathematical performance, F (1, 155) = 18.28, p < .001 as 

can be seen in Figure 4.1. Students with higher mathematics anxiety had a significantly lower 

mathematical performance. 
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Figure 4.1. Scatterplot representing the relationship between mathematics anxiety and mathematical performance. 

 

I then separated female and male participants and re-ran the analysis. It was found that in 

female participants mathematics anxiety was a significant predictor of mathematical performance 

(β = -.43, p < .001), but not trait anxiety. The resulting model showed that in female participants 

mathematics anxiety explained 18% of the variance and that the model was a significant 

predictor of mathematical performance, F (1, 77) = 17.33, p < .001.  

Furthermore, in male participants mathematics anxiety was a significant predictor of 

mathematical performance (β = -.25, p = .029), but not trait anxiety. The resulting model showed 

that mathematics anxiety explained 6% of the variance in male participants and that the model 

was a significant predictor of mathematical performance, F (1, 76) = 4.96, p = .029. 

On first sight the r-values in the models for female and male participants seem quite 

different in size, thus I ran a regression analysis including the interaction term of gender X 

mathematics anxiety to test whether the size of the relationship is larger in female than male 
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participants. I found that neither gender nor the interaction of gender X mathematics anxiety 

were significant predictors of mathematical performance. 

 

4.3.2.2 Mathematics anxiety and arithmetical fluency 

The second relationship that was assessed was the relationship between mathematics 

anxiety and arithmetical fluency. I computed a stepwise linear regression with mathematics 

anxiety and trait anxiety as predictors of arithmetical fluency. The analysis showed that 

mathematics anxiety was a significant predictor of arithmetical fluency (β = -.31, p < .001), but 

not trait anxiety. The resulting model suggested that mathematics anxiety explained 10% of the 

variance and that the model was a significant predictor of arithmetical fluency, F (1, 155) = 

16.80, p < .001 as can be seen in Figure 4.2. Higher mathematics anxiety predicted lower 

performance on arithmetical fluency.  

Figure 4.2. Scatterplot representing the relationship between mathematics anxiety and arithmetical fluency. 
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I then separated female and male participants and re-ran the analysis. It was found that in 

female participants mathematics anxiety was a significant predictor of arithmetical fluency (β = -

.32, p = .004), but not trait anxiety. The resulting model showed that in female participants 

mathematics anxiety explained 10% of the variance and that the model was a significant 

predictor of arithmetical fluency, F (1, 77) = 8.68, p = .004.  

I then analysed only the male participants and found that in male participants 

mathematics anxiety was a significant predictor of arithmetical fluency (β = -.30, p = .009), but 

not trait anxiety. The resulting model showed that mathematics anxiety explained 9% of the 

variance in male participants and that the model was a significant predictor of arithmetical 

fluency, F (1, 76) = 7.29, p = .009.  

In line with the previous analysis, I ran a regression analysis including the interaction 

term of gender X mathematics anxiety. It was found that neither gender nor the interaction were 

significant predictors of arithmetical fluency. 

 

4.3.2.3 Mathematics anxiety and conceptual understanding 

The third relationship that was considered was the relationship between mathematics 

anxiety and conceptual understanding. I computed a stepwise linear regression with mathematics 

anxiety and trait anxiety as predictors of conceptual understanding. The analysis suggested 

mathematics anxiety was a significant predictor of conceptual understanding (β = -.24, p = .002), 

but not trait anxiety. The resulting model suggested that mathematics anxiety explained 6% of 

the variance and that the model was a significant predictor of conceptual understanding, F (1, 

155) = 9.54, p = .002 as can be seen in Figure 4.3.  
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Figure 4.3. Scatterplot representing the relationship between mathematics anxiety and conceptual understanding. 

I then separated female and male participants and re-ran the analysis. I found that 

mathematics anxiety was a marginally significant predictor of conceptual understanding in female 

participants (β = -.21, p = .065), but not trait anxiety. The resulting model suggested that 

mathematics anxiety explained 4% of the variance in female participants and that the model was 

not a significant predictor of conceptual understanding, F (1, 77) = 3.50, p = .065.  

I found that in male participants mathematics anxiety was a significant predictor of 

conceptual understanding (β = -.29, p = .011), but not trait anxiety. The resulting model showed 

that in male participants mathematics anxiety explained 8% of the variance and that the model 

was a significant predictor of conceptual understanding, F (1, 76) = 6.76, p = .011.  

In line with the previous analysis, I ran a regression analysis including the interaction 

term of gender X mathematics anxiety. Neither gender nor interaction were significant factors on 

the conceptual understanding. 
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4.3.3 Relationship between mathematics anxiety and working memory 

Next I investigated the relationship between mathematics anxiety and working memory 

at the beginning of secondary school. For this reason, I assessed the relationship between 

mathematics anxiety and different types of working memory tasks. I also controlled for the 

effects of trait anxiety and gender. 

 

4.3.3.1 Mathematics anxiety and verbal working memory 

The current analysis included bivariate correlations between mathematics anxiety, trait 

anxiety, and verbal working memory. The analysis showed neither mathematics anxiety (r(155) = 

-.08) nor trait anxiety (r(155) = -.05) were significantly correlated with verbal working memory. 

These results suggest that there is no relationship between mathematics anxiety scores and 

performance in the verbal working memory task, as can be seen in Figure 4.4. 

Figure 4.4. Scatterplot representing the relationship between mathematics anxiety and verbal working memory. 
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4.3.3.2 Mathematics anxiety and visuo-spatial working memory 

The current analysis included bivariate correlations between mathematics anxiety, trait 

anxiety, and visuo-spatial working memory. Analysis showed neither mathematics anxiety (r(155) 

= -.04) nor trait anxiety (r(155) = -.08) were significantly correlated with visuo-spatial working 

memory. These results suggest that there is no significant relationship between mathematics 

anxiety and visuo-spatial working memory, as can be seen in Figure 4.5. 

Figure 4.5. Scatterplot representing the relationship between mathematics anxiety and visuo-spatial working 

memory. 
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efficiency. I thus focused on this measure and computed bivariate correlations between 

mathematics anxiety, trait anxiety, and the efficiency of the inhibition processes. The analysis 

showed that mathematics anxiety was significantly positively correlated with the number of false 

alarms, r(155) = .16, p = .042. On the other hand, trait anxiety was not significantly related to the 

number of false alarms, r(155) = .11, p = .160. These results suggest that there is a significant 

relationship between mathematics anxiety and the efficiency of the inhibition processes, as can 

be seen in Figure 4.6. 

Figure 4.6. Scatterplot representing the relationship between mathematics anxiety and the number of false alarms. 
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for trait anxiety. The analysis showed that after controlling for trait anxiety the relationship 

between mathematics anxiety and inhibition’s efficiency was no longer significant, r(155) = -.12, 

p = .141.  

 

4.3.4 Mathematics anxiety and mathematics self-belief 

In this study, I used mathematics self-belief measures for the first time along with the 

measure of mathematics anxiety. Thus, I was interested in how far these measures are related to 

mathematics anxiety. In the current dataset, I assessed the relationship between these two 

measures while controlling for trait anxiety and gender. 

Before assessing this relationship, however, I decided to explore whether the questionnaires used 

to assess self-concept, self-efficacy and mathematics anxiety should be considered as one single 

factor or, as literature suggests (Stankov et al., 2012) as three separate factors. Indeed, as 

discussed previously, Lee (2009) found that mathematics anxiety, mathematics self-efficacy and 

mathematics self-concept were three different, albeit related, constructs in the PISA dataset. 

However, as can be seen in Table 4.2, the correlation between the three factors in the current 

data was high and suggested that the three questionnaires might be measuring one single 

construct. On the other hand, the correlation between mathematics anxiety and mathematical 

self-efficacy and the correlation between mathematics anxiety and mathematical self-concept 

were lower. 
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Table 4.2. Mathematics self measures correlation matrix 

 

 

Hence, I decided to run an Exploratory Factor Analysis (with the PCA method) to assess 

whether in the current data mathematics anxiety, mathematics self-concept, and mathematics 

self-efficacy should be considered as one, two, or three factors. At first, I considered an 

Exploratory Factor Analysis (EFA) with all three questionnaires. Hence the three questionnaires 

were subjected to EFA with oblique rotation (Promax rotation5). The Kaiser-Meyer-Olkin 

measure of sampling adequacy suggested a high strength of the relationships among variables 

(KMO = .94) and the Bartlett’s test of sphericity showed that it was appropriate to use the factor 

analytic model on this set of data (χ2 (528) = 3600.391, p < .001). I fixed the number of factors at 

three (mathematics anxiety, mathematics self-efficacy, and mathematics self-concept). The 3-

factor solution accounted for 57.77% of the variance. However, the structure of the model 

showed two factors for the RMARS questionnaire, and one factor unifying mathematics self-

efficacy and mathematics self-concept under one umbrella. The resulting structure can be seen in 

Table 4.3.  

 
5 I opted for an oblique rotation and not an orthogonal rotation because there is a high 
correlation between the factors. Orthogonal rotations should be avoided when there is a high 
correlation between the factors (Field, 2013). 
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Table 4.3. Exploratory Factor Analysis (Promax-Rotated) with PCA method of the Items of the mathematical 

self-measures. 
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Existing literature suggests that the RMARS assesses two different factors, learning 

mathematics anxiety and mathematics evaluation anxiety (Taylor & Fraser, 2013). However, the 

factor division presented in Table 4.3 did not follow the division reported in literature. 

Moreover, I ran a confirmatory factor analysis (CFA) with the RMARS items divided into two 

factors as described in Taylor and Fraser (2013). This analysis suggested that this factor division 

did not fit the data well; χ2(251) = 628.06, p < .001, CFI = .84, GFI = .73, NFI = .76, RMSEA = 

.106. Given that the focus of the current study was not to assess the effect of separate factors of 

mathematics anxiety, but of mathematics anxiety as a single factor, and given the poor fit of the 

factor division with the data, it was decided to consider mathematics anxiety as a single factor. 

Regarding mathematics self-efficacy and mathematics self-concept, on the other hand, I 

decided to assess further the factor division to improve the quality of the analysis. Given the 

high factor loadings on all the mathematics self-efficacy and mathematics self-concept on a 

single factor, I decided to include these two questionnaires in an exploratory factor analysis with 

oblique rotation (Promax rotation5). The Kaiser-Meyer-Olkin measure of sampling adequacy 

suggested a high strength of the relationships among variables (KMO = .91) and the Bartlett’s 

test of sphericity showed that it was appropriate to use the factor analytic model on this set of 

data (χ2 (36) = 583.57, p < .001). Using eigenvalue of 1 as the cut-off point (Field, 2013) and by 

looking at the scree plot, the analysis yielded a 1-factor solution as the best fit for the data. The 

1-factor solution accounted for 54.36% of the variance. A 2-factor solution would explain 

64.11% of the variance, but the factor division would not reiterate the division proposed in 

literature. In fact, item 1 to 5 are from the mathematics self-efficacy questionnaire; and the items 

6 to 9 from the mathematics self-concept. The current analysis instead would suggest dividing 

 
6 The model fit indices are explained in the next chapter (please see chapter 5.2.4, page 186). For 
the current analysis, here are the guidelines for models with a good fit. χ2: non-significant. CFI, 
GFI, and NFI: over .95 (the maximum value is 1). RMSEA: lower than .07. 
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the factors in the following way. One factor composed of items 1, 2, 3, 6, 7, 8, and 9 and one 

factor composed of items 4 and 5. As can be seen, the division would not retrace the factor 

division presented in literature. For this reason, I decided to use the one-factor solution. The 

results of the one-factor analysis can be seen in Table 4.4. The composite factor, called 

mathematics self-belief, showed high reliability7. 

  

 
7 The authors define self-concept as the perception that we have of ourselves, whereas self-efficacy as 
the beliefs about our own capabilities; defining two different factors. However, the exploratory 
factor analysis suggests that in this dataset self-concept and self-efficacy items load on one 
common factor that I will call mathematics self-belief. Reliability test ran on both questionnaires 
together showed high internal reliability (α = .90). 
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Table 4.4. Exploratory Factor Analysis (Promax-Rotated) with PCA method of the items of the mathematics 

self-measures. 
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4.3.4.1 Mathematics anxiety and mathematics self-belief while controlling for trait anxiety and gender 

I wanted to investigate the relationship between mathematics anxiety and mathematics 

self-belief. I had no reasons to assume causality, thus I used correlations between the factors. 

Results showed a strong significant negative correlation between mathematics anxiety and 

mathematics self-belief, r = -.64, p < .001, as can be seen in Figure 4.7.  

 

Figure 4.7. Bivariate correlation between mathematics anxiety and mathematics self-beliefs. 

 

Since trait anxiety can be a source of bias, I ran a partial correlation between mathematics 

anxiety and mathematics self-belief while controlling for trait anxiety and the result showed that 

the correlation between mathematics anxiety and mathematics self-belief was still large and 

significant, r = -.53, p < .001. Finally, given the gender differences in the mathematics self-belief 

measure, I decided to investigate the correlation between mathematics anxiety and mathematics 

self-belief separately for males and females while controlling for trait anxiety. For females, the 
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results showed a large significant negative correlation between mathematics anxiety and 

mathematics self-belief, r(77) = -.63, p < .001 as can be seen in Figure 4.8.  

Figure 4.8. Bivariate correlation between mathematics anxiety and mathematics self-belief in female participants 

 

For males the results showed a medium to large significant correlation between 

mathematics anxiety and mathematics self-belief, r =- .40, p < .001 as can be seen in Figure 4.9.  
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Figure 4.9. Bivariate correlation between mathematics anxiety and mathematics self-belief in male participants 

 

The relationship between mathematics anxiety and mathematics self-belief differed 

marginally between females and males, z = 1.95, p = .051. These results suggest that the negative 

relationship between mathematics anxiety and mathematics self-belief might be stronger for 

female than male participants. 

 

4.3.5 Mathematics self-belief and mathematical performance 

I decided to assess the relationship between mathematical performance and mathematics 

self-belief while controlling for trait anxiety and mathematics anxiety. For this reason, I decided 

to run different regression models for the three measures of mathematical performance. Because 

previous research indicated significantly higher levels of mathematics self-belief in male students 

(Morony et al., 2013; Pajares & Miller, 1994; Villavicencio & Bernardo, 2016), I will also present 

the results separately by gender. 
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4.3.5.1 Mathematics self-belief and mathematical performance 

The first analysis that I considered was regarding the relationship between mathematics self-

belief and mathematical performance. I computed a stepwise linear regression with mathematics 

self-belief, mathematics anxiety, and trait anxiety as predictors of the mathematical performance. 

The analysis showed mathematics self-belief as a significant predictor of mathematical 

performance (β = .39, p < .001), but not mathematics anxiety nor trait anxiety. The resulting 

model showed that mathematics self-belief explained 15% of the variance and that the model 

was a significant predictor of mathematical performance, F (1, 155) = 28.05, p < .001 as can be 

seen in Figure 4.108.  

 

Figure 4.10. Scatterplot representing the relationship between mathematics self-belief and mathematical 

performance. 

 
8 VIF (Variance Inflation Factor) collinearity statistics suggest that although the predictors are 
highly related with each other, collinearity is not a cause for concern; mathematics anxiety VIF = 
1.70, trait anxiety VIF = 1.22. 
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Given that the previous analysis suggested a significant difference in the relationship 

between mathematics anxiety and mathematics self-belief in female and male participants, I 

separated female and male participants and re-ran the analysis. It was found that in female 

participants mathematics self-belief was a significant predictor of mathematical performance (β = 

.48, p < .001), but not mathematics anxiety nor trait anxiety. The resulting model showed that in 

female participants mathematics self-belief explained 23% of the variance and that the model 

was a significant predictor of mathematical performance, F (1, 77) = 23.13, p < .001.  

In male participants mathematics self-belief was a significant predictor of mathematical 

performance (β = .34, p = .002), but not mathematics anxiety nor trait anxiety. The resulting 

model showed that in male participants mathematics self-belief explained 12% of the variance 

and that the model was a significant predictor of mathematical performance, F (1, 76) = 10.17, p 

= .002.  

In line with the previous analysis, I ran a regression analysis including the interaction 

term of gender x mathematics anxiety. I found that neither gender nor interaction were 

significant predictors of mathematical performance. 

 

4.3.5.2 Mathematics self-belief and arithmetical fluency 

The second analysis that I considered was regarding the relationship between 

mathematics self-belief and arithmetical fluency. I computed a stepwise linear regression with 

mathematics self-belief, mathematics anxiety, and trait anxiety as predictors of arithmetical 

fluency. The analysis showed mathematics self-belief as a significant predictor of arithmetical 

fluency (β = .43, p < .001), but not mathematics anxiety nor trait anxiety. The resulting model 

showed that mathematics self-belief explained 19% of the variance and that the model was a 
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significant predictor of arithmetical fluency, F (1, 155) = 35.77, p < .001 as can be seen in Figure 

4.118.  

 

Figure 4.11. Scatterplot representing the relationship between mathematics self-belief and arithmetical fluency. 

 

Given that the previous analysis suggested a significant difference in the relationship 

between mathematics anxiety and mathematics self-belief in female and male participants, I 

separated female and male participants and re-ran the analysis. In female participants, 

mathematics self-belief was a significant predictor of arithmetical fluency (β = .45, p < .001), but 

not mathematics anxiety nor trait anxiety. The resulting model showed that in female participants 

mathematics self-belief explained 20% of the variance and that the model was a significant 

predictor of arithmetical fluency, F (1, 77) = 19.49, p < .001.  

In male participants, mathematics self-belief was a significant predictor of arithmetical 

fluency (β = .39, p < .001), but not mathematics anxiety nor trait anxiety. The resulting model 

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50

A
ri

th
m

et
ic

al
 f

lu
en

cy

Mathematic self-belief



164 
 

showed that in male participants mathematics self-belief explained 15% of the variance and that 

the model was a significant predictor of arithmetical fluency, F (1, 76) = 13.50, p < .001. In line 

with the previous analysis, I ran a regression analysis including the interaction term of gender x 

mathematics anxiety. Neither gender nor the interaction terms were significant predictors of 

arithmetical fluency. 

 

4.3.5.3 Mathematics self-belief and conceptual understanding 

The third outcome measure that I considered was the conceptual understanding task. I 

computed a stepwise linear regression with mathematics self-belief, mathematics anxiety, and 

trait anxiety as predictors of conceptual understanding. The analysis showed mathematics anxiety 

as a significant predictor of conceptual understanding (β = -.24, p = .002), but not mathematics 

self-belief nor trait anxiety. The resulting model showed that mathematics anxiety explained 6% 

of the variance and that the model was a significant predictor of conceptual understanding, F (1, 

155) = 9.54, p = .002 as can be seen in Figure 4.38.  

Although the results showed that mathematics self-belief was not a significant predictor 

of conceptual understanding once mathematics anxiety was controlled for, I decided to assess if 

the relationship was different between female and male participants. It was found that in female 

participants mathematics self-belief was a significant predictor of conceptual understanding (β = 

.24, p = .036), but not mathematics anxiety nor trait anxiety. The resulting model showed that in 

female participants mathematics self-belief explained 6% of the variance and that the model was 

a significant predictor of conceptual understanding, F (1, 77) = 4.55, p = .036 as can be seen in 

Figure 4.12.  
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Figure 4.12. Scatterplot representing the relationship between mathematics self-belief and conceptual understanding 

in female participants. 

 

On the other hand, in male participants mathematics anxiety was a significant predictor 

of conceptual understanding (β = -.29, p = .011), but not mathematics self-belief nor trait 

anxiety. The resulting model showed that in male participants mathematics anxiety explained 8% 

of the variance and that the model was a significant predictor of conceptual understanding, F (1, 

76) = 6.76, p = .011 as can be seen in Figure 4.13.  
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Figure 4.13. Scatterplot representing the relationship between mathematics anxiety and conceptual understanding 

in male participants. 

 

These results suggest that the predictors for conceptual understanding are different 

between female and male participants. Whereas for female participants mathematics self-belief 

seems to be more important than their anxiety in predicting their mathematical understanding, in 

male participants, it seems to be the opposite.  

 

4.4 Discussion 

I used the Time1 data from the longitudinal study to assess the following hypotheses: 

1) There is a significant relationship between mathematics anxiety and mathematical 

performance at the beginning of the first year of secondary school; 

2) This relationship is significant in female and male participants; 
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3) Higher mathematics anxiety is related to significantly lower performance of the 

phonological loop, of the visuo-spatial sketchpad, and the inhibition processes; 

4) Mathematics anxiety, mathematics self-concept, and mathematics self-efficacy are three 

different constructs; 

5) Mathematics anxiety, mathematics self-concept, and mathematics self-efficacy show 

independent significant relationships with mathematical performance. 

 

Current results suggest that there is a significant negative relationship between 

mathematics anxiety and mathematical performance at the beginning of the first year of 

secondary school. This relationship remained significant after controlling for trait anxiety. 

Moreover, it was found that in line with existing research  (Ma, 1999; Meece et al., 1990) there 

were no differences between female and male participants in the relationship between 

mathematical performance and mathematics anxiety. Against predictions, results did not show 

significant concurrent relationships between mathematics anxiety and verbal or visuo-spatial 

working memory. On the other hand, the results did suggest a significant negative relationship 

between mathematics anxiety and the efficiency of the inhibition processes. Several new 

constructs, including mathematics self-belief (mathematics self-efficacy and mathematics self-

concept), were added in this study. Mathematics anxiety emerged as a separate construct from 

the two measures of mathematics self-belief. However, current measures of mathematics self-

concept and mathematics self-efficacy seem to load on one common factor, suggesting they 

measure the same construct. Finally, to my surprise, it was found that mathematics self-belief 

seems to be a stronger predictor of concurrent mathematical performance at the beginning of 

secondary school than mathematics anxiety. Controlling for mathematics self-belief renders most 

relationships between mathematics anxiety and mathematical performance non-significant.  
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4.4.1 The relationship between mathematics anxiety, mathematical performance, and 

mathematics self-belief 

So far research suggests a moderate negative relationship between mathematics anxiety 

and mathematical performance (e.g., Ashcraft & Moore, 2009; Carey, Hill, Devine, & Szücs, 

2016; Dowker et al., 2016; Hembree, 1990; Ma, 1999; Passolunghi et al., 2016). However, most 

research that evaluated the relationship between mathematics anxiety and mathematical 

performance either did not control for other motivational factors (Ashcraft & Kirk, 2001; Miller 

& Bichsel, 2004), or controlled for other types of anxiety (for a review see Dowker et al., 2016). 

Very few studies have investigated the relationship between mathematics anxiety and 

mathematical performance while also controlling for mathematics self-beliefs. Current results 

suggested that mathematics self-belief might be more strongly related to concurrent 

mathematical performance than mathematics anxiety.  

In simple mathematical tasks, Hoffman (2010) found that the relationship between 

mathematics anxiety and mathematical performance was explained by mathematics self-belief. 

However, in Hoffman’s study, the relationship between mathematics anxiety and mathematical 

performance was still significant in more complex mathematical tasks. With regard to simple 

tasks, current results were in line with Hoffman’s findings (Hoffman, 2010). In fact, the 

relationship between mathematics anxiety and arithmetical fluency was no longer significant once 

the effect of mathematics self-belief was ruled out. However, current findings were not in line 

with Hoffman’s findings regarding more complex mathematical tasks (in the current case, the 

WRAT-4 mathematical subtest). Once the effect of mathematics self-belief was controlled, 

mathematics anxiety was no longer a significant predictor of mathematical performance. 

Hoffman’s (2010) study used pre-service teachers, whereas the current data was from secondary 

school students. It is possible that the age difference can explain the discrepant findings.  
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Interestingly, mathematics self-belief scores were a better predictor than mathematics 

anxiety on all mathematical tasks except for conceptual understanding, for which the results 

suggested that mathematics anxiety was a significant predictor whereas mathematics self-belief 

was not. Moreover, the relationship between mathematics self-belief, mathematics anxiety, and 

conceptual understanding was influenced by gender. In female participants, mathematics self-

belief was positively correlated with conceptual understanding and when self-belief was included 

mathematics anxiety was no longer a significant predictor of performance on the conceptual 

understanding task. This is in line with findings on the other two mathematical tasks. For male 

participants, however, their scores on the mathematics self-belief questionnaire did not predict 

performance on the conceptual understanding task, but their mathematics anxiety scores did. 

Lower mathematics self-belief might lead to a bias to select the answer ‘yes – the previous 

answer can help me with the current answer’ less often because participants are not confident 

about their own knowledge. Male participants with higher mathematics anxiety might respond 

differently to the conceptual understanding task than female participants with higher 

mathematics anxiety. Male participants with higher mathematics anxiety might have rushed and 

answered the questions quickly, i.e., showing the so-called ‘local avoidance’ (Hopko, 2003). This 

then could have led to a trade-off between speed of execution and quality of performance. 

Trying to be as quick as possible might have led to more errors. If this was the case, I would 

have expected males with high mathematics anxiety also to try to finish as soon as possible in 

other untimed mathematical tasks, e.g., the WRAT-4 mathematical subtest. Consequently, there 

should be a stronger correlation between the score on the WRAT-4 mathematical subtest and 

score on the conceptual understanding task for male participants compared with female 

participants. Indeed, this is what I found9. On the other hand, this explanation does not explain 

why female participants did not show such local avoidance. One possible cause for this 

 
9 Correlation between WRAT-4 and conceptual understanding task in female participants r = .29  
Correlation between WRAT-4 and conceptual understanding task in male participants r = .51. 
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discrepancy can be found in the findings from Cohen-Zada and colleagues' (2017) study. The 

authors examined the drop in performance during high-stakes situations in more than 8000 

tennis players during the Grand Slam singles tournament. The authors found that in high-stakes 

situations, male tennis players tended to show a drop in performance and had a higher risk of 

losing the match. In female tennis players, this drop was not always present, and even when 

present, it was only about half the size of the drop observed in male players. The authors explain 

that these results are in line with biological literature that reports how the secretion of cortisol 

impacts males more than females. Although the context is quite different from the current one, it 

might be that female and male students reacted differently in front of items that they were not 

sure about while under the pressure from anxiety-related arousal. Future studies might involve 

the assessment of salivary cortisol (Mattarella-Micke et al., 2011) in male and female participants, 

and assess if salivary cortisol levels are different between the groups, and if they are related to 

local avoidance effects. 

 

4.4.1.1 The relationship between mathematics anxiety and mathematics self-belief 

In the current study, in line with the existing literature (Hoffman, 2010; Mcmullan et al., 

2012; Pajares & Graham, 1999; Pajares & Miller, 1994), mathematics anxiety showed a strong 

correlation with mathematics self-belief. Suggestions have been made on why researchers find 

this relationship. For example, Hoffman (2010) suggested that having higher mathematical self-

beliefs might work as a protecting factor against the development of mathematics anxiety. 

Alternatively, other authors (Meece et al., 1990; Pajares & Kranzler, 1995) suggested that it might 

be that higher mathematics anxiety causes the participants to develop less trust in their own 

mathematical skills. Although the data suggest a relationship between the constructs, given the 

concurrent nature of the design it is not possible to draw conclusions on the directionality of this 

relationship. However, recent research suggested a reciprocal relationship (Ahmed et al., 2012). 
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This study will be further discussed in the next chapter (please see page 5.1.3, chapter 178); the 

authors found a reciprocal longitudinal relationship between mathematics self-concept and 

mathematics anxiety. This suggests that high trust in mathematical skills can work as a protective 

factor against the development of high mathematics anxiety, but that on the other hand higher 

mathematics anxiety can also cause the loss of trust in the mathematical skills. The concurrent 

data presented in this chapter is in line with all three interpretations presented. However, in the 

next chapter I will analyse longitudinal data that might help to shed light onto the question of the 

directionality of this relationship.  

 

4.4.1.2 Mathematics self-belief as one factor 

Lee (2009) provided evidence that mathematics self-efficacy and mathematics self-

concept are two separate constructs. The current exploratory factor analysis, however, suggested 

that items measuring mathematics self-concept and mathematics self-efficacy load on the same 

single factor. These discrepant findings likely emerged because of the specific items I used. As 

discussed on chapter 1.2.5, page 30, mathematics self-efficacy is usually defined as trust in our 

abilities in carrying out very specific tasks (e.g., how confident the participant is that given a 

specific multiplication they could solve it correctly), whereas mathematics self-concept includes a 

wider range of more general skills in dealing with mathematical operations. Lee (2009) used very 

general questions as items for their mathematics self-concept questionnaire, such as “I have 

always believed that mathematics is one of my best subjects.” (Lee, 2009, pp. 358). Moreover, 

Lee’s questionnaire for mathematics self-efficacy used very specific situations, such as “How 

confident do you feel about calculating how much cheaper a TV would be after a 30% 

discount?” (Lee, 2009, pp. 358). The mathematics self-belief questionnaire that was used in the 

current study was adopted from Stankov and colleagues' scale (2012). The questionnaire included 

four mathematics self-concept items that were general questions about the participant’s trust in 
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mathematical skills and five mathematics self-efficacy items. Upon inspection, it is clear that the 

items used for mathematics self-efficacy by us and based on Stankov et al. (2012) describe much 

fewer specific situations than the items used by Lee. For example, the item “I am sure I can do 

difficult work in my mathematics class”, is about the general confidence in one’s ability to solve 

mathematical tasks, not about the confidence in one’s ability to solve a specific problem (or a 

specific type of problem, such as calculating the square root of a number). Given that the items 

in the mathematics self-efficacy questionnaire were more similar to Lee’s self-concept items, the 

reason why in the current study all items loaded on one factor may be that most of the items I 

used measure mathematics self-confidence rather than mathematics self-efficacy.  

It is clear that mathematics self-belief is an important and often neglected factor to 

consider when investigating the relationship between mathematics anxiety and mathematical 

performance. Although mathematics anxiety is probably a separate construct from mathematics 

self-efficacy and mathematics self-concept, the high correlation between these constructs poses 

difficulties when interpreting results. Longitudinal studies might be able to answer questions 

about the directionality of the relationship between mathematics anxiety and mathematical self-

beliefs during the first year of secondary school.  

 

4.4.2 Mathematics anxiety and mathematical performance 

Leaving the mathematics self-belief measure aside, this study replicated the significant 

negative relationship between mathematics anxiety and mathematical performance reported in 

the literature (Haase et al., 2012; Hembree, 1990; Hill et al., 2016; Passolunghi et al., 2016; 

Vukovic et al., 2013; Wood et al., 2012). I added to this by investigating different types of 

mathematical performance. All three measures of mathematical performance included in the 

current study showed a significant relationship with mathematics anxiety. Interestingly, this 

relationship was not affected by controlling for trait anxiety. Furthermore, the strength of the 
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relationship was similar between males and females, and there were also no differences in 

performance between males and females in mathematical performance and understanding. Males 

showed better performance on the speeded simple calculation task, but the effect of the 

difference was small, suggesting that the impact on daily life might not be important. Altogether, 

these results suggested that at the beginning of the secondary school female and male students 

do not show large differences in their average mathematical performance and that the 

relationship between mathematics anxiety and mathematical performance is modified by gender.  

 

4.4.3 Mathematics anxiety and working memory 

Regarding working memory, the situation is more complex. When looking at simple 

working memory measures, I did not find a relationship with mathematics anxiety, neither for 

verbal nor for visuo-spatial working memory. This suggested that in secondary school students 

mathematics anxiety did not affect the performance in simple working memory tasks.  

However, mathematics anxiety was related to a measure of the efficiency of the 

inhibition processes, the number of false alarms on the Go/No-Go task. While mathematics 

anxiety and inhibition efficiency showed a significant negative relationship, trait anxiety did not 

show such correlation with inhibition efficiency. However, when running a partial correlation 

between mathematics anxiety and inhibition efficiency while controlling for trait anxiety, the 

relationship was no longer significant. This suggested that excluding the part of the variance in 

mathematics anxiety that is shared with trait anxiety, the remaining variance in mathematics 

anxiety was not strongly correlated enough with the inhibition efficiency anymore to be 

significant, i.e., the unique shared variance between mathematics anxiety and inhibition efficiency 

is not significant. These results suggest that the shared variance between mathematics anxiety 

and general anxiety is relevant, although not significant, in determining the relationship between 

mathematics anxiety and inhibition efficiency. We know that mathematics and general anxiety 
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share genetic and environmental factors (Malanchini et al., 2017). Future studies might want to 

assess the relevance of each of these factors in explaining the relationship between mathematics 

anxiety and inhibition efficiency. 

 

4.5 Conclusion 

Current results show clearly that even at the beginning of secondary school students 

show mathematics anxiety and that mathematics anxiety is negatively related to concurrent 

mathematical performance. Interestingly, this chapter has highlighted that mathematics self-

belief seems to be a better predictor of concurrent mathematical performance than mathematics 

anxiety. Thus, in future studies, it will be crucial to include measures of mathematics self-belief 

alongside measures of mathematics anxiety. 
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Chapter 5 - Longitudinal predictors of  mathematics anxiety and 

mathematical performance in secondary school students. 

 

5.1 Introduction 

In the previous chapter, I explored concurrent relationships between mathematics 

anxiety and mathematical performance. Moreover, I introduced a new factor in this thesis, 

mathematics self-belief. The results in the previous chapter suggested mathematics self-belief is 

an important factor to consider when analysing the relationship between mathematics anxiety 

and mathematical performance. In the current chapter, I will concentrate on the longitudinal 

relationships between mathematics anxiety, mathematical performance and working memory 

during the first year of secondary school. Given the importance of mathematics self-belief 

highlighted in the previous chapter, I will include this factor also in the longitudinal analysis.  

 

5.1.1 The Relationship between Mathematics Anxiety and Mathematical Performance in 

Primary and Secondary School Students 

Up to this point, I have only presented concurrent data. Although concurrent data are 

helpful when investigating the relationships between factors, for a complete understanding of the 

development of these relationships it is important to use longitudinal data. Surprisingly, not 

many studies have assessed the longitudinal relationships between mathematics anxiety and 

mathematical performance.  

Most research that investigated longitudinal relationships between mathematics anxiety 

and mathematical performance concluded that poor mathematical performance is a causal factor 

for the development of mathematics anxiety, whereas the development of mathematical 

performance is independent of mathematics anxiety (Ma & Xu, 2004; Vukovic et al., 2013). 
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Vukovic et al. (2013) investigated mathematics anxiety and mathematical performance in a 

longitudinal study with primary school students following them from Year 2 to Year 3. The 

authors tested visuo-spatial working memory, calculation skills, mathematical applications, and 

mathematics anxiety. Calculation skills were measured with a test that requires to answer 25 

calculation questions in 20 minutes. Mathematical applications, on the other hand, was assessed 

by asking the participants to complete story problems, algebra problems, and data analysis 

problems. Finally, mathematics anxiety was assessed with the Mathematics Anxiety Scale for 

Young Children (Harari et al., 2013). When controlling for Year 2 visual-working memory, Year 

2 mathematics anxiety did not significantly predict Year 3 calculation skills nor Year 3 scores in 

the mathematical applications test. Regarding secondary school students, Ma and Xu (2004) 

published a famous paper investigating mathematics anxiety and mathematical performance in 

3116 students from Year 7 to Year 12. Mathematics anxiety was measured by two questions that 

used Likert-scale answers, whereas mathematical performance was measured using 4 different 

indicators (basic skills, algebra, geometry, and quantitative literacy). The researchers found that 

mathematics anxiety in the previous year was either not a significant predictor or only a 

significant predictor of mathematical performance with a very small effect size (r = -.05), 

suggesting that, in accordance with the other studies, mathematics anxiety does not affect 

strongly the development of mathematical performance. In contrast, results from a recent study 

by Ching (2017) assessed the relationship between mathematics anxiety and mathematical 

performance in 246 Year 2 students (mean age 86.25 months) in Hong Kong. The researcher 

assessed mathematics anxiety, working memory, general anxiety, test anxiety, non-verbal 

intelligence, and number skills during the second year of primary school. A year later, during the 

third year of primary school, the researcher tested calculation ability. Mathematics anxiety at 

Time 1 was a significant predictor of mathematical performance in difficult calculations at Time 

2, even when controlling for Time 1 working memory, general anxiety, test anxiety, non-verbal 

intelligence, and number skills. Although the author did not assess the longitudinal effects of 
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mathematical performance on mathematics anxiety, these results suggest that we need more data 

on the longitudinal effects of mathematics anxiety on mathematical performance. On the other 

hand, it could be argued that the author did not control for calculation ability at the first 

timepoint. The author used a multiple regression technique to assess the effect of mathematics 

on mathematical performance, the idea being that mathematics anxiety at the first timepoint 

comes before mathematical performance that is measured at the second timepoint. So, any 

significant relationship can be assumed to be directed from mathematics anxiety to mathematical 

performance. However, the presence of a clear temporal succession is not proof of causality, as it 

does not rule out possible third variables. For example, it could be that there was a relationship 

between mathematics anxiety and mathematical performance at the first timepoint, and it is 

possible that the longitudinal relationship in Ching’s dataset (2017) was moderated by 

mathematical performance at the first timepoint, which was not assessed. Gunderson and 

colleagues (2018) also found similar results in the longitudinal relationship between mathematics 

anxiety and mathematical performance. The authors tested Year 1 and Year 2 students at the 

beginning of the school year (i.e., Time 1), and at the end of the school year (i.e., Time 2). The 

design included the assessment of the students’ mathematics anxiety and mathematical 

performance. Longitudinal path analysis suggested that Time 1 mathematical performance was a 

significant predictor of Time 2 mathematics anxiety (β = -.20), and that Time 1 mathematics 

anxiety was a significant predictor of Time 2 mathematical performance (β = -.06).  

Ma and Xu (2004) also assessed the effect of mathematical performance on the 

development of mathematics anxiety. The authors found that the mathematical performance of 

the previous year was a significant predictor of mathematics anxiety of the next year, with higher 

levels of mathematical performance associated with lower levels of mathematics anxiety. 

Recently Geary and colleagues (2019) assessed mathematics anxiety and mathematical 

achievement in Year 6 students (mean age = 12 years and 3 months), and then reassessed the 

same students in Year 7. The authors found that mathematical performance in Year 6 was a 
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significant predictor of mathematics anxiety in Year 7 (β = -.14). Moreover, Wang and colleagues 

(2020) tested Italian high school students (mean age 15.86 years) and reassessed them after 6 

months. In accordance with the previous studies, the authors found that mathematical 

performance at the first time point was a significant predictor of mathematics anxiety at the 

second timepoint.  

These results suggest that although mathematical performance has a role in the 

developmental growth of mathematics anxiety, the debate is still open on whether mathematics 

anxiety affects the mathematical performance or not (Carey et al., 2016). The current study 

aimed to shed light onto this question.  

 

5.1.2 Concurrent and longitudinal relationships between mathematics anxiety and 

working memory 

The previous chapter presented concurrent relationships between mathematics anxiety, 

working memory, and inhibition processes (please see chapter 4.4, page 165). I did not find a 

concurrent relationship between mathematics anxiety and simple working memory measures. On 

the other hand, I found a significant negative relationship between mathematics anxiety and the 

efficiency of the inhibition processes, a measure related to complex working memory. This 

negative relationship observed is usually interpreted to mean that mathematics anxiety has a 

negative effect on (complex) working memory. However, my results in adults (please see chapter 

2.3, page 70) suggested that the working memory deficit that has been described in relation to 

mathematics anxiety is present also in non-mathematical situations. Mathematics anxiety might 

be associated with general lower efficiency of the inhibition processes. In my previous study with 

adults whether the participants with high mathematics anxiety were in a mathematical situation 

or not did not affect the efficiency of their inhibition processes, thus it might be that participants 

with high mathematics anxiety present a general deficit in the inhibition processes. Given that 
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having to deal with numbers might not cause a lower efficiency of the inhibition processes, I 

suggest that having lower efficiency of the inhibition processes could be a causal factor in the 

development of mathematics anxiety. Moreover, to the best of my knowledge, no studies have 

examined the longitudinal relationships between mathematics anxiety and working memory yet. 

Indeed, many studies have recorded a negative relationship between mathematics anxiety and 

mathematical performance, a relationship that proved stable at different ages and in different 

countries (for a review, please see chapter 1.3, page 36). However, few studies implemented a 

longitudinal design, meaning that the causal relationship is still under discussion between the 

researchers. Although a longitudinal study cannot give final description of causality, it can inform 

on the directionality of the relationship, and important step in understanding the causal 

relationship. These factors prompted the decision to include working memory measures to assess 

the longitudinal effects of working memory on mathematics anxiety.  

 

5.1.3 Mathematics self-belief 

As discussed in the previous chapter (please see chapter 4.4.1.2, page 170)  mathematics 

self-concept and mathematics self-efficacy are often considered as two separate factors. 

However, a factor analysis showed that the mathematics self-concept and self-efficacy items used 

in my questionnaire were actually assessing only one factor. For this reason, in this chapter, I will 

use the term mathematics self-belief, because this term describes both mathematics self-efficacy 

and mathematics self-concept (Stankov et al., 2012). While mathematics self-belief was correlated 

with mathematics anxiety, it emerged as a more powerful predictor of concurrent mathematical 

performance than mathematics anxiety (please see chapter 4.4.1, page 167). Thus, I decided to 

include an analysis of mathematics self-belief and its concurrent and longitudinal relationships in 

this chapter.  
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Many studies suggest that low self-perception of ability is contributing to the 

development of mathematics anxiety (Meece et al., 1990; Pajares & Kranzler, 1995; Pajares & 

Miller, 1994). In Meece and colleagues’ study (1990) there was a small to moderate negative 

longitudinal relationship between Year 1 perceived ability in mathematics and Year 2 

mathematics anxiety (r = -.22). Likewise, Pajares and Miller (1994) found a strong negative 

concurrent relationship between mathematics self-concept and mathematics anxiety (r = -.87) 

and a strong negative concurrent relationship between mathematics self-efficacy and 

mathematics anxiety (r = -.56). Finally, Pajares and Kranzler (1995) tested 329 high school 

students’ mathematics self-belief using the Mathematics Confidence Scale and their mathematics 

anxiety using the Mathematics Anxiety Scale. They also tested mathematical performance by 

giving the students the 18 problems that were previously used to test the students’ confidence in 

solving them. The authors found that mathematics self-belief was a significant concurrent 

predictor of mathematics anxiety, finding strong negative concurrent relationships between 

mathematics anxiety and mathematics self-efficacy (r = -.53) and between mathematics anxiety 

and mathematics self-concept (r = -.46). But because the studies presented used concurrent data, 

or they did not check for the concurrent relationship in the longitudinal analysis, these results 

cannot determine the direction of the relationship between mathematics anxiety and 

mathematics self-belief. 

Ahmed and colleagues (2012) proposed a model with a causal relationship from 

mathematics self-belief to mathematics anxiety, but without a reciprocal connection. They 

suggested that low self-concept could mean that the person does not believe that they can thrive 

in the situation. Feeling that they cannot cope with a situation can cause the person to perceive 

the situation as a threat, causing stress and influencing the development of mathematics anxiety. 

A second option is that mathematics self-belief influences mathematics anxiety, as discussed 

earlier, and at the same time that mathematics anxiety influences mathematics self-beliefs 

(Ahmed et al., 2012). The authors recruited 522 Year 7 students (mean age = 12.7 years). They 
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measured mathematics self-concept with a questionnaire that assessed how good the participants 

thought they were at math. An example of an item that was reported was “How good at math 

are you?” (Ahmed et al., 2012, pp. 386). The researchers also assessed mathematics anxiety with 

the Mathematics subscale of the Academic Emotions Questionnaire. The subscale assesses 

students’ mathematics anxiety in different situations (i.e., mathematics class, studying and doing 

homework, and taking math exams and tests). These measures were collected at three different 

time points: at the beginning of Year 7, in the middle, and at the end of Year 7. Using structural 

equation modelling the authors found a reciprocal relationship between mathematics anxiety and 

mathematics self-concept. In fact, all the cross-lagged coefficients were significant and negative. 

The cross-lagged relationships were quite stable between the different time points. In fact, 

mathematics anxiety at the beginning of Year 7 was a significant predictor of mathematics self-

concept at the middle of Year 7 (r = -.07), and mathematics anxiety at the middle of Year 7 was a 

significant predictor of mathematics self-concept at the end of Year 7 (r = -.06). However, it 

must be noted that these longitudinal effects of mathematics anxiety on the development of 

mathematics self-concept were very small, i.e., even if they were significant, their effect in 

everyday life might be negligible. At the same time, mathematics self-concept at the beginning of 

Year 7 was a significant predictor of mathematics anxiety at the middle of Year 7 (r = -.15), and 

mathematics self-concept at the middle of Year 7 was a significant predictor of mathematics 

anxiety at the end of Year 7 (r = -.14). The author suggested that mathematics anxiety might 

have a negative effect on the development of confidence in dealing with mathematical situations, 

while mathematics self-concept could work as a protective factor against mathematics anxiety. 

The mechanism by which mathematics anxiety can influence mathematics self-belief was also 

discussed by Ahmed and colleagues (2012). They stated that anxiety can distort the image that 

the person has of their own capabilities, influencing the development of the person’s self-belief. 

In the previous chapter, I discussed the positive relationship between mathematics self-

belief and mathematical performance (r = .39, please see chapter 4.3.5.1, page 160). Pajares and 
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Kranzler (1995) also described a positive relationship between mathematics self-efficacy and 

mathematical performance (r = .64). These studies, however, investigated only concurrent 

relationships between mathematics self-beliefs and mathematical performance. Kung (2009) 

analysed longitudinal relationships between mathematical performance and mathematics self-

belief. The mathematical performance was measured with the students’ school grades; and 

mathematics self-belief was assessed with two measures, a mathematics self-concept 

questionnaire, and a mathematics self-efficacy questionnaire. The study included students from 

Year 7 and Year 10 and tested mathematical performance, mathematics self-belief, and 

mathematics anxiety at the beginning of the study. Three years after the beginning of the study, 

mathematical performance was reassessed. Mathematical achievement at the first time point had 

a significant positive relationship with mathematics self-belief measures at the first timepoint. In 

fact, mathematical achievement showed a strong positive relationship with mathematics self-

concept (γ = .69) and with mathematics self-efficacy (γ = .73). At the same time, both 

mathematics self-belief measures at the first timepoint had a significant positive effect on the 

mathematical performance at the second timepoint (β = .37 for mathematics self-concept; β = 

.44 for mathematics self-efficacy). Taken together, these results suggest the existence of a 

reciprocal relationship between mathematical performance and mathematics self-belief. 

Finally, to the best of my knowledge, there are no studies that investigate specifically the 

relationship between mathematics self-beliefs and working memory. However, Hoffman and 

Schraw (2009) measured working memory capacity and mathematics self-efficacy. The study 

involved 58 university students, and the results showed a moderate positive concurrent 

relationship between mathematics self-efficacy and working memory capacity (r = .32). 

Moreover, Hoffman (2010) also found a significant positive concurrent relationship between 

mathematics self-efficacy and working memory (r = .35) in preservice teachers. On the other 

hand, Justicia-Galiano and colleagues (2017) did not find a significant concurrent relationship 

between mathematics self-concept and working memory (r = .03) in Years 3 to 5 students. This 



183 
 

last result is in contrast with the first two studies presented which suggest a moderate 

relationship between mathematics self-belief and working memory. However, the first two 

studies were carried out with adults, whereas the study by Justicia-Galiano and colleagues tested 

students in Years 3 to 5. It is possible that the relationship develops with age, and becomes 

moderate in adults, whereas in students it is not yet significant.  

 

5.1.4 Research Questions 

Based on existing literature, I expected higher mathematical performance at Time 1 to 

predict lower mathematical anxiety at Time 2. The literature is less clear about the contribution 

of mathematics anxiety to the development of mathematical performance. However, on balance, 

given the results of the literature presented, I expected to find no significant negative effects of 

mathematics anxiety measured at Time 1 on mathematical performance measured at Time 2. A 

third research question involved the relationship between working memory and mathematics 

anxiety. Given the results of my studies in adults, I expected lower efficacy in the inhibition 

processes at Time 1 to lead to higher mathematics anxiety measured at Time 2. The next 

research questions involve mathematics self-belief. I expected significant positive cross-lagged 

longitudinal effects of mathematics self-belief on mathematical performance and of 

mathematical performance on mathematics self-belief. Moreover, evidence suggests that primary 

school students show no relationship between mathematics self-beliefs and working memory, 

whereas adult data suggest the presence of a significant positive relationship. If the development 

of the confidence in carrying out mathematical tasks is influenced by the amount of working 

memory resources that are available to the person, I would expect that working memory at Time 

1 affects mathematics self-belief at Time 2. Finally, given the results from the Time 1 testing, I 

was interested in investigating mathematics self-belief further. The first research question 

regarding mathematics self-belief involved comparing the importance of mathematics anxiety 
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against mathematics self-belief in the development of mathematical performance. The second 

research question involved assessing the role of mathematics anxiety and mathematical 

performance on the development of mathematics self-belief10. 

 

5.2 Methods 

In this chapter, I report the data of a longitudinal study with 2 time points (Time 1 and 

Time 2). Time 1 data were collected at the beginning of the academic year (from October to 

December) in Year 7. Time 2 data were collected at the end of the academic year (June) from the 

same students in Year 7. Please note that while 168 students took part in Time 1 (as reported in 

the previous chapter), of which 157 completed the data collection, only 139 students took part in 

all sessions in both Time 1 and Time 2. Here I report only the data for the students who 

participated at both Time 1 and Time 2 data collection.  

 

5.2.1 Participants  

Of the 157 students with complete Time 1 data, 12 were not present during the 

classroom testing session of Time 2 so were excluded from the analysis and 6 no longer wanted 

to participate. The final sample for the analysis was composed of 139 participants (70 females; 

age range Time 1: 11-12 years, mean age Time 1 = 11.63 years, SD = 0.29 years; age range Time 

2: 12-13 years, mean age Time 2 = 12.30 years, SD = 0.29 years).  Moreover, one participant 

showed a score of 0 on the WRAT-4 mathematical subtest at Time 2. Given that the test allows 

15 minutes, and the first few exercises are quite simple, and the fact that the same student 

 
10The original design involved also the analysis of the reciprocal longitudinal relationship 
between mathematics anxiety and mathematics self-belief. However, the models showed a poor 
model fit and I decided not to include them here. Future research might address this problem 
with different models that show a better fit. 
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achieved a higher score on the WRAT-4 mathematical subtest at Time 1, I decided to exclude 

this participant from the analyses. I obtained formal consent from the headteacher and the 

parents before testing at Time 1 and I sought verbal consent from the participants during testing 

at both Time 1 and Time 2. 

 

5.2.2 Materials 

 

5.2.2.1 Measures included in Time 1 and Time 2 classroom testing 

Mathematics Anxiety 

To assess the participants’ mathematics anxiety, I used the Revised Mathematics Anxiety 

Rating scale (RMARS; Taylor & Fraser, 2013). I used the same scale at Time 1 and Time 2, so 

for the details of this scale, please see chapter 4.2.2.1, page 135.  

 

Mathematical Performance 

To assess the participants’ mathematical proficiency I used the blue form of the 

mathematical subtest of the Wide Range Achievement Test (WRAT-4; Wilkinson & Robertson, 

2006). I used the same subtest and the same procedure at Time 1 and Time 2, so for the details 

of this subtest, please see chapter 2.2.2, page 64.  

 

Arithmetical Fluency 

To assess participants’ fluency in arithmetic I used the Simple Calculations task. The task 

required the participant to solve as many calculations as possible within a specific time limit. The 

task included three operations: addition, subtraction, and multiplication. I used the same items 
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and the same procedure for Time 1 and Time 2, so for the details please see chapter 2.2.2, page 

64. 

 

Mathematics Self-Belief Measures 

To assess the participants’ mathematics self-belief I used the 5 item-mathematics self-

efficacy scale and the 4 item-mathematics self-concept questionnaire used by Stankov and 

colleagues (2012). I used the same measures and the same procedure at Time 1 and Time 2, so 

for details see chapter 4.2.2.1, page 135.  

 

5.2.2.2 Measures included only in Time 1 individual testing 

Verbal working memory 

To assess verbal working memory at Time 1, I used a letter span task (Marcel, 1974). The 

task requires participants to repeat a series of letters after hearing them spoken aloud, in the 

same order as they heard them. The task is described in detail in the previous chapter, so for 

details please see chapter 2.2.2, page 64. 

 

Visuo-spatial working memory 

To assess visuo-spatial working memory at Time 1, I used a computerized task to assess 

visual working memory load which will be described as visual k-value (McNab & Klingberg, 

2008). The task is described in the previous chapter, so for details please see chapter 4.2.2.2, page 

137. 
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Inhibition processes 

To assess participants’ efficiency of the inhibition processes at Time 1, I used a Go/No-

Go task. The version used is an adaptation of the task used in Gonzalez Alam and colleagues 

(2018). The task is described in the previous chapter, so for details see chapter 4.2.2.2, page 137. 

I will report the total number of false alarms. 

 

5.2.2.3 Testing apparatus 

The testing apparatus used was the same during Time 1 and Time 2 testing, do for details 

on the testing apparatus used please see chapter 4.2.2.3, page 140. 

 

5.2.3 Design and Procedure 

Time 1 and Time 2 data collection sessions were similar. Time 1 testing has been 

described in the previous chapter (please see chapter 4.2.2.4, page 140). Time 2 classroom testing 

was exactly as Time 1 classroom testing, except that at Time 2 I did not test trait anxiety. Time 1 

individual testing is described in detail in the previous chapter (please see chapter 4.2.2.4, page 

140). At Time 2 only conceptual understanding was assessed individually which is not analysed in 

the current chapter.  

 

5.2.4 Data Analysis 

My initial plan was to run structural equation modelling (SEM) for all the models 

presented in this chapter. However, the models including mathematics anxiety had a very poor 

fit to the data. For this reason, I decided to run path analyses instead of SEM. 
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The path analysis was carried out using IBM SPSS AMOS 25 Graphics using the 

maximum likelihood estimation (Arbuckle, 2017). Figures were created with the path diagram 

tool and the significance values were added manually afterwards. 

Running a model predicting the data will result in data predicted (and explained) by the 

model. Ideally, the discrepancy between the predicted data and the actual measured data should 

be as small as possible. So-called model fit indices indicate how well the data predicted by the 

model fit with the actual data (Raykov & Marcoulides, 2006). In order to assess the fit of the 

model, several different fit indices can be calculated. The first index that needs to be considered 

is the Chi-Square value (χ2). This test statistic assesses the null hypothesis that the theoretical 

model fits perfectly to the covariance matrix created from the data. If the χ2 calculated is 

significant, the theoretical model is not considered a good fit to the data. However, results from 

this statistic always have to be considered carefully, because sample size strongly influences the χ2 

value, there is a spurious tendency to obtain significant values due to the sample size (Raykov & 

Marcoulides, 2006). This means that having big sample sizes can cause this statistic to be 

significant, even when it does not indicate a bad fit.  Another fit index that is used is the 

Goodness of Fit Index (GFI). This index is a measure of the proportion of variance and 

covariance in the observed data that the theoretical model can explain. This index can vary 

between 0 and 1, with values closer to 1 indicating a better fit. Most researchers agree that an 

acceptable range is between .95 to 1 (Raykov & Marcoulides, 2006). The third model fit index 

that should be considered is the Normed Fit Index (NFI). It compares the chi-square of the 

theoretical model against the chis-square of the independence model, which assumes no 

relationships between any of the variables. The formula involves the computation of the 

difference between the chi-square of the null model and the chi-square of the proposed model, 

and then dividing this difference by the chi-square of the null model. The theoretical base for 

this index is that by comparing the proposed model against the worst possible model, the 

researcher can get an idea of how much better the fit of the proposed model is. For this index, 
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values above .95 are considered a good fit. Another useful fit index is the Comparative-Fit Index 

(CFI). This index compares the theoretical model against the null model under the assumption 

that there are no relationships between the observed measures. While the NFI is based on the 

comparison of chi-square values, the CFI is based on the comparison of noncentrality. CFI is a 

ratio of the improvement in noncentrality of the theoretical model against the null model. The 

better the data fit the theoretical model, the more similar the two noncentrality measures will be, 

hence the closer the CFI will be to 1. Most researchers consider it as an indication of a good 

model fit if the CFI is in the range between .95 to 1 (Raykov & Marcoulides, 2006). The final fit 

index that I will consider is the Root Mean Square Error of Approximation (RMSEA). This 

index is often used because it is only weakly influenced by the sample size (Raykov & 

Marcoulides, 2006). Most researchers consider adequate RMSEA value to be less than .07 

(Hooper et al., 2008).  

For the mediation analysis, I used R version 3.6.3 with the “mediation” package for 

bootstrapping. The mediation package uses the Imai and colleagues algorithms to estimate the 

causal mediation effects (Imai et al., 2010). I used non-parametric bootstrapping with 500 

simulations. For moderation, I used the Baron and Kenny technique (Baron & Kenny, 1986). 

The reported value of ACME stands for Average Causal Mediation Effects, and a value different 

from 0 is indicative of the presence of an effect of the mediator variable (Imai et al., 2010).  

 

5.3 Results 

5.3.1 Descriptive statistics 

Table 5.1 reports the descriptive statistics of the data collected at Time 1 and Time 2 (N 

= 139).  
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Table 5.1. Descriptive statistics for Time 1 and Time 2 data  

 

 

Instead of improving over the year, students’ mathematical performance on average 

actually slightly decreased during the first year of secondary school, although the difference was 

not statistically significant. At the same time, students’ mathematical self-belief decreased 

significantly, while their mathematics anxiety increased significantly. The correlation matrix for 

these factors can be found in Appendix D.1.  

 

5.3.2 Mathematics anxiety and mathematical performance 

In this chapter, I will concentrate on the performance on the WRAT-4 mathematical 

subtest as the mathematical outcome measure, because most of the literature that investigated 

the relationship between mathematics anxiety and mathematical performance used standardised 

tests of mathematical performance (e.g., Cargnelutti et al., 2017; Ma & Xu, 2004; Passolunghi et 
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al., 2016). First, I tested the longitudinal relationship between mathematics anxiety and 

mathematical performance. The result of the path analysis with the standardized coefficients is 

presented in Figure 5.1. 

 

Figure 5.1. Path model on the longitudinal relationship between mathematics anxiety (MA, measured with R-

MARS) and mathematical performance (Math Performance, measured with the WRAT-4 mathematical 

subtest). T1 stands for Time 1, whereas T2 stands for Time 2. e1 and e2 are the residuals of the dependent 

variables. Legend: N.S.: Non-significant; *: p < .05; **: p < .01; ***: p < .001. 

 

The model in Figure 5.1 had a good model fit; χ2(1) = 2.93, p = .087, CFI = .99, GFI = 

.99, NFI = .99, RMSEA = .12. Although the RMSEA was slightly above the suggested range, all 

the other measures suggested a good fit of the data. The model indicated that mathematics 

anxiety and mathematical performance were significantly correlated at Time 1 (β = -.34, p < 

.001). Moreover, it showed that Time 1 mathematics anxiety significantly predicted Time 2 

mathematics anxiety (β = .44, p < .001) and that Time 1 mathematical performance significantly 

predicted Time 2 mathematical performance (β = .82, p < .001). Finally, we can observe that 

mathematical performance at Time 1 significantly predicted mathematics anxiety at Time 2 (β = -

.18, p = .018) and that mathematics anxiety at Time 1 did not significantly predict mathematical 

performance at Time 2 (β = -.08, p = .111). The model explained 71% of the variance of Time 2 

mathematical performance and 28% of the variance of Time 2 mathematics anxiety.  
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5.3.3 Mathematics anxiety and working memory 

In the next model, I investigated whether variability in working memory and inhibition at 

Time 1 influences the development of mathematics anxiety (see Figure 5.2). 

 

Figure 5.2. Path model on the longitudinal relationship between mathematics anxiety (measured with R-MARS) 

and working memory measures. T1 stands for Time 1, whereas T2 stands for Time 2. e1 is the residual of the 

dependent variable. Legend: N.S.: Non-significant; *: p < .05; **: p < .01; ***: p < .001. 

 

The model was just identified with 0 degrees of freedom. For this reason, I decided to 

run a second model in which I did not include the non-significant paths (see Figure 5.3). 
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Figure 5.3. Second Path model on the longitudinal relationship between mathematics anxiety (measured with R-

MARS) and working memory measures. T1 stands for Time 1, whereas T2 stands for Time 2. e1 is the residual 

of the dependent variable. Legend: N.S.: Non-significant;    *: p < .05; **: p < .01; ***: p < .001. 

 

The model presented in Figure 5.3 showed a good model fit; χ2(2) = 2.95, p = .228, CFI 

= .98, GFI = .99, NFI = .96, RMSEA = .06. The model suggested that mathematics anxiety at 

Time 1 was not significantly correlated with working memory measures. On the other hand, the 

model also showed that the number of false alarms in the Go/No-Go task at Time 1 

significantly predicted mathematics anxiety at Time 2 (β = .21, p = .003). The model could 

explain 30% of the variance of Time 2 mathematics anxiety. 

Given the significant paths from mathematical performance and number of false alarms 

to Time 2 mathematics anxiety, I decided to assess whether the mathematical performance was a 
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mediator in the relationship between false alarms and mathematics anxiety. To this end, I ran a 

mediation analysis with mathematics anxiety as an outcome variable, number of false alarms as a 

predictor variable, and mathematical performance as mediator variable, as can be seen in Figure 

5.4. 

Figure 5.4. Mediation model on the longitudinal relationship between the number of false alarms at Time 1 

(False Alarms) and mathematics anxiety at Time 2 (Mathematics Anxiety), with mathematical performance at 

Time 1 as mediator variable (Mathematical Performance, measured with the WRAT-4 mathematical subtest). 

Legend: N.S.: Non-significant; *: p < .05; **: p < .01; ***: p < .001. 

 

In Step 1 of the mediation model, the regression of the number of false alarms on 

mathematics anxiety, ignoring the mediator, was significant, β = .28, p < .001. Step 2 showed that 

the regression of the number of false alarms on the mediator, mathematical performance, was 

also significant, β = -.42, p < .001. Step 3 of the mediation process showed that the mediator, 

mathematical performance, controlling for the number of false alarms, was a significant predictor 

of mathematics anxiety, β = -.26, p = .004. Step 4 of the mediation analysis revealed that 

controlling for the mediator, the number of false alarms was still a significant predictor of 

mathematics anxiety, β = .18, p = .047. A bootstrapping approach (Preacher & Hayes, 2004) 
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revealed a partial mediation in the model, ACME = 0.45, 95% CI [0.16, 0.74], p < .001. The 

analysis suggested that mathematical performance partially mediated the relationship between the 

number of false alarms and mathematics anxiety. 

 

5.3.4 Mathematics self-belief and mathematical performance 

In the previous chapter, I investigated the role of mathematics self-belief and it was a 

stronger concurrent predictor of mathematical performance than mathematics anxiety (please see 

chapter 4.4.1, page 167). Thus, I decided to investigate the longitudinal relationships between 

mathematics self-belief and mathematical performance. This prompted me to run a path analysis 

in which instead of mathematics anxiety I assessed the longitudinal effects of mathematical self-

belief in the development of mathematical performance. The path analysis with the standardized 

coefficients is presented in Figure 5.5. 

 

Figure 5.5. Path model on the longitudinal relationship between mathematics self-belief (Math Self-Beliefs) and 

mathematical performance (Math Performance, measured with the WRAT-4 mathematical subtest). T1 stands 

for Time 1, whereas T2 stands for Time 2. e1 and e2 are the residuals of the dependent variable. Legend: N.S.: 

Non-significant; *: p < .05; **: p < .01; ***: p < .001. 
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The model presented in Figure 5.5 did not have a very good fit; χ2(1) = 7.34, p = .007, 

CFI = .97, GFI = .98, NFI = .97, RMSEA = .21. The model fit indices CFI, GFI and NFI 

suggest a good fit. However, the RMSEA and the χ2 suggested that there could be 

misspecification. Hence the parameters that are presented in this model need to be taken with 

careful consideration, as they might be biased. The model showed that mathematics self-belief 

and mathematical performance were significantly correlated at Time 1 (β = .40, p < .001). 

Moreover, it showed that Time 1 mathematics self-belief significantly predicted Time 2 

mathematics self-belief (β = .45, p < .001) and that Time 1 mathematical performance 

significantly predicted Time 2 mathematical performance (β = .83, p < .001). Finally, we can see 

that mathematical performance at Time 1 significantly predicted mathematics self-belief at Time 

2 (β = .20, p = .011), but that mathematics self-belief at Time 1 did not predict mathematical 

performance at Time 2 (β = .03, p = .617). The model explained 71% of the variance of Time 2 

mathematical performance and 30% of the variance of Time 2 mathematics self-belief. This 

model suggests that mathematics self-belief was influenced by mathematical performance, but 

that the opposite was not true, and that the development in mathematical performance from 

Time 1 to Time 2 in the current data was not significantly influenced by variation in mathematics 

self-belief at Time 1. 

 

5.3.5 Mathematics self-belief and working memory 

To further investigate factors contributing to the decrease in mathematics self-belief 

from Time 1 to Time 2 I decided to investigate the longitudinal relationship between 

mathematics self-belief and working memory. The resulting model is reported in Figure 5.6. 
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Figure 5.6. Path model on the longitudinal relationship between mathematics self-belief and working memory 

measures. T1 stands for Time 1 datapoint, whereas T2 stands for Time 2 datapoint. 

 

The model was just identified with 0 degrees of freedom. Although Time 1 letter span 

and Time 1 visual working memory were non-significantly related to Time 2 mathematics self-

belief, the p-value could be considered marginally significant (p = .059 and p = .058 respectively). 

Whereas, the path from Time 1 number of false alarms to Time 2 mathematics self-belief was 

non-significant (p = .581). For this reason, I decided to run a second model in which I did not 

include the number of false alarms’ path. The resulting model can be seen in Figure 5.7. 
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Figure 5.7. Second Path model on the longitudinal relationship between mathematics self-belief and working 

memory measures. T1 stands for Time 1 datapoint, whereas T2 stands for Time 2 datapoint. 

 

The model presented in Figure 5.7 showed a good model fit; χ2(1) = 0.30, p = .582, CFI 

= 1.00, GFI = 1.00, NFI = 1.00, RMSEA = .00. Mathematics self-belief at Time 1 was 

significantly correlated with the number of false alarms (β = -.22, p = .022) but not with the 

working memory measures at Time 1. Both, the letter span at Time 1 (β = .15, p = .037) and the 

score on the visuo-spatial working memory task (β = .14, p = .043) significantly predicted 

mathematics self-belief at Time 2. The model explains 32% of the variance of Time 2 

mathematics self-belief. These results suggested that the factors that influenced the increase of 

mathematics self-belief during the first year of secondary school were different from the factors 

that influenced the increase of mathematics anxiety. 
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5.3.6 Longitudinal effects of mathematics anxiety and mathematics self-belief on 

mathematical performance 

So far in this chapter, I investigated mathematics anxiety and mathematics self-belief 

separately. In the previous chapter (please see chapter 4.4.1, page 167) investigating mathematics 

anxiety and mathematics self-belief as predictors of concurrent predictors of mathematical 

performance, only mathematics self-belief was a significant predictor when both mathematics 

anxiety and self-belief were included in the model. I now investigated those predictors in a 

longitudinal model including mathematics anxiety and mathematics self-belief at Time 1 and 

their effects on mathematical performance at Time 2. The resulting path model is shown in 

Figure 5.8. 

 

Figure 5.8. Path model on the longitudinal relationship between mathematics anxiety, mathematical performance, 

and mathematics self-belief. T1 stands for Time 1 datapoint, whereas T2 stands for Time 2 datapoint. 
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The model was just identified with 0 degrees of freedom. For this reason, I decided to 

run a second model in which I did not include the non-significant paths. This second model can 

be seen in Figure 5.9. 

 

 

Figure 5.9. Second path model on the longitudinal relationship between mathematics anxiety, mathematical 

performance, and mathematics self-belief. T1 stands for Time 1 datapoint, whereas T2 stands for Time 2 

datapoint. 

 

The model presented in Figure 5.9 showed a good model fit; χ2(1) = 2.76, p = .251, CFI 

= 1.00, GFI =.99, NFI = .99, RMSEA = .05. Mathematics self-belief and mathematics anxiety at 

Time 1 were not significant predictors of changes in mathematical performance from Time 1 to 

Time 2. Unsurprisingly, mathematical performance at Time 1 significantly predicted 

mathematical performance at Time 2 (β = .84, p < .001). The model explained 71% of the 

variance of mathematical performance at Time 2.  
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5.3.7 Longitudinal effects of mathematics anxiety, mathematics self-belief, and 

mathematical performance on mathematics self-belief 

In the final model, I explored the factors that might influence the development of 

mathematics self-belief. The resulting model is shown in Figure 5.10. 

 

 

Figure 5.10. Path model on the longitudinal relationship between mathematics anxiety, mathematical 

performance, and mathematics self-belief. T1 stands for Time 1 datapoint, whereas T2 stands for Time 2 

datapoint. 

 

The model was just identified with 0 degrees of freedom. For this reason, I decided to 

run a second model in which I did not include the non-significant effects. This second model 

can be seen in Figure 5.11. 
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Figure 5.11. Second path model on the longitudinal relationship between mathematics anxiety, mathematical 

performance, and mathematics self-belief. T1 stands for Time 1 datapoint, whereas T2 stands for Time 2 

datapoint. 

 

The model presented in Figure 5.11 showed a good model fit; χ2(1) = 2.93, p = .087, CFI 

= .99, GFI = .99, NFI = .98, RMSEA = .12. Although the RMSEA was slightly above the 

suggested range, all the other measures suggested a good fit of the data. Figure 5.10 suggested 

that mathematics anxiety at Time 1 was not a significant predictor of the decrease in 

mathematics self-belief from Time 1 to Time 2. On the other hand, Figure 5.11 suggested that 

mathematics self-belief at Time 1 significantly predicted mathematics self-belief at Time 2 (β = 

.45, p < .001), and that mathematical performance at Time 1 also significantly predicted 

mathematics self-belief at Time 2 (β = .19, p = .014). The model explained 30% of the variance 

of mathematics self-belief at Time 2.  
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5.4 Discussion 

The current chapter focused on the assessment of the development of mathematical 

performance and feelings towards mathematics during the first year of secondary school. The 

comparison between mathematical performance measured at Time 1 and at Time 2 suggests that 

performance on the WRAT-4 mathematical subtest did not change significantly during this 

period. At the same time, the students’ mathematics anxiety increased significantly, and the 

students’ mathematics self-belief decreased significantly. It seems that the first year of secondary 

school is a challenging time, that influences the students’ feelings towards mathematics. 

This chapter’s main goal was to study the longitudinal relationship between mathematics 

anxiety and mathematical performance. Moreover, I also wanted to consider the role of working 

memory and mathematical self-belief in this relationship. The results suggest that during the first 

year of secondary school better mathematical performance plays a protective role against the 

development of mathematics anxiety and has a positive influence on the development of higher 

mathematics self-belief. At the same time, I observed that mathematics anxiety and mathematics 

self-belief measured at the beginning of the year had no significant influence on the development 

of mathematical performance over the first year of secondary school. I also observed that the 

efficiency of the inhibition processes measured at the beginning of the year was a significant 

factor in the development of mathematics anxiety over the school year, whereas visuo-spatial and 

verbal working memory at the beginning of secondary school were relevant factors in the 

development of mathematics self-belief. Finally, mathematics anxiety was not a significant factor 

in the development of mathematics self-belief.  

 

5.4.1 Mathematical performance and mathematics anxiety 

The first two research questions were about the relationship between mathematical 

performance and mathematics anxiety during Year 7. As expected, my results suggest that high 
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mathematical performance at the beginning of Year 7 had a protective effect on the development 

of mathematics anxiety; i.e., the higher the mathematical proficiency of the student at the 

beginning of the first year of secondary school (Time 1), the lower their mathematics anxiety 

tended to be at the end of the same school year (Time 2). At the same time, current results 

showed that the increase of mathematics anxiety during the first year of secondary school did not 

have a significant effect on the development of mathematical performance over the same year. 

These results are in line with most of the available research. In fact, the literature suggests that 

mathematical performance has a role in the development of mathematics anxiety (Geary et al., 

2019; Ma & Xu, 2004; Wang et al., 2020), which is in line with my findings that mathematical 

performance at Time 1 was a significant predictor of mathematics anxiety at Time 2. At the same 

time, the literature suggests that mathematics anxiety does not have a significant role in the 

development of mathematical performance (Ma & Xu, 2004; Vukovic et al., 2013), which is in 

line with current findings that mathematics anxiety at Time 1 was not a significant predictor of 

mathematical performance at Time 2. On the other hand, the current results are not in line with 

some studies that did find a reciprocal relationship between mathematics anxiety and 

mathematical performance (Cargnelutti et al., 2017; Ching, 2017; Gunderson et al., 2018). Ching 

(2017) found that mathematics anxiety in Year 2 (mean age 7 years old) was a significant 

predictor of mathematical performance in Year 3. However, as discussed in the introduction, 

Ching’s study did not control for mathematical performance at the first time point. I suggested 

that the relationship between mathematics anxiety observed at Time 1 and mathematical 

performance observed at Time 2 in this study could be mainly driven by a relationship between 

mathematics anxiety and mathematical performance at Time 1. In fact, we can see in the current 

dataset that Time 1 mathematical performance is significantly correlated with mathematics 

anxiety at Time 1 (r = -.34, p < .001). At the same Time 1 mathematical performance is strongly 

related with mathematical performance at Time 2 (roughly 70% of the variance of Time 2 

mathematical performance can be explained by Time 1 mathematical performance alone). It is 
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possible that the effect observed by Ching (2017) of mathematics anxiety at Time 1 on 

mathematical performance at Time 2, is actually an indirect effect due to the shared variance 

between mathematics anxiety and mathematical performance at Time 1 and the high stability of 

mathematical performance from Time 1 to Time 2. This high stability has been observed often. 

For example, in Krinzinger and colleagues (2009) the average number of additions and 

subtractions that the students can complete does not change much between the different time 

points (e.g., number of correct large additions recorded at the middle of Year 2 = 11.85, number 

of correct large additions recorded at the middle of Year 3 = 13.23). Accordingly, running an 

analysis equivalent to the analysis presented in Ching's (2017) study with the current data showed 

a result in line with Ching’s findings11. Moreover, Ching’s results were based on a sample of 

students from primary school, which is a different age range than the current one. This 

difference in age can also be a reason why the results were different. It is possible that 

mathematics anxiety does affect the development of mathematical performance, but only in 

primary school, whereas this effect might no longer be present in secondary school. Current 

results are also not in line with the findings from Gunderson and colleagues (2018). The authors 

assessed mathematics anxiety and mathematical performance in Year 1 and Year 2 students 

(mean age = 7.2 years; age range = 5.4 ~ 9.11 years). The analysis suggested a negative 

longitudinal relationship between mathematical performance and mathematics anxiety, as in the 

current dataset. However, the authors also recorded a significant negative longitudinal 

relationship between mathematics anxiety and mathematical performance, which is not in line 

with current results. However, the size of the longitudinal relationship between mathematics 

anxiety and mathematical performance is in line with the current results. The authors found that 

 
11 A forced entry multiple linear regression with Time 1 mathematics anxiety, Time 1 verbal 
working memory, Time 1 visuo-spatial working memory, and Time 1 efficiency of inhibition as 
predictors of the Time 2 mathematical performance revealed Time 1 mathematics anxiety (β = -
.29, p < .001) and Time 1 efficiency of inhibition (β = -.28, p < .001) as significant predictors of 
Time 2 mathematical performance, but neither Time 1 verbal nor Time 1 visuo-spatial working 
memory.  
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the relationship was weak (β = -.06), which is similar to the size of the relationship found in the 

current dataset (β = -.08). Gunderson and colleagues' (2018) study included more than 500 

participants, giving it more power than the current study. It is possible that the current results 

show the same picture, just with less power. Either way, a weak correlation, even if significant, 

has likely little effect in the everyday life. Given the size of the relationships reported in 

Gunderson and colleagues’ dataset, and in my dataset, it might be that even if a relationship were 

present, the effect would be negligible. Finally, Cargnelutti, Tomasetto and Passolunghi (2017) 

tested 80 students from Year 2 to Year 3 (mean age = 7 years and 7 months). The authors 

assessed mathematics anxiety using the Scale for Early Math Anxiety, and mathematical 

performance using the written computation test, the word problem test, and the module 

Number of the MAT-2. The authors interpreted their results as evidence for a reciprocal 

negative relationship between mathematics anxiety and mathematical performance, although 

indirect, as the path defined by the authors was from Year 2 mathematics anxiety to Year 3 

mathematics anxiety, which then had a concurrent relationship with Year 3 mathematical 

performance (indirect β = -.23). However, given several limitations in this study (e.g., small 

sample size, low correlations between subtests factors and low stability of the measures) these 

findings need to be replicated with more solid measures.  

However, there are some points to consider before reaching the conclusion that the 

development of mathematical performance during the first year of secondary school is 

independent from mathematics anxiety. First, in the current study mathematical performance did 

not change significantly between Time 1 and Time 2. This lack of intraindividual change could 

have limited the analysis because there wasn’t much change to be explained.  

Also, perhaps a generalised test such as the WRAT-4 mathematical subtest is not the best 

choice to assess secondary school students’ mathematical proficiency. One reason why the scores 

on the WRAT-4 did not change significantly might be the type of material that the students were 
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studying at the time of testing. Some calculations may be easier at a specific point in the 

academic year because the students have just learned about it or revised it in class. A good 

solution could be to use assessment tasks that are aligned to the curriculum content and delivery 

in the academic year. For example, the AC-MT 11-14 (Cornoldi & Cazzola, 2003) has a specific 

test for students at the beginning of Year 7, and a different test for students at the end of Year 7. 

However, using different tests at the two timepoints would mean I would no longer be able to 

test the growth anymore, so the analysis and the design would not fit the current predictions. In 

any case, these tests are based on the Italian secondary school curriculum, and for example 

include complex fractions, an important mathematical concept that is taught also in the UK 

during Key Stage 3 (Department for Education, 2014). Using a test more tightly designed around 

the British secondary school curriculum than the WRAT-4 could prove useful in gaining a better 

gauge on the development of the students’ mathematical performance. For example, the 

KeyMaths3 UK (Connolly, 2014) is an assessment tool designed to assess UK students from 6 

years of age to 16 years and 11 months of age. The assessment is designed around the UK school 

curriculum and presents normative data for each year.  

Overall, current results suggest that mathematical performance has a protective effect 

against the development of mathematics anxiety, and at the same time that the development of 

mathematical performance over this period is independent of mathematics anxiety. This result 

may come as a surprise given the results discussed in the concurrent analyses in the previous 

chapter. In fact, most researchers suggest either a reciprocal relationship, or a negative effect of 

mathematics anxiety on mathematical performance, but rarely has a one-directional effect from 

mathematical performance to mathematics anxiety been proposed (for a review, see Carey et al., 

2016). I will discuss this matter further in the general discussion (please see chapter 6.2, page 

226); at the moment it can be argued that most longitudinal studies are in agreement with the 

current results, and it is possible that if there is a reciprocal relationship of mathematics anxiety 

on mathematical performance, this effect is either very small or not evident in longitudinal data.  
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It could be fruitful to investigate the effect of different levels of mathematics anxiety on 

mathematical performance with a concurrent design. In fact, there might be an online effect that 

cannot be captured with longitudinal data. Concurrent effects of mathematics anxiety on 

mathematical performance could be reflected in the concurrent relationship that is consistently 

found in the literature (Ashcraft & Kirk, 2001; Hill et al., 2016; Passolunghi et al., 2016; Wood et 

al., 2012), and was also found in the analysis presented in the previous chapter (please see 

chapter 4.4.2, page 171). For example, some researchers suggest that mathematics anxiety causes 

an interference in the retrieval of mnesic information (Carey et al., 2016); it is possible that this 

effect, being only present during mathematical tasks, does not have long-lasting effects, and can 

be assessed only by online changes in mathematics anxiety. Such an effect would be present only 

during mathematical tasks and wouldn’t necessarily have longitudinal effects on mathematical 

performance in the long-term. If, for example, students are learning new material continuously, 

memory for old facts is not relevant, and the mnesic interference would not cause longitudinal 

effects. Another possibility is that the students can use mnesic strategies to help them to 

overcome the deficit. These strategies might require time, and would explain why some students 

take longer to perform mathematical tasks and are less efficient than the students with low 

mathematics anxiety (Maloney et al., 2011). To assess this theory, it could be interesting to assess 

semantic memory (and memory intrusions) during mathematical word problem solving and while 

reading a story. In both cases, it could be interesting to assess whether the participants with high 

and low mathematics anxiety show the same performance and can answer the same questions in 

the story. Accordingly, I would not expect longitudinal effects of this mechanism on 

mathematical performance, but only concurrent effects.  

Another goal of this study was to find good models that can explain the development of 

mathematical performance and mathematics anxiety during the first year of secondary school 

adequately. These models need to be accurate and relevant so that they can be used to capture 

how mathematics anxiety develops during school years and can aid teachers in their attempts to 
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reduce the impact of mathematics anxiety. My models showed that mathematics anxiety at the 

beginning of Year 7 and previous mathematical performance explained 71% of the variance of 

mathematical performance at the end of Year 7. This result suggests that this model is already a 

good predictor of mathematical performance in secondary school students. On the other hand, 

the same model only explained 28% of the variance in mathematics anxiety at Time 2. This 

suggests that although previous mathematics anxiety and previous mathematical performance are 

important factors in the development of mathematics anxiety during the first year of secondary 

school, there are other factors not included in the model that are important for the development 

of mathematics anxiety during this time period. Mammarella, Caviola, and Dowker (2019) 

summarised the views of academic experts in mathematics (Petronzi et al., 2017; in Mammarella 

et al., 2019) on what some of these possible additional factors could be. Some relevant factors 

they suggested that could be assessed in future studies include teaching methods that cause 

boredom and lack of motivation in class. These, in turn, might lead to behaviours that cause the 

students to lose track of teaching. The negative attitudes of parents towards mathematics that 

might be transmitted to their children could be another factor, as could be the extent of students’ 

fear of failure. In mathematics, it is nearly always clear whether an answer is correct or wrong, 

and some students might experience more fear of wrong answers than others. Another possible 

risk factor that can be interesting to assess could be higher emotional reactions to mathematical 

errors (Suaŕez-Pellicioni et al., 2013), which also might be strongly related to the previously 

discussed fear of failure. In an ERP study, Suaŕez-Pellicioni and colleagues (2013) divided 

students into two groups, a high and a low mathematics anxiety group. The two groups were 

created so that they would be different in mathematics anxiety, but neither in trait nor state 

anxiety. The authors then analysed the error-related ERP negativity and the correct-related ERP 

negativity during a normal Stroop task and during a numerical Stroop task. The authors observed 

that the participants with high mathematics anxiety showed a bigger negative ERP response in 

relation to errors than to correct trials. This difference was not evident in participants with low 
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mathematics anxiety. Moreover, this difference was not present in the normal Stroop task in 

both groups. The error-related negative ERP response is believed to be influenced by the 

participant’s emotional reaction to the error; the bigger the emotional reaction, the bigger the 

ERP negativity (for a review, see Suaŕez-Pellicioni et al., 2013). Hence, the authors concluded 

that the participants with high mathematics anxiety showed a bigger emotional reaction to errors 

than the participants with low mathematics anxiety. It would be interesting to assess if being 

especially sensitive to mathematical errors can have longitudinal effects on the development of 

mathematics anxiety. If so, it could be useful to assess if it is possible to modify the emotional 

response to mathematical errors with the goal of reducing the development of mathematics 

anxiety.  

 

5.4.2 Cognitive control, working memory, and mathematical anxiety 

In the bid to understand more about the factors that might influence the development of 

mathematics anxiety, I decided to assess the longitudinal effects of working memory and 

cognitive control on mathematics anxiety. The models presented in Figures 5.2 and 5.3 in this 

chapter showed that, as predicted, verbal and visuo-spatial working memory were not significant 

factors in the development of mathematics anxiety during the investigated time period. On the 

other hand, as predicted, the efficiency of the inhibition processes was a significant predictor of 

the development of mathematics anxiety to Time 2. Indeed, having lower efficiency of the 

inhibition processes at Time 1 was associated with higher levels of mathematics anxiety at Time 

2. Previous findings were mostly based on semantic inhibition (which falls into the category of 

“attentional inhibition” as described by Tiego et al., 2018); for example, the listening span task 

used by Passolunghi and colleagues (2016) and in the first two studies in this thesis (please see 

chapter 2.2.2, page 64) measures the number of words erroneously remembered in a list of 

words. These are words that were previously presented but that the attentional control system 
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was supposed to inhibit because they were not relevant, or words that are related to the semantic 

meaning of the sentence but were not presented. Hence, they were stimuli presented in the 

environment that needed to be inhibited. In the current study, instead, I used the number of 

false alarms in the Go/No-Go task. Clearly, this task measures different aspects of inhibition 

than the listening span. Arguably, the Go/No-Go task can be considered as a motor inhibition 

task. The participant is asked to resist the impulse of a motor action, and not to inhibit semantic 

information. The inhibition presented in the Go/No-Go task is also defined as response 

inhibition (Cragg & Nation, 2008). In fact, the automatic response in a Go/No-Go task is to 

press the button (i.e., to Go), since the Go-trials are much more frequent. The participant needs 

to actively inhibit the automated response to avoid a false alarm. However, even though 

performing well in the Go/No-Go task and in the listening span might involve different types of 

inhibition, whether I used the number of intrusion from the listening span measure or the 

number of false alarms in the Go/No-Go task,  all three studies are highlighting a significant 

relationship between mathematics anxiety and inhibition. Results in this chapter suggest that 

having lower efficiency of the inhibition processes at the beginning of secondary school could be 

a risk factor for an increase in mathematics anxiety over the school year.  

Given that Passolunghi and colleagues (2016) tested students of a similar age and found a 

relationship between semantic inhibition and mathematics anxiety, and that my results are in line 

with these findings while using a different measure of inhibition, the relationship may be valid 

for both types of inhibition. This might mean that there is a common deficit in the central 

executive that causes the lower efficiency of both types of inhibition. Because of lower inhibition 

efficiency, I then would expect a lower working memory capacity. Cognitive control functions, 

like motor and semantic inhibition, affect the amount of resources that the passive storage has 

available (Tiego et al., 2018). Recently, Tiego and colleagues (2018) constructed a hierarchical 

model for inhibitory control. Through structural equation modelling, the authors tested various 

theoretical models to explain the relationships between working memory capacity, attentional 
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inhibition, and response inhibition. The authors suggested that response inhibition and 

attentional inhibition are independent from each other, but that they are related through working 

memory capacity, i.e., working memory capacity is related to both inhibition systems and works 

as a mediator in the relationship between the two inhibition processes. Concerning the current 

results, it can be argued that both types of inhibition could influence the cognitive resources used 

by secondary school students for learning mathematics. The lower efficiency of the (semantic or 

motor) inhibition processes could cause lower cognitive resources for the working memory 

capacity. Lower resources then could lead to lower mathematical performance, which in turn 

could be a risk factor for developing mathematics anxiety, as the student would experience a 

higher number of failures and more difficulties in dealing with mathematical tasks. Future studies 

might want to assess the longitudinal relationships between mathematics anxiety and semantic 

inhibition to understand if it shows the same pattern or not as I observed in this longitudinal 

study with motor inhibition. I would expect a similar pattern given that Passolunghi and 

colleagues (2016) found a concurrent relationship between mathematics anxiety and sematic 

inhibition in secondary school students. 

It is possible, however, that the relationship between inhibition processes and 

mathematics anxiety is mediated by mathematical performance. In fact, existing literature 

suggests that a higher efficiency of the inhibition processes is associated with better concurrent 

and longitudinal mathematical performance (Blair & Razza, 2007; Bull & Scerif, 2001). Bull and 

Scerif (2001) tested mathematical performance and the efficiency of attentional inhibition with a 

Stroop task in Year 3 students (mean age = 7 years and 4 months). The authors found that 

inhibition efficiency was a significant concurrent predictor of mathematical performance, even 

after controlling for reading ability and IQ. Blair and Razza (2007) tested children in preschool 

(mean age 5 years and 1 month), and then again in the kindergarten year (mean age = 6 years and 

2 months). The authors assessed response inhibition in preschool children with a peg tapping 

task and mathematical performance in kindergarten. The peg tapping task requires the students 
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to tap once if the experimenter taps twice, and to tap twice when the experimenter taps once. In 

both cases, the students need to inhibit the automatic response to mimic the experimenter. 

Inhibitory control in preschool was a significant longitudinal predictor of mathematical 

performance in kindergarten. These results suggest that the efficiency of the executive functions 

plays a role in the development of mathematical performance already in preschool years.  

The current study also suggested a longitudinal relationship of mathematics anxiety with 

mathematical performance and inhibition efficiency. The relationship between inhibition 

efficiency and mathematics anxiety could include indirect effects from mathematical 

performance, i.e., mathematical performance could be mediating the relationship between 

inhibition efficiency and mathematics anxiety. Having lower efficiency of the inhibition 

processes might cause more difficulties in performing mathematical tasks. More difficulties 

might then make the student more nervous while solving mathematical tasks. With time this 

nervousness might develop into mathematics anxiety.  

To test this hypothesis, I ran a mediation analysis with inhibition efficiency as predictor, 

mathematics anxiety as outcome, and mathematical performance as mediator. Indeed, the 

analysis showed that mathematical performance was a significant mediator in the relationship 

between inhibition efficiency and mathematics anxiety, suggesting that this could be one way in 

which inhibition influences mathematics anxiety. However, the effect of inhibition on 

mathematics anxiety was still significant after the mediator’s effect was controlled for. This 

suggests that inhibition efficiency has also a direct effect on the development of mathematics 

anxiety that is independent of the performance in mathematical tasks.  

Clearly, further research is needed to better understand how exactly this might work. 

One possible explanation is that having lower efficiency of the inhibition processes means that 

the person is less able to inhibit anxious thoughts about mathematical situations. The fact that 
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the person cannot inhibit these thoughts efficiently causes the person to experience more of 

these thoughts when dealing with mathematical tasks.  

However, in the first study presented in this thesis (please see chapter 2, page 56), I 

found that the adult participants with high mathematics anxiety had lower working memory 

capacity also in non-mathematical situations. This can either suggest that the deficit is also 

present in other situations, or that it is only present in mathematical situations at 11 years of age, 

and that it becomes more generalized with development. My prediction is that it is always more 

generalized, but that mathematics is most vulnerable to the effects of this deficit. For this reason, 

the student that suffers from this deficit develops mathematics anxiety and not, or to a lesser 

extent, general or test anxiety.  

Independent of the possible influence of age on this relationship, more research on the 

underlying mechanisms is necessary. For example, I suggest that experiencing intrusive thoughts 

and not managing to inhibit irrelevant information, makes the person nervous and feeling less in 

control of the situation. Little by little, these nervous thoughts could lead to the development of 

even higher levels of mathematics anxiety. This mechanism would also be in line with the 

neuroimaging results observed by Young and colleagues (Young et al., 2012). The authors 

recorded fMRI data while the participants completed mathematical tasks. Subsequently, the 

authors compared brain activation patterns in participants with low mathematics anxiety with 

brain activation patterns in participants with high mathematics anxiety. In the participants with 

high mathematics anxiety, the authors observed a greater activation of the in the right amygdala, 

and lower activation in various cortical and subcortical areas, including the dorsolateral 

prefrontal cortex area. While the amygdala is a brain region involved in the physiology of anxiety 

(Rauch et al., 2003), the dorsolateral prefrontal cortex is an area involved with cognitive control 

(Chang, Crottaz-Herbett, & Menon, 2007; in Young et al., 2012). The authors suggested that the 

lower activation in the dorsolateral prefrontal cortex was caused by higher mathematics anxiety. 
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An alternative explanation, however, would be that the lower activation of the cognitive control 

areas, and hence the lower efficiency of the cognitive control, is not caused by mathematics 

anxiety. Instead, a generally lower cognitive control could lead to the development of 

mathematics anxiety as previously discussed. However, the authors did not report baseline 

activation patterns, thus it is unclear whether the lower activation of the dorsolateral prefrontal 

cortex in participants with higher mathematics anxiety was also present during non-mathematical 

tasks or not. Future studies could assess brain activation during mathematical and non-

mathematical tasks and investigate if the participants with high mathematics anxiety show the 

same pattern during non-mathematical tasks as described during mathematical tasks. Given the 

results presented in this work, I would expect to find the reduced activation also during non-

mathematical tasks, not only during the execution of mathematical tasks.  

Future studies might want to influence students’ cognitive control. For example, in a 

review, Barenberg and colleagues (2011) concluded that inhibition efficiency can be improved by 

performing physical activities. Hence, by training Year 7 students daily with physical activities it 

might be possible to improve their inhibition efficiency. If the manipulation worked, it would be 

interesting to assess its effect on mathematics anxiety longitudinally compared to a control group 

that perform daily non-physical activities. Given the results presented in the current study, the 

improvement of the inhibition efficiency could possibly reduce the development of mathematics 

anxiety. 

 

5.4.3 Mathematics self-belief and mathematics anxiety 

Results from concurrent analyses in the previous chapter suggested that mathematics 

self-belief is an important factor to consider for the development of mathematics anxiety and 

mathematical performance in secondary school. Existing literature (e.g., Ahmed et al., 2012) 

suggests a reciprocal relationship between mathematics anxiety and mathematics self-belief. In 
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the longitudinal analyses presented in this chapter mathematical performance was a significant 

positive factor in the prediction of the development of mathematics self-belief during Year 7. 

Adding mathematics anxiety as a predictor did not alter this relationship. Moreover, mathematics 

anxiety was not a significant predictor of mathematics self-belief measured at Time 2. This result 

is in contrast with the results of Ahmed and colleagues (2012). The authors found that 

mathematics anxiety had longitudinal negative effects on mathematics self-belief. However, the 

researchers did not include mathematical performance in their design. As discussed earlier in this 

chapter, I could not assess the reciprocal relationships between mathematics anxiety and 

mathematics self-belief. Although I cannot assess Ahmed’s and colleagues model with my data, 

in my study, the inclusion of mathematical performance suggested no direct longitudinal 

relationship of mathematics anxiety to mathematics self-belief. Current results then seem to 

suggest that mathematical performance influences both mathematics anxiety and mathematics 

self-belief. The reciprocal relationship observed by Ahmed and colleagues (2012) could be the 

result of the indirect effect of mathematical performance on both of these factors. From the 

current result, it appears that working on improving mathematical performance in secondary 

school students might help them develop higher feelings of confidence when dealing with 

mathematical tasks.  

 

5.4.4 Mathematics self-belief and mathematical performance 

In the previous chapter, mathematics self-belief emerged as an additional interesting 

factor potentially influencing mathematical performance. Thus, in this chapter, I decided to 

assess cross-lagged longitudinal relationships between mathematics self-belief and mathematical 

performance. Mathematical performance was a significant predictor of the development of 

mathematics self-beliefs. The higher a student’s proficiency in mathematics was at Time 1, the 

higher their mathematics self-belief was at Time 2. On the other hand, mathematics self-belief 



217 
 

was not a significant factor in the development of mathematical performance. These results 

suggest that mathematical performance plays a role in the development of mathematics self-

belief, whereas the reciprocal relationship is not significant, at least not in the time-period I 

investigated. In the current dataset, there was very little change in mathematical performance 

from Time 1 to Time 2 and thus, it is possible that there just wasn’t enough variation in the data 

to observe a significant effect. Another possibility is that how confident students are in dealing 

with mathematical tasks at the beginning of secondary school does not influence the change in 

mathematical performance over the school year at the beginning of secondary school. This is not 

in line with most of the current literature, which suggests an involvement of mathematics self-

belief in the performance in mathematical tasks in secondary school students (Stankov & Lee, 

2017) and adults. Abu-Hilal (2000) defines the idea that mathematics self-belief can have an 

involvement in the development of mathematical performance as “self-enhancement approach”, 

meaning that affective variables, such as self-confidence, have a causal effect on achievement. 

According to this approach, mathematics self-belief would have a causal effect on mathematics 

achievement (e.g., higher mathematics self-belief would cause higher mathematical performance). 

There is a second approach called “skill development approach” (Abu-Hilal, 2000). According to 

this second approach, achievement is what causes the development of the affective variables. 

This approach would predict that mathematical performance causes the levels of mathematics 

self-belief (e.g., being better at mathematics would cause the person to develop higher 

mathematics self-belief). The author tested this second approach and measured mathematics 

self-concept and mathematics achievement in students in Year 6 through 9 with a concurrent 

design using structural equation models. The author interpreted the findings as evidence that 

mathematics achievement causes the development of mathematics self-concept, supporting the 

skill development approach. In accordance with Abu-Hilal (2000), the results presented in this 

chapter suggest that mathematical performance is involved in the development of mathematics 

self-belief. However, the current results need to be interpreted with caution. Although most 
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model fit indices (CFI, GFI, and NFI) suggested a good fit, the χ2 and the RMSEA values of the 

model presented in Figure 5.5 were suggesting a suboptimal fit of the model. Especially the 

RMSEA was particularly high, suggesting that the current model might not fit the data well 

enough. This suggests that we should be cautious in the interpretation of the parameters 

presented, as the variances and regression coefficients that are calculated might be biased as they 

can be either overestimated or underestimated. In fact, the RMSEA is a measure of how close 

the model’s approximation is to the data (Hutchinson & Olmos, 1998), and an excessive amount 

of error might cause the bias of the parameters (the calculated variances and regression 

coefficients), which then will not represent the real values (Kaplan, 1988). 

Interestingly, only 30% of the variance of Time 2 mathematics self-belief was explained 

by the model represented in Figure 5.5. This means that although previous mathematics self-

belief and previous mathematical performance are important determiners of the current 

confidence, other important factors might determine the decrease in mathematics self-belief 

during secondary school that I am currently not capturing. What could be those other factors?  

Lent and colleagues (Lent et al., 1991, 1996) suggest that the development of mathematics self-

efficacy is influenced by two further factors in addition to mathematics anxiety: a history of 

successes and social persuasion. Personal accomplishments can be defined as the history of 

successes and failures in a task. The history of successes was found to have a positive 

relationship with mathematics self-efficacy, i.e., the more accomplishments somebody had 

achieved in mathematics, the stronger their history of successes, the more likely it was that the 

person developed high levels of mathematics self-efficacy (Lent et al., 1991). Social persuasion 

can be defined as how others encourage or discourage engagement with specific activities. For 

example, social persuasion from peers and parents to do well (e.g., parents that push for having 

good grades) in mathematics also showed a significant positive relationship with mathematics 

self-efficacy.  
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Based on this evidence the authors suggested that if the environment promotes 

engagement, the person will tend to develop higher levels of mathematics self-efficacy (Lent et 

al., 1991).  The current study assessed the effect of performance, which can be related to 

personal accomplishments (i.e., the higher the mathematical performance, the more likely is the 

student to have a history of personal accomplishments). However, the current study did not 

assess the involvement of social persuasion. Future studies could include measures of social 

persuasion and assess its longitudinal effects. An example of a task that could be used to measure 

elements of social persuasion is the questionnaire developed by Lent and colleagues (1991). The 

questionnaire includes 10 items that measure how the participants perceive social persuasion in 

mathematics (e.g., “My friends have discouraged me from taking math classes”; in Lent et al., 

1991, pp. 425). 

 

5.4.5 Mathematics self-belief and working memory 

The fifth research question involved the longitudinal effects of working memory and 

inhibition efficiency on the development of mathematics self-belief during Year 7. If the 

relationship between working memory and mathematics self-belief develops with time, I would 

expect to find an effect of verbal and visual working memory on the development of 

mathematics self-belief in the current study. Indeed, this is what was found. First, the efficiency 

of the inhibition processes was not a significant factor in the development of mathematics self-

belief between Time 1 and Time 2. At the same time, both visual and verbal working memory 

had a significant positive effect on the development of students’ mathematics self-belief. 

However, it needs to be pointed out that the effect sizes of these effects are small (r = .15 for 

verbal and r = .14 for visuo-spatial working memory), therefore the actual importance of the 

effect of these factors should be considered with caution. Taken together, these results suggest 

that having better working memory (both visuo-spatial and verbal) might lead to a higher 
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perception of competencies in dealing with mathematical tasks. It has been suggested that verbal 

and visuo-spatial working memory might be relevant factors for mathematical performance, i.e., 

higher working memory would normally allow for better performance (for a review, see Gilmore 

et al., 2018). Hence, it might be that the students that have greater verbal and visuo-spatial 

working memory feel more at ease when dealing with mathematical tasks as they have more 

processing power and develop a higher confidence in dealing with numbers. However, 

considering the mathematics anxiety results, it is unclear why passive working memory is 

associated with self-belief, whereas cognitive control is associated with anxiety. This will be 

discussed further in the general discussion (please see chapter 6.5, page 235), but the underlying 

mechanisms may be different.  

On one side, better working memory allows the students to experience confidence when 

dealing with mathematical tasks because of having more resources to deal with the task nurtures 

confidence. In fact, current results and existing literature suggest an involvement of verbal and 

visual working memory in mathematical performance (Friso-van Den Bos et al., 2013; Hawes & 

Ansari, 2020). The results of the current study suggest a moderate relationship between 

mathematical performance and verbal working memory (please see Appendix D.1). The 

relationship with visuo-spatial working memory is less clear, but there appears to be a 

longitudinal relationship, and it is possible that the concurrent relationship does not reach 

significance because of a lack of power12. Moreover, the literature suggests that both systems are 

relevant in mathematical processing, and this relationship might change with age (De Smedt et 

al., 2009; Fürst & Hitch, 2000; Miller & Bichsel, 2004). A student with lower verbal and/or 

visuo-spatial working memory, when in front of a mathematical task, performs less well than a 

student with higher working memory (Friso-van Den Bos et al., 2013; Hawes & Ansari, 2020), 

 
12 Time 1 mathematical performance showed a small correlation with visuo-spatial working 
memory (r = .16). Power analysis suggests that for an effect size of r = .16 to be correctly 
identified with α = .05 and β = .80 I would need a sample of 304 participants. My sample size 
was N =  138, i.e., the results might have been not-significant due to lack of power. 
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whether they are good at inhibiting irrelevant information or not. This student experiences more 

difficulties and struggles more with mathematical tasks which could, in turn, reduce 

mathematical self-belief (Kung, 2009). On the other hand, not being able to inhibit irrelevant 

information might lead to intrusive thoughts (Gorfein & MacLeod, 2007) during the 

performance of mathematical tasks. Irrelevant information and thoughts, in addition to 

overtaxing the cognitive system, can cause a negative experience. This negative experience might 

be recalled in future occasions and then cause more anxiety in anticipation of the mathematical 

task. The student would then be more likely to experience difficulties, and in fact, mathematics 

anxiety and mathematics self-belief share a great deal of variance, but the reason for the lower 

performance, and its emotional outcomes, would be different. 

Another point raised by these results is whether this relationship is specific for 

mathematics self-belief, or it is a more general effect. To the best of my knowledge, the 

relationship between self-belief and working memory has not been investigated yet. However, 

with regards to reading ability, researchers suggest that good verbal working memory is 

predictive of good reading comprehension (Cain et al., 2004) and that higher reading self-efficacy 

is associated with better reading comprehension (Solheim, 2011). It would be possible that the 

same mechanism proposed beforehand would work also in reading comprehension; as having 

greater verbal working memory would allow the student to feel more at ease when reading a text, 

and for this reason, the student would then develop higher confidence in their ability to 

comprehend a written text. Nevertheless, the results presented in this chapter suggest the 

presence of a relationship between mathematics self-efficacy and verbal and visuo-spatial 

working memory. 

However, the model only explained roughly one-third of the variance in mathematics 

self-belief at Time 2. Hence, these results once again suggest that we need further research to 
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uncover additional factors (e.g., social persuasion) that might influence the development of 

mathematics self-belief. 

 

5.4.6 Mathematical performance 

The last research question involved the assessment and comparison of the longitudinal 

effects of mathematics anxiety and mathematics self-belief on mathematical performance. The 

previous chapter showed that when mathematics anxiety and mathematics self-belief were 

considered at the same time as predicting factors, only mathematics self-belief was a significant 

predictor of mathematical performance (please see chapter 4.4.1, page 167). Given these results, 

I decided to evaluate the individual contributions of the factors, expecting a pattern similar to the 

one obtained in the concurrent analysis. Contrary to my expectations, I found that neither Time 

1 mathematics anxiety, nor Time 1 mathematics self-belief were significant predictors of change 

in mathematical performance from Time 1 to Time 2, whereas mathematical performance at 

Time 1 remained a strong and significant predictor of Time 2 mathematical performance. I have 

already discussed the results for mathematics anxiety above.  

With regards to mathematics self-belief, the current results are not in line with the 

existing literature (e.g., Kung, 2009) which suggests a reciprocal relationship between 

mathematical performance and mathematics self-belief. However, Kung’s original model showed 

poor goodness of fit. The reported indices of the goodness of fit are reached by adding 

correlations between the error terms. The practice of adding correlations between errors, 

although usually can improve model fit indices, is considered bad research practice because there 

are no theoretical reasons to do that (Hermida, 2015). The model presented in the paper may not 

be a close approximation of the real model, hence the parameters calculated might not be 

reliable. In contrast, the model fit indices in my model were all concordant with a good fit. More 

research is needed to gain further understanding of the topic, but the results of the analysis in 
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this chapter suggest that the models presented in Figure 5.5, 5.9, and 5.11 are a better 

approximation than Kung’s model. 

Another point that needs to be considered is that mathematical performance showed no 

significant change during the considered time period. This little change makes it more unlikely 

for the analysis to find a significant effect. Another study, ran by Hannula and colleagues (2014) 

assessed longitudinally mathematics achievement and mathematics self-efficacy in Year 3, Year 6, 

and Year 9. The authors found that there was a reciprocal relationship between mathematics 

achievement and mathematics self-efficacy. Moreover, the authors suggested that the effect of 

mathematics achievement on mathematics self-efficacy was roughly twice the reciprocal effect of 

mathematics self-efficacy on mathematics achievement. Overall, one study is not enough to draw 

definitive conclusions, so there is a need for more research in this area. However, given that the 

effect from mathematics self-efficacy to mathematical performance is probably weaker than the 

reciprocal effect, it is possible that the small change of mathematical performance from Time 1 

to Time 2 in the current sample did not allow for the detection of the effect. In conclusion, the 

current results suggest that mathematics self-belief has no significant effect on the development 

of mathematical performance in 7th graders, however, it is possible that the data lacked the power 

to detect the effect, had there been one, highlighting the importance to further address the 

involvement of mathematics self-belief in the development of mathematical performance. 

Although, given that in my analysis the longitudinal effect of mathematics self-belief on 

mathematical performance was very small (r = .03), i.e., we would need a very big sample size to 

detect a potentially significant effect13 and that even if an effect was present, it would probably 

be negligible in everyday life. 

 
13 Power analysis suggests that for an effect size of r = .03 to be correctly identified with α = .05 
and β = .80 I would need a sample of 8718 participants.  



224 
 

Based on my concurrent results in the previous chapter, it could have been proposed that 

mathematics anxiety and mathematics self-belief had a causal effect on mathematical 

performance. However, the results from the longitudinal analysis presented in this chapter do 

not support this hypothesis. Thus, the longitudinal relationship at the beginning of secondary 

school might just be one-directional, i.e., mathematical performance might have a causal effect 

on the development of both mathematics anxiety and mathematics self-belief. A way to test 

causality in future studies would be, for example, to manipulate mathematics self-belief and 

mathematics anxiety and to measure the online effect on mathematical performance. For 

example, it could be interesting to devise a study in which participants have to perform 

mathematical tasks in a normal situation, and then they have to perform it again but after going 

through a bout of expressive writing (Park et al., 2014) which has been shown to reduce 

mathematics anxiety. It could then be interesting to test whether the eventual reduction of 

mathematics anxiety improves mathematical performance or not. Another possibility would be 

to include participants in fake group testing, where all the other participants are collaborators 

that pretend to be either very good or very poor at mathematics. In this way, the self-efficacy of 

the participants should be affected (Lent et al., 1991, 1996). In fact, the self-belief would be 

expected to improve in the situation where the confederates pretend to be worse than the 

participant, and self-belief would be expected to decrease in the opposite situation. The study 

would involve the assessment of mathematical performance before and after this manipulation, 

and if there is an online effect, it would be expected that an increase of mathematics self-belief 

would result in an increase in mathematical performance. 

 

5.4.7 Conclusion 

Overall, mathematical performance at the beginning of secondary school is an important 

factor in the development of mathematics anxiety and mathematics self-belief over the school 
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year. Neither mathematics anxiety nor mathematics self-belief seemed to be relevant factors in 

the development of mathematical performance during the first year of secondary school. 

Interestingly, the current study included mathematics anxiety and mathematics self-belief in the 

same model to assess individual contributions on the development of mathematical 

performance. While in concurrent analyses (Hill et al., 2016; Pajares & Kranzler, 1995) 

mathematics anxiety and mathematics self-belief were significantly related with mathematical 

performance, in my study they failed to predict the change in mathematical performance over the 

first year in secondary school. However, a limitation is that in the current study there was no 

significant change in mathematical performance over that time. 

Taken together, these results suggest that it is important to work on improving 

mathematical performance in students that are struggling with mathematics in secondary school. 

If these students are not supported in improving performance, they will be more likely to 

develop higher levels of mathematics anxiety and lower levels of confidence to deal with 

mathematical tasks. This, in turn, might prevent them from pursuing math-related careers, 

having a profound effect on their lives. Moreover, existing literature suggests that motivation 

declines during the school years (Wigfield et al., 2006), even more so in mathematics and natural 

sciences. Self-belief can influence the development of motivation (Legault et al., 2006), which in 

turn can influence performance.  

A new and interesting finding is that mathematical performance is a mediator in the 

longitudinal relationship between inhibition efficiency and mathematics anxiety. The current 

results suggest that having higher efficiency of the inhibition processes might lead to better 

mathematical performance, and this, in turn, works as a protective factor against the 

development of mathematics anxiety. The results are particularly important since they come 

from a longitudinal study, a type of design that is rarely used in assessing the relationship 

between mathematics anxiety and mathematical performance. And rarely research has included 
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many different possible confounding factors to control for their involvement in this relationship. 

Investigating this further is a promising avenue for future research. 
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Chapter 6 - General Discussion 

6.1 Overview 

In this thesis, two behavioural experiments with adults and a longitudinal study in 

secondary school are reported. The main aim of the thesis was to gain a better understanding of 

the mechanisms that underlie the relationship between mathematics anxiety and mathematical 

performance and to assess the effect of two factors on this relationship that were neglected at 

the time this PhD work started, namely the inhibition efficiency of the central executive and 

mathematics self-belief.  

I started with a behavioural within-subject experiment that required adult participants to 

perform working memory tasks twice, once in a neutral and once in a mathematical setting. The 

main findings from this study are that there were no differences in working memory spans 

between the two sessions. Although there were no differences between mathematical and neutral 

sessions when considering the relationship between mathematics anxiety and working memory, 

the listening span task (i.e., a complex working memory capacity span) had a unique significant 

relationship with mathematics anxiety. In the second study, I developed a bespoke measure for 

inhibition efficiency and tested inhibition efficiency in participants with high and low 

mathematics anxiety using an extreme group design. I found that the participants with high 

mathematics anxiety had significantly worse inhibition efficiency than the participants with low 

mathematics anxiety and that neither trait nor state anxiety were covariates of the relationship 

between mathematics anxiety and inhibition efficiency. Finally, I carried out a longitudinal study 

with secondary school students to assess the long-term effects of mathematical performance and 

inhibition efficiency on the development of mathematics anxiety and the long-term effects of 

mathematics anxiety and mathematics self-belief on the development of mathematical 

performance. I found that mathematical performance and inhibition efficiency had a significant 

negative longitudinal relationship with mathematics anxiety, whereas neither mathematics anxiety 
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nor mathematics self-belief had a significant effect on the development of mathematical 

performance. 

The comparison of data from adult and secondary school students presents several 

challenges, as developmental changes might influence the relationships between factors (e.g., De 

Smedt et al., 2009). This chapter will draw some conclusions based on the most relevant results 

presented in the previous chapters while considering the possible age differences. 

 

6.2 Mathematics anxiety and mathematical performance 

As introduced and discussed at length in this thesis, researchers agree that there is a 

significant negative relationship between mathematics anxiety and mathematical performance 

(e.g., Dowker et al., 2016; Hembree, 1990; Ma, 1999; Passolunghi et al., 2016; Zhang et al., 2019). 

In line with the findings from the literature, in each of the studies presented in this thesis, I 

found a significant negative relationship between mathematics anxiety and mathematical 

performance. What is still unclear is the direction of this relationship. Does mathematics anxiety 

cause a deficit in mathematical performance? Or does poor mathematical performance cause the 

development of mathematics anxiety? Or, finally, do both factors influence each other through a 

reciprocal relationship causing a negative loop which leads people to get worse in mathematical 

performance and higher in mathematics anxiety? The so-called ‘chicken or egg question’ is still 

under debate (Carey et al., 2016), and a consensus is yet to be reached.  

While the results presented in this thesis are not definite enough to allow for a firm 

conclusion on the matter, they add relevant data to increase our understanding of the possible 

mechanisms that underlie this relationship. As discussed in the literature review (see chapter 

1.3.3, page 43), most current research provides support for a reciprocal relationship between 

mathematics anxiety and mathematical performance. In line with this theory, I found that higher 
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levels of mathematics anxiety were associated with lower concurrent mathematical performance 

in both adults and secondary school students. However, when I collected longitudinal data from 

secondary school students to gain information on the directionality of this relationship, the 

results showed that mathematics anxiety at the beginning of the school year was not a significant 

predictor of a decrease in mathematical performance over the school year, but rather that poor 

mathematical performance at the beginning of the school year was a significant predictor of the 

increase of mathematics anxiety over the school year. These findings are in line with previous 

studies that also found only a unidirectional causal effect of mathematical performance on 

mathematics anxiety (Geary et al., 2019; Ma & Xu, 2004; Wang et al., 2020). On the other hand, 

these findings are not in line with longitudinal studies in primary school students that found a 

longitudinal effect of mathematics anxiety on mathematical performance (Ching, 2017; 

Gunderson et al., 2018), and with concurrent studies that suggested a causal effect of 

mathematics anxiety on mathematical performance (Hembree, 1990; Park et al., 2014). As 

previously discussed (please see chapter 5.4.1, page 202), Ching (2017) did not control for 

mathematical performance at Time 1 thus effectively not investigating changes in mathematical 

performance over time. If I do not include the mathematical performance at Time 1 in the 

longitudinal study, and I assess the relationship between mathematics anxiety at Time 1 and 

mathematical performance at Time 2, like Ching, a significant longitudinal relationship between 

mathematics anxiety at Time 1 and mathematical performance at Time 2 is found. This suggests 

that although there is a concurrent relationship between mathematics anxiety and mathematical 

performance when we investigate the effect of mathematics anxiety on the development of 

mathematical performance and control for the concurrent relationship, the longitudinal effect is 

no longer significant or significant only with a small effect size (Gunderson et al., 2018). There 

might be two reasons for this; first,  in the age group I tested there might be no longitudinal 

effects of mathematics anxiety on mathematical performance. This would not exclude that there 

might be longitudinal effects of mathematics anxiety on mathematical performance in other age 
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groups. Second, in my dataset there was no significant change in mathematical performance 

from Time 1 to Time 2. Future studies might want to replicate current findings and either 

support them or find that in my dataset there was not enough variation in mathematical 

performance to detect an effect of mathematics anxiety on the development of mathematical 

performance. However, it still needs to be discussed further why my findings are not in line with 

the studies that observed that manipulating mathematics anxiety also affected mathematical 

performance. For example, expressive writing is an intervention that is designed to reduce 

worrisome thoughts. Park and colleagues (2014) observed that participants with high 

mathematics anxiety performed better in mathematical and word problem tasks after a bout of 

expressive writing. Moreover, Hembree (1990) observed that psychological treatments that 

reduced mathematics anxiety were also associated with gains in mathematical performance. In 

the case of systematic desensitization, for example, after the treatment, the participants with high 

mathematics anxiety showed a performance that was comparable with the participants with low 

mathematics anxiety (Hembree, 1990). These findings seem to suggest that mathematics anxiety 

can affect mathematical performance, although it is possible that this manipulation only works 

when mathematics anxiety is decreased, not when mathematics anxiety is increased. However, 

the effect should be an online effect, as the manipulation had concurrent effects on mathematical 

performance, and I did find significant concurrent relationships between mathematics anxiety 

and mathematical performance.  

In summary, the results of the studies reported in this thesis suggest that there is a 

negative concurrent relationship between mathematics anxiety and mathematical performance, 

and that this effect is present in secondary school children and adults. Finally, my results from 

the secondary school students seem to suggest that the direction of this relationship might be in 

line with the suggestion of the skill development approach (Ahmed et al., 2012) indicating that 

mathematics anxiety is a consequence of achievement and not vice versa. This conclusion needs 
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to be supported and findings to be replicated by further studies as the relationship might be 

different in primary school or other age groups.  

 

6.3 Mathematics anxiety and working memory 

Another key aim of this thesis was to investigate the relationship between mathematics 

anxiety and working memory. It had previously been suggested that mathematics anxiety may 

cause a deficit in working memory performance, which would, in turn, cause a deficit in 

mathematical performance (Carey et al., 2016; Passolunghi et al., 2016).  

The relationship between mathematics anxiety and working memory was assessed in all 

the studies in the present thesis. First, I tested working memory of adults in mathematical and 

non-mathematical situations, to assess the effect of mathematics anxiety on their working 

memory. As mathematics anxiety is defined as the feeling of apprehension and fear that arises in 

people who have to deal with mathematics (Hembree, 1990), any effect of mathematics anxiety 

should be present (or at least stronger) in a mathematical situation and absent (or at least weaker) 

in a non-mathematical situation. Accordingly, my prediction was that participants would show a 

drop in performance in the mathematical session compared with the performance in the non-

mathematical session and that this difference would be more marked in those with higher 

mathematics anxiety. However, while in my first study I found that the participants with low 

mathematics anxiety outperformed the participants with high mathematics anxiety in all working 

memory tasks, there was no difference between the working memory performance in a 

mathematical or in a non-mathematical situation. This result suggests that being in a 

mathematical situation does not affect working memory neither in participants with low 

mathematics anxiety nor those with high mathematics anxiety, and that mathematics anxiety 

might not have an online effect on working memory (at least in adults). 
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As a consequence, the observed relationship between mathematics anxiety and working 

memory needs an alternative explanation. A possible explanation could be that low working 

memory capacity might be a risk factor for developing mathematics anxiety. In line with this 

interpretation, in my first study, I found that working memory capacity (i.e., the performance on 

the listening span) was significantly negatively associated with mathematics anxiety. Moreover, 

once this effect was controlled for, verbal and visuo-spatial working memory were no longer 

significantly related to mathematics anxiety. Similarly, in my second behavioural study, I found 

that the number of intrusions was significantly higher for the participants with high mathematics 

anxiety, suggesting a negative relationship between mathematics anxiety and the efficiency of the 

inhibition processes. While these studies present concurrent relationships, the findings from the 

longitudinal study suggest that lower efficiency of the inhibition processes might indeed be a risk 

factor for developing mathematics anxiety. In the longitudinal study, I found a significant 

longitudinal effect of inhibition efficiency on mathematics anxiety, lower inhibition efficiency at 

Time 1 predicted higher mathematics anxiety at Time 2. In contrast, neither verbal nor visuo-

spatial working memory had longitudinal effects on the increase of mathematics anxiety at the 

beginning of secondary school. This suggests that a deficit in the central executive might be a 

factor involved in the increase of mathematics anxiety in this age group.  

As discussed in the introduction (please see chapter 1.4.4, page 51), the attentional 

control theory proposes that anxiety is associated with lower efficiency of the inhibition and 

shifting processes, i.e., individuals with high anxiety need more cognitive resources to perform at 

the same level as individuals with lower levels of anxiety. In line with this, I also observed that 

higher levels of (mathematics) anxiety were associated with lower inhibition efficiency. However, 

the results presented in this thesis suggest that low inhibition efficiency might be a risk factor for 

the development of mathematics anxiety, rather than the opposite. In line with the predictions of 

the attentional control theory, literature suggests that individuals with high mathematics anxiety 

require a larger amount of cognitive resources. However, consistent with my findings, there are 
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studies showing that extra cognitive resources were needed also in a non-mathematical task by 

participants with high mathematics anxiety (Núñez-Peña et al., 2019). For example, Núñez-Peña 

and colleagues (2019) observed that participants with high mathematics anxiety were significantly 

slower on a mental rotation task compared to those with low mathematics anxiety. Moreover, 

the researchers recorded event-related potentials (ERP) and observed that the brain patterns of 

the participants with high mathematics anxiety suggested that they needed to recruit more 

cognitive resources to perform the mental rotation task. Given that the mental rotation task 

neither is a mathematical task, nor contains mathematical information, the fact that participants 

with high mathematics anxiety needed to recruit extra resources to perform the task support my 

findings that the working memory difficulties are not only present just in mathematical 

situations, but participants with high mathematics anxiety have a more general deficit extending 

to non-mathematical situations too. 

In the literature review (please see chapter 1.4.4, page 51) I hypothesised that 

mathematics anxiety might cause a deficit in the inhibition processes. This deficit would deplete 

cognitive resources needed for the mathematical task, in turn causing the person with high 

mathematics anxiety to perform lower in mathematical tasks. Poorer mathematical performance 

would then cause a further increase in mathematics anxiety. However, based on my results, this 

might not be the case. The fact that being in a mathematical situation or not did not affect the 

listening span – along with the fact that inhibition efficiency proved to have longitudinal effects 

on the development of mathematics anxiety – suggests that rather than mathematics anxiety 

leading to an inhibition deficit, having an inhibition deficit might be a risk factor for developing 

mathematics anxiety.  
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6.4 Development of mathematics anxiety 

If a deficit in inhibition efficiency is a cause for the development of mathematics anxiety, 

it might come as a surprise that such a deficit would not affect the development of general 

anxiety. After all, if the deficit is present in every aspect of life, individuals with lower inhibition 

efficiency should struggle with non-mathematical tasks as well. For example, better reading 

comprehension is associated with higher working memory capacity (Hannon, 2012). For this 

reason, someone with poor inhibition efficiency should struggle also with reading tasks and 

develop reading anxiety. However, reading comprehension anxiety seems to be less of an issue. 

An explanation for this might reside in the very nature of mathematics in comparison to 

other academic pursuits, such as reading comprehension. In mathematics, unlike in many other 

academic areas, an error is usually very evident (Cornoldi, 1999), whereas, for example, an error 

in the comprehension of a written text is often less clear, can go undetected more often and is 

sometimes even open to interpretation. Moreover, a common belief is that being good at 

mathematics is a synonym of being smart (Cornoldi, 1999). This belief might contribute to 

feeling worse about a mistake in a mathematical task because this could be taken as evidence of 

limited cognitive skills. Besides, there is evidence that individuals who develop mathematics 

anxiety may have a heightened sensitivity for mathematical mistakes (Suaŕez-Pellicioni et al., 

2013). This heightened sensitivity might affect the development of specific anxiety for 

mathematical material, as opposed to other kinds of material or anxieties. According to this 

interpretation, at least partly due to the very nature of mathematics, individuals with poor 

inhibition efficiency and heightened sensitivity for mathematical mistakes might be more at risk 

at developing anxiety specifically for mathematics. In line with this interpretation, Hunt and 

colleagues (2014) observed that the most common intrusive thoughts experienced by their 

participants were about the worry of making mistakes. Future studies should explore whether a 

heightened sensitivity for mathematical mistakes is a cause or a consequence of mathematics 
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anxiety. They could, for example, use the cognitive reappraisal technique. Cognitive reappraisal 

involves the cognitive transformation of the situation to alter its emotional impact (Gross, 1998). 

Reappraising our sensations, e.g., during the viewing of a scary movie, can reduce the presence 

of negative feelings during the viewing. Reappraisal allows the reinterpretation of the emotions 

associated with an event, and it has been shown to be effective in regulating emotional responses 

before the creation of the emotion (Gross, 1998). In particular, researchers could attempt to 

reduce the salience of mathematical errors by supporting the reappraisal of their impact on 

individuals with higher sensitivity to mathematical errors, thus promoting more efficient 

emotional regulation and reduced sensitivity and then investigate whether this reduces the risk of 

developing mathematics anxiety.  

As proposed earlier, inhibition deficits and the resulting poor mathematical performance 

may influence the development of mathematics anxiety. In line with this hypothesis, results from 

the mediation analysis in the longitudinal study (please see chapter 5.3.3, page 191) suggested that 

mathematical performance is a significant mediator of the longitudinal relationship between 

inhibition efficiency and mathematics anxiety. Although correlational data is not enough to draw 

strong conclusions, these results suggest that part of the development of mathematics anxiety 

may be explained by this mechanism. Literature suggests that working memory capacity predicts 

mathematical performance (e.g., De Smedt et al., 2009). If that is the case, it can be suggested 

that inhibition efficiency is a relevant factor in determining mathematical performance, and a 

deficit in inhibition is likely to contribute to poor mathematical performance. Poorer 

performance in a mathematical task should then be a risk factor for the development of 

mathematics anxiety. This would mean that working on improving the inhibition efficiency 

should also improve mathematical performance and the improvement in mathematical 

performance could also bring about a reduction in mathematics anxiety, or at least slow down its 

development. 
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However, inhibition efficiency was still a significant longitudinal predictor of 

mathematics anxiety after the mediated effect of the mathematical performance was ruled out. 

This suggests that there is also a direct effect of inhibition efficiency on mathematics anxiety, 

which might be the result of unwanted thoughts during mathematical tasks. These unwanted 

thoughts might have a detrimental effect during the execution of mathematical tasks (Carey et al., 

2016), but they might also have longitudinal effects. Indeed, as previously discussed (see chapter 

5.4.2, page 209), a deficit in the inhibition efficiency would likely cause the individual to 

experience unwanted thoughts during the execution of different tasks, including mathematical 

tasks. In line with this interpretation, Hunt and colleagues (2014) assessed mathematics anxiety 

and the presence of intrusive thoughts during the execution of mathematical tasks in university 

students. The authors found a significant positive relationship between the number of intrusive 

thoughts experienced during the execution of the mathematical task, and mathematics anxiety (r 

= .59). These worrisome thoughts may work as a stressing stimulus, causing the person to dread 

the idea of having those thoughts again, hence developing anxiety for situations in which those 

thoughts might arise (i.e., developing mathematics anxiety). Although, this mechanism would not 

work concurrently, but more likely it would have longitudinal effects in the development of 

mathematics anxiety. This mechanism would be similar to the development of some cases of 

aviophobia, where fear of flying is often the result of intense worry around the idea of 

experiencing a panic attack while flying (Clark & Rock, 2016). Thus, future studies are warranted 

on the relationship between the presence of worrisome thoughts during mathematical tasks and 

the development of mathematics anxiety. These studies could, for example, be longitudinal 

studies that assess the presence of worrisome thoughts during the performance of mathematical 

tasks and investigate if the number of worrisome thoughts has a longitudinal relationship with 

the development of mathematics anxiety. Moreover, techniques like expressive writing seem to 

help reduce worry in individuals (Wolitzky-Taylor & Telch, 2010). The use of the expressive 
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writing technique might help reduce the number of worrisome thoughts and the effect of this 

reduction might be assessed in relation to the development of mathematics anxiety.  

 

6.5 Mathematics self-belief 

I planned to assess the reciprocal relationships between mathematics anxiety and 

mathematics self-belief longitudinally. However, this was not possible with my dataset as the 

model fit indices were not adequate. Nevertheless, concurrent relationships between 

mathematics anxiety and mathematics self-belief suggest that in line with the literature (Jain & 

Dowson, 2009; Lee, 2009; Pajares & Graham, 1999; Pajares & Miller, 1994) the two factors share 

significant negative relationships. Moreover, concurrent analysis suggested mathematics self-

belief as a more relevant predictor of mathematical performance than mathematics anxiety. This 

result suggests that mathematics anxiety might not be related to mathematical performance once 

the shared variance with mathematics self-belief is ruled out. However, concurrent relationships 

cannot inform on directionality. In this sense, the longitudinal analysis can be more informative. 

When looking at the longitudinal relationships between mathematics anxiety, mathematics self-

belief, and mathematical performance, I observed that both mathematics anxiety and 

mathematics self-belief did not show longitudinal effects on the development of mathematical 

performance, whereas mathematical performance was a significant predictor of the development 

of both factors. Moreover, mathematics anxiety did not have a significant longitudinal effect on 

the development of mathematics self-belief. It is possible that the shared variance between these 

two factors may be due to both of them being the result of similar mechanisms which work in 

opposite ways. For example, on one side mathematics anxiety seems to be influenced by 

cognitive control. Cognitive control has also an effect on working memory, both verbal and 

visuo-spatial (Baddeley et al., 2015). In fact, verbal and visuo-spatial working memory were 

significantly positively related to inhibition efficiency (please see Appendix D.1). Verbal and 
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visuo-spatial working memory might then influence mathematics self-belief. In fact, the 

longitudinal path analysis reported in Figure 5.7 suggested that verbal and visuo-spatial working 

memory had significant positive longitudinal relationships with mathematics self-belief. Future 

studies might want to assess the longitudinal relationships between mathematics anxiety and 

mathematics self-belief from an early age, while also including the longitudinal effect of the 

different working memory systems to assess each individual contribution.  

Nevertheless, the findings from the concurrent relationships suggest that mathematics 

self-belief is an important and distinct factor that should be considered when assessing 

mathematics anxiety. 

 

6.6 Limitations and open questions 

In the present thesis, I discussed several underlying mechanisms that are likely to play a 

pivotal role in the development of mathematics anxiety and found that low mathematical 

performance, low inhibition efficiency, and high sensitivity to mathematical errors might be risk 

factors for the development of mathematics anxiety. However, the results of all my studies only 

explained a small part of the variance in mathematics anxiety, roughly one third. Future studies 

should, therefore, investigate the role of other factors that might be relevant in the development 

of mathematics anxiety, such as teaching methods and negative attitudes of parents  (e.g., 

Mammarella et al., 2019).  

The main limitation of the results presented in this work is that they come from 

observational studies based on concurrent and longitudinal analyses designs. Because, except for 

the mathematical or non-mathematical session manipulation, no other active manipulation of 

independent variables or covariates was involved, the conclusions reached from this work need 

to be corroborated by experimental designs. For example, the finding that mathematics anxiety 
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did affect mathematical performance neither longitudinally nor online could be further tested by 

actively manipulating mathematics anxiety. One possible future study, for example, could be to 

use expressive writing to lower mathematics anxiety and then to assess whether this affects 

concurrent mathematical performance. It would also be interesting to use expressive writing to 

manipulate mathematics anxiety in a longitudinal design to assess whether this affects the later 

development of mathematics anxiety and mathematical performance. For example, a randomized 

control trial could require the participants to be divided into two different groups: an 

experimental group, in which the participants are exposed to expressive writing, and a control 

group in which the participants are asked to write about their previous day. The experimental 

manipulation could be continued for various years, and the participants could be tested regularly 

from primary school until at least secondary school. After the intervention, the researcher could 

assess if mathematics anxiety decreased. In case mathematics anxiety decreased, researchers 

could then assess the effect that this decrease had on mathematical performance. Importantly, 

this effect could be assessed concurrently (i.e., the online effect) and also longitudinally. This 

type of study, by combining an empirical design with a longitudinal design, would allow a clearer 

and more precise answer to the directionality of the relationship between mathematics anxiety 

and mathematical performance over time.  

Another important limitation involves the sample of my adult studies. Having such a 

specific sample composed only of academically successful participants does not allow to draw 

conclusions about the wider population and might have biased some of the results. Future 

investigations with more representative adult samples are therefore warranted. 

An open question of this study is the importance of an individuals’ history regarding 

mathematical performance. As discussed before, a history of poor mathematical performance 

might cause the development of mathematics anxiety, whereas a history of good mathematical 

performance might be the foundation for developing good levels of mathematics self-belief. 
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Future studies should, therefore, assess longitudinal relationships between these two factors 

from an early age (possibly from preschool) to at least secondary school, in order to observe the 

direction of the relationship between them. The earlier mathematics anxiety can be measured the 

better, however, to the best of my knowledge, there are no available tasks that can reliably assess 

mathematics anxiety in preschool children. Hence, researchers that would like to assess 

mathematics anxiety in such young children would need to first develop a reliable and valid 

measure. The reason why the longitudinal study should ideally start in preschool is in order to 

assess the reasons that cause the genesis of mathematics anxiety it would be best to start the 

study before mathematics anxiety has been developed. Assessing the relationship between 

mathematics anxiety and mathematical performance before the start of formal schooling would 

give us information on how these two constructs develop from the very beginning and show 

which other factors might be relevant in their development. Moreover, the relationships between 

mathematics anxiety and mathematical performance might not be stable during the different 

stages of development (e.g., Hembree, 1990). This would mean that a longitudinal study that 

carries on until secondary school would allow us to assess the presence and the development of 

the relationships between mathematics anxiety and mathematical performance and to observe if 

the size or the direction of the relationship changes during specific developmental stages (e.g., 

the start of primary school, change from primary to secondary school, etc.) or not.  

 

6.7 Conclusion 

The findings presented in this thesis suggest that having a lower efficiency of the 

inhibition processes may represent a risk factor for the development of mathematics anxiety. 

More specifically, poor inhibition efficiency may cause the presence of worrisome thoughts 

before and during the execution of mathematical tasks (although I did not assess the presence of 

worrisome thoughts in my studies, so this is speculation based on previous research; e.g., Hunt et 
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al., 2014). The presence of these thoughts might, in turn, cause the fear of having them again in 

the future, hence causing the development of mathematics anxiety. Poor inhibition efficiency 

may also be associated with poorer mathematical performance, and a history of mathematical 

difficulties is likely to play a role in the development of mathematics anxiety. Future studies 

should consider the adoption of longitudinal and especially experimental designs in order to 

investigate these predictions and study the relationship between mathematical development, 

mathematics anxiety, and inhibition efficiency in younger children to be able to give more 

definite answers about the directionality and the development of these relationships. 
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Appendix A - Supplementary material for Chapter 2 

Appendix A.1: Letter Span task 

Level 1 

 F R 

 H J 

 

Level 2 

 Y J  F 

 Z M H 

 

Level 3 

 F R W M 

 W Z Y J 

 

Level 4 

 W Y Q R M 

 Y J H W F 

 

Level 5 

 Q W Y R J M 

 R M Y H J W 
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Level 6 

 R Z F J M W Y 

 M Y H R W Z Q 

 

Level 7 

 Z Y H F Q M J W  

 R J M Q Y F H Z 

 

Complete Set: 

F H J M Q R W Y Z 
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Appendix A.2: Listening Span task 

Instructions: 

(Read Aloud): “Now you’ll hear a series of phrases, and for every phrase you’ll have to 

say whether it’s TRUE or FALSE. At the end of the set of phrases, you’ll have to remind me of 

the last word of each phrase in the same order as they were presented” (it’s important to ask to 

respect the order; however, if they can’t follow the order, ask them to repeat the ones that they 

remember instead of having them not saying anything).  

 

Examples: 

Ex. Level 2 

1) Hens are four legged animals (F) 

2) Fables are tales of imagination (T) 

A: animals, imagination 

 

Ex. Level 3 

1) In the morning you can eat biscuits with milk and tea (T) 

2) When it is sunny, people walk around with an umbrella (F) 

3) Seals are animals that live both in water and on land (F) 

A: tea, umbrella, land 

 

Trial Begins 
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2A 

1) Chocolate is eaten on spaghetti (F) 

2) Dogs are domestic animals like cats (T) 

A: spaghetti, cats 

 

2B 

1) Cows have four legs and a tail (T) 

2) Seawater contains salt (T) 

A: tail, salt 

 

3A 

1) In the mountains you often need to use scarfs and gloves (T) 

2) Glasses are used to hear sounds better (F) 

3) Christmas is a holiday (T) 

A: gloves, better, holiday 

 

3B 

1) Butter and Jam can be spread on bread (T) 

2) Bicycles are faster than cars and airplanes (F) 

3) Fishing rods are used to catch butterflies (F) 

A: bread, airplanes, butterflies 
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4A 

1) A and B are the two first letters of the alphabet (T) 

2) Houses are built with wool and cotton (F) 

3) Hunters kill animals with a rifle (T) 

4) Africa is a cold country that is situated close to the North Pole (F) 

A: alphabet, cotton, rifle, Pole 

 

4B 

1) At the zoo you can admire famous paintings (F) 

2) At dawn the sun is high in the sky (F) 

3) In the evening we lie in our bed under the blankets (T) 

4) Airplanes take off from the ground and fly through the clouds (T) 

A: paintings, sky, blankets, clouds 

 

5A 

1) During spring flowers blossom in the fields (T) 

2) Fishes breastfeed their babies for up to three months (F) 

3) At the Pole it is very hot and it’s where eagles fly (F) 

4) The hen is a mammal that lives in the sea (F) 

5) Cars are transportation devices (T) 

A: fields, months, fly, sea, devices 
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5B 

1) In summer you wear scarfs and sweaters (F) 

2) Spring and summer are two seasons (T) 

3) The cat is a mammal that hunts rats (T) 

4) The record player is a device that is used to watch pictures (F) 

5) The scissor is used to cut the paper (T) 

A: sweaters, seasons, rats, pictures, paper 

 

Only from middle school and after add level 6 

 

6A 

1) Egyptians built grandiose and solid monuments that are called pyramids (T) 

2) The key is used to open doors, and is slipped into the lock (T) 

3) Christopher Columbus was a great and famous navigator (T) 

4) The river is a stream of water that often comes from the mountains (T) 

5) The day is composed of twenty-four hours (T) 

6) Of some fruits, like the banana, you eat only the skin (F) 

A: pyramids, lock, navigator, mountains, hours, skin 

 

6B 

1) Times tables are a set of letters that you need to learn by heart (F) 
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2) In winter birds dig their den underground (F) 

3) Felt tips are used to colour drawings (T) 

4) Masts have leaves and branches (F) 

5) In the radio we can see the most famous actors (F) 

6) You go to the swimming pool to play soccer (F) 

A: heart, underground, drawings, branches, actors, soccer 
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Appendix A.3: AMAS 

  

No bad 

feelings

Somewh

at bad

Fearful, 

tense or 

nervous

Very bad 

feelings

Worst 

feelings

1 2 3 4 5

Listening to another student explain a math 

formula.

Being given a "pop" quix in math class.

Starting a new chapter in a math book.

Listening to a lecture in math class.

AMAS Hopko et al. 2003

Please rate your feelings when you are in the different activities on a scale from one (if you have 

no bad feelings during that situation) to five (you have the worst feelings. E.g., the most fear, the 

most tension, the most anxiety, the most worry, or the most nervousness).

Having to use the tables in the back of a math 

book.

Thinking about an upcoming math test 1 day 

before.

Watching a teacher work an algebraic equation 

on the blackboard.

Taking an examination in a math course.

Being given a homework assignment of many 

difficult problems that is due the next class 

meeting.
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Appendix A.4: Simple Calculations 
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Appendix A.5: GAD-7 
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Appendix A.6: Working memory descriptive statistics 

 

Table A.1. Descriptive statistics of working memory measures divided by group and session 
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Appendix B - Supplementary material for Chapter 3 

 

Appendix B.1: Correlation matrix 

 

Table B.1. Correlation matrix of Study 2.  
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Appendix C - Supplementary material for Chapter 4 

 

Appendix C.1: Correlation matrix 

 

Table C.1. Correlation matrix. All correlations reported are partial correlations after partialling out the effect of 

trait anxiety. 
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Appendix D - Supplementary material for Chapter 5 

 

Appendix D.1: Correlation matrix 

 

Table D.1. Correlation matrix 

 


