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Abstract

Hydrodynamic processes that occur along the Congo Middle Reach are a key
determinant of risks pertaining to biogeochemical cycling, ecology, public health,
transportation, and flood risk. Knowledge of channel hydraulics is paramount to
understanding and modelling these hydrodynamic processes, yet such knowledge is
severely lacking here.

The aims of the research presented in this thesis were twofold. The first aim was
to assess the water surface and in-channel hydraulic conditions along the Congo Middle
Reach, and the capacity of satellite observations to determine these conditions. The
second aim was to evaluate methods of channel geometric representation in
hydrodynamic models of the multichannel Congo mainstem. Fieldwork was central to
achieving these aims; the field data having been used to characterise hydraulics, assess
satellite altimetry datasets, model bathymetry, and model fluvial hydraulics and

hydrodynamics.

A key finding of the hydraulic characterisation was a complete absence of river
flow constrictions that cause backwater effects, which partly explains the relatively subtle
nature of inundation here. Assessment of existing satellite profiling altimetry datasets
showed their spatial coverage adequately captures the water surface profile along more
than 1,200 kilometres of the middle reach. However, coverage was insufficient through
the Chenal entrance, where a downstream increase in bed-slope generates a significant
drawdown effect. Satellite altimetry deviated from field measurements by two metres
here, which is half the annual flood wave amplitude. The findings show that these satellite
profiling altimeters cannot be relied on to capture significant water surface slope
variability resulting from gradually varied flow conditions, even on the world’s largest

rivers.

Modelling work showed that the Congo’s multi-threaded channel geometry can
be simplified to an effective single channel in a hydrodynamic model, without introducing
significant error. The resultant root mean square error in water surface elevation was
estimated to be less than 0.25 metres, providing channel friction and shape parameters
are calibrated to observations obtained across the entire flow range. This finding may
apply to other large multi-threaded channel reaches, which are commonly found on the

world’s largest rivers.
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CHAPTER 1

Introduction

Hydrodynamic processes that occur along the world’s large rivers are a key
determinant of a range of risks pertaining to biogeochemical cycling, ecology, food
security, public health, transportation, and human exposure to flood risk. For instance,
globally important biogeochemical processes such as the outgassing of carbon dioxide
and methane occur as result of large scale fluvial inundation (Richey et al., 2002; Borges
et al.,, 2015). Inundation and spatiotemporal diversity in river flow conditions maintains
some of the world’s most biologically diverse and productive ecosystems (Junk et al.,
1989; Vander Vorste et al., 2017). Hydrodynamic processes are also linked to the
infection dynamics of water related diseases such as malaria (Smith et al., 2013;
Bertuzzo and Mari, 2017). Many agricultural practices in remote regions rely on a
dependable supply of water and nutrients provided through seasonal inundation (Duvail
and Hamerlynck, 2007), yet are vulnerable to extreme inundation (Pacetti et al., 2017).
Similarly, inland water navigation, an important and sustainable form of transport across
large remote regions often lacking land transport infrastructure (Bonnerjee et al., 2009),

is reliant on a minimum depth of flow being maintained in river channels.

1.1 Study Area: The Middle Reach of the Congo River

Given the wide range and importance of risks and processes linked to large river
hydrodynamics, studies of large river hydrodynamics are badly needed. This is especially
true for the geographical study area of this research: the middle reach of the Congo
River. The Congo Middle Reach flows for approximately 1,700 km from Kisangani to
Kinshasa (Robert, 1946). It is a shallow sloped channel system that is highly
multithreaded for over 1200 km of its length (Ashworth and Lewin, 2012), as shown in
Figure 1-1. This channel system is one of the widest in the world, and is occupied by
hundreds of vegetated islands that divide the channel into numerous individual channel
threads, broadly classed as an anabranching channel pattern (Nanson, 2013). Very little
is known about this channel system, there being a severe lack of in-situ hydraulic data
(O’Loughlin et al., 2013). Water surface observations from satellite are available
however, and have been used in the limited hydrodynamic research that exists (e.g. Lee
et al., 2011; O’Loughlin et al., 2020).
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Figure 1-1. The Congo River: (a) The central Congo Basin, showing the mainstem middle

reach that flows from Kisangani to Kinshasa, major tributaries, and terrain elevations; (b)
Satellite image showing characteristic multichannel planform of the middle reach; (c)
Location plan within the extent of the African continent, showing country boundaries.
Rivers and lakes water mask from O’Loughlin et al. (2013), Terrain elevations from
MERIT DEM (Yamazaki et al., 2017); satellite image from Bing (© 2020 Microsoft
Corporation © 2020 DigitalGlobe © CNES (2020) Distribution Airbus DS).

Having received relatively little research attention, hydrodynamic research in the
Congo River Basin also has the potential to contribute to resolving regionally and in some
cases globally important earth science and development questions (Alsdorf et al., 2016).
The middle reach of the Congo drains the world’s second largest tropical wetland system:
the Cuvette Centrale wetlands (Keddy et al., 2009). Inundation in these wetlands
sustains peatlands that are estimated to store 20 years of current fossil fuel emissions
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from the United States of America (Dargie et al., 2017), but inundation is also thought to
emit globally significant amounts of carbon dioxide and methane (Borges et al., 2015).
Inundation here also sustains some of the most biodiverse ecosystems in the world, and
is linked to regional food security because of the dependence of agricultural and fishing
practices on inundation (Comptour et al., 2016; Comptour et al., 2020). Research
guestions concerning this inundation, including quantification of inundated areas and its
variability in time, and the extent to which fluvial flooding controls wetland inundation
remain largely unanswered. Numerical hydrodynamic river models are likely to be a key
tool in answering these questions (Trigg et al., 2009; Biancamaria et al., 2009; Paz et
al., 2011; Schumann et al., 2013; Paiva et al., 2013).

A severe lack of transport infrastructure in the Congo River Basin means that
inland water navigation on the mainstem middle reach and its major tributaries is the
principal mode of transportation within the region, and is therefore of great regional
importance (Bonnerjee et al., 2009; CICOS, 2015). Shallow water conditions combined
with continuously evolving channel morphology results in frequent vessel groundings and
periods of unnavigable conditions along the mainstem and key tributaries (Wood et al.,
1986; Ndala, 2009). Accordingly, hydrodynamic modelling of in-channel flow conditions
to predict water levels during low flow conditions and morphological changes has a
potential role to play in managing these navigation risks. Predictions of flow conditions
are also important to understand the hydrodynamic impacts of environmental changes
that are anticipated in the Congo River Basin. Changes in land use, regional climate, and
river abstractions and/or impoundments are all likely to change river flow rates
considerably (e.g. Coe et al., 2011), and will therefore affect inundation and channel flow

conditions.

1.2 Research Problem Statements

Flooding from large rivers and its related risks to biogeochemical cycling, wetland
ecology and public health, are increasingly being evaluated using observations from
space-borne satellites, and hydrodynamic river models that utilise these observations
(Schumann, 2014; Bates et al.,, 2014; Bierkens, 2015; Schneider et al., 2018;
Fleischmann et al., 2018). However, the usefulness of satellite observations is currently
limited by their sparse and inconsistent observational coverage. Hydrodynamic
modelling efforts are further limited by a paucity of river channel bathymetry data, which
cannot yet be reliably obtained from satellite (Bates et al., 2014; Caballero et al., 2019).
In-situ bathymetry measurements are often sparse or unavailable, especially for large
rivers in remote regions. This is problematic, because the inclusion of river channel

geometry information is crucial to the performance of a hydrodynamic model (Neal et al.,
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2012; Sampson et al., 2015). To resolve this problem and facilitate the hydrodynamic
analysis and modelling of rivers with limited or no bathymetry information, methods of
estimating channel geometry have been developed and are increasingly being applied
to large rivers in remote regions (Yoon et al., 2012; Neal et al., 2012; Schumann et al.,
2013; Schneider et al., 2018; Fleischmann et al., 2018). However, treating river channel
bathymetry as unknown increases the number of unknown parameters, and generally
places greater importance on the hydraulic parameters for which observed data are
available from satellite. Moreover, treatment of bathymetry as an unknown often involves
simplification of channel geometry to a uniform cross-sectional shape, such that it can
be represented by one or two parameter values in a hydrodynamic model. Yet a simple
uniform channel shape may not be appropriate for representing the middle reach of the
Congo River, which has a complex multichannel planform and remains poorly
understood hydraulically. Thus, the research presented in this thesis is concerned with
assessing the adequacy of Congo River hydraulic observations from satellite, and the
applicability of simplified representations of Congo River channel geometry, in the
context of hydrodynamic analysis and modelling. Specifically, the research addresses

two research problems, which are each stated and elaborated on below.

Research Problem Statement 1: Satellite-derived observations of water
surface conditions currently have limited spatial and temporal coverage, and
the adequacy of this coverage for analysing the hydrodynamics of the Congo

River is unknown.

Satellite observations of water surface elevation and water extents are used
extensively in hydrodynamic analysis and modelling (Schumann et al., 2009; Yan et al.,
2015). In recent decades, much progress has been made in observations of water
surface information from satellite: the accuracy and utility of many datasets has been
assessed (Frappart et al., 2006; Urban et al., 2008; Jarihani et al., 2013; Schumann and
Moller, 2015; Normandin et al., 2018), and data coverage has increased in space and
time. However, their spatial and temporal coverage remains relatively sparse and is
inconsistent, varying between river systems and river reaches (Garambois et al., 2017).
Research is therefore needed to understand how spatial and temporal deficiencies in
satellite derived water surface observations limit their application in hydrodynamic

analysis and modelling of different river systems.
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Research Problem statement 2: Methods of representing the
multichannel reaches of the Congo River in hydrodynamic models are not well

established or verified.

Current approaches to large river hydrodynamic modelling often reduce channel
geometric representation to a single mean cross sectional depth value, by representing
channels as a simple shape such as a rectangle (e.g. Biancamaria et al., 2009). As well
as allowing bathymetry to be treated as an unknown parameter to be calibrated, a simple
shape also minimises model spatial resolution and therefore computational power
requirements, which is important for large river simulations that span large spatial and
temporal scales. Simplified channel representations are yet to be thoroughly tested, and
may not be appropriate in some circumstances, such as applications where spatially
distributed in-channel hydraulic information is required, or in multichannel river
environments where a single rectangular channel is highly unrepresentative.
Multichannel river environments are a common feature of large river systems:
Latrubesse (2008) asserts that nine of the world’s 10 largest rivers possess a channel
pattern that is predominantly anabranching. Multichannel rivers are also particularly
challenging in a channel representation context. This is partly due to observational
challenges: the acquisition of a full bathymetry dataset requires navigation of multiple
channel threads in order to sample the full channel cross-section (Altenau et al., 2017a),
resulting in a collection route that is several times longer than for a single channel river,
which may be prohibitive. Limitations on model spatial resolution are an additional
challenge since the representation of narrower individual channel threads require a finer
spatial resolution than a simplified effective single channel. Simplified channel
representations are therefore highly appealing on multichannel rivers. However,
approximating a complex multithreaded channel system as a single channel of uniform
shape neglects many in-channel hydraulic processes such as the splitting and
converging of sinuous channel threads around islands and the overtopping of mid-
channel islands (Garambois et al., 2017). Channel geometry and hydraulics must be
represented with sufficient accuracy in hydrodynamic models, in order to correctly
simulate the onset and extents of fluvial inundation, and the speed with which flood
waves move through the channel — floodplain system (Trigg et al., 2009; Dey et al.,
2019). Research into the representation of multithreaded river channels in hydrodynamic

models is therefore badly needed.
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1.3 Thesis Aims and Structure

The aims of the research presented in this thesis are as follows:

1. To assess the water surface and in-channel hydraulic conditions along
the middle reach of the Congo River, and the capacity of satellite-based
observations to determine these conditions.

2. To evaluate methods of channel geometric representation in

hydrodynamic models of the Congo’s multichannel middle reach.

The objectives that have been identified in order to achieve these aims are set
out in section 3.5, following the literature review. Chapter 2 and Chapter 3 constitute the
Literature Review: Chapter 2 is a review of large river hydrodynamic research, and
Chapter 3 is a review of hydrodynamic research in the Congo River Basin. Chapters 4,
5 and 6 document the research carried out, and Chapter 7 presents the research findings
and conclusions together with future research directions. The structure of the entire

thesis is depicted in Figure 1-2.
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CHAPTER 2

Large River Hydrodynamics

2.1 Definitions

2.1.1 Large Rivers

There are number of published definitions of ‘large’ rivers in a global context. In
one example, Gupta (2007) defines a large river as being over 1000 km long, having a
catchment area of >10° km? and a mean annual runoff volume greater than 200 x10° m?®.
Fielding (2008), defines large rivers as having a channel greater than 1 km wide and 10
m deep. These definitions based on channel size, catchment area or runoff volume are
not always satisfactory. The threshold values used in the definitions are subjective, and
a lack of reliable global discharge and bathymetric data limits their wider application. Use
of globally available data such as catchment area alone is problematic, due to the large
variation in catchment runoff rates, resulting for example in the inclusion of relatively
small rivers with big catchments in arid regions, and the exclusion of some large rivers
with relatively small catchments in tropical regions. Human impacts and river regulation

also complicate these definitions.

In this thesis, ‘large rivers’ are defined simply as being distinct from smaller rivers
by some key characteristics. They possess wide channels systems, flow depths of up to
25-50m or more, very high width to depth ratios, and very low water surface gradients
(~10 cm/km or less) (Ashworth and Lewin, 2012; Nicholas et al., 2012). They also have
low Froude numbers (Amsler and Garcia (1997) suggest typically equal to or less than
~0.3), and therefore have highly subcritical flow conditions. Large rivers often possess
extensive floodplain systems, and their channel systems exhibit a range of complex
planform patterns that do not conform to the traditional pattern terminologies
(Latrubesse, 2008), beyond the fact that they are multichannel to some extent (Carling
et al., 2014). Their flood regimes are seasonal, more stable and predictable. Large rivers
provide important ecosystem services, supporting biodiversity, freshwater and marine
fisheries, and productive agricultural land. They may be primary rivers or tributaries, and

their drainage basins often lie in remote regions spanning multiple countries.

Mega rivers are a useful sub-category of large rivers, first proposed by
Latrubesse (2008). They are defined as ‘very large’ rivers, and include the nine largest
rivers on earth by mean annual discharge: Amazon, Congo, Orinoco, Yangtze, Madeira,
Negro, Brahmaputra, Japura, and Parana. See Table 2-1 for some summary statistics of

these mega rivers. The quoted discharge statistics are obtained from in-situ
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measurements (rating curves): in the absence of any information on the uncertainty of
specific values, an uncertainty in the region of 5-10% can be assumed (Di Baldassarre
and Montanari, 2009). The reported sediment flux values are more uncertain. Numerical
assessments of the uncertainties associated with the values reported are not available,
but recent sediment flux values of 326 Mt/year and 159 Mt/year published for the
Irrawaddy and Salween Rivers in Southeast Asia are assigned an uncertainties of ~25%
and ~40% respectively (Baronas et al., 2020). Moreover, different measurements on the
same river often report variations in excess of 50%: compare for example the Orinoco
sediment flux of 74 Mt/year produced by Laraque et al. (2013) with the 150 Mt/year
guoted in Table 2-1, and the value of 210 Mt/year published in Milliman and Meade
(1983). Milliman and Meade (1983) also give an overview of the potential error sources

in large river sediment flux measurements, which is still relevant today.

Table 2-1: The world's nine largest rivers by discharge, known as mega rivers. After
Latrubesse (2008)

River Country to Mean annual Drainage Sediment Sediment
the mouth Discharge area flux Qs yield
(m/s) (10 km?)  (Mtlyear)  (t/km?year)
Amazon Brazil 209,000 6100 ~1000 167
Congo DR Congo 40,900 3700 32.8 9
Orinoco Venezuela 35,000 950 150 157.8
Yangtze China 32,000 1943 970 499
Madeira Brazil 32,000 1360 450 330
Negro Brazil 28,400 696 8 11.5
Brahmaputra Bangladesh 20,000 610 520 852.4
Japura Brazil 18,600 248 33b 133
Parana Argentina 18,000 2600 112 43

Many of the world’s large rivers are located in the tropics due to the intense
rainfall here; eight of the 10 largest rivers by discharge globally are tropical rivers
(Latrubesse et al., 2005). Tropical rivers in particular are the subject of intense

biogeochemical activity. Inland waters are known to emit amounts of trace gases
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including carbon dioxide and methane that constitute considerable components of the
global carbon budget (Bastviken et al., 2011; Raymond et al., 2013), and emissions from
tropical river systems are thought to contribute significantly to this (Richey et al., 2002;
Melack et al., 2004; Sawakuchi et al., 2014; Borges et al., 2015). For example, Borges
et al. (2015) estimate carbon dioxide equivalent greenhouse gas emissions from the
Cuvette Centrale wetlands of the Congo River to be 0.48 + 0.08 petagrams per year.
This number is globally significant, considering that the combined net global carbon sink
from oceans and land is currently estimated as 5.7 petagrams per year (Friedlingstein et
al., 2019). These systems also facilitate carbon storage by depositing stocks of carbon-
rich sediments and contributing to peatland formation through wetland inundation.

2.1.2 Hydrodynamics

In this thesis, the study of river hydrodynamics refers to observing and modelling
the dynamic spatiotemporal distribution of several surface water parameters within a
river system. These parameters include water flows, surface elevations, depths,
velocities, and inundation patterns (i.e. dynamic inundation extent and duration). River
hydrodynamics is strongly influenced by terrain, including the topography of river banks
and floodplains, the bathymetry of river channels. Terrain also encompasses land
surface roughness, which creates flow resistance. Hydrodynamics does not specifically
include the study of the hydrological processes that generate river flows, which is a
component of the broader field of hydrology. Hydrodynamics is an important component
of hydrology however, as it governs the speed of travel and changes in magnitude and

duration of river flows as they move down a river system.

2.2 Key Drivers of Large River Hydrodynamic Research

2.2.1 The Proliferation of Space Borne Earth Observation Satellite Data

In recent decades there has been enormous progress in the use of remote
sensing techniques to obtain hydrodynamic and topographic information from space
borne earth observation satellite instruments (Smith, 1997; Calmant et al., 2009; Yan et
al., 2015). This is largely due to a sustained growth in the number of satellite missions,
and also the capability and diversity of technologies employed by the instruments. The
last decade in particular has seen major advances in the utility of observations of

inundation patterns and water surface elevation.

Large rivers are the prime candidates for the application of satellite remote
sensing (SRS) to observe hydrodynamics, because they can accommodate the generally
lower temporal and spatial resolution of SRS datasets. Conversely, in situ (ground

based) observation methods are sparsely applied to large rivers because of scale and
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accessibility issues. The data that has become available from SRS has therefore been
unprecedented especially in terms of spatial coverage, and has partly driven the
increasing study of large river hydrodynamics. Anticipated future advances in
spatiotemporal coverage, resolution and accuracy of SRS data will continue to be a key
driver of such studies, particularly within the earth science community.

The progress in SRS is continuing to advance what is possible in large river
hydrodynamics, and is fuelling research into a wide range of societal issues that entail
hydrodynamic observations or predictions on large rivers. These are described below.

2.2.2 Biogeochemical processes

Large river hydrodynamics is a key determinant of globally important
biogeochemical processes. Water depths, velocities, and inundation patterns are all
hydrodynamic information that are needed to understand the production of trace gases
from rivers. Observed or modelled flood extents and durations are used in conjunction
with locally measured trace gas evasion rates per unit area to produce estimates of total
emissions from river systems. For example, the Borges et al. (2015) estimate of 0.48 +
0.08 petagrams per year of carbon dioxide equivalent greenhouse gas emissions from
the Cuvette Centrale wetlands is the product of a compilation of locally computed trace
gas flux values (which are themselves based on local measurements of dissolved
concentrations), and a flooded surface area of 360x10° km? estimated from satellite
imagery and terrain data (Bwangoy et al., 2010). In addition, trace gas evasion rates are
a function of gas transfer velocity, which is influenced by river channel flow properties
including velocity and channel friction. This was demonstrated by Alin et al. (2011) who
found there to be a strong positive correlation (R?>=0.78) between gas transfer velocity

values and water current velocity measurements on a range of medium and large rivers.

Dynamic inundation processes also play a role in the storage of carbon.
Specifically, inundation facilitates the build-up of organic material within soils, which is
then unable to fully decompoe and release carbon into the atmosphere (Keddy et al.,
2009). Wetlands are a hotspot for this carbon sequestration activitiy, where the abudant
vegetation is prevented from fully decomposing and forms peatlands. Despite only
occupying 3% of the earth’s surface, peatlands make up one third of the total global

carbon pool (Page et al., 2011).

2.2.3 Ecological Processes

Hydrodynamic processes are a major control on the ecosystems present within

the river channel and on floodplains. Within river channels, the variability in flows, depths,
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and velocities provides a diverse range of potential niches that serve as habitats for
aquatic organisms. Consequently these organisms are spatially distributed in a highly
heterogeneous way that changes temporally with river flow (Crowder and Diplas, 2000;
Allan and Castillo, 2007). River channel aquatic habitat models simulate habitat changes
with flow, using observations and predictions of water depth and velocity for a range of
flows to investigate habitat suitability for various species (Daraio et al., 2010; Jowett and
Duncan, 2012).

Biodiversity is highest in large rivers. This is in part because larger rivers can
accommodate larger fish as well as small fish, meaning the size range and hence
diversity of fish increases as rivers become larger (Vander Vorste et al., 2017). The main
reason however is the role of floodplain inundation in large rivers, known as the flood
pulse in an ecological context (Junk et al., 1989). In large rivers, many aquatic and
terrestrial organisms are adapted to and dependent on regular seasonal inundation for
moderate periods. During inundation, aquatic organisms migrate out of the channel and
onto the floodplain to use newly available habitats and resources. The floodplain also
receives a fresh supply of sediment. As flood waters recede, nutrients, organic matter
and newly produced organisms return from the floodplain into the river channels
(Johnson et al., 1995). Large river floodplains are therefore highly ecologically productive
and diverse environments, especially where inundation duration is sufficient to produce
wetland ecosystems. Wetlands are known to be some of the most biologically diverse
and productive ecosystems in the world, but are also among the most threatened due to
their fragility (Tockner et al., 2008). The importance of floodplain ecological processes
and their strong dependence on hydrodynamics is a key motivator of an increasing
number of studies involving observations and modelled predictions of floodplain

hydrodynamics.

2.2.4 Flood risk

The predictable, slow moving, seasonal nature of large river floods and their often
remote, sparsely populated localities dictate that they are regarded as a beneficial
ecosystem service as much as they are a natural hazard, with floodplain dwelling
communities being adapted to seasonal flood conditions. However, large river floods do
pose a risk to human life, property and infrastructure in many cases. Extreme floods
events that cause exceptional inundation extents and depths test the resilience of
communities and can have catastrophic consequences; Table 2-2 gives some examples
of such events over the last 10 years. Flood risk exposure is projected to increase in

developing countries where most large rivers are located, be cause of rapid urbanisation
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on floodplains driven by population growth (Di Baldassarre et al., 2010; Smith et al.,
2019).

Table 2-2. Studies of Recent Large River Floods

River Year of flood Example study
Indus 2010 Gaurav et al., (2011)
Mississippi 2011 Driscoll et al., (2014)
Chao Phraya 2011 Komori et al., (2012)
Amazon 2014 Espinoza et al., (2014)
Brahmaputra 2017 Philip et al., (2019)

Observed and modelled hydrodynamic information is essential for implementing
flood risk mitigation measures such as flood risk mapping, flood forecasting and warning,
and construction of flood control infrastructure. In the case of large rivers, such
information is needed not just for understanding the flood risk posed by the river itself,
but also the risk associated with its many tributaries whose hydrodynamic behaviour will
likely be strongly controlled by the river they drain into. For example, the influence of the
Amazon mainstem hydraulics on its tributaries was observed by Meade et al. (1991) who
showed that water surface elevation (WSE) in the Madeira and Purus tributaries can vary
by 2-3 m for a given discharge, depending on the conditions in the downstream
mainstem. Amazon mainstem backwater effects on the Purus and Solimoes tributaries
were also characterised by Trigg et al. (2009), who found the Purus to be more affected
of the two, mean water surface slopes from a hydrodynamic model simulation being 4 —

6 times lower than channel bed slopes during high and low water conditions respectively.

2.2.5 Remote Discharge Measurement

Accurate measurement of river discharge is essential, as it quantifies the amount
of water resources available for human use, defines the quantity of water that comes out
of bank during flood events, and describes overall catchment response to
hydrometeorological processes. Despite the high value of discharge information to
society, gauging stations and access to river discharge information has been declining
since the 1980s, including on the world’s largest rivers (Hannah et al., 2011; Pavelsky et
al., 2014). Facilities and accessibility are a particular problem in developing countries

(Calmant et al., 2009). The global decline in operational gauging infrastructure is difficult
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to quantify because gauge data in many countries is often unavailable to the public. Data
sharing restrictions are often present in large river basins as a result of transboundary
hydro-political issues (Qaddumi, 2008). However, Hannah et al. (2011) were able to
guantitatively assess the decline in North America. They looked at the total number of
gauges with >30 years of data that were decommissioned between 1980 and 2004 in
the USA and found this number represented 28% of the gauges that were operational in
2005. In Canada the equivalent figure was 16% over a similar time period.

The global Runoff Data Centre database (GRDC, 2019) is the most complete
global discharge dataset that is freely available to the international scientific community
(Pavelsky et al., 2014). Whilst the database will certainly omit gauges and datasets due
to data sharing restrictions, it provides a useful indicator of global gauge data availability
over time. The database provides the start and end dates for which data is available at
each gauge, enabling an understanding of spatiotemporal changes in data availability.
Figure 2-1 maps the global distribution of all gauges that have provided data at some
point in time, along with gauges that provided data after 2010. Locations of large river
basins (basin area greater than 500,000 km?) from Lehner et al. (2008) are also
highlighted. This map clearly shows the decline in data availability globally, especially in
large river basins and in developing countries. The Amazon Basin is somewhat of an
anomaly in that it is relatively well gauged, this is because it is the world’s largest river
and accordingly has received significantly more hydrological research attention than
other large rivers. Alsdorf et al., (2016) demonstrate this by showing there is an order of
magnitude more scientific publications on Amazon hydrological research compared to
the world’s second largest river by discharge (Congo). Still, the Amazon Basin gauge
data is sparse relative to river basin gauge densities in developed countries, there being
eight times the number of gauges per kilometre in the Mississippi Basin than in the

Amazon in 2010, based on the data shown in Figure 2-1.
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® GRDC Gauges with data after 2010
® All GRDC gauges
[ Large river basins (>500,000 square km)

Figure 2-1. Global Distribution of gauges in the Global Runoff Data center (GRDC)
database; all gauges are plotted in red, and gauges with data after 2010 are plotted in
black. River basins with an area greater than 500,000 km? are also highlighted. River

basins above 60 degrees northern latitude are not included.

This decline in gauge data availability can be quantified by plotting the number of
gauges that provide data in each year (Figure 2-2). This shows the magnitude of the
decline in available gauge data since the 1980s. A similar decline is seen specifically in
large river gauge data in developing countries, by plotting the number of gauges located
in large river basins only (river basin area greater than 500,000 km?), and outside of
North America or Europe. River basins above 60 degrees northern latitude are also
excluded. These gauges comprised just 13% of all gauges on average over the last
century, but occupy river basins that span approximately 33% of the world’s land surface
based on the basin delineation of Lehner et al. (2008), which illustrates the sparsity of

large river gauges in developing countries relative to global gauge density.
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Figure 2-2. Plot of number of gauges that provide data in each year, from the Global
Runoff Data Center Database. Total number of gauges in the database are plotted, and
compared with number of gauges that are located in large river basins (river basin area

>500,000 km?) outside of Europe or North America and below 60 degrees latitude.

Clearly, improved spatiotemporal coverage of discharge measurements is greatly
needed across the globe. Long term river gauging structures such as weirs that are used
to obtain discharge from a water level measurement at the critical depth are the dominant
flow gauging station in developed nations such as the UK (Centre for Ecology and
Hydrology, 2019), but are generally not feasible to construct on larger rivers. Discharge
— stage (water level) rating curves developed at a particular river cross section location
can be used to derive discharge from regular water level measurements in large rivers,
however these require direct measurements over a range of flows for calibration
purposes, using a flow measurement device such as an acoustic Doppler current profiler
(ADCP) or a current meter. The ongoing need for these direct measurements as a result
of river channel geometry and vegetation change over time limits the rating curve
methodology to locations with the facilities and conditions to carry out such
measurements periodically. Establishing such locations on large rivers can be very
challenging, given their remoteness, large channel widths, extensive floodplains, and
multichannel nature. These large river gauging difficulties, combined with the increasing
capabilities of SRS techniques, has resulted in a concerted effort in research into
methods of retrieving discharge from space. The methods involve derivation of useful
hydrodynamic observations from SRS, and their subsequent use to predict discharge
using hydrodynamic models with a wide range of complexities (e.g. Andreadis et al.,
2007; Brakenridge et al., 2007; Durand et al., 2016).
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2.2.6 Sediment Dynamics

Hydrodynamic processes are key determinants of sediment transport processes, as they
control the size, quantity and locations of sediment that is mobilised, transported, and
deposited, and the evolution of river form. Specifically, the initiation of motion, rate of
transport, and deposition of sediment is a function of bottom shear stress, which itself is
a product of depth, water surface slope and velocity (van Rijn, 1993). These
hydrodynamic variables are therefore commonly used to predict sediment bed load and
total load transport rates, and erosion and deposition rates (e.g. Le Bouteiller and
Venditti, 2014).

The underlying motivations of the study of sediment dynamics include many of
the motivations described above. Ecologically, changes in composition and quantity of
sediment is important in providing habitat for aquatic and terrestrial organisms within the
river corridor (Hauer et al., 2018). Sediment deposition and migration of bed forms results
in a changing bathymetry that poses a major risk to fluvial navigation vessels (Guerrero
et al., 2013); this is discussed in more detail in section 2.2.7. Channel deposition can
increase fluvial flood risk (Slater et al., 2015), whilst insufficient delivery of sediment can

increase flood risk and cause land loss in deltaic environments (Twilley et al., 2016).

2.2.7 Inland Waterway Navigation

Inland navigation on rivers is generally the most sustainable mode of transport in
terms of energy consumption, greenhouse gas emissions, and infrastructure
requirements (Rohacs and Simongéti, 2007; Schoemaker et al., 2012). For this reason,
navigation is common on large rivers that are deep enough to accommodate the draft of
large vessels over long distances. Naturally, vessels must contend with the risk of
grounding, particularly when water levels are low. Observations and predictions of
dynamic water levels along navigable rivers can help manage this navigation risk and
optimise vessel loads (Hemri and Klein, 2017). For example, operational navigation
forecasting on Europe’s principal inland navigation route, the Rhine River, is known to
involve hydrodynamic modelling. Both Hemri and Klein (2017) and Baran et al. (2019)
allude to the conversion of runoff forecasts into water level forecasts using a
hydrodynamic model in their descriptions of the operational Rhine navigation forecasting
procedure used by the German Federal Institute of Hydrology. However, Hemri and Klein
(2017) and Baran et al. (2019) both look specifically at prediction of river discharge only
in their research, (i.e. do not model hydraulics), and from the available literature, it
appears that research relating to forecasting of flow conditions for navigation is primarily

focussed on hydrological modelling, and less hydraulic modelling; see also for example,
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Demirel et al. (2013) on the Moselle, Western Europe. Some researchers have also used
non-physically based modelling techniques such as artificial neural networks to derive
navigation water level predictions solely from historical water level data: see the efforts
of Fernandez et al. (2010) applied to the Magdalena River, and Figueiredo et al. (2014)
on the Tapajos River.

In the context of navigation forecasting, hydrological modelling may be receiving
the research attention because it is perceived to be a research challenge of greater
magnitude than the hydraulic modelling component. In addition, the discharge values
that corresponds to the minimum WSE conditions for navigation along a river reach may
be known on well gauged rivers (see e.g., R6tz and Theobald (2019)), in which case
local the WSE prediction provided by a hydraulic component is not necessary in the
same way that it is for flood forecasting. Regarding this latter point in the context of large
rivers, accurate discharge values that correspond to minimum navigable WSE are less
likely to be known in the case of large rivers in remote regions where operational gauging
is limited (as discussed in section 2.2.5). Moreover, a hydraulic modelling component is
often necessary even when only discharge predictions are required, as attested to by
Ro6tz and Theobald (2019) who assessed the performance of different hydraulic model

numerical formulations for predicting downstream discharge conditions for navigability.

Ultimately, navigability is not dictated by WSE, but by depth. Detailed knowledge
of river bathymetry along navigation routes and its evolution over time resulting from
sediment transport processes are therefore important for managing navigation.
Accordingly, researchers and practitioners are increasingly utilising hydrodynamic
models to predict channel morphological changes that may affect long term navigability
on large rivers. On the Rhine River for example, the Dutch navigation authority
(Rijkswaterstaat Oost-Nederland) have developed a morphological model to predict
future morphological changes and simulate potential measures for mitigating reduced
navigability in areas of deposition (Yossef, 2016). Scientific research efforts are relatively
rare on large rivers, likely because of the onerous input data requirements of a
morphological model such as detailed bathymetry and sediment load data. Rare
examples include the efforts of Creech (2014) on the Sao Francisco River in Brazil, which
entailed the development of a sediment yield model using the Soil and Water
Assessment Tool, and a morphological change model using HEC-RAS covering 1000
km of the river's middle reach. These models were coupled and used to analyse the
navigability of the river following various anthropogenic interventions such as dredging
and construction of spur dykes. Nicholas et al. (2012) modelled the hydrodynamics of a

relatively short 30 km reach of the Rio Parana, Argentina, citing the prediction of



Chapter 2 20

morphological evolution as being the key purpose of the model. In addition, Nicholas et
al. (2013) circumvented the need for detailed data by modelling synthetic river reaches
that are designed to be representative of large sand-bed rivers. Schuurman et al. (2016)
also did so for the Brahmaputra, using such a model to analyse the generalised
behaviour of braided river morphodynamics under human-induced interventions

including bank protection works and closure of channel threads to improve navigability.

2.2.8 Disease Transmission

Water related diseases encompass water borne diseases, water based diseases,
and vector borne diseases. The infection dynamics of water related diseases are linked
to climatic, hydrologic and in some cases hydrodynamic drivers across a wide range of
spatial and temporal scales (Bertuzzo and Mari, 2017). For example, malaria risk is
strongly associated with surface water bodies which serve as breeding sites. Many of
these surface water bodies are controlled by river hydrodynamics; the detection and
prediction of inundation duration, velocity and depth can be used to determine breeding

habitat suitability and hence malaria risk (Smith et al., 2013).

2.2.9 Hydrological Change

Hydrological change may be instigated directly by hydraulic structures that
regulate river flows and alter river bed slopes on many of the world’s rivers (Grill et al.,
2019). Indirectly, changes in hydrological processes are occurring as a result of human
activities such as deforestation, agriculture, and urbanisation. Climate change is also
having significant hydrological impacts through changes in land cover, rainfall patterns
and intensities, and evaporation. There is a need to understand how this hydrological
change will affect hydrodynamic processes. Many of the hydrodynamic research drivers

discussed above also require to be studied in the context of hydrological change.
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2.3 Observing large river hydrodynamics

2.3.1 Discharge Measurements

In situ Measurements

Discharge measurement is challenging on large rivers due to their large spatial
scale and difficult access, as outlined in section 2.2.5. Nevertheless, it is possible and
necessary given the decline in permanent gauging infrastructure and reluctance of
government agencies to share data for political or commercial reasons. The modern
established methodology involves use of an ADCP deployed on a boat to directly
measure velocity and cross sectional area, and hence discharge. These devices
measure velocity magnitude and direction using the Doppler shift of acoustic energy
reflected by material suspended in the water column. These measurements produce
vertical velocity profiles composed of water speeds and directions at regularly spaced
intervals, across the entire river cross section. Morlock (1996) provides a detailed

description of the ADCP and its operational principles.

ADCP discharge measurements can also be used in conjunction with a
geodetically levelled depth gauge to establish a rating relationship between discharge
and WSE. The rating relationship then enables discharge to be measured indirectly in a
convenient manner from a depth gauge. This practice has been used by the observation
service SO-HYBAM, who conduct hydrological and biogeochemical measurements on
the three largest rivers in the world (by average discharge): Amazon, Congo and
Orinoco, for scientific purposes (Filizola et al., 2009; Institut de recherche pour le
développement, 2019). The majority of their efforts are concentrated in the Amazon
Basin where thirteen discharge gauging stations are currently operational. There is one
gauging station each in the Congo and Orinoco basins. These stations and their data are

all included in the global Runoff Data Centre database.
Remote Sensing Measurements

Dynamic river width, WSE, and water surface slope (WSS) information derived
from remotely sensed observations of surface water extent and WSE are the common
hydrodynamic variables used to estimate discharge from space. These variables are
discussed in section 2.3.4 and 2.3.5 respectively, and their subsequent use in models to

obtain discharge is discussed in section 2.4.5.
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2.3.2 Bathymetry Measurements

In situ Measurements

Measurements of river depth on large rivers necessitates use of a sonar device
mounted on a survey boat, as reported by Wilson et al., (2007) and Trigg et al. (2009;
2012) on Amazon basin rivers and floodplain channels, and Altenau et al. (2017a) on the
Tanana River. The sonar devices that were used in these studies are single beam
devices that produce point depth information along the vessel track. Complete spatial
coverage of river bathymetry cannot be realistically achieved on large river channel
systems with single beam devices, necessitating a compromise between survey effort

and measurement coverage, and interpolation of the raw sonar data.

Multi-beam echo sounders (MBES) are increasingly being used to achieve
complete coverage of river bathymetry. Multiple beams measure water depth across a
wide swath perpendicular to the vessel track. A device used by Parsons et al. (2005) to
measure dune morphology on the Rio Parana produced a swath width approximately
seven times the water depth. Such coverage enables full bathymetric coverage of
navigation corridors or discrete river reaches along rivers of up to a certain size (e.g.
Schumann et al.,, 2010; Conner and Tonina, 2014), but full coverage of rivers over
hundreds of kilometres with widths in the order of kilometres remains unrealistic even
with a MBES. Deployment of multiple MBES devices on different vessels is possible
logistically, but is likely to be financially unviable for scientific purposes given individual

MBES devices cost in excess of £30,000 (Seafloor Systems Incorporated, 2017)

On the spatial coverage requirements of bathymetry data, it is well demonstrated
that channel discharge capacity must be accurately represented in order to model
floodplain inundation processes (see for example, Trigg et al., 2009; Dey et al., 2019).
When abtaining bathymetry data for hydrodynamic modelling purposes, it is therefore of
primary importance to obtain measurements across the full cross sectional width of the
channel. This ensures that the channel cross sectional and hydraulic mean depth are
known, which govern the discharge capacity of a large river channel, as evidenced
conveniently by viewing an equation for uniform flow in an open channel, such as the

Manning formula (Manning et al., 1890):

1
Q= EAR2/3\/§ Eq. 2-1
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Where Qis discharge (m®s), n is Manning’s hydraulic roughness coefficient
(s/m'®), A is cross-sectional area (m?), R is the hydraulic radius (m?m) — equal to
hydraulic mean depth for a large river, and s is the energy slope (m/m) — assumed equal
to the bed slope and water surface slope under uniform flow conditions. Since channel
discharge is a product of cross sectional area and mean channel velocity, accurate
representation of A is also necessary for reliable model predictions of mean channel

velocity, and hence the velocity at which a flood wave travels along a river.

The traditional approach to bathymetric surveys is to take river cross sectional
measurements (known as transects) at regular intervals along a river channel. The
locations and distance between measurements is dependent on numerous factors such
as the apparent variability in channel cross sectional area and width (to ensure sufficient
sampling of A and R). Larger rivers are known to require a lower spatial resolution of
bathymetry; Samuels, (1990) argues that the required transect space step should scale
with channel width. Trigg et al. (2009) looked specifically at the effect of reducing the
bathymetry information content on modelled WSE along a ~400 km reach of the Amazon
mainstem. They found that simplifying a series of surveyed cross sections to rectangular
cross sections by preserving flow cross sectional area and wetted width resulted in only
a 0.126 m increase in modelled WSE root mean squared error (RMSE), and when all
cross sections were replaced with a single reach average rectangular section and bed
slope, modelled RMSE increased by 0.53 m. These RMSEs are a fraction of the
Amazon’s 12 m flood wave amplitude, leading Trigg et al. (2009) to conclude that quite
crude assumptions regarding the Amazon’s bathymetry will suffice providing the mean
cross sectional area is well approximated. They suggest their conclusions may hold for
other large rivers, but it appears this has not yet been thoroughly explored, probably
largely because of the unavailability of bathymetry data for many of the world’s large
rivers. Nicholas et al. (2012) does assess the bathymetric controls on flow conditions in
a large river, by modelling steady state hydraulics along a 30 km reach of the Rio Parana,
Argentina. They find large-scale (channel scale) bathymetric features is the dominant
control on the spatial distribution of channel velocity, implying fine -scale features such

as dunes have little effect on spatially distributed flow conditions.

Model purpose is a determining factor: prediction of low flow conditions requires
more bathymetry information than prediction of flood flow conditions, because low flow
conditions are more sensitive to bathymetry than flood flows (Garambois et al., 2017).
Moreover, studies that require predictions of spatially distributed in-channel flow
conditions require greater coverage and resolution compared with studies that only

require mean channel flow conditions along the river channel. For example, (Conner and
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Tonina, 2014) conclude the spacing between cross sectional measurements should
equal the mean channel width for the purpose of predicting spatially distributed aquatic
habitat suitability and sediment transport processes, whereas (Castellarin et al., 2009)
concludes that for prediction of WSE during a flood, a spacing of 10-20 times the mean
channel width (first proposed alongside ten other criterion by Samuels, 1990) is valid. In
any case, determining measurement spatial interval is subjective, indeed Samuels
(1990) comments on this subjectivity, stating “this selection is part of the art of river
modelling and it is likely that no two experts would choose precisely the same location
for the cross-sections”.

When surveying large rivers with a boat, the entire river reach being surveyed is
usually navigable, and access is more efficient by boat than on land, particularly in
remote regions where road infrastructure is lacking. In this scenario, the full cross
sectional width can be sampled regularly and with maximum efficiency by diagonally

moving from bank to bank in a ‘zig-zag’ manner, as shown in Figure 2-3.
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Figure 2-3. Example of sonar collection route on a large river. Taken from the work of
Trigg et al. (2009) on the Amazon River.

Acquisition of bathymetry is less straightforward in large multichannel river
reaches, where mid-channel islands prevent survey boats from navigating across the full
width of the channel belt. In these environments, survey boats must navigate around
islands and up numerous channel threads in order to regularly sample the full channel
width, greatly increasing the sonar collection route for a given reach length. In the
example shown in Figure 2-3, it can be seen that islands are relatively infrequent and the

secondary channel threads can be captured with only a moderate amount of additional
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track distance. However, when islands are more numerous as is the case for reaches of
many large rivers (see Figure 2-4), the necessary track routes are more complex and far
longer. As a result, the timeframe and resources required to carry out a complete
multichannel bathymetric survey may be beyond what scientific research teams are able
to afford, and consequently, there are very few published hydrodynamic modelling
studies that involve use of multichannel bathymetry.
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Figure 2-4. Landsat satellite images showing examples of large multichannel river
patterns, illustrating difficulties in executing depth measurements across the full channel
width: (A) Brahmaputra River in Bangladesh and India; (B) Yukon River in Alaska; (C)
Mackenzie River in Canada; (D) Congo River in DR Congo; (E) Rio Negro in Brazil.

Individual images taken from Ashworth and Lewin, (2012).

The work of Altenau et al. (2017a) is a rare example of such a study on a 90 km

reach of the Tanana River, considered to be medium size based on its 1300 m3/s mean
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discharge during the open water season. A 15 mph average boat speed, 0.5 second
measurement interval, and 220,000 total number of measurements reported in the study
suggest that a total track length of approximately 740 km was necessary to complete a
bathymetric survey of the 90 km study reach (shown in Figure 2-5), with similar spatial
coverage to that shown in Figure 2-3. In comparison, a track length for a 90 km long
single channel is estimated to be 127 km, derived by applying a Pythagoras calculation
to an assumed mean channel width of 1 km and a zig-zag track route aligned at 45

degrees to the stream-wise direction.
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Figure 2-5. Example bathymetry model (BM) of the multichannel Tanana River (first order

tributary of the Yukon) developed by Altenau et al. (2017a).

Remote Sensing Measurements

Within the field of river hydrodynamics, bathymetry is generally regarded as being
a parameter that cannot be reliably retrieved directly from space (e.g. Bates et al., 2014).
Given the difficulty and expense of measuring depths via conventional field methods,
and the importance of bathymetry to river hydrodynamic research, this is one of the most
fundamental limitations in river hydrodynamics research currently. However, the
reflectance of open water to solar illumination is known to be a function of the water
depth, the water optical properties and the bottom reflectance (Lyzenga, 1981), implying

that depth information can be retrieved from optical imagery for clear waters.

Reviewing the efforts to measure river depth from space, there has been some
success with using high resolution optical satellite imagery on short reaches of relatively
shallow low turbidity rivers, such as the work of Legleiter and Harrison, (2019). But this
study concludes that the sensors and algorithms it employs need to be applied and tested
over many tens of hundreds of river kilometres in order to establish credibility. To do this

will require generalisation of the relationship between image -derived quantities and water
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depth that so far are very localised, and extensive in-situ bathymetry datasets for a wide
range of rivers. Moreover, SRS bathymetry retrieval techniques are limited by depth and
turbidity and therefore have seen very little application to large rivers, which are
associated with areas of deep bathymetry and often relatively high turbidity, particularly
in the tropics. Still, detection of only shallow water bathymetry in large rivers would be of
value, for example in helping to manage navigation risk, but has seldom been explored.
The work of Lopes et al., (2014) is a rare example showing (albeit in a limited way) that
it is feasible to use optical remote sensing to estimate bathymetry on a large turbid river
(the Congo River). They produced depth estimates from Landsat accurate to within 10%,
up to a depth of 14 m using methods devised by Lyzenga, (1981).

Whilst nearly all methods of mapping bathymetry from satellite remote sensing
are based on passive, multispectral imagery, Parrish etal., (2019) report that the recently
launched ICESat-2 profiling laser altimeter has the ability to retrieve bathymetry. The
authors note that ICESat-2 has some advantages over passive methods: ICESat-2 has
lower susceptibility to false readings caused by changes in substrate type or other
confounding variables introduced by the environment, and does not require reference
depths. However, the spatial coverage of ICEsat-2 is clearly inferior to the passive
methods, and results so far show a limited maximum depth potential of approximately
one secchi depth with a standard deviation of 0.1 secchi depths. Going forward, ICESat -

2’'s performance may improve as its geolocation and calibration are still being enhanced.

2.3.3 Terrain Data

In situ Measurements

Ground elevation data along large river corridors are generally not measured in
situ for the purpose of studying hydrodynamics because it is not feasible given the spatial

scales involved and the ability of remote sensing methods to capture this variable.
Remote Sensing Measurements

Airborne Light Detection and Ranging (LIDAR) is typically the preferred source of
ground elevation data for studying and modelling river hydrodynamics. This is because
of its ability to quickly survey large areas at relatively high vertical accuracy (0.05 — 0.2
m), and a high spatial resolution (1 — 5 m) (Sanders, 2007). Crucially, LiDAR is able to
penetrate vegetation, which allows the vegetation to be filtered out to yield an accurate
bare earth digital elevation model (DEM). LIDAR has been used to map most of the UK
and is used routinely in UK flood risk management, but there is little coverage in the

developing world because it is expensive to acquire. Much of the LiDAR data that does
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exist is not open source; Hawker et al. (2018a) estimate that only 0.005% of the global

land surface is covered by open access LIiDAR.

Airborne interferometric synthetic aperture radar (InSAR) instruments offer
another source of terrain data. Commercial airborne INSAR DEMs typically achieve ~1
m root mean square error (RMSE) and a resolution comparable to LIiDAR, but cannot
fully penetrate vegetation, and suffer from random noise (Sanders, 2007). Airborne
INSAR is potentially cheaper than LIiDAR because they can offer a wider swath width
than LIiDAR (Pinheiro et al., 2020). However, in many parts of the world the resources
do not exist to acquire terrain data using these airborne instruments. Instead, reliance is

placed on low cost terrain data from space borne instruments.

The Shuttle Radar Topography Mission (SRTM) product obtained from a space
borne INSAR mission is generally the most popular source of globally available and free
ground elevation data for river hydrodynamics studies. This is because of its superior
vertical accuracy, feature resolution, and a lower amount of artefacts and noise
compared to alternative data sources such as the ASTER GDEM (Rexer and Hirt, 2014;
Jarihani et al., 2015). Despite these advantages over other data sources, SRTM height
errors vary between 5 and 9 m (Farr et al., 2007), which limits its application in river
hydrodynamics. Height error is spatially heterogeneous however: errors are larger in
higher relief terrain than in low relief areas (Sanders, 2007), which is an important factor
considering the low relief nature of large river corridors. Much of the height error is due
to random noise induced by radar speckles that manifest as spikes and wells, which can
be reduced by pixel aggregation when dealing with inundation pattern at the large river

scale.

One of the key issues for large river hydrodynamics is the inability of SRTM to
fully penetrate vegetation canopies, which leads to overestimation of ground elevations
in vegetated areas including large river floodplains, and in turn a failure to recognise
inundation processes when utilising SRTM in flood inundation studies. This has led to
efforts to create bare earth DEMs by subtracting a component of the vegetation height
(e.g. Baugh et al., 2013). More recently, in recognition of the increasing need for accurate
bare earth global DEMs, several error corrected derivative DEMs have been created
from SRTM. The most comprehensive error removal product to date is the Multi Error
Removed Improved Terrain (MERIT) DEM (Yamazaki et al., 2017). MERIT increases
land areas mapped with +2 m or better vertical accuracy from 39% to 58%, and makes
significant improvements in flat regions, river networks, and wetlands. However,

resolution and accuracy remain a limitation, even for the world’s largest rivers. Whil st 2
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m is a small proportion of a typical Amazon River flood wave amplitude, other large rivers
have much smaller flood wave amplitudes. For example the Congo River annual flood
wave amplitude is 3—4 m (O’Loughlin et al., 2013), and the accuracy of the inferred or
modelled extent of inundation will be heavily influenced by a 2 m error. Moreover,
SRTM's 90 m resolution has been shown to be insufficient to capture floodplain channels
that play an important role in the floodplain inundation dynamics of some large rivers
such as for the Amazon (Trigg et al., 2012).

Two new open access global DEMs have recently become available: the 90 m
resolution TanDEM-X (Rizzoli et al., 2017) and the 30 m resolution ALOS AW3D30
(Tadono et al.,, 2014). TanDEM-X was recently evaluated in the context of flood
inundation by Hawker et al. (2019) who conclude that MERIT can regarded as being
slightly more accurate, mainly because it performed better in vegetated land cover.
Despite its higher spatial resolution, ALOS AW3D30 was found to have lower accuracy
than MERIT and TanDEM-X in describing the topography of a mid-size river with both
high and low relief terrain (Tavares da Costa et al., 2019). There are a number of
commercial space-borne global DEMs of higher resolution and accuracy than any of the
open access DEMs (for example, WorldDEM has a vertical accuracy of 1.4 m (RMSE)
and 12 m resolution according to Hawker et al., 2018a), but these products have
restricted rights and are regarded as being prohibitively expensive for scientific purposes
(Sampson et al., 2016).

Any future effort to produce a global open access high accuracy DEM is likely to
comprise existing and newly acquired airborne terrain data in areas where accuracy is
most critical, combined with high resolution satellite stereo imagery in areas without
airborne coverage (Schumann, 2014). Given the likely costs involved in obtaining such
a DEM (Sampson et al. (2016) estimate $7 billion), this is unlikely to happen in the near
future, leading Hawker et al. (2018b) to develop an uncertainty approach whereby the
effect of topographic uncertainty on hydrodynamic model predictions is explored by

simulating multiple plausible DEMs.

2.3.4 Inundation Extents

In situ Measurements

Inundated areas associated with large rivers are generally not measured or
monitored in situ because it is not feasible given the spatial scales involved and the ability

of remote sensing methods to capture this hydrodynamic variable.
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Remote Sensing Measurements

Because of the low spatial resolution requirements of large rivers, their
permanent open water extents (i.e. rivers and lakes) are routinely mapped with satellite
imagery. Optical products such as Landsat have been used extensively for this purpose,
and are now able to produce permanent water body and inundation extent information
at the global scale. For example Pekel et al., (2016) used 30 m spatial resolution Landsat
data to produce the Global Surface Water Explorer product, which maps the location and
temporal distribution of inundation at the global scale over the last 35 years, and provides
statistics on their extent and change. Another example is the NASA NRT Global Flood
Mapping Product (Policelli et al., 2017), which produces near real time global daily
surface and flood water maps at 250 m resolution using data from the Moderate

resolution Imaging Spectro-radiometer (MODIS).

A key limitation of optical sensors is that they are unable to see through clouds
or at night (Huang et al., 2018). This limitation can be circumvented by using composite
images, temporally interpolating, or selecting alternative images captured during
representative hydrological conditions, but leads to inaccuracies especially when
mapping the spatiotemporal dynamics of a specific flood event that requires higher
temporal resolution data during a particular time window. For the purpose of mapping
flood dynamics, active microwave instruments provide an alternative or complementary
option because their longer wavelengths can penetrate through clouds and they can
function at night. Microwave instruments are not always preferable however, as their
longer wavelengths limit the resolution of data. Moreover, interpretation of raw
microwave data is less straightforward; requiring specific processing algorithms to suit
the specific image properties of different products (Schumann and Moller, 2015). As a
result, both optical and microwave sensors are well utilised sources of dynamic
inundation extent information on large rivers, as demonstrated by the fact that all the
rivers that were listed in Table 2-2 have been the subject of multi-temporal dynamic
inundation mapping studies using optical and / or microwave products. Details are shown
in Table 2-3.
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Table 2-3. Examples of Flood Inundation Studies on Selected Large Rivers using Multi
Temporal Satellite derived Inundation Extent Information.

River Example study
Indus Gaurav et al. (2011), optical
Mississippi (Li et al., 2013) — optical supplemented with a DEM

Chao Phraya (Trigg et al., 2013) — optical; (Nakmuenwai et al., 2017) —

microwave
Amazon (Canisius et al., 2019) — microwave

Brahmaputra (Uddin et al., 2019) — microwave

Penetration of vegetation canopies in order to detect inundation where vegetation
is emergent remains a challenging task of satellite imagery. Only certain microwave
sensors have sufficiently long wavelength capable of penetrating through dense
vegetation, which limits the resolution and availability of suitable datasets. This is a
problem on large rivers which often have floodplains that are densely vegetated with

diverse species.

Looking specifically at research in the well-studied Amazon basin, Hess et al.,
(2003) mapped water extents along 1500 km of the central Amazon River and tributaries
using 100 m resolution data from L-band JERS-1 synthetic aperture radar (SAR). These
maps are seasonal only (i.e. one high water and one low water), and the validation
yielded relatively low producer’s classification accuracies for certain vegetation classes
including 65% for aquatic macrophytes and 55% for flooded woodland. More recently,
Canisius et al., (2019) were able use 5 m resolution C-band RADARSAT-2 data to
produce multi-temporal (22 images between April 2014 and August 2016) inundation
maps including flooded vegetation. However, the spatial extent of mapping was limited
to a 100 km reach of the lower Amazon mainstem, and the study also suffered from low
producer’s classification accuracies (62% for floodplain shrub and 67% for degraded
forest). Moreover, this study does not address the issue of the poor ability of the shorter
wavelength C-band SAR to penetrate through dense forest canopies. So, it appears that
there is still significant room for improvement in the retrieval of inundated areas

concealed by vegetation, as asserted by Schumann and Moller, (2015).
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2.3.5 Water Surface Elevation

In situ Measurements

WSE is arguably the most necessary hydrodynamic parameter because it is
valuable standalone data, and is also required to measure bathymetric elevation and
time series discharge data. Accurate in-situ measurement of large river WSE above a
reference datum is often not straightforward because of the absence of vertical datum
benchmarks or cellular network coverage in the remote regions through which many
large rivers flow. This precludes the use of traditional survey equipment or hand-held /
consumer grade GPS devices, and requires the use of a survey-grade global navigation
satellite system (GNSS) receiver to obtain satellite positioning information. To obtain
sufficient vertical accuracy (sub-decimetre) for WSE measurement, a receiver requires
the ability to operate on multiple frequencies and receive raw positioning information from
multiple satellite constellations. Such a receiver was used in studies of the Tanana River
by Altenau et al. (2017b) and Altenau et al. (2017a). With the receiver mounted to a boat,
they obtained WSE measurements at regular intervals along a 90 kilometre river reach.
They also used the receiver on land to geodetically level a series of depth gauges to
obtain WSE time series data. Similar field campaigns have been conducted on Amazon
Basin rivers including the Amazon/Solimdes, Negro, and Madeira, (Moreira et al., 2012;
Moreira et al., 2016; Montazem et al., 2019) where up to 1000 kilometre long reaches

were surveyed.

To obtain high precision positional information, the raw data collected by a GNSS
receiver must be subject to a correction procedure known as precise point positioning
(PPP) (Lainez Samper et al., 2011). In the aforementioned Tanana River and Amazon
Basin studies, this correction procedure involved post processing of the raw data using
web-based software tools. Such a correction procedure may be unsuitable in situations
where internet access is unavailable and there is a need to obtain results in the field. To
cater for such a need, alternative real time correction methodologies have been
developed by commercial services in recent years, whereby correction information is
obtained live by a receiver from a dedicated satellite (e.g. Glocker et al., 2012; Leica
Geosystems, 2017; Trimble, 2019). With this live correction information, a receiver is

able to obtain high precision measurements in the field.
Remote Sensing Measurements

A growing number of radar and laser profiling satellite altimeters have measured
WSE with a vertical accuracy of 0.35 m or less (Frappart et al., 2006; Urban et al., 2008;

Jarihani et al.,, 2013) and are therefore considered suitable for many SRS river
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hydrodynamics studies (Domeneghetti et al., 2015). Altimetry satellites function by
measuring the satellite-to-surface round-trip time of a radar or laser pulse as they move
along their orbital profile, and thus the distance from the satellite to a target surface. The
elevation of the target surface can then be obtained by using the precise altitude of the
satellite. Spatial resolution, temporal resolution and spatial coverage are the key
properties of an altimeter that govern its suitability for a hydrodynamic study. Spatial
resolution, i.e. the footprint size of the pulse on the water surface, limits the size of water
body that can be accurately measured. Water bodies must be 2—3 times wider than the
footprint to ensure WSE is well sampled (O’Loughlin et al., 2016a). For example, the
vertical accuracy of 0.28 m quoted for the ENVISAT radar altimeter (Frappart et al., 2006)
is only valid for water bodies greater than 1 km wide. This is a major limiting factor in the
application of altimetry, as the majority of instruments are radar altimeters and have a
footprint of 300 m or larger (O’Loughlin et al., 2016a). The exceptions to this are the laser
altimeters including the 70 m footprint of ICESat, and the 17 m footprint of ICESat-2
(Markus et al., 2017).

The orbit of an altimeter and hence its ground track determines the inter-track
distance and the repeat cycle; i.e. spatial coverage and temporal resolution respectively.
Orbit design involves a trade-off between minimising inter-track distance and repeat
cycle. For example, Cryosat-2 prioritises spatial coverage, achieving an inter-track
distance of 7.5 km at the equator, but at the expense of a 369 day repeat cycle. In
contrast, Jason missions have a 315 km inter-track distance at the equator, but a repeat
cycle of 10 days. Cryosat-2 and Jason are at the extreme ends of the spectrum, and
Table 2-4 shows the full diversity of past and present altimetry missions in respect of

repeat cycle and inter-track distance.
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Table 2-4. Summary of Satellite Altimetry Missions, modified from Jiang et al., (2017),
ICESat-2 Information from Markus et al., (2017).

Satellite Period Repeat cycle  Equatorial Inter-Track Distance
(Day) (km)
Skylab 1973-1974
GEOS 3 1975-1979
SeaSat 1978 17
Geosat 1985-1990 17
ERS-1 1991-2000 35 80
Topex/Poseidon 1992-2005 10 315
ERS-2 1995-2011 35 80
GFO 1998-2008 17 165
Jason-1 2001-2013 10 315
ENVISAT 2002-2012 35 80
OSTM/Jason-2  2008—present 10 315
CryoSat-2 2010—present 369 7.5
HY-2 2011-present 14,168
Saral 2013—present 35 80
Jason-3 2016—present 10 315
Sentinel-3A 2016—present 27 104
ICESat-2 2018—present 91 29

Is has been widely acknowledged that the resolution and coverage of these radar
and laser altimetry missions needs to be improved upon in order to address many key
hydrologic questions, as they miss too many of the world’s freshwater bodies and fail to
capture them with sufficient resolution (Alsdorf et al., 2007). Attempts to address this
have culminated in the use of satellite imagery to obtain WSE information. Imagery alone
cannot obtain absolute WSE measurements, but it can yield measurements of WSE
change through InNSAR technigues with centimetric accuracy (Alsdorf et al., 2007), and

can provide shoreline WSEs when combined with terrain data of sufficient accuracy.
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INSAR techniques to retrieve relative changes in WSE rely on the double bounce
effect that occurs in flooded vegetation. In open water the radar pulses of SARs are
reflected away from the antennae because they are not perpendicular to the earth’s
surface, but the presence of flooded vegetation causes a second reflection (so called
“double bounce”) from the vegetation surfaces, sending some of the radar pulse back to
the antennae (Alsdorf et al., 2000). By comparing the longer wavelength radar
information of the two SAR images obtained for the same location at different times, the
relative change in WSE can be derived in the form of an interferogram. The relative WSE
change values can then be converted to absolute values by using reference WSE
measurements. Following the introduction of this technique to the Amazon floodplains
by Alsdorf et al. (2000), the technique has been used in over 20 studies of wetland water
level monitoring (Mohammadimanesh et al., 2018). Some examples include the work of
Lee et al. (2015) who estimated WSE change over a 20,000 km? area of flooded forests
adjacent to the Congo River mainstem using ALOS PALSAR. These estimates were not
multi temporal, only providing the difference between June and December (i.e. low water
and high water conditions respectively) on the mainstem, but serve to establish that WSE
change increases closer to the Congo mainstem. Jaramillo et al. (2018) looked at
degradation of the Magdalena River delta wetlands due to a loss of hydrodynamic
connectivity by producing multi temporal interferograms from ALOS-PALSAR (66
between 2007 and 2011), but this was over a relatively small area of 100 square
kilometres. Cao 2018 were able to use coarse resolution SAR (SLOS2 ScanSAR) to
obtain multi temporal interferograms (timespans of 28-42 days) over a large 75,000 km

area of the Amazon floodplains.

INSAR derived WSE change information is of quite limited value on its own, and
requires complementary datasets such as absolute WSE information and discharge
information in order to maximise its potential for studying river hydrodynamics. For
example, Jaramillo et al. (2018) were able to use in-situ river discharge data to
supplement their interferograms. Consequently, as Mohammadimanesh et al. (2018)
points out, studies have been biased towards favourable conditions, such as availability
of gauges or profiling altimetry data, and accessibility. Interferograms are also difficult to

validate quantitatively due to a paucity of in-situ data or alternative SRS data.

2.3.6  SWOT: Unprecedented WSE and Complementary Inundation Information
The ability to retrieve hydrodynamic parameters from space-borne instruments

has seen remarkable progress in recent decades, but current data sources and methods

are still regarded as being insufficient for many key large scale hydrological questions.

In an effort to advance progress in answering such questions, the Surface Water and
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Ocean Topography (SWOT) Mission is soon to be launched. This is the first satellite
mission dedicated to surface water exploration. In simple terms it can be regarded as the
surface water equivalent of SRTM, as like SRTM, it will use an interferometric SAR
instrument. SRTM only ran for 11 days and was not designed to retrieve surface water,
whereas SWOT will run for three years and will use a radar band s pecifically intended to

retrieve surface water.

SWOT will produce four products, including an unprocessed raw pixel cloud
product, a pre-processed raster product which contains water extent and WSE
information at 100 m or 250 m spatial resolution, and two post-processed products. The
post-processed SWOT products will include river centreline nodes at 200 m centres
containing WSE and river width information, and 10 km long river reaches containing
computed mean water surface slope and estimated discharge (CNES, 2019b). All rivers
and lakes wider than 50-100 m will be captured with a repeat cycle of 21 days, with most
of the globe being visited at least twice during each repeat cycle. The expected accuracy
of the processed WSE products is scale dependent, and is stated as being 10 cm over
a 1 km? area, and 25 cm over a 250 m? area (Biancamaria et al., 2016). Further details

are provided in Table 2-5.
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Table 2-5. Surface Water and Ocean Topography Mission Science Requirements
(Rodriguez, 2016; Biancamaria et al., 2016)

Requirement

Description

Observed areas

Height accuracy

Slope accuracy

Relative errors

on water areas

Mission lifetime

Rain / layover /

frozen water flag

Data collection

All observed water areas detected by SWOT will be provided to
end users, but: errors will be evaluated for (250 m)? (= 62,500 m?)
water bodies and 100 m (width) x 10 km (long) river reaches or
higher.

Errors will be characterised for (100 m)? to (250 m)? water bodies
and 50 m to 100 m (width) x 10 km (long) river reaches

<10 cm when averaging over water area >1 km?,
<25 cm when averaging over (250 m)? <water area <1 km?,

1.7 cm/km for evaluated river reaches when averaging over water

area>1 km?
<15 % for evaluated water body and river reaches
<25 % of total characterised water body and river reaches

3 months of fast sampling calibration orbit + 3 years of nominal
orbit

68% or more of the contaminated data should be correctly

flagged

>90 % of all ocean/continents within the orbit during 90 % of

operational time

Coincident WSE and water extent information at the global scale, with the

accuracy, spatial and temporal resolutions reported above is expected to yield major

advances in hydrology, and will present many new research opportunities especially in

data sparse regions. SWOT data resolution and accuracy will surpass the requirements

for many large river hydrodynamics applications, and since it was first proposed over a

decade ago, research efforts into how to utilise its data have been growing. Much of this

research has focused on addressing the limitations of SWOT, which are largely a result

of complementary global high accuracy terrain data and bathymetry data being

unavailable. Another limitation is the impact of vegetation on SWOT’s elevation and

inundation extent measurements, which remains poorly understood (Rodriguez, 2016).



Chapter 2 38

This is important because many of the world’s large rivers are located in equatorial
regions, where vegetation coverage is dense and widespread on floodplains. Many large
rivers also interact with heavily vegetated wetlands. Research into SWOT’s handling of
inland water obscured by emergent vegetation is ongoing.

Another ongoing area of research is SWOT’s approach to multichannel rivers.
Currently, SWOT discharge estimation algorithms work with reach-averaged hydraulic
variables lumped into an effective single channel, and do not attempt to resolve hydraulic
conditions in individual channel threads (Rodriguez and Frasson, 2020). However,
providing channel threads are over 100 m wide, it should be possible for SWOT to obtain
water surface extent, elevation, and slope through individual channel threads, along with
inundation patterns and elevations that occur on mid-channel islands. Whether or not
this channel thread information would improve upon the discharge estimates derived
from lumped effective single channel approach remains to be seen. Besides discharge
estimation, these hydraulic observations through channel threads and on mid-channel

islands will be of significant value to large river hydrodynamic research.

There is a need to look beyond SWOT and leverage its data long after its three
year operational life, bearing in mind that further dedicated inland surface water sate llites
may not be financially sustainable. This appears to have received limited attention in
scientific publications. One possible longer term future strategy for earth observation may
involve constellations of identical, low-cost microsatellite altimeters launched by the
same rocket (CNES, 2019a). This would reduce development and launch costs and
launch costs too for micro-satellites launched by the same rocket, but prompts questions
about what the minimum number of satellites needed would be and their distribution in

time and space.
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2.4  Modelling Large River hydrodynamics

Free surface hydrodynamic fluid flow is described by the Navier—Stokes
equations, which are derived by applying the conservation of mass and momentum to
describe the motion of a viscous fluid in three dimensions (Douglas et al., 2001).
Hydrodynamic modelling traditionally involves applying these equations (or
simplifications of) to predict spatially distributed dynamic flow conditions including WSE,
velocity, inundation extent, and discharge. The term ‘hydraulic model’ is often used
interchangeably with ‘hydrodynamic model’, here the interpretation is that the latter term
specifically refers to the simulation of unsteady (i.e. dynamic) flow conditions, whereas
the former may involve unsteady or steady state flow conditions. Inputs into
hydrodynamic models include river flow hydrographs at particular locations, topography
and bathymetry, and a hydraulic roughness coefficient. Models are usually calibrated by
adjusting the hydraulic roughness coefficient, which may be spatially uniform or variable.
Bathymetry is also sometimes treated as a calibration parameter when observed
bathymetry data is not available. Flood extent and WSE observations are the most
commonly used sources of data for calibrating and validating hydrodynamic models of
large rivers, and are now routinely obtained from SRS for this purpose (Grimaldi et al.,
2016). Discharge data is also sometimes used to calibrate and validate such models
(e.g. Schneider et al., 2017), and although seldom used, observed velocity data can been

used in calibration and validation (Nicholas et al., 2012).

Inverse approaches to hydrodynamic modelling are less common, but their use
is increasing. They entail a reversal of the traditional inputs and outputs, allowing
bathymetry and discharge information to be estimated by using inputs of dynamic
inundation extent and WSE information (e.g. Durand et al., 2016). The growth of inverse
modelling approaches on large rivers is being driven by a scarcity of in-situ discharge
and bathymetry information, combined with the increasing availability of remotely sensed
dynamic WSE and inundation extent data. One of the key aims of the SWOT mission is
to provide the data to drive inverse models that will estimate discharge (Biancamaria et
al., 2016).

Models may serve to inform any number of the hydrodynamic research drivers
discussed in section 2.2, but are often developed with a specific purpose in mind. Every
model is unique in terms of the purpose(s) it is intended to serve, and several key fa ctors
that are discussed in the following sections, namely the available input data, the spatial

structure, resolution, and numerical formulation adopted.
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2.4.1 Model Numerical Formulations

To model river hydrodynamics the shallow water approximation of the Navier—
Stokes equations is usually employed. This approximation assumes that the horizontal
length scale is much larger than the characteristic vertical length scale, and the
characteristic vertical velocity is small in comparison with the characteristic horizontal
velocity. This is implemented mathematically by integrating the Navier-Stokes equations
over the flow depth assuming a hydrostatic pressure distribution, which yields the two
dimensional (2D) shallow water equations (SWEs). De Almeida and Bates (2013)
present the SWEs in the following form:

dh OQx aqy
- + — + _ = 0 -
e 92 3y Eq. 2-2
—— —
Conservation of Conservation of

mass in time mass in space

04 J d dh+2)  gnliqllgy
- +—(u +—( + h + =0 Eg.2-3
—— —_— —_—
Local | Convective Water slope Friction
acceleration acceleration (pressure gradient
and bed slope)
aq, J d o(h+2)  gnliqllgy
—-— +=—(vq,)++(uqy,) + h + =0 Eq.24
—— -
Local Convective Water slope Friction
acceleration acceleration (pressure gradient

and bed slope)

Where x and y are the two Cartesian directions, t is time, h is water depth, g,
and q,, are the x and y components of the discharge per unit width, ||q|| is the magnitude

of discharge per unit width, u, v are the x and y components of the flow velocity, z is the

bed elevation, g is acceleration due to gravity, and n is the manning friction coefficient.

Models often employ approximations of the 2D SWEs. These include the local
inertial, diffusive, and kinematic formulations where certain terms are assumed to be
negligible relative to other terms (Hunter et al., 2007), and / or use of the one dimensional
(1D) St Venant formulation whereby the 2D SWEs are width integrated, thus assuming
flow to be unidirectional. Their reduced physical complexity means they are
computationally faster. Table 2-6 summarises the key simplifications used. Despite
continuing advances in computational power, these simplified formulations remain we I

utilised when modelling the hydrodynamics of large rivers over long reaches. This
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includes the use of 1D formulations to model flow in 2D, by decoupling formulae in the X

and Y directions on a 2D orthogonal grid (e.g. Bates and De Roo, 2000; Bates et al.,
2010; Jamieson et al., 2012).

Table 2-6. Simplified Formulations of the 2D SWEs.

Formulation Description Example large river
application
2D SWE Derived by depth integrating the Parana (Nicholas et al.,

1D St Venant *

Local inertial

approximation

Diffusive wave

approximation

Kinematic wave

approximation

Navier Stokes equations

Simplifies the SWEs by assuming
flow is unidirectional, by width

integrating the SWEs.

Simplifies the SWEs by assuming
the convective acceleration term is

negligible.

Simplifies the SWEs by assuming

the following terms are negligible:
- Local acceleration,
- Convective acceleration.

Simplifies the SWEs by assuming

the following terms are negligible:
- Local acceleration,
- convective acceleration,

- Pressure gradient component

of water slope term.

2012)

Amazon (Trigg et al., 2009)

Zambezi (Schumann et al.,
2013)

Amazon (Rudorff et al.,
2014)

Amazon (Wilson et al.,
2007)

1.

Local inertial, diffusive wave, and kinematic wave formulations are combined with

the 1D St Venant approximation in all the examples given for these formulations.

The suitability of each of these simplified formulations for modelling different

types of free surface flow conditions has been widely explored for decades (e.g. Ponce
et al., 1978; Vieira, 1983; Moussa and Bocquillon, 1996; Tsai, 2003). A key parameter

that recurs in this literature and is the Froude number. The Froude number (Fr)
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represents the dimensionless ratio of inertial forces to gravity forces acting on free

surface flow (Chow, 1959), and is given by:

U
Fr = —

A Eq. 2-5
9B
Where U is the mean channel velocity, g is the acceleration due to gravity, 4 is
wetted cross-sectional area, and B is the free surface width. When the Froude number
is less than 1, gravity forces dominate the inertial forces, and the flow conditions are
termed subcritical. Thus, when the Froude number is sufficiently small, the inertial forces
(i.e. the local and convective acceleration terms in the SWE) can be assumed negligible,
enabling the local inertial and diffusive wave formulations to be used. Indeed,
implementations of such formulations are sometimes referred to as ‘low Froude’ models

(e.g. Garambois and Monnier, 2015).

The local inertial approximation was explored relatively recently by De Almeida
and Bates (2013), who benchmarked a local inertial model against a SWE model using
four test cases. They evaluated errors in WSE prediction and flood wave propagation
speed along a rectangular channel reach experiencing subcritical flow, i.e. a Froude
number <1. Errors introduced by the local inertial approximation were found to be
relatively low (depth estimation errors were no greater than 4%) for flow conditions with
low Froude numbers (0-0.5) and low water surface slopes (less than 3%). Increasing the
Froude number alone (up to 0.95) had little effect on errors, but when combined with an
increase water surface slope, the errors became more substantial (up to 20% depth
error), reflecting an increase in the convective acceleration component of the flow. Errors
in flood wave propagation speeds were also found to be substantial for higher Froude
numbers. This research implies that the local inertial approximation is suitable for the
vast majority of large river flow conditions, because their flow conditions are

predominantly highly subcritical and their bed slopes very gentle.

Trigg et al (2009) assessed the effect of a diffusive wave approximation in the
context of modelling large river hydrodynamics. Their study involved hydrodynamic
modelling of a 575 km reach of the central Amazon River, using both a 1D St Venant
formulation and a diffusive wave formulation. Evaluation of both models showed
negligible difference between the St Venant and diffusive WSE predictions (average
RMSE along the mainstem differed by only 0.025 m, a small fraction of the 12 m high

flood wave amplitude). The results were not surprising, as prior to the modelling exercise
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the authors had characterised the amazon flood wave as being diffusive, using the
methods of Vieira (1983), and Moussa and Bocquillon (1996). These methods were also
used by Tuozzolo et al. (2019) to demonstrate that a diffusive wave formulation is
suitable for use in a hydraulic model that estimates discharge along a mid -size river in
Ohio, USA.

The kinematic wave approximation is more limited in its application, because it
neglects the pressure gradient component of the water slope term, thereby assuming
that the energy grade line is parallel to the bed slope. Gradually varied flow conditions
such as backwaters and flow attenuation are therefore not accounted for, yet are known
to occur naturally in large rivers. For example, Meade et al. (1991) quantified backwater
effects in the Amazon basin and found that in the lowermost 800 km of the Madeira and
Purus tributaries experience falling river stages as much as 2~3 m higher than rising
stages at any given discharge. Kinematic wave formulations are now rarely used to
model river channel flow conditions. Even within the emerging global flood modelling
initiative, where models are used to predict flood inundation extent and depth across the
entire world, diffusive wave or local inertial formulations are increasingly being used
(Yamazaki et al., 2011; Sampson et al., 2015; Trigg et al., 2016).

2.4.2 Model Spatial Structure

Hydrodynamic models use various spatial structures to implement a numerical
formulation. Broadly speaking, these are divided into 1D and 2D categories. Within the
hydraulic modelling community the terms ‘1D model’ and ‘2D model’ generally refer to
the spatial structure adopted (i.e. not the dimensionality of the numerical formulation),
and this terminology is adopted from hereon. Models within the 1D category (usually
known as 1D models) implement formulations at nodes containing river channel
geometry information, commonly known as cross sections (e.g., Brunner and Bonner,
1994; Havng et al., 1995). The locations and orientation of nodes are user defined, and
may be dictated by where channel geometry data is available. The node cross-sectional
information is often interpolated longitudinally to facilitate computations at higher sp atial
resolution and obtain hydraulic information at locations between surveyed cross
sections, and may be extended laterally onto floodplains to enable floodplain flows to be
simulated. The assumption that flow is uni-directional is a key limitation of 1D
approaches, since flow conditions in rivers are widely 2D, and the direction of flow often
unpredictable and highly variable, particularly on floodplains, in sinuous channels, multi-
thread channels, and at confluences. All these features are commonly found on large
rivers. The 1D approach is further limited by the requirement for the user to define cross

section locations and orientation, because it effectively requires the user to determine
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the direction of flow, and select what topographic and bathymetric features to represent
in the model. These limitations to 1D approaches can be mitigated to a degree, for
example, floodplain flows can be represented with an independent set of nodes
connected in parallel with the main channel (see for example, the modelling of the
Mekong delta reported in Evans et al. (2007)), and thus allowing floodplain velocities,
flow direction, and water surface to be modelled independently from the main channel.
The floodplain nodes may employ the same numerical scheme as river cross sections,
or use a simpler ‘storage cell’ computation that calculates a flat WSE only (i.e. velocity is

assumed zero).

The limitations of 1D approaches can be largely overcome by adopting a 2D
approach. The development of 2D approaches (commonly known as 2D models,
irrespective of whether the use a 1D or 2D numerical formulation) was largely in response
to the widespread availability of spatially distributed topography data afforded by the
emergence of airborne and spaceborne remote sensing techniques such as LiDAR and
and INSAR (Sampson et al., 2016). 2D approaches entail a continuous representation of
topography on a 2D grid or mesh. 2D grids are made up of vertices that form cells, the
model formulation being implemented across each vertex. Topographic information is
located at each cell centre. Water may move across any cell vertex and therefore in two
horizontal dimensions, and is calculated by the model according to the pre-existing
hydraulic conditions and the topography. Cell shape varies between different 2D
approaches. At their simplest, cells are fixed in orientation, square in shape, and uniform
in size, forming a structured grid on which water can flow between cells in either in the X
or Y direction. Variants of the square, structured grid have been developed to improve
model efficiency (by reducing the number of cells necessary) and /or improve process
representation, although they also require additional user intervention. Key examples
include curvilinear grids (shown in Figure 2-6) adopted by software packages such as
Delft 3D (see for example, Gerritsen et al., 2008) and Mike 21C (e.g., Vested et al.,
2014). Curvilinear grids have cells that can be rectangular, curved in shape, variable in
size, and their orientation aligned with channel centrelines, effectively enabling a more
accurate representation of topography using fewer cells. Unstructured type grids employ
cells of different shapes (i.e. a variable number of vertices) and size. Cell shape variability
enables cell vertices to be aligned according to the topography in a more flexible way
than the curvilinear grid approach, potentially enabling further increases in efficiency and

/ or process representation (Hoch et al., 2018).
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(b)

Figure 2-6. Channel representation using: (a) structured square grid; (b) rectangular
curvilinear grid. From DHI Water & Environmental (2004).

Figure 2-7. The irregular grid shapes of an unstructured grid used to accurately define

channel edges and alignment. From Lintott (2017).

Regardless of grid type, 2D approaches require a far greater number of
computations than 1D approaches, as a result of the larger number of 2D vertices at
which computations are executed, and historically this has hindered the application of
2D approaches at large scales. For example, Alho and Aaltonen, (2008) constructed two
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comparative models, using a 1D approach (HEC-RAS model with 29 cross sections) and
a 2D approach (TELEMAC-2D with 17,286 nodes), and found The 1D model took five
minutes to run, whilst the 2D model took 36 hours to run (approximately 430 times
slower). It should be noted that TELEMAC-2D is a full 2D SWE model, and other 2D
approaches such as LISFLOOD-FP that use model formulations of reduced
dimensionality and neglect acceleration terms are much faster. This was illustrated by
Sanyal et al. (2014), who found a LISFLOOD-FP model to run approximately 100 times
faster than a comparative TELEMAC-2D model. Generally, the greater run times of 2D
models has become less of an issue in recent years, due to advances in computing
power. 2D approaches are now adopted even at the largest spatial scale conceivable;
i.e. in global flood models (GFMs) (Trigg et al., 2016), albeit at low spatial resolution and
using 1D diffusive or local inertial formulations on simple square grids. Simple square
grid approaches continue to widely used and actively developed (see for example, the
recent improvements to the LISFLOOD-FP code reported by Neal et al. (2018)), largely

because of the minimal user intervention they require.

Another key development of 2D approaches has been the emergence of the sub-
grid capability, whereby individual grid cells are parameterised with fine scale (i.e. ‘sub-
grid’ scale) topographic information. When model spatial resolution is reduced to manage
the computational power requirements of modelling large spatial domains and long
timescales, important topographic features and physical processes may be neglected.
For example, Yu and Lane (2006a) found that decreasing the spatial resolution of their
2D hydrodynamic model resulted in an increase the rate of flood propagation, and
changes in the direction of the propagation. In response to these findings, Yu and Lane
(2006b) developed a sub-grid scale treatment, enabling fine-scale topography and
hydraulic processes to be represented without increasing computational resolution, thus
avoiding the increase in computational expense associated with increasing model
resolution. This computational expense is significant: a 50% reduction in cell size (i.e.
one cell becomes four cells) will typically increase model run time by an order of
magnitude, on account of the increased number of computations and the reduction in
time step necessary to maintain numerical stability (e.g. Savage et al., 2016).

Unsurprisingly, sub-grid approaches are used in some GFMs (Trigg et al., 2016).

The current versions of LISFLOOD-FP and HEC-RAS are both examples of
hydrodynamic model codes that have sub-grid capability, although the two approaches
are quite different. LISFLOOD-FP uses a sub-grid procedure to enable channels smaller
than individual grid cells to be represented (Neal et al., 2012). Computations separate to

the base model of LISFLOOD-FP are carried out at each grid cell vertex using a 1D local



47 Chapter 2

inertial formulation as shown in Figure 2-8, based on input channel cross-sectional

information including width, depth, channel frictional coefficient, and shape.

a) Base model b) Sub-grid model
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Figure 2-8. Conceptual diagram illustrating sub-grid capability of LISFLOOD-FP model
code, enabling channel features smaller than individual grid cells to be represented (Neal
et al., 2012): (a) LISFLOOD-FP base model using simple structured square grid; (b)-(c)

Separate sub-grid component using 1D cross-sectional information.

The sub-grid approach employed by HEC-RAS is to provide each cell with tabular
information that describes the topography within the cell and across each cell edge. To
do this, an elevation — volume curve is generated for each cell, and a series of hydraulic
property curves are generated for each cell face (elevation vs. wetted perimeter, area,

and roughness). This is illustrated in Figure 2-9.
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Figure 2-9. Tabular information used in HEC-RAS sub-grid approach: (a) Example cell
volume vs. elevation relationship; (b)-(d) examples of the relationships at each cell
vertex; (e) example of input DEM information within each grid cell used to generate sub-
grid information. From Brunner (2016); Betsholtz and NordI6f (2017).

2.4.3 Model Discharge Data

Input data into hydrodynamic models include terrain data, hydraulic roughness
information, and water surface information used as a downstream boundary condition.
Models usually include discharge data as an input, or in the case of inverse modelling
approaches, detailed dynamic WSE and free surface width information instead. Rainfall
and evaporation data may also be input into a model if they are deemed to significantly

affect discharge within the spatial and temporal extents of the model.

Discharge data may be obtained from observations outlined in section 2.3.1, or
estimated using a hydrological model. The model purpose may dictate that hydrological
modelling to estimate discharge is required; for example, for flood forecasting where
model hydrodynamic predictions are required for the future based on current (or forecast)
precipitation observations (Cloke and Pappenberger, 2009). Flow estimation using
hydrological models is beyond the scope of this thesis, so only a very brief and simplistic
description of this topic follows. Hydrological models estimate river flows by calculating
the catchment runoff that generates river flow. To calculate runoff, hydrological models

use rainfall data as an input, and derive the water that is available for runoff by modelling
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hydrological processes such as interception, evapotranspiration, and infiltration (e.g.
Hughes, 2013). Surface and sub-surface runoff processes are then modelled to
determine streamflow. Modelling the hydrological processes requires several other
inputs, such as evapotranspiration information, soil type, land cover, and topography.
Streamflow data is required to calibrate and / or validate hydrological models, although
if the hydrological model is coupled to a hydrodynamic model, water surface information
(WSE or extent) can be used in part (Paiva et al., 2013).

There are many hydrological models available worldwide, and almost as many
methods for applying them. Unsurprisingly, the large river hydrodynamic modelling
studies that have involved flow estimation have used a variety of hydrological modelling
approaches. Examples include the work of De Paiva et al. (2013) and Fleischmann et al.
(2018), who used the Modelo de Grandes Bacias (MGB) hydrological model to simulate
discharge in the Amazon Basin and Upper Niger River Basin respectively. Schumann et
al. (2013) used the Variable Infiltration Capacity (VIC) hydrological model to estimate
discharge for input into a hydrodynamic model of the Lower Zambezi River. Hydrological
models have also been used to supplement discharge measurements with incomplete
spatial coverage, see for example Paz et al. (2011), who used the MGB model to
supplement gauged discharge data input into a hydrodynamic model of the Upper

Paraguay River Basin.

Use of hydrological models as a source of input discharge data to large river
hydrodynamic models is attractive because the inputs required can often be obtained
using remote sensing datasets, and are therefore more available than discharge
measurements. Key datasets include radar derived precipitation datasets such as those
derived from the Tropical Rainfall Measuring Mission (TRMM), other meteorological
information required to estimate evapotranspiration including temperature, wind speed,
solar radiation and humidity (datasets from the University of East Anglia's Climate
Research Unit are an example - see New et al., 2002), and land cover datasets such as
that provided by the Climate Change Initiative (Santoro et al., 2017). However, a
hydrological model introduces significant source of uncertainty to hydrodynamic model
predictions. There is significant disagreement between satellite-derived and in-situ
datasets used as hydrological model inputs, errors in precipitation datasets in particular
are known to cause large uncertainties (Voisin et al., 2008). Hydrological processes not

represented in models may also create significant uncertainty (Schumann et al., 2013).
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2.4.4 Model Topographic Data

The vast majority of large river modelling studies that involve out-of-bank flow
conditions make use of the globally available SRTM DEM (or a derivative of it) to
represent topography, as discussed in section 2.3.3. When inputted into a hydrodynamic
model, the model spatial resolution adopted is often significantly lower than the resolution
of the DEM, to manage computing resources, and also to reduce elevation error by
spatially averaging the SRTM data. SRTM elevation error reduces with spatial averaging
in proportion with the reciprocal of the square root of the number of elevation points that
are averaged, if it is assumed the terrain is flat and the errors are normally distributed
(Rodriguez et al., 2006; Neal et al., 2012). So, if four cells are spatially averaged for
example, an elevation error of 5 m at the native 90 m resolution of SRTM would reduce
to 2.5 m.

2.4.5 Model Bathymetry Data

The process of preparing bathymetry data for input into hydrodynamic models
often involves interpolation of the bathymetry measurements, in either one or two
dimensions. 1D methods involve interpolating between cross sectional data in the
stream-wise direction in order to obtain one or more cross sections in between the
surveyed cross sections. Individual elevation points from each cross section are paired
according to their relative location along the cross section, and linearly interpolated (e.g.
Evans et al., 2007). This method is usually adopted within a 1D hydraulic model
framework, and involves similar assumptions and limitations as those posed by the use
of 1D hydraulic models. 2D interpolation methods involve generating a continuous
bathymetric DEM, and may utilise one of many well established methods for spatially
interpolating terrain data, typically in raster format and in a GIS environment. There has
been some research into 2D bathymetric interpolation methods, much of which has
focussed on the treatment of river anisotropy. River channel morphology is known to be
anisotropic, varying more in the direction perpendicular to the stream-wise direction, and
several techniques have been developed to account for it. Solutions include channel
fited coordinate systems (e.g. Goff and Nordfjord, 2004), and directional inverse

distance weighting (IDW) (e.g. Merwade et al., 2006).

Particular challenges arise when interpolating multichannel river bathymetry. Use
of 1D methods by treating a multithread channel as single thread may neglect significant
morphological features such as mid-channel islands and bifurcations, and a
hydrodynamic model that does not represent such features will misrepresent in-channel

hydraulic processes. This was demonstrated by (Altenau et al., 2017a), who found the
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critical success index (CSI) of flood inundation predictions reduced by 47% when
multichannel morphology was neglected. Theoretically it would be possible to account
for multichannel morphology using a 1D method by implementing the interpolation
separately along each individual channel thread, but this would be prohibitively time
consuming to apply to the kind of river patterns shown in Figure 2-4 (the apparent
absence of any account of this being done in published scientific literature is testament
to this). The use of a 2D interpolation method is more realistic for incorporating
multichannel morphology into bathymetry, and development of a method of doing so in
an efficient manner (i.e. without extensive manual intervention that prohibits application
on large scale reaches of rivers with numerous channel threads) has begun to receive
some research attention. Specifically, (Altenau et al., 2017a) developed a custom
interpolation methodology applicable to a multichannel river with an anabranching
planform, and Hilton et al., (2019) developed a novel method of implementing a channel-
fitted coordinate system that can incorporate a mid-channel island. Neither of these
methods has been generalised for multichannel river modelling problems however, and
have only been applied to a specific type of channel pattern or a limited number of

channel threads.

As discussed in section 2.3.2, bathymetry cannot be reliably observed using
remote sensing techniques, resulting in no bathymetry data for many river reaches. This
is particularly true for large rivers in remote regions, where the resources and
infrastructure required to undertake bathymetric surveys are not well established, and
the spatial coverage requirements of very large, often multi-thread channel systems
presents a major undertaking. The bathymetry data gap has led to widespread
application of hydrodynamic modelling methods that use limited or no observed

bathymetry data to model floods.

At their simplest, these methods do not represent the river channel bathymetry,
and allow for the bathymetric volume that is missing from a remotely sensed DEM such
as SRTM by subtracting an estimate of the discharge carried by the unrepresented
portion of the channel (e.g. Bradbrook et al., 2004). Simply subtracting the estimated
channel capacity is clearly not a viable approach when in-channel hydraulic information
is required, and is problematic for even the coarsest hydraulic model approach
conceivable, for a number of reasons. In addition to the failure of this approach to
represent changes in channel capacity along a reach that will strongly control inundation
processes (Samuels, 1990), this approach also neglects important physical processes
such as transfers of momentum between the channel and the floodplain (Bradbrook et

al., 2004). There is likely to be significant error in the estimated discharge magnitude, in
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terms of how representative it is of the flow conditions represented by the DEM water
surface. Moreover, globally available DEM products do not accurately represent the
water surface of channels, and include physically unrealistic vertical steps. This DEM
water surface inaccuracy was recently assessed by Langhorst et al. (2019) who
concluded that the upcoming SWOT mission will greatly improve upon the river surface
elevation profiles provided by existing DEMs. Figure 2-10 (taken from Langhorst et al.
(2019)) shows a comparison of observed water surface profiles along the river Po in Italy

from different sources, clearly showing these vertical steps.
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Figure 2-10. Comparison of water surface profiles from different DEMs and simulated

SWOT data along a reach of the river Po, Italy. From Langhorst et al. (2019).

In light of these shortcomings of the bank-full discharge subtraction method, it is
not surprising that explicitly including channels has been shown to be crucial to the ability
of a hydraulic model to simulate large-scale hydrodynamic process such as floodplain
dynamics (Neal et al., 2012; Sampson et al., 2015). In order to do so, a considerable
number of recent studies have employed various methods of estimating bathymetry on
large rivers, including the Zambezi (Schumann et al., 2013), the Niger (Fleischmann et
al., 2018), and the Congo (O’Loughlin et al., 2020).

Typically, estimation of bathymetry entails calculation of depth based on remotely
observed river geometry such as channel width or upstream drainage area, and an
assumed generalised channel shape such as a rectangle, triangle, or a parabola (e.qg.
Neal et al., 2015). For example, Sampson et al. (2015) present a method of estimating
bathymetry designed for application in a GFM. They calculate channel depth from a bank
full discharge (assumed equal to a 1 in 2 year return period), a longitudinal slope
measured from a DEM, an assumed hydraulic roughness parameter, and uses

manning’s equation, thereby assuming uniform flow conditions. When implemented, the
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model showed a clear improvement in performance compared with models with no
channel representation. Neal et al. (2012) developed a similar method, designed for
application over large and data sparse areas. They modelled the hydrodynamics of an
800 km reach of the river Niger in Mali with no bathymetry data, by representing
bathymetry with two parameters to be calibrated, alongside the hydraulic roughness
coefficient. Dynamic WSE and flood extent data are used as model calibration data, and
there is no requirement to estimate discharge or assume uniform flow conditions as is
the case for the approach of Sampson et al. (2015). Whilst the model showed significant
improvement compared to a model without channel representation, the authors
concluded that a major inaccuracy in the model’s simulation of WSE was due to the use
of a global parameterization of the main channel (i.e. assuming the same channel

parameters across the entire 800 km model domain).

There are a number of challenges associated with estimating bathymetry. Among
these is the joint estimation problem associated with treating both friction and bathymetry
as unknowns (Bates et al., 2014). By examining the Manning formula for uniform flow
conditions (written in section 2.3.2), it can be seen that the bathymetric component AR
trades off against Manning’s n such that a whole series of n-AR combinations will
provide the correct value of Q. In the context of hydraulic modelling, this means that
modelled WSE along a channel may closely match observed values with a channel bed
elevation that is represented, for example, as being lower than reality, but is
compensated for by increasing the flow resistance, thereby increasing the depth of the
flow conditions so as to elevate WSE to the observed value. However, the deep flow
conditions result in lower modelled water velocities and an incorrect representation of
the speed at which the flood wave travels along the river. Neal et al. (2015) quantified
this along a 30 km reach of the River Severn (a mid-size river) in the UK, finding that
inflation of Manning’s n by 0.015-0.02 in order to compensate for error in channel
geometric representation resulted in a delay in flood wave arrival time of 17%. Over
longer reaches, the cumulative negative effect of friction on flood wave travel will

increase.

Models that estimate bathymetry to simulate the hydrodynamics of large river
floods often continue to rely on relatively inaccurate DEM elevations (see Figure 2-10)
as a reference from which to subtract an estimated channel depth in order to derive river
bed elevation (e.g. Fleischmann et al., 2018). This is increasingly being resolved by using
more accurate longitudinal WSE profiles afforded by satellite altimeters (see section
2.3.5). For example, Schneider et al. (2017) used CryoSat-2 WSE information to

calibrate modelled channel bed elevations along the Brahmaputra River in Bangladesh,
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India and China. A similar approach is also being used in models developed to estimate
bathymetry and thereby discharge. In anticipation of the data that SWOT will provide
(see section 2.3.6), discharge estimation models seek to utilise remotely sensed dynamic
observations of river water surface width, elevation, and slope, to estimate bathymetry
and thereby discharge by solving some variant of the Manning formula. Durand et al.
(2016) conducted a thorough review of discharge estimation algorithms by testing
different algorithms on approximately 20 medium to large rivers, and found over 80% of
the single channel rivers estimated discharge within 35% relative root mean square error.
Errors were greater on multichannel rivers however, due to use of the gross simplification
of the channel geometry to an effective single channel that is necessary to estimate
bathymetry.

The apparent necessity of simplifying river channel geometry information for input
into hydrodynamic models of large rivers, whether due to a lack of observational data or
use of coarse spatial resolution to manage computational resources, remains a key
limitation of these models. The methods that are employed to derive the data and the
simplified channel geometries that are adopted remain poorly validated: the performance
of many channel simplification methods have been assessed simply by comparison with
another model that has no channel representation, in order to demonstrate improvement.
Moreover, validation using observed data has mostly involved comparing modelled and
observed WSE or flood extent, which are a product of multiple sources of error (e.g.
floodplain topography, hydrological uncertainty) and therefore do not isolate the
bathymetric error. Compounding the significant sources of model uncertainties
(discharge, topography, hydraulic roughness, flood extent) with bathymetric uncertainty
may not always be a reasonable or defensible approach when bathymetric observations
can be obtained, albeit spatially sparse observations that do not conform to traditional

bathymetry input data requirements such as those put forward by Samuels (1990).

Very few studies have looked specifically at the effect of simplifying bathymetry
on the modelled hydraulics of large rivers using observed bathymetry data. The efforts
of Trigg et al. (2009) on the Amazon and (Altenau et al., 2017a) on the Tanana are rare
exceptions that have been discussed. Dey et al. (2019) recently assessed the effect of
different bathymetric representations on 1-D hydraulic model simulations of four rivers
with varying geomorphologic characteristics, and draw the following generalised
conclusions: (1) bathymetry must accurately represent channel cross sectional area and
channel volumetric storage; (2) in the case of mapping flood extents, any channel shape
may be assumed, because accurate in-channel velocity is not essential in this case; (3)

the need for accurate modelled in-channel velocities introduces an additional
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requirement to represent channel shape in an accurate manner such that the thalweg
and wetted perimeter are well represented. These conclusions are not necessarily
applicable to large rivers however, as they are based on experiments applied to relatively
short reach lengths (10 - 60 km) of small to medium single channel rivers (2—100,000
km? drainage area).

2.5 Concluding Remarks

Large rivers can be characterised as having very low water surface gradients
(~10 cm/km or less), low Froude numbers (~0.3 or less), very high channel width to depth
ratios, and complex multithreaded channel planform patterns. Modelling the
hydrodynamics of large rivers can inform many important earth science and development
issues, perhaps the most prominent of these being the exposure of populations to flood
risk in a changing climate. Flood risk aside, the hydrodynamic processes occurring along
large rivers are a key determinant of globally important biogeochemical processes such
as the outgassing of carbon dioxide and methane, and maintain some of the world’s most
biologically diverse and productive ecosystems. In this context, wetlands that interact
with large river systems are particularly noted for being biogeochemical and ecological
hotspots. Large rivers enable inland water navigation, which is an important and
sustainable form of transport across large remote regions often lacking land transport
infrastructure. Hydrodynamic modelling is a prerequisite of many sediment dynamics

studies, and can also inform the infection dynamics of water related diseases.

In recent years hydrodynamic modelling of large rivers has become increasingly
employed in order to exploit the growing number of globally available remotely sensed
observations of flood extent, water surface elevation, and terrain data, especially for the
purposes of estimating river discharge in light of the continuing decline of in-situ flow
gauging. This has resulted in the development of modelling methodologies that are
specifically designed for large rivers in remote regions, where in-situ data is absent or
limited, but SRS datasets are plentiful. These modelling methodologies manage
computational resources by solving efficient approximations of the SWEs that assume
the acceleration terms of the momentum equation are negligible — an assumption shown
to be widely applicable to large rivers with Froude numbers less than ~0.3. Moreover,
sub-grid representations of channels and floodplain topography enable large spatial
resolutions to be adopted without significantly compromising the representation of
hydraulic processes. These methodologies have significant potential for application
globally as new SRS water surface elevation and extent datasets become available.
However, such methodologies have a number of unresolved deficiencies, one of which

is the representation of bathymetry. The difficulty is the result of a lack of pre-existing
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large river channel bathymetry data, the onerous nature of obtaining new bathymetry
data, particularly on multithreaded channel systems that prevail in large rivers, and also
the non-trivial task of spatially interpolating bathymetry data on multithreaded channels.
Large river hydrodynamic modelling methodologies circumvent this data gap by
parameterising bathymetry with one or two parameters, and treating these parameters
as variables to be estimated and calibrated alongside hydraulic roughness. Calibration
involves adjustment of the bathymetry and roughness parameters to fit the modelled

water surface to SRS observations of WSE and / or extents.

Several studies have demonstrated the efficacy of this approach, by showing
there to be significant improvement upon models that do not represent river channels, or
through validation of modelled WSE, extent or discharge, with observed data. There is
no doubt that the approach is a valuable tool for hydrodynamic modelling and exploiting
SRS datasets, but there is considerable room for more detailed investigation into the
performance of the approach in order to improve it. Geometric simplification of the river
as a single channel, with a uniform shape, and with a depth and width that is uniform
over relatively long reaches, will result in significant misrepresentation of local channel
depth, width, slope, and therefore hydraulic processes. Moreover, a lack of hydraulic
process representation will result from with neglected morphological features such as
bifurcations and mid-channel islands. Thus, the modelled channel hydraulics are likely
to be unrepresentative of reality. Whilst calibration schemes can be used to ensure
modelled WSE or extents fit observed values by locally adjusting hydraulic roughness in
a way that compensates for the bathymetric representation, the modelled channel
hydraulics will remain erroneous, and consequently the model will n