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Abstract

In this thesis we investigate the behaviour of diffusing particles in

a variety of scenarios. We are primarily interested in the case of

molecules diffusing inside a cell in the context of biological processes

where the mechanism by which a cell responds to an event occurring

on its surface may involve the transport of molecular complexes from

the cellular surface to the nucleus, and the transport of synthesised

molecules from the nuclear surface to the cellular surface.

We find the Green’s functions for diffusions in two and three dimen-

sions, respectively, on a domain bounded by non-concentric surfaces,

one absorbing and one reflecting. Exact expressions are also found

for mean hitting times and hitting densities. Our motivation is diffu-

sive transport from a nuclear surface, to a cellular surface and back.

Hence, we consider cases where the initial condition is uniformly dis-

tributed on the nuclear or cellular surface, and where the hitting den-

sity of the outward leg is the density of initial conditions for the return

leg. Mean times are calculated by integrating the Green’s functions

over the domain.

Additionally, we create a mathematical model for a specific type of

assay experiments where Coxiella burnetii bacteria are placed inside

a well and are allowed to be phagocytosed by a monolayer of mono-

cytes on the bottom of the well. We obtain an expression for the

intracellular bacterial load at any point during the experiment.
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Symbols and abbreviations

Symbols

Symbol Meaning Dimensions

a normalised radius of nucleus non-dimensional

b radius of assay well length

c normalised nuclear displacement non-dimensional

Rn radius of nucleus length

R radius of cell length

rc nuclear displacement length

kB Boltzmann’s constant mass×length2×time2

temperature

Te temperature temperature

D diffusion coefficient length2×time−1

N0 number of monocytes non-dimensional

σ surface coverage of monocytes non-dimensional

κ trapping rate length×time−1

kSM transport rate constant per cell length3×time−1

kdisk rate constant of a perfectly absorbing disk length3×time−1

C intracellular domain non-dimensional

∂C1 nuclear surface non-dimensional

∂C2 cellular surface non-dimensional

xc position of the cellular centre non-dimensional

xn position of the nuclear centre non-dimensional

θ1 angle defining x ∈ ∂C1 non-dimensional

θ2 angle defining x ∈ ∂C2 non-dimensional
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Functions

Function Meaning Dimensions

t
(2)
1 (x0) time to absorption by cellular surface time

in two dimensions

t
(2)
2 (x0) time to absorption by nuclear surface time

in two dimensions

t
(3)
1 (x0) time to absorption by cellular surface time

in three dimensions

t
(3)
2 (x0) time to absorption by nuclear surface time

in three dimensions

H
(2)
2 (x0,x) pseudo-Green’s function in two dimensions time×length−2

H
(3)
2 (x0,x) pseudo-Green’s function in three dimensions time×length−2

G
(2)
1 (x0,x) Green’s function with absorbing cellular time×length−2

surface in two dimensions

G
(2)
2 (x0,x) Green’s function with absorbing nuclear time×length−2

surface in two dimensions

G
(3)
1 (x0,x) Green’s function with absorbing cellular time×length−2

surface in three dimensions

G
(3)
2 (x0,x) Green’s function with absorbing nuclear time×length−2

surface in three dimensions

ε
(2)
0 (θ2) hitting density on the cellular surface non-dimensional

in two dimensions with no target

ε(2) (θ2) hitting density on the cellular surface non-dimensional

in two dimensions

ε(3) (θ2) hitting density on the cellular surface non-dimensional

in three dimensions
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Function Meaning Dimensions

T
(2)
1 (θ1, a, c) mean time for absorption by cellular surface time

in two dimensions

T
(2)
2 (θ2, a, c) mean time for absorption by nuclear surface time

in two dimensions

T
(3)
1 (θ1, a, c) mean time for absorption by cellular surface time

in three dimensions

T
(3)
2 (θ2, a, c) mean time for absorption by nuclear surface time

in three dimensions

T̄
(2)
1 (a, c) average mean time for absorption by cellular surface time

in two dimensions

T̄
(2)
2 (a, c) average mean time for absorption by nuclear surface time

in three dimensions

T̄
(3)
1 (a, c) average mean time for absorption by cellular surface time

in two dimensions

T̄
(3)
2 (a, c) average mean time for absorption by nuclear surface time

in three dimensions
¯̄T

(2)
1 (a) global mean time for absorption by cellular surface time

in two dimensions
¯̄T

(2)
2 (a) global mean time for absorption by nuclear surface time

in two dimensions
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Abbreviations

MOI multiplicity of infection

FPT first passage time

NEP narrow escape problem

MFPT mean first passage time

Dstl Defence Science and Technology Laboratory

CDC Centers for Disease Control and Prevention

GMSV generalized method of separation of variables

ISLAE infinite system of linear algebraic equations
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Chapter 1

Introduction

1.1 Brownian motion

The botanist Robert Brown discovered in 1827 that particles of sufficiently small

size are in a constant state of random motion called Brownian motion or diffusion.

The average kinetic energy of a particle at absolute temperature Te is equal to

kTe/2 along the axis of motion, where k is the Boltzmann constant. A particle

of mass m and velocity vx has kinetic energy mv2
x/2 and, as a result, the root-

mean-square velocity is deduced to be:

〈v2
x〉

1
2 =

√
kTe
m
,

where 〈 〉 is the average over an ensemble of similar particles.

Particles of small size such as molecules, organelles and cells can be described

as undergoing Brownian motion. Berg (1993) gives the following example to

illustrate this point: lysozymes are proteins with molecular weight (mass of one

mole of a substance, or 6 × 1023 molecules) of 1.4 × 104g and so the mass of

one molecule is m = 2.3 × 10−20g. Given the value of kTe at 300 K (27 ◦C) is

4.14 × 10−14 g cm2/s2 the root-mean-square velocity is 〈v2
x〉

1
2 = 1.2 × 103cm/s.

Without any obstruction, this particle would travel the length of an average

classroom in approximately one second. However the particle is confined in an

aqueous medium and it cannot travel too far before hitting other water molecules.

As a consequence, the particle is forced to wander in the medium executing a

random walk.
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1.1 Brownian motion
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Figure 1.1: Particles which are confined initially in a small space (a) will diffuse

outwardly (b).

If a region contains a number of diffusing particles as shown in Figure 1.1(a) then,

if a period of time ∆t has passed, the particles will have dispersed in all directions

as shown in Figure 1.1(b).

In the following sections, dealing with Brownian motion, we will be following the

work of Berg (1993).

1.1.1 One dimensional random walk

n− 2
n− 1

n

n+ 1
n+ 2

pq

Figure 1.2: Random walk of particle located at x = n which can move to the

left with probability p = 1/2 and to the right with probability q = 1/2 (where

p+ q = 1).

In order to better understand diffusion, let us focus on the movement of particles

2



1.1 Brownian motion

along a single axis. We assume that the particles start at position x = 0 at time

t = 0 and they move according to the following rules (see Figure 1.2):

1. Every particle takes a step to either the left or the right every τ seconds

moving with velocity ±vx a distance of δ = ±vxτ . We will assume, for

simplicity, that τ and δ are constant although, in reality, they will depend on

the size of the particle, properties of the liquid and the absolute temperature

T .

2. Each particle is equally likely to move to the right or to the left with prob-

ability 1/2. This is due to the water molecules which interact with the

particles causing them to lose any knowledge of the previous step. As a

result, the walk is not biased.

3. Particles move independently of each other because they do not interact.

In reality, this is true if the suspension of particles is reasonably dilute.

Two consequences of these three rules are that:

(a) the mean position of the particles does not change with time and remains

x = 0;

(b) the root-mean-square displacement is proportional to the square root of

time, but not time.

These propositions will be proved bellow using an iterative procedure. We will

consider a group of N particles and let xi(n) be the position of the i−th particle

after the n-th step. From rule 1 we know that the position of a particle after the

n-th step is different by ±δ from its position after the (n− 1)-th step:

xi(n) = xi(n− 1)± δ. (1.1)

From rules 2 and 3, we know that roughly half the particles will move by +δ and

the other half by −δ. The mean displacement of the particles after the n−th step

is calculated by summing the positions of the particles and dividing by N :

〈x(n)〉 =
1

N

N∑
i=1

xi(n). (1.2)

3



1.1 Brownian motion

t = 4

t = 2

t = 1

Figure 1.3: The probability of finding the particles at position x and times t = 1, 2

and 4 given that the particles start at x = 0 at t = 0.

Using (1.1) in (1.2) we obtain:

〈x(n)〉 =
1

N

N∑
i=1

[xi(n− 1)± δ] =
1

N

N∑
i=1

xi(n− 1) = 〈x(n− 1)〉. (1.3)

The second term in the brackets averages to zero given that the plus sign is

present in half the cases and the minus is present in the other half. As a result,

equation (1.3) tells us that the mean position of the particles does not change

with time and given that all the particles start at x = 0 then their mean position

remains zero. The spread of the particles is symmetric about the origin as seen

in Figure 1.3.

An adequate measure of particle spread is the root-mean-square displacement

〈x2(n)〉1/2 Berg (1993). This is because the square of a number is always non-

negative and so summing over their square roots cannot give zero. We take the

square of xi(n) in (1.1):

x2
i (n) = x2

i (n− 1)± 2δxi(n− 1) + δ2.

Then the mean is:

〈x2(n)〉 =
1

N

N∑
i=1

x2
i (n),

which is:

〈x2(n)〉 =
1

N

N∑
i=1

[
x2
i (n− 1)± 2δxi(n− 1) + δ2

]
= 〈x2(n− 1)〉+ δ2. (1.4)

4



1.1 Brownian motion

Here, the second term in brackets averages to zero again given that half the

terms are negative and half are positive. Since 〈x2(0)〉 = 0 we deduce from (1.4)

that 〈x2(1)〉 = δ2, 〈x2(2)〉 = 2δ2 and 〈x2(n)〉 = nδ2. As a result, the mean-square

displacement is proportional to the number of steps n while the root-mean-square-

displacement is proportional to the square root of n. From rule 1 we know that

t = nτ is the time the particles need to execute n steps. It follows that the

mean-square displacement and root-mean-square displacement are proportional

to t and square-root of t, respectively. This proved the second proposition (b).

Writing n = t/δ then the mean-square-displacement becomes

〈x2(t)〉 =
t

τ
δ2 = 2Dt,

where

D =
δ2

2τ
, (1.5)

is the diffusion coefficient which characterises the movement of particles of a given

type in a given medium at a specific temperature. As a result, the root-mean-

square displacement is:

〈x2(t)〉1/2 =
√

2Dt.

1.1.2 Random walks in two and three dimensions

We can apply rules 1 to 3 for every dimension and we assume that motion in each

direction is statistically independent then

〈r2〉 = 4Dt,

in, two dimensions, and

〈r2〉 = 6Dt,

in three dimensions. Here r2 = x2 + y2, in two dimensions, and r2 = x2 + y2 +

z2, in three dimensions, is the distance from the origin to (x, y) and (x, y, z),

respectively.

We simulate a random walk and plot it in Figure 1.4 where movement in the x and

y directions happen simultaneously so that motion is diagonal. We observe that

since exploration over short distances takes significantly less time than exploration

5



1.1 Brownian motion

Figure 1.4: An plot of a two dimensional random walk of 104 steps with diffusion

coefficient D = 0.5.

over long distances then the random walk will explore a region of space throughly.

However, a random walk is not biased toward regions of space it has explored

neither toward those it has not explored Berg (1993).

1.1.3 Fick’s equations

When discussing diffusion, a starting point is represented by Fick’s equations

which are differential equations that describe the spatial and temporal variation of

nonuniform distributions of particles Berg (1993). We will derive these equations

starting from the random walk model. Suppose we know the number of particles

at each point x at time t (see Figure 1.5). We want to know how many particles

will move across the unit area in unit time from point x to point x + δ, and

subsequently, what is the net flux Jx in the x direction. At time τ , after one step,

half the particles, located initially at point x, will have moved to the right across

the dashed line and half the particles located initially at x+ δ will have moved to

the left across the dashed line. The net number of particles crossing the dashed

6



1.1 Brownian motion

x x+ δ

N(x) N(x+ δ)

Figure 1.5: At time t, there are N(x) and N(x + δ) at position x and (x + δ),

respectively. At time t+ τ , half of the particles at each point will have moved to

the right and half to the left.

line from the left to right is:

−1

2
[N(x+ δ)−N(x)] .

To obtain the net flux we divide the above expressing by the area normal to the

x axis, A, and by the time interval τ :

Jx = −1

2

[N(x+ δ)−N(x)]

Aτ
.

Multiplying by δ2/δ2 and rearranging we obtain:

Jx = − δ
2

2τ

1

δ

[
N(x+ δ)

Aδ
− N(x)

Aδ

]
.

The quantity δ2/2τ is the diffusion coefficient D defined in (1.5). The number

of particles per unit volume at point x + δ is N(x + δ)/Aδ which we denote as

the concentration C(x + δ). Similarly N(x)/Aδ is the concentration C(x). As a

result, we have:

Jx = −D1

δ
[C(x+ δ)− C(x)] .

Taking δ → 0, and using the definition of partial derivatives, we obtain:

Jx = −D∂C
∂x

. (1.6)

This is Fick’s first equation which states that the net flux at x ant t is proportional

to the slope of the concentration at x and t where the constant of proportionality
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1.2 Mean time to capture

is −D. We observe that when we defined D = δ2/2τ in (1.5) the reason for the

factor 1/2 was to make Fick’s first equation more tidy Berg (1993).

Fick’s second equation is derived from the first with the condition that total

number of particles is constant (no particles are destroyed or created). Consider

a box as the one shown in Figure 1.6, then in the time interval [0, τ ], a number of

Jx(x)Aτ particles will enter from the left and a number of Jx(x+ δ)Aτ will leave

from the right. Given that the volume of the box is Aδ, the number of particles

per unit volume in the box change at the rate:

1

τ
[C(t+ τ)− C(t)] = −1

τ

[Jx(x+ δ)− Jx(x)]Aτ

Aδ

= −1

δ
[Jx(x+ δ)− Jx(x)] .

Taking the limit τ → 0 and δ → 0 we obtain:

∂C

∂t
= −∂Jx

∂x
.

This, when combined with (1.6), gives:

∂C

∂t
= D

∂2C

∂x2
, (1.7)

which is Fick’s second equation, or the heat or diffusion equation. It states that

the rate of change in time of the concentration at x and t is proportional to the

curvature of the concentration at x and t where the constant of proportionality

is D.

1.2 Mean time to capture

If a diffusing particle starts at x = x1 in a one dimensional domain [0, x2] as

indicated in Figure 1.7, where 0 ≤ x1 ≤ x2, what is the mean time T (x1) for the

particle to reach one of the absorbing boundaries at x = 0 or x = x2? In order

to answer this question, we will make use of random walks. A particle starts

at position x at time t and it can move to the right or to the left, with equal

probability, a distance of δ every τ seconds. As a result, at time τ the particle will

be at position x + δ, with probability 1/2, or at position x − δ with probability

8



1.2 Mean time to capture

Jx(x, t) Jx(x+ δ, t)

area A

x x+ δ

Figure 1.6: Fluxes through the faces of a thin box which extends from x to x+ δ

and has area, normal to the x axis, A.

1/2. The mean time to hit the absorbing boundaries from these positions are

T (x+ δ) and T (x− δ), respectively. As a result, we have:

T (x) = τ +
1

2
[T (x+ δ) + T (x− δ)] .

Rearranging terms and diving the expression by 2/δ we obtain:

1

δ
[T (x+ δ)− T (x)]− 1

δ
[T (x) + T (x− δ)] +

2τ

δ
= 0.

Taking the limit δ → 0 we get:

dT

dx

∣∣∣∣
x

− dT

dx

∣∣∣∣
x−δ

+
2τ

δ
= 0.

Finally, we divide by δ and taking δ → 0 in the above expression:

d2T

dx2
= − 1

D
,

where we made use of the definition of the diffusion coefficient D.

This differential equation for the mean time T (x) can be solved given appropriate

boundary conditions. If the particle is at the absorbing boundary, the mean time

to capture is zero. If the particle is at the reflecting boundary, the mean time to

capture does not change with x, i.e. dT/dx = 0 at the boundary.
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1.2 Mean time to capture

x = 0 x = x1 x = x2

C = 0 C = 0

Figure 1.7: Fluxes through the faces of a thin box which extends from x to x+ δ

and has area, normal to the x axis, A.

If the boundaries at x = 0 and x = x2 are absorbing then the mean time for a

particle starting at x is:

T (x) =
1

2D

(
x2x− x2

)
.

For the two and three dimensional cases the mean time T satisfies the following

equation:

∇2
xT (x) = − 1

D
, (1.8)

where ∇2
x is the Laplacian in two and three dimensions, respectively.

1.2.1 From nuclear surface to cellular surface

If a particle diffuses in a two dimensional concentric annular region, as shown in

Figure 1.8, we want to know what is the mean time to absorption under different

boundary and initial conditions. For the following calculations we define Rn to

be the radius of the inner circle and R to be the radius of the outer circle.

We define the following mean time:

T
(2)
1 (r) = mean time for a particle starting at r to hit r′ = R,

10



1.2 Mean time to capture

R

Rn

y

x

Figure 1.8: Plot of concentric annular region.

which satisfies:
1

r

d

dr

(
r

d

dr
T

(2)
1 (r)

)
= − 1

D
, (1.9)

coupled with appropriate boundary conditions:

T
(2)
1 (R) = 0, (1.10)

d

dr
T

(2)
1 (r)

∣∣∣∣
r=Rn

= 0. (1.11)

Multiplying (1.9) by r and then integrating twice with respect to r we obtain:

T
(2)
1 (r) = − r2

4D
+ A log r +B.

From the boundary conditions we deduce:

d

dr
T

(2)
1 (r)

∣∣∣∣
r=Rn

= 0⇒ −Rn

2D
+

A

Rn

= 0⇒ A =
R2
n

2D
,

T
(2)
1 (R) = 0⇒ −R

2

4D
+ A logR +B = 0⇒ B =

R2

4D
− R2

n

2D
logR.

As a result we obtain the mean time to absorption starting at r:

T
(2)
1 (r) =

R2 − r2

4D
+
R2
n

2D
log

r

R
. (1.12)
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1.2 Mean time to capture

1.2.2 From cellular surface to nuclear surface

If instead of (1.10) and (1.11) we have:

T
(2)
2 (Rn) = 0, (1.13)

d

dr
T

(2)
2 (r)

∣∣∣∣
r=R

= 0. (1.14)

Then we want to know the following mean time:

T
(2)
2 (r) = mean time for a particle starting at r to hit r′ = Rn,

which satisfies:
1

r

d

dr

(
r

d

dr
T

(2)
2 (r)

)
= − 1

D
. (1.15)

Multiplying (1.15) by r and then integrating twice with respect to r we obtain:

T
(2)
2 (r) = − r2

4D
+ A log r +B.

From the boundary conditions (1.13) and (1.14) we deduce:

d

dr
T

(2)
2 (r)

∣∣∣∣
r=R

= 0⇒ − R

2D
+
A

R
= 0⇒ A =

R2

2D
,

T
(2)
2 (Rn) = 0⇒ −R

2
n

4D
+ A logRn +B = 0⇒ B =

R2
n

4D
− R2

2D
logRn.

As a result we obtain the mean time to absorption starting at r:

T
(2)
2 (r) = −r

2 −R2
n

4D
+
R2

2D
log

r

Rn

. (1.16)

1.2.3 Three dimensions

If, instead of a circular concentric domain, we wish to investigate the mean time

in a spherical concentric domain, with the radius of the outer sphere equal to

R and the radius of the inner sphere equal to Rn, we solve (1.8) in spherical

coordinates, with appropriate boundary conditions, and obtain:

T
(3)
1 (r) =

R2 − r2

6D
+
R3
n

3D

(
1

R
− 1

r

)
, (1.17)
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1.3 Absorption probability

and

T
(3)
2 (r) =

R2
n − r2

6D
+
R3

3D

(
1

Rn

− 1

r

)
, (1.18)

where

T
(3)
1 (r) = mean time for a particle starting at r to hit r′ = R,

and

T
(3)
2 (r) = mean time for a particle starting at r to hit r′ = Rn.

1.3 Absorption probability

Consider the situation discussed at the beginning of Section 1.2 but instead of

the mean time to capture T (x) we want to calculate the probability P (x) of the

particle being absorbed at x = 0 before x = x2 given that it starts at point x1.

Making use of the random walk model and the arguments used for deriving T (x)

we obtain the following:

P (x) =
1

2
[P (x+ δ) + P (x− δ)] ,

from which we deduce that:
d2

dx2
P (x) = 0.

The boundary conditions for the capture of a particle at x = 0 rather than at

x = x2 are P (0) = 1 and P (x2) = 0, respectively. As a result, the capture

probability is:

P (x) =
x2 − x
x2

.

In two and three dimensions the absorption probability P satisfies Laplace’s equa-

tion:

∇2
xP (x) = 0.
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1.4 Survival function

1.3.1 Hitting the nuclear surface

Turning again to the case of diffusion in a concentric two dimensional annulus we

want to calculate the following probability in two dimensions:

P (r) = Prob(a particle is eventually absorbed at r′ = Rn| starts at r). (1.19)

This probability satisfies the following differential equation:

1

r

d

dr

(
r

d

dr
P (r)

)
= 0, (1.20)

with boundary conditions:

P (Rn) = 1, (1.21)

d

dr
P (r)

∣∣∣∣
r=R

= 0. (1.22)

Multiplying (1.20) by r and then integrating twice with respect to r we obtain:

P (r) = A log r +B,

where A and B are constants.

From (1.22) we deduce that A = 0 and (1.21) gives us that B = 1. This tells us

that P (r) = 1, i.e. the particle will always be absorbed at the inner circle.

1.4 Survival function

A Brownian particle is defined to be “alive” at time t if it has not yet been

absorbed. Knowing this, we define the following probability:

S(r, t) = Prob(a particle is “alive” at r at time t),

which satisfies Fick’s second equation (1.7):

∂

∂t
S (r, t) = D∇2S (r, t) , (1.23)

where D is the diffusion coefficient.

We wish to calculate the probability that a Brownian particle is “alive” at time t

while diffusing inside a concentric annular region (see Figure 1.8) with absorbing

inner boundary and reflecting boundary.
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1.4 Survival function

1.4.1 Two dimensions

In two dimensions, the diffusion equation can be written as:

∂

∂t
S (r, t) =

D

r

∂

∂r

(
r
∂

∂r
S (r, t)

)
. (1.24)

Our probability also satisfies the following boundary and initial conditions:

S(Rn, t) = 0, t ≥ 0, (1.25a)

∂

∂r
S(r, t)

∣∣∣∣
r=R

= 0, t ≥ 0, (1.25b)

S(r, 0) = 1, 0 < Rn < r ≤ R. (1.25c)

We observe from (1.25a) and (1.25b) that there is a discontinuity in S at t = 0

as r tends to Rn from above. We look for a separable solution of (1.24) of the

form S(r, t) = R(r)T(t) and as a result the diffusion equation becomes after

simplification:
R

D

dT

dt
= T

d2R

dr2
+

1

r
T

dR

dr
. (1.26)

Multiplying equation (1.26) by 1
RT

we obtain:

1

DT

dT

dt
=

1

R

d2R

dr2
+

1

rR

dR

dr
. (1.27)

We observe that the left-hand side of (1.27) is a function of t while the right-hand

side is a function of r and we deduce that:

1

DT

dT

dt
=

1

R

d2R

dr2
+

1

rR

dR

dr
= −λ2,

where λ is a constant. Here we choose the constant to be −λ2 in order to ensure

that the time function does not grow exponentially, as a consequence the survival

function S(r, t) will be finite when t → +∞ (from Section 1.3 that particle will

eventually be absorbed and as a result S(r, t)→ 0 when t→ +∞).

The time equation is:
1

T

dT

dt
= −λ2D,

which has the solution:

T(t) = Ce−λ
2Dt,
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1.4 Survival function

where C is a constant.

The r equation is:
d2R

dr2
+

1

r

dR

dr
+ λ2R = 0. (1.28)

This is Bessel’s equation and has solution Morse & Feshbach (1954):

R(r) = AJ0(λr) +BY0(λr), (1.29)

where A and B are constants. J0(x) and Y0(x) are Bessel functions of the first

and second kind, respectively, of order 0. From the boundary conditions (1.25a)

and (1.25b) we know that:

S(Rn, t) = R(Rn)T(t) = 0,∀t > 0⇒ R(Rn) = 0,

∂

∂r
S(r, t)

∣∣∣∣
r=R

= 0 =
dR

dr

∣∣∣∣
r=R

T(t) = 0,∀t > 0⇒ dR

dr

∣∣∣∣
r=R

= 0.

Using (1.29) these boundary conditions can be written as:

AJ0(λRn) +BY0(λRn) = 0, (1.30)

AJ ′0(λR) +BY ′0(λR) = 0. (1.31)

This system of linear equations can be expressed as:(
J0(λRn) Y0(λRn)
J ′0(λR) Y ′0(λR)

)(
A
B

)
=

(
0
0

)
,

and given that we require A 6= 0 6= B we impose that:∣∣∣∣ J0(λRn) Y0(λRn)
J ′0(λR) Y ′0(λR)

∣∣∣∣ = J0(λRn)Y ′0(λR)− Y0(λRn)J ′0(λR) = 0.

As a result, the solution for (1.28) can be written as:

R(r) = J0(λnr)− δnY0(λnr),

where

δn =
J0(λnRn)

Y0(λnRn)
=
J1(λnR)

Y1(λnR)
,

and λn is the n-th root of

J0(λRn)− J1(λR)

Y1(λR)
Y0(λRn) = 0. (1.32)
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1.4 Survival function

The solution of the diffusion equation is the linear combination:

S(r, t) =
+∞∑
n=0

[AnJ0(λnr) +BnY0(λnr)] e−λ
2
nDt.

From (1.30) we can write B = −AJ0(λnRn)
Y0(λnRn)

and our series solution becomes:

S(r, t) =
+∞∑
n=0

An [J0(λnr)− δnY0(λnr)] e−λ
2
nDt. (1.33)

Now we need to calculate the coefficients An and for this purpose we define:

Rn(r) = J0(λnr)− δnY0(λnr).

which satisfy the following differential equations:

d

dr

(
r

dRm

dr

)
+ rλ2

mRm = 0, (1.34a)

d

dr

(
r

dRn

dr

)
+ rλ2

nRn = 0. (1.34b)

Taking the difference of Rn times (1.34a) and Rm times (1.34b) we get:

[r(R′mRn − RmR
′
n)]′ + (λ2

m − λ2
n)rRmRn = 0.

Integrating over the interval [Rn, R] we obtain:

(λ2
m − λ2

n)

∫ R

Rn

rRmRn dr = [r(RmR
′
n − R′mRn)]RRn . (1.35)

We observe that dRm
dr

∣∣
r=R

= dRn
dr

∣∣
r=R

= Rm(Rn) = Rn(Rn) = 0 and if m 6= n then

(1.35) becomes: ∫ R

Rn

rRmRn dr = 0. (1.36)

As a result, Rm and Rn are orthogonal with weight r on [Rn, R].

Using the initial condition (1.25c) we want to obtain the coefficients An:

1 = S(r, 0) =
+∞∑
n=0

An [J0(λnr)− δnY0(λnr)] .
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1.4 Survival function

We multiply the above equation by rRm(r) and we integrate it from Rn to R with

respect to r: ∫ R

Rn

rRm dr =
+∞∑
n=0

(
An

∫ R

Rn

rRmRn dr

)
,

and using the orthogonality condition (1.36) we obtain:∫ R

Rn

rRm dr = Am

∫ R

Rn

rR2
m dr, (1.37)

where∫ R

Rn

rR2
m dr =

∫ R

Rn

r[J0(λmr)− δmY0(λmr)]
2 dr

=

∫ R

Rn

r[J2
0 (λmr)− 2δmJ0(λmr)Y0(λmr) + δ2

mY
2

0 (λmr)] dr

=

∫ R

Rn

rJ2
0 (λmr) dr − 2δm

∫ R

Rn

rJ0(λmr)Y0(λmr) dr+

+ δ2
m

∫ R

Rn

rY 2
0 (λmr) dr.

Next, we calculate each integral in the above sum:∫ R

Rn

rJ0(λmr)
2 dr = lim

λm→λn

[r(λnJ0(λmr)J
′
0(λnr)− λmJ ′0(λmr)J0(λnr))]

R
Rn

λ2
m − λ2

n

= lim
λm→λn

[r(rλnJ
′
0(λmr)J

′
0(λnr)− (J ′0(λmr) + rλmJ

′′
0 (λmr))J0(λnr))]

R
Rn

2λm

=
R2

2
{J ′0(λnR)2 − [J ′′0 (λnR) +

1

Rλn
J ′0(λnR)]J0(λnR)}

− R2
n

2
{J ′0(λnRn)2 − [J ′′0 (λnRn) +

1

Rnλn
J ′0(λnRn)]J0(λnRn)}. (1.38)

We know that:

J ′′0 (λnR) +
1

Rλn
J ′0(λnR) = −J0(λnR),

and, consequently, equation (1.38) can be written as:∫ R

Rn

rJ0(λmr)
2 dr =

R2

2
(J ′0(λnR)2 + J0(λnR)2)− R2

n

2
(J ′0(λnRn)2 + J0(λnRn)2).
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1.4 Survival function

Analogously, we obtain:∫ R

Rn

rY0(λmr)
2 dr =

R2

2
(Y ′0(λnR)2 + Y0(λnR)2)− R2

n

2
(Y ′0(λnRn)2 + Y0(λnRn)2),

and∫ R

Rn

rY0(λmr)J0(λmr) dr =
R2

2
(Y ′0(λnR)J ′0(λnR) + Y0(λnR)J0(λnR))

− R2
n

2
(Y ′0(λnRn)Y ′0(λnRn) + Y0(λnRn)Y0(λnRn)).

As a result:∫ R

Rn

rR2
m dr =

R2

2
[J0(λnR)−δnY0(λnR)]2− R

2
n

2
[J1(λnRn)−δnY1(λnRn)]2. (1.39)

In order to simplify the above equation we use the following properties (Levine,

1997, p.626): ∣∣∣∣ Jν(x) Yν(x)
d

dx
Jν(x) d

dx
Yν(x)

∣∣∣∣ =
2

πx
, (1.40)

and
d

dx
T0(x) = −T1(x). (1.41)

where ν ∈ C and T = J (Bessel function of the first kind) or T = Y (Bessel

function of the second kind).

Let x = λnRn and x = λnR in (1.40), respectively, and we obtain:

J1(λnRn)− δnY1(λnRn) =
2

λnπRnY0(λnRn)
, (1.42a)

J0(λnR)− δnY0(λnR) = − 2

λnπRY1(λnR)
. (1.42b)

Using (1.42) in (1.39) we arrive at the following:∫ R

Rn

rR2
m dr =

2

λ2
nπ

2Y1(λnR)2
− 2

λ2
nπ

2Y0(λnRn)2

=
2

λ2
nπ

2

(
1

Y1(λnR)2
− 1

Y0(λnRn)2

)
. (1.43)

Additionally we need to calculate the left-hand side of (1.37) in order to obtain

the coefficient An:∫ R

Rn

rRm dr =

∫ R

Rn

r(J0(λmr)− δmY0(λmr)) dr
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1.4 Survival function

=

∫ R

Rn

rJ0(λmr) dr − δm
∫ R

Rn

rY0(λmr) dr

=
1

λ2
m

(∫ Rλm

Rnλm

d

dx
(xJ1(x)) dx− δm

∫ Rλm

Rnλm

d

dx
(xY1(x)) dx

)
=

1

λm
(RJ1(λmR)−RnJ1(λmRn)− δm(RY1(λmR)−RnY1(λmRn)))

=
1

λm
(R(J1(λmR)− δmY1(λmR))−Rn(J1(λmRn)− δmY1(λmRn)))

= −Rn

λm
(J1(λmRn)− δmY1(λmRn))

= − 2

πλ2
mY0(λmRn)

. (1.44)

As a result, using (1.43) and (1.44) we obtain:

Am =

∫ R
Rn
rRm dr∫ R

Rn
rR2

m dr
=

− 2
πλ2

mY0(λmRn)

2
λ2
mπ

2

(
1

Y1(λmR)2 − 1
Y0(λmRn)2

)
=

πY1(λmR)2Y0(λmRn)

Y1(λmR)2 − Y0(λmRn)2
, m ∈ N ∪ {0}, (1.45)

Our series solution (1.33) becomes:

S(r, t) =
+∞∑
n=0

πY1(λnR)2Y0(λnRn)

Y1(λnR)2 − Y0(λnRn)2
[J0(λnr)− δnY0(λnr)] e−λ

2
nDt.

Another quantity of great importance is the survival function averaged over the

annular region which we normalise in order to obtain:

s(t) =
1

π(R2 −R2
n)

∫ 2π

0

∫ R

Rn

rS(r, t) drdθ

=
2

(R2 −R2
n)

+∞∑
n=0

πY1(λnR)2Y0(λnRn)

Y1(λnR)2 − Y0(λnRn)2
e−λ

2
nDt

×
∫ R

Rn

r [J0(λnr)− δnY0(λnr)] dr. (1.46)

We know from (1.44) that:∫ R

Rn

r [J0(λmr)− δ0Y0(λmr)] dr = − 2

πλ2
mY0(λmRn)

.
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Figure 1.9: Plot of the survival function averaged over all starting points of a

Brownian particle diffusing in a concentric annular region, as shown in Figure

1.8 as a function of time time t. The blue line represents the analytic formula

(1.47) and the green line represents numerical simulations. For the numerical

simulations we have used G.4.1 and this plot has been obtained using G.4.2 with

5 terms in the sum of the survival probability. Oscillation appear in the numerical

simulations for large values of t because the number of Brownian particles is

significantly smaller at those times. For this figure we have used the following

parameters: R = 1 cm, Rn = 0.1 cm, D = 0.5 cm2 s−1.

and as a result (1.46) can be written as:

s(t) =
4

(R2 −R2
n)

+∞∑
n=0

1

λ2
n

Y1(λnR)2

Y0(λnRn)2 − Y1(λnR)2
e−λ

2
nDt. (1.47)

We plot (1.47) in Figure 1.9 and compare with numerical simulations.
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1.4 Survival function

1.4.2 Three dimensions

As in the two dimensional case a particle is “alive” at time t if it has not yet been

absorbed at the interior barrier and the survival probability is defined as:

S(r, t) = Prob(a particle is “alive” at r at time t),

which satisfies the differential equation:

∂

∂t
S (r, t) = ∇2S(r, t)⇒ ∂

∂t
S (r, t) =

D

r2

∂

∂r

(
r2 ∂

∂r
S (r, t)

)
, (1.48)

and the same boundary and initial conditions as the two dimensional case:

S(Rn, t) = 0, t ≥ 0, (1.49)

∂

∂r
S(r, t)

∣∣∣∣
r=R

= 0, t ≥ 0, (1.50)

S(r, 0) = 1, 0 < Rn < r ≤ R. (1.51)

We look for a solution that is separable, of the form S(r, t) = R(r)T(t) in order

to solve (1.48) and after simplification we obtain:

R

D

dT

dt
= T

d2R

dr2
+

2T

r

dR

dr
. (1.52)

Multiplying equation (1.52) by 1
RT

we obtain:

1

DT

dT

dt
=

1

R

d2R

dr2
+

2

rR

dR

dr
. (1.53)

We observe that the left-hand side of (1.53) is a function of t while the right-hand

side is a function of r and we deduce that:

1

DT

dT

dt
=

1

R

d2R

dr2
+

2

rR

dR

dr
= −λ2,

where λ is a constant. Here we again choose the constant to be −λ2 in order to

ensure that the time function does not grow exponentially and as a consequence

the survival function S(r, t) will be finite when t→ +∞.

The time equation is:
1

T

dT

dt
= −λ2D,
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1.4 Survival function

which has the solution:

T(t) = Ce−λ
2Dt,

where C is a constant.

The r-equation is:
d2R

dr2
+

2

r

dR

dr
+ λ2R = 0.

which we can rewrite as:
d2

dr2
(rR) + λ2rR = 0.

Let g(r) = rR in the above equation and we obtain:

d2g

dr2
+ λ2g = 0.

We use the Ansatz g = emr and we get m = ±iλ. As a result, we have:

g(r) = A sin(λr) +B cos(λr)⇒ R(r) =
A

r
sin(λr) +

B

r
cos(λr).

We deduce from the boundary conditions:

S(Rn, t) = R(Rn)T(t) = 0,∀t > 0⇒ R(Rn) = 0,

∂

∂r
S(R, t) = 0 =

dR

dr

∣∣∣∣
r=R

T(t) = 0, ∀t > 0⇒ dR

dr

∣∣∣∣
r=R

= 0.

and as a result we obtain:

A sin(λRn) +B cos(λRn) = 0, (1.54a)(
− A

R2
− Bλ

R

)
sin(λR) +

(
Aλ

R
− B

R2

)
cos(λR) = 0. (1.54b)

From (1.54a) we obtain:

A = −B cos(λRn)

sin(λRn)
,

and, as a result, (1.54b) can be written as:

B

[(
cot(λRn)−Rλ

R2

)
sin(λR)−

(
Rλ cotλRn + 1

R2

)
cos(λR)

]
= 0.

Accordingly, the solution to can be written as:

R(r) =
1

r
[cos(λr)− δn sin(λr)] ,
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1.4 Survival function

where

δn =
cos(λnRn)

sin(λnRn)
,

and λn is the n-th root of[(
cot(λRn)−Rλ

R2

)
sin(λR)−

(
Rλ cot(λRn) + 1

R2

)
cos(λR)

]
= 0. (1.55)

The solution of the diffusion equation is the linear combination:

S(r, t) =
+∞∑
n=0

An
r

[cos(λnr)− δn sin(λnr)] e−λ
2
nDt.

Now we need to calculate the coefficients An and for this purpose we define:

Rn(r) =
1

r
[cos(λnr)− δn sin(λnr)] .

which satisfy the following differential equations:

d

dr

(
r2dRm

dr

)
+ r2λ2

mRm = 0, (1.56a)

d

dr

(
r2dRn

dr

)
+ r2λ2

nRn = 0. (1.56b)

Taking the difference of Rn times (1.56a) and Rm times (1.56b) we get:

d

dr

[
r2

(
dRm

dr
Rn − Rm

dRn

dr

)]
+ (λ2

m − λ2
n)r2RmRn = 0.

Integrating over the interval [Rn, R] we obtain:

(λ2
m − λ2

n)

∫ R

Rn

r2RmRn dr =

[
r2

(
dRm

dr
Rn − Rm

dRn

dr

)]R
Rn

. (1.57)

We observe that dRm
dr

∣∣
r=R

= dRn
dr

∣∣
r=R

= Rm(Rn) = Rn(Rn) = 0 and if m 6= n then

(1.57) becomes: ∫ R

Rn

r2RmRn dr = 0. (1.58)

As a result, Rm and Rn are orthogonal with weight r2 on [Rn, R].

Using the initial condition (1.51) we want to obtain the coefficients An:

1 = S(r, 0) =
+∞∑
n=0

An
r

[cos(λnr)− δn sin(λnr)] .
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1.4 Survival function

We multiply the above equation by r2Rm(r) and we integrate it from Rn to R

with respect to r: ∫ R

Rn

r2Rm dr =
+∞∑
n=0

(
An

∫ R

Rn

r2RmRn dr

)
,

and using the orthogonality condition (1.58) we obtain:∫ R

Rn

r2Rm dr = Am

∫ R

Rn

r2R2
m dr,

where∫ R

Rn

r2R2
m dr =

∫ R

Rn

[cos(λmr)− δn sin(λmr)]
2 dr

=

∫ R

Rn

[cos2(λmr)− 2δm cos(λmr) sin(λmr) + δ2
m sin2(λmr)] dr

=

∫ R

Rn

cos2(λmr) dr − 2δm

∫ R

Rn

cos(λmr) sin(λmr) dr+

+ δ2
m

∫ R

Rn

sin2(λmr) dr.

and ∫ R

Rn

r2Rm dr =

∫ R

Rn

r[cos(λmr)− δn sin(λmr)] dr

=

∫ R

Rn

r cos(λmr) dr − δn
∫ R

Rn

r sin(λmr) dr.

Next, we calculate the following integrals:∫ R

Rn

cos2(λmr) dr =

∫ R

Rn

1 + cos(2λmr)

2
dr

=
R−Rn

2
+

1

4λm
[sin(2λmRn)− sin(2λmR)] ,∫ R

Rn

sin(λmr) cos(λmr) dr =
1

2

∫ R

Rn

sin(2λmr) dr

= − 1

4λm
[cos(2λmR)− cos(2λmRn)] ,∫ R

Rn

sin2(λmr) dr =

∫ R

Rn

1− cos(2λmr)

2
dr
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1.4 Survival function

=
R−Rn

2
− 1

4λm
[sin(2λmR)− sin(2λmRn)] ,

and ∫ R

Rn

r cos(λmr) dr =
1

λm
[r sin(λmr)]

R
Rn

+
1

λ2
m

[cos(λmr)]
R
Rn
,∫ R

Rn

r sin(λmr) dr = − 1

λm
[r cos(λmr)]

R
Rn

+
1

λ2
m

[sin(λmr)]
R
Rn
.

As a result we have:∫ R

Rn

r2R2
m dr =

R−Rn

2

(
1 + δ2

m

)
+

1

4λm
[sin(2λmR)− sin(2λmRn)]

(
1− δ2

m

)
+

δm
2λm

[cos(2λmR)− cos(2λmRn)]

≡ Os (λm) , (1.59)

and∫ R

Rn

r2Rm dr =
1

λm
(R sin(λmR)−Rn sin(λmRn)) +

1

λ2
m

(cos(λmR)− cos(λmRn))

+
δm
λm

(R cos(λmR)−Rn cos(λmRn))− δm
λ2
m

(sin(λmR)− sin(λmRn))

=
1

λm

R cos(λm(R−Rn))−Rn

sin(λmRn)
+

1

λ2
m

sin(λm(Rn −R))

sin(λmRn)

≡ Ws (λm) . (1.60)

From (1.59) and (1.60) we arrive at the following formula for the coefficient An:

Am =

∫ R
Rn
r2Rm dr∫ R

Rn
r2R2

m dr
=
Ws (λm)

Os (λm)
, m ∈ N ∪ {0},

We again calculate the normalised survival function averaged over the spherical

annular region:

s(t) =
3

4π(R3 −R3
n)

∫ π

−π

∫ 2π

0

∫ R

Rn

r2S(r, t) sinϕ drdθdϕ

=
3

(R3 −R3
n)

+∞∑
n=0

Ane−λ
2
nDt

∫ R

Rn

r [cos(λnr)− δn sin(λnr)] dr. (1.61)
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1.5 The Green’s function method

We know from (1.60) that:∫ R

Rn

r [cos(λnr)− δn sin(λnr)] dr =
1

λm

R cos(λm(R−Rn))−Rn

sin(λmRn)

+
1

λ2
m

sin(λm(Rn −R))

sin(λmRn)
, (1.62)

and as a result (1.61) can be written as:

s(t) =
3

(R3 −R3
n)

+∞∑
n=0

A′ne−λ
2
nDt. (1.63)

where

A′n =
(Ws (λn))2

Os (λn)
, n ∈ N ∪ {0},

We plot (1.63) in Figure 1.10 and compare with numerical simulations.

1.5 The Green’s function method

Suppose we have a differential operator L and we want to find a function u(x)

which satisfies:

Lu(x) = f(x), x ∈ C,

D∂nu(x) = κu(x), x ∈ ∂C,

where f(x) is an arbitrary function, n is the normal vector to ∂C and D and κ

are constants. For this purpose we define the Green’s function G (x, s):

LG(x, s) = −δ(x− s) if x, s ∈ C,

D∂nG(x, s) = κG(x, s) if x ∈ ∂C,

where δ is the Dirac delta function. We obtain u(x) as follows:

u(x) = −
∫
G(x, s)f(s) ds.

We observe that:

Lu(x) = −
∫
LG(x, s)f(s) ds =

∫
δ(x− s)f(s) ds = f(x),
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Figure 1.10: Plot of the survival function averaged over all starting points of a

Brownian particle diffusing in a concentric annular region, as shown in Figure

1.8. The blue line represents the analytic formula (1.63) and the green line

represents numerical simulations. For this plot we have used 5 terms in the

sum of the survival probability. Oscillation appear in the numerical simulations

for large values of t because the number of Brownian particles is significantly

smaller at those times. For this figure we have used the following parameters:

R = 1 cm, Rn = 0.1 cm, D = 0.5 cm2 s−1.

and

D∂nu(x) = −
∫
D∂nG(x, s)f(s) ds = −

∫
κG(x, s)f(s) ds = κu(x).

An important use of the Green’s function method is in the calculation of first

passage properties of diffusion. As such, the next section is a review of Condamin

et al. (2007) which makes use of the Green’s function method to determine the

first passage properties of diffusion to the interior trap, in an eccentric annular
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1.6 Rescaling of coordinate system

region, and which will be the benchmark of comparison for our exact formulas

from Chapter 2 and 3 for the two dimensional case and the three dimensional

case, respectively.

1.6 Rescaling of coordinate system

We represent a cell as a circle or as a sphere with radius R, containing a nucleus

(or other intracellular compartment) with radius Rn. The center of the nucleus

is displaced from that of the cell by a distance rc.

We rescale lengths so that the radius of the cell is equal to 1. We shall calculate the

Green’s functions and mean times using the following dimensionless quantities:

a =
Rn

R
and c =

rc
R
.

Note that 0 ≤ c ≤ 1−a, and a2 is the fraction of the cell occupied by the nucleus

in two dimension, and a3 in three dimensions.

1.7 Condamin et al. (2007) review

The time required for a Brownian particle to go from a starting position to a

target site is called the first passage time (FPT) and it is found in a wide range of

problems, such as diffusion limited reactions Rice (1985) or animal food searches

Bénichou et al. (2005), which are called first passage problems.

The FPT depends on a multitude of factors, primary among them being geometry.

For example, the mean first passage time (MFPT) for a two dimensional random

walker is infinite if the walk is not bounded. However, in the case of a bounded

walk the MFPT is finite and depends on the confining surface. Unfortunately, this

dependency is difficult to explicitly determine but for the most simple geometries

(i.e. one dimensional or spherically symmetric problems Redner (2001)) but

which are not biologically realistic.

Previously to Condamin et al. (2007) this family of problems has received consid-

erable attention. In particular, in the case of discrete random walks, an expression

for the MFPT between two nodes of a general network has been derived Noh &
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1.7 Condamin et al. (2007) review

Rieger (2004). Furthermore, the MFPT of a continuous Brownian motion at

a small absorbing window on a otherwise reflecting boundary has been studied

Grigoriev et al. (2002); Singer et al. (2006b). When the window is a small sphere

within the domain, the behavior of the MFPT has been given but it does not show

the dependence of the MFPT on the initial position Pinsky (2003)(see Appendix

A.3 for a review of this result).

Transitioning from discrete to continuous case, Condamin et al. (2007) investigate

how much time does it take a Brownian particle with diffusion coefficient D to

reach a target of radius a. They consider an n-sphere (where n = 1, 2) target of

radius a centered at xn. The Brownian motion starts at x0 and is restricted to a

domain C with volume/area of V/A.

1.7.1 The Green’s function approximation

The continuous mean first passage time (MFPT) 〈T (x0)〉 is derived using the

Green’s function method:

〈T (x0)〉 = R2

∫
C

G(x0,x) dx ≈ R2

∫
C∗
G(x0,x) dr,

where the Green’s function G(x0,x) can be interpreted as the stationary distri-

bution of particles in the domain C∗ (where C∗ is the domain C without the

absorbing target) if there is a unit flux of particles incoming at x0, and the dif-

fusion coefficient is D. The Green’s function G(x,x0) is defined by:

D∆rG(x0,x) = −δ(x− x0) if x ∈ C∗, (1.65a)

G(x0,x) = 0 if x ∈ ∂C1, (1.65b)

∂nG(x0,x) = 0 if x ∈ ∂C2, (1.65c)

where n is the normal unit vector to ∂C2. Condamin et al. (2007) produce the

following approximation for the Green’s function:

G(x0,x) ≈ G0(a) +H∗(xn|xn)−H(xn|x0) +H(x|x0)−H(x|xn), (1.66)

where H(x|x0) is the pseudo Green’s function satisfying:

D∆xH(x|x0) = −δ(x− x0) +
1

V
if x ∈ C∗, (1.67a)
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∂nH(x|x0) = 0 if x ∈ ∂C2, (1.67b)

G0(r) is the free Green’s function defined as:

DG0(r) =

{
1

4πr
, in three dimensions,

1
2π

log r, in two dimensions.
(1.68)

H∗(x|x0) is the regular part of H(r|r′) defined as:

H∗(x|x0) = H(x|x0)−G0 (|x− x0|) .

We observe that (1.66) satisfies (1.65a) and (1.65b) exactly, however the absorbing

boundary condition (1.65c) is satisfied only approximately (Condamin et al., 2007,

p.021111).

As a result, the MFPT becomes Condamin et al. (2007):

〈T (x0)〉 =
V

D
[G0(a) +H∗(xn|xn)−H(xn|x0)] + O

(
alG0(a)

D

)
,

where l is the distance between the target and the boundary. When the target

is near the boundary this formula has deviations of scale a/l in two dimension

and a/l2 in three dimensions from the true MFPT. The boundary correction for

G(x,x0) is derived to be:

G(x,x0) = G0(a) +H∗(xn|xn)−H(x|xn) + q(x0) [H(x|i(x0))−H(x|xn)

+H∗(i(x0)|xn)−H∗(xn|xn)] ,

where q(x0) is the image charge:

q(x0) =

{
− a
|x0−xn| , in three dimensions,

−1, in two dimensions,

placed on i(x0) which is the image point of x0 reflected off the surface of the

target. As a result, the boundary corrected MFPT is given by:

〈T (x0)〉 =
V

D
[G0(a)−H(xn|x0) +H∗(xn|xn)−K(x0)−K(s(x0)) +K(s(xn))] ,

where

K(x) = q(x) [H∗(i(x)|xn)−H∗(xn|xn)] ,
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and s(x) is the image point of x reflected off the surface of the domain C. Con-

damin et al. (2007) also calculated the n-th moments of the FPT in three dimen-

sional case:

〈T n(x0)〉 =
n !V n

Dn

{
[G0(a) +H∗(xn|xn)−H(xn|x0)]

[
G0(a) +H∗(xn|xn)− H̄

]n−1

+O
(
nV −

2
3a2−n

)}
, (1.69)

where

H̄ =
1

V

∫
C

H (x0|x) dx0.

We define p(t) be the probability density function of the absorption time T (x0)

which is deduced from (1.69) by ignoring the O
(
nV −

2
3a2−n

)
term:

p(t) =
D

V

G0(a) +H∗(xn|xn)−H(xn|x0)(
G0(a) +H∗(xn|xn)− H̄

)2 exp

(
−Dt

V
[
G0(a) +H∗(xn|xn)− H̄

])

+
H(xn|x0)− H̄

G0(a) +H∗(xn|xn)− H̄
δ(t),

In order to prove the above statement we notice that the exponential distribution:

f(x;λ) = λ exp(−λx), x ≥ 0,

has moments

µn =
n!

λn
,

If we let λ = D

V [G0(a)+H∗(xn|xn)−H̄]
then G0(a)+H∗(xn|xn)−H(xn|x0)

G0(a)+H∗(xn|xn)−H̄ f(t;λ) will have the

moments (1.69) but this is not longer a probability density function. As a result,

we need to add the correction term:

H(xn|x0)− H̄
G0(a) +H∗(xn|xn)− H̄

δ(t),

and, as a result, we have ∫ +∞

0

f(t;λ) dt = 1.

We notice that he correction term does not add to the moments since:∫ +∞

0

xnδ(x) dx = 0.

32



1.7 Condamin et al. (2007) review

•xc
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•x0

•x̃0

•xn

•x

Figure 1.11: Plot of eccentric annular region where xn is the centre of the interior

boundary, x0 is the starting position of the Brownian particle, x̃0 is the image

point of x0 such that x0 · x̃0 = 1, and xc is the centre of the exterior boundary.

Here, θ2 is the angle formed by xn and x0. The point x represents the point at

which the Green’s function is evaluated.

Taking the limit a → 0 and keeping x0 fixed then H (xn|xn) is constant and

1/G0(a) tends to zero. As a result, the probability density becomes exponential:

p(t) =
4πaD

V
exp

(
−4πaDt

V

)
,

where we have used (1.68) for the three dimensional case. However, in the same

limit when R/a is held fixed then H(x0|xn) can be approximated by G0(R) and

the probability density becomes:

p(t) =
4πDa

V

(
1− a

R

)
exp

(
−4πaDt

V

)
+
a

R
δ(t),

where R = |xn − x0|.
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1.7.2 Two dimensional eccentric annular region

We are interested in particles diffusing in an eccentric annular region C as shown

in Figure 1.11. We will use the Green’s function method and the formula derived

by Condamin et al. (2007) to obtain the mean time for a random walk to reach

the absorbing target while starting at x0. Let x,x0,xn ∈ R2, then the function

G
(2)
2 (x0,x) we are looking for satisfies the following:

D∆zG
(2)
2 (x0,x) = −δ(x− x0) if x ∈ C, (1.70a)

G
(2)
2 (x0,x) = 0 if x ∈ ∂C1, (1.70b)

∂nG
(2)
2 (x0,x) = 0 if x ∈ ∂C2, (1.70c)

where ∂n is the normal derivative, ∂C1 is the absorbing interior boundary centred

at xn, ∂C2 is the reflecting outer boundary (as shown in Figure 1.11) and x0 ∈ C
is the initial position of the point particle. G

(2)
2 (x0,x) is the occupation density

of the time a particle spends at x given that it started at x0 and is diffusing in an

annular region with reflecting outer boundary and absorbing interior boundary

centred at xn.

In order to find G
(2)
2 (x0,x) we will need the pseudo-Green’s function H

(2)
2 (x|x0).

1.7.2.1 The pseudo-Green’s function for a circular domain

The following function is known as a pseudo-Green function(Condamin et al.,

2007, p.021111-13):

H
(2)
2 (x|x0) =

1

2πD

(
log

1

x0

+ log
1

RR̃
+
x2 + x2

0

2

)
, (1.71)

and satisfies the following equations:

D∆H
(2)
2 (x|x0) = −δ(x− x0) +

1

π
if x ∈ C∗,

∂nH
(2)
2 (x,x0) = 0 if x ∈ ∂C2,

where x = |x|, x0 = |x0|, R = |x− x0|, R̃ = |x− x̃0| and x̃0 is defined such that

x0 · x̃0 = 1 where · is the scalar product of the position vectors of x0 and x̃0. H
(2)
2

is called the Neumann Green’s function and is not unique, as it is defined only
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Figure 1.12: Plot of H
(2)
2 (x|x0) from (1.71) with x0 = (−0.5, 0).

up to an additive constant. We plot H
(2)
2 (x|x0) in Figure 1.12 and we observe

that it can take negative values.

It is helpful to define the regular part H
(2)
2∗ (x|x0) of H

(2)
2 (x|x0) as:

H
(2)
2 (x|x0) = H

(2)
2∗ (x|x0) +

1

2πD
log

1

R
,

because H
(2)
2∗ (x|x) 6=∞ and:

H
(2)
2∗ (x|x) =

1

2πD

(
log

1

1− x2
+ x2

)
.

Furthermore, we also notice the following property of H
(2)
2 :∫

C∗
H

(2)
2 (x0|x) dx =

3

8D
∀x0 ∈ C∗, (1.72)

which is proved in Appendix A.1 and will be used in the next section to calculate

the mean time.

1.7.2.2 Mean time to capture in two dimensional domain

We have defined H
(2)
2 (x|x0) in the previous section in order to obtain the approx-

imation of the desired Green’s function for (1.70) derived by (Condamin et al.,
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2007, p.021111-8):

G
(2)
2 (x0,x) ≈ H

(2)
2 (x0|x)−H(2)

2 (xn|x) +
1

2Dπ
log

1

a

+H
(2)
2∗ (xn|xn)−H(2)

2 (x0|xn), (1.73)

and will be used to calculate the mean of the following time to absorption:

t
(2)
2 (x0) = time for a particle starting at x0 to hit ∂C1,

where |y| ≤ 1.

As a result we have:

E
[
t
(2)
2 (x0)

]
=

∫
C

G
(2)
2 (x0,x) dx

≈
∫
C∗
G

(2)
2 (x0,x) dx

≈ π

(
1

2πD
log

b

a
+H

(2)
2∗ (xn,xn)−H(2)

2 (x0,xn)

)
=

1

2D

(
log
|x0|
a

+ log
1

1− |xn|2
− log

1

|xn − x0||xn − ỹ0|

+
|xn|2 − |x0|2

2

)
. (1.74)

where in the third line of the above equation we have used (1.72) and where C∗

is the domain C without the absorbing target.

Setting xn = (−c, 0), where 0 ≤ c ≤ 1 − a, x0 = (− cos θ2, sin θ2) ∈ ∂C2 in

(1.74) and θ2 is the angle between xn and x0 as shown in Figure 1.11, we obtain

E
[
t
(2)
2 (x0)

]
= T

(2)
2 (θ2, a, c):

2D

R2
T

(2)
2 (θ2, a, c) = log

1

a
+ log

1

1− c2
− log

1

(cos θ2 − c)2 + sin2 θ2

+
c2 − 1

2
. (1.75)

This is plotted in Figure 1.13 as a function of θ2, for c = 0.45 and a = 0.1,

and compared with simulated data and the concentric case from Section 1.2.2 in

rescaled coordinates.
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Figure 1.13: Plot of T
(2)
2 (θ2, a, c) comparing the numerical simulation with the

analytic result obtained in (1.75) as a function of θ2. Here we have chosen the

following parameter values: a = 0.1 and c = 0.45.

1.7.2.3 Mean time averaged over the reflecting surface in two dimen-

sions

We are interested in the mean time averaged over the reflecting boundary defined

in the following way:

T̄
(2)
2 (a, c) = A

∫ 2π

0

T
(2)
2 (θ2, a, c) dθ2, (1.76)

where A = 1/2π is the normalisation constant. If x0 = (− cos θ2, sin θ2) ∈ ∂C2

we observe that x0 = x̃0 and using the following identity Barton (1989):

log
1

|xn − x̃0|
= log

1

|xn − x0|
=

+∞∑
m=1

cos(mθ2)

m
cm,
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where xn = (−c, 0) we derive that:∫ 2π

0

log
1

(cos θ2 − c)2 + sin2 θ2

dθ2 =

∫ 2π

0

log
1

|xn − x0||xn − x̃0|
dθ2

=

∫ 2π

0

log

(
1

|xn − x0|

)
dθ2 +

∫ 2π

0

log

(
1

|xn − x̃0|

)
dθ2

= 2

∫ 2π

0

+∞∑
m=1

cos(mθ2)

m
cm dθ2 = 0. (1.77)

As a result, using (1.77) and (1.75) in (1.76) we obtain the following:

2D

R2
T̄

(2)
2 (a, c) = log

1

a
+ log

(
1

1− c2

)
+
c2 − 1

2
, (1.78)

which we plot in Figure 1.14 where we compare with numerical simulations.

1.7.3 Three dimensional eccentric annular region

We now turn to the case when our domain C is a three dimensional annular

region bounded by non-concentric spheres. Analogous to Section 1.7.2 we want

to find a Green’s function G
(3)
2 (x0,x) which satisfies (1.70) and for that we need

the pseudo-Green’s function for a spherical domain.

1.7.3.1 The pseudo-Green’s function for a spherical domain

The following function is known as a pseudo-Green function(Condamin et al.,

2007, p.021111-13):

H
(3)
2 (x|x0) =

1

4πD

(
1

R
+

1

yR̃
− log

(
yR̃ + 1− zyµ

)
+
z2 + y2

2

)
,

and satisfies the following equations:

D∆H
(3)
2 (x|x0) = −δ(x− x0) +

3

4π
if x ∈ C∗,

∂nH
(3)
2 (x|x0) = 0 if x ∈ ∂C2,

where C∗ is a sphere of radius 1, ∂C2 is the reflecting outer boundary, x0 is the

initial condition of the particle, x = |x|, x0 = |x0|, R = |x−x0|, R̃ = |x− x̃0| and
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Figure 1.14: Plot of T̄
(2)
2 (a, c) as a function of the nuclear displacement c. The

red line is the approximation obtained in (1.78) and the blue dots are numerical

simulations. Here we have chosen the following parameter values: a = 0.1.

x̃0 is defined such that x0 · x̃0 = 1. Analogous to the two dimensional case, the

Neumann Green’s function H(3) is defined only up to an additive constant (for a

derivation of H
(3)
2 see (Cheviakov & Ward, 2011, p.1408)).

It is helpful to define the regular part H
(3)
2∗ (x|x0) of H

(3)
2 (x|x0) as:

H
(3)
2 (x|x0) = H

(3)
2∗ (x|x0) +

1

4πDR
,

because H
(3)
2∗ (x|x) 6=∞:

H
(3)
2∗ (x|x) =

1

4πD

(
1

1− x2
+ log

1

2(1− x2)
+ x2

)
,

Furthermore, we also notice the following property of H
(3)
2 (x|x0):∫

C∗
H

(3)
2 (x0|x) dx =

56

60D
− 1

3D
log 2, ∀x ∈ C∗, (1.79)
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which is proved in Appendix A.2 and we will use next to calculate the mean time.

1.7.3.2 Mean time to capture in three dimensions

We have defined H
(3)
2 (x|x0) in the previous section in order to obtain the Con-

damin et al. (2007) Green’s function approximation for (1.70):

G
(3)
2 (x0,x) ≈ H

(3)
2 (x0,x)−H(3)

2 (xn,x) +
1

4Dπa
+H

(3)
2∗ (xn,xn)−H(3)

2 (x0,xn),

and will be used to calculate the mean of the following time to absorption:

t
(3)
2 (x0) = time for a particle starting at x0 to hit ∂C2,

where |y| ≤ 1.

E
[
t
(3)
2 (x0)

]
=

∫
C

G
(3)
2 (x0,x) dx ≈

∫
C∗
G

(3)
2 (x0,x) dz

≈ 4π

3

(
1

4Dπa
+H

(3)
2∗ (xn,xn)−H(3)

2 (x0,xn)

)
=

1

3D

(
1

a
+

1

1− |xn|2
+ log

1

2(1− |xn|2)
− 1

|xn − x0|
− 1

|x0||xn − x̃0|

+ log (|x0||xn − x̃0|+ 1− |xn||x0| cos θ2)− |xn|
2 − |x0|2

2

)
. (1.80)

where in the third line of the above equation we have used (1.79). Setting xn =

(0, 0,−c), x0 = (0, sin θ2,− cos θ2) in (1.80), where θ2 is the angle between xn and

x0, we obtain E
[
t
(3)
2 (x0)

]
= T

(3)
2 (θ2, a, c):

2D

R2
T

(3)
2 (θ2, a, c) ≈

2

3a

[
1 +

a

1− c2
+ a log

1

2(1− c2)
− 2a√

(cos θ2 − c)2 + sin2 θ2

− a log

(
1

1− c cos θ2 +
√

(cos θ2 − c)2 + sin2 θ2

)
+ a

c2 − 1

2

]
, (1.81)

which we plot in Figure 1.15 and compare with numerical simulations.
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Figure 1.15: Plot of T
(3)
2 (θ2, a, c) comparing the numerical simulation obtained

analytic result obtained in (1.81) as a function of θ2. Here we have chosen the

following parameter values: a = 0.1 and c = 0.45.

1.7.3.3 Mean time averaged over the reflecting surface in three di-

mensions

We are interested in the mean time averaged over the reflecting boundary defined

in the following way:

T̄
(3)
2 (a, c) = A

∫ π

0

T
(3)
2 (θ2, a, c) sin θ2 dθ2, (1.82)

where A = 1/4π is the normalisation constant. If x0 = (0, sin θ2,− cos θ2) we

observe that x0 = x̃0 and we know from Barton (1989) that:

1

|xn − x̃0|
=

1

|xn − x0|
=

+∞∑
l=0

Pl(µ)cl,

41



1.8 Hitting density on the cellular surface

where xn = (0, 0,−c), µ = cos θ2 and Pn(x) is a Legendre polynomial of degree

n, from which we deduce that:∫ π

0

sin θ2

|xn − x̃0|
dθ2 =

∫ π

0

sin θ2

|xn − x0|
dθ2 =

+∞∑
l=0

∫ π

0

Pl(cos θ2) sin θ2 dθ2c
l = 2.

(1.83)

Furthermore, we know that Barton (1989):

log

(
2

|x0||xn − x̃0|+ 1− |xn||x0| cos θ2

)
=

+∞∑
l=1

Pl(µ)
1

l
ξl,

where

ξ = |xn||x0|,

from which we obtain that:∫ π

0

(
2

|x0||xn − x̃0|+ 1− |xn||x0| cos θ2

)
sin θ2 dθ2 =

+∞∑
l=1

∫ π

0

Pl(µ) sin θ2 dθ2
1

l
ξl = 0,

and, consequently, that:∫ π

0

log (|x0||xn − x̃0|+ 1− |xn||x0| cos θ2) sin θ2 dθ2 = 2 log 2. (1.84)

As a result, using (1.83), (1.84) and (1.81) in (1.82) we have:

2D

R2
T̄

(3)
2 (a, c) ≈ 2

3a

[
1 +

a

1− c2
+ a log

1

1− c2
+ a

c2 − 5

2

]
, (1.85)

which we plot in Figure 1.16 where we compare with numerical simulations.

1.8 Hitting density on the cellular surface

What is the probability of a Brownian particle starting at x0 to be absorbed at

point x on the outer surface? In order to answer this question, we define θ2 as

the angle between x0 and x and we use the fact that the hitting density ε
(2)
0 (θ2)

is the same as the electric field at the impact point x when at x0 there is point

charge of magnitude q = 1/(ΩnD), where n is the dimension and Ωn is the area
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Figure 1.16: Plot of T̄
(3)
2 (a, c) as a function of the nuclear displacement c. The

blue line is the approximation obtained in (1.85), the green dots are numerical

simulations and the red dot is the concentric case. Here we have chosen the

following parameter values: a = 0.1.

or length of the cell (Redner, 2001, p.214). The electrostatic potential in two

dimensions, with no internal target, at x is (Redner, 2001, p.215):

H
(2)
1 (x|x0) =

q

2
log

(
x2

0x
2 + 1− 2xx0 cos θ2

x2 + x2
0 − 2xx0 cos θ2

)
.

where x = |x| and x0 = |x0|. Taking the x-derivative of H
(2)
1 (x|x0):

∂H
(2)
1

∂x
(x = 1|x0 = c) =

1

4πD

2(c4 − 1− c3 cos θ2) + 2c(2− c2) cos θ2

(c2 + 1− 2c cos θ2)2
,

and multiplying by −D we obtain the hitting probability:

ε
(2)
0 (θ2) =

1

4π

1− c2

1− 2c cos θ2 + c2
, (1.86)
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Figure 1.17: Plot of ε
(2)
0 (θ2) comparing the numerical simulation with the analytic

result (thick lines) obtained in (1.86) as a function of θ2 for values of c = 0.25, 0.5

and 0.89. The lighter colours represent the analytic result and the darker colours

represent the numerical simulations. For the numerical simulations we have used

G.7.1.1 and this plot has been obtained using G.7.1.2. For this figure we have

used the following parameters: a = 0.1.

which we compare with in Figure 1.17 with simulated data.

We observe from Figure 1.17 that as the distance between the initial position and

the absorbing boundary decreases the hitting density becomes centered at the

angle of smallest distance. This is because the random walks are more likely to

hit the surface at a point close to the initial position.
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1.9 Discussion

In this chapter we have introduced the notion of Brownian motion and the first

passage properties of diffusing particles. We begin with the one dimensional ran-

dom walk model, expanding it to higher dimensions and present Fick’s equations

which govern the behaviour of random walks.

In Section 1.2 we use the one dimensional random walk model to define the

mean time to capture on an absorbing target. Additionally, we calculated the

mean time for a Brownian particle diffusing in a circular eccentric annular region

to reach the inner boundary or the outer boundary in Section 1.2.2 and 1.2.1,

respectively.

In Section 1.4 we define the survival probability of a diffusing particle in a concen-

tric annular region which will be used in Chapter 4 to determine the intracellular

distribution of absorbed Coxiella burnetii bacteria in a specific experiment.

We review Condamin et al. (2007) in Section 1.7 and construct their approxi-

mation for the Green’s function for an eccentric annular region in two and three

dimensions. From the Green’s function we derive the mean first passage time

and the mean first passage time averaged over the starting surface in Sections

1.7.2.2 and 1.7.2.3 for the two dimensional case, and Sections 1.7.3.2 and 1.7.3.3

for the three dimensional case, respectively. We will compute the analytic Green’s

function for circular and spherical eccentric annular regions in chapter 2 and 3,

respectively, and compare with the results of Condamin et al. (2007).

We have validated our results by using numerical simulations displayed in Ap-

pendix G. In order to maintain the size of this thesis in reasonable bounds only

certain representative Python scripts, which we have used to generate the figures,

are shown in the remainder of this work.
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Chapter 2

Diffusive transport in circular

domains

2.1 Introduction

We consider diffusion of a particle, with diffusivity D, in a circular domain of ra-

dius R which contains an interior compartment of radius Rn and has displacement

rc from the centre of the domain (see Figure 2.1). If transport is simply diffusive,

not accelerated by directed mechanisms or localised pathways, the basic timescale

is R2/D, where R is the radius of the domain and D is the diffusivity Amitai &

Holcman (2017); Barkai et al. (2012); Bénichou et al. (2010); Bressloff & Newby

(2013); Coombs et al. (2002, 2009); Wosniack et al. (2015). The mean time to

find the internal compartment, thought of as a target within a larger domain, is

a function of a and c, where a is the radius of the target, and c its distance from

the centre of the domain, divided by R.

Living cells contain many proteins that constantly move about Lagache & Hol-

cman (2008); Lagache et al. (2009); Mullineaux et al. (2006); cells interact with

their surroundings by means of surface receptor molecules that bind ligands, ei-

ther free or themselves on the surface of other cells. The mechanism by which

a cell responds to an event occurring on its surface may involve the transport of

molecular complexes from the cellular surface to the nucleus Imada & Leonard

(2000); Lillemeier et al. (2001), and the transport of synthesised molecules from

the nucleus to the cellular surface. With the motivation of cell biology in mind,
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we refer to the boundary of the domain as the cellular surface and the interior

compartment as the nucleus. We consider transport from a reflecting nuclear

surface to an absorbing cellular surface, and the opposite case of diffusion from

a reflecting cellular surface to an absorbing nuclear surface.

Using bipolar coordinates, we derive exact Green’s functions. Hence, we derive

exact expressions for arrival densities and mean arrival times. We also consider

the mean arrival time, where the initial position is averaged over the surface of

the nucleus or of the cell. The idea is that the point on the surface of a nucleus

where a molecule emerges, or the point on the cellular surface where a molecular

complex is internalised, is uniformly distributed on the surface of the nucleus or

cell. We consider distributions of initial conditions that are (i) uniform on the

nuclear surface, (ii) uniform on the cellular surface, or (iii) given by the hitting

density of particles diffusing from the nuclear surface to the cellular surface. This

hitting density is also obtained from the appropriate Green’s function. Numerical

simulations are used for comparison.

2.2 Literature review

Many intercellulater and intracellular process are diffusion limited and, as a result,

the rates of many types of reactions can be calculated from the diffusion equation

with appropriate boundary conditions Katja et al. (2019); Lauffenburger & Lin-

derman (1993). Once the corresponding Green’s function is calculated, quantities

such as mean hitting times are obtained by standard integration, for any initial

distribution of particles Prüstel & Meier-Schellersheim (2012, 2013); Prüstel &

Tachiya (2013). Similar procedures are followed in discrete space Montroll &

Weiss (1965). Approximating animal motion by Brownian motion, or diffusive

motion with a directed component, the expected mean time for a predator to

locate small patches of prey is a mean hitting time Kurella et al. (2015); McKen-

zie et al. (2009). Another context in which diffusion within a confined domain

provides a timescale is the encounters, inside lymph nodes, of T cells and antigen-

presenting cells Catron et al. (2004); Celli et al. (2012); Delgado et al. (2015);

Garside et al. (1998); Krummel et al. (2016); Textor et al. (2014); Zinselmeyer

et al. (2005).
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As shown in Section 1.7 Condamin et al. (2007) derived an approximation of

the Green’s function for an eccentric annular region with an absorbing inner

target and reflecting outer boundary. Using the Green’s function method and

pseudo-Green’s functions they derive the first passage properties of diffusion in

the eccentric annular region. In Section 1.7.2 we looked at the two dimensional

case and the mean time for a Brownian particle to hit the inner circular bound-

ary. The results were extended using pseudo-Green’s function by Bénichou &

Voituriez (2014); Chevalier et al. (2010) to determine the first passage properties

of Brownian motion in a domain where the absorbing targets are on an otherwise

reflecting surface.

Lindsay et al. (2016) derive a hybrid asymptotic-numerical approach to estimate

the density of the first passage time of a random walker to multiple small traps

located inside a bounded two dimensional domain with a reflecting boundary.

They make use of the Laplace transform on the underlying diffusion equation in

combination with the method of matched asymptotic expansions to obtain the

short time solution. For large times, they used numerical evaluations to complete

the derivation.

Grebenkov et al. (2017) calculated the MFPT of a Brownian particle, diffusing

inside a finite length cylinder, to reach a reactive patch on the surface of an

interior concentric cylinder by replacing the mixed boundary condition on the

interior cylinder with a inhomogeneous Neumann boundary condition and solving

the new problem using a separable solution. Additionally, asymptotic solutions

are derived for different parameter scenarios from the results.

Tzou & Kolokolnikov (2015) compute the MFPT of a Brownian particle diffusing

inside a two dimensional disk with reflecting boundary and an interior absorbing

trap which is rotating at a constant angular velocity.

When the target is an absorbing arc located on an otherwise reflecting boundary,

the problem can be classified as a narrow escape problem (NEP) and has been

studied extensively Cheviakov et al. (2012); Grebenkov et al. (2020); Holcman

& Schuss (2004, 2014, 2015); Marshall (2016); Pillay et al. (2010). When the

absorbing arc shrinks to zero the mean time to absorption diverges to infinity

and the narrow escape problem becomes a singular perturbation problem and is

solved by using asymptotic expansions Schuss et al. (2007); Singer et al. (2006a,b).
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2.3 Bipolar coordinates

Boundary homogenisation is used to solve problems where an otherwise reflecting

boundary has absorbing traps located on it, making use of the fact that non-

uniform boundaries affect a relatively small neighbourhood near the surface and,

as a result, the memory about the local properties of the boundary declines as a

function of distance from the boundary Berezhkovskii et al. (2004); Makhnovskii

et al. (2005).

We represent a cell as a circle of radius R, containing a nucleus (or other in-

tracellular compartment) of radius Rn. The centre of the nucleus is displaced

from that of the cell by a distance rc. Given that we are interested in eccentric

annular regions like the one shown in Figure 2.1, the coordinate systems we have

been using are not the best suited. Instead, in this section, we replace Cartesian

coordinates (x, y) with bipolar coordinates (τ ,σ).

2.3 Bipolar coordinates

Bipolar coordinates (τ, σ) are defined in terms of two foci whose separation is

2F (Figure 2.2) Heyda (1959); Kurella et al. (2015). Curves of constant τ are

circles with radius r, centred at x =
√
r2 + F 2 and y = 0, where τ = log(F/r +√

1 + (F/r)2). Similarly as we did is Section 1.6, we rescale lengths so that the

radius of the cell is equal to 1. We shall calculate the Green’s functions and mean

times using the following dimensionless quantities:

a =
Rn

R
, c =

rc
R

and d =
F

R
.

Note that 0 ≤ c ≤ 1 − a, and a2 is the fraction of the cell occupied by the

nucleus. In order that the centres of the two circles of radii 1 and a be displaced

by c =
√

1 + d2 −
√
a2 + d2, we must choose:

d =
1

2c

√
(1 + a2 − c2)2 − 4a2. (2.1)

Thus, the eccentric annular region C (grey in Figure 2.3) is represented by

τ2 < τ < τ1 , 0 ≤ σ < 2π,

where

τ1 = log
(
d/a+

√
1 + (d/a)2

)
(nuclear surface) ,
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y

x

R

×
Rn

rc

Figure 2.1: Intracellular geometry. We represent a cell as a circle of radius R,

containing a nucleus (or other intracellular compartment) of radius Rn. The

centre of the nucleus is displaced from that of the cell by a distance rc.
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• •

•

(−d, 0) (d, 0)

xτ = log
l1
l2

l1
l2σ

Figure 2.2: Graphical definition of the bipolar coordinates, τ and σ, of the point

x.

0.2 0.4 0.6 0.8

5

10

15

c

d

ca

Figure 2.3: Left: the distance d used to define bipolar coordinates, as a function

of c with a = 0.1. Right: the domain C is shown in grey.

and

τ2 = log
(
d+
√

1 + d2
)

(cellular surface).

We denote the nuclear surface (a circle of radius a, blue in Figure 2.3) by ∂C1

and the cellular surface (a circle of radius 1, green in Figure 2.3) by ∂C2. We plot

in Figure 2.4 a sampling of bipolar coordinates. Heyda (1959); Liemert (2014)

calculate the Green’s function for an eccentric circular annular domain, where

both the inner and outer boundaries are absorbing, by using bipolar coordinates.

Kurella et al. (2015) utilise bipolar coordinates to solve the Laplace equation for

the following system: two circles with Dirichlet boundary conditions embedded

in an infinite medium.
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0π

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

τ2

(τ1 + 3τ2)/4

(τ1 + τ2)/2

(3τ1 + τ2)/4

τ1

Figure 2.4: Bipolar coordinates τ (left) and σ (right) where τ1 is the bipolar

representation of the nuclear surface and τ2 is the bipolar representation of the

cellular surface.

2.4 Bipolar Green’s function

The mean time to reach an absorbing boundary of C, starting from x0 ∈ C can

be written as

T (x0) = R2

∫
C

G(x0,x) dx, (2.2)

using the Green’s function G(x0,x), which may thus be interpreted as an occu-

pation density, satisfying

D∆xG(x0,x) = −δ(x− x0) x ∈ C, (2.3)

with suitable boundary conditions. Green’s function, G (x0,x) can be constructed

numerically by dividing the domain into small boxes and recording the mean

amount spent in each, by paths starting at x0. Let (τ, σ) be the bipolar coor-

dinates of x and (τ0, σ0) the bipolar coordinates of x0. Then d2∆x = (cosh τ −
cosσ)2

(
∂2

∂τ2 + ∂2

∂σ2

)
El-Saden (1961); Snyder & Goldstein (1965) and we can

write:

T (x0) = R2

∫ τ1

τ2

∫ 2π

0

G(x0,x)d2

(cosh τ − cosσ)2
dσdτ. (2.4)

2.4.1 From nucleus to cellular surface

We begin with the case of diffusion with absorption on the cellular surface. The

Green’s function, denoted by G
(2)
1 (x0,x), satisfies (2.3), is equal to zero on the
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2.4 Bipolar Green’s function

cellular surface and has vanishing normal derivative on the nuclear surface. That

is, we impose the following boundary conditions:

∂G
(2)
1

∂n1

(x0,x) = 0, x ∈ ∂C1,

G
(2)
1 (x0,x) = 0, x ∈ ∂C2.

(2.5)

where n1 is the unit normal outward vector to ∂C1.

We are looking for a solution to (2.3) of the form (Heyda, 1959, p.30):

G
(2)
1 (τ, σ; τ0, σ0) = G(2)

s (τ, σ; τ0, σ0) +G(2)
r (τ, σ; τ0, σ0), (2.6)

where G
(2)
r is the non-singular component of the Green’s function:

G(2)
r (τ, σ; τ0, σ0) = A0τ +B0 +

+∞∑
n=1

(
(An cosnσ +Bn sinnσ)e−nτ

+(Cn cosnσ +Dn sinnσ)enτ ) ,

and G
(2)
s (τ, σ; τ0, σ0) is the singular part of G

(2)
1 (for a derivation of G

(2)
s see

(Heyda, 1959, p.29–30)):

G(2)
s (τ, σ; τ0, σ0) =

1

2Dπ

[
τm − log 2d+

+∞∑
n=1

1

n
Hn(τ, σ; τ0, σ0)

]
,

where τm = min(τ, τ0) and

Hn(τ, σ; τ0, σ0) = e−n|τ−τ0| cosn(σ − σ0)− e−nτ cosnσ − e−nτ0 cosnσ0.

Given the boundary conditions (2.5) we translate them into bipolar coordinates

(for the normal derivative in bipolar coordinates of a function on a circle of

constant τ see Appendix B.1) and use (2.6):

∂G
(2)
r

∂τ
(τ, σ; τ0, σ0)

∣∣∣∣∣
τ=τ1

= − ∂G
(2)
s

∂τ
(τ, σ; τ0, σ0)

∣∣∣∣∣
τ=τ1

,

G(2)
r (τ2, σ; τ0, σ0) = −G(2)

s (τ2, σ; τ0, σ0),

which gives us:

A0 +
+∞∑
n=1

[
−n(An cosnσ +Bn sinnσ)e−nτ1 + n(Cn cosnσ +Dn sinnσ)enτ1

]
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2.4 Bipolar Green’s function

=
1

2Dπ

+∞∑
n=1

(
e−n(τ1−τ0) cosn(σ − σ0)− e−nτ1 cosnσ

)
, (2.7)

and

A0τ2 +B0 +
+∞∑
n=1

[
(An cosnσ +Bn sinnσ)e−nτ2 + (Cn cosnσ +Dn sinnσ)enτ2

]
= − 1

2Dπ

[
τ2 − log 2d+

+∞∑
n=1

1

n

(
e−n(τ0−τ2) cosn(σ − σ0)

−e−nτ2 cosnσ − e−nτ0 cosnσ0

) ]
. (2.8)

We multiply both (2.7) and (2.8) by cosmσ and sinmσ and integrate from 0 to

2π with respect to σ to obtain:

Ame−mτ1 − Cmemτ1 = − 1

2Dπm
e−m(τ1−τ0) cosmσ0 +

1

2Dπm
e−mτ1 , (2.9a)

Ame−mτ2 + Cmemτ2 = − 1

2Dπm
e−m(τ0−τ2) cosmσ0 +

1

2Dπm
e−mτ2 , (2.9b)

and

Bme−mτ1 −Dmemτ1 = − 1

2Dπm
e−m(τ1−τ0) sinmσ0, (2.10a)

Bme−mτ2 +Dmemτ2 = − 1

2Dπm
e−m(τ0−τ2) sinmσ0. (2.10b)

Solving (2.9) and (2.10) we obtain the coefficients:

Am = − 1

2Dπm

(
emτ2 cosmσ0

coshm(τ1 − τ0)

coshm(τ2 − τ1)
− 1

)
, (2.11a)

Bm = − 1

2Dπm
emτ2 sinmσ0

coshm(τ1 − τ0)

coshm(τ2 − τ1)
, (2.11b)

Cm = − 1

2Dπm
e−mτ1 cosmσ0

sinhm(τ2 − τ0)

coshm(τ2 − τ1)
, (2.11c)

Dm = − 1

2Dπm
e−mτ1 sinmσ0

sinhm(τ2 − τ0)

coshm(τ2 − τ1)
, (2.11d)

where m ∈ N. Integrating (2.7) and (2.8) with respect to σ from 0 to 2π we

obtain:

2πA0 = 0,
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2DπA0τ2 + 2DπB0 = −

(
τ2 − log 2d−

+∞∑
n=1

e−nτ0 cosnσ0

n

)
,

from which we deduce that:

A0 = 0, (2.12a)

B0 = − 1

2Dπ

(
τ2 − log 2d−

+∞∑
n=1

e−nτ0 cosnσ0

n

)
. (2.12b)

Using (2.11) and (2.12) in (2.6) we obtain the desired Green’s function:

2DπG
(2)
1 (τ, σ; τ0, σ0) = τm − τ2 +

+∞∑
n=1

cosn (σ − σ0)

n

(
e−n|τ−τ0| −H(τ, τ0; τ1, τ2)

)
,

where

H(τ, τ0; τ1, τ2) =
en(τ2−τ) coshn(τ1 − τ0) + en(τ−τ1) sinhn(τ2 − τ0)

coshn(τ2 − τ1)
.

Rearranging the coefficient of cosn(σ − σ0) we notice:

e−n|τ−τ0| −H(τ, τ0; τ1, τ2)

n
=

2 sinhn(τm − τ2) coshn(τ1 − τM)

n coshn(τ2 − τ1)
,

where τM = max{τ, τ0}.
Thus, G

(2)
1 (x0,x) can be written in the following compact and elegant form:

2πDG
(2)
1 (x0,x) = τm − τ2 +

+∞∑
n=1

2

n
cosn(σ − σ0)K

(2)
1,n(τ, τ0), (2.13)

where K
(2)
1,n(τ, τ0) = sinhn(τm − τ2)

coshn(τ1 − τM)

coshn(τ1 − τ2)
, and τM = max{τ, τ0}.

We plot G
(2)
1 (x0,x) in Figure 2.5 and compare with numerical simulation. Addi-

tionally, examples of G
(2)
1 (x0,x) are shown in Figure 2.6 for multiple combinations

of a and x0.
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numerical exact difference

0.0 0.6 1.2 0.005 0.000 0.005

Figure 2.5: Plot of numerical simulation of G
(2)
1 (x0,x) (left), analytic formula

(2.13) (centre) and difference (right). For the numerical simulations we have

used G.5.1.1 and this plot has been obtained using G.5.1.2. The initial position

is x0 − xc = (−0.5, 0). Here xc is the position vector of the cellular centre. For

this figure we have used the following parameters: a = 0.1 and c = 0.25.

2.4.1.1 Comparison with interior Dirichlet Green’s function

The interior Dirichlet Green’s function satisfies the following equations:

D∆xG
(2)
0 (x0,x) = −δ(x− x0) if x ∈ C∗,

G
(2)
0 (x0,x) = 0 if x ∈ ∂C2,

(2.14)

where ∂C2 is the absorbing cellular boundary, x0 ∈ C∗ is the initial position of

the point particle and C∗ is the disk of radius of 1. G
(2)
0 (x0,x) is the occupation

density of the time a particle spends at x given that it started at x0 and is

diffusing in a disk of radius 1 with absorbing boundary. The solution of (2.14) is

given by Barton (1989) as:

G
(2)
0 (x0,x) =

1

2πD

(
log

1

R
− log

1

R̃
+ log r0

)
, (2.15)

where x̃0 is the image point of x0 such that the scalar product x0 · x̃0 = 1 and

R = |x− x0|, R̃ = |x− x̃0| and r0 = |x0|.
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a
=

0
.0

5

x0 − xc = (− 0. 5, 0) x0 − xc = (− 0. 1, − 0. 45) x0 − xc = (0. 5, 0. 5)

a
=

0.
1

a
=

0.
2

0.0 0.6 1.2

Figure 2.6: Green’s function (2.13) with reflecting nuclear surface and absorbing

cellular surface. Nine cases are shown: (i) c = 0.25, a = 0.05, x0−xc = (−0.5, 0)

and D = 0.5. (ii) c = 0.25, a = 0.05, x0 − xc = (−0.1,−0.45) and D = 0.5. (iii)

c = 0.25, a = 0.05, x0 − xc = (0.5, 0.5) and D = 0.5. (iv) c = 0.25, a = 0.1,

x0 − xc = (−0.5, 0) and D = 0.5. (v) c = 0.25, a = 0.1, x0 − xc = (−0.1,−0.45)

and D = 0.5. (vi) c = 0.25, a = 0.1, x0 − xc = (0.5, 0.5) and D = 0.5. (vii)

c = 0.25, a = 0.2, x0 − xc = (−0.5, 0) and D = 0.5. (viii) c = 0.25, a = 0.2,

x0 − xc = (−0.1,−0.45) and D = 0.5. (ix) c = 0.25, a = 0.2, x0 − xc = (0.5, 0.5)

and D = 0.5. Here xc is the position vector of the cellular centre.
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θ1

×xc

•
x0

•
x̃0

θ2

r0 r̃0

Figure 2.7: (i) The angles θ1 and θ2. (ii) Given x0, the image point x̃0 is defined

such that r0r̃0 = 1, where |x0| = r0 and |x̃0| = r̃0. If the representation of x̃0

in bipolar coordinates is (τ̃0, σ̃0), then τ0 + τ̃0 = 2τ2. The centre of the cell is

represented by xc.

Let z, z0 be the complex representation of x and x0, respectively. Following

(Heyda, 1959, p.29), we have:

z− z0 =
2d (eu0 − eu)

(eu − 1) (eu0 − 1)
=


2deu(1−e−(u−u0))

(1−eu)(1−eu0 )
, if τ0 ≥ τ,

−2deu0(1−e−(u0−u))
(1−eu)(1−eu0 )

, if τ0 ≤ τ,

where u = −τ + iσ and (τ, σ) are the bipolar coordinates of r. Taking the real

part of − log(z− z0) we obtain:

−< [log (z− z0)] = max{τ, τ0} − log 2d+
+∞∑
n=1

1

n
Hn (x0,x) , (2.16)

where

Hn (x0,x) = e−n|τ−τ0| cosn(σ − σ0)− e−nτ cosnσ − e−n|τ0| cosnσ0.

For the second term in (2.15) we have:

z− z̃0 =
2d
(
eũ0 − eu

)
(eu − 1) (eũ0 − 1)

=


−2deu(1−e−(u−ũ0))

(1−eu)(1−eũ0)
, if τ̃0 ≥ 0,

− 2d(1−e−(ũ0−u))
(1−eu)(1−e−ũ0)

, if τ̃0 ≤ 0,
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G
(2)
0 G

(2)
1 ∆G (2)

0.0 0.6 1.2 0.12 0.00 0.12

Figure 2.8: Plot of the Green’s function G
(2)
0 (x0,x) formula (left, formula from

(2.15)), Green’s function G
(2)
1 (x0,x) (centre, formula from (2.13)) and difference

(right). The initial condition is x0 − xc = (−0.5, 0) and a = 0.1, c = 0.5. Here xc

is the position vector of the cellular centre.

and we deduce that:

log (z− z̃0) =


iπ + log 2d+ u−

+∞∑
n=1

1
n

[
en(u−ũ0) −

(
enu + enũ0

)]
, if τ̃0 ≥ 0,

iπ + log 2d−
+∞∑
n=1

1
n

[
e−n(u−ũ0) −

(
enu + e−nũ0

)]
, if τ̃0 ≤ 0.

As a result, we have:

−< [log (z− z̃0)] = max{τ̃ , 0} − log 2d+
+∞∑
n=1

1

n
Hn (x̃0,x) , (2.17)

where

Hn (x̃0,x) = e−n|τ−τ̃0| cosn(σ − σ̃0)− e−nτ cosnσ − e−n|τ̃0| cosnσ̃0.

The third term in (2.15) can be written as:

log r0 = < [log (zc − z0)] ,

where zc is the position of the centre of the cell, which can be written as (τc, σc) =

(2τ2, 0) in bipolar coordinates (see Appendix B.7). As a result we have:

zc − z0 =
2d (eu0 − euc)

(euc − 1) (eu0 − 1)
=


2deu0(1−e−(u0−uc))

(1−euc)(1−eu0 )
, if 2τ2 ≤ τ0,

−2deuc(1−e−(uc−u0))
(1−euc)(1−eu0 )

, if 2τ2 ≥ τ0.
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2.4 Bipolar Green’s function

Taking the real part of log(zc − z0) we obtain:

log r0 = −min{2τ2, τ0}+ log 2d−
+∞∑
n=1

1

n
Hn (x0,xc) , (2.18)

where

Hn (x0,xc) = e−n|2τ2−τ0| cosnσ0 − e−2nτ2 − e−n|τ0| cosnσ0.

Using (2.16), (2.17) and (2.18) in (2.15) we obtain:

2πDG
(2)
0 (x0,x) = log

1

R
− log

1

R̃
+ log r0

= min{τ, τ0} −max{τ̃ , 0} −min{2τ2, τ0}+ log 2d

+
+∞∑
n=1

1

n
(Hn (x0,x)−Hn (x̃0,x)−Hn (x0,xc))

= min{τ, τ0} − 2τ2 + log 2d

+
+∞∑
n=1

1

n

(
e−n|τ−τ0| cosn(σ − σ0)− e−nτ cosnσ − e−n|τ0| cosnσ0

− e−n|τ−τ̃0| cosn(σ − σ̃0) + e−nτ cosnσ + e−n|τ2−τ0| cosnσ̃0

−e−n|2τ2−τ0| cosnσ0 + e−2nτ2 + e−n|τ0| cosnσ0

)
= min{τ, τ0} − 2τ2 + log 2d+

+∞∑
n=1

1

n
e−2nτ2

+
+∞∑
n=1

1

n

(
e−n|τ−τ0| cosn(σ − σ0)− e−n(τ−τ̃0) cosn(σ − σ0)

)
= min{τ, τ0} − τ2 +

+∞∑
n=1

cosn(σ − σ0)

n

(
e−n|τ−τ0| − e−n(τ−τ̃0)

)
= min{τ, τ0} − τ2 +

+∞∑
n=1

2

n
cosn(σ − σ0) sinhn(τm − τ2)e−n(τM−τ2),

(2.19)

where τm = min{τ, τ0}, τM = max{τ, τ0} and we have used appendix B.5 and

C.2, respectively.

The difference of (2.13) and (2.19) can be written as:

2πD∆G
(2)
1 (x0,x) = 2πD

(
G

(2)
1 (x0,x)−G(2)

0 (x0,x)
)

60



2.4 Bipolar Green’s function

= 2
+∞∑
n=1

cosn(σ − σ0)

n
∆K

(2)
1,n(τ, τ0), (2.20)

where

∆K
(2)
1,n(τ, τ0) = e−n(τ1−τ2) sinhn (τM − τ2) sinhn (τm − τ2)

coshn (τ1 − τ2)
. (2.21)

We plot horizontal slices of G
(2)
0 (x0,x), G

(2)
1 (x0,x) and ∆G

(2)
1 (x0,x) in Figure

2.9. We observe that while G
(2)
0 (x0,x) and G

(2)
1 (x0,x) have a singularity at

x =
(

1
2
, 0
)
, their difference ∆G

(2)
1 (x0,x) does not present any singularity.

We wish to expand ∆K
(2)
1,n(τ, τ0) as a series in powers of a and we begin by making

use of:

τ1 = log

(
1− c2

ac
− a

c (1− c2)

)
= log

1− c2

c
− log a+ O

(
a2
)
, (2.22a)

τ2 = log

(
1

c
− a2

c (1− c2)

)
= log

1

c
+ O

(
a2
)
, (2.22b)

τ1 − τ2 = log(1− c2)− log a+ O
(
a2
)
, (2.22c)

to obtain the following:

e−n(τ1−τ2) = e−n(log(1−c2)−log a+O(a2))

= e−n log(1−c2)en log aeO(a2)

=
an

(1− c2)n
+ O

(
an+1

)
,

1

coshn (τ1 − τ2)
=

2

en(τ1−τ2) + e−n(τ1−τ2)

=
2e−n(τ1−τ2)

1 + e−2n(τ1−τ2)

=
2e−n(log(1−c2)−log a+O(a2))

1 + e−2n(log(1−c2)−log a+O(a2))

= 2

an

(1−c2)n
+ O (an+1)

1 + a2n

(1−c2)2n + O (a2n+1)

=
2an

(1− c2)n
+ O

(
an+1

)
.

The τ -component can be expressed as follows:

τ = log

d
r

+

√
1 +

(
d

r

)2
 ,
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Figure 2.9: Top: plot of the Green’s function 2πG
(2)
0 (x0,x) from (2.15) and

2πG
(2)
1 (x0,x) from (2.13) as a function of the horizontal distance x. Middle:

plot of the difference between G
(2)
1 (x0,x) and G

(2)
0 (x0,x) as a function of the

horizontal distance x for multiple values of a. Bottom: plot of the difference

Green’s function ∆G
(2)
1 (x0,x) from (2.20) as a function of the horizontal distance

x for multiple values of a.

where r is the radius of the circle defined by τ . Using the following expansion:

d =
1− c2

2c
− a2

2

1 + c2

1− c2
+ O

(
a3
)
,
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2.4 Bipolar Green’s function

1 +

(
d

r

)2

= 1 +
(1− c2)

2

4c2r2
− a2 1 + c2

2c2r2
+ O

(
a3
)
,

we obtain:

d

r
+

√
1 +

(
d

r

)2

=

√
4c2r2 + (1− c2)2 + 1− c2

2rc

− a2 1 + c2

2rc

(
1√

4c2r2 + (1− c2)2
+

1

1− c2

)
+ O

(
a3
)

=

√
4c2r2 + (1− c2)2 + 1− c2

2rc

1− a2 1 + c2

2c

(
1√

4c2r2+(1−c2)2
+ 1

1−c2

)
√

4c2r2+(1−c2)2+1−c2
2c

+ O
(
a3
) .

As a result we have:

τ = log

{√
4c2r2 + (1− c2)2 + 1− c2

2rc

[
1− a2α + O

(
a3
)]}

= log

(√
4c2r2 + (1− c2)2 + 1− c2

2rc

)
+ log

(
1− αa2 + O

(
a3
))

= log

(√
4c2r2 + (1− c2)2 + 1− c2

2rc

)
+ O

(
a2
)
, (2.23)

where

α =
1 + c2

2c

(
1√

4c2r2+(1−c2)2
+ 1

1−c2

)
√

4c2r2+(1−c2)2+1−c2
2c

.

When r = 1 we have:

τ2 = log

(
1

c

)
+ O

(
a2
)
, (2.24)

which is consistent with our previous result (2.22b). From (2.23) and (2.24) we

deduce that:

τ − τ2 = log

(√
4c2r2 + (1− c2)2 + 1− c2

2r

)
+ O

(
a2
)
.

As a result, we obtain:

sinhn (τ − τ2) =
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2.4 Bipolar Green’s function

e
n

(
log

(√
4c2r2+(1−c2)2+1−c2

2r

)
+O(a2)

)
− e

−n
(

log

(√
4c2r2+(1−c2)2+1−c2

2r

)
+O(a2)

)
2

=

(√
4c2r2+(1−c2)2+1−c2

2r

)n
−
(√

4c2r2+(1−c2)2+1−c2

2r

)−n
2

+ O
(
a2
)
,

where in the above calculation we have used the following expansions:

e±nαa
2

= 1± nαa2 + O
(
a4
)
.

Analogously, we obtain:

sinhn (τ0 − τ2) =

(√
4c2r2

0+(1−c2)2+1−c2

2r0

)n
−
(√

4c2r2
0+(1−c2)2+1−c2

2r0

)−n
2

+ O
(
a2
)
.

The difference term (2.21) can be written as:

∆K
(2)
1,n(τ, τ0) = a2n

[(√
4c2r2+(1−c2)2+1−c2

2r

)n
−
(√

4c2r2+(1−c2)2+1−c2

2r

)−n]
2 (1− c2)2n

×

[(√
4c2r2

0 + (1− c2)2 + 1− c2

2r0

)n

−

(√
4c2r2

0 + (1− c2)2 + 1− c2

2r0

)−n]
+ O

(
a2(n+1)

)
.

When n = 1 we have:

∆K
(2)
1,1(τ, τ0) = a2

[(√
4c2r2+(1−c2)2+1−c2

2r

)
−
(√

4c2r2+(1−c2)2+1−c2

2r

)−1
]

2 (1− c2)2

×

(√4c2r2
0 + (1− c2)2 + 1− c2

2r0

)
−

(√
4c2r2

0 + (1− c2)2 + 1− c2

2r0

)−1


+ O
(
a4
)
,

from which we deduce that G
(2)
1 (x0,x) can be written as the sum of G

(2)
0 (x0,x)

and corrections proportional to a2. We observe that when c→ 0+:

∆K
(2)
1,1(τ, τ0)→ a2

2

(
1

r
− r
)(

1

r0

− r0

)
+ O

(
a4
)
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→ a2

2

(
1

rM
− rM

)(
1

rm
− rm

)
+ O

(
a4
)
, (2.25)

where rM = max{r, r0} and rm = min{r, r0}.

2.4.1.2 Comparison with the concentric Green’s function

When c = 0 the Green’s function G
(2)
1 can be written as:

2πDG
(2)
1 (x0,x) = − log rM +

+∞∑
n=1

cosn (θ − θ0)

n

× [(1/rM)n − rnM ] [(rm/a)n + (a/rm)n]

an + (1/a)n
, (2.26)

where rm = min(r0, r) and rM = max{r0, r}. Here (r, θ) and (r0, θ0) are the polar

coordinates of x and x0, respectively. We plot (2.26) in Figure 2.10.

In order to prove (2.26) we make use of appendix B.8 in (2.13). From (Barton,

1989, p. 414) we know that:

2πDG
(2)
0 (x0,x) = − log rM +

+∞∑
n=1

cosn (θ − θ0)

n

[(
rm
rM

)n
− (rmrM)n

]

= − log rM +
+∞∑
n=1

cosn (θ − θ0)

n
(rm)n

[(
1

rM

)n
− (rM)n

]
,

from which we deduce:

2πD
(
G

(2)
1 (x0,x)−G(2)

0 (x0,x)
)

=
+∞∑
n=1

cosn (θ − θ0)

n

[(
1

rM

)n
− (rM)n

] [
(rm)2n + a2n

(rm)n(a2n + 1)
− (rm)n

]

=
+∞∑
n=1

cosn (θ − θ0)

n

[(
1

rM

)n
− (rM)n

]
a2n [(rm)2n − 1]

(rm)n (a2n + 1)

=
+∞∑
n=1

cosn (θ − θ0)

n

[(
1

rM

)n
− (rM)n

] [(
1

rm

)n
− (rm)n

]
a2n

1 + a2n

=
+∞∑
n=1

cosn (θ − θ0)

n

[(
1

rM

)n
− (rM)n

] [(
1

rm

)n
− (rm)n

]
a2n

×
(
1− a2n + a4n − · · ·

)
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0.0

0.5

1.0

1.5

Figure 2.10: Plot of the Green’s function G
(2)
1 (x0,x) for the concentric case

(2.26).Here we have used x0 = (−0.5, 0) , D = 0.5.

= a2 cos (θ − θ0)

(
1

rM
− rM

)(
1

rm
− rm

)
+ O

(
a3
)
. (2.27)

We observe that the concentric case (2.27) is consistent with our previous calcu-

lations (2.25) for the concentric case.

2.4.2 From cellular surface to nucleus

We turn to the case of diffusion from the cellular surface to an absorbing nu-

cleus, and denote the Green’s function by G
(2)
2 (x0,x). It satisfies (2.3) with the
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numerical exact difference

0.0 0.6 1.2 0.025 0.000 0.025

Figure 2.11: Plot of numerical simulation of G
(2)
2 (x0,x) (left), analytic formula

(2.28) (centre) and difference (right). The initial condition is x0− xc = (−0.5, 0)

and a = 0.1, c = 0.25. Here xc is the position vector of the cellular centre.

conditions:

G
(2)
2 (x0,x) = 0, x ∈ ∂C1,

∂G2

∂n2

(x0,x) = 0, x ∈ ∂C2,

where n2 is the unit normal outward vector to ∂C2. Following the same method-

ology as used in Section 2.4.1 to derive G
(2)
1 (x0,x), we find

2πDG
(2)
2 (x0,x) = τ1 − τM +

+∞∑
n=1

2

n
cosn(σ − σ0)K

(2)
2,n(τ, τ0), (2.28)

where K
(2)
2,n(τ, τ0) = sinhn(τ1 − τM)

coshn(τm − τ2)

coshn(τ1 − τ2)
. In Figure 2.13, the exact

Green’s function is compared with the approximation of Condamin et al. (2007),

which was constructed as a sum of pseudo-Green functions (see (1.67) for a defi-

nition of pseudo-Green functions).

We plot G
(2)
2 (x0,x) in Figure 2.11 and compare with numerical simulation. Ad-

ditionally, examples of G
(2)
2 (x0,x) are shown in Figure 2.12 for multiple combi-

nations of a and x0.
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a
=

0.
05

x0 − xc = (− 0. 5, 0) x0 − xc = (− 0. 1, − 0. 45) x0 − xc = (0. 5, 0. 5)

a
=

0.
1

a
=

0.
2

0.00 1.25 2.50

Figure 2.12: Green’s function (2.28) with absorbing nuclear surface and reflecting

cellular surface. Nine cases are shown: (i) c = 0.25, a = 0.05, x0−xc = (−0.5, 0)

and D = 0.5. (ii) c = 0.25, a = 0.05, x0 − xc = (−0.1,−0.45) and D = 0.5. (iii)

c = 0.25, a = 0.05, x0 − xc = (0.5, 0.5) and D = 0.5. (iv) c = 0.25, a = 0.1,

x0 − xc = (−0.5, 0) and D = 0.5. (v) c = 0.25, a = 0.1, x0 − xc = (−0.1,−0.45)

and D = 0.5. (vi) c = 0.25, a = 0.1, x0 − xc = (0.5, 0.5) and D = 0.5. (vii)

c = 0.25, a = 0.2, x0 − xc = (−0.5, 0) and D = 0.5. (viii) c = 0.25, a = 0.2,

x0 − xc = (−0.1,−0.45) and D = 0.5. (ix) c = 0.25, a = 0.2, x0 − xc = (0.5, 0.5)

and D = 0.5. Here xc is the position vector of the cellular centre.
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Condamin et al. exact difference

0.0 0.5 1.0 1.5

-0.15

-0.10

-0.05

 0.00

0.1 0.0 0.1

Figure 2.13: The approximation of Condamin et al. (2007), the exact Green’s

function (2.28), with reflecting cell surface and absorbing nuclear surface, which

is negative on part of the domain, and the difference. Here we have chosen the

following parameter values c = 0.25, a = 0.1, x0−xc = (−0.5, 0), where xc is the

position vector of the cellular centre.

2.4.2.1 Comparison with Condamin et al. (2007) formula

We wish to compare (2.28) with the result produced by Condamin et al. (2007)

for the Green’s function:

2πDGc(x0,x) = log
1

a
+H(x,x0)−H(x,xn) +H∗(xn,xn)−H(xn,x0),

where

H(x,y) = log
1

|x− y|
+ log

1

|x− ỹ|
+ log

1

|y|
+
|x|2 + |y|2

2
,

and

H∗(x,y) = log
1

|x− ỹ|
+ log

1

|y|
+
|x|2 + |y|2

2
.

As a result, we obtain:

2πDGc(x0,x) = log
1

a
+ log

1

|x− x0|
+ log

1

|x− x̃0|
− log

1

|x− xn|
− log

1

|x− x̃n|

− log
1

|xn − x0|
− log

1

|xn − x̃0|
+ log

1

|xn − x̃n|
,

where x̃ is the image point of x.

Using the following bipolar expansions Heyda (1959):

log
1

|x− y|
= min (τx, τy)− log 2d
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+
+∞∑
n=1

1

n

[
e−n|τx−τy | cosn(σx − σy)− e−n|τx| cosnσx − e−n|τy | cosnσy

]
,

(2.29)

and

log
1

|x− ỹ|
= max{τ̃y, 0} − log 2d

+
+∞∑
n=1

1

n

[
e−n|τx−τ̃y | cosn(σx − σy)− e−n|τx| cosnσx − e−n|τ̃y | cosnσy

]
,

(2.30)

we obtain, after simplification:

2πDGc(x0,x) = τ1 − τM +
+∞∑
n=1

1

n

[
e−n|τ−τ0| cosn(σ − σ0) + e−n|τ−τ̃0| cosn(σ − σ0)

− e−n|τ−τc| cosnσ − e−n|τ−τ̃c| cosnσ − e−n|τc−τ0| cosnσ0 − e−n|τc−τ̃0| cosnσ0

+e−n|τc−τ̃c| + e−n|τc|
]
.

Using the fact that τc = 2τ1 (see appendix B.7) and τ̃ = 2τ2 − τ (see appendix

C.2) we observe that:

2πDGc(x0,x) = τ1 − τM +
+∞∑
n=1

1

n

[
e−n|τ−τ0| cosn(σ − σ0) + e−n|τ−2τ2+τ0| cosn(σ − σ0)

− e−n|τ−2τ1| cosnσ − e−n|τ−2τ2+2τ1| cosnσ − e−n|2τ1−τ0| cosnσ0

−e−n|2τ1−2τ2−τ0| cosnσ0 + e−n|4τ1−2τ2| + e−n|2τ1|
]

= τ1 − τM + 2
+∞∑
n=1

1

n

[
e−n(τM−τ2) coshn (τm − τ2) cosn(σ − σ0)

− e−n(2τ1−τ2) coshn (τ − τ2) cosnσ

− e−n(2τ1−τ2) coshn (τ0 − τ2) cosnσ0 +
e−n|4τ1−2τ2| + e−n|2τ1|

2

]
,

(2.31)

where we have used:[
e−n|τ−τ0| + e−n|τ−2τ2+τ0|

]
cosn(σ − σ0) = 2e−n(τM−τ2) coshn (τm − τ2) cosn(σ − σ0),[

e−n|τ−2τ1| + e−n|τ−2τ2+2τ1|
]

cosnσ = 2e−n(2τ1−τ2) coshn (τ − τ2) cosnσ,
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[
e−n|τ0−2τ1| + e−n|τ0−2τ2+2τ1|

]
cosnσ0 = 2e−n(2τ1−τ2) coshn (τ0 − τ2) cosnσ0.

We want to calculate the following:

2πD∆G
(2)
2 (x0,x)

= 2πD
(
G

(2)
2 (x0,x)−Gc (x0,x)

)
= 2

+∞∑
n=1

1

n

{[
sinhn (τ1 − τM)

coshn (τm − τ2)

coshn (τ1 − τ2)
− e−n(τM−τ2) coshn (τm − τ2)

]
× cosn(σ − σ0) + e−n(2τ1−τ2) coshn (τ − τ2) cosnσ

+ e−n(2τ1−τ2) coshn (τ0 − τ2) cosnσ0 −
e−n|4τ1−2τ2| + e−n|2τ1|

2

}

= 2
+∞∑
n=0

1

n
∆K

(2)
2,n(x0,x).

We plot ∆G
(2)
2 (x0,x) in the left panel of Figure 2.14.

Using the fact that:

τ = log


√

4c2r2 + (1− c2)2 + 1− c2

2rc

+ O
(
a2
)
,

τ1 = log
1− c2

c
− log a+ O

(
a2
)
,

τ2 = log
1

c
+ O

(
a2
)
,

we obtain:

τ1 − τ = log
1− c2

c
− log a− log


√

4c2r2 + (1− c2)2 + 1− c2

2rc

+ O
(
a2
)

= log


1

a

2r (1− c2)√
4c2r2 + (1− c2)2 + 1− c2︸ ︷︷ ︸

f(r)

+ O
(
a2
)

= log
f(r)

a
+ O

(
a2
)
,
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τ − τ2 = log


√

4c2r2 + (1− c2)2 + 1− c2

2r︸ ︷︷ ︸
g(r)

+ O
(
a2
)

= log g(r) + O
(
a2
)
,

and, subsequently, that:

coshn (τ − τ2) =
en log g(r) + e−n log g(r)

2

=
gn(r) + g−n(r)

2
+ O

(
a2
)

=
g2n(r) + 1

2gn(r)
+ O

(
a2
)
.

The first term in the sum of ∆K
(2)
2,n(x0,x) can be written as:

sinhn (τ1 − τM) coshn (τm − τ2)

coshn (τ1 − τ2)
− e−n(τM−τ2) coshn (τm − τ2)

= coshn (τm − τ2)
sinhn (τ1 − τM)− e−n(τM−τ2) coshn (τ1 − τ2)

coshn (τ1 − τ2)

= −e−n(τ1−τ2) coshn (τm − τ2) coshn (τM − τ2)

coshn (τ1 − τ2)

= − a2n

(1− c2)2n

[g2n(rm) + 1] [g2n(rM) + 1]

2gn(rm)gn(rM)
+ O

(
a2(n+1)

)
.

Furthermore, the second and third terms can be expanded as:

e−n(2τ1−τ2) coshn (τ0 − τ2) =
a2ncn

(1− c2)2n

g2n(r0) + 1

gn(r0)
+ O

(
a2(n+1)

)
,

e−n(2τ1−τ2) coshn (τ − τ2) =
a2ncn

(1− c2)2n

g2n(r) + 1

gn(r)
+ O

(
a2(n+1)

)
,

and the fourth term as:

e−2nτ1 =
a2nc2n

(1− c2)2n
+ O

(
a2(n+1)

)
,

e−2n(2τ1−τ2) =
a4nc2n

(1− c2)4n
+ O

(
a2(2n+1)

)
,

where we have used the fact that:

e−n(τ1−τ2) = e−n(log(1−c2)−log a+O(a2)) = e−n log(1−c2)en log aeO(a2)
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0.1 0.0 0.1

Figure 2.14: Left: difference between the Green’s function G
(2)
2 (x0,x) obtained

in (2.28) and Gc (x0,x) from (2.31). Right: one term of the Green’s function

∆G
(2)
2 (x0,x) obtained in (2.32). For this figure we have used the following pa-

rameters: a = 0.1, c = 0.25 and D = 0.5.

=
an

(1− c2)n
+ O

(
an+1

)
,

1

coshn (τ1 − τ2)
=

2

en(τ1−τ2) + e−n(τ1−τ2)
=

2e−n(τ1−τ2)

1 + e−2n(τ1−τ2)

=
2e−n(log(1−c2)−log a+O(a2))

1 + e−2n(log(1−c2)−log a+O(a2))
= 2

an

(1−c2)n
+ O (an+1)

1 + a2n

(1−c2)2n + O (a2n+1)

=
2an

(1− c2)n
+ O

(
an+1

)
.

As a result, we obtain:

∆K
(2)
2,n(x0,x) =

a2n

2 (1− c2)2n

[
− [g2n(rm) + 1] [g2n(rM) + 1]

gn(rm)gn(rM)
cosn (σ − σ0)

+cn
(
g2n(r0) + 1

gn(r0)
cosnσ +

g2n(r) + 1

gn(r)
cosnσ0

)
− c2n

]
+ O

(
a2(n+1)

)
.
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2.5 Hitting density on the cellular surface

∆G
(2)
2 (x0,x) =

a2

2 (1− c2)2

[
− [g2(rm) + 1] [g2(rM) + 1]

g(rm)g(rM)
cos (σ − σ0)

+c

(
g2(r0) + 1

g(r0)
cosσ +

g2(r) + 1

g(r)
cosσ0

)
− c2

]
+ O

(
a4
)
. (2.32)

We plot (2.32) in the right panel of Figure 2.14. We observe that the approxi-

mation used by Condamin et al. (2007) for the absorbing boundary condition on

∂C1 induces error proportional to a2 when compared to analytic result derived in

(2.28).

2.5 Hitting density on the cellular surface

We consider the scenario where molecules are produced in the nucleus, or other

intracellular compartment, and may be released from it to diffuse until reaching

the cellular surface. Given that the initial condition is uniformly distributed on

∂C1, what is the density of the hitting (arrival) point on the cellular surface ∂C2?

Starting from Section 1.8 let us integrate G
(2)
1 (x0,x) over ∂C1 to define

P (2)(x) =
1

2πa

∫
∂C1

G
(2)
1 (x0,x)dx0,

to obtain the electrostatic potential of the cellular surface. The density of the

hitting point on the cellular surface ∂C2, is given as a function of the cartesian

angle θ2 (here θ2 is the angle defined by x ∈ ∂C2, i.e. the angle ∠Oxcx where xc

is the centre of the cell and O is the origin of the coordinate system):

ε(2)(θ2) = −D ∂P (2)(x)

∂n2

∣∣∣∣
∂C2

,

where n2 is the unit normal outward vector to ∂C2. Using the bipolar Green’s

function G
(2)
1 (x0,x) derived in Section 2.3 we can construct the hitting density

in an eccentric annulus by first integrating over the inner boundary parametrised

by τ = τ1:

d

∫ 2π

0

G
(2)
1 (τ, σ; τ1, σ0)

cosh τ1 − cosσ0

dσ0 =
d

D

∫ 2π

0

(
τ − τ2

2π(cosh τ1 − cosσ0)

+
+∞∑
n=1

sinhn(τ − τ2)

nπ coshn(τ2 − τ1)(cosh τ1 − cosσ0)
cosn(σ − σ0)

)
dσ0.

74



2.5 Hitting density on the cellular surface

We know that:

1

2π

∫ 2π

0

τ − τ2

cosh τ1 − cosσ0

dσ0 =
1

2π

2π(τ − τ2)√
cosh2 τ1 − 1

=
τ − τ2

sinh τ1

.

Using the integral formula (B.6) we obtain:

1

π

∫ 2π

0

cosn(σ − σ0)

cosh τ1 − cosσ0

dσ0 =
2 cosnσ

enτ1 sinh τ1

.

As a result, we have:

P (2)(x) =
d

2πa

∫ 2π

0

G
(2)
1 (τ, σ; τ0, σ0)

cosh τ1 − cosσ0

dσ0

=
d

2Dπa

∫ 2π

0

(
τ − τ2

2π (cosh τ1 − cosσ0)

+
+∞∑
n=1

sinhn(τ − τ2)

nπ coshn(τ2 − τ1) (cosh τ1 − cosσ0)
cosn(σ − σ0)

)
dσ0

=
d (τ − τ2)

2Dπa sinh τ1

+
d

Dπa

+∞∑
n=1

sinhn(τ − τ2)e−nτ1

n sinh τ1 coshn(τ2 − τ1)
cosnσ.

Taking the τ−derivative (see appendix B.1) evaluated at τ2 and multiplying by

−D we obtain the hitting density:

ε(2)(θ2) =
cosh τ2 − cosσ2

2πa sinh τ1

+
cosh τ2 − cosσ2

πa

×
+∞∑
n=1

e−nτ1

sinh τ1 coshn(τ2 − τ1)
cosnσ2.

As a result we have:

ε(2)(θ2) =
cosh τ2 − cosσ2

2πa sinh τ1

(
1 +

+∞∑
n=1

2e−nτ1 cosnσ2

coshn(τ1 − τ2)

)
, (2.33)

where tanσ2 = d sin θ2
1+
√

1+d2 cos θ2
and which we plot in Figure 2.15 in comparison to

numerical simulations. Similarly to the case when there is no reflecting target, as

seen in Figure 1.17, as the cellular displacement c increases the hitting density in

increasingly centered at θ2 = 0.

However, we observe that as c increases, the density ε(2)(θ2) becomes bimodal, as

opposed to unimodal in the case with no intracellular compartment (see Figure
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−π −π
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c= 0.25

c= 0.5

c= 0.89

Figure 2.15: Plot of ε(2)(θ2) comparing the numerical simulation with the analytic

result obtained in (2.33) as a function of θ2 for c = 0.25, 0.5 and 0.89. The

lighter colours represent the analytic result and the darker colours represent the

numerical simulations. The numerical results have been obtained by having 105

particles uniformly distributed on the circle of radius a from Figure 2.1 and

recording their endpoint. The lighter colours represent the analytic result and

the darker colours represent the numerical simulations.

1.17), and we are interested in the bifurcation point c∗ at which this occurs. In

order to approximate it we use the truncated form of (2.33) with one term:

ε(2)(θ2) ≈ cosh τ2 − cosσ2

2πa sinh τ1

(
1 +

2e−τ1 cosσ2

cosh(τ1 − τ2)

)
, (2.34)

and we want to find the coefficients of (σ2)2. As a result we have:

d2ε(2)

dσ2

∣∣∣∣
σ2=π

=
1

πa sinh τ1

[
1− 2 (cosh τ2 + 2) e−τ1

cosh (τ1 − τ2)

]
.
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2.5 Hitting density on the cellular surface

The bifurcation point c∗ is the value of c such that d2ε(2)

dσ2

∣∣∣
σ2=π

= 0 which gives:

2 cosh τ2 + 4 = cosh (τ1 − τ2) eτ1 . (2.35)

Using the following approximations:

τ1 ≈ log(1− c2)− log a− log c,

τ2 ≈ − log c,

τ1 − τ2 ≈ log(1− c2)− log a,

equation (2.35) becomes the quartic equation:

c4 − (2a2 + 2)c2 − 8a2c− a2 + 1 = 0, (2.36)

the solution c∗ of which we plot in Figure 2.16. We observe that the bifurcation

point can be approximated by c∗ ≈ 1−ka, where k is a constant to be determined

and 0 ≤ a < 1. Using the binomial approximation:

(1− ka)n = 1−
(
n

1

)
ka+

(
n

2

)
k2a2 + O

(
a3
)
,

gives us:

c4 = (1− ka)4 ≈ 1− 4ka+ 6k2a2, c2 = (1− ka)2 ≈ 1− 2ka+ k2a2,

which we make use in (2.36):

1− 4ka+ 6k2a2 −
(
2a2 + 2

) (
1− 2ka+ k2a2

)
− 8a2 (1− ka)− a2 + 1 = 0.

Rearranging the above equation we obtain:

−2a4k2 + 12a3k +
(
4k2 − 11

)
a2 = 0⇒

(
4k2 − 11

)
+ O(a3) = 0. (2.37)

The principle contribution to the left-hand side of (2.37) is given by terms of

order a2 from which we deduce:

O
(
a2
)

: 4k2 − 11 = 0⇒ k =

√
11

2
, (2.38)

which we plot as the aqua line in Figure 2.16.

We observe from Figure 2.16 that our approximation constitutes a lower bound for

the bifurcation point c∗. An appropriate upper bound is represented by c∗ = 1−a
(green line in Figure 2.16) given that the nucleus cannot escape the cell.
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0.0 0.15 0.3
a

0.5

0.75

1.0

c
∗

Numerical

c ∗ = 1− a
First term

c ∗ = 1−
√

11
2
a

Figure 2.16: Plot of c∗ comparing the numerical simulation (blue line) with the

analytic result obtained in (2.36) as a function of a. The green line represents

an upper bound for the bifurcation point. The aqua line represents the approx-

imation c∗ = 1 −
√

11
2
a from (2.38) and the red line represents the numerical

estimation of c∗ from the first term.

2.6 Mean transport times

We can now use the formula (3.4) to evaluate mean times by integrating the

Green’s functions over the domain C. We write

T
(2)
1,2 (θ1,2, a, c) = R2d2

∫ τ1

τ2

∫ 2π

0

G
(2)
1,2(x0,x)

(cosh τ − cosσ)2
dσdτ, (2.39)

where

T
(2)
1 (θ1, a, c) = E

(
t
(2)
1 (x0)

)
= mean time for a particle starting at x0 ∈ ∂C1 to hit ∂C2,
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2.6 Mean transport times

and

T
(2)
2 (θ2, a, c) = E

(
t
(2)
2 (x0)

)
= mean time for a particle starting at x0 ∈ ∂C2 to hit ∂C1,

Here, t
(2)
1 (x0) and t

(2)
2 (x0) are the random variables defined as follows:

t
(2)
1 (x0) = time for a particle starting at (x0) on the cellular nucleus to reach

the cellular surface,

t
(2)
2 (x0) = time for a particle starting at (x0) on the cellular surface to reach

the nucleus.

We first consider the mean time to reach the cellular surface, starting on the

nuclear surface. The initial point x0 ∈ ∂C1 is specified by the angle θ1 (here θ1

is the angle defined by x ∈ ∂C1, i.e. the angle ∠Oxnx where xn is the centre of

the nucleus and O is the origin of the coordinate system):

T
(2)
1 (θ1, a, c) =

R2d2

D

∫ τ1

τ2

∫ 2π

0

G
(2)
1 (x0,x)

(cosh τ − cosσ)2
dσdτ

=
R2d2

D

∫ τ1

τ2

∫ 2π

0

(
τ − τ2

2π(cosh τ − cosσ)2

+
1

π

+∞∑
n=1

cosn(σ − σ1)

n(cosh τ − cosσ)2

sinhn(τ − τ2)

coshn(τ2 − τ1)

)
dσdτ. (2.40)

and tanσ1 = d sin θ1/(a−
√
a2 + d2 cos θ1). From appendix B.3 we obtain:

1

2π

∫ τ1

τ2

∫ 2π

0

τ − τ2

(cosh τ − cosσ)2
dσdτ =

∫ τ1

τ2

cosh τ

sinh3 τ
(τ − τ2) dτ

=
1

2

(
τ2 − τ1

sinh2 τ1

+ coth τ2 − coth τ1

)
, (2.41)

and

1

π

∫ τ1

τ2

sinhn(τ − τ2)

∫ 2π

0

cosn(σ − σ1)

(cosh τ − cosσ)2
dσdτ

= cosnσ1

∫ τ1

τ2

sinhn(τ − τ2)e−nτ
n sinh τ + cosh τ

sinh3 τ
dτ
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2.6 Mean transport times

=
[
csch2 τ1e−nτ1 sinhn(τ2 − τ1) + n csch τ1 csch τ2e−nτ2 sinh(τ1 − τ2)

]
cosnσ1.

(2.42)

As a result, using (2.41) and (2.42) in (2.40) we see that:

2D

R2
T

(2)
1 (θ1, a, c) = d2 (coth τ2 − coth τ1) + a2(τ2 − τ1) + 2

+∞∑
n=1

cosnσ1

n coshn(τ2 − τ1)

×
(
a2e−nτ1 sinhn(τ2 − τ1) + nae−nτ2 sinh(τ1 − τ2)

)
. (2.43)

Analogously

2D

R2
T

(2)
2 (θ2, a, c) = d2 (coth τ1 − coth τ2) + (τ1 − τ2) + 2

+∞∑
n=1

d2 cosnσ2

n coshn(τ2 − τ1)

×
(
e−nτ2 sinhn(τ1 − τ2)− nae−nτ1 sinh(τ1 − τ2)

)
. (2.44)

In the previous two results we made use of the following identities:

d

sinh τ1

= a,
d

sinh τ2

= 1.

With the use of relationships d2 (coth τ2 − coth τ1) = dc and a sinh(τ1 − τ2) = dc,

we find that (2.43) and (2.44) are simplified as:

2D

R2
T

(2)
1 (θ1, a, c) = dc− a2(τ1 − τ2)

+ 4
+∞∑
n=1

cosnσ1

enτ1

(
dc

1 + e−2n(τ1−τ2)
− a2

2n
tanhn (τ1 − τ2)

)
, (2.45)

and

2D

R2
T

(2)
2 (θ2, a, c) = τ1 − τ2 − dc

− 4
+∞∑
n=1

cosnσ2

enτ2

(
dc

1 + e2n(τ1−τ2)
− 1

n
tanhn (τ1 − τ2)

)
. (2.46)

We plot T
(2)
1 (θ1, a, c) and T

(2)
2 (θ2, a, c) for c = 0.45 in Figure 2.18 and we compare

with numerical simulations. Additionally, we compare (2.46) with the formula

we derived from Condamin et al. (2007) in (1.75) in Figure 2.17 for the case

of c = 0.9 and we observe that our formula is consistent with the numerical

simulations, while the Condamin et al. (2007) mean time has large deviations at

θ2 = 0 and θ2 = ±π.
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exact
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Figure 2.17: Plot of T
(2)
2 (θ2, a, c) as a function of θ2. The blue line is the analytic

series formula in (2.46), the green line is approximation derived from Condamin

et al. (2007) in (1.75) and the red dots are numerical simulations. Here we have

chosen the following parameter values: a = 0.1, c = 0.9.

2.6.1 Direct solution of Poisson’s equation

An alternative way to find mean transport times, in bipolar coordinates but

without first calculating Green’s functions, is to solve the Poisson’s equation El-

Saden (1961); Snyder & Goldstein (1965)

D

R2
∆x0T = −1.

We first consider the mean time T3(τ0, σ0) to the cellular surface, starting from

x0 ∈ C, where (τ0, σ0) are the bipolar coordinates of x0, and with the nucleus as

an excluded region. The boundary conditions are

T3(τ0, σ0)|τ0=τ2
= 0, (2.47a)
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Figure 2.18: Plot of T
(2)
1 (θ1, a, c) shown in the upper plot as a function of θ1 and

of T
(2)
2 (θ2, a, c) shown in the lower plot as a function of θ2. The green lines are

the analytic series formulas obtained in (2.43) and (2.44), respectively. The blue

dots are numerical simulations. The red lines are the concentric cases (1.12) and

(1.16), respectively, with rescaled coordinates. Here we have chosen the following

parameter values: a = 0.1, c = 0.45.

∂

∂τ
T3(τ0, σ0)

∣∣∣∣
τ0=τ1

= 0, (2.47b)
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∂

∂σ
T3(τ0, σ0)

∣∣∣∣
σ0=0,π

= 0. (2.47c)

The last boundary condition is due to symmetry when y = 0, σ = 0, σ = π.

Writing T3 (τ0, σ0) as the sum of the complementary function Tc (τ0, σ0) and a

particular function Tp (τ0, σ0) where:

Tc (τ0, σ0) = Aτ0 +B +
(
Cenτ0 +De−nτ0

)
(E cosnσ0 + F sinnσ0) , n ∈ N

Tp (τ0, σ0) = −d
2R2

2D

cosh τ0

cosh τ0 − cosσ0

, (2.48)

we obtain:

T3 (τ0, σ0) = Aτ0 +B +
+∞∑
n=1

(
Cnenτ0 +Dne−nτ0

)
(En cosnσ0 + Fn sinnσ0)

− d2R2

2D

cosh τ0

cosh τ0 − cosσ0

.

Applying the boundary conditions (2.47c) the above equation reduces to:

T3 (τ0, σ0) = Aτ0 +B +
+∞∑
n=1

(
Cnenτ0 +Dne−nτ0

)
cosnσ0 −

d2R2

2D

cosh τ0

cosh τ0 − cosσ0

.

Using the following identity (Morse & Feshbach, 2010, p.1215):

cosh τ0

cosh τ0 − cosσ0

= coth τ0

(
1 + 2

+∞∑
n=1

e−nτ0 cosnσ0

)
,

we write:

T3 (τ0, σ0) = Aτ0 +B +
+∞∑
n=1

(
Cnenτ0 +Dne−nτ0

)
cosnσ0

− d2R2

2D
coth τ0

(
1 + 2

+∞∑
n=1

e−nτ0 cosnσ0

)
.

From the boundary conditions (2.47a) and (2.47b) we deduce that:

A = −d
2R2

2D

1

sinh2 τ1

, B =
d2R2τ2

2D sinh2 τ1

+
d2

2D
coth τ2,

Cn = −d
2R2

2D

e−n(τ1+τ2)

coshn(τ2 − τ1)

(
1

n sinh2 τ1

+ coth τ1

)
+

d2

2D

e−n(τ1+τ2) coth τ2

coshn(τ2 − τ1)
,
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Dn =
d2R2

2D

en(τ2−τ1)

coshn(τ2 − τ1)

(
1

n sinh2 τ1

+ coth τ1

)
− d2

2D

en(τ1−τ2) coth τ2

coshn(τ2 − τ1)
,

where n ∈ N, and as a result:

2D

R2
T3(τ0, σ0) = d2

(
τ2 − τ0

sinh2 τ1

+ coth τ2 − coth τ0

)
+ 2d2

+∞∑
n=1

[
e−nτ1 sinhn(τ2 − τ0)

coshn(τ2 − τ1)

(
1

n sinh2 τ1

+ coth τ1

)
+

coth τ2e−nτ2

coshn(τ2 − τ1)
coshn(τ1 − τ0)− coth τ0e−nτ0

]
cosnσ0. (2.49)

Analogously

2D

R2
T4(τ0, σ0) = d2

(
τ1 − τ0

sinh2 τ2

+ coth τ1 − coth τ0

)
+ 2d2

+∞∑
n=1

[
e−nτ2 sinhn(τ1 − τ0)

coshn(τ2 − τ1)

(
1

n sinh2 τ2

+ coth τ2

)
+

coth τ1e−nτ1

coshn(τ2 − τ1)
coshn(τ2 − τ0)− coth τ0e−nτ0

]
cosnσ0, (2.50)

where T4 (τ0, σ0) is the mean time to the nuclear surface, starting from x0 ∈ C.

We plot T3 (τ0, σ0) and T4 (τ0, σ0) in Figure 2.19.

2.6.2 Average mean time

We next obtain the average mean hitting times, T̄
(2)
1 (a, c) and T̄

(2)
2 (a, c), when

the initial angles θ1 and θ2 are uniformly distributed. Firstly,

T̄
(2)
1 (a, c) =

∫ 2π

0

T1(θ1)

2πa
dθ1 =

d

2πa

∫ 2π

0

T
(2)
1 (θ1, a, c)

cosh τ1 − cosσ1

dσ1. (2.51)

Using ∫ 2π

0

cosnσ

cosh τ − cosσ
dσ =

2π

enτ sinh τ
,

we find

2D

R2
T̄

(2)
1 (a, c) = dc− a2(τ1 − τ2)
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(b) i = 2

Figure 2.19: Plot of (2.49) shown in (a) and of (2.50) shown in (b). The values

of the parameters for the above plots are a = 0.1 and c = 0.25.
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Figure 2.20: Contours of 2D
R2 T̄

(2)
1 (a, c) obtained in (2.52), the mean time for a

particle, whose initial condition is uniformly distributed on the nuclear surface,

to reach the cellular surface, as a function of the dimensionless parameters a and

c.

+ 4
+∞∑
n=1

e−2nτ1

(
dc

1 + e−2n(τ1−τ2)
− a2

2n
tanhn (τ1 − τ2)

)
. (2.52)

The dependence on a and c is shown in Figure 2.20.

Similarly, the mean time for a particle, whose initial condition is uniformly dis-

tributed on the cellular surface, to reach the nucleus is given by

2D

R2
T̄

(2)
2 (a, c) =τ1 − τ2 − dc

+ 4
+∞∑
n=1

e−2nτ2

(
1

2n
tanhn (τ1 − τ2)− dc

1 + e2n(τ1−τ2)

)
. (2.53)

The dependence on a and c is shown in Figure 2.21. Based on the results of Con-

damin et al. (2007) we have derived an approximation for T̄
(2)
2 (a, c) in Cartesian
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Figure 2.21: Contours of 2D
R2 T̄

(2)
2 (a, c) obtained in (2.53), the mean time for a

particle, whose initial condition is uniformly distributed on the cellular surface,

to reach the nuclear surface, as a function of the dimensionless parameters a and

c.

coordinates (see equation (1.78)):

2D

R2
T̄

(2),C
2 (a, c) = log

(
1

a

)
+ log

(
1

1− c2

)
+
c2 − 1

2
, (2.54)

and we compare this result with our formula from (2.53) and numerical results

in Figure 2.22.

2.6.3 Series expansion of mean times averaged over the

reflecting surface

Given that a < 1 we will make use of the following expansions in powers of a:

d =
1

2c

√
(12 + a2 − c2)2 − 4a2b2 =

1− c2

2c

√
1− 2a2(1 + c2)

(1− c2)2
+

a4

(1− c2)2
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Figure 2.22: Plot of T̄
(2)
1 (a, c) shown in the upper figure and of T̄

(2)
2 (a, c) shown

in the lower figure as a function of nuclear displacement c. The green lines are the

analytic series formulas obtained in (2.52) and (2.53), respectively. The red lines

are the approximations obtained in (2.57) and (2.60), respectively. The olive line

in the lower plot represents the formula (2.61) obtained from Condamin et al.

(2007). The blue dots are numerical simulations. For the numerical simulations

we have used G.6.1.3 for T̄
(2)
1 (a, c) and G.6.1.4 for T̄

(2)
2 (a, c). This plot has been

obtained using G.6.2.3. Here we have chosen the following parameter values:

a = 0.1.
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=
1− c2

2c
− a2(1 + c2)

2c(1− c2)
+ O(a4),

τ1 = log

d
a

+

√
1 +

(
d

a

)2
 = log

(
d

a
+

1− a2 − c2

2ac

)

= log

(
1− c2

ac
− a

c(1− c2)
+ O(a4)

)
= log

(
1− c2

)
− log a− log c− a2

(1− c2)2
+ O(a5),

τ2 = log
(
d+
√

1 + d2
)

= log

(
d+

1− a2 + c2

2c

)
= log

(
1

c
− a2

c(1− c2)
+ O(a4)

)
= − log c− a2

1− c2
+ O(a4),

to obtain a series expansion of:

2D

R2
T̄

(2)
1 (a, c) = dc− a2(τ1 − τ2)

+ 4
+∞∑
n=1

e−2nτ1

(
dc

1 + e−2n(τ1−τ2)
− a2

2n
tanhn (τ1 − τ2)

)
, (2.56)

in powers of a up to and including a2. Making use of appendix B.4 and (2.55) we

obtain:

2D

R2
T̄

(2)
1 (a, c) =

1− c2

2
− a2(1 + c2)

2(1− c2)
− a2

[
log
(
1− c2

)
− log a

]
+ O(a4)

+ 4
+∞∑
n=1

((
ac

1− c2

)2n

+ O(a(2+2n))

)

×

[
1− c2

2
+ O(a2n)− a2

2n

(
1− 2

(
a

1− c2

)2n

+ O(a4n)

)]
.

From which we deduce that:

2D

R2
T̄

(2)
1 (a, c) =

1− c2

2
− a2 log

1

a
− a2

[
log(1− c2) +

1− 3c2

2(1− c2)

]
+ O(a4), (2.57)

which we plot in Figure 2.22 where we compare with numerical simulations and

the analytic result (2.56). Analogously, we want to obtain a series expansion in

powers of a for:

2D

R2
T̄

(2)
2 (a, c) = τ1 − τ2 − dc
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2.6 Mean transport times

+ 4
+∞∑
n=1

e−2nτ2

(
1

2n
tanhn (τ1 − τ2)− dc

1 + e2n(τ1−τ2)

)
, (2.58)

and for that we will use:

e−2nτ2 = e
−2n

(
− log c− a2

1−c2
+O(a4)

)
= c2n

(
1 + 2n

a2

1− c2

)
+ O(a4),

1

1 + e2n(τ1−τ2)
=

e−2n(τ1−τ2)

1 + e−2n(τ1−τ2)

=

[(
a

1− c2

)2n

+ O(a(2+2n))

][
1−

(
a

1− c2

)2n

+ O(a(2+2n))

]

=

(
a

1− c2

)2n

+ O(a(2+2n)).

As a result, we obtain:

2D

R2
T̄

(2)
2 (a, c)

= log
(
1− c2

)
− log a− a2

(1− c2)2
+

a2

1− c2
− 1− c2

2
+
a2(1 + c2)

2(1− c2)
+ O(a4)

+ 4
+∞∑
n=1

[
c2n

(
1 + 2n

a2

1− c2

)
+ O(a4)

][
1

2n

(
1− 2

(
a

1− c2

)2n

+ O(a4n)

)

−
(

1− c2

2
− a2(1 + c2)

2(1− c2)
+ O(a4)

)((
a

1− c2

)2n

+ O(a(2+2n))

))
,

which, while keeping terms up to and including a2, becomes:

2D

R2
T̄

(2)
2 (a, c) = log

(
1− c2

)
− log a− a2

(1− c2)2
+

a2

1− c2
− 1− c2

2
+
a2(1 + c2)

2(1− c2)
+

+ 4
+∞∑
n=1

1

2n

[
c2n

(
1 + 2n

a2

1− c2

)]
− 4a2c2

(1− c2)2
− 2a2c2

1− c2
+ O(a4).

(2.59)

Making use of the following expansions:

+∞∑
n=1

c2n

n
= − log

(
1− c2

)
,

+∞∑
n=1

c2n =
+∞∑
n=0

c2n − 1 =
1

1− c2
− 1 =

c2

1− c2
,
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we rewrite (2.59) as:

2D

R2
T̄

(2)
2 (a, c) =

c2 − 1

2
− log

(
1− c2

)
+ log

1

a
+ a2

[
1

1− c2
− 1

(1− c2)2

= +
1 + c2

2 (1− c2)
− 4c2

(1− c2)2 −
2c2

1− c2
+

4c2

(1− c2)2

]
+ O(a4),

and, finally, as:

2D

R2
T̄

(2)
2 (a, c) =

c2 − 1

2
− log(1− c2) + log

1

a
+
a2

2

1− 4c2 + c4

(1− c2)2
+ O(a4), (2.60)

which we plot in Figure 2.22 where we compare with numerical simulations and

the analytic result (2.58).

Using Condamin et al. (2007) we deduced the following approximation for T̄
(2)
2 (a, c)

in (1.78):
2D

R2
T̄ 2,C

2 (a, c) = log

(
1

a

)
+ log

(
1

1− c2

)
− 1− c2

2
, (2.61)

and we observe that:

2D

R2
T̄

(2)
2 (a, c) =

2D

R2
T̄ 2,C

2 (a, c) +
a2

4D

1− 4c2 + c4

(1− c2)2
+ O(a4).

2.6.4 Global mean first passage time

In order to obtain the global mean first passage time we integrate T̄
(2)
1 (a, c) and

T̄
(2)
2 (a, c) over all possible positions of c:

¯̄T (2) (a) =

∫ 1−a
0

cT̄ (2) (a, c) dc∫ 1−a
0

c dc
,

to obtain:

2D

R2
¯̄T

(2),1
1 (a) =

1 + 2a− 3a2

4D
− a2 log(2− a) + O(a3),

2D

R2
¯̄T

(2),1
2 (a) =

3− 2a+ 3a2

4D
+ log

1

a
+

2a

1− a
log(2a− a2) +

a

a− 2
+ O(a3),

(2.62)

which we plot in Figure 2.23(a) and 2.23(b), respectively.

91



2.6 Mean transport times

Using the following expansions:

a

1− a
= a+ a2 + O(a3),

a

a− 2
= −a

2
− a2

4
+ O(a3),

log(2− a) = log(2)− a/2 + O(a2),

in (2.62) we obtain:

2D

R2
¯̄T

(2),2
1 (a) =

1 + 2a− (3 + 4 log 2) a2

4
+ O(a3),

2D

R2
¯̄T

(2),2
2 (a) =

3− (8 log 2− 4) a+ (8 log 2− 2) a2

4
+
(
2a2 + 2a− 1

)
log a+ O(a3),

(2.63)

which we plot in Figure 2.23(a) and 2.23(b), respectively, and compare with

numerical simulations. We observe that for small values of a the global mean time
¯̄T

(2)
1 (a) is an increasing function, reaching a maximum at a ≈ 0.173, because the

nucleus acts as a barrier for Brownian motion, at large values of c, and it takes

longer to hit the cellular surface. As a increases the space that a Brownian motion

can traverse decreases in such a way that the previously stated effect is cancelled

and reversed. From 2.23(b) we observe that ¯̄T
(2)
2 (a) is a decreasing function of

a because of the fact that as a increases the path of a Brownian motion starting

uniformly on the cellular surface decreases for the majority of values of c (see

Figure 2.21).

2.6.5 Mean round-trip time

We want to calculate the average mean time for a particle to diffuse from the

inner boundary to the outer boundary of an eccentric annulus and back. The

end point of the outward path on the outer boundary is the starting point of

the inward path. This affects the calculations for T̄
(2)
2 (a, c) where we previously

assumed that the particle starts uniformly on the outer boundary. To take this

into account we will use the hitting density ε(2)(θ2), calculated in Section 2.5, as

the initial density:

T̄ ε,22 (a, c) =

∫ 2π

0

ε(2)(θ2)T
(2)
2 (θ2, a, c) dθ2
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Figure 2.23: Plot of ¯̄T
(2)
1 shown in (a) and of ¯̄T

(2)
2 shown in (b). The blue lines are

the expansion formulas obtained in (2.62), the green lines represent the expansion

formulas obtained in (2.63), and the red dots are numerical simulations.
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2.6 Mean transport times

Using (2.33), (2.46) and Appendix B.2 (we can write ε(2)(θ2) and T
(2)
2 (θ2, a, c) as

Fourier series) we write the integrand in the form:

ε(2)(θ2)T
(2)
2 (θ2, a, c) =

R2

2D

1

2π

(
C0/2 +

+∞∑
n=1

Cn cosnσ0

)
Then

2D

R2
T̄ ε,22 (a, c) =

d

2π

∫ 2π

0

C0/2 +
+∞∑
n=1

Cn cosnσ0

cosh τ2 − cosσ0

dσ0

=
C0

2
+

+∞∑
n=1

e−nτ2Cn, (2.64)

where

Cn =
1

2

+∞∑
k=−∞

A|n−k|B|k|,

and

A0 = 2 [(τ1 − τ2)− dc] ,

An = 4e−nτ2
(

1

2n
tanhn(τ1 − τ2)− dc

1 + e2n(τ1−τ2)

)
, n ∈ N

and

B0 =
cosh τ2

d
− e−τ1

d cosh(τ2 − τ1)
,

Bn =
2e−nτ1 cosh τ2

d coshn(τ2 − τ1)

− 1

d

[
e−(n−1)τ1

cosh[(n− 1)(τ2 − τ1)]
+

e−(n+1)τ1

cosh[(n+ 1)(τ2 − τ1)]

]
, n ∈ N.

In (2.64) we used Appendix (B.6) to evaluate the integral:∫ 2π

0

cosnσ0

cosh τ2 − cosσ0

dσ0 =
2πe−nτ2

sinh τ2

,

In Figure 2.24, we plot T̄1 (a, c) + T̄ ε,22 (a, c) (where T̄1 (a, c) is the mean time

obtained in (2.52)) and compare with numerical simulations. We deduce from

Figure 2.22 and 2.24 that, while T̄
(2)
2 (a, c) is an increasing function of c, T̄ ε,22 (a, c)

is a decreasing function which is explained by the fact that the initial position

of the Brownian particle, on the cellular surface, is concentrated at the point of

shortest distance to the nuclear surface (see Figure 2.15).
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Figure 2.24: Mean round-trip time T̄1 + T̄ ε,22 as a function of c. The green line

is the sum of analytic results (2.52) and (2.64). The numerical results have been

obtained by having 2× 103 particles uniformly distributed on the circle of radius

a from Figure 2.1 and recording the mean time for them to return given that

they hit the outer circle. The blue dots are numerical simulations. The red dot

at c = 0 is the sum of (1.12) and (1.16), with rescaled coordinates, the analytic

formula derived by solving the time Poisson’s equation for a concentric annulus

(see Section 1.2). For the numerical simulations we have used G.6.1.2 and this

plot has been obtained using G.6.2.2. For our simulations we have chosen the

following parameter values: a = 0.1.

2.7 Higher moments of the first passage times

In the previous section we have calculated the mean time for a particle to diffuse

from the nucleus to the cellular surface and vice versa. Subsequently, the question

of higher order moments arises and we will investigate it in this section starting

by defining µ
(2)
n,i (x0) to be the n−th moment of t

(2)
i (x0), i ∈ {1, 2}, which are
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2.7 Higher moments of the first passage times

random variables defined as:

t
(2)
i (x0) = time for a particle starting at x0 ∈ ∂C3−i to reach ∂Ci.

The higher order moment satisfy the following system of equations(Condamin

et al., 2007, p. 021111):

D

R2
∇2µ

(2)
n,i (x) = −nµ(2)

n−1,i (x) , if x ∈ C,

µ
(2)
n,i (x) = 0, if x ∈ ∂C3−i,

∂µ
(2)
n,i

∂ni
(x) = 0, if x ∈ ∂Ci.

We know that the moments µ
(2)
n,i are given by (Condamin et al., 2007, p. 021111):

µ
(2)
n,i(θi, a, c) = R2n

∫
C

G
(2)
i (x0,x)µ

(2)
n−1,i(x) dx,

where G
(2)
i is the Green’s function obtained in (2.13) for i = 1 and in (2.28) for

i = 2, respectively. Using the fact that µ
(2)
1,1(x) = T3(τ, σ) and µ

(2)
1,2(x) = T4(τ, σ)

we deduce that:

µ
(2)
2,1(θ1, a, c) = 2R2d2

∫ τ1

τ2

∫ 2π

0

G
(2)
1 (x0,x)T3(τ, σ)

(cosh τ − cosσ)2
dσdτ,

µ
(2)
2,2(θ2, a, c) = 2R2d2

∫ τ1

τ2

∫ 2π

0

G
(2)
2 (x0,x)T4(τ, σ)

(cosh τ − cosσ)2
dσdτ,

where T3(τ, σ) and T4(τ, σ) are the mean times derived in (2.49) and (2.50),

respectively.

From (2.49) we know that the mean time T3 (τ, σ) can we written as:

T3(τ, σ) =
d2R2

2D

(
τ2 − τ

sinh2 τ1

+ coth τ2 − coth τ

)
+
d2R2

D

+∞∑
n=1

[
e−nτ1 sinhn(τ2 − τ)

coshn(τ2 − τ1)

(
1

n sinh2 τ1

+ coth τ1

)
+

coth τ2e−nτ2

coshn(τ2 − τ1)
coshn(τ1 − τ)− coth τe−nτ

]
cosnσ,

2D

R2
T3(τ, σ) = A1(τ) +

+∞∑
n=1

B1
n(τ) cosnσ,
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where

A1(τ) = d2

(
τ2 − τ

sinh2 τ1

+ coth τ2 − coth τ

)
,

B1
n(τ) = 2d2

[
e−nτ1 sinhn(τ2 − τ)

coshn(τ2 − τ1)

(
1

n sinh2 τ1

+ coth τ1

)
+

coth τ2e−nτ2

coshn(τ2 − τ1)
coshn(τ1 − τ)− coth τe−nτ

]
,

Analogously, we know from (2.50) that:

T4(τ, σ) =
d2R2

2D

(
τ1 − τ

sinh2 τ2

+ coth τ1 − coth τ

)
+
d2R2

D

+∞∑
n=1

[
e−nτ2 sinhn(τ1 − τ)

coshn(τ2 − τ1)

(
1

n sinh2 τ2

+ coth τ2

)
+

coth τ1e−nτ1

coshn(τ2 − τ1)
coshn(τ2 − τ)− coth τe−nτ

]
cosnσ,

2D

R2
T4(τ, σ) = A2(τ) +

+∞∑
n=1

B2
n(τ) cosnσ,

where

A2(τ) = d2

(
τ1 − τ

sinh2 τ2

+ coth τ1 − coth τ

)
,

B2
n(τ) = 2d2

[
e−nτ2 sinhn(τ1 − τ)

coshn(τ2 − τ1)

(
1

n sinh2 τ2

+ coth τ2

)
+

coth τ1e−nτ1

coshn(τ2 − τ1)
coshn(τ2 − τ)− coth τe−nτ

]
.

From (2.13) and (2.28) we have the Green’s functions:

2DG
(2)
1 (x0,x) =

τm − τ2

π︸ ︷︷ ︸
Q1,0(τ,τ0)

+2
+∞∑
n=1

K
(2)
1,n(τ, τ0)

nπ︸ ︷︷ ︸
Q1,n(τ,τ0)

cosn(σ − σ0),

and

2DG
(2)
2 (x0,x) =

τ1 − τM
π︸ ︷︷ ︸

Q2,0(τ,τ0)

+2
+∞∑
n=1

K
(2)
2,n(τ, τ0)

nπ︸ ︷︷ ︸
Q2,n(τ,τ0)

cosn(σ − σ0).
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We derive µ
(2)
2,1 (θ1, a, c) and then proceed, by analogy, to obtain the second mo-

ment of t
(2)
2 (x0). We begin by evaluating the integral:∫ 2π

0

G
(2)
1 (τ0, σ0, τ, σ)T3(τ, σ)

(cosh τ − cosσ)2
dσ

=

∫ 2π

0

[
Q1,0(τ) +

+∞∑
n=1

Q1,n(τ) cosn(σ − σ0)

] [
A1(τ) +

+∞∑
n=1

B1
n(τ) cosnσ

]
(cosh τ − cosσ)2

dσ

=

∫ 2π

0

Q1,0(τ)A1(τ)

(cosh τ − cosσ)2
dσ +

∫ 2π

0

Q1,0(τ)
+∞∑
n=1

B1
n(τ) cosnσ

(cosh τ − cosσ)2
dσ

+

∫ 2π

0

A1(τ)
+∞∑
n=1

Q1,n(τ) cosn(σ − σ0)

(cosh τ − cosσ)2
dσ

+

∫ 2π

0

[
+∞∑
n=1

Q1,n(τ) cosn(σ − σ0)

] [
+∞∑
n=1

B1
n(τ) cosnσ

]
(cosh τ − cosσ)2

dσ. (2.65)

Using the fact that: (
+∞∑
n=1

an

)(
+∞∑
m=1

bm

)
=

+∞∑
n=1

+∞∑
m=1

anbm,

and

cosmσ cosn (σ − σ0) = cosmσ cosnσ cosnσ0 + cosmσ sinnσ sinnσ0

=
1

2
{[cos (m− n)σ + cos (m+ n)σ] cosnσ0

+ [sin (m+ n)σ − sin (m− n)σ] sinnσ0} ,

we rewrite[
∞∑
n=1

Q1,n(τ) cosn(σ − σ0)

][
+∞∑
n=1

B1
n(τ) cosnσ

]

=
+∞∑
n=1

+∞∑
m=1

Q1,n(τ)B1
m(τ) cosn(σ − σ0) cosmσ

=
1

2

+∞∑
n=1

+∞∑
m=1

Q1,n(τ)B1
m(τ) {[cos (m− n)σ + cos (m+ n)σ] cosnσ0
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Figure 2.25: Second order moments of t
(2)
1 in 2.25(a) and of t

(2)
2 in 2.25(b), re-

spectively. The green dots are numerical simulations and the blue lines are the

analytic results obtained in (2.67) and (2.68), respectively. For our simulations

we have chosen the following parameter values: x0 − xc = (−1, 0) , a = 0.1 for

µ
(2)
2,2; x0 − xc = (−a− c, 0) , a = 0.1 for µ

(2)
2,1. Here xc is the position vector of the

cellular centre.
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2.7 Higher moments of the first passage times

+ [sin (m+ n)σ − sin (m− n)σ] sinnσ0} .

As a result, the last integral on the right-hand side of (2.65) becomes:

∫ 2π

0

[
+∞∑
n=1

Q1,n(τ) cosn(σ − σ0)

] [
+∞∑
n=1

B1
n(τ) cosnσ

]
(cosh τ − cosσ)2

dσ = π
+∞∑
n=1

+∞∑
m=1

Q1,n(τ)B1
m(τ)

×
(
e−|n−m|τ |n−m|+ e−|n+m|τ |n+m|

)
sinh τ +

(
e−|n−m|τ + e−|n+m|τ) cosh τ

sinh3 τ
× cosnσ0, (2.66)

where we have used the fact that:∫ 2π

0

sinnσ

(cosh τ − cosσ)2
dσ = 0, ∀n ∈ N.

Using Appendix B.3 in (2.65) and (2.66) we obtain the first moment:(
2D

R2

)2

µ
(2)
2,1(θ1, a, c) = 2d2

∫ τ1

τ2

∫ 2π

0

G
(2)
1 (τ0, σ0, τ, σ)T3(τ, σ)

(cosh τ − cosσ)2
dσdτ

= 4πd2

∫ τ1

τ2

Q1,0(τ)A1(τ)
cosh τ

sinh3 τ
dτ

+ 4πd2

+∞∑
n=1

∫ τ1

τ2

Q1,0(τ)B1
n(τ)

e−nτ (n sinh τ + cosh τ)

sinh3 τ
dτ

+ 4πd2

+∞∑
n=1

∫ τ1

τ2

A1(τ)Q1,n(τ)
e−nτ (n sinh τ + cosh τ)

sinh3 τ
dτ cosnσ0

+ 2πd2

+∞∑
n=1

+∞∑
m=1

∫ τ1

τ2

Q1,n(τ)B1
m(τ)

×
(
e−|n−m|τ |n−m|+ e−|n+m|τ |n+m|

)
sinh τ +

(
e−|n−m|τ + e−|n+m|τ) cosh τ

sinh3 τ
dτ

× cosnσ0. (2.67)

Analogously, we obtain for t
(2)
2 (x0):(

2D

R2

)2

µ
(2)
2,2(θ2, a, c) = 2d2

∫ τ1

τ2

∫ 2π

0

G
(2)
2 (τ0, σ0, τ, σ)T4(τ, σ)

(cosh τ − cosσ)2
dσdτ

= 4πd2

∫ τ1

τ2

Q2,0(τ)A2(τ)
cosh τ

sinh3 τ
dτ
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2.7 Higher moments of the first passage times

+ 4πd2

+∞∑
n=1

∫ τ1

τ2

Q2,0(τ)B2
n(τ)

e−nτ (n sinh τ + cosh τ)

sinh3 τ
dτ

+ 4πd2

+∞∑
n=1

∫ τ1

τ2

A2(τ)Q2,n(τ)
e−nτ (n sinh τ + cosh τ)

sinh3 τ
dτ cosnσ0

+ 2πd2

+∞∑
n=1

+∞∑
m=1

∫ τ1

τ2

Q2,n(τ)B2
m(τ)

×
(
e−|n−m|τ |n−m|+ e−|n+m|τ |n+m|

)
sinh τ +

(
e−|n−m|τ + e−|n+m|τ) cosh τ

sinh3 τ
dτ

× cosnσ0. (2.68)

We plot µ
(2)
2,1(θ1, a, c) and µ

(2)
2,2(θ2, a, c) in Figure 2.25(a) and Figure 2.25(b), re-

spectively, where we compare with numerical simulations. We observe that, as

the displacement of the intracellular compartment increases, the second order

moments µ
(2)
2,1(θ1, a, c) and µ

(2)
2,1(θ1, a, c), where θ1,2 = 0, decreases as a a result of

the fact that the majority of the paths starting at x0 will be tightly distributed

around the shortest line from x0 to to the absorbing boundary (this is not the

case for a different the starting point x0).

2.7.1 Average moments

We want to calculate the second order moments of t̄1 (x0) and t̄2 (x0) which are

obtained by averaging µ2,1 and µ2,2 over the nuclear and cellular surface, respec-

tively:

(
2D

R2

)2

µ̄
(2)
2,i (a, c) =

d
∫ 2π

0

µ
(2)
2,i (θi,a,c)

cosh τi−cosσi
dσi

d
∫ 2π

0
1

cosh τi−cosσi
dσi

=
sinh τ0

2π

∫ 2π

0

µ
(2)
2,i (θi, a, c)

cosh τi − cosσi
dσi, where i ∈ {1, 2}. (2.69)

Using our previous results (2.67) and (2.68) in (2.69) we obtain:(
2D

R2

)2

µ̄
(2)
2,1(a, c) = 4πd2

∫ τ1

τ2

Q1,0(τ)A1(τ)
cosh τ

sinh3 τ
dτ

+ 4πd2

+∞∑
n=1

∫ τ1

τ2

Q1,0(τ)B1
n(τ)

e−nτ (n sinh τ + cosh τ)

sinh3 τ
dτ
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Figure 2.26: Second order moments µ̄
(2)
2,1(a, c) of t̄

(2)
1 (x0) in 2.26(a) and µ̄

(2)
2,2(a, c) of

t̄
(2)
2 (x0) in 2.26(b), respectively, as a function of c. The green dots are numerical

simulations and the blue lines are the analytic results obtained in (2.70) and

(2.71), respectively. For our simulations we have chosen the following parameter

values: a = 0.1.
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+ 4πd2

+∞∑
n=1

∫ τ1

τ2

A1(τ)Q1,n(τ)
e−nτ (n sinh τ + cosh τ)

sinh3 τ
dτe−nτ0

+ 2πd2

+∞∑
n=1

+∞∑
m=1

∫ τ1

τ2

Q1,n(τ)B1
m(τ)

×
(
e−|n−m|τ |n−m|+ e−|n+m|τ |n+m|

)
sinh τ +

(
e−|n−m|τ + e−|n+m|τ) cosh τ

sinh3 τ
dτ

× e−nτ0 , (2.70)

and(
2D

R2

)2

µ̄
(2)
2,2(a, c) = 4πd2

∫ τ1

τ2

Q2,0(τ)A2(τ)
cosh τ

sinh3 τ
dτ

+ 4πd2

+∞∑
n=1

∫ τ1

τ2

Q2,0(τ)B2
n(τ)

e−nτ (n sinh τ + cosh τ)

sinh3 τ
dτ

+ 4πd2

+∞∑
n=1

∫ τ1

τ2

A2(τ)Q2,n(τ)
e−nτ (n sinh τ + cosh τ)

sinh3 τ
dτe−nτ0

+ 2πd2

+∞∑
n=1

+∞∑
m=1

∫ τ1

τ2

Q2,n(τ)B2
m(τ)

×
(
e−|n−m|τ |n−m|+ e−|n+m|τ |n+m|

)
sinh τ +

(
e−|n−m|τ + e−|n+m|τ) cosh τ

sinh3 τ
dτ

× e−nτ0 , (2.71)

where we have used Appendix B.3.

We plot µ̄
(2)
2,1 (a, c) and µ̄

(2)
2,2 (a, c) in Figure 2.26(a) and Figure 2.26(b), respec-

tively, where we compare with numerical simulations. We observe from that as

c increases the second order moment of t̄
(2)
1 (x0) decreases as result of the fact

that the paths of a Brownian particles, starting on the nuclear surface, will be

centred around the line θ2 = 0 as can be seen from the hitting density in Figure

2.15. However, the second order moment of t̄
(2)
2 (x0) is a increasing function of c

because the length of the possible paths a Brownian particle, can take to reach

the cellular surface, increases as the nucleus becomes more displaced from the

cellular centre.

Additionally, we obtain the variance of t̄
(2)
1 (x0) and t̄

(2)
2 (x0) using the formulas:

V
(2)
i (a, c) ≡ V

[
t̄
(2)
i (x0)

]
= µ̄

(2)
2,i (a, c)−

(
T̄

(2)
i (a, c)

)2

, (2.72)
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which we plot in Figure 2.29 and compare with numerical simulations. We no-

tice that the same comments about the second order moments of t̄
(2)
1,2 apply to

V
(2)

1,2 (a, c).

2.8 Discussion

In this chapter, using bipolar coordinates, we derive the exact Green’s functions

(2.13) and (2.28). They differ from the corresponding Green’s functions with-

out intracellular compartment by an amount proportional to a2. We consider

distributions of initial conditions that are (i) uniform on the nuclear surface (ii)

uniform on the cellular surface, or (iii) given by the hitting density of particles

diffusing from the nuclear to the cellular surface. This hitting density is also

obtained from the appropriate Green’s function. The exact expressions for the

hitting densities and mean arrival times are (2.33), (2.45) and (2.46). When

averaged over the initial surface, the mean arrival times, (2.52) and (2.53), are

functions of a and c. The idea is that the point on the surface of a nucleus where

a molecule emerges, or the point on the cellular surface where a molecular com-

plex is internalised, is uniformly distributed. We further average over all possible

locations of the nucleus within the cell, obtaining (2.62) and (2.63), functions of

a only. We also solve Poisson’s equation explicitly in bipolar coordinates, using

the particular solution (2.48). From Figure 2.19 we observe that the solutions

to Poisson’s equation are both an increasing function of the distance from the

absorbing boundary. Using the Green’s functions and the solutions of Poisson’s

equation we obtain the higher order moments (2.67) and (2.68), and the average

higher order moments (2.70) and (2.71).

We observe from Figure 2.6 and 2.12 that both G
(2)
1 (x0,x) and G

(2)
2 (x0,x) de-

crease in magnitude as the source point is closer to the absorbing boundary.

From Figure 2.22 and 2.29 we observe that the variance of t̄
(2)
2 (x0), but not of

t̄
(2)
1 (x0), is of the same order of magnitude, or larger, when compared its mean,

from which we deduce that the mean first passage time is not an adequate measure

that captures the first passage behaviour of Brownian particles inside a cell with

an absorbing trap. This is consistent with the distributions of t̄1 (x0) and t̄2 (x0)

from Figure 2.28 where the distribution of t̄2 (x0) is wide while the distribution of
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Figure 2.27: Variance of t̄
(2)
1 in 2.27(a) and of t̄

(2)
2 in 2.27(b), respectively. The

green dots are numerical simulations and the blue lines are the analytic results

obtained in (2.72). For our simulations we have chosen the following parameter

values: a = 0.1.
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Figure 2.28: Plot of the distribution of t̄1 in the upper plane and the plot of the

distribution of t̄2. The blue lines are numerical simulations for which we have

chosen the following parameter values: a = 0.4, c = 0.2, D = 0.5.

t̄1 (x0) is centred around the mean (the non-smooth shape of the graphs is given by

the relatively low number of Brownian particles used to obtain the distributions).

The activation of many processes inside a cell requires the arrival of a single

molecule at a target site and in this context the relevant timescale is given by the

extreme first passage times (i.e. the time at which the first Brownian searcher
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Figure 2.29: Plolt of the mean time T̄3 versus the horizontal distance x. The red

dots are numerical simulations, the green lines are the analytic results obtained

in (2.49) and the blue lines are the results obtained by Deaconu et al. (2000).For

our simulations we have chosen the following parameter values: a = 0.4, c = 0.2,

D = 0.5.

reaches a target) Basnayake & Holcman (2020); Lawley & Madrid (2020); Mattos

et al. (2012).

In Section 2.5, we obtained the hitting density of a Brownian particle, starting

uniformly from the nuclear surface, on the cellular surface. We observe that as

c increases, the density ε(2)(θ2) becomes bimodal and we investigated the bifur-

cation point c∗, for which we obtained the upper and lower bounds for the bifur-

cation point as seen in Figure 2.16. Future work should be focused on obtaining

an analytic formulae for the bifurcation point.

The two dimensional model we have explored in this chapter can be used to rep-

resent flat cell cultures where the cell can be approximated as a two dimensional
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annular region, because the cells remain flat due to adhesion to the substrate and

their thickens can be neglected Holcman & Schuss (2015).

The mean times calculated in this chapter have also been analytically derived by

Deaconu et al. (2000) using conformal mapping to obtain a simpler problem to

solve. However, as seen from Figure 2.29, their results are not accurate and do

not constitute an alternative to our results.

The dependence on a and c of the average mean time T̄
(2)
1 (a, c) is shown in

Figure 2.20 from which we deduce that the average mean time T̄
(2)
1 (a, c) is a

decreasing function of a and c, which is intuitively correct given that a Brownian

particle will take a longer time to reach the cellular surface if either the staring

point is farther away from the absorbing surface. Analogously, the dependence of

T̄
(2)
2 (a, c) is shown in Figure 2.21 from which we observe that the average mean

time is a decreasing function of a and an inverted U-shaped function of c. This is

because a Brownian particle will take a longer time to reach the nuclear surface

if it is a smaller target. Additionally, as the nuclear displacement c increases, a

Brownian particle will take longer to reach the nucleus starting from the opposite

side of the cell, however this effect is cancelled out when nucleus is sufficiently

close to the cellular surface.

We notice from Figure 2.24 that T̄ ε,22 (a, c) is a decreasing function of c when

compared to T̄
(2)
2 (a, c) which is an increasing function of c. This is caused by the

fact that Brownian particles diffusing from the nucleus are more likely to arrive at

the point of the cellular surface which is closest to the nucleus (see Figure 2.15),

and, as a result, the mean time for the particle to arrive back to the nucleus is

smaller than the case when its starting position is uniformly distributed on the

cellular surface.

When comparing our results for G
(2)
2 (x0,x), T

(2)
2 (θ2, a, c) and T̄

(2)
2 (a, c) obtained

using bipolar coordiantes with the approximations derived from Condamin et al.

(2007) in Figure 2.13, 2.17 and 2.22, respectively, we observe that our results are

of superior accuracy when compared with numerical simulations.

Finding mathematical descriptions of the traffic of small molecules inside living

cells and of living cells in tissues are major challenges, among them the fact that

Brownian motion is not sufficient to describe their behaviour Angermann et al.

(2012); Barkai et al. (2012); Brangwynne et al. (2009); Bressloff & Newby (2013);
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Holcman (2017); Krummel et al. (2016); McGuffee & Elcock (2010); Metzler

(2019). As well as the extension to three space dimensions, the pure diffusion

model considered here can be generalised in various ways. Viral trajectories in

cytoplasm may be modelled as epochs of simple diffusion and of active transport

along microtubules Lagache & Holcman (2008); Lagache et al. (2009). Effects

of crowding or of active transport mechanisms may be modelled as a type of

motion that is not diffusive, with the standard time derivative replaced by a

fractional one Burrage et al. (2017); Krummel et al. (2016); Metzler (2019). A

reacting surface may itself contain absorbing and reflecting regions; one way to

take this heterogeneity into account is via Robin boundary conditions Delgado

et al. (2015).
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Chapter 3

Diffusive transport in spherical

domains

3.1 Introduction

Expanding on the results obtained in Chapter 2 we consider diffusion of a Brown-

ian particle, with diffusivity D, in a spherical domain of radius R which contains

an interior compartment of radius Rn and has displacement rc from the centre

of the domain (see Figure 3.1). We want to determine the Green’s function for

diffusive transport in three dimensions where the basic timescale is R2/D.

Using bispherical coordinates, we derive the Green’s functions for two cases: (i)

approximation and (ii) exact. Obtaining the Green’s function in three dimensions

is more difficult than in two dimensions as it leads to the appearance of a second

order inhomogeneous difference equation. We derive the approximate Green’s

function for diffusive transport from reflecting nucleus to absorbing cellular sur-

face. The approximation is obtained using the fact that the hyperbolic cosine

is usually significantly larger than the trigonometric cosine. This method only

works for diffusion from the nuclear surface to cellular surface. The main result

of this chapter is represented by the analytic solution to the difference equation

and, subsequently the desired Green’s function, by using continued fractions ex-

pansions and Perron’s theorem. A limitation of our method is that it is valid

only for diffusive transport where the initial position is uniformly distributed on

the reflecting surface.
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Hence, we derive exact expressions for arrival densities and mean arrival times,

averaged over the reflecting surface. We consider distributions of initial conditions

that are (i) uniform on the nuclear surface, (ii) uniform on the cellular surface,

or (iii) given by the hitting density of particles diffusing from the nuclear to

the cellular surface. This hitting density is also obtained from the appropriate

Green’s function. Numerical simulations are used for comparison. The last result

is semi-analytic since we use the analytic hitting density function and the mean

arrival time approximation, obtained in Section 1.7.3.2 in its derivation.

3.2 Literature review

Condamin et al. (2007) developed a formula for the first passage properties of a

Brownian particle to reach a target while starting from a point inside a three di-

mensional eccentric annular region bounded on the exterior by a reflecting spher-

ical boundary and on the interior by an absorbing sphere. These results were

extended using pseudo-Green’s function by Bénichou & Voituriez (2014); Cheva-

lier et al. (2010) to determine the first passage properties of Brownian motion

in a three dimensional domain where the absorbing targets are on an otherwise

reflecting surface.

The case of multiple absorbing spherical traps contained inside a sphere with

either Robin or Neumann boundary conditions has been explored, with the help

of the method of matching asymptotic expansions, wielding the mean and the

variance of the conditional first passage time for a Brownian particle to reach a

specific trap Cheviakov & Ward (2011); Delgado et al. (2015). A limitation of the

asymptotic method is that it is valid only when the diameter of each absorber is

smaller than the diameter of the containing sphere.

Grebenkov & Traytak (2019) derived the semi-analytic Green’s function for the

Laplace operator in three-dimensional domains with disconnected spherical do-

mains and diverse boundary conditions (Dirichlet, Neumann, Robin) by using

the generalized method of separation of variables (GMSV). They solve the par-

tial differential equation by reducing it to an infinite system of linear algebraic
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equations (ISLAE) that is then solved numerically to a high computational ef-

ficiency by utilising the fact that the GMSV can be specifically adapted to the

geometrical structure of the domain.

When the absorbing target is an absorbing disk located on a otherwise reflect-

ing boundary the problem can be classified as a narrow escape problem and has

been studied extensively Cheviakov et al. (2012); Grebenkov et al. (2020); Hol-

cman & Schuss (2014, 2015); Reingruber et al. (2009). When the absorbing hole

shrinks to zero the mean time to absorption diverges to infinity and the narrow

escape problem becomes a singular perturbation problem and is solved by using

asymptotic expansions Schuss et al. (2007); Singer et al. (2006b).

Many studies have focused on studying the MFPT of a diffusing particle to reach

a specific target, either an absorbing patch on an otherwise reflecting boundary

or a target in the domain. However, in many geometries the MFPT does not

adequately capture the behaviour of the Brownian motion and as a result the

distribution of the FPT is very important Godec & Metzler (2016a,b); Grebenkov

et al. (2019); Lawley (2020); Lawley & Madrid (2020); Schuss et al. (2019).

Boundary homogenisation is used to solve problems where an otherwise reflecting

boundary has absorbing traps located on it. They make use of the fact that non-

uniform boundaries affect a relatively small neighbourhood near the surface and,

as a result, the memory about the local properties of the boundary declines as a

function of distance from the boundary Berezhkovskii et al. (2004); Makhnovskii

et al. (2005).

3.3 Bispherical coordinates

In the previous chapter we have investigated diffusion in a two dimensional eccen-

tric annular region with various boundary conditions. However, the two dimen-

sional case is not biologically realistic, especially when considering cell biology

and, consequently, we wish to study the case of diffusion in a three dimensional

eccentric annular region.

We represent a cell as a sphere of radius R, containing a nucleus (or other intra-

cellular compartment) of radius Rn. The centre of the nucleus is displaced from

that of the cell by a distance rc (Figure 3.1).
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n + F 2
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R2 + F 2
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Rn

Figure 3.1: Intracellular geometry. We represent a cell as a sphere of radius

R, containing a nucleus (or other intracellular compartment) of radius Rn. The

centre of the nucleus is displaced from that of the cell by a distance rc. Here 2F

is the interfocal distance.

Analogous to the two dimensional case, we will make use of a special type of coor-

dinate system, that of bispherical coordinate. We obtain bispherical coordinates
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Figure 3.2: Left: the distance d used to define bispherical coordinates, as a

function of c with a = 0.1. Right: vertical cross-section of the domain C is shown

in grey.

from bipolar coordinates by rotating bipolar axes about the line between the two

poles (Morse & Feshbach, 1954, p.1298).

Surfaces of constant τ are spheres of radius r, centred at x = 0, y = 0 and

z =
√
r2 + F 2, where τ = log(F/r +

√
1 + (F/r)2) and 2F is the interfocal

distance used to define bipolar coordinates (see Figure 2.2). We rescale lengths

so that the radius of the cell is equal to 1. We shall calculate the Green’s functions

and mean times using the following dimensionless quantities:

a =
Rn

R
, c =

rc
R

and d =
F

R
.

Note that 0 ≤ c ≤ 1−a, and a3 is the fraction of the cell occupied by the nucleus.

In order that the centres of the two spheres of radii 1 and a be displaced by

c =
√

1 + d2 −
√
a2 + d2, we must choose

d =
1

2c

√
(1 + a2 − c2)2 − 4a2. (3.1)

Analogous to Chapter 2, we denote the nuclear surface (a sphere with scaled

radius a, blue vertical cross-section in Figure 3.2) by ∂C1 and the cellular surface

(a sphere with scaled radius 1, green cross-section in Figure 3.2) by ∂C2. The

eccentric annular region C (grey cross-section in Figure 3.2) is represented by

τ2 < τ < τ1, 0 ≤ σ < π, 0 ≤ φ < 2π,
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where τ1 = log
(
d/a+

√
1 + (d/a)2

)
(nuclear surface) and τ2 = log

(
d+
√

1 + d2
)

(cellular surface).

Chen et al. calculate the Green’s function for an eccentric spherical annular

domain, where both the inner and outer boundaries are absorbing, by using bi-

spherical coordinates. When at least one of the boundaries is reflecting, and not

absorbing, we observe the appearance of a second order difference equation due

to the prefactor hx (see (3.6) below). Stoy (1989) solves the problem of the sec-

ond order inhomogeneous difference equation by approximating the prefactor to

a non-trigonometric quantity and thus avoiding the appearance of the recurrence

relation. Chaumet & Dufour (1998); Love (1975) obtain the analytic solution by

using continued fraction method and Perron’s theorem.

3.4 Bispherical Green’s function

The mean time to reach an absorbing boundary of C, starting from rescaled

position x0 ∈ C, can be written as

T (x0) = R2

∫
C

G(x0,x)dx. (3.2)

The Green’s function G(x0,x), the occupation density at x, satisfies

D∆xG(x0,x) = −δ(x− x0) x ∈ C, (3.3)

with suitable boundary conditions. Let (τ, σ, φ) be the bispherical coordinates

of x and (τ0, σ0, φ0) the bispherical coordinates of x0. Then (Morse & Feshbach,

2010, p.1298)

d2∆x =
(cosh τ − cosσ)3

sinσ

[
∂

∂τ

sinσ

cosh τ − cosσ

∂

∂τ
+

∂

∂σ

sinσ

cosh τ − cosσ

∂

∂σ

+
1

(cosh τ − cosσ) sinσ

∂2

∂φ2

]
,

and we can write

T (x0) = R2

∫ τ1

τ2

∫ π

0

∫ 2π

0

G(x0,x)d3 sinσ

(cosh τ − cosσ)3
dφdσdτ. (3.4)
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3.4 Bispherical Green’s function

3.4.1 From nucleus to cellular surface

We begin with the case of diffusion inside a cell with absorbing cellular surface

and reflecting nucleus. We denote the Green’s function by G
(3)
1 (x0,x) which

satisfies (3.3), is equal to zero on the cellular surface and has vanishing normal

derivative on the nuclear surface. As a result, we impose the following boundary

conditions:

∂G
(3)
1

∂n1

(x0,x) = 0, x ∈ ∂C1, (3.5a)

G
(3)
1 (x0,x) = 0, x ∈ ∂C2. (3.5b)

where n1 is the unit normal outward vector to ∂C1.

We write the Green’s function’s G
(3)
1 (x0,x) as:

G
(3)
1 (x0,x) = G(3)

s (x0,x) +G(3)
r (x0,x),

where ∆xG
(3)
r (x0,x) = 0. The singular part of G

(3)
1 (x0,x) is given by(Barton,

1989, p.100):

G(3)
s (x0,x) =

1

4πD|x− x0|
,

which has been expressed in bispherical coordinates by Chen et al.:

G(3)
s (x0,x) =

1

4πDd
hx (τ, σ)hx (τ0, σ0)

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
H(3)
n (x0,x), (3.6)

where

H(3)
n (x0,x) = Pm

n (cosσ)Pm
n (cosσ0) cosm(φ− φ0)e−(n+ 1

2)|τ−τ0|.

In (3.6) we have made use of the following functions:

εm =

{
1, if m = 0,

2, if m = 1, 2, · · ·+∞,

and

hx (τ, σ) =
√

cosh τ − cosσ.
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3.4 Bispherical Green’s function

Our task is to find G
(3)
1 (x0,x) in bispherical coordinates. We seek coefficients

Anm, Bnm, Cnm and Dnm such that Chen et al.:

G(3)
r (x,x0) =

hx (τ, σ)hx (τ0, σ0)

4πDd

+∞∑
n=0

+∞∑
m=0

[(
AnmhA(n,m) cosh

[(
n+

1

2

)
τ

]
+BnmhB(n,m) sinh

[(
n+

1

2

)
τ

])
Pm
n (cosσ) cosmφ

+

(
CnmhC(n,m) cosh

[(
n+

1

2

)
τ

]
+DnmhD(n,m) sinh

[(
n+

1

2

)
τ

])
Pm
n (cosσ) sinmφ

]
, (3.7)

where

hA(n,m) = εm
(n−m)!

(n+m)!
Pm
n (cosσ0) cosmφ0,

hB(n,m) = εm
(n−m)!

(n+m)!
Pm
n (cosσ0) cosmφ0,

hC(n,m) = εm
(n−m)!

(n+m)!
Pm
n (cosσ0) sinmφ0,

hD(n,m) = εm
(n−m)!

(n+m)!
Pm
n (cosσ0) sinmφ0.

The boundary conditions (3.5) are equivalent to in bispherical coordinates (see

Appendix C.1 for Neumann boundary condition in bispherical coordinates):

∂G
(3)
r

∂τ
(τ, σ; τ0, σ0)

∣∣∣∣∣
τ=τ1

= − ∂G
(3)
s

∂τ
(τ, σ; τ0, σ0)

∣∣∣∣∣
τ=τ1

, (3.8a)

G(3)
r (τ2, σ; τ0, σ0) = −G(3)

s (τ2, σ; τ0, σ0). (3.8b)

The factor hx (τ, σ) =
√

cosh τ − cosσ causes difficulties when we have non-

Dirichlet boundary conditions. We show in Section 3.4.2 that the differentiation

from the Neumann boundary condition (3.8a) causes the appearance of a re-

currence relation which we did not see when solving the analogous case in two

dimensions:

αnmAn−1m + βnmAnm + γnmAn+1m = λnm, (3.9)

where αnm, βnm, γnm and λnm are constants. We will not solve this recurrence

relation but we will make use of an approximation in Section 3.5 in order to obtain
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3.4 Bispherical Green’s function

0.0 0.5 1

c

100

τ

τ1

τ2

Figure 3.3: Radial bispherical coordinate evaluated for the nuclear surface τ1 and

the cellular surface τ2 as a function of the nuclear displacement c. We observe

that τ2 decreases faster than τ1 below 1 as a function of c. For this plot we have

used the following parameters: a = 0.1.

G
(3)
1 (x0,x) by preventing the appearance of a recurrence relation altogether. An

approximation can be obtained, if we observe that cosh τ1 − cosσ � 10 (see

Figure 3.3 and 3.4) and as a result we can ignore the cosσ term in hx:

hx (τ1, σ) ≈
√

cosh τ1.

As a result, the coefficients of (3.7) can be evaluated independently. We notice

from Figure 3.3 and 3.4 that this approximation does not work when τ = τ2, if

the reflecting boundary is the cellular surface.

An alternative method to deal with the recurrence relation, shown in Section 3.6,

is to transform it into a different recurrence relation by integrating G
(3)
1 (x0,x)

over ∂C1 with respect to x0. When the initial distribution is uniform on the

surface of nucleus or of the cell, respectively, the analytic solutions involve solving

118



3.4 Bispherical Green’s function

0.0 0.5 1

c

101

co
sh
τ

coshτ1

coshτ2

Figure 3.4: Hyperbolic cosine of the radial bispherical coordinate evaluated for

the nuclear surface τ1 and the cellular surface τ2 as a function of the nuclear

displacement c. We observe that cosh τ1 is at least one order of magnitude larger

than cos σ for a wider range of value of c when compared to cosh τ2. For this plot

we have used the following parameters: a = 0.1.

recurrence relations of the type:

αnAn−1 + βnAn + γnAn+1 = λn,

by taking advantage of the fact that:

αn
βn
,
γn
βn
→ const,

as n→ +∞, which will allow us to use Perron’s theorem and continued fraction

expansion to obtain an analytic expression Chaumet & Dufour (1998). This

method is useful because it allows us to deal with the recurrence relation generated

by G
(3)
2 (x0,x).
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3.4 Bispherical Green’s function

3.4.2 Recurrence relation

In this section we will derive the recurrence relation (3.9) from the boundary

conditions (3.8). From (3.8a) we deduce that:

+∞∑
n=0

n∑
m=0

{
[AnmhA(n,m)Pm

n (cosσ) cosmφ+ CnmhC(n,m)Pm
n (cosσ) sinmφ]

×
sinh τ1 cosh

[(
n+ 1

2

)
τ1

]
+ 2

(
n+ 1

2

)
sinh

[(
n+ 1

2

)
τ1

]
(cosh τ1 − cosσ)

2
√

cosh τ1 − cosσ

+ [BnmhB(n,m)Pm
n (cosσ) cosmφ+Dnm(n,m)hDP

m
n (cosσ) sinmφ]

×
sinh τ1 sinh

[(
n+ 1

2

)
τ1

]
+ 2

(
n+ 1

2

)
cosh

[(
n+ 1

2

)
τ1

]
(cosh τ1 − cosσ)

2
√

cosh τ1 − cosσ

}

= −
+∞∑
n=0

n∑
m=0

εm
(n−m)!

(n+m)!
cos [m(φ− φ0)]Pm

n (cosσ)Pm
n (cosσ0)

×
sinh τ1 − 2

(
n+ 1

2

)
(cosh τ1 − cosσ)

2
√

cosh τ1 − cosσ
e−(n+ 1

2)(τ1−τ0). (3.10)

We multiply (3.10) by cosMφ and sinMφ, respectively, and by integrating with

respect to φ from 0 to 2π we obtain:

+∞∑
n=0

{
AnMhA(n,M)PM

n (cosσ)U1 (n, τ1, σ) +BnMhB(n,M)PM
n (cosσ)U2 (n, τ1, σ)

}

= −
+∞∑
n=0

εM
(n−M)!

(n+M)!
cosMφ0P

M
n (cosσ)PM

n (cosσ0)

sinh τ1 − 2
(
n+ 1

2

)
(cosh τ1 − cosσ)

2
√

cosh τ1 − cosσ
e−(n+ 1

2)(τ1−τ0), (3.11)

and

+∞∑
n=0

{
CnMhC(n,M)PM

n (cosσ)U1 (n, τ1, σ) +DnMhD(n,M)PM
n (cosσ)U2 (n, τ1, σ)

}

= −
+∞∑
n=0

εM
(n−M !)

(n+M)!
cosMφ0P

M
n (cosσ)PM

n (cosσ0)

×
sinh τ1 − 2

(
n+ 1

2

)
(cosh τ1 − cosσ)

2
√

cosh τ1 − cosσ
e−(n+ 1

2)(τ1−τ0), (3.12)
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3.4 Bispherical Green’s function

where

U1 (n, τ1, σ) =

sinh τ1 cosh
[(
n+ 1

2

)
τ1

]
+ 2

(
n+ 1

2

)
sinh

[(
n+ 1

2

)
τ1

]
(cosh τ1 − cosσ)

2
√

cosh τ1 − cosσ
,

U2 (n, τ1, σ) =

sinh τ1 sinh
[(
n+ 1

2

)
τ1

]
+ 2

(
n+ 1

2

)
cosh

[(
n+ 1

2

)
τ1

]
(cosh τ1 − cosσ)

2
√

cosh τ1 − cosσ
.

We observe that (3.11) and (3.12) are identical from which we deduce that Anm =

Cnm and Bnm = Dnm (for the remainder of this thesis we will follow this deduction

and, furtheremore, we deduce that An = Cn and Bn = Dn when we define

Ḡ1 (x0,x) and Ḡ2 (x0,x) in Section 3.6). As a result, we only have to solve (3.11)

for Anm, Bnm and we will also obtain Cnm and Dnm. We make use of the following

notations:

V1 (n, τ1) = sinh τ1 cosh

[(
n+

1

2

)
τ1

]
+ 2

(
n+

1

2

)
cosh τ1 sinh

[(
n+

1

2

)
τ1

]
,

(3.13a)

V2 (n, τ1) = sinh τ1 sinh

[(
n+

1

2

)
τ1

]
+ 2

(
n+

1

2

)
cosh τ1 cosh

[(
n+

1

2

)
τ1

]
,

(3.13b)

W (n, τ1) = sinh τ1 − 2

(
n+

1

2

)
cosh τ1, (3.13c)

to rewrite (3.11) as:

+∞∑
n=0

{
AnMhA(n,M)PM

n (cosσ)V1 (n, τ1) +BnMhB(n,M)PM
n (cosσ)V2 (n, τ1)

− 2AnMhA(n,M) cosσPM
n (cosσ)

(
n+

1

2

)
sinh

[(
n+

1

2

)
τ1

]
− 2BnMhB(n,M) cosσPM

n (cosσ)

(
n+

1

2

)
cosh

[(
n+

1

2

)
τ1

]}

= −
+∞∑
n=0

εM
(n−M)!

(n+M)!
cosMφ0P

M
n (cosσ0)

×
[
PM
n (cosσ)W (n, τ1) + 2

(
n+

1

2

)
cosσPM

n (cosσ)

]
e−(n+ 1

2)(τ1−τ0). (3.14)
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3.4 Bispherical Green’s function

The associated Legendre polynomial Pm
n (x) can be expressed as (Gradshteyn &

Ryzhik, 2014, p.965):

cosσPm
n (cosσ) =

n+m

2n+ 1
Pm
n−1(cosσ) +

n−m+ 1

2n+ 1
Pm
n+1(cosσ),

which allows us to rewrite (3.14) as:

+∞∑
n=0

{
AnMhA(n,M)PM

n (cosσ)V1 (n, τ1) +BnMhB(n,M)PM
n (cosσ)V2 (n, τ1)

− 2AnMhA(n,M)

(
n+

1

2

)
sinh

[(
n+

1

2

)
τ1

] [
n+M

2n+ 1
PM
n−1(cosσ)

+
n−M + 1

2n+ 1
PM
n+1(cosσ)

]
− 2BnMhB(n,M)

(
n+

1

2

)
cosh

[(
n+

1

2

)
τ1

]
×
[
n+M

2n+ 1
PM
n−1(cosσ) +

n−M + 1

2n+ 1
PM
n+1(cosσ)

]}

= −
+∞∑
n=0

εM
(n−M)!

(n+M)!
cosMφ0P

M
n (cosσ0)

{
PM
n (cosσ)W (n, τ1) + 2

(
n+

1

2

)

×
[
n+M

2n+ 1
PM
n−1(cosσ) +

n−M + 1

2n+ 1
PM
n+1(cosσ)

]}
e−(n+ 1

2)(τ1−τ0). (3.15)

We multiply (3.15) by sin σPM
N (cosσ) and integrate with respect to σ from 0 to

π and using (Gradshteyn & Ryzhik, 2014, p.769):∫ π

0

sinσPm
l (cosσ)Pm

l′ (cosσ) dσ =
2

2l + 1

(l +m)!

(l −m)!
δll′ ,

we obtain:

ANMP
M
N (cosσ0)

2V1 (n, τ1)

2N + 1
− 2 sinh

[(
N − 1

2

)
τ1

]
N −M
2N + 1

AN−1MP
M
N−1 (cosσ0)

− 2 sinh

[(
N +

3

2

)
τ1

]
N +M + 1

2N + 1
AN+1MP

M
N+1 (cosσ0) +BNMP

M
N (cosσ0)

× 2V2 (n, τ1)

2N + 1
− 2 cosh

[(
N − 1

2

)
τ1

]
N +M

2N + 1
BN−1MP

M
N−1 (cosσ0)

− 2 cosh

[(
N +

3

2

)
τ1

]
N −M + 1

2N + 1
BN+1MP

M
N+1 (cosσ0)

= −2W (N, τ1)

2N + 1
e−(N+ 1

2)(τ1−τ0)PM
N (cosσ0)− 2(N −M)

2N + 1
e−(N− 1

2)(τ1−τ0)PM
N−1 (cosσ0)
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3.4 Bispherical Green’s function

− 2(N +M + 1)

2N + 1
e−(N+ 3

2)(τ1−τ0)PM
N+1 (cosσ0) , (3.16)

where we have used the fact that:

hA(N,M)
(N +M)!

(N −M)!
= εMP

M
N (cosσ0) cosMφ0, (3.17a)

hB(N,M)
(N +M)!

(N −M)!
= εMP

M
N (cosσ0) cosMφ0. (3.17b)

For convenience we write N = n and M = m in the following calculations. From

the Dirichlet boundary condition (3.8b) we deduce, in the same way, the following:

Anm cosh

[(
n+

1

2

)
τ2

]
+Bnm sinh

[(
n+

1

2

)
τ2

]
= −e−(n+ 1

2)(τ0−τ2),

and, subsequently:

Bnm = −e−(n+ 1
2)(τ0−τ2) csch

[(
n+

1

2

)
τ2

]
− Anm coth

[(
n+

1

2

)
τ2

]
. (3.18)

Substituting Bnm from (3.18) into (3.16) we arrive at:

2Anm
2n+ 1

{
V1 (n, τ1)− V2 (n, τ1) coth

[(
n+

1

2

)
τ2

]}
Pm
n (cosσ0)

+ An−1m

{
− sinh

[(
n− 1

2

)
τ1

]
2(n−m)

2n+ 1

+ cosh

[(
n− 1

2

)
τ1

]
coth

[(
n− 1

2

)
τ2

]
2(n−m)

2n+ 1

}
Pm
n−1(cosσ0)

+ An+1m

{
− sinh

[(
n+

3

2

)
τ1

]
2(n+m+ 1)

2n+ 1

+ cosh

[(
n+

3

2

)
τ1

]
coth

[(
n+

3

2

)
τ2

]
2(n+m+ 1)

2n+ 1

}
Pm
n+1(cosσ0)

= −2W (n, τ1)

2n+ 1
e−(n+ 1

2)(τ1−τ0)Pm
n (cosσ0)− 2(n−m)

2n+ 1
e−(n− 1

2)(τ1−τ0)Pm
n−1 (cosσ0)

− 2(n+m+ 1)

2n+ 1
e−(n+ 3

2)(τ1−τ0)Pm
n+1 (cosσ0)

+
2V2 (n, τ1)

2n+ 1
csch

[(
n+

1

2

)
τ2

]
e−(n+ 1

2)(τ0−τ2)Pm
n (cosσ0)
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− cosh

[(
n− 1

2

)
τ1

]
csch

[(
n− 1

2

)
τ2

]
2(n−m)

2n+ 1
e−(n− 1

2)(τ0−τ2)Pm
n−1 (cosσ0)

− cosh

[(
n+

3

2

)
τ1

]
csch

[(
n+

3

2

)
τ2

]
2(n+m+ 1)

2n+ 1
e−(n+ 3

2)(τ0−τ2)Pm
n+1 (cosσ0) .

From which we obtain the following recurrence relation of order two for Anm:

αnmAn−1m + βnmAnm + γnmAn+1m = λnm,

where:

αnm =

{
− sinh

[(
n− 1

2

)
τ1

]
+ cosh

[(
n− 1

2

)
τ1

]
coth

[(
n− 1

2

)
τ2

]}
(3.19a)

× 2(n−m)

2n+ 1
Pm
n−1(cosσ0),

βnm =
2

2n+ 1

{
V1 (n, τ1)− V2 (n, τ1) coth

[(
n+

1

2

)
τ2

]}
Pm
n (cosσ0), (3.19b)

γnm =

{
− sinh

[(
n+

3

2

)
τ1

]
+ cosh

[(
n+

3

2

)
τ1

]
coth

[(
n+

3

2

)
τ2

]}
(3.19c)

× 2(n+m+ 1)

2n+ 1
Pm
n+1(cosσ0),

λnm = −2W (n, τ1)

2n+ 1
e−(n+ 1

2)(τ1−τ0)Pm
n (cosσ0)− 2(n−m)

2n+ 1
e−(n− 1

2)(τ1−τ0)Pm
n−1 (cosσ0)

− 2(n+m+ 1)

2n+ 1
e−(n+ 3

2)(τ1−τ0)Pm
n+1 (cosσ0)

+
2V2 (n, τ1)

2n+ 1
csch

[(
n+

1

2

)
τ2

]
e−(n+ 1

2)(τ0−τ2)Pm
n (cosσ0)

− cosh

[(
n− 1

2

)
τ1

]
csch

[(
n− 1

2

)
τ2

]
2(n−m)

2n+ 1
e−(n− 1

2)(τ0−τ2)Pm
n−1 (cosσ0)

− cosh

[(
n+

3

2

)
τ1

]
csch

[(
n+

3

2

)
τ2

]
2(n+m+ 1)

2n+ 1
e−(n+ 3

2)(τ0−τ2)

× Pm
n+1 (cosσ0) . (3.19d)

One way to solve this recurrence relation is to avoid it by making use of an

approximation.
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3.5 Approximation of the Green’s function

We observe that the presence of the cosine term in hx (τ, σ) leads to the appear-

ance of the recurrence relation (3.9) due to the boundary conditions (3.8). As a

result, we will make use of the following approximation for hx (τ, σ) in oder to

prevent the appearance of the recurrence relation. We observe from Figure 3.3

and 3.4 that cosh τ1 − cosσ � 10 for c < 1 − a and ∀σ ∈ [0, π] from which we

deduce that Stoy (1989):

hx (τ1, σ) =
√

cosh τ1 − cosσ ≈
√

cosh τ1, (3.20)

and, when applied to (3.8a), gives:

+∞∑
n=0

n∑
m=0

{
[AnmhA (n,m)Pm

n (cosσ) cosmφ+ CnmhC (n,m)Pm
n (cosσ) sinmφ]

×
sinh τ1 cosh

[(
n+ 1

2

)
τ1

]
+ 2

(
n+ 1

2

)
cosh τ1 sinh

[(
n+ 1

2

)
τ1

]
2
√

cosh τ1

+ [BnmhB (n,m)Pm
n (cosσ) cosmφ+DnmhD (n,m)Pm

n (cosσ) sinmφ]

×
sinh τ1 sinh

[(
n+ 1

2

)
τ1

]
+ 2

(
n+ 1

2

)
cosh τ1 cosh

[(
n+ 1

2

)
τ1

]
2
√

cosh τ1

}

= −
+∞∑
n=0

n∑
m=0

εm
(n−m)!

(n+m)!
cos [m(φ− φ0)]Pm

n (cosσ)Pm
n (cosσ0)

×
[

sinh τ1

2
√

cosh τ1

−
(
n+

1

2

)√
cosh τ1

]
e−(n+ 1

2)(τ1−τ0).

We again multiply by cosMφ and by integrating with respect to φ from 0 to 2π

we obtain:

+∞∑
n=0

{
AnMhA (n,M)PM

n (cosσ)

(
sinh τ1 cosh

[(
n+ 1

2

)
τ1

]
2
√

cosh τ1

+

(
n+ 1

2

)
cosh τ1 sinh

[(
n+ 1

2

)
τ1

]
√

cosh τ1

)
+BnMhB (n,M)PM

n (cosσ)

×
sinh τ1 sinh

[(
n+ 1

2

)
τ1

]
+ 2

(
n+ 1

2

)
cosh τ1 cosh

[(
n+ 1

2

)
τ1

]
2
√

cosh τ1

= −
+∞∑
n=0

εM
(n−M)!

(n+M)!
cosMφ0P

M
n (cosσ)PM

n (cosσ0)
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×
[

sinh τ1

2
√

cosh τ1

−
(
n+

1

2

)√
cosh τ1

]
e−(n+ 1

2)(τ1−τ0). (3.21)

Multiplying (3.21) by sinσPM
N (cosσ) and integrating with respect to σ from 0 to

π results in the derivation of:

ANMhA (N,M)
sinh τ1 cosh

[(
N + 1

2

)
τ1

]
+ 2

(
N + 1

2

)
cosh τ1 sinh

[(
N + 1

2

)
τ1

]
2
√

cosh τ1

+BNMhB (N,M)
sinh τ1 sinh

[(
N + 1

2

)
τ1

]
+ 2

(
N + 1

2

)
cosh τ1 cosh

[(
N + 1

2

)
τ1

]
2
√

cosh τ1

= −εM
(N −M)!

(N +M)!
cosMφ0P

M
N (cosσ0)

[
sinh τ1

2
√

cosh τ1

−
(
N +

1

2

)√
cosh τ1

]
× e−(N+ 1

2)(τ1−τ0).

Using (3.17) we simplify the above to obtain:

ANM
sinh τ1 cosh

[(
N + 1

2

)
τ1

]
+ 2

(
N + 1

2

)
cosh τ1 sinh

[(
N + 1

2

)
τ1

]
2
√

cosh τ1

+BNM

sinh τ1 sinh
[(
N + 1

2

)
τ1

]
+ 2

(
N + 1

2

)
cosh τ1 cosh

[(
N + 1

2

)
τ1

]
2
√

cosh τ1

=

[
sinh τ1

2
√

cosh τ1

−
(
N +

1

2

)√
cosh τ1

]
e−(N+ 1

2)(τ1−τ0). (3.22)

The Dirichlet boundary condition (3.8b) can be written as:

+∞∑
n=0

n∑
m=0

{
[AnmhA (n,m)Pm

n (cosσ) cosmφ

+ CnmhC (n,m)Pm
n (cosσ) sinmφ] cosh

[(
n+

1

2

)
τ2

]
+ [BnmhB (n,m)Pm

n (cosσ) cosmφ

+DnmhD (n,m)Pm
n (cosσ) sinmφ] sinh

[(
n+

1

2

)
τ2

]}

= −
+∞∑
n=0

n∑
m=0

εm
(n−m)!

(n+m)!
cos [m(φ− φ0)]Pm

n (cosσ)Pm
n (cosσ0)e−(n+ 1

2)(τ0−τ2),

from which we obtain by multiplying by cosMφ and by integrating with respect

to φ from 0 to 2π:

+∞∑
n=0

{
AnMhA (n,M)PM

n (cosσ) cosh

[(
n+

1

2

)
τ2

]
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+BnMhB (n,M)PM
n (cosσ) sinh

[(
n+

1

2

)
τ2

]
= −

+∞∑
n=0

εM
(n−M)!

(n+M)!
cosMφ0P

M
n (cosσ)PM

n (cosσ0)e−(n+ 1
2)(τ0−τ2). (3.23)

Multiplying (3.23) by sinσPM
N (cosσ) and integrating with respect to σ from 0 to

π results in:

ANMhA (N,M) cosh

[(
N +

1

2

)
τ2

]
+BNMhB (N,M) sinh

[(
N +

1

2

)
τ2

]
= −εM

(N −M)!

(N +M)!
cosMφ0P

M
N (cosσ0)e−(N+ 1

2)(τ0−τ2),

which, after simplification becomes:

ANM cosh

[(
N +

1

2

)
τ2

]
+BNM sinh

[(
N +

1

2

)
τ2

]
= −e−(N+ 1

2)(τ0−τ2). (3.24)

As a result, we have from (3.22) and (3.24) the following system of equations:

ANM
sinh τ1 cosh

[(
N + 1

2

)
τ1

]
+ 2

(
N + 1

2

)
cosh τ1 sinh

[(
N + 1

2

)
τ1

]
2
√

cosh τ1

+BNM

sinh τ1 sinh
[(
N + 1

2

)
τ1

]
+ 2

(
N + 1

2

)
cosh τ1 cosh

[(
N + 1

2

)
τ1

]
2
√

cosh τ1

= −
[

sinh τ1

2
√

cosh τ1

−
(
N +

1

2

)√
cosh τ1

]
e−(N+ 1

2)(τ1−τ0),

ANM cosh

[(
N +

1

2

)
τ2

]
+Bnm sinh

[(
N +

1

2

)
τ2

]
= −e−(N+ 1

2)(τ0−τ2),

which we solve for ANM and BNM to obtain:

ANM =
W (N, τ1) sinh

[(
N + 1

2

)
τ2

]
e−(N+ 1

2)(τ1−τ0) − V2 (N, τ1) e−(N+ 1
2)(τ0−τ2)

V2 (N, τ1) cosh
[(
N + 1

2

)
τ2

]
− V1 (N, τ1) sinh

[(
N + 1

2

)
τ2

] ,

BNM =
W (N, τ1) cosh

[(
N + 1

2

)
τ2

]
e−(N+ 1

2)(τ1−τ0) − V1 (N, τ1) e−(N+ 1
2)(τ0−τ2)

V1 (N, τ1) sinh
[(
N + 1

2

)
τ2

]
− V2 (N, τ1) cosh

[(
N + 1

2

)
τ2

] ,

where V1 (n, τ1) , V2 (n) and W (n, τ1) are defined in (3.13) and n,m ∈ N ∪ {0}.
As a result we have:

4πDG
(3)
1 (x0,x) =

2hx (τ, σ)hx (τ0, σ0)

d

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cosσ)Pm

n (cosσ0)
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× cosm(φ− φ0)K
(3)
1,n(τ, τ0), (3.25)

where

K
(3)
1,n(τ, τ0) = Anm cosh

[(
n+

1

2

)
τ

]
+Bnm sinh

[(
n+

1

2

)
τ

]
+ e−(n+ 1

2)|τ−τ0|.

Making use of the following calculations:

V2 (n, τ1) cosh

[(
n+

1

2

)
τ2

]
− V1 (n, τ1) sinh

[(
n+

1

2

)
τ2

]
=

sinh τ1 sinh

[(
n+

1

2

)
(τ1 − τ2)

]
− 2

(
n+

1

2

)
cosh τ1 cosh

[(
n+

1

2

)
(τ1 − τ2)

]
,

W (n, τ1) sinh

[(
N +

1

2

)
τ2

]
e−(N+ 1

2)(τ1−τ0) − V2 (n, τ1) e−(N+ 1
2)(τ0−τ2) =

= sinh τ1

{
e−(n+ 1

2)(τ1−τ0) sinh

[(
n+

1

2

)
τ2

]
− e−(n+ 1

2)(τ0−τ2) sinh

[(
n+

1

2

)
τ1

]}

− 2

(
n+

1

2

)
cosh τ1

{
e−(n+ 1

2)(τ1−τ0) sinh

[(
n+

1

2

)
τ2

]}

− 2

(
n+

1

2

)
cosh τ1

{
e−(n+ 1

2)(τ0−τ2) cosh

[(
n+

1

2

)
τ1

]}
,

W (n, τ1) cosh

[(
N +

1

2

)
τ2

]
e−(N+ 1

2)(τ1−τ0) − V1 (n, τ1) e−(N+ 1
2)(τ0−τ2) =

= sinh τ1

{
e−(n+ 1

2)(τ1−τ0) cosh

[(
n+

1

2

)
τ2

]
− e−(n+ 1

2)(τ0−τ2) cosh

[(
n+

1

2

)
τ1

]}

− 2

(
n+

1

2

)
cosh τ1

{
e−(n+ 1

2)(τ1−τ0) cosh

[(
n+

1

2

)
τ2

]}

− 2

(
n+

1

2

)
cosh τ1

{
e−(n+ 1

2)(τ0−τ2) sinh

[(
n+

1

2

)
τ1

]}
,

we obtain, after simplification, the following:

K
(3)
1,n(τ, τ0) = sinh

[(
n+

1

2

)
(τm − τ2)

]
cosh

[(
n+ 1

2

)
(τ1 − τM)

]
cosh

[(
n+ 1

2

)
(τ1 − τ2)

]
×

tanh τ1 tanh
[(
n+ 1

2

)
(τ1 − τM)

]
+ 2

(
n+ 1

2

)
tanh τ1 tanh

[(
n+ 1

2

)
(τ1 − τ2)

]
+ 2

(
n+ 1

2

) , (3.26)

128



3.5 Approximation of the Green’s function

numerical approximation difference

0.0 0.7 1.4 0.05 0.00 0.05

Figure 3.5: Plot of numerical simulation of G
(3)
1 (x0,x) (left), approximation

(3.25) (centre) and difference (right). The initial condition is x0 − xc =

(0, 0,−0.75) and a = 0.1, c = 0.5. Here xc is the position vector of the cellu-

lar centre.

where τm = min{τ, τ0} and τM = max{τ, τ0}. We plot G
(3)
1 (x0,x) in Figure 3.11

and compare with numerical simulations. We observe from (3.26) that we can

write K
(3)
1,n(τ, τ0) as:

K
(3)
1,n(τ, τ0) = K

(2)

1,n+ 1
2

(τ, τ0)× En(τ, τ0),

where K
(2)
1,n(τ, τ0) is the summand from (2.13) and:

En(τ, τ0) =
tanh τ1 tanh

[(
n+ 1

2

)
(τ1 − τM)

]
+ 2

(
n+ 1

2

)
tanh τ1 tanh

[(
n+ 1

2

)
(τ1 − τ2)

]
+ 2

(
n+ 1

2

) .
As a result, the transition from two dimensions to three dimensions leads to the

appearance of the correction term En(τ, τ0) and the change of index from n to

n+ 1
2
.

3.5.1 Comparison with the interior Dirichlet Green’s func-

tion

The interior Dirichlet Green’s function satisfies the following equations:

D∆xG
(3)
0 (x0,x) = −δ(x− x0) if x ∈ C∗,

G
(3)
0 (x0,x) = 0 if x ∈ ∂C2,

(3.27)
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where ∂C2 is the absorbing outer boundary and x0 is the initial position of the

point particle. G
(3)
0 (x0,x) is the occupation density of the time a particle spends

at x given that it started at x0 and is diffusing inside a sphere of radius 1 with

absorbing boundary. The solution of (3.27) is given by Barton (1989) as:

G
(3)
0 (x0,x) =

1

4πD

(
1

R
− 1

r0R̃

)
, (3.28)

where

R = |x− x0|, R̃ = |x− x̃0| and r0 = |x0|.

and x̃0 is the image point of x0 with respect to the cellular boundary such that

x0 · x̃0 = 1. We expand each term in bispherical coordinates, beginning with the

first Chen et al.:

1

R
=

1

d
hx (τ, σ)hx (τ0, σ0)

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cosσ)Pm

n (cosσ0)

× cosm(φ− φ0)e−(n+ 1
2)|τ−τ0|.

Analogously, the second term is written by splitting it into two parts:

1

R̃
=

1

d
hx (τ, σ)hx (τ̃0, σ̃0)

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cosσ)Pm

n (cos σ̃0)

× cosm(φ− φ̃0)e−(n+ 1
2)|τ−τ̃0|

=
1

d
hx (τ, σ)hx (τ̃0, σ̃0)

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cosσ)Pm

n (cosσ0)

× cosm(φ− φ0)e−(n+ 1
2)|2τ2−τ0−τ |,

and

1

r0

=
1

d
hx (τc, σc)hx (τ0, σ0)

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cosσc)P

m
n (cosσ0)

× cosm(φc − φ0)e−(n+ 1
2)|τ0−τc|

=
1

d

√
cosh 2τ2 − 1hx (τ0, σ0)

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cos 0)Pm

n (cosσ0)

× cosmφ0e−(n+ 1
2)|2τ2−τ0|

130



3.5 Approximation of the Green’s function

G(3)
0 G(3)

1 G(3)
1

0.0 0.7 1.4 0.1 0.0 0.1

Figure 3.6: Plot of the Green’s function G
(3)
0 (x0,x) formula (left, formula from

(3.29)), the Green’s function G
(3)
1 (x0,x) (centre, formula from (3.25)) and differ-

ence (right). The initial condition is x0 − xc = (0, 0,−0.75) and a = 0.1, c = 0.5.

Here xc is the position vector of the cellular centre.

=
√

2hx (τ0, σ0)
+∞∑
n=0

Pn(cos θ0)e−(n+ 1
2)|2τ2−τ0|

=
hx (τ0, σ0)

hx (τ̃0, σ̃0)
,

where (τc, σc, φc) are the bispherical coordinates of xc (the centre of the cell) for

which we have used Appendix C.3 to relate to known quantities. Additionally,

we have used the fact that (Love, 1975, p.471):

1

hx (τ, σ)
=

1√
cosh τ − cosσ

=
√

2
+∞∑
n=0

Pn (cosσ) e−(n+ 1
2)τ ,

and

cosh 2τ2 − 1 =
e2 log(d+

√
1+d2) + e−2 log(d+

√
1+d2)

2
− 1

=

(
d+
√

1 + d2
)4

+ 1− 2
(
d+
√

1 + d2
)2(

d+
√

1 + d2
)2

= 2d2.

As a result, we write the three dimensional interior Dirichlet function in bispher-

ical coordinates as:

4πDG
(3)
0 (x0,x)
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=
hx (τ, σ)hx (τ0, σ0)

d

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cosσ)Pm

n (cosσ0) cosm(φ− φ0)

×
[
e−(n+ 1

2
)|τ−τ0| − e−(n+ 1

2
)|τ−τ̃0|

]
=

2hx (τ, σ)hx (τ0, σ0)

d

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cosσ)Pm

n (cosσ0) cosm(φ− φ0)

× sinh

[(
n+

1

2

)
(τm − τ2)

]
e−(n+ 1

2)(τM−τ2). (3.29)

Taking the difference between our Green’s function approximation (3.25) and the

interior Dirichlet Green’s function (3.29) we obtain:

4πD∆G
(3)
1 (x0,x)

= 4πD
(
G

(3)
1 (x0,x)−G(3)

0 (x0,x)
)

=
2hx (τ, σ)hx (τ0, σ0)

d

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cosσ)Pm

n (cosσ0) cosm(φ− φ0)

×

{
sinh

[(
n+ 1

2

)
(τm − τ2)

]
sinh

[(
n+ 1

2

)
(τ1 − τM)

]
sinh

[(
n+ 1

2

)
(τ1 − τ2)

]
×

tanh τ1 + 2
(
n+ 1

2

)
coth

[(
n+ 1

2

)
(τ1 − τM)

]
tanh τ1 + 2

(
n+ 1

2

)
coth

[(
n+ 1

2

)
(τ1 − τ2)

]
− sinh

[(
n+

1

2

)
(τm − τ2)

]
e−[(n+ 1

2)(τM−τ2)]
}

=
2hx (τ, σ)hx (τ0, σ0)

d

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cosσ)Pm

n (cosσ0)

× cosm(φ− φ0)∆K
(3)
1,n(τ, τ0), (3.30)

where

∆K
(3)
1,n(τ, τ0) = −e−(n+ 1

2)(τ1−τ2) sinh
[(
n+ 1

2

)
(τm − τ2)

]
sinh

[(
n+ 1

2

)
(τM − τ2)

]
sinh

[(
n+ 1

2

)
(τ1 − τ2)

]
×

tanh τ1 − 2
(
n+ 1

2

)
tanh τ1 + 2

(
n+ 1

2

)
coth

[(
n+ 1

2

)
(τ1 − τ2)

] .
We plot (3.29) and (3.30) in Figure 3.6 and observe that the absence of the

intracellular compartment has the effect that the Brownian particle will spend

less time in the area defined by the direction σ = 0 and more time in the area

defined by the direction σ = π.
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3.5.2 Concentric Green’s function

An interesting case which we wish to investigate is the concentric case where

c→ +0 in (3.25). We begin with the following prerequisite calculations:

hx (τ, σ)hx (τ0, σ0)

d
=

√
(cosh τ − cosσ) (cosh τ0 − cosσ0)

d

=

√√√√√
1

r
+

√
1

d2
+

1

r2
+ d−1

(
d

r
+

√
1 +

d2

r2

)−1

− cosσ

d



×

√√√√√
 1

r0

+

√
1

d2
+

1

r2
0

+ d−1

(
d

r0

+

√
1 +

d2

r2
0

)−1

− cosσ

d


→ 2
√
rr0

, as c→ +0, (3.31)

where we used the following identity:

cosh τ =

d
r

+
√

1 + d2

r2 +

(
d
r

+
√

1 + d2

r2

)−1

2

= d

1
r

+
√

1
d2 + 1

r2 + d−1

(
d
r

+
√

1 + d2

r2

)−1

2
,

and d→ +∞ as c→ +0. Using appendix B.8 and (3.31) in (3.25) as c→ +0 we

obtain:

4πDG
(3)
1 (x0,x) =

2

π
√
rr0

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cos θ)Pm

n (cos θ0)

× cosm(ϕ− ϕ0)Qn(r, r0),

where (r, θ, ϕ) are the polar coordinates of x, (r0, θ0, ϕ0) are the polar coordinates

of x0 and:

Qn(r, r0) =

[(
1
rM

)n+ 1
2 − rn+ 1

2
M

] [(
rm
a

)n+ 1
2 −

(
a
rm

)n+ 1
2

]
[(

1
a

)n+ 1
2 + an+ 1

2

]
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×
1 + (2n+ 1) r2n+1

m +a2n+1

r2n+1
m −a2n+1

1 + (2n+ 1) 1+a2n+1

1−a2n+1

,

where rM = max{r, r0} and rm = min{r, r0} .

3.5.3 Hitting density on the cellular surface

Analogous to the two dimensional case discussed in Section 2.5, the density of the

hitting point on the cellular surface ∂C2, is given as a function of the Cartesian

angle θ2 (here θ2 is the angle defined by x ∈ ∂C2, i.e. the angle ∠Oxcx where xc

is the centre of the cell and O is the origin of the coordinate system):

ε(3)(θ2) = −D ∂P (3)(x)

∂n2

∣∣∣∣
∂C2

,

where n2 is the unit normal outward vector to ∂C2 and

P (3)(x) =
1

4πa2

∫
∂C1

G
(3)
1 (x0,x) dx0.

Using (3.25) we write 4πa2P (3)(x) as:

d2

∫ π

0

∫ 2π

0

G
(3)
1 (x0,x) sinφ0

(cosh τ0 − cosσ0)2 dφ0dσ0

=
d

2πD
hx (τ, σ)

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cosσ)

×
∫ π

0

Pm
n (cosσ0) sinφ0

(cosh τ0 − cosσ0)
3
2

dσ0

∫ 2π

0

cosm(φ− φ0) dφ0K
(3)
1,n(τ, τ0).

We know that the integral:∫ 2π

0

cosm(φ− φ0) dφ0 = 2πδm0,

and the fact that P 0
n(x) = Pn(x), we make use of Appendix C.4 to derive:

ε(3)(θ2) =

√
2 (cosh τ2 − cosσ2)

3
2

πa2 sinh τ1

×
+∞∑
n=0

e−(n+ 1
2)τ1 (n+ 1

2

)2

sinh
[(
n+ 1

2

)
(τ1 − τ2)

]
tanh τ1 + 2

(
n+ 1

2

)
cosh

[(
n+ 1

2

)
(τ1 − τ2)

] ,
(3.32)
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Figure 3.7: Plot of ε(3)(θ2) comparing the numerical simulation with the approx-

imation obtained in (3.32) as a function of θ2 for c = 0.25 , 0.5 and 0.89. The

lighter colours represent the analytic result and the darker colours represent the

numerical simulations. The numerical results have been obtained by having 105

particles uniformly distributed on the sphere of radius a from Figure 3.1 and

recording their endpoint. The inset shows ε(3)(θ2) for c = 0.89 and small values

of θ2. For our simulations we have chosen the following parameter values: a = 0.1.

where

σ2 = arccos
1 + cos θ2

√
1 + d2√(

1 + d2 + cos θ2

√
1 + d2

)2 − d2
(
cos θ2 +

√
1 + d2

)2
,

which we plot in Figure 3.7 and compare with numerical simulations for various

values of c. We observe that, as c increases, the accuracy of our formula decreases

which is predicted by the approximation (3.20) we used to derive G
(3)
1 (x0,x).
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3.5 Approximation of the Green’s function

3.5.4 Mean time to hit the cellular surface

We use (3.25) to obtain the mean time T
(3)
1 (θ1, a, c) by integrating the Green’s

function G
(3)
1 (x0,x) over the annular region C:

T
(3)
1 (θ1, a, c) = R2

∫
C

G
(3)
1 (x0,x) dx

= R2

∫ τ1

τ2

∫ 2π

0

∫ π

0

d3G
(3)
1 (x0,x) sinφ

(cosh τ − cosσ)3
dσdφdτ, (3.33)

where x0 ∈ ∂C1 is characterized by the angle θ1 (here θ1 is the angle defined by

x ∈ ∂C1, i.e. the angle ∠Oxnx where xn is the centre of the nucleus and O is

the origin of the coordinate system) and

σ1 = arccos
a2 + a cos θ1

√
a2 + d2√(

a2 + d2 + a cos θ1

√
a2 + d2

)2 − d2
(
a cos θ1 +

√
a2 + d2

)2
.

In (3.33) the mean time T
(3)
1 (θ1, a, c) is defined as:

T
(3)
1 (θ1, a, c) = E

(
t
(3)
1 (x0)

)
= mean time for a particle starting at x0 ∈ ∂C1 to hit ∂C2,

Here, t
(3)
1 (x0) is the random variable defined as follows:

t
(3)
1 (x0) = time for a particle starting at x0 on the cellular nucleus to reach

the cellular surface.

Making use of Appendix C.5 we determine the integral:

d3

∫ τ1

τ2

∫ π

0

∫ 2π

0

G
(3)
1 (x0,x) sinφ

(cosh τ − cosσ)3 dσdφdτ

=
d2

2πD
hx (τ, σ)

+∞∑
n=0

+∞∑
m=0

εm
(n−m)!

(n+m)!
Pm
n (cosσ1)

×
∫ τ1

τ2

[∫ π

0

Pm
n (cosσ) sinσ

(cosh τ − cosσ)
5
2

dσ

∫ 2π

0

cosm(φ− φ0) dφ

]
Fn(τ, τ1) dτ (3.34)

=
d2

2πD
hx (τ, σ)

+∞∑
n=0

2Pn(cosσ1)

2n+ 1

∫ τ1

τ2

Un(τ)K
(3)
1,n(τ, τ1) dτ, (3.35)
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where

K
(3)
1,n(τ, τ1) =

2
(
n+ 1

2

)
sinh

[(
n+ 1

2

)
(τ − τ2)

]
sinh

[(
n+ 1

2

)
(τ1 − τ2)

]
tanh τ1 + 2

(
n+ 1

2

)
cosh

[(
n+ 1

2

)
(τ1 − τ2)

] ,
and Un(τ) is defined in (C.5). Furthermore, in (3.34) we have made use of the

following:∫ π

0

Pn(cosσ) sinσ

(cosh τ − cosσ)
5
2

dσ =
+∞∑
N=0

UN(τ)

∫ π

0

Pn(cosσ)PN(cosσ) sinσ dσ

=
2Un(τ)

2n+ 1
.

The integral in (3.35) is given by:∫ τ1

τ2

Un(τ)K
(3)
1,n(τ, τ1) dτ =

2
√

2
(
n+ 1

2

)
sinh

[(
n+ 1

2

)
(τ1 − τ2)

]
tanh τ1 + 2

(
n+ 1

2

)
cosh

[(
n+ 1

2

)
(τ1 − τ2)

]
×
∫ τ1

τ2

sinh

[(
n+

1

2

)
(τ − τ2)

][
(2n+ 3) (2n+ 1)

3

e−(n+ 1
2)τ

sinh2 τ
+

2

3
(2n+ 1)

e−(n+ 3
2)τ

sinh3 τ

]
dτ,

(3.36)

where the last integral is difficult to solve analytically and we will make use of

numerical methods in our calculations.

Using (3.36) in (3.35) we obtain the mean time:

2D

R2
T

(3)
1 (θ1, a, c) =

8
√

2d2

+∞∑
n=0

hx (τ, σ)
(
n+ 1

2

)
Pn(cosσ1)

sinh
[(
n+ 1

2

)
(τ1 − τ2)

]
tanh τ1 + 2

(
n+ 1

2

)
cosh

[(
n+ 1

2

)
(τ1 − τ2)

]
×
∫ τ1

τ2

sinh

[(
n+

1

2

)
(τ − τ2)

][
(2n+ 3)

3

e−(n+ 1
2)τ

sinh2 τ
+

2

3

e−(n+ 3
2)τ

sinh3 τ

]
dτ, (3.37)

which we plot in Figure 3.8 and compare with numerical simulations. We ob-

serve that the largest divergence of T
(3)
1 (θ1, a, c) occurs for values of θ1 = 0, π

(which in bispherical coordinates translate into σ1 = 0, π) which is the value for

which the cosine in the prefactor hx (τ, σ) =
√

cosh τ − cosσ obtains its maximum

magnitude.
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Figure 3.8: Plot of T
(3)
1 (θ1, a, c) as a function of θ1 where the red line is the

approximation (3.37) and the blue dots are numerical simulations. For this figure

we have used the following parameters: a = 0.1.

3.5.5 Average mean time to hit the cellular surface

We next obtain the mean hitting time T̄
(3)
1 (a, c), when the initial position x0 is

distributed uniformly over ∂C1. Firstly,

T̄
(3)
1 (a, c) =

∫
∂C1

T
(3)
1 (θ1, a, c)

4πa2
dx0 =

d2

4πa2

∫ π

0

∫ 2π

0

T
(3)
1 (θ1, a, c) sinσ1

(cosh τ1 − cosσ1)2
dσ1dφ1,

(3.38)

which we evaluate, using Appendix C.4, to be:

2D

R2
T̄

(3)
1 (a, c) =

8
√

2πd3

πa

×
+∞∑
n=0

(
n+ 1

2

)
e−(n+ 1

2)τ1In

sinh
[(
n+ 1

2

)
(τ1 − τ2)

]
tanh τ1 + 2

(
n+ 1

2

)
cosh

[(
n+ 1

2

)
(τ1 − τ2)

] ,
(3.39)
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where in the above we have used the fact that:

d

sinh τ1

= a,

and

In =

∫ τ1

τ2

sinh

[(
n+

1

2

)
(τ − τ2)

] [
(2n+ 3)

3

e−(n+ 1
2)τ

sinh2 τ
+

2

3

e−(n+ 3
2)τ

sinh3 τ

]
dτ.

We plot (3.39) in Figure 3.9 and we compare with numerical simulations. We

observe that the accuracy of our approximation decreases as a function of the

nuclear displacement c which is because of the approximation we have made in

(3.20) in order to calculate G
(3)
1 (x0,x). Additionally, the dependence of T̄

(3)
1 (a, c)

on a and c is shown in Figure 3.10.

3.6 Continued fractions expression of the Green’s

function

From Figure 3.3 we observe that the assumption cosh τ1 � 1 we have made for

the nucleus does not hold for the cellular boundary characterized by τ2. As a

result, we cannot obtain an approximation for G
(3)
2 (x0,x) and all the quantities

derived subsequently from it.

In this section, we will calculate the Green’s function Ḡ
(3)
1 (x0,x) and Ḡ

(3)
2 (x0,x),

averaged over the reflecting surface, and derive from them the first-passage prop-

erties such as the average mean time and hitting density. The reason we are

assuming uniform initial conditions, on the nucleus and cellular surface, is that

the method we will utilise to solve recursive relations of the form:

αnAn−1 + βnAn + γnAn+1 = λn,

will require the coefficients αn, βn and γn to have finite limits as n → +∞.

However, we observe from (3.19), and from the fact that lim
n→+∞

Pm
n (cosσ) does

not exist, that the limits lim
n→+∞

αnm, lim
n→+∞

βnm and lim
n→+∞

γnm do not exist and

we cannot make use of Theorem D.1.2.
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Figure 3.9: Plot of the average mean time T̄
(3)
1 (a, c) as a function of the dis-

placement of the nucleus c. The blue line represent the approximation (3.39),

the green dots represent numerical simulation and the red dot is the concentric

case (1.17) in rescaled coordinates. For this figure we have used the following

parameters: a = 0.1.

3.6.1 From nucleus to cellular surface

We begin with the case of reflecting nucleus and absorbing cellular surface:

∂Ḡ
(3)
1

∂n1

(x0,x) = 0, x ∈ ∂C1, (3.40)

Ḡ
(3)
1 (x0,x) = 0, x ∈ ∂C2. (3.41)

The Green’s function G
(3)
1 (x0,x) can be written as Chen et al.:

G
(3)
1 (x0,x) = G(3)

r (x0,x) +G(3)
s (x0,x) .
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Figure 3.10: Contours of 2D
R2 T̄

(3)
1 (a, c), the mean time for a particle, whose initial

condition is uniformly distributed on the nuclear surface, to reach the cellular

surface, as a function of the dimensionless parameters a and c.

Integrating G
(3)
1 (x0,x) over the sphere characterized by τ0 we obtain the Green’s

function Ḡ
(3)
1 (x0,x):

Ḡ
(3)
1 (x0,x) =

d2

S

∫ 2π

0

∫ π

0

G(3) (x0,x) sinσ0

(cosh τ0 − cosσ0)2
dσ0φ0

=
d2

S

∫ 2π

0

∫ π

0

G
(3)
r (x0,x) sinσ0

(cosh τ0 − cosσ0)2
dσ0φ0

+
d2

S

∫ 2π

0

∫ π

0

G
(3)
s (x0,x) sinσ0

(cosh τ0 − cosσ0)2
dσ0φ0,

where S is the surface area of the sphere characterized by τ0. Making use of the

following identities:

d2

∫ 2π

0

∫ π

0

G
(3)
r (x0,x) sinσ0

(cosh τ0 − cosσ0)2
dσ0φ0
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=
d
√

2

D sinh τ0

hx (τ, σ)
+∞∑
n=0

{
A1
n cosh

[(
n+

1

2

)
τ

]
+B1

n sinh

[(
n+

1

2

)
τ

]}
Pn(cosσ)

× e−(n+ 1
2)τ0 ,

and

d2

∫ 2π

0

∫ π

0

G
(3)
s (x0,x) sinσ0

(cosh τ0 − cosσ0)2
dσ0φ0 =

d
√

2

D sinh τ0

hx (τ, σ)
+∞∑
n=0

e−(n+ 1
2)τ0Pn(cosσ)

× e−(n+ 1
2)|τ−τ0|,

the Green’s function Ḡ3
1 (x0,x) can be written as:

SḠ3
1 (x0,x) =

d
√

2

D sinh τ0

hx (τ, σ)
+∞∑
n=0

{A1
n cosh

[(
n+

1

2

)
τ

]
+B1

n sinh

[(
n+

1

2

)
τ

]
+ e−(n+ 1

2)|τ−τ0|}e−(n+ 1
2)τ0Pn(cosσ). (3.42)

From (3.40) we deduce that:

+∞∑
n=0

e−(n+ 1
2)τ0

{
A1
n

[
cosh

[(
n+

1

2

)
τ1

]
sinh τ1

+(2n+ 1) sinh

[(
n+

1

2

)
τ1

]
(cosh τ1 − cosσ)

]
+B1

n

[
sinh

[(
n+

1

2

)
τ1

]
sinh τ1

+(2n+ 1) cosh

[(
n+

1

2

)
τ1

]
(cosh τ1 − cosσ)

]
+ [sinh τ1 − (2n+ 1) (cosh τ1 − cosσ)] e−(n+ 1

2)(τ1−τ0)

}
Pn(cosσ) = 0,

which can be rewritten as:

+∞∑
n=0

e−(n+ 1
2)τ0

{
A1
nV1 (n, τ1)− A1

n(2n+ 1) sinh

[(
n+

1

2

)
τ1

]
cosσ

+B1
nV2 (n, τ1)−B1

n(2n+ 1) cosh

[(
n+

1

2

)
τ1

]
cosσ

+W (n, τ1) e−(n+ 1
2)(τ1−τ0) + (2n+ 1) cosσe−(n+ 1

2)(τ1−τ0)

}
Pn(cosσ) = 0,
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where V1(n, τ1), V2(n, τ1) and W (n, τ1) are defined in (3.13). Using the following

expansion of Legendre polynomials (Gradshteyn & Ryzhik, 2014, p.985):

cosσPn(cosσ) =
n

2n+ 1
Pn−1(cosσ) +

n+ 1

2n+ 1
Pn+1(cosσ),

we obtain:

+∞∑
n=0

e−(n+ 1
2)τ0

{
A1
nV1 (n, τ1)Pn(cosσ)− A1

n(2n+ 1) sinh

[(
n+

1

2

)
τ1

]
×
[

n

2n+ 1
Pn−1(cosσ) +

n+ 1

2n+ 1
Pn+1(cosσ)

]
+B1

nV2 (n, τ1)

−B1
n(2n+ 1) cosh

[(
n+

1

2

)
τ1

] [
n

2n+ 1
Pn−1(cosσ) +

n+ 1

2n+ 1
Pn+1(cosσ)

]
+W (n, τ1) e−(n+ 1

2)(τ1−τ0) + (2n+ 1)e−(n+ 1
2)(τ1−τ0)

[
n

2n+ 1
Pn−1(cosσ)

+
n+ 1

2n+ 1
Pn+1(cosσ)

]}
= 0.

Finally, we multiply the result by PN(cosσ) sinσ and integrate from 0 to π with

respect to σ:

2V1 (N, τ1) e−(N+ 1
2)τ0

2N + 1
A1
N − sinh

[(
N +

3

2

)
τ1

]
e−(n+ 3

2)τ0 2N + 2

2N + 1
A1
N+1

− sinh

[(
N − 1

2

)
τ1

]
e−(N− 1

2)τ0 2N

2N + 1
A1
N−1 +

2V2 (n, τ1) e−(N+ 1
2)τ0

2N + 1
B1
N

− cosh

[(
N +

3

2

)
τ1

]
e−(N+ 3

2)τ0 2N + 2

2N + 1
B1
N+1

− cosh

[(
N − 1

2

)
τ1

]
e−(N− 1

2)τ0 2N

2N + 1
B1
N−1

= −2W (N, τ1)

2N + 1
e−(N+ 1

2)τ1 − 2N + 2

2N + 1
e−(N+ 3

2)τ1 − 2N

2N + 1
e−(N− 1

2)τ1 , (3.43)

where we used the orthogonality condition (Gradshteyn & Ryzhik, 2014, p.769):∫ π

0

sinσPl(cosσ)Pl′(cosσ) dσ =
2

2l + 1
δll′ .

From the Dirichlet boundary condition (3.41) we obtain using analogous methods:

A1
N cosh

[(
N +

1

2

)
τ2

]
+B1

N sinh

[(
N +

1

2

)
τ2

]
= −e−(N+ 1

2)(τ0−τ2),
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which allows us to express:

B1
N = − e−(N+ 1

2)(τ0−τ2)

sinh
[(
N + 1

2

)
τ2

] − coth

[(
N +

1

2

)
τ2

]
A1
N . (3.44)

Consequently, we write (3.43) as a recurrence relation for An:

α1
nA

1
n−1 + β1

nA
1
n + γ1

nA
1
n+1 = λ1

n, (3.45)

where, for convenience, we write N = n and setting τ0 = τ1:

α1
n =

2n

2n+ 1
e−(n− 1

2)τ1 cosh
[
(n− 1

2
) (τ1 − τ2)

]
sinh

[
(n− 1

2
)τ2

] ,

β1
n = − 2

2n+ 1
e−(n+ 1

2)τ1
{

sinh τ1

sinh
[
(n+ 1

2
) (τ1 − τ2)

]
sinh

[
(n+ 1

2
)τ2

]
+ (2n+ 1) cosh τ1

cosh
[
(n+ 1

2
) (τ1 − τ2)

]
sinh

[
(n+ 1

2
)τ2

] }
,

γ1
n =

2n+ 2

2n+ 1
e−(n+ 3

2
)τ1

cosh
[
(n+ 3

2
) (τ1 − τ2)

]
sinh

[
(n+ 3

2
)τ2

] ,

λ1
n = −2W (n, τ1)

2n+ 1
e−(n+ 1

2)τ1 − 2n+ 2

2n+ 1
e−(n+ 3

2)τ1 − 2n

2n+ 1
e−(n− 1

2)τ1

+
2V2 (n, τ1) e−(n+ 1

2)τ1

2n+ 1

e−(n+ 1
2)(τ1−τ2)

sinh
[(
n+ 1

2

)
τ2

]
− cosh

[(
n+

3

2

)
τ1

]
e−(n+ 3

2)τ1 2n+ 2

2n+ 1

e−(n+ 3
2)(τ1−τ2)

sinh
[(
n+ 3

2

)
τ2

]
− cosh

[(
n− 1

2

)
τ1

]
e−(n− 1

2)τ1 2n

2n+ 1

e−(n− 1
2)(τ1−τ2)

sinh
[(
n− 1

2

)
τ2

] .
The solution of (3.45) will be obtained by using the Green’s function method for

difference equations, which is analogous to the construction of solutions for dif-

ferential equations Love (1975); Milne-Thomson (2000). Let Gn,N be the solution

of the difference equation:

α1
nGn−1,N + β1

nGn,N + γ1
nGn+1,N = δn,N , N = 0, 1, . . . , (3.46)

where δ is the Kronecker delta function. As a result, the solution of (3.45) is

obtained as:

An =
+∞∑
N=0

Gn,Nλ
1
N , n = 0, 1, . . . . (3.47)
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We construct the Green’s functions Gn,N by utilising the complementary differ-

ence equation for (3.46):

α1
nGn−1,N + β1

nGn,N + γ1
nGn+1,N = 0, (3.48)

which has two solutions given by its characteristic equation. We denote the ratio

Gn+1,N/Gn,N = λ and letting n→ +∞ in (3.48) we obtain

e−2τ2λ2 − 2 cosh τ1λ+ e2τ2 = 0,

which has solutions:

λ1 = eτ1+2τ2 λ2 = e−τ1+2τ2 .

Proceding with the solution of (3.45) we will use Perron’s theorem (see D.1.2)

which tells us that the ratios Gn+1,N/Gn,N and Gn−1,N/Gn,N tend to λ1 and 1/λ2,

respectively. Furthermore, the ascending and descending fractions can be written

as a function of α1
n, β

1
n and γ1

n by making use of continued fractions (see D.2):

Gn+1N

GnN

=
α1
n+1

β1
n+1 −

γ1
n+1α

1
n+2

β1
n+2−

γ1
n+2α

1
n+3

β1
n+3

−···

≡ p1
n+1, (3.49)

Gn−1N

GnN

=
α1
n−1

β1
n−1 −

γ1
n−1α

1
n−2

β1
n−2−

γ1
n−2α

1
n−3

β1
n−3−···−

α1
0γ

1
1

β1
0

≡ q1
n−1, (3.50)

where

lim
n→+∞

p1
n+1 = λ1,

lim
n→+∞

q1
n−1 =

1

λ2

.

We build the solution of (3.46) by using (3.49) and (3.50) in the following

way(Love, 1975, p.454):

Gn+1N = p1
n+1GnN , n ≥ N,

Gn−1N = q1
n−1GnN , n ≤ N.

(3.51)
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If we know GN,N then we will be able to determine Gn,N . As a result, we let

n = N in (3.51) and substitute GN+1N and GN−1N in (3.46) obtaining:

GNN =
1

α1
Nq

1
N−1 + β1

N + γ1
Np

1
N+1

.

Consequently, we have from (3.47) and (3.44) the following:

A1
n =

+∞∑
N=0

λ1
N

α1
Nq

1
N−1 + β1

N + γ1
Np

1
N+1

{
δnN +H(n−N)

n∏
l=N+1

p1
l

+H(N − n)
N−1∏
l=n

q1
l

}
,

B1
n = −e−(n+ 1

2)(τ1−τ2) csch

[(
n+

1

2

)
τ2

]
− A1

n cosh

[(
n+

1

2

)
τ2

]
csch

[(
n+

1

2

)
τ2

]
.

where H(x) is the Heaviside function:

H(x) =

{
0, if x < 0,

1, otherwise.

As a result, we write (3.42) as:

4πDḠ3
1 (x0,x) =

d
√

2

a2 sinh τ1

hx (τ, σ)
+∞∑
n=0

{
A1
n cosh

[(
n+

1

2

)
τ

]
+B1

n sinh

[(
n+

1

2

)
τ

]
+ e−(n+ 1

2)|τ−τ1|
}

e−(n+ 1
2)τ1Pn (cosσ) ,

(3.52)

which we plot in Figure 3.11 and compare with numerical simulations.

3.6.2 From cellular surface to nucleus

Analogously, for the case of absorbing nucleus and reflecting cellular surface we

obtain:

4πDḠ3
2 (x0,x) =

d
√

2

sinh τ2

hx (τ, σ)
+∞∑
n=0

{
A2
n cosh

[(
n+

1

2

)
τ

]
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numerical exact difference

0.0 0.7 1.4 0.05 0.00 0.05

Figure 3.11: Plot of numerical simulation of G
(3)
1 (x0,x) (left), analytic formula

(3.52) (centre) and difference (right). The initial condition is x0 ∈ ∂C1 and

a = 0.1, c = 0.5.

+B2
n sinh

[(
n+

1

2

)
τ

]
+ e−(n+ 1

2)|τ−τ2|
}

e−(n+ 1
2)τ2Pn (cosσ) ,

where

A2
n =

+∞∑
N=0

λ2
N

α2
Nq

2
N−1 + β2

N + γ2
Np

2
N+1

{
δnN +H(n−N)

n∏
l=N+1

p2
l

+H(N − n)
N−1∏
l=n

q2
l

}
,

B2
n = −e−(n+ 1

2)(τ1−τ2) csch

[(
n+

1

2

)
τ1

]
− A2

n cosh

[(
n+

1

2

)
τ1

]
csch

[(
n+

1

2

)
τ1

]
.

and

p2
n+1 =

α2
n+1

β2
n+1 −

γ2
n+1α

2
n+2

β2
n+2−

γ2
n+2α

2
n+3

β2
n+3

−···

,

q2
n−1 =

α2
n−1

β2
n−1 −

γ2
n−1α

2
n−2

β2
n−2−

γ2
n−2α

2
n−3

β2
n−3−···−

α2
0γ

2
1

β2
0

.
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In the above calculations we have made use of the following:

α2
n =

2n

2n+ 1
e−(n− 1

2)τ2 cosh
[(
n− 1

2

)
(τ1 − τ2)

]
sinh

[(
n− 1

2

)
τ1

] ,

β2
n =

2

2n+ 1
e−(n+ 1

2)τ2
{

sinh τ2

sinh
[(
n+ 1

2

)
(τ1 − τ2)

]
sinh

[(
n+ 1

2

)
τ1

]
− (2n+ 1) cosh τ2

cosh
[(
n+ 1

2

)
(τ1 − τ2)

]
sinh

[(
n+ 1

2

)
τ1

] }
,

γ2
n =

2n+ 2

2n+ 1
e−(n+ 3

2)τ2 cosh
[
(n+ 3

2
) (τ1 − τ2)

]
sinh

[
(n+ 3

2
)τ1

] ,

λ2
n = −2W (n, τ2)

2n+ 1
e−(n+ 1

2)τ2 − 2n+ 2

2n+ 1
e−(n+ 3

2)τ2 − 2n

2n+ 1
e−(n− 1

2)τ2

+
2V2 (n, τ2)

2n+ 1

e−(n+ 1
2)τ2

sinh
[(
n+ 1

2

)
τ1

]
− cosh

[(
n+

3

2

)
τ2

]
2n+ 2

2n+ 1

e−(n+ 3
2)τ2

sinh
[(
n+ 3

2

)
τ1

]
− cosh

[(
n− 1

2

)
τ2

]
2n

2n+ 1

e−(n− 1
2)τ2

sinh
[(
n− 1

2

)
τ1

] ,
where n ∈ N ∪ {0}.

3.6.3 Hitting density on the cellular surface

The hitting density of particles incoming from the nucleus is given by:

ε(3)(θ2) = −D ∂Ḡ3
1(x1,x)

∂n2

∣∣∣∣
∂C2

,

which gives, after simplification:

ε(3)(θ2) =
(cosh τ2 − cosσ2)

1
2

4
√

2a2π sinh τ1

+∞∑
n=0

[
A1
nV̄1 (n, τ2, σ2) +B1

nV̄2 (n, τ2, σ2)

+ W̄ (n, τ2, σ2) e−(n+ 1
2)(τ1−τ2)

]
e−(n+ 1

2)τ1Pn(cosσ2), (3.53)

where

V̄1 (n, τ2, σ2) = V1 (n, τ2)− (2n+ 1) sinh

[(
n+

1

2

)
τ2

]
cosσ2,
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Figure 3.12: Plot of ε(3)(θ2) comparing the numerical simulation with the analytic

result obtained in (3.53) as a function of θ2 for c = 0.25, 0.5 and 0.89. The inset

shows ε(3)(θ2) for c = 0.89 and small values of θ2. The lighter colours represent

the analytic result and the darker colours represent the numerical simulations.

The numerical results have been obtained by having 105 particles uniformly dis-

tributed on the sphere of radius a from Figure 3.1 and recording their endpoint.

For our simulations we have chosen the following parameter values: a = 0.1.

V̄2 (n, τ2, σ2) = V2 (n, τ2)− (2n+ 1) cosh

[(
n+

1

2

)
τ2

]
cosσ2,

W̄ (n, τ2, σ2) = sinh τ2 + (2n+ 1) (cosh τ2 − cosσ2) ,

and

σ2 = arccos
1 + cos θ2

√
1 + d2√(

1 + d2 + cos θ2

√
1 + d2

)2 − d2
(
cos θ2 +

√
1 + d2

)2
.

In calculating (3.53), we made use of (3.52) and Appendix C.1, and we plot

ε(3) (θ2) in Figure 3.12 for several values of c and compare with numerical simu-
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Figure 3.13: Plot of the average mean time T̄
(3)
1 (a, c) as a function of the diplace-

ment of the nucleus c. The blue line represents the approximation (3.39), the

black line represents the analytic solution (3.54), the green dots represent numer-

ical simulations and the red dot is the concentric case (1.17) in rescaled coordi-

nates. For the numerical simulations we have used G.6.1.1 and this plot has been

obtained using G.6.2.1. For this figure we have used the following parameters:

a = 0.1.

lations. We observe that as c increases the density ε(3)(θ2) becomes bimodal in

an analogous way to the two dimensional case from Figure 2.15.

3.6.4 Average mean time

We next obtain the mean hitting times, T̄ 3
1 (a, c) and T̄ 3

2 (a, c), when the initial

position x0 is distributed uniformly over ∂C1 and ∂C2, respectively. Firstly,

T̄
(3)
1 (a, c) = R2d3

∫ τ1

τ2

∫ 2π

0

∫ π

0

Ḡ
(3)
1 (x0,x) sinσ

(cosh τ − cosσ)3 dσdφdτ,
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which we evaluate, using Appendix C.4, to be:

2D

R2
T̄

(3)
1 (a, c) =

4πd3

a

+∞∑
n=0

e−(n+ 1
2)τ1I1

n, (3.54)

where the function I1
n is given by:

I1
n =

∫ τ1

τ2

{
A1
n cosh

[(
n+

1

2

)
τ

]
+B1

n sinh

[(
n+

1

2

)
τ

]
+ e−(n+ 1

2)(τ1−τ)

}
×

[
(2n+ 3)

3

e−(n+ 1
2)τ

sinh2 τ
+

2

3

e−(n+ 3
2)τ

sinh3 τ

]
dτ.

We plot T̄
(3)
1 (a, c) in Figure 3.13 where we compare with numerical simulation

and with the approximation we obtained in (3.39).

Analogously, the mean time for a particle, whose initial condition is uniformly

distributed on the cellular surface, to reach the nucleus is given by:

2D

R2
T̄

(3)
2 (a, c) = 4πd3

+∞∑
n=0

e−(n+ 1
2)τ2I2

n, (3.55)

where

I2
n =

∫ τ1

τ2

{
A2
n cosh

[(
n+

1

2

)
τ

]
+B2

n sinh

[(
n+

1

2

)
τ

]
+ e−(n+ 1

2)(τ−τ2)

}
×

[
(2n+ 3)

3

e−(n+ 1
2)τ

sinh2 τ
+

2

3

e−(n+ 3
2)τ

sinh3 τ

]
dτ,

which we plot in Figure 3.14 where we compare with numerical simulations and

with the approximation obtained from Condamin et al. (2007) (see (1.85)):

2D

R2
T̄

(3),C
2 =

2

3a

[
1 +

a

1− c2
+ a log

1

1− c2
+ a

c2 − 5

2

]
.

When plotting T̄
(3)
1 (a, c) and T̄

(3)
2 (a, c) we observe that the former converges

much faster the latter to the numerical simulations and, as a result, more terms

are required for the sum in (3.55) and in the depth of the continued fractions in

p2
n+1 in order to plot T̄

(3)
2 (a, c). This number of terms needed is an increasing

function of c and given that the terms in the coefficients α2
n, β

2
n and γ2

n grow

exponentially the plot was segmented with different number of terms used for

different regions of c.
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Figure 3.14: Plot of the average mean time T̄
(3)
2 (a, c) as a function of the dis-

placement of the nucleus c. The blue line represent the approximation (3.39),

the black line represents the analytic solution (3.55), the green dots represent

numerical simulation and the red dot is the concentric case (1.18) in rescaled

coordinates. For this figure we have used the following parameters: a = 0.25.

3.6.5 Mean round-trip time

Calculating the total mean time for a Brownian particle to return to the nucleus

given that it has touched the cellular surface is difficult and we will make use of

an approximation. Let {θi2}i∈{0,1,··· ,N−1} be a discretization of the interval [0, π]

(see Figure 3.15).

{θi2}i∈{0,1,··· ,N−1} =

{
0, π × 1

N
, · · · , π × N − 1

N

}
.

Consequently, we create the following vectors:

v = {T (3)
2 (θi2, a, c)}i∈{0,1,··· ,N−1}, w = {ε3(θi2)}i∈{0,1,··· ,N−1},
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θ02 θ12
θ22

Figure 3.15: Diagram of the discretization of the spherical θ2 angle used to obtain

a semi-analytic mean time T̄ ε,32 (c).

where T
(3)
2 (θi, a, c) is the approximation provided by Condamin et al. (2007)

and ε(3) (θi) is the hitting density deduced in (3.53). As a result, the mean

time, starting on the cellular surface with initial distribution ε(3) (θ2), can be

approximated by:

2D

R2
T̄ ε,32 (a, c) =

2π2

N

N−1∑
i=0

ε(3)(θi2)T
(3)
2 (θi2, a, c) sin θi2, (3.56)

which we plot in Figure 3.16 where we compare with numerical simulations. We

deduce from Figure 3.14 and 3.16 that, while T̄
(3)
2 (a, c) is an increasing function

of c, T̄ ε,32 (a, c) is a decreasing function which is explained by the fact that the

initial position of the Brownian particle, on the cellular surface, is concentrated

at the point of shortest distance to the nuclear surface (see Figure 3.12).
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Figure 3.16: Plot of the mean time T̄ ε,32 as a function of the displacement of the

nucleus c. The blue line is the semi-analytic solution obtained in (3.56), green dots

are numeric simulations and the red dot is the concentric case (1.18) in rescaled

coordinates. For this plot we have used the following parameters: a = 0.1.

3.7 Discussion

In this chapter we have derived the Green’s function, using bispherical coordi-

nates, under two scenarios: (i) approximation and (ii) exact. For the approxima-

tion we have made use of the fact that the prefactor hx (τ, σ) =
√

cosh τ − cosσ

can be approximated as hx (τ, σ) ≈
√

cosh τ when τ � 0. This approximation is

useful for calculating G
(3)
1 (x0,x) but not G

(3)
2 (x0,x). From the Green’s function

we calculate the first passage properties of diffusion from the nuclear surface to

the cellular surface: hitting density (3.32), mean time (3.37) and average mean

time (3.39).

We observe, from Figure 3.9, that as the displacement of the nucleus c increases

the accuracy of our approximation (3.39) for T̄
(3)
1 (a, c) decreases when compared
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Figure 3.17: Plot of the distribution of t̄
(3)
1 in the upper plane and the plot of the

distribution of t̄
(3)
2 in the lower plane. The blue lines are numerical simulations for

which we have chosen the following parameter values: a = 0.1, c = 0.45, D = 0.5.

with numerical simulations which is consistent with the approximation (3.20) we

used to obtain our results.

The existence of a Neumann boundary condition leads to the appearance of a

second order difference equation which we solve by using the Green’s function

method for difference equations, which allows us to calculate the Green’s function
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for two scenarios: (i) diffusion from the nuclear surface to the cellular surface and

(ii) diffusion from the cellular surface to the nuclear surface. A limitation of this

method is that it is only applicable when the initial position of the Brownian

particle is uniformly distributed on the surface of the nucleus or of the cell,

respectively.

In order to obtain the Green’s function with uniform initial condition over the

surface of the nucleus and of the cell, Ḡ
(3)
1 (x0,x) and Ḡ

(3)
2 (x0,x), respectively,

we make use of Perron’s theorem and continued fraction expansion. From the

Green’s function we calculate the first passage properties of diffusion from the

nuclear surface to the cellular surface: hitting density (3.53) and average mean

time (3.54). Analogously, we derive from Ḡ
(3)
2 (x0,x) the first passage proper-

ties of diffusion from the cellular surface to the nuclear surface: average mean

time (3.55). We notice from Figure 3.13, when comparing the average mean time

of diffusion from the nuclear surface to the cellular surface, that unlike our ap-

proximation (3.39), our analytic formula does not decrease in accuracy as the

displacement of the nucleus c increases. To our knowledge, the analytic formula

for Ḡ
(3)
1 (x0,x), and all the derived quantities, is unique to the literature.

We derived a semi-analytic formula for the mean round trip time
(
T̄

(3)
1 + T̄ ε,32

)
(a, c)

from the approximation derived by Condamin et al. (2007) for T
(3)
2 (θ2) and our

analytic formula (3.53) for ε(3) (θ2). We notice from Figure 3.16 that T̄ ε,32 (a, c) is

a decreasing function of c as opposed to T̄
(3)
2 (a, c) which is an increasing function

of c. This is because the Brownian particles diffusing from the nucleus are more

likely to arrive at the point of the cellular surface which is closest to the nucleus,

and, as a result, the mean time for the particle to arrive back to the nucleus is

smaller than the case when its starting position is uniformly distributed on the

cellular surface.

The dependence on a and c, of the approximation T̄
(3)
1 (a, c), is shown in Fig-

ure 3.10 from which we deduce that the average mean time T̄
(3)
1 (a, c) is a de-

creasing function of a and c which is intuitively correct given that a Brownian

particle will take a longer time to reach a cellular surface if the staring point is

farther away from the absorbing surface.

Our formulas have applications in mathematical immunology to estimate the

mean time for a transport molecules (for example STAT molecules Imada &
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Leonard (2000); Kerr et al. (2003); Speil et al. (2011); Vinkemeier (2004)) to

start a immune reaction by transporting a signal molecule from the surface of the

cell to a intracellular compartment.

The higher order moments of t̄
(3)
1 (x0) and t̄

(3)
2 (x0) should be the focus of extending

the results from Chapter 2. We observe from Figure 3.17 that the distribution of

t̄
(3)
2 (x0) is wider around the mean than the distribution of t̄

(3)
1 (x0) from which we

deduce that T̄
(3)
2 (a, c) does not capture the most important aspects of Brownian

motion from the cellular surface to the nuclear surface. The activation of many

processes inside a cell requires the arrival of a single molecule at a target site and

in this context the relevant timescale is given by the extreme first passage times

(i.e. the time at which the first Brownian searcher reaches a target) Basnayake

& Holcman (2020); Lawley & Madrid (2020); Mattos et al. (2012).

Future work should be on modeling Robin boundary conditions for nuclear or

cellular surface given that the reacting surface may itself contain absorbing and

reflecting regions. Additionally, future work should be done on expanding the

mean times and average mean times in powers of a and comparing with the

formulae derived from Condamin et al. (2007) in a similar fashion to Chapter 2.
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Chapter 4

Simulating intracellular

distribution of Coxiella burnetii

assay

4.1 Introduction

An experimental procedure designed to measure a property of a system in fields

such as pharmacology and medicine is often called an assay. In this Chapter, we

develop a theoretical model of an assay carried out at the Defence Science and

Technology Laboratory (Dstl) to measure intracellular bacterial load of THP-1

(monocytic cell line derived from the peripheral blood of a childhood case of acute

monocytic leukemia Bosshart & Heinzelmann (2016)) human monocytes exposed

to Coxiella burnetii bacteria.

Coxiella burnetii is the agent of Q fever and is transmitted as a zoonotic pathogenic

agent to humans (sheep, goats, and cattle are the main source of infection)(Dalton

et al., 2014, p.60). The pathogenic agent was used in the biological weapons pro-

gram of the United States and Soviet Union, and is classified as a Category B

pathogen by the Centers for Disease Control and Prevention (CDC) Madariaga

et al. (2003). In infected humans, Coxiella burnetii is phagocytosed by immune

cells such as monocytes and macrophages which are then subsequently subverted

by the bacteria which replicate intracellularly. The importance of Coxiella bur-

netii is given by the consideration of it as a prototype in cell-free culture for
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bacterium, which replicate inside eukaryotic cells Dalton et al. (2014).

In the experiments performed by Dstl, a cylindrical well is filled with a composite

medium of 90% Leibovitz’s L-15 Medium and 10% fetal calf serum containing

Coxiella burnetii bacteria. Monocytes are distributed on the base of the cylin-

drical container. After 24 hours, fluorescence microscopy reveals the location of

intracellular and extracellular bacteria (see Appendix E.1).

An important parameter is the multiplicity of infection (MOI): the ratio of the

total number of bacteria initially in the medium to the total number of monocytes

on the well bottom. Let the number of monocytes be N0 and the the initial

number of bacteria be M0 then

M0 = MOI ×N0.

In our theoretical model, we assume a cylindrical container of radius b and height

h. We assume that Coxiella burnetii bacteria are, initially, uniformly distributed

in the medium and they diffuse with diffusion coefficient D until they are phago-

cytosed by the monocytes. The monocytes form a monolayer on the bottom of

the well (see Figure 4.1). We assume that the bacteria do not stick to the walls

of the well.

The monocytes are assumed to be disks of radius rm on the bottom of the vessel.

The distribution of rm is shown in Figure 4.2 from the experimental data provided

by Dstl.

We assume that the height of the assay well is given to be h = 1cm and the

radius of the well horizontal cross-section b = 1/
√
πcm. The initial number of

monocytes distributed on the well bottom is assumed to be N0 = 1.5 × 105 and

the multiplicity of infection is MOI = 2 × 102. Finally, we assume that the

Coxiella burnetii bacteria diffuse with diffusion coefficient D = 0.5cm2 s−1. The

parameters used for the assay simulation are shown in table F.1. A graphical

representation of the assay experiment is shown in Figure 4.1.

We want to determine the intracellular distribution of phagocytosed Coxiella

burnetii at any point in time and for that purpose we will make use of boundary

homogenisation: the bottom of the vessel can be assumed to be a reflecting surface

(given that the bacteria do not stick to the assay well) covered with absorbing
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b

h

Figure 4.1: Diagram of the assay well where b is the radius of the cross-section and

h is the height of the well. The red circles on the bottom denote the monocytes

distributed in a monolayer.

disks, which can be approximated to a homogeneous surface using methods which

we will discuss below.

In this chapter we will be using the following boundary conditions which are

equivalent Barton (1989); Bou-Rabee & Holmes-Cerfon (2020); Erban & Chap-

man (2007):

• Dirichlet boundary condition ≡ absorbing boundary.

• Neumann boundary condition ≡ reflecting boundary.

• Robin boundary condition ≡ partially reflecting/absorbing boundary.

Numerical simulations highlighted in Appendix E.3 are used to validate our re-

sults.

4.2 Literature review

Problems arising when diffusing particles are captured by patchy surfaces are

ubiquitous in physics, biology and chemistry. A sample includes ligand bind-
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Figure 4.2: Histogram of the radii rm of monocytes which are assumed to be disks

on the bottom of the well (experimental data provided by Dstl).

ing to cell surface receptors, electric current through arrays of electrodes, reac-

tions on supported catalysts and water exchange in plants. Of particular inter-

est are reflecting surfaces covered with non-overlapping circular absorbing traps

(Berezhkovskii et al., 2004, p.11390).

The method of matched asymptotic expansion has been used extensively to study

narrow escape problems when the absorbing target is a absorbing circular hole

located on a otherwise reflecting boundary. This is because when the absorbing

hole shrinks to zero the mean time to absorption diverges to infinity and the

narrow escape problem becomes a singular perturbation problem and is solved

by using asymptotic expansions Holcman & Schuss (2015); Schuss et al. (2007);

Singer et al. (2006b). Matched asymptotic expansion has been used to calculate

the diffusive flux to a boundary covered by circular absorbers in the case of a

flat boundary Bernoff & Lindsay (2018); Bernoff et al. (2018) and a spherical
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boundary Lindsay et al. (2017).

The problem of periodic absorbers located on a reflecting boundary has been in-

vestigated extensively using boundary homogenization Berezhkovskii et al. (2006);

Bernoff et al. (2018); Muratov & Shvartsman (2008).

Eun (2018) calculated the rate constant of a cell membrane covered by multiple

receptors by using surface curvature-dependent kinetic theory with a correction

for the asymptotic behaviour as the fraction of the surface covered goes to 1.

Partial differential equations with heterogeneous boundary conditions are difficult

to solve analytically and, as a consequence, boundary homogenisation is used to

solve these problems. This entails replacing the heterogeneous patchy surface with

a homogeneous partially absorbing surface with appropriate trapping parameter

κ as seen in Figure 4.3.

A key strength of boundary homogenisation is its universality, that is, it can be

used to solve both internal and external problems where particles diffuse to a

trapping surface from inside and outside of a region, respectively. Furthermore,

this method can be used to solve both steady state and time-dependent problems

Berezhkovskii et al. (2004).

Boundary homogenisation belongs to a class of methods called “effective medium

theories” which treat phenomena in non-uniform media by changing the real

medium with a fictitious uniform media with adequate parameters. The fun-

damental idea behind boundary homogenisation is that non-uniform boundaries

affect a relatively small neighbourhood near the surface and, as a result, the mem-

ory about the local properties of the boundary declines as a function of distance

from the boundary (Berezhkovskii et al., 2004, p.11390).

Berg and Purcell (Berg & Purcell, 1977, p.194-196) analysed the binding of ligand

to receptors on the surface of a cell which they approximated to a sphere of

radius R, covered with N0 perfectly absorbing disks of radius rm, where they

assumed that rm � R. They used the analogous problem, from electrostatics,

of an insulating sphere of radius R covered by N0 conducting disks of radius rm

connected by infinitesimal wires to derive the diffusing current to the sphere:

J = kBP c∞, kBP = kSM
N0kdisk

kSM +N0kdisk
,
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A B

Homogenisation

Figure 4.3: Graphical representation of boundary homogenisation. The hetero-

geneous boundary condition on surface A is replaced by a homogeneous partially

absorbing boundary in B with trapping rate κ. On surface A, the boundary

conditions are p(r, t) = 0 on the red circles and ∇np(r, t) = 0 on the rest of

the boundary, where p(r, t) is the particle density and n is the unit normal out-

ward vector to the surface. However, the boundary condition on B is given by

D∇np(r, t) = κp(r, t).

where J is the steady state diffusion current and c∞ is the ligand concentration

sufficiently far from the cell surface. The Berg-Purcell rate constant kBP is the

product of the Smoluchowski rate constant kSM = 4πDR (which is the forward

rate constant for ligand molecules diffusing to the cell surface (Lauffenburger &

Linderman, 1993, p.147)), and the capture probability of a particle starting on

the surface of a sphere of radius R with trapping rate κBP = N0kdisk/4πR
2 where

kdisk = 4Drm is the rate constant of a perfectly absorbing disk of radius a placed

on a perfectly reflecting plane (the number of disks per unit area is N0/4πR
2

and if the disks are sufficiently far apart then κBP can be approximated as the

product of kdisk and the number of disks per area) (Shoup & Szabo, 1982, p.33).

We rewrite the Berg-Purcell trapping rate:

κBP =
4D

πrm
σ, σ =

N0r
2
m

4R2
,

where σ is the fraction of the spherical surface covered in absorbing disks. This

formula has been improved by Zwanzig (Zwanzig, 1990, p. 5857) to arbitrary

surface coverage:

κZW =
1

1− σ
κBP =

4D

πa

σ

1− σ
.

Berezhkovskii et al. (Berezhkovskii et al., 2004, p.11391) used the following no-

tation for the trapping rate:

κ =
4D

πrm
F (σ), (4.1)
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where F (σ) is a dimensionless function of the trap-coverage fraction. Thus, the

problem of boundary homogenisation consists of finding the appropriate function

F for a patchy surface with trap surface fraction σ.

We observe that the boundary is perfectly absorbing (F → +∞ ⇒ κ → +∞,

see Appendix E.2) when σ → 1 and perfectly reflecting (F → 0⇒ κ→ 0) when

σ → 0. Furthermore, from (4.1) we observe that κ → +∞ when rm → 0 and σ

is held constant, which means that the boundary behaves as perfectly absorbing

when the disks cover a small fraction of the surface. For example, a cell of radius

R = 5µm covered with N0 transport proteins of radius rm = 10Å (where 1Å= 1

ångström = 10−10m) can absorb at half the rate of a perfectly absorbing sphere

when σ = 1.6× 10−4(Berg, 1993, p.33).

From the Berg-Purcell and Zwanzig formulae for κ we observe that:

FBP (σ) = σ, FZW (σ) =
σ

1− σ
,

where FBP (σ) is only valid for σ � 1 while FZW (σ) captures the asymptotic

behaviour as lim
σ→0

FZW (σ) = 0 and lim
σ→1

FZW (σ) = +∞.

Berezhkovskii et al. (Berezhkovskii et al., 2004, p.11392) proposed the following

formula for F :

F (σ) =
σ

1− σ
(1 + AσB),

where the parameters A,B where obtained by using numerical simulations to

calculate the mean time for a diffusing particle to be absorbed by a partially

reflecting surface and related the numerical result to the analytic formula for the

mean time which is a function of κ. As a result, the function F becomes:

F (σ) =
σ

1− σ
(1 + 3.8σ1.25).

The use of these formulae for boundary homogenisation is justified when the trap

radius rm is much smaller than the characteristic length R of the boundary (in

the case of a sphere it is the sphere radius).

In the case of non-overlapping disks of different radii we take advantage of the

fact that F (σ) only depends on the trap-coverage fraction and not on the disk

radius. This allows us to derive a formula for the effective trapping rate κ for a
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patchy surface covered by N0 absorbing disks of varying radii rim, i ∈ {1, . . . , N0}
(Makhnovskii et al., 2005, p. 236102):

κ(σ1, . . . , σN0) =
4D

π
F (σ)

N0∑
i=1

σi
rimσ

, (4.2)

where

σ =

N0∑
i=1

σi,

and σi = π (rim)
2
ni is the surface fraction occupied by ni disks of radius rim.

We introduce the following notation:

κi(σ) =
4D

πrim
F (σ),

and we rewrite (4.2) as :

κ(σ1, . . . , σN0) =

N0∑
i=1

νiκi(σ), (4.3)

where νi = σi/σ is the relative fraction of the surface covered by disks of radius

rim and:
N0∑
i=1

νi = 1.

We will use this formula for the rest of this chapter when discussing boundary

homogenisation. We plot κ as a function of N0 in Figure 4.4 where the radii rim

are sampled from the data provided by Dstl (see Figure 4.2). Given the fact that

the radius of a monocyte is a continuous variable the chance of duplicates in the

experimental data provided by Dstl is very unlikely. As a result, the number

disks of radius rim is ni = 1 and the trapping is given by (4.3) is:

κ =
4D

π
F

(
π

N0∑
i=1

(
rim
)2

) N0∑
i=1

rim

N0∑
i=1

(rim)2

. (4.4)

Using (4.4) and the monocyte radii data provided by Dstl we obtain the trapping

rate κ ≈ 762 cm/s for N0 = 1.5 × 105 monocytes, which we will use in our sub-

sequent calculations. In the remainder of this chapter, boundary homogenisation
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Figure 4.4: Plot of the trapping rate κ as a function of N0 where N0 is the number

of absorbing traps. The blue line represents the formula derived in (4.2). The

radii rim are sampled from the experimental data provided by Dstl (see Figure

4.2).

is discussed in the context of producing a mathematical model of assays with the

hope of obtaining the intracellular distribution of bacteria phagocytosed during

the experiment. The homogenised boundary will have Robin boundary condition

and we will highlight this type of boundary in the case of one dimensional diffu-

sion in Section 4.5. The assay experiment was described in Section 4.1 and we

apply boundary homogenisation deriving the relevant results in Section 4.6.

4.3 Diffusive current

Following the example of Berg (Berg, 1993, p.33), we want to investigate how

many traps must be placed in order that the absorption rate be half that of the
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Rh−δh

x = 0 x = δh x = h
p = 0 p = 1

Figure 4.5: Electrical model for the problem of N0 absorbers of radius s on the

bottom of an assay of radius b and height h, the problem illustrated in Figure

4.1.

case when the boundary is fully absorbing.

Consider the case when the top of the assay well is a constant source of new

bacteria (i.e. p(x) = 1 at x = 1, where p (x) is the particle concentration). We

define the diffusion current to be the rate at which bacteria are absorbed by the

monocytes at the bottom of the assay and we wish to calculate the ratio I/I0,

where I0 and I are the diffusive current when the bottom of the assay is absorbing

or covered with absorbing circular traps, respectively.

The problem is formally equivalent to the one in electricity where current flows

through a medium of finite resistivity to N0 conductive patches on an otherwise

insulated surface (see Figure 4.5) (Berg, 1993, p.31-33). The concentration p is

analogous to the voltage V and using Ohm’s law, which states that the current

through a resistor is equal to the potential drop across its terminals divided by

its resistance, we derive that I = p/Re where Re is the diffusion resistance.

Exploiting this relation, we note that the diffusion resistance for diffusion in the

cylinder is Rh = h/Dπb2 and the diffusion resistance for one of the traps of radius
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Figure 4.6: The diffusion current fraction I/I0 as a function of the number N0

of disk-like absorbers on the bottom of the assay. The blue line represents the

formula derived in (4.5).

s is 1/4Ds. As a result, the total resistance of the circuit is:

Re = Rh−δh +
Rs

N0

=
h− δh
Dπb2

+
1

4DN0s
.

Given that δh� h the resistance becomes:

Re ≈
h

Dπb2

(
1 +

πb2

4hN0s

)
.

Consequently, the ratio of the diffusion current is:

I

I0

=
1

1 + πb2

4hN0s

. (4.5)

Denoting the diffusive current fraction by α we obtain the number of traps:

I

I0

= α⇒ Nα
0 =

α

1− α
πb2

4hs
. (4.6)
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We want to know how many traps have to be placed on the bottom of the assay

in order to obtain a value of the diffusion current half of the case when the entire

assay bottom is absorbing. Using α = 0.5 and s = E [rm] in (4.6) we obtain:

N
1
2

0 =
πb2

4hs
= 302,

which means that just σ = πN
1
2

0 E ([rm])2 ≈ 6 × 10−4 of the surface of the assay

well is covered with traps.

Interestingly, letting N0 = 1.5 × 105 we obtain I/I0 ≈ 0.997 which means that

in our experiment the bottom of the assay well is equivalent to fully absorbing

boundary.

4.4 Monocyte surface coverage

A quantity of importance for our analysis is the fraction σ of the bottom surface

of the well covered with N0 = 1.5× 105 monocytes of radius rm (see Figure 4.2).

In order to estimate σ we begin with Figure 4.7(a), provided by Dstl, and using

the image processing program ImageJ we obtain Figure 4.7(b) by making use of

the following sequence of commands:

1. Plugins→Filters→Enhance Local Contrast (blocksize:60; histogram bins:256;

maximum slope:6.00);

2. Process→Smooth;

3. Plugins→Filters→Enhance Local Contrast (blocksize:20; histogram bins:256;

maximum slope:6.00);

4. Image→Adjust→Brightness/Contrast→Contrast such that the lower limit

is 55 and the upper limit is 198;

5. Save as a .jpeg.

We observe from Figure 4.7(b) and 4.8 that the interior of the cells are charac-

terised by low grayscale values and the cellular boundaries are characterised by

high grayscale values. We plot the distribution of the grayscale values of 768×768

169



4.5 One dimension diffusion equation

pixels of the transformed image from Figure 4.7(b) in Figure 4.8 and observe

that the distribution is symmetrical. Additionally, we observe that the grayscale

values are concentrated at the endpoint of the range with a local maximum at

medium values of the grayscale. We observe that the points which separate the

cellular from the extracellular domain are represented by the points where the

grayscale distribution obtained its local minima. Because we utilise the Python

code G.1 to obtain the cumulative distribution function of the grayscale interval

[0, X] ∪ [255 −X, 255], shown in Figure 4.9, these two points will overlap into a

single point, due to the symmetry of the distribution, and are determined by the

value of X for which:
d2

dX2
CDF (X) = 0,

where CDF (x) is the cumulative distribution function of the grayscale distribu-

tion shown in Figure 4.8. As a result, we observe that for X = 15 the second

order derivative in X becomes zero and we obtain σ ≈ 1/3. To justify our choice

of X = 15 we use Python code G.2 to produce Figure 4.10 in which every pixel

in the set [0, X] ∪ [255−X, 255] is coloured red and all other pixels are coloured

blue. We observe that the red pixels coincide with the monocytes from Figure

4.7(b). Additionally, our estimate of σ is also consistent with experimental data

provided by Dstl which gives:

σ =
N0 × π (E [rm])2

πb2
≈ 0.322.

For our analysis we choose the value of σ = 1/3 as the surface fraction of the

bottom of the well covered with monocytes.

4.5 One dimension diffusion equation

We are interested in how the position of a particle, starting uniformly on a in-

terval [0, h], changes with time due to diffusion. The boundary conditions are

the following: Robin boundary conditions at x = 0 and Neumann boundary con-

ditions at x = h. Let p(x, t) be the density of particles at position x at time t

given that their initial position is distributed uniformly on the interval [0, h]. As
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(a) (b)

Figure 4.7: Image of the cells on the bottom of the well provided by Dstl (left)

and the same image after being transformed using ImageJ.

a result we have:
∂

∂t
p(x, t) = D∇2

xp(x, t), (4.7)

with boundary and initial conditions, respectively:

D
∂

∂x
p(x, t)

∣∣∣∣
x=0

= κp(0, t), ∀t ≥ 0, (4.8a)

∂

∂x
p(x, t)

∣∣∣∣
x=h

= 0, ∀t ≥ 0, (4.8b)

p(x, 0) =
1

h
, for x ∈ (0, h). (4.8c)

We look for a separable solution of (4.7) of the form p(x, t) = X(x)T(t) and as a

result the diffusion equation becomes after simplification:

X

D

dT

dt
= T

d2X

dx2
. (4.9)

Multiplying equation (4.9) by 1
XT

we obtain:

1

DT

dT

dt
=

1

X

d2X

dx2
. (4.10)
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Figure 4.8: Distribution of grayscale values of Figure 4.7(b). We calculate the

grayscale value for each pixel and we obtain the distribution of these values. The

light red regions represents the monocytes, while the light blue region represents

the bottom of the assay well.

We observe that the left-hand side of (4.10) is a function of t while the right-hand

side is a function of x and we deduce that:

1

DT

dT

dt
=

1

X

d2X

dx2
= −λ2,

where λ is a constant. Here we choose the constant to be −λ2 in order to en-

sure that the time function does not grow exponentially and as a consequence

the density p(x, t) will be finite when t → +∞ (the particle will eventually be

absorbed and as a result p(x, t)→ 0 when t→ +∞,∀x ∈ [0, h], see Section 1.3).

The time equation is:
1

T

dT

dt
= −λ2D,
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Figure 4.9: Cumulative distribution function of the grayscale interval [0, x] ∪
[255− x, 255] of Figure 4.7(b).

which has the solution:

T(t) = Ce−λ
2Dt, (4.11)

where C is a constant.

Solving the x equation we obtain:

d2X

dx2
+ λ2X = 0⇒ X(x) = A cos(λx) +B sin(λx).

Given the boundary condition (4.8a) and (4.8b) we deduce the following:

D
∂

∂x
p(x, t)

∣∣∣∣
x=0

= κp(0, t),∀t > 0⇒ D
dX

dx

∣∣∣∣
x=0

= κX (0) ,

∂

∂r
p(b, t) = 0,∀t > 0⇒ dX

dx

∣∣∣∣
x=h

= 0,

which gives us:

D
dX

dx

∣∣∣∣
x=0

= κX (0)⇒ DλB = κA⇒ A =
DλB

κ
,

173



4.5 One dimension diffusion equation

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Figure 4.10: Heat map of Figure 4.7(b) where all pixels whose grayscale value is

contained in the interval [0, 15] ∪ [240, 255] are coloured red and all other pixels

are coloured blue. This figure was obtained using Python code G.2.

dX

dx

∣∣∣∣
x=h

= 0⇒ −Aλ sin(λz) +Bλ cos(λz) = 0.

As a result, the x component turns out to be:

Xn(x) =
Dλn
κ

cos(λnx) + sin(λnx), n ∈ N ∪ {0}, (4.12)

where λn is the n-th root of:

Dλ

κ
sin(λh)− cos(λh) = 0. (4.13)

Using (4.11), (4.12) and the principle of superposition we write p(x, t) as:

p(x, t) =
+∞∑
n=0

An

[
Dλn
κ

cos(λnx) + sin(λnx)

]
e−λ

2
nDt, (4.14)
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where An’s are coefficients to be determined. From the initial condition (4.8c) we

have:

p(x, 0) =
1

h
⇒

+∞∑
n=0

An

[
Dλn
κ

cos(λnx) + sin(λnx)

]
=

1

h
, (4.15)

We multiply (4.15) by Xm(x) integrate from 0 to h with respect to x obtaining:

+∞∑
n=0

An

∫ h

0

XmXn dx =
1

h

∫ h

0

Xm dx.

The right-hand side is calculated to be:∫ h

0

Xm(x) dx =

∫ h

0

[
Dλm
κ

cos(λmx) + sin(λmx)

]
dx

=
Dλm
κ

∫ h

0

cos(λmx) dx+

∫ h

0

sin(λmx) dx

=
Dλm
κ

[
sin(λmx)

λm

]h
0

−
[

cos(λmx)

λm

]h
0

=
1

λm

[
Dλm
κ

sin(λmh)− cos(λmh)

]
+

1

λm

=
1

λm
, (4.16)

where in the penultimate line we have used (4.13) and, which gives us the follow-

ing:
+∞∑
n=0

An

∫ h

0

XmXn dx =
1

hλm
. (4.17)

If n 6= m then we have:∫ h

0

XnXm dx =

∫ h

0

[
Dλn
κ

cos(λnx) + sin(λnx)

] [
Dλm
κ

cos(λmx) + sin(λmx)

]
dx

=
D2λnλm

κ2

∫ h

0

cos(λnx) cos(λmx) dx+
Dλn
κ

∫ h

0

cos(λnx) sin(λmx) dx

+
Dλm
κ

∫ h

0

cos(λmx) sin(λnx) dx+

∫ h

0

sin(λnx) sin(λmx) dx

=
D2λnλm

2κ2

{[
sin [(λn − λm)x]

λn − λm

]h
0

+

[
sin [(λn + λm)x]

λn + λm

]h
0

}

− Dλn
2κ

{[
cos [(λm − λn)x]

λm − λn

]h
0

+

[
cos [(λn + λm)x]

λn + λm

]h
0

}
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− Dλm
2κ

{[
cos [(λn − λm)x]

λn − λm

]h
0

+

[
cos [(λn + λm)x]

λn + λm

]h
0

}

+
1

2

{[
sin [(λn − λm)x]

λn − λm

]h
0

−
[

sin [(λn + λm)x]

λn + λm

]h
0

}

=
D2λnλm

2κ2

{
sin [(λn − λm)h]

λn − λm
+

sin [(λn + λm)h]

λn + λm

}

− Dλn
2κ

{
cos [(λm − λn)h]

λm − λn
+

cos [(λn + λm)h]

λn + λm

}

− Dλm
2κ

{
cos [(λn − λm)h]

λn − λm
+

cos [(λn + λm)h]

λn + λm

}

+
1

2

{
sin [(λn − λm)h]

λn − λm
− sin [(λn + λm)h]

λn + λm

}

=
1

λn − λm

[
D2λnλm

2κ2
sin [(λn − λm)h] +

Dλn
2κ

cos [(λn − λm)h]

− Dλm
2κ

cos [(λn − λm)h] +
1

2
sin [(λn − λm)h]

]

+
1

λn + λm

[
D2λnλm

2κ2
sin [(λn + λm)h]− Dλn

2κ
cos [(λn + λm)h]

− Dλm
2κ

cos [(λn + λm)h]− 1

2
sin [(λn + λm)h]

]

=
1

λn − λm

[
D2λnλm

2κ2
(sinλnh cosλmh− cosλnh sinλmh)

+
Dλn
2κ

(cosλnh cosλmh+ sinλnh sinλmh)

− Dλm
2κ

(cosλnh cosλmh+ cosλnh cosλmh)

+
1

2
(sinλnh cosλmh− cosλnh sinλmh)

]

+
1

λn + λm

[
D2λnλm

2κ2
(sinλnh cosλmh+ cosλnh sinλmh)
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− Dλn
2κ

(cosλnh cosλmh− sinλnh sinλmh)

− Dλm
2κ

(cosλnh cosλmh− sinλnh sinλmh)

− 1

2
(sinλnh cosλmh+ cosλnh sinλmh)

]

=
1

λn − λm

[
Dλm
2κ

cosλmh

(
Dλn
κ

sinλnh− cosλnh

)
− Dλn

2κ
cosλnh

(
Dλm
κ

sinλmh− cosλmh

)
+

sinλmh

2

(
Dλn
κ

sinλnh− cosλnh

)
− sinλnh

2

(
Dλm
κ

sinλmh− cosλmh

)]

+
1

λn + λm

[
Dλm
2κ

cosλmh

(
Dλn
κ

sinλnh− cosλnh

)
+
Dλn
2κ

cosλnh

(
Dλm
κ

sinλmh− cosλmh

)
+

sinλmh

2

(
Dλn
κ

sinλnh− cosλnh

)
− sinλnh

2

(
Dλm
κ

sinλmh− cosλmh

)]
= 0, (4.18)

where we have used (4.13).

If n = m we have∫ h

0

X2
m dx =

∫ h

0

[
Dλm
κ

cos(λmx) + sin(λmx)

]2

dx

=
D2λ2

m

κ2

∫ h

0

cos2(λmx) dx+

∫ h

0

sin2(λmx) dx+
2Dλm
κ

∫ h

0

sin(λmx) cos(λmx) dx

=
D2λ2

m

2κ2

∫ h

0

[1 + cos(2λmx)] dx+
1

2

∫ h

0

[1− cos(2λmx)] dx+
Dλm
κ

∫ h

0

sin(2λmx) dx

=
D2λ2

m

2κ2

[
x+

sin(2λmx)

2λm

]h
0

+
1

2

[
x− sin(2λmx)

2λm

]h
0

− Dλm
κ

[
cos(2λmx)

2λm

]h
0

=
D2λ2

m

2κ2
h+

D2λm
4κ2

sin(2λmh) +
h

2
− sin(2λmh)

4λm
− D cos(2λmh)

2κ
+
D

2κ

=
D2λ2

m

2κ2
h+

h

2
+
D

2κ
+
D2λm
2κ2

sin(λmh) cos(λmh)− sin(λmh) cos(λmh)

2λm
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4.5 One dimension diffusion equation

− D

2κ

[
cos2(λmh)− sin2(λmh)

]
=
D2λ2

m

2κ2
h+

h

2
+
D

2κ
+
D

2κ
cos(λmh)

[
Dλm
κ

sin(λmh)− cos(λmh)

]
+

sin(λmh)

λm

[
Dλm
κ

sin(λmh)− cos(λmh)

]
=
D2λ2

m

2κ2
h+

h

2
+
D

2κ
. (4.19)

From (4.17) , (4.18) and (4.19) we deduce that:

Am =
1

hλm

[
D2λ2

m

2κ2 h+ h
2

+ D
2κ

] , m ∈ N ∪ {0}

We plot p(x, t) in Figure 4.11 versus numerical simulations (see Appendix E.3).

4.5.1 Survival function

We want to obtain the probability that a particle is still diffusing at time t and

as a result we integrate p (x, t) over the interval [0, h] with respect to x:

S(t, κ) =

∫ h

0

p(x, t) dx,

=
+∞∑
n=0

An

∫ h

0

[
Dλn
κ

cos(λnx) + sin(λnx)

]
dxe−λ

2
nDt. (4.20)

We know from (4.16) that:∫ h

0

Xm(x) dx =

∫ h

0

[
Dλm
κ

cos(λmx) + sin(λmx)

]
dx =

1

λm
.

As a result we have:

S(t, κ) =
+∞∑
n=0

Bne−λ
2
nDt, (4.21)

where

Bn =
1

hλ2
m

[
D2λ2

n

2κ2 h+ h
2

+ D
2κ

] ,
and λn is the n-th root of:

Dλ

κ
sin(λh)− cos(λh) = 0.
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Figure 4.11: Plot of p(x, t) as a function of x ∈ [0, h]. The blue line represents

numerical simulations and the green line represents the analytic solution (4.14).

Here p(x, t) is the particle density at point x ∈ [0, h], at time t, gives uniform

initial conditions. We observe that at the left boundary, at x = 0, the density

is not zero, which is given by the fact that the boundary is partially reflecting

(see Appendix E.2). Here we have chosen the following parameter values: h =

1 cm, D = 0.5 cm2 s−1, κ = 1 cm s−1, t = 0.01 s.

We plot our result and compare with numerical simulations in Figure 4.12. We

observe that, as t increases, the probability that a Brownian particle is “alive”

decreases to zero which means that absorption at x = 0 is guaranteed.

4.5.2 Mean time to absorption

Given that we know the survival function we can now obtain the mean time for

the diffusing particle to be absorbed by the x = 0 boundary (Redner, 2001, p.27):
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Figure 4.12: Plot of S(t, κ) as a function of t. The green line represents numerical

simulations and the blue line represents analytic solution (4.21). Here we have

chosen the following parameter values: h = 1 cm, D = 0.5 cm2 s−1, κ = 1 cm s−1.

T (κ) = −
∫ +∞

0

t
∂S

∂t
(t, κ) dt =

+∞∑
n=0

1

hDλ4
n

[(
D2λ2

n

κ2 + 1
)
h
2

+ D
2κ

] , (4.22)

which we plot in Figure 4.13 and compare with numerical simulations. We observe

that as κ → 0 the mean time tends to infinity which is expected given that

particles cannot be absorbed because the boundary at x = 0 becomes reflecting

(see Appendix E.2).

4.6 Cylinder diffusion

We are interested in how the position of a particle, starting uniformly in a cylinder

of radius b and height h, changes with time due to diffusion. The boundary
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Figure 4.13: Plot of T (κ) as a function of κ. The blue dots represent numerical

simulations and the green line represents analytic solution (4.22). Here we have

chosen the following parameter values: h = 1 cm, D = 0.5 cm2 s−1.

conditions are the following: Neumann boundary conditions at all walls with the

exception of the floor which has Robin boundary condition with trapping rate κ.

We again define p(x, t) be the density of particles at position x at time t given

that their initial position is distributed uniformly in the cylinder of radius b and

height h. As a result we have:

∂

∂t
p (x, t) = D∇2

xp (x, t) , (4.23)

with boundary and initial conditions, respectively:

∂p

∂r

∣∣∣∣
r=b

= 0, (4.24a)

∂p

∂z

∣∣∣∣
z=h

= 0, (4.24b)
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4.6 Cylinder diffusion

D
∂p

∂z

∣∣∣∣
z=0

= κp(r, z = 0, t), (4.24c)

p(r, z, t = 0) =
1

πb2h
. (4.24d)

We look for a separable solution of the form p(r, z, t) = Z(z)T(t) for (4.23) (we

ignore the radial component because of radial symmetry) which gives:

Z
dT

dt
= DT

d2Z

dz2
.

Dividing by 1
DZT

we observe that the left-hand side is a function of t while the

right-hand side is a function of z:

1

DT

dT

dt
=

1

Z

d2Z

dz2
= −λ2,

where λ is a constant. Here, similarly to the one dimensional case, we choose

the constant to be −λ2 in order to ensure that the time function does not grow

exponentially. As a result, T (t) is:

1

DT

dT

dt
= −λ2 ⇒ T(t) = Ae−λ

2Dt,

where A is a constant. The z equation is:

d2Z

dz2
+ λ2Z = 0,

which has the solution:

Z(z) = C cos(λz) + E sin(λz),

where C and E are constants.

We deduce from the boundary conditions (4.24b) and (4.24c):

∂p

∂z

∣∣∣∣
z=h

= 0⇒ dZ

dz

∣∣∣∣
z=h

= 0⇒ −Cλ sin(λz) + Eλ cos(λz) = 0,

D
∂p

∂z

∣∣∣∣
z=0

= κp(r, z = 0, t)⇒ D
dZ

dz

∣∣∣∣
z=0

= κZ(0)⇒ DλE = κC ⇒ C =
DλE

κ
.

As a result, the z equation turns out to be:

Zn(z) =
Dλn
κ

cos(λnz) + sin(λnz), n ∈ N ∪ {0},
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4.6 Cylinder diffusion

where λn is the n-th root of:

Dλ

κ
sin(λh)− cos(λh) = 0.

Using the principle of superposition, the solution of the diffusion equation is the

linear combination:

p(z, t) =
+∞∑
n=0

An

[
Dλn
κ

cos(λnz) + sin(λnz)

]
e−λ

2
nDt.

Using the initial condition (4.24d) we can obtain the coefficients An:

1

πb2h
=

+∞∑
n=0

An

[
Dλn
κ

cos(λnz) + sin(λnz)

]
.

We multiply the above equation by Zm(z) and we integrate it from 0 to h with

respect to z:

1

πb2h

∫ h

0

Zm (z) dz =
+∞∑
n=0

(
An

∫ h

0

Zm (z)Zn (z) dz

)
,

and using the orthogonality condition (4.18) we obtain:

1

πb2h

∫ h

0

Zm (z) dz = Am

∫ h

0

Z2
m (z) dz, (4.25)

where ∫ h

0

Zm (z) dz =
1

λm
, (4.26)

and ∫ h

0

Z2
m (z) dz =

(
D2λ2

m

κ2
+ 1

)
h

2
+
D

2κ
.

As a result, we have:

Am =
1

πb2h

1

λm

[(
D2λ2

m

κ2 + 1
)
h
2

+ D
2κ

] , m ∈ N ∪ {0}.
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Figure 4.14: Plot of S(t, κ) as a function t. The green line represents nu-

merical simulations and the blue line represents analytic solution (4.27). Here

we have chosen the following parameter values: b = 1/
√
π cm, h = 1 cm, D =

0.5 cm2 s−1, κ = 1 cm s−1.

4.6.1 Survival function

We want to obtain the probability that a Brownian particle is still diffusing at

time t and as a result we integrate p(z, t) over the cylinder:

S(t, κ) =

∫ 2π

0

∫ h

0

∫ b

0

rp(z, t) dθdzdr,

= πb2

+∞∑
m=0

Am

∫ h

0

[
Dλm
κ

cos(λmz) + sin(λmz)

]
dze−λ

2
mDt.

We know from (4.26) that:∫ h

0

[
Dλm
κ

cos(λmz) + sin(λmz)

]
dz =

1

λm
.
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4.6 Cylinder diffusion

As a result

S(t, κ) =
+∞∑
n=0

Bne−λ
2
nDt, (4.27)

where

Bm =
1

hλ2
m

[(
D2λ2

m

κ2 + 1
)
h
2

+ D
2κ

] , m ∈ N ∪ {0},

and we plot our result and compare with numerical simulations in Figure 4.14.

We observe that, as t increases, the probability that a Brownian particle is “alive”

decreases to zero which means that absorption at the bottom of the well z = 0 is

guaranteed.

4.6.2 Mean time to absorption

Given that we know the survival function we can now obtain the mean time for

the diffusing particle to be absorbed by the bottom of the assay well (Redner,

2001, p.27):

T (κ) = −
∫ +∞

0

t
∂S

∂t
(t, κ) dt =

+∞∑
n=0

1

hDλ4
n

[(
D2λ2

n

κ2 + 1
)
h
2

+ D
2κ

] , (4.28)

which we plot in Figure 4.15 and compare with numerical simulations. We ob-

serve that (4.28) is identical to (4.22) which is due to cylindrical symmetry (only

the height h matters when calculating the mean time). Additionally, we notice

that as κ → 0 the meant time tends to infinity which is expected given that

particles cannot be absorbed because the boundary at x = 0 becomes reflecting

(see Appendix E.2).

4.6.3 Intracellular distribution of Coxiella burnetii

Now that we have the survival function we can calculate the intracellular distri-

bution of bacteria phagocytosed by monocytes. Given M balls and N containers

then the fraction of containers with r balls is given by Poisson’s formula Ellis &

Delbrück (1939); Shabram & Aguilar-Cordova (2000)

p(r) =
nre−n

r!
, r ∈ N ∪ {0},

185



4.6 Cylinder diffusion

0 2 4
0

10

20

T
(

)

exact

numerical

Figure 4.15: Plot of T (κ) as a function of κ. The blue dots represent numerical

simulations and the green line represents analytic solution (4.28). Here we have

chosen the following parameter values: b = 1/
√
π cm, h = 1 cm, D = 0.5 cm2 s−1.

where

n =
M

N
,

is the average number balls per container. If, as in our case, the balls are the

Coxiella burnetii bacteria and the containers are the monocytes, then the number

bacteria phagocytosed by time t is:

M(t, κ) = M0(1− S(t, κ)),

and, as a result, we get:

n(t, κ) =
M(t, κ)

N0

=
M0(1− S(t, κ))

N0

= MOI[1− S(t, κ)],

which is also the mean and variance of the Poisson distribution plotted in Figure

4.17.

186



4.6 Cylinder diffusion

0 35 70

r

0

0.1

0.2

f(
r|
t,

)

t = 0.01

t = 0.05

t = 0.1

Figure 4.16: Histogram of intracellular loads from (4.29). The red dots represent

the intracellular loads for time t = 0.01s, the blue dots for time t = 0.05s and

green dots represent time t = 0.1s. Here M0 = MOI×N0 is the initial number of

Coxiella burnetii bacteria distributed in the assay well. This figure was obtained

using Python code G.3. Here we have used the following parameters N0 = 1.5×
105,MOI = 200, D = 0.5 cm2 s−1, κ = 762 cm s−1.

The fraction of monocytes containing r bacteria is:

f(r|t, κ) =
[MOI(1− S(t, κ))]r e−MOI(1−S(t,κ))

r!
, (4.29)

which we plot for t = 0.01 s, t = 0.05 s and t = 0.1 s, respectively, in Figure

4.16. We observe that as time t increases the mean number of particles absorbed

increases and the distribution becomes wider given by the fact that as more

particles absorbed and previously empty monocytes are subsequently filled with

bacteria.
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Figure 4.17: Plot of the mean and variance of the intracellular load distribution

as a function of time t. For this plot we have selected MOI = 200, N = 1.5 ×
105, D = 0.5 cm2 s−1, κ = 762 cm s−1.

4.7 Discussion

In this chapter we have studied the problem of boundary homogenisation applied

to the case of assays where the bottom of the assay has a monolayer of monocytes

distributed on it and Coxiella burnetii bacteria are placed uniformly in large

number in the medium.

We observe from Figure 4.17 that the mean and variance of the intracellular

bacterial load distribution are both increasing functions of time. This means that

as time increases the number of intracellular bacteria will increase but the spread

around the mean will also increase. This is confirmed in Figure 4.16 where, for

smaller times, the distribution is more clustered around the mean when compared

to larger times. Additionally, we observe from Figure 4.17 that both the mean
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4.7 Discussion

time and the variance converge to their maximum value of 200 for t ≈ 2s which

is the timescale h2

D
= 2s of diffusion inside a cylinder with an absorbing floor.

From Section 4.4, we observe remarkable agreement between the monocyte cov-

erage obtained by image analysis and the results obtained using Dstl parameters,

of the same assay, with both reaching the conclusion that σ = 1/3.

Mean times to absorption were shown in Figure 4.15 to increase to infinity as

the trapping rate κ decreased to zero which is intuitively correct, given that, as

κ → 0 the boundary becomes reflecting and Brownian particles will not be able

to be absorbed.

The distribution of the intracellular bacterial load (4.29) is the main result of this

chapter, as it allows an alternative to expensive and time-consuming experiments.

Additionally, it offers an alternative to difficult numerical simulations which must

analyse interactions between 1.5× 105 monocytes and 3× 107 bacteria. In order

to increase accuracy, we must implement boundary tests to account for particles

whose path crosses the boundary of a monocyte during a timestep but whose

endpoints are outside the monocytes Jansons & Lythe (2000, 2005). This requires

having a timestep parameter ∆t which satisfies
√
D∆t < E [rm] where D is the

diffusion coefficient and rm is the radius of a monocyte (see Figure 4.2). Replacing

Brownian particle simulations with Monte Carlo method or the finite element

method, in order to check the validity of our results, should be the subject of

future work Bernoff et al. (2018); Eun (2020).

Future work should be on modelling the behaviour of monocytes which we as-

sumed are static but, in reality, they are mobile. Additionally, bacteria replicate

inside the monocytes and some escape, back into the assay medium, which alters

our results and should be included in a future extension of the model developed

here.
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Chapter 5

Concluding remarks

In this thesis, mathematical models have been developed for Brownian particles

diffusing in three geometries: i) circular eccentric annular region, ii) spherical

eccentric annular region and iii) cylindrical region of an assay well. The first

two geometries are useful for modelling intracellular transport of particles while

the third geometry is useful for modelling an assay involving Coxiella burnetii.

Numerical simulations are developed to test the accuracy of our models and are

shown in Appendix G.

In Chapter 2 we have used bipolar coordinates to derive the exact Green’s func-

tions (2.13) and (2.28). They differ from the corresponding Green’s functions

without intracellular compartment by an amount proportional to a2. We con-

sider distributions of initial conditions that are (i) uniform on the nuclear surface

(ii) uniform on the cell surface, or (iii) given by the hitting density of particles

diffusing from the nuclear surface to the cellular surface. This hitting density is

also obtained from the appropriate Green’s function. The exact expressions for

the hitting densities and mean arrival times are (2.33), (2.45) and (2.46). When

averaged over the initial surface, the mean arrival times, (2.52) and (2.53), are

functions of a and c. The idea is that the point on the surface of a nucleus where

a molecule emerges, or the point on the cell surface where a molecular complex

is internalised, is uniformly distributed. We further average over all possible lo-

cations of the nucleus within the cell, obtaining (2.62) and (2.63), functions of

a only. We also solve Poisson’s equation explicitly in bipolar coordinates, us-

ing the particular solution (2.48). Using the Green’s functions G
(2)
1 (x0,x) and
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G
(3)
2 (x0,x) together with the solutions of Poisson’s equation T3 (x0) and T4 (x0)

we obtain the higher order moments (2.67) and (2.68), and the average higher

order moments (2.70) and (2.71).

In Chapter 3 we extend the results from Chapter 2 to three dimensions in order

to obtain the Green’s function with uniform initial condition over the surface of

the nucleus and the cell Ḡ
(3)
1 (x0,x) and Ḡ

(3)
2 (x0,x), respectively. As a result,

we make use of Perron’s theorem and continued fraction expansion. From the

Green’s function we calculate the first passage properties of diffusion from the

nuclear surface to the cellular surface: hitting density (3.53) and average mean

time (3.54). Analogously, we derive from Ḡ
(3)
2 (x0,x) the first passage proper-

ties of diffusion from the nuclear surface to the cellular surface: average mean

time (3.55). We notice from Figure 3.13, when comparing the average mean time

of diffusion from the nuclear surface to the cellular surface, that unlike our ap-

proximation (3.39), our analytic formula does not decrease in accuracy as the

displacement of the nucleus c increases. To our knowledge, the analytic formula

for Ḡ
(3)
1 (x0,x), and all the derived quantities, is unique to the literature. We

derived a semi-analytic formula for the mean round trip time T̄ 3,ε
2 (c) from the

approximation derived by Condamin et al. (2007) for T
(3)
2 (θ2, a, c) and our ana-

lytic formula (3.53) for ε(3) (θ2). We notice from Figure 3.16 that T̄ 3,ε
2 (a, c) is a

decreasing function of c as opposed to T̄
(3)
2 (a, c) which is an increasing function

of c. This is because the Brownian particles diffusing from the nucleus are more

likely to arrive at the point of the cellular surface which is closest to the nucleus,

and, as a result, the mean time for the particle to arrive back to the nucleus is

smaller then the case when its starting position is uniformly distributed on the

cellular surface.

A limitation with both our two dimensional and three dimensional results is

that we have assumed a uniform interior environment which gives a constant

diffusion coefficient. One solution would be to include more excluded region

that are present inside a cell besides the nucleus such as the Golgi apparatus,

but this would make deriving an analytic solution significantly more difficult.

Alternatively we could apply homogenisation theory to the interior environment

to result in a uniform diffusion coefficient.
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Additionally, we have assumed when calculating the mean round-trip time that

the Brownian particles do not spend time on the surface of the cell. However this

is not biologically realistic given that molecules diffuse on the cellular surface and,

as result, future work should be on modelling cellular surface behaviour Habib

et al. (2001); Lythe (2006).

In Chapter 4 we have studied the problem of boundary homogenisation applied

to the case of assay where the bottom of the assay well has a monolayer of mono-

cytes distributed on it and Coxiella burnetii bacteria are placed uniformly in

large number in the medium. We have studied the problem of diffusing particles

in and otherwise reflecting cylinder with a number of circular traps on the bottom

surface. Using boundary homogenisation we have been able to replace the bot-

tom surface of the cylinder with a reactive boundary having a Robin boundary

condition. This allowed us to solve the diffusion equation for the assay domain

and obtain the survival function of a particle starting uniformly in the cylinder.

From the survival function we are able to derive the mean time for the Brownian

particle to reach the reactive surface. Assuming that the distribution of Coxiella

burnetii absorbed by the monocytes follow a Poisson distribution, we deduce the

the intracellular distribution of Coxiella burnetii as a function of time and of the

trapping rate κ. This result represents the most import derivation of Chapter

4 and it offers an alternative to difficult numerical simulations which, in order

simulate the assay, must analyse interactions between 1.5 × 105 monocytes and

3×107 bacteria. Accuracy can be increased by reducing the simulation time step

or implementing a boundary tests to account for particles whose path crosses the

boundary of a monocyte during a timestep but whose endpoints are outside the

monocytes.

Currently, our model does not account for the behaviour of monocytes which we

assumed are static but, in reality, they are mobile. Additionally, bacteria replicate

inside the monocytes and some escape, back into the assay medium, which alters

our results and should be included in a future extension of the model developed

here.

A limitation to the model we have constructed for simulation Coxiella burnetii

assay is the unavailability of estimates for the diffusion coefficient D without

which the determination of the intracellular distribution cannot be undertaken.
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Future work should be concentrated on the determining D by either determining

the value experimentally or by determining it from the constituent parts of the

composite medium of 90% Leibovitz’s L-15 Medium and 10% foetal calf serum.

For this thesis we have used Brownian simulations in Appendix G, with exponen-

tial timestepping and the boundary tests developed by Jansons & Lythe (2000,

2005) for absorbing boundaries, to verify our results. However, reflecting bound-

aries are approximated by flat boundaries and, as a result, future work should

focus on developing a reflecting boundary algorithm. Additionally, boundary el-

ement method could extend the analysis of this analytical study to deal with

non-circular irregular shapes of solution domains, as well as any type of inhomo-

geneous or even nonlinear boundary conditions.
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Appendix A

Integration

This appendix is dedicated to the properties of various integrals.

A.1 Integration of H
(2)
2 over disk

In the following we will prove the following relation:∫
C∗
H

(2)
2 (v, z) dz =

3

8D
∀v ∈ C∗,

where C∗ is a circle of radius 1.

We begin by noting that:∫
C∗
H

(2)
2 (v, z) dz =

1

2πD

∫
C∗

(
ln

1

v
+ ln

1

RR̃
+
z2 + v2

2

)
dz

=
1

2πD

∫
C∗

(
log

1

|z− v|
+ log

1

|z− ṽ|
+ log

1

v
+
z2 + v2

2

)
dz,

(A.1)

where 0 ≤ |v| = v ≤ 1− a.

We use the following identities from (Barton, 1989, p.413–414):

log
1

|z− v|
= log

1

r>
+
∞∑
m=1

cos(mθ)

m

(
r<
r>

)m
,

and

log
1

|z− ṽ|
= log v +

∞∑
m=1

cos(mθ)

m

(
r<
r>

)m
,
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A.1 Integration of H
(2)
2 over disk

where r<(r>) = min(max)(z, v) to obtain the first two terms in the left-hand side

of (A.1):∫
C

log
1

|z− v|
dz =

∫ 1

0

∫ 2π

0

r log
b

R
drdθ

=

∫ 1

0

∫ 2π

0

r

[
log

1

r>
+
∞∑
m=1

cos(mθ)

m

(
r<
r>

)m]
dθdr

=

∫ 2π

0

∫ r′

0

r

[
log

1

v
+
∞∑
m=1

cos(mθ)

m

(r
v

)m]
drdθ

+

∫ 2π

0

∫ 1

r′
r

[
log

1

r
+
∞∑
m=1

cos(mθ)

m

(v
r

)m]
drdθ

=

∫ 2π

0

[
∞∑
m=1

(m+ 2)
cos(mθ)

m

rm+2

(v)m
+

1− (v)2

4

+
∞∑
m=1

(2−m)
cos(mθ)

m

(v)m

rm−2

]
dθ

=

∫ 2π

0

[
1− v2

4
+
∞∑
m=1

cos(mθ)

m

[
(m+ 2)

rm+2

(v)m
− (m− 2)

(v)m

rm−2

]]
dθ

= π
1− v2

2
, (A.2)

and ∫
C

log
1

|z− ṽ|
dz =

∫
0

∫ 2π

0

r log
1

R̃
dθdr

=

∫ 1

0

∫ 2π

0

r

[
log v +

∞∑
m=1

cos(mθ)

m

(
r<
r>

)m]
dθdr

=

∫ 1

0

∫ 2π

0

r

[
log v +

∞∑
m=1

cos(mθ)

m
vmrm+1

]
dθdr

=

∫ 2π

0

[
1

2
log v +

∞∑
m=1

m+ 2

m
cos(mθ)vm

]
dθ

= π log v. (A.3)

The last two terms of (A.1) are straightfoward to calculate:∫
C

log

(
1

v

)
dz =

∫ 1

0

∫ 2π

0

r log
1

v
dθdr = π log

1

v
, (A.4)
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A.2 Integration of H
(3)
2 over disk

and ∫
C

z2 + v2

2
dz =

∫ 1

0

∫ 2π

0

r
r2 + v2

2
dθdr = π

(
1

4
+
v2

2

)
. (A.5)

Using (A.2), (A.3), (A.4) and (A.5) we obtain:∫
C∗
H

(2)
2 (v, z) dz =

3

8D
∀v ∈ C∗.

A.2 Integration of H
(3)
2 over disk

In the following we will prove the following relation:∫
C∗
H

(3)
2 (v, z) dz =

56

60D
− 1

3D
log 2, ∀v ∈ C∗. (A.6)

We begin by noting that:∫
C∗
H(3)(v, z) dz

=
1

4πD

∫
C∗

(
1

R
+

1

vR̃
− log

(
vR̃ + 1− zvµ

)
+
z2 + v2

2

)
dz

=
1

4πD

∫
C∗

(
1

|z− v|
+

1

y|z− ṽ|
− log

(
vR̃ + 1− zvµ

)
+
z2 + v2

2

)
dz, (A.7)

where 0 ≤ |v| = v ≤ 1− a, µ = cos θ and θ is the angle between z and v.

We use the following identities from (Barton, 1989, p.417–418):

1

|z− v|
=

∞∑
m=0

Pm(µ)
rm<
rm+1
>

,

and
1

|z− ṽ|
= v

∞∑
m=0

Pm(µ) (zv)m ,

where r<(r>) = min(max)(z, v) to obtain the first two terms in the left-hand side

of (A.7):∫
C∗

1

|z− v|
dz =

∫ 1

0

∫ 2π

0

∫ π

0

r2 sin θ
∞∑
m=0

Pm(cos θ)
rm<
rm+1
>

dθdφdr
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A.2 Integration of H
(3)
2 over disk

= 2π
∞∑
m=0

∫ 1

0

∫ π

0

Pm(cos θ) sin θ
r2rm<
rm+1
>

dθdr

= 4π

∫ v

0

r2 1

v
dr + 4π

∫ 1

v

r2 1

r
dr

= 2π

(
1− v2

3

)
, (A.8)

and ∫
C∗

1

v|z− ṽ|
dz =

∫ 1

0

∫ 2π

0

∫ π

0

r2 sin θv
∞∑
m=0

Pm(cos θ) (rv)m dθdφdr

= 2π
∞∑
m=0

∫ 1

0

∫ π

0

Pm(cos θ) sin θrm+2vm dθdr

= 4π

∫ 1

0

r2 dθdr

=
4π

3
. (A.9)

In order to calculate the third term of (A.7) we make use of (Barton, 1989, p.425):

log

(
2

vR̃ + 1− zvµ

)
=

∞∑
m=1

Pm(µ)

m
(zv)m , (A.10)

and this gives us:∫
C∗

log
(
vR̃ + 1− zvµ

)
dz

= −
∫
C∗

(
log

(
2

vR̃ + 1− zvµ

)
− log 2

)
dz

= −
∫ 1

0

∫ 2π

0

∫ π

0

r2 sin θ

(
∞∑
m=1

Pm(cos θ)

m
(zv)m − log 2

)
dθdφdr

= log 2

∫ 1

0

∫ 2π

0

∫ π

0

r2 sin θ dθdφdr

=
4π

3
log 2. (A.11)

The last term of (A.7) is straightforward to calculate:∫
C∗

z2 + v2

2
dz =

∫ 1

0

∫ 2π

0

∫ π

0

r2 r
2 + v2

2
sin θ dθdφdr = 2π

(
1

5
+
v2

3

)
. (A.12)

197



A.3 Commentary on Pinsky (2003)

Using (A.8), (A.9), (A.11) and (A.12) we obtain:∫
C∗
H

(3)
2 (v, z) dz =

56

60D
− 1

3D
log 2, ∀v ∈ C∗. (A.13)

A.3 Commentary on Pinsky (2003)

Let D ⊆ Rd, where d ≥ 2, be a domain. If D 6= Rd, assuming that D has a

smooth boundary, we let v : ∂D → Sd be smooth and satisfy v(x) · n(x) > 0 for

all x ∈ ∂D, where n(x) denotes the inward unit normal to D at x ∈ ∂D. We call

v a reflection vector. Let X(t) be the diffusion process in D with v−reflection

and ∂D (if D 6= Rd).

For a positive definite d× d matrix Γ, we define the norm:

||v||Γ =

(
v,

Γ

Det
1
d (Γ)

) 1
2

.

We observe that this norm preserves the Euclidean norm but distorts directions.

For x ∈ D and r > 0, we define BΓ
r (x) = {y ∈ Rd : ||y − x||Γ < r} as the

open ball of radius r in the Γ−norm and centered at x. Furthermore, we denote

τBΓ
r (x) = inf{t ≥ 0 : X(t) ∈ B̄Γ

r (x)}. In the case of the standard Euclidean norm,

when Γ is a scalar multiple of I, we will use the notation |v| and Br(x) in place

of ||v||I and BI
r (x). Let ωd denote the volume of the unit ball in Rd.

Condamin et al. (2007) make reference to Pinsky (2003) for deriving the mean

first passage time (MFPT) for a domain with a small sphere inside the domain.

This a reference to Theorem 2 on page 180 of Pinsky (2003):

Theorem. Let X(t) by v−reflected Brownian motion in a domain D ⊂ Rd.

Assume that the process is positive recurrent and let µ denote the invariant prob-

ability density. Let x ∈ D be such that B̄l(x) ⊂ D. For each R ∈ (0, l), there

exists zl;R ∈ ∂Bl(x) such that

1. if d = 2, then

Ezl;RτBR(x) =
1

µ(BR(x))
R2 log

1

R
− 1

2

(
l2 −R2

)
;
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A.3 Commentary on Pinsky (2003)

2. if d ≥ 3, then

Ezl;RτBR(x) =
2Rd

d(d− 2)µ(BR(x))

(
R2−d − l2−d

)
− 1

d

(
l2 −R2

)
.

Remark. Consider Theorem when the reflection vector is normal, in which case

we assume that V ol(D) <∞ and we have µ(BR(x)) = ωdR
d

V ol(D)
. Then the theorem

indicates that for x ∈ D and for 0 < R < l such that B̄l(x) ⊂ D, one can find a

point zl;R such that Ezl;RτBR(x) is equal to the common value that one obtains for

the expected value of τBR(x) starting from any point on ∂Bl(x) in the case that the

domain is a ball of the same volume centered at x.

These results tell us that if all the conditions mentioned in the theorem are

satisfied then for the domain D there exists circle/sphere of radius l (where R < l)

then there exists a point on the surface of the circle/sphere such that the mean

time to reach the ball of radius R is given by a explicit formula. Then the theorem

indicates that for x ∈ D and for 0 < R < l such that B̄l(x) ⊂ D, one can find

a point zl;R such that Ezl;RτBR(x) is equal to the common value that one obtains

for the expected value of τBR(x) starting from any point on ∂Bl(x) in the case

that the domain is a ball of the same volume centered at x. This result does

not depend on the starting site as (Condamin et al., 2007, 021111-1) mentioned

themselves.
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Appendix B

Bipolar coordinates

B.1 Normal derivative in bipolar coordinates

We are interested in the normal derivative of a function f(τ, σ) evaluated on a

circle ∂C of constant τ = τ∗ and for that purpose we will investigate the following

hypothesis:

n =

(
1− cosh τ∗ cosσ

cosh τ∗ − cosσ
,− sinh τ∗ sinσ

cosh τ∗ − cosσ

)
,

where n is the normal vector to the τ = τ∗ surface. Let v be a point:

v = (x, y) =

(
d

sinh τ

cosh τ − cosσ
, d

sinσ

cosh τ − cosσ

)
,

whose derivative evaluated on ∂C is:

∂v

∂τ

∣∣∣∣
τ=τ∗

=

(
d

1− cosh τ∗ cosσ

(cosh τ∗ − cosσ)2
,−d sinh τ∗ sinσ

(cosh τ∗ − cosσ)2

)
,

and ∣∣∣∣ ∂v

∂τ

∣∣∣∣
τ=τ∗

∣∣∣∣2 =
d2

(cosh τ∗ − cosσ)2
.

As a result we obtain the unit vector:

eτ =

∂v
∂τ

∣∣
τ=τ∗∣∣∣ ∂v∂τ ∣∣τ=τ∗

∣∣∣ =

(
1− cosh τ∗ cosσ

cosh τ∗ − cosσ
,− sinh τ∗ sinσ

cosh τ∗ − cosσ

)
.

The vector v = (x, y) ∈ ∂C also satisfies:

y2 + (x− d coth τ∗)
2 =

d2

sinh2 τ∗
.
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B.2 Convolution of Fourier Series

Changing the system of coordinates such that the origin is the centre of the circle

τ = τ∗. Let θ be the angular coordinate of a point of the circle and as a result:

tan θ =
y

x− d coth τ∗
=

d sinσ
cosh τ∗−cosσ

d sinh τ∗
cosh τ∗−cosσ

− d coth τ∗
= − sinσ sinh τ∗

1− cosσ cosh τ∗
.

Using standard trigonometric identifies we express cos θ and sin θ in terms of

tan θ:

cos θ =
1√

1 + tan2 θ
= −1− cosσ cosh τ∗

cosh τ∗ − cosσ
,

sin θ =
tan θ√

1 + tan2 θ
=

sinh τ∗ sinσ

cosh τ∗ − cosσ
.

This gives us the vector normal to the surface of the circle:

eθ = (cos θ, sin θ) = −
(

1− cosh τ∗ cosσ

cosh τ∗ − cosσ
,− sinh τ∗ sinσ

cosh τ∗ − cosσ

)
= −eτ .

As a result we have the following identity for the normal derivative on a circle of

constant τ = τ∗

∂f

∂n

∣∣∣∣
x∈∂C

= ∇f · eτ |x∈∂C = − cosh τ∗ − cosσ

d

∂f

∂τ

∣∣∣∣
τ=τ∗

.

B.2 Convolution of Fourier Series

Suppose we have two Fourier series:

f(σ) =
A0

2
+
∞∑
n=1

(An cosnσ + A′n sinnσ) ,

and

g(σ) =
B0

2
+
∞∑
n=1

(Bn cosnσ +B′n sinnσ) ,

for which we want to write their product as a Fourier series:

h(σ) = f(σ)g(σ) =
C0

2
+
∞∑
n=1

(Cn cosnσ + C ′n sinnσ) .
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B.3 Evaluation of In,k =
∫ 2π

0
cosn(σ−σ0)

(cosh τ−cosσ)k
dσ

The product of the two Fourier series can be written as:[
A0

2
+
∞∑
n=1

(An cosnσ + A′n sinnσ)

]

×

[
B0

2
+
∞∑
n=1

(Bn cosnσ +B′n sinnσ)

]

=

(
∞∑

n=−∞

aneinσ

)(
∞∑

n=−∞

bneinσ

)
,

where

a0 = A0/2, an =
An − iA′n

2
, a−n =

An + iA′n
2

,

b0 = B0/2, bn =
Bn − iB′n

2
, b−n =

Bn + iB′n
2

,

Rearranging the product we obtain:(
∞∑

n=−∞

aneinσ

)(
∞∑

n=−∞

bneinσ

)
=

∞∑
n=−∞

cneinσ,

where

cn =
∞∑

k=−∞

an−kbk. (B.1)

As a result, we have:

h(σ) =
C0

2
+
∞∑
n=1

(Cn cosnσ + C ′n sinnσ) ,

where

C0 = 2c0, Cn = cn + c−n, C ′n = i (cn − c−n) . (B.2)

We observe that if A′n = 0 and B′n = 0 then we have an = a−n and bn = b−n. As

a result, cn = c−n from which we deduce that C ′n = 0.

B.3 Evaluation of In,k =
∫ 2π

0
cosn(σ−σ0)

(cosh τ−cosσ)k
dσ

We want to evaluate the following integral:

In,k =

∫ 2π

0

cosn(σ − σ0)

(cosh τ − cosσ)k
dσ
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B.3 Evaluation of In,k =
∫ 2π

0
cosn(σ−σ0)

(cosh τ−cosσ)k
dσ

which can be written as:∫ 2π

0

cosn(σ − σ0)

(cosh τ − cosσ)k
dσ =

∫ 2π

0

cosnσ cosnσ0

(cosh τ − cosσ)k
dσ

+

∫ 2π

0

sinnσ sinnσ0

(cosh τ − cosσ)k
dσ

We observe that the second integrand of the right-hand side of the previous

equation:

h(σ) =
sinnσ

(cosh τ − cosσ)k
,

is an odd function and as a result:∫ 2π

0

h(σ) dσ = 0.

Therefore we have:∫ 2π

0

cosn(σ − σ0)

(cosh τ − cosσ)k
dσ = cosnσ0

∫ 2π

0

cosnσ

(cosh τ − cosσ)k
dσ

Let cosh τ = a > 1 and using the complex representation of the cosine function:

cosσ =
eiσ + e−iσ

2
,

we obtain: ∫ 2π

0

cosnσ

(cosh τ − cosσ)k
dσ =

1

2

∫ 2π

0

einσ + e−inσ(
a− eiσ+e−iσ

2

)k dσ. (B.3)

Performing the following change of variables:

z = eiσ ⇒ dz

iz
= dσ,

the integral (B.3) becomes:∫ 2π

0

cosnσ

(cosh τ − cosσ)k
dσ =

1

2

∫ 2π

0

einσ + e−inσ(
a− eiσ+e−iσ

2

)k dσ,

=
(−2)k

2

∫
|z|=1

zn + z−n

iz (z − 2a+ z−1)k
dz,

= −(−2)k−1

i

∫
|z|=1

z2n + 1

zn−k+1(z2 − 2az + 1)k
dz,
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B.3 Evaluation of In,k =
∫ 2π

0
cosn(σ−σ0)

(cosh τ−cosσ)k
dσ

= −(−2)k−1

i

∫
|z|=1

z2n + 1

zn−k+1(z − z1)k(z − z2)k
dz,

where

z1 = a−
√
a2 − 1 = e−τ , z2 = a+

√
a2 − 1 = eτ .

We notice that z1z2 = 1 and z2 > a > 1 > z1 because a = cosh τ > 1 and as a

result: ∫
|z|=1

z2n + 1

zn−k+1(z − z1)k(z − z2)k
dz = 2πi [Res(f, z1) + Res(f, 0)] ,

where

f(z) =
z2n + 1

izn−k+1(z − z1)k(z − z2)k
.

We express f(z) in Laurent series:

f(z) =
∞∑

m=−∞

amz
m =

1

zn−k+1

∞∑
m=−∞

amz
m−(n−k+1)

=
1

zn−k+1

∞∑
m′=−∞

bm′z
m′ ⇒ a−1 = bn−k,

and we observe that:

z2n + 1

(z − z1)k(z − z2)k
=

∞∑
m′=−∞

bm′z
m′ ,

Furthermore

1

(z − z1)k(z − z2)k
= c0 + c1z + · · ·+ cn−kz

n−k + · · · ,

which tells us that:

∞∑
m′=−∞

bm′z
m′ = (z2n + 1)(c0 + c1z + · · ·+ cn−kz

n−k + · · · )

As a result we have cn−k = bn−k if n ≥ −k + 1. We know that:

1

(z − a)k
= (−1)k

∞∑
j=0

(
j + k − 1

k − 1

)
zj

aj+k
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B.3 Evaluation of In,k =
∫ 2π

0
cosn(σ−σ0)

(cosh τ−cosσ)k
dσ

and this gives us the residue of f evaluated at z = 0:

1

(z − z1)(z − z2)
=

[
∞∑
j=0

(
j + k − 1

k − 1

)
zj

zj+1
1

][
∞∑
j=0

(
j + k − 1

k − 1

)
zj

zj+1
2

]
,

⇒ Res(f, 0) =
n−k∑
i=0

(
i+ k − 1

k − 1

)(
n+ i− 1

k − 1

)
1

zi+k1 zn+i
2

As a result, the residue of f at 0 is:

Res(f, 0) =
n−k∑
i=0

(
i+ k − 1

k − 1

)(
n+ i− 1

k − 1

)
1

zi+k1 zn+i
2

,

if n ≥ −k + 1, otherwise f has no pole at z = 0. Furthermore, the residue of f

at z1 is:

Res(f, z1) =
1

(n− 1)!
lim
z→z1

∂k−1

∂zk−1

[
(z − z1)kf(z)

]
As a result we have:

1

i

∫
|z|=1

z2n + 1

zn−k+1(z2 − 2az + 1)k
dz = 2π [Res(f, 0) + Res(f, z1)] ,

= 2π

[
1

(n− 1)!
lim
z→z1

∂k−1

∂zk−1

[
(z − z1)kf(z)

]
+

n−k∑
i=0

(
i+ k − 1

k − 1

)(
n+ i− 1

k − 1

)
1

zi+k1 zn+i
2

]
,

which gives us:

In,k =

∫ 2π

0

cosn(σ − σ0)

(cosh τ − cosσ)k
dσ,

= (−2)k π cosnσ0

[
1

(n− 1)!
lim
z→z1

∂k−1

∂zk−1

[
(z − z1)kf(z)

]
+

n−k∑
i=0

(
i+ k − 1

k − 1

)(
n+ i− 1

k − 1

)
1

zi+k1 zn+i
2

]
.

If k = 1 then we have:

In,1 =

∫ 2π

0

cosn(σ − σ0)

cosh τ − cosσ
dσ =

2π cosnσ0

enτ sinh τ
,

and when k = 2 we have:

In,2 =

∫ 2π

0

cosn(σ − σ0)

(cosh τ − cosσ)2
dσ = 2π cosnσ0

e−nτ (n sinh τ + cosh τ)

sinh3 τ
.
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B.3 Evaluation of In,k =
∫ 2π

0
cosn(σ−σ0)

(cosh τ−cosσ)k
dσ

B.3.1 Alternative Derivation

Alternatively, we can write (B.3) as:

In,k = cosnσ0

∫ 2π

0

cosnσ

(cosh τ − cosσ)k
dσ = cosnσ0<

[∫ 2π

0

einσ

(cosh τ − cosσ)k
dσ

]
(B.4)

where <[z] is real part of a complex number z. Performing the following change

of variables:

z = eiσ ⇒ dz

iz
= dσ,

and using the fact that:

cosσ =
eiσ + e−iσ

2
,

the integral (B.4) becomes:

In,k = cosnσ0<

[∫ 2π

0

einσ

(cosh τ − eiσ+e−iσ

2
)k

dσ

]

= cosnσ0<

[∫ 2π

0

einσ

(−2)−k (eiσ − 2a+ e−iσ)k
dσ

]

= (−2)k cosnσ0<
[∫ 2π

0

einσ

(eiσ − 2a+ e−iσ)k
dσ

]
= (−2)k cosnσ0<

[∫ 2π

0

einσ

e−ikσ(e2iσ − 2aeiσ + 1)k
dσ

]
= (−2)k cosnσ0<

[∫ 2π

0

ei(n+k)σ

(e2iσ − 2aeiσ + 1)k
dσ

]
= (−2)k cosnσ0<

[∫
|z|=1

zn+k

iz(z2 − 2az + 1)k
dz

]
= (−2)k cosnσ0<

[
1

i

∫
|z|=1

zn+k−1

(z2 − 2az + 1)k
dz

]
= (−2)k cosnσ0<

[
1

i

∫
|z|=1

zn+k−1

(z − z1)k(z − z2)k
dz

]
,

where

z1 = a−
√
a2 − 1 = e−τ ,

z2 = a+
√
a2 − 1 = eτ .
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B.3 Evaluation of In,k =
∫ 2π

0
cosn(σ−σ0)

(cosh τ−cosσ)k
dσ

and a = cosh τ . We notice that z1z2 = 1 and z2 > a > 1 > z1 because a =

cosh τ > 1 and as a result:∫
|z|=1

zn+k−1

(z − z1)k(z − z2)k
dz = 2πi [Res(f, z1)] ,

where

fn,k(z) =
zn+k−1

(z − z1)k(z − z2)k
.

We know that the residue of f at z1 is:

Res(f, z1) =
1

(n− 1)!
lim
z→z1

∂k−1

∂zk−1

[
(z − z1)kfn,k(z)

]
,

if n ≥ 0. As a result, we have:

In,k = cosnσ0

∫ 2π

0

cosnσ

(cosh τ − cosσ)k
dσ

= 2π cosnσ0<
[

lim
z→z1

∂k−1

∂zk−1

[
(−2)k(z − z1)k

(n− 1)!
fn,k(z)

]]
,

= 2π cosnσ0<
[

lim
z→z1

∂k−1

∂zk−1
gn,k(z)

]
, (B.5)

where

gn,k(z) =
(−2)k

(n− 1)!

zn+k−1

(z − z2)k

If we let k = 1 in (B.5) then we have:

In,1 = 2π cosnσ0<
[

lim
z→z1

gn,1(z)

]
= −4π cosnσ0<

[
zn1

(z1 − z2)

]
= −4π cosnσ0

e−nτ

e−τ − eτ
=

2π cosnσ0

enτ sinh τ
. (B.6)

When k = 2 we have:

In,2 = 2π cosnσ0<
[

lim
z→z1

∂

∂z
gn,2(z)

]
,

= 8π cosnσ0<
[

lim
z→z1

∂

∂z

zn+1

(z − z2)2

]
,

= 8π cosnσ0
(n+ 1) zn1 (z1 − z2)2 − 2 (z1 − z2) zn+1

1

(z1 − z2)4
,
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B.3 Evaluation of In,k =
∫ 2π

0
cosn(σ−σ0)

(cosh τ−cosσ)k
dσ

= 8π cosnσ0
(n+ 1) zn1 (z1 − z2)− 2zn+1

1

(z1 − z2)3
,

= 8π cosnσ0
zn1

(z1 − z2)3
[n (z1 − z2)− (z1 + z2)] ,

= 2π cosnσ0
e−nτ (n sinh τ + cosh τ)

sinh3 τ
, (B.7)

and, if we set k = 3, we obtain:

In,3 = 2π cosnσ0<
[

lim
z→z1

∂2

∂2z
gn,3(z)

]
= −8π cosnσ0<

[
lim
z→z1

∂2

∂2z

zn+2

(z − z2)3

]
= −8π cosnσ0<

[
lim
z→z1

∂

∂z

(n+ 2) zn+1 (z − z2)3 − 3 (z − z2)2 zn+2

(z − z2)6

]

= −8π cosnσ0<
[

lim
z→z1

∂

∂z

(n+ 2) zn+1 (z − z2)− 3zn+2

(z − z2)4

]
= −8π cosnσ0<

[
lim
z→z1

(n+ 2) zn [(n− 1) z − (n+ 1) z2] (z − z2)

(z − z2)5

− 4zn+1 [n (z − z2)− (z + z2)− z2]

(z − z2)5

]
= π cosnσ0

[
(n+ 2) e−nτ [n sinh τ + cosh τ ] sinh τ

sinh5 τ

+
2e−(n+1)τ [n sinh τ + cosh τ ] + e−nτ

sinh5 τ

]
. (B.8)

B.3.2 Recurrence relation

Writing the integral In,k as:

In,k = cosnσ0 × I ′n,k,

where

I ′n,k =

∫ 2π

0

cosnσ

(cosh τ − cosσ)k
dσ,

and, using integration by parts, we obtain:

I ′n,k =

∫ 2π

0

cosnσ

(cosh τ − cosσ)k
dσ,

=

[
sinnσ

(cosh− cosσ)k

]2π

0

+ k

∫ 2π

0

sinnσ

(cosh− cosσ)k+1
sinσdσ,
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B.4 Bipolar expansion

=
k

2

∫ 2π

0

[
cos (n− 1)σ

(cosh τ − cosσ)k+1
− cos (n+ 1)σ

(cosh τ − cosσ)k+1

]
dσ,

=
k

2

∫ 2π

0

cos (n− 1)σ

(cosh τ − cosσ)k+1
dσ − k

2

∫ 2π

0

cos (n+ 1)σ

(cosh τ − cosσ)k+1
dσ,

=
k

2
I ′n−1,k+1 −

k

2
I ′n+1,k+1,

Consequently, we obtain the following reccurence relation:

kI ′n−1,k+1 − 2I ′n,k − kI ′n+1,k+1 = 0.

B.4 Bipolar expansion

From (2.55) we obtain the following expansions in powers of a:

dc =
1− c2

2
− a2(1 + c2)

2(1− c2)
+ O(a4), (B.9a)

τ1 − τ2 = log
(
1− c2

)
− log a− a2

(1− c2)2
+

a2

1− c2
+ O(a4). (B.9b)

Making use of the expansions in powers of a for τ1 and τ2 derived in (2.22) we

obtain:

e−2nτ1 = e
−2n

[
log(1−c2)−log a−log c− a2

(1−c2)2
+O(a5)

]
,

=

(
ac

1− c2

)2n (
1 + O(a2)

)
=

(
ac

1− c2

)2n

+ O(a(2+2n)), (B.10a)

1± e−2n(τ1−τ2) = 1± e
−2n

[
log(1−c2)−log a− a2

(1−c2)2
+ a2

1−c2
+O(a4)

]
,

= 1±
(

a

1− c2

)2n

+ O(a(2+2n)). (B.10b)

Subsequently, we have:

1

1 + e−2n(τ1−τ2)
=
(
1 + e−2n(τ1−τ2)

)−1
= 1−

(
a

1− c2

)2n

+ O(a(2+2n))

and finally:

tanhn(τ1 − τ2) =
1− e−2n(τ1−τ2)

1 + e−2n(τ1−τ2)
=

[
1−

(
a

1− c2

)2n

+ O(a(2+2n))

]2

,

= 1− 2

(
a

1− c2

)2n

+ O(a4n).
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B.5 Proof of
∞∑
n=1

1
n
e−2nτ2 = − log 2d+ τ2

B.4.1 Bipolar coefficients in the limit c→ 0

From the definition (2.1) the following limits for c→ 0 are obtained:

d =
1

2c

√
(1 + a2 − c2)2 − 4a2 →∞,

cd =
1

2

√
(1 + a2 − c2)2 − 4a2 → 1− a2

2
.

Subsequently, using the definitions τ1 = log
(
d/a+

√
1 + (d/a)2

)
and τ2 =

log
(
d+
√

1 + d2
)

we find the limit as c→ 0:

τ1 = log
(
d/a+

√
1 + (d/a)2

)
→∞, (B.12a)

τ2 = log
(
d+
√

1 + d2
)
→∞, (B.12b)

τ1 − τ2 = log
(
d/a+

√
1 + (d/a)2

)
− log

(
d+
√

1 + d2
)

= log
d/a+

√
1 + (d/a)2

d+
√

1 + d2
= log

1/a+
√

1/d2 + 1/a2

1 +
√

1/d2 + 1
→ log

1

a
. (B.12c)

B.5 Proof of
∞∑
n=1

1
ne
−2nτ2 = − log 2d + τ2

In this appendix we will prove that:

∞∑
n=1

1

n
e−2nτ2 = − log 2d+ τ2,

for the cases when a = 0 and a 6= 0.

If a = 0 we have:
∞∑
n=1

1

n
e−2nτ2 =

∞∑
n=1

(e−2τ2)
n

n
= − log

(
1− e−2τ2

)
= − log

(
1− e2 log c

)
= − log

(
1− c2

)
= − log 2d+ τ2,

where we have used the fact that:

τ2 = − log c, d =
1− c2

2c
,

and

log 2d = log
(
1− c2

)
− log c = log

(
1− c2

)
+ τ2. (B.13)
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B.6 Proof of τ̃0 = 2τ2 − τ0, σ̃0 = σ0

If a 6= 0 then we have:

∞∑
n=1

1

n
e−2nτ2 =

∞∑
n=1

(e−2τ2)
n

n
= − log

(
1− e−2τ2

)
= − log

(
1− e−2 log(d+

√
1+d2)

)
= − log

(
1−

(
d+
√

1 + d2
)−2
)

= − log

(
2d

d+
√

1 + d2

)
= − log 2d+ log

(
d+
√

1 + d2
)

= − log 2d+ τ2.

B.6 Proof of τ̃0 = 2τ2 − τ0, σ̃0 = σ0

The image point x̃ in Cartesian coordinates is:

x̃ = (x̃, ỹ) =

(
x−
√

1 + d2

(x−
√

1 + d2)2 + y2
+
√

1 + d2,
y

(x−
√

1 + d2)2 + y2

)
.

We use the following identities:

x̃+ d =
x−
√

1 + d2 + (
√

1 + d2 + d)
[
(x−

√
1 + d2)2 + y2

]
(x−

√
1 + d2)2 + y2

,

x̃− d =
x−
√

1 + d2 + (
√

1 + d2 − d)
[
(x−

√
1 + d2)2 + y2

]
(x−

√
1 + d2)2 + y2

,

(x̃+ d)2 + ỹ2 =
1 + 2(x−

√
1 + d2)(

√
1 + d2 + d)

(x−
√

1 + d2)2 + y2

+
(
√

1 + d2 + d)2
[
(x−

√
1 + d2)2 + y2

]2[
(x−

√
1 + d2)2 + y2

]2 ,

(x̃− d)2 + ỹ2 =
1 + 2(x−

√
1 + d2)(

√
1 + d2 − d)

(x−
√

1 + d2)2 + y2

+
(
√

1 + d2 − d)2
[
(x−

√
1 + d2)2 + y2

]2[
(x−

√
1 + d2)2 + y2

]2 ,

to obtain that:

τ̃ =
1

2
log

(x̃+ d)2 + ỹ2

(x̃− d)2 + ỹ2

=
1

2
log

1 + 2(x−
√

1 + d2)(
√

1 + d2 + d) + (
√

1 + d2 + d)
[
(x−

√
1 + d2)2 + y2

]
1 + 2(x−

√
1 + d2)(

√
1 + d2 − d) + (

√
1 + d2 − d)

[
(x−

√
1 + d2)2 + y2

]
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B.7 Proof of (τc, σc) = (2τ2, 0)

=
1

2
log

[
1 + (x−

√
1 + d2)(

√
1 + d2 + d)

]2
+ (
√

1 + d2 + d)2y2[
1 + (x−

√
1 + d2)(

√
1 + d2 − d)

]2
+ (
√

1 + d2 − d)2y2

=
1

2
log

(
√

1 + d2 + d)2

(
√

1 + d2 − d)2
+

1

2
log

(
x−
√

1 + d2 + 1√
1+d2+d

)2

+ y2(
x−
√

1 + d2 + 1√
1+d2−d

)2

+ y2

= log

√
1 + d2 + d√
1 + d2 − d

+
1

2
log

(
x−
√

1 + d2 +
√

1 + d2 − d
)2

+ y2(
x−
√

1 + d2 +
√

1 + d2 + d
)2

+ y2

= log
(√

1 + d2 + d
)2

+
1

2
log

(x− d)2 + y2

(x+ d)2 + y2

= 2τ2 − τ,

and

π − σ̃ = 2 arctan
2dỹ

d2 − x̃2 − ỹ2 −
√

(d2 − x̃2 − ỹ2)2 + 4d2ỹ2

= 2 arctan

2dy

(x−
√

1+d2)
2
+y2

d2−x2−y2

(x−
√

1+d2)
2
+y2

+

√
(d2−x2−y2)2+4d2y2

(x−
√

1+d2)
2
+y2

= 2 arctan
2dy

d2 − x2 − y2 −
√

(d2 − x2 − y2)2 + 4d2y2

= π − σ ⇒ σ̃ = σ,

where we have used the fact that:

d2 − x̃2 − ỹ2 =
d2 − x2 − y2(

x−
√

1 + d2
)2

+ y2
.

B.7 Proof of (τc, σc) = (2τ2, 0)

We want to proove that the position (τc, σc) of the centre of the circle in bipolar

coordinates is equal to (2τ2, 0). The angular component σc is zero given the fact

that the point is on the Ox axis. For the τ -component we have:

τc = log
(x+ d)2

(x− d)2
= log

√
1 + d2 + d√
1 + d2 − d

= log
(√

1 + d2 + d
)2

= 2 log
(√

1 + d2 + d
)

= 2τ2.
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B.8 Bipolar coordinates - concentric case

B.8 Bipolar coordinates - concentric case

We want know how do expressions involving bipolar coordinates (τ, σ) relate to

polar coordinates (r, θ) as c→ 0. We begin with:

τ − τ2 =
1

2
log

(
x+
√

1 + d2 + d
)2

+ y2(
x+
√

1 + d2 − d
)2

+ y2
− log

(
d+
√

1 + d2
)

=
1

2
log

(
x+
√

1 + d2 + d
)2

+ y2[(
x+
√

1 + d2 − d
)2

+ y2
] (
d+
√

1 + d2
)2

=
1

2
log

(
d+
√

1 + d2
)2
[(

x
d+
√

1+d2 + 1
)2

+
(

y

d+
√

1+d2

)2
]

(
d+
√

1 + d2
)2
[(
x+ 1√

1+d2+d

)2

+ y2

]
→ 1

2
log

1

r2
= log

1

r
as c→ 0,

where r =
√
x2 + y2.

Similarly we have for:

τ1 − τ = log
(
d/a+

√
1 + d2/a2

)
− 1

2
log

(
x+
√

1 + d2 + d
)2

+ y2(
x+
√

1 + d2 − d
)2

+ y2

= −1

2
log

(
x+
√

1 + d2 + d
)2

+ y2[(
x+
√

1 + d2 − d
)2

+ y2
] (
d/a+

√
1 + d2/a2

)2

= −1

2
log

d2

[(
x
d

+
√

1+d2

d2

)2

+
(
y
d

)2

]

d2
(

1/a+
√

1/d2 + 1/a2
)2
[(
x+ 1√

1+d2+d

)2

+ y2

]
→ −1

2
log

a2

r2
= log

r

a
as c→ 0.

We know that the tangent of the bipolar angular component can be written as:

tanσ =
2dy(

x+
√

1 + d2
)2

+ y2 − d2
=

2dy

x2 + 2x
√

1 + d2 + 1 + d2 + y2 − d2

=
2dy

d
(
(x2 + y2 + 1)/d+ 2x

√
1 + d2/d

) → y

x
as c→ 0
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B.8 Bipolar coordinates - concentric case

= tan θ,

where θ is the standard polar angular coordinate of (x, y). From this we deduce

the following:

σ − σ0 = θ − θ0.

Here (r, θ) and (r0, θ0) are the polar representation of (x, y) and (x0, y0), respec-

tively.
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Appendix C

Bispherical coordinates

C.1 Normal derivative in bispherical coordinates

We are interested in the normal derivative of a function f(τ, σ, φ) evaluated on a

sphere of constant τ = τ1 and for that purpose we will investigate the following

hypothesis:

n =

(
−sinσ cosφ sinh τ

cosh τ − cosσ
,−sinσ sinφ sinh τ

cosh τ − cosσ
,
1− cosh τ cosσ

cosh τ − cosσ

)
,

where n is the normal vector to the τ = τ1 surface. Let v be a point on the

sphere τ = τ1:

v = (x, y, z) =

(
d

sinσ cosφ

cosh τ − cosσ
, d

sinσ sinφ

cosh τ − cosσ
, d

sinh τ

cosh τ − cosσ

)
.

Then we have

∂v

∂τ
=

(
−d sinσ cosφ sinh τ

(cosh τ − cosσ)2
,−d sinσ sinφ sinh τ

(cosh τ − cosσ)2
, d

1− cosh τ cosσ

(cosh τ − cosσ)2

)
,

and ∣∣∣∣∂v

∂τ

∣∣∣∣2 =
d2

(cosh τ − cosσ)2
.

As a result we obtain the unit vector:

eτ =

(
−sinσ cosφ sinh τ

cosh τ − cosσ
,−sinσ sinφ sinh τ

cosh τ − cosσ
,
1− cosh τ cosσ

cosh τ − cosσ

)
.
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C.2 Proof of
(
τ̃0, σ̃0, φ̃0

)
= (2τ2 − τ0, σ0, φ0)

The vector v = (x, y, z) also satisfies:

(z − d coth τ)2 + y2 + x2 = d2 csch2 τ.

Changing the system of coordinates such that the origin is the centre of the sphere

τ = τ1. Let θ and φ be the polar angle and azimuthal angle, respectively, of a

point on the sphere and as a result:

tanϕ =
y

x
=

sinφ

cosφ
= tanφ⇒ φ = ϕ,

θ = arccos
z − d coth τ√

x2 + y2 + (z − d coth τ)2
= arccos

(
cosσ cosh τ − 1

cosh τ − cosσ

)
.

Using standard trigonometric identifies we express cos θ and sin θ in terms of

tan θ:

cos arccosx = x, sin arccosx =
√

1− x2,

where x ∈ [0, π]. This gives us the vector normal to the surface of the circle:

eθ = (sin θ cosϕ, sin θ sinϕ, cos θ)

=

(
sinσ cosφ sinh τ

cosh τ − cosσ
,
sinσ sinφ sinh τ

cosh τ − cosσ
,
cosh τ cosσ − 1

cosh τ − cosσ

)
= −eτ .

As a result we have the following identity for the normal derivative on a circle of

constant τ
∂f

∂n
= ∇f · eτ = −cosh τ − cosσ

d

∂f

∂τ
.

C.2 Proof of
(
τ̃0, σ̃0, φ̃0

)
= (2τ2 − τ0, σ0, φ0)

The image point x̃ in Cartesian coordinates is:

x̃ = (x̃, ỹ, z̃) =

(
x

x2 + y2 + (z −
√

1 + d2)2
,

y

x2 + y2 + (z −
√

1 + d2)2
,

z −
√

1 + d2

x2 + y2 + (z −
√

1 + d2)2
+
√

1 + d2

)
. (C.1)
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C.2 Proof of
(
τ̃0, σ̃0, φ̃0

)
= (2τ2 − τ0, σ0, φ0)

We begin with the τ -coordinate of the image point:

τ̃ = arcsinh

(
2dz̃

Q̃

)
= log

2dz̃

Q̃
+

√
1 +

(
2dz̃

Q̃

)2


= log

2dz̃

Q̃
+

√
Q2 + (2dz̃)2

Q̃



= log

2dz̃

Q̃
+

√(
R̃2 + d2

)2

− (2dz̃)2 + (2dz̃)2

Q̃



= log

(
R̃2 + d2 + 2dz̃

Q̃

)
= log

 R̃2 + d2 + 2dz̃√(
R̃2 + d2

)2

− (2dz̃)2



= log

 R̃2 + d2 + 2dz̃√(
R̃2 + d2 + 2dz̃

)(
R̃2 + d2 − 2dz̃

)


=
1

2
log

(
R̃2 + d2 + 2dz̃

R̃2 + d2 − 2dz̃

)
=

1

2
log

(
x̃2 + ỹ2 + z̃2 + d2 + 2dz̃

x̃2 + ỹ2 + z̃2 + d2 − 2dz̃

)

=
1

2
log

(
x̃2 + ỹ2 + (z̃ + d)2

x̃2 + ỹ2 + (z̃ − d)2

)

=
1

2
log

(
x2 + y2 +

[
z −
√

1 + d2 +
(
x2 + y2 + (z −

√
1 + d2)2

) (√
1 + d2 + d

)]2
x2 + y2 +

[
z −
√

1 + d2 +
(
x2 + y2 + (z −

√
1 + d2)2

) (√
1 + d2 − d

)]2
)

=
1

2
log

(
1 +

(√
1 + d2 + d

)2 (
x2 + y2 + (z −

√
1 + d2)2

)
1 +

(√
1 + d2 − d

)2 (
x2 + y2 + (z −

√
1 + d2)2

)
+2
(
z −
√

1 + d2
) (√

1 + d2 + d
)

+2
(
z −
√

1 + d2
) (√

1 + d2 − d
))

=
1

2
log

(√
1 + d2 + d

)2
[

1

(
√

1+d2+d)
2 + x2 + y2 + (z −

√
1 + d2)2 +

2(z−
√

1+d2)√
1+d2+d

]
(√

1 + d2 − d
)2
[

1

(
√

1+d2−d)
2 + x2 + y2 + (z −

√
1 + d2)2 +

2(z−
√

1+d2)√
1+d2−d

]
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C.2 Proof of
(
τ̃0, σ̃0, φ̃0

)
= (2τ2 − τ0, σ0, φ0)

=
1

2
log

(√
1 + d2 + d

)2
[(√

1 + d2 − d
)2

+ x2 + y2 + (z −
√

1 + d2)2(√
1 + d2 − d

)2
[(√

1 + d2 + d
)2

+ x2 + y2 + (z −
√

1 + d2)2

+2
(
z −
√

1 + d2
) (√

1 + d2 − d
)]

+2
(
z −
√

1 + d2
) (√

1 + d2 + d
)]

=
1

2
log
(
d+
√

1 + d2
)4

+
1

2
log

x2 + y2 +
(
z −
√

1 + d2 +
√

1 + d2 − d
)2

x2 + y2 +
(
z −
√

1 + d2 +
√

1 + d2 + d
)2

= 2 log
(
d+
√

1 + d2
)
− 1

2
log

x2 + y2 + (z + d)2

x2 + y2 + (z − d)2

= 2τ2 − τ,

where in the above we have utilised:

x̃2 + ỹ2 + (z̃ ± d)2

=
x2 + y2 +

[
z −
√

1 + d2 +
(
x2 + y2 + (z −

√
1 + d2)2

) (√
1 + d2 ± d

)]2
x2 + y2 + (z −

√
1 + d2)2

.

Making use of the following identities:

R̃2 − d2 =
x2 + y2 +

[
z −
√

1 + d2 +
√

1 + d2
(
x2 + y2 + (z −

√
1 + d2)2

)]2(
x2 + y2 + (z −

√
1 + d2)2

)2

+
d2
(
x2 + y2 + (z −

√
1 + d2)2

)2(
x2 + y2 + (z −

√
1 + d2)2

)2

=
1 + 2

√
1 + d2

(
z −
√

1 + d2
)

+ (1 + d2)
(
x2 + y2 + (z −

√
1 + d2)2

)
x2 + y2 + (z −

√
1 + d2)2

−
d2
(
x2 + y2 + (z −

√
1 + d2)2

)
x2 + y2 + (z −

√
1 + d2)2

=
1 + d2 − d2 + 2

√
1 + d2

(
z −
√

1 + d2
)

+ x2 + y2 + (z −
√

1 + d2)2

x2 + y2 + (z −
√

1 + d2)2

=
x2 + y2 +

(
z −
√

1 + d2 +
√

1 + d2
)2 − d2

x2 + y2 + (z −
√

1 + d2)2

=
x2 + y2 + z2 − d2

x2 + y2 + (z −
√

1 + d2)2

=
R2 − d2

x2 + y2 + (z −
√

1 + d2)2
,
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C.3 Proof of (τc, σc, φc) = (2τ2, 0, 0)

and

Q̃ =

√(
R̃2 + d2

)2

− (2dz̃)2 =

√(
R̃2 + d2 + 2dz̃

)(
R̃2 + d2 − 2dz̃

)
=
√(

x̃2 + ỹ2 + (z̃ + d)2) (x̃2 + ỹ2 + (z̃ − d)2)
=

√(
x2 + y2 + (z + d)2) (x2 + y2 + (z − d)2)

x2 + y2 + (z −
√

1 + d2)2

=
Q

x2 + y2 + (z −
√

1 + d2)2
,

we obtain that:

σ̃ = arccos

(
R̃2 − d2

Q̃

)
= arccos

 R2−d2

x2+y2+(z−
√

1+d2)2

Q

x2+y2+(z−
√

1+d2)2

 = arccos

(
R2 − d2

Q

)
= σ.

Finally, from the definition of x̃ and ỹ from (C.1) we see that:

φ̃ = arctan

(
ỹ

x̃

)
= arctan

( y

x2+y2+(z−
√

1+d2)2

x
x2+y2+(z−

√
1+d2)2

)
= arctan

(y
x

)
= φ.

C.3 Proof of (τc, σc, φc) = (2τ2, 0, 0)

We want to prove that the position (τc, σc, φc) of the centre of the sphere in

bispherical coordinates is equal to (2τ2, 0, 0). The angular component φc is zero

given the fact that the point is on the Ox axis. The centre of the sphere can be

written as:

(xc, yc, zc) =
(

0, 0,
√

1 + d2
)
.

Making use of the following:

R =
√
xc2 + yc2 + zc2 =

√
1 + d2,

Q =

√
(1 + d2 + d2)2 − 4d2 (1 + d2) =

√
(1 + d2 − d2)2 = 1,

we obtain the τ -component as:

τc = arcsinh

(
2dzc
Q

)
= arcsinh 2d

√
1 + d2 = log

(
2d
√

1 + d2 +
√

4d2 (1 + d2) + 1
)
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C.4 Bispherical integral

= log
(

2d
√

1 + d2 + 2d2 + 1
)

= log
(
d+
√

1 + d2
)2

= 2 log
(
d+
√

1 + d2
)

= 2τ2.

Finally, the σ-component we have:

σc = arccos

(
R2 − d2

Q

)
= arccos

(
1 + d2 − d2

1

)
= arccos 1 = 0.

C.4 Bispherical integral

From (Jeffery, 1912, p.118) we know the following properties of Legendre poly-

nomials: ∫ π

0

Pn(cosσ0) sinσ0

(cosh τ0 − cosσ0)
1
2

dσ0 =
2
√

2

2n+ 1
e−(n+ 1

2)τ0 ,

∫ π

0

Pn(cosσ0) sinσ0

(cosh τ0 − cosσ0)
3
2

dσ0 = 2
√

2
e−(n+ 1

2)τ0

sinh τ0

.

C.5 Legendre polynomial expansion

A generating function for Legendre polynomials Pn is given by (Barton, 1989,

p.417):

1

(1− 2xt+ t2)
1
2

=
∞∑
n=0

Pn(x)tn. (C.2)

Differentiating with respect to t and multiplying by 2t we obtain:

t
−2x+ 2t

(1− 2xt+ t2)
3
2

=
∞∑
n=0

2nPn(x)tn. (C.3)

Adding (C.2) and (C.3) we have after rearrangement:

1

(1− 2xt+ t2)
3
2

=
∞∑
n=0

(2n+ 1)Pn(x)
tn

1− t2
.

Repeating the previous step we arrive at:

1

(1− 2xt+ t2)
5
2

=
∞∑
n=0

[
(2n+ 3) (2n+ 1)

3

tn

(1− t2)2 +
4

3
(2n+ 1)

tn+2

(1− t2)3

]
Pn(x).

(C.4)

220



C.5 Legendre polynomial expansion

Let x = cosσ and t = e−τ in (C.4) we obtain:

1

(cosh τ − cosσ)
5
2

=
∞∑
n=0

Un(τ)Pn(cosσ),

where

Un(τ) =
√

2

[
(2n+ 3) (2n+ 1)

3

e−(n+ 1
2)τ

sinh2 τ
+

2

3
(2n+ 1)

e−(n+ 3
2)τ

sinh3 τ

]
. (C.5)
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Appendix D

Difference equations

D.1 Theorems

For the theorems of this section we have used (Milne-Thomson, 2000, p.523-534).

D.1.1 Poincaré’s theorem

If u(n) is any solution of a homogeneous linear difference equation whose coeffi-

cients tend to constants, when n→∞, then:

lim
n→∞

u(n+ 1)

u(n)
,

exists and is equal to one of the zeros of the characteristic equation of the associ-

ated difference equation with constant coefficients if the moduli of the zeroes of

the characteristic equation are distinct.

D.1.2 Perron’s theorem

If the coefficients of u(n) in the difference equation of order n are not zero where

n = 0, 1, 2, . . . , and the other hypotheses be fulfilled, then the equation has n

fundamental solutions u1(n), . . . , un(n) such that

lim
n→∞

ui(n+ 1)

ui(n)
= αi, i = 1, 2, 3, . . . , n,

where αi is a root of the characteristic equation.
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D.2 Continued fraction theorem

D.2 Continued fraction theorem

We begin by defining the following:

zs =
xs − xs+1

xs − xs+2

xs+2 − xs+3

xs+1 − xs+3

, s ∈ {1, 2, 3, . . . , n− 3},

vs =
xn − xs
xn − xs+1

xs+1 − xs+2

xs − xs+2

, vn−2 = 1,

from which results:
zs
vs+1

=
xs − xs+1

xs − xs+2

xn − xs+2

xn − xs+1

,

and subsequently:

1− zs
vs+1

= vs, s ∈ {1, 2, 3, . . . , n− 3}. (D.1)

Letting s = 1 in the above we have:

v1 = 1− z1

v2

= 1− z1

1− z2
v3

.

Applying (D.1) multiple times we obtain:

v1 = 1− z1

1− z2
1−···

. (D.2)

Let us now consider the following Poincare difference equation:

u(n+ 2) + p(n)u(n+ 1) + q(n)u(n) = 0, (D.3)

where

lim
n→∞

p(n) = a1, lim
n→∞

q(n) = a2.

As a result, the characteristic equation of (D.3) is

t2 + a1t+ a2 = 0,

which we suppose has two roots α and β such that |α| > |β|.
Let u1(n) and u2(n) be a fundamental system of solutions from which we obtain

from the difference equation:

p(n) =
u1(n+ 2)u2(n)− u2(n+ 2)u1(n)

u1(n)u2(n+ 1)− u2(n)u1(n+ 1)
,
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D.2 Continued fraction theorem

q(n) =
u1(n+ 1)u2(n+ 2)− u2(n+ 1)u1(n+ 2)

u1(n)u2(n+ 1)− u2(n)u1(n+ 1)
,

Taking

xs =
u1(n+ s− 2)

u2(n+ s− 2)
,

then we obtain

zs =
q(n+ s− 1)

p(n+ s− 2)p(n+ s− 1)
. (D.4)

Performing the change of variables n→ n+ 2 we obtain after simplifications:

vs − 1 =
u1(n+m)u2(n+ 1)− u2(n+m)u1(n+ 1)

u1(n+m)u2(n)− u2(n+m)u1(n)

1

p(n− 1)
.

Substituting in (D.2) and making use of (D.4) we have the identity:

u1(n+m)u2(n+ 1)− u2(n+m)u1(n+ 1)

u1(n+m)u2(n)− u2(n+m)u1(n)
≡ −q(n)

p(n)− q(n+1)

p(n+1)−···− q(n+m+1)
p(n+m+1)

. (D.5)

We notice that the right-hand side of the previous equation is only dependent on

the coefficients of the difference equation (D.3) and is therefore independent of

the fundamental system of solutions we have chosen. As a result, we choose our

fundamental solutions such that:

lim
m→∞

u1(n+m+ 1)

u1(n+m)
= α, lim

m→∞

u2(n+m+ 1)

u2(n+m)
= β,

which is possible given Perron’s theorem D.1.2. Therefore

lim
n→∞

∣∣∣∣u2(n+m+ 1)

u1(n+m+ 1)

u1(n+m)

u2(n+m)

∣∣∣∣ =

∣∣∣∣βα
∣∣∣∣ < 1,

from which we deduce that:

lim
n→∞

u2(n+m)

u1(n+m)
= 0.

Dividing the numerator and denominator of (D.5) by u(n+ 1) and we let n→∞
to obtain:

u2(n+ 1)

u2(n)
=

−q(n)

p(n)− q(n+1)
p(n+1)−···

,

and u2(n) is obtained as a solution of the equation of the first order.
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D.2 Continued fraction theorem

Analogously, by performing the change of variables n→ −t− 2 in the difference

equation we obtain a second solution given by:

u3(n)

u3(n+ 1)
=

−1

p(n− 1)− q(n−2)
p(n−2)−···

.
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Appendix E

Numerical simulations

E.1 Experimental methodology

The Coxiella bacteria are stained using the following process:

• the infected cells are washed twice with 0.5 ml of PS (phosphate-buffered

saline);

• they are covered with 4 % paraformaldehyde, fumigated out of the cabinet

and stored at 4 for more than 40 hours;

• the paraformaldehyde is removed and 200m µl cell perm/fix buffer (BD

biosciences) is added in each well to permeablise the cells and are left for

20 minutes at room temperature;

• 2 µl of anti-Coxiella LPS (lipopolysaccharides) antibody (BBI) is added to

each well and left for 1 hour at room temperature in order for the antibodies

to bind to the Coxiella;

• the cells are washed with PBS;

• 2 µl of FITC (Fluorescein isothiocyanate) labeled anti-mouse antibody (In-

vitrogen) is added to each well and left for 1 hour at room temperature

which labels the previous antibodies green;

• cells are washed and left in PBS;
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E.2 Robin boundary condition

• the cells are viewed under laser confocal microscope (LSM 710, Zeiss) using

488nm laser;

• images are processed using Zeiss Zen 2012 Blue software;

E.2 Robin boundary condition

Suppose p (x) is a function which satisfies the following Robin boundary condi-

tion:

∇np = κp

where n is the normal vector to the surface and κ is the trapping rate. If κ→ 0

then:

∇np = 0

and the boundary becomes reflecting, while if κ→∞ then:

p = 0

and the boundary becomes absorbing.

E.3 Numerical algorithm

In order to simulate p(x, t) we use the following algorithm(Erban & Chapman,

2007, p.4):

• we distribute N particles uniformly over the interval [0, h];

• let ∆t be the timestep. and xi(t), i = 1, . . . , N be the position of the i-th

particle at time t. The the position xi(t+ ∆t) is given by:

xi(t+ ∆t) = xi(t) + ∆x (E.1)

where ∆x ∼ N(0, 2D∆t) and D is the diffusion coefficient.

• if a particle crosses the reflecting boundary at step i then position xi+1 is

given by:

xi(t+ ∆t) = 2h− xi(t)−∆x
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E.3 Numerical algorithm

• for the partially absorbing boundary we utilise the following:

– if xi < 0 then xi(t + ∆t) = −xi(t) −∆x with probability 1 − P
√

∆t,

where P = κ
√
π/2
√
D, otherwise the particle is removed from the

system.

– if xi > 0 the particle is removed from the system with probability

e−
xixi+1
D∆t P

√
∆t (E.2)

• at the end of each time step the position of each particle is recorded which

gives p(x, t).
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Appendix F

Tables

This appendix contains tables of different parameters used in this thesis.

Table F.1: Coxiella burnetii assay parameters

Parameter Definition Value

b radius of assay well 1√
π

cm

h height of assay well 1 cm

κ trapping rate 762 cm s−1

D diffusion coefficient 0.5 cm2 s−1

N initial number of monocytes 1.5× 105

MOI multiplicity of infection 2× 102

M0 initial number of bacteria 3× 107
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Appendix G

Python code

This appendix contains the Python code used to produce plots in this thesis.

G.1 Grayscale interval plot

"""We plot the cummulative distribution function of the

grayscale distribution of

the image provided by dstl for the monocytes covering the

bottom of the

assay well """

from PIL import Image

import matplotlib.pyplot as plt

import numpy as np

"""We change the python plot such that it does not have

upper or rightward

border """

fig = plt.figure(frameon=False)

ax = plt.subplot (111)

ax.spines[’top’]. set_visible(False)

ax.spines[’right’]. set_visible(False)

ax.yaxis.set_ticks_position(’left’)

ax.xaxis.set_ticks_position(’bottom ’)

"""We upload the dstl image """

imag = Image.open("preinfection2thesis.jpg")
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G.1 Grayscale interval plot

""" Convert the image te RGB if it is a .gif for example """

imag = imag.convert (’RGB’)

"""We record the height and width of the image in pixels """

width , height = imag.size

"""We define a matrix of -1 of the same size as the iamge

"""

cdens = np.ones(shape =(width ,height))*(-1)

z1 ,z2=np.linspace(width ,0,width),np.linspace(0,height ,

height)

def open_image(path):

newImage = Image.open(path)

return newImage

""" Save Image """

def save_image(image , path):

image.save(path , ’png’)

""" Create a new image with the given size """

def create_image(i, j):

image = Image.new("RGB", (i, j), "white")

return image

"""Get the pixel from the given image """

def get_pixel(image , i, j):

width , height = image.size

if i > width or j > height:

return None

"""Get Pixel """

pixel = image.getpixel ((i, j))

return pixel

X,Y = 15,240

def convert_grayscale(image ,X):

""" Get size """

width , height = image.size

S = 0

""" Transform to grayscale """

for i in range(width):

for j in range(height):

""" Get Pixel """
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G.1 Grayscale interval plot

pixel = get_pixel(image , i, j)

""" Get R, G, B values (This are int from 0 to

255) """

red = pixel [0]

green = pixel [1]

blue = pixel [2]

""" Transform to grayscale """

gray = int (1/3*( red+green+blue))

if gray <=X or gray >=255-X:

S += 1

""" Return grayscale cumulative distribution """

return S/( width*height)

N=127

x=np.linspace(0,N,N+1)

y=[]

for i in x:

print(i)

y.append(convert_grayscale(imag ,i))

plt.plot(x,y)

"""We highlight the grayscale value for which the monocytes

occupy 1/3 of the

image """

plt.axvline(x=15,ymin=0,ymax=convert_grayscale(imag ,15),

color=’r’)

plt.axhline(y=convert_grayscale(imag ,15),xmin=0,xmax

=1500/12700 , color=’r’)

plt.xticks ([0,15,64,128] , [0,15,64,128], fontsize =14)

plt.gca().get_xticklabels ()[1]. set_color("red")

plt.yticks ([0, convert_grayscale(imag ,15) ,0.5,1], [0,’%.2f’%

convert_grayscale(imag ,15) ,0.5,1], fontsize =14)

plt.gca().get_yticklabels ()[1]. set_color("red")

plt.xlim ([0 ,128])

plt.ylim ([0 ,1])

plt.xlabel(r’$x$’,fontsize =20)

plt.ylabel(r’$CDF(x)$’,fontsize =20)

plt.tight_layout ()
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G.2 Grayscale heat map

plt.savefig("ColormapIntervalNumber.pdf")

plt.show()

G.2 Grayscale heat map

"""We plot the grayscale trasformation of the image

provided by dstl for the

monocytes covering the bottom of the assay well """

from PIL import Image

import matplotlib.pyplot as plt

import numpy as np

imag = Image.open("preinfection2thesis.jpg")

""" Convert the image te RGB if it is a .gif for example """

imag = imag.convert (’RGB’)

"""We record the height and width of the image in pixels """

width , height = imag.size

"""We define a matrix of -1 of the same size as the iamge

"""

cdens = np.ones(shape =(width ,height))*(-1)

z1 ,z2=np.linspace(width ,0,width),np.linspace(0,height ,

height)

def open_image(path):

newImage = Image.open(path)

return newImage

""" Save Image """

def save_image(image , path):

image.save(path , ’png’)

""" Create a new image with the given size """

def create_image(i, j):

image = Image.new("RGB", (i, j), "white")

return image

"""Get the pixel from the given image """

def get_pixel(image , i, j):

# Inside image bounds?

width , height = image.size
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G.2 Grayscale heat map

if i > width or j > height:

return None

# Get Pixel

pixel = image.getpixel ((i, j))

return pixel

X,Y = 15,240

def convert_grayscale(image):

""" Get size """

width , height = image.size

print(width ,height)

S = 0

""" Create new Image and a Pixel Map"""

new = create_image(width , height)

pixels = new.load()

""" Transform to grayscale """

for i in range(width):

for j in range(height):

""" Get Pixel """

pixel = get_pixel(image , i, j)

""" Get R, G, B values (This are int from 0 to

255) """

red = pixel [0]

green = pixel [1]

blue = pixel [2]

""" Transform to grayscale

gray = (red * 0.299) + (green * 0.587) + (blue *

0.114) """

gray = int (1/3*( red+green+blue))

if gray <=X or gray >=Y:

pixels[i, j] = (int (255) ,0,0)

S += 1

else:

pixels[i, j] = (0,0,int (255))

""" Return new image """

return new , S/( width*height)*100

plt.imshow(convert_grayscale(imag)[0])
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G.3 Intracellular distribution of Coxiella burnetii

plt.savefig("GrayscaleColormapInterval.pdf")

plt.show()

G.3 Intracellular distribution of Coxiella burnetii

"""We plot the intracellular distribution of Coxiella

burnetii """

import numpy as np

from scipy.spatial.distance import pdist , squareform

import matplotlib.pyplot as plt

import math

import scipy.special as sp

import csv

from scipy.optimize import brentq

from decimal import *

getcontext ().prec = 40

"""We change the python plot such that it does not have

upper or rightward

border """

fig = plt.figure(frameon=False)

ax = plt.subplot (111)

ax.spines[’top’]. set_visible(False)

ax.spines[’right’]. set_visible(False)

ax.yaxis.set_ticks_position(’left’)

ax.xaxis.set_ticks_position(’bottom ’)

def Func(y):

return y/K*np.sin(y*h)-np.cos(y*h)

"""We define the signchange function which we will help us

find the solutions

of the Bessel function defined above """

def signchange(r,f,start):

sol=[]

before=start

sol.append(before)

for x in r:
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G.3 Intracellular distribution of Coxiella burnetii

if x>before and f(x)*f(before) <0:

before=x

sol.append(before)

return sol

"""We define the root_finder function which will find the

solutionsof the

Bessel function defined above """

def root_finder(r,f):

roots =[]

for n in range(len(r) -1):

roots.append(brentq(f, r[n], r[n+1], ()))

return roots

"""We define the survival function """

def Survival(x,n,W,K):

s=0.0

for j in range(0,n+1):

A_ij =1/(W[j]**2*(h/2*(W[j]**2/K**2+1) +1/(2*K)))

s+=A_ij/h*np.exp(-(W[j]**2)*D*x)

return s

"""We define the Poisson distribution """

def Poisson(n,m):

return np.exp(-m)*m**n/sp.factorial(n)

"""We define the radius of the assay well , the trapping

rate , the diffusion

coefficient , the fraction of the spherical surface covered

in absorbing disks ,

the number of traps and the number of diffusing particles

"""

global b,K,h,D,sigma ,N,C0

b=1/np.sqrt(np.pi)

K=0

h=1

D=0.5

sigma=0

N=150000

C0=200*N
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G.3 Intracellular distribution of Coxiella burnetii

"""We upload the data provided by Dstl for the radius of

the radius of the

trap """

coxiella_radius_1 =[]

with open(’Expt4_THP1_CellSize.csv’) as csvfile:

readCSV = csv.reader(csvfile , delimiter=’,’)

for row in readCSV:

coxiella_radius_1.append(row [0])

coxiella_radius_1=np.delete(coxiella_radius_1 , 0, axis =0)

coxiella_radius_1 =[np.sqrt((float(x)*10**( -14))/np.pi) for

x in coxiella_radius_1]

coxiella_radius_2 =[]

with open(’Expt5_THP1_CellSize.csv’) as csvfile:

readCSV = csv.reader(csvfile , delimiter=’,’)

for row in readCSV:

coxiella_radius_2.append(row [0])

coxiella_radius_2=np.delete(coxiella_radius_2 , 0, axis =0)

coxiella_radius_2 =[np.sqrt((float(x)*10**( -14))/np.pi) for

x in coxiella_radius_2]

coxiella_radius=coxiella_radius_1+coxiella_radius_2

"""We upload the position of the traps """

txt=str("DATAfile_3D_Gillard_Position_Traps_1 .0")+str(".txt

")

text_file = open(txt , "r")

lines = text_file.read().split ()

pos_x =[]

pos_y =[]

pos_z =[]

for i in range(len(lines)):

if i%3==0:

pos_x.append(float(lines[i]))

if i%3==1:

pos_y.append(float(lines[i]))

if i%3==2:

pos_z.append(float(lines[i]))

print(len(pos_x),len(pos_y),len(pos_z))
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pos=np.c_[pos_x , pos_y , pos_z]

"""We plot the intracellular distribution of the capture

Coxiella burnetii at

different times """

Color=[’ro’,’bo’,’go’]

Ts =[0.01 ,0.05 ,0.1]

for i in [0,1,2]:

ts=Ts[i]

K=0

Radius=np.mean(coxiella_radius)*np.ones(N)

sigma=np.pi*sum([x**2 for x in Radius ])

def f(sigma):

return (1+3.8* sigma **(5/4))/(1- sigma)

for r_i in Radius:

V = np.pi*r_i **2/ sigma

K += 4*V*D/(np.pi*r_i)*sigma*f(sigma)

K=K/D

x = np.linspace (0.001 , 6000, 5000)

S=Survival(ts ,500, root_finder(signchange(x,Func

,0.00000001) ,Func),K)

M=int(C0*(1-S))

m=M/N

print(m,’hello’)

Q=70

n=np.linspace(0,Q,Q+1)

ax.plot(n,Poisson(n,m),Color[i],label=r’$t$ = ’+str(ts)

)

plt.xlabel(r’$r$’,fontsize =20)

plt.ylabel(r’$f(r|t,\ kappa)$’,fontsize =20)

plt.legend(loc=1,fontsize =15, frameon=False)

plt.xlim ([-0.5,Q])

plt.xticks ([0,35,70], [r’0’,r’35’,r’70’],fontsize =14)

plt.yticks ([0 ,0.10 ,0.20] , [r’0’,r’0.1’,r’0.2’],fontsize =14)

plt.tight_layout ()

plt.savefig(’Intracellular_Distribution.pdf’)
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plt.show()

G.4 Survival function for circular domains

G.4.1 Numerical simulations

"""

Simulation of diffusing particles inside a concentric

annular region bounded

two circles. The outher circle is reflecting and the inner

circle is absorbing.

We record the number of particles still alive at each time

step in order to

determine the survival function

"""

import random as random

import numpy as np

from scipy.spatial.distance import pdist , squareform

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import math

class ParticleBox:

"""

init_state is an [N x 2] array , where N is the number

of particles:

[[x1 , y1],

[x2 , y2],

... ]

bounds is the size of the box: [xmin , xmax , ymin , ymax]

"""

def __init__(self ,

init_state = [[1, 0],

[-0.5, 0.5],
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[-0.5, -0.5]],

bounds = [-10, 10, -10, 10],

size = 0.00,

M = 0.05,

G = 9.8):

self.init_state = np.asarray(init_state , dtype=

float)

self.M = M * np.ones(self.init_state.shape [0])

self.size = size

self.state = self.init_state.copy()

self.time_elapsed = 0

self.bounds = bounds

self.G = G

def step(self , dt):

global nr ,time , init_k , nrprt , b, a, c, D

""" step once by dt seconds """

self.time_elapsed += dt

"""We create a copy of the particle positions """

self.state_backup=self.state.copy()

"""We update the position of the particles """

self.state [:,1] += np.random.normal(0,np.sqrt (2*D*

dt),nrprt)

self.state [:,0] += np.random.normal(0,np.sqrt (2*D*

dt),nrprt)

"""We determine which particles have crossed inside

the nucleus and we

delete them """

Distance_1 = np.where(self.state[:, 0]**2+( self.

state[:, 1]+c)**2<(a)**2)

self.state[Distance_1 ,0]=0

self.state[Distance_1 ,1]=-c

self.state=np.delete(self.state , Distance_1 , axis

=0)

self.state_backup=np.delete(self.state_backup ,

Distance_1 , axis =0)

nrprt=len(self.state [: ,0])
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state_backup_2=self.state.copy()

"""We determine which particles have crossed the

cellular surface and

we reflect them """

Distance_2 = np.where(self.state[:, 0]**2+ self.

state[:, 1]**2 >(b)**2)

self.state[Distance_2 ,1]=(2*b-np.sqrt(

state_backup_2[Distance_2 ,0]**2+ state_backup_2[

Distance_2 ,1]**2))*np.sin(np.arctan2(

state_backup_2[Distance_2 ,1], state_backup_2[

Distance_2 ,0]))

self.state[Distance_2 ,0]=(2*b-np.sqrt(

state_backup_2[Distance_2 ,0]**2+ state_backup_2[

Distance_2 ,1]**2))*np.cos(np.arctan2(

state_backup_2[Distance_2 ,1], state_backup_2[

Distance_2 ,0]))

"""We determine which particles have crossed the

boundary of nucleus

between the beginning and end of the time step. We

delete these

particles """

r1=[math.sqrt(x**2+y**2) for x,y in zip(self.state

[:,0],self.state [:,1])]

r2=[math.sqrt(x**2+y**2) for x,y in zip(self.

state_backup [:,0],self.state_backup [:,1])]

C=[math.exp(-1*(a-R1)*(a-R2)/(D*dt)) for R1,R2 in

zip(r1 ,r2)]

u=np.random.uniform(0,1,nrprt)

sterg=np.where(C>u)

self.state=np.delete(self.state , sterg , axis =0)

nrprt=len(self.state [: ,0])

time+=dt

"""We record the number of particles stll remaining

and the time """

if nrprt !=0:

file.write(str(nrprt)+" "+str(time)+" ")
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else:

file.close ()

global nrprt , nr , tlist , nlist , time , init_k ,b, a, c,D

"Outer radius"

b=1

"Inner radius"

a=0.1

"Position of nucleus"

c=0

"Diffusion coefficient"

D=0.5

txt=str("SurvFile.txt")

file = open(txt , "w")

time=0

nrprt =100000

""" set up initial state """

p=0

np.random.seed()

"""We create 10^5 particles which will diffuse in the

annular region """

init_state= np.random.uniform(-b,b,(nrprt , 2))

n=[]

m=[]

for i in range(nrprt):

if ((a)**2 <=( init_state[i, 0]) **2+( init_state[i, 1]+c)

**2) and(init_state[i, 0]) **2+ init_state[i, 1]**2 <=(b

)**2:

p+=1

n.append(init_state[i,0])

m.append(init_state[i,1])

init_state_1=np.c_[n, m]

nrprt=p

move=np.ones(nrprt)

tlist =[0]

nlist=[ nrprt]

box = ParticleBox(init_state_1 , size =0.004)
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dt = 0.0001

""" set up figure and animation """

fig = plt.figure ()

fig.subplots_adjust(left=0, right=1, bottom=0, top=1)

ax = fig.add_subplot (111, aspect=’equal’, autoscale_on=

False ,

xlim=(-1.1, 1.1), ylim =(-1.1, 1.1))

""" particles holds the locations of the particles """

particles , = ax.plot([], [], ’ro’, ms=6)

""" rect is the box edge """

rect = plt.Rectangle(box.bounds [::2],

box.bounds [1] - box.bounds [0],

box.bounds [3] - box.bounds [2],

ec=’none’, lw=2, fc=’none’)

circle_1=plt.Circle ((0,0),b,color=’b’,fill=False)

circle_2=plt.Circle((0,-c),a,color=’b’,fill=False)

ax.add_patch(rect)

ax.add_patch(circle_1)

ax.add_patch(circle_2)

def init():

""" initialize animation """

global box , rect

particles.set_data ([], [])

rect.set_edgecolor(’none’)

return particles , rect

def animate(i):

""" perform animation step """

global box , rect , dt , ax , fig , circle

box.step(dt)

ms = int(fig.dpi * 2 * box.size * fig.get_figwidth ()

/ np.diff(ax.get_xbound ())[0])

""" update pieces of the animation """

rect.set_edgecolor(’none’)

particles.set_data(box.state[:, 0], box.state[:, 1])

particles.set_markersize(ms)

return particles , rect
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ani = animation.FuncAnimation(fig , animate , frames =100,

interval =10, blit=True ,

init_func=init)

plt.show()

G.4.2 Figure plot

"""

We plot the two dimensional survival function for a

Brownian particle diffusing

inside a concentric annular region where the inner boundary

is absorbing and

the outer boundary is reflecting

"""

import numpy as np

from scipy.spatial.distance import pdist , squareform

import matplotlib.pyplot as plt

import math

import scipy.special as sp

from scipy.optimize import brentq

"""

We define the radius of the cell and the radius of the

nucleus

"""

b=1

a=0.1

x = np.linspace (0.1, 6000, 5000)

"""We change the python plot such that it does not have

upper or rightward

border """

fig = plt.figure(frameon=False)

ax = plt.subplot (111)

ax.spines[’top’]. set_visible(False)

ax.spines[’right’]. set_visible(False)

ax.yaxis.set_ticks_position(’left’)

ax.xaxis.set_ticks_position(’bottom ’)
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def Bessel(y):

return sp.jv(0,a*y)*sp.yv(1,b*y)-sp.jv(1,b*y)*sp.yv(0,a

*y)

"""We define the signchange function which we will help us

find the solutions

of the Bessel function defined above """

def signchange(r,f,start):

sol=[]

before=start

sol.append(before)

for x in r:

if x>before and f(x)*f(before) <0:

before=x

sol.append(before)

return sol

"""We define the root_finder function which will find the

solutionsof the

Bessel function defined above """

def root_finder(r,f):

roots =[]

for n in range(len(r) -1):

roots.append(brentq(f, r[n], r[n+1], ()))

return roots

u = np.linspace(0, 1000, 201)

"""We define the integral of the Bessel function """

def Bessel_int(a,b,v,j):

if j==0:

return (b*sp.jv(1,b*v)-a*sp.jv(1,a*v))/v

if j==1:

return (b*sp.yv(1,b*v)-a*sp.yv(1,a*v))/v

"""We define the survival function """

def Bessel_comp(x,n,v):

s=0.0

for i in range(n):

s+=((np.pi*sp.yv(0,a*v[i])*(sp.yv(1,b*v[i])**2))/((

sp.yv(1,b*v[i])**2) -(sp.yv(0,a*v[i]))**2))*(
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Bessel_int(a,b,v[i],0) -(sp.jv(0,a*v[i])/sp.yv(0,

a*v[i]))*Bessel_int(a,b,v[i],1))*np.exp(-(v[i

]**2) *0.5*x)

return s

v = np.linspace(0, 16, 2001)

"""We plot the survival function """

plt.semilogy(v,2* Bessel_comp(v,5, root_finder(signchange(x,

Bessel ,0.00000001) ,Bessel))/(b**2-a**2),label=’exact’)

plt.xticks ([0,9,18],[’0’,’9’,’18’],fontsize =14)

plt.yticks ([1 ,10**( -2) ,10**(-4)], [r’$10^0$’,r’$10^{-2}$’,r

’$10^{-4}$’],fontsize =16)

plt.xlim ([0 ,18])

"""We upload the survival data from numerical simulations

"""

text_file = open("SurvFile.txt", "r")

lines = text_file.read().split(" ")

text_file.close ()

tlist =[0]

nlist=[ float(lines [0])]

for i in range(len(lines) -1):

if i%2==0:

nlist.append(float(lines[i]))

else:

tlist.append(float(lines[i]))

c=nlist [0]

nlist=[x/c for x in nlist]

tlist=[x for x in tlist]

plt.xlabel(r’$t\,$(seconds)’,fontsize =16)

plt.ylabel(r’$s(t)$’,fontsize =16)

"""We plot the numerical simulations of the survival

function """

plt.plot(tlist ,nlist ,label=’numerical ’)

plt.legend(loc=1,fontsize =14, frameon=False)

plt.tight_layout ()

plt.savefig(’SurvPlot2D.pdf’)

plt.show()
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G.5 Green’s function

G.5.1 G
(2)
1 (x0,x)

G.5.1.1 Numerical simulations

""" Two space dimensions

mean time to hit target at x from initial position y

makes two contour plots: numerical and analytical """

from numpy import *

import random

import os , sys

from pylab import contourf ,savefig ,show ,subplot ,colorbar ,

clabel ,title ,figure

import matplotlib.pyplot as plt

import numpy as np

from scipy.integrate import quad

"""We define the radius of the nucleus and the diffusion

coefficient """

a=0.1

D=0.5

#Boundary paramenter

BC="NeumanntoDirichlet"

#Starting condition

SC="Uniform"

NR =500000 # number of realisations

dt =0.001

sfac=sqrt (2*D*dt)

random.seed()

"""We define the position of the nulceus and the starting

position of the

Brownian particles """

rt=-0.25

rs=-0.35

xt=rt

yt=0.0
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"""We define the matrix which will be used to calculate the

Green’s function """

N=100

xyhist = np.ones ((2*N+1,2*N+1))*(-1)

ireal=0

sumt =0.0

global x,y

x=rs

y=0.0

while ireal < NR:

ireal += 1

x=rs

y=0.0

t=0.0

dist1=abs(rt -rs)

# do ten steps with dt *0.0001

for i in range (10):

x += 0.01* sfac*random.gauss (0,1)

y += 0.01* sfac*random.gauss (0,1)

t += 0.0001* dt

rr=(x-xt)*(x-xt)+(y-yt)*(y-yt)

c=xt

k=yt

"""If the particle crosses the boundary of the

nucleus we reflect it"""

if rr <a*a:

yy=y

xx=x

y=k+(2*a-np.sqrt((xx -c)**2+(yy-k)**2))*np.sin(

np.arctan2(yy -k, xx -c))

x=c+(2*a-np.sqrt((xx -c)**2+(yy-k)**2))*np.cos(

np.arctan2(yy -k, xx -c))

xyhist[int(round(x*N))+N][int(round(y*N))+N] +=

0.0001

# do ten steps with dt*0.01

for i in range (10):
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x += 0.1* sfac*random.gauss (0,1)

y += 0.1* sfac*random.gauss (0,1)

t += 0.01*dt

rr=(x-xt)*(x-xt)+(y-yt)*(y-yt)

c=xt

k=yt

"""If the particle crosses the boundary of the

nucleus we reflect it"""

if rr <a*a:

yy=y

xx=x

y=k+(2*a-np.sqrt((xx -c)**2+(yy-k)**2))*np.sin(

np.arctan2(yy -k, xx -c))

x=c+(2*a-np.sqrt((xx -c)**2+(yy-k)**2))*np.cos(

np.arctan2(yy -k, xx -c))

xyhist[int(round(x*N))+N][int(round(y*N))+N] +=

0.01

while True:

X=x

Y=y

x += sfac*random.gauss (0,1)

y += sfac*random.gauss (0,1)

t += dt

"""If the particle crosses the cellular surface we

determine if it

absorbed or reflected """

r1=np.sqrt(x**2+y**2)

r2=np.sqrt(X**2+Y**2)

C=math.exp(-2*min(1-r1 ,1-r2)/(np.sqrt(D*dt)))

u=np.random.uniform (0,1,1)

if C>u:

sumt += t

break

rr=x*x+y*y

if rr >1:

sumt += t
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break

rr=(x-xt)*(x-xt)+(y-yt)*(y-yt)

c=xt

k=yt

"""If the particle crosses the boundary of the

nucleus we reflect it"""

if rr <a*a:

yy=y

xx=x

y=k+(2*a-np.sqrt((xx -c)**2+(yy-k)**2))*np.sin(

np.arctan2(yy -k, xx -c))

x=c+(2*a-np.sqrt((xx -c)**2+(yy-k)**2))*np.cos(

np.arctan2(yy -k, xx -c))

xyhist[int(round(x*N))+N][int(round(y*N))+N] += 1

xyarea =1.0/(N*N)

myrange =0.05* arange (60)

z1 ,z2=linspace (-1,1,2*N+1),linspace (-1,1,2*N+1)

hist=xyhist.transpose ()

CC=hist*dt/( xyarea*NR)

txt=str(BC)+"_"+str(SC)+str(".txt")

file = open(txt , "w")

for i in range(len(CC[:,1])):

for j in CC[i,:]:

file.write(str(j)+’ ’)

file.close ()

G.5.1.2 Plot

"""We plot the numerical simulation for the Green’s

function G_1 ^{(2)} and

compare them with the analytic formula derived using

bipolar coordinates """

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import LogNorm
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from pylab import contourf ,savefig ,show ,subplot ,colorbar ,

clabel ,title ,figure

from matplotlib import cm

matrix = np.random.random ((10, 10, 3))

"""We define the radius of the cell , the radisu of the

nucleus , the diplacement

of the nucleus , the diffusion coefficient , the size of the

matrix and the

starting position of Brownian particles """

b=1

a=0.1

c=+0.25

D=0.5

N=100

rs=-0.5

z1 ,z2=np.linspace (-1,1,2*N+1),np.linspace (-1,1,2*N+1)

(Z1 ,Z2) = np.meshgrid(z1,z2)

def bipolar(x,y):

"""We convert Cartesian coordinates into bipolar

coordinates """

c=+0.25

d=1/c*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau =0.5*np.log(((x+d)**2+y**2) /((x-d)**2+y**2))

rho=np.pi -np.arctan2 (2*d*y,x**2+y**2-d**2)

return tau ,rho

def Green_bipolar_dirichlet_neumann(y1 ,y2 ,Z1 ,Z2 ,n):

’’’Green function G_1 ^{(2)}’’’

c=+0.25

d=1/c*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

A=(b**2+d**2) **0.5

tau=bipolar(Z1+A,Z2)[0]

rho=bipolar(Z1+A,Z2)[1]

tau0=bipolar(y1+A,y2)[0]

rho0=bipolar(y1+A,y2)[1]

tau2=np.log(d/b+(1+(d/b)**2) **0.5)

tau1=np.log(d/a+(1+(d/a)**2) **0.5)
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ret=0

if tau >tau0:

for i in range(1,n):

ret+=np.cos(i*(rho -rho0))/(i*np.pi)*(np.sinh(i

*(tau0 -tau2))*np.cosh(i*(tau1 -tau)))/np.cosh

(i*(tau2 -tau1))

ret +=1/(2* np.pi)*(tau0 -tau2)

if tau0 >tau:

for i in range(1,n):

ret+=np.cos(i*(rho -rho0))/(i*np.pi)*(np.sinh(i

*(tau -tau2))*np.cosh(i*(tau1 -tau0)))/np.cosh

(i*(tau2 -tau1))

ret +=1/(2* np.pi)*(tau -tau2)

return ret/D

CD = np.ones(shape =(2*N+1,2*N+1))*(-1)

"""We upload the numerical simulations for G_1 ^{(2)}"""

new_data = np.loadtxt(’DatafileNumerical.txt’)

new_data = new_data.reshape ((2*N+1,2*N+1))

hist=new_data.transpose ()

rt=c

x1 ,x2=rt ,0

"""We mask the excluded region and the extracellular region

"""

exterior = np.sqrt((Z1**2) + (Z2**2)) > b

interior = np.sqrt (((Z1+x2)**2) + ((Z2+x1)**2)) < a

hist[interior] = -100

hist[exterior] = -100

HIST=hist.transpose ()

z2 ,z3=np.linspace (-1,1,2*N+1),np.linspace (-1,1,2*N+1)

(Z2 ,Z3) = np.meshgrid(z2,z3)

rs=-0.5

y1 ,y2=rs ,0

for I in range (2*N+1):

for J in range (2*N+1):

CD[I,J]= Green_bipolar_dirichlet_neumann(y1 ,y2 , z1[I

], z2[J] ,200)
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print(I,J,CD[I,J])

HIST_1=CD.transpose ()

"""We mask the excluded region and the extracellular region

"""

exterior = np.sqrt((Z2**2) + (Z3**2)) > b

interior = np.sqrt((Z2+rt)**2 + ((Z3)**2)) < a

HIST_1[interior] = -100

HIST_1[exterior] = -100

"""We take the difference between the numerical simulation

and the analytic

formula """

HIST_2=HIST -HIST_1

"""We mask the excluded region and the extracellular region

"""

exterior = np.sqrt((Z2**2) + (Z3**2)) > b

interior = np.sqrt((Z2+rt)**2 + ((Z3)**2)) < a

HIST_2[interior] = -100

HIST_2[exterior] = -100

fig , ax = plt.subplots (1,3, figsize =(12, 3))

plt.subplots_adjust(left =0.05 , right =0.85)

myrange =0.05* np.arange (0.0 ,25)

z2 ,z3=np.linspace (1,-1,2*N+1),np.linspace (1,-1,2*N+1)

(Z2 ,Z3) = np.meshgrid(z2,z3)

im=ax[0]. contourf(z2 ,z3 ,np.rot90(np.rot90(HIST)),myrange ,

cmap=cm.terrain)

"""We change the python plot such that it the window is a

square and there are

not ticks """

ax[0]. set_aspect("equal")

ax[0]. set_xticks ([])

ax[0]. set_yticks ([])

ax[0]. set_title(’numerical ’)

"""We draw the outer boundary as a blue circle and the

inner boundary as a red

circle """
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circle = plt.Circle ((0 ,0), 1, color=’blue’, fill=False ,

linewidth =1)

ax[0]. add_artist(circle)

circle = plt.Circle((-c,0), a, color=’red’, fill=False ,

linewidth =1)

ax[0]. add_artist(circle)

im=ax[1]. contourf(z2 ,z3 ,np.rot90(np.rot90(HIST_1)),myrange ,

cmap=cm.terrain)

"""We change the python plot such that it the window is a

square and there are

not ticks """

ax[1]. set_aspect("equal")

ax[1]. set_xticks ([])

ax[1]. set_yticks ([])

ax[1]. set_title(’exact’)

"""We draw the outer boundary as a blue circle and the

inner boundary as a red

circle """

circle = plt.Circle ((0 ,0), 1, color=’blue’, fill=False ,

linewidth =1)

ax[1]. add_artist(circle)

circle = plt.Circle((-c,0), a, color=’red’, fill=False ,

linewidth =1)

ax[1]. add_artist(circle)

myrange =0.001* np.arange (-5,5.1)

im2=ax[2]. contourf(z2 ,z3 ,np.rot90(np.rot90(HIST_2)),myrange

,cmap=cm.terrain)

"""We change the python plot such that it the window is a

square and there are

not ticks """

ax[2]. set_aspect("equal")

ax[2]. set_xticks ([])

ax[2]. set_yticks ([])

ax[2]. set_title(’difference ’)

"""We draw the outer boundary as a blue circle and the

inner boundary as a red

254



G.6 Average mean time

circle """

circle = plt.Circle ((0 ,0), 1, color=’blue’, fill=False ,

linewidth =1)

ax[2]. add_artist(circle)

circle = plt.Circle((-c,0), a, color=’red’, fill=False ,

linewidth =1)

ax[2]. add_artist(circle)

plt.draw()

"""We add the colorbars to the plot """

p0 = ax[0]. get_position ().get_points ().flatten ()

p1 = ax[1]. get_position ().get_points ().flatten ()

p2 = ax[2]. get_position ().get_points ().flatten ()

ax_cbar = fig.add_axes ([p0[0], 0, p1[2]-p0[0], 0.05])

cb=plt.colorbar(im , cax=ax_cbar , ticks =[0 ,0.6 ,1.2] ,

orientation=’horizontal ’)

font_size = 12 # Adjust as appropriate.

cb.ax.tick_params(labelsize=font_size)

ax_cbar1 = fig.add_axes ([p2[0], 0, p2[2]-p2[0], 0.05])

cb=plt.colorbar(im2 , cax=ax_cbar1 ,ticks =[ -0.005 ,0 ,0.005] ,

orientation=’horizontal ’)

font_size = 12 # Adjust as appropriate.

cb.ax.tick_params(labelsize=font_size)

plt.savefig(’twoDcomparisonG1.pdf’,bbox_inches=’tight’)

plt.show()

G.6 Average mean time

G.6.1 Numerical simulations

G.6.1.1 From nuclear surface to cellular surface in an eccentric spher-

ical domain

""" Brownian simulation start at nucleus and run until hit

cell surface in two

dimensions """
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import numpy as np

import scipy.stats as stats

import pylab as pl

import matplotlib.pyplot as plt

from numpy import random as r

from mpmath import csch ,coth

"""We define the diffusion coefficient , the radius of the

nucleus , the radius

of the cell , the number of realisations of the Brownian

simulations and time

step """

D = 0.5

a = 0.1

b = 1.0

nreal = 50000

dt = 0.001

def sdistnucl(x,y,z):

’’’square of distance from centre of nucleus ’’’

return x**2 + y**2 + (z-c)**2

def sdistsurf(x,y,z):

’’’ square of distance from centre of cell ’’’

return x**2 + y**2 + z**2

def reflectnucl(x,y,z):

’’’ find new position by simple reflection off nuclear

surface ’’’

X,Y,Z = x,y,z

oldr = np.sqrt(sdistnucl(x,y,z))

z = c+(2*a-oldr)*np.cos(np.arccos ((Z-c)/(X**2+Y**2+(Z-c

)**2) **0.5))

y = (2*a-oldr)*np.sin(np.arctan2(Y, X))*np.sin(np.

arccos ((Z-c)/(X**2+Y**2+(Z-c)**2) **0.5))

x = (2*a-oldr)*np.cos(np.arctan2(Y, X))*np.sin(np.

arccos ((Z-c)/(X**2+Y**2+(Z-c)**2) **0.5))

return x,y,z

def reflectsurf(x,y,z):
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’’’ find new position by simple reflection off cellular

surface ’’’

X,Y,Z = x,y,z

oldr = np.sqrt(sdistsurf(x,y,z))

z = (2*b-oldr)*np.cos(np.arccos(Z/(X**2+Y**2+Z**2)

**0.5))

y = (2*b-oldr)*np.sin(np.arctan2(Y, X))*np.sin(np.

arccos(Z/(X**2+Y**2+Z**2) **0.5))

x = (2*b-oldr)*np.cos(np.arctan2(Y, X))*np.sin(np.

arccos(Z/(X**2+Y**2+Z**2) **0.5))

return x,y,z

def expotimeT1(c):

’’’Exponential timestep with boundary test for

diffusion from the nuclear

surface to the cellular surface ’’’

"""We define the initial position of the Brownian

particle uniformly on the

surface of the nucleus """

X = np.random.uniform (-1,1)

Y = np.random.uniform (-1,1)

z = np.random.uniform (-1,1)

while(X**2+Y**2==1):

X = np.random.uniform (-1,1)

Y = np.random.uniform (-1,1)

x = a*np.sqrt(1-z**2)*(X**2-Y**2)/(X**2+Y**2)

y = a*np.sqrt(1-z**2) *(2*X*Y)/(X**2+Y**2)

z = a*z + c

istep = 0

r1s = sdistsurf(x,y,z)

phit = 0

""" While the Brownian particle has not hit the cellular

surface it will

keep diffusing """

while phit < r.random ():

"""We update the position of the Brownian particle

after one
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timestep """

r0s = r1s

w = np.sqrt(np.random.normal (0,1) **2+np.random.

normal (0,1) **2+np.random.normal (0,1) **2)

mod = pl.sqrt(-2*pl.log(r.random ()))*w/nu

rs = 2.0

Z = np.random.uniform (-1,1)

while rs > 1:

v1 ,v2 = 2*r.random () -1,2*r.random () -1

rs = v1*v1+v2*v2

x += mod*np.sqrt(1-Z**2)*(v1*v1-v2*v2)/rs

y += mod*np.sqrt(1-Z**2) *2*v1*v2/rs

z += mod*Z

"""If the particle cross the surface of the nucleus

it is reflected """

if sdistnucl(x,y,z) < a*a:

x,y,z = reflectnucl(x,y,z)

istep += 1

r1s = sdistsurf(x,y,z)

"""We update the probability that the Brownian

particle hit the

cellular surface """

phit = pl.exp(-2*nu*(b-max(pl.sqrt(r0s),pl.sqrt(r1s

))))

"""We return the position of the Brownian particle on

the cellular surface

and the number of steps it took to reach the cellular

surface """

return istep

np.random.seed()

dtlist ,emlist ,esemlist = [],[],[]

sdt = pl.sqrt (2*D*dt)

nu = 1.0/pl.sqrt(D*dt)

txt=str("T1BAR")+str(".txt")

file = open(txt , "w")
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"""We define the range of value the displacement of the

nucleus takes """

C=np.linspace (0,1-a,10)

for c in C:

tone = [dt*expotimeT1(c) for i in range(nreal)]

print(dt ,pl.mean(tone),’+-’,stats.sem(tone) ,)

print(tone [:5])

dtlist.append(dt)

emlist.append(pl.mean(tone))

esemlist.append(stats.sem(tone))

"""We record the position of the nucleus , the mean time

and standard error

of the mean """

file.write(str(pl.mean(tone))+’ ’+str(stats.sem(tone))+

’ ’)

file.close ()

G.6.1.2 Mean round-trip time in an eccentric circular domain

""" Brownian simulation start at nucleus , run until hit cell

surface and then

returns to the nucleus """

import numpy as np

import scipy.stats as stats

import pylab as pl

from numpy import random as r

from mpmath import csch ,coth

import matplotlib.pyplot as plt

"""We define the diffusion coefficient , the radius of the

nucleus , the radius

of the cell , the number of realisations of the Brownian

simulations and time

step """

D = 0.5

a = 0.1

b = 1.0
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nreal = 5000

dt = 0.001

def sdistnucl(x,y):

’’’square of distance from centre of nucleus ’’’

return (x-c)**2 + y**2

def sdistsurf(x,y):

’’’ square of distance from centre of cell ’’’

return x**2 + y**2

def reflectnucl(x,y):

’’’ find new position by simple reflection off nuclear

surface ’’’

oldr = pl.sqrt(sdistnucl(x,y))

newr = 2*a-oldr

return c+(x-c)*newr/oldr ,y*newr/oldr

def reflectsurf(x,y):

’’’ find new position by simple reflection off the

cellular surface ’’’

oldr = pl.sqrt(sdistsurf(x,y))

newr = 2*b-oldr

return x*newr/oldr ,y*newr/oldr

def reflectsurffin(x,y):

’’’ find new position by projecting on the cellular

surface ’’’

oldr = pl.sqrt(sdistsurf(x,y))

return x/oldr ,y/oldr

def expotime1(c):

’’’Exponential timestep with boundary test for

diffusion from the nuclear

surface to the cellular surface ’’’

"""We define the initial position of the Brownian

particle uniformly on the

surface of the nucleus """

theta = np.random.uniform (0,2*np.pi ,1)

x, y = c + a*np.cos(theta), a*np.sin(theta)

ir ,istep = 0,0

r1s = sdistsurf(x,y)
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phit = 0

""" While the Brownian particle has not hit the cellular

surface it will

keep diffusing """

while phit < r.random ():

"""We update the position of the Brownian particle

after one

timestep """

r0s = r1s

mod = 2*pl.sqrt(pl.log(r.random ())*pl.log(r.random

()))/nu

rs = 2.0

while rs > 1:

v1 ,v2 = 2*r.random () -1,2*r.random () -1

rs = v1*v1+v2*v2

x += mod*(v1*v1 -v2*v2)/rs

y += mod*2*v1*v2/rs

"""If the particle crosses the surface of the

nucleus it is reflected """

if sdistnucl(x,y) < a*a:

x,y = reflectnucl(x,y)

ir += 1

istep += 1

r1s = sdistsurf(x,y)

"""We update the probability that the Brownian

particle hit the

cellular surface """

phit = pl.exp(-2*nu*(b-max(r0s **0.5, r1s **0.5)))

""" After the Brownian particle has crossed the cellular

surface it is

placed on the cellular surface while preserving the

angle """

x,y = reflectsurffin(x,y)

"""We return the position of the Brownian particle on

the cellular surface
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and the number of steps it took to reach the cellular

surface """

return x, y, istep

def expotime2 ():

’’’Exponential timestep with boundary test for

diffusion from the cellular

surface to the nuclear surface ’’’

"""We define the initial position of the Brownian

particle to be the end

point of the outward path """

x, y, istep = expotime1(c)

print(c,np.sqrt(x**2+y**2),istep)

r1s = sdistnucl(x,y)

phit = 0

""" While the Brownian particle has not hit the nuclear

surface it will

keep diffusing """

while phit < r.random ():

"""We update the position of the Brownian particle

after one

timestep """

r0s = r1s

mod = 2*pl.sqrt(pl.log(r.random ())*pl.log(r.random

()))/nu

rs = 2.0

while rs > 1:

v1 ,v2 = 2*r.random () -1,2*r.random () -1

rs = v1*v1+v2*v2

x += mod*(v1*v1 -v2*v2)/rs

y += mod*2*v1*v2/rs

"""If the particle crosses the surface of the cell

it is reflected """

if sdistsurf(x,y) > b*b:

x,y = reflectsurf(x,y)

istep += 1

r1s = sdistnucl(x,y)
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"""We update the probability that the Brownian

particle hit the

cellular surface """

phit = pl.exp(-2*nu*(min(r0s **0.5, r1s **0.5) -a))

"""We return the number of steps it took for the

Brownian particle to reach

the nuclear surface """

return istep

"""We define the range of value the displacement of the

nucleus takes """

C = np.linspace (0,1-a,10)

txt=str("2Dt2Simulation.txt")

file = open(txt , "w")

for c in C:

print(c)

sdt = pl.sqrt (2*D*dt)

nu = 1.0/pl.sqrt(D*dt)

tone = [dt*expotime2 () for i in range(nreal)]

print(c,pl.mean(tone),’+-’,stats.sem(tone))

"""We record the position of the nucleus , the mean time

and standard error

of the mean """

file.write(str(c)+’ ’+str(pl.mean(tone))+’ ’ +str(stats

.sem(tone))+’ ’)

file.close ()

G.6.1.3 From nuclear surface to the cellular surface in an eccentric

circular domain

""" Brownian simulation start at nucleus and run until hit

cell surface in two

dimensions """

import numpy as np

import scipy.stats as stats

import pylab as pl

from numpy import random as r
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from mpmath import csch ,coth

import matplotlib.pyplot as plt

"""We define the diffusion coefficient , the radius of the

nucleus , the radius

of the cell , the number of realisations of the Brownian

simulations and time

step """

D = 0.5

a = 0.1

b = 1.0

nreal = 10000

dt = 0.001

def sdistnucl(x,y,c):

’’’square of distance from centre of nucleus ’’’

return (x-c)**2 + y**2

def sdistsurf(x,y):

’’’ square of distance from centre of cell ’’’

return x**2 + y**2

def reflectnucl(x,y):

’’’ find new position by simple reflection off nuclear

surface ’’’

oldr = pl.sqrt(sdistnucl(x,y,c))

newr = 2*a-oldr

return c+(x-c)*newr/oldr ,y*newr/oldr

def reflectsurf(x,y):

’’’ find new position by simple reflection off cellular

surface ’’’

oldr = pl.sqrt(sdistsurf(x,y))

newr = 2*b-oldr

return x*newr/oldr ,y*newr/oldr

def expotime1 ():

’’’Exponential timestep with boundary test for

diffusion from the nuclear

surface to the cellular surface ’’’

"""We define the initial position of the Brownian

particle uniformly on the
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surface of the nucleus """

theta = np.random.uniform (0,2*np.pi ,1)

x, y = c + a*np.cos(theta), a*np.sin(theta)

istep = 0,0

r1s = sdistsurf(x,y)

phit = 0

""" While the Brownian particle has not hit the cellular

surface it will

keep diffusing """

while phit < r.random ():

"""We update the position of the Brownian particle

after one

timestep """

r0s = r1s

mod = 2*pl.sqrt(pl.log(r.random ())*pl.log(r.random

()))/nu

rs = 2.0

while rs > 1:

v1 ,v2 = 2*r.random () -1,2*r.random () -1

rs = v1*v1+v2*v2

x += mod*(v1*v1 -v2*v2)/rs

y += mod*2*v1*v2/rs

"""If the particle cross the surface of the nucleus

it is reflected """

if sdistnucl(x,y,c) < a*a:

x,y = reflectnucl(x,y)

istep += 1

r1s = sdistsurf(x,y)

"""We update the probability that the Brownian

particle hit the

cellular surface """

phit = pl.exp(-2*nu*(b-max(r0s **0.5, r1s **0.5)))

"""We return the position of the Brownian particle on

the cellular surface

and the number of steps it took to reach the cellular

surface """
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return istep

"""We define the range of value the displacement of the

nucleus takes """

C=np.linspace (0,1-a,10)

txt=str("barT1.txt")

file = open(txt , "w")

for c in C:

sdt = pl.sqrt (2*D*dt)

nu = 1.0/pl.sqrt(D*dt)

tone = [dt*expotime1 () for i in range(nreal)]

print(pl.mean(tone),’+-’,stats.sem(tone))

"""We record the position of the nucleus , the mean time

and standard error

of the mean """

file.write(str(c)+’ ’+str(pl.mean(tone))+’ ’ +str(stats

.sem(tone))+’ ’)

file.close ()

G.6.1.4 From cellular surface to nuclear surface in an eccentric circu-

lar domain

""" Brownian simulation start at cellular surface and runs

until hit nucleus in

two dimensions """

import numpy as np

import scipy.stats as stats

import pylab as pl

from numpy import random as r

from mpmath import csch ,coth

import matplotlib.pyplot as plt

"""We define the diffusion coefficient , the radius of the

nucleus , the radius

of the cell , the number of realisations of the Brownian

simulations and time

step """

D = 0.5
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a = 0.25

b = 1.0

nreal = 10000

dt = 0.001

def sdistnucl(x,y,c):

’’’square of distance from centre of nucleus ’’’

return (x-c)**2 + y**2

def sdistsurf(x,y):

’’’ square of distance from centre of cell ’’’

return x**2 + y**2

def reflectnucl(x,y):

’’’ find new position by simple reflection off the

nuclear surface ’’’

oldr = pl.sqrt(sdistnucl(x,y))

newr = 2*a-oldr

return c+(x-c)*newr/oldr ,y*newr/oldr

def reflectsurf(x,y):

’’’ find new position by simple reflection off the

cellular surface ’’’

oldr = pl.sqrt(sdistsurf(x,y))

newr = 2*b-oldr

return x*newr/oldr ,y*newr/oldr

def expotime2 ():

’’’Exponential timestep with boundary test for

diffusion from the cellular

surface to the nuclear surface ’’’

"""We define the initial position of the Brownian

particle uniformly on the

surface of the cell """

theta = np.random.uniform (0,2*np.pi)

x, y = b*np.cos(theta), b*np.sin(theta)

istep = 0,0

r1s = sdistnucl(x,y,c)

phit = 0

""" While the Brownian particle has not hit the nuclear

surface it will
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keep diffusing """

while phit < r.random ():

"""We update the position of the Brownian particle

after one

timestep """

r0s = r1s

mod = 2*pl.sqrt(pl.log(r.random ())*pl.log(r.random

()))/nu

rs = 2.0

while rs > 1:

v1 ,v2 = 2*r.random () -1,2*r.random () -1

rs = v1*v1+v2*v2

x += mod*(v1*v1 -v2*v2)/rs

y += mod*2*v1*v2/rs

"""If the particle crosses the surface of the cell

it is reflected """

if sdistsurf(x,y) > b*b:

x,y = reflectsurf(x,y)

istep += 1

r1s = sdistnucl(x,y,c)

"""We update the probability that the Brownian

particle hit the

cellular surface """

phit = pl.exp(-2*nu*(min(r0s **0.5, r1s **0.5) -a))

"""We return the number of steps it took for the

Brownian particle to reach

the nuclear surface """

return istep

"""We define the range of value the displacement of the

nucleus takes """

C=np.linspace (0,1-a,10)

txt=str("barT2.txt")

file = open(txt , "w")

for c in C:

sdt = pl.sqrt (2*D*dt)

nu = 1.0/pl.sqrt(D*dt)
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tone = [dt*expotime2 () for i in range(nreal)]

print(pl.mean(tone),’+-’,stats.sem(tone))

"""We record the position of the nucleus , the mean time

and standard error

of the mean """

file.write(str(c)+’ ’+str(pl.mean(tone))+’ ’ +str(stats

.sem(tone))+’ ’)

file.close ()

G.6.2 Plots

G.6.2.1 From nuclear surface to cellular surface

"""We plot the average mean time \bar{T}_1 ^{(3)} in an

eccentric spherical

annular region """

import numpy as np

from scipy.spatial.distance import pdist , squareform

import matplotlib.pyplot as plt

import math

import scipy.special as sp

import scipy.stats as stats

from pylab import contourf ,savefig ,show ,subplot ,colorbar ,

clabel ,title ,figure

import scipy.integrate as integrate

"""We define the radius of the cell , the radius of the

nucleus and the

diffusion coefficient """

b=1

a=0.1

D=0.5

"""We define the functions necessary to construct continued

fractions """

def alphan(n,tau1 ,tau2):

return 2*n/(2*n+1)*np.exp(-(n -0.5)*tau1)*(np.cosh((n

-0.5) *(tau1 -tau2))/np.sinh((n-0.5)*tau2))
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def gamman(n,tau1 ,tau2):

return (2*n+2) /(2*n+1)*np.exp(-(n+1.5)*tau1)*(np.cosh((

n+1.5) *(tau1 -tau2))/np.sinh((n+1.5)*tau2))

def betan(n,tau1 ,tau2):

return np.exp(-(n+0.5)*tau1)/(n+0.5) *(-(2*n+1)*np.cosh(

tau1)*(np.cosh((n+0.5)*(tau1 -tau2))/np.sinh((n+0.5)*

tau2))-np.sinh(tau1)*(np.sinh((n+0.5)*(tau1 -tau2))/

np.sinh((n+0.5)*tau2)))

def alphanB(n,tau1 ,tau2):

return -2*n/(2*n+1)*np.exp(-(n -0.5)*tau1)*(np.cosh((n

-0.5)*tau1)-np.sinh((n-0.5)*tau1)*np.sinh((n-0.5)*

tau2)/np.cosh((n -0.5)*tau2))

def gammanB(n,tau1 ,tau2):

return -(2*n+2) /(2*n+1)*np.exp(-(n+1.5)*tau1)*(np.cosh

((n+1.5)*tau1)-np.sinh((n+1.5)*tau1)*np.sinh((n+1.5)

*tau2)/np.cosh((n+1.5)*tau2))

def betanB(n,tau1 ,tau2):

return np.exp(-(n+0.5)*tau1)/(n+0.5) *((2*n+1)*np.cosh(

tau1)*(np.cosh((n+0.5)*(tau1 -tau2))/np.cosh((n+0.5)*

tau2))+np.sinh(tau1)*(np.sinh((n+0.5)*(tau1 -tau2))/

np.cosh((n+0.5)*tau2)))

def lambdan(n,tau1 ,tau2):

V2 = np.sinh((n+0.5)*tau1)*np.sinh(tau1)+2*(n+0.5)*np.

cosh((n+0.5)*tau1)*np.cosh(tau1)

W = np.sinh(tau1) -2*(n+0.5)*np.cosh(tau1)

return 2*W/(2*n+1)*np.exp(-(n+0.5)*tau1)+(2*n+2) /(2*n

+1)*np.exp(-(n+1.5)*tau1)+2*n/(2*n+1)*np.exp(-(n

-0.5)*tau1) -2*V2*np.exp(-(n+0.5) *(2*tau1 -tau2))/((2*

n+1)*np.sinh((n+0.5)*tau2))+np.cosh((n+1.5)*tau1)*np

.exp(-(n+1.5) *(2*tau1 -tau2))/np.sinh((n+1.5)*tau2)

*(2*n+2) /(2*n+1)+np.cosh((n -0.5)*tau1)*np.exp(-(n

-0.5) *(2*tau1 -tau2))/np.sinh((n-0.5)*tau2)*(2*n)/(2*

n+1)

def lambdanB(n,tau1 ,tau2):

V1 = np.cosh((n+0.5)*tau1)*np.sinh(tau1)+2*(n+0.5)*np.

sinh((n+0.5)*tau1)*np.cosh(tau1)
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W = np.sinh(tau1) -2*(n+0.5)*np.cosh(tau1)

return 2*W/(2*n+1)*np.exp(-(n+0.5)*tau1)+(2*n+2) /(2*n

+1)*np.exp(-(n+1.5)*tau1)+2*n/(2*n+1)*np.exp(-(n

-0.5)*tau1) -2*V1*np.exp(-(n+0.5) *(2*tau1 -tau2))/((2*

n+1)*np.cosh((n+0.5)*tau2))+np.sinh((n+1.5)*tau1)*np

.exp(-(n+1.5) *(2*tau1 -tau2))/np.cosh((n+1.5)*tau2)

*(2*n+2) /(2*n+1)+np.sinh((n -0.5)*tau1)*np.exp(-(n

-0.5) *(2*tau1 -tau2))/np.cosh((n-0.5)*tau2)*(2*n)/(2*

n+1)

"""We construct the continued fractions """

def pn(n,N,tau1 ,tau2):

s = 0

for i in range(0,N-1):

S = gamman(N+n-(i+1),tau1 ,tau2)*alphan(N+n-i,tau1 ,

tau2)

s = S/( betan(N+n-i,tau1 ,tau2)-s)

s = - alphan(n+1,tau1 ,tau2)/(betan(n+1,tau1 ,tau2)-s)

return s

def qn(n,tau1 ,tau2):

s = 0

for i in range(0,n-1):

S = alphan(i+1,tau1 ,tau2)*gamman(i,tau1 ,tau2)

s = S/( betan(i,tau1 ,tau2)-s)

s = - gamman(n-1,tau1 ,tau2)/(betan(n-1,tau1 ,tau2)-s)

return s

def pnB(n,N,tau1 ,tau2):

s = 0

for i in range(0,N-1):

S = gammanB(N+n-(i+1),tau1 ,tau2)*alphanB(N+n-i,tau1

,tau2)

s = S/( betanB(N+n-i,tau1 ,tau2)-s)

s = - alphanB(n+1,tau1 ,tau2)/( betanB(n+1,tau1 ,tau2)-s)

return s

def qnB(n,tau1 ,tau2):

s = 0

for i in range(0,n-1):
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S = alphanB(i+1,tau1 ,tau2)*gammanB(i,tau1 ,tau2)

s = S/( betanB(i,tau1 ,tau2)-s)

s = - gammanB(n-1,tau1 ,tau2)/( betanB(n-1,tau1 ,tau2)-s)

return s

def GN(N,n,tau1 ,tau2):

return 1/( alphan(N,tau1 ,tau2)*qn(N,tau1 ,tau2)+betan(N,

tau1 ,tau2)+gamman(N,tau1 ,tau2)*pn(N,n,tau1 ,tau2))

def GNB(N,n,tau1 ,tau2):

return 1/( alphanB(N,tau1 ,tau2)*qnB(N,tau1 ,tau2)+betanB(

N,tau1 ,tau2)+gammanB(N,tau1 ,tau2)*pnB(N,n,tau1 ,tau2)

)

def delta(n,m):

if n==m:

return 1

else:

return 0

def prodp(r,t,tau1 ,tau2):

p = 1

for i in range(r,t+1):

p = p*pn(i-1,15,tau1 ,tau2)

return p

def prodq(r,t,tau1 ,tau2):

q = 1

for i in range(r,t+1):

q = q*qn(i+1,tau1 ,tau2)

return q

def prodpB(r,t,tau1 ,tau2):

p = 1

for i in range(r,t+1):

p = p*pnB(i-1,15,tau1 ,tau2)

return p

def prodqB(r,t,tau1 ,tau2):

q = 1

for i in range(r,t+1):

q = q*qnB(i+1,tau1 ,tau2)

return q
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"""We define the Heaviside function """

def heaviside(x,y):

if x<0:

return 0

if x==0:

return y

if x>0:

return 1

"""We use the continued fractions to construct the

coefficients of the Green’s

functions """

def An(n,L,c):

s = 0

d = 1/c*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau2 = np.log(d/b+(1+(d/b)**2) **0.5)

tau1 = np.log(d/a+(1+(d/a)**2) **0.5)

for NN in range(0,L):

s += lambdan(NN ,tau1 ,tau2)*GN(NN ,10,tau1 ,tau2)*(

delta(NN ,n)+heaviside(n-NN ,0)*prodp(NN+1,n,tau1 ,

tau2)+heaviside(NN-n,0)*prodq(n,NN -1,tau1 ,tau2))

return s

def Bn(n,L,c):

s = 0

d = 1/c*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau2 = np.log(d/b+(1+(d/b)**2) **0.5)

tau1 = np.log(d/a+(1+(d/a)**2) **0.5)

for NN in range(0,L):

s += lambdanB(NN ,tau1 ,tau2)*GNB(NN ,10,tau1 ,tau2)*(

delta(NN ,n)+heaviside(n-NN ,0)*prodpB(NN+1,n,tau1

,tau2)+heaviside(NN-n,0)*prodqB(n,NN -1,tau1 ,tau2

))

return s

def AN(n,L,c):

d = 1/c*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau2 = np.log(d/b+(1+(d/b)**2) **0.5)

tau1 = np.log(d/a+(1+(d/a)**2) **0.5)
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s = np.exp(-(n+0.5) *(tau1 -tau2))/np.cosh((n+0.5)*tau2)-

Bn(n,L,c)*np.sinh((n+0.5)*tau2)/np.cosh((n+0.5)*tau2

)

return s

def BN(n,L,c):

d = 1/c*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau2 = np.log(d/b+(1+(d/b)**2) **0.5)

tau1 = np.log(d/a+(1+(d/a)**2) **0.5)

s = np.exp(-(n+0.5) *(tau1 -tau2))/np.sinh((n+0.5)*tau2)-

An(n,L,c)*np.cosh((n+0.5)*tau2)/np.sinh((n+0.5)*tau2

)

return s

"""We construct the exact Green’s function \bar{G}_1 ^{(3)}

"""

def G(x,c,n):

d = 1/c*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau1 = np.log(d/a+(1+(d/a)**2) **0.5)

return (An(n,10,c)*np.cosh((n+0.5)*x)+Bn(n,10,c)*np.

sinh((n+0.5)*x)-np.exp(-(n+0.5)*(tau1 -x)))*((2*n+3)

/3*np.exp(-(n+1/2)*x)/np.sinh(x)**2+2/3* np.exp(-(n

+3/2)*x)/np.sinh(x)**3)

"""We construct the approximate Green’s function \bar{G}_1

^{(3)}"""

def Gg(x,c,n):

d = 1/c*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau2 = np.log(d/b+(1+(d/b)**2) **0.5)

return np.sinh((n+0.5)*(x-tau2))*2**(1/2) *((2*n+3) /3*

np.exp(-(n+1/2)*x)/np.sinh(x)**2+2/3* np.exp(-(n+3/2)

*x)/np.sinh(x)**3)

"""We construct the approximate average mean time \bar{T}_1

^{(3)}"""

def AvgMeanTime(c,m):

s=0

d = 1/c*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau2 = np.log(d/b+(1+(d/b)**2) **0.5)

tau1 = np.log(d/a+(1+(d/a)**2) **0.5)
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for n in range(0,m+1):

I = integrate.quad(lambda x: Gg(x,c,n), tau2 , tau1)

[0]

s += I*(n+0.5)*np.exp(-(n+0.5)*tau1)/(np.sinh((n

+0.5)*(tau1 -tau2))*np.tanh(tau1)+2*(n+0.5)*np.

cosh((n+0.5) *(tau1 -tau2)))

s = 16*np.sqrt (2)*np.pi*d**4*s/(D*np.sinh(tau1))/(4*np.

pi*a**2)

return s

"""We construct the exact average mean time \bar{T}_1 ^{(3)}

"""

def AvgMeanTimeG(c,m):

s=0

d = 1/c*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau2 = np.log(d/b+(1+(d/b)**2) **0.5)

tau1 = np.log(d/a+(1+(d/a)**2) **0.5)

for n in range(0,m+1):

I = integrate.quad(lambda x: G(x,c,n), tau2 , tau1)

[0]

s += -I*np.exp(-(n+0.5)*tau1)

s = 2*d**4*s/(D*np.sinh(tau1)*a**2)

return s

"""We change the python plot such that it does not have

upper or rightward

border """

fig = plt.figure(frameon=False)

ax = plt.subplot (111)

ax.spines[’top’]. set_visible(False)

ax.spines[’right’]. set_visible(False)

ax.yaxis.set_ticks_position(’left’)

ax.xaxis.set_ticks_position(’bottom ’)

"""We plot the approximate average mean time \bar{T}_1 ^{(3)

}"""

NRPRT=np.linspace (0.025 ,0.89 ,100)

h=[ AvgMeanTime(x,20) for x in NRPRT]
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ax.plot(NRPRT ,h,color=’blue’,label=r’approximation ’,

linewidth =1.25)

"""We plot the exact average mean time \bar{T}_1 ^{(3)}"""

NRPRT=np.linspace (0.01 ,0.89 ,25)

h=[ AvgMeanTimeG(x,5) for x in NRPRT]

ax.plot(NRPRT ,h,color=’k’,label=r’exact’,linewidth =1.25)

"""We upload the numerical simulations for average mean

time \bar{T}_1 ^{(3)}

and plot them """

txt=str("3DUDMeanTime")+str(".txt")

text_file = open(txt , "r")

lines = text_file.read().split(" ")

text_file.close ()

T=[ float(lines [0])]

V=[ float(lines [1])]

for i in range(2,len(lines) -1):

if i%2==0:

T.append(float(lines[i]))

else:

V.append(float(lines[i]))

C=np.linspace (0,1-a,9)

ax.errorbar(C,T,V,fmt=’o’,color=’green’,label=’numerical ’)

x=0

y=(b**2-a**2) /(6*D)+a**3/(3*D)*(1/b-1/a)

plt.plot(x, y, ’ro’,label=r’concentric ’)

plt.xlabel(r’$c$’,fontsize =20)

plt.ylabel(r’$\frac{2D}{R^3}\ bar{T}_1 ^{(3)(a,c)}$’,fontsize

=20)

plt.xlim ([0 ,1])

plt.xticks ([0,0.5,1], [r’0’,r’0.5’,r’1’],fontsize =14)

plt.yticks ([0 ,0.15 ,0.3] , [r’0’,r’0.15’,r’0.3’],fontsize =14)

plt.legend(loc=3,fontsize =15, frameon=False)

plt.tight_layout ()

plt.savefig(’3DMeanTimeUDContinuedFraction.pdf’)

plt.show()
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G.6.2.2 Mean round-trip time in a circular domain

""" Plot of the round trip mean time from the nuclear

surface to the cellular

surface and back """

import numpy as np

from mpmath import *

import matplotlib.pyplot as plt

import math

from scipy.stats import poisson

from scipy.misc import factorial

import scipy.special

import itertools

"""We define the radius of the cell , the radius of the

nucleus and the

diffusion coefficient """

b=1

a=0.1

D=0.5

"""We change the python plot such that it does not have

upper or rightward

border """

fig = plt.figure(frameon=False)

ax = plt.subplot (111)

ax.spines[’top’]. set_visible(False)

ax.spines[’right’]. set_visible(False)

ax.yaxis.set_ticks_position(’left’)

ax.xaxis.set_ticks_position(’bottom ’)

"""We define the convolution function that gives the mean

time from the

cellular surface starting with a non -uniform initial

distribution given by the

hitting density """

def averagebipolarmeantimenonuniform(c,N):

d = 1/c*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau2 = np.log(d/b+(1+(d/b)**2) **0.5)
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tau1 = np.log(d/a+(1+(d/a)**2) **0.5)

"""We transform the hitting density into a complex

Fourier series in

complex form """

B = np.ones (2*N+1)

for n in range(0,N+1):

B[N+n] = 1/(2* np.pi)*(2*np.cosh(tau2)*np.exp(-n*

tau1)/(d*np.cosh(n*(tau1 -tau2))) -1/d*(np.exp(-(n

-1)*tau1)/(np.cosh((n-1)*(tau1 -tau2)))+np.exp(-(

n+1)*tau1)/(np.cosh((n+1)*(tau1 -tau2)))))/2

B[N-n] = 1/(2* np.pi)*(2*np.cosh(tau2)*np.exp(-n*

tau1)/(d*np.cosh(n*(tau1 -tau2))) -1/d*(np.exp(-(n

-1)*tau1)/(np.cosh((n-1)*(tau1 -tau2)))+np.exp(-(

n+1)*tau1)/(np.cosh((n+1)*(tau1 -tau2)))))/2

B[N] = 1/(2* np.pi)*(np.cosh(tau2)/d-np.exp(-tau1)/(d*np

.cosh(tau1 -tau2)))

m = int((len(B) -1)/2)

F = np.zeros (2*m+1)

"""We transform the mean time T_2 into a Fourier series

in complex form """

for n in range(0,m+1):

F[m+n] = -((2*d)/(D*n*np.exp(n*tau2)))*(d*c*n/(1+np

.exp(2*n*(tau1 -tau2))) -1/(2)*tanh(n*(tau1 -tau2))

)/2

F[m-n] = -((2*d)/(D*n*np.exp(n*tau2)))*(d*c*n/(1+np

.exp(2*n*(tau1 -tau2))) -1/(2)*tanh(n*(tau1 -tau2))

)/2

F[m] = (d/(2*D))*((tau1 -tau2)-c*d)

"""We convolute the two complex Fourier series """

G = np.convolve(B,F)

al = np.ones((len(G)+1) /2)

m = int((len(G)+1)/2)

l = int((len(G) -1)/2)

"""We transform the complex Fourier series back into

normal form """

for i in range(m):

278



G.6 Average mean time

al[i] = G[l+i] + G[l-i]

al[0] = al[0]/2

ret = 0

az=[]

"""We determine the mean time from the cellular surface

starting with a

non -uniform initial distribution given by the hitting

density """

for i in range(len(al)):

Ai = 2*np.pi*np.exp(-i*tau2)/np.sinh(tau2)

az.append(Ai)

ret += al[i]*Ai

return ret

"""We upload the numerical simulations for the round trip

mean time """

txt=str("2Dt2Simulation.txt")

text_file = open(txt , "r")

lines = text_file.read().split(" ")

g=[]

M=[]

B=[]

for i in range(len(lines) -1):

if i%3==0:

g.append(float(lines[i]))

if i%3==1:

M.append(float(lines[i]))

if i%3==2:

B.append(float(lines[i]))

"""We plot the numerical simulations for the round trip

mean time """

plt.errorbar(g, M, B, fmt=’o’,label=’numerical ’)

NRPRT=np.linspace (0,1-a-0.01 ,500)

"""We define the average mean time for a Brownian particle

starting uniformly

of the nuclear surface to the reach the cellular surface """

def T1AVG(c,N):
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d = (1/c)*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau2 = np.log(d/b+(1+(d/b)**2) **0.5)

tau1 = np.log(d/a+(1+(d/a)**2) **0.5)

ret = 0

for n in range(1,N):

ret += 2*np.exp(-2*n*tau1)/D*(-tanh(n*(tau1 -tau2))*

a**2/(2*n)+d*c/(1+np.exp(-2*n*(tau1 -tau2))))

ret += (a**2/(2*D))*(tau2 -tau1)+d*c/(2*D)

return ret

h=[ averagebipolarmeantimenonuniform(x,20) for x in NRPRT]

h1=[T1AVG(x,20) for x in NRPRT]

"""We obtain the analytic round trip mean time """

h2=[x+y for x,y in zip(h,h1)]

ax.plot(NRPRT ,h2 ,label=r’exact’,linewidth =1.25)

"""We plot the round trip mean time for the concentric case

"""

x=0

y1=-(b**2-a**2) /(4*D)+b**2/(2*D)*np.log(b/a)

y2=(b**2-a**2) /(4*D)-a**2/(2*D)*np.log(b/a)

ax.plot(x, y1+y2 , ’ro’,label=r’concentric ’)

plt.xlabel(r’$c$’,fontsize =20)

plt.ylabel(r’$\frac{2D}{R^2}\ left(\bar{T}_1 ^{(2) }+\bar{T}_2

^{\ varepsilon ,2}\ right)(a,c)$’,fontsize =20)

plt.xticks ([0,0.5,1], [r’0.0’,r’0.5’,r’1’],fontsize =14)

plt.yticks ([0,1,2], [r’0’,r’1’,r’2’],fontsize =14)

plt.xlim ([0 ,1])

plt.ylim ([0 ,2.4])

plt.legend(loc=3,fontsize =15, frameon=False)

plt.tight_layout ()

plt.savefig(’TavgTotal.pdf’)

plt.show()

G.6.2.3 Combined subplot of T̄
(2)
1 (a, c) and T̄

(2)
2 (a, c)

"""We plot the average mean times \bar{T}_1 ^{(2)} and \bar{

T}_2^{(2)} as
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functions of the nuclear displacement """

import numpy as np

from scipy.spatial.distance import pdist , squareform

import matplotlib.pyplot as plt

import math

import scipy.special as sp

from mpmath import *

"""We change the python plot such that it does not have

upper or rightward

border """

fig = plt.figure(frameon=False ,figsize =(6, 6))

ax=plt.subplot(2, 1, 1)

ax.spines[’top’]. set_visible(False)

ax.spines[’right’]. set_visible(False)

ax.yaxis.set_ticks_position(’left’)

ax.xaxis.set_ticks_position(’bottom ’)

"""We define the radius of the cell , the radius of the

nucleus and the

diffusion coefficient """

b=1

a=0.1

D=0.5

"""We upload the numerical simulations for average mean

time \bar{T}_1 ^{(2)}

and plot them """

txt=str("barT1.txt")

text_file = open(txt , "r")

lines = text_file.read().split(" ")

C=[]

A=[]

B=[]

for i in range(len(lines) -1):

if i%3==0:

C.append(float(lines[i]))

if i%3==1:

A.append(float(lines[i]))

281



G.6 Average mean time

if i%3==2:

B.append(float(lines[i]))

"""We plot the approximate average mean time \bar{T}_1 ^{(2)

}"""

ax.errorbar(C, A,B, fmt=’o’,label=’numerical ’)

"""We convert the Cartesian coordinates into bipolar

coordinates """

def bipolar(x,y,c):

d = (1/c)*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

A = (b**2+d**2) **0.5

x = x+A

tau = 0.5*np.log(((x+d)**2+y**2) /((x-d)**2+y**2))

return tau

"""We define the average mean time \bar{T}_1 ^{(2)}"""

def averagebipolarmeantime3(c,N):

d = (1/c)*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau2 = np.log(d/b+(1+(d/b)**2) **0.5)

tau1 = np.log(d/a+(1+(d/a)**2) **0.5)

ret = 0

for n in range(1,N):

ret += 2*np.exp(-2*n*tau1)/D*(-tanh(n*(tau1 -tau2))*

a**2/(2*n)+d*c/(1+np.exp(-2*n*(tau1 -tau2))))

ret += (a**2/(2*D))*(tau2 -tau1)+d*c/(2*D)

return ret

"""We define the average mean time \bar{T}_2 ^{(2)}"""

def averagebipolarmeantime4(c,N):

d = (1/c)*(0.25*(b**2+a**2-c**2)**2-a**2*b**2) **0.5

tau2 = np.log(d/b+(1+(d/b)**2) **0.5)

tau1 = np.log(d/a+(1+(d/a)**2) **0.5)

ret = 0

for n in range(1,N):

ret += (2*np.exp(-2*n*tau2)/D)*(np.tanh(n*(tau1 -

tau2))/(2*n)-d*c/(1+np.exp (2*n*(tau1 -tau2))))

ret += (tau1 -tau2)/(2*D)-d*c/(2*D)

return ret

NRPRT=np.linspace (0,1-a -0.0001 ,400)
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h=[ averagebipolarmeantime3(x,150) for x in NRPRT]

"""We plot the exact average mean time \bar{T}_1 ^{(2)}"""

ax.plot(NRPRT ,h,label=r’exact’,linewidth =1.25)

"""We define the approximation of \bar{T}_1 ^{(2)}"""

def RemusApprox(c):

return (1-c**2) /(4*D)-a**2/(2*D)*np.log (1/a)-a**2/(2*D)

*(np.log(1-c**2) +(1 -3*c**2) /(2*(1 -c**2)))

"""We define the approximation of \bar{T}_2 ^{(2)}"""

def Remus_approx5(c):

return 1/(4*D)*(c**2 -1) +1/(2*D)*np.log (1/a)+a**2/(4*D)

*(1 -4*c**2+c**4)/(1-c**2) **2 -1/(2*D)*np.log(1-c**2)

"""We define the approximation of \bar{T}_2 ^{(2)} derived

by Condamin et al."""

def Remus_approx6(c):

return 1/(4*D)*(c**2 -1) +1/(2*D)*np.log (1/a) -1/(2*D)*np.

log(1-c**2)

ax.plot(NRPRT ,RemusApprox(NRPRT),label=r’approximation ’,

linewidth =1.25)

plt.ylabel(r’$\frac{2D}{R^2}\ bar{T}_1 ^{(2)}(a,c)$’,fontsize

=20)

plt.xticks ([0,0.5,1], [r’0’,r’0.5’,r’1’],fontsize =14)

plt.yticks ([0 ,0.2 ,0.4] , [r’0.0’,r’0.2’,r’0.4’],fontsize =14)

plt.xlim ([0 ,1])

plt.legend(loc=3,fontsize =13, frameon=False)

ax = plt.subplot (212)

"""We upload the numerical simulations for average mean

time \bar{T}_1 ^{(2)}

and plot them """

txt=str("barT2.txt")

text_file = open(txt , "r")

lines = text_file.read().split(" ")

C=[]

A=[]

B=[]

for i in range(len(lines) -1):

if i%3==0:

283



G.6 Average mean time

C.append(float(lines[i]))

if i%3==1:

A.append(float(lines[i]))

if i%3==2:

B.append(float(lines[i]))

ax.errorbar(C, A,B, fmt=’o’,label=’numerical ’)

NRPRT=np.linspace (0,1-a -0.001 ,500)

h=[ averagebipolarmeantime4(x,100) for x in NRPRT]

"""We plot the exact average mean time \bar{T}_2 ^{(2)}"""

ax.plot(NRPRT ,h,label=r’exact’,linewidth =1.25)

"""We plot the approximate average mean time \bar{T}_2 ^{(2)

}"""

ax.plot(NRPRT ,Remus_approx5(NRPRT),color=’red’,label=r’

approximation ’,linewidth =1.25)

"""We plot the approximation derived by Condamin et al. to

the average mean

time \bar{T}_2^{(2)}"""

plt.plot(NRPRT ,Remus_approx6(NRPRT),’--’,color=’olive’,

label=r’Condamin et al.’,linewidth =1.25)

ax.spines[’top’]. set_visible(False)

ax.spines[’right’]. set_visible(False)

ax.yaxis.set_ticks_position(’left’)

ax.xaxis.set_ticks_position(’bottom ’)

plt.xlim ([0 ,1])

plt.xticks ([0 ,0.5 ,1.0] , [r’0’,r’0.5’,r’1’],fontsize =14)

plt.yticks ([0,2,4], [r’0’,r’2’,r’4’],fontsize =14)

plt.xlabel(r’$c$’,fontsize =18)

plt.ylabel(r’$\frac{2D}{R^2}\ bar{T}_2 ^{(2)}(a,c)$’,fontsize

=18)

plt.legend(loc=4,fontsize =13, frameon=False)

plt.tight_layout ()

plt.savefig(’CombinedSubplot.pdf’,bbox_inches=’tight’)

plt.show()
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G.7 Hitting density

G.7.1 No target in a circular domain

G.7.1.1 Numerical simulation

"""We simulate Brownian motion inside a disk and record the

end point on the

disk boundary """

import numpy as np

from scipy.spatial.distance import pdist , squareform

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import math

import sys

class ParticleBox:

"""

init_state is an [N x 2] array , where N is the number

of particles:

[[x1 , y1],

[x2 , y2],

... ]

bounds is the size of the box: [xmin , xmax , ymin , ymax]

"""

def __init__(self ,

init_state = [[1, 0],

[-0.5, 0.5],

[-0.5, -0.5]],

bounds = [-10, 10, -10, 10],

size = 0.04,

M = 0.05,

G = 9.8):

self.init_state = np.asarray(init_state , dtype=

float)

self.M = M * np.ones(self.init_state.shape [0])

self.size = size

self.state = self.init_state.copy()
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self.time_elapsed = 0

self.bounds = bounds

self.G = G

def step(self , dt):

"""We define the number of particles , radius of

disk , initial position

of particles and the diffusion coefficient """

global nrprt , b, c,D

""" step once by dt seconds """

time_step=np.random.exponential(scale=dt,size=None)

self.time_elapsed += time_step

"""We create a copy of the position vector of the

Brownian particles """

state_backup_2=self.state.copy()

"""We update the position of the Brownian particles

"""

self.state [:,0] += np.random.normal(0,np.sqrt (2*D*

time_step),len(self.state [: ,0]))

self.state [:,1] += np.random.normal(0,np.sqrt (2*D*

time_step),len(self.state [: ,1]))

"""We determine which particles crossed the disk

boundary and delete

them """

r1=[math.sqrt(x**2+y**2) for x,y in zip(self.state

[:,0],self.state [:,1])]

r2=[math.sqrt(x**2+y**2) for x,y in zip(

state_backup_2 [:,0], state_backup_2 [:,1])]

C=[math.exp(-(b-R1)*(b-R2)/(D*dt)) for R1,R2 in zip

(r1,r2)]

u=np.random.uniform(0,1,len(self.state [: ,0]))

Dist=np.where(C>u)

for i in Dist [0]:

theta=np.arctan2(self.state[i,1], self.state[i

,0])

"""We record the position of the particles on

the boundary """
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file.write(str(theta)+" ")

self.state=np.delete(self.state , Dist , axis =0)

nrprt=len(self.state [: ,0])

if nrprt ==0:

file.close()

sys.exit()

"Diffusion coefficient"

D=0.5

"Outer radius"

b=1

"Initial position"

c=0.89

txt=str("gpDatafileHP_c =0.89")+str(".txt")

file = open(txt , "w")

time=0

"Number of particles"

nrprt =500000

np.random.seed()

zr = np.zeros(nrprt)

os = np.ones(nrprt)

x=c*os

y=zr

"Position vector of particles"

init_state=np.c_[x, y]

print(init_state)

box = ParticleBox(init_state , size =0.001)

"Time step"

dt = 0.0001

""" set up figure and animation """

fig = plt.figure ()

fig.subplots_adjust(left=0, right=1, bottom=0, top=1)

ax = fig.add_subplot (111, aspect=’equal’, autoscale_on=

False ,

xlim=(-1.1, 1.1), ylim =(-1.1, 1.1))

""" particles holds the locations of the particles """

particles , = ax.plot([], [], ’ro’, ms=6)

287



G.7 Hitting density

""" rect is the box edge """

rect = plt.Rectangle(box.bounds [::2],

box.bounds [1] - box.bounds [0],

box.bounds [3] - box.bounds [2],

ec=’none’, lw=2, fc=’none’)

circle_1=plt.Circle ((0,0),b,color=’b’,fill=False)

ax.add_patch(rect)

ax.add_patch(circle_1)

def init():

""" initialize animation """

global box , rect

particles.set_data ([], [])

rect.set_edgecolor(’none’)

return particles , rect

def animate(i):

""" perform animation step """

global box , rect , dt , ax , fig , circle

box.step(dt)

ms = int(fig.dpi * 2 * box.size * fig.get_figwidth ()

/ np.diff(ax.get_xbound ())[0])

""" update pieces of the animation """

rect.set_edgecolor(’none’)

particles.set_data(box.state[:, 0], box.state[:, 1])

particles.set_markersize(ms)

return particles , rect

ani = animation.FuncAnimation(fig , animate , frames =100,

interval =10, blit=True ,

init_func=init)

plt.show()

G.7.1.2 Plot

"""We plot the hidding density of Brownian particle

diffusing inside a circle

"""
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import numpy as np

import matplotlib.pyplot as plt

import math

from scipy.stats import poisson

from scipy.misc import factorial

import scipy.special

import itertools

"""We define the radius of the cell , the radius of the

nucleus , the number of

Brownian particles used in the simulation and the number of

bins on the

cellular surface used to calculate the hitting density """

b=1

a=0.1

M=500000

N=3000

"""We define the hitting density function """

def hit_prob_in_out(theta ,c):

p= -(1/(4*np.pi*b))*(2/b*(c**4-b**4-b*c**3*np.cos(theta)

)+2*c*np.cos(theta)*(2*b**2-c**2))/((c**2+b**2-2*b*c

*np.cos(theta))**2)

return p

L=2*np.pi/N

NRPRT=np.linspace(-np.pi,np.pi,N)

fig = plt.figure(frameon=False)

ax = plt.subplot (111)

color_vec =[’darkblue ’,’darkgreen ’,’darkred ’]

I=0

"""We plot the numerical simulations """

for c in [0.25 ,0.5 ,0.89]:

print(c)

bins=np.zeros(N)

txt=str("gpDatafileHP_c="+str(c))+str(".txt")

text_file = open(txt , "r")

lines = text_file.read().split ()

for i in range(len(lines) -1):

289



G.7 Hitting density

bins[int(( float(lines[i])-np.pi)/L) -1]+=1/(M*L)

text_file.close ()

ax.plot(NRPRT ,bins ,color=color_vec[I])

I+=1

color_vec =[’cornflowerblue ’,’lime’,’lightcoral ’]

I=0

"""We plot the hitting density function for values of the

nuclear displacement

c=0.25 , c=0.5 and c=0.89 """

for c in [0.25 ,0.5 ,0.89]:

h=[ hit_prob_in_out(x,c) for x in NRPRT]

ax.plot(NRPRT ,h,color=color_vec[I],label=r’$c=$’+str(c)

,linewidth =1.25)

I+=1

"""We change the python plot such that it does not have

upper or rightward

border """

ax.spines[’top’]. set_visible(False)

ax.spines[’right’]. set_visible(False)

ax.yaxis.set_ticks_position(’left’)

ax.xaxis.set_ticks_position(’bottom ’)

plt.xticks([-np.pi ,-np.pi/2,0,np.pi/2, np.pi], [r’$-\pi$’,r

’$-\frac{\pi}{2}$’,0,r’$\frac{\pi}{2}$’, r’$\pi$’],

fontsize =16)

plt.xlim([-np.pi ,np.pi])

plt.yticks ([0,1.5 ,3] ,[’0’,’1.5’,’3’],fontsize =14)

plt.xlabel(r’$\theta_2$ ’,fontsize =16)

plt.ylabel(r’$\varepsilon_0 ^{(2) }(\ theta_2)$’,fontsize =16)

plt.legend(loc=1,fontsize =14, frameon=False)

plt.tight_layout ()

plt.savefig(’gpHD2019nt.pdf’)

plt.show()
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