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Abstract	
	

I	analyse	the	applicability	of	 the	concept	of	superposition	within	quantum	field	

theory	 (QFT)	 in	 order	 to	 consider	 the	 physical	 interpretation	 of	 a	 simple	

interacting	theory.	

First,	 I	 consider	 the	 significance	 of	 ‘superposition’	 in	 classical	 physics	

motivated	 by	 the	 philosophical	 framework	developed	 by	Wilson	 (2006;	 2017),	

via	 the	 analyses	 of	 ‘superposition’	 developed	 by	 Volkmann	 (1896;	 1910)	 and	

Simons	 (1987)	 in	 addition	 to	 a	 historical	 survey	 of	 its	 application	with	 special	

reference	 to	 Fourier	 techniques.	 The	 concept	 has	 a	 patchwork	 or	 façade	

structure,	 with	 application	 subject	 to	 ‘prolongation’	 and	 ‘semantic	 mimicry’.	

Proper	usage	of	 ‘superposition’	 is	associated	with	 identifying	partial	states	and	

laws	 that	 provide	 a	 natural	 description	 of	 complicated	 phenomena	 supporting	

physically	 salient	 explanations,	 inductive	 inferences	 and	 counterfactual	

reasoning.	

Secondly,	 I	 demonstrate	 that	 application	 of	 ‘superposition’	 in	 quantum	

physics	is	a	prolongation	of	its	classical	usage	involving	new	rules	of	application.	

Thirdly,	 I	analyse	the	historical	origins	of	QFT	and	the	mature	theory	to	

indicate	where,	 and	 how,	 proper	 application	of	 ‘superposition’	 is	made	 to	 free	

theories,	whilst	semantic	mimicry	is	involved	in	the	interpretation	of	interacting	

theories.	 Improper	 and	 often	 implicit	 appeals	 are	 made	 to	 ‘superposition’	 to	

incorrectly	 claim	 physical	 interpretations	 of	 interacting	 theories.	 Two	 major	

related	 failures	 of	 ‘superposition’	 are	 identified,	 associated	 with	 the	 initial	

postulation	of	putative	fields	and	corresponding	states	associated	with	different	

particle	 types,	 and	with	 the	nonlinearity	of	 the	 coupled	 field	equations,	so	 that	

natural	descriptions	of	interacting	states	using	familiar	concepts	are	unavailable.	

Renormalization	 is	 interpreted	as	a	symptom	and	pragmatic	partial	remedy	for	

the	 failure	 of	 ‘superposition’	 such	 that	 empirically	 successful	 calculations	 are	

supported	using	LSZ	scattering	theory	and	the	Gell-Mann	and	Low	theorem.	

Finally,	I	suggest	that	the	interpretation	of	QFT	is	best	approached	within	

the	 context	 of	 an	 engineer’s	 perspective	 rather	 than	 a	metaphysician’s,	 having	

implications	for	wider	philosophical	debates.	
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Chapter	1	

	

Introduction	

	

1.1	Context	and	concerns	of	the	thesis	

Quantum	 field	 theories	 (QFTs)	 are	 some	 of	 our	 most	 successful	 scientific	

theories,	 purportedly	 modelling	 matter	 and	 its	 interactions	 at	 the	 (near)	

fundamental	level.	They	underpin	the	‘Standard	Model’	(SM)	of	particle	physics,	

and	have	found	application	in	condensed	matter	physics.	QFTs	combine	quantum	

mechanical	treatments	of	phenomena	with	special	relativity.	This	allows	for	the	

creation	and	annihilation	of	particles	and	for	antiparticles	to	be	modelled.	Jordan	

(in	Born,	Heisenberg	and	Jordan	(1926))	and	subsequently	Dirac	(1927)	initially	

but	 prematurely	 claimed	 that	 QFT	 resolved	 the	 particle-wave	 paradox	 of	

quantum	mechanics.		

Despite	their	undoubted	success,	significant	difficulties	remain	regarding	

both	 the	 physics	 and	 the	 philosophy	 of	QFTs.	 For	 instance,	 the	 relationship	 of	

QFT	to	General	Relativity	remains	an	open	question.	The	conceptual	problem	of	

renormalization	and	its	physical	interpretation	is	notorious.	It	has	been	taken	to	

suggest	 that	 the	physics	of	very	short	length	scales	remains	opaque	even	 if	 the	

difficulties	 have	 been	 circumvented	 to	 some	 extent	 by	 renormalization	 group	

techniques,	so	that	QFTs	have	come	to	be	understood	as	‘effective	field	theories’	

(EFTs)	 rather	 than	 ‘fundamental	 theories’.	 QFTs	 also	 inherit	 the	 notorious	

‘measurement	 problem’	 from	 quantum	 mechanics	 (QM).	 Technical	 difficulties	

abound	such	as	those	arising	from	Haag’s	theorem	as	regards	the	inequivalence	

of	representations,	and	from	the	manipulation	of	distributions	for	example.	The	

role	 of	 ‘virtual	 particles’	 in	 QFT	 brings	 yet	 another	 interpretative	 difficulty,	 as	

does	the	use	of	divergent	series	in	the	calculation	of	scattering	amplitudes.	

Philosophical	 interest	 in	 QFT	 has	 grown	 in	 the	 last	 30-40	 years	 and	

reflects	 two	 main	 responses	 to	 these	 (and	 other)	 difficulties.	 The	 approaches	

have	 been	 characterized	 (somewhat	 inadequately)	 as	 ‘physicists’’	 or	

‘conventional’	QFT,	and	‘philosophers’’	or	 ‘axiomatic’	algebraic	QFT.	The	former	

approach	 regards	 the	 philosophical	 task	 as	 the	 investigation	 of	 working	 QFTs	
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‘warts	and	all’,	whilst	the	latter	construes	the	philosophical	task	in	developing	a	

‘pure’	QFT.	The	difficulty	with	the	 former	approach	 is	 that	problems	occur	that	

are	 dealt	 with	 in	 ad	 hoc	 and	 non-rigorous	 ways	 so	 that	 the	 value	 of	 a	

philosophical	analysis	in	this	context	is	questioned.	The	difficulty	with	the	latter	

is	that	success	to	date	has	only	been	achieved	for	simplistic	and	unrealistic	 ‘toy	

models’,	and	so	the	value	of	a	philosophical	 treatment	of	such	a	 theory	may	be	

questioned.	 One	may	 pursue	 either	 approach,	 for	 there	 is,	 at	 least	 potentially,	

philosophical	value	in	both.1	

Here	 I	 shall	 consider	 how	 one	 describes	 interacting	 states	 in	 QFT	 and	

what	kind	of	explanation	of	interaction	processes	QFT	supports.	This	places	the	

project	within	‘physicists’	QFT’.	We	shall	see	however	that,	perhaps	surprisingly,	

there	 is	no	explicit	 ‘natural’	description	of	 interacting	states	supported	by	QFT,	

and	 thus	 no	 explanation	 of	 interaction	 processes	 available.	 This	 surprising	

failure	 is	 explained	 or	 diagnosed	 in	 terms	 of	 the	 failure	 of	 ‘superposition’	 in	

interacting	 QFTs,	 which	 is	 manifested	 in	 and	 pragmatically	 partially	

accommodated	by	renormalization.		

On	the	one	hand	my	project	stands	in	continuity	with	various	debates	in	

the	philosophy	of	QFT,	such	as	those	which	concern	the	role	of	particles	and	/	or	

fields	in	an	‘ontology’	of	QFT,	the	use	of	asymptotic	series,	and	the	significance	of	

virtual	particles	and	Feynman	diagrams.	On	the	other	hand	the	approach	that	 I	

take	 and	 the	 framing	 concerns	 will	 be	 different.	 For	 instance	 renormalization	

group	 approaches	 will	 not	 be	 discussed,	 and	 Haag’s	 theorem	will	 play	 only	 a	

minor	role.	Instead,	the	significance	and	applicability	of	‘superposition’	is	central.	

In	particular,	 its	 relation	 to	 the	 initial	 selection	of	 fields,	 to	Fourier	 techniques	

and	to	the	character	of	the	relevant	differential	equations	as	linear	or	nonlinear	

will	be	pivotal.	These	are	largely	uncharted	areas	in	philosophy,	both	in	classical	

and	 quantum	 physics.2	Conceptual	 analysis	 will	 be	 a	 driving	 concern	 of	 the	

thesis,	paying	attention	 to	 the	 sometimes	unexpected	and	unnoticed	behaviour	

																																																								
1	This	is	often	set	up	as	the	‘Fraser-Wallace	debate’.	For	a	defence	of	conventional	QFT	see	
Wallace	(2006;	2011),	and	for	axiomatic	QFT	see	Fraser	(2008;	2009;	2011).	For	discussion	see	
Baker	(2016);	Egg,	Lamm	and	Oldofredi	(2017);	Kronz	and	Lupher	(2019),	and	for	discussion	of	
the	interpretation	of	algebraic	and	Hilbert	space	approaches	see	Ruetsche	(2011).	
2	Some	of	these	concerns	(e.g.	the	significance	of	non-linearity	in	interacting	states	and	the	role	
that	Fourier	analysis	plays)	were	anticipated	by	Redhead	(1988),	but	have	not	been	pursued	in	
any	significant	way.	
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of	concepts	and	their	 failure	to	apply	how	and	where	they	are	expected,	which	

leads	to	confusion.		

My	 key	 claim	 or	 result	 is	 that	 ‘superposition’,	 in	 various	 putative	 or	

implicit	 uses	 of	 the	 concept,	 fails	 to	 be	 applicable	when	 it	 has	 been	 implicitly	

assumed	 to	 apply,	 and	 that	 as	 a	 result	 of	 this	wrong	 assumption	 a	 number	 of	

conceptual	or	ontological	 confusions	and	dilemmas	arise.	These	difficulties	are	

diagnosed	 by	 the	 failure	 of	 ‘superposition’	 even	 at	 the	 beginning	 of	 laying	 the	

foundation	of	interacting	QFTs.	

Finally,	 QFT	 is	 a	 large	 and	 diverse	 area	 of	 physics	 with	 different	

approaches,	 tools	and	techniques	adopted	 in	different	domains.	 I	shall	 focus	on	

the	 application	 of	 QFT	 to	 the	 physics	 of	 what	 has	 been	 understood	 to	 be	

‘fundamental	 particles’	 from	 the	 perspective	 of	 canonical	 QFT.	 I	 shall	 not	 deal	

with	 issues	 surrounding	 the	 ‘measurement	 problem’	 or	 alternative	

interpretations	 common	 to	 philosophical	 treatments	 of	 QM	 such	 as	 Bohmian,	

GRW	or	Everettian	interpretations.	However,	the	conclusions	of	the	thesis	might	

indicate	 that	 such	 approaches	 are	 not	 well-motivated,	 and	 that	 (following	

Cartwright	 (1983),	 although	 for	 slightly	 different	 reasons)	 the	 measurement	

problem	is	not	well	posed,	and	thus	further	research	is	needed.	

The	 philosophical	 approach	 advocated	 by	Mark	Wilson	 is	well	 suited	 to	

the	kind	of	philosophical	analysis	of	working	QFTs	that	I	wish	to	pursue.	I	shall	

summarize	what	 a	 ‘Wilsonian’	 approach	 involves	 in	 §1.2	 before	 presenting	 an	

overview	of	the	thesis	in	§1.3.	

	

1.2	A	‘Wilsonian’	approach	outlined	

Critical	issues	in	the	interpretation	of	QFT	involve	the	use	and	interpretation	of	

the	 superposition	 concept	 or	 principle,	 Fourier	 techniques	 and	 iterative	

techniques,	 all	 of	 which	 are	 used	 in	 a	 number	 of	 areas	 of	 both	 classical	 and	

quantum	physics.	However,	 the	 physical	 significance	 and	 use	 of	 such	 concepts	

and	techniques	differs	from	application	to	application,	and	have	not	received	the	

philosophical	attention	deserved.	We	obtain	a	better	grasp	on	the	issues	involved	

in	 QFT	 if	 we	 pay	 attention	 to	 the	 local	 application	 of	 such	 concepts	 and	

techniques,	 clarifying	what	 similarities	 and	 differences	 there	 are	when	moving	
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between	 contexts	 so	 as	 to	 refine	 the	 interpretation	 of	 ‘superposition’	 and	 its	

physical	significance	in	QFT.	

The	 concerns	 that	 I	 explore	dovetail	with	 the	philosophical	 approach	 to	

applied	 mathematics,	 physical	 theories	 and	 concepts	 that	 Mark	 Wilson	 has	

developed	in	Wandering	Significance	(2006)	and	Physics	Avoidance	(2017).	I	shall	

approach	 QFT	 through	 the	 lens	 offered	 by	 Wilson’s	 philosophical	 concerns.	

These	 concerns	might	 be	 characterized	 as	 local	 conceptual	 clarification	 that	 is	

necessitated	 by	 a	 contrast	 that	 he	 develops	 between	 the	 classical	 picture	 of	

concepts	as	‘glued’	to	their	reference	in	a	global	fashion,	and	a	patchwork	picture	

of	concepts	that	form	an	atlas	(or	façade)	of	‘patches’	of	local	application	so	that	

such	 concepts	 have	 ‘wandering	 significance’.	 This	 is	 associated	 with	 a	 careful	

analysis	of	 the	nature	of	 the	supportive	role	 that	 the	relevant	mathematics	and	

physics	plays	on	each	patch	in	the	case	of	physical	theories.		

There	 are	 various	 interrelated	 themes	 and	 threads	 running	 through	his	

work	that	characterize	his	stance.	These	recur	throughout	this	thesis	and	so	we	

briefly	consider	them	now	to	set	the	philosophical	framework.	I	shall	not	seek	to	

justify	 Wilson’s	 framework	 further,	 but	 as	 the	 analysis	 proceeds	 the	

philosophical	value	of	the	framework	should	become	clear.		

	

1.2.1	‘Theory	T	syndrome’	

One	way	 of	 characterizing	Wilson’s	 approach	 is	 as	 an	 analysis	 of	 the	 role	 and	

behaviour	of	concepts	in	relation	to	scientific	theories	arising	from	a	rejection	of	

what	he	 terms	 ‘Theory	T	 syndrome’	or	 ‘Theory	T	 thinking’.	He	does	not	define	

this	precisely,	although	through	regular	references	we	acquire	understanding	of	

the	phrase	via	its	usage.	In	a	discussion	of	multi-scale	modelling	he	suggests	that	

the	 result	 of	 Theory	 T	 thinking	 is	 the	 attempted	 ‘logification’	 of	 non-logical	

relationships	 between	 models	 and	 theories	 (2017,	 220)	 which	 leads	 to	

confusion,	 driven	 by	 the	 assumption	 that	 ‘in	 principle’	 one	 can	 calculate	

behaviours	at	different	scales	 ‘in	a	bottom-up	manner’	 (2017,	231),	reflecting	a	

demand	 for	grounding	 in	 fundamental	 laws	 (2017,	 292).	He	 also	 characterizes	

Theory	T	syndrome	as	the	assumption	that	‘“fundamental	science”	must	strive	to	

capture	 the	 fully	 autonomous	 behaviours	 of	 nature	 within	 their	mathematical	

netting’	(2017,	185,	cf.	420-421),	and	that	there	is	the	‘presumption	that	suitably	
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articulated	 theories	 “implicitly	 fix	 the	 meanings”	 of	 their	 specialized	

vocabularies’	 (2017,	 268).	 Hence,	 working	 from	 the	 Theory	 T	 stance,	 ‘analytic	

metaphysicians	…	warmly	assure	us	that	someday	science	will	supply	us	with	a	

perfected	Theory	T	from	which	all	concerns	of	wobbly	reference	will	be	entirely	

expunged’	 (2017,	 417),	 whose	 contours	 we	 can	 anticipate	 sufficiently	 well	 to	

support	metaphysical	reflection	and	analysis	of	contemporary	scientific	theories.	

Wilson’s	use	of	Theory	T	thinking,	which	is	a	foil	for	the	façade	approach	

that	he	develops,	 is	possibly	best	captured	 in	terms	of	 the	general	attitude	that	

any	 theory	 can	 be	 characterised	 or	 ‘rationally	 reconstructed’	 in	 terms	of	 some	

unitary,	 axiomatized	 framework	 that	 is	 ready	 for	 metaphysical	 appropriation.	

Wilson	 claims	 that	 such	 thinking	 is	 to	 be	 rejected	 since	 it	 cannot	 adequately	

capture	 the	 heterogeneity	 and	 complexity	 of	 working	 ‘scientific	 theories’,	

modelling	practices	and	their	use	of	applied	mathematics.	Moreover	the	Theory	

T	attitude	leads	to	misplaced	attempts	to	prematurely	understand	theories	and	

associated	concepts	 in	a	global,	axiomatic	or	metaphysical	sense	rather	than	 in	

terms	of	 understanding	 the	 actual	 local	 supporting	 ‘semantic	 architecture’	 and	

associated	inferential	pathways	in	particular	applications	of	‘theories’.	

He	 suggests	 that	 it	 is	 a	 good	bet	 that	owing	 to	 the	 limitations	of	human	

reasoning,	 understanding	 and	 our	 conceptual	 abilities	 the	 Theory	 T	 goal	 will	

never	 be	 achieved	 (cf.	 2017,	 392,	 417).	 Instead	 of	 adopting	 such	 a	 Theory	 T	

stance	and	trying	to	fit	existing	theories	into	this	mould,	Wilson	urges	us	to	pay	

attention	to	the	detailed	workings	and	analyses	of	current	applied	mathematics	

and	scientific	theories	as	the	locus	of	philosophical	investigation.3	

The	result	of	‘Theory	T	thinking’,	and	Wilson’s	complaint	against	it,	is	that	

it	 ‘dull[s]	 our	 appreciation	 of	 the	 strategic	 subtleties	 within	 working	 science,	

through	 advancing	 inadequate	 discriminations	 that	 fail	 to	 distinguish	 between	

explanatory	structures	that	are	architecturally	distinct’	(2017,	136).	It	also	leads	

to	 ‘grand	 schemes	 for	 analysing	 notions	 such	 as	 “law,”	 “cause,”	 and	

“counterfactual	 conditional”	 in	 a	 logic-focused	 manner’	 (2017,	 152)	 that	 pays	

insufficient	attention	to	the	observation	that	these,	and	other	physical	concepts	

such	as	‘force’	and	‘hardness’	are	‘mutable	semantic	creatures,	able	to	acclimate	

themselves	to	virtually	any	explanatory	landscape	into	which	they	happen	to	be	
																																																								
3	For	discussion	of	Wilson’s	Theory	T	thinking	in	one	approach	to	QFT	see	Li	(2015).	



	 6	

cast’	 (2017,	 54).	 This	 view	 that	 such	 concepts	 have	 wandering	 significance,	

playing	different	roles	in	different	scientific	theories	or	modelling	practices	and	

are	not	always	amenable	to	logical	analysis	contrasts	with	Theory	T	thinking	in	

which	the	reference	of	such	concepts	is	fixed	globally.	

Wilson	 suggests	 that	much	science	 can	be	 characterized	 in	 terms	of	 the	

exploitation	of	what	he	terms	descriptive	opportunities	that	nature	offers:	 ‘I	talk	

much	 of	 the	 descriptive	 opportunities	 that	 nature	makes	 available	 to	 us	 –	 the	

patterns	 and	 strategies	 of	 integrated	 linguistic	 employment	 that	 allow	 us	 to	

reach	 practical	 conclusions	 effectively	 and	 swiftly	 within	 a	 suitable	

environment.’	 (2017,	 318)	 He	 defines	 a	 descriptive	 opportunity	 as	 ‘physical	

circumstances	whose	dominant	ranges	of	variation	can	be	adequately	captured	

in	a	smallish	number	of	descriptive	parameters	and	where	significant	questions	

of	interest	can	be	addressed	through	feasible	calculation’	(2017,	17).	

He	notes	that	 the	reasoning	advantages	that	 follow	from	the	exploitation	

of	 descriptive	 opportunities	 can	 vanish	 if	 crude	 descriptions	 are	 replaced	with	

detailed	descriptions	which	attempt	to	model	the	actual	physical	situation	more	

carefully	(2017	36),	such	as	modelling	the	behaviour	of	a	steel	beam	at	different	

length	 scales.	 For	 many	 purposes	 at	 macroscopic	 length	 scales	 a	 continuum	

model	of	the	beam	is	more	reliable	and	better	suited	than	a	more	accurate	model	

of	the	beam	paying	attention	to	its	atomic	structure	(cf.	2017,	9-40).		

Wilson’s	 recurring	 concern	 is	 that	we	 should	pay	 close	 attention	 to	 the	

local	 application	 of	 scientific	 theorizing,	 concepts	 and	 models	 in	 different	

situations:	
[A]cademic	 philosophers	 should	 recognize	 that	 their	 diagnostic	 duties	 are	 more	
substantial	 –	 and	 less	 a	 priori	 determined	 –	 than	many	 current	writers	 presume.	 [I]	 …	
focus	centrally	upon	situations	where	misidentified	explanatory	landscapes	have	created	
substantive	philosophical	confusion.	[I	have]	…	aimed	at	steering	the	reader’s	attention	to	
the	applied	mathematics	resources	that	can	assist	us	in	diagnosing	underlying	architecture	
better	(2017,	88-89).	

This	encapsulates	the	philosophical	approach	to	QFT	that	I	adopt.	

By	paying	attention	to	contemporary	science	and	applied	mathematics	we	

often	 find	 that	 a	 scientific	 theory	 is	 a	 façade	 or	 a	 patchwork	 structure	 of	 local	

applications	 of	 theories,	models	 and	 concepts	 (cf.	 2006,	 209,	 324).	 Confusions	

arise	 when	 a	 concept	 or	 modelling	 technique,	 along	 with	 its	 mathematical	

architecture,	 is	 ‘dragged’	 from	 one	 ‘patch’	 of	 application	 to	 another	 without	

realizing	that	semantic	shifts	in	supporting	architecture	have	occurred.	That	is,	
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doctrines	 of	 quite	 different	 supportive	 natures	 can	 mimic	 for	 one	 another	 quite	 nicely	
within	classical	physics,	giving	rise	to	a	collected	bundle	of	useful	assertions	that	can	seem	
–	if	we	don’t	look	too	closely	–	as	if	they	constitute	a	unified	theory.	In	truth,	however,	we	
confront	…	a	theory	façade	…	an	uneven	pile	of	pasteboard	cutouts	that	ably	masquerade	…	
for	an	 integral	metropolis.	As	such,	 its	atlas	 structuring	 is	 secretly	 subject	 to	 substantial	
degrees	 of	 property	 dragging,	 but	 these	 semantic	 displacements	 occur	 in	 quiet	 ways.	
(2006,	356)	

	

1.2.2	Concepts,	patches	and	façades	

Two	 interrelated	 themes	 in	 Wilson’s	 work	 are	 the	 nature	 or	 behaviour	 of	

concepts,	 and	 (theory)	 façades,	 both	 of	which	 are	 associated	with	 ‘patches’	 of	

local	 application.	He	 suggests	 that	 confusions	have	 arisen	 from	what	 he	 terms	

the	‘classical	picture’	of	concepts	and	predicates	in	which	they	are	taken	to	have	

global	 reference	 rather	 than	 local	 or	 patchwork	 semantic	 support	 and	

application.4	Wilson	claims	that	our	conceptual	grasp	is	weaker	and	thinner	than	

the	 classical	 picture	 leads	 us	 to	 believe	 (2006,	 41),	 and	 so	 our	 ‘language	

employment	 often	 fail[s]	 to	 submit	 happily	 to	 axiomatic	 organization	 at	 the	

macroscopic	[global]	level	…[so	that]	macroscopic	doctrine	is	better	arranged	as	

a	set	of	linked,	but	nonetheless	disjoint,	patches	that	shall	be	called	a	façade	[an]	

odd	organization	[that]	proves	natural	 from	a	descriptive	point	of	view’	(2006,	

179).	 Wilson	 argues	 via	 examples	 that	 this	 façade	 picture	 of	 concepts	 and	

theories	offers	a	better	description	of	science	than	does	the	classical	picture	of	

concepts	coupled	with	generalized	accounts	of	scientific	 theories	 interpreted	 in	

logical	or	metaphysical	terms.	We	briefly	consider	two	examples	he	discusses:	

First,	 the	 concept	 of	 ‘weight’	 and	 the	 associated	 concept	 of	

‘weightlessness’.	 This	 example	 is	 motivated	 by	 considering	 the	 ‘weight’	 of	

astronauts	in	an	orbiting	spaceship.	‘Weight’	is	commonly	defined	via	impressed	

gravitational	force,	distinguished	from	mass.	But	if	the	weight	of	an	astronaut	in	

the	space	station	is	so	defined,	rather	than	being	weightless	as	often	suggested,	

only	a	small	reduction	in	weight	occurs	relative	to	the	astronaut’s	weight	on	the	

Earth’s	surface.	 Some	authors	recognize	 this	problem,	 so	 speak	 instead	of	only	

‘apparent	 weightlessness’,	 but	 whilst	 also	 speaking	 simultaneously	 of	 muscle	

deterioration	in	astronauts	arising	from	weightlessness	in	a	manner	in	which	the	

weightlessness	 is	not	 construed	as	merely	apparent.	For	Wilson	 this	 illustrates	

																																																								
4	See	2006,	139-146	for	what	Wilson	terms	the	44	‘chief	theses’	of	the	‘classical	view’	of	
properties,	predicates	and	concepts.	
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how	 a	 façade	 structure	 is	 evidenced	 for	 the	 concept	 of	 weight	 (or	

weightlessness),	 being	 understood	 and	 applied	 differently	 on	different	 patches	

(2006,	328-335).	

Secondly,	 the	concept	of	hardness.	The	definition	of	hardness	 is	given	 in	

relation	to	a	context	of	application	or	use,	with	different	hardness	measures	(e.g.	

Rockwell	/	Brinell,	Knoops	/	Vickers	or	Mohr	/	Bierbaum)	arising	from	different	

testing	methods	that	relate	to	the	application	of	the	concept	for	different	physical	

applications.	He	suggests	that	it	is	natural	to	search	for	some	more	fundamental	

evaluative	trait	(‘essence’)	upon	which	each	local	application	depends.	But	this	is	

not	how	the	concept	operates,	being	distributed	in	a	multi-valued	fashion	across	

different	 local	 patches	 of	 application	 (2006,	 335-345).	 So	 ‘our	 usage	 of	 the	

predicate	“is	hard”	displays	a	fine-grained	structure	that	we	are	unlikely	to	have	

noticed,	 for	our	everyday	usage	 is	built	 from	local	patches	of	 evaluation	subtly	

strung	 together	 by	 natural	 links	 of	 prolongation’	 (2006,	 336).	 And,	 ‘our	

employment	of	“hardness”	silently	distributes	itself	 into	a	patchwork	of	sheets,	

locally	distinguished	by	a	certain	vein	of	probing	…	that	sit	over	various	varieties	

of	material	 stuffs	 and	 continue	 smoothly	 into	one	 another’	 (2006,	 338).	 It	 is	 a	

mythological	 picture	 of	 hardness	 to	 suppose	 that	 it	 must	 represent	 a	 single	

underlying	characteristic	(2006,	351-352).	

These	 examples	 illustrate	 the	 contrast	 between	 the	 classical	 ‘global’	

picture	of	concepts	and	the	patchwork	picture	of	concepts	as	forming	an	atlas	(or	

façade)	of	patches	of	local	application.	

More	formally,	consider	a	domain	D	of	physical	fact	that	we	wish	to	cover	

in	a	 linguistically	profitable	 fashion.	Over	D	we	erect	basic	patches	or	sheets	Ai	

corresponding	 to	 localized	 flat	 maps	 on	 which	 some	 physical	 vocabulary	 or	

predicates,	etc.	will	be	made	available	(e.g.	 truth	 functions	and	quantifiers	over	

subdomains	 covered	 in	 the	 patch).	 Over	 each	 A	 each	 predicate	 “P”	 will	

correspond	 to	 one	 or	 more	 attributes	 in	 D	 below,	 under	 the	 condition	 that	 if	

attributes	 φ	 and	 ψ	 are	 both	 assigned	 to	 “P”	 on	 A	 they	 will	 act	 coextensively	

within	 the	 region	of	D	 that	 it	 covers.	There	 is	a	 set	of	 local	 recipes	attached	 to	

each	 patch	 A.	 Each	 patch	 possesses	 a	 natural	 boundary	!"	marked	 by	 the	 fact	
that	if	one	moves	beyond	!"	into	B	then	some	of	the	predicates	in	A	will	either	
shift	 to	new	property	alignments	(which	Wilson	calls	prolongation)	within	B	or	
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the	 reasoning	 tools	 R	 native	 to	 A	 will	 no	 longer	 lead	 to	 sound	 expectations	

(which	he	 associates	with	 semantic	mimicry).	 Boundary	 crossings	 indicate	 that	

one	should	not	 follow	beguiling	directives	beyond	the	boundary.	This	sets	up	a	

local	grammar	on	A,	but	we	are	often	 interested	 in	how	language	behaves	over	

the	joins	or	continuations	that	connect	the	patches,	which	can	be	smooth,	abrupt	

or	overlapping	(2006,	377-379).	He	concludes:	
Quite	commonly	there	will	be	a	small	group	of	recipes	or	rules	of	 inference	R	that	prove	
central	 to	 creating	 this	 bridging	 between	 A	 and	 B	 (the	 role	 of	 power	 series	 in	 analytic	
continuation	represents	our	prototype	here).	Patches	can	also	sit	partially	astraddle	of	one	
another	 through	 fibered	connections	established	by	common	names.	Connected	 to	 these	
will	be	translation	principles	τ	that	regulate	how	data	shall	lift	from	one	sheet	to	another	
…	We	demand	no	specific	topology	in	how	our	atlas	of	covering	patches	fits	together,	so	it	
may	be	possible	to	move	through	the	patches	in	a	multi-valued	manner.	
An	atlas	of	essentially	one	patch,	that	covers	its	whole	domain	adequately	will	be	called	a	
flat	structure;	 it	 is	essentially	the	linguistic	platform	that	the	classical	thinking	expects	to	
see,	once	language	has	been	cleansed	of	its	undesirable	ambiguities.	…	
[There	is	a]	need	for	a	preface	or	picture	of	our	atlas’s	workings:	viz.,	a	schematic	overview	
of	how	the	patch-to-world	relationships	unfold	in	the	façade.	…	[A]n	agent	might	be	able	to	
employ	an	atlas	quite	capably	from	a	practical	point	of	view,	yet	entertain	an	erroneous	
picture	of	 its	descriptive	workings.	…	[W]e	shall	be	much	interested	in	semantic	mimicry	
where	some	façade-like	construction	passes,	amongst	its	employers,	for	a	flat	structure:	it	
looks	 very	 much	 like	 the	 “first	 order	 theory”	 of	 the	 logicians	 if	 we	 don’t	 scrutinize	 its	
oddities	 too	 closely	 …	 A	 façade	 assembly	 should	 be	 regarded,	 in	 analogy	 to	 the	 two-
sheeted	Riemann	surface	for	√z,	as	a	strategically	informed	platform	upon	which	a	stable	
linguistic	 usage	 can	 be	 settled	 …	 As	 long	 as	 a	 speaker	 respects	 the	 boundary	 divides	
marked	by	!",	she	can	employ	an	unevenly	founded	language	to	freely	express	what	she	
wishes	 locally,	while	 exploiting	 the	 boundary	 restrictions	 between	 regions	 to	 create	 an	
overall	employment	that	may	prove	more	effective	and	efficient	overall.	(2006,	379)	

Whilst	 it	 is	 not	 a	 point	 that	 Wilson	 develops,	 perhaps	 façades	 arise	 in	 two	

different,	although	related	ways	that	we	might	label	‘theory	façade’	and	‘concept	

façade’.	 Examples	 of	 ‘concept	 facades’	 are	 reflected	 in	 Wilson’s	 analysis	 of	

‘weight’	and	‘hardness’	whilst	‘theory	façades’	are	illustrated	in	the	modelling	of	

billiard	 ball	 collisions	 or	 the	 elastic	 behaviour	 of	 steel	 beams.	 That	 is,	 in	 a	

‘concept	façade’	one	discovers	the	structure	and	application	of	a	concept	–	how	

its	 semantic	 support	 differs	 in	 different	 contexts	 of	 application	 and	 how	 these	

might	 relate.	 In	 a	 ‘theory	 façade’	 different	 models	 or	 theories	 are	 used	 on	

different	 contextual	 patches	 to	 model	 the	 same	 physical	 domain	 according	 to	

different	interests,	perhaps	as	relates	to	behaviour	at	different	length	scales.	

So	 for	 instance	 the	 behaviour	 of	 a	 steel	 beam	 (the	 same	 physical	

phenomenon)	is	modelled	very	differently	on	a	macroscopic	patch	of	application,	

at	 the	 microscopic	 level,	 and	 at	 the	 atomic	 level	 (cf.	 2017,	 9-40).	 The	 formal	

description	 of	 a	 façade	 above	 seems	 more	 applicable	 to	 a	 ‘concept	 façade’,	
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whereas	a	theory	façade,	and	its	relation	to	Theory	T	syndrome	is	perhaps	more	

clearly	summarized	as:	
A	 descriptive	 complex	 of	 this	 quilt-like	 pattern	 [here,	 different	models	 of	 a	 billiard	 ball	
collision]	supplies	a	good	example	of	what	I	intend	by	a	façade:	a	set	of	patches	or	plateaus	
that	 are	 formally	 inconsistent	with	 one	 another	 but	 are	 stitched	 together	 by	 “for	more	
details	 see	 …”	 linkages	 or	 other	 bridgework.	 Often	 the	 whole	 is	 fabricated	 in	 such	 a	
manner	 that,	 if	 we	 don’t	 play	 close	 attention	 to	 its	 discontinuous	 boundary	 joints	 and	
shifts	in	mathematical	setting,	we	might	suppose	that	we	are	looking	at	a	theory	ready	to	
be	axiomatized	(2006,	191-192).	

In	many	cases	however	a	façade	may	manifest	both	aspects,	where	concepts	are	

dragged	from	patch	to	patch	upon	which	different	theoretical	models	are	used	to	

describe	 the	 same	 physical	 phenomenon	 according	 to	 different	 questions	 of	

interest.	

For	Wilson,	what	is	important	is	not	the	logic	or	axiomatization	of	a	theory	

or	the	attempt	to	identify	a	unifying	underlying	theory,	or	the	identification	of	a	

putative	‘true’	meaning	of	a	concept,	predicate	or	property,	but	the	reliability	and	

explanatory	 value	 of	 the	 descriptive	 opportunities	 appropriated	 (in	 the	 sense	

that	physically	salient	explanations	may	be	offered,	inductive	inferences	may	be	

drawn,	and	counterfactual	reasoning	supported,	on	a	given	patch	of	application),	

and	the	clarification	of	 the	architecture	of	 the	 concepts	and	theories	or	models	

employed	so	as	to	avoid	conceptual	confusions	(cf.	2017,	282).	The	alternative	to	

Theory	T	 thinking	 is	paying	attention	 to	 the	developmental	histories	 that	have	

produced	overburdened	concepts	(2017,	152),	for	such	developmental	histories	

shape	 the	 use	 and	 application	 of	 central	 terms	 (2006,	 36-37),5	according	 to	 a	

local	façade	structure	rather	than	a	global	‘flat’	structure’.	

		

1.2.3.	Prolongation,	property	dragging	and	semantic	mimicry	

The	 notions	 of	 prolongation	 or	 property	 dragging	 and	 semantic	 mimicry	 are	

important	 for	 Wilson’s	 analysis	 of	 concepts.	 Brandom	 helpfully	 articulates	

Wilson’s	notion	of	‘property	dragging’	in	terms	of	
cases	 where	 the	 range	 of	 proper	 application	 and	 the	 inferential	 consequences	 of	
application	 of	 some	 predicate	 drifts	 over	 time,	 pulled	 now	 one	 way,	 now	 another	 by	
features	of	the	actual	properties	of	the	system	of	which	the	users	of	the	predicate	are	at	
most	only	vaguely	aware.	This	is	the	‘‘wandering	significance’’	of	the	book’s	title.	In	place	
of	 the	 classical	 picture	 of	 a	 sense	 determining	 a	 reference,	 a	 conceptual	 content	 stably	
‘‘gluing’’	a	predicate	to	a	property,	Wilson	offers		

																																																								
5	Wilson	cites	Duhem,	‘The	real	introduction	to	the	expression	of	a	principle	of	physics	is	a	
historical	introduction’,	suggesting	that	‘philosophers	of	language	have	much	to	gain	from	
Duhem’s	investigations’	(2017,	153).	
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not	an	account	of	an	alternative	adhesive,	but	simply	a	more	detailed	accounting	of	the	
machinery	 of	 cooperation	 (and	 lack	 of	 it)	 between	 Nature	 and	man	 that	 often	 leads	
descriptive	language	along	the	improving,	but	often	mysterious,	developmental	paths	
we	frequently	witness.	[2006,	235-6]		

…	 [P]roperty	 dragging	 ought	 not,	Wilson	 argues,	 to	 be	 thought	 of	 as	 a	 shortcoming	 or	
blemish	 that	 one	 might	 hope	 a	 more	 perspicuous	 or	 detailed	 account	 or	 idiom	 could	
eliminate,	 nor	 as	 a	 merely	 epistemic	 difficulty	 resulting	 from	 imperfections	 of	 our	
understanding.	It	is	rather	an	essential	aspect	of	the	procedures	that	make	it	possible	for	
us	to	do	as	good	a	 job	as	we	simple-minded	folks	do	in	describing	a	messy,	complicated	
world.	(Brandom	2011,	189-190)	

Maddy	also	provides	a	helpful	analysis	of	Wilson’s	project	(2007,	175-196).	She	

suggests	 that	Wilson	 takes	 the	 ‘serious	 work	 to	 be	 the	 investigation	 of	 word-

world	connections	…	reject[ing]	 the	call	 for	a	single	“mechanism	of	reference”’.	

However,	there	is	room	to	be	‘more	skeptical	than	Wilson’s	correlationalist	on	a	

prediction:	 that	 further	 study	 will	 uncover	 unified	 supports	 for	 word-world	

connections	 in	 local	patches.’	 (2007,	196).	This	may	help	elucidate	a	difference	

between	Wilson’s	stance	and	Wittgenstein’s,	which	have	been	noted	to	be	similar	

in	many	regards	(Wilson	2006,	xx;	Brandom	2011,	200).	Both	Wittgenstein	and	

Wilson	advocate	the	rejection	of	 the	classical,	global	picture	of	 the	reference	of	

concepts	in	favour	of	a	picture	that	concepts	are	associated	with	local	contextual	

application,	relative	to	‘patches’	(Wilson)	or	‘language	games’	(Wittgenstein).	

However,	 Wittgenstein	 frequently	 discusses	 ‘borderline	 cases’	 in	 which	

the	application	of	a	concept	is	unclear.	A	paradigmatic	example	for	Wittgenstein	

is	the	analogy	between	ethical	or	aesthetic	concepts	and	a	watercolour	painting	

of	 coloured	 shapes	 in	 which	 the	 colours	 and	 shapes	 blur	 into	 each	 other	 and	

merge	 so	 that	 neither	 the	 shapes	 nor	 the	 colours	 are	 clearly	 defined	 near	 the	

boundaries	(Wittgenstein	2001	[1945]	§§76-77).	Wilson’s	paradigmatic	example	

is	that	of	a	Riemann	surface,	where	concepts	are	defined	locally	on	each	sheet	of	

the	surface	with	clear	rules	regarding	the	behaviour	of	the	concept	when	moving	

between	 sheets	 (i.e.	 local	 contexts	 of	 application).	 This	 might	 indicate	 that	

Wilson’s	 picture	 of	 concepts	 is	 ‘locally	 classical’	whereas	Wittgenstein’s	 is	 not.	

We	 shall	 discover	 that	 ‘superposition’,	 whilst	 patchwork,	 perhaps	 does	 not	

always	neatly	resolve,	with	there	being	borderline	cases	(see	chapter	5),	being	a	

novel	 feature	 of	 the	 prolongation	 of	 concepts	 that	 does	 not	 occur	 in	Wilson’s	

analysis,	although	such	borderline	cases	do	not	affect	my	central	thesis.	

Associated	 with	 property	 dragging,	 ‘semantic	 mimicry’	 is	 of	 central	

importance	in	clarifying	the	significance	of	concepts	in	physical	theories	and	the	
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conceptual	 confusions	 that	 can	 arise	 (Wilson	 2006,	 567-598;	 2017	 326-327).	

Semantic	 mimicry	 occurs	 when	 a	 concept	 is	 applied	 on	 more	 than	 one	 patch	

where	it	appears	that	it	has	the	same	semantic	support	in	each	case	whereas	in	

fact	the	support	differs.	This	may	not	be	noticed,	and	it	may	not	be	noticed	that	

multiple	patches	have	been	adopted.	More	precisely,	Wilson	 suggests	 semantic	

mimicry	occurs	when	
a	local	patch	A	looks	as	if	it	is	semantically	supported	in	manner	M,	although	it	is	actually	
propped	 up	 in	 fashion	 N.	 Grammatical	 sentences	 that	 would	 be	 meaningful	 if	 M	
represented	 their	 proper	 support	 do	 not	 gather	 any	 reading	 under	 N	 (…	 where	 the	
working	grammar	of	 “P”	differs	from	 its	apparent	grammar).	…	Many	celebrated	puzzles	
with	 respect	 to	 causation	 can	 be	 aligned	with	 these	 patterns	 (2006,	 568,	 cf.	 2017,	 326-
327).	

He	 discusses	Euler’s	 approach	 to	 the	 buckling	 of	 a	 thin	 strut	 under	 an	 applied	

load	 to	 illustrate	 semantic	 mimicry.	 From	 the	 full	 partial	 differential	 equation	

(the	 wave	 equation)	 modelling	 the	 strut’s	 behaviour	 a	 ‘reduced’	 time-

independent	 differential	 equation	 is	 extracted	 giving	 the	 strut’s	 equilibrium	

(2017,	65).	He	contrasts	the	equations	and	their	different	solution	techniques	to	

indicate	how	and	where	confusions	arise.	The	significance	of	a	numerical	method	

via	 successive	 approximation	 for	 the	 reduced	 equation	 is	 contrasted	 with	

solution	of	 the	 full	equation,	noting	that	 it	is	possible	 to	mistake	the	successive	

approximations	 of	 the	 strut’s	 shape	 given	 by	 the	 reduced	 equation	 for	 actual	

shapes	of	the	strut	as	they	unfold	in	a	causal	process	as	modelled	by	the	full	time-

dependent	equation	(2006,	579-580).	

This	 is	 an	 instance	of	 semantic	 (and	causal)	mimicry.	 ‘If	we	picture	 this	

perfectly	 valid	 inferential	 technique	 as	 providing	 a	 story	 of	 how	 “causal	

processes”	unfold	in	our	strut,	we	have	fallen	victim	to	semantic	mimicry.’	(2006,	

580)	 Causal	 mimicry	 is	 a	 specific	 case	 of	 semantic	 mimicry	 in	 which	 the	

mathematical	 architecture	 of	 one	 patch	 whose	 support	 might	 rightly	 be	

understood	in	terms	of	physical	causal	processes	is	transferred	to	another	patch	

in	of	similar	mathematical	architecture	but	with	different	support,	yet	where	the	

physical	 semantic	 support	 (i.e.	 of	 physical	 causal	 process)	 is	 illegitimately	

transferred	to	the	new	patch.	Here,	it	might	be	supposed	that	the	mathematical	

technique	 associated	 with	 solving	 the	 reduced	 equation	 gives	 rise	 to	 the	

identification	of	a	physical	causal	process	when	it	does	not	(2006,	587-588).		

I	shall	use	the	term	‘semantic	mimicry’	in	a	slightly	narrower	sense	than	

Wilson.	 By	 semantic	mimicry	 I	mean	 an	 unnoticed	 instance	 of	 the	 dragging	 or	
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prolongation	of	a	concept	(whether	explicit	or	implicit)	such	that	its	supporting	

architecture	has	changed	so	much	that	the	concept	should	no	longer	be	applied	

in	such	an	instance	as	the	concept	would	not	share	sufficient	resemblance	to	its	

application	on	other	patches.	We	shall	see	examples	of	such	mimicry	in	classical	

physics	in	§4.5,	which	will	be	important	in	the	analysis	of	QFT.	

	

1.2.4.	Realism,	metaphysics	and	Wilson’s	approach	

I	shall	now	situate	Wilson’s	approach	in	relation	to	realism	so	as	to	clarify	what	

sort	of	philosophical	claims	might	follow	from	a	‘Wilsonian	analysis’	of	QFTs,	and	

whether	any	particular	stance	is	demanded.	

Realism	 per	 se	 is	 not	 a	 significant	 theme	 in	Wilson’s	work,	 although	 one	

should	 distinguish	 responses	 to	 two	 approaches	 to	 ‘realism’	 that	 can	 be	

discerned,	 namely	 a	 modest	 ‘scientific	 realism’	 (or	 perhaps	 ‘shallow	 realism’)	

and	 ‘metaphysical	 realism’	 (or	 ‘deep	 realism’). 6 	Broadly	 speaking	 scientific	

realism	may	be	understood	in	the	sense	that	scientific	theories	and	terms	‘latch	

on’	 to	 the	world	even	 if	we	are	not	 in	a	position	 to	 specify	what	 this	 ‘latching’	

consists	in,	where	it	might	be	understood	in	a	local,	case-by-case	manner.7		

Wilson	 acknowledges	 that	 he	 operates	 within	 a	 modest	 scientific	 realist	

context:	
I	 am	a	 scientific	 realist	at	 heart	 and	have	 no	 doubt	 that	 all	 of	 these	 varied	 patterns	 “fit	
together	somehow.”	But,	 at	 the	present	moment	 in	scientific	 time,	we	don’t	 really	know	
how	 this	 “fitting	 together”	 formally	 operates,	 and	 nature	 offers	many	 surprises	 on	 this	
score.	(2017,	79)	

and:	
I	am	as	confirmed	a	“scientific	realist”	as	walks	this	planet	and	believe	that	ongoing	science	
gradually	 accumulates	 a	 large	 set	 of	 reliable	 “truths”.	However,	 I	 don’t	 believe	 that	 the	
truth-rules	 for	 these	 truths	can	be	captured	by	…	simple	 isomorphisms	…	Such	views	…	
suffer	from	insufficiently	flexible	options	with	respect	to	the	semantics	of	language.	(2017,	
361.	Cf.	2006,	10.)	

However,	against	the	context	of	Theory	T	thinking	Wilson	suggests	that	his	goal	

is	 ‘not	 to	 supply	 contravening	 dogmas	 of	 my	 own,	 but	 to	 widen	 our	

methodological	 appreciation	 for	 the	 variety	 of	 explanatory	 landscapes	 arising	

within	science.’	 (2017,	79)	As	we	have	 seen,	 this	 entails	 a	 rejection	of	what	he	

terms	 the	 ‘classical’	 picture	 of	 concepts	 and	 descriptive	 terms	 –	 that	 they	 are	

‘glued’	or	refer	rigidly	 to	 their	referents	 in	 the	world,	a	confusion	that	arises	 in	

																																																								
6	For	discussion	of	the	distinction	see	French	(2017;	2018).	
7	For	analysis	of	contemporary	approaches	to	scientific	realism	see	Saatsi	(2017).	
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part	from	the	assumption	–	that	terminologies	firmly	attach	to	the	external	world	

in	uniform	ways	in	science.	(2017,	382)	

Is	this	an	anti-realist	stance?	Concluding	a	discussion	of	Duhem	(whom	he	

uses	 to	 motivate	 his	 development	 of	 conceptual	 wandering),	 Wilson	 suggests	

that	‘the	proper	moral	…	from	Duhem’s	example	is	not	anti-realism,	but	patience.	

Methodological	puzzles	often	take	a	long	time	before	their	underpinnings	can	be	

fully	 rationalized.’	 (2017,	 200)8	Scientific	 theories	 and	 applied	 mathematics	

exploit	 descriptive	 opportunities	 that	 nature	 presents	 in	 particular	 patches	 of	

application	via	concepts	and	descriptive	terms	that	greatly	simplify	the	ways	in	

which	one	captures	the	dominant	behaviours	of	nature	on	those	patches.	

Wilson	does	not	identify	as	an	anti-realist	or	instrumentalist.	But	neither	

does	 he	 identify	 as	 a	 traditional	 pragmatist,	 for,	 he	 suggests,	 traditional	

pragmatists	are	deflationists	about	meaning	and	reference,	which,	he	claims,	he	

is	 not.	 He	 ‘merely	 think[s]	 that	 referential	 ties	 to	 the	 natural	world	 ultimately	

stem	 from	 language’s	 practical	 entanglements	 with	 it,	 in	 manners	 that	 which	

often	 employ	 rather	 complex	 forms	 of	 data	 registration’	 (2017,	 282).	 In	 this	

sense	he	sees	himself	as	a	‘semantic	pragmatist’	(282).	One	should	adopt	a	stance	

of	 epistemic	 humility	 and	 remain	 silent	 regarding	 the	 truth	 conditions	 of	

concepts	 or	 descriptive	 terms	 on	 particular	 patches,	 and	 not	 overestimate	

human	conceptual	capacity	(2017,	286,	392).		

Whilst	 Wilson	 is	 a	 modest	 scientific	 realist,	 his	 stance	 towards	

metaphysics	 is	 more	 difficult	 to	 articulate.	 He	 is	 clearly	 critical	 of	 much	

contemporary	 analytic	 metaphysics,	 and	 in	 that	 sense	 anti-metaphysical.	

However,	 he	 is	 perhaps	 best	 read	 as	metaphysically	 quietist	 or	 neutral	 rather	

than	 anti-metaphysical	 per	 se.	 He	 regards	 Theory	 T	 thinking	 as	 mistakenly	

developing	scientific	theories	of	local	and	limited	applicability	into	metaphysical	

doctrines	using	a	‘flat’	or	global	understanding	of	concepts	and	descriptive	terms	

coupled	with	a	logic-centred	interpretation	of	the	relevant	scientific	theories	and	

an	 undisciplined	 use	 of	 the	 concept	 of	 ‘law’	 (cf.	 2017,	 339,	 375).	 This	 leads	 to	

confusion	 and	mistaken	metaphysics,	 and	 as	 such	he	 sees	much	 contemporary	

metaphysics	as	having	gone	astray.	For	instance,	he	notes	that	the	application	of	

mereology	to	fracture	mechanics	is	wholly	misleading	(2017,	37-38).	
																																																								
8	Cf.	2017,	415	-	he	does	not	advocate	anti-realism.	
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However,	 Wilson	 refrains	 from	 making	 predictions	 regarding	 future	

science	and	philosophy,	and	so	taking	these	comments	in	conjunction	with	those	

on	 scientific	 realism	his	 stance	 is	best	 characterized	as	metaphysically	quietest	

although	 verging	 on	 anti-metaphysical:	 it	 is	 difficult	 to	 see	 under	 what	

circumstances	quietism	would	give	way	 to	metaphysical	 assertion.	But	what	 is	

important	 for	 us	 is	 that	 through	 conceptual	 clarification	 one	 may	 be	 able	 to	

identify	 misplaced	 metaphysical	 claims,	 or	 misplaced	 claims	 that	 a	 realist	

interpretation	should	be	adopted	to	particular	theories	or	theoretical	terms.	

	

1.2.5.	Concepts	and	metaphysics	

Wilson	 argues	 that	 both	 physical	 and	 metaphysical	 concepts	 such	 as	 ‘force’,	

‘hardness’,	 ‘temperature’,	 ‘weight’,	 ‘cause’,	 ‘law’,	 ‘part’,	 ‘whole’,	 ‘composition’,	

‘natural	kind’,	etc.	should	be	subjected	to	local	‘patchwork’	analysis	to	reveal	the	

differing	 semantic	 architectures	 upon	 which	 they	 are	 based	 in	 the	 context	 of	

local	 patches	 of	 application	 so	 as	 to	 reveal	 and	 diagnose	 confusions	 that	 have	

arisen	in	their	use.9	Such	analysis	may	reveal	where	metaphysical	weight	cannot	

be	 placed,	 and	 where	 it	 is	 possible	 that	 metaphysical	 commitments	 might	 be	

sought	even	if	they	are	deferred.	For	example,	he	suggests	that	‘force’	and	‘cause’	

are	 ‘mutable	 semantic	 creatures	 …	 able	 to	 accommodate	 to	 any	 explanatory	

landscape’	(2017,	54,	cf.	244).	

Two	 concerns	 recur	 throughout	Wilson’s	 analyses	 of	 the	 description	 of	

physical	systems.	First,	that	as	highlighted	by	Hadamard	(1923),	in	the	context	of	

PDEs	the	boundary	or	accessory	conditions	are	as	important	in	determining	the	

form	 of	 a	 solution	 as	 the	 form	 of	 the	 equation	 itself	 (2017,	 210),	 which	

problematizes	the	idea	of	a	law	as	associated	with	a	differential	equation	(DE)	as	

modelling	 causal	 processes	 as	 in	 ‘ODE	 thinking’.	 Indeed,	Wilson	 suggests	 that	

further	 confusions	 have	 arisen	 owing	 to	 different	 applications	 of	 ‘cause’	 in	

ordinary	 differential	 equations	 (ODE)	 as	 distinct	 from	 partial	 differential	

equations	(PDE),	noting	(again	drawing	upon	Hadamard	(1923))	that	a	change	in	

explanatory	 landscape	 occurs	 in	 moving	 from	 the	 ODE	 context	 to	 the	 PDE	

context	(2017,	413-415).		Secondly,	that	the	formation	of	DEs	in	physics	is	often	
																																																								
9	See	e.g.	force	(2017,	27,	28,	33,	86,	320-323);	temperature	(2017,	28-29);	cause	(2017,	42,	67,	
76-77,	244-247,	252-253,	260,	262,	286);	part	/	whole	/	mereology	/	component	(2017,	37-39,	
42,	241-244,	418);	natural	kind	(2017,	146,	185);	law	(2017,	152,	339,	375).	
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not	 motivated	 by	 the	 ambition	 of	 describing	 real	 life	 behaviour	 at	 the	

microscopic	 scale.	 Rather,	 DEs	 serve	 as	 inferential	 paths	 taken	 en	 route	 to	

important	conclusions	pertaining	to	higher	scale	level	behaviour	as	for	example	

in	 modelling	 the	 bending	 of	 a	 steel	 beam.	 Different	 DEs	 play	 different	

explanatory	 roles	 in	 science	 (2017,	 68)	 and	 one	 should	 pay	 attention	 to	 their	

local	application.	

Wilson’s	preference	 regarding	 some	philosophical	 concepts	would	often	

appear	 to	 be	 to	 replace	 them.	 He	 suggests	 that	 the	 notion	 of	 projectibility	 is	

better	construed	in	terms	of	being	‘suitable	for	effective	reasoning’	(2017,	275-

276),	 and	 ‘simplicity’	 in	 terms	 of	 capturing	 dominant	 behaviour	 (2017,	 214).	

Again,	 although	 his	 analysis	 of	 these	 notions	 brings	 clarity	 regarding	 their	

significance,	 it	 is	 unclear	 whether	 the	 rejection	 of	 these	 notions	 in	 favour	 of	

Wilson’s	 is	 always	 philosophically	 advantageous.	 At	 the	 very	 least,	 noting	 that	

the	 behaviour	 of	 some	 system	 can	 be	 characterized	 by	 a	model	 that	 has,	 at	 a	

minimum,	the	appearance	of	simplicity,	strength	and	projectibility	(even	if	these	

are	to	be	understood	locally	and	modestly)	might	be	said	to	offer	an	explanation	

of	why	 some	properties	 seem	 inherently	 suitable	 for	 describing	 the	 system	or	

‘natural’,	 and	 why	 this	model	 of	 behaviour	 might	 be	 characterized	 as	 at	 least	

‘law-like’	or	‘reliable’.	

In	 summary,	 Wilson	 advocates	 careful	 local	 conceptual	 and	 semantic	

analyses	 to	 clarify	 the	 use	 of	 concepts	 and	 descriptive	 opportunities	 so	 as	 to	

differentiate	 and	 elucidate	 their	 applications	 on	 different	 patches.	 Sometimes	

this	 manifests	 in	 rejecting	 the	 possibility	 of	 a	 realist	 interpretation	 of	 certain	

terms	in	a	scientific	theory	or	model	–	and	sometimes	in	a	quietest	stance	in	the	

sense	that	it	is	now	best	to	remain	silent	leaving	the	possibility	that	more	might	

be	said	in	the	future.	

	

1.2.6.	An	example:	particle	concepts	

I	 shall	 analyse	 the	 concepts	 of	 superposition,	 component	 and	 particle,	 and	 the	

different	 semantic	 architecture	 of	 Fourier	 techniques	 in	 different	 applications,	

and	 their	 significance,	 as	 motivated	 by	 Wilson’s	 framework	 in	 the	 following	

chapters.	 In	particular	we	shall	see	that	attention	to	 local	application,	property	

dragging	and	semantic	mimicry	illuminate	our	understanding	of	QFT.	
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As	 an	 initial	 example,	 I	 briefly	 consider	 Falkenburg’s	 ‘metamorphoses	 of	

the	particle	concept’	(2007,	209-263)	from	a	Wilsonian	perspective.	Falkenburg	

notes	that	the	particle	concept	is	used	in	various	senses.	She	claims	that	particles	

are	‘experimental	phenomena	rather	than	fundamental	entities’	(2007,	209),	and	

in	a	manner	that	has	resonances	with	Wilson,	she	suggests	that	
after	 the	 quantum	 revolution	 only	 an	 informal	particle	 concept	 remains.	 This	 concept	 is	
more	 than	 a	 mere	 façon	 de	 parler.	 But	 it	 is	 metaphysically	 more	 modest	 than	 the	
mereological	 and	 causal	 particle	 concept	 associated	 with	 classical	 physics.	 It	 has	 an	
operational	basis	which	stands	in	precise	relations	to	the	current	quantum	theories,	and	it	
has	some	typical	features,	amongst	them	statistical	independence.	(2007,	210)	

She	 proceeds	 to	 analyse	 eight	 different	 particle	 concepts:	 classical	 particles,	

quantum	mechanical	 particles,	 light	 quanta,	 operational	 particles,	 field	 quanta,	

group	theoretical	particles,	virtual	particles	and	quasiparticles	before	going	on	to	

consider	particles	in	relation	to	‘matter	constituents’	in	which	bound	systems	are	

discussed	(210-256).	Up	to	this	point	her	analysis	shares	some	similarities	with	

Wilson’s	in	that	she	identifies	differing	local	applications	of	‘particle’,	which	may	

be	related	to	patches	of	application.	

However,	 rather	 than	 considering	 these	 applications	 as	 patches	 of	

application	of	‘particle’	and	studying	the	semantic	architecture	of	each	patch	and	

the	 descriptive	 opportunity	 that	 it	provides,	 she	 goes	on	 to	 consider	 a	 general	

particle	concept	(258-263).	It	is	not	clear	what	philosophical	work	is	achieved	in	

this	 consideration	 of	 generality	 –	 which	 is	 perhaps	Wilson’s	 point.	 I	 shall	 not	

discuss	 these	 different	 ‘patches’	 of	 application	 of	 the	 particle	 concept	 here	 –	

rather,	I	am	simply	anticipating	how	a	Wilsonian	analysis	might	proceed	before	

appropriating	some	of	these	particle	concepts	in	my	discussion	when	needed	in	

the	 following	 chapters.	 To	 analyse	 these	 particle	 concepts	 first	 requires	 a	

‘Wilsonian	analysis’	of	concepts	such	as	‘superposition’	and	‘component’	as	used	

in	 the	 context	 of	 applied	 mathematics	 in	 terms	 of	 prolongation,	 dragging	 and	

semantic	mimicry.	

	

1.3	Thesis	overview	

A	 Wilsonian	 framework	 to	 the	 analysis	 of	 QFT	 is	 more	 naturally	 applied	 to	

‘physicists’	 QFT’	 rather	 than	 ‘axiomatic	 QFT’,	 and	 this	 is	 the	 route	 that	 I	 am	

taking.	Within	the	context	of	 ‘physicists’	QFT’	a	 locus	of	study	of	 ‘effective	 field	

theory’	 using	 renormalization	 group	 analysis	 has	 emerged	 (cf.	 J.	 Fraser	 2016;	
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Hancox-Li	2015),	which	may	sit	well	with	Wilson’s	approach,	but	this	is	not	the	

route	that	I	shall	take	as	there	are	other	issues	that	I	wish	to	pursue.	QFT	is	not	a	

unified	theory,	but	is	a	façade	of	local	applications	of	theories.	My	concern	will	be	

primarily	with	canonical	QFT	as	applied	to	particle	physics.	

Thus	I	shall	 focus	on	the	concepts	of	particle,	superposition,	 interaction,	

and	 component	 and	 the	 role	 that	 they	 play	 –	 especially	 in	 the	 applied	

mathematical	context	of	(generalized)	Fourier	techniques	–	as	analysed	through	

the	 philosophical	 framework	 that	 Wilson	 provides.	 Since	 little	 philosophical	

work	 has	 been	 done	 on	 the	 nature	 and	 significance	 of	 both	 the	 superposition	

concept	 and	 Fourier	 techniques	 I	 shall	 need	 to	 spend	 some	 time	 laying	 a	

philosophical	 foundation	 for	 these	 in	 classical	 physics	 before	 turning	 to	 their	

application	 in	 QFT.	 As	 we	 shall	 see	 the	 Wilsonian	 framework,	 with	 a	 few	

developments	motivated	by	both	Volkmann’s	(1896;	1900)	and	Simons’	(1987)	

analyses	 of	 the	 concept	 of	 superposition,	 is	 well	 suited	 to	 their	 analysis	 as	 a	

façade	structure	to	the	concepts	may	be	identified.	

The	 point	 is	 that,	 as	 we	 shall	 see	 in	 chapters	 6-7,	 key	 aspects	 of	 the	

various	architectures	of	 ‘superposition’	 in	classical	physics	which	are	central	 to	

its	significance	and	thus	the	interpretation	of	theories	and	models	that	rely	on	it,	

whether	explicitly	or	 implicitly,	 are	 retained	when	 the	 concept	 is	prolonged	 to	

quantum	 physics	 even	 if	 there	 are	 significant	 additional	 novel	 aspects	 to	 the	

architecture	 of	 ‘superposition’	 in	 quantum	 physics.	 That	 is,	 there	 is	 both	

continuity	and	discontinuity	of	the	semantic	architecture	of	‘superposition’	in	the	

concept’s	prolongation	from	classical	to	quantum	physics,	and	it	is	the	aspects	of	

continuity	that	are	central	to	my	analysis.	The	aspects	that	are	discontinuous	are	

often	 associated	 with	 the	 ‘measurement	 problem’,	 and	 are	 tangential	 to	 my	

argument	and	not	discussed	–	that	is,	the	philosophical	difficulties	that	I	identify	

via	‘superposition’	are	‘upstream’	of	or	prior	to	the	measurement	problem.	

Whilst	 the	 analysis	 I	 present	 does	 not	 supply	 a	metaphysical	 (deep)	 or	

even	a	scientific	(shallow)	realist	account	of	QFT,	it	clarifies	where	and	why	the	

conceptual	difficulties	occur	by	considering	the	misapplication	of	‘superposition’.	

My	analysis	will	however	indicate	where	realist	interpretations	cannot	be	placed	

owing	 to	 failure	 of	 ‘superposition’	 whilst	 showing	where	 one	might	 seek	 local	

and	 limited	 shallow	realist	 interpretations	of	 the	 theory	 that	 clarify	where,	 for	
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instance,	a	(suitably	modest)	particle	 interpretation	might	be	appropriate,	with	

clarity	brought	as	regards	what	might	be	meant	by	a	particle	interpretation.	

However,	 ‘semantic	mimicry’	 often	 occurs	when	 the	 particle	 concept	 or	

description,	 along	 with	 the	 concept	 of	 superposition,	 is	 ‘dragged’	 from	 local	

contexts	of	descriptive	opportunity	 to	 try	to	describe	general	 interacting	states	

via	 implicit	 appeal	 to	 ‘superposition’.	 This	 suggests	 that,	 according	 to	 QFT	 at	

least,	it	is	wrong	to	suppose	that	matter	is	in	a	metaphysical	sense	composed	of	

particles	like	electrons,	quarks	and	gluons.	However,	depending	on	the	strength	

of	 the	 field	 couplings,	 a	 particle	 description	 can	 still	 provide	 a	 reasoning	

advantage	 in	an	 ‘engineer’s	 sense’	 (as	 clarified	 in	 chapter	11)	 if	 the	 coupling	 is	

weak	(such	as	 in	QED	at	 low	energy),	but	not	 if	 the	coupling	 is	strong	(such	as	

QCD	at	low	energy).	

More	 fundamentally	 though,	 as	 the	 conceptual	 difficulties	 involved	with	

renormalization	 highlight,	 the	 superposition	 principle	 for	 both	 fields	 and	

particles	 fails	 to	hold	 for	anything	but	 free	QFTs,	 so	 that	we	discover	 that	QFT	

does	 not	 support	 an	 interpretation	 of	 a	 (near)	 ‘fundamental	 level’	 in	 terms	 of	

entities	 (be	 they	 particles	or	 fields)	 and	 their	properties.	 It	 is	 the	 failure	 to	 be	

able	 to	apply	the	superposition	principle	 that	reflects	some	of	 the	 fundamental	

conceptual	difficulties	with	QFT,	rather	than	our	ignorance	of	short	length-scale	

physics	or	our	inability	to	(as	yet)	develop	a	working	quantum	theory	of	gravity.	

As	 well	 as	 highlighting	 the	 failure	 of	 ‘superposition’,	 renormalization	 is	 the	

means	 by	 which	 its	 failure	 is	 partially	 accommodated	 so	 that	 empirically	

adequate	 calculations	may	 be	 performed.	One	 can	 claim	 genuine	 knowledge	 of	

the	 world	 through	 QFT,	 but	 in	 a	 restricted	 sense	 –	 such	 as	 that	 of	 the	

probabilities	of	outcomes	of	scattering	experiments	for	example.	

So,	 in	chapter	2	 I	survey	the	history	of	 the	application	of	 ‘superposition’	

and	 the	 sparse	 philosophical	 literature	 on	 the	 concept	 in	 relation	 to	 Paul	

Volkmann’s	 analysis	 of	 the	 concept	 (1896;	 1900;	 1910).	 Then	 in	 chapter	 3	 I	

analyse	the	superposition	principle	and	allied	notions	of	components	and	vector	

decomposition	 for	 systems	 with	 a	 finite	 number	 of	 degrees	 of	 freedom	 in	

classical	physics.	 In	chapter	4	 I	consider	the	 façade	structure	of	 ‘superposition’	

and	 its	 semantic	 mimics	 for	 systems	 with	 infinitely	 many	 degrees	 of	 freedom	

with	reference	to	Fourier	techniques	and	Sturm-Liouville	theory.	I	discuss	linear	
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systems	in	relation	to	‘superposition’	in	chapter	5	and	contrast	the	application	of	

‘superposition’	 in	 linear	 systems	 to	 its	 failure,	 and	 hence	 semantic	 mimics	 in	

nonlinear	 systems.	 In	 chapter	 6	 I	 build	 upon	 chapters	 2-5	 to	 survey	 the	

application	of	 ‘superposition’	on	 the	new	patch	of	quantum	physics,	noting	 the	

historical	origins	of	 the	quantum	usage	of	 the	 concept	and	 its	 continuities	and	

discontinuities	 with	 classical	 usage,	 and	 then	 I	 consider	 the	 historical	

foundations	of	QFT	in	chapter	7.	

In	 chapter	 8	 I	 analyse	 in	 detail	 the	 application	 of	 ‘superposition’	 and	

‘particle’	 in	 free	QFTs.	The	 importance	of	 the	 linearity	of	 the	 field	equations	 in	

conjunction	 with	 the	 superposition	 principle	 is	 highlighted	 for	 exploiting	 the	

descriptive	opportunities	available	in	free	QFTs,	being	associated	with	the	ability	

to	construct	physically	meaningful	Fock	space	structures.	In	chapter	9	I	consider	

how	 interacting	 QFTs	 are	 constructed	 perturbatively	 from	 free	 QFTs	 and	

introduce	 scattering	 theory	 and	 the	 use	 of	 Dyson’s	 series	 in	 the	 interaction	

picture.	 We’ll	 see	 that	 Feynman	 diagrams	 and	 virtual	 particles	 are	 often	

misinterpreted	in	a	realistic	sense	owing	to	semantic	mimicry	via	misapplication	

of	‘superposition’.	I	develop	a	conceptual	analysis	of	interacting	QFTs	in	chapter	

10,	 concluding	 that	 no	 particle	 description	 of	 interacting	 states	 is	 supported	

before	considering	what	kind	of	 ‘natural	description’	 is	available	–	which	turns	

out	 to	be	very	thin	even	 if	 it	does	have	applications.	The	conceptual	difficulties	

are	diagnosed	in	terms	of	the	nonlinearity	of	the	coupled	field	equations,	and	the	

initial	 failure	of	 ‘superposition’	understood	 in	Volkmann’s	general	 sense	 to	 the	

selection	 of	 the	 fields	 and	 associated	 states.	 Renormalization	 is	 the	 means	 by	

which	 the	 initial	 failure	 of	 the	 ‘generalized	 superposition’	 is	 partially	

compensated	for,	supporting	empirically	adequate	results.	

In	 chapter	 11	 I	 indicate	 how	 unstable	 particles	 are	 modelled	 in	 QFT	

before	 completing	 the	 discussion	 of	 scattering	 theory.	 The	 analysis	 of	 bound	

states	 is	 addressed	 briefly,	 and	 strongly	 coupled	 theories	 are	 compared	 with	

weakly	 coupled	 theories	 in	 the	 context	 of	 an	 ‘engineering	 approach’	 to	

understanding	the	nature	of	QFT	and	the	kind	of	approximate	descriptions	that	

might	be	available	in	cases	where	‘superposition’	is	approximately	applicable.		

My	 conclusions	 are	 summarized	 in	 chapter	 12	 along	 with	 some	

suggestions	for	further	research.	
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Chapter	2	

	

Isolation	and	Superposition	in	Mathematical	Physics:	

Overview	

	

2.1	Introduction	

I	start	to	lay	the	groundwork	for	my	analysis	of	QFT	in	relation	to	‘superposition’	

through	a	Wilsonian	analysis	of	 the	concept	and	associated	Fourier	 techniques.	

The	 concepts	 of	 ‘superposition’	 and	 ‘component’	 will	 be	 seen	 to	 have	 façade	

structures	 whose	 semantic	 support	 or	 physical	 significance	 differs	 between	

contexts	 or	 patches	 of	 application	 (cf.	 chapter	 1).	 Semantic	mimicry	 can	 occur	

leading	 to	 conceptual	 confusion.	 I’ll	 analyse	 the	 differing	 supporting	

architectures	 whilst	 refraining	 from	 metaphysical	 judgements,	 considering	

instead	 how	 the	 superposition	 principle	 relates	 to	 establishing	 a	 ‘natural’	

descriptive	opportunity	 in	Wilson’s	 sense.	What	we	 shall	ultimately	discover	 is	

that	 applications	of	 ‘superposition’	on	 a	 ‘QFT	patch’	 often	 fail,	 being	 subject	 to	

semantic	mimicry	 leading	 to	misplaced	metaphysics,	 such	 as	 that	 of	 a	 particle	

ontology	 which	 QFT	 does	 not	 support	 in	 general.	 By	 clarifying	 the	 role	 of	

‘superposition’	 we	 shall	 see	 that	 the	 natural	 descriptions	 available	 in	 QFT	 are	

very	thin,	being	available	only	‘in	principle’	and,	in	general,	unrelated	to	familiar	

particle	concepts.	

The	 concept	 of	 superposition	 together	 with	 Fourier	 techniques	 and	

related	Sturm-Liouville	theory	are	central	to	mathematical	physics,	engineering,	

and	 in	 particular,	 quantum	 physics.	 However,	 there	 has	 been	 rather	 little	

philosophical	 engagement	 with	 either	 the	 concept	 of	 superposition,	 or	 with	

Fourier	techniques	and	associated	notions	of	‘component’	and	‘composition’	and	

so	 their	 roles	 in	 the	 interpretation	of	 physical	 theories	 are	 poorly	 understood.	

The	fullest	philosophical	treatment	of	‘superposition’	in	mathematical	physics	of	

which	 I	 am	 aware	 is	 that	 of	 Paul	 Volkmann’s	 (1896,	 1910).	 He	 studied	 the	

processes	 of	 isolation	 and	 superposition	 in	 the	 context	 of	 his	 project	 of	 the	

development	 of	 an	 epistemology	 of	 science.	 More	 recently	 ‘superposition’	 has	

been	 discussed	 by	 Peter	 Simons	 in	 relation	 to	 metaphysical	 application	 to	
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material	objects	or	substances,	but	not	to	physics	(1987).	Isolated	discussions	of	

Fourier	analysis,	sometimes	tangential	or	passing,	are	found	in	Redhead	(1988),	

Healey	(2013),	Wilson	(1993;	2006;	2013;	2017)	and	Liston	(1993),	but	there	is	

no	sustained	discussion	of	the	technique	and	its	association	with	superposition,	

and	 indeed	 much	 of	 the	 discussion	 in	 the	 contemporary	 literature	 was	

anticipated	by	Fourier	(1878	[1822]).	

There	 is,	 however,	 a	 growing	 body	 of	 philosophical	 literature	 on	 vector	

composition,	and	the	composition	of	forces	in	particular,	even	if	 ‘superposition’	

is	 not	 explicitly	 in	 view.1	This	 literature	 stems	 from	 Cartwright	 (1980)	 and	

Creary	(1981),	although	it	has	its	roots	in	Mill	(1843-1882)	and	was	anticipated	

by	Volkmann	(1896).	

I’ll	adopt	and	adapt	examples	from	this	literature	to	analyse	the	concepts	of	

superposition	 and	 component	 in	 relation	 to	 vectors	 in	 particular	 in	 chapter	 3,	

and,	 in	 chapters	 4-5,	 Fourier	 techniques.	 Much	 of	 the	 recent	 literature	 has	 a	

metaphysical	focus	or	is	concerned	with	realism.	For	instance	much	discussion	in	

the	 vector	 composition	 literature	 revolves	 around	 the	 issue	 of	 causal	

overdetermination.	 In	my	Wilsonian	approach	I	remain	metaphysically	quietest	

having	noted	in	chapter	1	difficulties	regarding	the	architecture	of	concepts	such	

as	‘cause’,	‘force’	and	‘law’.	So,	I	shall	remain	silent	on	a	number	of	questions	that	

arise,	and	use	these	terms	in	a	metaphysically	neutral	Wilsonian	fashion.	

I	 shall,	 however,	 consider	 some	of	 the	 inferential	pathways	 that	have	been	

adopted	with	a	view	 to	 clarifying	what	Wilson	 terms	 the	 ‘semantic	support’	or	

‘supporting	 architecture’	 for	 ‘superposition’	 (and	 Fourier	 techniques	 in	 the	

following	chapters)	as	adopted	on	various	patches	of	application,	which	may	feed	

in	to	realism	debates.	My	analysis	will	focus	on	the	clarification	of	the	semantic	

architecture	 of	 ‘superposition’	 which	 will	 help	 us	 to	 see	 where	 realist	

commitments	cannot	be	placed	in	QFT	as	well	as	enabling	us	to	diagnose	some	of	

the	conceptual	difficulties	with	QFT.	

In	 this	 chapter	 I	 survey	 the	 application	 of	 ‘superposition’	 and	 the	 sparse	

philosophical	literature	on	the	concept.	

	 	

																																																								
1	See	e.g.	the	special	edition	of	Dialectica	(2009,	63.4)	dedicated	to	vectors.	
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2.2	An	overview	of	the	façade	structure	of	‘superposition’	and	its	history		

The	superposition	principle	is	often	introduced	in	elementary	physics	in	terms	of	

graphical	 construction,	 inviting	 intuitive	 visualization,	 for	 example	 the	

interference	of	waves,	or	vector	addition	of	 forces	 (Whelan	and	Hodgson	1978	

35,	103-104),	or	the	motion	of	a	vibrating	string	as	‘composed’	of	its	harmonics	

(Brillouin	 1946,	 2).	 Alternatively	 it	 has	 been	 defined	 as	 a	 property	 of	 linear	

differential	 equations.	 In	 this	 case	 the	 ‘superposition	 principle’	 states	 that	 a	

linear	combinations	of	solutions	of	a	linear	differential	equation	is	also	a	solution	

(Courant	and	Hilbert	1924,	221).	This	definition	encompasses	wave	interference	

and	string	vibrations,	since	these	phenomena	are	modelled	by	linear	differential	

equations,	 but	 not	 the	 vector	 addition	 of	 forces	 in	 statics.	 The	 superposition	

principle	may	 also	 be	 defined	 via	 integral	 equations	 (Volterra	 1913,	 219).	 The	

use	of	 ‘superposition’	in	quantum	physics	–	notoriously	in	thought	experiments	

about	 the	 state	 of	 a	 cat	 –	 reflects	 a	 different	 understanding	 of	 ‘superposition’	

again	(Schrödinger	1926a-e,	1935).	Already	this	motivates	consideration	of	 the	

‘wandering	significance’	and	façade	structure	of	‘superposition’,	‘component’	and	

‘composition’.	

However,	despite	both	historical	and	contemporary	‘patchwork’	definitions	

of	 ‘superposition’,	 attempts	 have	 been	made	 to	 identify	 a	 common	 ground	 for	

these	 patches	 of	 application.	 For	 instance	 the	 Penguin	 Dictionary	 of	 Physics	

defines	 superposition	as,	 ‘A	principle	 that	holds	generally	 in	physics	whenever	

linear	 phenomena	 occur.’	 (Illingworth	 1990,	 469).	 Elasticity,	 vibrations	 and	

waves	 are	 cited	 as	 exemplifying	 the	 superposition	 principle.	 This	 definition	 is	

developed	in	the	Wikipedia	entry:	
	The	superposition	 principle,	also	 known	 as	superposition	 property,	 states	 that,	 for	
all	linear	 systems,	 the	 net	 response	 caused	 by	 two	 or	 more	 stimuli	 is	 the	 sum	 of	 the	
responses	 that	 would	 have	 been	 caused	 by	 each	 stimulus	 individually.	 So	 that	 if	
input	A	produces	response	X	and	input	B	produces	response	Y	then	input	(A	+	B)	produces	
response	(X	+	Y).	(Anon,	‘Superposition	Principle’)	

Such	a	definition	might	appear	to	abstract	the	essential	features	of	various	uses	

of	 ‘superposition’,	 which	 would	 suggest	 that	 it	 is	 a	 ‘flat’	 concept	 after	 all	 for	

which	 the	 ‘classical	 picture’	 of	 concepts	 suffices.	 But	 as	 we	 shall	 see	 this	

definition	fails	to	capture	usage	of	‘superposition’	adequately.	

The	 history	of	 the	 concept	of	 ‘superposition’	 in	mathematical	 physics	 is	

difficult	 to	 trace	since	the	concept	has	often	been	used	 implicitly	(e.g.	Bernoulli	
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1753a&b)	yet	with	its	explicit	usage	often	implied	by	later	authors	(e.g.	Brillouin	

1946,	2	on	Bernoulli).	The	application	of	 the	 concept	or	principle	 in	physics	 is	

probably	 to	 be	 traced	 to	 Galileo’s	 analysis	 of	 projectile	 motion	 (Mach	 1942	

[1933],	181-186;	Volkmann	1896,	74-76;	cf.	Galileo	1914	[1638],	244-294,	esp.	

262-263).	 However,	 we	 find	 only	 passing	 reference	 to	 ‘superposing’	 per	 se	 in	

Galileo,	drawing	upon	the	geometrical	concept	of	superposing	 figures,	although	

the	 concept	 appears	 to	 be	 in	 use	 implicitly.2	Galileo’s	 understanding	 of	 the	

physical	significance	of	‘superposing’	is	illustrated	by	the	interlocutor	Sagredo:	
One	cannot	deny	that	the	argument	is	new,	subtle	and	conclusive,	resting	as	it	does	upon	
this	 hypothesis,	 namely,	 that	 the	 horizontal	 motion	 remains	 uniform,	 that	 the	 vertical	
motion	continues	 to	be	accelerated	downwards	 in	proportion	 to	 the	square	of	 the	 time,	
and	 that	 such	 motions	 and	 velocities	 as	 these	 combine	 without	 altering,	 disturbing,	 or	
hindering	each	other,	 so	 that	as	 the	motion	proceeds	 the	path	of	 the	projectile	does	not	
change	into	a	different	curve	(1914,	250	[1638,	273])	

Bernoulli	analysed	the	motion	of	a	vibrating	string,	and	subsequently	Chladni	the	

vibrations	of	plates,	in	terms	of	an	implicit	principle	of	superposition,	that	is,	 in	

terms	 of	 a	mixture	 of	 coexistent	 simple	 vibrations	 that	 exist	 independently	 of	

each	other	 (Bernoulli	1753a,	160;	Chladni	2015	 [1809]).	These	examples	were	

later	 interpreted	 and	 developed	 in	 terms	 of	 ‘superposition’	 explicitly	 (Fourier	

1878	[1822];	Herschel	1830),	although	Fourier	applied	‘superposition’	primarily	

in	relation	to	his	development	of	the	analysis	of	heat	flow	(see	chapter	4).	

However,	in	the	early-mid	19th	century	several	 ‘superposition	principles’	

emerged:	Kipnis	traces	a	principle	of	superposition	of	small	motions,	a	principle	

of	superposition	of	vibrations,	and	a	principle	of	superposition	of	waves	(1991,	

17-24).	Whilst	we	must	be	cautious	in	attempting	to	read	19th	century	authors	in	

terms	of	later	debates,	as	we	shall	see	in	chapter	4	in	this	era	the	components	of	

superpositions	appear	 to	be	understood	 in	what	we	would	understand	 to	be	a	

realist	 sense	–	 the	 components	are	 taken	 to	exist	 (meta)physically	and	are	not	

mathematical	artefacts	(Fourier,	Herschel).	For	example	Herschel	argued:	
We	may	here	notice	a	very	remarkable	experiment	…	which	shows	to	what	an	extent	the	
principle	 of	 the	 superposition	 of	 vibrating	motions	 and	 the	 simultaneous	 coincidence	 of	
different	modes	of	vibration	in	the	same	vibrating	body,	must	be	admitted	in	Acoustics.	If,	
instead	of	one,	two	…	tuning-forks	be	held	over	the	mouth	of	a	pipe	[e.g.	an	organ	pipe]	
side	by	side,	both	nearly	 in	unison	with	 the	pipe	…	The	same	column	of	air,	 then,	at	 the	
same	 time,	 is	 vibrating	 as	 a	 part	 of	 two	 distinct	 systems,	 and	 each	 series	 of	 vibrations,	

																																																								
2	See	Damerow	et	al	(1992,	266-267);	Naylor	(1980,	560-561)	and	Prudovsky	(1989,	455)	for	
consideration	of	Galileo’s	treatment	of	projectile	motion	in	relation	to	‘superposition’.	
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however	 near	 coincidence	 they	 may	 be	 brought,	 continues	 perfectly	 distinct	 and	
absolutely	free	from	mutual	influence.	(1830,	Art.	205)3	
In	the	mid-19th	century	the	superposition	principle(s)	were	often	related	to	

small	 motions,	 or	 infinitesimal	 quantities,	 and	 perhaps	 it	 was	 this	 aspect	 of	

‘superposition’	 that	 Hilbert	 (Courant	 and	 Hilbert	 1924,	 221)	 and	 perhaps	

Volterra	(1913,	219)	focused	upon.4	However,	‘superposition’	was	not	applied	to	

force	composition,	i.e.	to	the	‘parallelogram	of	forces’	even	if	this	would	become	a	

paradigmatic	 example	 of	 superposition	 (Volkmann	 1896;	 Mach	 1942	 [1933]),	

and	 was	 perhaps	 closer	 to	 Galileo’s	 original	 application	 of	 the	 concept.	 For	

instance,	writing	before	the	development	of	the	concept	of	vectors,	5	Pratt	did	not	

interpret	 the	 resultant	 composition	 of	 forces	 in	 terms	 of	 superposition	 (1841,	

Art.	 11-67),	 but	 did	 explicitly	 use	 the	 ‘principle	 of	 superposition	 of	 small	

motions’	 to	analyse	planetary	motion	 (Art.	288),	which	he	also	associates	with	

the	‘Principle	of	the	Coexistence	of	Small	Vibrations’	(Art.	490-491).	Indeed,	the	

application	of	‘superposition’	was	sporadic	in	the	19th	century	with	some	authors	

using	the	concept	rather	sparingly	(e.g.	Thomson	and	Tait	1888).	That	is,	usage	

was	not	consistent.	

As	with	Bernoulli	and	Chladni,	who	used	‘superposition’	without	naming	

it	as	such,	so	we	may	see	the	use	without	naming	of	the	concept	with	regard	to	

the	 composition	 of	 forces	 or	 causes.	 So	 for	 instance	Mill	 considers	 the	way	 in	

which	several	agents	or	causes	compose	to	act	jointly,	such	as	in	the	composition	

of	forces	to	deduce	the	joint	action	from	the	individual	actions:	
To	enable	us	to	do	this,	it	is	only	necessary	that	the	same	law	which	expresses	the	effect	of	
each	cause	acting	by	itself,	 shall	also	correctly	express	 the	part	due	 to	 that	cause,	of	 the	
effect	which	follows	from	the	two	together.	…	This	law	of	nature	is	called,	in	dynamics,	the	
principle	of	the	Composition	of	Forces:	and	in	imitation	of	that	well-chosen	expression,	I	
shall	 give	 the	 name	 the	 Composition	 of	 Causes	 to	 the	 principle	which	 is	 exemplified	 in	 all	

																																																								
3	This	is	a	standard	‘realist’	move,	to	adopt	a	realist	stance	to	or	existence	of	an	entity	(here,	an	
individual	mode	of	vibration	of	a	column	of	air)	owing	to	its	causal	relevance	–	the	‘Eleatic	
Principle’.	However,	this	example	in	fact	differs	in	important	ways	from	the	resonance	of	a	pipe	
set	up	by	some	arbitrary	acoustic	source.	
4	The	principle	of	superposition	of	small	motions	is	stated	by	Thomson	and	Tait:	

From	 similar	 considerations	 follows	 also	 the	 general	 principle	 of	 Superposition	 of	 small	
motions.	It	asserts	that	if	several	causes	act	simultaneously	on	the	same	particle	or	rigid	body,	
and	if	the	effect	produced	by	each	is	of	the	first	order	of	small	quantities,	the	joint	effect	will	
be	obtained	if	we	consider	the	causes	to	act	successively,	each	taking	the	point	or	system	in	the	
position	 in	which	 the	 preceding	 one	 left	 it.	 It	 is	 evident	 at	 once	 that	 this	 is	 an	 immediate	
deduction	 from	 the	 fact	 that	 the	 second	 order	 of	 infinitely	 small	 quantities	 may	 be	 with	
rigorous	 accuracy	 neglected.	 This	 principle	 is	 of	 very	 great	 use	 …	 its	 applications	 are	 of	
constant	occurrence.	(1888	Art.	89;	cf.	Volkmann	1896,	84;	Poincaré	1905,	148).	

I	have	been	unable	to	trace	the	origins	of	this	view.		
5	See	Crowe	(1967)	for	the	development	of	the	vector	concept	in	the	late	19th-century.	
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cases	 in	which	 the	 joint	effect	of	 several	 causes	 is	 identical	with	 the	 sum	of	 their	 separate	
effects.	(1851,	I.	373-374,	emphasis	added)	

Volkmann,	and	subsequently	Mach,	would	recognize	the	‘composition	of	causes’	

exemplified	 in	 the	 ‘Parallelogram	 Law’	 of	 forces,	 or	 vector	 composition	 more	

generally,	 as	 a	 paradigmatic	 example	 of	 ‘superposition’	 (e.g.	 Volkmann	 1896,	

177),	although	Volkmann	is	careful	to	suggest	that	we	should	think	not	in	terms	

of	 the	composition	of	 forces	or	causes,	but	 in	 terms	of	 the	composition	of	 their	

effects	(Volkmann	1896,	81).		

By	the	late	19th	–	early	20th	century	then	the	‘superposition	principle’	was	

applied	 in	 increasingly	 broad	 and	 diverse	 although	 sporadic	 ways,	 arguably	

faithfully	 to	 Galileo,	 without	 distinguishing	 between	 local	 applications	 (e.g.	

Volkmann	 (1896-1910);	 Mach	 (1897-1942	 [1933])),	 having	 acquired	 a	 façade	

structure	 in	 the	 sense	 that	 the	 concept	 is	 applied	 with	 reference	 to	 differing	

supporting	 architectures.	 It	 came	 to	 be	 interpreted	 as	 an	 ‘epistemological	

principle’	 rather	 than	 a	 ‘natural’	 or	 ‘metaphysical’	 principle	 however. 6 	For	

example	Boltzmann	argued	that	understanding	
the	superposition	principle	as	a	general	natural	principle,	seemed	to	me	very	premature;	
moreover,	the	requirement	of	its	separate	applicability	to	the	three	different	directions	of	
coordinates	 makes	 it	 pure	 abstraction,	 since	 the	 coordinate	 axes	 only	 exist	 in	 our	
imagination	[Phantasie].	Moreover,	when	there	are	several	material	points,	the	separation	
of	the	various	activities	[Arbeiten]	of	each	point	in	its	motions	is	arbitrary.	(1896,	45	[my	
translation])	

Here,	 it	 is	 the	decompositions	of	vectors	using	arbitrary	coordinate	systems,	or	

coordinate	systems	chosen	for	convenience,	that	is	in	view.	

Entering	 the	 20th	 century	 the	 superposition	 principle	 came	 to	 be	

understood	 in	 relation	 to	 integral	 (so	 Volterra)	 and	 differential	 equations	 (so	

Hilbert):	 Volterra,	 developing	 Boltzmann’s	 work	 on	 the	 ‘heredity	 principle’	 in	

elasticity,	7	articulated	 some	 ideas	 foundational	 to	 modelling	 linear	 systems	 in	

																																																								
6	This	might	account	 for	 its	 increasingly	sporadic	use	 in	 the	 latter	19th	 century	as	metaphysics	
came	to	be	seen	as	problematic.	The	two	poles	of	this	debate	replay	geometric	pre-Galilean	16th	
century	debates.		For	instance,	Clavius	comments	on	Peletier	

	he	does	not	 seem	to	have	understood	 in	a	 satisfactory	manner	how	Geometers	use	 that	
superposition.	For	they	do	not	want	that	superposition	to	be	carried	out	in	reality	(for	that	
would	be	something	mechanical),	but	only	in	thought	and	in	the	mind,	which	is	the	task	of	
reason	and	of	intellect.	(Clavius	1589,	in	Mancosu	1996,	121).	

Mancosu	discusses	the	widespread	philosophical	significance	of	superposition	in	the	17th	century	
(1996,	32),	noting	that	proofs	by	superposition	‘became	central	to	debates	over	foundations	of	
the	geometry	of	indivisibles’	(33).	
7	Markovitz	(1975,	431)	discusses	Boltzmann’s	contribution	to	superposition	in	the	context	of	
elasticity	or	rheology,	‘that	the	influence	of	the	deformations	which	are	imposed	at	various	times	
can	be	superposed’,	and	Ianniello	and	Israel	(1993)	link	Boltzmann’s	work	to	Volterra’s.	
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relation	to	‘superposition’	that	we	shall	consider	in	chapter	5.8	The	idea	is	that	if	

a	 linear	 system	is	subjected	 to	a	series	of	 ‘impulses’	 at	different	 times,	 then	 its	

response	at	some	later	time	is	constructed	from	the	‘superposition’	of	the	effects	

of	 the	 impulse	 responses	 taken	 individually	 in	 isolation.	 Volterra	 analyses	 a	

thread	which	twists	by	a	displacement	ω(t)	in	response	to	a	time-varying	torque	

M(t).	He	introduces	a	‘coefficient	of	heredity’	Φ	that	relates	the	displacement	at	t	

to	torques	applied	at	earlier	times	τ	considered	as	a	continuous	sum	of	impulses	

so	that	

!(#) = &'(#) + ) Φ(# − ,)'(,)-,
.

/
	

Volterra	comments:		
We	can	now,	as	a	first	approximation,	admit	that	Φ	depends	on	M	by	a	 linear	relation	 ...	
From	 a	 physical	 point	 of	 view,	 this	 amounts	 to	 supposing	 that	 the	 effects	 of	 the	
superposition	 of	 the	moments	 of	 torsion,	 in	 the	 past,	 are	 increasing;	 we	 said	 then	 that	
heredity	is	linear.	(1913,	219	[my	translation])9	

For	 convenience	 I	 call	 this	 patch	of	 application	 ‘Volterra	 superposition’,	where	

superposition	 is	 applied	 in	 integral	 form,	 often	 associated	 with	 idealized	

‘impulses’	 (see	 §5.2.2).	 This	 approach	 to	 ‘superposition’	 reflects	 a	 trajectory	

through	 the	20th	 and	 into	 the	21st	 century	 (e.g.	 Jeffreys	and	 Jeffreys	1956,	239;	

Simmons	2017,	145).	

Hilbert	 understood	 the	 superposition	 principle	 in	 terms	 of	 linear	

combinations	of	solutions	to	a	 linear	differential	equation	also	being	a	solution	

(Courant	 and	Hilbert	 1924,	 221).	 Arguably	 it	 reflects	 an	 attempt	 to	 axiomatize	

‘superposition’	 understood	 as	 the	 principle	 of	 superposition	 of	 small	 motions	

exemplified	by	Fourier	and	Pratt.	Courant	and	Hilbert	state:	
The	solutions	of	the	homogeneous	[differential]	equation	[L[u]	=	0]	have	the	fundamental	
superposition	property:	If	u1,	u2	are	two	solutions,	then	for	arbitrary	values	of	the	constants	
c1,	c2,	c1	u1	+	c2	u2	is	also	a	solution.	(1924,	221	[my	translation])	

For	 convenience	 I	 call	 this	 ‘Hilbert	 superposition’.	 This	 statement	 is	 set	 in	 the	

context	 of	 a	 chapter	 on	 ‘Vibration	 and	 Eigenvalue	 Problems	 in	 Mathematical	

Physics’,	and	is	thus	to	be	understood	in	the	trajectory	of	Fourier	and	Sturm	and	

Liouville,	and	as	with	‘Volterra	superposition’	it	establishes	a	trajectory	through	
																																																								
8	The	trajectory	of	this	approach	may	be	traced	to	Green,	through	Heaviside,	eventually	being	
made	rigorous	by	Schwartz	(1950-1951)	on	distributions.	See	Lützen	(1982)	for	detailed	history.	
Wilson	engages	with	this	trajectory	in	terms	of	his	own	approach,	interpreting	Heaviside	through	
Schwartz	(2006,	476-566)	as	well	as	Green	through	Schwartz	(2017,	324-361).	
9	The	linear	approximation	is	required	for	‘superposition’	here	(cf.	§5.3.1),	as	in	the	examples	we	
discuss	relating	to	Fourier	techniques	such	as	the	1-dimensional	wave	equation	modeling	
vibrating	strings	and	pulses	travelling	on	ropes.		
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the	 20th-21st	 century	 (e.g.	 Simmons	 2017,	 133).10	However,	 as	 in	 the	 abstract	

application	 of	 ‘superposition’	 to	 vectors,	 so	 abstract	 application	 of	 	 ‘Hilbert	

superposition’	 and	 ‘Volterra	 superposition’	 removed	 from	 a	 physical	 context	

leads	to	difficulties	in	the	application	of	the	concept.	

Finally,	 Schrödinger	 applied	 Hilbert’s	 superposition	 principle	 in	 the	

quantum	 context	 (Schrödinger	 1926a-e,	 directly	 citing	 Courant	 and	 Hilbert	

1924),	 which	 Dirac	 subsequently	 cast	 as	 foundational	 to	 quantum	 physics	

(1930).	As	interpreted	in	conjunction	with	Born’s	rule	a	new	patch	of	application	

of	 ‘superposition’	 is	 formed	 that	 I	 call	 ‘quantum	superposition’	 (see	 chapter	6)	

that	leads	to	notorious	and	surprising	dilemmas	in	the	interpretation	of	quantum	

theory	as	famously	noted	by	Schrödinger	(1935).	

	

2.3	Philosophical	analyses	of	classical	superposition	

2.3.1	Paul	Volkmann	on	isolation	and	superposition	

Paul	 Volkmann	 regarded	 ‘superposition’	 together	 with	 associated	 ‘isolation’	

processes	as	central	to	science	(1896;	1900;	1910).	It	is	worth	quoting	Volkmann	

at	length:	
The	 scientific	method,	which	 is	 characterized	 by	 the	 forms	 of	 induction	 and	 deduction,	
actually	-	correctly	understood	-	exhausts	everything	that	can	be	said	about	the	scientific	
method.	 It	 can	 therefore	 only	 be	 a	 matter	 of	 explaining	 the	 forms	 of	 induction	 and	
deduction	in	their	application	in	common	cases.	
The	modes	 of	 thought	 of	analysis	 and	 synthesis	are	 of	particular	 importance:	analysis	

represents	 more	 the	 purely	 subjective;	 inductive	 -	 the	 synthesis,	 more	 an	 objective,	
deductive	moment.	
These	forms	of	thinking	are	based	on	the	fact	of	experience	that	the	world	of	phenomena	

before	us,	 the	scientific	 representation	of	which	 is	concerned,	 is	not	 something	uniform,	
indivisible	 –	 on	 the	 contrary	 it	 is	 composite.	 It	 is	 the	 task	 of	 science	 to	 decompose	 this	
composite,	 which	 is	 present	 in	 experience,	 into	 its	 natural	 constituent	 components.	
Induction	seeks	out	 these	simple	constituents	of	 the	world	of	appearances	 -	we	call	 this	
thought	process	analysis	-	and	deduction	tests	the	correctness	and	tries	to	reconstruct	the	
world	of	appearances	from	these	simple	elements	-	we	call	this	thought	process	synthesis.	
The	natural	sciences	offer	many	examples	of	how	analyses	and	syntheses	are	carried	out.	

Chemistry	applies	names	to	their	specific	scientific	methods.	
As	it	has	developed,	physics	has	increasingly	pointed	to	a	certain	form	of	analytical	and	

synthetic	method	 of	 study,	 which	 seems	 so	 fundamental	 today	 that	 a	 discussion	 seems	
unnecessary	here;	I	mean	the	forms	of	isolation	and	superposition.	
I	understand	isolation	as	the	inductive	attempt	within	a	compound	‘region	of	effects’	to	

track	 down	 the	 elements	 that	 retain	 their	 effect	 independently	 of	 other	 simultaneously	
existing	 ‘effect	 elements’,	 and	 superposition	 as	 the	 deductive	 attempt	 to	 construct	 in	
reverse	the	 ‘region	of	effects’	from	the	elements	found	in	this	way,	i.e.	 to	reconstruct	the	
real	phenomenon.		

																																																								
10	In	later	editions	Courant	and	Hilbert	expand	the	definition	to	include	reference	to	‘any	linear	
homogenous	functional	equation’	(1953,	276),	reflecting	‘Volterra	superposition’.	
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The	 emphasis	 here	 is	 essentially	 on	 the	 "independent	 existence	 of	 the	 effects".	 In	 the	
general	 case	 of	 analysis	 and	 synthesis,	 as	 in	 chemistry,	 there	 is	 the	 phenomenon	 that	
individual	effects,	through	their	coexistence,	are	modified	and	become	different	from	what	
they	are	in	themselves.		
The	principle	of	parallelograms	of	forces,	the	composition	of	simple	motions,	such	as	in	

acoustics,	optics	and	heat	conduction	are	typical	examples	of	the	method	of	isolation	and	
superposition.	 These	 methodological	 principles	 go	 very	 far,	 being	 independent	 of	
particular	 applications,	 e.g.	whether	 there	 is	 a	 long-range	 effect	 or	 a	 short-range	 effect,	
whether	treating	forces,	or	whether	an	application	of	linear	differential	equations.	
At	 first	 glance,	 it	may	 seem	 that	 this	 isolation	 and	 superposition	 process	 is	 extremely	

simple	-	and	it	 is	also	fundamental	-	but	the	history	of	physics	teaches	that	the	isolation	
and	 superposition	 elements	 are	 not	 quickly	 or	 easily	 discovered.	 The	 fact	 that	 light	
consists	of	a	wave	motion	was	discovered	relatively	early	(Huygens),	and	yet	this	idea	was	
completely	suppressed	by	the	theory	of	emanation	(Newton)	for	a	century.	This	battle	of	
theories	was	 essentially	 about	whether	 the	 intensity	 of	 light	 is	 the	 natural	 isolation	 or	
superposition	element	of	a	theory	of	light	or	not.	
Reality	 is	 so	 complicated	 because	 the	 ‘effect	 elements’	 from	 which	 the	 individual	

phenomena	are	formed	appear	in	very	different	proportions,	thereby	creating	and	making	
possible	a	diversity	 that	 in	many	cases	creates	 the	 impression	 that	 it	 is	not	quantitative	
ratios	to	be	distinguished,	as	if	they	were	more	about	qualities	than	quantities.	(1900,	28-
30,	my	translation)11	

Elsewhere	 Volkmann	 suggests	 that	 the	 abstracted	 ‘isolation	 elements’	 are	

associated	 with	 natural	 laws,12	which	 are	 then	 combined	 via	 superposition	 to	

describe	the	‘concrete	phenomena’	before	us:	
The	 law	 is	 the	 true	 scientific	 term,	 the	 abstractum;	 it	 understands	 an	 aggregate	 of	
phenomena	from	one	point	of	view,	that	of	isolation,	of	abstraction.	The	establishment	of	a	
law	is	the	conclusion	of	an	isolation	process,	the	law	remains	a	resting	place,	an	‘isolation	
center’	of	research.	The	natural	scientist	who	establishes	a	law	of	nature	creates	a	concept;	
the	 extraordinary	 business	 of	 naming	 this	 term,	 of	 creating	 a	word	 for	 that	 concept,	 is	
merely	a	matter	of	convenience.	(1896,	88)	

He	 concluded	 in	 1896	 that	 the	 superposition	 principle	 is	 more	 an	

‘epistemological	 principle’	 than	 a	 ‘natural	 principle’	 (‘Ich	 möchte	 das	

Superpositionsprincip	weniger	als	Naturprincip	wie	als	erkenntnistheoretisches	

Princip	hinstellen.’	(1896,	177-178))	

Volkmann’s	analysis	of	isolation	and	superposition,	setting	to	one	side	his	

specific	 philosophical	 inclinations,13	might	 be	 fruitfully	 re-appropriated	 within	

																																																								
11	See	Howard	(1988,	179-180)	for	an	analysis	of	these	themes	in	Volkmann	1896.	
12	There	is	a	difference	here	regarding	the	ability	to	‘isolate’	or	to	‘abstract’	the	partial	laws	in	
that	isolation	might	suppose	the	ability	to	physically	isolate	a	system	associated	with	a	law,	
whilst	abstracting	a	system	associated	with	a	law	might	not	suppose	the	ability	to	physically	
isolate	that	system.	For	instance	in	the	example	discussed	in	chapter	3	of	conjoined	gravitational	
and	electrostatic	forces	acting	on	a	body	it	is	possible	to	physically	isolate	a	system	subject	to	
gravitational	force	only,	that	is,	a	body	with	mass	but	not	charge.	The	electrostatic	abstraction	is	
different,	since	charged	bodies	have	mass,	that	is	we	cannot	physically	isolate	a	system	that	has	
charge	but	not	mass.	In	the	context	of	the	model	however	such	isolation	is	possible,	and	this	
abstraction	makes	sense	in	that	we	conceive	a	body	with	charge	but	without	mass	in	establishing	
what	we	shall	call	the	partial	states	and	partial	laws.	For	Volkmann’s	account	of	superposition	it	
is	sufficient	that	we	can	abstract	even	if	we	cannot	isolate	in	this	sense.	
13	Howard	suggests	that	Volkmann	is	located	in	the	tradition	of	neo-Kantian	critical	realism	
(1988,	176).	This	is	especially	clear	in	Volkmann’s	1910	edition,	which	exhibits	frequent	
engagement	with	Kant	that	is	absent	in	the	1896	first	edition.	Volkmann	acknowledges	a	shift	in	
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the	 Wilsonian	 framework,	 for	 example	 by	 clarifying	 how	 descriptive	

opportunities	 that	 relate	 to	 physically	 salient	 explanations	 and	 reliable	

counterfactual	reasoning	arise	(to	use	Wilson’s	terms)	in	relation	to	application	

of	 isolation	 and	 superposition	 (to	 use	 Volkmann’s	 terms).	 Taking	 their	 work	

together	 indicates	 the	 potential	 philosophical	 value	 of	 considering	 the	

application	 of	 ‘superposition’	 without	 necessarily	 adopting	 any	 particular	

epistemological	 or	 metaphysical	 stance	 to	 the	 components	 isolated	 or	

abstracted.	

The	concept	of	 ‘law’	 is	perhaps	a	useful	(even	 if	problematic)	concept	 to	

use	in	relation	to	analysing	the	semantic	architecture	of	‘superposition’.	It	will	be	

helpful	in	many	situations	to	appeal	to	‘partial	laws’	as	the	laws	obtained	through	

‘isolation’	that	together	compose	an	‘overall	law’	characterizing	the	behaviour	of	

the	 system	 modelled.	 Appeal	 to	 such	 partial	 laws	 will	 not	 be	 made	 quite	 in	

Volkmann’s	sense	 in	which	 ‘law’	 is	used	 in	a	rather	restricted	sense	(as	 ‘law	of	

nature’)	 which,	 if	 enforced,	 is	 unable	 to	 capture	 the	 architecture	 of	

‘superposition’,	in	Fourier	techniques	in	particular	(cf.	chapter	4).		

Volkmann	 associates	 the	 isolation/superposition	 process	 with	 the	

establishment	of	‘laws’.	He	characterizes	a	law	as	

the	shortest	(kürzeste),	most	comprehensive	(allumfassendste)	expression	(Ausdruck)	for	
something	that	happens	within	a	larger	domain	of	appearances,	which	must	happen	under	
all	circumstances.	(1896,	59)	

However	 Volkmann	 understands	 ‘law’	 in	 his	 own	 philosophical	 context,	 as	

Wilson	points	out,	usage	of	‘law’	in	physics	is	varied	and	the	concept	has	its	own	

façade	structure	(2017,	65,	152,	339-342).	‘Law’	is	sometimes	used	in	the	sense	

of	‘law	of	nature’,	and	sometimes	in	relation	to	a	differential	equation	modelling	

the	 behaviour	 of	 some	 system	derived	 from	 ‘laws	 of	 nature’	 as	 a	 ‘system	 law’.	

After	 Hadamard,	 we	 should	 think	 in	 terms	 of	 laws	 as	 associated	 with	 a	

differential	equation	and	the	associated	boundary	conditions	in	the	context	of	a	

particular	 model	 since	 both	 equation	 and	 boundary	 conditions	 together	

																																																																																																																																																															
perspective	between	the	editions	(1910,	vi),	although	his	discussion	of	isolation	and	
superposition	is	substantially	the	same	in	both.	The	point	is	that,	for	my	purposes,	one	may	
(re)appropriate	the	concepts	of	isolation	and	superposition	as	used	by	Volkmann	and	others	in	
the	19th-20th	centuries	without	necessarily	adopting	their	philosophical	frameworks,	so	that	the	
concepts	may	be	fruitfully	used	philosophically	whilst	acknowledging	that	their	semantic	
architecture	is	understood	differently	in	another	(here,	Wilsonian)	framework	than	their	own.	
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determine	 the	 forms	 the	 solutions	 take	 (2017,	 410-416).	 This	 patchwork	

understanding	of	‘law’	will	be	beneficial	in	the	analysis	of	‘superposition’.		

Volkmann’s	 characterization	 of	 laws	 (‘the	 shortest	 (kürzeste),	 most	

comprehensive	(allumfassendste)	expression	(Ausdruck)’)	has	affinities	with	the	

Mill-Ramsey-Lewis	 ‘best	 system’	 account,	 taken	 in	 a	 metaphysically	 neutral	

sense.	Laws	in	the	Mill-Ramsey-Lewis	‘best	system’	account	(Lewis	1973)	can	be	

characterized	in	terms	of	
those	generalizations	which	figure	as	axioms	or	theorems	in	the	deductive	systemization	
of	our	empirical	knowledge	that	achieves	the	best	combination	of	simplicity	and	strength	
(where	 strength	 has	 to	 do	 with	 the	 range	 of	 empirical	 truths	 that	 are	 deducible).	
(Woodward	2014)	

The	 ‘best	 system’	 account	 is	 much	 discussed,	 in	 particular	 with	 regard	 to	

questions	around	the	subjectivity	of	standards	for	‘simplicity’	and	for	‘balance’	or	

‘best	combination’	especially	with	regard	to	comparisons	of	rival	systems.14	

What	 is	 conceptually	 important	 for	us	 is	 the	 local	 analysis	of	models	 of	

particular	 systems	 in	 which	 we	 elucidate	 the	 differing	 semantic	 supports	 of	

‘superposition’,	or	note	its	mimics,	in	relation	to	a	local	understanding	of	‘law’	in	

the	context	of	that	system.	I	shall,	in	continuity	with	the	contemporary	literature	

on	force	composition	(cf.	§3.1)	use	the	term	‘partial	law’	to	denote	the	‘laws’	that	

are	 identified	 by	 isolation/superposition	 as	 outlined	 by	Volkmann	 and	may	 be	

considered	to	 ‘compose’	 to	 form	an	overall	 law	characterizing	the	behaviour	of	

the	 phenomenon	 or	 system	 analysed.	 In	 continuity	 with	 Fourier	 (§4.2)	 I	 shall	

adopt	the	term	‘partial	system’,	or	‘partial	state’,	to	be	those	states	of	the	system	

or	phenomenon	associated	with	the	partial	laws	identified.15	

The	 (metaphysically	 neutral	 here)	 appeal	 to	 ‘partial	 laws’	 is	 associated	

with	 clarifying	 the	 role	 of	 isolation/superposition	 in	 establishing	 a	 robust	 and	

																																																								
14	See	e.g.	Cohen	and	Callender	(2009);	Massimi	(2017;	2018)	for	detailed	discussion	especially	
with	regard	to	Lewis’	‘best	system’	account	and	possible	improvements,	which	we	cannot	
consider	in	detail.	
15	I	have	chosen	this	characterization	of	isolation/superposition	in	terms	of	‘partial	states’	and	
corresponding	‘partial	laws’	with	a	view	to	its	application	in	quantum	physics.	In	the	classical	
cases	considered	in	chapters	3-5	it	will	often	be	the	case	that	either	the	partial	laws	or	the	partial	
states	are	in	view	rather	than	both.	The	force	composition	literature	primarily	refers	to	laws	
rather	than	states	whilst	Fourier	refers	primarily	to	states,	although	the	most	precise	
characterization	of	superposition	according	to	the	‘Volkmann	device’	(see	below)	involves	both.	
However,	this	leads	to	some	complications	especially	when	PDEs	are	involved	for	which	there	
are	multiple	identifications	of	states	and	laws	(cf.	§§4.2;	4.4.2).	The	complication	appears	to	
reflect	Wilson’s	concern	regarding	the	usage	of	‘law’	and	‘cause’	in	the	context	of	PDEs.	It	might	
be	considered	to	arise	from	multiple	applications	of	superposition,	in	particular	to	both	spatial	
and	temporal	coordinates,	an	issue	that	does	not	arise	in	relation	to	ODEs.	
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reliable	descriptive	opportunity	supporting	a	reasoning	advantage	with	regard	to	

the	 partial	 laws	 and	 corresponding	 states	 as	 associated	with	 physically	 salient	

explanations	 of	 the	 system’s	 behaviour	 while	 also	 supporting	 inductive	

inferences	 and	 the	 ability	 to	 manipulate	 the	 system	 by	 counterfactual	

reasoning.16	We	 know	 that	 we	 have	 deduced	 the	 correct	 ‘isolation	 centres’	

(decomposition	into	partial	systems	or	states)	when	we	can	show	that	we	have	

identified	a	set	of	partial	laws	as	laws,	which	we	can	identify	as	such	on	the	Mill-

Ramsey-Lewis	 account,	where	 these	 set	 of	 partial	 laws	 (and	 associated	 states)	

completely	 characterize	 the	 behaviour	 of	 the	 system	 and	 take	 the	 same	 form	

individually	and	in	combination.		

Going	a	little	beyond	Wilson	then,	we	might	understand	the	description	of	

a	 complicated	 phenomenon	 obtained	 through	 the	 ‘Volkmann	 device’	 of	

isolation/superposition	as	natural,	relating	to	‘natural	properties’	of	the	system,	

although	acknowledging	 the	possibility	of	 locally	variable	 subjective	 aspects	 to	

standards	 of	 simplicity,	 balance	 and	 the	 notion	 of	 naturalness.	 For	 instance	

simplicity	 might	 be	 understood	 in	 terms	 of	 syntactic	 simplicity	 of	 the	

mathematical	 relationships	 cited	 as	 partial	 laws	 within	 the	 tradition	 of	

mathematical	physics	in	which	we	stand	(cf.	Volkmann’s	‘shortest’),	where	it	may	

be	unclear	if	simplicity	in	this	context	is	in	fact	simplicity	simpliciter	or	simply	in	

relation	to	our	bedrock	tradition.	

That	 is,	 one	 can	 characterize	 the	 ‘Volkmann	 device’	 of	

isolation/superposition	 in	 terms	 of	 establishing	 an	 optimally	 balanced	 simple	

and	 strong	 description,	 for	 some	 class	 of	 phenomena,	 in	 terms	 of	 abstracted	

partial	states	and	their	corresponding	laws	that	take	the	same	form	individually	

and	 in	 combination.	The	 ‘Volkmann	device’	 is	understood	as	 forming	a	natural	

description,	supporting	physically	salient	explanations,	inductive	inferences	and	

counterfactual	 reasoning	 in	 terms	 of	 properties	 identified	 as	 ‘natural	

																																																								
16	I	cannot	explore	here	the	various	accounts	of	‘scientific	explanation’	and	its	relation	to	laws.	
The	approach	developed	here	would	sit	well	with	a	classical	deductive-nomological	account,	but	
as	Woodward	points	out	‘explanation’	could	be	understood	in	what	follows	in	unificationist	
terms	as	well.	In	some	cases	that	we	consider	a	causal-mechanical	account	might	be	relevant,	but	
not	in	all	our	examples,	even	in	the	classical	domain.	See	Woodward	(2014)	for	an	overview	of	
the	different	accounts	of	‘scientific	explanation’	and	discussion	of	the	Mill-Ramsey-Lewis	account	
of	laws	in	this	context.	
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properties’.17		One	know	that	one	has	established	isolation	centres	proper	to	the	

model	when	one	has	a	set	of	partial	laws	associated	with	corresponding	partial	

states	 that	 describe	 the	 system	 with	 an	 optimal	 balance	 of	 simplicity	 and	

strength,	perhaps	relative	to	a	particular	interest	(we	shall	see	the	need	for	this	

caveat	 in	 chapter	 5	 especially)	 such	 that	 in	 the	 domain	 of	 application	 one	 is	

confident	that	the	isolation	centres	are	correctly	identified.	

Volkmann’s	 device	 may	 be	 characterized	 as	 follows	 then	 for	 a	 system	

completely	characterizable	by	two	partial	laws	and	two	partial	states.	This	may	

be	 generalized	 in	 an	 obvious	 way	 to	 the	 case	 of	 N	 laws.	 We	 identify	 via	

abstraction	 or	 isolation	 two	partial	 laws	 lawA	and	 lawB	 associated	with	 partial	

states/systems	 stateA	 and	 stateB	 where	 those	 abstractable	 states/systems	 are	

given	such	that	lawA	is	relevant	to	(in	abstraction	or	counterfactually)	stateA	only	

and	 lawB	 to	 stateB	 only,	 with	 each	 *A	 independent	 of	 each	 *B.	 The	 ‘Volkmann	

(superposition)	 device’	 is	 that	 the	 overall	 law	 lawO	 and	 state	 stateO	 completely	

characterizing	the	overall	system	are	given	by	

lawO	=	(lawA)⨀123(lawB)	

stateO	=	(stateA)⨀4.2.5(stateB)	

where	 the	⨀6 	are	 appropriate	 composition	 relations,	 traditionally	 simple	

addition	 or	 vector	 addition	 for	 the	 law,	 although	 Volkmann	 appears	 not	 to	

require	 this.	 Such	 representation	 leads	 to	 an	 explanatory	 and	 calculational	

advantage	 and	 supports	 counterfactual	 reasoning	 in	 physically	 salient	 terms,	

with	the	partial	laws	and	states	able	to	be	considered	completely	independently	

of	each	other.18	

The	parallelogram	law	for	the	vector	addition	of	forces	is	a	paradigmatic	

example	 of	 isolation	 and	 superposition	 for	 Volkmann.	 However,	 he	 also	

considers	the	composite	character	of	(scalar)	 temperature	 laws	 in	terms	of	 the	

superposition	 of	 three	 partial	 heat	 transfer	 phenomena:	 radiation,	 conduction	

and	convection	(1896,	76-79).	No	vector	space	structure	is	in	view.	Rather,	it	is	

																																																								
17	The	standard	realist	move	is	then	to	claim	that	if	such	a	description	in	terms	of	partial	laws	and	
associated	states/systems	is	explanatorily	indispensible	then	an	inferential	pathway	is	
established	supporting	a	realist	interpretation	of	the	partial	laws	and	associated	states	and	
properties.	
18	As	noted	above,	in	particular	examples	it	may	sometimes	be	either	the	partial	laws	(and	
associated	composition)	or	partial	states	(and	associated	composition),	rather	than	both,	that	are	
in	view	with	the	other	being	implicit.		
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the	 application	of	 three	 ‘partial	 laws’	 associated	with	 partial	 states	 or	 systems	

which	 we	 identify	 as	 a	 radiative	 partial	 state	 or	 system	 (corresponding	 to	 a	

radiative	 (partial)	 law),	 a	 conductive	 system	 and	 a	 convective	 system	 (with	

corresponding	partial	laws	likewise).	These	may	be	associated	with	abstractable	

physical	 causal	 processes	 and	 properties	 considered	 to	 produce	 a	 composite	

effect,	mathematically	modelled	via	scalar	rather	than	vector	addition.	 It	 is	 this	

composition	 of	 partial	 laws	 and	 states	 rather	 than	 any	 vector	 space	 structure	

that	provides	the	semantic	support	of	 ‘superposition’.	What	is	important	is	that	

the	 processes	 are	 independent,	 taking	 the	 same	 form	 individually	 and	 in	

combination.	Description	of	the	overall	system	in	terms	of	these	three	processes	

offers	 physically	 salient	 explanations	 of	 its	 behaviour,	 leads	 to	 a	 reasoning	

advantage,	 supports	 counterfactual	 reasoning	and	 hence	 the	 design	 of	 thermal	

systems	for	example.	

Volkmann’s	application	of	‘superposition’	is	broad.	For	example	as	well	as	

general	 vector	 decomposition	 (1896,	 82-83)	 he	 considers	 the	 abstractable	

properties	and	laws	associated	with	the	weight,	hardness	and	colour	of	an	object	

to	be	examples	of	‘isolation	centres’	that	compose	according	to	superposition	to	

describe	the	object	(1896,	71).	He	also	considers	the	possibility	of	understanding	

chemical	 compounds	 in	 relation	 to	 the	 superposition	 of	 chemical	 elements	

(1896,	179).	Moreover,	nothing	in	Volkmann’s	discussion	requires	superposition	

to	be	a	 linear	 composition	 relation,	19	even	 though	 this	 is	 traditionally	 the	 case,	

and	we	shall	 consider	nonlinear	examples,	 although	difficulties	 then	arise	with	

regard	to	conflicting	usage	for	the	same	phenomenon.	A	good	example	of	this	is	

the	modulation	of	radio	waves	considered	in	§3.2.		

	 However,	 this	provisional	account	of	 ‘Volkmann	superposition’	might	be	

seen	 to	 offer	 a	 global	 or	 ‘flat’	 definition	 of	 ‘superposition’	 so	 that	 the	 concept	

would	seem	not	to	have	a	façade	structure	after	all.	As	we	shall	see	however,	this	

is	not	the	case	once	we	look	more	closely	at	the	architecture	and	application	of	

the	concept	 in	particular	examples.	Some	of	Volkmann’s	own	examples,	as	well	

as	further	examples	will	help	shape	our	analysis	of	‘superposition’	and	reveal	its	

façade	structure.	We	shall	see	that	adopting	different	 forms	of	 the	composition	

																																																								
19	Since	the	1960s	there	has	been	interest	in	the	‘nonlinear	superposition	principle’	–	see	e.g.	
Jones	and	Ames	(1967);	Menini	and	Tornambè	(2011),	briefly	discussed	in	§§3.2,	10.2.4.	
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relation	for	the	same	phenomena	can	lead	to	‘superposition’	being	characterized	

in	 different	 ways	 for	 the	 same	 phenomenon,	 which	 is	 one	 reason	 that	 I	 am	

adopting	 the	 term	 ‘Volkmann	 device’.	 Moreover,	 there	 are	 important	 (rather	

than	 contrived)	 borderline	 cases	 that	 will	 need	 to	 be	 clarified	 as	 either	

prolongations	or	semantic	mimics	of	‘superposition’.		

One	 such	 example	 is	 demonstrated	 in	 his	 analysis	 of	 vector	

decomposition	 in	 relation	 to	 isolation	 and	 superposition.	 He	 notes	 that	 with	

regard	to	the	decomposition	of	vectors	representing	physical	quantities	there	is	

an	 ‘innumerable	 set’	 of	 possible	 decompositions,	 but	 that	 a	 particular	

decomposition	 may	 be	 preferred	 when	 the	 decomposition	 according	 to	 some	

components	reflects	a	physical	isolation	process,	such	as	in	Galileo’s	analysis	of	

projectile	motion.	 However,	 even	 if	 the	 decomposition	 has	 no	 special	 physical	

meaning,	it	is,	as	he	claims,	mathematically	justified	and	may	be	preferred	for	the	

simplicity	of	the	calculation	that	results	(1896,	82-83).	Volkmann	recognises	but	

apparently	 ignores,	 or	 at	 least	 does	 not	 develop,	 the	 distinctions	 between	

physically	 significant	and	purely	mathematical	decompositions,	but	 in	doing	 so	

he	 may	 well	 lose	 some	 of	 the	 philosophical	 subtleties	 of	 the	 concept	 of	

superposition	and	its	patchwork	character.	

Ignoring	 the	 distinction	 seems	 undesirable	 as	 it	 leads	 one	 to	 overlook	

important	 differences	 in	 the	 architecture	 of	 ‘component’	 and	 ‘superposition’	

where	 both	 mathematical	 and	 physical	 supporting	 architecture	 is	 important.	

Paying	attention	to	the	distinction	highlights	the	façade	structure	of	‘component’	

and	 helps	 to	 highlight	 cases	 of	 mimicry.	 In	 some	 cases	 the	 components	 of	 a	

vector	may	have	independent	physical	origins,	and	other	cases	not,	although	the	

components	 may	 play	 an	 important,	 physically	 salient	 explanatory.	 In	 other	

cases	the	components	may	be	mathematically	supported	only.		

We	 consider	 these	 distinctions	 at	 length	 in	 chapters	 3-5.	 Indeed,	 the	

traditional	 intuition	 regarding	 the	 significance	 of	 ‘superposition’	 is	 that	 the	

components	 have	 independent	 physical	 or	 causal	 origins.	 Should	 we	 stipulate	

that	 this	 is	a	requirement	 for	application	of	 the	concept?	 I	discuss	this	 in	more	

detail	 in	 chapter	3	after	 considering	now	a	different	philosophical	 approach	 to	

superposition	 that	 would	 seem	 to	 require	 this	 to	 be	 the	 case,	 although	 the	

distinction	will	turn	out	to	reflect	the	façade	character	of	the	concept.	
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2.3.2	Peter	Simons	on	‘superposition’	

Peter	 Simons	 considers	 the	 possibility	 of	 applying	 ‘superposition’,	 understood	

metaphysically,	to	material	objects	or	substances	in	a	dynamical	sense	(1987).	In	

one	sense	his	analysis	is	tangential	to	our	concerns.	Moreover,	he	also	assumes	

but	 does	 not	 elucidate	 the	 non-trivial	 applicability	 of	 ‘superposition’	 to	 wave	

interference	 for	 example,	which	 is	 the	 point	 at	 issue	 for	us.	However,	we	may	

adapt	 his	 approach	 to	 discuss	 a	 common	 introductory	 example	 that	motivates	

the	understanding	of	superposition	 in	mathematical	physics,	namely	to	 ‘pulses’	

crossing	 on	 a	 rope.	 This	 example	 might	 evoke	 the	 early-mid	 19th-century	

intuition	 that	 superposition	 may	 be	 understood	 to	 have	 a	 metaphysical	

foundation.	

	 The	 example	 that	 Simons	 discusses,	 of	 the	 superposition	 of	 projected	

clouds,	 is	problematic	 in	some	ways.	However,	we	may	appropriate	 the	central	

conceptual	aspects	of	his	analysis	 in	 terms	of	 ‘trace	principles’	 to	help	consider	

the	 concept	 of	 superposition	 in	 mathematical	 physics.	 Simons	 considers	

application	of	superposition	to	pivot	on	the	question	of	whether	or	not	we	have	

determinate	 means	 for	 tracing	 the	 kinds	 said	 to	 be	 superposed	 through	 time,	

where	 the	 kinds	 are	 understood	 as	 specified	 by	 a	 sortal	 term	 F	 that	 gives	

necessary	and	sufficient	conditions	for	the	identity	of	the	Fs.	The	worry	is	that	‘if	

we	allow	distinct	 continuants	of	 a	kind	 to	be	 superposed,	 then	we	do	not	have	

determinate	means	for	tracing	things	of	the	kind	in	question	through	time,	since	

they	 become	 temporarily	 indiscernible	 from	 one	 another	 upon	 their	

superposition.’	 (1987,	221-222)	What	 is	 required	 to	 support	 the	 superposition	

concept	for	Simons	is	that	of	the	ability	to	establish	principles	to	trace	continuing	

or	 persisting	 identity	 (i.e.,	 a	 trans-temporal	 identity)	 within	 the	 period	 of	

coincidence	of	the	kinds,	when	the	ability	to	discern	such	identity	is	in	question.	

For	convenience	I	call	this	‘Simons	superposition’.	

If	 we	 have	 two	 individual	 separated	 entities	 specified	 by	 F1	 and	 F2	what	

account	do	we	give	of	their	coincidence	and	separation,	such	as	if	F1	and	F2	are	

travelling	pulses	that	cross	on	a	stretched	rope?	Simons	suggests	that	there	are	

three	 possibilities:	 (1)	 The	 F1	 and	 F2	 survive	 during	 coincidence	 even	 though	

simultaneously	the	state	of	affairs	during	coincidence	falls	under	the	description	

of	another	entity	F3;	(2)	The	F1	and	F2	fuse	during	coincidence,	ceasing	to	exist,	
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being	replaced	by	F3	which	 is	 then	subject	 to	 fission	so	that	 the	existence	of	F1	

and	 F2	 is	 re-established;	 (3)	 The	 F1	 and	 F2	 fuse	 during	 coincidence,	 ceasing	 to	

exist,	 being	 replaced	 by	 F3	which	 is	 then	 subject	 to	 fission	 to	 create	 two	 new	

entities	F4	and	F5	distinct	from	F1	and	F2.	Simons	claims	that	in	the	case	where	a	

‘trace	principle’	can	be	established,	that	is	the	continued	identity	and	persistence	

of	F1	and	F2	can	be	established	and	traced	along	a	causal	path,	then	(1)	offers	the	

best	 account,	 that	 is,	 we	 understand	 the	 F1	 and	 F2	 to	 continue	 to	 exist	 in	

superposition	during	coincidence	(cf.	222-228).	

The	architecture	of	 ‘superposition’	then	is	that	apparently	the	identities	of	

F1	 and	F2	are	obliterated	 so	 that	 they	 cease	 to	exist,	 so	 that	 the	 state	of	 affairs	

during	 coincidence	 is	described	by	 some	F3	only,	but	 that	 in	 fact	 their	 identity	

can	 be	 traced	 during	 coincidence	 so	 that	 the	 F1	 and	 F2	 coexist	 with	 F3.	 The	

description	of	the	system	is	simultaneously	given	by	both	identities.		

	 This	 account	 can	 be	 filled	 out	 using	 a	mathematical	model	 of	 the	 rope.	

Consider	 a	 long	 stretched	 rope	 where	 at	 each	 end	 a	 short	 duration	 pulse	 is	

applied	so	as	to	cause	a	wave	of	finite	duration	(or	pulse)	to	travel	along	the	rope	

towards	 the	 opposite	 end.	 So	 we	 have	 two	 separated	 pulses	 that	 converge,	

coalesce	 (putatively,	 as	 superposition)	and	 then	diverge	again	as	 they	 traverse	

the	 rope.	 Mathematically,	 the	 rope’s	 behaviour	 is	 modelled	 (using	 suitable	

approximations	and	idealizations)	by	the	one-dimensional	wave	equation	

78
798 :(9, #) −

1
=8

78
7#8 :(9, #) = 0	

subject	to	initial	/	boundary	conditions,	where	x	is	the	distance	along	the	rope,	t	

the	 time,	φ	 displacement	 of	 the	 rope	 and	 c	 the	 velocity	 of	 wave	 propagation.		

D’Alembert	 found	the	most	general	solutions	as	 functions	of	 the	 form	?(9 − =#)	
and	@(9 + =#),	where	f	and	g	represent	the	displacement	of	the	rope	at	x	at	time	
t.	In	the	context	of	our	model	we	interpret	f	as	a	right-moving	wave	or	pulse	and	

g	 as	 a	 left-moving	 wave	 or	 pulse,	 where	 f	 and	 g	 graphically	 represent	 their	

shapes	or	forms.	By	‘Hilbert	superposition’,	since	f	and	g	are	solutions	to	a	linear	

differential	equation	their	 ‘superposition’	h	=	 f	+	g	is	also	a	solution.	But	 this	 is	

just	 the	 situation	 that	we	have	using	Simons’	analysis;	h	=	 f	+	g	represents	 the	

state	of	the	rope	with	the	two	travelling	pulses	that	converge,	coincide	and	then	

diverge,	with	exactly	the	same	form	after	coinciding	as	before.	Geometrically	or	
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graphically	 this	 corresponds	 to	 the	 construction	 of	 the	 superposed	 wave	 by	

adding	f	and	g’s	graphs	pointwise	to	obtain	the	‘resultant’	displacement.	

	 That	is,	take	Simons’	sortal	term	F	to	be	a	pulse	on	the	rope	and	identify	

F1	as	 the	pulse	?(9 − =#)	and	F2	as	@(9 + =#),	and	F3	as	(?(9 − =#) + @(9 + =#)).	
The	pulses	have	independent	causal	origins	and	their	identities	may	be	traced	as	

the	terms	?(9 − =#)	and	@(9 + =#)	irrespective	of	whether	they	are	coincident	or	
not,	 or	 of	 the	 existence	 of	 the	 other	 pulse.	 The	 pulses	 coexist	 and	 behave	

independently	of	each	other,	composing	by	simple	pointwise	summation,	so	that	

their	identity	may	be	traced	though	coincidence.		

The	identity	of	the	pulses	and	their	persistence	depends	on	the	nature	of	

propagation	that	the	rope	and	its	boundary	conditions	supports,	which	is	given	

by	 the	 wave	 equation	 subject	 to	 boundary	 conditions.	 That	 is,	 the	 mode	 of	

propagation	 must	 support	 a	 trace	 principle.	 In	 this	 case	 the	 trace	 principle	

demonstrating	 persistence	 of	 the	 pulses	 is	 illustrated	 mathematically	 via	 the	

superposition	 of	 D’Alembert’s	 solutions	 f	 and	 g	 to	 the	 wave	 equation	 using	

Hilbert	 superposition	 when	 taken	 together	 with	 the	 causal	 conditions	 for	 the	

production	of	the	pulses.	That	is,	that	the	transmission	of	the	rope	supports	the	

trace	principle	 is	characterized	by	the	equation	modelling	 it	being	 linear.	 If	 the	

behaviour	 of	 the	 rope	was	 nonlinear	 the	 identity	 of	 f	and	g	would	 not	 survive	

their	coincidence.20	Mathematically,	 in	 the	 linearized	model	of	 the	rope,	we	can	

trace	the	pulses	through	the	period	of	temporary	indiscernibility.		

The	ability	to	supply	‘trace	principles’	does	not	imply	the	ability	to	isolate	

or	 recover	 by	 physical	 means	 either	 of	 the	 Fs	 in	 superposition	 even	 if	 their	

identities	 persist.	 This	 might	 be	 seen	 more	 clearly	 in	 a	 related	 but	 more	

complicated	 example	 that	 we	 cannot	 discuss	 in	 detail	 –	 that	 of	 directionally	

transmitted	interfering	radio	waves	of	the	same	carrier	frequency.	In	the	region	

of	 interference	 the	original	 signals	 cannot	be	 recovered,	but	after	 interference,	

i.e.	after	they	have	crossed	they	can	be	physically	recovered.	But	if	the	signals	are	

transmitted	 on	 different	 carrier	 frequencies,	 even	when	 they	 ‘interfere’	 or	 are	

superposed	they	can	be	recovered	by	physical	means,	as	is	crucial	to	the	ability	

to	communicate	by	radio	using	tuning	circuits.	
																																																								
20	Real	ropes	behave	nonlinearly,	but	with	reasonable	assumptions	in	many	cases	the	behaviour	
is	approximately	linear	as	modeled	by	the	wave	equation.	That	is,	for	real	world	ropes	
superposition	is	‘approximately	true’.	
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A	 Wilsonian	 analysis	 is	 metaphysically	 neutral	 however.	 So	 although	

Simons’	 analysis	 is	 suggestive	of	 a	metaphysical	 construal	of	 ‘superposition’,	 at	

least	in	some	applications	or	on	some	patches,	I	do	not	develop	such	an	account	

here.	 Moreover,	 as	 Simons	 sets	 it	 up,	 it	 is	 not	 clear	 that	 his	 account	 can	

accommodate	 application	 of	 superposition	 to	 Fourier	 techniques,	 although	 his	

notion	of	‘trace	principle’	is	helpful	in	clarifying	the	application	of	‘superposition’	

in	 this	 context	 (chapter	4).	However,	 as	we	 shall	 see	 in	 the	 following	 chapters,	

the	 availability	 of	 ‘trace	 principles’	 –	 however	 understood	metaphysically	 –	 is	

one	way	 in	which	different	kinds	of	vector	decomposition	can	be	characterized	

and	 distinguished,	 so	 that	 superposition	 is	 not	 to	 be	 conflated	 with	 vector	

composition	as	might	be	suggested	by	Volkmann.	But	 in	Wilsonian	 terms	what	

the	discussion	of	Simons’	‘trace	principle’	approach	to	superposition	highlights	is	

the	semantic	support	of	the	superposition	principle	and	of	the	pulses	f	and	g	as	

components	 in	 the	example	 considered.	 It	 is	owing	 to	 the	ability	 to	establish	a	

physically	salient	trace	principle	that	supports	a	descriptive	opportunity	leading	

to	a	reasoning	advantage	regarding	the	behaviour	of	the	rope	that	characterizes	

this	example	as	an	instance	of	‘superposition’.	

The	 reasoning	 advantage	 of	 construing	 wave	 propagation	 and	

interference	via	‘superposition’	is	nicely	illustrated	in	the	example	just	alluded	to	

–	radio	signal	transmission	and	the	associated	technology.	I	cannot	develop	this	

further,	but	briefly,	the	superposition	principle	is	exploited	to	enable	the	ability	

to	 isolate	 and	 receive	 a	 desired	 signal	 sufficiently	well	 from	 the	 simultaneous	

transmission	of	radio	signals	on	multiple	frequencies	in	the	same	region	in	space	

and	time.21	If	the	identity	of	the	signals	was	‘lost’	in	the	region	of	coincidence	one	

could	not	tune	a	radio	receiver	to	receive	a	faithful	signal	transmission.	

	

2.4	Summary	

We	have	 considered	 the	history	and	usage	of	 ‘superposition’	 and	 two	different	

philosophical	 approaches	 to	 the	 concept.	 I	 shall	 consider	 various	 examples	 in	

chapters	 3-5	 to	 clarify	 the	 façade	 structure	 of	 ‘superposition’,	 its	 mimics	 and	

their	significance.	

																																																								
21	That	is,	the	isolation	is	not	perfect	but	idealized,	being	adequate	for	practical	purposes	of	
communication.	
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Chapter	3	

	

The	façade	structure	of	‘superposition’	(1):	

	Classical	systems	with	a	finite	number	of	degrees	of	freedom	

	

I	 now	 explore	 the	 patchwork	 structure	 of	 the	 concepts	 of	 ‘superposition’	 and	

‘component’	 primarily	 with	 reference	 to	 Volkmann’s	 characterization	 of	 the	

concepts	 as	 re-appropriated	 within	 a	 Wilsonian	 framework.	 In	 this	 chapter	 I	

consider	application	of	the	concepts	to	systems	with	a	finite	number	of	degrees	

of	 freedom	 using	 three	 types	 of	 example:	 First,	 the	 decomposition	 of	 vectors	

representing	a	force;	secondly,	the	modulation	of	radio	waves;	thirdly,	principal	

axis	 transformations,	 which	will	 lead	 into	 the	 Fourier	 techniques	 discussed	 in	

chapter	 4.	 These	 examples	 will	 enable	 us	 to	 consider	 in	 detail	 the	 differing	

semantic	support	of	‘superposition’,	its	prolongations	and	its	mimics.	

	

3.1	Force	vector	composition	and	superposition	

The	application	of	‘superposition’	to	the	composition	of	forces	is	motivated	by	J.S.	

Mill’s	discussion	of	 the	 composition	of	 causes	as	developed	by	Volkmann,	who	

reinterprets	 the	composition	of	 forces	or	causes	 in	 terms	of	 the	composition	of	

their	 effects	 as	 an	 instance	 of	 the	 superposition	 principle.	 In	 the	 more	 recent	

literature	on	force	composition,	Cartwright	(1980;	1983)	also	cites	Mill’s	analysis	

to	 develop	 her	 thesis	 that	 the	 laws	 of	 physics	 do	 not	 state	 the	 facts	 by	

considering	 component	 and	 resultant	 forces.	 She	 makes	 no	 explicit	 use	 of	

‘superposition’,	 although	 her	 discussion,	 along	 with	 the	 debate	 initiated	 with	

Creary	 (1981)	 and	 the	 subsequent	 literature	will	 contribute	 to	my	 analysis	 of	

‘superposition’. 1 	The	 focus	 of	 the	 recent	 literature	 concerns	 logic	 and	

metaphysics,	often	driven	by	the	question	of	causal	overdetermination.	However,	

as	Wilson	has	observed,	the	concepts	of	‘force’,	‘cause’	and	‘law’	have	something	

of	a	façade	structure	as	noted	in	chapter	1,	and	the	force	composition	literature	

may	be	seen	to	reflect	several	different	notions	or	applications	of	the	concepts	of	

																																																								
1	See	Spurrett	(2001),	the	Dialectica	special	edition	on	vectors	(63.4,	2009),	and	in	particular	
Massin	(2009;	2017).	
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‘cause’	and	‘law’	that	are	often	not	clearly	articulated	(cf.	Spurrett	2001,	265).2	As	

with	my	appropriation	of	Simons’	analysis	 in	a	metaphysically	quietest	manner	

within	 an	 overall	 ‘Wilsonian’	 framework,	 I	 shall	 use	 this	 literature	 in	 a	

metaphysically	 neutral	 sense	 whilst	 allowing	 the	 concerns	 raised	 in	 the	

discussion	 to	 clarify	 the	 architecture	 of	 ‘superposition’	 on	 this	 patch	 of	

application.3	

Mill	discusses	an	example	concerning	northeasterly	motion	caused	by	two	

independent	forces:	
If	a	physical	body	is	propelled	in	two	directions	by	two	forces,	one	tending	to	drive	it	to	the	
north,	and	the	other	to	the	east,	it	is	caused	to	move	in	a	given	time	exactly	as	far	in	both	
directions	as	the	two	forces	would	have	separately	carried	it;	and	is	left	precisely	where	it	
would	have	arrived	if	it	had	been	acted	upon	first	by	one	of	the	two	forces,	and	afterwards	
by	the	other.	(1851,	1.374)	

In	the	contemporary	literature	Mill’s	example	gives	rise	to	consideration	of	two	

related	 types	 of	 example	 that	 should	 be	 considered	 separately	 as	 it	 will	 be	

important	 to	 clarify	 the	 distinctions	 between	 them.	 The	 first	 type	 concerns	 a	

body	acted	on	by	what	one	would	prima	facie	take	as	different	forces	of	different	

physical,	 causal	origins	 that	 are	understood	 to	 compose	 to	produce	a	 resultant	

overall	force,	such	as	a	body	acted	upon	by	gravitational	and	electrostatic	forces.	

The	 second	 type	 of	 example	 concerns	 a	 body	propelled	 northeast	without	 any	

reference	 to	 independent	 physical	 components	 of	 the	 resultant	 force.	 So,	 to	

clarify	the	distinctions	between	the	two	cases,	in	the	first	case	we	could	consider	

a	body	moving	northeast	by	one	rocket	propelling	it	in	a	northerly	direction	and	

a	 second	 in	 an	 easterly	 direction	 (rocket2);	 in	 the	 second	 case	 a	 single	 rocket	

																																																								
2	Frequent	appeals	are	made	to	the	concept	of	‘force’	in	the	force	composition	literature	that	
require	the	concept,	and	especially	the	concept	of	a	‘Newtonian	force’,	to	bear	considerable	
metaphysical	burden,	yet	the	metaphysics	of	forces	remains	unclear.	For	instance	Jessica	Wilson	
has	argued	for	a	realist	stance	to	Newtonian	forces	in	the	context	of	scientific	realism	in	which	
Newtonian	physics	is	regarded	as	a	‘special	science’	(2007).	Alternatively	Massin	seeks	a	more	
metaphysical	account	of	Newtonian	forces,	but	considers	the	possibility	that	an	instrumentalist	
stance	is	appropriate	(2009,	579).	The	point	is	that	one	should	be	cautious	in	seeking	to	make	
metaphysical	judgements	regarding	force	composition	when	we	do	not	have	a	robust	
metaphysical	account	of	‘force’.		
3	In	this	vein	some	of	the	literature	has	been	concerned	with	the	sense	in	which	vector	
components	are	‘parts’	of	the	vector	(e.g.	Cartwright	1983,	60-61).	This	is	likely	to	be	misleading	
owing	to	the	shifting	architecture	of	the	concept	of	‘part’	that	Cartwright	appears	not	to	notice	
(cf.	Spurrett	2001,	257).	Although	Teller	develops	the	notion	of	‘analytic	part’	in	contrast	with	
‘mereological	part’	(1995,	140-141)	it	is	unclear	what	conceptual	advantage	the	concept	of	‘part’	
offers	over	‘component’,	and	so	my	analysis	is	conducted	simply	with	regard	to	‘component’	and	
its	semantic	architecture,	as	consistent	with	usage	in	mathematical	physics	and	engineering.	
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propels	 the	 body	 northeast	 (rocket1).4	What	 then	 are	 we	 to	 say	 about	 the	

northerly	and	easterly	component	forces,	and	the	‘resultant’	in	each	case?	

These	 different	 examples	 highlight	 Volkmann’s	 acknowledgement	 that	

different	 physical	 situations	 are	 reflected	 in	 vector	 decomposition	 in	 different	

cases	as	distinguished	 in	 terms	of	 the	physical	 significance	of	 the	 components.	

That	 is,	 the	 two	 cases	 exemplify	 two	 different	 patches	 of	 application	 of	

‘superposition’,	 ‘component’,	 and	 ‘composition’,	 or	 possibly	 a	 prolongation	 or	

mimic	of	 ‘superposition’	 in	 the	second	case.	 In	 the	 first	case	there	 is	a	 ‘story	to	

tell’	 regarding	 the	physical	origins	of	 the	 individual	 components,	 so	 that	 either	

(or	both)	a	‘partial	law’	or	a	‘trace	principle’	exists	for	particular	components	in	

the	first	but	not	the	second	case,	which	might	question	whether	the	second	case	

reflects	 an	 application	 of	 ‘superposition’	 or	 of	 a	 semantic	 mimic.	 However,	 as	

indicated	in	the	literature,	what	complicates	the	situation	is	whether	we	should	

accept	 (with	 Cartwright)	 or	 deny	 (with	 Creary	 (1981	 151-152);	 possibly	

Volkmann	 (1896,	 81-82))	 the	 existence	 of	 the	 resultant	 force	 in	 the	 first	 case.	

The	 first	 case	 is	 now	 often	 discussed	 in	 the	 literature	 regarding	 a	 body	 acted	

upon	by	electrostatic	and	gravitational	forces,	which	we	now	consider.	

	

3.1.1	Conjoined	gravitational	and	electrostatic	forces	and	rocket2	

In	a	manner	reminiscent	of	but	departing	from	Volkmann,	Cartwright	suggests:	
This	picture	of	how	nature	operates	to	produce	the	subtle	and	complicated	effects	we	see	
around	us	is	reflected	in	the	explanations	that	we	give:	we	explain	complex	phenomena	by	
reducing	them	to	their	more	simple	components.	This	is	not	the	only	kind	of	explanation	
we	give,	but	it	is	an	important	and	central	kind.	I	shall	use	the	language	of	John	Stuart	Mill,	
and	call	this	explanation	by	composition	of	causes.	
It	is	characteristic	of	explanations	by	composition	of	causes	that	the	laws	they	employ	fail	
to	 satisfy	 the	 requirement	 of	 facticity.	 The	 force	 of	 these	 explanations	 comes	 from	 the	
presumption	 that	 the	 explanatory	 laws	 ‘act’	 in	 combination	 just	 as	 they	 would	 ‘act’	
separately.	 It	 is	 critical,	 then,	 that	 the	 laws	 cited	 have	 the	 same	 form,	 in	 or	 out	 of	
combination.	 But	 this	 is	 impossible	 if	 the	 laws	 are	 to	 describe	 the	 actual	 behaviour	 of	
objects.	The	actual	behaviour	is	the	resultant	of	simple	laws	in	combination.	The	effect	that	
occurs	is	not	an	effect	dictated	by	any	one	of	the	laws	separately.	In	order	to	be	true	in	the	
composite	case,	the	law	must	describe	one	effect	(the	effect	that	actually	happens);	but	to	
be	explanatory,	it	must	describe	another.	(1983,	58-59)	

There	are	two	 important	 issues.	First,	what	does	 it	mean	for	 ‘explanatory	 laws’	

(or	the	‘partial’	 laws	as	I	introduced	them	in	chapter	2)	to	‘“act”	in	combination	

just	 as	 they	 would	 “act”	 separately’,	 or	 to	 ‘have	 the	 same	 form,	 in	 or	 out	 of	

combination’?	Secondly,	in	what	sense	is	it	important	that	(partial)	laws	‘satisfy	

																																																								
4	Ignoring	any	other	forces.	
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the	requirement	of	 facticity’,	 that	 is,	 that	 they	 ‘describe	the	actual	behaviour	of	

objects’?	But	it	might	be	to	miss	the	point	to	worry	that	the	partial	laws	do	not	

satisfy	the	facticity	requirement	in	the	way	that	Cartwright	envisages.	Perhaps	it	

is	precisely	the	observation	that	we	require	 ‘partial	laws’	to	take	the	same	form	

individually	in	isolation	(or	abstraction)	and	together	in	combination	but	do	not	

state	 the	 facts	 when	 in	 combination	 as	 providing	 the	 semantic	 architecture	 of	

‘superposition’	in	this	sort	of	situation.	This	might	also	enable	clarification	of	the	

distinction	 between	 the	 ‘isolation	 centres’	 of	 a	 superposition	 as	 components	

rather	than	as	parts,	although	this	is	not	a	point	that	I	shall	pursue.	

The	 question	 often	 posed	 in	 the	 literature	 is	 that	 of	 whether	 the	

gravitational	and	electrostatic	forces	exist	(understood	as	associated	with	partial	

laws	that	characterize	the	behaviour	of	the	body),	or	whether	it	is	the	resultant	

force	 that	 exists.	 Spurrett	 (2001)	 and	 Jessica	 Wilson	 (2009)	 have	 helpfully	

summarised	the	contours	of	the	debate.	Jessica	Wilson	observes	that	the	driving	

issue	is	that	of	causal	overdetermination,	even	if	Cartwright’s	original	focus	was	

the	facticity	of	laws.	Briefly,	it	is	supposed	that	one	must	either	deny	existence	of	

the	component	electrostatic	and	gravitational	forces,	or	deny	the	existence	of	the	

resultant	 in	 order	 to	 avoid	 causal	 overdetermination.5	This	 difficulty,	 although	

perhaps	 in	 a	 different	 guise,	 was	 anticipated	 and	 avoided	 by	 Volkmann,	 who	

suggested	in	connection	with	the	‘Theorem	of	the	Parallelogram	of	Forces’	that,	

‘It	is	not	a	question	of	composing	forces	or	causes,	but	rather	of	putting	together	

the	expressions	and	effects	of	the	 forces	or	causes.	 ...	Forces	and	causes	always	

work	separately.’	 (1896,	82)	Set	 in	 the	terms	of	 the	contemporary	debate	then,	

Volkmann	would	appear	to	deny	the	existence	of	the	resultant	force.	

In	 order	 to	 assert	 the	 existence	 of	 the	 component	 forces	 Creary	

introduces	 a	 distinction	 between	 causal	 influences	 (corresponding	 to	 the	

influences	described	by	 ‘partial	 laws’)	and	causal	actions	 (corresponding	to	the	

fact	of	the	overall	effect	on	the	body)	(1981,	150-151).	Creary	argues,	contrary	to	

Cartwright,	 that	 the	 component	 forces	are	 real,	 being	 influences	of	 real	 causes,	

although	the	causal	 influences	then	become	a	 ‘third	kind	of	entity	 in	 the	causal	

ontology	…	 [which	 ground]	 the	 facticity	 of	 the	 laws	 of	 influence	 [partial	 laws]	
																																																								
5	Massin	considers	the	possibility	that	one	could	be	a	primitivist	about	vector	composition	(in	the	
context	of	the	composition	of	forces)	and	avoid	the	overdetermination	problem	(2017,	825-826).	
He	rejects	this	position	however.	



	 44	

that	 figure	 so	 prominently	 in	…	 explanations	 by	 composition	 of	 causes’	 (152).	

The	point	is	that	there	are	various	ways	in	which	the	metaphysics	of	the	situation	

may	be	understood,	and	the	façade	structure	of	‘cause’	indicated.	

However,	 in	adopting	a	(Mark)	 ‘Wilsonian’	approach	 it	 is	not	my	goal	 to	

provide	 a	 metaphysical	 account	 of	 the	 situation,	 but	 rather	 to	 clarify	 the	

architecture	 of	 ‘superposition’,	 i.e.	 whether	 and	 if	 so	 in	what	 sense	we	 should	

understand	the	force	acting	on	the	body	(or	the	overall	effect	of	the	component	

forces	on	the	body)	as	the	superposition	of	electrostatic	and	gravitational	forces	

(or	 their	 effects).	6	Within	 such	 an	 approach,	 although	 the	 façade	 structure	 of	

notions	 such	 as	 ‘cause’	 is	 noted	 as	 a	 likely	 source	 of	 conceptual	 confusion	 (cf.	

Wilson	2017,	247-267),	for	my	purposes	an	analysis	of	that	façade	structure	will	

not	 be	 necessary,	 since	 the	 analysis	 of	 ‘superposition’	 can	 be	 conducted	 with	

reference	to	explanation	rather	than	to	causation.	

	Indeed,	 Jessica	Wilson	 indicates	how	one	may	circumvent	consideration	

of	the	metaphysical	issues	associated	with	causation	in	such	examples	as	this	by	

shifting	to	a	focus	on	explanation	(2009,	549-551).	Specifically,	she	is	concerned	

with	 the	 question	 of	 how	 to	make	 sense	 of	 counterfactually	 instanced	 laws	 in	

reductive	 explanations	 of	 phenomena,	 such	 as	 in	 appeal	 to	 conjoined	

electrostatic	and	gravitational	forces.	She	suggests	that	
appeals	to	partial	laws	that	are	only	counterfactually	instanced	in	conjoined	circumstances	
may	nonetheless	 be	explanatory	 of	 phenomena	 occurring	 in	 those	 circumstances,	when	
the	partial	laws	serve	as	a	determinative	basis	for	the	goings-on	(and	associated	laws)	that	
are	actually	instanced	in	the	circumstances.	…		
Actually	instantiated	composition	laws	serve,	then,	as	the	ultimate	reason	why	appeals	to	
partial	 laws	 that	 are	 only	 counterfactually	 instanced	 can	 be	 explanatory	 of	 goings-on	 in	
conjoined	circumstances.	(550-551)	

With	 regard	 to	 ‘superposition’,	 this	 would	 mean	 that	 the	 ‘actually	 instanced	

composition	 laws’	 reflects	 the	 superposition	 principle.	 I.e.,	 the	 superposition	

principle	is	an	assertion	that	the	counterfactually	instanced	partial	laws	(that,	as	

Cartwright	would	put	it,	‘do	not	state	the	facts’)	are	explanatory	of	the	‘goings	on	

in	conjoined	circumstances’.	In	this	case	the	‘actually	instanced	composition	law’	

is	 that	 the	 partial	 laws	 (as	 force	 laws)	 take	 the	 same	 form	 individually	 and	 in	

combination	 through	 vector	 addition	 to	 explain	 the	 facts	 of	 the	 resultant	

behaviour	of	the	complicated	phenomenon.	Mathematically	speaking,	‘taking	the	

																																																								
6	Alternatively,	closer	to	Mill’s	original	example,	as	the	resultant	force	(or	effect)	on	a	body	acted	
upon	by	two	rockets	as	the	superposition	of	their	individual	thrusts.	



	 45	

same	 form’	 is	 expressed	 in	 terms	of	 the	 linearity	of	 the	 isolation-superposition	

relation	 or	 principle.	 We	 see	 then	 that	 the	 superposition	 principle	 applies	

precisely	when	the	explanatory	 laws	do	not	state	 the	 facts	regarding	the	actual	

behaviour	of	the	body	acted	upon,	but	are	nonetheless	explanatory	of	the	body’s	

behaviour	since	they	take	the	same	form	individually	and	in	combination.	

Application	 of	 ‘superposition’	 is	 supported	 in	 the	 case	 of	 the	 conjoined	

electrostatic	and	gravitational	forces	because:	

First,	we	can	counterfactually	 identify	by	 isolation	or	abstraction	partial	

laws	 (that	we	 can	 construe	as	 laws	 via	 the	Mill-Ramsey-Lewis	 account	of	 laws	

applied	 in	a	metaphysically	neutral	way)	that	take	the	same	form	in	and	out	of	

combination.	That	 is,	 the	overall	 law	expressing	the	 force	acting	on	the	body	 is	

given	simply	as	 the	vector	sum	of	 the	 forces	given	by	the	two	partial	laws.	The	

point	 is	 that	 the	 form	 of	 the	 partial	 laws	 is	 not	 modified	 in	 combination,	 and	

support	 inductive	 inferences,	physically	salient	explanations	and	counterfactual	

reasoning;	

Secondly,	the	partial	laws	do	not	individually	state	the	facts	regarding	the	

resultant	force	on	the	body	(or	the	effects	of	the	partial	laws	do	not	individually	

state	the	facts	of	the	overall	effect	on	the	body);	

Thirdly,	 in	 conjunction	with	 the	 first	 two	 observations,	 the	 observation	

that	 the	 system	 is	 completely	 characterized	 (according	 to	 this	model)	by	 these	

partial	 laws	 according	 to	 the	 Mill-Ramsey-Lewis	 account	 indicates	 that	 the	

correct	‘isolation	centres’	have	been	identified.	This	means	that	characterization	

of	the	system	using	these	partial	laws	and	the	properties	that	they	invoke	can	be	

said	 to	 offer	 a	 natural	 description	 of	 the	 system.7	In	 Wilsonian	 terms	 these	

observations	 indicate	 that	 a	 descriptive	 opportunity	 has	 been	 established	 that	

leads	 to	 a	 reliable	 and	 robust	 reasoning	 advantage	 regarding	 the	 behaviour	 of	

the	 system	 in	 terms	 of	 physically	 salient	 features	 that	 we	 use	 to	 explain,	
																																																								
7	As	per	Volkmann’s	characterization	of	isolation-superposition	on	the	one	hand	and	Mill-
Ramsey-Lewis’	characterization	of	laws	on	the	other,	we	know	that	we	have	selected	the	correct	
‘isolation	centers’	as	we	have	identified	a	complete	set	of	partial	laws,	namely	the	electrostatic	
and	gravitational	force	laws.	These	partial	laws	may	be	associated	with	corresponding	partial	
systems	or	states,	namely	the	electrostatic	and	gravitational	states.	We	identify	the	partial	‘laws’	
obtained	via	the	‘Volkmann	device’	as	laws	on	the	Mill-Ramsey-Lewis	characterization	since	such	
syntactic	representation	offers	an	optimal	balance	of	simplicity	and	strength	for	the	expression	of	
the	behavior	of	the	system.	We	then	say	that	the	description	of	the	system	in	terms	of	the	partial	
systems	or	states	associated	with	the	partial	laws	is	natural,	as	inherited	from	the	
characterization	of	the	partial	laws	as	laws,	which	are	also	associated	with	natural	properties.	
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counterfactually	 reason	 and	 make	 predictions	 about	 the	 behaviour	 of	 such	

systems.	

‘Superposition’	is	applicable	to	rocket2	for	similar	reasons	even	though	we	

understand	the	notion	of	‘law’	to	differ	in	the	two	examples.8	In	both	these	cases	

however	we	can	identify	independent	physical	(perhaps	‘causal’)	origins	for	the	

component	 forces	and	hence	the	partial	 laws	associated	with	them.	On	Simons’	

account	 of	 superposition	 (cf.	 §2.3.2)	 this	 means	 that	 the	 application	 of	

‘superposition’	is	to	assert	a	‘trace	principle’	in	which	the	identities	of	forces	that	

are	 regarded	 to	 have	 independent	 physical	 origins	 persist	 in	 the	 conjoined	

situation.	Perhaps	one	might	say	that	this	expresses	the	19th	century	intuition	of	

the	existence	of	 components	of	 a	 superposition	 (cf.	 §2.2).	But	 is	 this	necessary	

for	 the	 application	 of	 ‘superposition’?	 I	 now	 compare	 these	 examples	 with	

rocket1	and	arbitrary	vector	decomposition	to	consider	this	question.	

	

3.1.2	Motion	north-east,	rocket1	and	arbitrary	vector	decomposition	

I	now	consider	the	second	kind	of	example	that	Volkmann	cites	with	reference	to	

the	 application	 of	 ‘superposition’.	 That	 is,	 the	 decomposition	 of	 a	 vector	

representing	 some	 physical	 quantity	 into	 components,	 such	 that	 the	 vector	 is	

considered	to	be	the	‘superposition’	of	the	isolated	components,	but	where	there	

is	no	story	to	tell	regarding	the	independent	physical	origins	of	the	components.	

This	kind	of	 example	 is	 also	discussed	 in	 the	 force	 composition	 literature	with	

regard	to	‘motion	northeast’,	no	doubt	with	reference	to	Mill’s	original	example.	

However,	 this	 case	 is	 characterized	by	 the	absence	of	 any	physical	 account	 for	

the	 origins	 of	 the	 components	 of	 the	 decomposition	 of	 the	 force	 vector	 as	

components,	or	in	other	words	in	the	absence	of	a	 ‘trace	principle’	associating	a	

component	with	an	independent	physical	(and	perhaps	causal)	origin.	This	class	

of	 examples,	 as	 exemplified	 by	 ‘motion	 north-east’,	 corresponds	 to	 the	 north-

easterly	motion	of	a	body	propelled	in	that	direction	by	a	single	rocket	propelling	

it	 north-east	 (rocket1)	 rather	 than	 by	 two	 rockets	 thrusting	 in	 different	

directions	(rocket2).	

																																																								
8	That	is,	one	might	regard	the	gravitational	and	electrostatic	force	laws	as	‘laws	of	nature’	whilst	
the	force	law	characterizing	the	thrust	of	a	rocket	is	derivative	from	laws	of	nature,	if	one	were	to	
model	the	production	process	of	the	rocket’s	thrust.	
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In	 rocket1	decomposition	of	 the	 force	vector	 into	northerly	and	easterly	

components	 is	purely	conventional	–	 the	 force	could	be	decomposed	according	

to	any	coordinate	system	since	it	is	modelled	as	a	vector.	Indeed,	the	same	is	true	

of	 rocket2	 in	 that	 the	 ‘resultant	 force’	 can	 be	 decomposed	 according	 to	 any	

coordinate	system	when	 it	 is	mathematically	modelled	as	a	vector.	However,	 in	

the	 case	 of	 rocket2	 one	 decomposition	 is	 preferred	 or	 privileged	 owing	 to	

physical	rather	than	mathematical	considerations.	This	privileging	is	understood	

in	relation	to	the	independent	physical	origins	of	the	force	components.	

Although	 both	 kinds	 of	 example	 (rocket1	 and	 rocket2)	 share	 the	

mathematical	support	of	a	vector	space	structure	as	regards	the	decomposition	

of	 the	 overall	 force	 into	 components,	 the	 physical	 support	 or	 semantic	

architecture	 of	 the	 decomposition	 is	 different	 in	 each	 case,	 and	 this	 already	

introduces	a	distinction	 into	the	possible	application	of	 ‘superposition’.	That	 is,	

in	the	motion	or	force	northeast	of	rocket1	there	are	no	‘trace	principles’	to	trace	

the	 existence	 of	 components	 to	 physical	 origins.	Moreover,	 it	 is	 harder	 to	 see	

how	 to	associate	 the	 components	with	 ‘partial	 laws’	as	 laws.	For	 instance,	 it	 is	

not	clear	that	a	putative	‘partial	law’	associated	with	a	component	would	appear	

in	a	best	system	account	of	 the	behaviour	of	 the	body.	This	 is	unlike	rocket2	or	

the	conjoined	gravitational	and	electrostatic	forces.	

The	question	then	is	whether	or	not	the	decomposition	into	components	

of	 ‘rocket1’	 or	 ‘motion	 north-east’	 is	 an	 instance	 of	 ‘superposition’.	Whether	 or	

not	one	regards	rocket1	as	an	 instance	of	superposition,	 it	reveals	a	patchwork	

structure	 for	 the	 concepts	 of	 ‘component’	 and	 ‘composition’,	 indicating	 that	

‘superposition’	 is	 not	 to	 be	 conflated	 with	 ‘vector	 composition’.	 The	 semantic	

support	 of	 the	 force	 composition	 and	 decomposition	 into	 components	 differs	

between	rocket1	and	rocket2.		

The	rocket1	type	case	can	however	be	‘dragged’	in	one	of	two	directions,	

namely,	 to	 either:	 (1)	 an	 arbitrary	 decomposition	 of	 the	 force	 vector	 into	

components	 without	 physical	 context,	 or,	 (2)	 decomposition	 into	 components	

where	there	 is	a	privileging	strategy	that	arises	 from	a	physical	context	even	 if	

the	components	do	not	have	independent	physical	origins.	Case	(1)	appears	to	be	

a	mimic	of	‘superposition’	that	is	best	understood	simply	as	‘vector	composition’	

while	case	(2),	although	apparently	borderline,	is	best	understood	as	an	instance	
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of	 ‘superposition’	 although	 with	 a	 differing	 semantic	 architecture	 than	 that	

deduced	in	§3.1.1.	One	reason	for	applying	‘superposition’	in	this	case	is	that,	as	

we	shall	see	in	chapter	4,	in	order	to	understand	the	established	use	of	Fourier	

techniques	in	terms	of	‘superposition’	will	require	case	(2)	to	be	interpreted	as	a	

‘superposition’,	or	at	least	as	supporting	the	application	of	the	concept.		

There	is	both	similarity	and	difference	between	these	examples	of	vector	

decomposition	 and	 some	 of	 Wilson’s	 examples	 illustrating	 semantic	 mimicry.	

There	is	similarity	in	the	sense	that	as	in	Wilson’s	general	definitions	of	semantic	

mimicry	 (2006,	379,	568),	mimicry	occurs	because	 the	supporting	architecture	

for	 the	application	of	 a	 concept	 (here,	 ‘superposition’)	has	 changed,	where	 this	

shift	in	support	goes	unnoticed.	This	leads	to	conceptual	confusion	owing	to	the	

misunderstandings	 that	 then	 arise	 regarding	 the	 physical	 significance	 of	 the	

(mis)application	of	the	concept.	There	are	differences	between	the	application	of	

semantic	 mimicry	 in	 relation	 to	 vector	 composition	 and	 Wilson’s	 examples	

however	(2006,	567-598;	2017,	324-361).	In	his	examples,	for	instance	such	as	

when	 he	 considers	 the	 use	 of	 numerical	 methods	 in	 Euler’s	 approach	 to	

modelling	the	buckling	of	a	strut	for	which	‘calculating	the	next	iteration’	in	the	

approximation	 algorithm	 is	 mistakenly	 associated	 with	 a	 causal	 process	 (see	

§1.2.3),	 the	 unnoticed	 shift	 in	 supporting	 architecture	 is	 mathematical. 9	

However,	in	these	various	examples	of	vector	decomposition	that	I	am	analysing	

the	mathematical	architecture	is	the	same,	or	at	least	is	shared,	with	the	shift	in	

architecture	 occurring	 in	 relation	 to	 how	 the	 physical	 significance	 of	 the	

components	 of	 some	 vector	 decomposition	 is	 understood	 in	 relation	 to	

application	 of	 ‘superposition’.10	Moreover,	 the	 question	 of	 the	 applicability	 of	

‘superposition’	 to	 vector	 decomposition	 raises	 the	 possibility	 of	 there	 being	

borderline	 cases	 of	 the	 application	 of	 the	 concept	 requiring	 philosophical	

judgements	to	be	made,	a	feature	that	does	not	occur	in	Wilson’s	examples.	

So,	 with	 this	 in	 mind,	 I	 now	 consider	 the	 possibility	 of	 physically	

privileged	 decompositions	 of	 vectors	 so	 as	 to	 support	 application	 of	

‘superposition’.	

																																																								
9	Cf.	2017,	88-89	for	Wilson’s	focus	on	mathematical	diagnoses	of	shifts	in	supporting	
architecture.	
10	When	we	consider	semantic	mimicry	in	relation	to	Fourier	techniques	in	§4.5,	the	shifts	in	
architecture	may	be	understood	mathematically,	thus	being	more	similar	to	Wilson’s	examples.	
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3.1.3	Vector	decomposition	into	physically	significant	components:	A	body	

sliding	down	an	inclined	plane	

Consider	 a	 simple	 model	 of	 an	 object	 sliding	 down	 an	 inclined	 plane	 under	

gravity.	 Resolving	 the	 gravitational	 force	 perpendicular	 to	 the	 plane	 is	

explanatorily	 relevant	 to	 the	 frictional	 force	 acting	 on	 the	 object	 while	 the	

component	 of	 the	 gravitational	 force	 parallel	 to	 the	 plane	 is	 explanatorily	 (or	

causally)	relevant	 to	 the	 force	pulling	the	object	down	the	plane.	Resolving	the	

gravitational	force	into	these	(and	not	some	other)	components	appears	‘natural’	

to	the	situation	in	which	the	physical	context	supplies	a	privileging	strategy	for	

the	decomposition	of	the	force	into	these	components,	even	though	there	are	no	

independent	physical	(causal)	origins	to	the	components	individually.	

The	 components	 are	well	 determined	 in	 this	 situation.	 But	 altering	 the	

angle	 of	 inclination	 of	 the	 plane	 alters	 the	 components	 despite	 the	 same	

gravitational	 force	acting,	so	that	 the	same	gravitational	 force	has	 innumerably	

many	physically	salient	or	privileged	decompositions	depending	on	the	physical	

situation,	i.e.	the	angle	of	the	plane.	The	preference	for	the	component	choice	is	a	

question	of	explanatory	relevance	 in	a	context,	where	the	choice	 is	determined	

by	 the	 simplicity	or	efficiency	of	 the	ability	 to	explain	or	 to	 calculate	using	 the	

components.	 We	 might	 say	 then	 that	 the	 privileging	 of	 one	 decomposition,	

relative	 to	 a	 given	 plane	 inclination,	 is	 supported	 by	 the	 (syntactic)	 simplicity	

and	strength	that	that	decomposition	into	a	particular	set	of	components	offers	

for	 supporting	 physically	 salient	 explanations	 and	 calculations.	 Other	

decompositions	are	possible,	but	explanations	and	calculations	with	 respect	 to	

other	 components	 would	 be	 contorted	 and	 ‘unnatural’,	 with	 the	 ultimate	

explanation	 or	 calculation	 grounded	 upon	 the	 privileged	 components	 (cf.	

Volkmann	1896,	82-83).	

In	 a	 Mill-Ramsey-Lewis-esque	 appeal	 we	 might	 say	 that	 the	 privileged	

components	are	privileged	because	they	are	associated	with	partial	laws	for	the	

system	 considered,	 such	 that	 explanations	 and	 calculations	 for	 the	 system’s	

behaviour	 are	 given	 most	 simply,	 and	 strongly	 (in	 the	 sense	 that	 any	 sliding	

behaviour	can,	on	this	model,	be	given	most	simply	by	these	and	not	some	other	
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partial	 laws).11	Then	 in	Volkmann’s	sense	this	 indicates	 that	we	have	 found	the	

correct	 ‘isolation	 centres’	 for	 the	 phenomenon	 so	 that	 ‘superposition’	 is	

applicable	 to	 the	 way	 the	 force	 components	 as	 associated	 with	 partial	 laws	

recombine	in	characterizing	the	overall	behaviour	of	the	system,	in	that	they	take	

the	 same	 form	 individually	 (in	 abstraction)	 and	 in	 linear	 combination	 in	 the	

‘concrete’	phenomenon.	

We	might	 say	 then	 that	 the	 resolution	 of	 the	 gravitational	 force	 in	 this	

example	reflects	a	different	patch	of	application	of	‘superposition’	from	§3.1.1	in	

which	the	components	are	now	 ‘traced	forward’	 to	support	explanations	of	 the	

system’s	behaviour	but	cannot	be	‘traced	back’	to	independent	physical	origins.	

	

3.1.4	Summary	of	vector	decomposition	

In	the	different	examples	considered	the	vector	representing	a	physical	quantity	

may,	in	each	case,	be	considered	to	be	‘composed’	of	‘components’.	However,	the	

metaphysical	nature	of	such	 is	unclear,	and	the	semantic	architecture	differs	 in	

each	case	even	though	the	mathematical	support	is	the	same	in	each	case	(vector	

composition).	 The	 question	 is	 what	 one	 should	 say	 about	 the	 application	 of	

‘superposition’	 as	 associated	 with	 how	 we	 are	 to	 understand	 the	 physical	

significance	of	the	components:	

Rocket2	and	the	conjoined	gravitational	and	electrostatic	forces	share	the	

similar	feature	that	the	force	components	in	question	have	independent	physical,	

causal	 origins	 which	 may	 be	 traced,	 counterfactually	 perhaps,	 when	 acting	 in	

combination,	and	are	associated	with	partial	 laws	that	combine	linearly	 to	 take	

the	 same	 form	 in	 and	 out	 of	 combination,	 but	 do	 not	 state	 the	 facts	 in	

combination.	This	is	an	undisputed	application	of	‘superposition’.	

Rocket1	 and	 ‘motion	 north-east’	 present	 vectors	 representing	 physical	

quantities	 that	 may	 be	 decomposed	 according	 to	 the	 same	 mathematical	

architecture	as	 rocket2	 and	 the	 conjoined	electrostatic	 and	gravitational	 forces,	

but	have	a	different	physical	semantic	support.	In	general,	such	decomposition	is	

underdetermined	 and	 of	 no	 particular	 physical	 significance,	 undermining	 the	

																																																								
11	Note	that	this	implies	that	appeal	to	the	concept	of	a	partial	law	in	this	case	using	the	Mill-
Ramsey-Lewis	account	is	contextual,	that	is,	limited	in	application	to	a	specific	type	of	system	or	
model.	The	architecture	of	‘partial	law’	is	therefore	different	here	from	that	of	the	examples	in	
§3.1.1.		
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application	 of	 ‘superposition’.	 What	 one	 should	 say	 about	 superposition	 is	

clarified	by	dragging	the	example	in	one	of	two	directions:	

First,	the	decomposition	of	a	vector	representing	a	physical	quantity	into	

arbitrary	components	without	any	 further	physical	context	appears	to	reflect	 a	

mimic	 of	 ‘superposition’,	 with	 such	 composition	 /	 decomposition	 supported	

mathematically	 by	 not	 physically.	 This	 reflects	 vector	 composition	 /	

decomposition	and	not	superposition.	

Secondly,	the	case	of	a	body	sliding	down	an	inclined	plane	sits	between	

rocket1	and	rocket2	now	that	 there	 is	a	way	of	physically	privileging	one	set	of	

components	 over	 others,	 and	 with	 the	 components	 supporting	 inductive	

inferences,	 counterfactual	 reasoning	 and	 physically	 salient	 explanations.	 But	

there	 is	 no	 independent	 physical	 or	 causal	 origin	 for	 each	 component	

individually.	However,	the	privileged	decomposition	is	privileged	because	it	may	

be	associated	with	partial	 laws	characterizing	the	behaviour	of	 the	system	that	

take	 the	 same	 form	 individually	 and	 in	 linear	 combination	without	 stating	 the	

facts.	 This	 suggests	 that	 it	 represents	 an	 instance	 of	 ‘superposition’,	 but	 on	 a	

different	 patch	 from	 the	 conjoined	 force	 examples,	 that	 is,	 it	 has	 different	

supporting	 architecture	 from	 the	 conjoined	 force	 examples.	 One	might	 dispute	

that	this	is	a	case	of	‘superposition’,	but	we	shall	discover	in	§3.3.2	and	chapter	4	

in	particular	that	it	is	in	fact	necessary	to	identify	this	as	‘superposition’	in	order	

to	 support	 the	 ubiquitous	 application	 of	 ‘superposition’	 in	 the	 use	 of	 Fourier	

techniques,	especially	as	understood	in	the	19th	century.	However,	consideration	

of	 this	 example	 also	 indicates	 that	 the	 architecture	 for	 the	 application	 of	

‘superposition’	 to	 Fourier	 techniques	 in	 the	 19th	 century	 probably	 differs	 from	

that	which	was	assumed.	

The	 key	 issue	 is	 to	 note	 the	 differing	 semantic	 architectures	 for	 the	

decompositions	 in	 each	 case	 and	 what	 physical	 inferences	 may	 be	 drawn.	 By	

considering	 force	 vector	 decomposition	 we	 have	 identified	 two	 patches	 of	

application	of	‘superposition’	and	a	mimic.12	

																																																								
12	Although	 questions	 of	 realism	 are	 not	 directly	 in	 view	 in	 my	 analysis	 a	 few	 provisional	
comments	 may	 be	 beneficial.	 The	 notion	 of	 the	 actual	 existence	 of	 the	 partial	 states	 and	
corresponding	partial	 laws	identified	in	terms	of	superposition	appears	to	reflect	an	important	
intuition	in	the	understanding	and	application	of	‘superposition’	in	the	early-mid	19th	century	as	
demonstrated	 by	 Fourier	 and	 Herschel	 (§2.2;	 cf.	 chapter	 4).	 	 But	 in	 terms	 of	 contemporary	
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3.2	Modulation	of	radio	signals:	conflicting	superpositions	

I	 now	 consider	 ‘modulation’	 in	 radio	 signal	 transmission	 as	 a	 form	 of	

composition	 related	 to	 ‘superposition’	 or	 the	 use	 of	 the	 ‘Volkmann	 device’	

(§2.3.1).	The	modulated	wave	was	introduced	into	the	Cartwright-Creary	debate	

(§3.1.1)	by	Sheldon	(1985)	using	a	simple	but	illuminative	example.	The	example	

will	further	demonstrate	the	façade	structure	of	‘superposition’,	and	it	has	some	

affinities	with	 the	 ‘separation	of	 variables’	 considered	 in	 Fourier	 techniques	 in	

chapter	4.	

Sheldon	considers	the	simple	case	of	a	carrier	wave	c	of	fixed	frequency	ϕ	

and	fixed	amplitude	a	represented	by		

!(#) = & cos(2+,#)	

that	 is	 ‘modulated’	 using	 amplitude	modulation	with	 a	 simple	 signal	 x	 of	 fixed	

frequency	f	and	amplitude	b,	that	is	

-(#) = . cos(2+/#)	

(where	normally	. < &, / ≪ ,)	so	that	the	modulated	wave	y	is	

3(#) = (& + . cos(2+/#)) cos(2+,#)	

Sheldon	 suggests	 that	 this	 is	 a	 single	 wave	 of	 fixed	 frequency	,	and	 variable	

amplitude	(& + . cos(2+/#)).	

However,	 he	 observes,	 using	 simple	 trigonometry	 that	 y	 can	 also	 be	

represented	as	

3(#) =
.

2
cos(2+(, − /)#) + & cos(2+,#) +

.

2
cos(2+(, + /)#)		

which	he	identifies	as	three	waves	of	fixed	amplitudes	and	fixed	frequencies.	The	

question	arises	of	whether	the	modulated	wave	is	a	single	wave	or	three	waves.	

He	 goes	 on	 to	 note	 that	 there	 are	 scientific	 and	 technological	 reasons	 for	
																																																																																																																																																															
debates	it	is	not	clear	what	the	realist	ought	to	say	regarding	the	components	of	superpositions	
on	various	patches	of	application,	at	least	in	terms	of	common	inferential	pathways.	On	the	one	
hand,	the	indispensable	explanatory	(or	causal)	role	or	relevance	of	the	force	components	in	the	
examples	 studied	 might	 be	 taken	 as	 a	 valid	 inferential	 pathway	 that	 supports	 a	 realist	
commitment.	On	the	other	hand,	the	(in	general)	underdetermination	of	the	components	of	the	
gravitational	force	acting	on	an	object	on	an	inclined	plane	would	bring	such	a	commitment	into	
doubt,	as	might	the	lack	of	independent	physical	origins.	As	we	shall	see	below,	and	in	chapters	
4&5	 the	 situation	 only	 gets	 more	 difficult	 as	 more	 examples	 are	 considered,	 and	 it	 becomes	
increasingly	 unclear	 what	 is	 at	 stake	 in	 advocating	 or	 denying	 a	 realist	 commitment	 to	
components	 of	 a	 superposition.	 So,	 I	 refrain	 from	 considering	 ‘superposition’	 in	 relation	 to	
‘realism’.	However,	it	is	worth	noting	that	for	the	kind	of	examples	considered,	it	would	appear	
that	proper	application	of	 ‘superposition’	 is	a	necessary	condition	 for	 the	adoption	of	a	 realist	
commitment	to	components,	whatever	that	may	mean.	
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adopting	both	answers.	This,	he	argues,	 is	problematic	 for	both	Cartwright	and	

Creary’s	 analysis	 of	 component	 and	 resultant	 forces,	 and	 concludes	 that	 the	

problem	is	then	to	‘give	a	satisfactory	account	of	criteria	for	reality’	(436).	

The	realism	question	is	not	the	question	that	I	wish	to	pursue	(cf.	note	12	

above).	Rather,	the	question	is	how	‘superposition’	is	applied	in	this	example.	In	

engineering	 practice	 the	 answer	 is	 clear	 –	 the	 modulated	 wave	 is	 the	

superposition	 of	 the	 three	 component	 waves.	 This	 representation	 supports	

reasoning	 advantages	 for	 the	 behaviour	 of	 the	 modulated	 wave	 that	 leads	 to	

technological	 advantages	 for	 manipulating	 the	 modulated	 wave.	 For	 instance,	

one	electronically	filters	the	modulated	wave	to	suppress	the	carrier	and	one	of	

the	‘side	bands’	so	that	only	the	‘upper’	or	‘lower’	side	band	is	transmitted.	This	

reduces	 the	 bandwidth	 required	 for	 transmission,	 and	 wastes	 less	 power	

transmitting	 redundant	 information.	 That	 is,	 technological	 explanations	 and	

manipulations	are	usually	conducted	in	terms	of	viewing	the	modulated	wave	as	

the	‘superposition’	of	the	three	‘component’	waves	(using	Fourier	techniques	in	

general	where	the	signal	is	a	more	complicated	waveform).	But	none	of	the	three	

waves	have	physical,	 causal	origins,	 even	 if	 as	 components	 they	have	 causal	or	

explanatory	relevance.		

However,	the	signal	and	the	carrier	do	have	independent	physical	origins	

(analogous	to	the	gravitational	and	electrostatic	forces)	and	their	identities	may	

be	traced	mathematically	in	the	modulated	wave,	with	their	identities	persisting,	

taking	 the	 same	 form	 individually	 and	 in	 combination	 even	 if	 it	 is	 not	 simple	

linear	 combination.	 Moreover,	 physically,	 the	 signal	 may	 be	 recovered	 by	 a	

demodulation	 process.	 This	 is	 central	 to	 radio	 technology,	 the	 whole	 point	 of	

signal	transmission	using	modulation	–	that	one	regards	the	modulated	wave	as	

‘composed	of’	signal	and	carrier	in	such	a	way	that	the	signal	can	be	recovered.	It	

appears	then	that	we	may	also	regard	the	modulated	wave	as	the	‘superposition’	

of	 the	 signal	 and	 carrier.	 However,	 this	 should	 probably	 not	 be	 regarded	 as	 a	

superposition,	 for	 the	composition	 is	not	given	as	a	 linear	relation,	by	a	simple	

summation.	 But	 in	 Volkmann’s	 sense,	where	 no	 reference	 is	made	 to	 linearity,	

one	may	consider	the	modulated	wave	to	be	the	‘superposition’	of	the	carrier	and	

signal,	 which	 would	 mean	 that	 ‘superposition’	 is	 not	 well-defined	 since	



	 54	

‘superposition’	 would	 normally	 be	 applied	 to	 the	 three	 components	 identified	

above	as	composing	the	modulated	wave.13	

This	 is	 a	 good	example	 then	of	Wilson’s	 ‘prolongation’	or	 ‘dragging’	of	 a	

concept	(‘superposition’)	 that	 leads	to	ambiguous	application	 in	some	cases	 for	

which	 a	 physical	 example	 (the	 modulated	 wave)	 is	 located	 on	 both	 patches	

simultaneously.	The	ambiguity	does	not	occur	in	engineering	practice	since	there	

is	 a	 different	 name	 already	 for	 each	 composition	 –	 ‘modulation’	 and	

‘superposition’	(understood	 in	the	traditional	 ‘superposition	of	waves’	sense).14	

Modulation	 is	 perhaps	 a	 	 ‘generalized’	 superposition	 as	 we	 may	 see	 from	

Volkmann’s	 analysis,	 understood	 in	 relation	 to	 the	 ‘Volkmann	device’,	 and	 this	

may	 be	 the	 best	 way	 to	 understand	 it,	 as	 a	 generalization	 of	 classical	

superposition	associated	with	the	use	of	the	Volkmann	device.15	

This	 example	 further	 indicates	 the	 patchwork	 nature	 of	 ‘superposition’	

that	 also	demonstrates	 that	 there	 can	be	ambiguity	 in	 its	 application,	 even	 if	 it	

can	 be	 resolved	 in	 this	 case.	 Moreover,	 here	we	 see	 that	 the	 trace	 principles,	

understood	in	relation	to	the	independent	physical	origins	of	components	apply	

only	 to	 modulation	 and	 not	 to	 superposition	 as	 usually	 understood	 in	 this	

context.	 Yet	 it	 is	 the	 three	 components	 identified	 with	 reference	 to	 the	 usual	

understanding	 of	 ‘superposition’	 that	 are	 often	 used	 to	 support	 inductive	

inferences,	counterfactual	reasoning	and	physically	salient	explanations.		

																																																								
13	Modulation	was	not	mathematically	understood	in	this	way	until	after	the	last	of	Volkmann’s	
work	on	superposition.	See	Colpitts	and	Blackwell	(1921)	for	history	of	early	developments;	
Heising	(1921)	for	an	early	mathematical	treatment;	Black	(1953)	for	detailed	analysis	of	
modulation	techniques.	
14	In	signal	engineering	parlance	the	wave	is	the	modulated	wave	considered	in	the	time-domain	
and	the	superposition	of	its	frequency-domain	components	considered	in	the	frequency-domain	
representation,	so	there	is	a	question	of	the	domain	of	interest	(perspective?)	here.	The	analysis	
is	usually	performed	in	terms	of	Fourier	transforms	since	the	signal	is	usually	a	complicated	
waveform,	such	as	a	voice	broadcast.	The	simple	example	here	illustrates	the	points	I	wish	to	
consider	without	the	further	complications	of	appeals	to	Fourier	transforms.	For	discussion	of	
modulation	see	e.g.	Oppenheim,	Willsky	and	Young	(1983,	447-512).	
Moreover,	there	are	different	kinds	of	modulation.	We	consider	amplitude	modulation,	but	
frequency	modulation	is	another	common	form	of	modulation.	
15	One	form	of	‘generalized	superposition	that	is	recognized	as	such	is	the	‘nonlinear	
superposition	principle’.	It	was	stated	concisely	by	Jones	and	Ames	(1967)	as	an	extension	of	
Hilbert	superposition.	Consider	a	partial	differential	equation	L(u)=0	and	let	{89(:)}9<=…?	be	
solutions.	If	@ = @(8=(:), 8A(:),… , 8?(:), :)	is	also	a	solution	of	L(u)=0	then	F	,	which	is	not	
necessarily	unique,	is	called	a	connecting	function,	and	this	constitutes	the	nonlinear	
superposition	principle	(484).	The	nonlinear	superposition	principle	has	been	developed	in	a	
slightly	different	way,	tracing	to	Lie,	in	more	recent	work.	See	for	instance	Menini	and	Tornambè	
(2011)	for	discussion	of	‘physically	motivated	examples’,	although	they	do	not	discuss	the	
physical	significance	of	the	components.	
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Decompositions	of	the	modulated	wave	into	signal	and	carrier	on	the	one	

hand,	 or	 into	 three	 components	 as	 above,	 are,	 in	 Volkmann’s	 terminology,	

different	 decompositions	 with	 reference	 to	 two	 different	 sets	 of	 ‘isolation	

centres’.	 But	 both	 decompositions	 might	 be	 considered	 as	 exemplifying	

‘simplicity	 and	 strength’	 with	 regard	 to	 describing	 modulated	 signals,	 both	

supporting	 physically	 salient	 explanations,	 inductive	 inferences	 and	 lead	 to	

reasoning	advantage	in	engineering	technology	–	this	was	Sheldon’s	point.	

We	should	 regard	Volkmann’s	analysis	of	 isolation	and	superposition	 in	

relation	 to	the	 ‘Volkmann	device’	 in	 terms	of	various	prolongations	of	 classical	

applications	of	superposition.	It	is	for	this	reason,	to	avoid	further	confusion,	that	

I	 am	 calling	 Volkmann’s	 analysis	 of	 isolation	 and	 superposition,	 with	 all	 its	

façade	structure	in	view,	as	the	‘Volkmann	device’.	What	will	be	most	important	

for	us	is	to	be	clear	what	the	semantic	architecture	of	the	‘Volkmann	device’	is	in	

any	particular	setting	and	what	may	be	inferred	from	it.		

I	now	consider	a	 further	 type	of	 example	 that	has	often	been	 treated	 in	

terms	 of	 ‘superposition’	 that	 evidences	 another	 patch	 of	 application	 with	

different	 supporting	 architecture	 again,	 namely	 the	 principal	 axis	

transformation.	 16 	This	 case	 is	 directly	 relevant	 to	 the	 Fourier	 techniques	

discussed	in	chapter	4,	and	lays	the	groundwork	for	it.	

	

3.3	Principal	axis	transformations		

3.3.1	Overview	

Principal	 axis	 transformations,	 as	 understood	 in	 the	 context	 of	 Fourier	

techniques,	will	play	an	important	role	in	distinguishing	physical	‘superpositions’	

of	‘simple	solutions’	of	linear	differential	equations	from	abstract	arbitrary	linear	

combinations	of	solutions	to	such	equations	according	to	Hilbert	superposition.	I	

illustrate	 the	 important	 conceptual	 points	 in	 examples	 that	 concern	 finite-

dimensional	vector	spaces	here	before	considering	examples	requiring	a	Hilbert	

space	as	analysed	with	Fourier	techniques	in	chapter	4.	

Principal	 axis	 transformations	 may	 be	 understood	 using	 the	 theory	 of	

spectral	 decompositions	 of	 linear	 operators.	 Such	 transformations	 arise	 when	

																																																								
16	See	Goldstein	(1980,	198-263)	for	detailed	discussion	of	principal	axis	transformations	and	use	
of	‘superposition’	in	this	context.	
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physical	quantities	associated	with	a	physical	system	are	represented	by	vectors	

u	 and	 v	 of	 finite-dimensional	 vector	 spaces	 related	 by	 a	 (Hermitian)	 linear	

transformation	A.	So	for	instance	the	evolution	of	an	initial	state	u	to	a	later	state	

v	is	given	by	v=Au,	so	that	A	expresses	a	‘law’	for	the	behaviour	of	the	system	(in	

some	 broad	 sense).	 In	 the	 principal	 axis	 transformation	 a	 coordinate	

transformation	is	performed	via	a	matrix	P	from	whatever	coordinate	system	is	

initially	used	to	represent	u,	v,	A	to	a	coordinate	system	whose	basis	consists	of	

the	 eigenvectors	 or	 eigenfunctions	 (the	 ‘principal	 axes’)	 of	 the	 linear	

transformation	 A. 17 	In	 the	 transformed	 coordinates	 A	 is	 represented	 in	

eigenvector	 (principal	 axis)	 coordinates	 by	 a	 diagonal	 matrix	 D	 of	 the	

eigenvalues	of	A,	 i.e.	D=PTAP,	 so	 that	 the	system’s	evolution	 is	given	simply	by	

scaling	the	principal	axis	coordinates	individually	and	summing	as	vectors.	So,	a	

principal	axis	transformation	is	a	transformation	to	eigenvector	co-ordinates	of	a	

system	whose	behaviour	is	characterized	by	a	Hermitian	linear	map.	

This	 means	 that	 mathematically	 the	 system’s	 behaviour	 is	 given	 in	 as	

simple	 a	 form	 as	 possible	when	 represented	 in	 the	 principal	 axis	 coordinates.	

The	overall	law	characterizing	the	system’s	behaviour	is	expressed	as	the	linear	

(vector)	 sum	 of	 principal	 axis	 components	 scaled	 by	 their	 eigenvalues.	 Each	

scaling	of	an	eigenvector	by	an	eigenvalue	can	be	interpreted	as	a	‘partial	law’	on	

the	 Mill-Ramsey-Lewis	 account,	 being	 associated	 with	 the	 ‘partial	 system’	 or	

‘partial	state’	corresponding	to	each	eigenvector.	Representation	in	the	principal	

axis	 coordinates	achieves	 the	 syntactically	 simplest	 representation	possible	 for	

the	system’s	evolution,	whilst	also	being	strong	 in	the	sense	that	any	evolution	

can	 be	 so	 expressed.	 This	 means	 that	 there	 is	 no	 coupling	 between	 the	

behaviours	with	respect	to	different	axes,	so	that	the	behaviours	are	simple.	

The	 complicated	 overall	 behaviour	 of	 the	 system	 is	 then	 interpreted	 as	

the	 ‘superposition’	 of	 the	 simple	 behaviours	 of	 the	 partial	 states,	 as	 the	

behaviours	of	the	partial	states	(eigenvectors	or	eigenstates)	take	the	same	form	

individually	(given	by	scaling	by	the	appropriate	eigenvalue)	in	isolation	and	in	

combination	 (given	by	 simple	 summing	of	 the	 scaled	eigenstates,	because	 they	

are	uncoupled),	whilst	not	stating	the	facts	in	combination.	Mathematically,	this	

																																																								
17	The	existence	of	such	a	basis	is	ensured	by	the	spectral	theorem	if	A	is	Hermitian,	as	is	the	case	
for	many	physical	systems.	
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is	because	the	law-like	behaviour	of	the	complicated	system	is	represented	by	a	

diagonal	matrix	acting	on	the	eigenvector	(principal	axis)	components.	Because	

the	 eigenvector	 behaviours	 are	 uncoupled,	 they	 may	 be	 associated	 with	

conserved	quantities	and	so	the	principal	axes	may	be	associated	with	 ‘natural’	

properties	of	the	system.	

	In	 Wilson’s	 terms	 the	 principal	 axis	 transformation	 presents	 a	 robust	

descriptive	 opportunity	 yielding	 a	 reasoning	 advantage	 to	 provide	 physically	

salient	explanations,	 as	predictions	and	explanations	of	 the	system’s	behaviour	

are	given	in	the	simplest	and	strongest	way	in	terms	of	the	principal	axes.	That	is,	

as	Wilson	will	claim	in	the	context	of	Sturm-Liouville	theory	(cf.	chapter	4),	the	

principal	axes	are	associated	with	‘hidden’	physical	properties	of	the	system	that	

are	 salient	 to	 providing	 physical	 explanations	 of	 its	 behaviour,	 supporting	

counterfactual	reasoning.	

A	 paradigmatic	 example	 of	 a	 principal	 axis	 transformation	 concerns	 a	

rotating	 rigid	 body	 for	 which	 the	 matrix	 representing	 the	 inertia	 tensor	 I	 is	

diagonalized,	where	the	principal	axes	are	the	three	axes	with	respect	to	which	

the	 rotary	 motions	 are	 uncoupled,	 and	 associated	 with	 the	 property	 that	

rotational	kinetic	energy	is	conserved	for	motions	about	these	axes	so	that	there	

is	 no	 energy	 transferred	 between	 the	 motions	 about	 the	 principal	 axes	

(Goldstein	 1980,	 198-263).	 However,	 we	 turn	 immediately	 to	 a	 model	 of	 a	

system	of	masses	connected	by	springs	 in	oscillatory	motion	as	 this	leads	most	

directly	to	the	Fourier	techniques	of	chapter	4	that	are	central	to	QFT.	

	

3.3.2	Example:	Spring-mass	system	

Consider	 a	 system	 S	 modelled	 by	 two	 masses	 and	 three	 springs	 in	 the	

configuration	indicated,	in	1-dimensional	motion:	

	
Fig.	1.1	Coupled	spring-mass	system	

The	configuration	of	S	is	represented	by	a	two-dimensional	vector	space	where	

the	 initial	 coordinate	 choice	 is	 given	 by	 the	 displacements	 of	 the	masses	 from	
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equilibrium	 as	 shown.	 The	 equation	 representing	 the	 time-evolution	 of	 S	 is	

obtained	from	Newton’s	second	law	(i.e.,	‘law’	applied	in	the	fundamental	sense).	

The	specific	equation	expressing	the	behaviour	of	the	system	may	be	considered	

as	the	‘overall’	or	‘system’	law	characterizing	the	evolution	of	the	system.	A	2x2	

Hermitian	matrix	A	is	introduced	whose	elements	are	a	function	of	the	topology	

of	S	so	that	the	‘overall’	or	‘system’	law	is:	18	

:̈ = C:	

with	

:̈ = D
-̈=
-̈A
E = F

−2G
HI

G
HI

G
HI

−2G
HI
J K
-=
-A
L	

The	eigenvalues	M= = −G HI 		 , MA = −3G HI 	of	A	 corresponding	to	eigenvectors	

O= = P= K
1
1
L ,	 OA = PA K

1
−1
L 	are	 easily	 calculated,	 and	 the	 principal	 axis	

transformation	 is	 given	 by	R = K
1 1
1 −1

L,	 where	 in	 this	 context	 (and	 in	 that	 of	

Fourier	 techniques)	 the	 principal	 axes	 are	 known	 as	 the	 ‘normal	 modes’.	 So	

substituting	: = RS	(where	 η	 is	 the	 configuration	 of	 S	 in	 the	 principal	 axis	

coordinates)	gives	S̈ = TS	for	a	diagonal	matrix	D	of	eigenvalues	of	A:	

S̈ = D
Ü=
ÜA
E = F

−G HI 0

0 −3G HI
J K
U=
UA
L	

The	differential	 equations	 in	 the	η-coordinates	 (normal	mode	or	principal	 axis	

coordinates)	are	now	uncoupled,	i.e.	

Ü= = −G HI U=	

with	general	solution	 	U= = &= cosW
G
HI # + .= sinW

G
HI #	

and	

ÜA = −3G HI UA	

with	general	solution	 	UA = &A cosW
3G

HI # + .A sinW
3G

HI #	

The	 general	 solution	 in	 the	 original	 x-coordinates	 is	 then	 given	 by	: = RS	so	

that:	

																																																								
18	In	general	a	system	is	represented	by	an	N-dimensional	vector	space	with	an	NxN	matrix	
representing	the	evolution	of	the	system	whose	entries	depend	on	the	topology	of	the	system.	
‘Law’	instantiates	here	Newton’s	second	law	in	the	particular	context	of	this	system	and	its	
topology.	
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-= = &= cosW
G
HI # + .= sinW

G
HI # + &A cosW

3G
HI # + .A sinW

3G
HI #		

-A = &= cosW
G
HI # + .= sinW

G
HI # − &A cosW

3G
HI # − .A sinW

3G
HI #		

with	the	coefficients	&9, .9 	calculated	from	the	initial	conditions.	

The	 point	 is	 that	 we	 have	 expressed	 any	 complicated	 motion	 of	 the	

system	 as	 a	 superposition	 of	 the	 ‘simple’	 motions	 of	 the	 normal	 mode	

coordinates.		

The	overall	behaviour	of	S	is	complicated	because	considered	in	terms	of	

the	motions	 of	 the	masses,	 the	motions	 of	 the	masses	 couple.	 It	 is	 difficult	 to	

reason,	predict	or	explain	the	system’s	behaviour	using	the	initial	configuration	

space	representation	(x-coordinates).	However,	a	principal	axis	transformation	P	

can	 be	 performed	 so	 that	 the	 motions	 are	 expressed	 relative	 to	 uncoupled	

principal	axis	η-coordinates	(‘normal	mode’	coordinates)	with	respect	 to	which	

the	matrix	D	representing	the	system’s	evolution	is	diagonal.		

We	can	interpret	D	as	abstracting	or	isolating	‘partial	laws’	for	S	given	as	

simple	 scaling	 of	 the	 eigenvector	 (normal	 mode)	 coordinates	 by	 their	

corresponding	eigenvalues.	The	partial	laws	are	uncoupled,	taking	the	same	form	

in	 and	 out	 of	 combination	 where	 combination	 is	 represented	 by	 vector	

summation	 of	 the	 scaled	 partial	 states.	 The	 overall	 behaviour	 of	 the	 system	 is	

given	 by	 expressing	 its	 state	 as	 the	 ‘superposition’	 of	 its	 normal	 mode	 states	

which	 each	 evolve	 individually	 and	 independently	 according	 to	 the	 partial	 law	

associated	with	each	partial	state,	so	that	the	overall	evolution	of	S	is	the	vector	

sum	 of	 the	 partial	 states	 evolved	 by	 their	 corresponding	 partial	 laws.	

Representation	 using	 normal	 mode	 coordinates	 can	 be	 characterized	 as	 the	

representation	 that	 optimally	 balances	 (minimally,	 in	 a	 syntactic	 sense)	

simplicity	and	strength	–	any	state	can	be	represented	by	the	normal	modes	and	

calculations	and	physically	salient	explanations	are	given	most	simply	using	the	

normal	mode	 coordinates	 as	 they	 are	 uncoupled.	 So	 in	 this	 kind	 of	 example	 a	

Mill-Ramsey-Lewis	 characterization	 of	 the	 partial	 laws	 in	 the	 context	 of	

Volkmann’s	understanding	of	isolation	and	superposition	is	successful,	with	the	

principal	 axis	 representation	 a	 natural	 representation.	 In	 Wilson’s	 terms	 we	

exploit	 a	 descriptive	 opportunity	 to	 obtain	 a	 reasoning	 advantage	 supporting	
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physically	salient	explanations	and	predictions,	and	the	ability	to	manipulate	the	

system	via	counterfactual	reasoning.	

Moreover,	 the	principal	 axis	 transformation	 simultaneously	diagonalizes	

the	matrices	representing	both	the	system’s	kinetic	and	potential	energy	so	that	

the	total	energy	of	each	mode	constant	(Goldstein	1980,	243-263).	This	 further	

characterizes	the	normal	modes	physically.	They	are	constant	energy	states,	so	

that	no	energy	is	transferred	between	the	normal	modes.	As	Wilson	will	argue	in	

the	context	of	Sturm-Liouville	theory,	the	normal	modes	are	states	that	‘pick	out’	

macroscopic	properties	of	 the	system	associated	with	conserved	energy	(2006,	

244-251).	So	this	offers	another	sense	in	which	the	principal	axis	representation	

is	natural	in	that	the	axes	or	modes	are	associated	with	‘natural	properties’	of	S	

that	are	otherwise	hidden.		

This	 example	 reflects	 another	 architecture	 of	 ‘superposition’.	 The	

principal	 axes	 are	 determined	 by	 the	 system	and	 the	 normal	modes	 represent	

‘simple’	(where	the	sense	of	simplicity	is	as	developed	above)	vibratory	states	of	

the	 system	 that	 are	 associated	 with	 ‘partial	 laws’	 for	 the	 system.	 If	 the	 initial	

conditions	 are	 expressed	 in	 the	 principal	 axis	 coordinates,	 the	 identity	 of	 the	

normal	modes	may	be	 traced	 in	 the	evolution	of	 the	 system.	 I	 shall	develop	 in	

detail	 in	 chapter	 4	 the	 idea	 that	 there	 are	 two	 aspects	 to	 the	 application	 of	

‘superposition’	 in	 relation	 to	 normal	 modes:	 first,	 the	 normal	 mode	

decomposition	 as	 an	 eigenfunction	 decomposition	 for	 the	 evolution	 of	 S;	

secondly	 the	 decomposition	 of	 some	 initial	 condition	 in	 terms	 of	 the	

eigenfunctions.	Both	decompositions	must	be	available	 for	 the	procedure	 to	be	

successful.	

However,	 unless	 the	 system	 is	 initialized	 and	 hence	 remains	 in	 a	 state	

corresponding	 exactly	 to	 a	 normal	 mode,	 there	 need	 not	 be	 any	 independent	

physical	origin	for	the	normal	modes	as	they	appear	in	the	decomposition	of	the	

initial	 conditions	of	 S.	 Clearly	however	 the	 normal	mode	 decomposition	 of	 the	

initial	 conditions	 has	 explanatory	 relevance	 for	 the	 behaviour	 of	 S	 in	 virtue	 of	

their	eigenvector	property	for	S.		

That	 is,	 the	 normal	 mode	 decomposition	 supports	 the	 identification	 of	

partial	laws	that	are	foundational	to	supporting	physically	salient	explanations	of	

the	 system’s	 behaviour	 and	 counterfactual	 reasoning.	 In	 this	 sense	 the	 normal	
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mode	decomposition	of	 the	 initial	conditions	 is	similar	 to	 the	decomposition	of	

the	 gravitational	 force	 of	 an	 object	 sliding	 down	 the	 plane.	 However,	 normal	

mode	decomposition	of	 the	 state	of	 S	 is	dissimilar	 to	 the	decomposition	of	 the	

gravitational	force	in	the	sense	that,	additionally,	the	modes	are	associated	with	

natural	properties	of	the	system	through	conserved	quantities	unlike	the	object	

on	 the	 plane.	 Moreover	 the	 normal	 modes	 have	 independent	 existence	 as	

possible	individual	states	of	the	system	and	can	be	physically	isolated,	unlike	the	

components	of	 the	gravitational	 force	acting	on	 the	body	on	 the	 inclined	plane	

for	 which	 the	 components	 can	 be	 abstracted,	 but	 do	 not	 have	 independent	

physical	existence.	So	there	are	two	aspects	to	the	application	of	‘superposition’	

to	 normal	 modes,	 and	 this	 will	 be	 important	 when	 we	 consider	 Fourier	

techniques	in	chapter	4,	which	we	explore	further	there.	

	

3.3.3	Hilbert	superposition	and	principal	axes	

Contact	 can	be	made	with	 ‘Hilbert	 superposition’	 in	 the	example	of	 §3.3.2.	The	

equation	 representing	S’s	 evolution	 is	 a	 linear	differential	 equation,	 so	 ‘Hilbert	

superposition’	applies	to	linear	combinations	of	any	(and	not	just	normal	mode)	

solutions	 to	 the	 equation,19 	so	 ‘superposition’	 is	 semantically	 supported	 in	

mathematical	 terms	 according	 to	 ‘Hilbert	 superposition’,	 although	 it	 is	

underdetermined	or	perhaps	‘promiscuous’	if	not	further	supported	on	physical	

grounds,	as	in	the	case	of	the	arbitrary	decomposition	of	a	force	vector	(§3.1.2).	

The	normal	modes	solutions	are	possible	states	of	 the	system,	being	privileged	

states	 in	 that	 they	 are	 ‘simple’	 owing	 to	 their	 eigenvector	 property	 in	

diagonalizing	the	motion.	

That	 is,	 there	are	 reasons	 to	privilege	 the	expression	of	solutions	to	 the	

differential	equation	as	a	sum	of	normal	modes	rather	than	something	else,	and	

apply	‘superposition’	only	to	such	simple	solutions.	For	it	is	only	with	respect	to	

the	 simple	 solutions	 that	 a	 reasoning	 advantage	 for	 modelling	 complicated	

behaviours	 is	obtained	(in	Wilson’s	 terms);	 the	simple	solutions	are	the	proper	

‘isolation	centres’	 for	 the	phenomenon	(in	Volkmann’s	 terms),	so	that	 it	 is	only	

with	 respect	 to	 these	 that	 we	 should	 apply	 ‘superposition’.	 Beyond	 that,	

																																																								
19	Arbitrary	solutions	will	of	course	be	linear	combinations	of	the	normal	mode	solutions	as	the	
normal	mode	solutions	span	the	solution	space.	



	 62	

application	 of	 ‘Hilbert	 superposition’	 to	 arbitrary	 solutions	 is	 an	 example	 of	

‘dragging’	that	leads	to	semantic	mimicry.	That	is,	‘Hilbert	superposition’	admits	

‘too	 much’	 as	 ‘superposition’	 without	 further	 qualification,	 comparable	 to	

arbitrary	 vector	 decomposition	 without	 reference	 to	 physically	 salient	 simple	

components.20	

Finally,	contrast	the	analysis	of	S	with	the	case	of	the	spring-mass	system	

S’	comprising	of	2	masses	and	2	springs	as	indicated:	

	
Fig.	1.2	Uncoupled	spring-mass	system	

The	 configuration	 space	 is	 a	 two-dimensional	vector	 space	 as	 before,	with	 the	

state	represented	by	x.	The	initial	configuration	space	representation	is	already	

the	principal	axis	or	normal	mode	representation.	But	 intuitively	we	would	not	

regard	the	state	of	S’	as	given	by	the	‘superposition’	of	the	normal	modes	as	there	

is	no	interference	or	coupling.	

This	 intuitive	distinction	between	 the	 application	of	 ‘superposition’	 to	S	

but	not	to	S’	can	be	captured	by	Cartwright’s	worry	about	‘stating	the	facts’.	In	S’	

the	 components	 and	 associated	 ‘partial	 laws’	 state	 the	 facts,	 whereas	 in	 S	 the	

components	 do	 not	 state	 the	 facts.	 Both	 cases	 are	 instances	 of	 ‘Hilbert	

superposition’.	 However,	 it	 seems	 that	 one	 should	 require	 as	 part	 of	 the	

architecture	of	‘superposition’	that	the	partial	states	or	partial	laws	do	not	state	

the	 facts	 when	 in	 combination,	 and	 so	 one	 should	 not	 regard	 S’	 as	 exhibiting	

superposition.	

	

3.4	Summary	

By	 considering	 various	 examples	we	 have	 seen	 that	 the	 superposition	 concept	

has	 ‘wandering	 significance’	 involving	 different	 semantic	 architectures	 in	
																																																								
20	The	analogy	is	very	close	since	the	solution	space	to	the	differential	equation	is	a	vector	space,	
so	that	a	solution	is	a	vector	in	this	space	and	may	be	arbitrarily	decomposed	according	to	any	
basis.	
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different	 applications.	 Some	 of	 the	 patches	 of	 application	 might	 give	 rise	 to	

disputed	application	of	‘superposition’	and	to	semantic	mimics.	‘Component’	also	

has	 a	 differing	 semantic	 architecture	 on	 different	 patches	 of	 application,	 and	

applies	 to	 vector	 composition	 even	when	 ‘superposition’	 does	 not.	 In	 the	 next	

chapter	we	consider	the	application	of	superposition,	and	its	semantic	mimics,	to	

Fourier	techniques	and	Sturm-Liouville	theory.	
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Chapter	4	

	

The	façade	structure	of	superposition	(2):	

Fourier	techniques,	superposition	and	semantic	mimics	

	

4.1	Overview	

I	 now	 continue	my	 analysis	 of	 ‘superposition’	 in	 classical	 physics,	 considering	

systems	 with	 infinitely	 many	 degrees	 of	 freedom	 for	 which	 ‘superposition’	 is	

associated	with	Fourier	techniques,	Hilbert	space	structures	and	linear	systems	

analysis.	 These	 involve	 various	 prolongations	 as	 well	 as	 mimics	 of	

‘superposition’,	 and	 are	 foundational	 to	 quantum	 physics	 as	 we	 shall	 see	 in	

chapter	6	onwards.	 I	commence	with	an	overview	of	Fourier	 techniques	 in	 this	

chapter	and	then	consider	some	prolongations	to	general	linear	systems	analysis	

in	 chapter	5.	Wilson	discusses	 some	of	 the	 same	examples	 that	 I	 shall	 analyse,	

although	 with	 a	 different	 focus	 as	 I	 indicate	 in	 §4.4.1.	 I	 shall	 focus	 on	 the	

application	 and	 significance	 of	 ‘superposition’,	 a	 concept	 that	 Wilson	 rarely	

mentions	and	then	only	 in	passing,	with	a	view	towards	 its	significance	 for	 the	

analysis	of	quantum	field	theory.	My	analysis	is	motivated	by	Wilson	in	the	sense	

of	 probing	 the	 ‘wandering	 significance’	 and	 façade	 nature	 of	 the	 concept	 of	

superposition	 and	 Fourier	 techniques,	 for	which	 I	 also	 draw	upon	 the	work	 of	

Volkmann	and	Simons	as	discussed	 in	chapter	2	 in	order	to	extend	what	might	

be	said	about	the	role	and	significance	of	‘superposition’.	

The	 technique	 introduced	 by	 Fourier	 (1878	 [1822])	 and	 developed	 by	

Sturm	 and	 Liouville	 can	 be	 understood	 as	 a	 principal	 axis	 transformation	 (cf.	

§3.3)	 applied	 to	 the	 representation	 of	 a	 physical	 system	modelled	 by	 a	 partial	

differential	equation	(PDE)	subject	to	boundary	conditions.	The	linear	maps	that	

are	 ‘diagonalized’	 are	differential	operators	associated	with	 the	PDE	modelling	

the	system	acting	on	a	Hilbert	space,	and	the	normal	modes,	 ‘partial	states’	and	

‘partial	 laws’	 are	 associated	 with	 the	 eigenfunction	 representations	 of	 the	

differential	operators	(cf.	Goldstein	1980,	200).	The	PDE	with	specified	boundary	

conditions	 represents	 the	 overall	 or	 system	 law	 describing	 the	 system’s	

behaviour,	being	deduced	from	‘laws	of	nature’	appropriate	to	the	domain	of	the	



	 65	

model.	The	normal	modes	 form	the	 ‘partial	systems/states’	associated	with	the	

‘partial	laws’	that	compose	the	‘overall	law’	according	to	‘superposition’.	This	is	

the	originary	patch	of	application	of	Fourier	techniques	and	associated	usage	of	

‘superposition’,	and	has	been	subject	to	various	prolongations	and	mimics.	

It	 is	 crucial	 to	 appreciate,	 as	 Fourier	made	 clear,	 that	 on	 this	 originary	

patch	 there	 are	 two	 aspects	 to	 the	 semantic	 architecture	 and	 application	 of	

Fourier	 decomposition	 (Fourier	 1873	 [1822],	 133-137)	 that	 are	 often	

overlooked	in	subsequent	discussions:	

The	 first	 aspect:	 a	 ‘separation	 of	 variables’	 is	 performed	 on	 the	 PDE	 (a	

‘generalized	 superposition’,	 see	 below)	 to	 derive	 coupled	 but	 simpler	 linear	

ordinary	 differential	 equations	 (ODEs)	 that	 have	 the	 form	 of	 eigenvalue	

equations.	 A	 set	 of	 ‘simple	 solutions’	 to	 the	 eigenvalue	 equations	 subject	 to	

boundary	 conditions	 is	 constructed.	The	 ‘simple	 solutions’	 are	 identified	as	 the	

‘Fourier	 modes’	 and	 associated	 partial	 (evolution)	 laws. 1 	The	 modes	 are	

physically	significant,	being	mutually	independent	or	uncoupled	possible	‘partial	

states’	of	 the	system	(or	 ‘partial	systems’	 in	Fourier’s	 terminology)	 that	persist	

with	an	 invariant	 form	whilst	evolving	according	to	their	corresponding	partial	

laws.	 The	 system’s	 behaviour	 is	 given	 by	 scaling	 each	 mode	 (partial	 state)	

individually	 and	 independently	 by	 its	 corresponding	 partial	 law,	 and	 then	

summing	 these	 ‘simple	 solutions’	 to	 obtain	 the	 overall	 state	 by	 ‘Hilbert	

superposition’.	 In	 this	 sense	 the	mode	 states	 are	 ‘simple’,	 and	 associated	with	

‘partial	 laws’	 as	 the	 system’s	 behaviour	 is	 expressed	 most	 simply	 in	 terms	 of	

these	Fourier	modes.		

Working	backwards,	 if	 one	 could	express	any	 arbitrary	 initial	 state	as	 a	

linear	combination	of	the	simple	eigenvalue	states	(modes)	as	a	‘Fourier	series’,	

it	is	then	straightforward	to	calculate,	predict	or	explain	the	system’s	behaviour.	

One	simply	scales	the	modes	individually	by	their	corresponding	partial	laws	and	

then	sums	them	as	vectors	in	the	Hilbert	space	representing	the	space	of	possible	

states	of	the	system	(i.e.,	form	their	‘Hilbert	superposition’).2	This	is	the	physical	

																																																								
1	‘Mode’	is	used	in	different	ways.	Properly,	it	refers	to	eigenfunctions	as	they	arise	in	this	
(physical)	context,	but	is	often	used	to	refer	to	individual	terms	in	an	abstract	Fourier	series	by	
‘dragging’.	Moreover,	complications	regarding	the	identification	of	modes	(partial	states)	and	
partial	laws	arise	owing	to	multiple	different	uses	of	superposition	(or	the	Volkmann	device),	as	
we	shall	see	below.	
2	The	details	here	depend	on	the	particular	example	as	we	shall	see	in	what	follows.	
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motivation	 for	 the	 mathematical	 second	 aspect	 of	 the	 Fourier	 technique,	 an	

aspect	 that	 came	 to	 dominate	 Fourier	 analysis,	 namely	 the	 Fourier	

decomposition	of	an	arbitrary	function.		But	this	represents	a	dragging	to	a	new	

patch	if	it	is	applied	without	reference	to	the	first	aspect,	similar	to	examples	of	

vector	decomposition	in	chapter	3.	

So,	 the	 second	 aspect	 to	 Fourier’s	 technique	 is	 that	 having	 obtained	 the	

‘Fourier	 modes’	 for	 the	 system	 by	 separation	 of	 variables	 and	 eigenfunction	

decomposition	of	the	PDE	modelling	the	system,	in	order	to	establish	a	reasoning	

advantage	one	must	be	able	to	‘decompose’	the	initial	conditions	(or	‘forcing’)	of	

the	system	in	terms	of	these	modes	(eigenfunctions).	For	if	the	initial	conditions	

can	be	represented	as	a	 linear	combination	of	the	modes	or	simple	states,	 then	

the	system’s	behaviour	is	given	simply	by	scaling	the	modes	individually	by	their	

corresponding	partial	laws	and	summing.	Establishing	the	decomposition	of	the	

initial	conditions	into	modes	is	the	second	aspect	of	Fourier	decomposition.	It	is	

Fourier’s	celebrated	result,	although	 it	 involves	essentially	mathematical	rather	

than	 physical	 semantic	 support	 even	 though	 it	 may	 mimic	 having	 physical	

support	so	 that	 application	of	 ‘superposition’	may	be	 in	dispute.	 It	 took	over	a	

century	to	establish	all	the	important	mathematical	results	rigorously	regarding	

abstract	Fourier	decomposition.3	The	mathematical	 result	 is	often	presented	as	

‘Fourier	analysis’,	but	it	is	only	one	aspect	of	Fourier’s	original	technique.		

In	abstract	terms	the	significance	of	a	function’s	Fourier	decomposition	is	

that	the	‘modes’	(or	terms	in	the	Fourier	series)	form	an	orthonormal	basis	for	a	

Hilbert	 space	 of	 functions.	 This	 provides	 the	 semantic	 support	 for	 the	

decomposition	on	this	mathematical	patch.	But	it	can	lead	to	confusion	through	

semantic	 mimicry	 if	 a	 function	 represents	 a	 physical	 quantity	 that	 is	 not	

explicitly	a	solution	to	a	 linear	differential	equation	modelling	the	behaviour	of	

some	 system.	 Moreover,	 there	 is	 a	 mathematical	 structure	 to	 Fourier	 series	

beyond	 that	of	power	series	expansions	of	 functions,	 such	as	Taylor	series,	 for	

which	 the	 individual	 terms	 do	 not	 form	 the	 basis	 of	 any	 vector	 space.	

Comparison	of	Fourier	series	with	power	series	also	leads	to	confusion	through	

semantic	mimicry.		

																																																								
3	Bollobás	(1990,	150)	suggests	that	the	final	result	was	obtained	by	Carleson	in	1966.	
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There	 are	 then	 (at	 least)	 four	patches	 of	 application	 of	 Fourier	 analysis	

that	 have	 different	 semantic	 architecture	 that	 reflect	 both	 ‘prolongation’	 and	

‘mimicry’	in	relation	to	‘superposition’:	

Patch	1	is	Fourier’s	original	‘two	aspect’	technique	as	developed	in	Sturm-

Liouville	 theory	 modelling	 the	 behaviour	 of	 physical	 systems.	 ‘Simple’	

eigenfunction	 solutions	 are	 found	 to	 the	 PDE	modelling	 the	 system	 subject	 to	

boundary	 conditions	 (1st	 aspect	 of	 Fourier	 technique)	 before	 representing	 the	

initial	 conditions	 via	 the	 simple	 solutions	 (2nd	 aspect)	 so	 that	 the	 system’s	

behaviour	is	represented	by	scaling	each	mode	by	its	corresponding	partial	law	

and	summing.	It	is	exemplified	by	Fourier’s	heat	flow	examples	(§4.2)	and	by	the	

vibrating	 string	 (§4.4.1),	 and	 is	 foundational	 for	 quantum	 physics.	 There	 are	

several	different	applications	of	‘superposition’	on	this	patch	as	we	shall	see;	

Patch	 2	 reflects	 decomposition	 or	 representation	 of	 functions	

representing	 physical	 quantities	 by	 Fourier	 series	 without	 further	 physical	

semantic	 support,	 so	 that	 for	 instance	 the	 Fourier	 decomposition	 is	 not	

associated	 with	 any	 PDE	 modelling	 the	 system.	 ‘Patch	 2’	 is	 exemplified	 by	

epicyclical	astronomy	(see	§4.5.1).	‘Superposition’	is	mimicked	on	this	patch;	

Patch	 3	 concerns	 abstract	 decomposition	 or	 representation	 of	 an	

arbitrary	function	by	a	Fourier	series	in	which	nothing	more	than	a	Hilbert	space	

structure	 is	 in	 view	 (§4.3),	 exemplified	 in	 pure	 mathematics.	 Again,	

‘superposition’	is	mimicked;	

Patch	4	collates	further	prolongations	to	linear	systems	analysis	involving	

ever	more	 intricate	 subpatch	 structures,	such	as	Fourier	 transforms	 (patch	4a)	

(ubiquitous	 in	 QFT)	 and	 ultimately	 Laplace	 transforms	 (patch	 4b),	 where	 the	

prolongation	 of	 the	 Fourier	 technique	 becomes	 entangled	 with	 ‘Volterra	

superposition’	(patch	4c)	and	its	prolongations	in	the	theory	of	Green’s	functions	

and	distributions	for	instance.	The	architectures	of	various	potential	applications	

of	‘superposition’	are	intricate	on	this	patch	(see	chapter	5).	

Patch	3	is	mathematically	foundational	to	both	patch	2	and	to	the	second	aspect	

of	patch	1	when	a	PDE	is	brought	into	view,	by	which	Fourier’s	technique	stands	

or	 falls.	However,	 in	moving	 from	 (3)	 to	 (2)	 and	 (3)	 to	 (1)	 additional	physical	

semantic	 support	 for	 the	 decomposition	 becomes	 relevant.	 Patch	 4	 may	 be	
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considered	to	draw	upon	the	other	patches,	with	the	architecture	and	application	

of	‘superposition’	being	intricate	and	subject	to	dispute	with	borderline	cases.	

The	observation	that	there	are	different	patches	of	application	of	Fourier	

analysis	has	 implications	 for	 the	application	 (or	not)	of	 ‘superposition’,	 and	 its	

semantic	support,	and	this	has	led	to	confusions	in	the	few	recent	philosophical	

mentions	 of	 Fourier	 analysis	 (e.g.	 Healey	 2013;	 Vickers	 2013).	 We	 should	

understand	 the	 significance	 of	 Fourier	 decompositions	 differently	 on	 different	

patches.	

I	 now	 consider,	 through	 exemplifying	 examples,	 these	 patches	 and	 the	

prolongation	 or	 mimicking	 of	 ‘superposition’	 and	 associated	 physical	

significance.	I	analyse	patches	1-3	in	this	chapter	and	patch	4	in	chapter	5.	

	

4.2	Patch	1:	Fourier’s	original	example	

I	now	consider	the	first	and	original	patch	of	application	of	Fourier	techniques	as	

developed	 by	 Fourier	 (1878	 [1822])	 by	 studying	 his	 original	 example.	 Fourier	

derives	a	PDE	modelling	the	heat	flow	in	an	ideal	two-dimensional	slab	as	

!
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#(%, ', ") = * +

!,

!%,
#(%, ', ") +

!,

!',
#(%, ', ").	

for	some	constant	k	depending	on	the	slab’s	 thermal	properties,	where	v	is	 the	

temperature	 at	(%, ', ").	 He	 deduces	 the	 steady-state	 temperature	/(%, ')	of	 a	

semi-infinite	 rectangular	 slab	 for	which	 the	 (finite)	base,	A	=	 [-π/2,	π/2]	along	

the	y-axis	is	held	at	constant	temperature	1	and	the	sides	(parallel	to	the	x-axis)	

held	at	constant	temperature	0.	So	

!,

!%,
/(%, ') +

!,

!',
/(%, ') = 0											(2)	

The	boundary	conditions	impose	constraints	on	/(%, ')	that	determine	the	form	

of	 the	 ‘macroscopic’	 temperature	 distribution.	 Fourier	 tackles	 the	 problem	 in	

two	 stages,	 the	 ‘two	 aspects’.	 First,	 he	 seeks	 the	 ‘simplest’	 functions	 possible	

satisfying	(α)	subject	 to	restricted	 individual	boundary	conditions.	Secondly,	he	

imposes	 all	 the	 boundary	 conditions	 simultaneously,	 and	 deduces	 the	 steady-

state	temperature	distribution	after	showing	that	the	initial	thermal	distribution	

can	be	‘decomposed’	into	the	simple	functions	just	obtained	(1878	[1822],	134).	
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Fourier	deduces	simple	solutions	via	the	‘separation	of	variables’,	that	is,	

solutions	 of	 (α)	 of	 the	 form	/(%, ') = 3(%)4(') .	 This	 marks	 an	 implicit	

application	of	the	‘Volkmann	device’	in	a	nonlinear	form.	That	is,	we	assume	that	

we	can	abstract	away	partial	states	(or	partial	systems	as	Fourier	 terms	them)	

that	 are	 associated	with	 partial	 laws	 taking	 the	 same	 form	 individually	 and	 in	

combination.	 The	 composition	 rules	 are	 complicated.	 The	 decomposition	 of	

/(%, ')	into	the	product	3(%)4(')	involves	additional	structure	that	relates	3(%)	

to	4(')	via	 a	 ‘separation	 constant’	 as	 deduced	 from	 substituting	3(%)4(')	into	

(2)	to	obtain	two	coupled	ODEs.	The	simple	solutions	to	(2)	obtained	then	are	a	

set	of	solutions	/5(%, ') = 35(%)45(').	As	the	‘initial	condition’	is	considered	to	

be	 the	 thermal	 source	 on	 A,	 the	45(')	are	 identified	 as	 the	 modes	 or	 partial	

states	 into	which	the	base	thermal	distribution	will	be	decomposed	that	evolve	

according	to	the	‘partial	laws’	35(%).	

However,	 the	 products	 /5(%, ') = 35(%)45(') 	may	 themselves	 be	

considered	to	form	a	set	of	partial	states	or	systems,	as	indeed	Fourier	does,	that	

are	summed	to	give	the	overall	state	of	the	slab.	That	is,	the	/5(%, ')	are	‘simple	

solutions’	 to	 (α)	 that	 compose	according	 to	 (a	proper	application	of,	 cf.	 §3.3.3)	

‘Hilbert	 superposition’	 to	 form	 the	 general	 solution	 since	 the	 /5(%, ')	

individually	are	solutions	to	(α).	This	is	how	‘superposition’	is	often	understood	

in	 this	 context,	 although	 the	 architecture	 of	 the	 concept	 as	 arising	 from	 the	

separation	of	variables	as	well	 as	 ‘Hilbert	 superposition’	 is	rather	 complicated,	

involving	 two	 applications	 of	 the	 ‘Volkmann	device’,	 namely	 the	 ‘separation	 of	

variables’	 leading	 to	 eigenfunction	 decomposition,	 and	 ‘Hilbert	 superposition’	

leading	 to	 the	 construction	 of	 the	 general	 solution	 from	 the	 ‘simple	 solutions’	

/5(%, ').	Wilson	refers	to	the	Fourier	procedure	as	a	‘factoring	technique’	(2017,	

270-278,	377-381).	Both	‘modulation’	(§3.2)	and	‘separation	of	variables’	may	be	

considered	 to	 involve	 the	 ‘Volkmann	 device’	 in	 its	 generalized	 sense,	 but	with	

differing	architectures	in	each	case.	I	now	clarify	the	procedure	explicitly.	

By	separating	variables	Fourier	obtains:	

6,

6%,
3(%) = 73(%)	

6,

6',
4(') = 74(')	
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from	 (α)	 where	 m	 is	 the	 separation	 constant.	 Note	 for	 reference	 later	 (the	

functional	 analysis	 framework	 came	 after	 Fourier)	 that	 these	 are	 two	 linear	

ODEs	coupled	by	m	that	have	the	form	of	eigenvalue	equations	where	8∙ =
:;

:∙;
	is	

considered	as	a	self-adjoint	linear	operator	acting	on	a	Hilbert	space	of	functions,	

and	so	has	a	 ‘diagonal’	representation	relative	to	a	basis	of	eigenfunctions	of	8∙	

by	the	spectral	theorem.		

Returning	 to	 Fourier’s	 treatment,	 since	 the	 sides	 of	 the	 bar	 are	 held	 at	

temperature	0,	 the	 simplest	 solution	 for	Y	 is	45(') = cos(7'),	which	 form	 the	

modes.	 Since	 the	 base	 is	 held	 at	 temperature	 1,	 and	 the	 temperature	 tends	 to	

zero	 far	away	 from	 the	base,	 the	 simplest	 solution	 for	X	 is	35(%) = exp(−7%),	

which	 form	the	partial	 laws	via	multiplication	of	 the	corresponding	modes.4	To	

satisfy	 the	 boundary	 conditions	 separately	m	 is	 a	 positive	 odd	 integer.	 Thus	 a	

‘simple	solution’	/5(%, ')	to	(α)	satisfying	two	boundary	conditions	 is	obtained	

by	recombining	the	simple	solutions:	

/5(%, ') = exp(−7%). cos(7')	

This	 does	 not	 satisfy	 the	 remaining	 boundary	 condition	 for	4(')	when	% = 0.	

However,	these	simple	solutions	can	be	combined	to	form	a	general	solution	

/(%, ') = D. exp(−%). cos(')

+ E. exp(−3%). cos(3') + G. exp(−5%). cos(5') + I"G.					(J)	

solving	(α)	which	satisfies	all	the	boundary	conditions	individually	(from	a	later	

perspective,	 as	 an	 application	of	 ‘Hilbert	 superposition’)	 if	 the	 ‘joint’	 boundary	

condition	on	A,	 namely	/(0, ') = 1	so	 that	4(') = 1	for	% = 0	can	 be	written	as	

such	a	series,	i.e.	

1 = D. cos(') + E. cos(3') + G. cos(5') + I"G.				(L)	

Then	 the	 problem	 is	 completely	 solved	 if	 the	 coefficients	 a,	 b,	 c,	 …	 can	 be	

calculated.	 The	 steady	 state	 temperature	 distribution	 /(%, ') 	is	 known	

																																																								
4	This	example	illustrates	Wilson’s	point	regarding	the	central	role	that	boundary	conditions	play	
–	we	have	two	identical	differential	equations	(the	sign	of	m	is	unspecified	as	yet),	but	the	
different	boundary	conditions	lead	to	very	different	forms	of	solution,	and	are	essential	to	
determining	it	and	thus	the	notion	of	‘law’	in	this	context.	However,	see	§4.4	for	the	question	of	
assigning	the	35(%)	as	either	partial	laws	or	partial	states	in	Fourier	techniques.	This	difficulty	
appears	related	to	Wilson’s	concern	that	the	notions	of	law	and	causation	become	problematic	in	
the	context	of	PDEs	and	merits	further	analysis.	The	(apparent)	difficulty	occurs	due	to	multiple	
applications	of	superposition.	
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everywhere	 with	 all	 the	 boundary	 conditions	 satisfied,	 given	 by	 (β)	 once	 the	

coefficients	are	calculated	from	(γ).	

This	 Fourier	 demonstrates	 (137-154),	 and	 he	 goes	 on	 to	 generalize	 the	

result	 to	 show	 that	 any	physical	 base	 temperature	 distribution	/(0, ')	can	 be	

written	as	such	a	 series,	 that	 is,	 ‘decomposed	 into	 the	modes’	 (168-209)5	–	 the	

famous	Fourier	series	–	so	that	the	problem	of	the	steady	state	heat	distribution	

in	the	slab	is	completely	solved	via	the	‘simple	solutions’.		

Fourier	considers	the	physical	significance	of	each	term	in	(β)	for	/(%, ')	

by	analysing	the	situation	in	which	the	temperature	distribution	at	the	source	A	

simply	takes	the	form	of	a	mode.	All	the	coefficients	of	(β)	vanish	apart	from	the	

one	 corresponding	 to	 the	 source	 temperature	 distribution.	 Thus	 if	 the	 source	

temperature	distribution	 is	a	simple	solution	of	Y,	 the	temperature	distribution	

persists	in	the	form	of	that	mode	for	Y,	but	scaled	by	X	as	one	traverses	the	slab.	

Then,	supposing	that	any	source	temperature	distribution	/(0, ')	can	be	written	

in	the	form	(γ),	‘in	this	manner	an	exact	idea	might	be	formed	of	the	movement	

of	 heat	 in	 the	 most	 general	 case;	 for	 it	 will	 be	 seen	 …	 that	 the	 movement	 is	

always	compounded	of	a	multitude	of	elementary	movements,	each	of	which	 is	

accomplished	as	if	it	alone	existed.’	(137).	He	concludes	

The	equation	# =
M

N
IOP cos'	represents	also	a	state	of	the	solid	which	would	be	preserved	

without	 any	change,	 if	 it	were	 once	 formed;	 the	 same	would	 be	 the	case	with	 the	 state	
represented	 by	 the	 equation	# =

M

QN
IOQP cos 3',	 and	 in	 general	 each	 term	 of	 the	 series	

corresponds	to	a	particular	state	which	enjoys	the	same	property.	All	these	partial	systems	
exist	 at	 once	 in	 that	 which	 equation	 (α)	 represents;	 they	 are	 all	 superposed,	 and	 the	
movement	of	heat	takes	place	with	respect	to	each	of	them	as	if	it	alone	existed.	(155)	

He	suggests	

that	the	particular	values	[of	the	modes]	have	their	origin	in	the	physical	problem	itself.	
Each	 of	 them	 expresses	 a	 simple	 mode	 according	 to	 which	 heat	 is	 established	 and	
propagated	in	a	rectangular	plate,	whose	infinite	sides	retain	a	constant	temperature.	The	
general	system	of	temperatures	is	compounded	always	of	a	multitude	of	simple	systems,	
and	the	expression	for	their	sum	has	nothing	arbitrary	(156)	

and	that	

This	 superposition	of	 simple	effects	 is	one	of	 the	fundamental	elements	 in	 the	 theory	of	
heat.	It	is	expressed	in	the	investigation,	by	the	very	nature	of	the	general	equations,	and	
derives	its	origin	from	the	principle	of	the	communication	of	heat.	(164)	

These	references	to	‘superposition’	exemplify	the	concept	for	Fourier.	

Fourier	 further	 claims,	 ‘The	 fundamental	 problems	 of	 the	 theory	 of	 heat	

cannot	be	 completely	 solved,	without	 reducing	 to	 this	 form	 [i.e.,	 Fourier	 series	

																																																								
5	At	the	intersections	of	the	boundaries	there	may	be	a	mismatch	requiring	an	infinite	heat	flow	
at	a	point	according	to	the	model	(159).	
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for	 the	 source	 A]	 the	 functions	 which	 represent	 the	 initial	 state	 of	 the	

temperatures.’	(206)	Summing	up	the	treatise	after	considering	other	examples	

he	suggests	

The	integrals	 	…	obtained	[that	is,	 the	integrals	resulting	from	Fourier’s	analysis	so	as	to	
determine	 the	 various	 coefficients	 required]	 are	 not	 only	 general	 expressions	 which	
satisfy	the	differential	equations;	they	represent	in	the	most	distinct	manner	the	natural	
effect	which	is	the	object	of	the	problem.	…	When	this	condition	is	fulfilled,	the	integral	is,	
properly	speaking,	the	equation	of	the	phenomenon;	it	expresses	clearly	the	character	and	
progress	 of	 it.	 …	 In	 general,	 we	 could	 not	 introduce	 any	 change	 in	 the	 form	 of	 our	
solutions,	without	making	them	lose	their	essential	character,	which	is	the	representation	
of	the	phenomena.	(450-451)	

	and	that	

We	have	 said	 that	 each	 of	 these	 solutions	 gives	 the	equation	proper	to	 the	phenomenon,	
since	 it	 represents	 it	 distinctly	 throughout	 the	whole	extent	 of	 its	 course,	and	 serves	 to	
determine	with	facility	all	its	results	numerically.		
The	functions	which	are	obtained	by	these	solutions	are	then	composed	of	a	multitude	of	
terms,	either	 finite	or	 infinitely	 small:	but	 the	 form	of	 these	expressions	 is	 in	no	degree	
arbitrary;	it	is	determined	by	the	physical	character	of	the	phenomenon.	For	this	reason,	
when	the	value	of	the	function	is	expressed	by	a	series	into	which	exponentials	relative	to	
time	enter,	it	is	of	necessity	that	this	should	be	so,	since	the	natural	effect	whose	laws	we	
seek,	is	really	decomposed	into	distinct	parts,	corresponding	to	the	different	terms	of	the	
series.	 The	 parts	 express	 so	 many	 simple	 movements	 compatible	 with	 the	 special	
conditions;	 for	 each	 one	 of	 these	movements,	 all	 the	 temperatures	 decrease,	 preserving	
their	primitive	ratios.	 In	this	composition	we	ought	not	to	see	a	result	of	analysis	due	to	
the	linear	form	of	the	differential	equations,	but	an	actual	effect	which	becomes	sensible	in	
experiments.	(453-454)	

I	have	quoted	Fourier	at	length	to	clarify	the	physical	significance	and	motivation	

of	the	introduction	of	the	modes	and	the	semantic	architecture	of	‘superposition’,	

which	has	affinities	with	both	Volkmann’s	account	(1896)	(in	terms	of	‘isolation	

centres’	of	 the	phenomenon	associated	with	partial	 laws)	and	Simons’	 account	

(1987)	(in	terms	of	physical	‘trace	principles’)	treatments.	

Whilst	 Fourier	 may	 read	 more	 metaphysically	 into	 his	 analysis	 than	 is	

warranted,	so	that	the	architecture	supporting	‘superposition’	is	not	quite	what	

he	envisaged,	the	physical	significance	of	the	modes	and	the	‘partial	systems’	is	

clear.	He	anticipates	a	number	of	issues	raised	in	recent	philosophical	treatments	

of	Fourier	decomposition:	modes	are	physical	invariants	(Fourier	155,	cf.	Wilson	

2006,	 2017);	modes	 are	 not	 arbitrary	 or	 promiscuous	 (Fourier	 156,	 453-454,	

pace	 Healey	 2013b;	 Vickers	 2013);	 modes	 are	 indispensable	 (Fourier	 206,	 cf.	

Liston	1993).	

I	postpone	detailed	analysis	of	the	multiple	applications	of	‘superposition’	

until	 we	 have	 considered	 the	 later	 functional	 analysis	 perspective	 further.	 For	

now	 I	 note	 that	 the	modes	 ‘pick	out’	 certain	 physical	 invariants	 of	 the	 system.	

Using	modes	to	represent	the	thermal	distribution	is	to	appropriate	a	descriptive	
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opportunity	 offering	 a	 reasoning	 advantage	 to	 give	 physically	 salient	

explanations	 about	 the	 thermal	 distribution	 of	 the	 slab.	 Moreover	 the	 mode	

representation,	as	associated	with	their	corresponding	partial	laws,	supplies	the	

syntactic	 representation	 that	will	 best	 balance	 simplicity	 and	 strength	 so	 as	 to	

support	physically	salient	explanations,	 inductive	 inferences	and	counterfactual	

reasoning.	This	gives	content	 to	what	we	mean	by	a	 ‘natural’	representation	of	

the	system.6	

The	mode	representation	 is	 ‘strong’	 in	 that	any	 thermal	distribution	can	

be	expressed	in	terms	of	the	modes;	it	is	‘simple’	in	that	the	expressions	for	the	

behaviour	of	the	modes	individually	is	of	the	simplest	form	possible	–	scaling	and	

then	 adding.	 This	 suggests,	 on	 the	 Mill-Ramsey-Lewis	 account	 that	 we	 rightly	

consider	 the	modes	 as	 partial	 states	 associated	with	 partial	 laws.	Whilst	 there	

may	 be	 a	 subjective	 aspect	 to	 the	 standards	 employed,	 it	 seems	 inconceivable	

that	a	better-balanced	representation	of	the	thermal	behaviour	of	the	slab	could	

be	derived	 in	 the	 context	of	 such	a	model.	Either	 simplicity	or	 strength	will	be	

sacrificed.		

According	 to	Wilson’s	 discussion	 of	 ‘law’,	 in	 this	 context	 the	 overall	 or	

system	 ‘law’	L	 for	 the	 system	 is	 given	 by	 the	 PDE	 (α)	 subject	 to	 the	 boundary	

conditions.	However,	to	go	beyond	Wilson,	the	syntactic	form	of	L	that	optimally	

balances	 simplicity	and	 strength	 so	as	 to	 support	explanations	associated	with	

partial	 laws	 and	 states,	 calculations,	 inductive	 inferences	 and	 counterfactual	

reasoning	is	given	in	terms	of	the	mode	decomposition.	This	is	what	we	mean	by	

the	 representation	 being	 ‘natural’.7	This	 indicates,	 in	 Volkmann’s	 terminology,	

that	we	have	decomposed	the	system	(via	two	decompositions)	into	the	correct	

isolation	 centres	 to	 properly	 represent	 the	 overall	 law	 for	 S	 according	 to	

																																																								
6	To	recap,	as	per	Volkmann’s	characterization	of	isolation-superposition	on	the	one	hand	and	
Mill-Ramsey-Lewis	characterization	of	laws	on	the	other,	we	know	that	we	have	selected	the	
correct	‘isolation	centers’	as	we	have	identified	a	set	of	partial	laws	associated	with	
corresponding	partial	states.	We	identify	the	partial	‘laws’	obtained	via	the	‘Volkmann	device’	as	
laws	on	the	Mill-Ramsey-Lewis	characterization	since	this	syntactic	representation	offers	an	
optimal	balance	of	simplicity	and	strength	for	representing	the	behavior	of	the	system.	We	then	
say	that	the	description	in	terms	of	the	partial	states	associated	with	their	corresponding	partial	
laws	is	natural,	as	inherited	from	the	characterization	of	the	partial	laws	as	laws.	
7	As	noted	in	§3.1.1,	the	standard	realist	move	would	be	to	adopt	a	realist	stance	to	the	modes	
owing	to	their	indispensible	explanatory	power	(cf.	Fourier,	450-454	cited	above).	However,	we	
shall	again	encounter	the	underdetermination	issues	raised	in	§3.1.2,	which	suggests	that	the	
grammar	of	realism	about	components	or	modes,	as	well	as	the	application	of	‘superposition’,	is	
subtle.	
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‘superposition’.	 In	 Simons’	 terminology	 the	 mode	 decomposition	 exhibits	 the	

identity	 of	 the	 physically	 persistent	 states	45(') 	and	 their	 trace	 principles	

35(%).	The	complication	however	is	the	question	of	the	origins	of	the	physically	

invariant	states	in	relation	to	an	arbitrary	thermal	source,	which	we	consider	in	

more	detail	below.	

	 I	 now	 discuss	 the	 mathematical	 architecture	 of	 Fourier	 decomposition	

and	the	functional	analysis	perspective.	

	

4.3	Patch	3:	The	mathematical	architecture	of	Fourier	representation	

Having	 studied	 Fourier	 techniques	 on	 their	 originary	 patch	 in	 which	 the	

significance	of	the	Fourier	decomposition	of	the	source	function	was	predicated	

on	 its	 physical	 salience	 to	 the	 system	under	 consideration,	 I	 now	 consider	 the	

‘dragging’	 of	 the	 technique	 to	 a	 patch	 upon	 which	 the	 architecture	 is	 solely	

mathematical.	This	will	help	to	begin	to	clarify	the	architecture	of	patches	1	and	

2.	

We	 begin	 with	 Fourier	 analysis	 as	 it	 is	 often	 introduced	 in	 textbooks,	

which	 reflects	 the	 third	patch	of	 application	of	Fourier	 techniques.	The	 central	

mathematical	idea	regarding	the	representation	of	a	function	in	terms	of	‘Fourier	

modes’	 is	 that	 any	 (suitably	 well-behaved)	 P-periodic	 function	 f	 can	 be	

represented	or	decomposed	as	a	Fourier	series	or	sum	of	‘modes’:	

R(%) =
DS
2
+UVDW cos

2XY%

Z
+ EW sin

2XY%

Z
]

^

W_`

	

where	
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2

Z
a R(%) cos
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Z

b

S
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2

Z
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2XY%
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b
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This	may	be	generalized	 to	 further	 classes	of	 functions	with	different	 forms	of	

modes,	as	in	Sturm-Liouville	theory	considered	below.	Fourier	decomposition	is	

made	 mathematically	 rigorous	 using	 Hilbert	 space	 formalism	 and	 functional	



	 75	

analysis.	8	No	 reference	 is	 made	 to	 a	 physical	 system,	 and	 this	 is	 a	 purely	

mathematical	result.	

Fourier	analysis	is	performed	on	a	separable	Hilbert	space	H	of	functions	

with	 inner	 product	 (,)	 and	 orthonormal	 basis	{/d: * = 1,2,… } .	 The	 Fourier	

decomposition	of	any	f	Î	H	is	

R =UGd/d
d

	

where	 Gd = (R, /d) .	 So,	 for	 the	 familiar	 trigonometric	 modes,	 formally	

H=L2(T)@ h,(ℝ/Zℝ) 	where	 L2(X)	 denotes	 the	 space	 of	 square	 (Lesbegue)	

integrable	functions	on	X	with	period	P	with	

(R, k) = a R(")k(")llllll6"
b

S

	

and	

/d(") = exp(m*")	

where	* = 0,±1,±2,…,	using	the	exponential	form	of	the	Fourier	modes.9	

Mathematically,	 the	 Fourier	 modes	 are	 a	 basis	 for	 H	 so	 they	 form	 a	

complete	linearly	independent	set.	Crucially	though,	if	the	semantic	support	for	

the	modes	is	given	only	mathematically	–	as	a	basis	for	the	function	space	in	view	

–	then	the	modes	are	not	unique,	for	there	are	other	bases	of	different	form.	We	

might	construct	a	basis	for	h,(ℝ/Zℝ)	of	square-waves,	the	‘Haar	wavelets’	(Haar	

1910),	 rather	 than	 trigonometric	 modes.	 These,	 and	 other	 more	 forms	 of	

wavelet,	are	important	in	digital	signal	processing.	Moreover,	van	der	Pol	(1953)	

demonstrated	advantages	of	both	square-wave	and	‘sawtooth’	representations	of	

waveforms	in	electronics	in	some	situations,10	observing	also	the	importance	of	

these	bases	in	the	foundations	of	number	theory.	So	in	some	contexts	a	square	or	

sawtooth	 wave	 basis	 might	 be	 preferred	 or	 privileged,	 so	 that	 a	 non-Fourier	

basis	may	sometimes	offer	the	best	reasoning	advantage.	

																																																								
8	See	Bollobás	(1990,	141-150)	for	a	mathematical	introduction	to	abstract	Fourier	analysis,	with	
brief	historical	notes,	and	Körner	(1988)	for	detailed	introduction.	
9	Equivalence	with	the	familiar	trigonometric	modes	follows	from	

exp(m*") = cos(*") + m. sin(*")	
and	admitting	complex	coefficients.	The	exponential	form	is	often	more	convenient.	
10	See	also	the	exchange	of	letters	on	‘Concerning	the	Frequencies	Resulting	from	Distortion’	by	
various	authors	in	AJP	(1952-1955)	where	the	question	of	whether	Fourier	modes	are	‘real’	is	
discussed.	
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However,	 we	 have	 removed	 the	 discussion	 from	 Fourier’s	 original	

context.	 Such	 ‘promiscuity’	 of	 decomposition	 was	 not	 in	 view	 in	 Fourier’s	

original	 application	 since	 the	 trigonometric	 basis	 for	 the	 decomposition	 of	 the	

base	 thermal	 distribution	 (i.e.,	 the	 function	 in	h,(ℝ/Zℝ)	whose	 decomposition	

we	are	considering)	was	chosen	for	physical	reasons	as	indicated	in	§4.2,	even	if	

Fourier	 also	 required	 the	 mathematical	 supporting	 architecture	 to	 justify	 the	

‘second	aspect’.	

This	 clarifies	 in	 one	 sense	 how	 the	 supporting	 architecture	 differs	 in	

important	ways	between	Fourier’s	original	application	and	later	abstractions	or	

indeed	applications	of	Fourier	techniques	in	different	contexts.	Once	the	physical	

context	 of	 the	 function	 decomposed	 is	 removed	 so	 that	 the	 modes	 are	 not	

simultaneously	eigenfunctions	of	a	differential	operator	associated	with	the	PDE	

modelling	a	physical	system,	 the	decomposition	of	 the	 function	 is	promiscuous,	

considered	as	a	function	in	a	suitable	Hilbert	space	that	supports	various	bases.		

This	 is	 analogous	 to	 the	 examples	 of	 vector	 decomposition	 discussed	 in	

§3.1.2.	Mathematically	a	vector	can	be	decomposed	via	any	basis,	but	in	certain	

physical	 situations	 one	 decomposition	 is	 privileged,	 associated	 with	 the	

expression	of	the	‘partial	laws’	of	the	system	under	consideration,	such	as	in	the	

decomposition	of	the	gravitational	force	vector	for	an	object	on	an	inclined	plane.	

Fourier	decomposition	is	always	supported	in	terms	of	a	Hilbert	space	structure	

with	 the	 modes	 forming	 an	 orthonormal	 basis	 for	 the	 space.	 So	 the	 Fourier	

decomposition	of	 the	base	 thermal	distribution	 into	modes	 is	 comparable	with	

the	decomposition	of	the	gravitational	force	vector,	reflecting	similar	application	

of	‘superposition’	as	regards	how	we	understand	the	physical	significance	of	the	

components.	

It	is	important	to	note,	as	I	shall	develop	in	§4.5.2,	that	this	Hilbert	space	

structure	distinguishes	the	representation	of	a	function	by	a	Fourier	series	from	

its	approximation	with	a	Taylor	series	where	no	such	structure	is	in	view.11	This	

will	be	important	later	on	when	we	contrast	Fourier	decompositions	with	power	

series.		

																																																								
11	For	example	{1, %, %,, %Q,… }	summed	with	suitable	coefficients	forms	a	Taylor	series	
approximation	to	a	given	function,	but	does	not	form	a	basis	for,	say	L2[T]	so	that	this	set	does	
not	support	a	Fourier	representation	on	this	space.	
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We	briefly	consider	two	examples	indicating	how	Fourier	analysis	may	be	

‘prolonged’	in	this	abstract	approach	so	that	the	‘modes’	take	different	forms	in	

different	function	spaces.	These	decompositions,	when	set	in	a	physical	context,	

may	be	physically	significant	and	support	‘superposition’	as	they	may	arise	in	an	

analogous	way	(as	modes	as	eigenfunctions	of	a	differential	operator	 in	Sturm-

Liouville	 theory,	a	prolongation	of	Fourier’s	 technique)	to	 trigonometric	modes	

in	Fourier’s	original	application.	

First,	 taking	 H=L2[-1,1]	 (without	 periodic	 extension	 to	ℝ	in	 view)	 with	

inner	product	

(R, k) = a R(")k(")llllll6"
`

O`

	

the	normalized	Legendre	polynomials	

ZW(") = o
2

2Y + 1
.
1

2WY!

6W

6"W
(", − 1)W	

form	 an	 orthonormal	 basis	 supporting	 generalized	 Fourier	 decompositions	 of	

functions	 in	L2	[-1,1].	Physically,	 these	modes	will	 turn	out	 to	be	 important	 for	

the	 study	of	 the	 two-dimensional	wave	equation	modelling	a	vibrating	 circular	

membrane	clamped	around	its	perimeter,	such	as	a	drum	skin.12	

Secondly,	 and	 more	 generally	 still,	 a	 ‘weighting	 function’	 w	 may	 be	

introduced	into	the	inner	product	so	that	

(R, k)q = aR(")k(")llllllr(")6"	

Then,	taking	H=L2(-∞,∞)	with	r(") = exp(−",)	and	

(R, k)q = a IOs
;
R(")k(")llllll6"

^

O^

	

the	Hermite	polynomials	

tW(") = (−1)WI
s;

,
6W

6"W
IOs

;
	

form	a	basis	for	generalized	Fourier	decomposition	on	H=L2(-∞,∞).	These	modes	

are	used	 for	 the	 radial	 solutions	of	 a	model	of	 the	energy	 states	of	 a	hydrogen	

																																																								
12	Wilson	discusses	the	vibrations	of	a	system	modeled	as	a	two-dimensional	membrane	clamped	
around	its	perimeter	in	several	contexts	(e.g.	2006,	113-115,	242-258,	267-268;	2017,	398-404)	
with	a	slightly	different	focus	than	mine.	
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atom	using	Schrödinger’s	equation	with	a	Coulomb	potential,	and	have	physical	

significance	in	this	context	and	support	‘superposition’	(§6.3.4).	

The	first	example	of	representation	in	the	Legendre	basis	illustrates	how	

the	different	patches	of	application	of	Fourier	decomposition	associated	with	the	

abstract	Hilbert	space	perspective	and	Fourier’s	original	physically	situated	‘two	

aspect’	 technique	 ‘come	 apart’	 if	 we	 consider	 the	 architecture	 of	 the	 ‘second	

aspect’	to	Fourier	techniques.	That	is,	any	function	may	be	represented	in	terms	

of	 a	 (generalized)	 Fourier	 basis	 in	 an	 appropriate	 function	 space,	 but	 such	

representation	 may	 lack	 physical	 significance,	 so	 the	 construal	 of	 the	

representation	in	terms	of	‘superposition’	may	be	inappropriate.	

	For	instance,	suppose	that	 if	after	suitable	scaling,	etc.	we	represent	 the	

base	of	 the	heated	slab	 in	§4.2	as	 the	 interval	[-1,1],	we	can	either	perform	the	

familiar	 trigonometric	 Fourier	 decomposition	 of	 the	 function	 representing	 the	

thermal	distribution	along	this	boundary	as	Fourier	did:	or,	mathematically,	we	

can	 decompose	 the	 function	 via	 the	 Legendre	 polynomial	 basis.13	The	 point	 is	

that	the	mathematical	architecture	 for	both	decompositions	of	the	base	thermal	

distribution	 function	 considered	 abstracted	 from	 its	 physical	 context	 as	 the	

source	 distribution	 of	 the	 slab	 is	 the	 same	 (abstract	 Fourier	 decomposition).	

However,	the	trigonometric	decomposition	supports	the	descriptive	opportunity	

for	reasoning	about	the	behaviour	of	the	heated	slab,	as	it	picks	out	states	of	an	

invariant	 form	(that	may	be	 traced	 throughout	 the	 system)	 that	 are	associated	

with	‘partial	laws’	for	the	physical	system	(analysable	in	terms	of	eigenfunctions	

of	a	differential	operator	modelling	the	system’s	behaviour),	whilst	the	Legendre	

decomposition	does	not.	

In	 this	 case	 then	 we	 would	 consider	 applying	 ‘superposition’	 to	 the	

trigonometric	 basis	 for	 the	 base	 thermal	 distribution	 owing	 to	 the	 physical	

significance	 of	 the	 basis	 elements	 in	 the	 system,	 but	 we	 would	 not	 apply	

‘superposition’	to	the	Legendre	basis	representation	for	the	thermal	distribution	

																																																								
13	The	function	spaces	differ	here,	but	this	is	irrelevant	to	the	physical	model.	The	point	is	that	a	
thermal	distribution	given	on	[-1,1]	can	either	be	considered	in	relation	to	the	space		h,(ℝ/
Zℝ)equipped	with	the	trigonometric	basis,	or	in	relation	to		L2[-1,1]	equipped	with	the	Legendre	
polynomial	basis.	An	example	that	Fourier	might	consider	for	an	initial	thermal	distribution	
could	be	decomposed	into	Legendre	polynomials	rather	than	trigonometric	modes	since	the	
model	does	not	demand	either	function	space.	The	mathematical	supporting	architecture	is	the	
same	in	both	cases	whilst	the	physical	architecture	differs,	for	the	Legendre	representation	no	
longer	supports	any	reasoning	advantage.	
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function.	In	a	different	physical	situation,	the	situation	might	be	reversed	for	the	

same	mathematical	 function	 –	 that	 is,	 for	 a	 physical	 system	 in	which	 the	 trace	

principles	or	partial	laws	are	associated	with	the	Legendre	polynomials	and	not	

the	trigonometric	modes.	

	

4.4	Patch	1	prolonged:	Sturm-Liouville	theory	

Sturm-Liouville	theory	enables	analysis	of	physical	systems	whose	behaviour	is	

modelled	by	a	linear	PDE	subject	to	boundary	conditions	where	the	variables	can	

be	 ‘separated’.	 This	means	 that	 a	 single	 PDE	 in	 several	 variables	 is	 reduced	 to	

several	ODEs	coupled	by	‘separation	constant(s)’.	It	is	a	development	of	Fourier’s	

technique,	and	we	can	now	consider	it	from	the	functional	analysis	perspective.14	

It	is	often	the	case	that	the	PDE	involves	a	time	variable	that	will	naturally	

give	 rise	 to	 partial	 laws	 as	 ‘evolution	 laws’.	 So,	 consider	 a	 physical	 system	 S	

modelled	 by	 a	 linear	 PDE	 in,	 say,	 u(%, ") 	subject	 to	 ‘suitable’	 boundary	

conditions.	Separating	variables,15	u(%, ") = v(%). w("),	and	

8P
v(%)

=
8s
w(")

= x	

where	Dx,	Dt	 are	 linear	 differential	 operators	 in	 x,	 t	 respectively,	 coupled	 by	 a	

separation	 constant	 λ.	 Dt	 often	 represents	 simple	 harmonic	 motion	 as	 in	

vibrating	systems,	or	sometimes	exponential	decay.	Dx	is	often	more	complicated	

and	specific	to	the	situation,	with	boundary	conditions	determining	the	form	of	

the	solutions.		

8P 	is	associated	with	an	eigenvalue	equation	

8Pvy(%) = xvy(%)																				

where	(under	reasonable	assumptions)	8P 	is	self-adjoint,	so	the	spectral	theorem	

assures	 (mathematical)	 existence	 of	 real	 eigenvalues	 {x`, x,, xQ,… }	

corresponding	 to	 a	 complete	 orthonormal	 set	 of	 eigenfunctions	

{v`(%), v,(%), vQ(%),… },	the	‘generalized’	Fourier	modes	of	8P .	

																																																								
14	See	Al-Gwaiz	(2008)	for	an	introduction	to	Sturm-Liouville	theory.	There	are	technical	
complications	for	applications	to	some	systems	that	I	avoid	in	this	discussion	(see	Titchmarsh	
1958-1962).	
15	Where	more	spatial	dimensions	are	involved	we	may	have,	e.g.	X(x).Y(y).T(t),	etc.	
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If	 S’s	 spatial	 states	 are	 represented	 using	 the	 eigenfunctions	 of	8P 	(the	

modes),	 the	 representation	 of	8P 	has	 as	 simple	 a	 form	 as	 possible,16	namely	 a	

‘diagonal’	 form	 (cf.	 §3.3).	 That	 is,	 intuitively,	 the	 diagonal	 representation	 of	 a	

linear	operator	is	the	simplest	sufficiently	strong	representation	of	that	operator,	

which	is	clearly	the	case	if	one	considers	simplicity	in	syntactic	terms.	The	action	

of	8P 	is	 given	 by	 scalar	 multiplication	 of	 each	 eigenfunction	vW(%) 	by	 the	

corresponding	 eigenvalue	xW .	 They	 are	 ‘simple	 solutions’,	 the	 modes,	 of	 the	

‘separated’	equation	in	x	 in	virtue	of	being	eigenfunction	solutions.	They	form	a	

set	of	abstracted	partial	states	that	correspond,	via	the	xW ,	to	a	set	of	partial	laws	

given	by	the	wW(")	via	 the	 ‘Volkmann	device’	of	 the	 separation	of	variables.	The	

evolved	 partial	 states	 then	 form	 another	 set	 of	 (isolatable)	 partial	 states,	 the	

‘simple	 solutions’	uW(%, ") = vW(%). wW(") 	of	 the	 original	 PDE,	 being	 possible	

‘simple	 states’	of	 the	 system.	These	uW(%, ")	combine	via	 ‘Hilbert	 superposition’	

so	that	the	full	solution	subject	to	the	boundary	/	initial	conditions	is	

u(%, ") = UGWvW(%).wW(")
W

	

for	some	constants	GW	determined	by	the	initial	conditions.17	

Then	 if	 we	 can	 express	 the	 initial	 condition,	 such	 as	 the	 thermal	

distribution	of	the	base	of	the	heated	slab	as	a	‘Fourier	series’	in	the	vW(%)	(the	

second	aspect	of	Fourier’s	original	technique)	

u(%, 0) =UGWvW(%)

W

	

we	can	exploit	a	descriptive	opportunity	by	expressing	S’s	behaviour	in	terms	of	

the	modes	vW(%)	of	8P ,	 as	 they	evolve	 individually	and	 independently	as	 scaled	

by	the	wW(").	

The	solutions	uW(%, ")	are	simple	and	strong	because	any	solution	can	be	

written	 as	 a	 linear	 combination	 of	 these	 (strong),	 and	 simple	 because	 this	 is,	

minimally,	 the	 simplest	 syntactic	 form	of	 an	 arbitrary	 solution.	The	modes	 are	

uncoupled,	 so	 the	 behaviour	 of	 the	 system	 is	 given	 by	 simple	 scaling	 of	 each	

																																																								
16	Which	is	the	whole	point	of	the	spectral	theorem.	
17	And	for	example	in	two	spatial	dimensions	uW(%, ', ") = vW(%). #W(').wW(")	
	and	u(%, ', ") = ∑ GWvW(%). #W('). wW(")W 	where	the	un	and	vn	will	in	general	take	different	forms,	
depending	on	the	differential	operators	and	boundary	conditions	for	each	separated	variable.	
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mode	 uW(%, ") 	by	 the	 constant	 GW 	followed	 by	 their	 addition	 (‘Hilbert	

superposition’).	

Since	there	are	two	applications	of	 the	 ‘Volkmann	device’,	 there	are	two	

aspects	 to	 characterizing	 S	 via	 partial	 states	 and	 associated	 partial	 laws.	 First,	

from	 the	 separation	 of	 variables,	 the	 eigenvalue	 equation	 in	 x	 supports	 the	

identification	of	the	eigenfunctions	{v`(%), v,(%), vQ(%),… }	as	partial	states1	that	

are	 associated	with	 the	 partial	 laws1	{ẁ ("), w,("), wQ("),… }.	 That	 is,	wW(")	is	 the	

partial	law1	associated	with	the	partial	state1	(the	mode	shape)	vW(%),	so	that	the	

mode	 shape	vW(%) 	(as	 scaled	 by	 GW )	 evolves	 according	 to	wW(") 	by	 simple	

multiplication.	 This	 gives,	 secondly,	 a	 partial	 state2	uW(%, "),	 the	 nth	 normal	

mode,18	which	 is	 associated	with	 the	 partial	 law2	which	 is	 simply	 the	 identity,	

with	the	partial	states2	composing	according	to	‘Hilbert	superposition’	to	give	the	

overall	state	and	its	evolution.		

The	complicated	overall	behaviour	of	S	is	expressed	with	optimal	balance	

of	simplicity	and	strength	in	terms	of	the	(Hilbert)	superposition	of	the	{partial	

state2},	 the	 normal	modes,	which	 are	 associated	with	 the	 trivial	 {partial	 law2},	

but	with	the	{partial	state2}	having	internal	structure	of	{partial	state1}⨂{partial	

law1}. 19 	However	 we	 formally	 ‘carve	 up’	 the	 states	 and	 laws,	 we	 call	 the	

representation	 of	 S	 via	 the	{v`(%), v,(%), vQ(%),… } 	and	{ẁ ("), w,("), wQ("),… }	

and	 their	 products	 a	 ‘natural	 representation’	 of	 the	 behaviour	 of	 S.	 It	 is	 the	

representation	 that	 offers	 the	 optimal	 explanatory	 power	 for	 S’s	 behaviour	 in	

terms	 of	 the	 partial	 laws	 and	 states	 of	 S,	 supporting	 inductive	 inferences	 and	

counterfactual	reasoning.	

From	Simons’	perspective	on	superposition,	the	partial	states	(whichever	

way	understood)	support	a	trace	principle	according	to	the	appropriate	form	of	

the	partial	laws.	However,	the	partial	states	need	not	have	physical	causal	origins	

as	 such,	 when	 in	 combination.	 That	 is,	 if	 the	 initial	 condition	 for	u(%, 0)	had	

																																																								
18	Usage	of	‘mode’	and	‘normal	mode’	is	often	ambiguous,	referring	both	to	the	vW(%)	and	the	
uW(%, ").	One	might	disambiguate	the	usage	by	referring	to	the	former	as	‘modes’	and	the	latter	as	
‘normal	modes’.	
19	The	architecture	of	the	partial	states	and	laws,	and	application	of	‘superposition’	is	subtle	
owing	to	multiple	application	of	the	Volkmann	device.	One	could	alternatively	suggest	that	the	
partial	states	for	S	are	simply	the	{partial	state1}	with	corresponding	partial	laws	{partial	
law1}⨂{partial	law2}.	However	it	is	often	helpful	to	think	of	the	system	in	a	simple	state	uW(%, "),	
with	these	forming	the	‘partial	systems’,	as	Fourier	does.		
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u(%, 0) = vW(%)	for	 some	 n,	 then	 the	 mode	 has	 a	 physical	 causal	 origin,	 and	

persists.	However,	in	general	

u(%, 0) =UGWvW(%)

W

	

which	 is	 supported	 mathematically	 on	 patch	 3.	 But	 there	 is	 no	 reason	 to	

postulate	 physical	 causal	 origins	 for	 the	 modes	 individually	 in	 this	

decomposition	 in	the	usual	circumstance	that	no	causal	history	 is	given	 for	 the	

initial	state.	Rather,	 the	physical	significance	of	 the	decomposition	of	 the	 initial	

state	u(%, 0)	is	 that	 the	modes	have	physical	causal	or	explanatory	relevance	 in	

supporting	a	trace	principle	for	S	in	virtue	of	being	eigenfunctions	of	8P .		

However,	 the	 trace	principle	account	 can	be	 supported	counterfactually.	

That	is,	if	the	initial	state	u(%, 0)	had	arisen	as	the	superposition	

u(%, 0) =UGWvW(%)

W

	

in	which	each	vW(%)	did	have	a	physical	 causal	origin	 individually,	 then	a	 trace	

principle	is	established	in	virtue	of	the	vW(%)	being	eigenfunctions	of	8P .	As	far	as	

the	 response	 of	 S	 to	 u(%, 0) 	is	 concerned,	 it	 is	 irrelevant	 whether	 its	

decomposition	into	modes	is	supported	only	in	mathematical	terms	or	in	terms	

of	being	the	superposition	of	terms	having	independent	causal	origins.	

The	 Fourier	 decomposition	 of	 u(%, 0) may	 be	 compared	 with	 the	

decomposition	of	the	gravitational	force	vector	for	an	object	on	an	inclined	plane	

(§3.1.3).	Application	of	‘superposition’	to	the	initial	or	source	condition	(Fourier	

aspect	 2)	 is	 now	 clarified	 as	 supported	 in	 a	 similar	manner	 to	 this	 case	 even	

though	the	eigenfunction	decomposition	of	S’s	response	supports	‘superposition’	

differently	 (Fourier	 aspect	 1),	 with	 superposition	 according	 to	 aspect	 1	

supporting	 superposition	 according	 to	 aspect	2	 in	 the	 Fourier	 case	 but	not	 for	

the	object	on	the	plane.20	

Whatever	 stance	 one	 takes	 towards	 the	 decomposition	 of	u(%, 0),	 the	

modes	 obtained	 support	 a	 trace	 principle	 in	 virtue	 of	 their	 eigenfunction	

attribute	so	that	 the	expression	of	S’s	behaviour	 is	properly	to	be	thought	of	 in	

terms	of	a	superposition	of	the	mode	partial	states.	The	support	for	application	

																																																								
20	Again,	a	standard	realist	move	would	be	to	claim	that	the	causal	relevance	of	the	modes	of	
u(%, 0)	supports	a	realist	stance	towards	them.	This	would	then	justify	application	of	
‘superposition’.	
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of	 ‘superposition’	 in	 relation	 to	 the	vW(%)	both	 to	 the	evolution	of	 S,	 i.e.	u(%, "),	

and	to	the	initial	condition	or	source	u(%, 0)	applied	to	S	is	the	same,	namely	that	

the	vW(%)	are	eigenfunctions	of	 	8P .	 If	we	write	u(%, 0) = R(%),	 then	application	

of	 ‘superposition’	 to	 the	 Fourier	 decomposition	 of	R(%) 	as	 a	 mathematical	

function	is	dependent	upon	the	context	in	which	R(%)	is	considered.	

As	 Wilson	 has	 observed	 (2006,	 384-386),	 there	 is	 more	 to	 be	 said	

regarding	the	energy	properties	of	normal	modes,	which	is	of	crucial	importance	

in	QFT	as	 it	 is	 related	 to	 the	 identification	of	particles	as	we	 shall	 see.	Further	

discussion	in	the	classical	domain	will	be	beneficial	prior	to	turning	to	quantum	

physics	however,	and	 is	best	conducted	with	reference	to	specific	examples.	To	

that	end	I	now	turn	to	the	wave	equation.	Solution	of	the	wave	equation	subject	

to	boundary	conditions	is	an	important	application	of	Sturm-Liouville	theory	and	

the	 superposition	 principle,	 and	 was	 treated	 by	 Fourier	 (1878	 [1822])	 who	

developed	 and	 vindicated	 Daniel	 Bernoulli’s	 famous	 controversial	 analysis	

(1753a&b). 21 	The	 wave	 equation	 is	 of	 particular	 relevance	 to	 us	 as	 wave	

equations	are	central	to	QFT.	We	now	study	two	simple	paradigmatic	examples	

in	classical	physics.	

	

4.4.1	The	vibrating	string	(1-dimensional	wave	equation)	

Consider	 the	 one-dimensional	 wave	 equation	 modelling	 the	 vibrations	 of	 a	

stretched	 string	with	 fixed	 ends.	 It	 will	 be	 illuminative	 to	 consider	 briefly	 the	

history	 of	 its	 analysis.	 The	 linearized	 or	 idealized	 one-dimensional	 wave	

equation	modelling	the	behaviour	of	waves	or	pulses	on	a	stretched	string		

!,

!%,
/(%, ") −

1

G,
!,

!",
/(%, ") = 0	

was	first	derived	by	d’Alembert	(cf.	§2.3.2).	Daniel	Bernoulli	(1753a&b)	was	first	

to	analyse	the	vibrating	string	in	a	way	anticipating	Fourier’s	techniques.	He	did	

not	use	 the	 language	 of	 superposition,	 but	of	 ‘mixture	of	 coexistent	 vibrations’	

that	are	‘absolutely	independent	of	each	other’	(1753a,	160).	

Bernoulli’s	 analysis	 was	 developed	 by	 Herschel	 (1830)	 using	 Fourier’s	

techniques,	interpreting	the	coexistence	of	simple	vibrations	(the	normal	modes	

																																																								
21	See	e.g.	Struik	(1969,	351-368)	for	the	interesting	and	controversial	history	of	the	analysis	of	
the	vibrating	string.		
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or	 string	 harmonics	 in	 this	 case)	 in	 terms	 of	 ‘superposition’.	 As	 with	 Fourier,	

Bernoulli	 and	 Herschel	 appear	 to	 give	 a	 physical	 or	 perhaps	 metaphysical	

account	of	 the	composition	of	 the	phenomenon	according	to	superposition.	For	

instance	Herschel	appeals	to	microphysical	causal	processes	to	claim	that	

any	number	of	the	different	modes	of	vibration,	of	which	a	cord	is	thus	susceptible,	may	be	
going	on	simultaneously,	or	be,	as	it	were,	superposed	on	each	other.	This	is	a	consequence	
of	 the	 principle	 in	mechanics	 of	 “the	 superposition	 of	 small	motions”,	which,	 when	 the	
excursions	of	the	parts	of	the	system	from	their	places	of	rest	are	infinitely	small,	admits	of	
any	 or	 all	 the	 motions	 which,	 from	 any	 causes,	 they	 are	 susceptible,	 to	 go	 on	 at	 once	
without	interfering	with	or	disturbing	each	other.	(1830,	Art.	164,	p.782)	

He	associates	 this	supporting	architecture	of	 ‘superposition’	here	 in	mechanics	

with	 the	more	geometrical	 semantic	 support	 in	which	 the	graph	of	 the	general	

motion	of	the	string	is	calculated	by	the	pointwise	addition	of	the	graphs	of	the	

simple	motions.	

He	 goes	 on	 to	 justify	what	we	might	 term	 a	 ‘realist’	 interpretation	 of	 the	

harmonics	via	inference	from	the	causal	relevance	of	the	harmonics.	A	musician’s	

‘trained	ear’	can	detected	the	harmonic	(i.e.	normal	mode)	sounds	in	the	sound	

produced	from	a	stringed	instrument	(1830,	Art.	166;	cf.	Art.	205	cited	in	§2.2).22	

This	argument	depends	on	the	causal	or	explanatory	role	the	modes	play,	that	is,	

with	reference	to	their	effects	rather	than	their	origins.	However,	we	have	seen	

reasons	 to	 be	 cautious	 regarding	 such	 inferences	 once	 the	 mathematical	

supporting	architecture	is	clarified	via	vector	or	Hilbert	space	structure.	We	saw	

in	§3.1.2	that	arbitrary	components	of	the	decomposition	of	a	force	vector	have	a	

causal	or	explanatory	role,	but	 they	are	also	underdetermined	 in	general.	Thus	

we	should	be	cautious	 in	making	any	metaphysical	 inferences	here	as	 the	18th-

19th	 century	 authors	 appear	 to,	 so	 that	 in	 fact	 the	 architecture	 supporting	

																																																								
22	This	argument	could	be	made	more	precise	in	the	19th	century	by	appealing	to	Rudolf	König’s	
‘manometric	flame	analyser	for	the	analysis	of	sounds’.	This	apparatus	is	essentially	a	spectral	
analyser	that	relates	the	heights	of	a	series	of	flames	to	the	harmonics	of	a	musical	instrument	
(see	Pantalony	2009).	The	harmonics	may	be	then	said	to	be	causally	relevant	to	the	physical	
distribution	of	flame	heights.	Moreover,	the	explanation	of	the	timbre	of	a	musical	instrument	is	
given	in	terms	of	its	harmonic	structure,	and	the	note	played	identified	by	the	lowest	frequency	
harmonic	present.	For	the	realist	such	observations	are	suggestive	of	a	realist	interpretation	of	
the	modes.	Related	to	such	an	argument	to	‘realism’	about	the	modes	is	the	appeal	to	Gibbs	
phenomenon,	in	which	the	Fourier	decomposition	of	some	physical	quantity	is	taken	to	explain	
the	unexpected	behavior	of	physical	systems	in	which	some	input	rapidly	changes,	which	may	be	
modeled	as	a	discontinuity.	See	Körner	(1988)	and	Hewitt	and	Hewitt	(1979)	for	discussion	of	
two	important	examples	in	the	history	of	technology.	I	cannot	discuss	this	here,	but	the	inference	
to	realism	might	be	inferred	through	novel	predictive	success	of	the	Fourier	decomposition	in	
these	cases.	
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application	of	 ‘superposition’	differs	from	what	they	supposed,	as	I	have	sought	

to	outline.	

That	 is,	 we	 have	 seen,	 however,	 how	 we	 can	 recover	 application	 of	

‘superposition’	 in	 Sturm-Liouville	 theory.	 As	 in	 the	 decomposition	 of	 the	

gravitational	 force	 vector	 acting	 on	 the	 object	 of	 an	 inclined	 plane,	 the	

decomposition	 into	 modes	 of	 the	 string’s	 initial	 condition	 is	 not	 arbitrary	 but	

natural	 to	 the	 system	 or	 phenomenon.	 So	 whilst	 on	 patch	 3	 a	 purely	

mathematical	 decomposition	 may	 be	 arbitrary,	 on	 patch	 1,	 given	 a	 physical	

context,	the	decomposition	is	determined	as	Fourier	observed	via	separation	of	

variables	and	eigenfunction	decomposition.	

I	 now	 consider	 the	 mathematical	 architecture	 for	 the	 analysis	 of	 a	

vibrating	string	with	fixed	ends,	of	length	L.	The	relevant	linear	PDE	is	

!,

!%,
/(%, ") −

1

G,
!,

!",
/(%, ") = 0	

subject	to	the	boundary	conditions	/(0, ") = /(h, ") = 0	∀".	Separating	variables	

with	/(%, ") = v(%)w("):		

6,w

6",
+ },w = 0	

6,v

6%,
+ *,v = 0	

where	–k2	is	the	separation	constant,	ω=kc	and	v(0) = v(h) = 0.	The	T-equation	

is	 a	 simple	 harmonic	 oscillator	 equation,	 whilst	 for	 the	 u-equation	{vW(%)} =

{sin(
WNP

~
)} 	are	 the	 familiar	 trigonometric	 Fourier	 modes.	 {vW(%)} 	forms	 an	

orthonormal	basis	for	the	relevant	Hilbert	space,	being	the	set	of	eigenfunctions	

of	8P = 6,/6%,,	with	the	u-equation	the	eigenvalue	equation	for	8P .	

Recombining	the	‘simple	solutions’	the	general	solution	is	

/(%, ") = vW(%)wW(") = Usin
YX%

h
V�′W sin

YXG"

h
+ 8′W cos

YXG"

h
]

W

	

where	 the	 constants	 are	 determined	 by	 decomposing	 the	 initial	 displacement	

/(%, 0)	in	 terms	 of	 the	 eigenfunctions	 of	8P 	as	 before,	 as	 well	 as	 the	 initial	

velocity.	This	is	a	natural	representation	of	the	string’s	behaviour	interpreted	in	

terms	 of	 ‘superposition’,	 optimally	 balancing	 simplicity	 and	 strength,	 for	 the	

reasons	noted	above.	
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It	 is	 worth	 clarifying	 some	 issues	 arising	 in	 the	 context	 of	 this	 specific	

example.	 First,	 the	 modes	 are	 determined	 as	 the	 trigonometric	 modes	 of	 this	

form	 and	 not	 some	 other	 in	 virtue	 of	 the	 {vW(%)} = {sin(
WNP

~
)} 	being	

eigenfunctions	 of	8P .	 That	 is,	 this	 basis	 offers	 a	 natural	 representation	 for	 the	

behaviour	of	the	vibrating	string	and	not	a	square-wave	or	saw-tooth	wave	basis,	

or	a	trigonometric	base	of	some	other	form.	As	Fourier	puts	it,	they	are	‘natural	

to	the	phenomenon’	and	not	arbitrary.	

Secondly,	 we	 may	 develop	 the	 significance	 of	 the	 invariant	 properties	

associated	with	 the	normal	modes.	As	noted	 in	 the	analysis	of	 the	 spring-mass	

system,	 the	 transformation	 to	 principal	 axes	 (eigenfunctions)	 diagonalizes	 the	

kinetic	and	potential	energy	operators,	where,	moreover,	the	total	energy	of	each	

normal	 mode	/W(%, ") = vW(%)wW(")	is	 constant.	 This	 allows	 us	 to	 associate	 a	

physical	 property	 of	 the	 vibrating	 string	 with	 the	 modes.	 Namely,	 that	 each	

normal	 mode	 represents	 a	 partial	 (and	 possible)	 state	 of	 constant	 energy.	 No	

energy	 is	 transferred	 between	 the	 normal	modes	 in	 the	 time-evolution	 of	 the	

system.	 Wilson	 pictures	 the	 modes	 as	 ‘energy	 traps’,	 picking	 out	 important	

macroscopic	properties	of	the	system	that	are	related	to	the	boundary	conditions	

(2017,	 249,	 271,	 400).	 His	 interest	 here	 is	 in	 the	 study	 of	 how	 the	 Fourier	

technique	 offers	 a	 procedure	 of	 ‘semantic	 lifting’	 to	 a	 new	 vocabulary	 or	

descriptive	area	for	the	string	(frequency	or	energy	domain	representation)	that	

offers	 a	 superior	 reasoning	 advantage	 over	 the	 original	 representation	 of	 the	

system	 in	 terms	 of	 the	 evolution	 of	 the	 displacement	 of	 points	 on	 the	 string	

(2006,	490-491,	531-532).	Wilson	does	not	analyse	the	modes	or	the	success	of	

the	Fourier	technique	in	relation	to	the	concept	of	superposition	and	the	physical	

significance	and	supporting	architecture	of	the	concept.		The	role	of	the	concept	

of	 superposition	 coupled	 with	 the	 observation	 that	 the	 modes	 are	 states	 of	

constant	 energy	 is	 crucial	 in	 QFT	 where,	 roughly	 speaking,	 the	 modes	 in	 the	

decomposition	of	the	relevant	PDEs	are	related	to	states	of	invariant	energy,	and	

relativistically	 associating	 energy	 with	 mass,	 modes	 are	 then	 associated	 with	

particles.23	

																																																								
23	To	return	to	realism	issues,	what	this	will	mean	is	that	first,	where,	and	only	where,	we	have	a	
patch	1	type	Fourier	decomposition	we	have	a	particle	concept	available,	so	secondly,	to	deny	the	
existence	of	Fourier	modes	on	patch	1	will	be	to	deny	the	existence	of	particles.	
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4.4.2	The	vibrating	circular	membrane	(2-dimensional	wave	equation)	

Consider	 the	 linearized	 model	 of	 a	 vibrating	 circular	 membrane	 of	 radius	 R	

clamped	 around	 its	 circumference,	 leading	 to	 the	 two-dimensional	 wave	

equation	 for	 the	 membrane’s	 perpendicular	 deflection	 /(Å, Ç, ") 	in	 polar	

coordinates,	 subject	 to	appropriate	boundary	 conditions,	namely	/(É, Ç, ") = 0.	

Owing	to	the	boundary	conditions	polar	coordinates	are	adopted	so	that	

1

Å

!

!Å
VÅ
!/(Å, Ç, ")

!Å
] +

1

Å,
!,/(Å, Ç, ")

!Ç,
−
1

G,
!,/(Å, Ç, ")

!",
= 0	

Separating	variables	via	/(Å, Ç, ") = Ñ(Å, Ç)w(")	gives	

1

Å

!

!Å
VÅ
!Ñ(Å, Ç)

!Å
] +

1

Å,
!,Ñ(Å, Ç)

!Ç,
+ *,Ñ(Å, Ç) = 0	

6,w

6",
+ },w = 0										(} = *G)	

Separating	variables	again	via	Ñ(Å, Ç) = É(Å)Θ(Ç)	gives	

6,Θ(Ç)

6Ç,
+ Y,	Θ(Ç) = 0	

6,R(Å)

6Å,
+
1

Å

6É(Å)

6Å
+ á*, −

Y,

Å,
àÉ(Å) = 0	

With	the	appropriate	boundary	conditions	we	have	

8â =
6,

6Ç,
	

8ä =
6,

6Å,
+
1

Å

6

6Å
−
Y,

Å,
	

and	eigenvalue	equations	

(8â + Y
,)Θ(Ç) = 0	

(8ä + *
,)R(Å) = 0	

The	 differential	 operator	 Dθ	 is	 familiar	 from	 the	 vibrating	 string	 with	 the	

trigonometric	 Fourier	 modes	 {sin(YÇ), cos(YÇ)} 	as	 eigenfunctions	 with	

eigenvalues	{n2}.	The	eigenfunctions	for	Dr	are	the	Bessel	functions	{Jn},	a	set	of	

generalized	 Fourier	 modes.	 The	 orthonormality	 conditions	 for	{ãW}	are	 rather	

complicated,24	but	 the	 Bessel	 functions	 form	 an	 orthonormal	 set	åãWç*é,WÅèê	on	

the	relevant	Hilbert	space.	

																																																								
24	The	Bessel	functions	ãW(*é,WÅ)	are	orthogonal	(and	may	be	normalized)	with	respect	to	the	kj,n	
in	the	sense	that	the	inner-product	ëãWç*é,WÅè, ãWç*í,WÅèì = îéí	on	the	space	of	functions	with	
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	 This	normal	modes	are	obtained	after	recombining	variables	as	

/é,W(Å, Ç, ") = ïé,WãW(*é,WÅ)(sin YÇ + ñW cosYÇ)çsin G*é,W" + �é,W cos G*é,W"è	

from	which,	 using	 ‘Hilbert	 superposition’	 the	 general	 solution	 of	 the	 vibrating	

drum-membrane	is	(Mathews	and	Walker,	1970,	266-7):	

/(Å, Ç, ") = U ïé,WãW(*é,WÅ)(sin YÇ + ñW cos YÇ)çsin G*é,W" + �é,W cos G*é,W"è

^

é,W_`

	

The	 modes	 of	 vibrating	 membranes	 or	 plates	 were	 identified	

experimentally	 in	 the	 late	18th-century	by	E.F.F.	Chladni	 and	are	 referred	 to	as	

‘Chladni	modes’	(Chladni	2015	[1809]).	We	now	understand	the	Chladni	modes	

as	generalized	Fourier	modes	as	 just	 indicated.	Wilson	comments	that	 in	 these	

modes	Chladni	discovered	hidden	properties	of	plates,	being	the	‘normal	modes’	

of	their	vibration	(1993;	2006;	2017).	

The	 semantic	 architecture	 of	 the	 Fourier	 technique,	 the	modes	 and	 the	

application	of	‘superposition’	here	is	conceptually	similar	to	that	of	the	vibrating	

string	 with	 an	 added	 layer	 of	 structure	 owing	 to	 the	 move	 from	 one	 to	 two	

spatial	 dimensions.	 The	 individual	 normal	 modes	/é,W(Å, Ç, ") 	are	 possible	

independent	 vibratory	 states,	 where	 the	 energy	 of	 each	 normal	 mode	 is	

conserved.	Any	vibratory	state	can	be	decomposed	as	a	(Hilbert)	superposition	

of	 these	 modes,	 with	 the	 architecture	 of	 the	 application	 of	 ‘superposition’	 as	

before,	associating	the	modes	with	partial	systems	and	laws	that	take	the	same	

form	 in	 and	 out	 of	 (linear)	 combination	 without	 stating	 the	 facts.	 Again,	 it	 is	

crucial	 that	 any	 initial	 state	 can	 be	 represented	 in	 terms	 of	 the	 (product	 of)	

modes	

ué,W(Å, Ç) = ãW(*é,WÅ)(sin YÇ + ñW cosYÇ)	

(second	 aspect	 to	 Fourier’s	 technique).	 The	 modes	 represent	 a	 natural	

description	of	the	membrane’s	vibratory	behaviour.	

However,	 it	 is	 important	 to	 observe	 several	 new	 features	 that	 become	

clear	 in	 this	 example.	 First,	 the	 initial	 choice	 of	 coordinate	 system	 (polar)	was	

crucial	 in	 establishing	 the	 ‘descriptive	 opportunity’.	 Polar	 coordinates	 are	 in	 a	

sense	 ‘natural’	 here	 since	 they	 support	 the	 eigenfunction	 decompositions	 in	 a	

way	 that	 rectangular	 coordinates	would	not.	The	naturalness	of	 the	 coordinate	
																																																																																																																																																															
suitable	boundary	conditions	for	the	problem	under	consideration	(Mathews	and	Walker	1970,	
181-2)	
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choice	 in	 this	sense	appears	to	owe	to	symmetry	considerations,	with	choice	of	

coordinates	associated	with	the	separation	of	variables	as	an	application	of	 the	

‘Volkmann	device’.	That	 is,	 these	 coordinates	are	 the	 correct	 ‘isolation	 centres’	

for	 the	 system	 for	 they	 support	 a	 natural	 description	 of	 the	 system	 optimally	

balancing	simplicity	and	strength.	

Secondly,	since	there	are	now	three	applications	of	the	Volkmann	device	

(two	 separations	 of	 variables	 and	 Hilbert	 superposition	 to	 the	 simple	 ‘normal	

mode’	 solutions)	 the	 architecture	 of	 ‘superposition’	 has	 become	 more	

complicated,	 especially	 with	 regard	 to	 the	 different	 ways	 in	 which	 we	 can	

identify	 partial	 states	 and	 partial	 laws	 as	 discussed	 above	 (notes	 18-19),	 and	

there	are	now	three	candidates	for	‘mode’.		

Thirdly,	 the	role	of	 the	boundary	conditions	 is	crucial.	A	membrane	of	 a	

different	shape	(e.g.	a	rectangle),	whilst	satisfying	the	same	wave	equation,	will	

have	very	different	 solutions	owing	 to	 the	different	boundary	 conditions.25	The	

difficulty	that	this	highlights	is	that	once	we	depart	from	the	analysis	of	certain	

‘ideal’	shapes	to	more	irregular	shapes,	such	as	a	guitar	soundboard,	whilst	from	

Sturm-Liouville	theory	we	may	know	in	principle	of	the	existence	of	modes	of	the	

membrane,	it	may	be	impossible	to	represent	them	explicitly.	That	is,	we	might	

know	of	their	existence	whilst	not	being	able	to	say	about	them	(cf.	Wilson	2006,	

240-258;	 2017,	 398-404).	 This	 can	 be	 taken	 to	 illustrate	 the	 limitations	 of	

considering	 only	 idealized	 ‘text	 book’	 examples.	 We	 can	 only	 fully	 exploit	 the	

descriptive	opportunity	that	Sturm-Liouville	offers	in	very	limited	situations.	

	

4.5	Patch	2	and	semantic	mimicry	

I	now	consider	two	examples	of	‘semantic	mimics’	for	‘superposition’	relating	to	

patch	 2,	 namely	 decompositions	of	 a	 function	 representing	 a	 physical	 quantity	

outside	the	context	of	Sturm-Liouville	theory:	First,	the	Fourier	decomposition	of	

a	 function	 representing	 a	 physical	 quantity	 without	 reference	 to	 any	 linear	

equation	representing	a	physical	‘law’	for	the	system;	Secondly,	the	construction	

of	 a	 solution	 to	 a	 linear	 differential	 equation	 modelling	 a	 physical	 system	 by	

																																																								
25	This	highlights	Wilson’s	repeated	insistence,	drawing	upon	Hadamard	(1915),	that	we	consider	
not	only	a	differential	equation,	but	the	boundary	conditions	also	(e.g.	2017,	413).	
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iterative	 techniques	 or	 approximation	 methods.	 Failing	 to	 recognize	 such	

mimicry	leads	to	conceptual	confusions,	as	I	shall	develop	in	QFT.	

	

4.5.1	Epicyclical	astronomy	and	Fourier	analysis	

Consider	the	decomposition	of	a	 function	 f	 representing	an	observed	planetary	

trajectory	 into	 epicycles.	 This	 epicyclical	decomposition	may	 be	 interpreted	 as	

the	 trigonometric	 Fourier	 decomposition	 of	 the	 trajectory	 considered	 as	 a	

parameterized	curve	R(")	without	reference	to	physical	laws,	but	to	an	observed	

trajectory.	This	example	has	been	used	to	motivate	anti-realism	regarding	both	

scientific	theories	and	Fourier	modes	(cf.	Healey	2013).	

Hanson	(1960)	showed	how	to	understand	epicycles	as	terms	in	a	Fourier	

series:	 Consider	 the	 representation	 of	 arbitrary	 planar	 periodic	motion	 by	 the	

‘superposition’	 of	 epicycles	 (understood	 geometrically).	 The	 trajectory	may	 be	

represented	 on	 ℂ = {ò = % + m' = Å. exp(mÇ): %, ', Å ∈ ℝ; Ç ∈ [0,2X)} .	 An	

arbitrary	 (though	 realistic)	2π-periodic	motion	of	 a	body	expressed	as	R(")	has	

Fourier	decomposition	

R(") = U GWexp	(Ym")

^

W_O^

	

The	 geometric	 interpretation	 of	 this	 decomposition	 is	 a	 ‘geometric	

superposition’	of	epicycles.	For	suppose	the	motion	of	a	point	A	is	given	by	k(")	

and	that	B	 is	moving	relative	to	A	 in	a	circle	of	radius	ρ,	period	T	and	phase	α.	

Then	B	moves	on	an	epicycle	carried	by	A	with	

ò = k(") + ú. exp V
2Xm"

w
+ m2] = k(") + D. exp	(m*")	

and	so	on,	for	C	moving	relative	to	B,	etc.	Arbitrary	periodic	planar	motion	can	be	

approximated	to	any	precision	via	 the	 ‘geometric	superposition’	of	N	epicycles,	

equivalent	to	the	corresponding	N	terms	in	the	Fourier	decomposition	of	R(").		

Epicyclical	astronomy	is	a	paradigmatic	counter-example	to	realist	stances	

toward	 scientific	 theories,	 and	 has	 been	 used	 to	 claim	 that	 Fourier	

decompositions	 do	 not	 support	 realist	 interpretation.	 For	 example	 Richard	

Healey	suggests	that	the	

mathematical	 promiscuity	 of	 [Fourier]	 decomposition	 may	 prompt	 one	 to	 question	 its	
physical	significance	when	one	notes	that	a	Ptolemaic	analysis	of	geocentric	motion	by	a	
system	 of	 epicycles	 and	 deferents	 can	 reproduce	 any	 observed	 planetary	 motion	 with	
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arbitrary	 accuracy.	 But	 …	 the	 enormous	 utility	 of	 the	 technique	 in	 diverse	 applications	
throughout	physics	should	at	least	prompt	a	more	critical	examination	of	the	very	notion	
of	physical	significance.	(2013,	51)	

But	 Healey	 does	 not	 distinguish	 between	 different	 applications	 of	 Fourier	

techniques,	treating	the	decomposition	of	f	here	as	‘promiscuous’	and	apparently	

imports	such	promiscuity	into	the	application	of	Fourier	techniques	generally.	

Two	 observations:	 First,	 the	 architecture	 supporting	 the	 Fourier	

decomposition	of	f	here	on	patch	2	is	the	Hilbert	space	structure	of	the	function	

space	of	which	f	is	an	element	on	patch	3.	So	its	decomposition	is	‘promiscuous’	

as	according	to	this	architecture	f	could	be	decomposed	relative	to	any	suitable	

basis.	 So	 the	 decomposition	 of	 f	 here	 may	 be	 compared	 with	 the	 arbitrary	

decomposition	 of	 a	 vector	 in	 which	 there	 is	 no	 ‘physical	 significance’	 to	 the	

components	individually	in	the	sense	of	the	examples	in	which	we	have	applied	

‘superposition’.	The	components	here	do	not	support	a	physical	trace	principle.		

Secondly,	 as	 we	 have	 seen	 in	 the	 application	 of	 Fourier	 techniques	

prolonged	to	Sturm-Liouville	theory	on	patch	1	the	Fourier	decomposition	is	not	

promiscuous	or	arbitrary	on	patch	1,	as	Fourier	argued.	In	such	cases	on	patch	1	

there	 is	 a	 physical	 story	 to	 tell	 regarding	 the	 significance	 of	 the	 Fourier	 basis	

involving	a	‘trace	principle’	as	developed	above.	Indeed,	the	modes	of	patch	1	are	

physically	 salient	 partial	 states	 of	 the	 system,	 unlike	 the	 epicycles	 on	 patch	 2,	

which	are	not	as	they	are	not	derived	from	a	PDE	modelling	the	behaviour	of	the	

system.	There	are	no	partial	laws	available	with	which	to	associate	epicycles	that	

take	 the	 same	 form	 in	and	out	of	 combination,	 and	 so	 ‘superposition’	 (in	other	

than	 a	 non-physical	 geometric	 sense)	 is	 inapplicable	 to	 the	 epicyclical	

decomposition	of	f.	

The	epicyclical	representation	is	not	a	natural	representation	as	it	doesn’t	

support	 inductive	 inferences	or	counterfactual	reasoning.	That	 is,	 in	 the	case	of	

the	vibrating	string	we	can	ask,	in	terms	of	the	Fourier	components,	what	would	

happen	if	the	string	density	and	length	had	been	different,	and	readily	supply	a	

physically	salient	answer.	But	we	cannot	do	so	with	the	epicycles	–	if	the	planets	

had	started	in	different	positions,	had	different	masses,	etc.	we	could	not	reason	

about	how	things	would	be	different	from	the	epicycles.		

However,	 we	 might	 ask	 if	 there	 is	 any	 reason	 to	 privilege	 the	

trigonometric	basis	for	the	decomposition	of	f	into	epicycles.	Volkmann	suggests	
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that	 the	 trigonometric	 modes	 as	 epicycles	 were	 preferred	 as	 it	 was	 supposed	

that	circular	motion	is	the	most	perfect	form	of	motion	(1896,	73).	Whether	this	

was	an	aesthetic	or	a	metaphysical	claim,	a	reason	is	given	to	prefer	a	particular	

decomposition.	But	such	argument	carries	little	or	no	weight	now.	We	saw	that	

van	der	Pol	showed	that	a	saw-tooth	or	square-wave	basis	might	be	chosen,	and	

might	be	preferable	in	certain	instances.		

The	epicyclical	decomposition	of	planetary	trajectories	exhibits	‘semantic	

mimicry’	in	relation	to	the	application	of	Fourier	techniques	and	‘superposition’	

from	patch	1.	If	the	conceptual	 ‘dragging’	associated	with	epicyclical	astronomy	

is	 not	 noticed	 confusion	 results,	 as	 in	Healey’s	 discussion.	 ‘Superposition’	 does	

not	 apply	 on	 the	 patch	 of	 Fourier	 decomposition	 in	 which	 a	 function	 is	

decomposed	 without	 reference	 to	 a	 linear	 differential	 equation	 modelling	 a	

system’s	behaviour.		

	

4.5.2	Iterative	series	techniques	contrasted	with	Fourier	series	

The	 second	 example	 of	 semantic	 mimicry	 concerns	 the	 contrast	 between	 a	

Fourier	series	solution	to	a	linear	differential	equation	h[#(%)] = 0	representing	

some	physical	system’s	behaviour,	and	a	power	series	solution	of	 the	equation.	

The	Fourier	series	solution	is,	in	exponential	form	

#(%) = U GWexp	(Ym%)

^

W_O^

	

To	form	a	power	series	solution,	suppose	that	a	solution	exists	of	the	form	

#(%) = U 65%
5

^

5_S

	

then	solve	for	the	coefficients	by	iterative	methods.26	

Superficially,	 in	 syntactic	 terms	 the	 structure	 of	 the	 solutions	 appears	

similar	 –	 infinite	 series	 of	 terms	 that	 converge	 to	 the	 solution.	 However,	 their	

semantic	 architecture	 is	 different.	 In	 the	 Fourier	 series	 individual	 terms	 are	

solutions	 individually	 to	 the	 differential	 equation	 by	 Hilbert	 superposition,	

representing	 possible	 physical	 partial	 states	 associated	 with	 partial	 laws	 and	

support	 trace	 principles,	 physically	 salient	 explanations,	 etc.	 so	 that	

																																																								
26	See	Simmons	(2017,	chapter	5).	



	 93	

‘superposition’	applies.	This	is	not	so	for	the	power	series,	for	no	individual	term	

is	 a	solution	 to	 the	differential	 equation,	 and	so	Hilbert	superposition	does	not	

apply,	 and	 so	 individual	 terms	 (or	 their	 finite	 linear	 combinations)	 do	 not	

represent	 possible	 partial	 states.	 The	 individual	 terms	 are	 not	 associated	with	

partial	 laws	that	 take	the	same	form	in	and	out	of	combination	associated	with	

persisting	states.	So	whilst	a	reasoning	advantage	is	established	through	the	use	

of	the	Fourier	modes,	no	such	advantage	is	obtained	with	the	power	series	as	it	is	

not	 a	 natural	 description	 since	 it	 does	 not	 support	 inductive	 inferences	 or	

counterfactual	reasoning,	or	at	 least	only	 in	a	 limited	sense.27	The	power	series	

overall	simply	gives	an	approximate	solution	in	a	specific	case	without	physical	

insight.	So	‘superposition’	does	not	apply	to	the	power	series.	

Furthermore,	the	mathematical	architecture	of	the	Fourier	series	and	the	

power	 series	 is	 different,	 for	 the	 set	 of	 individual	 terms	 of	 the	 Fourier	 series	

solution	 form	a	basis	 for	 the	 relevant	 function	 space,	whereas	 there	 is	no	 such	

Hilbert	space	structure	 in	view	or	available	with	regard	to	the	set	of	 individual	

terms	of	the	power	series.	So	attempts	to	interpret	iterative	series	as	analogous	

to	 a	 Fourier	 series	 on	 patch	 1	 (or	 vice	 versa)	 is	 an	 instance	 of	 semantic	

mimicry.28	This	observation	will	be	important	in	QFT	where	the	individual	terms	

in	 an	 iterative	 power	 series	 (Dyson’s	 series)	 are	 mimics	 for	 patch	 1	 Fourier	

techniques	which	leads	to	confusion	in	the	interpretation	of	Feynman	diagrams	

for	the	shift	in	semantic	architecture	often	goes	unnoticed	(§9.7).	

	

4.5.3	Semantic	mimicry:	Summary	

The	 two	 cases	 of	 semantic	 mimicry	 studied	 in	 relation	 to	 application	 of	

‘superposition’	occur	when	either	the	behaviour	of	the	system	is	given	in	terms	

of	an	observed	behaviour	rather	than	one	modelled	through	a	linear	differential	

equation,	and	/	or	the	decomposition	of	the	function	representing	the	behaviour	

																																																								
27	To	say	that	there	is	no	reasoning	advantage	or	physical	significance	of	individual	terms	in	a	
power	series	needs	nuancing.	That	is,	there	are	cases	in	which	the	coefficient	of	a	particular	term	
in	a	power	series	solution	can	give	insight	into	physically	significant	trends	of	dependence	on	
some	variable	or	parameter	(cf.	Holmes	2013,	1-46).	This	is,	however,	a	much	weaker	claim	than	
that	required	for	‘superposition’	for	at	best	it	enables	the	identification	of	a	trend	rather	than	
actual	behaviour.	
28	Cf.	Vickers	(2013)	who	interprets	Fourier	series	via	assumed	analogy	with	arbitrary	infinite	
series	used	to	represent	a	physical	quantity.	This	is	misleading	and	another	instance	of	semantic	
mimicry.	
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of	the	system	is	not	constructed	using	eigenfunction	techniques.	In	each	case	the	

representation	of	the	system’s	behaviour	via	a	series	is	not	a	‘natural’	description	

and	‘superposition’	is	inapplicable,	unlike	examples	in	Sturm-Liouville	theory.	

	

4.6	Summary	

We	have	analysed	the	differing	semantic	architectures	of	Fourier	 techniques	to	

consider	 the	 applicability	 and	 significance	 of	 ‘superposition’,	 considering	 the	

physical	significance	of	the	concept	and	contrasting	it	with	mimics.	I	continue	the	

analysis	of	prolongations	of	Fourier	 techniques	 in	 the	context	of	 linear	systems	

analysis	in	chapter	5.	
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Chapter	5	

	

The	façade	structure	of	superposition	(3):	

Linear	and	nonlinear	systems		

	

In	 this	 chapter	 I	 shall	 continue	 to	 articulate	 the	 façade	 structure	 of	

‘superposition’.	In	§§5.1-2	I	consider	the	application	of	the	concept	in	the	general	

analysis	 of	 linear	 systems	 before	 contrasting	 such	 systems	 with	 nonlinear	

systems	 in	 §5.3.	 	 Superposition	 is	 inapplicable	 to	 nonlinear	 systems,	 with	

semantic	mimics	of	superposition	likely	to	occur,	which	we	study	in	§5.3.2.	This	

will	form	a	foundation	for	considering	semantic	mimics	of	superposition,	and	its	

inapplicability,	 with	 regard	 to	 the	 use	 of	 nonlinear	 equations	 associated	 with	

interacting	QFTs.	

	

5.1	Linear	systems	analysis	overview	

Linear	 systems	 analysis	 concerns	 modelling	 physical	 systems	 in	 which	 a	

response	or	output	 is	related	 linearly	 to	an	 input.	Often	the	 inputs	and	outputs	

are	 functions	 of	 time,	 and	 in	 many	 cases	 the	 systems	 are	 invariant	 to	 time	

translations:	 so-called	 linear	 time-invariant	 (LTI)	 systems.	 So	 for	 instance	 in	

electronics	one	studies	the	relationship	between	the	input	and	output	of	an	‘LCR’	

AC	circuit	functioning	as	a	filter	in	which	the	input	and	output	are	AC	voltages.	If	

!"($)	and	!&($)	are	 inputs	 (e.g.	 voltage	 signals)	 to	 an	 LTI	 system	 S	 that	 are	

(perhaps	 scaled	 and)	 summed	 and	 applied	 as	 the	 input	'"!"($) + '&!&($)	then	

the	output	is	

	)('"!"($) + '&!&($)) = '")+!"($), + '&)+!&($),	

where	L	 is	the	linear	(differential)	operator	modelling	the	behaviour	of	S.	If	the	

!-($)	have	physical	causal	origins	we	may	consider	this	an	application	of	‘Simons	

superposition’	 with	 the	 response	 to	 the	 composite	 input	 being	 the	 linear	

combination	 of	 the	 (physical)	 ‘partial’	 inputs	 taken	 individually	 that	 may	 be	

‘traced’	 in	 the	 system	 response.	 We	 consider	 the	 composite	 input	 as	 the	

superposition	of	 the	!-($),	 as	decomposition	of	 the	 input	 in	 this	 sense	 supports	

physically	 salient	 explanations	 and	 counterfactual	 reasoning	 regarding	 the	
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response	of	S.	In	this	sense	describing	the	composite	input	as	the	superposition	

of	the	!-($)	can	be	considered	to	support	a	natural	description	of	the	situation.	

It	 remains	 to	 express	 the	 action	 of	 L	however,	 and	 this	 may	 call	 for	 a	

different	 representation	 of	 the	 composite	 input,	 or	 indeed	 the	!-($).	 We	 can	

decompose	f	in	numerous	ways	owing	to	S’s	linearity	via	‘Hilbert	superposition’,	

but	most	of	these	would	not	offer	a	reasoning	advantage	or	physically	insightful	

or	 salient	 explanations	 of	 S’s	 behaviour.	 Put	 another	 way,	 we	 can	 ask	 the	

question	of	whether	 there	 is	 a	decomposition	that	 is	 ‘natural’	or	 ‘privileged’	 so	

that	it	optimizes	the	simplicity	and	strength	of	the	representation	of	the	input	f	

so	that	the	components	have	physical	significance	and	‘superposition’	applies	in	

a	 physically	 meaningful	 sense,	 similar	 to	 the	 Sturm-Liouville	 examples	

considered	in	chapter	4.		

Consideration	 of	 this	 question	 leads	 to	 a	 rich	 area	 of	 mathematical	

physics.	 There	 are	 two	 important	 and	 related	 decompositions	 of	 an	 arbitrary	

input	 to	an	LTI	system	S	that	 I	shall	consider,	1	the	 frequency	response	and	the	

impulse	response:	

First,	 one	 can	 consider	 decomposition	 of	 f	 as	 a	 ‘superposition’	 of	

eigenfunctions	associated	with	L	 (a	 ‘frequency	domain’	decomposition).	This	 is	

associated	with	‘Hilbert	superposition’	and	reflects	Fourier’s	original	approach	in	

its	 ‘two	 aspects’	 (patch	 1),	 although	 new	 semantic	 architecture	 is	 introduced	

here,	 establishing	 a	 patch	 4a	where	 a	 Fourier	 transform	 rather	 than	 a	 Fourier	

series	is	employed;	

Secondly,	 f	 can	 be	 decomposed	 as	 a	 ‘superposition’	of	 impulses	 (a	 ‘time	

domain’	decomposition).	This	is	‘Volterra	superposition’	(patch	4c).	

For	 the	 same	 phenomenon	 (i.e.,	 the	 physical	 input	 represented	 by	 f	

considered	as	arising	from	two	distinct	causal	origins)	potentially	three	different	

applications	 of	 ‘superposition’	 may	 be	 made:	 first,	 the	 composite	 input	

considered	 as	 the	 superposition	 of	 the	 physically	 separate	 inputs	 (Simons	

superposition);	 secondly,	 ‘Hilbert	 superposition’	 via	 the	 Fourier	 transform,	

reflecting	an	eigenfunction	decomposition	of	L;	 thirdly,	 ‘Volterra	superposition’	

via	 impulse	 responses	 of	 S.	 If	 each	 of	 these	 is	 genuinely	 an	 instance	 of	
																																																								
1	Another	important	decomposition	relates	to	the	use	of	wavelets,	and	is	particularly	important	
in	digital	signal	processing.	I	do	not	consider	such	decomposition	as	it	is	not	relevant	to	my	
analysis	of	QFT.	
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superposition,	 it	 indicates	 the	 façade	 structure	 of	 both	 the	 concepts	 of	

superposition	 and	 component	 in	 a	 way	 comparable	 with	 Wilson’s	 analysis	 of	

‘hardness’	(cf.	§1.2.2),	since	their	applications	depend	on	the	context	of	physical	

interest.	 Perhaps	 then	 ‘superposition’	 is	 promiscuous	 in	 application,	 to	 use	

Healey’s	term	(§4.5.1),	although	not	arbitrary,	and	it	is	natural	in	its	application.	

	

5.2	Linear	systems	analysis	

5.2.1	Frequency	domain	(eigenfunction)	decomposition	(patch	4a)	

For	an	LTI	system	S,	{exp(2 + 34$) : 2, 4, $ ∈ ℝ}	forms	a	set	of	eigenfunctions	for	

the	linear	operator	L	as	above	acting	on	the	relevant	Hilbert	space	(Lathi	2010,	

195).	 If	we	 take	 s=0,	 then	 the	eigenfunction	decomposition	of	 the	 input	!($)	as	

above	gives	the	Fourier	transform	of	f:	

!($) =
1
2<

= !>(4)?-@AB4
C

DC
	

irrespective	of	the	physical	origins	of	f,	although	by	linearity	one	may	regard	this	

decomposition	as	the	sum	of	the	Fourier	transforms	of	the	!-($)	composing	!($)	

as	above.	However,	it	will	be	the	Fourier	transform	of	!($)	simpliciter	that	plays	

the	indispensible	explanatory	role	regarding	S’s	response	even	if	counterfactual	

reasoning	in	terms	of	the	!-($)	also	remains	supported.	

One	may	construe	the	Fourier	transform	as	the	limit	of	a	Fourier	series	of	

a	P-periodic	 function	as	[−G/2, G/2] → (−∞,∞),	and	so	 it	may	be	considered	a	

decomposition	 of	 a	 signal	 into	 a	 continuous	 set	 of	 trigonometric	 modes.	 It	 is	

convenient	 to	 use	 the	 complex	 exponential	 form,	 but	 the	 crucial	 difference	

between	this	and	the	Fourier	series	is	the	necessary	introduction	of	the	integral	

over	a	continuum	of	modes,	and	with	infinite	limits.	This	significantly	alters	the	

semantic	 architecture	 of	 ‘superposition’	 and	 the	 Fourier	 technique,	 invoking	

additional	mathematical	structure	–	that	is,	the	Fourier	transform	is	not	only	the	

limit	of	a	Fourier	series.	

Bracketing	the	difficulties	this	introduces	for	a	moment,	this	means	that	if	

we	represent	an	arbitrary	input	to	S	by	the	Fourier	integral,	the	output	is	given	

simply	by	scaling	the	modes	{exp(34$)}	in	virtue	of	their	being	eigenfunctions	of	

L.	The	Fourier	transform	supplies	a	‘diagonal’	representation	of	L,	namely	L(4),	
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which	is	identified	as	a	property	of	S	known	as	its	‘frequency	response’.	That	is,	

the	output	M($)	to	an	arbitrary	input	!($)	is	given	by	(Lathi	2010,	719):	

M($) =
1
2<

= !>(4)L(4)?-@AB4
C

DC
	

As	 per	 the	 ‘two	 aspects’	 of	 Fourier	 techniques,	 decomposition	 of	 f	 into	 the	

eigenfunctions	 of	 L	 with	 coefficients	!>(4)	via	 the	 Fourier	 transform	 exploits	 a	

descriptive	 opportunity	 that	 affords	 a	 natural	 decomposition,	 optimally	

balancing	simplicity	and	strength	to	support	physically	salient	explanations	and	

counterfactual	 reasoning.	L(4)	supplies	 the	 ‘partial	 laws’	 corresponding	 to	 the	

‘partial	states’	?-@A 	(as	indexed	continuously	by	ω)	that	describe	the	behaviour	of	

the	system,	i.e.	by	pointwise	multiplication	of	the	?-@A 	by	L(4).	This	superficially	

looks	 like	 the	 Fourier	 technique	 on	 patch	 1	 in	 chapter	 4,	 and	 so	 we	 would	

privilege	decomposition	of	f	via	{exp(34$)}	and	call	this	its	‘superposition’	in	the	

context	of	S.	

However,	 there	 are	 two	 obstacles:	 First,	 for	 many	 functions	 that	 one	

would	wish	 to	 consider,	 the	Fourier	 transform	 is	undefined,	 if	 the	 transform	 is	

defined	 as	 above.	 That	 is,	 even	 ‘nice’	 functions	 such	 as	sin('$)	do	 not	 have	 a	

Fourier	 transform	 in	 the	 sense	 of	 the	 limit	 of	 a	 Fourier	 series	 as	 it	 does	 not	

decrease	 sufficiently	 rapidly	 as	$ → ±∞.	 This	 can	 be	 dealt	with	mathematically	

using	 the	 theory	 of	 distributions	 (see	 below),	 and	 indeed	 Laurent	 Schwartz	

claimed	that	setting	the	definition	of	the	Fourier	transform	in	the	distributional	

context	 is	 ‘inevitable,	 in	a	direct	or	camouflaged	form’	(Schwartz	1950,	7).2	But	

this	 is	 to	 prolong	 the	 Fourier	 technique	 to	 a	 new	 patch	 of	 application	 with	

differing	 supporting	 architecture	 in	 which	 extra	 mathematical	 structure	 is	

invoked	(distributions,	and	the	dual	space	of	a	Hilbert	space	of	functions).		

Secondly,	setting	aside	the	issue	that	we	are	dealing	with	complex-valued	

functions,3	the	 modes	{exp(34$)}	are	 unphysical	 in	 the	 sense	 that	 one	 must	

consider	them	as	‘everlasting’	inputs,	i.e.	starting	at	$ = −∞.	The	modes	must	be	

considered	 as	 idealized	 inputs	 or	 states	 rather	 than	 possible	 physical	 states,	

																																																								
2	See	Lützen	(1982,	chapter	3)	for	historical	development;	Stein	and	Shakarchi	(2003,	129-145)	
for	mathematical	treatment	of	the	Fourier	transform	in	its	distributional	setting.		
3	This	difficulty	may	be	overcome	by	considering	the	representation	in	terms	of	amplitude	and	
phase	of	real-valued	trigonometric	functions,	but	the	exponential	form	is	often	more	convenient.	
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unlike	the	Fourier	series	case.	This	idealization	introduces	another	‘dragging’	of	

‘superposition’	and	the	Fourier	technique.4		

We	should	pause	to	consider	the	implications.	For	the	vibrating	string	the	

possibility	remains	open	for	considering	the	string’s	motion	as	composed	of	the	

physical	 harmonics	 (the	 Fourier	 modes)	 in	 a	 (metaphysically)	 serious	 sense,	

where	 moreover	 it	 is	 physically	 conceivable	 that	 the	 initial	 condition	 had	 the	

form	of	a	mode.	But	with	the	Fourier	transform	we	can	decompose	functions	that	

are	not	periodic,	unlike	the	Fourier	series	case,	but	into	physically	inconceivable	

‘everlasting	 modes’.	 We	 could	 consider	 a	 function	 f	 representing	 a	 physical	

quantity,	 say	 the	 output	 of	 a	 voltage	 generator	 which	 is	 initially	 switched	 off,	

switched	on	for	a	short	time,	then	switched	off	again,	with	the	signal	f	fed	into	an	

LCR	 circuit	 as	 our	 LTI	 system.	 The	 function	 f	 representing	 the	 voltage	 as	 a	

function	of	time	is	zero	everywhere	apart	from	a	short	interval.	But	the	Fourier	

transform	of	the	voltage	signal	gives	non-zero	modes	extending	from	$ = −∞	to	

$ = ∞.	 Intuitively	 it	appears	wrong	to	regard	the	voltage	signal	as	composed	of	

the	 modes	 in	 any	 physical	 (or	 indeed	 metaphysical)	 sense	 whilst	 the	 voltage	

generator	 is	 switched	 off.	 This	 would	 suggest	 that	 whilst	 the	 modes	 in	 the	

Fourier	 transform	 have	 a	 form	 of	 physical	 significance	 in	 supporting	

explanations,	 inductive	 inferences	 and	 counterfactual	 reasoning,	 and	 pick	 out	

what	we	 could	 call	 a	 physical	 property	 of	 the	 system	 known	 as	 its	 ‘frequency	

response’,	they	appear	to	be	‘components’	in	a	different	sense	from	the	Fourier	

modes	on	patch	1,	not	having	the	same	physical	significance	of	Fourier	modes	in	

Sturm-Liouville	systems.	

However,	perhaps	the	difference	is	only	apparent,	or	at	least	perhaps	the	

distinction	 is	 too	caught	up	 in	realist	 intuitions,	which	 is	something	that	 I	have	

been	 careful	 to	 avoid.	 In	 the	 Fourier	 series	 case	we	 could	 consider	 a	 periodic	

function	 that	 is	 mostly	 zero	 on	 some	 finite	 interval.	 Its	 Fourier	 series	

decomposition	 will	 be	 non-zero	 everywhere	 on	 the	 interval	 however,	 like	 the	

Fourier	transform.	This	suggests	that	we	should	be	careful	regarding	the	sense	in	

																																																								
4	Cf.	Wilson	(2006,	518-566,	esp.	540),	and	the	further	discussion	below	in	§5.2.3.	The	point	is	
that	unlike	the	cases	of	Fourier	techniques	considered	in	chapter	4	involving	discrete	modes	for	
which	the	modes	represented	possible	(even	if	unlikely)	physical	states	or	initial	conditions	of	
the	system	as	modeled,	the	continuum	modes	of	the	Fourier	transform	represent	idealized	inputs	
or	states,	so	that	‘superposition’	is	no	longer	supported	in	terms	of	the	modes	being	physically	
possible	states	or	inputs	for	finite	times.	
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which	we	view	the	modes	of	a	Fourier	series	as	‘physically	significant’,	and	avoid	

seeking	to	infer	a	realist	understanding	of	the	modes	prematurely,	despite	their	

role	 in	 supporting	 (indispensible)	 physically	 salient	 explanations	 and	

counterfactual	 reasoning. 5 	The	 modes	 in	 both	 cases	 are	 associated	 with	

properties	 of	 a	 system	 and	 not	 some	 input	 to	 a	 system,	 for	 which	 the	 modes	

become	 significant	 only	 in	 virtue	 of	 the	 role	 that	 they	 play	 in	 the	 system	

considered.	

We	 gain	 a	 reasoning	 advantage	 supporting	 inductive	 inferences	 and	

counterfactual	reasoning	by	considering	the	representation	of	the	input	to	an	LTI	

system	via	the	continuous	set	of	eigenfunctions	of	L,	namely	{exp(34$) :4, $ ∈ ℝ},	

for	which	 the	 response	of	L	is	 given	by	 the	 frequency	 response	L(4),	which	 is	

the	 ‘diagonal’	 representation	 of	 L	 and	 may	 be	 regarded	 as	 a	 property	 of	 the	

system.	The	modes	support	a	‘trace	principle’	in	the	sense	discussed	in	chapter	4.	

This	 is	 of	 particular	 significance	 in	 systems	 exhibiting	 ‘resonance’,	 where	 the	

presence	 of	 components	exp(34$)	near	 resonance	 are	 explanatorily	 relevant	 to	

the	resonant	behaviour.	It	is	especially	this	feature	that	engineers	exploit	in	the	

design	of	mechanical	and	electrical	systems.	

In	 QFT	 Fourier	 transforms	 are	 ubiquitous.	 The	 Fourier	 transform	

converts	 between	 position	 and	 momentum	 representations,	 it	 is	 used	 in	 the	

solution	 of	 the	 wave	 equations	 and	 it	 is	 used	 in	 explicit	 representations	 of	

propagators.	Moreover,	the	Heisenberg	uncertainty	principle	can	be	understood	

as	a	property	of	Fourier	transforms	(Stein	and	Shakarchi	2003,	158-161),	apart	

from	any	physical	semantic	support	or	context.		

	

5.2.2	Time-domain	(impulse)	decomposition	(patch	4c)		

Volterra	 applied	 ‘superposition’	 in	 the	 calculation	 of	 the	 twist	4	of	 a	 thread	 in	

response	to	a	time-varying	torque	M	considered	as	an	integral	of	impulses	R($),	

so	 that	 the	 overall	 response	 (twist)	 of	 the	 thread	 at	 time	 t	 is	 the	 ‘Volterra	

superposition’	 of	 the	 ‘impulse	 responses’	 of	 the	 thread	 over	 earlier	 times	

(Volterra	1913,	219-221):	

																																																								
5	There	is	a	further	complication	in	that	if	we	consider	two	identical	but	180°	out	of	phase	sine	
waves	as	AC	voltage	inputs	that	are	summed,	their	composite	is	always	zero,	but	it	seems	correct	
to	regard	the	zero	voltage	input	as	composed	of	two	sinusoidal	signals.	
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4($) = SR($) + = Φ($ − U)R(U)BU
A

V
	

where	Φ	is	the	‘coefficient	of	heredity’	that	relates	the	twist	of	the	thread	at	time	

t	to	an	instantaneous	torque	M	applied	at	an	earlier	time	τ.	

This	introduces	a	 further	 idealization	 in	that	we	study	the	response	of	a	

linear	 system	 S	 to	 an	 ‘instantaneously’	 applied	 torque	 of	 infinitesimally	 short	

duration,	 that	 is,	 as	 an	 idealized	 impulse,	 and	 it	 is	 this	 idealization	 that	

complicates	the	architecture	of	‘superposition’.	We	decompose	an	arbitrary	input	

!($)	to	 S	as	 a	 ‘superposition’	 of	 impulses	 in	 the	 time-domain,	 rather	 than	 as	 a	

‘superposition’	 of	 eigenfunctions	 in	 the	 frequency	 domain,	 and	 calculate	 the	

response	or	output	of	S	as	the	superposition	of	the	‘impulse	responses’.	

In	 a	 modern	 perspective,	 this	 involves	 the	 introduction	 of	 ‘generalized	

functions’	 or	 distributions	 and	 Green’s	 functions.	 The	 impulse	 is	 modelled,	 in	

idealized	 form,	 by	 the	 Dirac-δ	 functional	 or,	 distribution.	 Distributions	 are	

mathematical	entities	that	invoke	new	structure	so	as	to	enable	sense	to	be	made	

of,	for	example,	the	Dirac-δ	considered	as	a	limit	of	functions,	or	to	enable	one	to	

define	Fourier	transforms	of	functions	such	as	sin(2<'$).	

Very	 briefly,	 mathematically	 speaking	 distributions	 are	 understood	 as	

linear	functionals	acting	on	a	‘suitable	space’	of	functions,	so	that	a	‘distribution’	

is	 an	 element	 of	 the	 dual	 space	 of	 the	 appropriate	 function	 space.	 That	 is,	

suppose	 f	 is	 a	 locally	 integrable	 function	 and	 φ	 is	 any	 smooth	 function	 of	

‘sufficiently	rapid	decrease’,	then	a	distribution	Tf	may	be	associated	with	f	via6	

〈XY, Z〉 = =!(\)Z(\)B\				∀Z ∈ _(ℝ)	

〈`, Z〉 = Z(0) 	defines	 the	 Dirac-δ,	 and	 one	 may	 interpret	 sin(2<'$) 	as	 a	

distribution	(substituting	sin(2<'$)	for	!(\))	enabling	its	Fourier	transform	ℱ	to	

be	defined	distributionally	as	

ℱ{sin 2<'$}(4) =
1
2 3
[`(4 + ') − `(4 − ')]	

However,	the	physical	significance	of	the	Dirac-δ	as	an	impulse	might	be	

more	readily	understood	in	terms	of	the	idealized	limit	of	short-duration	inputs	

																																																								
6	_(ℝ)	is	the	Schwarz	space	of	test-functions.	Other	spaces	of	test-function	may	be	used,	but	use	
of	the	Schwarz	space	is	natural	with	regard	to	the	Fourier	transform.	The	theory	of	distributions	
is	a	large	and	important	area	of	mathematics	that	I	cannot	develop	here.		
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than	 as	 a	 mathematical	 distribution.	 That	 is,	 an	 impulse	 is	 not	 a	 physically	

possible	 input,	but	rather	the	abstraction	or	 idealization	of	a	 form	of	 input	 that	

will	 be	 valuable	 in	 modelling	 the	 behaviour	 of	 the	 system,	 i.e.	 establishing	 a	

reasoning	advantage.	7	

	A	Green’s	 function	c($, 2)	for	S	 is	defined	as	 the	 ‘impulse	response’	of	S,	

that	 is,	 the	 response	 at	 t	given	 the	 application	 of	 a	 unit	 impulse	 at	 s.	 So	 if	 the	

homogenous	linear	system	is	modelled	as	

)[d($)] = 0	

then	

)[c($, 2)] = `($ − 2)									

where	c($, 2)	is	 the	 relevant	Green’s	 function.8	Then	an	arbitrary	 input	!($)	can	

be	represented	as	a	‘superposition’	of	suitably	scaled	impulses:	

!($) = =`($ − 2)!(2)B2											

From	this,	and	knowledge	of	G,	the	response	M($)	to	f	can	be	calculated	to	be	

M($) = =[c($, 2)]!(2)B2	

So	the	response	to	f		may	be	calculated	if	the	impulse	response	c($, 2)	is	known.	

c($, 2)	establishes	a	‘trace	principle’	or	‘partial	law’	for	the	impulse	`($ − 2).	It	is	

common	to	write	the	impulse	response	as	h	so	that	

M($) = =ℎ($ − 2)!(2)B2	

This	 is	 ‘Volterra	 superposition’,	 which	 clearly	 resembles	 ‘superposition’	

as	we	have	analysed	it	so	far,	the	ℎ($ − 2)	for	individual	t,s	taking	the	same	form	

in	 and	 out	 of	 linear	 combination,	 whilst	 not	 stating	 the	 facts	 when	 in	

combination.	 However,	 as	 was	 the	 case	 with	 the	 ‘frequency	 response’	 just	

considered,	 the	semantic	architecture	of	 ‘superposition’	 is	becoming	ever	more	

intricate	 and	 difficult	 to	 unravel	 as	 appeal	 is	 made	 to	 idealized	 inputs	 and	

distributions.	 As	 with	 the	 ‘frequency	 response’	 H	 we	 consider	 the	 ‘impulse	

																																																								
7	See	Bueno	and	French	(2018)	for	philosophical	discussion	of	the	Dirac-δ.	
8	The	Green’s	function	need	not	be	unique,	although	for	many	important	systems	it	is.	I	do	not	
consider	the	details	here.	
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response’	h	as	a	property	of	S,	with	‘superposition’	applied	to	the	input	f	in	each	

case	supported	by	the	properties	of	H	and	h	respectively.9		

Green’s	 functions	will	 play	 a	 central	 role	 in	 QFT,	 being	 associated	with	

particle	propagators,	with	the	Dirac-δ	often	associated	with	the	 introduction	or	

removal	of	 a	particle	 from	 the	system	as	a	source	 term,	and	with	 the	 choice	of	

test	 function	 associated	 with	 the	 distributional	 definition	 of	 the	 Dirac-δ	

interpreted	as	the	wave	function	of	a	particle.	

	

5.2.3	Integral	transforms:	Generalizations	on	patch	4		

Integration	of	Green’s	functions	considered	as	impulse	responses	is	an	example	

of	an	integral	transform	by	a	kernel,	that	is	(Arfken	1985,	794)	

f(g) = = !($)S(g, $)B$
h

i
	

The	 Fourier	 transform	 is	 another	 example	 of	 such	 a	 transform	with	S(g, $) =

?-jA .	

Another	 important	 transform	in	 linear	system	design	and	analysis	 is	 the	

Laplace	transform.	The	Laplace	transform	of	f	is	defined	as	

	k(2) = ∫ !($)?DmAB$C
V 								2 = n + 34 ∶ 	n, 4 ∈ ℝ,	

It	 is	 an	 integral	 transform	 with 	S(g, $) = ?DjA 	where	 g ∈ ℂ .	 The	 Laplace	

transform	 introduces	 the	 possibility	 of	 yet	 another	 patch	 of	 application	 for	

‘superposition’	 involving	 further	 abstractions,	 complications	 and	 differing	

semantic	architecture.	

																																																								
9	There	 are	 however	 important	 relationships	 between	 impulse	 and	 frequency	 response.	 The	
convolution	of	two	functions	is	defined	

! ∗ f = =f(r)!(\ − r)Br	

The	Fourier	transform	of	a	convolution	has	a	simple	form:	
! ∗ fs = !>. fu	

That	is,	if	f	and	g	are	time-domain	functions,	their	convolution	in	the	time	domain	corresponds	to	
simple	multiplication	in	the	frequency	domain.	The	response	of	an	LTI	system	is	the	convolution	
of	its	impulse	response	with	the	input:	

M($) = ℎ($) ∗ !($)	
Taking	Fourier	transforms	

Mu(4) = ℎv(4). !>(4)	
But	ℎv(4) = L(4),	 the	 frequency	 response,	 and	!>(4)	is	 the	 Fourier	 transform	 of	 the	 arbitrary	
input	!($),	that	is,	the	coefficients	of	its	eigenfunction	decomposition.	So	the	two	descriptions	of	
the	system’s	response,	and	the	allied	notions	of	superposition,	are	closely	related.	One	involves	a	
description	 or	 choice	 of	 simple	 components	 in	 the	 time	 domain,	 the	 other	 in	 the	 frequency	
domain.	 Both	 descriptions	 involve	 ‘idealized’	 and	 in	 that	 sense	 ‘unphysical	 components’	
mathematically	described	via	distributions.	
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Wilson		discusses	the	Laplace	transform	alongside	the	use	of	impulse	and	

frequency	 responses	 in	 the	 context	 of	 Heaviside’s	 operational	methods	 (2006,	

518-566).	 He	 understands	 concepts	 such	 as	 impulse	 response,	 frequency	

response,	 etc.	 as	 ‘design	 parameters’	 that	 code	 basic	 properties	 of	 response	

latent	in	the	system:	‘In	short,	the	physical	significance	of	“solution”	shifts	from	

representing	 a	 possible	 history	 of	 the	 circuit	 to	 covering	 more	 abstract	

inclinations	 to	 reshape	 signals	 fed	 into	 the	wire.’	 (2006,	 540)	 In	 this	 sense,	 as	

reflects	engineering	practice	in	the	design	of	control	systems	for	instance,	these	

integral	 transform	 techniques	 form	 a	 ‘toolkit’	 that	 establishes	 reasoning	

advantages	in	relation	to	the	design	and	analysis	of	such	systems.	

The	 architecture	 of	 ‘superposition’	 is	 intricate	 and	 complex	 here,	 as	 are	

decisions	on	the	applicability	of	 terms	such	as	‘partial	 law’	qua	 ‘law’.	For	 in	 the	

Mill-Ramsey-Lewis	sense,	it	would	appear	that	there	are	several	complementary	

rather	 than	competing	ways	of	 construing	a	 ‘best	 system’	 in	 the	 context	of	 the	

design	and	analysis	of	such	systems.10	For	my	purposes	however,	it	is	sufficient	

to	note	that	it	is	beneficial	to	discuss	impulse	and	frequency	responses	in	terms	

of	 	 ‘partial	 laws’	so	as	 to	 forge	a	 link	with	 ‘superposition’	 in	 the	 context	of	LTI	

systems	 analysis,	 heeding	 Wilson’s	 analysis	 on	 the	 façade	 structure	 of	 ‘law’,	

whether	or	not	it	is	desirable	to	invoke	the	Mill-Ramsey-Lewis	characterization.	

These	 abstract	 integral	 transforms	 provide	 further	 ‘prolongation’	 of	

‘superposition’	to	ever	more	abstract	settings,	although	useful	in	system	design,	

and	 indeed	 Jefferys	 and	 Jefferys	 term	 this	 ‘generalized	 superposition’	 (1956,	

404).	 In	 this	generalized	 approach	 the	 semantic	 architecture	 of	 ‘superposition’	

differs	on	a	case-by-case	basis.	However,	as	it	is	the	Fourier	rather	than	Laplace	

transform	 that	 is	ubiquitous	 in	QFT	 I	 shall	 not	 consider	 the	 Laplace	 transform	

further.	

	

5.2.4	Linear	systems	summary	

There	are	various	ways	in	which	we	can	consider	the	input	to	an	LTI	system	as	

‘composed	of’	a	 ‘superposition’	of	components.	In	each	case	we	can	identify	the	

physical	significance	of	the	components	(partial	states)	and	associate	them	with	

																																																								
10	This	class	of	example	might	lead	to	a	‘perspectival’	account	of	the	best	system	account	(cf.	
Massimi	2018).	
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partial	 laws,	 even	 if	 appeal	 to	 Mill-Ramsey-Lewis	 is	 problematic	 here.	 Each	

appears	to	reflect	a	genuine	although	different	application	of	‘superposition’	with	

differing	 supporting	 architecture,	 with	 different	 decompositions	 preferred	 in	

different	reasoning	or	design	contexts.	

	

5.3	Nonlinear	systems	and	semantic	mimics	

5.3.1	The	contrast	between	linear	and	nonlinear	systems	

The	behaviours	of	 the	various	 linear	systems	considered	here	and	 in	chapter	4	

arise	 in	 the	 context	 of	 models	 that	 approximate	 or	 idealize	 the	 behaviour	 of	

physical	systems	so	that	a	linear	model	is	obtained	that	supports	‘superposition’.	

That	 is,	 if	! = '"!" +	'&!&	is	 the	 input	or	 initial	 /	 source	 condition	 to	 a	 system	

modelled	by	a	linear	operator	)w-x ,	then	the	response	is	

	)w-x[!] = '")w-x[!"] + '&)w-x[!&]	

by	either	 ‘Hilbert	superposition’	or	 ‘Volterra	superposition’.	The	ways	 in	which	

we	understand	the	semantic	architecture	of	 ‘superposition’	in	the	various	cases	

and	 thus	 the	 sense	 in	which	we	 can	 speak	 of	 the	 ‘composition’	 of	 the	 input	 or	

response	varies	from	application	to	application.	

We	 can	 decompose	 f	 in	 various	 ways,	 but	 decompositions	 into	

(generalized)	 Fourier	 modes	 are	 usually	 available,	 at	 least	 in	 principle,	 for	

systems	 modelled	 with	 linear	 differential	 equations.	 Whilst	 the	 physical	

significance	 of	 such	 decompositions	 must	 be	 analysed	 locally,	 minimally	 the	

observation	that	such	decompositions	are	‘superpositions’	is	associated	with	the	

physical	salience	for	the	system	of	the	simple	components	identified.	

In	 practice	 most	 systems	 modelled	 with	 linear	 differential	 or	 integral	

equations	 exhibit	 a	 weak	 degree	 of	 nonlinearity	 when	 the	 linearizing	

idealizations	 or	 approximations	 are	 removed.	 However,	 in	 many	 cases	 the	

nonlinearity	 is	 sufficiently	weak	 that	 it	may	 be	 ignored	 for	 practical	 purposes,	

and	‘superposition’	is	approximately	true,	so	that	

)yziw{|yw}[!] ≈ '")yziw{|yw}[!"] + '&)yziw{|yw}[!&]	

This	 contrasts	 with	 the	 behaviour	 of	 nonlinear	 systems	 for	 which	 the	

behaviour	is	modelled	by	a	nonlinear	operator	�x|xw-x 	in	which	the	nonlinearity	is	

significant	and	cannot	be	ignored,	as	will	be	the	case	in	interacting	QFTs:	

�x|xw-x[!(Ä, $)] ≠ '"�x|xw-x[!"(Ä, $)] + '&�x|xw-x[!&(Ä, $)].	
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That	 is,	 solutions	 or	 responses	 to	 different	 inputs	 or	 initial	 conditions	 do	 not	

combine	 in	 any	 simple	 way	 according	 to	 ‘superposition’,	 however	 broadly	

understood.	 This	 means	 that	 one	 cannot	 construct	 solutions	 or	 responses	 to	

nonlinear	 differential	 or	 integral	 systems	 from	 simple	 solutions	 or	 inputs,	 and	

one	must	adopt	iterative	or	approximation	techniques	to	solve	for	the	response	

of	a	nonlinear	system	that	likely	introduces	semantic	mimicry.	That	is,	we	cannot	

establish	a	descriptive	opportunity	 to	 form	a	reasoning	advantage	 in	modelling	

nonlinear	 systems	 from	 ‘simple’	 solutions	 or	 idealized	 inputs	 and	 responses.11	

Whilst	 the	 input	 may	 be	 decomposed	 by	 familiar	 means,	 the	 components	

obtained	will	lack	physical	salience.	

For	 example,	 we	 can	 usually	 form	 a	 Fourier	 decomposition	 or	 Fourier	

transform	 of	 an	 input	 f	 to	 a	 nonlinear	 system	 or,	 indeed	 of	 the	 response	 of	 a	

nonlinear	system	modelled	as	a	function	u.	But	the	semantic	architecture	or	the	

physical	significance	of	the	decompositions	of	f	or	u	differ	here	from	that	of	the	

linear	 system	 as	 the	 individual	 terms	 in	 the	 decomposition	 are	 not,	 or	 are	 not	

related	 to,	 eigenfunctions	 or	 ‘simple	 solutions’	 to	 the	 equation	 modelling	 the	

nonlinear	 system.	 So	 the	 significance	 of	 such	 Fourier	 decomposition	 is	

comparable	with	that	of	 the	epicycles	of	epicyclical	astronomy	(§4.5.1).	That	 is,	

the	Fourier	decomposition	of,	or	application	of	 ‘superposition’	to	an	input	to	or	

response	of	a	nonlinear	system	mimics	that	of	its	significance	in	a	linear	system.	

Confusion	arises	when	the	shifting	semantic	support	is	not	noticed.	

That	 is,	 for	 the	 nonlinear	 system	 the	 semantic	 support	 of	 the	 Fourier	

decomposition	 is	 solely	 that	 of	 the	 mathematical	 decomposition	 relative	 to	 a	

basis	of	a	function	in	a	suitable	Hilbert	space,	but	where	the	decomposition,	and	

Hilbert	 space	 structure,	has	no	physical	 salience	with	respect	 to	 the	 system,	or	

mathematical	 salience	 to	 the	 nonlinear	 equation	 modelling	 it,	 unlike	 in	 the	

Sturm-Liouville	 systems	 (§4.4).	 So,	 knowledge	 of	 the	 response	 of	 a	 nonlinear	

system	 to	 any	 individual	 term	 in	 a	 Fourier	 decomposition	of	 the	 input	 tells	us	

nothing	about	 the	system’s	response	to	the	 input,	as	 the	responses	do	not	 take	

the	same	form	individually	and	in	combination.	

																																																								
11	Leaving	aside	application	of	the	nonlinear	superposition	principle	in	special	cases,	where	the	
physical	significance	of	the	‘components’	is	not	at	all	clear.	See	Menini	and	Tornambé	(2011)	for	
examples.	Such	cases	do	not	occur	in	the	QFT	that	I	consider,	so	I	shall	not	consider	this	further.	
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This	observation	will	prove	important	in	QFTs	with	interactions.	Fourier	

decompositions	 can	 be	 performed	 on	 solutions	 of	 the	 nonlinear	 coupled	 field	

equation,	but	such	decompositions	 lack	physical	significance	since	the	terms	of	

the	Fourier	decomposition	are	not	 solutions	of	 the	 field	equation.	Rather,	 such	

Fourier	decompositions	have	only	 the	mathematical	 support	as	 in	§4.3,	 and	no	

physical	salience,	which	can	lead	to	confusion	via	semantic	mimicry.	

	

5.3.2	Volterra	series	and	semantic	mimicry	

Semantic	mimicry	can	occur	 in	relation	to	the	Volterra	series	 technique	 for	 the	

solution	 of	 nonlinear	 integral	 equations.	 Here,	 Volterra	 extended	 his	 ‘heredity	

principle’	 to	 allow	 for	 better	 modelling	 of	 physical	 systems	 to	 allow	 for	

nonlinearity	 once	 the	 linear	 idealization	 is	 removed,	 although	 there	 is	 an	

important	 shift	 in	 the	 semantic	 architecture	 in	 moving	 beyond	 the	 linear	

approximation.	This	method	 is	relevant	 to	us	given	 formal	similarities	between	

the	Volterra	series	and	Dyson’s	series	in	QFT.12	

Consider	a	nonlinear	system	with	 input	u(t)	and	output	y(t)	where	their	

relationship	 is	 given	 by	 a	 time-invariant	 functional	 operator	ℋ[∙] . 13 	One	

expresses	ℋ	as	a	series	of	operators	of	different	orders	so	that	

	 r($) = ∑ rÖ($) = ∑ ℋÖ[M($)]C
ÖÜV

C
ÖÜV 		

where	

ℋÖ[M($)] = = …= ℎÖ(U",… ,
C

àâÜDC

C

àäÜDC
UÖ)ã M($ − Uy)BU" …BUÖ

Ö

yÜ"
	

ℋÖ	is	the	j-th	order	Volterra	operator	and	hj	the	j-th	order	Volterra	kernel.	If	j=1	

is	sufficient	to	characterize	the	system’s	behaviour	(i.e.	the	kernels	and	operators	

are	all	zero	for	j>1)	then	the	system	is	linear	and		

ℋ[M($)] = ℋ"[M($)] = = ℎ(U)M($ − U)BU
C

àÜDC
	

where	h	is	the	Green’s	function,	the	impulse	response	as	in	§5.2.2	(cf.	Dunn	2013,	

40).		

																																																								
12	Greiner	and	Reinhardt	note	that	in	QFT	the	Green’s	functions	G(n)(x1,…xn)	obtained	via	the	
generating	functional	W[J]	or	Z[J]	are	the	coefficients	of	the	Volterra	series	of	the	generating	
functional	W[J]	(1996,	380).		
13	The	following	draws	upon	Dunn	(2013);	Rugh	(1981);	Carassale	and	Kareem	(2010);	Schetzen	
(1980).	
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In	the	nonlinear	case	the	 j=1	term	is	no	 longer	sufficient	 to	characterize	

the	 system’s	 behaviour.	 Heuristically,	 the	 higher-order	 hj	 terms	 can	 be	

considered	 as	 ‘higher-order’	 impulse	 responses	 (Dunn	 2013,	 54-57).	 Whilst	 it	

may	be	tempting	to	consider	such	‘higher-order	responses’	as	a	‘superposition’	of	

kernels	or	responses	of	various	orders,	 this	 is	a	misapplication	(cf.	Dunn	2013,	

40).	No	individual	term	hj	is	a	solution	to	the	equation	for	some	impulse,	and	so	

does	not	represent	a	possible	response	of	the	system,	whether	idealized	or	not.	

The	 hj	 are	 not	 associated	 with	 any	 partial	 laws	 or	 trace	 principles.14 	The	

individual	 terms	 are	 correction	 terms	 that	 function	 together	 as	 a	 whole	 to	

approximate	 the	 system’s	 behaviour.15	For	 instance	 h2	 does	 not	 individually	

characterize	a	response	that	could	actually	be	obtained	from	an	input,	idealized	

or	not.	Rather,	 it	 is	a	second-order	correction	term	to	the	 linear	approximation	

from	h1.	h3	is	then	a	correction	to	h2,	and	so	on.	The	Volterra	series	solution	is	a	

perturbation	about	a	linear	solution	(Schetzen	1980,	150),	and	may	be	thought	of	

as	a	power	series	with	‘memory’	(Schetzen	1980,	8).16		

Individual	 terms	 in	 a	 Volterra	 series	 solution	 to	 a	 nonlinear	 differential	

equation	 can	 ‘mimic’	 the	 role	 of	 individual	 terms	 in	 a	 Fourier	 series	 (or	

transform)	solution.	The	individual	terms	in	the	Volterra	series	do	not	compose	

the	 solution	 by	 superposition,	 but	 are	 a	 series	 of	 corrections	 to	 a	 lower	 order	

estimate	of	the	solution,	as	they	do	not	represent	partial	laws	that	take	the	same	

form	in	and	out	of	combination,	or	support	trace	principles.	

	

5.4	Summary	

To	 summarize	 our	 study	 of	 superposition	 in	 classical	 physics,	 we	 note	 that	

within	classical	physics	the	concepts	of	isolation,	component	and	superposition,	

and	 Fourier	 techniques,	 have	 façade	 structures.	 There	 are	 a	 number	 of	 local	

																																																								
14	Perhaps	there	is	a	difficulty	again	in	application	of	the	Mill-Ramsey-Lewis	account	of	laws	in	
denying	that	the	hj	are	associated	with	laws.	That	is,	if	the	Volterra	series	offers	our	simplest	and	
strongest	account	of	the	behaviour	of	some	nonlinear	system	then	there	is	nothing	to	deny	the	hj	
the	status	of	(partial)	laws.	But	this	is	intuitively	wrong,	and	we	should	ensure	that	the	hj	do	not	
count	as	laws.	The	hj	do	not	support	inductive	inferences	or	counterfactual	reasoning,	other	than	
identifying	trends	(cf.	Holmes	2013,	1-46),	and	are	not	abstractable.	
15	Worse	still,	in	a	number	of	important	cases	(such	as	Dyson’s	series	in	QFT),	the	series	obtained	
is	an	asymptotic	series	in	the	sense	that	the	series	diverges	even	though	the	first	few	terms	
provide	a	good	approximation	to	the	solution.	See	e.g.	Holmes	(2013,	1-46).	
16	Also	see	Maia	et	al	(1997,	404-405).	
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related	patches	of	application	upon	which	the	semantic	architecture	differs,	and	

semantic	mimicry	can	occur	if	the	underlying	architecture	is	not	scrutinized.	

‘Superposition’	can	in	one	sense	be	‘promiscuous’	in	its	application,	but	it	

supports	multiple	‘natural’	decompositions	so	that	it	is	not	arbitrary	where	there	

is	more	 than	 one	 genuine	 application.	Decomposition	 according	 to	 Volkmann’s	

‘isolation	/	superposition’	device	may	be	understood	 in	Wilsonian	terms	as	 the	

establishment	 of	 a	 descriptive	 opportunity	 that	 supports	 physically	 salient	

explanations	 and	 counterfactual	 reasoning.	 Moreover,	 ‘superposition’	 is	

associated	with	the	ability	to	abstract	partial	states	or	responses	of	a	system	that	

correspond	 to	 partial	 laws	 that	 take	 the	 same	 form	 individually	 and	 in	

combination	whilst	 not	 stating	 the	 facts	 individually,	 supporting	 some	 form	of	

‘trace	principle’.	

Important	 contrasts	 are	 to	 be	 drawn	 between	 linear	 and	 nonlinear	

systems,	 and	 Fourier	 decompositions	 performed	 either	 within	 or	 outside	 the	

context	of	eigenfunction	decompositions	of	operators	modelling	the	behaviour	of	

the	system.	

In	the	next	chapter	we	finally	turn	to	‘quantum	superposition’.	
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Chapter	6	

	

Quantum	superposition	

	

6.1	Overview	

I	shall	now	consider	the	‘prolongation’	of	‘superposition’	and	Fourier	techniques	

to	 new	patches	 in	 quantum	physics.	 As	 before,	 ‘superposition’	 and	 the	 Fourier	

techniques	 have	 subpatch	 structures,	 so	 that	 the	 physical	 significance	 of	

components	differs	from	context	to	context,	and	semantic	mimicry	occurs	in	QFT	

especially.	 What	 we	 shall	 see	 over	 the	 following	 chapters	 is	 that	 in	 QFT	 the	

particle	concept	(on	the	‘field	quanta’	patch,	cf.	§1.2.6)	both	in	terms	of	type	and	

number	stands	or	falls	with	the	applicability	of	‘superposition’.		

Here,	and	in	chapter	7,	I	briefly	consider	the	origins	of	the	application	of	

‘superposition’	and	Fourier	techniques	in	quantum	physics	that	are	foundational	

to	 their	 on-going	 use.	 I	 consider	 non-relativistic	 quantum	 mechanics	 (NRQM)	

first	 here	 in	 chapter	 6,	 and	 QFT	 in	 chapter	 7.	 Ehrenfest	 (1925)	 applied	 the	

concept	of	superposition	to	quantized	normal	modes	of	the	electromagnetic	field	

in	fledgling	QFT,	and	Schrödinger	introduced	‘superposition’	to	NRQM	(1926a-e),	

again	 in	 relation	 to	 the	 normal	 modes	 of	 quantum	 systems.	 Fourier	 and	

eigenfunction	 techniques	 were	 developed	 simultaneously	 in,	 and	 were	

foundational	to,	NRQM	and	the	emerging	QFT,	although	‘quantum	superposition’	

is	 perhaps	 primarily	 associated	 with	 Schrödinger.	 Since	 QFT	 inherits	 many	

aspects	 of	 ‘quantum	 superposition’	 from	 NRQM,	 and	 because	 there	 are	 fewer	

conceptual	difficulties	 in	NRQM	than	 in	QFT,	 I	briefly	consider	superposition	 in	

NRQM	first	even	though	my	ultimate	 focus	 is	on	QFT.	These	brief	and	selective	

historical	 surveys	 will	 help	 to	 clarify	 the	 significance	 and	 limitations	 of	

‘superposition’,	 especially	 in	 QFT,	 which	 are	 perhaps	 more	 clearly	 seen	 by	

considering	their	historical	origins	than	in	later	developments	of	the	theory.1	The	

discussion	 will	 be	 somewhat	 broad-brush	 to	 orient	 the	 reader	 for	 the	 more	

detailed	analyses	in	subsequent	chapters.	
																																																								
1	Cf.	Wilson,	citing	Duhem	(with	qualified	approval),	‘The	real	introduction	to	the	expression	of	a	
principle	of	physics	is	a	historical	introduction.’	(Analysis	of	Mach’s	Science	of	Mechanics,	p.117	in	
Wilson	2017,	153).	
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There	 are	 two	 important	 issues	 regarding	 the	 semantic	 architecture	 of	

‘quantum	 superposition’	 that	 I	 shall	 not	 consider	 beyond	 a	 few	 remarks.	 First,	

there	 is	 the	 issue	 of	 what	 characterizes	 a	 system	 as	 ‘quantum’.	 I	 adopt	 a	

characterization	set	out	by	Ruetsche	as	a	standard	account	in	NRQM:	
In	 the	 Hamiltonian	 quantization	 scheme,	 a	 classical	 theory	 cast	 in	 Hamiltonian	 form	 is	
quantized	by	promoting	its	canonical	observables	to	symmetric	operators	!"# ,	$̂# 	acting	on	
some	 Hilbert	 space	ℋ 	and	 obeying	 commutation	 relations	 corresponding	 to	 the	
fundamental	Poisson	brackets	of	the	classical	theory.	The	familiar	Heisenberg	form	of	the	
canonical	 commutation	 relations	 (CCRs),	 representing	 a	 quantization	 of	 [a]	 classical	
theory	with	phase	space	ℝ()	and	canonical	observables	qi	and	pi	is	…	

*!"#, !",- = *$̂#	, $̂, 	- = 0,					*$̂#	, !",- = −2345#,	
where	34	is	the	identity	operator	[and	h	is	suppressed	via	natural	units].	(2011,	36,	but	cf.	
117-122).2	

The	CCRs	form	the	‘physical	core	of	a	quantum	theory’	as	Ruetsche	puts	it.	This	

treatment	 extends	 to	 QFT,	 with	 !"# ,	 $̂# 	replaced	 by	 fields	6"# ,	 7"# 	with	 the	

commutator	 adopted	 for	 bosonic	 fields,	 and	 the	 anticommutator	 for	 fermionic	

fields.	 	The	Hilbert	space	upon	which	the	(field)	operators	(as	distributions)	act	

is	 the	 space	of	 states	of	 the	 system,	and	 the	 states	evolve	 linearly,	 or	unitarily,	

according	 to	 Schrödinger’s	 equation.	 This	 is	 often	 taken	 as	 ‘axiomatic’	 of	what	

constitutes	 a	 quantum	 system,	 with	 the	 interpretation	 of	 the	 Hilbert	 space	 of	

states	 as	 the	 locus	 of	 the	 interpretation	 of	 the	 theory	 according	 to	 ‘physicists’	

QFT’,	although	complications	arise.3			

Secondly,	there	is	the	notorious	‘measurement	problem’	which	has	given	

rise	to	various	(perhaps)	speculative	interpretations	of	or	additions	to	quantum	

theory	 (e.g.	Bohmian,	GRW,	Everettian).4	The	 ‘measurement	problem’	has	been	

bound	up	with	 ‘quantum	 superposition’	 often	with	 respect	 to	 consideration	of	

macroscopic	 systems	 in	 order	 to	 problematize	 the	 superposition	 concept,	

following	 Schrödinger	 (1935).	 However,	 the	 measurement	 problem,	 as	 often	

characterized,	 conflates	 different	 issues	 so	 it	 is	 not	 clear	 that	 the	 problem	 is	

properly	posed	 (Cartwright	1983,	163-216).	From	a	Wilsonian	perspective	 the	

‘measurement	 problem’	might	 be	 understood	 as	 reflecting	 ‘Theory	 T	 thinking’	
																																																								
2	As	Ruetsche	goes	on	to	note,	there	are	mathematical	difficulties	with	the	familiar	Heisenberg	
CCRs,	so	that	the	Weyl	form	of	the	CCRs	is	preferred,	although	I	shall	not	consider	this	as	it	is	
tangential	to	the	analysis	that	I	wish	to	present.		
3	In	particular,	as	regards	unitarily	inequivalent	representations.	However,	the	operators	form	a	
C*	algebra,	and	there	are	advantages	of	interpreting	the	theory	in	terms	of	such	algebras	rather	
than	their	Hilbert	space	representations.	This	raises	the	question	of	where	the	proper	locus	is	for	
the	interpretation	of	QFT,	as	discussed	by	Ruetsche	(119-147),	and	forms	the	basis	of	the	‘Fraser-
Wallace	debate’	(see	chapter	1).	‘Algebraic’	interpretations	bring	their	own	difficulties,	and	
cannot	(as	yet)	accommodate	interactions,	which	is	the	focus	of	this	study.		
4	See	Lewis	(2016)	for	a	recent	philosophical	overview	and	discussion.	
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and	results	from	an	attempt	to	apply	a	single	theory	or	theoretical	framework	to	

what	might	be	considered	to	be	the	theory	façade	of	quantum	physics,	especially	

in	 the	 context	 of	 interactions	 of	 quantum	 systems	 with	 macroscopic	 systems.	

That	 is,	 ‘linear	Schrödinger	evolution’	and	 ‘nonlinear	Born	rule	/	von	Neumann	

collapse’	 might	 be	 regarded	 as	 two	 patches	 of	 the	 theory	 façade	 of	 quantum	

physics,	and	one	should	not	necessarily	expect	to	discover	a	unifying	theoretical	

framework	within	the	context	of	NRQM,	especially	when	NRQM	is	pressed	 into	

the	 description	 of	 macroscopic	 systems. 5 	‘Quantum	 superposition’	 may	 be	

discussed	 fruitfully	 to	 philosophical	 benefit	 without	 addressing	 the	

measurement	problem.		

	

6.2	The	origins	of	quantum	superposition	in	NRQM		

I	 now	 review	 the	 origins	 of	 ‘superposition’	 in	 quantum	 physics.	 Schrödinger	

explicitly	introduced	it	in	a	collection	of	six	papers	on	wave	mechanics	in	1926.	

This	 collection	 comprised	 a	 series	 of	 four	 papers,	 ‘Quantization	 as	 Problem	of	

Proper	 Values’	 (QPPV)	 I-IV,	 and	 two	 other	 papers.	 He	 repeatedly	 draws	 upon	

Courant	and	Hilbert	(1924)	and	applies	their	definition	of	superposition	(‘Hilbert	

superposition’,	1924,	221-320),	situated	in	a	discussion	of	mechanical	vibrations	

modelled	by	Sturm-Liouville	theory,	to	the	quantum	context.6		

In	 QPPV	 I	 Schrödinger	 introduces	 the	 ‘wave-function’	 into	 modelling	 the	

atom,	which	he	associates	with	a	vibration	process	(as	per	Courant	and	Hilbert),	

but	does	not	elaborate	 (1926a,	9).	There	are	no	 references	 to	 superposition	 in	

QPPV	I-II,	despite	introducing	analogies	of	the	wave-function	with	optics	in	QPPV	

																																																								
5	Recall	Wilson’s	theory	façade:	‘A	descriptive	complex	[of	various	models	applied	in	different	
contexts	of	some	phenomenon]	of	this	quilt-like	pattern	supplies	a	good	example	of	…	a	façade:	a	
set	of	patches	or	plateaus	that	are	formally	inconsistent	with	one	another	but	are	stitched	
together	by	“for	more	details	see	…”	linkages	or	other	bridgework.	Often	the	whole	is	fabricated	
in	such	a	manner	that,	if	we	don’t	pay	close	attention	to	its	discontinuous	boundary	joints	and	
shifts	in	mathematical	setting,	we	might	suppose	that	we	are	looking	at	a	theory	ready	to	be	
axiomatized’	(2006,	191-192).	In	other	words,	philosophical	dilemmas	stemming	from	the	
measurement	problem	might	be	diagnosed	by	observing	that	it	has	been	incorrectly	supposed	
that	quantum	physics	has	a	‘Theory	T’	structure	rather	than	a	façade	structure.	Such	façade	
structures	are	ubiquitous	in	physics	and	engineering	but	do	not	lead	to	the	same	levels	of	
metaphysical	angst	as	in	quantum	physics,	possibly	because	the	latter	is	taken	to	be	a	more	
fundamental	theory.	As	we	shall	see	however,	our	conceptual	ignorance	at	the	level	of	quantum	
theories	is	much	greater	than	we	often	think.	
6	For	the	centrality	of	Courant	and	Hilbert	(1924)	to	the	development	of	quantum	physics	see	
Coleman	(2019,	1103).	
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II,	 and	 the	 introduction	 of	 ‘linear	 aggregates’	 of	 ‘proper	 vibrations’,	 i.e.	 the	

‘normal	modes’,	again	in	QPPV	II:	
it	 is	not	 just	the	single	proper	vibration	that	furnishes	a	possible	state	of	vibration,	but	an	
arbitrary,	finite	or	infinite,	linear	aggregate	of	such	vibrations.	(1926b,	34).	

It	is	in	the	third	paper	in	the	collection	(‘The	Continuous	Transition	from	Micro-	

to	Macro-Mechanics’)	that	 the	 first	appeal	 to	superposition	 is	made,	by	analogy	

with	 classical	 vibrating	 mechanical	 systems	 analysed	 with	 Sturm-Liouville	

theory,	 as	per	Courant	and	Hilbert.	This	 is	 in	 the	 context	of	 a	discussion	of	 the	

‘proper	vibrations’	(normal	modes)	of	the	quantized	simple	harmonic	oscillator	

(QSHO):	
As	in	the	differential	equation	of	a	vibrating	string	or	of	any	other	vibrating	system,	ψ	[the	
“wave-function”]	 is	 given	 as	 a	 superposition	 of	 pure	 time	 harmonic	 (i.e.	 “sinusoidal”)	
vibrations,	 the	 frequencies	 of	 which	 agree	 exactly	 with	 the	 spectroscopic	 “term	
frequencies”	of	the	micro-mechanical	system.	For	example,	in	the	case	of	the	linear	Planck	
oscillator	…	we	get	ψ	as	the	superposition	of	the	following	proper	vibrations:	

8) = 9:
;<
( =)(?)9(A#BCD	

E) =
2G + 1
2

EJ; G = 0,1,2,3,…	
The	Hn’s	 are	 the	 polynomials	 [Courant	 and	Hilbert,	 76]	 named	 after	Hermite.	…	At	 first	
sight	it	appears	very	strange	to	try	to	describe	a	process,	which	we	previously	regarded	as	
belonging	to	particle	mechanics,	by	a	system	of	such	proper	vibrations.	(1926c,	41-42)	

He	goes	on	to	relate	macro-systems	to	micro-systems,	but	without	reference	to	

superposition.	 In	QPV	III	he	again	discusses	Courant	and	Hilbert’s	presentation	

of	Sturm-Liouville	theory,	although	without	reference	to	superposition,	referring	

instead	to	‘the	simultaneous	existence	of	…	two	proper	vibrations’	(1926d,	83)	in	

language	 reminiscent	 of	 Bernoulli	 or	 Herschel	 (cf.	 chapter	 4).	 In	 QPPV	 IV	

Schrödinger	 addresses	 the	 physical	 significance	 of	 the	 wave-function	 and	

superposition	in	NRQM:	
the	following	conception	…	allows	the	true	meaning	of	ψ	to	stand	out	more	clearly.	88N	is	a	
kind	 of	 weight-function	 in	 the	 system’s	 configuration	 space.	 The	 wave-mechanical	
configuration	 is	 a	 superposition	 of	 many,	 strictly	 speaking	 of	 all,	 point-mechanical	
configurations	 kinematically	 possible.	 Thus,	 each	 point-mechanical	 configuration	
contributes	 to	 the	 true	 wave-mechanical	 configuration	 with	 a	 certain	weight,	which	 is	
given	precisely	by	88N.	If	we	like	paradoxes,	we	may	say	that	the	system	exists,	as	it	were,	
simultaneously	in	all	the	positions	kinematically	imaginable,	but	not	“equally	strongly”	in	
all.	…	This	new	interpretation	may	shock	us	at	first	glance,	since	we	have	often	previously	
spoken	 in	 such	 an	 intuitive	 concrete	way	 of	 the	 “ψ-vibrations”	 as	 though	 of	 something	
quite	real.	But	there	is	something	tangibly	real	behind	the	present	conception	also,	namely,	
the	very	real	electrodynamically	effective	fluctuations	of	the	electric	space	density.	The	ψ-
function	is	to	do	no	more	and	no	less	than	permit	of	the	totality	of	these	fluctuations	being	
mastered	and	 surveyed	mathematically	 by	 a	 single	 partial	 differential	 equation.	 (1926e,	
120)	

He	 anticipates	 the	 difficulties	 associated	 with	 the	 interpretation	 of	 the	 wave-

function	that	have	pervaded	quantum	physics,	concluding:		
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Our	 inability	 to	 give	more	 accurate	 information	…	 is	 intimately	 connected	with	 the	 fact	
that,	in	[the	appropriate	Schrödinger’s	equation],	we	have	before	us	only	the	substitute	–	
extraordinarily	 convenient	 for	 the	 calculation,	 to	 be	 sure	 –	 for	 a	 real	 wave	 equation	 of	
probably	the	fourth	order	(1926e,	123).	

In	 the	remaining	papers,	and	 in	 four	 lectures	delivered	 in	1928	later	published	

together	 with	 the	 papers	 (1982),	 he	 does	 not	 make	 any	 reference	 to	

superposition	or	co-existent	vibrations.		

It	was	later,	in	response	to	Einstein,	Podolsky	and	Rosen’s	famous	paper	

(1935),	 that	 Schrödinger	 introduced	 his	 notorious	 thought	 experiment	 with	 a	

cat.	 He	 supposed	 that	 ‘quantum	 superposition’	 could	 be	 prolonged	 to	

macroscopic	 objects	 with	 the	 same	 semantic	 architecture	 regarding	 system	

evolution	 and	measurement	 to	 argue	 that	 the	 then	 orthodox	 interpretation	 of	

quantum	 mechanics	 was	 untenable	 (Schrödinger	 1935).	 So	 whilst	 initially	

(1926)	 Schrödinger	 introduced	 ‘superposition’	 to	 quantum	 physics	 by	 simple	

‘prolongation’	of	the	concept	via	Hilbert’s	treatment	of	Sturm-Liouville	theory	in	

classical	physics,	as	further	layers	of	interpretation	develop,	and	‘superposition’	

becomes	 entangled	 with	 other	 issues	 involving	 measurement	 that	 may	 arise	

from	a	failure	to	recognize	the	nature	of	NRQM	as	a	theory	façade,	the	concept	is	

dragged	 to	 the	 point	where	 conceptual	 confusions	 arise,	 as	 in	 the	 cat	 thought	

experiment.	 This	 indicates	 that	 care	 is	 required	 in	 clarifying	 the	 proper	

application	of	‘superposition’	in	the	quantum	context.	

However,	whilst	Schrödinger	may	have	lost	confidence	in	‘superposition’	in	

quantum	physics,	Dirac	made	 the	 concept	 foundational,	 as	 reflected	 in	the	 first	

chapter	of	The	Principles	of	Quantum	Mechanics	(1930).	In	the	first	edition	Dirac	

defines	the	superposition	principle	 in	quantum	mechanics	without	reference	to	

Sturm-Liouville	theory,	but	with	reference	to	measurement:	
We	may	say	that	a	state	A	may	be	formed	by	a	superposition	of	states	B	and	C	when,	if	any	
observation	 is	 made	 on	 the	 system	 in	 state	 A	 leading	 to	 any	 result,	 there	 is	 a	 finite	
probability	for	the	same	result	being	obtained	when	the	same	observation	on	the	system	
on	one	(at	least)	of	the	two	states	B	and	C.	The	Principle	of	Superposition	says	that	any	two	
states	B	and	C	may	be	superimposed	in	accordance	with	this	definition	to	form	a	state	A	
and	indeed	an	infinite	number	of	different	states	A	may	be	formed	by	superposing	B	and	C	
in	 different	 ways.	 This	 principle	 forms	 the	 foundation	 of	 quantum	 mechanics.	 It	 is	
completely	opposed	to	classical	ideas,	according	to	which	the	result	of	any	observation	is	
certain	and	for	any	two	states	there	exists	an	observation	that	will	certainly	lead	to	two	
different	results.	(1930,	15)	

Although	 Dirac	 significantly	 rewrote	 Principles	 in	 subsequent	 editions,	 his	

approach	to	‘superposition’	changes	little,	suggesting	later	that	
the	superposition	that	occurs	in	quantum	mechanics	is	of	an	essentially	different	nature	from	
any	 occurring	 in	 the	 classical	 theory,	 as	 is	 shown	 by	 the	 fact	 that	 the	 quantum	
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superposition	principle	demands	indeterminacy	in	the	results	of	observations	in	order	to	
be	capable	of	a	sensible	physical	interpretation	(1958,	14).		
However,	 whilst	 there	 are	 important	 differences	 between	 the	 semantic	

architecture	 of	 ‘superposition’	 in	 classical	 and	 quantum	 contexts	 (or	 patches),	

Dirac	 overstates	 the	 discontinuity,	 as	 might	 be	 indicated	 by	 Schrödinger’s	

original	prolongation	of	the	concept	via	‘quantized	Sturm-Liouville	theory’.	That	

is,	 unlike	 Schrödinger’s	 early	 comments	 on	 ‘superposition’,	 Dirac’s	

characterization	or	definition	of	‘superposition’	pays	insufficient	attention	to	the	

supporting	 architecture	 of	 the	 prolongation	 of	 the	 concept	 from	 its	 classical	

home	 to	 its	 quantum	 application.	 But	 confusion	 arises	when	 ‘superposition’	 is	

defined	via	 measurement,	 rather	 than	 measurement	 outcomes	 being	 explained	

via	components	of	a	‘superposition’	with	quantum	architecture.	

Moreover,	 as	 in	 classical	 physics,	 application	 of	 ‘superposition’	 in	

quantum	 physics	 may	 be	 disputed.	 Reflecting	 Dirac,	 Zeh	 describes	 the	

superposition	 principle	 as	 ‘the	main	 axiom	 of	 quantum	 theory’	 (1970,	 69-76).	

However,	quantum	mechanics	may	be	developed	without	reference	to	it.	In	von	

Neumann’s	Mathematical	Foundations	of	Quantum	Mechanics	it	is	the	uncertainty	

principle	that	is	central	rather	than	the	superposition	principle	(1955	[1932]	92,	

108),	 and	 there	 do	 not	 appear	 to	 be	 any	 references	 to	 ‘superposition’,	 even	

though	 von	 Neumann	 regularly	 deals	 with	 linear	 combinations	 of	 vectors	 (or	

rays)	 in	 Hilbert	 spaces.	7	Moreover,	 Feynman	 (2006a	 [1965])	 rarely	 refers	 to	

‘superposition’.	 More	 recently,	 in	 a	 philosophical	 context,	 ‘superposition’	 is	

absent	 in	Wallace’s	 statement	 and	 summary	 of	 ‘orthodox’	 quantum	mechanics,	

only	mentioned	briefly	in	the	context	of	Everettian	interpretation	(2019),	while	

Teller	(1995)	repeatedly	applies	the	concept	in	quantum	physics,	in	the	context	

of	QFT	in	particular.	

	

6.3	‘Superposition’	in	‘orthodox’	or	‘textbook’	NRQM	

6.3.1	Overview	of	‘quantum	superposition’	in	NRQM	

As	in	classical	physics,	there	are	different	patches	of	‘superposition’	in	quantum	

physics.	 ‘Superposition’	 is	 initially	 established	 on	 a	 quantum	 patch	 because	 a	

quantum	 system	 is	 characterized	 by	 a	 state	 that	 evolves	 according	 to	 a	 linear	

partial	 differential	 equation	 (Schrödinger’s	 equation).	 The	 superposition	
																																																								
7	Cf.	Hughes	(1989)	for	discussion	of	the	use	of	‘superposition’	by	Dirac	but	not	von	Neumann.			
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principle	is	properly	applied	to	(simple)	solutions	of	Schrödinger’s	equation	via	

‘Hilbert	superposition’,	i.e.	to	possible	states	that	the	system	can	occupy	that	can	

be	regarded	as	‘simple’.	

Moreover,	 observables	 in	 NRQM	 are	 associated	 with	 self-adjoint	

operators	 acting	 on	 the	 Hilbert	 space	 of	 states	 and	 thus	 have	 eigenstate	

representations	 by	 the	 spectral	 theorem.	 Such	 eigenstates	 are	 ‘simple’	 states	

associated	with	that	observable,	being	the	possible	states	that	the	system	may	be	

measured	 in,	 with	 the	 value	 of	 that	 observable	 being	 the	 eigenvalue	

corresponding	 to	 the	 eigenstate.	 That	 is,	 the	 eigenstates	 of	 the	 observable	 of	

interest	form	a	complete	set	of	simple	states	for	that	observable,	which	are	thus	

simple	solutions	to	Schrödinger’s	equation	for	that	observable.	These	eigenstates	

are	then	partial	states	that	evolve	according	to	partial	laws	(from	Schrödinger’s	

equation),	 taking	 the	 same	 form	 individually	and	 in	 linear	 combination,	whilst	

not	stating	the	facts	in	the	sense	discussed	in	chapter	3.	

This	 is	 ‘quantum	superposition’,	where	a	new	 rule	emerges	 to	 interpret	

the	 coefficients	 of	 a	 superposition	 of	 eigenstates	 of	 an	 observable	 as	 the	

amplitude	for	measuring	the	system	in	that	state.	However,	as	we	saw	in	chapter	

5	 decomposition	 of	 the	 quantum	 state	 according	 to	 ‘superposition’	 is	 ‘natural’	

but	 promiscuous	 although	 not	 arbitrary	 since	 in	 general	 different	 observables	

have	 different	 eigenstate	 decompositions	 for	 the	 same	 state.	 Moreover,	 the	

architecture	of	 ‘superposition’	 as	applied	 to	 the	energy	observable	differs	 from	

that	of	others	owing	to	the	role	of	the	Hamiltonian	in	Schrödinger’s	equation,	and	

hence	significance	of	its	eigenstates	as	considered	in	the	Sturm-Liouville	context.	

I	 now	 clarify	 these	 comments,	 but	 we	 may	 already	 see	 that	 ‘quantum	

superposition’	 is	 in	 continuity	 with,	 rather	 than	 essentially	 different	 from,	

classical	superposition.	

	

6.3.2	Schrödinger	picture	

First	 I	 consider	 ‘superposition’	 in	 NRQM	 in	 the	 Schrödinger	 picture	 by	

developing	Wallace’s	(2019)	concise	summary	of	‘orthodox’	quantum	mechanics.	

Although	 Wallace	 does	 not	 refer	 to	 ‘superposition’,	 he	 presents	 a	 succinct	
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summary	suitable	for	my	purposes.8	The	‘structural	core’	of	quantum	mechanics	

consists	of:	
1.	States:	The	possible	states	of	a	quantum	system	are	represented	by	normalised	vectors	
in	some	complex	Hilbert	space.	
2.	 Observables:	 To	 any	 physical	 quantity	 used	 to	 describe	 the	 system	 (often	 called	 an	
‘observable’)	is	associated	a	self-adjoint	operator	on	that	same	Hilbert	space.	
3.	 Dynamics:	 The	 state	 of	 a	 quantum	 system	 evolves	 over	 time	 according	 to	 the	
Schrödinger	equation:	

O
OP
|8(P)⟩ = −

2
ℏ
=T|8(P)⟩	

where	=Tis	the	self-adjoint	operator	corresponding	to	the	system’s	energy.	
Wallace	adds	three	further	components	taken	to	comprise	orthodox	NRQM:	The	

Born	 rule;	 the	 projection	 postulate	 (the	 collapse	 law),	 and	 the	 eigenvector-

eigenvalue	link:	
The	Born	 (probability)	 rule:	Suppose	 some	quantity	O	has	 associated	 operator	UV,	which	
can	be	written	

UV =WX#ΠT(2)
#

	

where	 the	 oi	 are	 the	 distinct	 eigenvalues	 of	 the	 operator	 and	ΠT(2)	projects	 onto	 the	
subspace	of	states	with	eigenvalue	oi.	…	Then	if	O	is	measured	on	a	quantum	system	with	
state	|8⟩,	then:	

1. The	 only	 possible	 outcomes	 of	 the	measurement	 are	 the	 eigenvalues	oi	 of	 the	
operator;	
2. The	probability	of	the	measurement	giving	result	oi	is	
Pr(U = X#) = \8] V̂(2)]8_		

Notably,	 there	 is	 no	 reference	 to	 superposition,	 but	 in	 similar	 treatments	

elsewhere	there	are.	For	instance,	after	setting	out	a	similar	set	of	postulates	for	

NRQM,	Shankar	introduces	the	principle	of	superposition:	
When	 we	 say	 that	|8⟩	is	 an	 element	 of	 a	 vector	 space	 we	 mean	 that	 if	|8⟩	and	|8′⟩	
represent	possible	states	of	a	particle	so	does	a|8⟩ + b|8′⟩.	This	 is	called	the	principle	of	
superposition.	(1994,	117)	

Although	 it	 is	 not	 explicitly	mentioned,	 such	 ‘superposition’	 is	 grounded	 upon	

‘Hilbert	 superposition’	 applied	 to	 Schrödinger’s	 equation:	 since	|8⟩	and	|8′⟩	are	

possible	states	they	evolve	linearly	according	to	Schrödinger’s	equation.	 	In	one	

sense	Shankar’s	postulate	is	redundant	as	it	may	be	deduced	from	the	linearity	of	

Schrödinger’s	equation.	

The	 question	 of	 philosophical	 or	 interpretative	 importance	 is	 then	

whether	 or	 not,	 and	 if	 so	 how,	 ‘superposition’	 does	 useful	 work	 beyond	 the	

notion	of	Hilbert	space	vector	(or	ray)	addition.	That	is,	does	paying	attention	to	

‘superposition’	 help	 clarify	 the	 physical	 significance	 or	 interpretation	 of	 the	

theory?	 When	 we	 study	 QFT	 we	 shall	 see	 that	 it	 does	 in	 the	 sense	 that	

																																																								
8	For	simplicity	I	only	consider	pure	states	here.	For	philosophical	discussion	of	mixed	states	and	
the	density	matrix	formalism	see	e.g.	Friedrich	(2015).		
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consideration	of	the	applicability	of	the	concept	indicates	how	the	mathematical	

structures	and	terms	do	or	do	not	support	a	physical	interpretation.	

	‘Quantum	 superposition’	 stands	 in	 continuity	 with	 classical	

‘superposition’	 as	a	 ‘prolongation’	of	 the	 concept	onto	a	new	patch	via	 ‘Hilbert	

superposition’	applied	to	the	(linear)	Schrödinger	equation.	Its	new	or	additional	

semantic	 architecture	 is	 indicated	 by	 the	 Born	 rule,	 projection	 postulate	 and	

eigenvalue-eigenvector	 link,	 which	 locate	 the	 discontinuities	 between	 the	

classical	 and	 quantum	 concept	which	might	 be	 understood	 as	 arising	 from	 the	

promotion	of	canonical	observables	to	operators	and	the	imposition	of	the	CCRs,	

marking	the	patch	as	specifically	‘quantum’	(cf.	Ruetsche	above).	

	

6.3.3	Energy	eigenfunction	decomposition	

The	 simplest	 case	 to	 consider	 is	 when	 we	 are	 interested	 in	 the	 observable	

energy,	 and	 thus	 energy	 eigenstates.	 When	 we	 are	 interested	 in	 energy	

eigenfunction	 decompositions	 in	 quantum	 physics	 we	 can	 carry	 over	 our	

analysis	 of	 Sturm-Liouville	 systems	 from	 chapter	 4	 directly,	 and	 supplement	

‘superposition’	with	the	Born	rule	to	establish	its	quantum	application.	

The	point	 is	 that	 if	we	express	a	quantum	Sturm-Liouville	 type	system’s	

state	 in	 terms	 of	 eigenfunctions	 of	 the	Hamiltonian,	we	 establish	 a	 descriptive	

opportunity	 leading	 to	 a	 reasoning	 advantage	 via	 a	 natural	 description	 of	 the	

system’s	 state	 that	 supports	 physically	 salient	 explanations	 and	 counterfactual	

reasoning	 according	 to	 the	 Fourier	 technique.	 The	 state	 evolves	 simply	 by	 the	

independent	scaling	of	the	energy	eigenfunctions	individually	and	summing.	The	

eigenfunctions	 may	 be	 interpreted	 as	 a	 complete	 set	 of	 independent	 partial	

states	 that	 evolve	 according	 to	 independent	 ‘partial	 laws’	 that	 take	 the	 same	

form	 individually	 and	 in	 linear	 combination	 whilst	 not	 stating	 the	 facts.	 The	

eigenfunctions	 persist	 in	 and	 identify	 the	 state,	 with	 a	 ‘trace	 principle’	

established	 in	 the	 evolution	 of	 the	 state	 via	 Schrödinger’s	 equation.	 The	

eigenstates	 are	 states	 of	 constant	 energy,	 so	 may	 be	 considered	 to	 ‘pick	 out’	

important	properties	of	the	system.		

The	 Fourier	 technique	 of	 representing	 the	 quantum	 system	 in	 this	way	

using	 energy	 eigenfunctions	 is	 analogous	 to	 the	 ‘two	 aspects’	 of	 Fourier’s	

analysis	(cf.	chapter	4).	That	 is,	we	deduce	the	eigenfunctions	as	 ‘simple	states’	
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that	 persist	 in	 form	 as	 they	 are	 eigenfunctions	 of	 the	 relevant	 differential	

operator(s)	 of	 the	 eigenvalue	 equations	 obtained	 after	 separating	 variables	 of	

Schrödinger’s	 equation	 (first	 aspect).	 We	 then	 express	 the	 initial	 state	 as	 a	

‘superposition’	of	these	eigenstates	(second	aspect),	which	may	be	interpreted	as	

‘partial	states’	that	evolve	as	a	‘superposition’	according	to	‘partial	laws’	that	take	

the	same	form	individually	and	in	linear	combination.	Just	as	in	the	classical	case	

there	are	two	different	usages	of	‘superposition’	here.	

This	 ‘two	 aspect’	 technique	 provides	 a	 natural	 description	 in	 the	 sense	

that	 it	 supplies	 the	 representation	 that	 optimally	 balances	 simplicity	 and	

strength	of	 the	 system’s	behaviour	and	supports	physically	 salient	predictions,	

explanations	and	counterfactual	reasoning,	if	one	is	interested	in	features	of	the	

system	 related	 to	 energy,	 such	 as	 the	 emission	 spectra	 of	 atoms.	 This	 interest	

will	be	especially	important	in	QFT,	where	energy	eigenstates	will	be	associated	

with	particles	and	their	states.	However,	on	the	quantum	patch	the	coefficients	of	

the	 Fourier	 decomposition	 have	 a	 different	 semantic	 architecture	 from	 the	

classical	patch,	being	 interpreted	as	 the	 amplitude	 for	observing	 the	 system	 in	

that	eigenstate	upon	taking	a	measurement	of	energy.9	

	

6.3.4	Example:	The	hydrogen	atom	

I	 illustrate	these	 ideas	via	a	common	model	of	 the	hydrogen	atom	in	which	the	

electron	 is	 bound	 to	 the	 nucleus	 (proton)	 by	 a	 Coulomb	 potential,	 neglecting	

spin.10	This	 was	 an	 important	 example	 historically,	 being	 used	 to	 explain	 the	

emission	 spectrum	of	 the	hydrogen	atom,	 since	 the	 energy	 states	obtained	 are	

used	to	explain	the	possible	electromagnetic	absorptions	/	emissions.	

As	 in	 classical	 applications	 of	 Sturm-Liouville	 theory,	 we	 begin	 with	 a	

second-order	 linear	 partial	 differential	 equation	 (Schrödinger’s	 equation)	

subject	 to	 boundary	 conditions.	 We	 separate	 variables	 as	 before	 to	 obtain	

coupled	 differential	 equations	 as	 eigenvalue	 equations.	 As	 in	 the	 vibrating	

membrane	 in	 §4.4.2	 this	 is	 done	 repeatedly	 and	 requires	 appropriate	

																																																								
9	In	our	extended	Wilsonian	perspective	our	analysis	is	complete.	A	further	question	arises	in	
realism	debates	however	as	regards	what	should	be	said	about	the	quantum	system	prior	to	
measurement.	Within	our	Wilsonian	framework	we	may	remain	silent	on	this	point,	although	it	is	
interesting	to	note	that	one	aspect	of	‘superposition’	is	that	the	components	of	a	superposition	do	
not	state	the	facts	individually,	an	observation	that	might	feed	in	to	the	realism	debate.	
10	See	e.g.	Bolton	and	Freake	(2009)	for	the	model	and	analysis.	Their	treatment	is	followed	here.	
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coordinates.	Having	found	the	modes	(energy	eigenfunctions),	the	initial	state	is	

decomposed	according	to	this	basis,	thus	supporting	a	natural	description	of	the	

atom’s	state	according	to	‘superposition’.	

Begin	with	Schrödinger’s	equation:	

2ℏ
c
cP
	Ψ(e, P) = =TΨ(e, P)	

and	 separate	 variables	 to	 isolate	 the	 time-dependency	 to	 obtain,	 after	

recombining	variables,	

Ψ(e, P) = ψ(e)9:#gD ℏ⁄ 	

The	time-independent	Schrödinger	equation	obtained,	

=Tψ(e) = iψ(e)	

is	 an	 eigenvalue	 equation	 solved	 using	 Sturm-Liouville	 theory	 as	 before.	

Substituting	explicitly	for	=T:	

−
ℏ(

2j
∇(ψ(e) −

9(

47mJn
ψ(e) = iψ(e)	

where	

	j = opoq

oproq
	

and	me=electron	mass	 and	mp=proton	mass.	 In	 spherical	 polar	 coordinates	 the	

time-independent	equation	is	

s−
ℏ(

2j
1
n(

c
cn
tn(

c
cn
u +

1
2jn(

vV( −
9(

47mJn
w8(x) = i8(x)	

where	vV 	is	 the	 orbital	 angular	momentum	operator.	 Separating	 variables	 again	

via	8(x) = y(n)z({, 6)	we	 obtain	 separated	 coupled	 eigenvalue	 equations	 as	

ODEs	as	per	chapter	4	with	

s−
ℏ(

2j
1
n(

O
On
tn(

O
On
u +

1
2jn(

| −
9(

47mJn
wy(n) = iy(n)	

vV(z({, 6) = |z({, 6)	

where	K	is	 the	 separation	 constant.	We	 find	 ‘simple	solutions’	 as	eigenfunction	

solutions	y),}(n)	(radial	 eigenfunctions)	 and	z},o({, 6)	(‘spherical	 harmonics’),	

and	 build	 the	 general	 solution	 via	 ‘Hilbert	 superposition’	 after	 recombining	

variables,	just	as	before.	We	have:	

vV(z},o({, 6) 	= ~(~ + 1)ℏ(z},o({, 6)	
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s−
ℏ(

2j
1
n(

O
On
tn(

O
On
u +

~(~ + 1)ℏ(

2jn(
−

9(

47mJn
wy),}(n) = i)y),}(n)	

and	from	the	spherical	harmonics:	

v�Ä = Åℏz},o({, 6)	

where	v�Ä	is	 the	 z-component	 of	 the	 orbital	 angular	 momentum,	 n=	 principal	

quantum	 number,	 l=	 azimuthal	 quantum	 number	 and	 m=	 magnetic	 quantum	

number.	

The	Rn,l	are	the	radial	components	of	the	wave-function,	being	functions	of	

the	associated	Laguerre	polynomials,	and	Yl,m	are	the	spherical	harmonics,	being	

functions	 of	 the	 associated	 Legendre	 polynomials.	 These	 form	 the	 generalized	

Fourier	modes	associated	with	the	relevant	differential	operators.		

The	 point	 is	 that	 the	 solutions	ψ),},o(n, {, 6) = y),}(n)z},o({, 6)	form	 a	

complete	 orthonormal	 set	 of	 eigenfunction	 solutions	 to	 the	 time-independent	

Schrödinger	 equation,	 simultaneously	 being	 eigenfunctions	 of	 energy,	 orbital	

angular	momentum	and	the	z-component	of	angular	momentum.	Mathematically	

this	 is	 because	 the	 operators	 corresponding	 to	 these	 observables	 commute,	

which	 ensures	 that	 we	 can	 choose	 simultaneous	 eigenfunctions	 of	 these	

observables.	 This	 means	 that	 we	 can	 completely	 specify	 or	 identify	 the	 state	

ψ),},o	by	the	eigenvalues	of	these	eigenstates,	labelling	them	with	n,l,m	which	are	

properties	 of	 the	 eigenstate	 since	 upon	measurement	 of	 the	 atom	 in	 this	 state	

these	 values	 are	 obtained	 with	 certainty.	 That	 is,	 the	 state	ψ),},o(n, {, 6)	has	

properties	of	energy	n,	orbital	angular	momentum	l	and	z-component	of	angular	

momentum	m.	These	eigenstates	 ‘persist’	or	may	be	 ‘traced’	 in	 the	evolution	of	

the	 system	 according	 to	 independent	 evolution	 via	 the	 partial	 law	 of	

multiplication	by	9:#gCD ℏ⁄ ,	so	that	the	eigenvalues	are	invariants	of	the	evolution	

identifiable,	upon	measurement,	as	properties	of	the	hydrogen	atom.	

As	in	the	classical	theory,	the	general	(initial)	state	of	the	hydrogen	atom	

is	then	expressed	as	a	superposition	(second	aspect	of	the	Fourier	technique)	of	

these	eigenstates	or	simple	states:	

ψ(n, {, 6) = W Ç),},oψ),},o(n, {, 6)
),},o

	

The	eigenstates	ψ),},o 	are	then	natural	states	with	which	to	express	the	identity	

of	 a	 general	 state	 of	 the	 hydrogen	 atom	 as	 they	 are	 uncoupled	 and	 evolve	
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independently	with	time,	after	recombining	variables,	with	the	evolution	taking	

the	simplest	form	possible,	namely	scaling	according	to	

Ψ),},o(n, {, 6, P) = ψ),},o(n, {, 6)9:#gCD ℏ⁄ 	

being	analogous	to	the	‘normal	modes’	identified	in	classical	systems	in	chapter	

4.	The	general	state	is	then	the	superposition	of	these	‘normal	modes’	according	

to	‘Hilbert	superposition’:	

Ψ(n, {, 6, P) = W Ç),},o9:#gCD ℏ⁄ ψ),},o(n, {, 6)
),},o

	

That	 is,	 the	 energy	 eigenstates	 ψ),},o(n, {, 6) = y),}(n)z},o({, 6) 	are	

persisting	‘partial	states’	that	evolve	according	to	‘partial	laws’	of	multiplication	

by	9:#gCD ℏ⁄ ,	where	the	partial	states	and	 laws	take	the	same	form	in	and	out	of	

linear	 combination	 whilst	 not	 stating	 the	 facts,11 	so	 this	 is	 ‘superposition’.	

Interpretation	 is	 conducted	 on	 the	 quantum	 patch	 however,	 so	 Born’s	 rule	

interprets	the	coefficients	of	the	superposition	

Ψ(n, {, 6, P) = W Ç),},o9:#gCD ℏ⁄ ψ),},o(n, {, 6)
),},o

	

as	the	amplitude	of	obtaining	that	state	and	its	corresponding	eigenvalues	upon	

measurement.	 This	 is	 the	 difference	 from	 the	 classical	 application	 of	

‘superposition’,	which	ultimately	owes	to	the	imposition	of	the	CCRs.	

In	 Wilsonian	 terms,	 expressing	 the	 state	 of	 the	 hydrogen	 atom	 by	 the	

generalized	 Fourier	modes	ψ),},o(n, {, 6) = y),}(n)z},o({, 6)	is	 to	 appropriate	 a	

descriptive	 opportunity	 supporting	 a	 reasoning	 advantage,	 enabling	 certain	

properties	 of	 the	 hydrogen	 atom	 to	 be	 identified,	 and	 physically	 salient	

explanations	 of	 the	 behaviour	 of	 the	 hydrogen	 atom	 to	 be	 offered,	 such	 as	 its	

emission	spectrum,	as	well	as	supporting	counterfactual	reasoning,	such	as	‘what	

if’	the	charge	or	mass	of	the	electron	were	different.	In	addition	we	should	regard	

the	description	via	the	ψ),},o(n, {, 6) = y),}(n)z},o({, 6)	as	a	natural	description,	

optimally	 balancing	 simplicity	 and	 strength	 of	 our	 representation	 of	 the	

behaviour	 of	 the	 hydrogen	 atom	 with	 respect	 to	 energy	 considerations	 via	

independent	partial	states	that	may	be	associated	with	natural	properties	of	the	

hydrogen	 atom.	Application	 of	 ‘superposition’	 is	 proper	 as	 each	 eigenstate	 has	

physical	 significance	 as	 an	 abstractable	 ‘partial	 state’	 associated	with	 a	 ‘partial	
																																																								
11	None	of	the	partial	states	describe	the	actual	state	of	the	atom	when	in	combination.	
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law’	that	takes	the	same	form	individually	and	in	of	linear	combination,	without	

stating	the	facts.12		

	

6.3.5	Other	observables	

A	 complication	 arises	 in	 ‘quantum	 superposition’	 not	 found	 in	 the	 classical	

analysis	 of	 Sturm-Liouville	 systems	 in	 that	 the	 eigenstate	 decomposition	 that	

supports	physically	salient	explanations	associated	with	a	given	observable	may	

not	arise	from	an	eigenvalue	equation	derived	from	the	separation	of	variables	of	

Schrödinger’s	equation.	As	we	saw,	tangentially,	in	the	analysis	of	the	hydrogen	

atom,	 it	 is	 a	 result	 of	 linear	 algebra	 that	 self-adjoint	operators	 associated	with	

commuting	 observables	 possess	 a	 basis	 of	 simultaneous	 eigenfunctions	 (with	

real	 eigenvalues).	This	means	 that	 as	 in	 the	analysis	of	 the	hydrogen	atom,	 for	

any	operator	commuting	with	the	Hamiltonian	simultaneous	eigenstates	may	be	

chosen,	 being	 eigenstates	 of	 energy	 and	 the	 observable	 in	 question.	 But	 for	

operators	 that	 do	 not	 commute	 with	 the	 Hamiltonian,	 no	 such	 simultaneous	

basis	of	eigenfunctions	exists.	

However,	since	observables	are	represented	by	self-adjoint	operators	and	

so	 possess	 a	 ‘diagonal’	 eigenfunction	 representation,	 if	 the	 state	 is	 initially	

represented	 via	 this	 eigenfunction	 basis	 of	 states,	 by	 the	 linearity	 of	

Schrödinger’s	 equation	 and	 ‘Hilbert	 superposition’	 these	 eigenfunctions	 are	

partial	 states	 that	 may	 be	 associated	 with	 corresponding	 ‘partial	 laws’	 via	

Schrödinger’s	equation,	and	have	the	same	form	individually	and	in	combination,	

being	a	genuine	application	of	‘superposition’.	

This	may	be	compared	with	the	dual	aspects	of	 the	Fourier	 technique	 in	

which	the	initial	state	is	expressed	in	terms	of	the	eigenfunctions	of	the	system	of	

interest,	 except	now	additional	 sets	of	 eigenfunctions	are	 relevant.	This	means	

that	‘quantum	superposition’	is	promiscuous,	but	it	is	not	arbitrary	and	supports	

natural	 descriptions	 relative	 to	 observables	 of	 interest.	 Although	 such	

promiscuity	may	arise	in	a	novel	way	on	the	quantum	patch,	promiscuity	is	not	

novel	 in	 general	 in	 that	 as	 we	 saw	 in	 chapter	 5	 various	 appeals	 to	 different	

																																																								
12	Given	this,	and	the	explanatory	role	of	the	eigenstates,	the	scientific	realist	is	likely	to	
understand	the	generalized	Fourier	modes	here	in	‘realist’	terms.	However,	anyone	who	is,	in	
principle,	antirealist	concerning	Fourier	modes	ought	then	to	be	antirealist	about	these	states	of	
the	hydrogen	atom.	
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‘superpositions’	are	supported	in	classical	systems.	13	This	complication	will	not	

arise	 in	QFT	since	 the	observables	of	 interest	commute	and	so	we	may	always	

choose	a	basis	of	simultaneous	eigenstates	to	represent	the	state.	

However,	 it	may	 sometimes	 be	more	 natural	 to	 consider	 eigenstates	 of	

observables	 in	relation	to	the	Heisenberg	picture,	as	we	shall	see	 in	a	moment.	

But	to	glimpse	ahead	to	QFT,	the	Fourier	decomposition	of	both	the	field	(wave)	

and	state	equations	are	foundational.	The	field	(wave)	equation	is	interpreted	in	

terms	of	 the	Heisenberg	picture,	with	 the	wave	equation	being	 the	Heisenberg	

equation	 of	 motion	 for	 the	 field.	 The	 state	 equation	 is	 interpreted	 in	 the	

Schrödinger	picture,	with	the	state	evolving	according	to	Schrödinger’s	equation.	

So,	I	now	consider	the	Heisenberg	picture.	

	

6.4	Time	evolution	and	the	Heisenberg	picture	

One	issue	that	is	central	to	QFT	that	I	now	consider	first	in	NRQM	is	that	one	can	

associate	 time	 dependency	 either	 with	 the	 operator	 associated	 with	 the	

observable	 of	 interest	 (Heisenberg	 picture),	 or	 with	 the	 state	 (Schrödinger	

picture,	as	 just	discussed).	 In	QFT	the	 field	(wave)	equations	are	 interpreted	 in	

the	 Heisenberg	 picture	 whilst	 the	 state	 equation	 (Schrödinger’s	 equation)	 is	

interpreted	in	the	Schrödinger	picture.	

A	unitary	operator	ÉT,	the	‘time-evolution’	operator,	can	be	introduced	so	

that	(using	Dirac	notation)	

|8(P)⟩ = ÉT(P)|8(0)⟩	

where	ÉT	satisfies	Schrödinger’s	equation:14	

OÉT(P)
OP

= −
2
ℏ
=TÉT(P)	

with	formal	solution	

ÉT(P) = 9:
#
ℏÑ
TD 	

																																																								
13	However,	there	is	perhaps	less	novelty	than	is	apparent.	The	quantum	state	encapsulates	all	
the	information	about	the	system	under	consideration,	whereas	for	instance	in	our	model	of	the	
heated	slab	we	consider	only	thermal	information	and	not	vibratory	information	for	instance.	So	
if	we	wanted	to	model	all	the	characteristics	of	a	vibrating	heated	slab,	we	would	need	to	express	
its	‘state’	in	terms	of	superpositions	of	eigenfunctions	of	different	physical	characteristics.	That	is,	
in	both	classical	and	quantum	applications	decompositions	according	to	different	sets	of	
eigenfunctions	associated	with	different	physical	properties	are	required.	
14	Some	authors	start	with	unitary	time	evolution	as	a	postulate	or	axiom,	and	deduce	
Schrödinger’s	equation,	e.g.	Greiner	(1994,	402).	
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If	one	takes	an	initial	state	decomposed	into	a	‘superposition’	of	eigenstates	of	a	

self-adjoint	 operator	Ö4	corresponding	 to	 some	 observable	 (as	 above),	 by	 the	

linearity	of	ÉT	the	state	evolves	as	a	superposition	of	eigenstates,	i.e.	

	

|Ψ(t)⟩ = ÉT(P)WÇ)|8)(0)⟩
)

	

=WÇ)ÉT(P)|8)(0)⟩
)

	

Then	

Ö4|Ψ(t)⟩ = ∑ Ç)Ö4ÉT(P)|8)(0)⟩) 	 	 	

However,	we	may	 associate	 the	 time-evolution	 operator	ÉT	with	 the	 observable	

rather	than	with	the	state,	assuming	the	state	is	 ‘fixed’	(at	its	t=0	value).	This	is	

the	Heisenberg	picture,	and	the	Heisenberg	picture	operator	is		

Ö4Ñ(P) = ÉTà(P, 0)Ö4âÉT(P, 0)	

where	in	the	Schrödinger	picture	Ö4â = Ö4	is	time-independent	and	

|8â(P)⟩ = ÉT(P)|8(0)⟩	

In	 the	Heisenberg	picture	|8⟩Ñ = |8(0)⟩,	 and	 if	 the	Hamiltonian	has	no	explicit	

time	dependency	we	have	the	Heisenberg	equation	of	motion	

OÖ4Ñ(P)
OP

= −
2
ℏ
*Ö4Ñ(P),=T-	

So	 for	an	arbitrary	observable	A	represented	by	a	self-adjoint	operator	Ö4	in	 the	

Schrödinger	picture,	we	may	form	an	orthonormal	basis	of	 the	Hilbert	space	of	

states	associated	with	the	system	consisting	of	the	eigenstates	of	Ö4Ñ(0) = Ö4,	and	

express	the	(fixed)	initial	state	at	t=0	(for	which	the	Heisenberg	and	Schrödinger	

pictures	coincide)	as	a	superposition	of	these	eigenstates.	We	then	allow	Ö4(P)	to	

act	 on	 this	 eigenstate	 decomposition	 of	 the	 (fixed)	 state	|8⟩Ñ = |8(0)⟩.	 The	

eigenstates	of	Ö4(P)	coincide	with	those	of	Ö4(0)	as	may	be	seen	from	the	above,	so	

measurement	 of	 A	 at	 time	 t	 yields	 an	 eigenstate	 of	Ö4(0).	 In	 this	 picture,	 as	

regards	 the	 application	 of	 ‘superposition’	 the	 partial	 states	 are	 the	 states	

obtained	 from	 the	 decomposition	 of	|8⟩Ñ = |8(0)⟩ 	as	 the	 eigenfunctions	 of	

Ö4Ñ(0) = Ö4,	and	the	partial	laws	are	given	via	the	independent	action	of		Ö4(P)	on	

each	partial	state.	
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In	both	Schrödinger	and	Heisenberg	pictures	analysis	is	dependent	on	the	

quantum	state’s	decomposition	at	some	reference	time	into	the	eigenstates	of	the	

observable	of	interest,	and	the	evolution	of	state	or	operator	being	linear.	This	is	

foundational	for	establishing	a	natural	description	of	the	system	in	both	pictures	

so	 as	 to	 support	 physically	 salient	 explanations,	 since	 the	 independent	

eigenstates	persist	as	such	owing	to	linearity.		

	

6.5	Dirac	/	interaction	picture	

The	 Dirac	 or	 ‘interaction’	 picture	 combines	 the	 Heisenberg	 and	 Schrödinger	

pictures,	with	operators	and	state	both	carrying	time	dependency.	It	is	used	for	

systems	 that	 (one	 assumes)	 can	 be	 modelled	 by	 well-understood	 and	

computable	 ‘free’	 evolutions	 coupled	 via	 a	 complicated	 interaction	 typically	

introduced	as	a	‘small’	perturbation	to	the	free	system.	The	Hamiltonian	is	split	

into	a	solvable	‘free’	part	=TJ,	and	an	interaction	term	=T′,	i.e.	

=T = =TJ + =T′		

In	the	interaction	picture	the	states	carry	the	time	dependency	from	=T′,	and	the	

operators	 the	 time	 dependency	 from	=TJ.	 The	 operators	 satisfy	 the	 Heisenberg	

equation	of	motion	 for	=TJ,	and	the	state	satisfies	Schrödinger’s	equation	 for	=T′.	

This	procedure	or	picture	is	especially	important	for	calculations	in	QFT,	as	we	

shall	 see	 in	 detail	 in	 chapter	 9.	 The	 physical	 interpretation	 of	 superposition	 is	

more	obscure	in	this	picture,	and	I	do	not	seek	to	develop	it	here,	for	as	we	shall	

see	 semantic	 mimicry	 occurs	 in	 the	 perturbative	 application	 of	 the	 picture	 in	

QFT.	

	

6.6	The	quantized	simple	harmonic	oscillator	

I	 complete	 the	 discussion	 of	 NRQM	 where	 I	 began,	 with	 Schrödinger’s	 first	

application	 of	 ‘superposition’	 to	 the	 quantized	 simple	 harmonic	 oscillator	

(QSHO),	but	now	using	a	different	method	to	deduce	the	energy	eigenstates	that	

is	 developed	 in	 QFT.	 Indeed,	 the	 QSHO	 historically	 was,	 and	 remains,	

foundational	to	QFT,	forming	a	bridge	from	NRQM	to	QFT.	It	shows	in	a	simpler	

context	how	to	establish	an	eigenfunction	representation	or	 ‘diagonalization’	of	

the	Hamiltonian	using	‘raising’	and	‘lowering’	operators	(a-operators)	to	change	

coordinates	 to	 achieve	 a	 ‘natural	 description’	 of	 the	 QSHO	 in	 terms	 of	 the	
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superposition	of	independent	partial	states	and	corresponding	partial	laws,	since	

they	take	the	same	form	individually	and	in	combination.		

Commence	with	the	SHO	Hamiltonian15	

= =
1
2
$( +

1
2
ä(?(	

and	quantize	by	promoting	p	and	x	to	operators	

=T =
1
2
$̂( +

1
2
ä(?"(	

and	imposing	the	CCR	

	 	 	 	 [?", $̂] = 2.	

Change	variables	in	order	to	‘factorize’	the	Hamiltonian:	

ç" =
1
√2

t√ä?" +
2
√ä

$̂u	

ç"à =
1
√2

t√ä?" −
2
√ä

$̂u	

Then	

[ç", ç"] = [ç"à, ç"à] = 0	

[ç", ç"à] = 1	

by	 substitution.	 Substituting	 these	 in	 the	 Hamiltonian,	 and	 using	 the	 CCRs,	

gives16	

=T = ä tç"àç" +
1
2
u	

The	‘number	operator’	is	defined:	

èT = ç"àç"	

and	since	any	state	|8⟩	that	is	an	eigenstate	of	=T	is	also	an	eigenstate	of	èT	as	the	

operators	commute,	labelling	these	eigenstates	of	èT	by	their	eigenvalues,	i.e.	

èT|G⟩ = G|G⟩	

then	

=T|G⟩ = ä tG +
1
2
u |G⟩	

Here	n	is	a	non-negative	integer,	so	there	is	a	‘ground	state’	of	lowest	energy	|0⟩	

corresponding	to	n=0,	and	the	spectrum	of	=T	is	

																																																								
15	The	analysis	here	loosely	follows	Hatfield	(1992,	16-19),	working	now	in	natural	units.	
16	Note	for	use	in	QFT	that	by	the	CCRs	

    =T = ê
(
ä(ç"àç" + ç"ç"à)        (*) 
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i) = ä tG +
1
2
u	

This	 is	 the	 energy	 of	 the	 QSHO	 if	 measured	 in	 state	|G⟩.	 The	 possible	 energy	

states	or	energy	 levels	 are	equally	 spaced,	 and	we	normalize	 the	 states	so	 that	

⟨G|G⟩ = 1	and	then	ç"à	is	 interpreted	as	a	raising	operator	owing	to	 its	action	on	

the	state	|G⟩,	

ç"à|G⟩ = √G + 1|G + 1⟩	

and	ç"	is	interpreted	as	a	lowering	operator	since	

ç"|G⟩ = √G|G − 1⟩	

That	is,	the	a-operators	raise	or	lower	the	state	of	the	system	by	one	energy	level.	

The	 interpretation	 of	 this	 observation	 will	 be	 important	 in	 QFT	 where	 such	

raising	/	lowering	of	energy	state	is	interpreted	as	raising	/	lowering	the	particle	

content	of	the	state	by	one	quantum	(or	particle),	via	relativistic	considerations.	

Any	excited	eigenstate	of	the	system	may	be	built	from	the	ground	state,	

and	 these	are	 the	eigenstates	of	 the	Hamiltonian,	 the	energy	eigenstates	of	 the	

quantized	SHO:	

|G⟩ =
1
√G!

(ç"à))|0⟩	

As	these	eigenstates	form	a	basis	for	the	Hilbert	space	of	states	any	general	state	

of	the	QSHO	may	be	expressed	as	a	superposition	of	these	eigenstates:	

|8⟩ =WÇ)|G⟩
)

	

The	 eigenstates,	 and	 hence	 any	 such	 linear	 combination	 of	 eigenstates,	 are	

solutions	 to	 Schrödinger’s	 equation	 by	 Hilbert	 superposition.	 This	 is	 properly	

understood	as	a	superposition	since	the	eigenstates	as	‘partial	states’	associated	

with	‘partial	laws’	have	physical	significance	individually	(being	states	having	the	

property	of	a	determinate	energy)	and	take	the	same	form	in	and	out	of	(linear)	

combination,	persisting	in	the	evolution	of	the	system	according	to	Schrödinger’s	

equation.	

Calculations	 may	 be	 performed	 in	 either	 Schrödinger	 or	 Heisenberg	

picture	using	this	eigenstate	basis	representation	of	 the	Hilbert	space	of	states.	

These	energy	eigenstates	 can	be	expressed	 in	the	 coordinate	 representation	as	
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wave-functions	8)(?, P)	evolving	 according	 to	 Schrödinger’s	 equation.	 In	 these	

coordinates	the	ground	state	eigenstate	is	

8J(?, 0) = ì
ä
7
î
ï
ñ
9:ó;</( ≡ |0⟩	

and	the	excited	states	

8)(?, 0) =
1

√2)G!
ì
ä
7
î
ï
ñ
=)(√ä?)9:ó;

</( ≡ |G⟩	

where	 the	Hn	are	 the	Hermite	polynomials.	 Since	 the	partial	 states	8)(?, 0)	are	

eigenstates	 of	 the	 Hamiltonian,	 their	 time	 evolution	 is	 calculated	 simply	 by	

scaling	 each	 state	 according	 to	 its	 associated	 partial	 law	 by	 recombining	

variables:	

8)(?, P) = 9:#ÑTD8)(?, 0) = 9:#gCD8)(?, 0)	

where	i) = ä ìG + ê
(
î	as	before.	

The	general	initial	state	is	the	superposition	(according	to	second	aspect	

of	the	Fourier	technique)	

8(?, 0) =WÇ)
)

8)(?, 0)	

where	cn	is	the	amplitude	of	measuring	the	system	in	the	nth	energy	eigenstate.	

This	 initial	 state	 evolves	 by	 scaling	 the	 coefficients	 individually	 as	 a	

superposition,	after	recombining	variables	as	

8(?, P) = WÇ)
)

9:#gCD8)(?, 0)	

owing	to	the	linearity	of	Schrödinger’s	equation,	and	the	observation	that	the	8)	

are	a	complete	set	of	eigenstates	of	the	Hamiltonian	(Hilbert	superposition).	

The	energy	eigenfunction	 representation	offers	a	natural	 representation	

of	 the	 state	 of	 the	 QSHO	 for	 the	 reasons	 set	 out	 above.	 Such	 representation	

exploits	a	descriptive	opportunity	as	the	eigenfunctions	are	simple	partial	states	

associated	with	simple	‘partial	laws’	optimally	balancing	simplicity	and	strength	

that	 take	 the	 same	 form	 in	 and	 out	 of	 linear	 combination,	 support	 physically	

salient	explanations,	 inductive	 inferences	and	counterfactual	reasoning,	as	with	

the	hydrogen	atom	model.	The	energy	eigenstates	correspond	to	states	that	the	

system	can	occupy	upon	measurement	of	well-defined	and	constant	energy.	
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6.7	Summary	

We	 have	 seen	 how	 ‘superposition’	 and	 the	 Fourier	 techniques	 of	 the	 classical	

domain	are	naturally	prolonged	via	‘Hilbert	superposition’	in	particular,	together	

with	an	extension	of	eigenfunction	techniques,	to	a	new	quantum	patch	owing	to	

the	promotion	of	observables	to	operators	and	the	imposition	of	the	CCRs.	This	

leads	 to	 additional	 architecture	 to	 ‘quantum	 superposition’	 as	 might	 be	

characterized	 by	 Born’s	 rule,	 and	 application	 of	 ‘superposition’	 relative	 to	

eigenstates	 of	 an	 observable.	We	 have	 considered	 the	 QSHO	 in	 some	 detail	 as	

preparatory	for	QFT,	upon	which	we	finally	embark	in	the	next	chapter.		
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Chapter	7	

	

Superposition	and	the	early	foundations	of	QFT	

	

7.1	Overview	

I	briefly	consider	some	aspects	of	the	original	development	of	QFT.	This	will	help	

to	 bring	 in	 to	 focus	 some	 of	 the	 conceptual	 difficulties	 that	 have	 subsequently	

become	obscured.	My	aim	is	not	to	provide	a	detailed	historical	analysis	of	QFT,1	

but	 rather	 to	 highlight	 the	 origins	 and	 emergence	 of	 certain	 foundational	

concepts,	techniques	and	ideas	that	have	shaped	QFT.	I	shall	develop	a	detailed	

analysis	of	 ‘superposition’	as	applied	to	QFT	in	the	following	chapters,	but	here	

we	see	how	Fourier	 techniques	are	 foundational	 to	QFT,	as	well	as	 locating	the	

origins	of	cases	of	semantic	mimicry	that	have	brought	conceptual	confusion.	

	

7.2	The	origins	of	QFT	and	particle	descriptions	via	Fourier	techniques	

The	 origins	 of	 QFT	 might	 be	 traced	 to	 three	 papers	 treating	 electromagnetic	

energy	 fluctuations	 in	 a	 cavity:	 Ehrenfest,	who	 explicitly	 adopts	 the	 concept	 of	

superposition	 in	 his	 analysis	 (1925);	 Born	 and	 Jordan	 (1925);	 and	 Born,	

Heisenberg	 and	 Jordan	 (1926).	 According	 to	 Duncan,	 ‘a	 truly	 quantum-field-

theoretic	 calculation	 is	 employed	 [in	 Born,	 Heisenberg	 and	 Jordan	 (1926)]	 to	

resolve	 the	 conundrum	 of	 the	 wave-particle	 duality	 of	 light	 first	 raised	 by	

Einstein’s	results	of	1909’	(2012,	19).	

The	 model	 of	 the	 system,	 and	 associated	 theory,	 is	 set	 out	 by	 Born	 and	

Jordan	 (1925).	 The	 analysis	 of	 the	 system	 is	 performed	 in	 continuity	with	 the	

Sturm-Liouville	techniques	discussed	in	chapter	4:	
A	cavity	with	electromagnetic	oscillations	constitutes	a	system	of	infinitely	many	degrees	
of	 freedom.	Nevertheless,	the	basic	principles	developed	in	the	preceding	sections	…	are	
sufficient	 to	 handle	 this	 case	 as	 well,	 given	 that	 it	 goes	 over	 to	 a	 system	 of	 uncoupled	
oscillators	once	analyzed	in	terms	of	eigenmodes.	There	is	hardly	any	possible	doubt,	how	
such	a	system	is	to	be	treated.	 In	particular,	 the	circumstance	 that	 the	basic	equations	of	
electromagnetism	are	linear	is	of	importance,	for	it	then	follows	that	the	virtual	oscillators	
(eigenmodes)	 are	 harmonic,	 and	 it	 is	 precisely	 for	 harmonic	 oscillators,	 in	
contradistinction	to	other	systems,	that	the	validity	of	energy	conservation	is	independent	
of	the	quantum	condition.	(In	Duncan	(2012,	18),	Duncan’s	emphasis)	

																																																								
1	For	historical	studies	from	various	perspectives	that	overlap	in	places	with	my	concerns	see	e.g.	
Carson	(1996a&b);	Brown	and	Rechenberg	(1996);	Duncan	(2012);	Schweber	(1994).	
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Whilst	 ‘superposition’	 is	 not	 mentioned	 explicitly	 here,	 the	 importance	 of	 the	

linearity	 of	 the	 relevant	 differential	 equations	 is.	 This	 gives	 rise	 to	 the	

eigenfunction	decomposition	of	the	electromagnetic	field	into	Fourier	modes	in	a	

similar	way	to	the	examples	considered	in	chapter	4.	

Such	 association	with	 the	 Fourier	 techniques	of	 classical	 physics	 is	more	

explicit	 in	 Ehrenfest,	 who	 introduces	 a	 one-dimensional	 model	 of	 cavity	

radiation	 to	 develop	 an	 analogy	 of	 the	 electromagnetic	 field	 with	 the	 simple	

model	 of	 a	 vibrating	 string	 in	 which	 he	 explicitly	 applies	 ‘superposition’	 to	

quantized	 normal	 modes	 of	 the	 electromagnetic	 field	 (1925).	 This	 analogy	

allowed	 Jordan,	 in	 Born,	 Heisenberg	 and	 Jordan	 (1926)	 (the	 ‘3M-paper’)	 to	

pursue	 Ehrenfest’s	 analysis	 through	 use	 of	 the	 Fourier	 mode	 (eigenmode)	

solutions	 as	 in	 the	 vibrating	 string	 when	 the	 quantum	 condition	 of	 the	

commutator	 between	 the	 canonically	 conjugate	 coordinates	 is	 introduced.	

Although	Jordan	did	not	 introduce	the	 ‘raising’	and	 ‘lowering’	operators	(the	a-

operators)	 that	 would	 become	 central	 to	 QFT	 from	 the	 quantized	 simple	

harmonic	oscillator	(QSHO),	Duncan	comments	that	
the	calculations	of	the	3M	paper	involve	only	the	pj	and	qj	matrices,	and	their	commutation	
relation,	[but]	are	mathematically	perfectly	equivalent	to	results	obtained	[with	the	raising	
and	lowering	operators	aj	and	!"#].	The	introduction	of	operators	which	raise	or	lower	the	
excitation	level	of	the	individual	eigenmodes	will	become	central	in	our	later	development	
of	the	modern	formalism	of	quantum	field	theory.	To	the	extent	that	the	excitation	levels	
{nj}	are	 identified	 (as	 they	clearly	are	in	 the	3M	paper)	with	 the	number	of	 light	quanta	
(i.e.,	photons	 in	modern	 terminology)	with	 frequency	ωj,	 operators	 raising	and	 lowering	
these	 levels	are	clearly	 identifiable	as	 the	particle	creation	and	destruction	operators	of	
modern	field	theory.	Later	…	they	will	turn	out	to	be	the	technical	tool	ideally	suited	to	the	
introduction	of	physically	sensible	local	interactions	as	well	as	dealing	effortlessly	with	the	
statistics	of	properly	symmetrized	multi-particle	states.	(2012,	23)	

We	 see	 the	 beginnings	 of	 the	 development	 of	 the	 semantic	 architecture	 of	 the	

eigenfunction	 decompositions	 obtained	 in	 QFT	 and,	 implicitly,	 ‘superposition’.	

There	is	an	association	between	the	eigenfunction	description	of	the	state	and	its	

particle	description	in	QFT.	

Provisionally,	and	anticipating	what	is	to	come,	we	may	say	that	when	the	

evolution	 of	 the	 state	 is	modelled	 via	 a	 suitable	 linear	wave	 equation,	 Fourier	

techniques	 support	 a	 natural	 descriptive	 opportunity	 for	 which	 the	 ‘partial	

states’	 may	 be	 interpreted	 as	 ‘particles’,	 with	 the	 partial	 states	 evolving	
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according	to	corresponding	partial	laws	via	the	wave	equations.	This	becomes	a	

way	of	‘cashing	out’	the	particle-wave	duality	of	quantum	physics.2		

Duncan	 suggests	 that	 two	 vital	 foundational	 tasks	 remained	 following	

these	papers:	first,	modelling	the	interaction	of	light	with	matter,	begun	by	Dirac	

ca.	 1927;	 secondly,	 ‘the	 extension	 of	 the	 notion	 of	 field	 quantization	 to	 the	

treatment	 of	 matter	 fields,	 in	 particular	 fields	 with	 elementary	 excitations	 of	

fermionic	 character,	 which	 in	 consequence	 could	 never	 possess	 a	 classical	

counterpart	 analogous	 to	 the	 electromagnetic	 field’,	 a	 task	 taken	 up	 by	 Jordan	

beginning	 ca.	 1927	 (2012,	 28-29).	However,	 confusion	 arose	 from	 attempts	 to	

use	 ‘first-quantization’	 ideas	 for	 the	 electron	 (i.e.,	 treating	 it	with	 a	 relativistic	

wave	 equation	 to	 describe	 a	 single,	 or	 a	 fixed	 number	 of	 particles)	 whilst	

applying	 the	 ‘second-quantized’	 formalism	 (i.e.,	 quantum	 field	 theoretic)	 to	 the	

electromagnetic	field.	I	now	consider	‘second	quantization’.	

	

7.3	‘Second	quantization’	

Jordan	was	an	early	champion	‘of	the	notion	that	wave-particle	duality	extended	

to	 a	 coherence	 in	 the	 mathematical	 formalisms	 used	 to	 describe	 radiation	

(specifically,	 the	 electromagnetic	 field)	 and	matter	 (which	 seems	 to	 denote	 for	

Jordan	 and	 co-workers	 the	 aggregate	 behaviour	 of	massive	 particles	 of	 either	

bosonic	or	fermionic	type).’	(Duncan	2012,	40)	Jordan	claimed	that	treatment	of	

an	 N-particle	 system	 in	 terms	 of	 Schrödinger	 wave-functions	 in	 abstract	 3N-

dimensional	configuration	space	should	be	replaced	by	a	 treatment	 involving	a	

single	 quantum	 field	 φ(x,t)	 defined	 on	 space-time.	 Jordan	 and	 Klein	 (1927)	

adopted	 this	 procedure,	 subsequently	 known	 as	 ‘second	 quantization’,	 of	

replacing	wave-functions	with	quantized	fields	promoted	to	operators.	They	did	

not	 carry	 it	 through	 relativistically	 however,	 and	 they	 did	 not	 apply	 it	 to	

fermions.	 Jordan	 and	Wigner	 (1928)	 applied	 second	 quantization	 to	 fermions,	

but	 again	 not	 relativistically,	 an	 omission	 remedied	 by	 Heisenberg	 and	 Pauli	

(1929)	 in	a	paper	 ‘which	put	 in	place	the	 formalism	of	Lagrangian	 field	theory,	

still	…	at	the	core	of	modern	field	theory.’	(Duncan,	43)	

																																																								
2	In	the	scientific	realist’s	terms,	one	might	expect	that	one’s	stance	toward	a	particle	description	
in	QFT	ought	then	to	be	similar	to	one’s	stance	towards	the	harmonics	of	a	vibrating	string	(cf.	
Redhead	1988,	19-21).	Redhead	compares	interacting	states	with	the	vibrating	string,	but	this	
introduces	semantic	mimicry,	as	we	shall	see	in	chapters	9-10.	
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Briefly,	 and	 I	 shall	 fill	 in	 the	 details	 in	 chapter	 8,	 the	 (free)	 field	φ(x,t)	

satisfying	 a	 suitable	 (linear)	 wave	 equation,	 such	 as	 Dirac’s	 equation	 for	

fermions,	 is	 quantized	 by	 ‘promoting’	 it	 to	 an	operator	 acting	 on	 the	 quantum	

state	of	 the	 system	and	 introducing	 the	CCRs	between	φ(x,t)	 and	 its	 conjugate	

momentum	field	π(x,t),	from	which	a	Hamiltonian	is	obtained.	Using	the	Fourier	

mode	 (eigenfunction)	 solution	 of	 the	 wave	 equation,	 ‘raising’	 and	 ‘lowering’	

operators	(the	a-operators)	are	obtained	as	the	(operator-valued)	coefficients	of	

the	modes	of	the	wave	equation	indexed	by	their	momenta	k.	These	a-operators	

are	then	used	to	transform	co-ordinates	for	the	Hamiltonian	from	representation	

in	φ(x,t)	 and	 π(x,t)	 coordinates	 to	 a-coordinates,	 in	 order	 to	 ‘diagonalize’	 the	

Hamiltonian	 via	 its	 eigenfunction	 representation.	 The	 a-operators	 perform	 a	

similar	 role	here	 to	 that	of	 their	 role	 in	 the	QSHO,	 except	 that	 that	 the	 second	

quantized	system	may	be	thought	of	as	a	collection	of	QSHOs,	one	for	each	k.	The	

action	 of	 the	 Hamiltonian	 on	 the	 state	 is	 then	 simply	 characterized	 since	 the	

Hamiltonian	 is	 diagonalized.	 This	 enables	 one	 to	 introduce	 a	 particle	

interpretation,	 with	 the	 a-operators	 raising	 or	 lowering	 the	 state	 by	 one	

quantum,	from	which	a	particle	description	is	obtained	once	wave-functions	are	

incorporated.	Such	particles	are	interpreted	as	particles	of	a	type	corresponding	

to	 the	 field.	 The	 ability	 to	 form	 this	 ‘natural	 description’,	 or	 exploit	 this	

‘descriptive	opportunity’	in	terms	of	a	physical	particle	description	is	due	to	the	

linearity	 of	 both	 field	 and	 state	 equations	 such	 that	 Fourier	 techniques	 are	

supported.		

It	is	important	to	note	the	double	application	of	‘Hilbert	superposition’	(in	

the	quantum	context)	here,	once	to	the	field	equation	for	φ(x,t)	to	obtain	the	a-

operators	 through	 Fourier	 decomposition,	 and	 then	 to	 Schrödinger’s	 equation	

for	 the	 state	|Φ⟩	using	 the	 eigenfunction	 decomposition	 for	 the	 Hamiltonian	
obtained	 via	 the	 a-operators.	 This	 double	 application	 of	 the	 superposition	

principle	using	eigenfunction	 coordinates	establishes	a	descriptive	opportunity	

in	 which	 a	 natural	 description	 of	 the	 quantum	 system	 is	 given	 as	 a	 particle	

description.	 That	 is,	 the	 identity	 and	 persistence	 conditions	 of	 the	 quantum	

system	 from	which	physically	 insightful	 explanations	 are	made	 are	 given	 via	 a	

particle	description.	The	ability	to	do	this	depends	on	the	linearity	of	both	PDEs	

(i.e.	for	field	and	state).	We	shall	see	that	this	 fails	for	the	field	equations	when	
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interactions	are	introduced.	This	will	imply	that	no	metaphysical	or	even	natural	

particle	 description	 is	 available	 in	 general	 (chapter	 10),	 although	 for	 weakly	

coupled	 theories	 a	 particle	 description	 may	 offer	 a	 good	 ‘engineering	

approximation’	to	the	state	however	(chapter	11).	

The	 formalism	 and	 mathematical	 structure	 required	 to	 carry	 this	

procedure	through,	with	a	sufficiently	fine-grained	structure	for	the	eigenstates	

of	 the	Hamiltonian,	was	 developed	 by	 Fock	 (1932):	 the	 ubiquitous	 Fock	 space	

structure	of	QFT.	However,	 it	would	not	be	until	1940,	when	the	spin-statistics	

theorem	was	proved	by	Pauli,	 that	 the	relationships	between	the	requirements	

of	microcausality,	 the	 form	of	 the	wave	equation,	 the	 form	of	 the	commutators,	

spin	 and	 the	 form	of	 the	 Fock	 space	 structure	 as	 symmetric	 or	 antisymmetric	

would	emerge.		

‘Second	quantization’	established	a	quantized	description	of	both	‘matter’	

and	 ‘radiation’	 from	 both	 particle	 and	 wave	 perspectives,	 when	 matter	 and	

radiation	are	considered	independently	without	interacting	with	each	other,	i.e.	

as	 ‘free’,	 so	 that	 the	 field	equations	 for	both	are	 linear.	The	belief	 that	one	 can	

meaningfully	abstract	independent,	free	matter	and	radiation	fields	and	states	is	

an	 innocent	 looking	 assumption,	 no	 doubt	 made	 according	 to	 metaphysical	

presumptions	that	still	linger,	but	in	fact	it	reflects	an	implicit	application	of	the	

‘Volkmann	device’	already	that	leads	to	various	confusions,	as	manifested	in	the	

need	for	renormalization	as	we	shall	see.	

A	general	picture	of	particle	interactions	according	to	QFT	emerged	in	the	

1930s	 through	 a	 series	of	 (variously	 co-authored)	 papers	 by	 Yukawa	 in	which	

the	 interaction	 (but	 not	 matter)	 field	 is	 subjected	 to	 second	 quantization.	

Yukawa’s	work	extended	QFT	from	fledgling	QED	to	nuclear	forces,	leading	to	an	

understanding	 of	 particle	 interactions	 in	 general	 as	 exchange	 processes	 of	

‘virtual	quanta’,	using	perturbation	theory.	The	picture	depends	on	the	innocent	

looking	but,	as	we	shall	see,	conceptually	problematic	implicit	application	of	the	

‘Volkmann	device’	to	suppose	that	independent	free	matter	and	radiation	states	

can	be	abstracted	and	meaningfully	used	to	represent	interacting	states.	

Problems	 with	 divergences	 occurred	 in	 the	 1930s	 that	 would	 not	 be	

solved	 until	 the	 late	 1940s	 by	 renormalization	 techniques	 and	 a	 fully	 second-

quantized	treatment	of	interaction.	Indeed,	one	aspect	that	Yukawa’s	treatment	
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lacks	is	the	notion	of	associated	fields	and	states	for	both	matter	and	‘radiation’,	

that	 is,	 a	 fully	 ‘second	 quantized’	 treatment	 of	 both	matter	 and	 radiation.	 This	

point	 is	 clarified	 in	 Feynman’s	 discussion	 of	 ‘second	 quantization’	 where	 he	

distinguishes	between	the	electron	field	Ψ	that	satisfies	Dirac’s	equation,	and	the	

electron	wave-function	χ	that	satisfies	Schrödinger’s	equation,	where	Ψ	acts	on	χ	

with	the	Hamiltonian	expressed	in	terms	of	Ψ	(1949a).	The	developments	of	the	

1930s	led	to	the	establishment	of	the	first	‘working’	QFT	by	Dyson,	Feynman	and	

Tomonaga,	 and	 subsequently	 to	 further	 developments	 culminating	 in	 the	

Standard	Model	by	the	1970s.	

It	 will	 be	 beneficial	 to	 study	 Yukawa’s	 papers,	 which,	 whilst	 a	 notable	

triumph	on	the	one	hand,	also	exacerbate	the	emerging	conceptual	confusions	of	

QFT	 initiated	 by	 the	 implicit	 use	 of	 the	 ‘Volkmann	 device’	 to	 identify	 putative	

matter	and	radiation	fields	that	take	the	same	form	individually	(as	free)	and	in	

combination	(in	interaction).	

	

7.4	Yukawa:	Interaction	as	virtual	quanta	exchange	

7.4.1	Interaction	as	exchange	

Yukawa,	 in	 a	 series	 of	 co-authored	 papers	 relating	 to	 nuclear	 forces,	 ‘On	 the	

Interaction	of	Elementary	Particles’,	offers	an	account	of	elementary	interactions	

using	 quantum	 mechanical	 perturbation	 methods	 to	 postulate	 a	 new	 type	 of	

particle.	 He	 does	 not	 develop	 a	 fully	 second-quantized	 account	 of	 matter	 and	

radiation,	 but	 rather	 a	 second-quantized	 account	 of	 the	 interaction	 fields.	 This	

led	 him	 to	 picture	 interactions	 in	 terms	 of	 the	 exchange	 of	 ‘virtual	 quanta’,	 a	

picture	 that	 remains	 pervasive	 in	 accounting	 for	 how	 fundamental	 particles	

interact. 3 	Historically,	 the	 concept	 of	 particle	 interaction	 via	 exchange	 or	

migration	 of	 a	 shared	 particle	 traces	 to	 (at	 least)	 Heisenberg	 (1932-1933),	

although	 the	 formulation	 of	 interaction	 as	 the	 exchange	 of	 quanta	 in	 QFT	 is	

generally	credited	to	Yukawa	(1935).	

																																																								
3	E.g.	Lancaster	and	Blundell	(2014,	159-161),	and	also	the	essays	in	Brown	and	Harré	(1988).	
Also	see	Brink	for	a	commentary	on	Yukawa’s	work	(1965,	83-114).	Brink	describes	the	early	
calculations	of	the	meson	exchange	interaction	as	utilizing	‘quantum	mechanical	perturbation	
theory’	(87).	
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In	 the	 first	 paper	 (1935),	 Yukawa	 proposes	 that	 interaction	 between	

nucleons	is	mediated	by	a	potential,	considered	as	a	field,	the	U-field,	and	just	as	

the	electromagnetic	field	has	quanta	associated	with	it,	so	should	the	U-field:	
interaction	between	 the	elementary	particles	 [nucleons]	can	be	described	by	means	of	a	
field	 of	 force,	 just	 as	 the	 interaction	 between	 the	 charged	 particles	 is	 described	 by	 the	
electromagnetic	field.	…	
In	the	quantum	theory	this	field	should	be	accompanied	by	a	new	sort	of	quantum,	just	as	
the	electromagnetic	field	is	accompanied	by	the	photon.	(1935,	49)	

He	concludes,	in	a	manner	that	might	sit	comfortably	within	a	causal-mechanical	

framework	that:	
The	 interaction	 of	 elementary	 particles	 are	 described	 by	 considering	 a	 hypothetical	
quantum	which	has	the	elementary	charge	and	the	proper	mass	and	which	obeys	Bose’s	
statistics.	…	
Such	quanta,	if	they	ever	exist	and	approach	the	matter	close	enough	to	be	absorbed,	will	
deliver	their	charge	and	energy	to	the	latter.	(1935,	57)	

Elementary	 ‘matter	 particles’	 are	 modelled	 by	 Yukawa	 by	 wave-functions	 Ψ	

which	satisfy	Dirac’s	equation.	The	state	of	the	matter	particles	is	considered	to	

be	acted	upon	by	a	Hamiltonian,	and	although	the	matter	particles	are	 in	some	

sense	 ‘fixed’,	 transitions	 between	 protons	 and	 neutrons	 are	 allowed,	 being	

regarded	 as	 transitions	 of	 nucleon	 state	 owing	 to	 isospin.4	The	 mediation	 of	

interactions	between	such	‘matter	particles’	is	developed	via	a	potential	field	U.	

This	field	has	quanta	associated	with	it,	where	U	satisfies	a	linear	wave	equation,	

and	 is	used	 to	 construct	 the	Hamiltonian,	 by	analogy	with	 the	 electromagnetic	

field.	 The	 total	 Hamiltonian	 is	 taken	 to	 comprise	 of	 a	 Hamiltonian	 of	 the	 free	

matter	 particles	 HM,	 the	 free	 interaction	 field	 HU,	 and	 an	 interaction	 term	 H’	

introduced	as	a	perturbation	to	the	 independent	 free	Hamiltonians,	so	that	H	=	

HM	+	HU	+	H’	(Yukawa	and	Sakata	1937,	1084-1091).	

In	 this	 sense	 Yukawa	 founds	 his	 treatment	 on	 quantum	 mechanical	

perturbation	 theory,	but	utilizes	 ‘second	quantization’	 to	model	 the	 interaction	

potential	in	field	theoretic	terms.	If	one	is	to	read	a	(meta)physical	interpretation	

into	the	interacting	system	so	modelled	(rather	than	regarding	this	as	‘merely’	a	

perturbative	approximation	to	crunch	the	numbers	apart	from	offering	a	natural	

description),	 as	we	 find	 in	 these	 papers,	 it	 requires	 implicit	 application	 of	 the	

‘Volkmann	 device’	 to	 isolate	 (free)	 matter	 and	 interaction	 components,	

supposing	these	to	retain	their	identities	when	interacting.	

																																																								
4	That	is,	protons	and	neutrons	are	considered	to	be	different	isospin	states	of	the	same	particle.	
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That	 is,	 the	 matter	 and	 interaction	 states	 and	 associated	 fields	 are	

construed	 in	 terms	 of	 partial	 states	 and	 partial	 laws	 that	 take	 the	 same	 form	

individually	 and	 in	 combination	 according	 to	 some	 complicated	 composition	

relations	owing	to	the	interaction.	But	this	application	of	the	‘Volkmann	device’,	

and	its	significance,	goes	largely	unnoticed	so	that	semantic	mimicry	is	likely	to	

occur	 when	 H’	 is	 expressed	 as	 a	 perturbative	 expansion,	 and	 mathematical	

correction	 terms	 in	 a	 perturbative	 approximation	 scheme	 applied	 to	 a	 set	 of	

nonlinear	differential	equations	are	interpreted	as	physical	processes	(cf.	§5.3).	

The	U-field,	its	Hamiltonian	HU	and	the	interaction	term	coupling	the	U-field	

to	the	matter	particles	via	the	Hamiltonian	component	H’	are	expressed	in	terms	

of	the	‘normal	(mode)	coordinates’	of	the	free	U-field,	since	the	equation	for	the	

isolated	 free	U-field	 is	 linear.	 That	 is,	 the	U-field,	 the	 Hamiltonian	HU	 and	 the	

interaction	term	coupling	the	U-field	to	the	matter	particles	via	the	Hamiltonian	

component	H’	are	each	then	expressed	in	terms	of	the	Fourier	decomposition	of	

the	 U-field.	 Associated	 with	 this	 Fourier	 decomposition	 are	 the	 raising	 and	

lowering	 a-operators,	 where	 the	 a-operators	 are	 interpreted	 as	 raising	 or	

lowering	the	state	by	one	U-quantum.	This	is	set	out	in	the	third	paper:	
[W]e	begin	with	 the	construction	of	 the	 linear	equation	 for	 the	new	 field	 [mediating	 the	
interaction],	which	can	be	considered	as	a	generalization	of	Maxwell’s	equations	 for	 the	
electromagnetic	field.	…	The	new	field	equations	can	be	derived	from	the	Lagrangian,	so	
that	the	canonical	variables	and	the	Hamiltonian	can	be	determined	in	the	usual	way.	We	
can	then	go	over	into	the	quantum	theory	by	constructing	the	commutation	relations	and	
the	equations	of	motions	for	these	variables.	…	We	can	decompose	the	field	variables	into	
Fourier	components	...	(Yukawa,	Sakata	and	Taketani	1938,	319-320)	

H’	is	treated	as	a	perturbation	to	the	total	free	Hamiltonian	and	is	then	written	as	

a	series	expansion	with	respect	to	an	interaction	parameter	(i.e.	charge).	With	H’	

expressed	in	terms	of	the	raising	and	lowering	operators	of	the	free	U-field,	the	

order	 of	 each	 term	 in	 the	 perturbative	 expansion	 is	 then	 interpreted	 to	

correspond	 to	 that	number	of	 exchange	processes.	Each	 term	 is	 interpreted	as	

modelling	 such	 exchange	 via	 a	 sum	 over	 the	 possible	 intermediate	 states	

occurring	at	that	order,	giving	rise	to	the	‘matrix	elements’	of	the	theory:		
The	interaction	between	the	neutron	and	the	proton,	which	is	caused	by	virtual	absorption	
and	emission	of	the	heavy	[U]	quanta,	can	be	calculated	from	the	Hamiltonian	…	as	second	
order	 effect,	 by	 straightforward	 application	 of	 perturbation	 theory.	 Namely,	 we	 first	
transform	the	variables	 for	 the	unperturbed	system	with	 the	Hamiltonian	'() = '(+ + '(-	
into	 the	normal	coordinates	 [i.e.,	 via	 the	Fourier	decomposition	of	 the	 interaction	 field],	
then	 express	 the	 perturbation	 energy	'(′	in	 terms	 of	 these	 coordinates	 and	 perform	 the	
calculation	to	the	second	order.	(Yukawa,	Sakata	and	Taketani	1938,	334)	
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This	procedure	 is	recognizable	 in	 the	 foundations	of	 contemporary	QFT.	 In	 the	

literature	of	the	era	it	is	usual	to	consider	only	the	second	or	fourth	order	terms,	

with	 these	 interpreted	 as	 corresponding	 to	 a	 single	 or	 double	 exchange	 of	

interaction	 quanta,	 with	 the	 number	 of	 exchanges	 required	 accounted	 for	 by	

considering	charge	conservation.	

For	 instance,	returning	to	the	second	paper,	Yukawa	and	Sakata	note	that	

the	 matrix	 element	 corresponding	 to	 the	 second-order	 perturbation	 energy	

‘shows	that	the	interaction	between	the	proton	and	neutron	can	be	described	by	

the	exchange	 force	of	Heisenberg	 type’	 (Yukawa	and	Sakata	1937,	1088).	They	

also	 consider	 the	 force	 between	 like	 particles	via	 the	U-field,	 noting	 that	 three	

intermediate	stages	are	required,	so	that	 ‘the	 interaction	between	 like	particles	

can	 be	 deduced	 as	 a	 fourth-order	 process	 due	 to	 the	 interaction	 of	 the	 heavy	

particles	with	the	U-field’	(Yukawa	and	Sakata	1937,	1089).	

The	authors	understand	different	order	terms	of	the	‘perturbation	energy’	

expansion	to	correspond	to	different	physical	(although,	as	we	shall	see,	virtual	

and	 intermediate)	 exchange	 processes	 that	mediate	 the	 interaction	 via	 quanta	

associated	with	the	(force-)field	mediating	the	interaction,	an	idea	that	would	be	

appropriated	in	the	context	of	Feynman	diagrams	and	lingers	through	QFT	until	

now.	 The	 problem	of	 divergences	 at	 the	 higher	 orders,	 and	 ‘self-energy’	 is	 not	

developed	in	these	papers.5	

There	is	a	lack	of	clarity	regarding	the	semantic	support	of	the	perturbative	

procedure	and	its	interpretation.	6	That	is,	there	is	little	or	no	consideration	given	

as	to	whether	the	treatment	developed	is	simply	a	mathematical	approximation	

method,	 or	 a	 model	 of	 the	 actual	 physical	 processes	 involved,	 and	 these	 two	

aspects	seem	to	be	confused.	

It	 does	 not	 appear	 that	 the	 various	 ‘perturbation	 energy	 terms’	 were	

interpreted	as	successive	correction	terms	to	generate	an	approximation	of	 the	

actual	physical	‘force’	or	cross-section	for	example.	Rather,	individual	‘correction	

terms’	are	interpreted	as	corresponding	to	different	physical	processes	that	can	

occur	as	might	be	construed	in	a	causal-mechanical	framework.	One	may,	on	this	

account,	 legitimately	 focus	 on	 one	 particular	 term	 in	 order	 to	 understand	 a	
																																																								
5	See	Heitler	(1936,	97,	177-185)	for	development	of	these	points	in	QED.	
6	See	Wentzel	(1947)	for	some	discussion	of	the	perturbative	method	in	this	era,	although	he	
does	not	get	to	the	heart	of	the	interpretative	issues.	
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particular	physical	 process	 that	 contributes	 to	 the	 interaction,	 thus	 initiating	 a	

trajectory	that	would	take	in	Feynman	diagrams	in	the	years	to	follow	in	which	

interactions	in	fundamental	physics	are	understood	in	terms	of	(virtual)	particle	

exchanges.	The	procedure	is	an	exemplar	of	semantic	mimicry,	as	we	shall	see	in	

more	detail	in	chapter	9.	

Two	problems	arose	in	this	approach	in	the	1930s,	both	of	which	have	led	

to	 continued	 conceptual	 confusion:	 first,	 energy	 is	 not	 conserved	 during	 the	

intermediate	 processes	 so	modelled;	 secondly,	 divergences	 are	 encountered	 in	

the	 fourth-order	 calculations.	 The	 first	 problem	 was	 quickly	 circumvented	 by	

postulating	‘virtual	quanta’,	which	we	shall	see	is	the	result	of	semantic	mimicry	

in	 chapter	 9,	 whilst	 the	 resolution	 of	 the	 second	 problem	would	 have	 to	wait	

until	the	development	of	renormalization	techniques	sometime	later,	which	are	a	

symptom	of	and	a	partial	compensation	for	the	failure	of	the	initial	application	of	

the	‘Volkmann	device’.	

	

7.4.2	Virtual	processes	/	quanta	

In	 Yukawa’s	 third	 paper	 the	 ‘virtual	 presence’	 of	 quanta	 is	mentioned,	 but	 the	

meaning	of	this	term	is	not	explained,	although	it	appears	to	be	understood	with	

reference	to	failure	to	conserve	energy	during	the	interaction	process	(Yukawa,	

Sakata	and	Taketani	1938,	329).	The	emission	of	virtual	quanta	in	intermediate	

states	 is	 explicitly	 distinguished	 here	 from	 the	 creation	 of	 quanta	 in	 terms	 of	

their	‘proper	energy’	(337).	

Some	 other	 references	 to	 virtual	 particles	 /	 processes	 or	 intermediate	

states	in	this	era	help	illuminate	the	concept.7	Condon	suggests	that	the	language	

of	 ‘virtual	 level’	 is	 a	 ‘mode	 of	 speech’	 used	 to	 refer	 to	 unstable	 energy	 levels	

(1939,	808-809).	Alternatively,	Heitler	comments:	
The	probability	[of	a	given	final	state]	is	appreciable	only	when	the	energy	of	the	final	state	
is	 equal	 to	 the	 energy	 of	 the	 initial	 state	 …	 The	 energy	 is	 therefore	 conserved	 for	 all	
transitions	 from	 or	 into	 the	 continuous	 spectrum.	 For	 transitions	 from	 or	 to	 the	
intermediate	states	…	the	energy	is,	of	course,	in	general	not	conserved.	(1936,	90)		

He	 discusses	 the	 Heisenberg	 energy-time	 uncertainty	 relation	 (ETUR)	 in	 a	

slightly	different	 context	 (113),	but	does	not	apply	 it	 to	virtual	quanta	as	Wick	
																																																								
7	It	is	unclear	where	the	concepts	originated.	In	1924	Slater	spoke	of	a	‘virtual	radiation	field’	
(Slater	1924;	Bohr,	Kramers	and	Slater	1924),	and	we	saw	that	Born	and	Jordan	discussed	the	
electromagnetic	field	in	a	cavity	in	terms	of	‘virtual	oscillators’	(1925),	but	it	is	not	clear	whether	
or	how	these	concepts	are	associated	with	virtual	quanta.	
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does	when	he	deduces	the	range	of	forces.	Wick	comments	on	virtual	processes	

that	
in	Yukawa’s	theory	the	interaction	between	heavy	particles	 is	carried	by	the	semi-heavy	
particles,	 by	 means	 of	 simple	 emission	 and	 absorption	 processes	 …	 these	 are	 not,	 of	
course,	actual	emission	and	absorption	processes,	which	would	be	contrary	to	the	energy	
principle;	they	are	called,	therefore,	virtual	transitions.	(1938,	994)	

It	 is	 not	 entirely	 clear	 how	 he	 construes	 the	 contrast	 between	 ‘virtual’	 and	

‘actual’	given	the	wider	context	of	the	discussion.	The	ETUR,	in	conjunction	with	

virtual	 quanta,	 is	 adopted	 as	 a	 new	 physical	 principle	 appealed	 to	 in	 order	 to	

allow	 energy	 to	 be	 conserved	 as	 regards	 the	 measureable	 outcome	 of	 an	

interaction	 whilst	 also	 allowing	 the	 interaction	 to	 be	 interpreted	 in	 terms	 of	

virtual	quanta	exchange	where	energy	is	not	conserved.	

The	 ETUR	 allows	 ‘property	 dragging’	 in	Wilson’s	 sense	 with	 respect	 to	

energy	and	energy	conservation.	Virtual	quanta	and	 intermediate	states	appear	

to	be	understood	as	physical,	 but	not	 satisfying	energy	 conservation.	Owing	 to	

the	status	of	energy	conservation	as	a	law,	some	way	of	adapting	the	description	

of	 the	exchange	process	was	required.	 Some	new	process	or	principle	must	be	

postulated	 so	 that	 energy	 conservation	 is	not	violated	at	 least	 in	 terms	of	what	

can	in	principle	be	measured	(cf.	Wilson	2006,	372-373).	

The	empirical	success	of	Wick’s	calculation	of	the	range	of	forces	is	taken	

to	lend	support	to	the	ETUR	and	the	postulated	mechanism	of	interaction.	8	The	

concept	 of	 virtual	 quanta	 would	 find	 its	 ultimate	 expression	 in	 Feynman	

diagrams,	 although	 it	 is	 important	 to	 note	 the	 ‘prehistory’	 of	 the	 concept	 just	

outlined:	 In	 a	 study	 of	 the	 origins	 of	 the	 concept	 of	 exchange	 forces	 Carson	

concludes	that	‘it	would	be	wrong	to	say	that	Feynman’s	picture	owed	nothing	to	

what	 had	 gone	 before.	 The	 language	of	 exchange,	 and	 all	 the	 complex	 of	 ideas	

associated	with	 it,	 did	not	originate	with	him.’	 (1996b,	130)	 	Feynman	himself	

was	 rather	 measured	 about	 the	 interpretation	 of	 the	 diagrams.	 As	 Brink	

observes,	
In	Feynman’s	original	paper	the	diagrams	have	a	definite	significance:	Each	one	represents	
a	 particular	 term	 in	 the	 perturbation	 expansion	 of	 the	 interaction	 between	 the	
electromagnetic	 field	 and	 the	 charges.	 Subsequent	 diagrams	 have	 been	 used	 in	 many	

																																																								
8	However,	the	ETUR	has	been	considered	problematic,	as	it	is	not	clear	what	was	or	is	meant	by	
uncertainty	in	time,	as	time	is	not	an	operator	but	a	parameter,	both	in	NRQM	and	QFT.	See	Fox	
(2008),	Hilgevoord	(1996;	1998;	2005),	Busch	(1990a&b);	2008	and	Bunge	(1970).	
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contexts,	 often	 in	 a	 rather	 loose	 way	 to	 give	 a	 physical	 picture	 of	 some	 interaction	
processes.	(1965,	84)9	

However,	Feynman	would	often	describe	the	charge	on	an	electron	 in	terms	of	

the	probability	that	it	will	emit	a	virtual	photon	(2006a	[1985],	91).10	

In	 these	 various	 treatments	 however,	 the	 semantic	 mimicry	 associated	

with	 seeking	 a	 physical	 interpretation	 to	 perturbative	 correction	 terms	 went	

unnoticed	(cf.	§5.3).	

	

7.5	Divergences,	self-energy	and	the	roots	of	renormalization	

Yukawa’s	approach	emerged	as	the	‘canonical’	approach	to	interactions,	as	may	

be	 seen	 for	 instance	 in	 the	 paper	 by	 Fröhlich,	 Heitler	 and	 Kemmer	 (1938).	

Yukawa’s	basic	conceptual	framework	is	adopted,	but	with	a	vector	rather	than	

scalar	 field,	 and	 a	 more	 realistic	 model	 adopted.	 We	 see	 again	 the	 physical	

significance	attributed	to	terms	in	the	perturbative	expansion	of	the	interaction	

Hamiltonian.	 Here	 however	 the	 problem	 of	 divergences	 in	 the	 calculations	 at	

short	distances	is	raised	although	the	problem	is	incorrectly	diagnosed.	We	see	a	

prevailing	object-based	particle	concept	with	regard	to	the	nucleons,	that	is,	they	

are	treated	as	spatio-temporally	located	objects	with	extension,	and	it	is	this	that	

(as	 they	 see	 it)	may	mitigate	 the	 divergence	 problem	 since	 noting	 this	 feature	

establishes	a	natural	scale	limit.	For	example,	
The	fact	that	the	fourth	order	of	approximation	is	greater	than	the	second	order	for	small	
distances	 means,	 of	 course,	 that	 the	whole	 theory	 diverges	 for	 small	 distances	 and	 our	
results	 can	 therefore	 only	 have	 a	 very	 qualitative	 significance.	 As	 a	 main	 result	 of	 our	
theory	we	can	only	say	that	the	nuclear	particles	will	have	a	finite	radius	of	the	order	of	
equation	[/ = 1/23].	In	this	connexion	we	want	to	emphasize	that	the	fourth	order	of	the	
neutron-proton	 forces	does	not	 lead	 to	any	exchange	 force.	The	only	way	of	exchanging	
two	 heavy	 electrons	 between	 a	 proton	 and	 a	 neutron	 is	 the	 successive	 emission	 of	 a	
positive	and	negative	heavy	electron	by	 the	proton	or	neutron	and	re-absorption	by	 the	
other	particle.	It	does	obviously	not	lead	to	any	exchange	of	charge.	(1938,	169-170)	

However,	this	problem	of	divergence	is	one	of	the	key	difficulties	encountered	in	

the	 development	 of	QFT,	 and	 remains	one	 of	 the	main	 conceptual	problems	 of	

QFT,	even	if	renormalization	group	techniques	have	been	taken	to	alleviate	such	

concerns	to	some	extent	at	least.	

																																																								
9	It	is	important	to	note	that	the	concept	of	a	Feynman	diagram	and	the	associated	theories	has	a	
façade	structure,	although	we	cannot	argue	or	develop	this	point	in	detail.	That	is,	the	physical	
significance	of	a	diagram,	and	their	role	in	relation	to	cloud	chamber	photographs	on	the	one	
hand	and	modeling	interactions	as	we	have	just	set	it	out	is	supported	by	different	semantic	
architectures,	and	this	leads	to	confusion	(cf.	Kaiser	2005;	Passon	2019).	
10	Some	treatments	of	virtual	quanta	(e.g.	Fox	2008;	Harré	1988)	discuss	the	concept	solely	in	
terms	of	Feynman	diagrams.	
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Condon,	 discussing	 interactions	 in	 nuclear	 theories,	 recognizes	 that	 self-

interaction	is	associated	with	the	problem	of	divergences:	
But	these	calculations	are	divergent	just	as	in	the	case	of	the	calculation	of	the	self-energy	
of	a	charged	particle	which	arises	from	its	being	coupled	to	the	electromagnetic	field.	The	
proper	 handling	 of	 those	 divergent	 calculations	 in	 quantum	electrodynamics	 and	 in	 the	
theory	of	the	electron	neutrino	fields	is	a	complete	mystery	which	has	baffled	all	attempts	
at	resolution	up	to	now.	The	solution	of	the	mystery	will	probably	call	for	an	entirely	new	
approach	to	these	questions	–	at	present,	theory	is	up	against	a	stone	wall.	(1939,	814)	

The	 ‘complete	 mystery’	 owes	 to	 the	 (unexpected)	 failure	 of	 the	 (implicit)	

‘Volkmann	device’	as	we	shall	see.	

Although	the	problem	of	divergences	would	ultimately	be	‘solved’	at	one	

level	 in	 terms	 of	 renormalization	 techniques,	 there	 is	 the	 more	 fundamental	

difficulty	that	remains	unaddressed	–	the	failure	of	the	Volkmann	device,	which	

is	 also	 associated	 with	 the	 nonlinearity	 of	 the	 coupled	 field	 equations	 –	 a	

difficulty	 that	 was	 anticipated	 by	 Heitler	 as	 we	 are	 about	 to	 see,	 but	 has	

essentially	been	ignored.		

	

7.6	Perturbation	theory,	nonlinearity	and	Heitler’s	worry	

The	 use	 and	 interpretation	 of	 the	 perturbation	method,	 especially	 in	 terms	 of	

virtual	 intermediate	 states	or	 quanta,	 is	 of	 central	 importance	 to	 being	 able	 to	

perform	 calculations	 of	 interactions	 in	 QFT.	 Moreover,	 once	 the	 need	 to	

accommodate	self-interaction	 is	recognized,	 the	 interpretation	of	 the	method	 is	

seen	to	be	central	to	understanding	any	state	in	QFT,	including	‘free’	particles,	as	

they	are	always	self-interacting.	

It	 is	 worth	 considering	 some	 passages	 from	 the	 first	 edition	 of	 Heitler’s	

textbook	to	clarify	the	emerging	conceptual	difficulties.	This	will	highlight,	albeit	

in	inchoate	form,	at	an	early	stage	in	the	development	of	QFT	a	recognition	of	the	

difficulty	of	the	conceptual	separation	of	the	quantum	system	in	terms	of	 ‘pure’	

isolated	 uncoupled	 fields	 or	 particles	 that	 are	 taken	 to	 have	 the	 same	 form	

individually	and	in	combination,	that	is,	the	implicit	use	of	the	‘Volkmann	device’	

in	the	perturbative	treatment	of	interactions.		

Under	the	heading	of	‘perturbation	theory’	Heitler	remarks:	
The	equations	describing	the	behaviour	of	an	electron	interacting	with	a	radiation	field	are	
far	 too	 complicated	 to	 be	 solved	 exactly.	 In	all	 applications	 of	 the	 theory,	 therefore,	 the	
interaction	energy	is	treated	as	small,	and	approximate	solutions	are	obtained	which	are	
correct	 only	 to	 the	 first	 order	 in	 this	 energy.	 Apart,	 however,	 from	 the	 mathematical	
difficulties	of	proceeding	to	a	higher	degree	of	approximation	it	appears,	as	we	shall	see,	
that	only	the	first	order	approximation	has	physical	significance;	the	higher	orders	do	not	
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correspond	to	reality.	This	corresponds	to	a	deep-seated	limitation	of	the	present	theory.	
(1936,	87)		

He	goes	on	to	clarify	that,	having	written	the	Hamiltonian	as	' = ') + '′,	where	
')	is	the	Hamiltonian	for	the	system	considered	as	a	non-interacting	system,	and	
H’	is	the	‘perturbing	term’,	‘perturbation	theory	[here]	means	an	expansion	of	the	

transition	probability	in	powers	of	the	perturbation	function	H’’	(91).		

However,	despite	noting	that	the	method	is	an	approximation	technique,	he	

associates	 terms	 in	 the	 perturbative	 expansion	 with	 physical	 emission	 /	

absorption	processes	(97).	But	he	notes	that	the	higher-order	terms	in	the	power	

series	obtained	for	H’	are	divergent,	and	so	physically	meaningless,	even	though	

an	 apparently	 physical	 interpretation	 can	 be	 accorded	 to	 them	 in	 terms	 of	

exchange	 processes	 (93,	 102,	 177-185).	 This	 exemplifies	 the	 confusion,	 or	 at	

least	 lack	of	 clarity	 regarding	the	use	of	 a	perturbative	method	coupled	with	a	

determination	to	read	physical	significance	into	the	expansion	obtained.		

Despite	 this	 difficulty,	 Heitler	 offers	 some	 important	 reflections	 on	 the	

limitations	 of	QFT	 (as	QED)	 following	 consideration	 of	 ‘positive	 electrons’	 and	

pair	creation,	 features	of	QFT	that	 I	have	not	discussed	so	 far.11	In	 the	terms	of	

my	analysis,	Heitler	recognizes	in	an	inchoate	fashion	that	the	‘Volkmann	device’	

does	not	straightforwardly	apply	to	enable	the	isolation	of	‘matter	particles’	from	

‘radiation	 quanta’	 (or	 fields)	 that	 take	 the	 same	 form	 individually	 and	 in	

combination:	
the	idea	of	an	electromagnetic	field	in	vacuo	has	to	be	abandoned.	Even	if	no	particles	are	
present	an	electromagnetic	field	can	give	rise	to	the	creation	of	pairs.	Since,	however,	for	
this	purpose	a	minimum	energy	of	2mc2	 is	 required,	pairs	 can	only	be	created	 if,	 in	 the	
Fourier	expansion	 of	 the	 field,	 frequencies	 higher	 than	2456 ℏ⁄ 	or	wave-lengths	 smaller	
than	λ0/2	occur.	 If	 this	 is	 the	case,	a	 ‘pure	 field’	 in	vacuo	no	 longer	exists.	In	 the	 future	
theory	 the	 electromagnetic	 field	 and	 the	 ‘field’	 representing	 the	 positive	 and	

negative	electrons	will	be	 intimately	connected,	neither	of	 them	having	a	physical	

meaning	independently	from	the	other.	(192,	bold	emphasis	added)	
This	is	noteworthy	as	essentially	Heitler	questions	the	implicit	application	of	the	

‘Volkmann	device’	foundational	to	QFT.	

He	continues:	
If,	however,	the	field	is	weak	enough	to	give	only	a	small	probability	for	the	creation	of	a	
pair,	 the	 ‘field’	 representing	 the	 pairs	 and	 the	 electromagnetic	 field	 can	 be	 separated.	
[Volkmann	device]	The	creation	and	annihilation	of	pairs	can	 then	be	considered	as	 the	
result	 of	 a	 perturbation.	 …	 From	 the	 above	 consideration	 it	 follows	 that	 it	 has	 only	 a	
limited	meaning	to	speak	of	a	wave	packet	of	light	or	of	a	single	electron	with	an	extension	
smaller	than	3) ≡ ℏ 45⁄ .	In	the	Fourier	expansion	of	such	a	wave	packet	essentially	waves	

																																																								
11	Positive	electrons,	or	positrons	emerge	naturally	from	Dirac’s	equation,	with	pair	creation	
emerging	from	a	second-quantized	treatment	of	the	matter	field	coupled	to	the	radiation	field.	
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of	 a	 quantum	energy	mc2	 occur.	 Therefore,	 in	 the	wave	packet	 an	 indefinite	 number	 of	
pairs	 is	present.	 	 [Moreover,	we	must	consider	 that	 the]	creation	of	pairs	in	intermediate	
states	gives	rise	to	some	processes	which	are	impossible	in	principle	according	to	ordinary	
electrodynamics.	 …	 Processes	 of	 this	 sort	 [various	 scattering	 examples	 are	 given]	 can	
never	be	described	by	the	present	electrodynamics.	Formally	they	can	be	obtained	only	
from	a	non-linear	electro-dynamics	for	the	vacuum,	i.e.	 from	a	 theory	 in	which	 the	
principle	of	superposition	of	two	fields	is	not	valid.	(193-194,	bold	emphasis	added)	

This	final	remark	is	of	key	importance,	one	of	the	few	recognitions	of	the	failure	

of	the	‘Volkmann	device’	as	associated	with	the	nonlinearity	of	the	coupled	field	

equations,	 so	 that	 Hilbert	 superposition	 fails	 for	 their	 decomposition,	 yet	 it	

would	appear	to	have	been	overlooked	in	subsequent	developments	of	QFT.	The	

observation	 will	 be	 central	 to	 my	 analysis	 in	 which	 I	 draw	 attention	 to	 the	

conceptual	 difficulties	 in	 the	 interpretation	 of	 QFT	 owing	 to	 nonlinearities	

associated	with	various	failures	of	‘superposition’.12		

	

7.7	Summary	and	anticipation	in	relation	to	‘superposition’	

To	summarize	this	chapter	and	anticipate	what	will	follow	in	detail	in	chapters	8	

and	10	in	particular,	there	are	three	major	applications	of	‘superposition’	in	QFT:	

(1)	 The	 initial	 use	 of	 the	 ‘Volkmann	 device’	 to	 isolate	 from	 the	 quantum	 state	

partial	states	associated	with	different	quanta	types	with	the	partial	laws	given	

in	terms	of	the	wave	equation	corresponding	to	each	quanta	type,	such	that	the	

partial	laws	and	states	take	the	same	form	individually	and	in	combination;	(2)	

The	 Fourier	 mode	 decomposition	 of	 the	 field	 (wave)	 equations	 according	 to	

‘Hilbert	 superposition’	 to	 introduce	 raising	 and	 lowering	 operators	 which	

supports,	 (3)	The	eigenfunction	decomposition	of	 the	Hamiltonian	relative	to	a	

basis	 of	 eigenstates	 which	 has	 the	 finer-grained	 structure	 of	 a	 Fock	 space	

through	the	decomposition	of	the	wave	equations,	where	‘Hilbert	superposition’	

is	supported	by	the	linearity	of	Schrödinger’s	equation.	The	establishment	of	the	

Fock	space	is	then	taken	to	supply	a	particle	description	of	the	quantum	state.	

																																																								
12	We	may	gain	some	insight	into	the	significance	of	Heitler’s	last	remark	via	a	comment	in	
Schweber,	Bethe,	de	Hoffmann.	They	hint	at	the	importance	or	assumption	of	linearity	as	
physically	central	in	developing	quantum	theories	owing	to	the	perceived	centrality	of	the	
superposition	principle.	In	discussing	derivation	of	Dirac’s	equation,	they	suggest	that	the	Dirac	
wave	function	‘will	have	to	satisfy	a	first-order	linear	differential	equation’,	with	footnote:	‘The	
linearity	is	required	in	order	that	the	superposition	principle	of	quantum	mechanics	hold.’	(1956,	
12).	The	confusion	here	is	that	the	quantum	state	always	evolves	linearly	according	to	
Schrödinger’s	equation	so	that	superposition	holds,	whilst	the	field	equations	are	nonlinear	when	
interactions	are	introduced.	It	is	this	that	problematizes	the	way	that	the	state	is	represented	as	
components	(e.g.	as	electrons	and	photons	in	QED),	and	thus	the	initial	application	of	the	
‘Volkmann	device’.	
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All	three	applications	are	unproblematic	in	free	theories,	but	(1)	and	(2)	

fail	 in	 interacting	 (coupled,	 nonlinear)	 theories	 so	 that	 (3)	 is	 not	 supported	

according	 to	 (1)	 and	 (2).	To	 anticipate	 the	 remainder	 of	 the	 study,	 this	means	

that	there	is	no	physically	significant	partitioning	of	the	overall	state	into	partial	

states	associated	with	particle	 types,	 and	 that	 there	 is	no	physically	significant	

Fock	 basis	 via	which	 to	 represent	 the	Hamiltonian,	 so	 that	 there	 is	no	particle	

description	available	 for	 interacting	theories.	The	need	for	renormalization	 is	a	

symptom	of	these	difficulties,	and	the	application	of	renormalization	is	a	partial	

compensation	 for	 the	 failure	 of	 ‘superposition’	 in	 the	 sense	 that	 it	 allows	

empirically	 adequate	 results	 to	 be	 obtained.	 However,	 by	 the	 linearity	 of	

Schrödinger’s	 equation	 and	 the	 self-adjointness	 of	 the	 Hamiltonian	 there	 is	

always	a	basis	of	eigenstates	with	which	the	overall	state	can	be	represented	in	a	

natural	 way	 (as	 an	 application	 of	 Sturm-Liouville	 theory),	 but	 such	 a	

representation	does	not	make	contact	with	familiar	concepts	of	particle	type	and	

number,	 except	 in	 limited	 circumstances.	When	 the	 coupling	 is	weak	 however	

‘superposition’	might	be	regarded	as	approximately	true	so	that	‘to	an	engineer’s	

approximation’	 the	 state	might	 be	 considered	 to	 be	 composed	 of	 the	 different	

particle	types	as	assumed	in	the	use	of	the	Volkmann	device.	

This	 conceptual	 framework	 was	 (and,	 in	 general,	 remains)	 largely	

unrecognized	 in	QFT,	with	Heitler	 representing	 a	 lone	 voice	 anticipating	 these	

difficulties	 in	 the	 1930s.	 The	 difficulties	 likely	 went	 unrecognized	 owing	 to	

conceptual	confusions	with	the	use	of	perturbation	methods	when	coupled	with	

misplaced	 metaphysical	 assumptions,	 subsequently	 ignored	 perhaps	 owing	 to	

the	astonishing	empirical	successes	of	QFT	from	the	late	1940s	onwards.	

In	the	remainder	of	the	thesis	I	clarify	and	analyse	these	claims	in	detail	in	

relation	 to	 the	 applicability	 of	 ‘superposition’,	 exploring	 the	 consequences	 for	

how	we	should	understand	QFT.	
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Chapter	8	

	

Superposition,	field	quanta	and	particles	in	free	QFTs	

	

In	this	chapter	I’ll	show	how	superposition	and	particle	concepts	are	established,	

along	with	 their	 semantic	 architecture,	 for	 linear,	 free	 QFTs.	 For	my	 purposes	

consideration	 of	 spinless,	 massive	 scalar	 fields	 will	 suffice,1	with	 a	 view	 to	

analysing	the	‘toy	model’	of	‘scalar	Yukawa	theory’	in	subsequent	chapters.	This	

is	the	simplest	interacting	model	that	will	support	the	conceptual	analysis	that	I	

wish	to	develop.2	Once	the	‘field	quanta’	particle	characterization	is	established,	I	

consider	 the	 ‘group	 theoretic’	 particle	 characterization	 to	 note	 that	 like	 ‘field	

quanta’	 it	 is	 only	 supported	 on	 free	 rather	 than	 interacting	 QFTs.	 I’ll	 consider	

virtual	particles	in	chapter	9.	

	

8.1	Orientation	and	overview	

There	 are	 various	 patches	 of	 application	 of	 ‘particle’	 within	 QFT	 as	 set	 out	 by	

Falkenburg	(2007).	She	considers	the	particle	concept	in	terms	of	 ‘field	quanta’,	

‘virtual	 particles’,	 ‘quasiparticles’	 and	 ‘group	 theoretic	 particles’.	 Of	 these	 ‘field	

quanta’	is	perhaps	the	notion	most	used	in	elementary	QFT.	As	we	shall	see,	the	

applicability	 of	 a	 particle	 concept	 in	 QFT	 depends	 on	 application	 of	 the	

superposition	principle,	which	depends	on	 the	 linearity	 (and	 independence)	of	

the	 relevant	 PDEs.	 Particle	 descriptions	 are	 associated	 with	 coordinate	

representations	of	the	state	and	fields	offering	natural	‘descriptive	opportunities’	

that	support	physically	salient	explanations	and	inductive	inferences	concerning	

the	quantum	state	modelled.	That	is,	when	applicable,	a	description	of	the	state	

in	 terms	of	particle	 types,	numbers	and	states	is	a	natural	description	obtained	

by	Fourier	techniques.	The	availability	of	such	natural	descriptions	is	limited	to	

rather	specific	contexts	in	which	the	system	can	be	considered	to	be	free,	such	as	

																																																								
1	Development	of	these	concepts	for	free	vector	and	spinor	fields	is	similar	but	involves	technical	
issues	and	further	structure	that	would	obscure	the	main	conceptual	points,	so	are	not	discussed.	
2	Scalar	Yukawa	theory	is	often	adopted	as	a	toy	model	for	 just	 these	purposes	in	introductory	
texts	 even	 if	 it	may	not	 be	 pressed	 as	a	 physical	 theory.	Note	 that	although	!"	theory	 is	 often	
discussed,	it	does	not	have	sufficient	structure	to	illuminate	the	conceptual	issues	that	I	wish	to	
explore,	which	require	a	theory	characterized	by	more	than	one	field	type.	
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that	of	asymptotic	states,	although	it	may	be	 ‘approximately	available’	 in	a	way	

akin	to	an	‘engineer’s	model’	in	further	–	but	still	 limited	–	contexts	as	we	shall	

see	in	chapters	10-11.	

In	 QFT	 in	 canonical	 ‘second	 quantized’	 form	prior	 to	 application	 of	 the	

particle	 concept,	 there	 are	 two	 types	 of	 entity	 to	 consider	 –	 the	 state,	 and	 the	

fields	that	act	upon	the	state.	One	seeks	a	particle	description	of	the	state	via	the	

fields,	with	 the	 fields	associated	with	different	particle	 types.	The	 fields	act	on	

the	 state	 to	 evolve	 the	 state	 in	 terms	 of	 their	 corresponding	 particle	 numbers	

and	 states.	 The	 fields	 satisfy	 relativistic	 field	 or	 wave	 equations,	 and	 are	

considered	in	the	Heisenberg	picture.	These	PDEs	are	linear	when	the	fields	are	

free	 (so	 that	 ‘quantum	Hilbert	 superposition’	applies),	 and	nonlinear	when	 the	

fields	 interact,	 so	 that	 ‘superposition’	 does	 not	 apply.	Moreover,	 the	 fields	 are	

operator-valued	 distributions	 requiring	 integration	 against	 suitable	 ‘test-

functions’	 to	 model	 realistic	 particle	 wave-packets.	 The	 state	 satisfies	

Schrödinger’s	 equation,	 and	 may	 be	 considered	 in	 the	 Schrödinger	 picture,	

although	often	 the	 interaction	picture	 is	used	 in	 calculations	as	we	 shall	see	 in	

chapter	 9.	 Schrödinger’s	 equation	 is	 always	 linear,	 so	 that	 ‘quantum	 Hilbert	

superposition’	 always	 applies	 to	 the	 overall	 state	 whether	 or	 not	 interactions	

occur.	The	difficulty	that	arises	for	describing	interactions	relates	to	constructing	

natural	representations	for	the	state	and	Hamiltonian.		

Free	 QFTs	 may	 be	 developed	 in	 either	 the	 Heisenberg	 or	 Schrödinger	

pictures	 using	 Fourier	 techniques.	 As	 in	 application	 of	 superposition	 in	NRQM	

(cf.	 chapter	 6),	 application	 of	 Fourier	 techniques	 in	 either	 case	 depends	 on	 a	

suitable	 decomposition	 of	 the	 state	 at	 some	 reference	 time	 into	 simultaneous	

eigenfunctions/states	 of	 the	 Hamiltonian	 and	momentum	 operators	 to	 ensure	

relativistic	 invariance,	 i.e.	 one	 seeks	 eigenstates	 of	 the	 4-momentum	operator.	

Moreover,	 one	 wishes	 to	 construct	 eigenstates	 with	 a	 suitably	 fine-grained	

structure	 to	 obtain	 a	 natural	 representation	 that	 optimally	 balances	 simplicity	

and	 strength.	 A	 particle	 representation	 of	 the	 system	 requires	 a	 Fock	 (or	

equivalent)	structure	to	be	established.	3	

																																																								
3	A	difficulty	arises	even	for	free	QFTs	in	that	free	QFTs	admit	unitarily	inequivalent	
representations,	leading	to	‘incommensurable’	particle	concepts,	so	that	a	privileging	strategy	is	
required	(Ruetsche	2011,	117-126,	190-220).	Such	a	strategy	is	available	when	a	QFT	is	defined	
via	a	linear	field	equation	on	Minkowski	spacetime,	for	this	generates	the	Fock	space	
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There	 are	 two	 different	 representations	 that	 have	 been	 adopted	 to	

construct	 the	 fine-grained	 structure	 of	 the	 eigenstates	 of	 4-momentum.	One	 is	

the	 Schrödinger	 wave-functional	 representation,	 which	 has	 sporadically	 been	

developed,	 but	 is	 rarely	 used.	 It	 is	more	 usual	 to	 construct	 the	 canonical	 Fock	

space	representation.	Both	approaches	give	rise	to	a	particle	description	as	‘field	

quanta’.	These	two	representations	are	equivalent	in	the	case	of	free	fields,4	but	

difficulties	arise	when	interactions	are	introduced	for	both	representations	that	

require	 the	 use	 of	 perturbative	 techniques.	 I	 shall	 work	 primarily	 with	 the	

canonical	Fock	representation.	The	Dirac	(interaction)	picture	is	used	to	perform	

calculations	 on	 interactions	 perturbatively	 as	 we	 shall	 see	 in	 chapter	 9.	 The	

increasingly	 popular	 ‘path	 integral’	 approach	 will	 not	 be	 considered	 as	 it	

introduces	 further	conceptual	difficulties,	but	can	be	shown	to	be	equivalent	 to	

the	 Fock	 and	 wave-functional	 representations	 for	 free	 fields,	 whilst	 again	

requiring	 perturbative	 methods	 to	 deal	 with	 interactions,5	so	 that	 it	 does	 not	

circumvent	 the	 conceptual	 difficulties	 involved	 in	 the	 representation	 of	 an	

interacting	state.	

In	 each	 representation	 or	 approach	 there	 are	 conceptual	 difficulties	 in	 the	

application	 of	 ‘superposition’	 and	 ‘particle’	 in	QFT,	 for	 instance	 in	 considering	

what	it	means	to	speak	of	a	‘superposition	of	particles’.	Complications	arise	from:	

1. The	assumption	that	the	state	can	be	characterized	by	particle	types	that	

can	be	isolated	or	abstracted	and	considered	independently	of	each	other.	

In	addition	it	is	assumed	that	associated	with	each	particle	type	is	a	field	

that	 can	 be	 considered	 independently	 of	 each	 other	 field,	 and	 that	 the	

Hamiltonian	can	be	represented	via	such	fields	as	a	concrete	‘coordinate	

																																																																																																																																																															
representation	via	the	identification	of	a	unique	vacuum	element	(cf.	Ruetsche,	190-204).	All	our	
QFTs	will	be	associated	with	field	equations	on	Minkowski	spacetime	so	this	problem	does	not	
arise.	The	problem	of	unitarily	inequivalent	representations	is	unavoidable	when	interactions	are	
introduced	however	(Haag’s	theorem,	see	Ruetsche,	250-253),	which	I	discuss	in	chapters	9-10.	
Moreover,	it	has	been	demonstrated	that	an	observer	uniformly	accelerating	through	a	Fock	
vacuum	state	observes	particles	–	the	Unruh	effect	(Ruetsche,	190-191).	Perhaps	this	is	
unsurprising	since	consideration	of	non-inertial	frames	is	beyond	QFT’s	domain	of	applicability,	
so	that	it	is	not	our	‘Theory	T’.	
4	See	Hatfield	(1992)	for	discussion	and	comparison	of	the	two	approaches;	Jackiw	(1988;	1990)	
for	detailed	development	of	the	Schrödinger	wave-functional	representation	and	Kuhlmann	
(2020)	for	brief	philosophical	discussion.	As	may	be	inferred	from	Hatfield,	the	wave-functional	
representation	does	not	circumvent	the	difficulties	encountered	in	attempting	to	apply	the	Fock	
representation	to	interacting	theories,	although	space	prevents	discussion	in	detail	here.	
5	See	Hatfield	(1992).	
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representation’	of	the	Hamiltonian	operator.	These	assumptions	reflect	an	

initial	implicit	application	of	the	‘Volkmann	device’;	

2. Consideration	 of	 ‘superposition’	 and	 ‘particle’	 in	 relation	 to	 both	 the	

(operator-valued	 distributional)	 field	 satisfying	 a	 relativistic	 wave	

equation	 (e.g.	 Klein-Gordon	 or	 Dirac)	 and	 the	 quantum	 state,	 satisfying	

Schrödinger’s	 equation.	 That	 is,	 there	 are	 two	 PDEs	 to	 which	

‘superposition’	may	be	applied;	

3. Nonlinearity	is	introduced	to	the	field	equations	but	not	to	the	evolution	

of	 the	 overall	 state	when	 interactions	 are	 considered	 so,	 that	 ‘quantum	

Hilbert	 superposition’	 fails	 for	 the	 field	but	not	 state	equation,	provided	

that	the	overall	state	is	considered	and	not	the	‘partial	states’	associated	

with	 putative	 particle	 types	 obtained	 from	 initial	 use	 of	 the	 Volkmann	

device	in	(1);	

4. Use	 of	 the	 Dirac	 picture	 and	 perturbative	 techniques	 to	 deal	 with	

interactions,	 leading	 to	 series	 expansions	 requiring	 interpretation	 in	

terms	of	‘virtual	quanta’	with	the	likelihood	of	semantic	mimicry.	

Free	(i.e.,	non-interacting)	particles	or	fields	may	be	dealt	with	fairly	easily,	as	we	

consider	in	this	chapter.	The	introduction	of	interactions	greatly	complicates	the	

situation	 via	 nonlinear	 behaviour	 for	 which	 difficulties	 associated	 with	

renormalization	are	symptomatic.6		

	

8.2	Initial	application	of	the	‘Volkmann	device’	

The	 ‘Volkmann	 device’	 is	 implicitly	 applied	 at	 the	 very	 beginning	 of	 the	

development	of	a	QFT.	One	already	supposes	 that	 it	 is	possible	 to	abstract	or	 to	

isolate	fields	associated	with	different	particle	types	that	identify	‘partial	states’	

that	 are	 assumed	 to	 partition	 and	 compose	 the	 quantum	 state	 such	 that	

associated	with	each	partial	state	are	partial	laws	(e.g.	Schrödinger	evolution	for	

each	 partial	 state	 individually,	 or	 the	 relativistic	 wave	 equation	 for	 the	

corresponding	 independent	 field	 individually)	 that	 take	 the	 same	 form	

																																																								
6	I	shall	not	consider	two	conceptual	difficulties	that	arise	in	QFT	as	they	do	not	alter	the	
conclusions	that	will	be	reached	in	chapters	10-11.	Namely	that:	first,	the	fields	introduced	are	
distributions,	but	the	product	of	distributions	is	in	general	mathematically	undefined	but	appears	
not	to	inhibit	the	development	of	QFT;	secondly,	the	implications	of	various	‘no-go’	theorems	for	
the	ontology	of	QFT,	the	significance	of	which	remain	the	subject	of	debate.	See	Bigaj	(2018);	
Oldofredi	(2018);	Halvorson	and	Clifton	(2002).	
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individually	and	in	combination.	That	is,	one	supposes	that	one	can	analyse	the	

quantum	state	via	distinct	and	independent	particle	and	field	types.	

For	a	free,	non-interacting	system	this	is	straightforward,	so	that	isolated	

partial	states,	fields	and	laws	taking	the	same	form	in	and	out	of	combination	can	

be	identified	to	characterize	the	system	completely	in	terms	of	different	particle	

types	and	states,	so	that	this	is	a	proper	application	of	the	Volkmann	device,	as	I	

shall	 set	 out	 more	 precisely	 below	 (§8.5).	 The	 unquestioned	 and	 unnoticed	

application	 of	 the	 Volkmann	 device	 probably	 has	 a	 phenomenological	

explanation	 in	 the	 sense	 that	 it	 is	 apparently	 possible	 to	 detect	 or	 track	 free	

electrons,	photons,	neutrons,	etc.	so	that	such	application	appears	so	trivial	as	to	

not	 merit	 comment,	 with,	 prima	 facie,	 the	 composition	 of	 a	 state	 understood	

simply	as	the	state	being	composed	of	these	particles.	As	we	shall	see	this	leads	

to	various	dilemmas	and	confusions	in	the	interpretation	of	QFT,	as	manifested	

by	renormalization.	

I	shall	return	to	consider	the	initial	application	of	the	Volkmann	device	in	

more	detail	after	analysing	individual	free	QFTs.	

	

8.3	 Fock	 space	 construction	 via	 the	 Klein-Gordon	 equation	 for	 a	 neutral	

scalar	field	

8.3.1	Overview:	From	second	quantization	to	the	Fock	construction	

I	 consider	 a	 QFT	 associated	with	 the	Klein-Gordon	 equation	 as	 the	 relativistic	

wave	equation.7	So	 suppose	 that	 the	 (partial)	quantum	system	 is	 characterized	

completely	and	in	isolation	via	the	action	on	the	state	of	a	single	Hermitian,	free	

or	 uncoupled	 relativistic	 scalar	 field	!$(&) = !$(), +)	of	 mass	m	 satisfying	 the	
(linear)	 Klein-Gordon	 equation.8	It	 is	 non-interacting	 (even	 with	 itself)	 and	

neutral	 (uncharged)	 so	 that	 there	 is	 no	 distinction	 between	 its	 associated	

particles	and	antiparticles,	which	are	spinless	and	satisfy	bosonic	statistics.		

The	Klein-Gordon	equation	is		

,-
,+- !$(), +) − ∇

-!$(), +) + 1-!$(), +) = 0	
																																																								
7	What	follows	is	loosely	based	around	Hatfield	(1992,	42-48),	and	cf.	Fraser	(2008,	843-847)	for	
the	quanta	interpretation	of	Fock	space.	
8	The	suffix	‘0’	indicates	free	(and	‘bare’,	i.e.,	not	renormalized,	which	will	be	denoted	as	!3456)	
fields	that	satisfy	the	free	field	equations	rather	than	the	interacting,	coupled	field	equations.	I	
denote	the	field	satisfying	the	coupled	field	equations	as	!.	
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or	more	compactly	

(,- +1-)!$(&) = 0.	
!$(&)	is	 quantized	 canonically	 by	 promoting	 it	 to	 an	 operator	!8$(&),	 obtaining	
the	conjugate	momentum	field	and	Hamiltonian	from	the	associated	Lagrangian,	

and	imposing	the	canonical	commutation	relations	(CCRs).	The	field	operates	in	

the	Heisenberg	 picture	 on	 the	 quantum	 state	|Σ⟩,	which	 satisfies	 Schrödinger’s	
equation	 in	 the	 Schrödinger	 picture.	 The	 Klein-Gordon	 equation	 is	 the	

Heisenberg	 equation	 of	 motion	 for	 the	 field.	 Eigenfunction	 (Fourier)	

decomposition	 of	 both	 field	 and	 state	 may	 be	 performed	 as	 an	 application	 of	

‘quantum	 Hilbert	 superposition’,	 the	 ability	 to	 do	 so	 being	 mathematically	

assured	by	the	linearity	of	the	PDEs	and	the	self-adjointness	of	the	operators.	

Central	to	the	analysis	is	the	decomposition	of	the	state	at	some	reference	

time	 into	 simultaneous	 eigenfunctions	 of	 energy	 and	 3-momentum	 (i.e.,	

eigenfunctions	 of	 the	 4-momentum	 operator)	 that	 are	 also	 +1	 eigenvalue	

eigenstates	of	the	permutation	operator	(owing	to	Bosonic	statistics),	reflecting	

the	 second	aspect	of	 the	Fourier	 technique	 in	 the	 relativistic	quantum	context.	

These	 eigenfunctions	 persist	 in	 form,	 evolving	 linearly	 and	 independently	

according	 to	 Schrödinger’s	 equation	 via	 ‘Hilbert	 superposition’,	 reflecting	 the	

first	 aspect	 of	 the	 Fourier	 technique.	 This	 procedure	 enables	 a	 ‘field	 quanta’	

interpretation	as	a	natural	description	of	the	system	reflecting	the	‘two	aspects’	

of	Fourier	techniques	(cf.	chapter	4)	as	applied	on	the	quantum	patch	to	the	state	

and	Schrödinger’s	equation.	What	is	novel	here	is	that	the	Fourier	mode	solution	

of	a	second	PDE	is	required	(the	wave	equation,	here	the	Klein-Gordon	equation)	

to	 ‘diagonalize’	 the	 Hamiltonian	 (and	 4-momentum)	 so	 as	 to	 construct	 the	

eigenstates	of	the	Hamiltonian	and	momentum	operators.	

This	construction	enables	the	Hilbert	space	of	states	to	be	endowed	with	a	

finer-grained	 Fock	 structure.	 The	 eigenstates	 form	 a	 basis	 of	 this	 Fock	 space	

supporting	 a	 ‘field	 quanta’	 description	 of	 the	 state,	 in	 turn	 allowing	 one	 to	

establish	a	particle	description	of	the	system	as	a	natural	description	once	wave-

functions	are	introduced.	That	is,	there	is	a	further	complication	in	that	the	fields	

are	distributions	and	give	rise	to	field	quanta	that	are	completely	delocalised.	To	

obtain	 realistic	 particles	 the	 fields	 must	 be	 integrated	 against	 suitable	 ‘test-

functions’	 (wave-functions)	 to	 obtain	 realistic	 particle	 wave-packets	 with	
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appropriate	 spreads	 of	 position	 /	 3-momentum	 subject	 to	 the	 Heisenberg	

uncertainty	relation.	

A	 particle	 interpretation	 is	 understood	 as	 a	 natural	 description	 of	 the	

quantum	system	in	the	sense	that	it	is	a	description	that	best	balances	simplicity	

and	 strength	 so	 as	 to	 support	 inductive	 inferences	 and	 physically	 insightful	

explanations. 9 	It	 is	 analogous	 to	 use	 of	 eigenfunction	 or	 ‘normal	 mode’	

coordinates	 in	 chapter	 4	 transposed	 to	 the	 quantum	patch,	where	 for	 instance	

the	state	of	a	vibrating	string	 is	described	 in	terms	of	 its	harmonics	(§4.4.1;	cf.	

Ehrenfest	 1925).	 This	 particle	 concept	 reflects	 Falkenburg’s	 ‘Field	 Quanta’	

characterization	(2007,	224-229),	and	 is	 that	commonly	adopted	 in	the	physics	

literature	(e.g.	Bjorken	and	Drell	1965,	§12.5).		

	

8.3.2	Single	particle	state	construction10	

Whilst	it	is	commonplace	to	associate	a	QFT	with	a	relativistic	wave	equation,	it	

is	 preferable	 to	 take	 the	 Lagrangian	 associated	with	 the	wave	 equation	 as	 the	

foundation	of	a	QFT.	The	Lagrangian	is	relativistically	invariant,	and	from	it	the	

conjugate	momenta	and	Hamiltonian	are	readily	obtained	mathematically,	as	in	

classical	physics,	and	the	field	equation	deduced.	Moreover,	conserved	quantities	

and	 their	 physical	 significance	 are	 deduced	 from	 Noether’s	 theorem	 via	 the	

Lagrangian,	 and	 interactions	may	 be	 introduced	 through	 imposing	 local	 gauge	

invariance	on	the	Lagrangian,	as	is	foundational	to	the	Standard	Model.	

The	 relevant	 classical	 action	S	 and	Lagrangian	 (density)	ℒ	leading	 to	 the	
Klein-Gordon	equation	is		

=[!$] = @A"&ℒ(&) = 1
2@A

"&D,E!$(&),E!$(&) − 1-!$-(&)F	

giving	the	conjugate	momentum	

																																																								
9	To	recap,	as	per	Volkmann’s	characterization	of	isolation-superposition	on	the	one	hand	and	
Mill-Ramsey-Lewis’	characterization	of	laws	on	the	other,	we	know	that	we	have	selected	the	
correct	‘isolation	centers’	as	we	have	identified	a	set	of	partial	laws	associated	with	
corresponding	partial	states.	We	identify	the	partial	‘laws’	obtained	via	the	‘Volkmann	device’	as	
laws	on	the	Mill-Ramsey-Lewis	characterization	since	such	syntactic	representation	offers	an	
optimal	balance	of	simplicity	and	strength.	We	then	say	that	the	description	in	terms	of	the	
partial	states	associated	with	the	partial	laws	is	natural,	as	inherited	from	the	characterization	of	
the	partial	laws	as	laws.		
10	The	mathematics	that	follows	is	‘standard	bookwork’	(e.g.	Hatfield	1992,	42-48)	glossed	with	
my	own	conceptual	analysis.	
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Π$E(&) =
,ℒ

, H,E!$(&)I
	

so	

Π$E(&) = J$(&) =
,ℒ

,D,$!$(&)F
= ,$!$(&) ≡ !̇$(&)								(∗)	

The	Hamiltonian	density	is	

ℋ$ = ,$!$(&),$!$(&) − ℒ$	
and	the	Hamiltonian	

O$ =
1
2@A

P&(J$-(&) + |∇!$(&)|- + 1-!$-(&))	

To	 ‘second	 quantize’	 promote	 the	 fields	 to	 operators	 and	 impose	 the	

equal-time	CCRs:	

[!8$(), +), J8$(Q, +)] = RS() − Q)	
[!8$(), +), !8$(Q, +)] = [J8$(), +), J8$(Q, +)] = 0	

These	 commutators	 are	 adopted	 for	 the	Klein-Gordon	 equation	 as	 it	models	 a	

field	with	bosonic	statistics.11	

The	Heisenberg	equations	of	motion	for	the	fields	are	

!8̇$ = RTOU$, !8$V	
reproducing	(*)	as	an	operator	equation,	and	

J8̇$ = RTOU$, J8$V	
which	is	the	Klein-Gordon	equation		

(,- +1-)!8$(&) = 0	
In	 the	 Heisenberg	 picture	!8$(&) = !8$(W, +) 	operates	 on	 a	 fixed	 state	 |Σ$⟩	
describing	 the	 system	 (by	 convention,	 at	 t=0,	|Σ$⟩XY$).	 The	 system’s	 evolution	
can	 be	 considered	 in	 either	 the	Heisenberg	 or	 Schrödinger	 picture,	 and	 I	 shall	

consider	both.	

The	 first	 step	 in	 constructing	 the	 Fock	 representation	 is	 to	 transform	

!8$(&) = !8$(), +)	to	 eigenmode	 coordinates	 or	 ‘simple	 solutions’	 of	 the	 Klein-
Gordon	equation.	If	the	field	is	considered	over	a	finite	region,	such	as	a	cubical	

box	 of	 side	 L	 with	 periodic	 boundary	 conditions	 we	 have	 the	 Fourier	 series	

solution,	the	‘mode	expansion’:	
																																																								
11	Fermionic	systems	as	associated	for	example	with	Dirac’s	equation	require	anticommutators.	
The	form	of	the	commutator	is	chosen	to	preserve	causality.	See	Peskin	and	Schroeder	(1995,	54-
56).	
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!8$(&) = !8$(), +) =
1
ZP/-\

1
2]^_

D 8̀$,_abc^∙e + 8̀$,_f ac^∙eF	

where	_c = -ghi
j 	for	 integer	 ni,	 and	]_ = (_- +1-)k/- ,	 the	 relativistic	 energy-

mass	relation.	However,	the	field	is	generally	considered	over	all	space-time,	so	

the	Fourier	transform	is	obtained	in	the	limit	

!8$(&) = !8$(), +) = @ AP_
(2J)P

1
2]^ D 8̀$

(_)abc^∙e + 8̀$f(_)ac^∙eF	

where	k	 is	 any	 real	number.12	We	should	note	 that	 as	per	§5.2,	 introduction	of	

the	Fourier	 transform	involves	a	more	subtle	semantic	architecture	than	 in	the	

case	of	the	Fourier	series.	However,	I	shall	not	need	to	develop	the	differences	in	

architecture,	 and	 I	 shall	 be	 able	 to	 contrast	 free	 and	 interacting	 QFTs	without	

clarifying	 the	 differences.	 All	 I	 shall	 need	 to	 note	 is	 that	 the	 asymptotic	

representations	(i.e.,	in	the	infinite	limits)	obtained	are	idealized.	

The	volume	element	for	the	integral	is	the	Lorentz	invariant	measure	A"l	
where	l = (l$, _).13	But	 owing	 to	 the	 ‘mass-shell’	 condition	]_ = (_- +1-)k/-,	
and	 since	!8$	satisfies	 the	 Klein-Gordon	 equation,	 integration	 over	A"l	may	 be	
simplified	via:	

@ AP_
(2J)P

1
2]_ = @ A"l

(2J)" 2JS
"(l- −1-)m(l$)	

where	 it	 is	 understood	 that	l$ = ]_ 	on	 the	 LHS	 to	 satisfy	 the	 mass-shell	
condition.14	

The	 solutions	!8$(&)	of	 the	 Klein-Gordon	 equation	 are	 constructed	 as	 a	
‘Hilbert	superposition’	of	the	‘simple’,	i.e.	Fourier	solutions	of	the	PDE	since	it	is	a	

linear	 PDE.	 However,	 as	 the	 fields	 and	 the	 coefficients	 obtained	 are	 operator-

																																																								
12	Note	that	in	the	field	decomposition	one	can	associate	the	time	dependency	with	either	the	
waves	as	a±c^∙e	(e.g.	Hatfield	1992,	Duncan	2012,	Haag	1996)	or	the	a-operators	(e.g.	Schwartz	
2014,	Fraser	2008,	Teller	1995),	depending	on	the	placement	of	the	a±c^o	factor.	For	my	analysis	
it	is	preferable	to	place	the	time	dependency	in	the	‘wave-functions’.	The	time	dependency	of	the	
a-operators	will	neatly	distinguish	between	free	and	interacting	fields	since	the	a-operators	must	
carry	time	dependency	in	the	interacting	case	(see	§10.2.1).		As	regards	the	diagonalization	of	the	
Hamiltonian	in	what	follows	in	the	free	field	case,	it	is	unimportant	where	the	time	dependency	is	
placed	as	both	placements	yield	identical	representations	of	the	Hamiltonian.		
13	It	turns	out	that	the	ability	to	conduct	the	‘frequency	splitting’	process	involving	the	
establishment	of	a	complex	structure	is	of	central	importance	to	the	establishment	of	the	Fock	
space	structure	in	what	follows,	although	we	shall	not	consider	this	aspect	of	the	theory,	as	per	
standard	treatments.	See	Baker	(2009).	
14	Different	normalization	conventions	are	used	giving	rise	to	different	factors	in	the	CCRs	and	
integrals	in	the	definition	of	the	operators	that	follow.	Here	I	follow	Hatfield’s	convention.		
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valued	distributions,	and	since	it	may	be	shown	that	the	operators	!8$(&)	are	not	
observables,	 their	 physical	 significance	 is	 unclear	 for	 this	 ‘second-quantized’	

interpretation	of	the	wave	equation.	However,	owing	to	the	role	that	the	Fourier	

solution	 of	 the	 Klein-Gordon	 equation	 will	 play	 in	 the	 Fock	 construction,	 the	

‘simple	 solutions’	 have	 physical	 salience	 in	 this	 sense	 owing	 to	 their	 role	 in	

establishing	the	identity	of	partial	states	and	corresponding	partial	laws.	So	such	

representation	 might	 be	 understood	 as	 a	 ‘superposition’,	 even	 if	 it	 involves	

another	subtle	prolongation	of	the	concept.	

I	now	articulate	 the	physical	 significance	of	 the	Fourier	 solutions	of	 the	

Klein-Gordon	 equation,	 demonstrating	 that	 ‘superposition’	 does	 apply	 by	

elucidating	 the	 physical	 salience	 of	 the	 modes,	 indicating	 their	 role	 in	 the	

construction	of	a	Fock	structure	and	ultimately	a	particle	description	of	the	state.		

We	express	 8̀$(_)	and	 8̀$f(_)	in	the	mode	expansion	in	terms	of	!8$(&)	and	
J8$(), +)	

8̀$(_) = @AP)ac^∙e(]_!8$(), +) + RJ8$(), +))	

8̀$f(_) = @AP)abc^∙e(]_!8$(), +) − RJ8$(), +))	

and	calculate	the	commutators	to	give	the	algebra	of	the	a-operators:	

T 8̀$(_), 8̀$f(_′)V = (2J)P2]_SP(_ − _q)	
[ 8̀$(_), 8̀$(_′)] = T	 8̀$f(_), 8̀$f(_′)V = 0	

What	 is	 of	 particular	 importance	 is	 that	 it	 may	 be	 shown	 that,	 first,	 the	 a-

operators	 for	 the	 free	 field	 are	 time-independent	 (cf.	 Duncan	 2012,	 250),	 and	

secondly,	 a	 coordinate	 transformation	 on	 the	 Hilbert	 space	 of	 states	 may	 be	

performed	to	a	coordinate	system	of	eigenstates	of	 the	4-momemtum	operator	

(i.e.,	 simultaneous	 eigenstates	 of	 the	 Hamiltonian	 and	 3-momentum	 operators	

satisfying	 the	 correct	 relativistic	 relationship)	 via	 the	 a-operators	 since	 the	 a-

operators	 establish	 a	 ‘diagonal’	 representation	 of	 the	 Hamiltonian	 (and	 4-

momentum)	in	terms	of	(uncoupled	and	independent	over	k)	operators:15	

																																																								
15 If	we	use	the	CCRs	on	the	a-operator	representation	of	the	Hamiltonian	then	

OU$ = @ APl
(2J)P

1
2]^ ]^	 8̀$

f(l) 8̀$(l) +
1
2@A

Pl]^SP(0)	

so	that	the	energy	diverges	owing	to	the	contribution	from	the	δ.	This	is	not	unexpected,	since	
each	‘oscillator’	has	non-zero	ground	state	energy.	The	difficulty	is	avoided	by	‘normal	ordering’,	
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OU$ =
1
2@

AP_
(2J)P

1
2]_ ]_ H	 8̀$

f(_) 8̀$(_) + 8̀$(_) 8̀$f(_)I	

or,	after	‘normal	ordering’:		

: OU$:= @ AP_
(2J)P

1
2]_ ]_ 8̀$

f(_) 8̀$(_)	

If	 we	 compare	 this	with	 the	 QSHO	 in	 NRQM	 (§6.6),	 we	may	 see	 that	 (modulo	

relativistic	normalization	factor),	as	Hatfield	puts	it,	
the	Hamiltonian	is	the	continuous	sum	of	harmonic	oscillator	Hamiltonians,	one	for	each	k.	
By	comparing	the	commutators	…	we	see	that	 8̀$f(_)	is	a	creation	(raising)	operator,	while	
8̀$(_) 	is	 a	 destruction	 (lowering)	 operator.	 The	 particle	 interpretation	 results	 from	
considering	 8̀$f(_)	as	 an	 operator	 that	 creates	 a	 particle	 of	 energy	]_	and	momentum	k,	
while	 8̀$(_)	destroys	such	a	particle.		
The	ground	state	or	bare	vacuum	is	the	state	in	Fock	space	that	satisfies		

8̀$(_)|0⟩_ = 0	
and	is	normalised	so	that	⟨0|0⟩_ = 1.	The	state	 8̀$f(_)|0⟩_	is	a	state	containing	one	particle	
of	 energy	]_ 	and	 momentum	 k,	H 8̀$f(_)I

-
|0⟩_ 	contains	 two	 such	 particles,	 and	 so	 on.	

(1992,	44,	notation	adapted)		
This	requires	careful	analysis.	The	simultaneous	diagonal	representations	of	the	

Hamiltonian	and	3-momentum	operators	give	their	actions	on	the	state	in	a	form	

best	balancing	 simplicity	and	 strength,	 thus	being	a	 representation	 in	 terms	of	

‘partial	laws’	as	I	have	defined	the	concept.	

Consider	first	the	‘simplest’	eigenstates	of	the	form	 8̀$f(_)|0⟩_ = |_⟩	which	
are	seen	to	be	eigenstates	since	

OU$|_⟩ = OU$ 8̀$f(_)|0⟩_ = @ AP_′
(2J)P

1
2]_q ]_q 8̀$

f(_′) 8̀$(_′) 8̀$f(_)|0⟩_ = ]_ |_⟩	

and	

tU$ = @ AP_
(2J)P

1
2]_ _ 8̀$

f(_) 8̀$(_)	

so	that	similarly	

tU$|_⟩ = _|_⟩	
The	4-momentum	operator	is	

uv$E = @ AP_
(2J)P

1
2]_ l

E 8̀$f(_) 8̀$(_)w
^oYxy

	

																																																																																																																																																															
which	eliminates	the	vacuum	energy;	only	energy	differences	(i.e.	above	the	ground	state)	are	
usually	considered	physically	important.	See	Hatfield	(45-46).	These	solutions	are	somewhat	ad	
hoc	and	unsatisfying,	but	we	shall	not	dwell	on	the	problem	here,	noting	that	the	‘workarounds’	
do	in	fact	remove	the	problem	as	far	as	the	formal	theory	is	concerned.	We	take	operators	to	be	
normal-ordered	as	per	usual	practice. 
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Owing	 to	 the	 ‘mass-shell’	 condition	]_ = (_- + 1-)k/-	the	 eigenstates	 of	uv$E 	of	
the	 form	 8̀$f(_)|0⟩_ = |_⟩ 	are	 interpreted	 as	 single	 ‘phion’	 quanta	 states,	 as	
phions	of	(rest)	mass	m	and	3-momentum	k.	

By	 analogy	 with	 the	 QSHO	 the	 action	 of	 8̀$f(_)	on	 an	 arbitrary	 state	|Σ⟩	
raises	the	3-momentum	of	the	state	by	k	and	energy	by	]_ = (_- + 1-)k/-.	This	
is	interpreted	as	raising	the	state	by	a	quanta	of	energy-momentum	given	by	the	

Lorentz	invariant	scalar	l ∙ l = 1-.	That	is,	the	action	of	 8̀$f(_)	is	interpreted	as	
adding	 a	 quantum	 of	 mass	 m	 and	 momentum	 k	 to	 the	 state	 of	 a	 type	

corresponding	to	the	 field	φ0,	 i.e.	 adding	 a	 ‘phion’.	 There	 are	 two	 complications	

here,	however,	arising	first	from	the	fact	that	eigenstates	of	the	form	 8̀$f(_)|0⟩_ =
|_⟩	are	only	some	of	the	eigenstates	of	the	4-momentum	operator,	and	secondly	
that	 particle	 statistics	 and	 the	 permutation	 operator	 come	 in	 to	 play	 for	 these	

other	eigenstates	as	we	shall	consider	in	a	moment.	

Before	doing	so,	note	that	we	can	form	linear	combinations	of	the	states	

8̀$f(_)|0⟩_ = |_⟩.	 The	 action	 of	 linear	 combinations	 of	 the	 8̀$f(_)	on	 the	 ground	
state(s)	 |0⟩_ 	is	 to	 create	 a	 state	 of	 one	 quanta	 of	 mass	 m	 in	 a	 ‘Hilbert	
superposition’	of	momentum	states,	i.e.	

\z_ 8̀$f(_)|0⟩
^

	

where	we	write	the	ground	state	of	the	system	

|0⟩ ={|0⟩_
_

	

That	is,	

\z_ 8̀$f(_)|0⟩
^

	

represents	the	general	state	of	a	single	quantum	of	mass	m,	whose	3-momentum	

will	 have	 the	 value	 k	 on	 measurement	 with	 probability	 |ck|2.	 The	 set	 of	 such	

states	forms	a	Hilbert	space	ℍ,	which	will	be	identified	as	the	one-quanta	sector	
of	 the	 Fock	 space	 for	 the	 system.	 That	 this	 sum	 is	 properly	 a	 ‘Hilbert	

superposition’	is	supported	by	Schrödinger’s	equation	as	we	now	see,	which	also	

assists	 us	 to	 clarify	 the	 physical	 significance	 of	 the	 interpretation	 of	 the	

eigenstates	as	‘field	quanta’.	
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The	success	of	the	quanta	interpretation	as	a	‘natural	description’	follows	

from	the	‘two	aspects’	of	the	Fourier	technique	that	we	have	studied	repeatedly,	

when	applied	to	the	quantum	domain	in	which	the	eigenfunctions	of	more	than	

one	operator	are	in	view	as	in	chapter	6.	The	point	is	that	the	eigenfunctions	of	

the	 Hamiltonian	 just	 constructed	 (i.e.	 the	 8̀$f(_)|0⟩_ )	 satisfy	 the	 eigenvalue	
equation	

OU$|Σ⟩ = ]_|Σ⟩	
which	 is	 the	 time-independent	Schrödinger	equation.	 If	 one	now	considers	 the	

evolution	of	the	state	in	the	Schrödinger	picture,	after	recombining	variables	in	

relation	to	the	full	Schrödinger	equation	

R ,,+ |Σ⟩ = OU$|Σ⟩	

the	eigenstates	constructed	(i.e.	the	 8̀$f(_)|0⟩_)	form	the	partial	states	that	evolve	
according	to	the	partial	law	of	multiplication	by	abcx_X ,	i.e.	the	simple	or	‘normal	
mode’	solutions	(of	 this	restricted	set	of	eigenstates)	of	Schrödinger’s	equation	

take	the	form	

abcx_X 8̀$f(_)|0⟩_	
This	means	that	if	the	initial	state	may	be	expressed	as	above	as		

|Σ⟩$ =\z_ 8̀$f(_)|0⟩
^

	

then	it	evolves	according	to	Schrödinger’s	equation	as	

|Σ⟩X =\z_abcx_X 8̀$f(_)|0⟩
^

	

The	3-momentum	of	|Σ⟩X 	will	have	the	value	k	on	measurement	with	probability	
|ck|2	since	the	exponential	term	contributes	only	a	phase	factor.16	

																																																								
16	To	make	contact	with	subsequent	chapters,	for	a	general	(not	necessarily	free)	system	which	
evolves	according	to	

R ,,+ |Σ⟩X = OU|Σ⟩X 	
where	|Σ⟩X	denotes	 the	 state	 of	 the	 system	at	 time	 t,	 then	 the	 system’s	 time	 evolution	may	be	
expressed	by	introducing	a	unitary	operator	}(+)	or	}(+$, +)		so	that	

|Σ⟩X = }(+$, +)	|Σ⟩Xo 	
where,	formally	

}(+$, +) = abc~U(XbXo) 	
Much	QFT	concerns	the	calculation	and	interpretation	of	this	exponential.	The	point	here	is	that	if	
|Σ⟩Xo 	can	be	expressed	as	a	 ‘superposition’	 (Fourier	aspect	2)	of	eigenstates	of	 the	Hamiltonian	
(and	 4-momentum)	 then	 (Fourier	 aspect	 1)	 the	 system	 evolves	 according	 to	 a	 (Hilbert)	
superposition	 of	 these	 eigenstates	 individually	 and	 independently	 according	 to	 the	
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That	is,	these	set	of	eigenfunctions	of	the	Hamiltonian	constructed	via	the	

Fourier	decomposition	of	the	Klein-Gordon	equation	are	eigenfunction	solutions	

to	 Schrödinger’s	 equation.	 They	 are	 simple,	 independent	 ‘partial	 states’	 that	

persist	 in	 form	 in	 the	 evolution	 of	 the	 system,	 evolving	 according	 to	 the	

independent	partial	 laws	as	 just	 stated,	with	 the	partial	 states	and	 laws	 taking	

the	 same	 form	 individually	 and	 in	 combination.	 This	 is	 the	 first	 aspect	 of	 the	

Fourier	technique.	The	second	aspect	was	to	express	the	initial	state	in	terms	of	

these	 eigenstates	 as	 indicated,	 which	 is	mathematically	 supported	 by	 the	 self-

adjointness	of	the	Hamiltonian.	

However,	 for	 these	 eigenstates	 to	 be	 relativistically	 invariant,	 which	 is	

what	 we	 require	 in	 a	 relativistic	 theory	 and	 to	 ultimately	 support	 a	 ‘particle’	

interpretation,	they	must	also	be	eigenstates	of	the	momentum	operator,	and	it	is	

this	further	feature	that	allows	identification	of	the	eigenstates	as	‘field	quanta’,	

which	support	a	natural	description	of	 the	 system	owing	to	 the	 two	aspects	of	

the	 Fourier	 technique	 just	 considered	 when	 set	 in	 the	 quantum	 context	 with	

additional	operators	involved.	

So,	the	construction	of	the	natural	description	in	terms	of	quanta	is	subtle,	

involving	two	PDEs	and	the	eigenfunctions	of	two	different	operators.	There	are	

three	 further	complications	that	 I	have	alluded	to	that	 I	now	consider	 in	detail:	

the	construction	of	realistic	particles	from	field	quanta	(§8.3.3);	the	provisional	

construction	of	‘multi-particle’	eigenstates	of	the	4-momentum	operator	(§8.3.4);	

the	imposition	of	the	CCRs	via	the	permutation	operator	leading	to	the	full	Fock	

space	construction	(§8.3.5).	

	

8.3.3	Construction	of	realistic	particles	

‘Realistic’	 particles	 are	 obtained	 from	 the	 quanta	 8̀$f(_)|0⟩	formed	 from	 the	
distributions	 8̀$f(_)	via	 their	 integration	against	suitable	 ‘test	 functions’	 to	 form	
single	particle	states	as	superpositions	of	momentum	states:	

|_⟩� = @AP_′Ä̂ (_q) 8̀$f(_′)|0⟩	

																																																																																																																																																															
corresponding	partial	law	obtained	from	}(+$, +).	For	free	systems	|Σ⟩Xo 	has	a	Fock	structure	that	
persists	 in	the	evolution	of	the	system,	whereas	for	interacting	systems	it	does	not,	as	we	shall	
see.	
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where	the	‘test	function’	Ä̂ (_q)	is	interpreted	as	a	normalized	momentum	space	
wave-packet	of	mean	momentum	k.	

	 |_⟩�	models	 a	 realistic	 particle	 localized	 in	 position	 and	 3-momentum	
according	to	the	Heisenberg	uncertainty	relation.	In	physical	terms	the	form	of	f	

is	determined	by	 the	 circumstances	of	 the	particle	production,	 so	 that	 it	 is	not	

purely	put	in	‘by	hand’,	although	as	we’ll	see	in	subsequent	chapters	it	will	often	

be	 convenient	 to	 choose	 f	of	a	particular	 (though	realistic)	 form	 to	ensure	 that	

particles	are	and	remain	well-separated	when	considering	multi-particle	states,	

as	is	physically	the	case	in	scattering	experiments	for	example.	

	

8.3.4	Provisional	 construction	of	multi-quanta	 /	 particle	 eigenstates	of	 4-

momentum	

The	states	a8$f(Ç)|0⟩	are	only	some	of	 the	eigenstates	of	 the	Hamiltonian	(and	4-
momentum),	so	we	have	not	yet	shown	how	to	decompose	an	arbitrary	state	into	

eigenstates	 so	as	 to	 complete	both	aspects	of	Fourier’s	 technique	 for	all	 states.	

The	additional	 eigenstates	of	 the	4-momentum	operator	 can	be	 constructed	by	

induction	(or	‘aggregation’)	via	repeated	application	of	 8̀$f(_′)	to	such	states,	i.e.	
as	 8̀$f(_É)… 8̀$f(_Ö)|0⟩.	I	now	consider	the	construction.	

To	 recap,	 the	 eigenstates	 8̀$f(_)|0⟩	form	 a	 basis	 for	 a	 Hilbert	 space	ℍ,	
interpreted	as	the	1-quanta,	and	hence	1-particle	sector	of	Fock	space.	But	these	

states	do	not	span	 the	whole	 state	 space,	 that	 is,	 there	are	 further	 solutions	 to	

Schrödinger’s	equation	that	are	not	expressible	as	 linear	combinations	of	 these	

eigenstates.	 To	 span	 the	 whole	 solution	 space	 we	 introduce	 what	 are	

provisionally	 interpreted	 as	 multi-quanta	 (and	 hence	 particle)	 eigenstates	 by	

repeated	 application	 of	 8̀$f(_),	 where	 k	 may	 differ	 on	 each	 application.	 Linear	
combinations	 of	 these	 ‘multi-quanta’	 states	 8̀$f(_É)… 8̀$f(_Ö)|0⟩	are	 solutions	 to	
Schrödinger’s	 equation	 by	Hilbert	 superposition,	 giving	 additional	Hilbert	 sub-

spaces	of	the	full	space	of	states.	

For	each	k,	 the	action	of	 8̀$f(_)	on	an	arbitrary	state	|Σ⟩	is	 interpreted	as	
adding	 one	 phion	 of	 3-momentum	 k,	 and	 removing	 one	 phion	 for	 8̀$(_).	 This	
interpretation	follows	from	the	change	in	energy	and	momentum	eigenvalues	of	

the	state	formed,	and	the	relativistic	relationship.	By	induction	we	provisionally	
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interpret	a	state	formed	by	the	N-fold	application	of	 8̀$f(_Ü)	on	|0⟩	as	an	N-phion	
state	where	 the	 phions	 have	 3-momenta	_É, … , _Ö.	 So	we	 can	 construct	multi-
quanta	 and	 hence	 particle	 states	 by	 integrating	 states	 of	 the	 form	

8̀$f(_É)… 8̀$f(_Ö)|0⟩	against	 suitable	 test	 functions	Ä_É…_Ö(_qÉ, … , _qÖ).	 It	may	be	
verified	that	these	are	eigenstates	of	OU$,	tU$	and	uv$E.	Naively	then,	for	fixed	N,	the	
set	of	 linear	combinations	of	 these	n-phion	states	 forms	a	Hilbert	space,	 the	N-

quanta	 sector	 of	 (pre-)Fock	 space,	 which	 is	 the	 N-fold	 tensor	 product	 of	 the	

individual	 single	 particle	Hilbert	 spaces,	⨂àℍ.17	The	 direct	 sum	of	 all	 these	N-
quanta	 Hilbert	 spaces,	 when	 symmetrized,18	taken	 over	 all	 N	 itself	 forms	 a	

Hilbert	space,	the	Fock	space	for	the	system.	It	is	according	to	this	Hilbert	space	

that	the	decomposition	of	the	initial	state	is	conducted	as	the	‘second	aspect’	of	

the	 Fourier	 technique	 to	 support	 a	 natural	description	of	 the	 state	 in	 terms	of	

quanta	and	hence	particles.	

The	interpretation	of	the	states	 8̀$f(_É)… 8̀$f(_Ö)|0⟩	as	N-quanta	(particle)	
states	is	consistent	with	the	‘number	operator’:	

âU$ = @ AP_
(2J)P

1
2]_ 8̀$

f(_) 8̀$(_)	

which	‘counts’	the	number	of	quanta/particles	in	a	state,	with	the	number	given	

as	 the	 eigenvalue	 for	 a	 determinate	 particle	 number	 state.	 This	 enables	 us	 to	

verify	(or	at	least	check	the	consistency	of)	the	interpretation	of		

!8$(&)|0⟩ = @ AP_
(2J)P

1
2]^ D 8̀$

(_)abc^∙e + 8̀$f(_)ac^∙eF|0⟩	

as	 a	 single	 phion	 at	 definite	 space-time	 location	 x,	 but	 totally	delocalised	 in	3-

momentum	 k,	 being	 in	 a	 superposition	 of	 momentum	 states	 (cf.	 8̀$f(_) 	as	
introducing	a	phion	of	definite	momentum	but	 totally	delocalised	 in	 space).	As	

with	 the	 a-operators,	 the	 field	 operators	 are	 distributions	 that	 require	

integration	against	test	functions	to	model	realistic	particle	wave-packets:	

!8$,�(&) = @AP&′Äe(&q)!8$(&)	

models	a	single-particle	wave-packet	|&⟩� = !8$,�(&)|0⟩	at	mean	location	x.19	
																																																								
17	Naively	and	‘pre-Fock’	since	we	have	yet	to	impose	the	statistics.	
18	Antisymmetrized	for	fermions.	
19	The	‘smearing	functions’	are	often	implicitly	understood	and	omitted	to	de-clutter	the	
equations.	
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A	realistic	N-particle	state	(without	consideration	of	particle	statistics)	is	

constructed	as,	again	for	‘suitable’	f:	

|_É …_Ö⟩�,äh65ããåXçcéåè = @AP _′É …_qÖÄ_É…_Ö(_qÉ,… , _qÖ) 8̀$f(_′É)… 8̀$f(_′Ö)|0⟩	

However,	these	states	are	unphysical	in	that	we	have	not	applied	the	CCRs	from	

the	 appropriate	 particle	 statistics.	 So,	 to	 implement	 the	 bosonic	 statistics	 we	

must	construct	from	such	eigenstates	a	set	of	eigenstates	that	are	simultaneously	

eigenstates	of	the	permutation	operator	with	eigenvalue	+1.	

	

8.3.5	Imposing	the	CCRs	via	the	permutation	operator	and	the	Fock	space	

construction		

We	 have	 not	 yet	 considered	 the	 imposition	 of	 the	 CCRs	 on	 the	 ‘multi-particle’	

states.20	This	requires	the	eigenstates	already	constructed	to	be,	in	addition,	the	

+1	eigenvalue	eigenstates	of	the	permutation	operator	ê.	That	is,	the	imposition	
of	the	CCRs	requires	that	the	structure	of	an	N-quanta	sector	of	the	state	space	as	

spanned	by	the	eigenstates	of	the	4-momentum	operator	is	not	simply	that	of	the	

tensor	product	of	Hilbert	spaces	as	it	may	appear	thus	far,	but	the	symmetrized	

tensor	 product	 in	 the	 case	 of	 bosons	 (as	 here)	 or	 anti-symmetrized	 tensor	

product	for	fermions.		

Consider	an	(unsymmetrized)	eigenstate	of	the	4-momentum	operator	in	

an	N-quanta	 sector	 of	 pre-Fock	 space	⨂àℍ	provisionally	 interpreted	 as	 an	N-
phion	 state	 whose	 momenta	 are	 _É, … , _Ö ,	 namely	 the	 eigenstate		

8̀$f(_É)… 8̀$f(_Ö)|0⟩ .	 Then	 then	 the	 permutation	 operator	êcë:	⨂àℍ → ⨂àℍ		
defined	by	(cf.	Szekeres	2004,	404-409)	

êcë 8̀$f(_É)… 8̀$f(_Ü)… 8̀$fD_ìF… 8̀$f(_Ö)|0⟩
= 8̀$f(_É)… 8̀$fD_ìF… 8̀$f(_Ü)… 8̀$f(_Ö)|0⟩	

has,	 neglecting	 parastatistics,	 eigenvalue	 +1	 for	 Bosonic	 statistics	 or	 -1	 for	

Fermionic	statistics.	Then,	any	permutation	ê	can	be	expressed	as	a	product	of	
such	 permutations,	 and	 the	 normalized	 4-momentum	 eigenstates	 that	 are	

simultaneously	+1	eigenvalue	eigenstates	of	the	permutation	operator	are	

																																																								
20	The	need	to	impose	the	CCRs	of	the	relevant	form	is	due	to	the	requirement	to	establish	
relations	on	the	fields	to	ensure	that	there	is	no	propagation	of	the	fields	outside	the	light-cone.	
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|_hî,… , _hïñ =
1

√â!ôök! …ôöõ!
\ê
ê

HH 8̀$f(_É)I
hî … H 8̀$f(_ú)I

hï |0⟩I					(∗∗)	

for	spin-0	bosons	as	here,	where	ni	denotes	the	number	of	quanta	in	state	ki	and	

∑ öc = âõcYk . 21	In	our	phion	example,	these	eigenstates	|_hî, … , _hïñ	form	a	basis	
for	the	appropriate	N	quanta	state-space.	

The	 summation	 (**)	 is	 not	 to	 be	 interpreted	 as	 a	 superposition	 for	 no	

individual	 term	 in	 the	 sum	has	physical	significance	as	a	 ‘partial	 state’.	Rather,	

the	 expression	 is	 a	 mathematical	 artefact	 arising	 from	 the	 difficulty	 of	

representing	 the	 symmetrized	 (or	 antisymmetrized)	 subspaces	 in	 terms	 of	 the	

tensor	 product	 space	 that	 arises	 in	 our	 construction	 of	 the	 eigenstates	 via	 the	

Fourier	solution	to	the	wave	equation.	

The	 overall,	 appropriately	 symmetrized	 space	 of	 states,	 the	 Fock	 space	

(Fock	 1932),	 is	 then	 the	 direct	 sum	of	 these	N	quanta	 sectors.	 The	 symmetric	

Fock	space	(for	bosons)	over	the	(single	particle)	Hilbert	space	ℍ	is	
û6(ℍ) =⊕hY$† [⨂hℍ]6	

where	 [⨂hℍ]6 	is	 the	 symmetrized	 n-fold	 tensor	 product	 of	ℍ ,	 and	 the	

antisymmetric	Fock	space	(for	fermions):	

û°(ℍ) =⊕hY$† [⨂hℍ]°	
where	[⨂hℍ]°	is	 the	 antisymmetrized	n-fold	 tensor	 product	 of	ℍ,	 with	⨂$ℍ =
|0⟩,	the	ground	state	with	no	particles.22	

There	 are	 two	 different	 compositional	 issues	 associated	 with	 each	 ‘n-

quanta’	 Hilbert	 space	ℍh,¢ ≡ [⨂hℍ]¢,	 namely	 that	 of	 the	 interpretation	 of	 an	
appropriately	 symmetrized	 eigenstate,	 and	 the	 interpretation	 of	 linear	

combinations	 of	 such	 states	 for	 fixed	 n.	 A	 further	 issue	 arises	 regarding	 the	

composition	of	Fock	states	given	by	linear	combinations	of	states	from	different	

quanta-number	 sectors	 of	 Fock	 space.	 Thus	 in	 total	 there	 are	 three	 issues	

regarding	 the	 interpretation	 of	 Fock	 states	 in	 relation	 to	 ‘superposition’	 that	 I	

address	in	turn:	

																																																								
21	For	fermions	|_6,k,… , _6,àñ = k

√à!
∑ (−1)êêê D 8̀$,6f (_É)… 8̀$,6f (_Ö)|0⟩F	

in	the	same	spin	state	s	and	the	sum	is	taken	over	all	permutations	ê.	I	cannot	discuss	spin	here	
as	this	introduces	further	technical	issues.	
22	In	this	analysis	‘superposition’	applies	to	both	bosonic	and	fermionic	systems	even	though	the	
details	of	the	supporting	architecture	differs	according	to	the	statistics	which	shows	up	in	
phenomenological	differences	between	bosonic	and	fermionic	systems.	It	is	not	‘superposition’	
that	distinguishes	such	systems,	but	the	local	rules	of	application	of	‘superposition’	on	each	patch.	



	 165	

First,	|_É …_Ö⟩	is	 interpreted	 as	 an	N-quanta,	 or	 specifically	 here	 an	N-
phion,	state.	That	is,	intuitively	perhaps,	one	wishes	to	consider	the	eigenstate	to	

be	 ‘composed’	 of	N	 phions.	 The	 desire	 to	 do	 so	 may	 be	 further	 motivated	 by	

integrating	this	eigenstate	against	suitable	test-functions	to	obtain	a	realistic	N-

particle	 state	 where	 each	 particle	 is	 associated	 with	 its	 own	 wave-packet	

appropriately	 localized	 so	 that	 each	 particle	 is	 separated	 in	 position	 and	

momentum	from	the	others.	If	the	wave-packets	are	chosen	to	be	well-separated	

and	remain	so,	the	state	corresponds	intuitively	to	N	well	separated	particles,	so	

that	it	seems	natural	to	interpret	this	state	as	composed	of	N	particles.	Moreover,	

one	 might	 consider	 the	 physical	 formation	 of	 such	 a	 state	 as	 the	 ‘bringing	

together’	of	N	single	particle	states	of	 independent	and	spatially	well-separated	

physical	 origins,	 i.e.	 as	 associated	 with	N	 individual	 systems	 for	 which	 the	N	

states	 are	 combined	 in	 a	 single	 state	 to	 form	 a	 single	 system,	 as	 in	 a	 particle	

scattering	experiment.	Intuitively	we	want	to	say	that	the	single	state	so	formed	

is	composed	of	N	quanta	or	particles.	

Complications	 to	 this	picture	arise	when	 the	wave-packets	overlap.	But,	

leaving	 this	 to	 one	 side,	 the	 situation	 is	 more	 complicated	 when	 the	 particle	

statistics	 are	 considered.	 The	 nature	 of	 the	 composition	 of	 the	 states	

|_hî, … , _hïñ	or	|_6,k, … , _6,àñ	might	 be	 addressed	 with	 reference	 either	 to	 the	
concepts	 of	 ‘individuality’	 (French	 and	 Krause	 2006),	 ‘separability’	 (Howard	

2011),	 or	 ‘superposability’	 perhaps.23	Leaving	 the	 metaphysical	 issues	 to	 one	

side,	 the	 question	 for	 us	 is	 that	 of	 whether	we	 should	 regard	 the	 putative	N-

particle	or	quanta	state	as	a	 ‘superposition’	of	N	particles	or	quanta.	Or,	should	

we	 regard	 the	 state	 as	 a	 simple	 ‘isolation	 centre’	 without	 further	 structure	

according	to	the	‘Volkmann	device’	(so	that	describing	it	as	an	N-quanta	state	is	

misleading)	in	our	account	of	a	natural	description	of	the	state?			

The	key	question	is	perhaps	that	of	how	we	identify	the	‘simple	elements’	

as	the	partial	states	associated	with	partial	laws	that	take	the	same	form	in	and	

																																																								
23	The	question	of	whether	of	n-quanta	states	may	be	considered	as	mereological	compositions	of	
objects	for	example,	or	as	‘aggregations’,	is	difficult.	Such	questions	are	discussed	in	the	literature	
often	in	relation	to	particle	statistics,	e.g.	Auyang	(1995);	da	Costa	and	Holik	(2015);	Dieks	
(1990);	Saunders	(2006a&b);	French	and	Krause	(2006).	In	particular,	da	Costa	and	Holik	note	
that	the	formalism	of	the	n-particle	Schrödinger	equation	in	NRQM	is	not	equivalent	to	the	Fock	
space	formalism	(512),	where	perhaps	the	‘ontology’	is	built	in	to	the	modelling	assumptions.		
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out	 of	 combination	 according	 to	 isolation/superposition	 and	 the	 ‘Volkmann	

device’.	 Can	we	 identify	 the	 simple	 partial	 states	 as	 the	 8̀$f(_)|0⟩	as	 composing	
(according	to	the	‘Volkmann	device’)	to	form	N-quanta	states	understood	as	the	

N-fold	 composition	 (generalized	 superposition)	 of	 the	 8̀$f(_)|0⟩,	 or	 are	 the	 ‘N-
quanta’	states	themselves	the	simple	partial	states?	

It	is	construction	and	structure	via	the	a-operators	applied	in	aggregation	

in	 conjunction	with	 the	 energy	 and	momentum	 eigenvalues	 of	 the	 eigenstates	

that	 motivates	 the	 interpretation	 of	 these	 eigenstates	 as	N-quanta	 states	 of	N	

quanta	with	the	momenta	indicated,	as	already	suggested.	Moreover,	the	number	

operator	 interprets	 such	 states	 as	 N-quanta	 states.	 Such	 an	 interpretation	 is,	

from	our	perspective,	to	(attempt	to)	appropriate	a	descriptive	opportunity	that	

leads	 to	 reasoning	 advantages	 and	 physically	 salient	 explanations,	 as	we	 shall	

see	when	we	consider	scattering	of	like	particles.	That	is,	more	can	be	said	about	

the	states	if	we	can	interpret	putative	multi-quanta	states	as	multi-quanta	states	

than	 by	 simply	 identifying	 the	 states	 by	 their	 total	 mass	 and	 momentum	 for	

instance,	as	we	shall	see	in	scattering	theory.	

The	 composition	 of	 the	 putative	 N-quanta	 states	 from	 lower	 quanta	

number	states	does	not	arise	through	simple	combination	as	would	be	the	case	if	

we	 had	 simply	 a	 tensor	 product	 structure	 as	 suggested	 by	 our	 naïve	

construction.	 A	 simple	 tensor	 product	 structure	 arises	 with	 distinguishable	

particles	(cf.	§8.5	below)	for	which	the	single	quanta	states	and	the	‘partial	laws’	

associated	with	them	take	the	same	form	individually	and	in	combination	so	that	

‘superposition’	 in	 a	 generalized	 sense	 applies	 to	 states	 composed	 of	 unlike	

particle	types,	and	perhaps	this	is	one	feature	that	adds	to	the	confusion	here.	

Here	 however,	 for	 identical	 quanta	with	 bosonic	 or	 fermionic	 statistics,	

owing	 to	 the	 symmetrized	 or	 antisymmetrized	 tensor	 product	 structure	 of	 the	

Fock	space	the	partial	laws	associated	with	single	quanta	states	take	a	different	

form	 individually	 and	 in	 combination	 in	 the	N-quanta	 states.	 This	 is	 perhaps	

most	 clearly	 seen	 with	 fermionic	 statistics.	 Two	 isolated	 single	 quantum	

fermionic	systems,	 considered	as	 ‘partial	 systems’	with	 ‘partial	 laws’	 each	with	

the	 identical	 state	 8̀$,6f (_)|0⟩	cannot	 be	 combined	 to	 form	a	new	overall	 system	
for	 which	 the	 partial	 laws	 are	 the	 same	 individually	 and	 in	 combination,	
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whatever	the	structure	of	the	combination,	for	 8̀$,6f (_) 8̀$,6f (_)|0⟩ = 0	owing	to	the	
fermionic	statistics.	As	Auyang	puts	it,	‘The	α	in	|££′£′′⟩±	[where	the	α	are	states	
of	three	putative	particles	composing	the	state	and	±	denotes	the	symmetrized	or	

antisymmetrized	 state]	 no	 longer	 means	 the	 state	 of	 an	 individual	 particle.	 …	

Individual	 particle	 states	 are	 no	 longer	 viable.	 The	multi-particle	 system	 takes	

over.’	(1995,	164-165)	This	can	be	taken	to	indicate	the	failure	of	the	Volkmann	

device	and	the	inapplicability	of	‘superposition’	in	even	a	generalized	sense	with	

regard	to	the	decomposition	of	‘N-quanta’	states	in	general.	

So	 we	 should	 not	 identify	 the	N-quanta	 states	 as	 ‘superpositions’	 of	N-

quanta,	 even	 in	 Volkmann’s	 extended	 sense.	 The	 point	 is	 that	 the	 ‘N-quanta’	

states	 are	 themselves	 simple	 states	 according	 to	 the	 Volkmann	 device.	 The	

trouble	is	that	it	is	often	helpful	to	regard	or	to	refer	to	such	states	as	composed	

of	N	quanta,	 even	 though	 this	might	 also	 be	 a	 root	 of	 conceptual	 confusion	 in	

quantum	physics.24		

Ultimately	 however,	 as	 we	 shall	 see	 in	 subsequent	 chapters	 when	 we	

consider	 interactions,	 perhaps	 confusion	 stems	 here	 from	 the	observation	 that	

we	overstate	the	significance	of	particle	descriptions.	As	Wald	puts	it,	 ‘it	always	

should	 be	 borne	 in	mind	 that	 the	 notion	 of	 “particles”	 –	while	 quite	 useful	 in	

certain	contexts	–	plays	no	fundamental	role	in	the	formulation	of	quantum	field	

theory’	(1994,	51).	To	this	end	I	shall	not	dwell	on	this	issue	and	simply	note	that	

although	 it	 will	 often	 be	 convenient,	 and	 indeed	 support	 physically	 salient	

explanations	in	scattering	theory,	to	speak	of	N-quanta	states	as	though	they	are	

composed	of	N	quanta	that	the	supporting	semantic	architecture	is	unclear.	

Turning	now	to	the	second	issue	that	I	raised	regarding	the	application	of	

superposition	to	the	Fock	construction,	there	is	the	question	of	the	composition	

of	 linear	 combinations	 of	 the	 simultaneous	 eigenstates	 of	 4-momentum	 and	

																																																								
24	Although	this	is	not	a	point	that	I	wish	to	argue	or	develop,	perhaps	the	difficulty	may	be	
partially	resolved	by	noting	the	difference	between	‘particles’	and	‘quanta’,	and	differences	in	
applications	of	the	Volkmann	device	in	general	and	in	restricted	contexts.	That	is,	suitable	and	
restricted	choice	of	the	wave-functions	Ä_É…_Ö(_qÉ, … , _qÖ)	may	support	application	of	the	
Volkmann	device	to	particles	subject	to	stipulations	about	the	relationships	between	the	wave-
functions	so	as	to	support	the	Volkmann	device,	as	in	particle	scattering	experiments	in	which	at	
the	start	of	the	experiment	we	can	consider	a	natural	description	of	the	state	to	be	given	in	terms	
of	N	particles	and	their	states.	



	 168	

permutation	operators	 forming	 the	basis	of	 an	N-quanta	Fock	 space	 sector.	An	

element	of	ℍà,6	for	our	phion	system	is	of	the	form,	suitably	normalized,	

|Σ⟩à = \ zk…õ|_hî, … , _hïñ
_î…_ï
∑hiYà

	

This	 is	 straightforwardly	 interpreted,	 by	 ‘Hilbert	 superposition’,	 as	 the	 states	

|_hî, … , _hïñ	(putatively,	of	N-quanta)	in	a	superposition	of	momentum	states,	so	
that	the	amplitude	for	measuring	the	N	phions	in	momentum	states	_hî,… , _hï	
is	zk…õ .	This	 is	properly	a	 ‘superposition’	 for	analogous	reasons	as	given	above	
for	the	single	phion	states,	namely	that	the	|_hî, … , _hïñ	are	simple	solutions	of	
Schrödinger’s	 equation	 that	 are	 also	 eigenstates	 of	 4-momentum	 and	 now	 the	

permutation	 operator.	 This	 also	 extends	 to	 systems	 of	 higher	 spin,	 taking	

account	of	the	spin	components	also	as	a	superposition.	

Finally,	turning	to	the	third	issue	raised	regarding	the	Fock	construction,	

an	arbitrary	Fock	space	state	|Σ⟩	for	our	phion	system	may	be	represented	as	a	
‘Hilbert	superposition’	taken	over	all	the	N-quanta	eigenstates	over	all	momenta	

|Σ⟩ = limà→†\ \ zàßî…àßï
_Ößî ,…,_Ößïà

|_àßî , … , _àßï®	

(and	similarly	again	 for	higher	spin	systems).	That	 is,	 for	a	given	N,	the	state	 is	

interpreted	as	a	superposition	of	all	phion	number	states	of	up	to	N	phions	each	

in	a	superposition	of	3-momemtum	states,	so	that	 the	probability	of	measuring	

the	 state	 as	 an	 N-quanta	 (particle)	 state	 with	 the	 quanta	 having	 momenta	

_àßî , … , _àßï 	is	©zàßî…àßï©
-
.	This	is	properly	‘Hilbert	superposition’	applied	both	

to	momenta	and	the	number	of	quanta	(particles)	in	the	state.	That	is,	the	state	

may	be	a	superposition	of,	say,	a	2-phion	and	5-phion	state	with	the	probability	

of	obtaining	either	given	by	Born’s	rule.	

I	have	now	elucidated	 the	 interpretation	of	 the	Fock	 space	 structure	 for	

the	neutral	scalar	field	in	relation	to	superposition,	and	turn	now	to	the	charged	

scalar	field.	

	

8.4	The	Fock	construction	for	the	charged	scalar	field	

I	now	consider	how	a	 conserved	quantity	known	as	 ‘charge’	 is	 introduced	 to	a	

QFT,	 which	 also	 introduces	 antiparticles,	 and	 will	 lead	 to	 the	 possibility	 of	
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interactions.	 The	 introduction	 of	 a	 charged	 massive	 scalar	 field	 marks	 the	

introduction	 of	 the	 other	 field	 type	 required	 for	 the	 scalar	 Yukawa	 theory.	

However,	I	consider	here	an	isolated	free	system	completely	specified	in	terms	of	

a	single	field	/	particle	type	with	no	interactions.25	

Much	 of	 the	 Fourier	 techniques,	 application	 of	 superposition	 and	 the	

interpretation	 developed	 for	 the	 neutral	 scalar	 field	 carries	 over,	 but	 with	

additional	physical	structure	arising	from	the	incorporation	of	charge	so	that	the	

state	 can	 be	 considered	 to	 be	 composed	 of	 particles	 and	 antiparticles	 as	 an	

application	 of	 the	 Volkmann	 device	 in	 the	 free	 theory,	 even	 though	 there	 is	 a	

subtlety	regarding	charge	conservation.	

A	charged	scalar	 field	of	mass	M	 is	modelled	by	a	complex	scalar	 field	™	
and	its	Hermitian	conjugate	™f	with	Lagrangian:	

ℒ = ,E™$f(&),E™$(&) −´-™$f(&)™$(&)	
The	momenta	are:	

Π¨o
E (&) = ,ℒ

, H,E™$(&)I
	

Π¨o≠
E (&) = ,ℒ

, H,E™$f(&)I
	

and		

Π¨o$ (&) = J¨o(&) = J$(&) =
,ℒ

,(,$™$) = ,$™$f ≡ ™$ḟ 	

	

Π¨o≠
$ (&) = J¨o≠(&) = J$f(&) =

,ℒ
,(,$™$f)

= ,$™$ ≡ ™̇$ 	

with	Hamiltonian	density:	

ℋ$ = J$fJ$ + ∇™$f ∙ ∇™$ + ´-™$f™$	
The	 fields	 are	 quantized	 by	 promotion	 to	 operators	 with	 CCRs	 imposed	 as	

before:	

T™v$(), +), J8$(Q, +)V = RS() − Q)	
																																																								
25	If	we	understand	the	property	of	charge	in	QFT	via	the	coupling	between	fields	corresponding	
to	different	particle	types,	then	perhaps	it	is	curious	that	one	can	introduce	the	property	of	
charge	through	a	Lagrangian	global	internal	symmetry	without	reference	to	other	fields.	The	
gauge	principle	that	became	central	to	interacting	QFTs	requires	the	imposition	of	a	local	
symmetry	that	introduces	another	field.	I	shall	not	pursue	this	however	beyond	a	few	comments	
in	§9.2.	
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T™v$(), +), ™v$(Q, +)V = [J8$(), +), J8$(Q, +)] = 0	
and	

T™v$f(), +), J8$f(Q, +)V = RS() − Q)	
T™v$f(), +), ™v$f(Q, +)V = TJ8$f(), +), J8$f(Q, +)V = 0	

™v$	and	™v$f	are	hermitian	 conjugates	but	each	satisfy	 the	Klein-Gordon	equation	
individually.	The	Klein-Gordon	equations	

(,- +´-)™v$(&) = 0	
(,- +´-)™v$f(&) = 0	

are	derived	from	the	Lagrangian	via	

J8̇¨o≠ = R ÆOU$, J8¨o≠Ø	
and	

J8̇¨o = RTOU$, J8¨oV	
as	 before.	 The	 Fourier	 mode	 representations	 are	 obtained,	 although	 careful	

labelling	 is	 required	 to	 support	 identification	 of	 particle	 (‘psion’)	 and	 anti-

particle	(‘anti-psion’)	states,	

™v$(&) = ™v$(), +) = @ AP_
(2J)P

1
2]_ D 8̀$

(_)abc^∙e + ∞v$f(_)ac^∙eF	

	

™v$f(&) = ™v$f(), +) = @ AP_
(2J)P

1
2]_ D∞

v$(_)abc^∙e + 8̀$f(_)ac^∙eF	

where	 as	 before	]_ = (_- + ´-)k/-.	 The	 a-operators	 are	 associated	 with	 and	
construct	the	Fock	space	for	the	particles	of	the	theory	and	the	b-operators	with	

the	 construction	 of	 the	 Fock	 space	 of	 the	 antiparticles.	 The	 Fock	 spaces	 are	

constructed	 as	 before	 from	 the	 simultaneous	 eigenstates	 of	 the	 4-momentum	

and	+1	eigenstates	of	the	permutation	operators,	being	relativistically	invariant	

‘simple’	states	that	persist	in	the	evolution	of	the	system	and	satisfy	the	correct	

statistics.26		

The	 tensor	product	of	 the	 particle	 and	 anti-particle	 Fock	 spaces	 is	 then	

constructed	 to	 form	 the	overall	Fock	 space	 for	 the	 theory.	This	 tensor	product	

																																																								
26	The	CCRs	for	the	a-	and	b-operators	are	as	before,	being	time-independent,	with	the	
commutators	mixing	a-	and	b-operators	vanishing.	
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does	not	 require	any	 symmetrization,	 as	 the	particles	are	distinguishable	 from	

the	anti-particles.	That	is,	

|Σ±≤åç°≥≥⟩ = |Σ3°çXc¥≥å	6å¥X±çñ ⊗ |Σ°hXc3°çXc¥≥å	6å¥X±çñ	
The	 action	 of	 the	 operators	 on	 their	 individual	 spaces	 is	 naturally	 extended	 to	

this	space,	so	 for	 instance	the	a-operators	operate	on	the	overall	Fock	space	as	

8̀$f(_)⊗ ∂°3	and	the	b-operators	as	∂3 ⊗ ∞v$(_),	etc.,	using	the	obvious	notation.	
The	number	operators	are	defined	for	each	 field	as	before,	and	the	total	

(normal	ordered)	Hamiltonian	is	

: OU$:=
1
2@

AP_
(2J)P

1
2]_ ]_ H 8̀$

f(_) 8̀$(_) + ∞v$f(_)∞v$(_)I	

or,	written	out	fully,	

: OU$:=
1
2@

AP_
(2J)P

1
2]_ ]_ H 8̀$

f(_)⊗ ∂°3 8̀$(_)⊗ ∂°3 + ∂3 ⊗ ∞v$f(_)∂3 ⊗ ∞v$(_)I	

I	follow	usual	practice	and	omit	the	identity	operations,	but	the	actual	structure	

should	be	kept	in	mind.	

What	 this	 structure	 together	 with	 the	 decomposed	 form	 of	 the	

Hamiltonian	 implies	 is	 that	 the	 overall	 state	may	 be	 understood	 in	 relation	 to	

application	 of	 the	 Volkmann	 device.	 Separation	 or	 isolation	 of	 particle	 and	

antiparticle	states	 is	achieved,	so	that	 individual	particle	and	antiparticle	states	

persist	 (following	 the	decomposition	of	 the	 initial	 state),	being	associated	with	

corresponding	 partial	 laws	 that	 take	 the	 same	 form	 individually	 and	 in	

combination,	but	subject	to	charge	conservation.27	The	partial	laws	for	each	are	

given	by	the	relevant	component	of	the	Hamiltonian	via	Schrödinger’s	equation	

as	before,	so	that	the	partial	laws	take	the	same	form	individually	and	in	linear	

combination.	

The	 Lagrangian	has	 additional	 structure	 via	 an	 internal	U(1)	 symmetry.	

That	is,	if	we	perform	a	global	transformation:	

™$ → ac∑™$	

																																																								
27	This	means	that	given	a	particle	or	antiparticle	state	as	a	partial	state,	in	the	free	theory	the	
partial	states	persist	and	are	associated	with	partial	laws	that	take	the	same	form	individually	
and	in	combination.	The	relevance	of	charge	conservation	is	that	any	change	to	the	particle	
number	will	require	a	corresponding	change	to	the	antiparticle	number.	But	this	situation	does	
not	arise	in	the	free	theory,	and	so	the	tensor	product	of	the	particle	and	antiparticle	states	can	
be	regarded	as	an	instance	of	‘superposition’	even	if	the	conservation	of	charge	constraint	lurks	
in	the	background	but	does	no	work	in	describing	evolution	in	the	free	theory.	
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™$f → abc∑™$f	
the	 Lagrangian	 is	 unchanged.	 By	 Noether’s	 theorem,	 associated	 with	 this	

symmetry	is	a	conserved	Noether	current,	∏$E 	:	
∏$E = Π¨o

E π™$ + Π¨o≠
E π™$f	

where	π = ∫
∫∑©∑→$	

	

so	 	 	 	 ∏$E = RTD,E™$fF™$ − (,E™$)™$fV	
This	 current	∏$E 	may	 be	 promoted	 to	 an	 operator	 on	 quantization,	 although	
normal	ordering	 is	 required	 to	 remove	ordering	ambiguities.	From	 the	 current	

operator	a	charge	operator	is	deduced:	

ªv$ = @AP&∏º$$ = 	RTD,$™v$fF™v$ − D,$™v$F™v$fV	

= 1
2@A

Pl H−8̀$f(_) 8̀$(_) + ∞v$(_)∞v$f(_) − 8̀$(_) 8̀$f(_) + ∞v$f(_)∞v$(_)I	

so	

:	ªv$ ≔ @APl H∞v$f(_)∞v$(_) − 8̀$f(_) 8̀$(_)I	

The	 conserved	 charge	 is	 given	 by	 the	 difference	 between	 the	 number	 of	 anti-

particles	 and	 particles.	 Conventionally,	 the	 Noether	 current	 is	 defined	 to	 be	

positive	for	particles,	so,	changing	sign:		

:	ªv$ ≔ @APlHâU$,^(°) − âU$,^(æ)I	

	

8.5	 Quantum	 systems	with	 different	 particle	 types:	 The	 initial	 use	 of	 the	

‘Volkmann	device’	revisited	

I	now	consider	a	quantum	system	characterized	completely	by	different	particle	

and	 field	 types,	 without	 coupling	 or	 interaction,	 as	 supported	 by	 successful	

application	of	the	Volkmann	device.	For	concreteness,	and	anticipating	the	scalar	

Yukawa	theory,	suppose	that	 the	overall	state	|Σ⟩±≤åç°≥≥ 	is	completely	described	
by	 two	spinless	quanta	 (particle)	 types,	phions,	being	neutral	 spin	0	bosons	of	

mass	m,	and	psions	/	anti-psions,	being	spin	0	bosons	of	mass	M	and	charge	|g|.	

The	 associated	 fields	øv$ ,	™v$ 	and	™v$f 	each	 satisfy	 a	 Klein-Gordon	 equation	
individually,	and	each	act	individually	on	the	state	to	raise	or	lower	the	phion	or	
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(anti)psion	 content.	 That	 is,	 the	 field	 equations	 completely	 characterizing	 the	

system	are	linear	and	uncoupled.	

The	 overall	 state	 may	 be	 decomposed	 into	 isolated	 (free)	 phion	 and	

psion/anti-psion	component	states	since	

|Σ⟩±≤åç°≥≥ = |Φ$⟩⨂|Ψ$⟩					(¬)	
where	further	

|Σ⟩±≤åç°≥≥ = |Ψ3°çXc¥≥å	6å¥X±çñ ⊗ |Ψ°hXc3°çXc¥≥å	6å¥X±çñ	
There	 is	 no	 symmetrization	 of	 either	 tensor	 product	 as	 the	 particles	 are	

distinguishable,	 and	 each	 component	 |Φ$⟩ ,	 |Ψ3°çXc¥≥å	6å¥X±çñ 	and	

|Ψ°hXc3°çXc¥≥å	6å¥X±çñ	is	 represented	 by	 an	 element	 of	 its	 own	 symmetrized	 Fock	
space,	i.e.	by	linear	combinations	of	N-quanta	states	as	given	above.	The	action	of	

the	fields	is	given	by	

øv$|Σ⟩±≤åç°≥≥ = øv$ ⊗ ∂¨|Φ$⟩⨂|Ψ$⟩ = Døv$|Φ$⟩F⨂|Ψ$⟩				(√)	
and	likewise	for	the	Ψ0-fields	™v$	and	™v$f.	

The	 overall	 Hamiltonian	OU$,±≤åç°≥≥ 	is	 the	 sum	 of	 the	 two	 independent	
Hamiltonians	OU$,ƒ 	and	OU$,≈ ,	 each	 acting	 on	 their	 component	 of	 the	 tensor	
product	space	(and	as	the	identity	on	the	other):	

OU$,±≤åç°≥≥|Σ⟩±≤åç°≥≥ = OU$,ƒ ⊗ ∂¨|Φ$⟩⨂|Ψ$⟩ + ∂∆ ⊗ OU$,≈|Φ$⟩⨂|Ψ$⟩			(«)	
where	normally	the	identity	maps	are	suppressed	so	that	

OU$,±≤åç°≥≥ = OU$,ƒ + OU$,≈	
This	 construction	 of	 the	 combined	 Fock	 space	 structure,	 and	 associated	

Hamiltonian,	 enables	 us	 to	 view	 a	 general	 state	 as	 a	 composite	 of	 psion,	 anti-

psion	 and	 phion	 ‘partial	 states’	 that	 each	 have	 the	 same	 Fock	 structure	

individually	 here	 and	 in	 combination	 (given	 by	 the	 tensor	product).	Moreover,	

the	partial	laws	for	each	sector	or	partial	state	are	the	same	individually	and	in	

combination	owing	to	the	additive	structure	of	the	Hamiltonian	coupled	with	the	

observation	that	each	field	acts	simply	as	the	identity	on	the	other	component	of	

the	overall	state.		

That	is,	the	decomposition	of	the	state	into	phion	and	psion	components	

and	 associated	 fields	 is	 an	 application	 of	 the	 Volkmann	 device	 owing	 to	 this	

‘superposition’	structure.	This	means	that	the	particle	interpretation	established	

on	the	two	component	spaces	 individually	as	above	carries	directly	over	to	 the	
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combined,	overall	space	by	the	Volkmann	device.	A	general	state	 in	 this	 tensor	

product	 space	 evolves	 as	 a	 Hilbert	 superposition	 for	 which	 Born’s	 rule	 is	

applicable,	with	 the	 coefficient	of	 each	 term	giving	 the	amplitude	of	measuring	

the	 system	 in	 a	 given	 state	 as	 before	 in	 terms	 of	 phion	 and	psion	 content	 and	

states.	The	QFTs	constructed	 in	§§8.3-4	take	the	same	form	individually	and	 in	

combination,	whilst	not	stating	the	facts,	in	a	system	completely	characterized	by	

phions	and	psions,	provided	that	there	are	no	interactions.	

The	 crucial	 point	 is	 that	 a	 free	 system	 supports	 application	 of	 the	

Volkmann	device	in	the	first	step	of	establishing	a	QFT	for	a	‘composite’	system	

owing	to	(A-C)	holding	(cf.	§2.3.1).	That	is,	when	the	fields	taken	to	characterize	a	

quantum	 system	 completely	 are	 free	 and	 not	 coupled	 application	 of	 the	

Volkmann	device	is	supported	so	that	a	QFT	can	be	developed	individually	and	in	

isolation	for	each	field	(as	we	did	above).	Moreover,	each	field	individually	and	in	

isolation	 supports	 a	 particle	 description	 of	 the	 (partial)	 state	 associated	 with	

each	field	individually	and	in	isolation.	The	QFTs	associated	with	each	field	and	

the	corresponding	particle	description	of	 the	(partial)	state	 then	take	the	same	

form	in	combination	as	they	do	individually	in	the	sense	just	established.	

Moreover,	it	may	be	seen	from	(A-C)	that	the	converse	holds	–	a	quantum	

system	which	supports	 the	Volkmann	device	 in	order	 to	 identify	a	 set	of	 fields	

(with	 associated	 Lagrangians)	 completely	 characterizing	 the	 system	 is	 a	 free	

(non-interacting)	system.	

This	is	the	initial	application	of	the	Volkmann	device	that	was	mentioned	

in	chapter	7	in	relation	to	the	historical	development	of	QFTs,	the	applicability	of	

which	 apparently	 seemed	 so	 obviously	 true	 as	 to	 be	 unnoticed.	 However,	 the	

crunch	will	come	when	we	consider	 interactions	as	 in	our	 ‘toy	model’	of	scalar	

Yukawa	theory	in	which	the	different	field	types	are	coupled.	This	means	that	(A-

C)	no	longer	hold	so	that	the	initial	application	of	the	Volkmann	device	fails.	The	

field	equations	are	coupled	and	nonlinear,	with	the	wave	equation	for	one	field	

now	 acting	 on	 the	 putative	 partial	 state	 associated	 with	 the	 other	 field.	

Moreover,	Hilbert	superposition	 is	no	 longer	supported	 for	 the	wave	equations	

or	 the	 evolution	 of	 the	 putative	 partial	 states	 owing	 to	 the	 nonlinearity	 of	 the	

wave	equations.	
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The	 failure	of	 the	Volkmann	device	has	 far-reaching	consequences	that	 I	

explore	in	the	subsequent	chapters.	Renormalization,	and	the	need	to	introduce	

‘virtual	particles’,	are	indicators	of	the	failure	of	the	Volkmann	device.	They	offer	

partial	 compensation,	 generally	 only	 as	 regards	 supporting	 calculations,	 in	

limited	circumstances.	As	QFT	developed	during	the	mid-20th	century,	Heitler’s	

lone	voice	of	concern	(§7.6)	was	 ignored	as	 it	appeared	 inconceivable	that	one	

could	 not	 identify	 independent	 fields	 and	 corresponding	 partial	 states,	 with	

some	 form	 of	 application	 of	 the	 Volkmann	 device	 implicitly	 assumed.	 For	

instance	Schwinger	suggested	that	QED	should	have		
the	 following	 essential	 features	 –	 explicit	 covariance	 with	 respect	 to	 Lorentz	
transformations,	and	a	natural	division	between	the	properties	of	 independent	fields	and	
the	effects	of	field	interactions.	As	the	simplest	example	of	the	latter,	we	consider	…	the	
phenomena	of	vacuum	polarization	and	the	self	energies	of	photon	and	electron,	which	
arise	from	the	coupling	between	the	matter	and	electromagnetic	fields	and	their	vacuum	
fluctuations.	(Schwinger	1949,	651-652,	emphasis	added)		

This	appeal	 to	 ‘independent	 fields’	 is	 an	application	of	 the	Volkmann	device	 in	

the	context	of	examples	that	Heitler	had	raised	as	problematic,	and	leads	to	the	

need	 for	 renormalization	 as	 a	 partial	 remedy.	 More	 recently	 it	 has	 perhaps	

become	preferable	to	work	with	the	renormalized	rather	than	‘bare’	fields,	which	

might	be	taken	as	an	attempt	to	re-establish	the	Volkmann	device	with	reference	

to	 different	 ‘isolation	 centres’.	 But	 as	 we	 shall,	 this	 fails	 to	 re-establish	 the	

applicability	of	the	Volkmann	device	in	the	context	of	general	interactions.	

	 From	 the	Wilsonian	 perspective	 the	 initial	 application	 of	 the	 Volkmann	

device	 for	 free	 systems	 establishes	 a	 descriptive	 opportunity	 leading	 to	 a	

reasoning	advantage,	supporting	physically	salient	explanations	by	enabling	one	

to	describe	a	complicated	quantum	system	in	terms	of	different	types	of	particles	

in	different	states.	This	is	a	natural	description	of	the	system,	which	is	supported	

in	 a	 rather	 complicated	 way	 by	 application	 of	 the	 ‘two	 aspects’	 of	 Fourier’s	

technique	 in	 addition	 to	 the	 Volkmann	 device.	 As	 we	 shall	 study	 in	 detail	 in	

subsequent	chapters,	semantic	mimicry	occurs	with	regard	to	application	of	the	

Volkmann	 device	 and	 the	 interpretation	 of	 virtual	 particles	 when	 interactions	

are	introduced.	

	

8.6	The	‘group	theoretic’	characterization	of	particles	

My	discussion	of	the	particle	concept	in	QFT	has	centred	on	Falkenburg’s	 ‘Field	

Quanta’	patch.	I	now	discuss	another	important	particle	concept	in	QFT,	namely	



	 176	

Falkenburg’s	 ‘Group	 Theoretic’	 characterization	 which	 is	 associated	 with	

Wigner’s	 classification	 of	 particles	 (Wigner	 1939).	 This	 is	 in	one	 sense	 a	more	

powerful	 approach	 than	 that	 of	 ‘field	 quanta’	 and	 might	 be	 considered	 as	 an	

alternative	 approach	 when	 the	 ‘field	 quanta’	 characterization	 encounters	

difficulties.	 However,	 as	 with	 ‘field	 quanta’	 it	 is	 only	 applicable	 to	 free	 fields	

satisfying	 linear	 field	 equations,	 so	 it	 cannot	 be	 used	 to	 support	 particle	

descriptions	of	interacting	theories.	Wigner’s	approach	shows	us	how	to	classify	

particle	types	and	derive	the	associated	field	equations.	But	it	is	in	another	sense	

more	restricted	in	its	application	than	‘field	quanta’,	being	more	a	‘classificatory’	

approach	 that	 identifies	what	 is	 necessarily	 required	 to	 identify	 an	 entity	 as	 a	

particle	 in	 a	 relativistic	 setting,	 and	 it	does	 not	 show	us	 how	 to	 characterize	 a	

state	as	composed	of	particles.	

Wigner’s	 group-theoretic	 approach	 might	 be	 considered	 as	 supplying	

either	the	classification,	identification	or	definition	of	particles	in	QFT.	Particles	

are	identified	as	states	that	transform	under	irreducible	unitary	representations	

of	 the	 proper	 orthochronous	 Poincaré	 group	 ISO(1,3)	 (Schwartz	 2014,	 110).	

Wigner	(1939)	first	classified	such	representations	as	representations	that	may	

be	 embedded	 in	 fields,	 where	 the	 fields	 are	 the	 free	 field	 wave	 equations	 for	

single	 relativistic	 particles.	 He	 showed	 that	 the	 irreducible	 unitary	

representations	 are	 uniquely	 classified	 by	 two	parameters:	mass	m	and	spin	 J,	

where	m	is	a	non-negative	real	number	and	J	is	a	non-negative	half	integer.		

This	means	that	all	particles	can	be	classified	by	two	parameters	identified	

as	mass	and	spin,	so	the	pair	(m,	J)	can	be	taken	to	‘define’	a	particle	in	QFT	(cf.	

Streater	 1988,	 144;	 Schwartz	 2014,	 110).	 It	 is,	 however,	 a	 mathematical	

classification	 of	 group	 representations.	 It	 does	 not	 say	 which	 are	 physically	

instantiated.	 It	 gives	 what	 is	 mathematically	 necessary	 but	 not	 physically	

sufficient	 for	what	we	intuitively	 identify	as	a	particle	(cf.	Kuhlmann	2010,	93).	

Falkenburg	suggests	that	Wigner’s	classification,	if	taken	as	a	definition,	leads	to	

a	 ‘very	 general	 meaning	 of	 the	 term	 “particle”’	 (2007,	 231),	 with	 particles	 no	

longer	 local,	 and	 are	 considered	 to	 be	 non-interacting	 (232),	 as	 the	 definition	

requires	linear	free-field	equations.	

In	 order	 to	 construct	 a	 unitary	 QFT	 one	 must	 embed	 the	 irreducible	

representations	into	objects	with	space-time	indices,	that	is,	scalar	fields,	vector	
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fields,	 tensor	 fields	 and	 spinor	 fields	 from	which	 Lagrangians	 can	 be	 deduced	

(Schwartz	 2014,	 111)	 and	 the	 dynamics	 of	 the	 theory	 developed.	 This	 is	

straightforward	for	spin	0,	i.e.	J=0,	where	one	puts	one	degree	of	freedom,	i.e.,	the	

mass	m	 into	 a	 scalar	 field	 (Schwartz	 2014,	 114),	 leading	 to	 the	 Klein-Gordon	

equation.	 The	 cases	 for	 J>0	 are	more	 complicated	 as	 extra	 degrees	 of	 freedom	

must	be	embedded	in	the	fields.	I	shall	not	consider	the	details	but	simply	note	

that,	 for	 example,	 the	 Dirac	 equation	 can	 be	 deduced	 in	 this	 way.28	Indeed,	

Kuhlmann	 suggests	 that,	 ‘One	 success	 of	Wigner’s	 approach	 is	 that	 relativistic	

wave	equations	for	all	possible	types	of	free	particles,	such	as	the	Klein-Gordon	

or	the	Dirac	equation,	can	be	derived	in	a	systematic	fashion	without	heuristic	ad	

hoc	 moves.’	 (2010,	 93)	 Perhaps	 this	 is	 the	 real	 significance	 and	 power	 of	

Wigner’s	approach	–	it	provides	a	way	of	identifying	all	the	possible	free,	linear	

wave	equations	to	be	considered	as	candidates	for	canonical	QFTs.	

In	subsequent	chapters	I	develop	a	contrast	between	linear	and	nonlinear	

field	 theories.	 It	 is	 worth	 stressing	 that	Wigner	 emphasised	 that	 his	 approach	

was	 applicable	 only	 to	 linear	 (free)	 theories,	 and	 not	 to	 nonlinear	 theories:	 ‘It	

should	 be	 emphasized	…	 that	…	 [o]ur	 analysis	 is	 necessarily	 restricted	 to	 free	

particles	 and	 does	 not	 lead	 to	 any	 assertions	 about	 possible	 interactions.’	

(Bargmann	and	Wigner	1948,	213;	cf.	Wigner	1939,	151).		

Falkenburg	briefly	considers	the	significance	of	interactions	in	relation	to	

Wigner’s	 particle	 concept,	 suggesting	 that	 ‘particles	 are	 considered	 to	 be	

primarily	non-interacting.	They	are	 considered	 to	be	 independent	of	 the	 rest	of	

the	world,	like	the	substances	of	traditional	metaphysics.	…	Particles	are	subject	

to	 uncoupled	 field	 equations.’	 (2007,	 232)	 She	 does	 not	 develop	 this	 point,	

although	 it	 is	worth	 analysing	 in	more	 detail.	Wigner’s	 project	 is	 based	 on	 the	

observation	 that,	 ‘If	 the	wave	 functions	 in	question	 refer	 to	a	 free	particle	and	

satisfy	 relativistic	wave	 equations,	 there	 exists	 a	 correspondence	 between	 the	

wave	 functions	 describing	 the	 same	 state	 in	 different	 Lorentz	 frames.’	

(Bargmann	and	Wigner	1948,	211)	This	 crucial	point	–	 that	 linear	or	 free	 field	

equations	are	required	 for	this	approach	–	has	perhaps	become	obscured.	That	

is,	 the	 ‘group	 theoretic’	 particle	 characterization	 does	 not	 provide	 a	 way	 of	

circumventing	the	difficulties	 that	occur	with	the	 ‘field	quanta’	characterization	
																																																								
28	See	Schwartz		(2014,	114-138).	



	 178	

when	 moving	 from	 free	 (linear)	 to	 interacting	 (nonlinear)	 theories,	 so	 that	 it	

does	not	offer	a	way	of	‘prolonging’	the	particle	concept	into	interacting	theories.	

Finally,	Wigner’s	 approach	classifies	 ‘elementary	 systems’	 that	 are	 to	be	

regarded	 as	 ‘particles’	 but	 not	 necessarily	 ‘elementary	 particles’.	 Newton	 and	

Wigner	note	 the	difficulty	of	defining	and	contrasting	 ‘elementary	particle’	 and	

‘elementary	system’,	suggesting	that	the	defining	characteristic	of	an	‘elementary	

particle’	is	not	always	clear	cut:	‘it	is	that	it	should	not	be	useful	to	consider	the	

particle	 as	 a	 union	 of	 other	 particles’.	 So	 they	 suggest	 that	 whilst	 a	 hydrogen	

atom	is	an	elementary	system	but	not	an	elementary	particle,	the	case	of	the	π-

meson	is	more	ambiguous.	They	conclude	that	the	π-meson	should	be	regarded	

as	 an	 elementary	 particle	 owing	 to	 the	 difference	 between	 its	 properties	 and	

those	 expected	 ‘from	 a	 compound	 consisting	 of	 a	 μ-meson	 and	 a	 neutrino’	

(Newton	 and	Wigner	 1949,	 400).	 They	 also	 consider	 protons	 and	 neutrons	 as	

elementary	 particles,	 writing	 prior	 to	 QCD,	 but	 perhaps	 the	 question	 of	 the	

composition	 of	 strongly	 interacting	 ‘bound	 states’	 such	 as	 those	 of	 quarks	 and	

gluons	 nicely	 illustrates	 the	 interpretative	 difficulties	 of	 ‘elementarity’.	 I	 shall	

return	to	this	in	chapter	11.		

	

8.7	Summary	and	anticipation	of	interacting	QFTs	

We	 have	 seen	 how	 a	 particle	 description	 in	 free	 (non-interacting)	 QFT	 via	

particle	 types	 and	 their	 states	 arises	 as	 a	 natural	 description	 of	 the	 state	

according	to	‘field	quanta’	via	several	applications	of	‘superposition’:	

First,	an	initial	implicit	appeal	to	the	Volkmann	device	to	allow	the	state	

to	 be	 considered	 to	 be	 composed	 of	 isolatable	 partial	 systems	 comprising	 of	

phion	 and	 psion	 component	 states	 (for	 example)	 that	 take	 the	 same	 form	

individually	 and	 in	 combination,	 associated	 with	 corresponding	 independent	

partial	laws	taking	the	same	form	individually	and	in	combination;		

Secondly,	 Hilbert	 superposition	 is	 applied	 to	 Schrödinger’s	 equation,	

reflecting	classical	Fourier	techniques,	with	the	caveat	that	the	interpretation	of	

the	coefficients	is	given	by	Born’s	rule	on	this	quantum	patch	of	application.	The	

task	 is	 to	 construct	 explicitly	 the	 eigenstates	 of	 the	 Hamiltonian	 that	 are	

simultaneously	 eigenstates	 of	 the	 momentum	 and	 permutation	 operators	 to	

support	a	particle	interpretation,	and	associated	laws,	as	a	natural	description;	
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Thirdly,	to	construct	such	eigenstates,	Hilbert	superposition	is	applied	to	

the	 wave	 equations,	 again	 using	 Fourier	 techniques.	 This	 enables	 the	

construction	of	the	Fock	basis	to	support	a	particle	description	of	the	system	as	a	

natural	description.	

Of	 these	 three	 applications	 of	 ‘superposition’,	 only	 the	 second	 –	Hilbert	

superposition	 applied	 to	 the	 overall	 (NB	 not	 partial)	 state	 in	 Schrödinger’s	

equation	–	 survives	 in	 interacting	 theories,	 as	we	 shall	see.	This	problematizes	

the	 particle	 concept	 and	 the	way	 that	we	 understand	 and	 describe	 interacting	

states,	 with	 renormalization	 a	 symptom	of	 the	 failure	 of	 the	 Volkmann	 device	

and	a	partial	cure	as	a	pragmatic	response	to	the	problem.	

Finally,	 we	 considered	 the	 ‘group	 theoretic’	 approach	 to	 particle	

characterization,	 noting	 that	 it	will	 not	 offer	 a	way	 around	 the	 failure	 of	 ‘field	

quanta’	in	interacting	theories,	even	if	it	supports	the	systematic	construction	of	

relativistic	 wave	 equations	 associated	 with	 different	 types	 of	 free	 fields	 and	

particles.	
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Chapter	9	

	

Introducing	interactions,	Dyson’s	expansion	and	Feynman	diagrams	

	

9.1	Introduction	and	overview	

In	chapter	8	we	saw	how	‘free’	QFTs	were	constructed	so	as	to	establish	particle	

descriptions	 of	 quantum	 systems	 as	 natural	 descriptions	 by	 appeal	 to	

‘superposition’	 via	 Fourier	 techniques.	 I	 now	 begin	 my	 analysis	 of	 interacting	

theories	 where,	 as	 per	 the	 historical	 foundations	 of	 QFT	 (chapter	 7),	 an	

interaction	is	introduced	as	a	‘perturbation’	to	the	established	free	theories	via	a	

parameter	 ‘charge’	 that	 couples	 the	 fields.	 Iterative	 series	 techniques	 are	 then	

applied	to	solve	for	the	behaviour	of	the	interactions	of	the	system	provided	that	

the	coupling	is	sufficiently	small	to	support	the	use	of	such	techniques,	since	the	

iterative	 series	 is	 a	 power	 series	 in	 the	 parameter	 ‘charge’.	 It	 has	 been	

commonplace	to	endow	individual	terms	in	the	series	expansion	obtained	with	a	

physical	 interpretation	even	though	difficulties	are	encountered,	not	 least	 from	

the	need	for	renormalization.	Haag	outlines	this	approach	to	QFT	thus:	
To	study	[QED’s]	physical	consequences	one	started	from	the	free	field	theory,	resulting	if	
ℒ"	[the	perturbative	interaction	term	coupling	the	fields	in	the	Lagrangian]	is	neglected,	as	
a	 zero	 order	 approximation.	 There	we	 have	 the	 Fock	 space	 of	 noninteracting	 photons,	
electrons	and	positrons.	ℒ"	is	considered	as	a	perturbation	producing	transitions	between	
particle	configurations.	The	elementary	process	is	the	emission	or	annihilation	of	a	photon	
combined	with	the	corresponding	change	of	momentum	of	an	electron	or	positron	or	the	
creation	or	annihilation	of	an	electron-positron	pair.	(1996,	51)	

We	 shall	 see	 that	 this	 approach	 incorporates	a	 form	of	 semantic	mimicry,	 and	

that	 there	 is	 no	 particle	 description	 for	 interacting	 states	 in	QFT,	whether	 via	

virtual	 particles,	 or	 otherwise.	 This	 conclusion	 is	 not	 novel	 (cf.	 Fraser	 2008;	

Redhead	 1988)	 but	 analysis	 of	 interacting	 QFT	 in	 terms	 of	 the	 failure	 of	 the	

applicability	of	superposition,1	and	of	the	Volkmann	device	in	the	initial	attempt	

to	 isolate	 fields	and	corresponding	states	 in	particular,	 is	novel,	which	enables	

development	 of	 the	 conceptual	 analysis	 of	 interacting	 QFTs,	 offering	 a	 new	

perspective	on	renormalization	for	example.	

																																																								
1	Fox	(2008)	considers	what	he	terms	the	‘superposition	argument’	with	regard	to	virtual	
particles,	although	without	thorough	analysis	of	the	concept	of	superposition	and	its	application	
(or	failure).	
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I	shall	demonstrate	in	this	and	the	following	chapter	that	the	application	

of	the	Volkmann	device	is	deeply	problematic	and	leads	to	conceptual	confusion.	

Renormalization	 is	 a	 symptom	 of	 the	 failure	 of	 the	 Volkmann	 device	 and	 a	

pragmatic	 partial	 remedy	 employed	 to	 support	 calculations.	 Failure	 of	 the	

Volkmann	 device	 means	 that	 the	 concept	 of	 ‘interaction’	 is	 also	 faulty	 at	 the	

(near)	fundamental	level	in	that	the	concept	is	prolonged	from	‘everyday’	usage	

in	relation	to	familiar	objects	to	QFT	via	semantic	mimicry.	This	has	far-reaching	

consequences	 for	 our	 conceptual	 grasp	 of	 fundamental	 physics.2	I	 shall	 not	

undertake	a	philosophical	analysis	of	 ‘interaction’	here;	rather,	 I	shall	highlight	

the	difficulties	as	they	arise	in	relation	to	the	Wilsonian	framework	adopted.	

In	 order	 to	 model	 interactions	 and	 perform	 calculations	 in	 QFT,	

corresponding	 to	 each	 field	 type	 (e.g.	#$%('), #$('), *+('))	 there	 are	 three	 field	

species	,$('),,$-('), ,$.//123(')	required:	

The	,$-	are	the	bare,	free	fields	introduced	in	chapter	8	that	give	rise	to	a	

Fock	space	structure	of	states	constructed	from	the	‘bare’	vacuum	|0⟩.	As	I	shall	

outline	below,	the	,$-	species	will	be	associated	with	the	Feynman	diagrams	and	

virtual	particles	that	arise	in	conjunction	with	Dyson’s	expansion	in	the	iterative	

solution	method	 in	 the	 interaction	picture.	Realistic	 interpretation	of	Feynman	

diagrams	arises	 through	semantic	mimicry	as	associated	with	 semantic	mimics	

of	 ‘superposition’.	 The	 states	 associated	 with	 the	,$-	do	 not	 support	 a	 natural	

description	or	physical	interpretation	in	interacting	systems	(§9.7).	

The	,$	are	the	coupled	fields	that	I	am	about	to	introduce	that	satisfy	the	

coupled	field	equations.	Ultimately	they	will	be	interpreted	as	interpolating	fields	

in	scattering	theory	as	they	interpolate	between	‘physical’	initial	and	final	states	

in	 scattering	 experiments	 associated	with	 the	,$.//123	(see	 below).	 The	,$	act	 on	

the	 ‘physical’	 vacuum	|Ω⟩,	 but	 this	 field	 species	 does	 not	 support	 a	 physically	

meaningful	Fock	space	structure	and	hence	particle	interpretation,	or	indeed	any	

natural	description	of	the	system,	owing	to	the	nonlinearity	of	the	field	equations	

that	 they	 satisfy	 since	 ‘superposition’	 fails	 (§10.2).	 The	,$	will	 be	 seen	 to	 arise	

from	 an	 implicit	 application	 of	 the	 Volkmann	 device	 in	 the	 initial	 selection	 of	

																																																								
2	There	is	surprisingly	little	philosophical	discussion	of	the	concept	of	‘interaction’,	other	than	in	
relation	to	the	mind-body	problem.	
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fields	 as	 associated	 with	 putative	 different	 particle	 types.	 Many	 interpretative	

difficulties	arise	because	this	is	an	improper	application	of	the	device.	

Finally,	the	,$.//123 	are	associated	with	the	idealized	‘well-separated’	(thus	

non-interacting)	 physical	 or	 renormalized	 in-/out-states	 of	 scattering	

experiments.	These	free	fields	also	act	on	the	physical	vacuum	|Ω⟩	and	support	a	

Fock	 space	 structure	 with	 a	 physical	 particle	 interpretation,	 but	 only	 in	 the	

asymptotic	 region.	 However,	 the	 ,$.//123 	and	 associated	 states	 cannot	 be	

prolonged	 to	 describe	 general	 interacting	 states	 or	 offer	 a	 physically	 salient	

explanation	 of	 interaction,	which	 is	 shown	 to	be	 a	 problematic	 concept	 at	 this	

(near)	fundamental	level	(§10.2).	

So,	 I	shall	show	here	and	in	chapter	10	that	 there	 is	no	particle,	or	even	

natural	description	of	general	interacting	states	associated	with	any	of	the	field	

species	,$('),,$-('), ,$.//123(').	In	chapter	11	I	indicate	how,	despite	this,	reliable	

empirically	adequate	results	can	be	obtained	using	these	fields.	Such	success	will	

depend	in	part	on	the	success	of	renormalization	techniques	to	compensate	for	

the	failure	of	the	Volkmann	device.	That	is,	one	can	reliably	know	the	outcome	of,	

for	 example,	 scattering	 experiments	 (up	 to	 probabilities)	 without	 having	 any	

description	 or	 explanation	 of	 the	 process	 of	 interaction.	 This	 means	 that	 one	

cannot	 endow	 a	 bound	 state	 with	 internal	 structure	 via	 QFT.	 However,	 for	

weakly	coupled	theories	an	‘approximate’	natural	description	of	interactions	and	

bound	 states	 is	 often	 available	 that	 might	 be	 compared	 with	 an	 ‘engineer’s	

model’	rather	than	a	metaphysical	description.	

	

9.2	Introducing	an	interaction	

I	analyze	interacting	QFTs	using	scalar	Yukawa	theory.	Assume	that	a	system	is	

modelled	by	charged	scalar	psion	 fields	of	mass	M	associated	with	 ‘matter’	and	

‘anti-matter’	 particles	 that	 interact	 via	 a	 neutral	 scalar	 phion	 field	 of	mass	m.	

These	fields	are	coupled	by	an	interaction	term	8#$%(')#$(')*+('),	where	g	is	the	

coupling	or	charge,	so	the	overall	Hamiltonian	is	assumed	to	be	

9: = 9:- + 9:=								where	9:= = 8#$%(')#$(')*+(')	

and	9:-	is	the	sum	of	the	free	field	Hamiltonians	derived	in	chapter	8.	
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It	is	important	to	note,	as	per	Haag	above,	that	this	standard	approach	to	

introducing	 an	 interaction	 is	already	a	perturbative	approach	 before	 the	 use	 of	

any	 series	 expansion	 techniques.	 The	 interaction	 term	 was	 introduced	 by	

assuming	that	it	is	meaningful	to	write	the	overall	Hamiltonian	as	the	sum	of	the	

free	 Hamiltonians	 with	 the	 addition	 of	 an	 interaction	 term	 introduced	 as	 a	

perturbation.	That	is,	crucially,	one	assumes	that	it	is	still	physically	meaningful	

to	 apply	 the	 Volkmann	 device	 that	 supports	 the	 identification	 of	 isolated	 or	

abstracted	 different	 field/state	 types	 such	 that	 the	 abstracted	 components	

#$%('),#$('),*+(')	and	 associated	 partial	 states	 take	 the	 same	 form	 individually	

and	 in	 combination.	 Or,	 minimally,	 one	 supposes	 that	 there	 is	 some	 trace	

principle	by	which	a	general	interacting	state	can	be	identified	in	terms	of	such	

physically	meaningful	abstracted	entities.		

It	 is	 important	 to	 emphasize	 that	 all	 interacting	 QFTs	 share	 these	

problematic	assumptions	regarding	the	applicability	of	the	Volkmann	device,	so	

that	 they	might	 be	 considered	 to	 be	 ‘effectively’	 perturbative	 theories,3	and	 so	

lead	 to	 problematic	 conceptualizations	of	 ‘interaction’.	 That	 is,	 it	might	 appear	

that	the	gauge	argument,	and	gauge	field	theory,	especially	when	considered	via	

its	 mathematical	 supporting	 architecture	 given	 in	 terms	 of	 differential	

geometry,4	which	led	to	the	development	of	the	Standard	Model,	offers	a	way	of	

introducing	interactions	without	recourse	to	the	introduction	of	a	perturbation.5	

That	 is,	 a	 coupling	 can	 be	 introduced	 or	 deduced	 by	 imposing	 local	 gauge	

symmetry	 on	 the	 Lagrangian	 associated	 with	 a	 ‘matter	 field’	 according	 to	 a	

chosen	symmetry	group.	

For	example,	consider	the	Lagrangian	for	a	complex	scalar	field	theory		

ℒ- = (CDE-)
%FCDE-G − IJE-

%E-	

																																																								
3	It	is	common	to	apply	the	term	‘perturbative	QFT’	to	weakly	coupled	QFTs	that	are	solved	using	
iterative	series	techniques.	But	this	is	a	further	application	of	perturbative	techniques	in	the	
series	expansion	approximation.	See	J.	D.	Fraser	(2020)	for	recent	philosophical	discussion	of	the	
significance	of	a	perturbative	approach	to	QFT.	However,	Fraser	does	not	clearly	distinguish	the	
two	applications	of	a	perturbation	method.	
4	See	Auyang	(1995)	and	Healey	(2007)	for	the	setting	of	gauge	theory	in	differential	geometry.	
5	Early	explorations	of	gauge	theory	were	conducted	by	Pauli	(1941)	and	Yang	and	Mills	(1954),	
although	it	did	not	flourish	until	the	1960s.	
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with	 global	U(1)	 symmetry	 according	 to	 the	 transformation	E-(') → E-(')L
.M.6	

Now	 impose	 local	 invariance	 on	 the	 Lagrangian	 according	 to	 a	 local	

transformation	with	a	local	U(1)	symmetry	via	(dropping	the	‘0’	suffix)	

	 	 	 E(') → E(')L.M(N)		

The	 Lagrangian	 is	 invariant	 under	 this	 transformation	 if	 the	 derivative	C	is	

replaced	by	the	covariant	derivative	D	via	the	‘minimal	substitution’	

OD = CD + PQRD(')	

whilst	requiring	that	the	‘gauge	field’	RD(')	introduced	transforms	according	to	

RD(') → RD(') −
1

Q
CDT(')	

where	q	is	identified	as	the	charge.	This	procedure	introduces	interactions	via	a	

‘gauge	 field’	 as	 the	 field	 ‘mediating	 interactions’	 according	 to	 the	 specified	

symmetry	group.	

Gauge	 field	 theory	 is	 too	 big	 a	 topic	 to	 treat	 here,	 meriting	 further	

research	as	regards	 its	relationship	with	perturbative	methods.7	The	 important	

question	for	us	is	that	of	whether	or	not	the	‘gauge	argument’	provides	a	means	

of	 introducing	 interactions	 that	 bypasses	 the	 perturbative	 foundation	 of	

interacting	QFT	in	such	a	way	that	the	Volkmann	device	applies.		

Clearly	the	mathematical	architecture	of	the	gauge	approach	differs	from	

that	 of	 a	 perturbative	 technique,	 having	 a	much	 richer	mathematical	 structure	

and	 context	 in	 differential	 geometry.	 However,	 in	 terms	 of	 its	 physical	

interpretation	 in	 the	 context	 of	 QFT	 it	 would	 appear	 that	 the	 gauge	 approach	

does	 not	 support	 application	 of	 the	 Volkmann	 device.	 In	 this	 regard	 the	

introduction	 of	 an	 interaction	 in	 the	 gauge	 approach	 is	 comparable	 in	 its	

consequences	 with	 the	 perturbative	 introduction	 of	 the	 coupling.	 Both	

approaches	 entail	 the	 implicit	 assertion	 that	 it	 is	 meaningful	 to	 identify	

abstracted	fields	as	components	associated	with	partial	laws	and	states	that	take	

the	same	form	individually	and	in	combination.	But	this	is	not	the	case	when	the	

																																																								
6	See	Lancaster	and	Blundell	(2014,	127-128)	for	this	example.	
7	The	standard	philosophical	treatment	is	Healey	(2007).	He	does	not	address	the	significance	of	
the	technique	in	relation	to	the	introduction	of	an	interaction	as	a	perturbation	however	but	
notes	that	common	justifications	for	the	‘gauge	argument’	fail	(159-167).	Guttmann	and	Lyre	
(2000)	discuss	the	possibility	of	distinguishing	‘physically	significant’	from	‘merely	
mathematical’	parts	of	gauge	theories,	but	likewise	do	not	tackle	the	question	of	the	relationship	
between	gauge	and	perturbative	methods.	
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fields	 are	 interpreted	 in	 their	 physical	 rather	 than	 mathematical	 setting,	 as	

demonstrated	 by	 the	 need	 to	 renormalize	 the	 fields	 still	 in	 gauge	 theory	 to	

compensate	for	the	failure	of	the	Volkmann	device.8		

So	it	appears	the	gauge	argument	indicates	the	correct	way	to	introduce	a	

‘perturbation’	corresponding	to	a	particular	kind	of	interaction,	even	if	it	is	more	

than	a	perturbative	method	per	se,	given	that	one	has	already	decided	to	isolate	a	

particular	‘matter	field’	by	implicit	application	of	the	Volkmann	device.	In	other	

words,	one	is	already	committed	to	what	is	essentially	a	perturbative	approach	in	

that	 one	 has	 already	 decided	 that	 it	 is	 meaningful	 to	 identify	 isolated	 or	

abstracted	‘matter’	and	‘interaction’	fields	before	coupling	them	with	what	might	

be	thought	of	as	a	‘perturbation’.	

I	now	show	how	calculations	may	be	performed	on	interacting	theories	in	

the	 limited	 context	 of	 scattering	 theory	 within	 the	 (problematic)	 ‘doubly’	

perturbative	framework:	that	is,	introducing	an	interaction	as	a	perturbation	and	

then	proceeding	to	solve	the	coupled	equations	obtained	by	iterative	methods	in	

the	 interaction	 picture,	 leading	 to	 Dyson’s	 expansion	 and	 its	 interpretation	 in	

terms	 of	 Feynman	 diagrams	 when	 applied	 to	 scattering	 states.	 For	 this	

‘calculational’	procedure	to	be	successful	requires	that	the	theory	is	sufficiently	

weakly	 coupled.	The	approach	developed	 in	this	 chapter	 is	preliminary,	 for	we	

shall	see	that	it	requires	renormalization	as	well	as	setting	in	the	more	rigorous	

context	of	 the	LSZ	scattering	theory	via	 the	Gell-Mann	and	Low	theorem,	as	we	

shall	see	in	chapter	11.	

	

9.3	Interactions	in	Scalar	Yukawa	Theory	

9.3.1	Introduction	of	an	interaction	as	a	perturbation	

From	chapter	8	the	Hamiltonians	for	free	psion	and	phion	systems	are:	

9UV
=

1

2
XYZ'F[UV

J (')(') + |∇*-(')|
J + ]J*-

J(')G	

9^V
=

1

2
XYZ' F[^V

% (')[-(') + ∇#-
%(') ∙ ∇#-(') + `J#-

%(')#-(')G	

associated	with	field	equations	
(CJ + ]J)*+-(') = 0	

																																																								
8	I	shall	characterize	the	failure	of	the	Volkmann	device	more	precisely	in	§10.5	once	the	analysis	
of	interacting	QFT	is	completed,	but	see	§8.5	for	its	application	to	free	theories.	
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(CJ + `J)#$-(') = 0	

(CJ + `J)#$-
%(') = 0	

After	quantizing,	Fourier	techniques	give	normal	mode	solutions:	

*+-(') = *+-(a, b) = X
YZc

(2[)Z
1

2de

Ff+-(c)Lg.e∙N + f+-
%(c)L.e∙NG	

#$-(') = #$-(a, b) = X
YZc

(2[)Z
1

2dc

Ff+-(c)Lg.e∙N + h$-
%(c)L.e∙NG	

#-
%(') = #-

%(a, b) = X
YZc

(2[)Z
1

2dc

Fh$-(c)Lg.e∙N + f+-
%(c)L.e∙NG	

These	 Fourier	 solutions	 enable	 construction	of	 diagonal	 representations	of	 the	

Hamiltonians,	and	also	the	4-momentum	operators.	In	particular	

: 9:UV
: = X

YZc

(2[)Z
1

2dc
dcf+-

%(c)f+-(c)	

: 9:^V
:=

1

2
X

YZc

(2[)Z
1

2dc
dc jf+-

%(c)f+-(c) + h$-
%(c)h$-(c)k	

Symmetrized	Fock	 space	 representations	 for	 the	 fields	and	CCRs,	with	vacuum	

elements	|0⟩UV
	and	|0⟩^V

,	giving	rise	to	particle	interpretations	of	the	states	may	

be	obtained	as	in	chapter	8.	

As	 per	 §8.5,	 if	 we	 consider	 a	 free	 system	 composed	 of	 and	 completely	

specified	by	non-interacting	psions	and	phions	with	overall	state	|Σ⟩1mnopqq ,	then	

the	 overall	 or	 total	 (free)	 Hamiltonian	 is	 the	 sum	 of	 the	 individual	 (free)	

Hamiltonians:	

	9:-,1mnopqq =	9:UV
+ 9:^V

	

and	 similarly	 for	 the	 Lagrangians,	 ℒ-,1mnopqq = ℒUV
+ ℒ^V

.	 Operators	 act	

independently	on	their	corresponding	sector	of	the	overall	Fock	space,	and	as	the	

identity	on	the	other,	with		

|Σ⟩1mnopqq = |Φ-⟩⨂|Ψ-⟩	and	|0⟩1mnopqq = |0⟩UV
⨂|0⟩^V

	

This	 reflects	 proper	 application	 of	 the	 Volkmann	 device	 to	 establish	 a	 natural	

description	of	the	system	in	terms	of	isolated	phion	and	psion	partial	states	and	

fields	 that	 take	the	same	form	individually	and	 in	combination,	with	the	partial	

states	 in	 each	 sector	 evolving	 independently	 and	 linearly	 according	 to	

Schrödinger’s	equation.	
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Difficulties	arise	when	an	interaction	is	introduced	via9	

ℒ′ = −8#$%(')#$(')*+(')	

or	

9:= = 8#$%(')#$(')*+(')	

where	g	is	the	coupling	constant	or	charge.	Since	the	CCRs	are	independent	of	g	

the	CCRs	 take	 the	 same	 form	here	as	with	 the	 free	 fields	 (Haag	1996,	54).	The	

total	Hamiltonian	is:	

9: = 9:- + 9:=	

where,	on	the	perturbative	assumption,	it	is	supposed	that	9:-	has	the	same	form	

as	9:-,1mnopqq 	except	with	each	field	species	,$-	being	replaced	by	,$.	

The	overall	state	|Σ⟩	evolves	linearly	according	to	Schrödinger’s	equation	

with	total	Hamiltonian	9::	

P
C

Cb
|Σ⟩ = 9:|Σ⟩	

From	the	overall	Lagrangian	

ℒ = ℒ- + ℒ′	

deduce	the	coupled	field	equations:	

(CJ + ]J)*+(') + 8#$%(')#$(') = 0	

(CJ + 8*+(') + `J)#$(') = 0	

(CJ + 8*+(') + `J)#$%(') = 0	

We	 would	 like	 to	 solve	 these	 equations	 to	 enable	 us	 to	 form	 a	 natural	

description	 of	 the	 interacting	 state	 by	 appeal	 to	 ‘superposition’	 and	 Fourier	 /	

eigenfunction	techniques	in	relation	to	these	fields.	We	shall	see	that	this	cannot	

be	done	however,	even	though	successful	calculations	can	be	supported.	

	

9.3.2	Consequences	of	the	introduction	of	an	interaction	as	a	perturbation:	

Overview	

Before	 showing	 how	 calculations	proceed	 in	 the	 interaction	 picture,	 leading	 to	

Dyson’s	 series	 and	 its	 Feynman	 diagram	 interpretation,	 I	 pause	 to	 remark	 on	

several	conceptual	difficulties	that	are	now	introduced	and	that	I	shall	analyze	in	

																																																								
9	The	absence	of	the		‘0’	suffix	indicates	that	the	fields	are	now	solutions	to	the	coupled	rather	
than	free	equations.	As	we	shall	see,	they	act	on	a	different	Hilbert	space.	
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detail	in	chapters	10-11	to	indicate	that	no	natural	description	of	the	interacting	

state	is	available	via	the	fields	of	any	species:	

First,	 introduction	of	 an	 interaction	 in	 this	 fashion	 is	 already	 to	proceed	

via	 a	 perturbation	 method	 whilst	 assuming	 the	 applicability	 of	 the	 Volkmann	

device	as	already	noted.	

Secondly,	 the	 coupled	 field	 equations	 are	 nonlinear	 so	 ‘Hilbert	

superposition’	 no	 longer	 applies.	 The	 solution	 space	 does	 not	 have	 a	 Hilbert	

space	structure	and	we	cannot	apply	the	superposition	principle	to	support	the	

Fourier	technique	in	both	aspects	in	relation	to	the	decomposition	of	*+('),	#$%(')	

and	#$(')	to	 obtain	 Fourier	 series	 solutions	 as	 in	 the	 free	 field	 case	 so	 as	 to	

construct	a	Fock	space	structure	for	the	system’s	state-space	(cf.	Reed	and	Simon	

1979,	 318).10		 So	 we	 cannot	 use	 the	 ‘normal	 modes’	 of	 the	 field	 equations	 to	

diagonalize	 the	 Hamiltonian	 (and	 4-momentum)	 to	 construct	 a	 natural	

description	of	the	state	understood	as	a	particle	description	as	in	the	free	theory.	

Thirdly,	the	overall	state	|Σ⟩	still	evolves	linearly	(unitarily)11	according	to	

Schrödinger’s	equation	with	total	Hamiltonian	9::		

P
C

Cb
|Σ⟩ = 9:|Σ⟩	

where	we	do	not	make	any	assumptions	regarding	the	representation	of	9:.	That	

is,	 we	 do	 not	 suppose	 that	 it	 is	 represented	 in	 terms	 of	*+('),	#$%(')	and	#$(')	

‘coordinates’,	 or	 that	 it	 may	 be	 decomposed	 into	 free	 and	 interacting	

components.	 It	 is	no	longer	the	case	 that,	 in	general,	 the	overall	state	space	has	

the	form	|Σ⟩ = |Φ⟩⨂|Ψ⟩	where	*+(')	acts	non-trivially	only	on	|Φ⟩,	and	no	longer	

the	 case	 that	|Φ⟩	evolves	 linearly	 as	 a	 partial	 state	 independently	 of	#$%(')	and	

#$(')	(and	similarly	for	#$%(')	and	#$('),	and	associated	states).	In	other	words,	it	

is	 no	 longer	 the	 case	 that	 putative	 partial	 states	 associated	 with	 their	

corresponding	 fields	 take	 the	 same	 form	 individually	 and	 in	 combination	 such	

that	 they	evolve	according	 to	partial	 laws	 that	 take	 the	 same	 form	 individually	

and	in	combination.	This	marks	the	failure	of	the	Volkmann	device.	

																																																								
10	Note	we	can	Fourier	decompose	the	field	at	a	given	time	(second	aspect)	without	relativistic	
considerations	–	but	the	decomposition	has	a	different	semantic	architecture	from	a	Fourier	
series	solution	(cf.	epicycles	contrasted	with	normal	modes	in	§4.5.1).	In	particular,	it	does	not	
support	the	construction	of	a	Fock	space.	I	discuss	this	in	detail	in	chapter	10.	
11	This	is	often	taken	as	an	axiom	of	QFT,	as	is	the	nature	of	the	Hamiltonian	to	ensure	this.	
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However,	 Hilbert	 superposition	 is	 still	 applicable	 to	 the	 overall	 state-

space,	 so	 the	 solution	 space	 of	 Schrödinger’s	 equation	 has	 a	 Hilbert	 space	

structure,	 and	 there	 exists,	 in	 principle,	 a	 diagonal	 representation	 of	 the	

Hamiltonian	in	terms	of	energy	eigenstates	since	9:	is	unitary	and	Schrödinger’s	

equation	is	linear.	Moreover,	the	‘in	principle’	eigenstates	of	the	Hamiltonian	can	

still	be	chosen	to	be	eigenstates	of	the	4-momentum	operator	as	they	commute.12	

But	the	eigenstates	and	the	diagonal	representation	are	not	given	in	relation	to	

the	fields	*+('),	#$%(')	and	#$(')	and	associated	states	|Φ⟩	and	|Ψ⟩	and	their	Fock	

structures.	 So,	 we	 can	 say	 little	 about	 the	 eigenstates	 in	 general	 as	we	 do	 not	

know	 how	 to	 represent	 the	 Hamiltonian	 explicitly	 in	 a	 way	 that	 supports	

application	 of	 the	 Volkmann	 device,	 apart	 from	 in	 the	 idealized	 asymptotic	

context	 in	which	the	Volkmann	device	 is	applicable	 to	 the	*+.//123('),	#$.//123
% (')	

and	#$.//123(')	and	associated	states.	In	general	however,	the	best	we	can	do	is	to	

characterize	 the	eigenstates	by	 their	 total	 invariant	mass	and	momentum	(and	

any	other	quantum	numbers	needed	to	specify	 the	state)	(Schweber	1961,	652	

cf.	§10.3.1).	

So	 in	 the	 light	 of	 our	 discussion	 on	 the	 eigenfunction	 representation	 of	

systems	 in	 Sturm-Liouville	 theory	 in	 chapter	 4,	 the	 best,	 in	 principle,	 ‘natural	

description’	of	the	interacting	system	available	at	this	stage	is	in	terms	of	these	

‘in	 principle’	 eigenstates.	 This	 description	 is,	 however,	 of	 limited	 value	 as	 we	

cannot	 form	 explicit	 expressions	 for	 these	 states,	 and	 it	 is	 unclear	 how,	 in	

general,	 to	 relate	 them	 conceptually	 to	 physical	 ‘renormalized’	 particles	

associated	with	the	,$.//123,	or	indeed	to	those	obtained	from	the	free	,$-	fields.13	

The	 description	 does	 however	 have	 value,	 such	 as	 in	 the	 derivation	 of	 the	

spectral	resolution	(§11.2).	

Fourthly,	although	we	do	not	as	yet	(and	will	see	in	§10.2,	cannot)	have	a	

Fock	 space	 structure	 associated	 with	 the	,$	field	 species,	 we	 may	 suppose	 on	

																																																								
12	Whilst	we	defined	the	momentum	operator	in	terms	of	fields	and	the	a-operators	in	chapter	8,	
it	is	taken	as	axiomatic	that	there	exists	an	operator	v$D	that	is	an	infinitesimal	generator	of	
translations,	interpreted	as	the	momentum	operator.	That	is,	we	can	define	a	momentum	
operator	on	the	interacting	system	without	reference	to	fields	or	a-operators.	See	§10.3.	
13	Note	that	we	cannot	define	a	number	operator	for	interacting	states	as	decomposition	
according	to	the	a-operators	is	not	physically	meaningful,	so	that	we	cannot	deduce	a	particle	
content	this	way,	as	discussed	in	chapter	10.	Moreover,	it	is	not	clear	what	(if	anything)	is	meant	
by	particle	statistics	or	indeed	the	permutation	operator	here.	



	 190	

physical	 grounds	 that	 there	 is	 a	 lowest	 energy	 (unique) 14 	‘vacuum’	 state	

corresponding	 to	a	 relativistically	 invariant	state	of	no	particles,	 or	 the	ground	

state	 for	 the	 interacting	system.	The	 interacting	system	ground	state	|Ω⟩	differs	

from	 that	 of	 the	 non-interacting	 system,	|0⟩,	 since	 the	 Hamiltonian	 (written	 in	

terms	 of	*+('),	#$%(')	and	#$(')	‘coordinates’)	 is	 a	 function	 of	 g,	 and	 so	 one	

expects	 the	 lowest	energy	eigenstate	 (i.e.,	 the	 vacuum	or	ground	state)	 to	be	a	

function	of	g	also	(Haag	1996,	55).	The	relationship	between	them	is	important,	

and	we	note	for	now	that	|Ω⟩ ≠ |0⟩,	which	will	lead	to	inequivalent	Hilbert	space	

structures	for	the	states	associated	with	the	different	field	species.		

Fifthly,	 Haag’s	 theorem	 implies	 that	 representations	 of	 the	 CCRs	 of	 the	

free	 bare,	 free	 physical	 and	 interacting	 fields	,$- ,	 ,$./ 	and	 ,$ 	are	 unitarily	

inequivalent	 (Haag	 1996,	 54-55;	 cf.	 Ruetsche	 2011;	 Earman	 and	 Fraser	 2006;	

Miller	 2018),	 even	 though	 the	 CCRs	 have	 the	 same	 form	 for	 the	 free	 and	

interacting	theories	as	noted	above	(Haag,	54).	A	consequence	of	Haag’s	theorem	

(cf.	 Streater	 and	Wightman	 1964,	 161-162)	 is	 that	 there	 is	 no	 unitary	 map	 V	

satisfying	

x(b),$(a, b)xgy(b) = ,$-(a, b)	

This	means	that	since	the	particle	concept	for	a	QFT	is	defined	from	the	field,	an	

implication	of	Haag’s	theorem	is	that	particle	concepts	(if	available)	in	free	and	

interacting	theories	are	 ‘incommensurable’	 (to	use	Ruetsche’s	 term),	since	they	

are	unitarily	inequivalent,	which	is	taken	as	a	requirement	for	the	equivalence	of	

particle	concepts	(cf.	Wigner	1939,	152;	Ruetsche	2011,	14-15,	24-30).		

Having	oriented	ourselves	to	the	conceptual	difficulties	resulting	from	the	

introduction	of	an	interaction,	we	now	proceed	by	considering	how	calculations	

are	nonetheless	performed.	

	

9.4	The	interaction	picture,	Dyson’s	series	and	asymptotic	states	

9.4.1	The	interaction	picture	

Calculations	 in	 QFT	 are	 often	 performed	 using	 the	 interaction	 picture.15	The	

Hamiltonian	is	split	into	putative	free	and	interacting	components	as	above,	9: =

																																																								
14	This	excludes	theories	with	vacua	subject	to	spontaneous	symmetry	breaking.	
15	What	follows	is	‘standard	bookwork’,	e.g.	Lancaster	and	Blundell	(2014,	167-168).	
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9:- + 9:=.	 The	 interaction	 picture	 operators	 are	 then	 constructed	 to	 carry	 time	

dependency	according	to	the	free	component	of	the	Hamiltonian	according	to	

z$"(b) = L.{:V(3g3V)z$Lg.{:V(3g3V)	

whilst	the	interaction	picture	states	are	constructed	via	

||"(b)⟩ = L.{:V3||(b)⟩	

This	enables	use	of	the	well-understood	free	fields	in	iterative	calculations	since	

it	may	be	shown	that	

,$"(') = ,$-(')	

Moreover,	

9: = 9:} = 9:{	

9:- = 9:-,} = 9:-,{ 	

9:"
=(b) = 	 L.{:V(3g3V)9:}

=Lg.{:V(3g3V) ≠ 9:}
= 	

In	the	scalar	Yukawa	theory,	in	the	interaction	picture	

ℋ:"
=(b, �) = ℋ:"

=(') = 8#$"
%(')#$"(')*+"(')	

but	 the	 interaction	 picture	 field	 operators	 are	 just	 the	 free	 Heisenberg	 field	

operators,	so	

ℋ:"
=(') = 8#$-

%(')#$-(')*+-(')	

This	 is	 a	 crucial	 result.	 We	 have	 expressed	 the	 interaction	 term	 in	 the	 full	

Hamiltonian	 using	 the	 free	 fields,	 which	 are	 the	 solutions	 to	 the	 free-field	

equations,	for	which	we	have	obtained	Fourier	series	solutions.		

The	 interaction	 picture	 state	||"(b)⟩	evolves	 according	 to	 Schrödinger’s	

equation	

P
C

Cb
||"(b)⟩ = 9:"

=(b)||"(b)⟩	

where	9:"
=(b)	is	expressible	in	terms	of	the	free	fields	via	the	above,	allowing	us	to	

deduce	the	interaction	picture	time	evolution	operator	Ä:"(b, b-):	

P
C

Cb
Ä:"(b, b-) = 9:"

=(b)Ä:"(b, b-)	

such	that	

||"(b)⟩ = Ä:"(b, b-)||"(b-)⟩	

and	

Ä:"(b, b-) = L.{:V(3g3V)Ä:(b, b-)L
g.{:V(3g3V)	

with	
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Ä:"(b, b) = 1	

This	 means	 that	 if	 we	 can	 choose	 suitable	 physically	 meaningful	

coordinates	to	represent	||"(b-)⟩	as	a	‘superposition’	of	partial	states	that	evolve	

individually	and	independently	according	to	corresponding	partial	laws	given	by	

an	eigenfunction	representation	of	Ä:" ,	then	we	can	form	a	natural	description	of	

the	interacting	system,	according	to	the	‘two	aspects’	of	the	Fourier	technique.		

However,	 solving	 for	 Ä:"(b, b-) 	and	 decomposing	 ||"(b)⟩ 	according	 to	

Fourier	techniques	are	both	problematic	as	we	shall	see.	To	construct	an	explicit	

(but	 approximate	 rather	 than	 analytic)	 solution	 one	 must	 turn	 to	 iterative	

methods	rather	than	Fourier	techniques,	which	turn	out	to	be	inapplicable	even	

in	principle.	The	use	of	approximation	methods	often	leads	to	semantic	mimicry	

in	relation	to	the	physical	significance	of	the	results	obtained	(e.g.	in	terms	of	the	

interpretation	 of	 Feynman	diagrams)	 by	 failing	 to	 recognize	 that	 the	 semantic	

architecture	of	the	results	has	shifted	from	that	of	the	two	aspects	of	the	Fourier	

technique.	The	mimicry	arises	 in	a	manner	 comparable	with	 the	examples	 that	

we	studied	in	which	‘superposition’	is	mimicked	such	as	in	epicyclical	astronomy	

(§4.5.1);	 power	 series	 solutions	 (§4.5.2);	 and	 iterative	 solution	 techniques	

applied	to	nonlinear	systems,	such	as	the	Volterra	series	in	particular	(§5.3.2).	I	

now	consider	the	iterative	solution	method	adopted.	

	

9.4.2	Solving	for	Å:Ç(É, ÉÑ):	Dyson’s	series	as	a	sum	of	correction	terms	rather	

than	a	‘superposition’	

Although	Ä:" 	satisfies	a	linear	differential	equation,	so	that	Hilbert	superposition	

applies,	in	practice	solving	for	Ä:"	requires	iterative	techniques.16	Such	techniques	

supply	an	asymptotic	series	solution	in	powers	of	the	coupling	constant	g	known	

as	Dyson’s	 expansion	 (cf.	Dyson	1949a&b)	expressed	 in	 terms	of	 time-ordered	

products	ÖÜ9:"
=(by)…9:"

=(b/)àof	the	9:"
=(b.),	where	time-ordering	is	necessary	since	

the	9:"
=(b)	do	not	commute	at	unequal	times	(Peskin	and	Schroeder	1995,	84-85).	

																																																								
16	Although	Ä:"	is	a	linear	operator	the	‘coordinates’	#$-

%('), #$-('), *+-(')	with	respect	to	which	it	is	
represented	are	nonlinearly	related	as	they	are	coupled	by	the	interaction	term	and	relevant	
wave	equations.	
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This	 supposes	 that	 g	 is	 ‘sufficiently	 small’,	 that	 is,	 the	 theory	 is	 sufficiently	

‘weakly	coupled’,	for	the	iterative	procedure	to	be	successful.17	The	result	is:	

Ä:"(b, b-) = 1 + â
(−P)/

ä!

å

/ç-

X Yby

3

3V

…X Yb/ÖÜ9:"
=(by)…9:"

=(b/)à
3éèê

3V

	

or,	‘formally’:	

Ä:"(b, b-) = Ö ëL
g. ∫ ì3î{:ï

î(3î)
ñ

ñV ó	

Inserting	 the	 interaction	 picture	 form	 for	 the	 scalar	 Yukawa	 interaction	 gives	

Ä:"(b, b-)	as	an	iterative	series	in	g:	

Ä:"(b, b-) = 1 + â
(−P)/8/

ä!

å

/ç-

X Yò'y

3

3V

…X Yò'/ÖÜ#$-
%('y)#$-('y)*+-('y)…#$-

%('/)#$-('/)*+-('/)à
3éèê

3V

	

However,	as	an	iterative	series	Hilbert	superposition	does	not	apply	to	individual	

terms,	 as	 the	 individual	 terms	 in	 the	 series	 are	 correction	 terms	 and	 not	

solutions	 of	 the	 DE	 that	Ä:"	satisfies	 (cf.	 §5.3.2).	 Interpretation	 of	 this	 result	 is	

likely	 to	 involve	 semantic	 mimicry	 as	 Dyson’s	 series	 is	 not	 an	 eigenfunction	

decomposition	as	would	be	required	in	the	application	of	the	Fourier	technique.	

	

9.4.3	Choice	of	a	coordinate	representation	for	|ôö(õ)⟩	

Ideally	 one	 would	 seek	 to	 establish	 a	 physically	 meaningful	 Fock	 (or	 similar)	

representation	for	||"(b)⟩	as	per	the	free	theory	to	offer	a	natural	description	of	

the	 interacting	 system.	 But	 owing	 to	 the	 nonlinear	 coupling	 of	 the	 fields	 we	

cannot	do	this	in	general	for	the	,$,	as	we	shall	see	in	detail	in	§10.2	(cf.	Reed	and	

Simon	1979,	318).	However,	even	if	we	could	form	a	physically	meaningful	Fock	

representation	 for	 the	 space	 of	 states	||"(b)⟩,	 since	 we	 only	 have	 an	 iterative	

expansion	for	Ä:" 	it	is	not	clear	what	physical	significance	we	should	attach	to	the	

action	of	 individual	 terms	or	sums	of	 terms	 in	the	action	of	 iterative	expansion	

for	Ä:"	on	any	given	representation	of	||"(b)⟩,	since	the	iterative	expansion	for	Ä:"	

is	not	a	superposition	of	eigenfunction	solutions	but	a	series	of	correction	terms	

to	 the	 solution	 of	 the	 evolution	 equation.	 This	 is	 not	 an	 application	 of	 Fourier	

																																																								
17	Success	need	not	mean	convergence.	Success	is	achieved	if	a	good	approximation	is	obtained	
by	summing	the	first	few	terms	even	though	the	series	may	diverge.	Such	series	are	(perhaps	
misleadingly)	termed	‘asymptotic	series’.	The	Dyson	series	often	diverges,	as	Dyson	noted	for	
QED	(1952).	See	Holmes	(2013,	7-19)	for	asymptotic	approximation	techniques.	
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techniques,	and	so	the	procedure	does	not	support	a	natural	description	of	 the	

evolving	interacting	state	in	relation	to	the	fields	#$-
%('), #$-('), *+-(').		

There	 is	 however	 an	 idealized	 and	 restricted	 context	 in	 which	 we	 can	

construct	 a	Fock	 structure	 for	 the	||"(b)⟩,	 namely	 in	 the	 infinite	 time	 limits	via	

the	,$.//123 .	 As	 we	 shall	 see,	 although	 this	 will	 not	 help	 us	 to	 form	 a	 natural	

description	of	general	interacting	states	it	will	help	us	to	perform	calculations	in	

LSZ	 scattering	 theory	 (§11.3).	 This	will	 require	 a	 further	 idealization	 to	 relate	

calculations	 in	 the	 interaction	 picture	 fields	,$-	associated	with	 the	 vacuum	|0⟩	

with	 the	,$.//123 	associated	with	 the	 vacuum	|Ω⟩	in	 terms	 of	 the	 Gell-Mann	 and	

Low	theorem	(§11.4).	

In	 the	 remainder	 of	 this	 chapter	 I	 survey	 the	 difficulties	 that	 will	 be	

encountered	 before	 indicating	 how	 calculations	 proceed	 in	 the	 interaction	

picture	fields	,$-	below,	and	analyze	the	semantic	mimicry	that	often	arises	with	

regard	to	the	physical	significance	of	the	procedure.	

	

9.4.4	Asymptotic	states	

If	 we	 restrict	 attention	 to	 scattering	 systems	 where,	 in	 a	 sense	 that	 requires	

clarification,	we	suppose	that	the	idealized	initial	and	final	states	are	free	(i.e.,	in	

the	 asymptotic	 time	 limits),	 being	modelled	 by	well-separated	 non-interacting	

particles	 as	 supported	 by	 observation,	 a	 Fock	 space	 structure	 may	 be	

constructed	for	these	idealized	spaces	of	initial	and	final	states.		This	means	that	

we	can	describe	the	asymptotic,	idealized	physical	initial	‘in’	and	final	‘out’	states	

by	 well-understood	 free-field	 theories	 using	 Fock	 representations	 constructed	

from	the	,$./	(and	,$123)	satisfying	free,	linear	Klein-Gordon	equations.	

This	construction,	and	the	interpretation	of	the	relationships	between	the	

,$./ ,	the	,$,	and	the	,$-	–	all	of	which	are	required	in	scattering	theory	–	introduces	

a	number	of	difficulties.	We	now	outline	these	difficulties,	developing	some	of	the	

observations	 in	§9.3.2,	 to	provide	orientation	 for	 the	discussion	that	 follows	 in	

the	remainder	of	this	and	the	subsequent	chapters.	

First,	as	just	outlined,	calculation	of	a	general	state	is	given	by	the	action	

of	 a	 (probably)	 divergent	 iterative	 series	 on	 an	 initial	 state	 so	 that	 at	 best	 an	
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approximate	 description	 of	 the	 state	 during	 interaction	 is	 obtained	 in	 actual	

calculations.		

Secondly,	 it	is	assumed	that	the	Hilbert	space	of	the	idealized	asymptotic	

in/out	 states	ℋ./ = ℋ123	may	be	 identified	with	 the	Hilbert	 space	ℋ	of	 the	 full	

theory,	 a	 hypothesis	 known	 as	 asymptotic	 completeness	 (AC)	 (Duncan	 2012,	

267-268).	 AC	 is	 almost	 universally	 assumed,	 yet	 its	 validity	 remains	 a	

fundamental	 outstanding	 problem	 (§10.3.3).	 It	 is	 important	 however	 to	

distinguish	 between	 the	 equivalence	 of	 the	 Hilbert	 spaces	 and	 the	 ability	 to	

translate	between	or	even	construct	physically	meaningful	Fock	spaces	on	those	

Hilbert	spaces.	

Thirdly,	 conceptually	 the	description	 of	 the	 asymptotic	 yet	 ‘physical’	 ‘in’	

and	‘out’	states	(and	associated	fields)	as	free	requires	clarification.	Motivated	by	

physical	 observation,	 well-separated	 particles	 may	 be	 identified	 as	 non-

interacting	and	hence	 free.	However,	such	 ‘physical	particles’	 in	 the	asymptotic	

regions	 are	 understood	 to	 be	 always	 ‘self-interacting’.	 Such	 self-interaction	 is	

‘absorbed’	 into	 the	 definition	 of	 the	 asymptotic	 states	 and	 fields,	 so	 they	 are	

modelled	 as	 free,	 without	 interaction	 or	 a	 property	 of	 charge.18	Such	 ever-

present	 self-interaction	 that	 is	 absorbed	 by	 the	 asymptotic	 fields	 is	 associated	

with	renormalization	which	 ‘absorbs’	 the	 failure	of	 the	 initial	application	of	 the	

Volkmann	device	in	the	limited	context	of	idealized	asymptotic	states.	

To	 enable	 asymptotic	 states	 to	 be	 modelled	 as	 free	 particles	 one	

introduces	 non-interacting	 asymptotic	 in/out	 free	 fields	 ,$.//123 	that	

(heuristically,	 and	 naively)	 ‘correspond	 to’	 the	 interacting	 fields	,$ 	in	 the	

asymptotic	 limit.	 The	,$.//123 	are	 free	 fields	 for	 which	 the	 self-interaction	 is	

absorbed	by	a	shift	 in	mass,19	a	procedure	known	as	mass	renormalization.	The	

asymptotic	 correspondence	 between	 the	,$	and	 the	,$.//123 	is	 established	 as	 a	

weak	convergence	relationship	using	a	field	strength	renormalization	parameter	

(see	the	fourth	point	below	and	§11.3.1).	

The	 renormalized	 asymptotic	 fields	#$./
% (') = #$123

% ('),	#$./(') = #$123(')	

and	*+./(') = *+123(')	satisfy	 (linear,	 free)	 Klein-Gordon	 equations	 with	 mass	

																																																								
18	This	suggests	qualification	to	the	sense	in	which	one	should	regard	the	asymptotic	states	as	
‘physical’.	
19	See	Coleman	(2019,	205-210).	
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parameters	 shifted	 to	 the	 physical	 or	 measured	 (renormalized)	 value	 for	 free	

particles	associated	with	the	fields,20	i.e.	

FCJ + ]úùûü
J G*+./(') = 0	

FCJ + `úùûü
J G#$./(') = 0	

FCJ + `úùûü
J G#$./

% (') = 0	

Since	 the	 fields	 are	 considered	 free	 ex	 hypothesi,	 it	 is	 meaningless	 to	 seek	 to	

introduce	 a	 coupling	 between	 the	 fields.	 These	 fields	 simply	 model	 the	

phenomenological	 notion	 of	 freely	 propagating	 well-separated	 particles.	

However,	 these	 in/out	 fields	 satisfy	 the	 same	 Hamiltonian	 as	 the	 interacting	

fields	 and	 are	 defined	 relative	 to	 the	 same	 vacuum	|Ω⟩,	 assuming	 AC.	 The	

representation	of	the	Hamiltonian	differs	according	to	the	fields	used	(i.e.	,$./	or	

,$),	 with	 the	 representation	 in	 terms	 of	 the	 asymptotic	 fields	 only	 valid	 in	 the	

asymptotic	 regions	 under	 the	 stipulation	 that	 the	 particle	 states	 modelled	

remain	well	separated.	

Use	 of	 the	,$./	fields	 enables	 the	 construction	 of	 a	 Fock	 space	 for	 the	

asymptotic	states	using	Fourier	techniques	via	ain-operators	(etc.).	So	for	*+./	for	

example:	

*+./(') = *+./(a, b) = X
YZc

(2[)Z
1

2de

Ff+./(c)Lg.e∙N + f+./
%(c)L.e∙NG	

where	now	dc = FcJ + ]úùûü
J G

y/J.	So	a	particle	interpretation	can	be	developed	

for	the	asymptotic	states	as	per	chapter	8.		

Fourthly,	we	need	to	relate	,$./	to	,$	satisfying	the	coupled	field	equations	to	

establish	a	scattering	theory.	But	this	is	not	straightforward,	and	the	relationship	

is	 established	 in	 Haag-Ruelle	 and	 LSZ	 scattering	 theory	 as	 discussed	 in	 §11.3.	

One	might	be	tempted	to	suggest	(as	is	sometimes	done	‘heuristically’)	that	

,$(a, b) → ,$./(a, b)	as	b → −∞		

However,	this	is	not	the	case.	Difficulties	arise	since	the	action	of	,$./(a, b)	on	an	

idealized	 asymptotic	 state	 is	 (when	 appropriately	 ‘smeared’)	 to	 introduce	 a	

single	 idealized,	 asymptotic	 physical	 particle	 localized	 around	 x,	 whereas	 the	

																																																								
20	What	mass	renormalization	and	consideration	of	the	asymptotic	states	shows	is	that	the	mass	
parameters	m,	M	in	the	free	and	interacting	field	equations	in	,$-	or	,$	do	not	correspond	to	the	
measured	masses	of	the	particles	mphys,	Mphys	associated	with	the	corresponding	fields.	The	mass	
shift	is	often	infinite,	which	is	one	of	the	traditional	worries	regarding	renormalization.	
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action	of	,$(a, b)	is	more	complicated	(cf.	§11.2).	In	particular,	the	action	of	,$	on	

|Ω⟩	differs	 from	 the	 action	 of	,$./	on	|Ω⟩.	 Ultimately,	 for	 calculational	 purposes,	

we	shall	require	only	that	,$|Ω⟩	has	non-zero	overlap	with	single	particle	states	

|°⟩	associated	 with	,$./ ,	 that	 is	⟨°|,$|Ω⟩ ≠ 0,	 in	 which	 case	,$ 	is	 known	 as	 an	

interpolating	field.	We	shall	see	(§11.3)	 that	 the	relationship	between	the	,$	and	

the	,$./	is	one	of	weak	convergence	according	to		

⟨£./
	 §,$•(b)§T⟩./ → ¶ß

ê

® ⟨£./
	 §,$./,•(b)§T⟩./, b → −∞		

where	¶ß

ê

® 	is	the	‘wave	function’	or	‘field	strength’	renormalization	factor,	and	for	

a	suitable	‘test	function’	f	to	generate	a	single	particle	wave-packet.	

It	is	the	interpolating	fields	,$	that	are	foundational	for	calculations	in	LSZ	

scattering	 theory,	 although	 they	are	underdetermined	 (cf.	 §11.3),	 and	we	must	

be	cautious	in	how	we	understand	the	relationship	between	the	,$	and	the	,$./	as	

we	shall	see	that,	for	example,	the	,$./	support	a	particle	concept	on	the	physical	

idealized	 asymptotic	 states	 that	 cannot	 be	 prolonged	 to	 general	 interacting	

states	while	the	,$	do	not	support	any	particle	concept	(§10.2).	

Fifthly,	to	perform	calculations	in	the	interaction	picture	we	need	to	relate	

the	 ,$./ 	to	,$- 	as	 well	 as	,$ 	and	 their	 associated	 Hilbert	 spaces	 since	 our	

expression	 for	Ä:"	was	 constructed	 to	 enable	 calculations	 given	 in	 terms	 of	 the	

free,	bare	,$-	that	act	on	ℋ-.	That	is,	the	actual	evolution	of	the	system	is	given	by	

an	 operator	 acting	 on	 the	 full	 Hilbert	 space	 of	 interacting	 states	ℋ	while	 the	

expression	for	Ä:"	is	given	in	terms	of	operators	acting	on	ℋ-.	The	relationship	is	

established	 using	 the	 Gell-Mann	 and	 Low	 theorem	 (§11.4)	 via	 the	 ‘adiabatic	

hypothesis’.		

The	 idea	 is	 that	 an	 ‘adiabatic	 switching’	 term	 is	 introduced	 into	9:"
=(b)	so	

that	 the	 interaction	 is	 slowly	 ‘turned	 off’	 in	 the	 infinite	 asymptotic	 limits.	 The	

adiabatically	 ‘switched	 off’	 Hamiltonian	 is	 the	 original	 free	 Hamiltonian	

represented	 in	the	 free	,$-	fields	of	 the	original	masses	acting	 independently	on	

the	bare	vacuum	|0⟩	for	 large	 |t|.	To	do	 this	 an	even	 function	 s(t)	 is	 introduced	

such	that	s(t)=1	for	|t|<T,	for	some	large	but	finite	T,	and	s(t)	=	0	for	|t|>>T,	with	

s	slowly	and	smoothly	varying	monotonically	between	0	and	1	 in	between.	The	

adiabatically	switched	Hamiltonian	is	then:	

9: = 9:- + ©(b)9:′	
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The	 free	asymptotic	bare	 states	are	described	by	 the	 free	QFT	 for	 the	 relevant	

field	types	,$-	with	mass	m	or	M	and	the	free	Hamiltonian	9:-,	for	which	a	natural	

(quanta/particle)	 description	 in	 terms	 of	 a	 Fock	 space	 has	 been	 constructed	

using	Fourier	 techniques	as	 in	 chapter	8.	These	 ‘bare’	 free	particles,	 fields	and	

states	 are	 ‘abstracted’	 by	 the	 adiabatic	 switching,	 introduced	 for	 calculational	

convenience,21	and	do	not	represent	the	physical	asymptotic	particles	associated	

with	the	,$./	of	measured	mass.		

It	is	supposed	that	the	adiabatic	switching	term	evolves	the	Hamiltonian	

sufficiently	 slowly	 such	 that	 the	 bare	 states	 associated	with	,$-	may	 be	 ‘traced’	

into	the	idealized	physical	(renormalized)	asymptotic	states	associated	with	,$./	

and	ultimately	to	the	interacting	states	associated	with	,$	to	meaningfully	relate	

to	the	,$-	states	to	the	,$./	and	,$	states.	It	is	supposed	that	the	interaction	term	is	

fully	‘switched	on’	when	the	particles	are	still	very	well	separated	such	that	they	

are	 considered	 not	 to	 interact	 with	 each	 other,	 i.e.	 as	 modelled	 by	 the	

renormalized	asymptotic	free	fields	and	states	associated	with	,$./.	Thus	we	need	

to	distinguish	‘bare’	asymptotic	states	and	‘physical’,	 ‘dressed’	or	‘renormalized’	

asymptotic	states,	which	are	both	idealized.	

However	 this	 ‘tracing’	 is	 problematic	 since	 the	 three	 field	 species	 are,	

according	 to	 Haag’s	 theorem,	 unitarily	 inequivalent.	 This	 means	 that,	 for	

instance,	 the	particle	description	 constructed	 from	 the	,$-	is	 ‘incommensurable’	

with	the	particle	description	constructed	from	the	,$./,	and	we	shall	see	on	other	

grounds	 (nonlinearity	 of	 the	 coupled	 field	 equations)	 that	 in	 fact	 no	 particle	

description	can	be	constructed	from	the	,$	(§10.2).	The	purpose	of	application	of	

the	 Gell-Mann	 and	 Low	 theorem	 will	 then	 not	 be	 to	 translate	 between	

descriptions	 of	 the	 state	 according	 to	 different	 field	 species,	 but	 to	 support	

calculations	using	the	,$-.	

Finally,	a	scattering	based	account	cannot	be	used	to	analyse	bound	states	

or	unstable	particles,	for	by	definition	bound	states	exist	as	bound	states	in	the	

asymptotic	 limits	and	not	as	 their	constituents,	whilst	unstable	particles	do	not	

have	 asymptotic	 states.	 A	 scattering	 based	 account	 is	 thus	 limited	 in	 its	

application,	 only	 applicable	 to	 specific	 physical	 situations	 involving	 scattering,	

																																																								
21	That	is,	one	assumes	that	the	interaction	can	be	‘abstracted	away’	to	leave	the	bare	field.	
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which	 are	 often	 more	 relevant	 in	 the	 laboratory	 (specifically,	 the	 particle	

accelerator)	than	to	general	quantum	states	in	the	world	outside	the	laboratory	

(cf.	 Cartwright	 1999).	 However,	 much	 of	 QFT	 and	 its	 application	 to	

understanding	fundamental	physics	is	concerned	with	scattering	theory	owing	to	

its	 association	 with	 particle	 physics	 and	 the	 desire	 to	 discover	 fundamental	

particles	and	their	interactions.	Moreover,	as	we	shall	see	in	chapter	11	some	of	

the	 tools	 developed	 in	 scattering	 theory	 are	 applied	 to	 the	 analysis	 of	 bound	

states.		

The	 task	 is	 now	 to	 consider	 the	 interpretation,	 in	 relation	 to	

‘superposition’	and	semantic	mimicry	in	particular,	of	the	relationships	between	

the	field	species	,$-,	,$./	and	,$	as	all	of	these	are	required	in	scattering	theory.	In	

the	remainder	of	this	chapter	I	consider	the	role	of	the	,$-	in	iterative	calculations	

in	 the	 interaction	 picture,	 indicating	 that	 they	 do	 not	 support	 a	 natural	

description	 of	 the	 interacting	 state.	 In	 chapter	 10	 I	 show	 that	 the	,$./	and	,$	do	

not	support	natural	descriptions	of	the	interacting	state	either,	before	showing	in	

chapter	 11	 that	 although	 none	 of	 the	,$- ,	,$./ 	and	,$ 	support	 descriptions	 of	

interactions,	they	do	however	support	empirically	successful	calculations.	

	

9.5	The	S-matrix	and	Dyson’s	series	

With	these	difficulties	noted	and	placed	to	one	side	for	now	I	consider	the	role	of	

the	,$-	in	performing	scattering	calculations	via	their	use	in	Dyson’s	expansion	as	

applied	 in	 the	 S-matrix.	 Bearing	 in	 mind	 the	 comments	 above,	 we	 should	 be	

careful,	 however,	 to	 distinguish	 between	 the	 S-matrix	 relating	 the	 physical	

asymptotic	states	in	ℋ./ = ℋ123,	which	we	denote	as	S,	and	the	S-matrix	relating	

the	bare	asymptotic	 states	 in	ℋ-,	which	we	denote	™-.	What	we	want,	 and	will	

develop	in	LSZ	scattering	theory	(§11.3)	is	S,	but	it	will	ultimately	be	calculated	

in	terms	of	™-.		

The	S-matrix	is	defined	as	a	map	between	the	physical	asymptotic	in-	and	

out-states,22	so	that		

™́ M = ⟨£|™|T⟩./	
123 = ⟨£|T⟩	

																																																								
22	The	approach	originated	with	Wheeler	(1937)	and	Heisenberg	(1943).	See	Coleman	(2019,	
138-140).	The	example	that	follows	loosely	follows	Lancaster	and	Blundell,	so	we	now	adopt	
their	normalization	conventions.		
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where	|T⟩./	has	 a	 Fock	 space	 representation	 via	 the	 action	 of	 the	,$./ 	on	|Ω⟩	

interpreted	as	a	state	comprising	of	physical	well-separated	(free)	particles,	and	

with	the	S-operator	defined	as	

™ = lim
3Ø→gå
3∞→å

Ä:(b., b•)	

without	adiabatic	switching.	

If	 the	 Hamiltonian	 is	 now	 adiabatically	 switched	 then	 we	 define	 the	

™-operator	as	above,23	with	the	adiabatic	switching	included	in	the	definition	of	

Ä:.24	Then	™-	is	a	map	between	the	bare	rather	than	physical	asymptotic	states	so	

that		

™́ M
- = ⟨£|™-|T⟩-	

- 	

where	|T⟩- 	has	 a	 Fock	 space	 representation	 via	 the	 action	 of	 the	,$- 	on	|0⟩	

interpreted	 as	 a	 state	 comprising	 of	 bare	 well-separated	 (free)	 particles,	 and	

similarly	for	 ⟨£|	
- .	The	point	is	then	that	since	we	have	an	iterative	solution	for	Ä:",	

i.e.	

Ä:"(b, b-) = 1 + â
(−P)/8/

ä!

å

/ç-

X Yò'y

3

3V

…X Yò'/ÖÜ#$-
%('y)#$-('y)*+-('y)…#$-

%('/)#$-('/)*+-('/)à
3éèê

3V

	

and	since	

™- = lim
3Ø→gå
3∞→å

Ä:"(b., b•)	

then	we	may	calculate	™-	iteratively	via	

™- = lim
3V→gå
3→å

±1 + â
(−P)/8/

ä!

å

/ç-

X Yò'y

3

3V

…X Yò'/ÖÜ#$-
%('y)#$-('y)*+-('y)…#$-

%('/)#$-('/)*+-('/)à
3éèê

3V

≤	

The	 actual	 evaluation	 is	 performed	 for	 matrix	 elements	 ™́ M
- = ⟨£|T⟩-	

- ,	

interpreted	 as	 the	 amplitude	≥´M
- 	for	 an	 initial	 idealized	 bare	 asymptotic	 state	

|T⟩- 	to	 evolve,	 by	 scattering,	 to	 a	 final	 state	|£⟩- ,	 states	 that	 have	 natural	

(although	idealized)	descriptions	in	terms	particle	contents.	

																																																								
23	This	distinction	is	sometimes	obscured	in	the	literature.	
24	The	adiabatic	switching	term	is	implicitly	understood	here	without	being	explicitly	stated,	as	is	
usual	practice	in	the	literature.	
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For	 example,	 consider	 two	 psions	 scattering	 off	 each	 other.	 The	

asymptotic	 initial	 bare	 state	 comprises	 two	 well-separated	 bare	 psions	 with	

momenta	p1	and	p2	:25	

|T⟩- = |°y°J⟩ = (2[)ZF4µúê
µú®

G
y
Jf+%(°y)f+

%(°J)|0⟩	

Similarly	for	the	bare	asymptotic	final	two	psion	state:	

|£⟩- = |QyQJ⟩ = (2[)ZF4µ∂ê
µ∂®

G
y
Jf+%(Qy)f+

%(QJ)|0⟩	

These	 bare	 asymptotic	 states	 are	 2-quanta	 sectors	 of	 Fock	 space	 for	 the	 free	

psion	fields	#$-
%(')	and	#$-(')	as	per	§8.3.5.	The	scattering	amplitude	is:	

≥´M
- = ™́ M

- = ⟨£|™-|T⟩--
	 = (2[)∑F16µúê

µú®
µ∂ê

µ∂®
G
y
J⟨0|f+(Qy)f+(QJ)™

-f+%(°y)f+
%(°J)|0⟩	

Inserting	the	iterative	solution	for	™-,	Dyson’s	expansion,26	
≥´M

-

= (2[)∑F16µúê
µú®

µ∂ê
µ∂®

G
y
J π1

+ â
(−P)/8/

ä!

å

/ç-

XYò'y

	

	

…XYò'/ÖÜ⟨0|f+(Qy)f+(QJ)#$-
%('y)#$-('y)*+-('y)…#$-

%('/)#$-('/)*+-('/)f+
%(°y)f+

%(°J)|0⟩à
	

	

∫	

This	complicated	expression	is	simplified	by	a	result	for	free	fields	due	to	Wick,	

namely	that	for	free	fields	Rª, º$, Ωª,…æ$, ¶ª 	:	

⟨0§ÖÜRªº$Ωª …æ$¶ªà§0⟩ = ⟨0§ÖÜRªº$à§0⟩⟨0§ÖÜΩªO:à§0⟩… ⟨0§ÖÜæ$¶ªà§0⟩	

+⟨0§ÖÜRªΩªà§0⟩⟨0§ÖÜº$O:à§0⟩… ⟨0§ÖÜæ$¶ªà§0⟩	

+…	

which	may	be	stated	that	‘the	VEV	[vacuum	expectation	value]	of	a	time-ordered	

string	of	operators	is	given	by	the	sum	of	products	of	all	possible	combinations	of	

VEVs	of	time	ordered	pairs’	(Lancaster	and	Blundell,	173).	

Many	 terms	 are	 obtained	 in	 application	 of	 Wick’s	 result	 to	 Dyson’s	

expansion,	but	a	number	of	these	do	not	contribute	to	the	scattering	amplitude.	

The	non-zero	terms	arise	from	three	kinds	of	expression,	which	are	derived	from	

																																																								
25	Symmetrization	is	usually	considered	in	the	calculation	of	the	Feynman	diagrams	later,	and	is	
not	introduced	at	this	point.	We	should	keep	in	mind	the	cautions	in	§8.3.5	regarding	the	
identification	of	N-quanta	states	as	N	quanta	states.	In	scattering	experiments	the	incoming	
particles	may	be	identified	as	separate	particles	since	they	have	distinct	physical	origins	and	so	
may	be	separated	according	to	their	wave-functions.	It	is	usually	practice	to	omit	the	test	or	
‘smearing’	functions	at	this	stage.	
26	As	is	customary	adiabatic	switching	terms	are	omitted.	
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and	evaluated	via	the	Fourier	mode	decomposition	of	the	free	fields	as	solutions	

to	the	(free)	wave	equations.	

The	 first	 kind	 of	 expression	 arises	 from	 terms	 of	 the	 form	

⟨0§Ö[f+(Qy)f+
%(°y)]§0⟩	and	is	evaluated	as	simply	

⟨0§Ö[f+(Qy)f+
%(°y)]§0⟩ = ¡(Qy − °y)	

The	 second	 kind	 of	 expression	 are	 terms	 of	 the	 form	

⟨0§ÖÜ#$-(')	f+
%(°y)à§0⟩	which	are	evaluated	as:	 	

⟨0§ÖÜ#$-(')	f+
%(°y)à§0⟩ =

1

(2[)Z/J
1

F2µúê
G
y/J Lg.úê∙N 	

and	similarly	for	other	terms,	with	the	appropriate	sign	in	the	exponential.	These	

terms	are	interpreted	as	linking	the	bare	asymptotic	states	with	the	interacting	

states.	

	 The	 third	 kind	 of	 expression	 is	 given	 by	 terms	 of	 the	 form	

⟨0§ÖÜ*+-('y)	*+-
%('J)à§0⟩ .	 This	 is	 the	 free	 Feynman	 propagator	 for	 the	 field,	

Δ√,U
- ('y − 'J)	which	is	evaluated	as	

⟨0§ÖÜ*+-('y)	*+-
%('J)à§0⟩ = Δ√,U

- ('y − 'J) = X
Yò°

(2[)ò
Lg.ú∙(NêgN®)

P

°J − ]J + Pƒ
	

commonly	 interpreted	 as	 associated	 with	 the	 exchange	 of	 a	 virtual	 phion-

(anti)phion	pair.	Although	this	is	a	valid	mathematical	result,	there	are	a	number	

of	difficulties	with	its	physical	interpretation,	to	which	I	now	turn.	

	

9.6	The	Feynman	propagator	and	‘virtual	particles’	

9.6.1	Two-point	functions:	Introduction	

I’ll	first	set	the	Feynman	propagator	in	the	context	of	some	important	conceptual	

tools	 that	are	related	to	particle	concepts,	namely	Green’s	 functions	(cf.	§5.2.2)	

and	vacuum	expectation	values	 (VEVs).	These	 are	 associated	with	 propagators	

and	 correlation	 functions.	 I	 illustrate	 the	 concepts	 with	 the	 spin-0,	 charged,	

massive	scalar	field	#$-(')	(§8.4)	before	considering	the	Feynman	propagator	in	

detail,	which	will	 indicate	 how	 virtual	 particles	 are	 introduced	 as	 the	 result	of	

semantic	mimicry.	27	

																																																								
27	Since	a	neutral	scalar	field	is	Hermitian,	equivalent	results	follow,	noting	that	*+-

%(') = *+-(')	
with	the	interpretation	that	each	particle	is	its	own	antiparticle.	
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The	action	of	#$-
%(')	on	the	state	is	interpreted	as	introducing	a	quantum	/	

removing	an	anti-quantum	at	x,	whilst	#$-(≈)	removes	a	quantum	/	introduces	an	

anti-quantum	at	y	(cf.	§8.3.4).28	So	the	action	on	the	vacuum,	#$-(≈)#$-
%(')|0⟩,	 for	

'- < ≈-,	represents	a	state	where	a	particle	is	introduced	at	x	and	removed	at	y.	

The	 VEV	 for	#$-(≈)#$-
%(') ,	 namely	 ⟨0|#$-(≈)#$-

%(')|0⟩ ,	 is	 interpreted	 as	 the	

amplitude	for	introducing	(or	emitting)	a	particle	at	x	to	the	vacuum	or	ground	

state,	then	removing	(or	absorbing)	it	at	y,	restoring	the	vacuum.	So	this	VEV	is	

understood	to	represent	the	amplitude	for	a	particle	to	propagate	from	x	to	y	for	

'- < ≈-.	Alternatively,	⟨0|#$-
%(≈)#$-(')|0⟩	('- < ≈-)	is	the	amplitude	to	introduce	

an	antiparticle	at	x	to	the	vacuum	and	remove	it	at	y,	restoring	the	vacuum:	the	

amplitude	for	an	antiparticle	to	propagate	from	x	to	y	(cf.	Lancaster	and	Blundell	

2014,	155).	

These	 VEVs	 are	 examples	 of	 two-point	 field	 correlation	 functions,	 or	

Wightman	 functions	«-(≈, ').	 Two	 related	 functions	 are	 the	 (free-field)	 Pauli-

Jordan	function:	

∆-(' − ≈) = Ü#$-('), #$-
%(≈)à	

which	 is	 a	 solution	 of	 the	 homogenous	 Klein-Gordon	 equation,	 and	 the	 (free)	

Feynman	propagator	Δ√
- (' − ≈),	which	we	now	consider	in	detail.	Note	for	future	

reference	that	these	‘2-point’	functions	can	be	extended	to	multi-point	functions	

so	 that	 rather	 than	modelling	 the	 propagation	 of	 a	 single	 particle,	multi-point	

functions	 are	 introduced	 in	 interacting	 theories	 to	 model	 scattering,	 which	

brings	considerable	complications	(cf.	§11.3).	

	

9.6.2	The	free	Feynman	propagator	

The	Feynman	propagator	for	the	psion	field	is	

Δ√
- (' − ≈) = 	 ⟨0|Ö…#$-(')#$-

%(≈) |0⟩	

where	T	denotes	the	time-ordered	product	of	the	fields:	

⟨0|Ö…#$-(')#$-
%(≈) |0⟩

= Θ('- − ≈-)⟨0§#$-(')#$-
%(≈)§0⟩ + Θ(≈- − '-)⟨0§#$-(≈)#$-

%(')§0⟩	

																																																								
28	From	hereon	we	follow	standard	practice	and	refer	to	‘particles’	rather	than	‘quanta’,	
recognizing	that	this	is	shorthand	for	quanta	integrated	against	wave-functions	to	obtain	a	
localized	particle	wave-packet.	
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using	the	Heaviside	function	Θ(Ã)	where	

Θ(Ã) = Õ
1			Ã ≥ 0
0			Ã < 0

	

It	is	sometimes	denoted	œ√
-(' − ≈)	or	œ√

-(', ≈).	

The	(free)	Feynman	propagator	is	a	Green’s	function	for	the	Klein-Gordon	

equation:	

(CJ + ]J)∆√
-(' − ≈) = −¡ò(' − ≈)	

One	can	show	that:	

Δ√
- (' − ≈) = ⟨0|Ö…#$-(')#$-

%(≈) |0⟩ = X
Yò°

(2[)ò
Lg.ú∙(Ngû)

P

°J − ]J + Pƒ
	

This	derivation	requires	the	construction	and	calculation	of	an	integral	which	is	

achieved	 through	 representation	 of	 the	 Heaviside	 function	 on	 the	 complex	°--

plane,	so	that	the	integral	can	be	calculated	from	a	contour	on	the	complex	plane.	

This	 requires	 the	 introduction	 of	 ‘small	 contour	 displacements’	 around	 poles	

implemented	 by	 the	 addition	 of	 the	 iε	 terms,	 which	 are,	 it	 is	 understood,	

ultimately	 taken	 to	 zero	 even	 though	 this	 is	 not	 usually	 stated	 explicitly.29	The	

contour	 displacements	 are	 chosen	 to	 implement	 the	 Feynman	 boundary	

conditions,	i.e.	to	give	the	Feynman	propagator.30	This	procedure	does	however	

introduce	semantic	mimicry	regarding	the	interpretation	of	p	as	we	now	see.	

We	have31	

Δ√
- (' − ≈) = 	Θ('- − ≈-)⟨0§#$-(')#$-

%(≈)§0⟩ + Θ(≈- − '-)⟨0§#$-(≈)#$-
%(')§0⟩	

	

= X
YZ–

(2[)Z
1

2µú
Lg.–∙(�g—) jL.“”(NVgûV)Θ(≈- − '-) + Lg.“”(NVgûV)Θ('- − ≈-)k	

So	 far	 so	good,	 since	 the	 variables	 represent	physical	 quantities.	However,	 the	

Heaviside	functions	appear	non-covariant,	and	are	tricky	to	work	with,	so	appeal	

is	made	to	the	purely	mathematical	result	that,	introducing	a	dummy	variable	z	

that	has	no	physical	significance,	on	the	complex	z-plane,	

Θ('- − ≈-) = 	 lim
‘→-

P X
YÃ

2[

Lg.’(NVgûV)

Ã + Pƒ

å

gå

	

																																																								
29	This	is	a	standard	application	of	Cauchy’s	theorem	for	contour	integration	in	the	complex	
plane.		
30	Other	displacements	may	be	used	to	give	different	Green’s	functions.	
31	Following	Lancaster	and	Blundell	(2014,	158-159);	Schwartz	(2014,	75-77).	
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It	 is	 important	 to	stress	 that	z	does	not	represent	a	physical	quantity.	The	next	

move	in	the	derivation	of	the	propagator	is	to	make	the	substitution	Ã= = Ã + µú,	

which	again	is	a	purely	mathematical	device,	and	write	Ã= = °-.	Again	this	is	for	

mathematical	convenience	but	crucially	°-	is	not	a	physical	quantity	anymore	but	

a	 ‘dummy	 variable’	 once	 we	 substitute	 this	 representation	 of	 the	 Heaviside	

function	 in	 the	 expression	 for	 the	 Feynman	 propagator	 with	 the	 variables	 so	

defined.	 Now	 define	 ° = (Ã=, –) = (°-, –) .	 Although	 p	 is	 still	 physical	 3-

momentum,	 neither	°-	nor	 p	are	 the	 physical	 quantities	 as	 previously	 defined.	

This	means	that	(°-)J ≠ –J + ]J,	although	one	can	write	µú
J = –J + ]J	with	Ep	

a	function	of	the	physical	quantities	p	and	m	rather	than	the	new	p.	

The	substitutions	allow	us	to	rewrite:	

Δ√
- (' − ≈) = X

Yò°

(2[)ò
Lg.ú∙(Ngû)

P

(°-)J − µú
J + Pƒ

	

but	where	°-	and	p	are	now	‘dummy	variables’	in	the	sense	just	indicated.	They	

are	not	used	in	their	usual	sense	of	representing	physical	quantities.	Since	µú
J =

–J + ]J 	(which	 still	 bears	 a	 physical	 interpretation	 as	 just	 indicated)	 the	

denominator	may	be	written	mathematically	in	terms	of	the	dummy	variables	°-	

and	p	as	(°-)J − µú
J + Pƒ = °J − ]J + Pƒ	to	give	the	final	result,	

Δ√
- (' − ≈) = X

Yò°

(2[)ò
Lg.ú∙(Ngû)

P

°J − ]J + Pƒ
	

where	 p	 is	 no	 longer	 the	 physical	 4-momentum.	 However,	 p	 often	 appears	 to	

retain	 its	 interpretation	as	 the	4-momentum	by	semantic	mimicry,	which	 leads	

to	 conceptual	 confusion,	 especially	 with	 regard	 to	 ‘virtual	 particles’	 as	 we	

consider	 in	 a	 moment.	 Interpretative	 difficulties	 continue,	 for	 the	 Fourier	

transform	of	Δ√
- (' − ≈),	namely:		

∆÷√
-(°) =

P

°J − ]J + Pƒ
	

is	interpreted	as	the	free	Feynman	propagator	in	p-space	or	‘momentum	space’.32	

But	this	is	misleading,	for	the	Fourier	transform	pair	(x,	p)	no	longer	corresponds	

to	 physical	 space-time	 and	 physical	 4-momentum	 coordinates	 in	 which	°- =

(◊J + ]J)y/J 	supports	 a	 physical	 interpretation.	 Instead	 the	 coordinates	 are	

																																																								
32	E.g.	Greiner	and	Reinhardt	(1996,	100-115).	
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physical	 space-time	 x	 and	 ‘p-space’	 where	 now	 p	has	 a	 physical	 3-momentum	

component	p,	and	the	unphysical	dummy	variable	°-.	

So,	owing	to	this	semantic	mimicry	one	should	not	interpret	

Δ√
- (' − ≈) = X

Yò°

(2[)ò
Lg.ú∙(Ngû)

P

°J − ]J + Pƒ
	

as	 the	 superposition	 of	 momentum	 space	 propagators.	 It	 is	 a	 convenient	

mathematical	 expression,	 with	 mathematical	 rather	 than	 physical	 semantic	

architecture.	

	

9.6.3	Virtual	particles	

However,	and	especially	in	the	context	of	Feynman	diagrams	that	I	shall	consider	

below,	when	the	mass-shell	condition	is	not	satisfied	∆÷√
-(°)	is	interpreted	as	the	

momentum	space	propagator	for	a	‘virtual	particle’	of	4-momentum	p.	This	leads	

to	further	confusion	regarding	the	existence	of	 ‘off	mass-shell’	particles	and	the	

failure	to	conserve	energy	during	interaction,	interpreted	as	exchange	of	virtual	

particles	 (Lancaster	 and	 Blundell	 2014,	 159-161;	 cf.	 §7.4).	 That	 is,	 ‘ordinary’	

particles	are	associated	with	the	propagator	

∆÷√
-(°) =

P

°J − ]J + Pƒ
	

in	the	special	case	when	p	does	represent	physical	4-momentum,	and	so	satisfies	

the	mass-shell	condition.33	Virtual	particles	are,	by	prolongation,	associated	with	

the	 same	 propagator	 when	 p	does	 not	 represent	 physical	 4-momentum,	 as	 is	

necessitated	in	the	evaluation	of	Feynman	diagrams.		

The	 ‘virtual	 particle’	 concept	 is	 one	 of	 the	 particle	 concepts	 that	

Falkenburg	 considers	 (2007,	 233-238).	 It	 reflects	 an	 attempt	 to	 appropriate	 a	

particle	 concept	 for	 interactions,	 but	 does	 so	 via	 semantic	 mimicry	 by	 falsely	

attributing	a	physical	interpretation	to	the	p-space	propagator	

																																																								
33	An	important	deduction	is	made	from	the	form	of	the	propagator.	That	is,	one	notes	that	the	
mass	of	the	particle	associated	with	the	field	is	given	by	the	location	of	the	pole	of	the	propagator,	
considered	as	a	function	on	the	complex	plane.	This	means	that	if	one	is	able	to	deduce	by	some	
means	an	expression	for	a	propagator	of	a	field,	its	mass	may	be	inferred	from	the	location	of	the	
pole.	This	is	important	in	regard	to	the	identification	of	quasiparticles	in	some	contexts,	and	in	
regard	to	the	identification	of	renormalized	particles,	or	renormalization	conditions	in	
interacting	theories	(cf.	§11.2).	See	Lancaster	and	Blundell	(2014,	276-279)	for	an	overview	of	
the	importance	of	this	observation;	Schwartz	(2014,	330-333)	for	further	discussion	noting	
complications	in	relation	to	renormalized	mass.	
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∆÷√
-(°) =

P

°J − ]J + Pƒ
	

The	 shift	 in	 semantic	 architecture	 of	 the	 Fourier	 transform	 pair	 has	 not	 been	

noticed.	The	adjective	 ‘virtual’	 is	 applied	 in	 recognition	 that	°- ≠ (◊J + ]J)y/J,	

which	 should	 alert	one	 to	 the	 possibility	 of	 semantic	mimicry	 in	 that	 one	may	

have	a	mathematical	artefact	without	direct	physical	significance.	

However,	 rather	 than	 recognizing	 that	 this	p-space	propagator	 is	now	a	

mathematical	 artefact	 arising	 from	 the	 introduction	 of	 a	 dummy	 variable	 in	

order	to	enable	an	integral	to	be	evaluated,	often	the	p-space	propagator	is	taken	

as	 indicative	 of	 a	 somewhat	mysterious	 new	 type	 of	 physical	 particle	 concept	

that	 exists	 only	 in	 the	 intermediate	 stages	 of	 interactions	 (cf.	 §7.4)	 used	 to	

‘explain’	interactions	in	a	causal-mechanical	sense.	

Indeed,	 a	 whole	 explanatory	 architecture	 arises	 to	 account	 for	 virtual	

particles,	 in	 particular	 appeal	 to	 the	 so-called	 ‘energy-time	 uncertainty	

relationship’	 (ETUR)	 which	 suggests	 that	 energy	 (given	 via	°- ,	 the	 dummy	

variable)	is	‘borrowed’	for	the	short	time	required	for	particles	to	interact	via	the	

exchange	of	virtual	particles.34		

There	 is	nothing	mysterious	about	 terms	such	as	
.

ú®gÿ®Ÿ.‘
	representing	

exchanges	of	‘off	mass-shell’	virtual	particles,	for	the	integral	over	such	terms	is	a	

mathematical	 device	 that	 does	 not	 support	 the	 physical	 interpretation	 of	

individual	 terms	 in	 general.	 Endowing	 individual	 terms	 with	 a	 physical	

interpretation	 arises	 from	 semantic	 mimicry	 unless	 there	 is	 some	 physical	

justification	for	some	particular	value	of	p.	

	

	 	

																																																								
34	See	Wick	(1938)	and	e.g.	Lancaster	and	Blundell	(2014,	159-160)	for	a	recent	overview	of	the	
common	interpretation.	Difficulties	with	the	interpretation	have	been	raised,	e.g.	Bunge	(1970)	
and	Fox	(2008).	For	detailed	discussion	of	ETUR	see	Busch	(1990a&b;	2008)	and	Hilgevoord	
(1996;	1998;	2005).	Appeal	to	the	ETUR	seems	problematic	since	the	Heisenberg	uncertainty	
relations	are	construed	in	terms	of	operators,	and	time	is	not	an	operator	but	a	parameter.	
However,	the	Heisenberg	uncertainty	relations	are	‘localization’	relationships	between	Fourier	
transform	pairs	of	variables	(Stein	and	Shakarchi	2003,	158-161).	So	as	t	and	p0	are	
corresponding	variables	of	a	Fourier	transform	pair	a	p0	/	t	localization	relationship	may	be	
deduced	mathematically	as	satisfying	the	Heisenberg	relationship	in	its	(mathematical)	Fourier	
transform	context.	But	this	does	not	support	physical	interpretation	in	terms	of	‘energy	
borrowing’	as	p0	is	a	dummy	variable.	
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9.7	Feynman	diagrams,	interactions	and	renormalization	

9.7.1	Feynman	diagrams	in	the	context	of	Dyson’s	series	

We	 have	 a	 series	 expansion	 for	 the	 ‘matrix	 elements’	≥´M
- 	of	 the	 scattering	

amplitude	≥- ,	 that	 is,	 expressions	 for	 amplitudes	 for	 all	 possible	 scattering	

scenarios	 in	 the	theory	 for	bare,	 idealized	asymptotic	states	using	the	adiabatic	

hypothesis.	The	amplitudes	are	each	given	by	the	Dyson	series	expansion	of	the	

S0-matrix	 folded	 in	 with	 the	 given	 in/out	 states.	 Each	 term	 of	 the	 resulting	

expression	is	simplified	using	Wick’s	result,	for	which	the	resulting	terms	can	be	

‘visualized’	as	a	Feynman	diagram	via	the	Feynman	propagators	represented	as	

lines	which	join	at	nodes.35	

In	 this	 context	Feynman	diagrams	are	understood	 to	model	 interactions	

via	the	exchange	of	virtual	particles.	It	is	then	often	said	that	the	interaction	that	

results	 in	scattering	 can	be	understood	as,	 or	explained	as,	 a	 ‘superposition’	of	

the	 putative	 processes	 of	 virtual	 particle	 interactions	 represented	 by	 the	

Feynman	 diagrams	 (cf.	 Falkenburg	 2007,	 236-238;	 Teller	 1995,	 140-142;	

Weingard	1988,	43-58;	cf.	1982).36	Such	interpretation	is	an	example	of	semantic	

mimicry,	as	we	have	begun	to	see	with	regard	to	appeal	 to	 the	 ‘virtual	particle’	

concept.	

Let	≥(/)	denote	 the	 nth-order	 term	 in	 the	 scattering	 amplitude	 for	 the	

case	 under	 consideration.	 The	 second-order	 term	 contains	 only	 two	 non-zero	

terms:	

																																																								
35	Introduced	in	Feynman	(1949a&b).	
36	Discussion	of	virtual	particles	and	Feynman	diagrams	in	the	philosophical	literature	has	
generally	been	conducted	with	reference	to	realism	debates,	with	a	realist	stance	usually	
rejected,	although	some	authors	adopt	thin	forms.	See	Fox	(2008)	for	a	summary	of	arguments	
against	realist	interpretation,	and	Valente	(2011)	for	a	response	to	Fox	advocating	a	‘thin	realism’	
perhaps	comparable	with	Falkenburg	(2007).	Valente	argues	that	we	can	see	‘virtual	quanta	as	
an	explanatory	nexus	–	through	an	extension	of	the	concept	of	quanta	–	of	the	quantized	
exchange	of	energy	and	momentum	between	real	particles	even	if	it	turns	out	to	be	an	intricate	
one’	(49),	concluding	that	virtual	quanta	have	epistemic	relevance	which	goes	beyond	the	‘formal	
tools’	reading	(50-51).	Falkenburg	argues	that	‘infinitely	many	virtual	particles	together	may	be	
considered	to	cause	a	real	collective	effect.	…	The	transition	probability	stems	from	all	virtual	
field	quanta	involved	in	the	superpositions	of	the	relevant	lowest	and	higher	order	Feynman	
diagrams.’	(237)	Alternatively	Kuhlmann	concludes	that	‘a	realistic	interpretation	of	Feynman	
diagrams	is	excluded	in	a	substance	ontology	while	it	seems	possible	in	a	process	ontology.’	
(2010,	131)	I	simply	note	that	much	discussion	involves	a	faulty	understanding	or	application	of	
‘superposition’	(cf.	Falkenburg	and	Fox).	It	is	the	question	of	the	applicability	of	‘superposition’	
that	I	develop	in	detail	in	the	Wilsonian	perspective,	which	ultimately	suggests	that	a	realist	
interpretation	of	virtual	particles	and	Feynman	diagrams	is	untenable,	resulting	from	semantic	
mimicry.	
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≥(J) =
−(2[)∑
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The	formal	interpretation	of	≥(J)	is	straightforward	in	terms	of	the	propagators	

discussed	above,	which	have	 ‘inherited’	physical	 interpretation	 from	 the	1930s	

treatments	of	virtual	particle	exchange	(cf.	chapter	7).	

The	key	 interaction	term	in	≥(J)	is	⟨0|Ö[*+('y)*+('J)]|0⟩.	 It	 is	 interpreted	

as	 the	 free	 Feynman	 propagator	 representing	 the	 exchange	 of	 a	 virtual	 phion-

(anti)phion	 pair	 between	 x1	 and	 x2	 as	 we	 saw	 above.	 Such	 terms	 represent	

‘internal	 lines’	 of	 the	 Feynman	 diagrams	 as	 in	 the	 diagrams	 below.	 The	 other	

two-point	VEVs	are	interpreted	as	introducing	or	removing	asymptotic,	idealized	

bare	particles	of	the	free	theory	to	or	from	the	scattering	process	(cf.	§9.5).	These	

are	the	‘external	legs’	of	the	Feynman	diagrams.	Within	each	of	the	products	each	

VEV	 can	 be	 visualized	 as	 a	 line,	 joined	 at	 nodes	 (representing	 a	 point-like	

coupling	of	the	fields)	where	the	arguments	of	the	field	functions	agree.	

The	two	nonzero	terms	in	≥(J)	can	be	visualised	as	Feynman	diagrams:	

	
Fig.	9.1	The	first	term	–	the	t-channel	process	

	

	
Fig.	9.2	The	second	term	–	the	u-channel	process	
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The	story	told	is	that	the	diagram	represents	two	incoming	psions	that	interact	

by	the	exchange	of	a	virtual	phion-(anti)phion	pair	between	x1	and	x2,	and	then	

separate.	 The	 psion	 coupling	 is	 restricted	 to	 these	 two	 points	 only,	 the	

propagation	being	free	otherwise.	However,	this	‘process’	is	integrated	over	all	x1	

and	 x2,	 sometimes	 interpreted	 as	 a	 ‘superposition’	 of	 exchange	 processes	 that	

contribute	to	the	scattering.	The	amplitude	for	the	process	can	then	be	calculated	

from	the	expressions	above.	

However,	 for	 the	 simple	 internal	 line	 depicted	 in	 the	 two	 diagrams	 the	

(dummy)	p	value	in	the	explicit	form	of	the	propagator	⟨0§ÖÜ*+-('y)	*+-
%('J)à§0⟩ =

Δ√,U
- ('y − 'J)	is	fixed	by	the	incoming	and	outgoing	momenta	at	some	off	mass-

shell	value	q	applying	momentum	conservation	at	the	nodes.37	We	do	not	require	

integration	over	all	(dummy)	p,	so	that	here	

⟨0§ÖÜ*+-('y)	*+-
%('J)à§0⟩ = Δ√,U

- ('y − 'J) =
P

QJ − ]J + Pƒ
	

The	usual	interpretation	is	that	this	line	then	represents	the	exchange	of	a	virtual	

phion	 pair	 of	 off	 mass-shell	 momentum	 q.	 But	 such	 interpretation	 of	 the	

propagator	in	p-space	involves	semantic	mimicry	(see	above),	so	this	expression	

in	q	is	a	mathematical	artefact	and	does	not	represent	a	physical	process.	

	 The	diagrams	depicted	only	represent	 the	second-order	 ‘processes’	 in	g,	

indicated	 diagrammatically	 in	 that	 there	 are	 two	 nodes	 to	 the	 Feynman	

diagrams.	Higher-order	 ‘processes’,	 that	 (recall)	 are	 simply	 correction	 terms	 in	

an	 iterative	 series	 expansion,	 must	 be	 added.	 I	 shall	 not	 set	 out	 the	 lengthy	

mathematical	 expressions	 of	 these,	 but	 instead	 note	 the	 character	 of	 the	

Feynman	diagrams	that	arise	from	the	mathematics	and	the	implications.	

	

9.7.2	Renormalization	

The	order	of	the	‘process’	(correction	term)	corresponds	to	the	number	of	nodes	

in	its	associated	Feynman	diagram.	The	scattering	amplitude	calculation	formally	

requires	 summation	 of	 the	≥(/) 	to	 all	 orders.	 In	 practice,	 the	 calculation	 is	

truncated	 after	 a	 few	 terms	 on	 the	 assumption	 that	 g	 is	 small,	 so	 that	 the	

																																																								
37	q=q1-p1	in	the	t-channel	process	and	q=q1-p2	in	the	u-channel.	
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contribution	 from	 the	 higher	 terms	 rapidly	 diminishes.38	However,	 a	 serious	

difficulty	emerges	in	that	the	Feynman	diagrams	with	‘loops’	that	arise	at	higher	

orders	 lead	 to	divergent	 integrals,	 at	 any	given	order,	since	 the	p-values	 in	 the	

loops	 can	 take	 arbitrarily	 high	 values,	 and	 the	 integrals	 diverge	with	 p.	 So	 for	

example	one	of	the	≥(ò)	diagrams	will	consist	in	one	of	the	above	diagrams	but	

with	the	simple	internal	phion	line	replace	with	the	loop	diagram:	

	
Fig.	9.3	Simple	loop	diagram	on	the	internal	phion	propagator	

In	 this	 case	 the	 loop	 momenta	 can	 take	 any	 value	 in	 p-space,	 with	 the	 loop	

interpreted	 as	 a	 virtual	 psion-antipsion	 process.	 But	 this	 gives	 a	 divergent	

integral	to	be	evaluated	in	the	calculation	of	the	scattering	amplitude.	

This	is	an	indication	for	the	need	for,	and	is	corrected	by,	renormalization,	

a	 mathematical	 procedure	 applied	 to	 cancel	 the	 divergences	 and	 arrive	 at	

empirically	 correct	 results.	 Renormalization	 compensates	 for	 the	 failure	 of	 the	

Volkmann	device	as	far	as	the	ability	to	perform	calculations	is	concerned.39	The	

																																																								
38	Dyson’s	series	is	an	‘asymptotic	series’	in	the	sense	that	often	the	summation	of	the	first	few	
terms	provides	a	good	approximation	despite	the	series	diverging.	
39	Cf.	§10.5.	Renormalization	involves	the	addition	of	‘counter-terms’	to	the	Lagrangian,	chosen	to	
cancel	exactly	the	divergences	encountered	in	the	integrals	and	force	the	calculated	outcomes	to	
agree	with	empirically	obtained	results	in	simple	experiments.	In	the	scalar	Yukawa	theory	there	
are	 six	 renormalization	 conditions	 required	 to	 cancel	 divergences	 to	 all	 orders	 and	 force	
empirically	adequate	results:	The	Lagrangian	of	the	non-renormalized	theory	is:	

ℒ = CD*+CD*+ − ]J*+J + CD#$%CD#$ − `J#$%#$ − 8#$%#$*+ 	
Define	the	renormalized	Lagrangian	ℒon/	using	renormalized	fields	*+′,	#$′%,	#$′	and	counterterms	

ℒon/ = ℒ + ℒ¤3 	
where	
																								ℒ¤3 = R*+′ + ºCD*+′CD*+′ − Ω*+′J + OCD#$′%CD#$′ − µ#$′%#$ − ‹#$′%#$′*+′		

and	{A,B,C,D,E,F}	are	parameters	determined	by	the	renormalization	conditions:	
1. ⟨Ω|*+′|Ω⟩ = 0	fixes	A	
2. ⟨Q|*+′(0)|Ω⟩ = 1	fixes	B,	where	|Q⟩	is	a	single	phion	state	of	momentum	q	
3. The	physical	phion	mass,	mphys	fixes	C	
4. ⟨°|#$′(0)|Ω⟩ = 1	fixes	D,	where	|°⟩	is	a	single	(anti)psion	state	of	momentum	p	
5. The	physical	psion	mass,	Mphys	fixes	E	
6. The	 physical	 definition	 of	 charge	 g	 fixes	 F,	 although	 this	 is	 dependent	 upon	 the	

renormalization	point	of	the	total	momenta	of	the	scattering	states,	in	older	approaches	
to	 renormalization	 at	 least	 (the	 analysis	 of	 the	 role	 of	 the	 parameters	 is	 more	
complicated,	but	more	illuminative,	in	the	newer	renormalization	group	approaches).	

The	B	and	D	parameters	relate	to	the	‘wave	function	renormalization’	parameters	Zφ	and	Zψ	of	*+′	
and	#$′,	the	others	to	mass	and	charge	renormalization.	By	determining	the	parameters	using	
experiments	calculations	can	be	performed	using	the	new	species	,$-= 	at	any	order	without	
divergences	–	see	Coleman	(2019,	300-343)	for	details.	The	notion	of	‘renormalizability’	of	a	
theory,	and	its	necessity,	is	not	straightforward	and	there	are	various	senses	in	which	a	theory	
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compensation	is	partial	in	the	sense	that	renormalization	supports	calculations,	

but	does	not	support	 the	ability	 to	 identify	 fields	and	states	 that	 take	the	same	

form	individually	and	in	combination,	so	that	a	description	of	interacting	states	

can	be	given.	Renormalization	does	not	construct	or	identify	isolated	fields	that	

appear	in	the	Lagrangian	and	field	equation	with	finite,	constant	parameters	that	

take	the	same	form	individually	and	in	combination.	

	

9.7.3	The	failure	of	Feynman	diagrams	to	describe	interacting	states	

I	am	developing	the	argument	that	QFT	does	not	support	a	particle	description	of	

interacting	states,	or	explanations	of	 interactions	 in	 terms	of	particle	processes	

owing	to	the	failure	of	 ‘superposition’	in	the	initial	application	of	the	Volkmann	

device,	which	is	further	associated	with	the	failure	of	‘superposition’	to	apply	to	

the	coupled	wave	equations	so	that	they	cannot	support	the	Fock	decomposition	

of	the	state.	

However,	 it	might	 be	 objected	 that	 a	 particle	 description	 of	 interacting	

states	is	physically	supported	by	Feynman	diagrams	in	the	interaction	picture,	as	

inherited	 from	 the	 Fock	 structure	of	 the	,$-.	 By	Haag’s	 theorem	such	 a	 particle	

description	would	be	unitarily	inequivalent	to	(and	so	perhaps	incommensurable	

with,	to	use	Ruetsche’s	term)	any	particle	description	associated	with	the	,$./	or	

the	,$	(cf.	 §10.2.2).	 But	 appeal	 to	 Haag’s	 theorem	 does	 not	 rule	 out	 a	 particle	

description	of	interacting	states	in	terms	of	the	,$-.	I	am	developing	the	stronger	

claim	here	that	there	is	no	particle	description	of	interacting	states	via	the	,$-	by	

considering	 the	 semantic	 architecture	 of	 the	 Feynman	 diagrams	 as	 they	 arise	

from	Dyson’s	expansion	as	applied	to	the	asymptotic	states.	In	§10.2	I	show	that	

there	is	no	particle	description,	in	general,	 in	terms	of	the	,$./	or	the	,$	either	by	

considering	the	inapplicability	of	‘superposition’	to	interactions	in	QFT.	

The	claim	that	Feynman	diagrams	do	not	represent	interacting	states	via	

the	 ,$- 	is	 established,	 even	 setting	 aside	 renormalization	 issues,	 by	

																																																																																																																																																															
may	be	renormalizable.	See	e.g.	Weinberg	(1995,	516-525)	for	discussion	of	whether	
renormalizability	is	necessary	in	the	traditional	sense.	Traditionally,	‘physical’	QFTs	were	
required	to	be	renormalizable	in	the	sense	that	the	divergences	at	all	orders	could	be	cancelled	
using	a	finite	number	of	parameters	as	‘counter-terms’.	Conceptual	improvements	have	been	
gained	via	the	application	of	so-called	‘renormalization	group’	techniques,	although	these	still	
involve	the	addition	of	counter-terms	to	the	Lagrangian.	See	Cao	(1993);	Butterfield	and	Bouatta	
(2014)	for	the	development	of	renormalization	techniques,	with	philosophical	discussion.	
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demonstrating	that	they	arise	in	the	context	of	a	mimic	of	the	Fourier	technique	

for	which	‘superposition’	is	inapplicable.	We	do	not	have	the	proper	application	

of	the	Fourier	technique	in	the	use	of	Dyson’s	series,	having	a	mimic	instead	for	

which	 ‘superposition’	 may	 be	 (improperly)	 applied,	 leading	 to	 the	 false	

conclusion	that	Feynman	diagrams	represent	interacting	states.	The	conclusion	–	

that	 Feynman	diagrams	do	 not	 represent	 interacting	 states	 –	 is	 not	 novel,	 and	

reflects	 the	 consensus	 view	 that	 has	 emerged	 in	 the	 philosophical	 literature,	

which	is	usually	framed	in	terms	of	realism	rather	than	natural	description.	

The	application	and	 interpretation	of	Feynman	diagrams	with	 regard	 to	

Dyson’s	 expansion	 stands	 in	 direct	 continuity	 with	 and	 represents	 the	

completion	 of	 the	 program(s)	 of	 the	 1930s	 in	 which	 particle	 interactions	 are	

understood	 in	 terms	 of	 virtual	 particle	 exchanges,	 a	 picture	 which	 sits	

comfortably	 within	 a	 causal-mechanical	 framework	 of	 explanation.	 Perhaps	

Feynman	diagrams	 inherited	a	 ‘realist’	 interpretation	 from	 these	models	of	 the	

1930s	 and	 the	 physical	 interpretations	 with	 which	 they	 were	 endowed,	 even	

though	 Feynman	 (and	 Dyson)	 were	 more	 measured	 in	 their	 physical	

interpretation	of	the	diagrams.	A	realistic	interpretation	would	seem	supported,	

prima	facie,	by	bubble	chamber	tracks	apparently	indicating	particle	interactions	

that	 look	 somewhat	 like	 Feynman	 diagrams.	 So	 apparently	 there	 is	

phenomenological	 support	 for	 a	 realistic	 interpretation	 of	 Feynman	 diagrams	

and	 the	 explanations	 that	 they	 appear	 to	 offer.	 But	 Feynman	 diagrams	 are	

established	 on	 different	 patches	 of	 theory	 façades	 –	 their	 semantic	 support	

differs	in	different	applications.	40		

To	 summarize	 the	 situation	 here,	 according	 to	 the	 common	 realistic	

interpretation	 of	 terms	 in	 Dyson’s	 series	 as	 applied	 to	 the	 calculation	 of	

scattering	 amplitudes	 via	 Feynman	 diagrams,	 an	 interaction	 is	 understood	 in	

terms	 of	 a	 (double)	 ‘infinite	 superposition’	 of	 discrete	 emission	 /	 absorption	

processes	 that	 punctuate	 free	 propagations	 of	 particles.	 That	 is,	 for	 a	 single	

process	 integration	 over	 space-time	 is	 required	 for	 every	 vertex	 location,	

																																																								
40	See	Passon	(2019);	Kaiser	(2005).	There	are	different	contexts	of	use	of	Feynman	diagrams	in	
which	their	semantic	architecture	differs	–	comparison	with	bubble	chamber	tracks	is	often	
misleading.		An	interesting	case	meriting	further	analysis	concerns	the	role	of	Feynman	diagrams	
in	the	context	of	perturbative	expansions	in	polymer	field	theory	where	Sam	Edwards	claimed	
‘polymers	are	their	own	Feynman	diagrams’	(Goldenfeld	2016,	10;	cf.	Edwards	1978,	285).		
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supposedly	 giving	 rise	 to	 one	 ‘superposition’	 of	 like	 diagrams,	 and	 then	 every	

process	at	every	order	is	summed,	giving	rise	to	another	putative	‘superposition’	

of	 processes.	 In	 both	 cases	 summation	 is	 incorrectly	 interpreted	 as	

superposition.	 This	 story	 is	misleading	 as	 indicated	 by	 analysing	 the	 semantic	

support	of	the	expansion	for	≥	via	Dyson’s	series	for	Ä:" .	

We	 have	 a	 Fock	 space	 representation	 of	 the	 bare,	 free	 asymptotic	 in-

states,	 which	 can	 be	 considered	 as	 Fourier	 decompositions	 of	 the	 states,	

exploiting	 a	 natural	 descriptive	 opportunity	 via	 the	,$-.	 So	 far	 so	 good.	 The	

difficulty	 arises	when	we	 consider	 the	 evolution	 of	 the	 initial	 bare	 asymptotic	

states,	which	we	calculate	via	the	iterative	expansion	for	Ä:" .	That	is,	we	wish	to	

consider	the	evolution	of	the	state	or	the	representation	of		

||"(b)⟩ = Ä:"(b,−∞)||"(−∞)⟩ = Ä:"(b, −∞)|T⟩-	

where	Ä:" 	satisfies	

P
C

Cb
Ä:"(b, b-) = 9:′"(b)Ä:"(b, b-)	

If	we	could	solve	for	Ä:" 	explicitly	and	represent	it	in	diagonal	form	with	respect	

to	a	basis	of	its	eigenfunctions,	a	basis	which	must	also	be	the	Fock	basis	for	the	

bare	asymptotic	states	in	order	to	apply	the	two	aspects	of	Fourier’s	technique,	

then	 we	 could	 support	 the	 same	 kind	 of	 interpretation	 for	 the	 system	 as	

repeatedly	achieved	 in	 chapter	4	 in	 terms	of	 ‘superposition’.	That	 is,	we	would	

have	 a	 natural	 description	 of	 the	 system	 which	 here	 would	 be	 a	 particle	

description	for	which	an	initial	(bare)	particle	state	evolved	as	a	superposition	of	

particle	 states	 by	 ‘Hilbert	 superposition’,	 eventually	 resolving	 into	 bare	

asymptotic	final	out-states	as	a	superposition	of	particle	states.		

But	 we	 do	 not	 have	 this,	 and	 any	 such	 interpretation	 is	 an	 instance	 of	

semantic	 mimicry	 for	 the	 expansion	 for	Ä:" 	is	 not	 a	 Fourier	 solution	 for	 which	

individual	 terms	 have	 physical	 significance	 associated	 with	 persisting	 partial	

states	 via	 Hilbert	 superposition.	 We	 cannot	 solve	 explicitly	 for	Ä:" ,	 let	 alone	

calculate	its	eigenfunctions,	even	if	we	know	in	principle	that	they	exist.	What	we	

have	instead	is	an	iterative	series	expansion	for	Ä:" .	So,	when	applied	to	the	state,	

i.e.	 as	Ä:"(b,−∞)|T⟩-	individual	 terms	 of	 the	 resulting	 series	 are	 not	 possible	

states	traced	through	the	system.	This	is	because	the	individual	terms	represent	

correction	terms	to	lower-order	approximations,	and	so	they	are	unphysical	and	
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superposition	 does	 not	 apply	 as	 in	 the	 classical	 examples	 considered	 that	 also	

mimic	 ‘superposition’	 (cf.	 §4.5;	 §5.3).	 So	we	 do	 not	 have	 an	 application	 of	 the	

Fourier	technique	to	support	‘superposition’.	

There	 is	 therefore	 no	 natural	 physical	 description	 of	 the	 system	during	

interaction	as	might	be	obtained	via	individual	terms	in	Dyson’s	series	in	terms	

of	superpositions	of	particles.	It	is	the	individual	terms	of	Dyson’s	series	that	are	

interpreted	 by	 or	 represented	 as	 Feynman	 diagrams,	 and	 so	 the	 Feynman	

diagrams	 do	 not	 support	 ‘superposition’	 or	 a	 natural	 description	 of	 the	

interacting	 system	 as	 representing	 physical	 processes	 or	 supporting	

explanations	of	interactions.	So	whilst	the	S0-matrix	maps	superpositions	of	Fock	

basis	 states	 to	 superpositions	of	Fock	basis	 states	 to	give	amplitudes	 for	given	

processes,	 there	 is	nothing	 in	 the	calculation	of	 the	matrix	elements	to	support	

any	physical	interpretation	or	explanation	of	the	iterative	series	used	to	calculate	

the	amplitudes,	and	nothing	is	said	about	the	nature	of	the	intermediate	states	or	

processes.	The	S0-matrix	simply	provides	the	amplitudes	for	particular	outcomes	

given	a	particular	initial	state.	

Three	 final	observations	are	worth	making:	First,	 in	 the	 context	 that	we	

have	 considered	 Feynman	 diagrams	 provide	 a	 notational	 opportunity	 to	

visualize	 a	 complicated	 mathematical	 approximation	 method	 that	 greatly	

simplifies	its	application	and	calculation.	

Secondly,	Feynman	diagrams	might	be	said	to	offer	a	reasoning	advantage	

in	 that	 regard,	 and	 in	 regard	 to	 ‘explanations’	 of	 the	 success	 of	 extremely	

successful	 calculation	 in,	 for	 instance,	 the	 calculation	of	 the	Lamb	shift	 and	 the	

magnetic	moment	of	 the	 electron	 (cf.	 Peskin	 and	 Schroder	 196-198;	 Schweber	

1994).	 It	 is	an	 interesting	question,	although	not	one	that	 I	shall	pursue,	of	 just	

what	 kind	 of	 explanation	 they	 offer,	 which	 might	 be	 compared	 with	 other	

iterative	 solutions	 to	 differential	 equations	 in	 which	 the	 individual	 terms	

represent	 corrections	 to	 cruder	 approximations	 that	 identify	 physical	 trends	

with	 reference	 to	 some	 parameter(s),	 and	 so	 have	 indirect	 (rather	 than	

representational)	physical	significance	and	explanatory	power	 in	 this	narrower	

sense	 (cf.	 Holmes	 2013,	 1-46).41	That	 is,	 Feynman	 diagrams	 may	 assist	 in	

																																																								
41	Cf.	Meynell	(2008;	2018)	on	the	interpretation	of	Feynman	diagrams	in	relation	to	
understanding.	Falkenburg	suggests	that	for	all	practical	purposes	it	is	possible	to	single	out	‘the	
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supporting	explanations	and	offer	a	reasoning	advantage,	but	not	because	they	

offer	a	natural	or	true	description.			

Finally,	 in	 general,	 Dyson’s	 series	 diverges,	 being	 an	 asymptotic	 series	

(Duncan	2012,	376).	That	 is,	summation	of	 the	 first	 few	terms	provides	a	good	

approximation	to	the	desired	solution,	before	diverging	after	a	finite	number	of	

terms,	 even	 after	 renormalization.42 	But	 if	 the	 coupling	 is	 too	 strong,	 the	

procedure	fails,	and	alternative	methods	must	be	employed,	as	in	QCD.43		

	

9.8	Conclusion	

I	have	shown	how	interactions	are	introduced	perturbatively	to	the	free	theories	

of	 chapter	 8	 by	 implicit	 but	 improper	 use	 of	 the	 Volkmann	 device	 as	 a	

generalized	superposition	principle,	outlining	a	number	of	difficulties.	

I	 have	 indicated	 how	 S0-matrix	 elements	 are	 calculated,	 subject	 to	

renormalization,	 whilst	 highlighting	 the	 conceptual	 difficulties	 with	 the	

interpretation	of	 the	 solution	method.	The	Feynman	diagrams	obtained	do	not	

support	natural	descriptions	 (or	 realist	 interpretations)	of	 interacting	 systems.	

In	particular,	the	explicit	mathematical	form	of	the	Feynman	propagator	arising	

in	 the	 evaluation	 of	 the	 Feynman	 diagrams	 is	 incorrectly	 given	 a	 physical	

interpretation	in	terms	of	virtual	particles	owing	to	semantic	mimicry.	

However,	I	have	not	addressed	the	question	of	how	to	relate	the	S0	matrix	

which	 associates	 idealized	 bare,	 free	 asymptotic	 states	 associated	 with	 the	,$-	

under	 the	 assumption	 of	 the	 adiabatic	 hypothesis	 to	 the	 S	 matrix	 mapping	

between	idealized	physical	free	asymptotic	states	associated	with	the	,$./.	This	I	

shall	do	in	chapter	11,	but	first,	having	shown	that	the	,$-	do	not	support	particle	

descriptions	of	interacting	states,	I	show	that	neither	the	,$./	nor	the	,$	do	either	

in	chapter	10,	owing	to	the	inapplicability	of	‘superposition’.	

																																																																																																																																																															
real	effect	of	a	single	Feynman	diagram	(or	virtual	field	quantum)’	such	as	in	Lamb	shift	and	
gyromagnetic	ratios	(2007,	237-8).	But	this	is	misleading	–	we	should	say	that	use	of	the	lowest-
order	correction	term	to	the	linear	approximation	(i.e.	lowest-order	correction	to	a	Coulomb	
potential	for	instance)	refines	an	already	very	good	approximation	in	terms	of	some	physical	
parameters,	just	like	correction	terms	in	a	perturbative	solution	to	a	classical	DE.	
42	Cf.	Miller	(2018);	J.D.	Fraser	(2020).	
43	A	further	complication	arises	in	that	other	iterative	solution	techniques	can	be	employed	to	
approximate	Ä:" .	In	particular	the	Magnus	expansion	(Magnus	1954)	has	been	developed	as	an	
alternative	iterative	solution	procedure	in	QFT	that	has	some	advantages	over	Dyson’s	series.	See	
Blanes,	Casas,	Oteo	and	Ros	(2009)	for	discussion.	
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Chapter	10	

	

Conceptual	analysis	of	perturbative	and	non-perturbative	QFT	in	relation	

to	the	applicability	of	‘superposition’	

	

10.1	Introduction	and	overview	

In	 the	 previous	 chapter	 I	 described	 the	 construction	 of	 an	 interacting	 scalar	

Yukawa	 theory	 via	 the	 introduction	of	 a	 perturbation	!"# = %&'((*)&'(*),-(*)	to	

the	 free	 Hamiltonian	 !". 	represented	 in	 terms	 of	 the	 scalar	 fields	

&'((*),&'(*),,-(*) .	 In	 this	 construction	 it	 is	 supposed	 that	 such	 physically	

meaningful	fields,	and	partial	states	associated	with	them,	can	be	identified	that	

take	the	same	form	individually	(i.e.,	as	if	they	were	free	fields	and	states)	and	in	

combination	 (i.e.,	 in	 the	 interacting	 theory).	 I	 began	 to	 show	how	 this	 reflects	

application	 of	 the	 Volkmann	 device,	 which	 goes	 unnoticed,	 perhaps	 owing	 to	

lingering	ontological	commitments	that	would	support	such	an	assumption.	We	

saw	that	although	the	mathematical	architecture	associated	with	introducing	an	

interaction	via	gauge	theory	differs	from	the	introduction	of	an	interaction	term	

as	a	‘mere’	perturbation,	both	approaches	in	fact	share	the	same	initial	modelling	

assumption	of	the	Volkmann	device,	which	leads	to	conceptual	confusion	owing	

to	 semantic	 mimicry	 regarding	 the	 physical	 interpretation	 of	 the	 fields	 and	

associated	 (putative)	 states,	 as	we	 shall	see	 in	more	detail	 in	 this	 chapter.	The	

need	for,	and	difficulties	associated	with,	renormalization	 in	both	cases	reflects	

the	failure	of	the	initial	use	of	this	device.	I	shall	call	QFTs	constructed	in	these	

ways	‘perturbative	QFTs’.1	

Although	Haag’s	 theorem	 is	 often	 considered	 a	 central	 difficulty	 for	 the	

development	of	 interacting	QFTs,	we	shall	see	that	 the	 failure	of	 the	Volkmann	

device	is	a	more	fundamental	difficulty,	related	to	the	conceptually	problematic	

nature	 of	 the	 perturbative	 assumption	 and	 the	 resulting	 nonlinearity	 of	 the	

coupled	 field	 equations.	 Renormalization	 is	 required	 to	 obtain	 empirically	

adequate	 results	 to	 compensate	 for	 the	 failure	 of	 the	 Volkmann	 device	 in	

																																																								
1	Usage	of	‘perturbative	QFT’	is	inconsistent.	It	is	sometimes	used	in	the	more	restrictive	sense	of	
QFTs	utilizing	the	iterative	series	expansions	as	distinct	from,	e.g.	lattice	field	theory	(cf.	§9.2).	
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conjunction	with	the	use	of	three	different	species	0',	0'.	and	0'12	of	each	field	type	

,-, &',&'( .	 In	 this	 chapter	 then	 I	 shall	 demonstrate	 that	 there	 is	 no	 particle	

description	of	a	general	interacting	state	in	terms	of	any	of	the	species	0',	0'.	and	

0'12	owing	to	the	failure	of	‘superposition’	before	considering	the	kind	of	natural	

description	of	interacting	states	that	is	available	in	principle.	The	conclusion	that	

there	 is	 no	 particle	 description	 for	 interacting	 QFTs	 is	 not	 novel,	 but	 the	

diagnosis	of	the	unavailability	of	a	particle	description	and	consideration	of	the	

kind	 of	 description	 that	 QFTs	 offer	 via	 analysis	 of	 ‘superposition’	 and	 the	

Volkmann	device	is.		

So,	 in	 §10.2,	 in	 dialogue	with	 Fraser	 (2008),	 I	 show	 firstly	 that	 there	 is	

even	in	principle	no	‘field	quanta’	characterization	of	interacting	states	via	the	0'.	

That	is,	no	‘field	quanta’	concept	is	available	for	theories	with	interactions.	This	

owes	 to	 the	nonlinearity	of,	 and	hence	 failure	of	 ‘superposition’	 applied	 to,	 the	

coupled	 field	equations	quite	apart	 from	Haag’s	 theorem.	Secondly,	 I	clarify	the	

implications	of	Haag’s	theorem	and	situate	them	in	relation	to	the	implications	of	

nonlinearity,	 and	 briefly	 consider	 why	 Haag’s	 theorem	 might	 not	 forbid	

empirically	adequate	results	via	the	0'.	and	0'12 ,	even	if	further	clarificatory	work	

remains.	Thirdly,	 I	 indicate	that	various	proposals	 for	different	architectures	of	

‘particle’	 for	 interacting	 states	 fail.	 This	 means	 that	 there	 is	 no	 particle	

characterization	 of	 interacting	 states.	 Moreover,	 through	 attention	 to	 the	

applicability,	or	the	failure	of	the	applicability	of	‘superposition’	I	clarify	that	no	

natural	 description	 of	 the	 general	 interacting	 state	 is	 available	 via	 any	 of	 the	

species	0',	0'.	or	0'12,	with	any	attempt	to	prolong	a	particle	concept	 from	the	0'.	

or	0'12	failing,	with	such	attempts	reflecting	a	form	of	semantic	mimicry.	

Since	the	 introduction	of	 interactions	as	perturbations	 is	problematic,	 in	

§10.3	 I	 consider	 the	 foundations	 of	 non-perturbative	 QFT	 before	 showing	 in	

§10.4	 that,	 in	principle,	 a	natural	description	does	 exist	 for	 interacting	 states	 in	

QFT	but	that	it	cannot,	in	general,	be	understood	in	relation	to	familiar	particle	

or	field	concepts.	Moreover,	since	such	a	natural	description	is	available	only	‘in	

principle’	 and	 cannot	 be	 explicitly	 constructed,	 knowledge	 of	 its	 existence	 has	

limited	value	(cf.	Wilson	2017,	21).		

The	 surprising	 failure	 of	 the	 ability	 to	 characterize	 interacting	 states	 in	

QFT	by	particles,	and	even	particle	 types,	 is	diagnosed	 in	§10.5	 in	 terms	of	 the	
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failure	 of	 ‘superposition’	 to	 apply	 in	 its	 more	 general	 guise	 of	 the	 Volkmann	

device.	 Use	 of	 the	 device	 is	 implicitly	 assumed	 as	 I	 have	 repeatedly	 noted,	

probably	 owing	 to	 lingering	 bedrock	 metaphysical	 assumptions	 regarding	 the	

nature	 of	 ‘matter’	 and	 ‘radiation’.	 The	 failure	 of	 the	 device	 casts	 doubt	 on	 the	

ability	to	isolate	or	abstract	physically	meaningful	fields	associated	with	putative	

partial	 states	 as	 is	 supposed	 in	 the	 initial	 application	 of	 such	 ‘generalized	

superposition’	in	the	perturbative	approach.	Semantic	mimicry	is	likely	to	occur	

in	relation	to	physical	interpretation	of	the	fields	and	associated	putative	partial	

states	 owing	 to	 the	 failure	 of	 this	 general	 form	 of	 superposition	 where	 it	 has	

been	 implicitly	 assumed.	 The	 need	 for	 renormalization	 procedures	 is	

symptomatic	of	the	failure	of	the	Volkmann	device.	Its	failure	to	apply	is	partially	

compensated	for	by	such	renormalization	procedures,	which	support	the	ability	

of	QFTs	to	provide	empirically	adequate	results.	

	

10.2	The	absence	of	a	particle	description	of	interacting	states		

In	 this	 section	 I	 demonstrate	 the	 inapplicability	 of	 the	 particle	 concept	 to	

characterize	general	interacting	states.		

	

10.2.1	 The	 nonlinearity	 of	 the	 coupled	 field	 equations	 and	 the	

decomposition	of	0'		

To	develop	a	particle	description	of	 a	quantum	state	via	 ‘field	quanta’	 requires	

the	establishment	of	a	Fock	space	structure	for	the	states.	Recall	from	chapter	8	

that	this	is	achieved	via	the	Fourier	solution	of	the	relevant	(free)	field	equation	

and	application	of	Hilbert	superposition	in	order	to	diagonalize	the	Hamiltonian	

using	a	basis	of	the	Hilbert	space	of	states	of	eigenfunctions	of	the	4-momentum	

(and	 relevant	 permutation)	 operator.	 This	 endows	 the	 Hilbert	 space	 of	 states	

with	 a	 physically	 meaningful	 Fock	 space	 structure,	 so	 supporting	 a	 particle	

interpretation	(cf.	Reed	and	Simon	1979,	318).	

Now,	 having	 constructed	 the	 (perturbative)	 coupled	 field	 equations	 to	

model	the	interacting	system,	the	obvious	choice	of	field	species	for	construction	

of	a	particle	description	is	the	0',	that	is,	the	field	species	that	appear	as	solutions	

of	the	coupled	field	equations	(cf.	Fraser	2008,	849).	I	show	that	even	in	principle	

the	0' 	fail	 to	 support	 a	 Fock	 structure	 for	 interacting	 states	 owing	 to	 the	
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nonlinearity	of	the	coupled	field	equations,	and	I	analyse	the	architecture	of	the	

Fourier	decomposition	of	0'.	

I	 first	 clarify	 the	 availability	 and	 architecture	 of	 the	 Fourier	

decomposition	 of	 the	0'.	 For	 we	 can,	 taking	,- 	as	 an	 example,	 for	 any	 given	 t,	

Fourier	 decompose	,- 	to	 obtain	 a	 Fourier	 series/integral	 representation	 of	 the	

field,	 although	 the	 individual	 terms	 in	 the	 representation	 are	 not	 Fourier	

solutions	 to	 the	wave	equation	and	so	mimic	the	physical	salience	of	 terms	 in	a	

Fourier	 solution	 (cf.	 §4.5)	 as	we	 now	 consider.	 Duncan	 notes	 that	 for	 the	 free	

,-.(4, 5)	the	a-operators	may	be	defined	via	

6-.
((7, 5) = −9 :;<* =

>?1@∙B

C(2E)<2F(7)

G⃡
G5
,-.(4, 5)I = 	6-.

((7) = 6-.,@
( 	

where		7. = √KL + NL	and,	crucially,	they	are	time-independent.	One	may	define	

a-operators	for	the	interacting	field	,-(4, 5)	by	prolongation:		

6-((7, 5) = −9 :;<* O
>?1@∙B

C(2E)<2F(7)

G⃡
G5
,-(4, 5)P	

However,	the	a-operators	are	now	time	dependent	in	the	interacting	case,	unlike	

for	the	free	fields.	The	time	dependency	is	also	very	complicated	(Duncan	2012,	

250).	So,	if	we	attempted	to	factorize	the	Hamiltonian	in	the	interacting	case	with	

the	 time-dependent	 operators,	 when	 applied	 to	 Schrödinger’s	 equation	 we	

would	no	longer	be	able	to	separate	variables	in	the	way	that	we	did	in	the	free	

field	 case	 in	 order	 to	 establish	 persistent	 states	 that	 support	 a	 particle	

description	that	may	be	‘traced’	through	the	evolution	of	the	system.	But	we	may	

go	 further	 to	 indicate	 why	 it	 is	 important	 to	 distinguish	 between	 the	 time	

independency	in	the	free	case	and	dependency	in	the	interacting	case.	

The	procedure	for	defining	the	(interacting)	6-((7, 5)	utilizes	only	the	formal	

(or	 ‘second	 aspect’	 of)	 Fourier	 decomposition	 of	,-(4, 5)	over	 x	 at	 a	 fixed	 t,	

obtaining	 the	6-((7, 5)	as	 the	 Fourier	 term	 coefficients.	 Definition	 of	 the	6-((7, 5)	

by	 prolongation	 of	 the	 free	 field	 definition	 introduces	 a	 different	 semantic	

architecture	for	the	Fourier	terms.	In	the	free	field	case	the	terms	are	the	Fourier	

or	eigenfunction	‘simple	solutions’	to	the	relevant	wave	equation	(‘first	aspect’)	

whereas	 in	 the	 case	 of	 the	 coupled	 equations	 they	 are	 not	 solutions	 of	 the	

relevant	 (coupled)	 wave	 equation,	 as	 indicated	 by	 its	 nonlinearity,	 so	 that	
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‘Hilbert	 superposition’	 is	 inapplicable.	 The	 interpretation	 of	 the	 Fourier	

decompositions	differs	significantly	between	the	two	cases.	The	difference	may	

be	compared	with	the	difference	in	interpretation	between	the	harmonics	of	the	

vibrating	 string	 and	 the	 epicycles	 of	 planetary	 motion	 (chapter	 4)	 –	 the	

individual	terms	have	physical	significance	in	the	former	case	but	not	the	latter	

as	indicated	by	the	failure	of	 ‘superposition’	in	the	latter	case,	so	that	the	terms	

of	 the	 latter	 are	 semantic	 mimics	 of	 the	 former	 (cf.	 §4.5).	 Returning	 to	 the	

coupled	field	equation,	the	putative	‘Fock	space’	structures	would	have	different	

bases	 (in	 some	 complicated	way)	 if	 one	 attempted	 to	 construct	 such	 spaces	 at	

different	times	via	6-((7, 5Q)	and	6-((7, 5L),	so	that	the	‘particle’	concept	associated	

with	each	would	differ	even,	if	it	a	particle	description	could	be	supported	at	any	

given	time.	That	is,	the	particle	concept,	if	it	could	be	supported	at	all,	would	not	

support	the	trans-temporal	identity	of	such	particles.	

But	even	if	one	could	translate	between	the	(continuously	infinite)	putative	

particle	 concepts	 required	 to	 describe	 the	 interacting	 state	 there	 is	 a	 further	

problem	 that	 prevents	 a	 physical	 particle	 concept	 being	 established	 via	 the	

6-((7, 5).	 That	 is,	 these	 decompositions	 are	 constructed	 on	 fixed-time	 slices,	 so	

that	 the	 decompositions	 are	 not	 relativistically	 invariant,	 and	 do	 not	 define	 a	

relativistic	 particle	 concept	 as	 required	 by	 QFT.	 Fraser	 observes,	 using	RS	

theory:2	
It	 is	 possible	 to	 carry	 out	 this	 Fourier	 decomposition;	 however,	 plugging	R(x)	 into	 the	
interacting	 field	 equation	 does	 not	 yield	 the	 constraint	 k2=m2.	 The	 consequence	 is	 that,	
unlike	the	free-field	case,	k	will,	in	general,	not	be	timelike:	k2≠m2,	so	there	is	no	guarantee	
that	k2>0.	As	a	 result,	 the	decomposition	 in	 terms	of	 functions	TU(7), T?(7)	[the	Fourier	
coefficients	 in	 interacting	RS	theory]	 is	 typically	 not	 covariant	 (Roman,	 1969,	 p.119).	
Furthermore,	if	TU(7), T?(7)	were	promoted	to	field	operators,	they	would	also	fail	to	be	
covariant	 in	 general;	 the	 field	 operators	T'U(7), T'?(7)	would	 be	 inertial	 reference	 frame	
dependent,	and	therefore	not	candidates	for	physical	fields.	
This	is	a	fatal	flaw	for	the	strategy	of	using	Fourier	decomposition	of	an	interacting	field	to	
obtain	 a	 [Fock	 space]	 representation	 for	 it.	 A	 fortiori,	 this	 procedure	 does	 not	 yield	 a	
quanta	interpretation	for	an	interacting	system.	(2008,	850).	

The	 attempted	 Fock	 space	 construction	using	 the	 coupled	 field	 equations	 fails.	

This	is	because	6-((7, 5)	lack	physical	significance	owing	to	the	nonlinearity	of	the	

field	equation.	They	are	not	associated	with	solutions	of	the	field	equations,	and	

do	not	allow	diagonalization	of	the	Hamiltonian	according	to	a	Fourier	technique.	

																																																								
2	A	self-interacting	scalar	field	theory	with	Lagrangian		

ℒ =
1
2
GXR(*)GXR(*) −

1
2
NLRL(*) −

1
4!
[SRS(*).	
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The	variables	of	Schrödinger’s	equation	cannot	be	separated	to	form	solutions	in	

terms	 of	 physically	 meaningful	 eigenfunctions	 constructed	 from	 the	 wave	

equations.	So	the	6-((7, 5)	do	not	support	a	physical	particle	concept	that	persists	

in	the	evolution	of	the	interacting	system.3	Moreover,	construction	of	the	6-((7, 5)	

involves	choice	of	a	time-slice	such	that	they	are	not	covariant	operators	and	so	

cannot	support	a	(relativistically	acceptable)	physical	particle	concept.		

Diagnosing	the	problem	of	the	lack	of	a	description	of	interacting	states	in	

terms	 of	 nonlinearity	 and	 the	 failure	 of	 ‘superposition’	 establishes	 a	 stronger	

result	 than	 that	 in	 the	 literature	 on	 the	 subject	 (Fraser	 2008;	 Huggett	 2000;	

Huggett	and	Weingard	(1994),	and	(in	one	sense)	a	stronger	result	than	Haag’s	

theorem.	Fraser	suggests	that	
In	 response	 to	 the	 failure	 of	 the	method	 of	 Fourier	 decomposing	 an	 interacting	 field	 to	
yield	a	quanta	interpretation,	one	might	consider	generalizing	the	construction.	Instead	of	
Fourier	 decomposing	 the	 classical	 interacting	 field	 into	 functions	 of	 the	 form	>1@.B ,	 one	
might	attempt	to	decompose	it	into	functions	of	some	other	form.	A	suggestion	along	these	
lines	is	mooted	in	Huggett	and	Weingard	(1994)	and	Huggett	(2000).	Huggett	floats—but	
ultimately	 rejects—the	 possibility	 of	 extending	 the	 oscillator	 analogy	 to	 the	 interacting	
case	 in	 the	 following	 way:	 ‘‘[f]or	 an	 interacting	 field	 the	 oscillators	 do	 not	 move	
independently,	 but	 as	 if	 they	were	 interconnected:	 there	might	 be	 further	 springs,	 one	
between	any	pair	of	bobs’	(p.	628).	Translated	into	the	terms	of	the	present	discussion,	the	
suggestion	is	that	instead	of	decomposing	the	field	into	independent	oscillators—the	plane	
waves	 >1@.B—the	 field	 should	 be	 decomposed	 into	 coupled	 oscillators,	 which	 are	
represented	by	 functions	of	 some	other	 form.	Huggett	and	Weingard	suspect	 that	 this	 is	
not	possible	(p.	376).	This	is	a	reasonable	conjecture	because	the	proposal	faces	significant	
obstacles	from	two	sources.	First,	there	is	no	guarantee	that	a	function	can	be	decomposed	
using	an	arbitrary	set	of	 functions;	 the	set	of	 functions	of	 the	form	>1@.B	is	 special	 in	 this	
respect.	 Second,	 even	 if	 a	workable	 alternative	 to	 Fourier	 analysis	were	 identified,	 this	
resulting	 decomposition	 might	 very	 well	 fail	 to	 be	 Lorentz	 covariant.	 Since	 these	
challenges	are	both	substantial,	it	seems	safe	to	conclude	that	it	is	not	possible	to	obtain	an	
analogue	of	the	Fock	representation	suited	to	an	interacting	field	by	applying	an	analogue	
of	 the	mathematical	 construction	 that	 produces	 the	 Fock	 representation	 for	 a	 free	 field.	
(2008,	852)	

Huggett	and	Weingard,	after	discussing	an	extended	oscillator	analogy,	conclude:	

‘Our	 intuitions	are	that	 there	 is	no	such	set	of	modes	[for	 the	decomposition	of	

the	 field	 with	 which	 to	 represent	 the	 Hamiltonian],	 for	 such	 a	 decomposition	

would	seem	to	make	QFT	a	simpler	problem	than	it	is.’	(1994,	376)	

However,	 viewing	 the	 situation	 in	 terms	 of	 the	 applicability	 of	

‘superposition’,	 that	 is,	 its	 failure	 in	 the	 context	 of	 the	 nonlinear	 coupled	 field	

equations	 indicates	 immediately	 that	 the	 possibility	 of	 any	 such	 generalized	

Fourier	construction	is	ruled	out	so	that	it	is	firmly	established	that	there	is	no	
																																																								
3	This	does	not	mean	that	there	is	not	a	basis	of	eigenfunctions	of	!"	for	ℋ.	It	means	that	they	
cannot	be	constructed	from	the	wave	equation,	so	that	a	particle	description	is	not	available.	See	
§§10.3-4.	
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particle	or	quanta	 concept	available	 for	 interacting	 states.	This	 is	because	 that,	

for	 such	a	decomposition	 to	be	 successful	 in	establishing	a	particle	description	

for	interacting	states	we	would	require	that	the	individual	modes	of	the	putative	

generalized	Fourier	decomposition	would	be	solutions	of	 the	 field	equations	 in	

order	 to	 enable	 the	 diagonal	 representation	 of	 the	 Hamiltonian.	 That	 is,	 the	

failure	of	 ‘superposition’	 to	apply	 to	 the	 coupled	 field	equations	owing	 to	 their	

nonlinearity	 immediately	 rules	 out	 the	 use	 of	 the	 ‘dual	 aspects’	 of	 the	 Fourier	

techniques,	 since	 the	 ‘modes’	 are	 not	 solutions,	 that	 would	 be	 required	 to	

support	 the	 decomposition	 of	 the	 interacting	 state	 into	 eigenfunctions	 of	 the	

Hamiltonian	 that	 are	 given	 in	 terms	of	 the	 relevant	 field	 types,	 and	 associated	

with	quanta	or	particles	via	the	establishment	of	Fock	structures.	

As	 noted	 above,	 a	 (perhaps	 generalized)	 Fourier	 decomposition	 can	 be	

performed	 on	 the	 coupled	 fields,	 but	 the	 decomposition	 obtained	 is	 to	 be	

compared	with	the	epicycles	of	epicyclical	astronomy	rather	than	the	harmonics	

of	the	vibrating	string,	with	the	individual	terms	lacking	physical	significance	(cf.	

§§4.5	&	5.3).	This	 is	because	 ‘superposition’	 is	mimicked	since	we	do	not	have	

both	aspects	of	 the	Fourier	 technique	 satisfied	as	 in	 the	vibrating	 string	or	 the	

free	field	case.	

The	 door	 is	 left	 open,	 however,	 to	 representations	 of	 interacting	 states	

based	 on	 the	 nonlinear	 superposition	 principle,	 which	 I	 consider	 but	 reject	 in	

§10.2.4.	 Even	 if	 a	 nonlinear	 superposition	 principle	 could	 be	 supported,	 the	

existence	of	which	 is	speculative	and	unmotivated,	 the	decomposition	obtained	

would	not	be	at	all	like	our	familiar	particle	or	quanta	concepts.	

The	failure	to	establish	a	Fock	structure	owing	to	nonlinearity	adds	clarity	

to	the	observation	that	a	‘number	operator’	cannot	be	established	on	interacting	

states	via	the	a-operators	(cf.	Redhead	1988,	20-21).	Moreover,	we	cannot	define	

the	charge	operator	in	terms	of	the	a-operators	for	the	same	reason,	although	we	

can	use	Noether’s	theorem	to	deduce	charge	conservation	in	terms	of	the	fields	

selected.	This	 suggests	 that	 it	 is	preferable	 to	construe	 charge	as	a	property	of	

the	overall	quantum	state	in	relation	to	the	selected	fields	and	not	as	a	property	

of	 particles	 that	 is	 aggregated.	 Haag	 suggests,	 ‘the	 deeper	 significance	 of	 the	

fields	 is	 to	 effect	 a	 local	 change	 of	 charge,	 not	 of	 particle	 number’	 (1996,	 48)	

since,	 we	 might	 add,	 we	 cannot	 characterize	 interacting	 systems	 in	 terms	 of	
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particles	or	particle	numbers,	except	 in	 the	 idealized	asymptotic	regions	where	

the	concepts	are	associated	with	the	0'12/_`a .		

	

10.2.2	Comments	on	Haag’s	theorem	

A	full	treatment	of	Haag’s	theorem	and	its	implications	is	beyond	my	scope,	and	

tangential	 to	my	 thesis.4	It	has	been	discussed	 in	detail	by,	 e.g.,	Barton	 (1963);	

Earman	and	Fraser	(2006)	and	Duncan	(2012).	It	is	frequently	alluded	to	in	the	

philosophical	 literature	 but	 rarely	 in	 the	 physics	 literature.	 It	 appears	 to	 be	 a	

surprising	 result,	 and	 importantly,	 it	 undermines	 the	 interaction	 picture.	 The	

immediate	question	 is	 then	why	empirically	successful	results	may	be	obtained	

using	 the	 interaction	 picture	 even	 if	 Haag’s	 theorem	 undercuts	 its	 use	 (cf.	 e.g.	

Earman	and	Fraser	2006;	Duncan	2012;	Miller	2018;	Teller	1995,	115).	I	do	not	

claim	 to	 resolve	 this	 problem.	 Rather,	 I	 shall	 clarify	 what	 is	 undermined	 and	

point	 to	 some	 proposed	 resolutions,	 and	 relate	 Haag’s	 theorem	 to	 the	

significance	of	the	nonlinearity	of	interacting	field	equations.	

The	theorem	may	be	stated	in	various	forms,	but	a	brief	summary	suitable	

for	my	purposes	is	that,	given	some	reasonable	assumptions,	representations	of	

the	CCRs	of	the	free	and	interacting	fields	0'.	and	0'	(and,	as	we	shall	see,	0'12)	are	

unitarily	inequivalent	(cf.	§9.3.2).	A	consequence	of	Haag’s	theorem	is	that	there	

is	no	unitary	map	b(5):ℋ. → ℋ	such	that	

b(5)0'(4, 5)b?Q(5) = 0'.(4, 5)	

b(5)Π"(4, 5)b?Q(5) = Π".(4, 5)	

	 The	 implications	 of	 the	 theorem	 reach	 further	 than	 the	 unitary	

inequivalence	 of	 free	 and	 interacting	 fields.	 Haag	 showed	 that	 the	

representations	 of	 two	 free	 scalar	 fields	 with	 different	 masses	 are	 unitarily	

inequivalent	(see	Duncan	2012,	359-363	for	discussion).	Thus	Haag’s	theorem	is	

not	 directly	 related	 to	 the	 nonlinearity	 of	 the	 coupled	 field	 equations.	 It	 is	 a	

separate	issue	since	two	free	field	equations	of	the	same	form	but	with	different	

mass	parameters	are	both	linear,	but	give	rise	to	unitarily	inequivalent	fields	and	

hence	particle	concepts	according	to	Haag’s	theorem.	

																																																								
4	The	initial	result,	subsequently	developed	e.g.	Hall	and	Wightman	(1957),	is	credited	to	Haag	
(1955).	
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Discussion	 of	 Haag’s	 theorem	 is	 often	 conducted	with	 reference	 to	 this	

example	 of	 free	 scalar	 fields	 of	 differing	 masses.	 But	 this	 example	 does	 not	

capture	 all	 the	 conceptual	 difficulties	 involved	 with	 the	 use	 of	 the	 interaction	

picture	 for	 coupled	 (and	 hence	 nonlinear)	 field	 equations.	 Indeed,	 the	

implications	 of	 nonlinearity	 are	 stronger	 than	 those	 of	 Haag’s	 theorem	 in	 the	

sense	 that	 owing	 to	 nonlinearity	 there	 is	 no	 ‘field	 quanta’	 particle	 concept	

available	for	interacting	fields:	Haag’s	theorem	implies	the	weaker	result	that	if	

there	 is	a	 ‘field	quanta’	particle	concept	 for	 interacting	 fields	then	it	 is	different	

(‘incommensurable’	 as	Ruetsche	 (2011)	puts	 it)	 from	 that	of	 any	 free	 field,	but	

says	nothing	about	whether	 there	is	 a	particle	 concept	available	 for	 interacting	

fields	 or	 not.	However,	Haag’s	 theorem	 indicates	 that	 free	 fields	with	different	

masses	 are	 unitarily	 inequivalent.	 The	 issue	 of	 nonlinearity	 does	 not	 feature	

here,	 so	Haag’s	 theorem	 says	more	 than	 can	 be	 gleaned	 from	 consideration	 of	

nonlinearity	in	this	sense.	

In	 terms	of	our	three	 field	species	0," 0'12	and	0'.	the	upshot	 is	 that	Haag’s	

theorem	 demonstrates	 that	 the	 species	0'12	and	0'.	are	 unitarily	 inequivalent	 to	

each	 other	 as	 well	 as	 to	 0' ,	 so	 these	 fields	 support	 inequivalent,	

‘incommensurable’	 particle	 concepts	 (cf.	 Ruetsche	 2011),	 even	 if	 they	 are	

available.	Owing	to	the	fact	that	0'12	and	0'.	satisfy	linear	field	equations	they	do	

both	 support	 particle	 concepts	 via	 the	 Fock	 construction	 in	 their	 (idealized)	

domains	 of	 applicability.	 The	0'	satisfy	 nonlinear	 field	 equations	 and	 so	 do	 not	

support	a	particle	concept	quite	apart	from	Haag’s	theorem.5	

We	 now	 consider	 the	 empirical	 success	 of	 the	 interaction	 picture	 in	

relation	 to	 Haag’s	 theorem.	 Duncan’s	 analysis	 (2012,	 359-370)	 is	 illuminative	

and	 has	 been	 well	 received	 (e.g.	 Miller	 2018;	 Butterfield	 2015),6	although	 his	

treatment	is	limited	to	discussion	of	free	scalar	fields	of	differing	mass.	Duncan	

suggests	 that	 one	 must	 be	 careful	 to	 note	 what	 Haag’s	 theorem	 does	 not	 say,	

commenting:	

																																																								
5	It	seems	open	to	question	the	sense	in	which	unitary	inequivalence	implies	physical	
inequivalence,	especially	in	terms	of	‘incommensurability’,	although	this	is	not	an	issue	that	I	
pursue.	
6	Miller	follows	Duncan,	but	concludes	that	the	‘real	problem’	here	is	to	account	for	the	success	of	
asymptotic	series	(2018,	814-818).	However,	asymptotic	series	are	used	elsewhere	in	classical	
physics,	so	this	question	is	not	specific	to	QFT.	
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there	 is	no	difficulty	whatsoever	 in	establishing	a	well-defined	unitary	 relation	between	
the	in-	and	out-	states	of	an	interacting	field	theory:	the	overlaps ⟨g_`a

	 |i⟩12 = klm	are	taken	
between	 states	 living	 in	 spaces	 spanned	by	 a	 complete	 basis	 of	 eigenstates	 of	 the	 same	
Hamiltonian	operator	H	[see	§9.5.1].	Indeed,	 the	Haag-Ruelle	and	LSZ	scattering	 theories		
…	lead	to	a	perfectly	well-defined,	and	unitary	S-matrix,	on	the	basis	of	exactly	the	same	
axiomatic	framework	which	can	be	used	to	establish	the	validity	of	Haag’s	theorem.	The	
LSZ	 formula	…	gives	a	 rigorous	connection	between	well-defined	Green	 functions	 (time-
ordered	 products	 of	 the	 full	 Heisenberg	 fields)	 and	 this	 unitary	 S-matrix	 [see	 §11.3.2].	
Direct	 non-perturbative	 evaluation	 of	 the	 Green	 functions	 …	 therefore	 completely	
circumvents	any	difficulty	with	the	non-existence	of	the	interaction	picture	(363-364).	

There	are	two	issues	that	need	to	be	distinguished:	

First,	Haag’s	theorem	undermines	the	ability	to	describe	interacting	states	

at	 finite	 times	 using	 the	 interaction	 picture,	 so	 it	 would	 not	 seem	 possible	 to	

prolong	 a	 free	 field	 particle	 concept	 to	 describe	 general	 interacting	 states.	

Following	 the	 discussion	 above	 on	 nonlinearity	 this	 is	 unsurprising,	 and	 we	

simply	 accept	 that	 we	 cannot	 describe	 interacting	 states	 via	 the	0'12 	or	0'. ,	

although	 there	 is	 a	 weak	 convergence	 relation	 between	 the	0'	and	0'12 	in	 the	

asymptotic	 limits	 (§11.3.1),	 even	 if	 the	0'	and	0'12	are	 unitarily	 inequivalent	 by	

Haag’s	theorem.7		We	may	restate	Duncan’s	point	to	note	that	Haag’s	theorem	is	

silent	 on	 the	 question	 of	 whether	 we	 can	 calculate	 to	 a	 good	 approximation	

scattering	amplitudes	using	 the	 interaction	picture,	 and	perhaps	 this	 is	 all	 that	

we	should	require,	which	brings	us	to	the	second	point.	

Secondly,	we	might	ask	whether	(or	what	kind	of)	an	explanation	is	owed	

regarding	the	ability	 to	perform	empirically	adequate	calculations	 iteratively	 in	

the	 interaction	 picture	 so	 as	 to	well-approximate	 a	 unitary	 S-matrix	 as	 a	map	

between	the	asymptotic	states.		

Duncan	 offers	 an	 explanation	 in	 terms	 of	 the	 role	 that	 renormalization	

procedures	play,	at	least	in	the	case	of	two	free	scalar	fields	of	differing	masses.	

He	locates	the	difficulty	that	Haag’s	theorem	raises	in	terms	of	the	description	of	

the	time	development	of	an	infinite-volume	continuum	field	theory	(359).	If	the	

fields	 were	 quantized	 in	 a	 finite	 box	 of	 volume	 V	 on	 discrete	 points	 (i.e.,	

introducing	IR	and	UV	cut-offs)	the	interaction	picture	is	well-defined:	
The	 resultant	 theory,	 at	 the	 price	 of	 loss	 of	 Poincaré	 invariance,	 is	 now	 a	 quantum-
mechanical	 system	 with	 a	 finite	 number	 of	 independent	 degrees	 of	 freedom,	 and	 the	
interaction	picture	makes	perfect	 sense.	The	problem	 is	now	transferred	 to	 the	 issue	of	
regaining	 sensible	 (in	 particular,	 Poincaré	 invariant!)	 results	 in	 the	 limit	 when	 these	

																																																								
7	As	Duncan	notes,	the	same	Hamiltonian	and	Hilbert	space	is	used	throughout	–	the	issue	is	the	
representation	of	the	Hamiltonian	in	terms	of	fields	and	the	physical	particle	concepts	associated	
with	those	fields	and	the	regions	in	which	they	are	valid.	
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cutoffs	 are	 removed,	 after	 the	 perturbative	 expansion	 of	 the	 n-point	 functions	needed	 for	
evaluation	of	the	S-matrix	has	been	performed.	(369).8	

He	concludes	that	
the	 proper	 response	 to	 Haag’s	 theorem	 is	 simply	 a	 frank	 admission	 that	 the	 same	
regularizations	 needed	 to	 make	 proper	 mathematical	 sense	 of	 the	 dynamics	 of	 an	
interacting	field	theory	at	each	stage	of	a	perturbative	calculation	will	do	double	duty	in	
restoring	 the	 applicability	 of	 the	 interaction	 picture	 at	 intermediate	 stages	 of	 the	
calculation	(370).	

Although	 Duncan’s	 proposal	 is	 plausible	 there	 are	 outstanding	 issues.	 For	

instance,	 the	details	need	 to	be	worked	 through	 for	an	 interacting	 theory	with	

different	field	types	(e.g.	scalar	Yukawa	theory)	in	which	nonlinearity	is	involved.	

Indeed,	further	investigation	of	the	significance	of	working	with	a	cut-off	theory	

in	 relation	 to	 the	 implications	 of	 nonlinearity	 would	 be	 illuminative	 as	 this	

introduces	a	feature	not	usually	discussed	in	conjunction	with	Haag’s	theorem.		

Alternatively,	 Barton	 proposes	 a	 possible	 ‘heuristic’	 explanation	 by	

suggesting	 that	 in	 the	 context	 of	 renormalized	 perturbation	 theory	 it	 may	 be	

enough	that	n"o 	is	an	‘improper	transformation’	and	not	a	unitary	transformation	

(1963	 132,	 158-159).	 Earman	 and	 Fraser	 reject	 this	 proposal,	 stating	 that	

unitary	 equivalence	 is	 a	 ‘demonstrable	 necessity’	 without	 further	 discussion	

(2006,	308-309).	However,	Barton’s	point	merits	further	attention	by	clarifying	

what	 properties	 of	n"o 	are	 required	 to	 support	 calculations	 even	 if	n"o 	does	 not	

support	descriptions.	

Duncan’s	 and	 Barton’s	 proposals	 merit	 further	 research,	 although	 I	

cannot	 undertake	 this	here.	 The	 key	 question	 is,	 once	we	 have	 abandoned	 the	

project	of	describing	 interacting	states,	what	is	the	remaining	problem	to	solve?	

The	question	may	 turn	out	 to	be	more	 closely	 related	 to	 that	of	 the	 success	of	

asymptotic	 series	 approximation	methods	 in	 general	 than	 to	 specific	 issues	 in	

quantum	physics.9	

	

10.2.3	Other	attempts	to	establish	a	particle	patch	

We	saw	 in	 chapter	9	how	Dyson’s	series	 (the	 iterative	 series	expansion	 for	n"o)	

failed	 to	 support	a	physical	particle	description	of	 interacting	states	via	 the	0'.,	

quite	 apart	 from	 Haag’s	 theorem.	 We	 saw	 above	 that	 the	0'	do	 not	 support	 a	

																																																								
8	The	unitary	equivalence	of	representations	involving	a	finite	number	of	degrees	of	freedom	as	
associated	with	the	imposition	of	UV	and	IR	cutoffs	is	assured	by	the	Stone	–	von	Neumann	
theorem.	See	Ruetsche	(2011).	
9	Cf.	§9.6;	J.D.	Fraser	(2020);	Miller	(2018).	
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particle	description	for	interacting	states	owing	to	nonlinearity,	again	quite	apart	

from	Haag’s	theorem.	It	would	seem	that	the	only	physically	meaningful	particle	

concept	for	interacting	QFTs	is	then	that	associated	with	the	0'12 ,	although	this	is	

only	available	in	the	very	restricted	context	of	idealized	asymptotic	states	of	non-

interacting	particles	and	cannot	be	used	to	describe	interacting	states.	Here	one	

might	appeal	to	Haag’s	theorem	to	suggest	that	any	attempt	to	somehow	prolong	

the	particle	concept	associated	with	the	0'12	fails.	

However,	Bain	(2000)	seeks	to	establish	a	prolongation	of	the	0'12	particle	

concept	to	general	interacting	states	by	‘sidestepping’	the	implications	of	Haag’s	

theorem.	He	 acknowledges	 that	 there	 is	 no	 (free	 field)	 occupation	 number	 for	

interacting	states,	but	claims	this	should	not	prevent	a	particle	interpretation	of	

such	 states,	by	 reconsidering	what	we	mean	 by	 ‘particles’.	That	 is,	he	 suggests	

that	‘a	“particle”	be	considered	a	system	that	minimally	possesses	an	asymptotic	

state	 (i.e.,	 a	 system	 that	 is	 free	 for	all	practical	purposes	at	 asymptotic	 times)’.		

Furthermore,	 there	 are	 ‘two	 types	 of	 system	 that	 we	 might	 consider	 to	 be	

particles:	“asymptotic”	particles	defined	directly	[via	the	6-12,@],	and	“interacting”	

particles	 [defined	 via	6-@(5)]’,	 the	 latter	 having	 the	 former	 as	 asymptotic	 states	

for	 which	 there	 is	 an	 occupation	 number	 operator.	 He	 claims	 that	 we	 should	

view	 ‘both	 types	 of	 system	 not	 as	 distinct	 types	 of	 particle;	 but	 rather,	 as	

different	states	in	which	a	particle	can	be	found’,	referring	to	such	a	system	as	an	

“LSZ	particle”;	that	is,	a	system	capable	of	possessing	both	states.	Then,	‘a	viable	

interpretation	 of	 interacting	 QFT	 can	 be	 had,	 based	 on	 the	 notion	 of	 an	 LSZ	

particle.’	(Bain	2000,	394)	

If	 successful,	 this	 would	 represent	 a	 prolongation	 of	 the	 ‘field	 quanta’	

particle	 concept	 associated	 with	 the	 renormalized	 asymptotic	 free	 fields	 to	

interacting	 states.	However,	 as	we	 saw	above,	owing	 to	 the	nonlinearity	of	 the	

coupled	 field	equations	 there	 is	no	 such	 ‘interacting	particle’	 concept	available	

via	 the	6-@(5),	 or	 any	 physically	 salient	 concept	 supported	 by	 the	6-@(5)	during	

interaction.	 So,	we	 have	 only	 the	 asymptotic	 particles,	 or	 systems	 that	possess	

asymptotic	states	with	which	to	attempt	to	define	an	interacting	state	in	terms	of	

particles.	The	situation	is	far	less	favourable	than	Bain	envisages.	

It	 might	 be	 clear	 then	 that	 Bain’s	 proposal	 is	 to	 be	 rejected,	 as	 Fraser	

suggests:	
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The	underlying	problem	is	a	weakness	in	Bain’s	approach	to	ontology.	The	point	at	issue	is	
whether	entities	with	certain	properties—particlelike	properties—exist.	…	[T]he	question	
is	whether	there	are	entities	with	particlelike	properties	at	finite	times	…	[but	Bain]	does	
not	 point	 to	 any	 evidence	 for	 the	 existence	 of	 particlelike	entities	 in	 the	 presence	 of	 an	
interaction	 (e.g.,	 that	 states	 of	 an	 interacting	 system	 possess	 the	 expected	 energies	 for	
states	in	which	a	definite	number	of	quanta	are	present).	(Fraser	2008,	856-857)	

However,	 in	 the	 context	 of	 our	 metaphysically	 quietest	 Wilsonian	 framework	

arguably	 there	might	be	more	work	 to	do	depending	on	how	one	understands	

the	 nature	 of	 a	 particle	 concept.	 For	 instance,	 does	 Bain’s	 particle	 concept	

support	 a	 reasoning	 advantage	 to	 offer	 physically	 salient	 explanations?	We’ve	

seen	that	there	is	no	particle	concept,	as	Fraser	suggests,	via	the	6-@(5),	so	all	that	

survives	 of	 Bain’s	 claim	 is	 that	 ‘a	 “particle”	 be	 considered	 a	 system	 that	

minimally	 possesses	 an	 asymptotic	 state’.	 Is	 this	 sufficient	 to	 establish	 a	

meaningful	 particle	 concept	 for	 interacting	 states?	 In	 other	 words,	 even	 if	 we	

abandon	 the	 goal	 of	 offering	 a	 particle	 description	 of	 an	 interacting	 state	 at	 a	

finite	 time,	 could	 the	 interacting	 state	 meaningfully	 inherit	 an	 asymptotic	

particle	 description	 that	 would	 characterize	 the	 interacting	 state	 in	 terms	 of	

particles?	

Surely	it	does	not.	Although	one	might	be	able	to	label	an	interacting	state	

via	 its	asymptotic	particle	content(s),	such	a	 ‘particle’	concept	 is	at	best	an	 idle	

wheel,	 and	 at	 worst	 subject	 to	 underdetermination.	10	It	 is	 not	 clear	 how	 the	

concept	would	support	physically	salient	explanations	or	a	reasoning	advantage.	

Moreover,	it	is	unclear	what	could	be	said	about	bound	states	or	unstable	states,	

or	QFTs	that	do	not	possess	asymptotic	states.	Bain	considers	this	 last	point	 in	

the	context	of	QCD	to	suggest	that	quarks	cannot	be	regarded	as	particles	(400).	

In	summary,	Bain’s	attempt	to	prolong	the	asymptotic	particle	concept	to	

interacting	states	fails,	and	we	shall	see	in	§10.3	more	reason	to	be	cautious	even	

of	the	claim	that	the	asymptotic	states	label	interacting	states.	

	 	

10.2.4	The	nonlinear	superposition	principle	

The	last	hope11	for	establishing	a	particle	concept	on	interacting	states	might	be	

via	 the	 nonlinear	 superposition	 principle. 12 	This	 would	 reflect	 a	 natural	

																																																								
10	That	is,	is	the	interacting	state	characterized	via	the	in-	or	out-states	(or	both)?	
11	Fraser	considers	another	alternative	approach	to	defining	particles	on	interacting	states,	an	
‘“axiomatic”	method	of	specifying	a	Hilbert	space	representation	by	stipulating	formal	conditions’	
(2008,	843)	which,	she	argues,	fails	(852-855).	I	shall	not	discuss	this	as	the	approach	is	
tangential	to	my	thesis,	and	accept	her	conclusion	without	discussion.	
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extension	of	Fourier	techniques	and	Hilbert	superposition	to	nonlinear	systems	

using	a	form	of	the	Volkmann	device.	

It	 would	 require	 construction	 of	 a	 set	 of	 functions	{q-1(*)}	as	 ‘simple	

functions’	and	a	 ‘connecting	 function’	s = s(q-Q(*), q-L(*),… , *)	where	s	and	the	

q-1(*)	individually	are	solutions	to	the	coupled	wave	equations.	One	would	then,	

presumably,	 need	 to	 diagonalize	 the	 Hamiltonian	 via	 the	q-1(*)	and	 establish	 a	

‘nonlinear	Fock	space’	structure	on	the	Hilbert	space	of	interacting	states	in	such	

a	way	that	the	state	could	inherit	a	particle	description.	The	existence	of	such	a	

representation	 is	unknown	however	and	cannot	be	assumed,	 and	 it	 is	possible	

that	its	non-existence	might	be	demonstrated	mathematically.	

The	 possible	 success	 of	 such	 a	 method	 in	 QFT	 is	 speculative	 and	

physically	 unmotivated.	 Even	 if	 such	 a	 construction	 could	 be	 performed,	 the	

physical	significance	and	interpretation	of	the	‘nonlinear	Fock	space’	is	unclear,	

especially	with	 regard	 to	 how	 the	 ‘particle’	 concept	 that	would	 arise	might	 be	

related	to	the	familiar	asymptotic	particle	concept.	

If	 the	method	were	 to	be	 successful	 it	would	mark	an	application	of	 the	

Volkmann	 device	 in	 its	 most	 general	 sense	 and	 thus	 support	 a	 natural	

description	of	a	general	interacting	state.	However,	the	physical	meaning	of	such	

a	 description	 is	 not	 clear	 even	 if	 it	 were	 to	 be	 available,	 and	 it	 might	 be	

misleading	to	think	of	it	in	terms	of	a	particle	concept.	

	

10.2.5	Summary	

We	 have	 now	 seen	 that	 there	 is	 no	 particle	 concept	 applicable	 to	 general	

interacting	states	 in	QFT	 in	terms	of	any	of	 the	candidate	 field	species	0," 0'12	or	

0'.,	which	are,	moreover,	all	unitarily	inequivalent	according	to	Haag’s	theorem.	

None	 of	 these	 field	 species	 support	 even	 a	 natural	 description	 of	 general	

interacting	states,	as	results	from	the	failure	of	‘superposition’.		

I	 now	 consider	 a	 different	 approach	 to	 the	 construction	 of	 a	 natural	

description	 of	 general	 interacting	 states	whose	 existence	 is	 assured	 even	 if	 its	

physical	meaning	is	unclear	in	general.	

	

	 	
																																																																																																																																																															
12	See	e.g.	Jones	and	Ames	(1967);	Menini	and	Tornambé	(2011).	



	 231	

10.3	Non-perturbative	QFT		

I	have	indicated	some	conceptual	difficulties	arising	in	‘perturbative’	QFTs,	that	

is,	interacting	theories	constructed	from	the	implicit	application	of	the	Volkmann	

device.	The	failure	of	the	device	will	be	considered	in	more	detail	in	§10.5.	Here	

however	 I	 clarify	 what	 can	 be	 said	 with	 more	 confidence	 using	 a	 non-

perturbative	 approach	 to	 QFT	 founded	 on	 a	 set	 of	 axioms	 known	 as	 the	

‘Wightman	 axioms’	 (Streater	 and	 Wightman	 1964,	 96-106).	 These	 axioms	

‘incorporate	the	essential	features	of	a	relativistic	quantum	field	theory’	(Duncan	

2012,	 253).13	Even	 in	 this	 more	 rigorous	 setting	 difficulties	 remain:	 first,	 as	

regards	the	asymptotic	completeness	hypothesis	(AC),	which	 is	 the	assumption	

that	the	full	Hilbert	space	of	states	ℋ = ℋ12 = ℋ_`a	(recall	ℋ ≠ ℋ.);14	secondly,	

with	regard	to	the	identification	and	interpretation	of	fields	chosen	to	act	on	ℋ	

or	ℋ12 .	The	Wightman	axioms	incorporate	the	essential	features	of	a	relativistic	

QFT,	but	do	not	address	 failure	of	 the	Volkmann	device.	However,	 in	Duncan’s	

extension	of	the	Wightman	axioms,	problems	of	field	selection	and	their	physical	

interpretation	is	highlighted	by	drawing	attention	to	the	underdetermination	of	

interacting	fields	as	interpolating	fields	in	scattering	theory.		

My	discussion	of	the	axioms	will	be	informal	and	concentrate	only	on	the	

conceptual	 issues	required	to	 illuminate	the	analysis	 that	 I	wish	to	pursue.	The	

discussion	 is	 based	 upon	 Duncan’s	 treatment	 and	 development	 of	 the	 axioms	

(2012,	253-268)	owing	to	his	detailed	commentary,	although	his	 interpretation	

goes	beyond	Streater	and	Wightman’s	in	sometimes	problematic	but	illuminative	

ways.		

	

10.3.1	The	‘state	axioms’	

Axiom	 (Ia)	 states,	 ‘The	 state	 space	ℋ	is	 a	 separable	 Hilbert	 space.	 It	 carries	 a	

unitary	representation	n(Λ, 6)	…	of	the	proper	inhomogenous	Lorentz	group	(i.e.	

																																																								
13	Duncan	and	others	have	restated	and	developed	the	Wightman	axioms,	e.g.	Haag	(1996);	
Strocchi	(2013).	
14	The	proof	of	this	assumption	relates	to	the	‘Yang-Mills	Existence	and	Mass	Gap’	problem.	It	is	
one	of	the	Clay	institute’s	seven	Millenium	Prize	Problems,	the	brief	statement	of	which	is	to,	
‘Prove	that	for	any	compact	simple	gauge	group	G,	a	non-trivial	quantum	Yang-Mills	theory	exists	
on	ℝS	and	has	a	mass	gap	Δ > 0.	Existence	includes	establishing	axiomatic	properties	at	least	as	
strong	as	those	cited	in	Streater	&	Wightman	(1964),	Osterwalder	&	Schrader	(1973)	and	
Osterwalder	&	Schrader	(1975).’	(Jaffe	and	Witten,	‘Quantum	Yang-Mills	Theory’,	
http://www.claymath.org/sites/default/files/yangmills.pdf,	accessed	12-07-2019).	
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the	 Poincaré	 group)	…	 ’	 (Duncan	 2012,	 254).	 This	 is	 unproblematic,	 although	

Duncan’s	comments	are:	
Our	Hilbert	space	ℋ	is	a	countable	direct	sum	of	multi-particle	spaces	corresponding	to	a	
definite	 number	 of	 particles.	 The	 multi-particle	 space	 corresponding	 to	 a	 fixed	 finite	
number	of	particles	is	a	finite	tensor	product	of	separable	L2	spaces,	each	with	a	countable	
basis,	and	is	therefore	itself	separable.	The	separability	of	ℋfollows	trivially.	The	reader	is	
free	to	visualize	ℋ	as	the	space	of	 in-states	ℋ12	(or	out-states	ℋ_`a)	…	with	the	action	of	
the	n(Λ, 6)	given	by	>1{∙|n}(Λ)	(254)	

First,	 this	 assumes	 asymptotic	 completeness	 (AC),	 which	 is	 problematic	 as	we	

consider	below	(IIIb).	The	second	problem	relates	to	the	possibility	of	a	particle	

interpretation,	 or	 the	 possibility	 of	 establishing	 a	 physically	 meaningful	 Fock	

space	 structure	 on	 the	 space	ℋ 	of	 general	 interacting	 states.	 Assuming	 AC,	

mathematically	 speaking	ℋ 	inherits	 the	 Fock	 structure	 from	ℋ12 	constructed	

from	 the	6-12
( (~),	 as	 it	 is	 the	 same	 Hilbert	 space.	 But	 as	 we	 have	 seen,	 for	

interacting	 states	 the	 physically	 salient	 structure	 of	ℋ 	is,	 according	 to	 QFT,	

constructed	from	,- 	and	not	,-12 ,	and	we	have	seen	that	no	such	physically	salient	

Fock	 structure	 can	 be	 constructed	 from	,- 	owing	 to	 the	 nonlinearity	 of	 the	

coupled	 field	 equations.	 Whatever	 ‘interpolating	 fields’	 are	 chosen	 (IIIa),	 the	

equations	they	satisfy	are	nonlinear,	and	so	unsuitable	for	the	construction	of	a	

physically	meaningful	Fock	space	structure	(§10.2).	The	 fact	(assuming	AC)	that	

ℋ	mathematically	shares	the	same	‘Fock	space’	structure	as	ℋ12	is	irrelevant,	for	

it	does	not	support	a	physical	interpretation	on	ℋ,	but	only	ℋ12/_`a .	

The	 situation	 is	 analogous	 to	 the	 comparison	 between	 epicycles	 in	

astronomy	and	harmonics	on	the	vibrating	string	(chapter	4).	The	spatial	state	of	

the	 planet	 and	 the	 spatial	 state	 of	 the	 vibrating	 string	 share	 the	 same	 (up	 to	

isomorphism)	Hilbert	space	structure,	but	the	Fourier	modes	of	the	string	have	

physical	 significance	 in	 virtue	 of	 their	 being	 simple	 solutions	 to	 the	 wave	

equation	whereas	the	epicycles	of	 the	planets	do	not	have	physical	significance	

as	they	are	not	associated	with	partial	laws	and	states	associated	with	solutions	

to	a	PDE	modelling	the	behaviour	of	the	system.	Semantic	mimicry	occurs	in	both	

cases	 –	 physical	 interpretation	 of	 a	 mathematical	 structure	 that	 is	 physically	

meaningful	 in	 one	 context	 is	 implicitly	 but	 illegitimately	 smuggled	 across	 or	

prolonged	to	different	physical	situations	(cf.	chapters	4-5).		
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Axiom	 (Ib):	 ‘The	 infinitesimal	 generators	�X 	of	 the	 translation	 subgroup	

Ä(6) = n(1, 6)of	 the	 Poincaré	 group	 have	 a	 spectrum	ÅX 	restricted	 to	 the	

forward	light	cone,	Å. ≥ 0, ÅL ≥ 0.’	(Duncan	2012,	254)	Duncan	comments,	
In	 accordance	 with	 our	 intuition	 of	 asymptotic	 completeness	 –	 [1]	 that	 all	 Heisenberg	
states	of	the	system	correspond	to	field	disturbances	which	eventually	resolve	into	a	finite	
number	 of	 well-separated	 stable	 particles	 of	 finite	 energy,	 and	 with	 individual	 four-
momenta	on	or	within	the	forward	light-cone	–	[2]	the	total	energy-momentum	ÅX 	of	any	
state	of	the	system	must	be	resolvable	into	a	sum	of	four-vectors	…	(254)	

The	first	part,	[1],	is	unproblematic,	assuming	AC,	although	the	interpretation	as	

extended	via	[2]	is	problematic	however,	for	it	may	be	understood	as	an	attempt	

to	 implicitly	 ‘smuggle	 in’	a	particle	 interpretation	 from	the	asymptotic	states	 to	

the	general	state,	which	we	have	seen	we	cannot.	One	might	label	a	general	state	

by	its	asymptotic	content	(which	may	include	bound	states),	but	this	is	different	

from	 saying	 that	 the	 composition	 of	 its	 asymptotic	 content	 prolongs	 into	 the	

general	 interacting	 state.	 What	 we	 should	 say	 is	 that	 the	�X 	are	 infinitesimal	

generators	of	the	translation	subgroup	(with	the	spectrum	as	Duncan	indicates)	

so	 that	one	may	assign	a	 total	momentum	ÅX 	to	a	general	 state,	 and	 that	 in	the	

idealized	 asymptotic	 region	ÅX 	may	 be	 resolved	 into	 a	 sum	 of	 four-vectors	

corresponding	 to	 the	momenta	 of	 isolated	 particles	 (and	 bound	 states),	whilst	

remaining	 silent	 on	 the	 structure	 of	 the	 eigenstates	 of	�X 	in	 the	 context	 of	 a	

general	interacting	state.	

It	 is	 noteworthy	 that	�X 	is	 defined	 without	 reference	 to	 fields,	 and	

importantly	 we	 shall	 see	 in	 §10.4	 that	 it	 does	 support,	 in	 principle,	 a	 natural	

eigenstate	representation	of	general	interacting	states,	even	 if	 it	 is	unclear	how	

to	 explicitly	 construct	 or	 relate	 such	 a	 representation	 to	 established	 physical	

concepts,	such	as	asymptotic	particles	that	correspond	to	our	phenomenological	

particle	notion.	

Duncan’s	 Axiom	 (Ic)	 stipulates	 the	 existence	 of	 a	 unique	 normalized	

‘vacuum’	state	|Ω⟩	with	isolated	eigenvalue	ÅX = 0,	and,	(Id)	a	‘mass	gap’.	That	is,	

the	 squared-mass	 operator	 �L = �X�X 	has	 an	 isolated	 eigenvalue	NL > 0 ,	 and	 the	
spectrum	 of	�L	is	 empty	between	 0	 and	NL.	 The	 subspace	ℋQ	of	ℋ	corresponding	 to	 the	
eigenvalue	NL	carries	an	irreducible	spin-0	representation	of	the	HLG.	These	are	the	single	
particle	 states	 of	 the	 theory.	The	 remaining	 spectrum	of	�L	is	 continuous,	and	begins	at	
(2N)L.	(254)	

Haag-Ruelle	theory	(§11.3.1)	requires	this	assumption	of	an	isolated	eigenvalue	

m2	 (Glimm	 and	 Jaffe,	 274).	 Duncan	 comments	 that	 (Id)	 excludes	 QED	 with	 a	

massless	photon,	so	that	in	calculations	the	photon	is	given	a	small	mass	and	the	
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massless	limit	taken	after	calculations	(Duncan,	255).	He	interprets	the	spectrum	

via	the	in-states	for	the	two-particle	subspace:	
In	 the	 two-particle	 subspace	 (say,	 for	 |ÅQ, ÅL⟩12 ),	 the	 squared-mass	 operator	 gives	
(ÅQ + ÅL)L = 2NL + 2ÅQ ∙ ÅL,	 with	ÅQ ∙ ÅL > NL,	 so	 the	 spectrum	 of	�L	in	 this	 subspace	 is	
[(2N)L,∞).	Overall,	 the	spectrum	of	�L	is	 therefore	{0,NL, [(2N)L,∞)}.	…	We	assume	no	
bound	states,	e.g.,	one-particle	mass	hyperboloids	at	ÅL = 4NL − ℇ.	(255)	

Again,	 we	 must	 exercise	 caution	 here.	 Duncan’s	 (Ic)-(Id)	 goes	 beyond	

Wightman’s	statement	(Streater	and	Wightman	1964,	96-106),	and	more	recent	

restatements	 of	 the	 axioms	 (e.g.	 Haag	 1996,	 56-58;	 Strocchi	 2013,	 69-72).	

Wightman	 interprets	�X�X = NL	as	 the	 squared	 mass	 operator	 and	 comments	

that	the	eigenvalues	of	�X 	lie	in	or	on	the	forward	light	cone	(97),	while	Haag	(56)	

and	Strocchi	(70)	refrain	from	introducing	a	mass	interpretation,	noting	simply	

that	 the	 spectrum	 of	 the	 energy-momentum	 operators	�X 	is	 contained	 in	 the	

closed	forward	cone.	Duncan’s	gloss	on	(Id),	interpreting	the	spectrum	of	P2	via	a	

particle	interpretation	of	the	idealized	asymptotic	in-states,	is	only	justified	as	a	

physical	 interpretation	on	 the	 asymptotic	 states.	 Streater	 and	Wightman,	Haag	

and	Strocchi	do	not	attempt	to	prolong	this	valid	physical	 interpretation	of	 the	

asymptotic	states	to	a	general	interacting	state.		

The	 physical	 interpretation	 of	 the	 asymptotic	 states	 as	 composed	 of	

particles	 having	 properties	 cannot	 be	 prolonged	 to	 general	 states	 as	 we	 have	

seen.	 The	 physical	 interpretation	 of	 the	 Fock	 decomposition	 that	 identifies	

particle	states	in	the	asymptotic	regions	associated	with	the	eigenvalues	of	the	P-

operators	does	not	prolong	to	a	physically	salient	decomposition	of	 interacting	

states.	What	we	can	say,	however,	is	that	if	the	spectrum	of	the	physical	�L	on	the	

asymptotic	 states	 is	 (neglecting	 bound	 states)	{0,NL, [(2N)L,∞)},	 then	 as	�X 	

supports	 a	 conservation	 law,	 this	 is	 also	 the	 spectrum	 of	�L 	on	 a	 general	

interacting	 state.	 Crucially	 however,	 the	 general	 state	 does	 not	 support	 any	

further	physical	interpretation	as	the	theory	does	not	support	the	identification	

of	any	substructure	to	such	states.	That	is,	the	(2N)L	state	does	not	support	the	

physical	 interpretation	 of	 being	 a	 ‘two	 particle	 state’	 in	 a	 general	 interacting	

state,	unlike	in	the	asymptotic	region.	It	is	simply	a	state	of	invariant	mass	(2N)L	

and	we	remain	silent	beyond	that.	For	 later	reference	(§11.2),	 the	 lowest	mass	

state	 of	 the	 continuous	part	 of	 the	 spectrum	 is	 known	 as	 the	 ‘threshold	mass’,	

áaàâäãà_åç
L ,	as	it	will	not	always	be	(2N)L.	
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10.3.2	The	‘field	axioms’	

The	fields	appear	crucial	in	characterizing	a	general	state	in	a	natural	way	since	

it	 is	 via	 the	 fields	 that	we	 obtain	 a	 ‘natural’	 coordinate	 system	 for	ℋ12	that	we	

interpret	as	a	particle	description.	We	would	like	to	obtain	a	natural	coordinate	

system	 for	ℋ	through	 the	 fields	 too,	 although	 this	 fails	 owing	 to	 the	 failure	 of	

‘superposition’	 for	 interacting	theories,	owing	specifically	 to	 the	nonlinearity	of	

the	 coupled	 field	 equations	 which	 results	 from	 the	 failure	 of	 the	 initial	

application	of	the	Volkmann	device.	This	is	to	think	in	terms	of	‘physicists’	QFT’,	

which	is	my	project,	in	which	the	physical	interpretation	of	the	theory	centres	on	

ℋ	rather	than	on	the	algebra	of	the	field	operators	as	in	algebraic	QFT.15	Either	

way,	the	fields	play	a	central	role.	Indeed,	Streater	and	Wightman	note,	‘To	be	a	

field	theory,	a	relativistic	quantum	theory	must	have	enough	fields	so	 its	states	

can	be	uniquely	characterized	using	fields	and	functions	of	fields.’	(1964,	100)		

Duncan’s	Axiom	(IIa)	states,	‘An	operator-valued	(tempered)	distribution	

,(*) 	exists	 such	 that	 for	 any	 Schwartz	 test	 function	é(*) 	[infinitely	 times	

continuously	differentiable	functions	of	fast	decrease],	the	smeared	field	

,è ≡ :é(*),(*);S*	

is	an	unbounded	operator	defined	on	a	dense	subset	ë ⊂ ℋ.	Moreover,	,èë ⊂ ë,	

allowing	 the	 definition	 of	 arbitrary	 (finite)	 products	 of	 smeared	 fields.’	 (256)	

This	 is	 the	 limited	 case	 for	 a	 system	 characterized	 by	 a	 single	 field.	 Indeed,	

Wightman	stipulates	(in	general)	the	existence	a	set	of	operators	,Q(é) …,2(é)	

together	with	their	adjoints,	and	that	D	is	a	linear	set	containing	|Ω⟩	(98).	

Duncan	comments	 that	 the	axiom	 is	motivated	by	 equivalent	 statements	

for	a	 free	 scalar	 field	where	a	dense	 subset	of	ℋ	is	obtained	by	 considering	all	

normalizable	 n-particle	 states	 obtained	 via	 Fourier	 decomposition	 of	 the	 field	

(256).	Note	however	that	no	physical	interpretation	is	claimed	at	this	stage	in	the	

general	statement	(IIa).	Physical	interpretation	is	only	claimed	in	the	context	of	

its	motivation,	and	is	not	supported	in	general.	

																																																								
15	A	key	question	is	then	whether	failure	of	the	Volkmann	device	to	the	identification	of	the	fields	
renders	the	algebraic	approach	problematic	also.		
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Duncan	also	 comments	 (257)	 that	 this	 enables	 the	definition	of	vacuum	

expectation	 values	 of	 products	 of	 smeared	 fields,	 which	 can	 be	 written	 as	

overlaps	of	Wightman	distributions	(‘functions’):	

⟨ΩìRèî …RèïìΩ⟩ = :éQ(*Q)…é2(*2)⟨Ω|R(*Q)…R(*2)|Ω⟩;S*Q …;S*2	

with	Wightman	function:	

ñ(*Q,… *2) = ⟨Ω|R(*Q)…R(*2)|Ω⟩	

The	ñ(*Q,… *2) 	may	 be	 interpreted	 as	 ‘Green’s	 functions’	 or	 correlation	

functions	of	the	theory.	We	have	studied	the	time-ordered	two-point	function	for	

free	 fields,	 interpreted	 as	 a	 particle	 propagator,	 and	 will	 consider	 the	 time-

ordered	 two-point	 function	 for	 interacting	 fields	 in	 §11.2.	 The	 time-ordered	n-

point	function	will	be	central	to	LSZ	scattering	theory	(§11.3.2).		

	 Axiom	 (IIb)	 states	 the	 field	 transformation	 law	 under	 the	 unitary	

representation	 of	 the	 Poincaré	 group	n(Λ, 6)	(cf.	 (Ia))	 (Duncan,	 257).	 	 (IIc)	

stipulates	 that	 if	 f1,	 f2	 are	Schwartz	 functions	of	 compact	support	on	space-like	

separated	 regions	 then	 ó,èî, ,èòô = 0 	for	 bosonic	 fields	 or	 ö,èî, ,èòõ = 0 	for	

fermionic	 fields	 (258)	 (the	 ‘causality’	 axiom).	 The	 final	 field	 axiom	 (IId)	

stipulates	that	the	set	of	states	obtained	by	applying	arbitrary	polynomials	in	the	

smeared	fields	,è	(or	more	generally	,Q(é) …,2(é))	to	the	vacuum	|Ω⟩	is	dense	

in	ℋ	-	the	‘cyclicity	of	the	vacuum’	(259).	This	is	associated	with	the	(physically	

interpreted)	Fock	structure	of	free	fields	in	the	asymptotic	limits.	The	cyclicity	of	

the	 vacuum	 prolongs	 (mathematically)	 to	 Hilbert	 space	 states	 associated	with	

interacting	fields	but	lacks	a	physical	interpretation	in	general.	

	

10.3.3	The	‘particle-field	duality	axioms’	

We	 have	 now	 defined	 a	 relativistic	 quantum	 field	 theory	 (Streater	 and	

Wightman,	 101),	 but	 as	 yet	 we	 have	 not	 made	 a	 connection	 with	 scattering	

theory	 or	 indicated	 if,	 and	 if	 so,	 what	 kind	 of	 physically	 salient	 natural	

description	 is	 supported.	 In	 particular,	 there	 is	 no	 explicit	 introduction	 of	 a	

Lagrangian	or	Hamiltonian	associated	with	Schrödinger’s	equation,	and	the	fields	

are	not	explicitly	associated	with	field	equations.	
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To	begin	the	process	of	interpretation	–	or	to	consider	how	empirical	QFTs	

relate	 to	 this	 abstract	 treatment	 –	 Duncan	 adds	 a	 third	 group	 of	 axioms	

associated	with	scattering	theory	and	particle	interpretations.		

	Axiom	(IIIa)	associates	asymptotic	states	interpreted	in	terms	of	a	physical	

particle	content	with	fields	‘interpolating’	between	them:	

For	some	one-particle	 state	|i⟩ = ∫%ù7û⃗ †|7û⃗ ° ;<7		(%ù7û⃗ † ∈ £L)	with	discrete	eigenvalue	NL	
of	 the	 squared-mass	 operator	 …	 the	 smeared	 field	Rè(*)	has	 a	 non-vanishing	 matrix	
element	from	this	single-particle	state	to	the	vacuum,	⟨Ω|Rè(*)|i⟩ ≠ 0.	…	If	this	situation	
holds,	we	call	Rè(*)	an	interpolating	Heisenberg	field	for	the	given	particle.	(267,	notation	
adapted)	

Duncan	 implicitly	assumes	a	 field	,-12	satisfying	a	free,	 linear	wave	equation	via	

which	the	asymptotic	states	are	endowed	with	a	Fock	space	structure,	with	the	

structure	interpreted	in	terms	of	idealized	physical	(phenomenological,	but	non-

interacting)	particles.	This	 implicitly	requires	the	 identification	of	a	self-adjoint	

Hamiltonian	operator	satisfying	Schrödinger’s	equation.	

		 I	consider	the	 interpolating	 fields	 further	 in	chapter	11	 in	the	context	of	

LSZ	 scattering	 theory,	 noting	 here	 that	 the	 interpolating	 fields	 (of	which	 the	0'	

fields	when	suitably	smeared	are	paradigmatic	examples)	are	underdetermined.	

I	shall	suggest	that	this	is	associated	with	the	failure	of	‘superposition’.	The	role	

of	the	interpolating	fields	is	simply	to	associate	asymptotic	in-states,	interpreted	

as	 physical	 particles,	 with	 asymptotic	 out-states,	 again	 interpreted	 as	 physical	

particles,	 via	 some	suitable	algorithm.	The	direct	physical	 significance,	or	 their	

relationship	to	a	true	description,	of	these	interpolating	fields	is	unclear.	

Finally,	 Axiom	 (IIIb),	 is	 the	 asymptotic	 completeness	 axiom	 (AC),	 namely	

that	ℋ = ℋ12 = ℋ_`a.	 Duncan	 comments	 that	 from	 the	 cyclicity	 of	 the	 vacuum	

axiom	ℋ		
can	be	regarded	as	the	space	generated	by	application	of	the	smeared	fields	to	the	vacuum	
...	 [T]his	axiom	again	 connects	 the	 particle	 concepts	 (the	 asymptotic	 in-	 and	 out-states)	
with	a	space	ℋ	defined	in	terms	of	the	action	of	the	basic	field(s)	of	the	theory.	…	 [T]his	
assumption	 is	 almost	 unavoidable	 physically,	 as	 it	 incorporates	 a	 vast	 amount	 of	
phenomenological	experience	of	particle	interactions.	…	[However,	the]	assumed	unitarity	
of	 the	 S-matrix	 [only	 requires]	ℋ12 = ℋ_`a,	 with	 both	 of	 these	 asymptotically	 defined	
spaces	being	(perhaps)	proper	subsets	of	…	ℋ.	Indeed,	the	Haag-Ruelle	scattering	theory	
…	can	only	establish	the	existence	of	the	asymptotic	states	as	such	subsets.	Moreover,	even	
in	the	few	cases	where	we	have	maximum	mathematical	control	…	the	validity	of	Axiom	
IIIb	 remains	…	 ((Glimm	and	 Jaffe,	 1987),	 p.275),	 “a	 very	 deep	 (and	 open)	mathematical	
question.”	Our	attitude	…	in	the	absence	of	conclusive	evidence	to	the	contrary,	will	simply	
be	to	assume	the	validity	of	asymptotic	completeness	(Duncan	267-268).	

If	AC	holds	 then	any	general	 interacting	 state	can	be	 labelled	by	 its	 asymptotic	

particle	 content	 (Glimm	 and	 Jaffe	 1987,	 274).	 We	 have	 seen	 above	 that	 a	
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physically	meaningful	Fock	space	structure	cannot	be	established	on	the	space	of	

general	 interacting	 states	ℋ,	 so	 that	 we	 cannot	 say	 that	 a	 general	 interacting	

state	has	a	particle	description	even	if	it	can	be	labelled	by	an	asymptotic	particle	

description	in	scattering	theory.		

Might	one	expect	AC	to	fail?	The	axiom	has	received	little	attention	from	

philosophers	despite	its	foundational	importance.16	Duncan,	and	Glimm	and	Jaffe	

accept	 AC	 on	 the	 basis	 of	 physical	 assumptions.	 These	 assumptions	 might	 be	

influenced	 by	 an	 underlying	 metaphysical	 picture	 of	 particles	 as	 the	 basic	

entities	of	nature.	On	such	a	picture	one	is	unlikely	to	question	the	validity	of	AC.	

But,	especially	having	undercut	the	assumption	of	a	particle	ontology,	one	might	

be	more	willing	to	question	AC.	For	instance,	in	the	idealized	infinite	limit-taking	

procedure	is	information	about	the	interacting	state	‘lost’,	being	‘washed	out’	in	

the	limit?	Are	there	interacting	states	not	accessible	from	scattering	states?	This	

is	not	clear.	

The	position	 that	we	worked	 towards	 in	§10.2	was	 that	mathematically	

speaking	ℋ	may	well	 inherit	 the	Hilbert	space	structure	of	ℋ12/_`a	(i.e.	AC),	but	

not	its	physical	significance	or	interpretation,	so	that	there	may	be	|Ω⟩ ∈ ℋ	that	

is	cyclic	for	a	set	of	smeared	fields	,Q(é)…,2(é),	but	where	the	states	generated	

do	 not	 support	 a	 physical	 interpretation.	 That	 is,	 one	 may	 accept	 AC	

mathematically	 but	 deny	 any	 physical	 interpretation	 of	ℋ 	generated	 by	 the	

,Q(é) …,2(é).	

	These	are	important	issues	that	I	cannot	pursue	here,	being	tangential	to	

my	thesis,	and	so	as	per	usual	practice	I	shall	accept	the	axiom	as	a	mathematical	

axiom	without	importing	any	physical	interpretation.	

	

10.3.4	Limitations	of	the	non-perturbative	approach	

The	constructive	approach	provides	a	useful	framework	within	which	analysis	of	

QFTs	may	be	situated,	clarifying	for	example	the	conceptual	foundations	of	Haag-

Ruelle	and	LSZ	scattering	theory	(§11.3).	However,	importantly,	there	is	nothing,	

prima	facie,	in	this	axiomatic	framework	that	motivates	a	conceptual	resolution	

of	 the	 failure	of	 the	Volkmann	device	with	regard	 to	 the	 initial	 choice	of	 fields.	

																																																								
16	Ruetsche	mentions	AC	in	passing	(2011,	254-256),	noting	that	there	is	‘room	to	wonder	
whether	the	postulate	is	correct’	(254).	
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The	 axioms	 do	 not	 identify	 any	 field	 types	 that	 would	 support	 a	 natural	

description	of	the	general	interacting	system	in	the	sense	that	we	have	identified.	

That	is,	such	that	the	general	interacting	system	may	be	analysed	via	isolated	or	

abstracted	 partial	 states	 associated	with	 partial	 laws	 that	 take	 the	 same	 form	

individually	 and	 in	 combination	 in	 a	 way	 that,	 moreover,	 optimally	 balances	

simplicity	 and	 strength	 so	 as	 to	 support	 physically	 salient	 explanations	 and	

counterfactual	 reasoning.	 This	 is	 indicative	 of	 the	 problematic	 nature	 of	 the	

concept	 of	 ‘(near)	 fundamental	 interaction’,	 indicating	 that	 the	 general	

interacting	system	modelled	by	QFT	remains	a	‘black	box’	that	does	not	possess	a	

description	 in	 terms	 of	 simpler	 components,	 according	 to	 QFT	 at	 least,	 as	we	

shall	consider	in	more	detail	in	§10.5.		

There	 is	 a	 further	 limitation	 in	 the	 axiomatic	 framework	 that	 is	 also	

associated	 with	 scattering	 theory	 in	 the	 perturbative	 framework	 in	 that	 we	

cannot	 analyse	 or	 describe	 bound	 states	 or	 unstable	 particles.	 Rather,	 we	 can	

only	 label	 them	 by	 their	 asymptotic	 content.	 Thus	 far	 the	0'12	that	 we	 have	

introduced	 only	 describe	 ‘elementary’	 particle	 states,	 and	 these	 do	 not	 span	

ℋ12/_`a .	 To	 span	ℋ12/_`a 	we	 must	 add	 the	 bound	 states	 associated	 with	 wave	

equations	

ùGL + á§à•ã,1
L †¶̂§à•ã,1(*) = 0, 9 = 1,2,3,…	

where	á§à•ã,1 	is	 the	 asymptotic	 physical	 mass	 of	 bound	 state	 i	with	 associated	

free	 field	¶̂§à•ã,1 	which	 we	 intuitively	 consider	 to	 be	 composed	 of	 interacting	

phions	and	psions,	conceived	as	what	the	state	might	be	considered	to	be	‘made	

from’.	 That	 is,	 if	 we	 perform	 a	 low-energy	 scattering	 experiment	 with	 an	

asymptotic	in-state	described	by	a	number	of	elementary	psions	and	phions	and	

obtain	as	the	out-state	a	single	‘particle’,	we	might	consider	the	out-state	particle	

as	a	bound	state	‘composed’	of	the	corresponding	psions	and	phions	comprising	

the	 in-state.	 But	 the	 theory	 does	 not	 allow	 us	 to	 regard	 the	 bound	 states	 as	

composed	of	–	we	must	think	of	them	as	made	from.	That	is,	the	identities	of	the	

entities	 that	 are	 brought	 together	 to	 form	 a	 bound	 state	 do	 not	 persist	 in	 the	

bound	state	once	formed	to	support	a	‘trace	principle’	(cf.	§2.3.2).	

This	 is	 a	 limitation	 of	 the	 theory,	 as	 the	 theory	 does	 not	 allow	 us	 to	

analyse	 or	 to	 describe	 a	 bound	 state	 as	a	 bound	 state	 of	 elementary	 particles	
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(although	perhaps	we	can	label	it	as	such)	–	the	‘elementary	system’	is	the	bound	

state.	Neither	does	the	theory	allow	us	to	model	unstable	particles	directly,	as	by	

definition	these	cannot	form	asymptotic	states,	as	they	will	have	decayed	before	

becoming	an	asymptotic	state	in	virtue	of	being	an	unstable	particle.	We	consider	

approaches	to	modelling	unstable	particles	in	§11.2.3	and	bound	states	in	§11.5,	

indicating	the	philosophical	difficulties	in	forming	a	natural	description	of	some	

of	the	most	ubiquitous	entities	in	nature.	

	

10.4	A	natural	description	of	general	interacting	states	

We	 have	 seen	 that	 we	 cannot	 establish	 a	 physically	 meaningful	 particle	

description	 on	 general	 interacting	 states	 via	 coupled	 field	 equations.	 This	 is	

because	 we	 cannot	 construct	 an	 explicit	 eigenstate	 representation	 of	 Pμ	 (and	

hence	!")	 via	 the	 fields	 with	 the	 finer-grained	 structure	 of	 a	 Fock	 space	 using	

Fourier	techniques.	That	is,	we	cannot	form	a	natural	description	of	the	system	

by	representing	!"	via	the	coupled	fields.		

However,	 if	we	 identify	 the	Hamiltonian	!"	for	 the	 interacting	system	via	

Pμ	 as	 defined	 in	 (Ia)	 without	 reference	 to	 fields	 as	 in	 the	 non-perturbative	

treatment,	 and	 assuming	 that	 the	 operators	 are	 self-adjoint	 and	 that	 the	 state	

|Σ⟩ ∈ ℋ	satisfies	Schrödinger’s	(linear)	equation	

9
G
G5
|Σ⟩ = !"|Σ⟩	

then	Fourier	techniques	apply.	|Σ⟩	has	a	spectral	decomposition	into	eigenstates	

of	!"	that	 are	 simultaneously	 eigenstates	 of	 Pμ.	 By	 Hilbert	 superposition	 this	

grants,	 in	 principle,	 a	 natural	 description	 of	 an	 arbitrary	 interacting	 state	|Σ⟩,	

supporting	 inductive	 inferences	 and	 physically	 salient	 explanations,	 for	 similar	

reasons	as	hold	in	the	case	of	the	classical	examples	in	chapter	4.	This	eigenstate	

basis	has	the	finer-grained	structure	of	a	physically	salient	Fock	basis	for	ℋ12/_`a 	

in	the	asymptotic	limit	(but	only	in	the	asymptotic	limit),	recovering	the	familiar	

particle	concept	in	such	limits,	although	bound	states	and	associated	fields	also	

need	to	be	included.	It	is	not	clear,	however,	how	to	impose	any	statistics	as	we	

have	not	made	reference	to	fields.	

One	 difficulty	 is	 that	 this	 natural	 eigenstate	 decomposition	 on	ℋ	exists	

only	‘in	principle’.	Owing	to	the	failure	of	the	Volkmann	device	there	is	no	natural	
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representation	 for	!"	in	general	 via	 coupled	 fields,	which	 is	what	we	 require	 to	

model	‘interactions’.	In	the	perturbative	approach,	although	fields	may	be	chosen	

it	is	not	a	natural	choice	of	representation	owing	to	the	failure	of	the	Volkmann	

device,	requiring	renormalization	to	support	calculations	via	Dyson’s	expansion.	

What	 we	 have,	 in	 principle,	 is	 a	 natural	 (eigenstate)	 description	 of	 the	 state,	

using	Fourier	techniques,	broadly	understood,	applying	Hilbert	superposition	to	

Schrödinger’s	equation.	But	such	a	description	is	in	general	more	coarse-grained	

than	 we	 would	 like,	 and	 only	 in	 the	 idealized	 asymptotic	 limits	 may	 the	

eigenstates	 be	 endowed	 with	 a	 natural	 finer-grained	 structure	 using	 smeared	

fields	 to	 support	 a	 physical	 particle	 interpretation.	 The	 asymptotic	 fields	 and	

states	 may	 be	 regarded	 as	 a	 ‘coordinate	 system’	 for	 the	 idealized	 asymptotic	

states	that	cannot	be	prolonged	to	general	states.		

The	general	eigenstate	decomposition	cannot	be	stated	explicitly	as	we	do	

not	have	a	suitable	coordinate	system	with	which	to	express	the	eigenstates	 in	

terms	 of	 familiar	 concepts.	 That	 is,	 we	 cannot	 relate	 description	 of	 the	

eigenstates	 to	 existing	 or	 empirical	 physical	 concepts	 other	 than	 in	 the	

asymptotic	 limits,	 so	 that	 we	 cannot	 offer	 physically	 salient	 explanations	 of	

interactions	 or	 descriptions	 of	 interaction	 processes.	 The	 best	we	 can	 do	 is	 to	

note	 that,	 in	 principle,	 the	 total	 relativistic	 mass	 and	momentum	 of	 the	 state	

labels	 each	 eigenstate,	 being	 the	 associated	 eigenvalue	 of	 Pμ,	 which	 is	 known	

from	 the	 asymptotic	 states	 and	 momentum	 conservation.	 Moreover,	 if	 the	

general	 state	 is	 associated	 with	 or	 labelled	 by	 an	 asymptotic	 state	 that	 is	

associated	with	fields,	then	by	Noether’s	theorem	the	total	charge(s)	of	the	state	

associated	with	the	fields	are	also	known	by	charge	conservation	with	reference	

to	the	chosen	field.	So,	we	can	label	the	general	eigenstates	by	their	asymptotic	

total	momenta	and	charge	in	relation	to	a	field,	but	we	cannot	endow	them	with	

any	finer-grained	structure	as	we	can	with	the	asymptotic	states.	

It	 appears	 then	 that	 there	 is	 rather	 little	 that	 can	 be	 said	 about	 the	

eigenstates	of	general	interacting	states	and	that	such	‘in	principle’	identification	

may	 be	 an	 ‘idle	 wheel’.17	However,	 the	 ‘in	 principle’	 knowledge	 of	 such	 states	

does	 in	 fact	 allow	 for	 development	 of	 the	Källén-Lehmann	 spectral	 resolution,	

																																																								
17	Cf.	Wilson’s	repeated	concerns	with	the	value	of	‘in	principle’	results	(2006;	2017).	
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which	 assists	 analysis	 of	 unstable	 particles	 and	 some	 types	 of	 quasiparticle	

(§11.2).	

	

10.5	Failure	of	the	Volkmann	device	and	its	consequences	

I	now	clarify	the	sense	in	which	the	Volkmann	device	fails	in	interacting	theories	

in	relation	to	the	 initial	 identification	or	selection	of	 fields	and	putative	 ‘partial	

states’	associated	with	them.	

In	§8.5	we	considered	a	proper	application	of	 the	Volkmann	device	 in	a	

system	whose	 state	|Σ⟩_™äâ|åå 	is	 completely	 characterized	 by	 the	 action	 of	 two	

isolated	 free	 field	 types	R'èâää ,	&'èâää 	(and	&'èâää
( ).	 The	 overall	 state	 may	 be	

decomposed	into	‘partial	states’	of	phion	and	psion/antipsion	component	states	

|Σ⟩_™äâ|åå = |Φèâää°⨂|Ψèâää°	

without	 symmetrization	 of	 the	 tensor	 product	 since	 the	 particles	 are	

distinguishable. 18 	Each	 component	 |Φèâää° ,	 |Ψèâää° 	can	 be	 represented	

independently	 by	 an	 element	 of	 its	 own	 Fock	 space	 by	 further	 application	 of	

‘superposition’,	i.e.	can	be	represented	by	linear	combinations	of	what	we	call	N-

quanta	 states	 constructed	 via	 the	 relevant	 wave	 equation	 using	 Hilbert	

superposition	 applied	 to	 this	 and	 the	 state	 equations,	 using	 Fourier	 and	

eigenfunction	techniques.19	

We	can	do	this	because	the	action	of	the	fields	is	given	by	

R'èâää|Σ⟩_™äâ|åå = R'èâää ⊗ Ø∞|Φèâää°⨂|Ψèâää° = ùR'èâää|Φèâää°†⨂|Ψèâää°	

and	similarly	 for	&'èâää .	 In	particular,	 the	overall	Hamiltonian	and	4-momentum	

operators	can	be	represented	by	the	R'èâää 	and	&'èâää 	so	that	each	field	only	acts	

non-trivially	only	on	its	corresponding	partial	state,	which	means	that	the	overall	

Hamiltonian	can	be	decomposed	into	components	!"èâää,±, !"èâää,∞	such	that	

!"èâää,±|Σ⟩ = !"èâää,± ⊗ Ø∞|Φèâää°⨂|Ψèâää° = ù!"èâää,±|Φèâää°†⨂|Ψèâää°	

and	similarly	for	!"èâää,∞ ,	with	!"èâää,_™äâ|åå = !"èâää,± + !"èâää,∞ .	

This	 means	 that	 the	 actions	 of	 R'èâää 	and	 &'èâää ,	 and	 hence	 the	

corresponding	 Hamiltonian	 and	 4-momentum	 operators,	 take	 the	 same	 form	

																																																								
18	Note	further		|Ψèâää° = |Ψ§|âa1≤åä	ãä≤a_â° ⊗ |Ψ|2a1§|âa1≤åä	ãä≤a_â°.	
19	Cf.	§8.3.5	for	an	indication	of	the	difficulties	associated	with	regarding	an	N-quanta	state	as	
being	composed	of	N	quanta.	
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individually	 on	 their	 corresponding	 partial	 states	 and	 in	 combination	 on	 the	

overall	state.	So	partial	laws	associated	with	the	partial	states	take	the	same	form	

individually	and	in	combination	owing	to	the	form	of	the	action	of	the	fields.	This	

enables	Fock	structures	to	be	constructed	on	|Φèâää°	and	|Ψèâää°	which	take	the	

same	 form	 on	 these	 partial	 states	 as	 on	|Φèâää°⨂|Ψèâää°,	 thus	 supporting	 a	

particle	 description	 of	 the	 overall	 state	 in	 terms	 of	 particle	 type,	 number	 and	

state.	

This	 is	a	proper	application	of	 the	Volkmann	device	–	we	have	analysed	

the	 complicated	 overall	 state	 and	 its	 behaviour	 by	 isolating	 two	 partial	 states	

that	 take	 the	 same	 form	 individually	 in	 isolation	and	 in	 combination,	 such	 that	

associated	 with	 each	 partial	 state	 are	 partial	 laws	 given	 in	 terms	 of	 their	

corresponding	fields	that	take	the	same	form	on	each	individual	partial	state	and	

on	the	overall	state	in	combination,	whilst	not	stating	the	facts.	

This	leads,	after	 the	Fock	construction	on	each	partial	state,	 to	a	natural	

description	 of	 the	 overall	 system	 best	 balancing	 simplicity	 and	 strength	 (cf.	

chapter	4,	esp.	n.7)	via	multiple	applications	of	‘superposition’:	

(1)	The	 initial	 ‘generalized’	 isolation	/	superposition	discussed	here	 into	

the	fields	and	states	associated	with	different	particle	types	using	the	Volkmann	

device;	

(2)	The	Fourier	series	solutions	to	 the	wave	equations	derived	from	the	

fields	obtained	from	(1)	using	Hilbert	superposition;	

(3)	 The	 decomposition	 of	 the	 Hilbert	 space	 sectors	 associated	 with	

particle	 types	 postulated	 in	 (1)	 into	 eigenstates	 of	 the	 4-momentum	 and	

permutation	 operators	 to	 construct	 Fock	 spaces	 states	 using	 (2)	 and	 Hilbert	

superposition	and	Fourier	techniques	applied	to	Schrödinger’s	equation;		

(4)	To	complete	the	dual	aspect	of	the	Fourier	technique,	the	initial	state	

is	 expressed	 in	 terms	 of	 the	 eigenstates	 of	 the	 4-momentum	 and	 relevant	

permutation	operators	in	each	partial	state	obtained	from	(1).	

This	 ‘Volkmann-Fourier’	 procedure	 supplies	 a	 natural	 description	 of	 the	

quantum	 system	 interpreted	 as	 a	 particle	 description	 that	 supports	 physically	

salient	 explanations,	 inductive	 inferences	 and	 counterfactual	 reasoning	 for	 the	

complicated	 overall	 system	 in	 terms	 of	 the	 simple	 partial	 states	 and	 laws	

associated	with	them.	
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This	contrasts	with	the	failure	of	the	procedure	for	interacting	systems	in	

QFT,	for	which	the	coupled	field	equations	are	nonlinear	when	considered	in	the	

perturbative	 approach.20	The	 problem	 is	 that	 however	 one	 seeks	 to	 identify	

abstracted	 fields	and	corresponding	partial	states,	 the	 fields	will	always	couple	

with	 each	 other	 in	 general	 (by	 definition,	 to	 introduce	 an	 interaction).	 This	

means	 that	 any	 such	 field	will	 act	non-trivially	not	only	on	 the	putative	partial	

state	that	one	attempted	to	isolate	and	associate	with	that	field,	but	also	on	other	

putative	 partial	 states	 too.	 This	 means	 that	 the	 ‘partial	 states’,	 and	 the	

corresponding	 ‘partial	 laws’,	 no	 longer	 take	 the	 same	 form	 individually	 and	 in	

combination	 so	 that	 the	 Volkmann	 device	 fails.21	What	 we	 would	 require	 for	

application	of	the	Volkmann	device	in	the	interacting	case	is:	

(I)	That	we	could	decompose	the	overall	state	via	

|Σ⟩ = |Φ⟩⊛ãa|aä |Ψ⟩	

where	the	form	of	composition	is	to	be	specified,	but	must	be	able	to	support	a	

‘trace	principle’	 for	 the	persistence	of	 the	putative	 components	 so	 that	we	can	

meaningfully	 identify	 the	 isolated	 or	 abstracted	 partial	 states	 in	 the	 same	way	

individually	and	in	combination;	

(II)	The	 identification	of	corresponding	 fields	such	that	 the	action	of	 the	

fields	is	given	by	

,-|Σ⟩ = ,- ⊛è1äåç Ø∞|Φ⟩ ⊛è1äåç |Ψ⟩ = (,-|Φ⟩) ⊛è1äåç |Ψ⟩	

with	the	form	of	composition	to	be	specified,	etc.;	

(III)	 These	 partial	 states	 and	 fields	 completely	 characterize	 the	 system,	

with	the	partial	states	and	corresponding	partial	laws	constructed	via	the	fields	

taking	the	same	form	individually	and	in	combination,	according	to	(I)	and	(II).	

This	 is	 what	 Schwinger	 (1949,	 651-652;	 cf.	 §8.5)	 presumed,	 that	 there	

exist	 ‘bare’	 independent	 fields	(i.e.	 isolated	or	abstracted	 fields	 taking	the	same	

form	 individually	 and	 in	 combination)	 that	 support	 representations	 of	

interacting	 QFTs	 according	 to	 the	 Volkmann	 device.	 Schwinger’s	 conceptual	

assumption	 remains	 prevalent	 even	 after	 the	 introduction	 of	 renormalization	

group	methods	for	example.	For	instance,	Cheng	and	Li	suggest	that	
																																																								
20	The	non-perturbative	approach	does	not	show	how	to	identify	or	to	relate	interacting	fields.	
21	As	we	have	seen,	in	some	restricted	contexts,	such	as	the	idealized	free	asymptotic	states,	fields	
(the	0'12/_`a)	and	associated	partial	states	can	be	chosen	to	satisfy	the	Volkmann	device,	but	the	
applicability	of	such	a	representation	is	restricted	to	this	limited	context.	



	 245	

there	is	no	way	to	switch	off	the	interaction;	hence	quantities	in	the	absence	of	interaction,	
called	 the	 unrenormalized	 or	 the	 bare	 quantities,	 are	 not	 measurable.	 For	 example,	 in	
quantum	electrodynamics	…	the	bare	mass	[of	the	electron]	cannot	be	measured	because	
the	electron	interacts	with	the	virtual	photon	field	constantly	and	there	is	no	way	to	turn	
off	this	interaction	(1988,	30)	

The	assumption	that	Schwinger	and	Cheng	and	Li	make	appears	to	be	that	there	

exist	(in	some	unspecified,	although	apparently	metaphysical	sense)	bare	 fields	

that	 can	 be	 abstracted	 by	 mathematical	 or	 theoretical	 means,	 even	 if	 not	

physically	isolated	(i.e.	 ‘measured’),	that	take	the	same	form	(as	the	bare	fields)	

individually	in	isolation	(even	if	only	in	a	conceptually	abstracted	sense)	and	in	

combination.	22	If	this	were	the	case	application	of	the	Volkmann	device	would	be	

supported,	albeit	possibly	with	some	complicated	composition	relation	that	we	

are	not	(yet)	able	to	specify.		

	 We	have	already	seen	that	the	0'.	and	the	0'12 ,	and	associated	states,	which	

can	be	 isolated	as	such,	do	not	 take	the	same	form	individually	 in	 free	theories	

and	in	combination	in	general	interacting	theories,	as	they	cannot	be	prolonged	

to	general	interacting	systems.	But,	moreover,	we	do	not	know	how	to	choose	0'	

fields	so	as	to	satisfy	simultaneously	the	conditions	I-III	of	the	Volkmann	device	

and	support	a	natural	description	of	the	system	and	a	concept	of	interaction,	at	

least	according	to	the	current	conceptual	framework	of	QFT.	

It	would	appear	that	the	only	way	in	which	the	Volkmann	device	might	be	

supported	 would	 by	 appeal	 to	 a	 form	 of	 compositions	⊛1	involving	 the	 non-

linear	 superposition	 principle	 in	 a	 rather	 general	 form	 (i.e.,	 not	 simple	

multiplication	 or	 tensor	 product).	 But	 it	 is	 entirely	 speculative	 as	 to	 whether	

such	a	principle	might	be	supported.	Even	if	it	were,	the	physical	significance	of	

the	 components	 identified,	 and	 their	 relation	 to	 familiar	 concepts,	 is	 not	 at	 all	

clear	(cf.	§10.2.4).	It	would	require	a	new	conceptual	framework	involving	some	

sort	of	‘generalized	non-linear	Hilbert	space’	structure,	whatever	that	might	look	

like.	This	difficulty	is	perhaps	that	which	Heitler	anticipated	(1936;	cf.	§7.6).	

If	 we	 remain	 within	 the	 standard,	 established	 Hilbert	 space	 conceptual	

framework	for	the	representation	of	states	in	QFT,	this	problem	–	of	the	inability	

																																																								
22	This	point	goes	unrecognized	in	some	attempts	to	supply	analogies	using	examples	in	classical	
physics	to	illuminate	renormalization.	For	example	Coleman	uses	Green’s	analysis	(1834)	of	the	
comparison	of	the	‘bare	mass’	of	a	sphere	and	its	‘effective	mass’	when	moving	in	a	fluid	as	an	
analogy	for	mass	renormalization	in	QFT	(2019,	207).	But	this	is	misleading.	In	Green’s	example	
one	can	isolate	the	bare	sphere,	but	one	cannot	meaningfully	abstract	bare	entities	and	their	
properties	in	QFT.	
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conceptually	to	abstract	bare	fields	and	states	according	to	the	Volkmann	device	

–	is	marked	by	the	need	for	renormalization,	however	the	fields	and	parameters	

appearing	 in	 the	 coupled	 field	 equations	 are	 chosen.	 Indeed,	 compensating	 for	

the	 absence	 of	 such	 a	 decomposition	 of	 states	 and	 fields	 according	 to	 the	

Volkmann	device	in	order	to	produce	an	empirically	adequate	theory	is	a,	if	not	

the,	goal	of	renormalization,	the	need	for	which	is	highlighted	when	one	attempts	

to	calculate	the	scattering	amplitudes	via	Dyson’s	expansion.23		

It	is	important	here	to	distinguish	between	this	case	of	the	failure	of	the	

Volkmann	device	which	is	associated	with	the	non-linearity	of	the	coupled	field	

equations	 in	QFT,	 and	models	of	 physical	 systems	 that	model	 interactions	 in	 a	

different	 fashion	 whilst	 using	 non-linear	 differential	 equations	 in	 which	 the	

Volkmann	device,	 or	 something	 similar,	 enables	 the	 abstraction	 or	 isolation	 of	

entities	that	are	said	to	interact,	even	when	the	‘interaction’	is	non-linear.	I	have	

in	 mind	 the	 Lotka-Volterra	 predator-prey	 model	 in	 which	 the	 numbers	 of	

(typically)	 foxes	and	rabbits	present	 in	a	population	are	modeled	by	non-linear	

differential	equations	including	an	‘interaction’	between	the	rabbits	and	foxes.24	

In	the	Lotka-Volterra	case	one	identifies	distinct	types	of	entities,	the	rabbits	and	

foxes,	in	which	the	identity	of	that	type	of	entity	persists	in	the	evolution	of	the	

system.	 But	 the	 non-linear	 coupling	 relates	here	 to	 the	numbers	of	 the	 entities	

and	not	 to	 their	 identities	as	types.	 In	QFT	the	non-linear	differential	equations	

																																																								
23	Historically	the	need	for	renormalization	was	recognized	as	it	arose	in	the	context	of	the	
evaluation	of	divergent	integrals	in	the	evaluation	of	‘loop	diagrams’	owing	to	their	unrestrained	
p-values.	Renormalization	was	the	procedure	used	to	force	finite	results	that	agreed	with	
experimental	results	via	infinite	shifts	in	parameters.	However,	renormalization	is	required	even	
without	infinite	parameter	shifts,	in	a	finite	theory	(Cheng	and	Li	1988,	30).	For	instance	in	the	
application	of	QFT	to	condensed	matter	physics	a	scale	parameter	establishes	a	natural	
momentum	limit	in	the	evaluation	of	the	relevant	integrals,	so	that	renormalization	requires	a	
finite	parameter	shift	(cf.	Aitchison	and	Hey	2013,	1.304).	Thus	divergence	is	not	the	real	issue	
that	drives	renormalization.	As	Lancaster	and	Blundell	put	it,	‘Renormalization	is	not,	therefore,	
an	exercise	in	hiding	infinities,	it’s	an	exercise	in	making	a	theory	describe	real	life.’	(2014,	291).	
The	driving	issue	is	the	failure	of	the	Volkmann	device	when	it	is	tacitly	assumed	in	the	
construction	of	the	interacting	theory.	The	failure	of	the	Volkmann	device	is	initially	
compensated	for	by	regularization	of	the	theory	and	the	introduction	of	counter-terms,	which	
ultimately	leads	to	the	modification	of	parameters	(cf.	§9.7.3)	to	force	the	theory	to	agree	with	
experiment.	This	is	the	case	whether	one	considers	early	approaches	to	renormalization,	or	
modern	renormalization	group	(RG)	techniques.	RG	techniques	may	be	said	to	compensate	for	
the	failure	of	the	Volkmann	device	in	conceptually	more	illuminative	ways.	The	comparison	of	
this	perspective	on	RG	techniques,	that	is,	in	relation	to	the	failure	of	the	Volkmann	device,	to	the	
usual	perspective	of	the	role	of	scale	in	RG	methods	merits	further	analysis,	which	is	beyond	my	
scope	here.	See	e.g.	Butterfield	and	Bouatta	(2014);	Cao	(1993)	for	overviews	of	the	development	
of	renormalization	techniques	with	discussion	of	their	philosophical	significance.	
24	I.e.,	the	foxes	eat	the	rabbits.	See	Simmons	(2017,	507-512).	



	 247	

concern	 the	 identities	 of	 the	 types	 of	 entities	 and	 not	 simply	 their	 number	 or	

properties.	

Perhaps	the	difference	can	be	expressed	in	terms	of	the	claim	that	in	the	

Lotka-Volterra	case	an	ontology	of	 the	model	 is	already	chosen	from	which	the	

behaviour	 of	 the	 numbers	 of	 the	 two	 types	 of	 entities	 is	 then	 modeled	 by	

functions	that	appear	 in	a	non-linear	differential	equation,	whereas	 in	QFT	 it	 is	

the	mathematical	entities	that	are	nonlinearly	related	that	are	used	to	attempt	to	

represent	 or	 to	 deduce	 the	 ontology	 of	 the	 model	 via	 the	 identities	 or	

descriptions	of	putative	partial	states	constructed.	

So	 for	 instance	a	 rabbit	has	 the	 same	 form	 in	a	population	 composed	of	

rabbits	without	foxes,	and	in	a	population	composed	of	rabbits	and	foxes.	What	

differs	is	the	evolution	of	the	number	of	rabbits	present	over	time	in	the	different	

populations.	The	number	of	rabbits	does	not	take	the	same	form	in	an	individual	

population	 of	 rabbits,	 and	 in	 combination,	 i.e.	 in	 a	 population	 of	 rabbits	 and	

foxes.	 This	 is	 where	 the	 failure	 of	 ‘superposition’	 in	 the	 Lotka-Volterra	 model	

occurs,	 that	 is,	 in	 terms	 of	 the	 numbers	 of	 the	 two	 entities	 and	 the	 law	

characterizing	 their	 evolution.	 Renormalization	 is	 not	 required.	 In	 the	 case	 of	

interacting	QFT	the	situation	 is	different	since	we	cannot	 identify	partial	states	

(that	are	assumed	to	represent	the	ontology	of	the	system)	whose	identity	takes	

the	 same	 form	 individually	 (i.e.,	 in	 a	 free	 theory)	 and	 in	 combination	 in	 the	

interacting	theory.	We	can	conceptually	abstract,	and	of	course	physically	isolate,	

rabbits	 in	 the	 context	of	 the	Lotka-Volterra	model,	but	not	 the	putative	partial	

(bare)	 states	 of	 interacting	 QFT.	 Renormalization	 is	 the	 means	 by	 which	 one	

compensates	 for	 this	 difficulty,	 that	 one	 cannot	 identify	 entities	 (rather	 than	

their	 number	 or	 properties)	 that	 take	 the	 same	 form	 individually	 and	 in	

combination.	 In	order	 to	 set	up	a	model,	 one	 is	 forced	 to	attempt	 to	do	so,	but	

one	 will	 always	 fail,	 with	 the	 failure	 partially	 compensated	 for	 by	

renormalization.	

Application	 of	 the	 Volkmann	 device	 is	 supported	 in	 QFT	 with	 suitable	

choice	 of	 fields/states	 in	 some	 very	 restricted	 contexts	 and	 in	 a	 conceptually	

limited	 way,	 such	 as	 the	 idealized	 physical	 (renormalized)	 asymptotic	

fields/states	of	the	scalar	Yukawa	theory	via	the	0'12.	However,	the	0'12	and	their	

associated	Fock	spaces	are	associated	with	free	theories,	and	so	do	not	support	a	
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concept	 of	 interaction	 or	 any	 physical	 explanations	 in	 terms	 of	 charge,	 and	

cannot	be	prolonged	to	describe	interactions	as	per	§10.2.3.	

Different	 theoretical	 contexts	 in	 QFT	 –	which	 we	 should	 note	 exhibit	 a	

façade	 structure	 –	 involve	 different	 situations	 in	 which	 such	 a	 limited	

‘workaround’	to	the	failure	of	the	Volkmann	device	is	possible,	such	as	associated	

with	 asymptotic	 freedom	 in	 QCD	 (cf.	 Bain	 2000)	 in	which	 idealized	 free	 fields	

may	 be	 obtained	 at	 very	 short	 length	 scales	 /	 high	 energies,	 or	 in	 terms	 of	

quasiparticles	in	condensed	matter	physics	(cf.	Lancaster	and	Blundell	2014).	

What	one	can	say	regarding	general	interacting	states	in	QFT	is	that	one	

has	a	decomposition	of	an	arbitrary	state	|Σ⟩	into	a	superposition	of	eigenstates	

|Å, i⟩	upon	which	one	can	choose	fields	,- 	and	&'	–	that	are	underdetermined	(cf.	

§§10.3.3;	11.3)	–	that	act	in	some	coupled,	complicated	way.	It	is	the	failure	of	the	

Volkmann	device	characterized	by	the	nonlinearity	of	the	coupled	field	equations	

in	 conjunction	with	 the	 putative	 partial	 states	 being	 required	 to	 be	 associated	

with	the	ontology	of	the	theory,	whatever	fields	are	chosen,	that	diagnoses	why	

fields	and	associated	states	cannot	be	abstracted	or	isolated	to	describe	general	

interacting	 states.	 This	 failure	 requires	 renormalization	 to	 achieve	 empirically	

adequate	results.	According	to	the	Volkmann	device,	successful	identification	of	

the	 ‘isolation	 centres’	 would	 be	 marked	 by	 the	 absence	 of	 the	 need	 for	

renormalization,	and	if	this	were	possible	it	would	reflect	successful	application	

of	the	non-linear	superposition	principle.	

In	practice	we	are	forced	to	introduce	the	0'	coordinates	to	decompose	the	

Hamiltonian,	as	we	cannot	do	otherwise,	which	act	on	the	Hilbert	space	of	states	

from	 which	 iterative	 calculations	 yield	 empirically	 adequate	 results	 using	 the	

interaction	picture	fields	0'.	after	renormalization.	But	the	field	types	associated	

with	 the	0' 	coordinates	 form	 a	 complicated	 and	 counterintuitive	 coordinate	

system	that	does	not	behave	nicely	as	one	would	expect	good	coordinate	systems	

to	behave	that	support	(or	depend	upon)	‘superposition’,	and	it	is	this	that	forces	

the	 need	 for	 renormalization.	 No	 ‘coordinate’	 choice	 of	 fields	 is	 ‘natural’	 for	

interacting	states	as	no	choice	of	coordinates	directly	supports	physically	salient	

explanations	or	picks	out	physical	features	or	properties	of	the	system	as,	say,	in	

Sturm-Liouville	 theory	 (cf.	 chapter	 4).	Moreover,	 as	we	 shall	 consider	 in	more	

detail	 in	§11.3.2	the	 interacting	 fields	0'	as	 they	are	utilized	 in	scattering	theory	
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are	underdetermined	for	general	interacting	states.	The	role	of	the	0'	is	clarified	

as	supporting	calculations	(after	renormalization)	as	‘interpolating’	between	the	

idealized	 asymptotic	 in-	 and	 out-states,	 rather	 than	 supporting	 descriptions	 of	

general	interacting	states.	

Failure	 of	 the	 Volkmann	 device	 is	 associated	 with	 a	 further	 difficulty	

raised	 earlier:	 How	 can	 we	 meaningfully	 talk	 of	 ‘interactions’	 if	 we	 cannot	

identify	 components	 that	 are	said	 to	be	 interacting?	The	 concept	of	 interaction	

has	 a	 patchwork	 structure.	 One	 patch	 is	 associated	 with	 interaction	 between	

objects	 such	 as	 in	 the	 example	 of	 the	 macroscopic	 interaction	 between	 two	

charged	 metal	 spheres,	 another	 with	 isolatable	 entities	 such	 as	 linearly	

propagating	 waves	 that	 interfere.	 Another	 patch	 with	 different	 architecture	

might	 be	 interactions	 between	 people.	 In	 each	 case	 there	 are	 isolatable	 or	

abstractable	entities	with	their	own	independent	 identity	 taking	the	same	form	

individually	 and	 in	 combination	 that	 interact,	 so	 that	 the	 individual	 identity	of	

the	 entities	may	 be	 traced	 during	 the	 interaction	 (cf.	 Simons	 trace	 principle	 in	

§2.3.2).25	We	have	 supposed	 that	we	 can	 prolong	 the	 concept	 of	 interaction	 to	

the	 fundamental	 level	 without	 special	 difficulty	 but,	 counter-intuitively,	 the	

prolongation	fails	and	we	don’t	know	what	it	means	to	talk	of	interacting	states	

in	QFT	beyond	saying	that	initial	idealized	state	A	‘interacts’	with	initial	idealized	

state	B	to	produce	final	idealized	state	C.	

In	other	words,	we	can	talk	of	asymptotic	particle	in-states	via	the	0'12	that	

may	 be	 said	 to	 interact	 in	 the	 sense	 that	 there	 is	 an	 outcome	 of	 asymptotic	

particle	out-states	that	differ	from	the	in-states.	This	is	what	we	mean	by	particle	

interactions.	But	we	must	remain	silent	regarding	the	description	or	process	of	

the	evolving	‘interacting	state’	that	associates	the	in-	and	out-states.	This	implies,	

moreover,	that	there	is	a	difficulty	regarding	how	we	understand	bound	states	as	

composed	of	interacting	particles	(see	§§11.5-6).	

The	 difficulty	 in	 applying	 the	 concept	 of	 interaction	 at	 or	 near	 the	

fundamental	 level,	 the	 failure	 of	 the	 concept	 of	 superposition	 at	 this	 level	 of	

description	 owing	 to	 the	 nonlinearity	 of	 the	 coupled	 field	 equations,	 and	 the	

																																																								
25	I	am	assuming	that	this	is	a	necessary	condition	to	speak	meaningfully	of	interaction	in	the	full	
sense	of	the	concept	entailing	a	description	of	interaction,	although	perhaps	this	could	be	
challenged.	
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introduction	 of	 an	 interaction	 as	 a	 ‘perturbation’	 (or	 perhaps	 ‘effective	

perturbation’	via	gauge	methods)	and	renormalization	are	intimately	related	via	

the	failure	of	the	Volkmann	device,	presenting	a	serious	obstacle	for	any	attempt	

to	develop	a	‘fundamental	level’	metaphysics	using	QFT.	

As	we	 shall	 see	 in	 chapter	 11,	 it	 is	 better	 to	 view	 QFT	 as	 possessing	 a	

façade	 structure	 of	 local	 patches	 of	 applications	 that	 involve	 reliable	

approximations,	idealizations	and	sometimes	ad	hoc	‘fixes’	as	associated	with	an	

engineer’s	 approach	 to	 modelling	 a	 system	 or	 phenomenon	 rather	 than	 as	

revealing	the	fundamental	nature	of	reality.26	

	

10.6	Summary		

We	have	seen	that	there	is	no	particle	description	available	for	interacting	states	

in	perturbative	QFT	owing	to	the	failure	of	‘superposition’	to	apply	at	two	critical	

(associated)	 moments	 –	 in	 the	 selection	 of	 the	 fields	 and	 associated	 states	 in	

relation	 to	 the	 Volkmann	 device,	 and	 in	 relation	 to	 the	 nonlinearity	 of	 the	

coupled	 field	 equations.	 I	 related	 the	 discussion	 of	 the	 implications	 of	

nonlinearity	 of	 the	 coupled	 field	 equations	 to	 Haag’s	 theorem,	 also	 briefly	

considering	some	implications	of	the	latter.		

The	failure	of	 ‘superposition’	in	these	two	senses	is	not	addressed	in	the	

constructive,	 axiomatic	 foundations	of	 non-perturbative	QFT,	 and	 is	 associated	

with	a	problem	with	the	concept	of	 ‘interaction’	at	the	(near)	fundamental	level	

owing	to	the	inapplicability	of	the	initial	attempt	to	use	the	Volkmann	device	to	

identify	partial	states	and	associated	fields	that	take	the	same	form	individually	

and	in	combination.	The	failure	of	the	Volkmann	device	is	partially	compensated	

for	by	renormalization	procedures.	

However,	 it	 is	 possible	 in	 principle	 to	 form	 a	 natural	 description	 of	 a	

general	 interacting	 state	 in	 non-perturbative	 QFT	 owing	 to	 the	 linearity	 of	

Schrödinger’s	equation	and	application	of	Hilbert	superposition,	but	without	the	

ability	 to	 construct	 the	 required	 eigenstates	 in	 terms	 of	 fields	 associated	with	

familiar	particle	concepts.		

																																																								
26	The	concept	of	an	‘effective	field	theory’	as	associated	with	RG	approaches	would	be	an	
interesting	avenue	to	explore	in	this	perspective	although	it	is	beyond	what	can	be	covered	here.		
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Chapter	11	

	

Unstable	particles,	scattering	theory	and	bound	states:	

An	‘engineer’s	approach’	

	

11.1	Overview	and	the	‘engineering	perspective’	toward	QFT	

In	 this	 chapter	 I	 consider	 the	 application	 of	 some	 of	 the	 results	 of	 the	 non-

perturbative	 framework	(§§10.3-4)	before	completing	my	analysis	of	scattering	

theory.	I	briefly	discuss	the	modelling	of	bound	states	before	commenting	on	the	

significance	of	the	coupling	strength	of	a	theory	for	the	‘approximate	application’	

of	superposition.	The	various	modelling	situations	manifest	the	façade	nature	of	

QFT,	which	I	interpret	to	suggest	that	QFT	is	best	understood	in	relation	to	the	

perspective	of	an	engineer’s	rather	than	a	metaphysician’s.		

So,	 first,	 in	 §11.2	 I	 shall	 demonstrate	 a	 practical	 application	 of	 the	 ‘in	

principle’	 knowledge	 of	 the	 eigenstates	 of	 the	 4-momentum	 operator	 in	

establishing	the	Källén-Lehmann	spectral	resolution	of	the	2-point	propagator	or	

correlation	 function	 for	 any	 field.	 Study	 of	 the	 propagator	 enables	 a	 better	

understanding	of	interacting	fields	(§11.2.1)	and,	importantly,	it	allows	unstable	

particles,	 and	 some	 types	 of	 quasiparticle,	 to	 be	 modelled	 and	 characterized	

(§11.2.2).	 However,	 the	 physical	 interpretation	 of	 the	 characterization	 of	

unstable	particles	especially	in	terms	of	‘superposition’	is	unclear.	

Secondly,	 I	 consider	 scattering	 theory	 in	 §11.3.	 The	 asymptotic	

relationship	between	 the	 idealized	asymptotic	 fields	!"#$/&'( 	and	 the	 interacting	

fields	!"	satisfying	the	coupled	wave	equations	is	seen	to	be	established	by	Haag-

Ruelle	 theory	 in	§11.3.1.	 In	§11.3.2	 I	 show	how	 to	 relate	 the	!"&'( 	to	 the	!"#$	via	

the	!"-fields	using	the	important	result	of	Lehmann,	Symanzik	and	Zimmermann	

(1955),	the	‘LSZ	scattering	theory’,	 in	terms	of	multi-point	correlation	functions	

or	 Green’s	 functions.	 The	!"-fields	 are	 interpreted	 here	 as	 underdetermined	

‘interpolating	fields’,	as	introduced	in	§10.3,	since	they	‘interpolate’	between	the	

in-	and	out-states.	Although	we	already	know	(chapter	10)	that	we	do	not	have	

any	natural	description	of	 interacting	states,	 the	LSZ	result	 is	a	vital	result	 that	

leads	towards	supporting	the	ability	to	calculate	scattering	amplitudes.	
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Thirdly,	 in	 §11.4	 I	 show	 how	 the	 Gell-Mann	 and	 Low	 theorem	

demonstrates	that	Dyson’s	expansion,	and	its	Feynman	diagram	interpretation	in	

the	interaction	picture,	can	be	used	to	approximate	the	Green’s	functions	that	are	

central	 to	 the	 LSZ	 result	 given	 in	 terms	 of	 the	!"-fields.	 Together,	 these	 results	

enable	iterative	approximations	of	S-matrix	elements	using	the	!")-fields,	subject	

to	 successful	 renormalization.	 So,	we	now	have	a	 scattering	 theory	 that,	whilst	

not	 offering	 any	 description	 of	 scattering	 processes,	 enables	 empirically	

adequate	calculations	of	scattering	amplitudes	to	be	performed.	

	 Fourthly,	 I	 discuss	 how	 calculations	 of	 the	 properties	 and	 behaviour	 of	

bound	 states	 may	 be	 performed	 in	 some	 cases	 using	 the	 Gell-Mann	 and	 Low	

theorem	even	in	the	absence	of	a	natural	description	of	any	internal	structure	of	

so-called	‘bound	states’	in	§11.5.	

Finally,	in	§11.6	I	consider	the	possibility	of	conceptualizing	bound	states	

as	‘approximately	composed’	of	constituent	particles	as	a	‘working	picture’	even	

if	 not	 as	 a	 true	metaphysical	 description.	 The	 ability	 to	 do	 so	 depends	 on	 the	

strength	of	the	coupling	of	the	theory,	indicating	that	this	is	possible	for	weakly	

but	not	strongly	coupled	theories.	This	means	that	our	 ‘working	picture’	of	 the	

nucleus	of	an	atom	will	differ	significantly	from	that	of	its	electron	configuration,	

since	the	former	is	modelled	partly	in	terms	of	a	strongly-coupled	theory	(QCD)	

and	 the	 latter	 a	 weakly-coupled	 theory	 (QED),	 where	 moreover	 the	 electron	

configuration	is	adequately	modelled	by	NRQM	for	most	practical	purposes.	

	 What	these	various	discussions	of	particular	applications	of	QFTs	indicate	

is	the	façade	nature	of	QFT	and	that	an	‘engineering	perspective’	reflects	a	good	

stance	to	take	towards	the	various	theories,	models	and	modelling	tools	in	QFT.	

By	an	‘engineering	perspective’	or	approach	I	mean	that	the	form	of	conceptual	

models	and	kind	of	knowledge	that	QFT	supplies	is	associated	with	an	engineer’s	

approach	to	locally	applicable	models	of	the	world,	where	such	models	support	

physically	 salient	 explanations,	 reliable	 calculations	 and	 counterfactual	

reasoning	 in	a	given	domain	 in	the	patchwork	form	that	Wilson	has	suggested,	

even	 if	 the	 models	 cannot	 be	 said	 to	 offer	 ‘natural	 descriptions’	 of	 the	

phenomena	modelled.	 This	means	 that	QFT	does	 not	 supply	 knowledge	 of	 the	

world	in	a	form	suitable	for	metaphysical	reflection	as	a	‘Theory	T’,	but	it	offers	
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more	 than	 a	 set	 of	 algorithms	 that	 support	 empirically	 adequate	 (and	 useful)	

calculations	and	no	more.	

Such	an	approach	to	QFT	was	anticipated	by	Dirac:	

The	system	of	approximations	I	shall	use	will	be	somewhat	similar	to	the	approximations	
that	 engineers	 use	 in	 their	 calculations.	 Engineers	 have	 to	 get	 results	 and	 there	 are	 so	
many	factors	occurring	in	their	problems	that	they	have	to	neglect	an	awful	 lot	of	them;	
they	don’t	have	time	to	study	everything	seriously	and	they	develop	a	sort	of	feeling	as	to	
what	can	be	neglected	and	what	can’t.	 I	believe	that	physicists	working	in	quantum	field	
theory	will	have	to	develop	a	similar	sort	of	feeling	as	to	what	can	be	neglected	and	what	
can’t.	 The	 final	 test	 is	 whether	 the	 resulting	 theory	 is	 coherent	 and	 in	 reasonable	
agreement	with	experiment.	(1966,	2-3)	

What	I	am	suggesting	goes	slightly	beyond	this,	and	might	be	summed	up	in	the	

context	 of	 QFT	 in	 terms	 of	 the	 ability	 to	 apply	 the	 Volkmann	 device	

‘approximately’,	and	to	compensate	 for	 its	 failure	 in	situations	 in	which	 it	does	

not	apply	approximately.	That	is,	within	the	conceptual	framework	of	QFT	as	we	

have	it,	the	engineering	approach	involves	developing	a	feel	for	how	to	model	the	

system	 in	 such	 a	 way	 as	 one	 can	 apply	 the	 Volkmann	 device	 as	 a	 good	

approximation	(such	as	in	modeling	the	asymptotic	states),	and	/	or	find	ways	of	

compensating	for	its	failure	(such	as	in	renormalization).	1	

This	 ‘engineering	 approach’	 does	 not	 quite	 fit	with	 realist,	 empiricist	or	

pragmatist	 stances.	 Whether	 or	 not	 particular	 conceptual	 approximations	 are	

sufficient	 to	 support	a	 realist	 stance	 to	 the	entities	 featuring	 in	an	engineering	

model,	such	as	‘constituent’	particles	of	a	bound	state,	is	an	open	question	that	I	

cannot	pursue	here.	Moreover,	as	we	have	no	idea	how	to	de-idealize	the	models	

or	remove	the	approximations	one	cannot	specify	‘in	virtue	of	what’	that	reliable	

models	that	might	support	a	modest	realist	stance	are	obtained.2	

	

11.2	An	application	of	the	eigenstates	of	Pμ:	the	Källén-Lehmann	resolution	

and	unstable	particles		

11.2.1	The	Källén-Lehmann	resolution	

I	 demonstrate	 the	 value	 of	 knowledge	 of	 the	 eigenstates	 of	Pμ	 ‘in	 principle’	 by	

considering	 the	 derivation	 of	 the	 Källén-Lehmann	 spectral	 resolution	 of	 the	

																																																								
1	Of	course	physics	and	engineering	are	separate	disciplines.	My	point	is	not	that	fundamental	
physics	is	‘really	engineering’,	but	that	the	stance	that	one	should	adopt	to	models	and	theories	of	
QFT	is	comparable	to	an	engineer’s	rather	than	a	metaphysician’s,	and	that	QFT	does	not	fulfill	
the	‘promissory	notes’	of	appeal	to	fundamental	physics	in	some	naturalized	metaphysics.	
2	Perhaps	what	is	surprising	is	that	the	tacit	expectation	to	be	able	to	dispense	with	idealizations	
and	approximations	at	the	level	of	fundamental	physics	is	not	fulfilled	by	QFT,	so	that	the	sense	
in	which	scientific	models	can	be	said	to	explain	needs	careful	nuancing	(cf.	Bokulich	2011).	
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propagator,	or	correlation	 function	(Källén	1952;	Lehmann	1954).	 I	shall	make	

some	 clarifications	 in	 the	 interpretation	 of	 the	 propagator	 and	 indicate	 how	

unstable	 particles	 are	 characterized	 in	 QFT	 via	 their	 propagators.	 This	 is	 a	

significant	result	since	most	of	the	so-called	fundamental	particles	in	Nature	are	

unstable	(Weldon	1976,	2030).	

Following	§10.3,	assume	that	a	self-adjoint	4-momentum	operator	Pμ	with	

Hamiltonian	*+ = -)	exists	 for	an	 interacting	QFT	with	Hilbert	space	ℋ,	without	

reference	 to	 fields.	 Label	 the	 (Lorentz	 invariant)	 eigenstates	|0(2), 56	by	 their	

energy	0
)

(2) ,	 momentum	7(2) 	and	 any	 other	 quantum	 numbers	 α	 required	

(Schweber	 1961,	 652).	 The	 total	 energy-momentum	 defines	 the	 mass	 of	 each	

state	 via	8(2)9 = 0:
(2)
0(2): 	where	8(2)9	is	 the	 total	 energy	 of	|0(2), 56	in	 its	 rest	

frame.	 These	 eigenstates	 enable	 derivation	 of	 the	 Källén-Lehmann	 spectral	

resolution	for	any	field	;̂	acting	on	ℋ.	

Take	the	scalar	Yukawa	theory	as	an	example	and	introduce	;̂	as	a	neutral	

scalar	 field	acting	on	ℋ,	where	;̂	might	or	might	not	appear	 in	 the	Lagrangian.3	

Consider	the	two-point	function		

=>
(?)
(@ − B) = ⟨Ω|;̂(@);̂(B)|Ω⟩	

and	 insert	 the	 completeness	 relation	 or	 ‘resolution	 of	 the	 identity’	 using	 the	

physical	eigenstates	|0(2), 56:4	

F = G |0(2), 56

|H(I),J6

K0(2), 5|	

so	that	

=>
(?)
(@ − B) = ⟨Ω|;̂(@);̂(B)|Ω⟩ = G ⟨ΩL;̂(@)|0(2), 56K0(2), 5|;̂(B)LΩ⟩

|H(I),J6

	

= G L⟨Ω|;̂(0)|0(2), 56L
9
NO#H

(I)∙(QOR)

|H(I),J6

	

																																																								
3	See	Schweber	(1961,	660-662)	for	what	follows.	See	Weinberg	(1995,	457-462)	for	charged	
scalar	field	and	Peskin	and	Schroeder	(1995,	216)	for	fermionic	fields.	
4	In	the	standard	derivation	the	completeness	relation	is	written	as	a	summation,	although	as	
Weinberg	observes	it	‘includes	integrals	over	continuous	labels	as	well	as	sums	over	discrete	
labels.’	(1995,	458).	This	step	warrants	closer	scrutiny;	here	we	follow	the	standard	derivation.	
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after	simplifying	using	translation	and	Lorentz	invariance.	Introduce	the	positive	

definite	 quantity	S>T0(2)U = (2W)X ∑ L⟨Ω|;̂(0)|0(2), 56L
9

J 	which	 we	 may	 rewrite	

as	

(2W)XG|⟨Ω|;̂(0)|0, 5⟩|9

J

= Θ(09)Θ(0))S>(0
9)	

so	

=>
(?)
(@ − B) = ⟨Ω|;̂(@);̂(B)|Ω⟩ =

1

(2W)X
\]^0Θ(09)Θ(0))S>(0

9)NO#H∙(QOR)	

Moreover,	since	

Θ(09) = \ ]_9`(09 − _9)

a

)

	

where	p	and	μ	are	understood	to	represent	physical	momentum	and	mass,	

=>
(?)
(@ − B) = \ ]_9S>(_

9)

a

)

1

(2W)X
\]^0Θ(0))`(0

9 − _9)NO#H∙(QOR) 	

= \ ]_9S>(_
9)

a

)

=
)

(?)
(@ − B; _9)	

where		

=
)

(?)
(@ − B; _9) =

1

(2W)X
\

]X7

2c(7)
NO#H∙(QOR) = Δ?(@ − B; _

9)	

the	 two-point	 function	 for	 a	 free	 neutral	 scalar	 field	 of	 mass	 μ,	where	c(7) =

e79 − _9.	Duncan	explains,		

[=
)

(?)
(@ − B; _9)	is]	 the	 invariant	 function	 arising	 from	 the	 two-point	 function	 of	 a	 free,	

canonically	 normalized	 scalar	 field	 of	 mass	 μ	 …	 This	 is	 a	 remarkable	 result	 -	 that	 the	
Wightman	 two-point	 function	 of	 an	 arbitrary	 scalar	 interacting	Heisenberg	 field	 can	 be	
written	 as	 the	 positively	 weighted	 average	 of	 the	 corresponding	 free	 field	 Wightman	
functions	for	fields	of	varying	mass,	with	a	positive	weight	function	containing	all	the	non-
trivial	interaction	physics	of	the	theory	–	this	is	the	Kållen-Lehmann	representation	of	the	
two-point	function.’	(Duncan	2012,	291	(notation	adapted))	

Or,	as	Brown	puts	 it:	 ‘the	two-field	 function	of	a	general	 interacting	scalar	 field	

can	be	expressed	as	a	superposition	of	the	corresponding	free	field	functions	of	

variable	mass.	 If	 the	theory	were	that	of	a	 free	 field	of	mass	μ,	one	would	have	

S>(0
9) = `(09 − _9)’	(1992,	285,	notation	adapted).	

The	Feynman	propagator	for	;̂	in	the	interacting	theory	is	(cf.	Peskin	and	

Schroeder	214-215):	

=>
f(@ − B) ≡ ∆f,>(@ − B) ≡ ⟨Ω|i{;̂(@);̂(B)}|Ω⟩ = \]_9S>(_

9) =)
f(@ − B; _9)	



	 256	

That	 is,	 the	 Feynman	 propagator	 for	 ;̂ 	is	 the	 ‘superposition’	 of	 Feynman	

propagators	of	free	fields	of	(continuously)	varying	mass,	weighted	by	S> .			

In	what	sense	are	these	expressions	‘superpositions’?	Do	the	terms	have	

physical	 significance	 individually	 and	 take	 the	 same	 form	 in	 and	 out	 of	

combination?	 In	 what	 sense	 do	 the	 individual	 components	=)
f(@ − B; _9)	have	

physical	 significance?	We	have	 not	 yet	 introduced	 any	 non-physical	 quantities,	

although	 we	 have	 exploited	 various	 mathematical	 representational	 devices.	 In	

particular,	 at	 this	 point	 p	may	 be	 interpreted	 as	 physical	 4-momentum,	 and	

=)
f(@ − B; _9)	represents	 physical	 propagation	 of	 a	 state	 associated	with	 a	 free	

field	 of	 mass	 μ,	 so	 this	 might	 be	 considered	 to	 be	 an	 application	 of	

‘superposition’.5	

Difficulties	 arise	 when	 the	 Feynman	 propagator	 is	 introduced	 as	 an	

explicit	function	of	p	–	the	form	most	useful	–	since	p	is	now	a	dummy	variable	

rather	than	physical	momentum	(§9.6.2).	This	often	results	in	semantic	mimicry	

manifesting	 in	 interpretations	 of	 virtual	 ‘off	 mass	 shell’	 states	 as	 we	 saw.	

However,	although	the	interpretation	of	p	in	what	follows	is	not	straightforward	

for	 this	 reason,	 the	 interpretation	 of	 μ	 and S>(_9) 	is	 already	 established	

physically	as	above.	

The	explicit	representation	in	terms	of	p	is	then	(cf.	§9.6.2):	

=>
f(@ − B) = ⟨Ω|i{;̂(@);̂(B)}|Ω⟩ = \

]^0

(2W)^
NO#H∙(QOR) \ ]_9

a

)

lS>(_
9)

09 − _9 + ln
	

and	taking	the	Fourier	transform	of	=>f(@ − B)	gives	the	p-space	representation:	

=o>
f(0) ≡ ∆of,>(0) = \

]_9

2W

a

)

lS>(_
9)

09 − _9 + ln
	

=o>
f(0)	is	 defined	 for	09 ∈ ℝ,	09 ≥ 0,	 and	 may	 be	 considered	 a	 function	 of	09,	

namely	=o>f(09).	 However,	 it	 will	 prove	 useful	 to	 consider	 the	 continuation	 of	

=o>
f(09)	onto	 the	 complex	09-plane,	 denoted	st′(09)	where	 now	09 ∈ ℂ.	 This	 is	 a	

further	 shift	 away	 from	 a	 physical	 interpretation	 of	 p	 using	 another	

mathematical	 device	 (analytic	 continuation	 on	ℂ),	 even	 if	 it	 will	 have	 physical	

implications	 as	 we	 shall	 see.	 	 The	 analytic	 structure	 of	st′(09) 	will	 prove	

																																																								
5	Typically	the	propagator	is	interpreted	with	reference	to	particles,	but	it	is	not	clear	that	the	
state	associated	with	the	propagator	is	best	interpreted	as	a	‘particle’.	It	might	be	better	to	
interpret	it	as	an	‘elementary	system’	in	the	Newton-Wigner	sense	(cf.	§8.6).	
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important	 once	 the	 physical	 spectrum	of	 the	 theory,	 i.e.	 the	 set	 of	 eigenvalues	

and	 corresponding	 eigenstates	 of	 the	 4-momentum	operator	 of	 the	 theory	 are	

introduced	 as	 per	 §10.3.1.	 The	 location	 of	 poles	 and	 branch	 cuts	 of	st′(09)	in	

relation	 to	 the	 lowest	mass	 eigenstate	 coupled	 to	;̂	leads	 to	 different	 forms	 of	

=>
f(@ − B) .	 ;̂ 	may	 be	 associated	 with	 stable	 particle	 types	 that	 persist	 in	

asymptotic	states,	as	in	scattering	theory	if	;̂	couples	with	an	isolated	eigenstate	

of	mass	 less	 than	 the	 threshold	mass	 (case	 1),	 or	unstable	 particles	 or	 indeed	

certain	types	of	quasiparticles	if	it	only	couples	with	eigenstates	of	mass	greater	

than	the	threshold	mass	(case	2).	

	

11.2.2	Case	1:	wx	couples	with	an	isolated	pole	of	st′(09)	

The	first	case	reflects	 the	scalar	Yukawa	theory	as	 it	has	been	 implicitly	set	up	

thus	far.	That	is	with	a	neutral	scalar	yz 	field	of	mass	m	coupled	to	charged	scalar	

fields	{"	and	{"|	of	 mass	M	where	 the	 physical	 or	 renormalized	 masses	 satisfy	

8H}R~
9 < _(}ÄÅ~}&ÇÉ

9 ,	 i.e.	8H}R~
9 	is	below	 the	 threshold	mass	 (§10.3.1).	Taking	;̂	as	

this	yz ,	the	spectrum	of	states	coupled	to	yz 	is	

	Ñ0,8H}R~
9 , Ömin ÑT28H}R~U

9
, T2âH}R~U

9

ä = _(}ÄÅ~}&ÇÉ
9 , ∞åä.6		

That	 is,	 as	 in	 our	 discussion	 of	 (Ib)	 in	 §10.3,	 we	 know	 that	 as	 regards	 the	

asymptotic	 states,	yz 	‘excites’	 renormalized	 single	 particle	 states,	 the	 single	

particle	state	having	invariant	mass	8H}R~
9 	which	may	be	associated	with	yz#$ .7	It	

excites	states	of	mass	Tç8H}R~U
9
	possessing	any	total	momentum	≥ Tç8H}R~U

9
,	

and	 since	yz 	couples	with	{"	and	{"|,	 it	 will	 excite	 physical	 psion-anti	 psion	 pair	

states	of	mass	T2âH}R~U
9
,	T4âH}R~U

9
and	so	on,	subject	to	any	selection	rules.	The	

spectrum	 of	 P2	 consists	 of	 a	 discrete	 point	 at	_9 = 8H}R~
9 ,	 a	 discrete	 point	 at	

bound	states	with	_9 = 8è
9 	(which	we	ignore	for	present	purposes)	and	continua	

starting	 at	 the	 eigenvalues	 associated	 with	 the	 eigenstates	 that	 correspond	 to	

multi-particle	 states	 in	 the	asymptotic	 regions,	with	 the	 lowest	 commencing	at	

_(}ÄÅ~}&ÇÉ
9 .	 Although	 the	 particle	 interpretation	 of	 the	 eigenstates	 in	 the	

asymptotic	 regions	 cannot	be	prolonged	 to	 the	general	 interacting	 states,	 their	

																																																								
6	Neglecting	bound	states	for	now,	and	note	that	depending	on	the	theory	selection	rules	may	
require,	for	instance,	the	lowest	mass	multi-particle	phion	state	is,	e.g.	3mphys	(Barton,	1963,	55).	
7	For	simplicity	I	omit	the	‘smearing’	function	required	to	produce	single	particle	states	here.	
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spectrum	can	due	to	conservation	laws	and	the	unitarity	of	the	evolution	of	the	

states,	 giving	 the	 analytic	 structure	 of	 the	 propagator	 (cf.	 §10.4).	Sê(_9)	is	 the	

amplitude	for	coupling	yz 	with	eigenstate	of	invariant	mass	_9.	

Mathematically	 speaking	 (i.e.	 p2	 is	 only	 interpreted	 as	 the	 physical	 4-

momentum	when	 it	 is	 in	 the	 spectrum	of	P2	 and	 thus	associated	with	physical	

states),	st′(09)	is	the	continuation	on	the	complex	p2-plane	of	

=oê
f(0) ≡ ∆of,ê(0) = \

]_9

2W

a

)

lSê(_
9)

09 − _9 + ln
	

st′(09)	has	an	isolated	pole	at	09 = 8H}R~
9 ,	isolated	poles	corresponding	to	bound	

states,	 and	 branch	 cuts	 commencing	 at	 the	 invariant	mass-squared	 eigenstates	

that	resolve	as	multi-particle	states	in	the	idealized	asymptotic	regions:	

	

Fig.	11.1	Analytic	structure	of	st′(09)	for	field	of	mass	less	than	threshold	mass	

	The	 propagator	 has	 the	 mathematical	 form,	 inserting	 now	 a	 bound	 state,	 (cf.	

Schweber	1964,	663;	Schwartz	2014,	467-470)	

=oê
f(09) = st′(09)L

ëíì
î→ñó

Hò?#ô,			Hò∈ℝó	

=
lõê

09 − 8H}R~
9 + ln

+
lú

09 − 8è
9 + ln

+ \
]_9

2W

a

:
ùûü†°û¢£§
ò

lSê(_
9)

09 − _9 + ln
	

The	pole	at	09 = 8H}R~
9 	is	 associated	with	 the	propagation	of	 a	 free	phion.	õêis	

the	 ‘wave	 function’	 or	 ‘field	 strength’	 renormalization	 factor	 as	 it	 gives	 the	

amplitude	for	yz 	to	excite	an	idealized	physical	phion	of	invariant	mass	8H}R~
9 	as	

associated	with	the	Fock	space	structure	generated	by	yz#$ .	The	choice	of	yz 	as	an	

‘interpolating	 field’	 (cf.	§11.3.2)	 is	underdetermined	 in	scattering	theory	as	any	
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such	field	coupling	with	this	physical	single	phion	state	will	suffice.	The	general	

form	of	the	spectral	weight	is	sketched:	

	

Fig.	11.2	Spectral	weight	for	field	of	mass	less	than	threshold	mass	

This	 is	 a	 valuable	 result	 as	 it	 enables	 one	 to	 identify	 the	 asymptotic	

physical	particle	associated	with	the	chosen	field	with	its	physical	mass	and	field	

strength	renormalization	õê	from	the	pole	of	 the	momentum	space	propagator.	

Moreover,	since	fields	require	integration	against	test	functions	•(0)	to	produce	

realistic	particle	wave-packets,	a	‘momentum	filter’	may	be	introduced	to	isolate,	

for	 instance,	 the	 single	 physical	 phion	 contribution	 by	 choosing	 the	 support	of	

•(0)		 such	 that	 it	 only	 contains	 p	 such	 that	 p2	 is	 in	 a	 small	 region	 containing	

8H}R~
9 ,	as	used	in	the	Haag-Ruelle	theory	in	§11.3.1.	

Although	the	‘above	threshold’	states	are	often	interpreted	as	‘the	multi-

particle	 states’,	 they	 should	 simply	 be	 interpreted	 as	 eigenstates	 of	 given	

invariant	mass	without	 finer	structure,	such	as	a	particle	 interpretation,	as	 this	

interpretation	 is	 unsupported,	 resulting	 from	 semantic	 mimicry	 as	 the	 ‘above	

threshold’	states	do	not	support	a	physically	meaningful	Fock	structure,	except	

in	the	idealized	asymptotic	states	(cf.	§10.2-3).		

	

11.2.3	Case	2:	Lowest	mass	state	wx	excites	>	threshold	mass:	unstable	

particle	or	quasiparticle		

l=oê
f(09)	has	an	 imaginary	part	 for	09 > _(}ÄÅ~}&ÇÉ

9 	(Barton	1963,	54).8	This	 leads	

to	 a	 complication	 (that	 can	 be	 exploited)	 if	 in	 the	 scalar	 Yukawa	 theory	yz 	has	

																																																								
8	The	comment	is	somewhat	awkward	since	some,	such	as	Barton,	relocate	the	i	factor	so	that	our	
G,	D	is	their	iG,	iD.	
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mass	greater	than	the	threshold	mass.	In	such	a	case	yz 	no	longer	couples	with	a	

lowest	mass	state	corresponding	to	an	isolated	pole	in	st′(09).	This	complicates	

the	analysis	of	the	action	of	yz 	in	the	propagator.	I	omit	the	mathematical	details	

and	 state	 the	 result	 with	 minimal	 discussion	 of	 the	 mathematical	 derivation.	

Very	 briefly,	l=oêf(09)	now	 always	 has	 an	 imaginary	 part,	 with	 there	 being	 a	

discontinuity	 in	st′(09)	in	 the	 complex	09 -plane	 across	 the	 branch	 cut.	 This	

necessitates	 the	 definition	 of	 the	 propagator	=oêf(09)	using	 the	 continuation	 on	

the	 Riemann	 surface	 associated	st′(09),	 displacing	 the	 pole	 in	 the	 propagator	

associated	with	yz 	below	the	real	axis:	9		

	
Fig.	11.3	Analytic	structure	of	st′(09)	for	field	with	mass	greater	than	threshold	mass	

The	spectral	weight	is	now	sketched:	

	
Fig.	11.4	Spectral	weight	for	field	associated	with	unstable	particles	or	quasiparticles	

The	form	of	the	propagator	is	now:	

																																																								
9	See	Brown	(1992,	298-308);	Coleman	(2019,	355-362)	for	what	follows.	
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=oê
f(0) =

lõê

09 −8H}R~
9 − lΓ

+ =~®&&(}	è©™2´Ä&'$É 	

where	 Γ = −õêIm	st′
O≠(8H}R~

9 ) .	 The	 time	 dependency	 of	 =oêf(0) 	may	 be	

expressed,	for	t	sufficiently	large,	as	

=oê
f(7, Æ) = \

]0)

2W
NO#H

ñ(=oê
f(0) ≈

lõê

2∞79 −8H}R~
9 − lΓ

N
O#∞7òO®±û≤°

ò O#≥(

+
1

(¥Æ)µ
	

The	 pole	 dominates	 if	Γ ≪ 8H}R~ 	is	 not	 ‘too	 large’.	 The	 ‘resonance’	 associated	

with	the	pole	 term	may	be	 interpreted	as	an	unstable	phion	with	mean	proper	

lifetime	
®±û≤°

≥
	.		That	is,	near	the	pole	(Coleman	2019,	360)	

=oê
f(0) ≈

lõê

09 − 8H}R~
9 − lΓ

	

which	 is	 interpreted	 as	 the	 Feynman	 propagator	 for	 an	 unstable	 particle,	 and	

may	 be	 understood	 as	 a	 ‘dispersion	 relation’.10 	As	 in	 case	 1,	 the	 spectral	

resolution	enables	one	to	identify	a	free	‘renormalized’	particle	state	associated	

with	the	field.	

Understood	as	an	elementary	theory,	the	phion	associated	with	this	field	

is	unstable,	decaying	into	a	psion-antipsion	pair,	and	as	such	does	not	have	any	

asymptotic	 states	 or	 fields	 associated	 with	 it.	 Calculations	 may	 be	 performed	

with	 Feynman	 diagrams	 using	 iterative	 series	 techniques,	 but	 with	 ‘on	 mass-

shell’	 intermediate	 states	 associated	 with	 unstable	 particles.11	This	 theoretical	

approach	 is	also	associated	with	the	modelling	of	certain	types	of	quasiparticle	

(Lancaster	 and	 Blundell	 2014,	 276-278),12	for	 as	 noted	 above,	 the	;̂-field	 need	

not	be	an	‘elementary’	field.	

Whilst	 we	 can	 model	 or	 perform	 calculations	 of	 the	 decay	 of	 unstable	

states	 into	 stable	 states,	 the	 physical	 interpretation	 of	 the	 mathematical	

representation	derived	for	unstable	particles	is	not	at	all	clear.	The	 form	of	 the	

propagator	or	dispersion	relation	suggests	that	unstable	particles	are	modelled	

as	 a	 ‘resonance’	 of	 a	 continuum	 of	 eigenstates	 of	 Pμ	 subject	 to	 a	 dispersion	

																																																								
10	This	may	also	be	interpreted	in	relation	to	the	Breit-Wigner	distribution	giving	the	probability	
for	the	production	of	final	states	of	given	momentum	from	an	impulsive	excitation	via	the	;̂-field	
–	it	peaks	at	8H}R~

9 	(Coleman	2019,	360-361).	
11	See	e.g.	Coleman,	Brown	or	Peskin	and	Schroeder	for	examples.	
12	See	Anderson	(1997,	126-132)	for	detailed	application	of	this	theoretical	approach	to	modeling	
quasiparticles	in	metals.	
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relation,13	unlike	a	stable	 idealized	asymptotic	particle	 that	 is	associated	with	a	

single	 isolated	 eigenstate	 of	 Pμ.	 To	 be	 clear,	 the	 unstable	 particle	 is	 not	 here	

considered	as	a	bound	state	of	its	decay	products.	

However,	 it	 is	 not	 clear	 if	 such	 a	 ‘resonance’	 is	 to	 be	 interpreted	 as	 a	

superposition	of	eigenstates	of	Pμ,	whatever	the	physical	interpretation	of	these	

eigenstates.	 Although	 the	 eigenstates	 coupled	 to	;̂	might	 exist	 as	 independent	

isolated	states,	in	the	context	of	the	characterization	of	an	unstable	particle	they	

cannot	 be	 abstracted	 such	 that	 they	 have	 the	 same	 form	 individually	 and	 in	

combination	owing	to	the	dispersion	relation:	the	eigenstates	associated	with	the	

unstable	particle	propagator	have	physical	meaning,	in	the	context	of	an	unstable	

particle,	 collectively	 as	 a	 continuum	 of	 states	 subject	 to	 a	 dispersion	 relation.	

That	is,	the	partial	state	and	partial	laws	associated	with	individual	eigenstates	in	

the	context	of	an	unstable	particle	depends	on	their	combination	in	that	relation,	

even	though	the	eigenstates	can	be	‘traced’	in	combination	using	the	dispersion	

relation.	 It	 is	 a	 borderline	 case	 of	 application	 of	 ‘generalized	 superposition’	 at	

best,	exemplifying	the	conceptual	difficulties	and	perhaps	limitations	involved	in	

the	application	and	interpretation	of	the	concept.	

It	is	not	clear	the	sense	in	which	we	might	consider	unstable	particles	as	

‘composed’	of	eigenstates.	It	may	simply	be	a	matter	of	calculational	convenience	

that	 they	 can	 be	modelled	 in	 this	way.	What	 is	 achieved	 however	 is	 a	way	 of	

modelling	 the	 behaviour	 of	 unstable	 particles	 in	 relation	 to	 their	 free	

propagation	 even	 if	 it	 is	 not	 clear	 how	 one	 should	 conceptualize	 an	 unstable	

particle.	The	point	is	perhaps	that	our	understanding	of	unstable	particle	models	

is	best	considered	in	relation	to	an	engineer’s	approach	as	indicated	above.	

	

11.3	 Scattering	 theory	 and	 the	 relationships	 between	 the	∑+∏π∫,	∑+ªº	and	∑+ 	

fields	and	states	

11.3.1	Haag-Ruelle	scattering	theory:	relating	∑+ªº/∏π∫	to	∑+ 	

I	now	consider	how	the	axioms	from	the	non-perturbative	approach	introduced	

in	 §10.3	 are	 utilized	 in	 Haag-Ruelle	 scattering	 theory	 to	 establish	 a	 rigorous	

relation	 between	 the	 asymptotic	 fields	 and	 states	 associated	 with	 the	!"#$	and	

																																																								
13	There	is	a	different	approach	to	modeling	unstable	particles	using	an	extended	Hilbert	space	
which	I	do	not	consider	here	–	see	e.g.	Weldon	(1976);	Kuksa	(2015);	Levy	(1959).	
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those	of	 the	 full	 interacting	 theory	 that	 are	 associated	with	 the	!".	 This	will	 be	

preparatory	 for	 discussion	 of	 the	 LSZ	 scattering	 theory	 in	 §11.3.2.	 The	 results	

here	and	in	LSZ	theory	depend	on	the	careful	construction	of	suitable	‘smeared	

fields’	 associated	 with	 particle	 wave-packets	 in	 the	 asymptotic	 states	 that	 are	

related	to	the	!"	fields.	For	simplicity	we	work	with	the	neutral	scalar	field	yz(@).	

We	construct	two	types	of	smeared	field	–	one	modelling	a	single	particle	state	in	

the	 asymptotic	 regions,	 and	 a	 general	 smeared	 field,	 where	 both	 types	 are	

solutions	to	the	Klein-Gordon	equation	so	that	the	dynamics	of	the	wave-packet	

are	correct	for	modelling	propagation	according	to	the	scalar	field.14	

The	 first	 type	 of	 smeared	 field	 is	 constructed	 in	 two	stages	 such	 that	 it	

produces	only	 time-independent	 single	particle	 states	 (in	 the	asymptotic	 limit)	

from	 the	 vacuum.	 Form	 the	 smeared	 field	yz≠(@)	by	 integrating	yz(@)	against	 a	

test-function	 •(≠)(@) 	whose	 Fourier	 transform	 has	 support	 in	 the	 region	

Ω8H}R~
9 < 09 < æ8H}R~

9 ,	 where	 0<a<1	 and	 1<b<4.	 Making	 the	 spectral	

assumption	as	per	§10.3.1,	this	ensures	that	yz≠(@)	produces	exactly	one-particle	

states	 from	 the	 vacuum.	 Using	 covariantly	 normalized	 one	 particle	 states,	

⟨ø′|ø⟩ = 2c(¥)`X(¥¿ − ¥),	

⟨ø|yz≠(@)|Ω⟩ = ⟨ø|yz(0)|Ω⟩•¡(≠)(ø)N#2∙Q 	

Switching	to	non-covariantly	normalized	states	for	what	follows,	

⟨ø|yz≠(@)|Ω⟩ =
1

(2W)X/9e2c(¥)
•¡(≠)(ø)N#2∙Q 	

Then	 for	¬(√, Æ)	a	 solution	 to	 the	 Klein-Gordon	 equation	 which	 has	 a	 smooth	

rapidly	decreasing	momentum	wave-function:	

¬(√, Æ) = \
]X0

2c(0)
¬ƒ(7)N#(7∙√O≈(H)() ,										c(0) = e79 −89	

the	required	smeared	field	is	

yz≠,´(Æ) ≡ −l \]X@{¬(√, Æ)
∆⃡

∆Æ
yz≠(», Æ)}	

If	 multiple	 applications	 of	yz≠,´(Æ) 	are	 made	 the	 state	 is	 no	 longer	 time-

independent,	but	has	a	well-defined	strong	limit	for	Æ → ±∞,	the	central	result	of	

the	Haag-Ruelle	scattering	theory.	For	the	non-covariantly	normalized	state	|ø⟩,	

for	the	single	particle	wave-function	

																																																								
14	For	what	follows	see	Duncan	(2012,	268-276).	
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Φ≠,´(ø) ≡ 	 ⟨øLyz≠,´(Æ)LΩ⟩ = (2W)X/9
¬ƒ(ø)•¡(≠)(ø)

e2c(¥)
	

So,	‘Any	desired	(fast-decreasing)	momentum-space	wave-function	of	our	single-

particle	 state	 can	 evidently	 be	 obtained	 as	 a	 product	 of	 appropriately	 chosen	

factors	¬ƒ(ø) 	and	 •¡(≠)(ø) .’	 (Duncan,	 271)	 The	 scattering	 theory	 developed	

involves	the	study	of	the	limits	as	Æ → ±∞	of	states	obtained	from	the	vacuum	by	

fields	yz≠,´(Æ).	Define	the	time-dependent	state:	

|Φ, Æ⟩ ≡ yz≠,´À(Æ)yz≠,´ò(Æ)…yz≠,´Õ(Æ)|Ω⟩	

Then	Haag’s	asymptotic	theorem	states	that	|Φ, Æ⟩	converges	strongly	in	the	limit	

Æ → −∞	to	the	m-particle	in-state:	

|Φ⟩#$ = |¬≠, ¬9, …¬®⟩#$ ≡ \]X¥≠ …]
X¥®Φ≠,´À

(ø≠)…Φ≠,´Õ
(ø®)|ø≠, …ø®⟩#$	

The	convergence	is	a	result	of	wave-packet	spreading,	although	the	convergence	

is	faster	if	the	states	have	disjoint	support	in	momentum	space,	corresponding	to	

the	notion	of	well-separated	particles	travelling	in	different	directions.	

	 Haag’s	 asymptotic	 theorem	 enables	 derivation	 of	 the	 ‘direct	 connection	

between	the	interpolating	Heisenberg	field	Œ(@)	and	the	free	in	(resp.	out)	fields	

Œ#$(@)	(resp.	Œ&'((@))’	 (Duncan,	 278).	 This	 is	 done	 by	 defining	 a	 smeared	 field	

Œ´(Æ)	similar	to	the	Œ≠,´(Æ)	fields	but	where	the	initial	smearing	function	•(≠)(@)	

is	a	general	Schwarz	function	•(@).	Œ´(Æ)|Ω⟩	is	not	a	single	particle	state,	nor	is	it	

time-independent.	We	have	(for	non-covariantly	normalized	states):	

⟨ø#$
	 Lyzœ(@)LΩ⟩ =

õ≠/9

(2W)X/9e2c(¥)
•¡	(¥)N#2∙Q	

where	 the	 4-momentum	k	 is	 on	mass-shell	 for	 the	 state	|ø⟩#$,	 i.e.,	¥) = c(¥) =

√ø9 +89.	Moreover:	

Φ´(ø) ≡ 	 ⟨øLyz´(Æ)LΩ⟩ = (2W)X/9
¬ƒ(ø)•¡	(ø)

e2c(¥)
	

Now	 consider	 a	 smeared	 field	yz#$,´(Æ)	defined	 analogously	 from	 the	 free	 field	

yz#$(@)	associated	 with	 the	 Fock	 space	 structure	 of	 states	 of	 the	 asymptotic	

region.	We	have	

T∆9 + 8H}R~
9 Uyz#$(@) = 0	

and	
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yz#$(@) = yz#$(», Æ) = \
]X¥

(2W)X

1

2c(¥)
TΩz#$(—)N

O#2∙Q + Ωz#$
|
(—)N#2∙QU	

where	c(¥) = Tø9 + 8H}R~
9 U

≠/9
	and		

Œ"#$,´(Æ) = \]X¥ Φ´(ø)Ωz#$
|
(—)	

Then	 provided	 that	 asymptotic	 completeness	 holds	 the	 weak	 equivalence	

relationship	between	yz´(Æ)	and	yz#$,´(Æ)	as	Æ → ∞,	that	is	

⟨‘#$
	 Lyz´(Æ)L5⟩#$ → õ

À

ò ⟨‘#$
	 Lyz#$,´(Æ)L5⟩#$, Æ → −∞		

for	arbitrary	 in-states	|5⟩#$, |‘⟩#$	where	Z	is	 the	wave-function	or	 field	strength	

renormalization	factor,	may	be	rigorously	established.	This	asymptotic	condition	

is	the	starting	point	for	LSZ	scattering	theory.		(Duncan,	281).	

	

11.3.2	LSZ	scattering	theory		

The	Haag-Ruelle	 theory	makes	a	precise	connection	between	the	 ‘interpolating’	

or	 ‘Heisenberg’	 field	Œ"(@)	of	 the	 coupled	 field	equations	and	 the	asymptotic	 in-	

and	 out-states	 (assuming	 AC),	 provided	 that	Œ"(@)	has	 a	 non-vanishing	 matrix	

element	from	the	vacuum	to	the	single	particle	state	(Duncan	281-282),	i.e.	

⟨ø#$
	 LŒ"(@)	LΩ⟩ =

õ≠/9

(2W)X/9e2c(¥)
N#2∙Q			with	õ ≠ 0	

By	 considering	 the	 S-matrix	 element	 for	 the	 scattering	 of	 n	 incoming	 scalar	

particles	 with	 momentum	 space	 wave-functions	 Φ+´À(ø), … ,Φ+´Ÿ(ø) 	into	 m	

outgoing	 particles	 with	 momentum	 space	 wave-functions	Φ+´¿À(ø), … ,Φ+´¿Õ(ø)	

defined	as	above	with	disjoint	support	in	momentum	space,	that	is:	

⁄´¿À…´¤Õ,´À…‹Ÿ
= ⟨¬′≠,…¬′®&'(

	 |¬≠,…¬$⟩#$	

it	may	be	shown	that:15	

⁄´¿À…´¤Õ,´À…´Ÿ
= ›lõ

≠

9å

®?$

\fifi]^@#

®

fl‡≠

$

#‡≠

]^@¿fl¬#(@#)¬
¿

fl

∗
(@¿fl)(∆Q‚

9 + 89)(∆
Q¤„

9

+ 89) ∙ 	 ⟨Ω&'(
	 |i{yz(@¿≠)…yz(@′®)yz(@≠)…yz(@$)}|Ω⟩#$	

This	 is	the	LSZ	reduction	 formula	(Lehmann,	Symanzik	and	Zimmerman	1955),	

‘giving	the	multi-particle	S-matrix	element	 in	 terms	of	an	 integral	 involving	the	

																																																								
15	See	Duncan	(281-289).	For	simplicity	I	quote	the	result	for	phions,	although	analogous	results	
may	be	obtained	with	charged	scalar	and	fermionic	fields.	
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vacuum-expectation-value	 of	 the	 time-ordered	 product	 of	 the	n+m	 Heisenberg	

interpolating	 fields	 (the	 n+m	 point	 Feynman	 amplitude)	 for	 the	 particle	

undergoing	scattering’	(Duncan,	286).	Conventionally	the	limit	is	taken	in	which	

the	wave	 packets	 approach	 plane	wave	 solutions	with	 sharp	momenta,	 i.e.	we	

take	

¬2(@) =
1

e(2W)X2c(¥)
NO#2∙Q	

so	that	‘the	LSZ	formula	gives	the	S-matrix	element	as	a	Fourier	transform	of	the	

distribution	obtained	by	applying	the	Klein-Gordon	operators	…	to	the	Feynman	

amplitude	for	n+m	fields’	(Duncan,	286):	
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The	‘Feynman	Green	functions’	for	the	full	interacting	theory	are	defined:	
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where	 the	momenta	 are	 arbitrary	 and	 do	 not	 satisfy	 the	mass-shell	 condition.	

Integrating	by	parts	gives	(Duncan,	286-287):	
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So	for	the	S-matrix	amplitudes	to	be	finite	and	non-zero,	=o(¥¿≠,…	¥¿®, ¥≠, …	¥$)	

has	simple	poles	in	the	¥9 − 8H}R~
9 	for	each	of	the	incoming	and	outgoing	states	

identified	 as	 idealized	 asymptotic,	 free	 physical	 (dressed	 or	 renormalized)	

particles	 associated	 with	 the	 free	yz#$ 	of	 mass	 mphys.	 The	 ‘Green	 functions’	

however	 involve	 the	 ‘bare,	 interacting’	yz-fields	 of	 mass	 m	 of	 the	 interacting	

theory,	the	‘interpolating	fields’,	satisfying	the	coupled	field	equations.	
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Coleman	summarizes	the	significance	of	 the	LSZ	result:	 ‘if	you	know	the	

Green’s	 functions	 exactly,	 then	 you	 know	 the	 S-matrix	 elements	 exactly,	 and	a	

fortiori	 if	 you	 have	 an	 approximation	 for	 Green’s	 functions,	 you	 have	 an	

approximation	 for	 the	S-matrix	elements.’	 (2019,	355)	The	Gell-Mann	and	Low	

theorem	 (§11.4)	 enables	 us	 to	 relate	 the	 Green’s	 functions	 of	 the	 interacting	

theory	 with	 the	 correlation	 functions	 obtained	 using	 the	 free	 fields	 in	 the	

interaction	picture	calculated	with	Dyson’s	expansion	(chapter	9).	That	is,	using	

the	 Gell-Mann	 and	 Low	 theorem	 and	 Dyson’s	 expansion	 we	 can,	 after	

renormalization,	 generate	an	approximation	 for	 the	Green’s	 functions	and	 thus	

an	approximation	for	the	S-matrix	elements.	

	 Before	 considering	 the	 Gell-Mann	 and	 Low	 theorem	 I	 make	 two	

observations	on	the	LSZ	result.	First,	asymptotic	completeness	(AC)	is	assumed,	

and	 the	 implications	 of	 the	 failure	 of	 AC	 for	 the	 LSZ	 result	 are	 unclear.	 In	 this	

sense	 the	 LSZ	 result	 is	 not	 rigorously	 justified,	 although	 AC	 is	 not	 usually	

doubted.	

Secondly,	as	Duncan	observes,	any	almost	local	field	‘with	a	non-vanishing	

vacuum	 to	 single	 particle	 matrix	 element’	 can	 be	 used,	 so	 that	 ‘[e]ven	 if	 the	

particle	corresponds	to	an	elementary	local	field	in	the	theory,	there	is	no	unique	

interpolating	field	giving	the	correct	S-matrix	for	scattering!’	 (Duncan,	287).	The	

correlation	 (Green’s)	 function	 and	 normalization	 constant	will	 be	 different	 for	

different	interpolating	fields;	‘only	the	multiple	pole	residue	of	the	on-mass-shell	

limit	of	 its	Fourier	 transform	 is	 guaranteed	 to	be	 independent	of	 the	 choice	of	

field,	 as	 it	 gives	 the	 presumably	 unique	 physical	 S-matrix	 amplitude	 for	 the	

scattering	of	a	specific	stable	particle.’	(Duncan,	287).	Or,	as	Coleman	puts	it,	

The	only	thing	that	was	required	in	driving	the	LSZ	reduction	is	that	somehow	we	could	
get	 our	 hands	 on	 a	 local	 [interpolating]	 field	 with	 a	 non-zero	 vacuum	 to	 one-particle	
matrix	element,	that	makes	some	kind	of	particle	out	of	the	vacuum.	It	can	make	any	other	
kind	of	 junk	it	wants,	as	long	as	it	has	a	non-zero	matrix	element.	We	don’t	demand	that	
the	field	satisfy	the	canonical	commutation	relations.	(Coleman,	298)	

This	 means	 that	 the	 (interpolating)	!"	fields	 are	 underdetermined	 in	 the	 LSZ	

theory,	 for	 any	 fields	 that	 have	 non-zero	 overlaps	 with	 the	 asymptotic	 single	

particle	states	suffice.	This	may	be	considered	to	be	a	consequence	of	the	failure	

of	 the	 Volkmann	 device	 to	 apply	 to	 interacting	 fields/states	 (§10.5),	 as	

manifested	 in	 the	 need	 for	 renormalization,	 and	 compensated	 for	 by	 it.	We	 do	

not	have	a	natural	description	of	general	 interacting	states	 in	relation	to	 fields,	
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with	 the	 fields	 being	 chosen	 for	 calculational	 convenience	 apart	 from	 the	

application	of	‘superposition’.	

One	might	try	to	compare	choice	of	interpolating	fields	with	the	choice	of	

components	of	a	vector	decomposition	as	in	§3.1.2	for	calculational	convenience,	

as	Volkmann	discusses	(1896,	82-83),	which	is	a	borderline	case	for	application	

of	 ‘superposition’.	 Arbitrary	 components	 of	 a	 decomposed	 vector	 may	 have	

explanatory	 relevance,	 even	 if	 the	 components	 are	 underdetermined.	 The	

situation	 here	 is,	 however,	 worse	 since	 the	 interpolating	 fields	 require	

renormalization,	as	they	do	not	behave	as	abstractable	components	that	take	the	

same	 form	 individually	 and	 in	 combination	 as	 in	 the	 arbitrary	 vector	

decomposition	 case.	 That	 is,	 even	 though	 a	 vector	 decomposition	 may	 be	

arbitrary	 but	 support	 calculations,	 the	 purpose	 of	 the	 choice	 is	 to	 isolate	

components	that	take	the	same	form	individually	and	in	combination	in	order	to	

simplify	 analysis.	 But	 the	 failure	 of	 ‘superposition’,	 associated	 with	 the	

requirement	for	renormalization,	which	relates	to	the	nonlinearity	of	the	coupled	

field	 equations,	 shows	 this	 not	 to	 be	 the	 case	 here	 for	 the	 choice	 of	 the	

interpolating	 fields	 and	 associated	 states.	 On	 the	 one	 hand,	 the	 interpolating	

fields	 are	 chosen	 to	 enable	 calculation,	 even	 if	 they	 are	 underdetermined,	 but	

they	 do	 not	 take	 the	 same	 form	 individually	 and	 in	 combination	 owing	 to	 the	

non-linearity	of	the	coupled	field	equations,	and	so	are	not	to	be	compared	with	

the	components	of	a	decomposed	vector.	

These	 observations	 clarify	 that	 the	 situation	 is	 worse	 than	 the	

observation	in	§10.2	that	we	lack	a	particle	description	as	a	natural	description	

of	interacting	states	as	associated	with	the	!"	fields,	and	that	the	Volkmann	device	

fails	in	the	selection	of	the	!"	fields.	The	only	natural	description	that	we	have	of	

interacting	 states	 is	 given	 ‘in	principle’	 in	 terms	of	 the	evolution	of	 the	 system	

described	 in	 terms	of	 the	eigenstates	of	 the	4-momentum	operator,	 apart	 from	

any	reference	to	fields.	But	now	it	is	not	clear	that	we	have	a	‘field	theory’	at	all,	

or	 rather,	 field	 theory	 is	 introduced	 in	 order	 to	 enable	 calculations	 and	 not	

because	it	supports	a	description	of	interacting	states.	
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11.4	The	Gell-Mann	and	Low	theorem		

The	Gell-Mann	 and	 Low	 theorem	 supports	 iterative	 approximations	 in	QFT	by	

connecting	‘bare	states	|5⟩	(eigenstates	of	H0)	to	the	corresponding	in-	and	out-

states	…	|5⟩#$ = ‰(0,−∞)|5⟩, |5⟩&'( = ‰(0,+∞)|5⟩‘	(Duncan	2012,	245).	It	was	

derived	 to	 treat	 bound	 states	 in	 QFT	 (Gell-Mann	 and	 Low	 1951)	 and	 relates	

ground	states	of	the	free	Hamiltonian	H0	to	those	of	the	full	Hamiltonian	where	

an	interaction	is	introduced	as	a	perturbation	i.e.	H=H0+gV.	The	result	continues	

to	be	employed	in	the	analysis	of	bound	states	in	QFT	(see	§11.5),	but	it	is	also	

used	to	relate	the	‘Green’s	functions’	for	the	coupled	!"-fields	acting	on	|Ω⟩	of	the	

LSZ	result	as	above	to	the	‘Green’s	functions’	of	the	interaction	picture	fields	!")	

acting	 on	|0⟩	which	 can	 be	 calculated	 by	 Dyson’s	 iterative	 expansion	 to	 obtain	

approximations	 for	 the	 S-matrix	 elements,	 after	 renormalization.	 The	 proof	 of	

the	result	was	originally	given	by	perturbative	methods,	although	more	recently	

Molinari	(2007)	has	obtained	a	proof	without	perturbation	techniques.	

	 The	 result	 is	 established	 using	 adiabatic	 switching,	 defining	 the	 time-

dependent	operator:	

*+ô(Æ) = *+) + N
Oô|(|¬Â" 	

so	 that	*+ô 	interpolates	between	 the	 free	Hamiltonian	 in	 the	asymptotic	 infinite	

time	limits	and	the	full	Hamiltonian	at	t=0.	Let	‰+ô(Æ, Ê)	be	the	evolution	operator	

for	*+ô 	,		and	introduce	the	interaction	picture	evolution	operator	

‰+ôÁ(Æ, Ê) = N#(Ë
+
ñ‰+ô(Æ, Ê)N

O#~Ë+ñ 	

The	original	statement	of	 the	 theorem	 is	 that	 if	|Ψ)⟩	is	 an	eigenstate	of	H0	with	

eigenvalue	E0,	then	if	the	
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(±)
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exist,	they	are	eigenstates	of	*+.	

	 This	result	can	be	applied	in	scattering	theory	to	show	that	
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The	final	expression	is	evaluated	using	Dyson’s	series	and	Wick’s	theorem	as	in	

chapter	 9,	 although	 without	 using	 the	 a-operators,	 and	 it	 can	 be	 shown	 that	

(Lancaster	and	Blundell	2014,	204-205):	

⟨0|i{yz)(@
¿
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¿
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=GÏ

Connected	diagrams	with

n+m	external	lines
ı	

So,	after	renormalization,	an	algorithm	is	available	to	approximate	the	S-matrix	

elements	in	the	LSZ	theory	so	that	scattering	amplitudes	can	be	calculated.16	The	

failure	 of	 ‘superposition’	 has	 been	 compensated	 for	 in	 order	 to	 support	

calculations	even	if	not	descriptions	or	explanations	of	interaction	processes.	

I	 now	 consider	 application	 of	 the	 Gell-Mann	 and	 Low	 theorem	 to	

calculations	involving	bound	states.	

	

11.5	Analysis	of	bound	states	using	the	Gell-Mann	and	Low	theorem	

‘Bound	 states’	 are	 ubiquitous;	matter	 is	 constituted	 from	 ‘bound	 states’	 in	 the	

form	 of	 nucleons,	 atoms,	molecules	 and	 ionic	 structures,	 so	 it	 is	 important	 to	

clarify	our	conceptualization	and	analysis	of	bound	states	in	QFT.	Intuitively	we	

regard	a	bound	state	as	 composed	of	particles	whose	mutual	 interaction	binds	

them,	as	a	particular	 type	of	 interacting	state.	For	 instance,	a	hydrogen	atom	is	

considered	 to	 be	 composed	 of	 a	 proton	 and	 an	 electron	 bound	 by	

electromagnetic	 interaction	 (or	 the	 exchange	 of	 ‘virtual	 photons’	 on	 common	

accounts,	that	we	have	seen	to	be	problematic)	modelled	by	QED.	Alternatively,	

nucleons	 are	 often	 construed	 as	 bound	 states	 composed	 of	 three	 quarks	

interacting	 via	 gluon	 fields	 according	 to	 QCD,	 or	 nuclei	 are	 considered	 to	 be	

bound	states	of	protons	and	neutrons	modelled	by	QCD	and	electroweak	theory.	

However,	 my	 analysis	 indicates	 that	 such	 descriptions	 or	 ‘pictures’	 are	

misleading,	 for	 we	 have	 seen	 that	 there	 is	 no	 particle	 description	 of	 general	

interacting	states,	of	which	bound	states	are	a	kind.	The	decomposition	of	bound	

states	into	partial	states	associated	with	different	field	types	is	not	supported	in	

QFT	 owing	 to	 the	 failure	 of	 ‘superposition’	 (§10.5).	 We	 cannot	 prolong	 the	

identity	 of	 the	 idealized	 asymptotic	 free	 physical	 ‘fundamental’	 particles	 into	

interacting	states	as	associated	with	the	!"#$ ,	so	we	cannot	consider	bound	states	

																																																								
16	There	are	a	number	of	technical	details	required	to	implement	the	algorithm	that	I	do	not	
consider	here.	See	the	standard	texts	for	details.	The	point	is	that	such	an	algorithm	exists	so	that	
reliable	calculations	may	be	supported.	
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to	be	‘composed	of’	rather	than	‘made	from’	fundamental	particles	as	discussed	

in	 §10.3.4.	 We	 saw	 there	 that	 the	 concept	 of	 ‘interaction’	 between	 putative	

components	 of	 a	 bound	 state	 is	 meaningless	 in	 QFT,	 because	 interacting	 QFT	

does	not	support	 the	 identification	of	 such	components	owing	 to	 the	 failure	of	

the	Volkmann	device.	

I	 noted	 in	 §10.4	 that	 ‘in	 principle’	 natural	 descriptions	 of	 general	

interacting	 states	 are	 available	 as	 superpositions	 of	 eigenstates	 of	 the	 4-

momemtum	 operator,	 but	 in	 general	 we	 can	 say	 very	 little	 about	 such	

eigenstates.	We	cannot	relate	them	to	familiar	particle/field	notions	outside	the	

asymptotic	 context.	 Moreover,	 we	 saw	 that	 bound	 states	 are	 eigenstates	

corresponding	to	an	isolated	invariant	mass	eigenvalue	in	the	spectrum	of	the	4-

momentum	 operator,	 without	 any	 finer-grained	 (e.g.	 Fock)	 structure.	 So,	 we	

describe	 a	 bound	 state	 in	 QFT	 simply	 as	 an	 eigenstate	 of	 the	 4-momentum	

operator	 with	 an	 (isolated)	 invariant	 mass	 just	 below	 the	 threshold	 mass.	 As	

regards	a	natural	description	of	bound	states,	this	is	all	there	is	to	say	in	QFT.		

However,	 as	 I	 shall	 indicate,	 in	 iterative	 perturbation	 theory	 an	

‘approximate	structure’	may	be	modelled	in	some	circumstances	according	to	an	

‘engineer’s	model’.	 In	 terms	of	 the	Newton-Wigner	approach,	 free	bound	states	

are	‘elementary	systems’	owing	to	their	transformation	properties	(cf.	§8.6).	Are	

they	 ‘elementary	 particles’?	 This	 depends	 on	 Newton	 and	Wigner’s	 somewhat	

loose	distinction	between	elementary	systems	and	elementary	particles,	namely	

whether	or	not	it	is		‘useful	to	consider	the	particle	as	a	union	of	other	particles’	

(Newton	and	Wigner	1949,	400).	That	is,	it	is	often	useful	to	consider	a	hydrogen	

atom	as	a	bound	state	of	 an	electron	and	a	proton,	 even	 if	 it	 is	not	strictly	 the	

case	 according	 to	 QFT.	 I’ll	 consider	 Newton	 and	Wigner’s	 distinction	 in	 more	

detail	with	reference	to	an	‘engineer’s	approach’	in	relation	to	the	strength	of	the	

coupling	of	the	theory	below.	First	however	I	consider	‘usefulness’	in	relation	to	

the	 ability	 to	 perform	 successful	 calculations	 based	 on	 the	 assumption	 that	 a	

bound	state	is	a	composite	state,	composed	of	its	asymptotic	particle	content.	

There	 is	 no	 universal	 approach	 for	 analysing	 bound	 states	 in	 QFT,	 and	

Ligterink	 and	Weber	 suggest	 that	 it	 is	 a	 truly	hard	 problem	 (2009,	 115).	 They	

survey	various	approaches,	developing	 their	own	analysis	 in	Yukawa	 theory	 in	

two	papers	(2001;	2009)	using	the	 ‘generalized	Gell-Mann	and	Low	theorem’.	 I	
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now	 discuss	 their	 approach,	 being	 an	 indicative	 approach	 to	 the	 modelling	 of	

bound	states.	They	summarize	their	approach:	

it	 is	 in	principle	necessary	 to	determine	 the	complete	state	vectors	 in	Fock	space	 [for	a	
bound	state].	However,	such	a	state	vector	is	a	 linear	combination	of	states	with	definite	
numbers	of	particles,	from	the	lowest	component	with	two	or	three	particles	to	states	with	
an	arbitrarily	large	number	of	particles	and	antiparticles.	In	many	cases,	the	latter	higher	
Fock	states	contribute	only	little	to	the	characteristics	of	the	bound	state	…	and	one	can	
hope	to	sensibly	truncate	the	number	of	particles	in	the	Fock	state.	This	will	not	be	true,	
however,	in	intrinsically	nonperturbative	problems	such	as	bound	states	in	QCD.	
Simple-minded	 truncations	 in	 the	 particle	 number	 lead	 to	many	problems	 ...	 In	…	 this	

paper,	 the	 Fock	 states	 are	 reconstructed	 from	 a	 projection	 to	 their	 lowest	 components	
with	the	least	number	of	particles	(which	we	will	sometimes	call	their	constituents).	From	
these	 components,	 the	 complete	 states	 can	 be	 generated	 in	 a	 perturbative	 expansion	
similar	to	covariant	perturbation	theory,	but	with	the	advantage	that	bound	states	can	be	
described	 in	 addition	 to	 scattering	 states.	 A	 truncation	 in	 the	 order	 of	 the	 perturbative	
expansion	 corresponds	 to	 a	 truncation	 in	 the	 number	 of	 particles	 in	 the	 full	 state.	
However,	 for	 a	 given	 finite	 order	 of	 the	 expansion,	 covariance	 is	 presumably	 broken	 to	
higher	orders.	
It	 is	 assumed	 that	 the	 complete	 Fock	 state	 is	 determined	uniquely	 by	 its	 lowest	 Fock	

component	 ....	 This	 is	 indeed	 true	 to	 every	 order	 in	 the	 perturbative	 expansion.	 ....	 In	
practice,	the	lowest	Fock	components	of	the	full	eigenstates	are	determined	as	eigenstates	
of	a	certain	effective	Hamiltonian	acting	in	the	subspace	of	lowest	particle	number.	For	the	
construction	 of	 the	 effective	 Hamiltonian	 that	 reflects	 the	 presence	 of	 the	 higher	 Fock	
states,	the	framework	of	the	Gell-Mann–Low	theorem	…	is	extended.	In	the	original	Gell-
Mann–Low	 approach	 the	 asymptotic,	 or	 free,	 scattering	 states	 are	 being	 evolved	 to	
interacting	states	and	back	to	free	states,	to	be	able	to	describe	the	scattering	process	as	a	
unitary	matrix	between	free	states.	Clearly,	for	the	description	of	bound	states	one	has	to	
go	beyond	 the	description	of	 (physical)	 scattering	processes,	and	 the	proper	 interacting	
states	need	to	be	defined	in	terms	of	the	“free	states”,	or	 lowest	Fock	states,	in	this	case.	
The	Gell-Mann–Low	evolution	 from	 free	 states	 to	 interacting	 states	 precisely	 yields	 this	
transformation.	(2009,	118)	

That	is,	they	suppose	that	the	full	Hilbert	space	representing	the	bound	state	can	

be	well-approximated	via	what	we	 intuitively	consider	 its	 free	particle	content,	

where	the	free	particles	are	adiabatically	evolved	into	the	interacting	system	of	

the	bound	state.	Calculations	are	performed	using	an	 iterative	series	expansion	

truncated	 at	 some	 order	 as	 in	 scattering	 theory	 using	 a	 simplified	 ‘effective	

Hamiltonian’.	

Their	 approach	 may	 prove	 ‘empirically	 adequate’,	 providing	 good	

approximations	to	the	properties	and	behaviour	of	bound	states.	But	it	does	not	

provide	a	natural	description	or	analysis	of	bound	states	as	would	be	obtained	by	

proper	 application	 of	 Fourier	 techniques	 and	 ‘superposition’.	 Ligterink	 and	

Weber	appear	unaware	of	 the	conceptual	problems,	 for	 instance	that	a	particle	

description	of	a	general	interacting	state	via	a	Fock	structure	is	unavailable,	even	

in	 principle.	 They	 appear	 to	 regard	 the	 difficulties	 as	 essentially	 calculational,	

unaware	of	the	semantic	mimicry	reflected	in	the	prolongation	of	the	asymptotic	

particle	 concept	 to	 the	 bound	 state.	 However,	 they	 only	 anticipate	 success	 in	
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weakly	 coupled	 theories.	 This	 is	 likely	 to	 be	 because	 ‘superposition’	 is	

‘approximately	 true’	 even	 if	 it	 is	 strictly	 false	 in	weakly	 coupled	 theories,	with	

higher-order	 correction	 terms	 being	 small	 after	 renormalization,	 so	 that	 it	 is	 a	

good	 modelling	 assumption	 to	 suppose	 that	 a	 bound	 state	 is	 composed	 of	

component	particles.	This	is	not	the	case	in	strongly	coupled	theories	for	which	

superposition	is	not	even	approximately	true,	and	perturbative	techniques	fail.	

In	conclusion,	the	concept	of	a	‘bound	state’	is	a	misnomer	in	QFT,	resulting	

from	 semantic	mimicry.	We	 should	 regard	 a	 ‘bound	 state’	 as,	 for	 instance,	 the	

state	formed	by	bringing	together	certain	asymptotic	fundamental	particles	in	a	

certain	way,	but	remain	silent	on	 its	composition	otherwise.	As	we	shall	see	 in	

§11.6,	in	some	circumstances	–	in	weakly	coupled	theories	–	the	model,	and	the	

picture	 of	 a	 bound	 state	 as	 ‘composed	 of’	 the	 particles	 it	 is	 ‘made	 from’	 or	

‘scatters	 into’	 offers	 a	 reasonable	 conceptual	 or	 perhaps	 ‘metaphysical’	

approximation	 to	 the	 situation,	 as	 it	 does	 for	 the	 composition	 of	 a	 general	

interacting	state,	such	as	two	electrons	scattering	at	low	energy.	Such	models	in	

weakly	 coupled	 theories	 support	 reliable	 calculations	 and	 explanations	 in	 the	

sense	 of	 an	 ‘engineer’s	model’,	 even	 if	 it	 does	 not	 offer	 a	 true	 or	 even	 natural	

description	of	a	bound	state.	

I	 now	 address	 the	 distinction	 that	 the	 coupling	 strength	 indicates	 in	

relation	to	an	‘engineering	approach’.	

	

11.6	The	distinction	between	strongly	and	weakly	coupled	theories	–	an	

example	of	the	application	of	the	‘engineering	approach’	

I	noted	 in	§9.2	that	although	calculations	 in	strongly	coupled	theories,	whether	

gauge	 theories	 or	 not,	 are	 not	 performed	 using	 perturbative	 series	 expansion	

techniques,	 such	 theories	 are	 nonetheless	 perturbative	 in	 the	 sense	 that	 an	

interaction	 term	 is	 introduced	 via	 tacit	 but	 improper	 appeal	 to	 the	 Volkmann	

device.	 There	 is	 a	 difference	 from	 a	 calculational	perspective	 between	 weakly	

and	strongly	coupled	theories,	but	is	there	a	conceptual	difference?	In	one	sense	

there	 is	 not	 –	 ‘superposition’,	 and	 in	 particular	 the	 initial	 application	 of	 the	

Volkmann	 device,	 fail	 in	 interacting	 theories	 in	 general	 and	 so	 there	 is	 no	

description	of	a	general	state	in	terms	of	isolatable	or	abstractable,	simple	partial	

states	 associated	with	 partial	 laws	 via	 different	 fields	 that	 take	 the	 same	 form	
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individually	and	in	combination.	However,	in	another	sense	there	is	a	conceptual	

difference.	 There	 is	 a	 difference	 of	 degree	 according	 to	 the	 strength	 of	 the	

coupling,17	relating	 to	 how	 far	 one	 might	 regard	 application	 of	 ‘superposition’	

and	 the	 Volkmann	 device	 to	 apply	 approximately	 or	 ‘well	 enough’	 to	 support	

explanations	 and	 calculations	within	 the	 context	 of	 an	 ‘engineer’s	 model’	 in	 a	

given	domain.	

If	the	coupling	is	sufficiently	weak,	whilst	‘superposition’	fails,	it	may	hold	

‘well	enough’	to	support	an	approximate	description	of	the	system	that	supports	

reliable	 inductive	 inferences,	 calculations,	 explanations	 and	 counterfactual	

reasoning	 for	many	 purposes	 in	 a	 given	 domain.	 That	 is,	 for	 a	weakly	 coupled	

theory	 use	 of	 ‘superposition’	 almost	 yields	 a	 natural	 description	 of	 a	 general	

interacting	 state	 in	 terms	of	different	particle	numbers	and	 types,	which	might	

be	‘good	enough’	for	many	purposes.	For	many	purposes	it	may	be	a	good	model	

to	 consider	 the	general	 interacting	 state	 as	 composed	 of	 particles	 as	 identified	

from	the	asymptotic	states.	That	is,	the	particle	identity	of	the	asymptotic	states	

can	be	meaningfully	traced	or	prolonged	approximately	to	the	interacting	region,	

as	in	Ligterink	and	Weber’s	analysis	of	bound	states	above.	

In	 interacting	 QFTs,	 as	 the	 coupling	 increases	 application	 of	

‘superposition’	becomes	more	problematic	in	the	analysis	of	general	interacting	

states,	both	conceptually	and	calculationally,	both	in	the	initial	application	of	the	

Volkmann	device	and	in	the	decomposition	of	partial	states	associated	with	the	

chosen	fields	into	a	description	of	particle	number	and	type.	In	weakly	coupled	

theories	at	low	energies	the	approximate	applicability	of	‘superposition’	enables	

the	identification	of	an	approximate	finer-grained	description	of	the	eigenstates	

of	 the	 4-momentum	 operator	 (which	 we	 know	 exist	 in	 principle	 apart	 from	

perturbative	 schemes)	 in	 terms	 of	 the	 familiar	 asymptotic	 particle	 types	 and	

numbers	 sufficient	 for	 calculations	 and	 explanations	 from	 an	 ‘engineer’s	

perspective’,	 but	 this	 is	 not	 possible	 in	 strongly	 coupled	 theories.	 There	 is	 no	

natural	criterion	for	the	distinction	–	instead	we	might	state	that	superposition	is	

approximately	 true	 if	 the	calculations	based	on	 it	give	results	within	5%	of	 the	

measured	 data	 –	 but	 we	 could	 specify	 1%	 or	 10%.	 However,	 it	 is	 difficult	 to	
																																																								
17	Note	however	that	as	renormalization	techniques	highlight,	the	coupling	of	a	theory	is	not	
constant	but	a	parameter	that	varies	with	energy	or	length	scale	of	interest.	This	means	that	a	
theory	may	be	regarded	as	strongly	coupled	in	one	context	but	weakly	coupled	in	another.	
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specify	 the	 kind	 of	 stance	 in	 advance	 appropriate	 to	 the	 model	 entities	 and	

explanations	provided.	For	instance,	is	an	explanation	of	the	property	of	charge	

in	terms	of	virtual	particle	exchanges	a	good	explanation	after	all?	We	know	this	

to	be	false,	resulting	from	semantic	mimicry,	but	it	might	provide	a	good	model	

leading	to	a	reasoning	advantage	for	some	purposes.		

From	 an	 engineering	 perspective	 we	 can	 to	 a	 good	 conceptual	 and	

calculational	 approximation	 regard	 a	 hydrogen	 atom	 as	 a	 bound	 state	 of	 an	

electron	and	a	proton	using	QED,	which	ultimately	gives	 rise	 to	 the	 conceptual	

scheme	 (or	 science)	 of	 chemistry,	 supporting	 explanations	 and	 predictions.	 In	

this	domain	one	generally	need	not	model	the	electronic	structure	with	QFT,	and	

NRQM	supports	reliable	explanations	and	calculations	in	many	cases,	where	here	

the	composite	character	of	the	hydrogen	atom	as	a	bound	state	of	a	proton	and	

an	 electron	 is	 essentially	put	 in	 ‘by	 hand’	 as	 a	modelling	 assumption	 in	NRQM	

(§6.3.4).	 But	 such	 a	model	has	 the	 form	of	 an	 ‘engineer’s	model’	 rather	 than	 a	

‘true	 description’	 of	 the	 hydrogen	 atom,	 and	 so	 does	 not	 support	 analysis	 in	

familiar	 compositional	 terms.18	Improved	 predictions,	 for	 example	 the	 energy	

spectrum	 of	 the	 hydrogen	 atom,	 are	 obtained	 by	modelling	 the	 system	 to	 low	

orders	in	QED,	but	it	is	not	clear	what	kind	of	explanation	is	really	offered	here,	

say	 from	 the	 scientific	 realist’s	 perspective,	 for	 instance,	 with	 regard	 to	

explanations	 given	 in	 terms	 of	 ‘vacuum	 polarization’	 regarding	 the	 hyperfine	

structure	of	the	hydrogen	atom.	The	point	is	that	it	is	meaningful	to	think	of	such	

explanations,	in	a	weakly	coupled	theory,	in	terms	of	small	corrections	to	a	linear	

model	 in	 which	 superposition	 holds.	 This	 is	 no	 longer	 the	 case	 for	 strongly	

coupled	theories	such	as	QCD.	

Even	from	a	modest	‘engineering	perspective’	it	is	questionable	whether	a	

model	 of	 the	 composition	 of	 nucleons	 in	 terms	 of	 quarks	 bound	 by	 gluons	

according	 to	 QCD	 is	 supported	 at	 least	 insofar	 as	 ‘composition’	 is	 usually	

understood.	This	is	often	discussed	in	relation	to	‘colour	confinement’,	and	owes	

																																																								
18	Cf.	McKenzie	and	Muller	(2017)	who	develop	a	model	of	the	hydrogen	atom	as	a	bound	state	in	
NRQM	in	compositional	terms.	If	this	project	is	situated	in	terms	of	discussion	restricted	to	the	
ontology	of	this	model,	that	is	fine.	But	if	it	is	developed	with	a	view	to	developing	a	true	
compositional	account	of	the	physical	world	it	fails	if	we	assume	that	QFT	offers	a	better	account	
of	the	world	than	NRQM,	for	as	we	have	seen	such	an	account	of	composition	is	only	true	relative	
to	an	engineer’s	model,	and	is	not	supported	by	QFT	without	idealization	and	approximation.	
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to	 the	 strong	coupling	and	non-abelian	nature	of	QCD	as	a	gauge	 theory.19	The	

strength	 of	 the	 coupling	 in	 QCD	 at	 this	 energy	 scale,	 based	 on	 the	 initial	

application	of	the	Volkmann	device	in	which	isolated	quark	and	gluon	fields	are	

purportedly	identified,	suggests	caution	in	this	initial	use	of	a	‘superposition-like’	

concept	 in	 the	Volkmann	device.	This	difficulty	arises	 in	addition	 to	 the	use	of	

iterative	 solution	 techniques,	which	 is	where	 the	 difficulty	 is	often	 located.20	It	

appears	unlikely	that	one	can	to	a	good	approximation	abstract	gluon	and	quark	

fields	and	partial	states	associated	with	them	when	they	are	strongly	coupled,21	

so	that	it	is	a	poor	model	of	a	nucleon	to	consider	it	as	a	bound	state	of	quarks	

from	a	non-engineering	perspective	when	the	coupling	is	large.	

However,	at	very	high	energies	the	coupling	reduces	so	that	QCD	becomes	

a	weakly	coupled	theory	(Lancaster	and	Blundell	2014,	307-308;	Bain	2000),	a	

phenomenon	 known	 as	 ‘asymptotic	 freedom’.	 In	 this	 case	 ‘superposition’	 is	 an	

idealization	 supporting	 the	 ability	 to	 abstract	 quark	 and	 gluon	 fields	 and	

associated	 partial	 states	 to	 a	 good	 approximation,	 comparable	 with	 the	

asymptotic	states	of	the	weakly	coupled	Yukawa	theory	that	we	have	considered.	

That	is,	in	the	Yukawa	theory	and	in	QED,	it	is	at	large	length	(low	energy)	scales	

that	 a	 restricted	 application	 of	 ‘superposition’	 is	 possible	 to	 form	 a	 particle	

description	of	the	theory	as	an	idealized	natural	description,	whereas	in	QCD,	it	

is	 at	 the	 asymptotically	 short	 length	 scale	 /	 high	 energy	 that	 a	 particle	

description	 is	 possible	 as	 an	 idealized	 natural	 description.	 This	 means	 that	 at	

high	energies	it	can	be	meaningful,	as	an	engineer’s	approximation,	to	consider	a	

nucleon	as	composed	of	quarks,	with	such	a	model	supporting	calculations	and	

explanations	(cf.	Lancaster	and	Blundell	2014,	307-308).	22	The	difficulty	in	both	

cases	 is	 that	 the	 descriptions	 associated	 with	 idealized	 asymptotic	 limits	 are	

often	prolonged	by	semantic	mimicry	 into	general	states.	When	the	coupling	 is	

																																																								
19	I	only	consider	the	issue	of	the	coupling	strength	here.	
20	The	problem	is	usually	discussed	in	relation	to	the	coupling	being	too	strong	to	support	an	
iterative	calculation.	I	am	saying	that	the	problem	runs	much	deeper	than	this,	relating	to	the	
failure	of	the	initial	application	of	the	Volkmann	device	to	be	even	approximately	true,	even	if	
there	are	‘workarounds’	to	support	calculations.	
21	This	procedure	has	a	mathematical	architecture	in	the	gauge	principle.	As	previously	noted	
(§9.2),	it	merits	further	analysis	to	clarify	the	relationship	between	the	gauge	principle	and	the	
use	of	the	Volkmann	device	in	which	the	physical	architecture	is	central.	
22	Bain	(2000)	briefly	considers	the	role	of	asymptotic	freedom	in	developing	a	particle	notion	in	
QCD	as	noted	in	§10.2.3.	
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weak	 such	 prolongation	 often	 offers	 a	 good	model	 that	 supports	 approximate	

calculations,	and	explanations	in	some	sense,	even	if	the	model	is	strictly	false.23	

	 As	a	final	illustration	of	these	ideas	in	the	engineering	approach	I	briefly	

consider	the	situation	 in	nuclear	modelling,	where	we	have	a	context	 involving	

the	 analysis	 of	 bound	 states	 using	 a	 strongly	 coupled	 theory.	 Cook	 draws	

attention	to	the	‘curious	state’	of	nuclear	physics:	

a	great	deal	is	known	about	the	technology	of	nuclear	energy,	and	yet	our	understanding	
of	 the	 nucleus	 itself	 is	 seemingly	 quite	 incomplete.	 More	 than	 30	 (!)	 nuclear	 models	 –	
based	on	strikingly	different	assumptions	–	are	currently	employed	…	Each	provides	some	
insight	 into	nuclear	structure	or	dynamics,	but	none	can	claim	to	be	more	than	a	partial	
truth,	often	in	conflict	with	the	partial	truths	offered	by	other	models.	…	
It	is	rather	disconcerting	…	that	some	…	unanswered	questions	include	truly	basic	issues,	
such	as	the	phase	state	of	nuclear	matter	…	the	nature	of	nuclear	force	…	and	the	nature	of	
nucleons	themselves.	(2006,	5-6)	

Drawing	upon	Cook	and	Greiner	and	Maruhn	(1996),	Morrison	(2015)	discusses	

the	 multiplicity	 of	 partially	 successful	 nuclear	 models	 in	 the	 context	 of	 her	

treatment	of	the	role	of	inconsistent	and	contradictory	models.	She	suggests	that	

‘we	are	left	in	an	epistemic	quandary	when	trying	to	evaluate	the	realistic	status	

of	 these	 nuclear	 models	 and	 the	 information	 they	 provide.	 We	 can’t	 simply	

conclude	 that	 all	 the	 information	 extracted	 from	 the	 models	 is	 dubious,	 since	

some	 provides	 the	 very	 foundation	 on	 which	 a	 good	 deal	 of	 technological	

knowledge	(and	some	theoretical	knowledge)	is	based.’	(2015,	191)	

However,	 the	difficulties	encountered	 in	modelling	nuclei	 exemplify	 some	

of	 the	 issues	 raised	 in	 the	 analysis	 of	 complicated	 ‘bound	 states’	 of	 strongly	

coupled	non-abelian	gauge	theories.	The	role	that	nuclear	models	play	might	be	

better	 understood	 with	 reference	 to	 a	 Wilsonian	 ‘theory	 façade’	 in	 which	 an	

‘engineer’s	 approach’	 is	 implicitly	 adopted	 to	 form	 a	 patchwork	 structure	 of	

locally	successful	models,	rather	than	 in	terms	of	 ‘partial	“truths”’	 (as	Morrison	

puts	it).	The	diagnosis	of	the	situation	is	that	a	nucleus	is	a	complicated	general	

interacting	 state	 of	 a	 strongly	 coupled	 theory,24	for	 which	 we	 do	 not	 have	 a	

natural	 description	 because	 ‘superposition’	 fails,	 even	 to	 a	 reasonable	

approximation	 in	 most	 contexts	 of	 nuclear	 modelling.	 This	 necessitates	 the	

construction	 of	 ‘engineering	models’	 to	 obtain	 ‘good	 enough’	 results	 in	 limited	

contexts.	 The	 ‘curious	 state’	 occurs	 perhaps	 because	 we	 expect	 the	 Volkmann	
																																																								
23	One	might	ask	how	the	concept	of	semantic	mimicry	is	to	be	understood	in	an	engineering	
approach,	but	this	is	not	a	question	that	I	can	pursue	here	beyond	noting	that	semantic	mimicry	
is	associated	with	an	unreflective	realist	interpretation.	
24	Moreover,	more	than	one	theory	is	needed	–	QCD	and	electroweak	theory.	
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device	to	apply	so	that	we	can	form	a	natural	description	of	a	nucleus	in	terms	of,	

say,	neutrons	and	protons	–	each	with	a	 finer	quark	and	gluon	structure,	when	

this	 is	 not	 the	 case.	 Perhaps	 we	 have	 come	 to	 expect	 ‘superposition’	 to	 be	

approximately	true	at	the	level	of	the	structure	of	the	nucleus,	when	it	is	not,	and	

it	 is	 by	 semantic	 mimicry	 that	 we	 picture	 a	 nucleus	 as	 a	 bound	 state	 that	 is	

composed	of	rather	than	made	from	protons	and	neutrons,	with	such	a	naively	

realist	picture	of	the	nucleus	leading	to	conceptual	confusions.	

This	is	to	be	contrasted	with	models	of	the	electron	configuration	of	atoms,	

for	which	 the	 approximate	 applicability	 of	 superposition,	 and	 the	 approximate	

applicability	 of	 a	 non-relativistic	 model,	 indicate	 that	 NRQM	 is	 adequate	 for	

many	purposes	in	this	context,	even	if	it	is	strictly	false.	

	

11.7	Summary	

We	 have	 seen	 how	 ‘in	 principle’	 knowledge	 of	 the	 eigenstates	 of	 the	 4-

momentum	operator	 leads	 to	 the	 ability	 to	model	 unstable	 particles.	We	 have	

also	related	the	!"	to	the	!"#$	species	using	Haag-Ruelle	theory,	and	established	a	

scattering	 theory	 based	 on	 the	 idealized	 asymptotic	 states	 in	 LSZ	 scattering	

theory.	 The	 Gell-Mann	 and	 Low	 theorem	 allows	 approximation	 of	 the	 Green’s	

functions	 required	 using	 Dyson’s	 expansion,	 after	 renormalization,	 giving	

approximate	 scattering	 amplitudes.	 Reliable	 calculations	 are	 supported	 in	

scattering	theory	without	a	usable	natural	description	of	interacting	states.	

The	 Gell-Mann	 and	 Low	 theorem	 can	 support	 calculations	 of	 the	

properties	 and	 behaviour	 of	 bounds	 states	 in	 weakly	 coupled	 theories	 even	

though	 QFT	 does	 not	 supply	 a	 fine-grained	 enough	 structure	 to	 support	 the	

identification	of	a	natural	description	of	any	 internal	structure	to	bound	states,	

owing	to	the	failure	of	‘superposition’	in	the	context	of	general	interacting	states.	

That	 is,	 QFT	 does	 not	 model	 bound	 states	 as	 composed	 of	 simple	 constituent	

particles	or	partial	states	–	bound	states	are	themselves	simple	elements	in	QFT.		

However,	 in	 the	 case	of	weakly	 coupled	 theories	 ‘superposition’	 approximately	

holds	and	so	it	is	a	good	‘engineer’s	approximation’	to	model	a	bound	state	of	a	

weakly	 coupled	 theory	 as	 ‘composed	of’	 constituent	 particles	 even	 though	 this	

may	 evade	 a	 straightforwardly	 realist	 construal.	 In	 strongly	 coupled	 theories	

‘superposition’	does	not	even	hold	approximately,	which	leads	to	confusion.	
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Chapter	12	

	

Concluding	remarks	and	suggestions	for	further	research	

	

12.1	Summary	

We	began	by	considering	the	patchwork	structure	and	philosophical	significance	

of	 the	 concept	 of	 superposition	 in	 classical	 physics	 as	 motivated	 by	 a	

metaphysically	 quietist	 Wilsonian	 framework,	 drawing	 in	 particular	 on	 and	

developing	 the	 work	 of	 Paul	 Volkmann	 (1896)	 as	 re-appropriated	 within	 this	

philosophical	 context.	 This	 involved	 the	 application	 of	 the	 concept	 of	

superposition	 within	 Fourier	 techniques	 interpreted	 in	 terms	 of	 ‘Hilbert	

superposition’,	 which	 enabled	 us	 to	 identify	 and	 characterize	 instances	 of	

‘semantic	mimicry’,	in	the	slightly	narrower	sense	that	I	outlined	in	§1.2.3,	in	the	

use	 of	 Fourier	 series	 and	 in	 the	 interpretation	 of	 various	 series	 expansion	

methods.	In	particular	we	saw	in	the	classical	context	(chapters	2-5)	how:	

(1) There	are	two	main	patches	of	application	of	‘superposition’	as	primarily	

associated	 with	 either	 Peter	 Simons’	 approach	 (i),	 or	 Paul	 Volkmann’s	

approach	(ii).	According	to	(i)	components	of	a	complicated	phenomenon	

may	 be	 identified	 that	 have	 independent	 causal	 origins	 such	 that	 the	

components	 persist	 when	 combined	 according	 to	 a	 trace	 principle.	 We	

say	 that	 the	 phenomenon	 is	 the	 superposition	 of	 the	 components.	

According	 to	 (ii),	 one	 seeks	 to	 identify	 abstracted	 partial	 states	 and	

associated	 partial	 laws	 of	 a	 complicated	 phenomenon	 or	 system	 that	

completely	 characterize	 it	 and	 take	 the	 same	 form	 individually	 and	 in	

combination,	 whilst	 not	 stating	 the	 facts	 in	 combination.	 When	 this	 is	

accomplished	we	 call	 the	 combination	 the	 ‘superposition’	 of	 the	 partial	

states	 and	 /	 or	 laws.	 Traditionally,	 a	 linear	 form	 of	 combination	 is	

understood,	 although	 this	 may	 be	 generalized.	 The	 generalized	 form	 I	

referred	 to	 as	 the	 ‘Volkmann	 device’.	 The	 importance	 of	 such	

decompositions	 is	 that	 the	 components,	 as	 either	 the	 partial	 states	 or	

laws,	 have	 physical	 salience	 in	 supporting	 explanations	 of,	 and	

counterfactual	 reasoning	 regarding,	 the	 behaviour	 of	 complicated	
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phenomena	 or	 systems.	 The	 Mill-Ramsey-Lewis	 ‘best	 system’	 account,	

interpreted	 in	 a	 metaphysically	 neutral	 sense,	 was	 adopted	 to	

characterize	 the	 partial	 laws	 as	 laws	 in	 order	 to	 offer	 a	 criterion	 for	

acceptance	 of	 a	 decomposition	 obtained	 as	 a	 superposition,	 so	 that	 the	

representation	 obtained	 according	 to	 this	 procedure	 may	 be	

characterized	 as	 ‘natural’.	 In	 some	 cases,	 for	 instance	 in	 the	 example	of	

conjoined	 gravitational	 and	 electrostatic	 forces,	 (i)	 and	 (ii)	 both	 apply	

simultaneously	to	yield	the	same	components.	

(2) Application	 of	 ‘superposition’,	 as	 it	 is	 prolonged,	 is	 in	 some	 senses	

‘promiscuous’	 but	 not	 arbitrary.	 It	 is	 determined	 by	 the	 context	 of	

application,	as	 it	may	be	associated	with	different	patches	of	application	

regarding	 how	 the	 physical	 significance	 of	 the	 components	 is	 to	 be	

construed.	Cases	(i)	and	(ii)	above	might	be	regarded	as	different	patches	

of	application	of	superposition.	The	applicability	of	the	concept	leading	to	

different	 decompositions	 simultaneously	 according	 to	 (i)	 and	 (ii)	 in	 the	

same	 physical	 situation	 is	 one	 way	 in	 which	 the	 components	 of	 a	

superposition	may	be	underdetermined,	but	not	arbitrary.	

(3) Fourier	 techniques	 are	 associated	 with	 natural	 descriptions	 of	 certain	

kinds	 of	 physical	 phenomena	 modelled	 by	 linear	 partial	 differential	

equations	 subject	 to	 boundary	 conditions,	 via	 ‘Hilbert	 superposition’.	

There	 are	 two	 aspects	 to	 Fourier	 techniques	 –	 first,	 an	 eigenfunction	

representation	 of	 differential	 operators	 obtained	 via	 the	 separation	

variables	that	enables	the	construction	of	‘simple	solutions’	to	the	original	

partial	 differential	 equation	 from	 which	 general	 solutions	 can	 be	 built	

according	to	Hilbert	superposition;	secondly,	decomposition	of	the	initial	

or	 boundary	 condition	 into	 the	 relevant	 eigenfunctions	 or	 modes.	 The	

two	different	aspects	of	Fourier	techniques	represent	two	different	kinds	

of	applications	of	‘superposition’	according	to	(ii)	above;	

(4) The	applicability	of	the	concept	of	superposition	depends	on	the	linearity	

of	the	system	or	PDE	modelling	it.	

(5) The	 architecture	 of	 ‘superposition’	 becomes	 more	 intricate	 and	

complicated	 as	 one	 encounters	 different	 methods	 of	 linear	 systems	

analysis,	 such	 as	 Laplace	 transform	 techniques	 for	 example.	 These	
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exemplify	borderline	cases	of	the	application	of	the	concept	that	might	be	

taken	 to	 indicate	 either	 further	 (sub)patches	 of	 application,	 or	

misapplication	 of	 the	 concept.	 Correspondingly,	 the	 interpretative	

dilemmas	for	the	realist	are	magnified.	

It	was	primarily	through	Courant	and	Hilbert’s	textbook	(1924)	and	the	Fourier	

analysis	of	vibrating	classical	systems	that	the	concept	of	superposition	naturally	

entered	 quantum	 physics	 as	 Fourier	 techniques	 were	 extended	 to	 quantum	

phenomena,	 as	 we	 saw	 in	 chapters	 6-7.	 This	 led	 to	 a	 new	 quantum	 patch	 of	

application	of	‘superposition’	in	continuity	with	its	classical	usage,	but	with	novel	

interpretation	 of	 the	 semantic	 architecture	 of	 the	 concept	 via	 Born’s	 rule.	 We	

saw	that	it	was	these	aspects	of	continuity	of	the	architecture	of	 ‘superposition’	

from	classical	to	quantum	physics	that	were	central	to	the	analysis	of	QFT	that	I	

present.	 Complications	 arise	 from	 an	 additional	 underdetermination	 of	 the	

components	 of	 a	 superposition	 in	 NRQM	 in	 that	 eigenstate	 decompositions	 of	

different	 (non-commuting)	 observables	 give	 rise	 to	 different	 applications	 of	

‘superposition’	 to	 the	 same	quantum	state.	This	 complication	does	not	arise	 in	

QFT	 as	 eigenstates	 may	 be	 chosen	 that	 are	 simultaneous	 eigenstates	 of	 the	

Hamiltonian,	momentum	and	permutation	operators.	Moreover,	these	important	

aspects	 of	 continuity	 that	 are	 used	 to	 diagnose	 the	 misapplication	 of	

‘superposition’	and	the	conceptual	confusions	that	arise	in	QFT	are	prior	to	the	

‘measurement	problem’,	which	therefore	need	not	be	considered	here.	

	 We	saw	in	chapter	8	that	‘superposition’	applies	straightforwardly	to	the	

construction	 of	 free	 QFTs	 and	 their	 Fock	 space	 structures.	 A	 particle	

interpretation	is	supported	as	a	natural	description	of	the	system	modelled,	even	

if	some	interpretative	questions	remain	regarding	how	we	are	to	understand	the	

composition	 of	N-quanta	 states.	 What	 is	 crucial	 here	 is	 the	 application	 of	 the	

‘Volkmann	device’	to	allow	the	identification	of	fields	and	corresponding	partial	

states	so	as	 to	allow	the	state	 to	be	characterized	according	to	distinct	particle	

types,	 where	 the	 partial	 states	 then	 support	 a	 Fock	 representation	 to	 give	 a	

natural	description	of	the	system	in	terms	of	particle	types,	numbers	and	states	

using	Fourier	techniques.	That	this	is	possible	is	indicated	by	the	linearity	of	both	

the	(free)	uncoupled	wave	equations	associated	with	the	fields	and	Schrödinger’s	

equation	 characterizing	 the	 evolution	 of	 the	 state	 for	 which	 the	 (time	
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independent)	 eigenfunction	 solutions	 can	 be	 chosen	 to	 be	 simultaneous	

eigenfunctions	of	4-momentum	and	relevant	permutation	operators.	

The	problems	arise	when	one	seeks	to	introduce	an	interaction	(chapters	

9-10).	 Implicit	 appeal	 is	 made	 to	 the	 Volkmann	 device	 again	 using	 either	 an	

explicitly	 perturbative	 introduction	 of	 the	 interaction,	 or	 the	 gauge	 principle,	

which	 introduces	 the	 interaction	 as	 an	 ‘effective	 perturbation’.	 However,	 the	

Volkmann	device	fails	in	both	cases	upon	the	introduction	of	an	interaction.	But	

the	failure	of	the	Volkmann	device,	and	its	consequences,	generally	go	unnoticed.	

The	overall	state	evolves	linearly	according	to	Schrödinger’s	equation	as	before,	

but	 the	 decomposition	 of	 the	 overall	 state	 into	 partial	 states	 associated	 with	

coupled	 fields	 is	 no	 longer	 supported.	 The	 non-linearity	 of	 the	 coupled	 field	

equations	 prevents	 the	 use	 of	 Fourier	 techniques	 to	 establish	 a	 physically	

meaningful	 Fock	 space	 structure	 to	 the	 partial	 and	 overall	 states,	 quite	 apart	

from	considerations	from	Haag’s	theorem.	This	means	that	the	choice	of	fields	is	

not	a	natural	one	 for	 interacting	theories,	and	that	a	particle	description	 is	not	

available	 for	 interacting	 QFTs.	 A	 natural	 description	 of	 the	 state	 exists	 in	

principle,	 but	 cannot	 be	 stated	 explicitly	 or	 related	 to	 any	 chosen	 fields	 other	

than	 in	 the	 asymptotic,	 idealized	 free	 contexts.	 Renormalization	 is	 the	marker	

and	partial	remedy	for	the	failure	of	the	Volkmann	device	that	allows	empirically	

adequate	calculations	to	be	‘engineered’.	

The	 lack	 of	 a	 natural	 field	 characterization	 and	 particle	 description	 of	

interacting	 states	 has	 important	 implications	 (chapter	 11).	 For	 instance,	

according	 to	 QFT	 ‘bound	 states’,	 which	 are	 ubiquitous	 in	 nature,	 cannot	 be	

endowed	with	any	internal	structure	so	that	we	cannot	describe	the	composition	

of	 such	 states	 in	 QFT.	 We	 also	 do	 not	 have	 a	 truly	 adequate	 description	 of	

unstable	particles	 in	QFT,	which	are	also	ubiquitous	 in	nature.	Together,	 these	

observations	 indicate	 the	 severe	 limitations	 of	 our	 ability	 to	 describe	 or	

understand	 nature	 at	 the	 (near)	 fundamental	 level.	 This	 is	 not	 to	 say	 that	

interacting	 systems	at	 this	 level	do	not	have	any	 internal	 structure,	 rather,	 the	

claim	is	that	interacting	systems	at	the	(near)	fundamental	level	do	not	have	any	

internal	structure	according	to	QFT,	at	least	as	the	theory	stands,	which	is	widely	

regarded	as	our	most	successful	(near)	fundamental	theory.	In	other	words,	I	do	

not	 exclude	 the	 possibility	 that	 according	 to	 some	 future	 theory	 it	 may	 be	
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possible	 to	analyse	the	 internal	structure	of	 the	(near	 fundamental)	 interacting	

states	that	we	currently	model	with	QFT.	

	 We	saw	that	whilst	there	is	no	particle	description,	or	natural	description	

of	general	interacting	QFTs	available	in	any	of	the	free	fields,	interacting	fields,	or	

idealized	asymptotic	free	fields,	nonetheless	by	the	use	of	LSZ	scattering	theory,	

the	Gell-Mann	and	Low	 theorem,	and	Dyson’s	expansion,	 after	 renormalization	

calculations	 at	 the	 near	 fundamental	 level	 may	 be	 supported,	 even	 if	 a	

description	is	unavailable	(chapter	11).	The	kind	of	knowledge	that	QFT	offers	is	

more	comparable	with	the	kind	of	knowledge	that	an	engineer	provides	rather	

than	that	which	the	realist	or	metaphysician	seeks.	

The	 kind	 of	 ‘engineering	 perspective’	 that	 I	 have	 sought	 to	 outline	

dovetails	with	Wilson’s	analyses	of	various	physical	systems	in	the	sense	that	it	

draws	 attention	 to	 the	 kinds	 of	descriptive	opportunities	 that	 are	 available,	 or	

that	 we	 can	 construct	 in	 certain	 situations	 by	 suitable	 approximations	 and	

idealizations,	whilst	being	 cognisant	of	 the	possibilities	of	 semantic	mimicry	as	

they	may	occur	in	the	interpretation	of	various	solution	techniques	especially	as	

coupled	with	an	avoidance	of	‘Theory	T’	type	interpretations	of	the	theories	and	

models	used.	As	 in	Wilson’s	approach,	an	 ‘engineering	approach’	stops	short	of	

advocating	either	a	realist	commitment	to	the	entities	of	some	given	model	and	

associated	 theory	 of	 a	 physical	 system,	 or	 a	 ‘merely’	 instrumentalist	

interpretation	 of	 the	 model,	 where	 both	 poles	 might	 be	 said	 to	 arise	 from	

semantic	mimicry.	

	 We	 noted	 that	 despite	 these	 severe	 difficulties,	 in	 limited	 contexts	 in	

weakly	 coupled	 theories,	 in	 the	 context	 of	 ‘engineering	 models’	 QFT	 supplies	

approximate	 descriptions	 of	 interacting	 states	 in	 terms	 of	 a	 particle	 concept,	

although	 it	 is	 important	 to	 be	 cognizant	 of	 the	 limitations	 inherent	 in	 such	 an	

approximate	 description,	 and	 it	 is	 not	 clear	 what	 stance	 the	 realist	 ought	 to	

adopt	 toward	 such	 ‘description’.	 Moreover,	 the	 approximate	 particle	model	 of	

interacting	 states	 in	 weakly	 coupled	 QFTs,	 such	 as	 used	 when	 modelling	 the	

electron	configuration	of	an	atom,	might	owe	more	to	the	 framework	of	NRQM	

than	QFT,	where	QFTs	are	used	in	special	circumstances	to	provide	‘corrections’	

to	such	models,	as	for	instance	in	the	Lamb	shift	of	the	spectrum	of	the	hydrogen	
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atom.	Such	modelling	practice	might	be	best	 interpreted	within	an	engineering	

perspective,	reflecting	an	instance	of	a	Wilsonian	theory	façade.		

	

12.2	Future	work	and	implications	of	the	thesis	

I	have	only	considered	one,	and	rather	elementary,	approach	to	QFT,	neglecting	

for	instance	the	now	more	popular	path-integral	approach	as	well	as	the	wave-

functional	approach	(cf.	Hatfield	1992).	Might	one	expect	a	different	conclusion	

within	 these	 approaches?	 It	 seems	 not.	 For	 Hatfield	 demonstrates	 the	

equivalence	of	 the	approaches	 in	 free	theories	whilst	noting	that	 to	develop	an	

interacting	theory	in	each	approach	requires	some	form	of	perturbative	addition	

to	the	free	theory,	the	architecture	of	which	is	different	in	each	case.	In	my	terms,	

this	means	 that	 each	 approach	 depends	 on	 a	 selection	 of	 fields	 that	make	 the	

same	implicit,	 initial	and	problematic	appeal	 to	 the	Volkmann	device	that	leads	

to	 nonlinear,	 perturbative	 (in	 my	 sense)	 coupled	 expressions	 that	 require	

recourse	to	approximation	techniques,	and	renormalization,	in	interacting	cases.	

Moreover,	 I	have	not	considered	gauge	theory	or	renormalization	group	

techniques	 beyond	 a	 few	 comments,	 although	 I	 suggested	 that	 neither	

framework	is	able	to	bypass	the	conceptual	difficulties	identified	that	arise	form	

the	failure	of	the	Volkmann	device.	However,	further	study	is	merited	to	situate	

more	 precisely	 the	 techniques	 in	 relation	 to	 the	 Volkmann	 device	 and	 the	

compensation	for	its	failure,	especially	in	an	engineering	perspective.	

Alternatively,	we	might	consider	more	significantly	different	approaches	

to	QFT	such	as	the	algebraic	approach	(AQFT)	often	preferred	by	philosophers,	

or	 indeed	 various	 string	 theories.	 From	 the	 perspective	 that	 I	 have	 sought	 to	

establish,	 the	 crucial	 question	 to	 ask	 is	 whether	 or	 not	 these	 approaches	 can	

either	 support	 the	 application	 of	 the	 Volkmann	 device,	 or	 circumvent	 the	

problems	 associated	 with	 its	 failure	 in	 such	 a	 way	 as	 to	 support	 a	 natural	

description	 of	 the	 quantum	 system	 considered,	 rather	 than	 simply	 empirically	

adequate	 results.	 This	 would	 appear	 necessarily	 to	 be	 required	 for	 AQFT	 or	

string	theory	to	offer	a	significant	descriptive	advantage,	or	the	ability	to	support	

physical	explanations	of	interactions	and	interaction	processes,	even	if	there	may	

be	other	benefits	to	AQFT	and	string	theory.	



	 285	

The	 failure	 to	 be	 able	 to	 represent	 or	 describe	 nature	 at	 the	 (near)	

fundamental	level	according	to	one	of	our	best	scientific	theories	has	important	

implications	 for	 various	 metaphysical	 projects,	 especially	 those	 predicated	 on	

fundamentality,	 the	 concept	 of	 reduction	 or	 reductive	 accounts	 in	 which	

fundamental	level	physics	and	the	entities,	properties	and	laws	that	it	is	assumed	

to	 supply	 play	 a	 key	 role.	 Moreover,	 our	 inability	 to	 represent	 nature	 at	 the	

(near)	fundamental	level	has	implications	for	how	we	understand	matter	and	the	

concept	of	matter	 interacting	at	 the	(near)	 fundamental	 level,	and	 indeed	what	

constitutes	 ‘fundamentality’,1	and	 we	 remain	 largely	 ignorant	 of	 the	 nature	 of	

properties	such	as	charge.	

	 	

12.3	In	conclusion	

The	 development	 of	 the	 ‘superposition	 principle’	 in	 science	 may	 be	 traced	 to	

Galileo,	and	the	principle	may	claim	a	pivotal	role	in	the	Scientific	Revolution	and	

in	 the	 development	 and	 progress	 of	 science	 and	 technology	 from	 the	 early	

modern	period	into	the	20th-century.	That	is,	the	ability	to	analyse	a	complicated	

phenomenon	 or	 system	 in	 terms	 of	 abstractable	 simple	 components	 such	 that	

partial	 laws	associated	with	 the	 simple	 components	 (as	partial	 states)	 take	 the	

same	 form	 individually	 and	 in	 combination	 without	 stating	 the	 facts	 in	

combination	appears	foundational	to	the	scientific	method	and	analysis,	as	well	

as	to	the	development	of	technology,	whether	or	not	one	adopts	a	realist	stance	

to	 the	 components	 and	 laws	 associated	 with	 superposition.	 This	 is	 to	 re-

appropriate	 Volkmann’s	 understanding	 of	 the	 development	 of	 science	 and	 the	

role	that	the	isolation/superposition	process	plays	within	it	(1896;	1900;	1910),	

which	 has	 perhaps	 not	 received	 the	 philosophical	 attention	 that	 it	merits.	 The	

usage	 of	 the	 concept	 of	 superposition,	 whether	 explicitly	 or	 implicitly,	 was	

associated	with	 the	 study	 of	 linear	 phenomena,	 or	 phenomena	 that	 supported	

linear	models	for	their	analysis	in	the	19th	century	in	particular.	Problems	arose	

																																																								
1	I	have	not	attempted	analysis	of	‘fundamentality’,	for	which	see	e.g.	Tahko	(2018).	The	point	is	
that	my	analysis	does	not	support	the	kinds	of	assumptions	or	claims	often	made	regarding	QFT	
in	relation	to	‘the	fundamental’,	however	defined	(cf.	e.g.	McKenzie	2017),	and	that	the	
relationship	between	‘superposition’	and	the	concept	of	fundamentality	merits	further	research.	
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when	non-linear	phenomena	began	to	be	modelled,	as	occurred	in	the	early	20th	

century,	for	which	superposition	fails,	leading	to	unexpected	results.2	

We	 have	 seen	 that	 implicitly	 scientists	 and	 philosophers	 in	 the	 20th	

century,	 apart	 from	 Heitler	 (1936)	 perhaps,	 intuitively	 expected	 to	 be	 able	 to	

‘prolong’	 use	 of	 ‘superposition’,	 or	 the	 Volkmann	 device,	 from	 the	 analysis	 of	

(linear)	classical	macroscopic	phenomena,	especially	in	the	18th-19th	century,	to	

the	 (near)	 fundamental	 level	 in	QFT.	However,	we	 appear	 to	have	 reached	 the	

limits	 of	 the	 application	 of	 ‘superposition’	 in	 QFT,	 with	 various	 philosophical	

dilemmas	 that	 arise	 being	 capable	 of	 diagnosis	 in	 terms	 of	 the	 unrecognized	

failure	 of	 ‘superposition’.	 This	 –	 the	 failure	 of	 the	 Volkmann	 device	 and	

associated	 ‘superposition’	 –	 is	 a,	 if	not	 the,	 fundamental	 conceptual	problem	of	

QFT.	The	consequence	is	that	we	do	not	know	what	entities	(or	indeed	relations)	

characterize	 the	 (near)	 fundamental	 level,	 so	 we	 cannot	 identify	 the	 basic	

constituents	of	matter	or	explain	their	interactions	at	this	level	for	instance.	

The	 conceptual	 difficulties	 that	 arise	 in	 QFT	might	 be	 characterized	 in	

Wilsonian	terms	as	the	tacit	prolongation	of	the	superposition	concept	where	it	

is	 assumed	 to	 apply,	 by	 semantic	 mimicry,	 but	 where	 it	 doesn’t,	 so	 that	 one	

falsely	believes	that	one	has	a	natural	(or	even	metaphysical)	description	of	the	

world,	having	selected	 the	 correct	 ‘isolation	 centres’	or	 independent	entities	at	

the	near	fundamental	level,	when	this	is	not	the	case.		

It	is	not	clear	whether	the	identification	of	such	‘isolation	centres’	or	even	

a	different	conceptual	framework	that	would	support	such	analysis	is	ultimately	

within	 our	 conceptual	 abilities,	 perhaps	 via	 some	 non-linear	 superposition	

principle,	or	if	the	task	will	forever	elude	us	so	that	our	understanding	of	Nature	

will	always	be	more	like	an	engineer’s	than	a	metaphysician’s.	In	the	mean	time	

the	failure	of	the	Volkmann	device	is	manifested	in	the	need	for	renormalization,	

which	 offers	 a	 limited	 pragmatic	 accommodation	 for	 the	 failure	 of	

‘superposition’,	which	is	a	key	conceptual	problem	of	QFT	quite	apart	from	any	

ignorance	 on	 our	 part	 of	 the	 physics	 at	 very	 short	 length	 scales.	 Or,	 to	 put	 it	

another	way,	our	ignorance	begins	before	we	think	it	does.	

																																																								
2	See	for	instance	Simmons	(2017,	572-574)	for	brief	historical	comments	on	the	unexpected	
consequences	of	the	behaviour	of	electrical	systems	modeled	by	the	nonlinear	van	der	Pol	
equation,	for	which	‘superposition’	fails.	
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