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Abstract

The long-standing problem of neutron–proton pairing correlations is revisited by employing

the Hartree–Fock–Bogoliubov formalism with neutron–proton mixing in both the particle–hole

and particle–particle channels and symmetry-restoration techniques with the Variation After

Projection framework. We compare numerical calculations performed within these methods

with an exact pairing model based on the SO(8) algebra.

We show that the symmetry-restored paired mean-field states (quasiparticle vacua) prop-

erly account for isoscalar versus isovector nuclear pairing properties within this model, whose

relevant symmetries are full particle-number, spin, and isospin. Theoretical predictions of the

reduced matrix elements of the deuteron transfer, the potential experimental probe to observe

neutron-proton condensates in nuclei, are presented.

Prospects to implement a similar approach in a realistic setting are delineated, calculating

the matrix elements of a realistic separable interaction in the pairing channel, implementing

them in the numerical software HFODD and evaluating them computing the pairing gaps for

certain isotopic chains.
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Chapter 1

Introduction

The concept of pairing in nuclei was presented for the first time by Bohr, Mottelson and Pines

in a seminal paper for nuclear physics [BMP58], as it introduced that short-range two-body

correlations are as important as long-range one-body correlations. As depicted in Fig. (1.1), in

nuclei with an even number of particles there is a larger energy difference between the ground

and first excited states than in nuclei with an odd number of particles, suggesting an additional

correlation due to the evenness of the nucleus. Based on the similarity of the spectra of nuclei

with an even number of particles with the spectra of superconducting metals, they made a con-

nection between the properties of the wavefunction in nuclei and already well-founded theories

of superconductivity in condensed matter physics. The theory of superconductivity in metals

was introduced by Bardeen, Cooper and Schrieffer (BCS) [BCS57] and met an outstanding suc-

cess, based upon correlated electron pairs coupled to total spin and momentum zero, referred

in the current literature as Cooper pairs. Similarly, protons and neutron can form analogous

pairs in nuclei. The BCS theory of superconductivity was also implemented in superfluid nuclei

for the treatment of like-particle pairing, that is, proton-proton and neutron-neutron pairing.

The fundamental ingredient of this theory is the pairing gap parameter (usually denoted by

∆) that stipulates the energy necessary to break a pair and therefore excite the nucleus, ex-

perimentally found to be around 1 − 2 MeV. A vanishing value of this quantity will indicate

a non superfluid nucleus with no pair correlations, only happening for closed-shell, i.e., magic

nuclei. Nevertheless, the remarkable achievement of the BCS theory is counterbalanced by an

unavoidable obstacle in its formulation, namely, the proposed wavefunction of the fermionic

system is not an eigenfunction of the particle-number operator and, subsequently, it does not

have a definite integer number of particles composing the system, but an average value, with

corresponding fluctuations.

In the mean-field picture, the particle-number symmetry breaking is necessary in order to

14
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Figure 1.1: Schematic energy spectrum of a nucleus with an odd number of particles (left) and
an even number of particles (right). The ground state of an even nucleus is always 0+. A large
difference between the ground and first excited state is seen with regards to the odd spectrum,
coming from the breaking of one pair in the otherwise completely pair correlated ground state.
For the odd system, whose ground state is in the j-shell with parity p, simple particle-hole
excitations are possible at low energy cost.

describe pairing correlations in the nuclear wavefunction. Let us consider a system of particles

described by a one-body Hamiltonian with spherical symmetry and no spin-orbit splitting.

The different states of the system can be labelled using the quantum numbers of the conserved

angular momentum ` and projection over the z−axis m, the spin and the isospin, with their

two different projections. The concept of isospin, with analogous properties to the spin, was

introduced in order to treat the two different species building up the nucleus, protons and

neutrons, as two different projections of a general particle, the nucleon, with isospin 1
2
. Nucleons

can move in orbits with different magnetic number m with no preferred direction as they are

completely degenerate given the absence of spin-orbit splitting. Therefore, considering a system

with A = 4 nucleons moving in an ` = 2 shell with total degeneracy Ω = 2(2` + 1) = 10 (no

isospin degrees of freedom). One of the possible configurations is depicted in Fig. (1.2), which

has, in principle, the same ground-state energy as any other configuration of nucleons within the

shell. However, we know this is not the case for even nuclei, there is an additional correlation

between the nucleons that induces them to form coupled pairs of total angular momentum

equal to zero that reduces the ground-state energy of the system. That is, a configuration of

the system wherein their nucleons move in time-reversed orbits (orbits with opposite value of

angular momentum and spin projection), as in Fig. (1.3), is lower in energy than configurations
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m = −2 m = −1 m = 0

` = 2

m = +1 m = +2

Figure 1.2: An example of one possible configuration of four nucleons moving in a degenerate
` = 2 shell.

m = −2 m = −1 m = 0

` = 2

m = +1 m = +2

m = −2 m = −1 m = 0 m = +1 m = +2

Figure 1.3: Two possible configurations of four nucleons moving in time-reversed orbits within
a ` = 2 shell.

where this is not respected, as in Fig. (1.2). The existence of a preferred direction where nucleons

move, even in the case of a completely degenerate shell with no spin-orbit splitting, in order to

form correlated pairs to reduce the energy of the total system is an indication of the breaking of

a symmetry: the particle-number (or gauge) symmetry. The presence of pairing correlations is

exposed by means of a collective mode of pair condensates in the nuclear structure, in analogy

to the quadrupole degree of freedom, whose effect is observed in the surface deformation of the

nucleus and the broken rotational symmetry [Bro73].

The formation of correlated pairs in nuclei is a direct consequence of the attractive short-

range part of the nuclear interaction, making the spatial overlap between the two nucleons

forming the pair maximal, only counterbalanced by Pauli’s exclusion principle. Contrary to

the condensed matter case in superconducting metals, where electrons form Cooper pairs due to

in-medium vibrational effects, as the single-particle Coulomb interaction is repulsive, nucleons

are able to form this kind of pairs in vacuum. Still, the collective vibrations among nucleons give

rise to an additional induced pairing in finite nuclei [Bar99; Pas08], however the opposite effect

was observed in infinite neutron matter [Cla76; Sch96; She03] as the additional contribution

from the collective vibrations reduced the pairing correlations, leading to an open debate and

current research far beyond the scope of this project.

In finite nuclei, a measure used to determine empirically the pairing gap for protons and
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Figure 1.4: Odd-even mass staggering effect observed in the experimental binding energies of
the isotopic chains of Tin, Xenon and Palladium, where A = N + Z is the total number of
particles. The results were computed using the three-point indicator in Eq. (1.1). The three
outliers of the staggering correspond to neutron shell closures. Experimental data was obtained
from [Wan17].

neutrons from their binding energies (BE) is given by the three-point indicator [SDN98]

∆(3)
n =

(−1)N

2
[BE(N − 1) +BE(N + 1)− 2BE(N)],

∆(3)
p =

(−1)Z

2
[BE(Z − 1) +BE(Z + 1)− 2BE(Z)],

(1.1)

where N denotes the number of neutrons and Z the number of protons. Results for different

isotopic chains are given in Fig. (1.4).

The gross general trend of the proton and neutron pairing gaps according to the three-point

indicator all across the nuclear chart was suggested by Bohr & Mottelson [BM98], roughly

following the formula

∆ ∼ 12 MeV

A1/2
, (1.2)

where A = N + Z is the total number of particles. Theoretical methods describing pairing

correlations aim to reproduce the gaps given by the three-point formula, which they are also an
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Chapter 1. Introduction

indirect measurement of the number of pairs, or the presence of pair condensation, in nuclei.

Early models of nuclear structure, such as the Bethe-Weizsäcker liquid drop model, had

pairing correlations included taking the evenness of the nucleus into account. Such a term

reads

δ(N,Z) =


+δ0 if N even, Z even

0 if N + Z odd

−δ0 if N odd, Z odd,

(1.3)

indicating that a nucleus with an even number of protons and neutrons is more bound than

one with an odd number of particles. This effect can be seen, see Fig. (1.4), in the pairing gaps

of nuclei and is named the odd-even mass staggering : even nuclei are more bound than their

correspondent odd neighbours. Therefore we conclude that the odd-even mass staggering is a

fingerprint of pairing correlations in nuclei. This effect is present not only in nuclei [Dob01],

but also in metal clusters [De 93] and superconducting nanosystems [BRT96]. The origin of

such effect is twofold: the spontaneous breaking of spherical symmetry, mainly affecting metal

clusters and other macroscopic systems, and the impossibility to form a correlated pair because

of the single odd particle, which corresponds to the case of atomic nuclei.

Pairing in nuclear structure was mainly considered between like-particles (proton-proton

and neutron-neutron pairing) on the basis that the Fermi surfaces, the last occupied shell-

model orbits, of the proton and the neutron were very dissimilar. However, in the region of

the nuclear chart where the number of protons is equal to the number of neutrons (the N = Z

line), this is no longer true and theoretically proton-neutron pairing needs to also be taken

into consideration. The first mention of a pairing correlation between a proton and a neutron

was introduced by Goswami and Kisslinger [GK65], introducing the quantity neutron-proton

gap. They developed a generalised gap equation (explained in Section 3) to find solutions for

this quantity, similar in nature to the proton and neutron gaps, in order to study isoscalar1

pairing correlations in an analogous manner to isovector correlations. This theory was refined

by Goodman [Goo72] for neutron-proton (np) pairs that do not necessarily move in time-

reversed orbits. Nevertheless, isoscalar np condensates remain elusive [Per04] and, in fact,

some phenomenological calculations with the binding energies of even-even and odd-odd nuclei

show that isoscalar condensates do not contribute significantly to the pair correlation energy in

N = Z nuclei [FM14] and that there is no evidence for an isoscalar pair condensate in N = Z

nuclei [Mac00], being the fundamental reason why we will not find values of experimental

1As protons and neutrons have isospin 1
2 , they can couple in pairs to total isospin 0 (isoscalar pairing) or 1

(isovector pairing).
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neutron-proton gaps in the literature. Still, a microscopic calculation in real finite nuclei is

very much needed in order to discern the origin of these proton-neutron pairing correlations as

theoretical models predict the existence of these condensates. As np pairing only plays a major
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Figure 1.5: Isovector (like-
particle) condensate in a nucleus.
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Figure 1.6: Isoscalar-isovector
condensate coexistence in a nu-
cleus.

role in N = Z nuclei, it will not be significant in heavy nuclei, as there is a large asymmetry

between neutrons and protons resulting from the repulsive Coulomb interaction. The largest

N = Z nucleus experimentally measured is 100Sn [Hin12; FGG13]. The study of the N = Z line

is very interesting because this line coexists with the proton dripline and it has been argued

that np pairing could play a role in the location of the proton dripline [Goo99]. It has also

been found that np pairing correlations significantly influence processes such as neutrinoless

double β (0νββ) decay [Pan96; HE14], Gamow-Teller transitions [Che95] and they could also

influence the dynamics of rapid proton capture in stellar nucleosynthesis [Ced11]. Shell model

studies show the importance of isoscalar pairing in the nuclear structure of self-conjugate nuclei

based on a phenomenological Hamiltonian including a residual interaction between protons and

neutrons [Fu16; Qi11; ZV11; Mio19]. However, these shell model works are seldom concerned

with the anatomy of the nuclear wavefunction in terms of proton-proton, neutron-neutron

and neutron-proton condensates [Van16]. In addition, rather than discussing about isoscalar

neutron-proton pair condensates, it is frequent to read in the scientific literature about spin-

aligned neutron-proton pairs in high-spin states, which are formed due to the rotational force

which breaks the standard like-particle correlated pairs and aligns them along the direction of

total angular momentum [KSA17]. Consequently, neutron-proton pairing may have a significant

effect on the moments of inertia of rotating nuclei, such as 80Zr [Goo01].
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E

n

core

p

core

Figure 1.7: Shell model valence space configuration of a N = Z nucleus. While protons and
neutrons occupy similar shell-model orbitals, there is a significant difference between their Fermi
energies because of the Coulomb interaction.

The major obstacle for the formation of neutron-proton pairs, and like-particle pairs in

general, in open-shell nuclei is the spin-orbit interaction. For that reason, while we have stated

that neutron-proton pairing plays a major role in N = Z light nuclei below mass A = 100, it

has been shown theoretically by Gezerlis [GBL11; BG16] that spin-triplet (isoscalar) and spin-

singlet (isovector) phases mix in a heavy asymmetric nucleus like 132
64 Gd. Moreover, the selective

occupation of certain high angular-momentum single-particle orbitals cause the dominance of

fully aligned neutron-proton pairs in many nuclei throughout the nuclear chart [Kim18]. This

fact encourages the systematic microscopic study of pairing phases across the nuclear chart,

only possible nowadays with the tools of density functional theory.

Recently, tentative experimental evidence has been found to support isoscalar and isovec-

tor neutron-proton pairing coupling coexistence in the level schemes of 96Cd [Dav19] and
92Pd [Ced11] and the 16+ isomer of 96Cd [Sin11], which motivates further theoretical work

to include the isoscalar pairing correlations in calculations.
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Another approach for the description of pairing correlations was introduced by Sandulescu

and collaborators [San12; SSJ15; SS13] with the idea of four-body correlations in terms of

quartets. A quartet is a four-particle object built from two isovector pairs, that is, a proton

pair and a neutron pair. The intrinsic mean-field state is then written in terms of quartets and

not Cooper isoscalar and isovector pairs. This method has shown a great success to reproduce

results from standard shell model calculations with different interactions, for nuclei with the

same number of proton and neutrons and also with a neutron excess [Neg18], however it has

had limited applications in comparison with the usual mean-field techniques. In summary,

there is a lot of interest in the physics of neutron-proton pairing, as its subtle balance with

their analogue like-particle pairing influences many aspects in nuclear structure and, so far,

while certain features are already well-established, neither a conclusive theoretical model nor

experimental rule exist and are generally accepted. In this PhD project, we aim to look at the

different pairing couplings from the perspective of the interaction and the nuclear wavefunction,

where we give freedom to the formation of any pair condensate with no symmetry restriction

or ad hoc assumptions. Our approach will be based on the mean-field and density functional

theories.

The Thesis is structured as follows: in Section 2 we review existing approaches for the

computation of pairing correlations and in particular we study the properties of the SO(8)

pairing Hamiltonian, used as a benchmark in our calculations as it allows arbitrary mixing

of isoscalar and isovector pairs. In Section 3, a summary of mean-field methods to deal with

pairing correlations is given and we provide details of the structure of our approach specifically

considering the SO(8) pairing interaction including proton-neutron mixing in the pairing chan-

nel, a calculation that has not been done before, and focusing on the isoscalar-isovector pairing

coexistence. In Section 4, we assess the problem of restoring the symmetries implicitly broken

because of the mean-field approach and in specific in our SO(8) model, where particle-number,

spin and isospin symmetries are broken, and what implies for the aforementioned pairing co-

existence and several other observables like the deuteron transfer. In Section 5 we present and

analyse the results obtained from the myriad of approaches presented in the former sections,

coming to the main conclusion from this thesis: pairing coexistence can be observed within a

symmetry-unrestricted mean-field method with proper restoration of broken symmetries. In

Section 6 we delineate the prospects in order to port the presented methodology for the case of

a realistic interaction in the pairing channel. Finally, we present our conclusions in Section 7.
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Chapter 2

Interaction models for proton-neutron

pairing

Algebraic methods, based on the full exploitation of the symmetries of the system, are very

popular and useful since they provide exact solutions to many nuclear Hamiltonians, at the cost

of the simplification of the problem and/or reducing the number of degrees of freedom involved.

Algebraic models date back to 1958 when Elliott [Ell58b; Ell58a] associated the classification of

states from the SU(3) algebra scheme with those resulting of the shell model calculation in the

sd shell, a breakthrough at the time [Van11]. The success was followed by the introduction of

the Interacting Boson Model by Arima and Iachello [AI75], which is able to treat nuclear shapes

and collective motion within the representations of the SU(6) group. These two methods are

the foundation of a myriad of algebraic methods being applied to several aspects of nuclear

structure.

Nuclear pairing, and in specific, the coexistence between isoscalar and isovector condensates,

can also be studied within these methods and this Section is devoted to them. At the beginning,

simple formulas for the energy of different states were drawn from an analysis of the number of

pairs broken in the system, referred in the literature as seniority models. Later, these models

were refined to focus on the structure of the matrix elements of low-dimensional Hamiltonians.

While these methods can not provide, at least at present, solutions for the realistic case of finite

nuclei with an effective interaction, they are exact nuclear theories that are very interesting

to analyse and evaluate their assumptions and symmetries. From a practical point of view,

any shell model and mean-field approach could be adjusted to obtain the results from these

exact theories, thus becoming an essential benchmark to test new phenomenological theories.

The problem of np pairing can thus be described by the classification of states of the SO(8)

algebraic model, in a model of non-interacting `−shells in LS coupling, that is, disregarding
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2.1. Seniority model

the spin-orbit interaction.

However, as interesting as these algebraic models may be, they are not useful if they are

not applicable to realistic scenarios. To that end, after a fruitful analysis of the SO(8) model,

we extrapolate the suggested methods using a realistic interaction suitable for our calculations,

planned to be implemented in the versatile three-dimensional Cartesian code HFODD [DD97]

in order to get results in the foreseeable future.

This Chapter is structured as follows: in Section 2.1 we give a brief introductory review

of the seniority model, which was very successful in the description of isovector pairing, and

in Section 2.2 we describe the SO(8) algebraic model of isoscalar and isovector pairing, a

cornerstone of the present project.

2.1 Seniority model

A rough estimation of the importance and trend of pairing correlations in nuclei can be de-

veloped by means of the seniority model [GM96; KLM61]. As the trend will be completely

determined by the total number of particles A and the number of pairs formed in the system,

it is useful to use the seniority s, defined as the number of particles not forming a pair. We

consider again a single `−shell with projection m, going from −` to `, with spatial degeneracy

Ω = 2` + 1 and total degeneracy, counting the spin degrees of freedom, 2Ω. Starting with the

definition of pair creation and annihilation operators in the second quantization formalism

P̂+ =
1

2

∑
mσ

(−1)`−m−
1
2
σâ+

mσâ
+
−m−σ, (2.1)

P̂− = (P̂+)+ =
1

2

∑
mσ

(−1)`−m−
1
2
−σâ−m−σâmσ, (2.2)

where â+, â are the fermionic single-particle creation and annihilation operators, respectively,

defined with their action when applied to a state with zero |0〉 (the bare vacuum) or one |1〉
particle

â|0〉 = 0 , â+|0〉 = |1〉, (2.3)

â|1〉 = |0〉, â+|1〉 = 0, (2.4)

respecting Pauli’s exclusion principle, as two or more particles can not occupy the same state.

In the definition of the pair creation and annihilation operators we have used the Condon-

Shortley phase convention for the time-reversed states. The single-particle operators fulfil the
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Chapter 2. Interaction models for proton-neutron pairing

usual fermionic anticommutation rules

[âi, â
+
j ]+ = âiâ

+
j + âj â

+
i = δij (2.5)

[â+
i , â

+
j ]+ = [âi, âj]+ = 0, (2.6)

where i, j denote different quantum states and δij is the Kronecker delta. These anticommu-

tation relations ensure that two particles can not be in the same state. We define a pairing

interaction using the pair operators (2.1, 2.2) of the form

V̂pair = −gP̂+P̂−, (2.7)

where g is a coupling constant. This model forms pairs coupled to total angular momentum zero,

in agreement to the experimental evidence. We calculate the spectra given by this interaction,

to that purpose we define the following operators

Â =
∑
mσ

â+
mσâmσ, (2.8)

P̂0 =
1

2
(Â− Ω). (2.9)

The first one can be regarded as the number operator, counting the number of particles in

the system. We observe that the operators in Eqs. (2.1, 2.2, 2.9) fulfil angular momentum

commutation relations

[P̂+, P̂−] = 2P̂0, (2.10)

[P̂0, P̂
+] = P̂+, (2.11)

[P̂0, P̂
−] = −P̂−, (2.12)

therefore it is possible to find the spectra of the pairing interaction by looking at their Casimir

invariants1, P̂ 2 and P̂0. Indeed, in the angular momentum formalism, we define ladder operators

of the form

Ĵ+ = Ĵx + iĴy,

Ĵ− = Ĵx − iĴy,
[Ĵ+, Ĵ−] = 2Ĵz.

(2.13)

1A Casimir invariant is defined as the operator that commutes with all the generators of the algebra. They
are extremely useful as its eigenvalues label the different states of the group representation.
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Thus

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z =

1

2
(Ĵ+Ĵ− + Ĵ−Ĵ+) + Ĵ2

z = Ĵ+Ĵ− + Ĵ2
z − Ĵz. (2.14)

Our pair operators follow a similar formula

P̂ 2 = P̂+P̂− + P̂ 2
0 − P̂0. (2.15)

The eigenvalues of P̂ 2, of the form p(p + 1), can be determined by looking at the state of

maximum projection given by P̂0, with eigenvalue p = 1
2
(A− Ω). If we apply the operator P̂+

to this state, the result will be zero, because the shell is completely full. As a consequence,

there are no pairs formed in the shell, resulting in a maximal value of the seniority s = A and

p = 1
2
(s− Ω). Finally, the energy spectrum is obtained as

Es,A = 〈s, A|V̂pair|s, A〉 = −g〈s, A|P̂ 2 − P̂ 2
0 + P̂0|s, A〉 = −g

4
(A− s)(2Ω + 2− A− s). (2.16)

This method is sometimes referred in the literature as the quasispin formalism [Ker61], because

it was completely developed using the commutation relations of the angular momentum (or spin,

analogously) operators.
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Figure 2.1: Pairing energy in a single `−shell, given by formula (2.16) for ` = 8 (spatial
degeneracy Ω = 2` + 1 = 17) and different seniority numbers s. The lowest energy of the
system is achieved with s = 0, a fully paired system.
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Chapter 2. Interaction models for proton-neutron pairing

We observe from plotting the spectra in Fig. (2.1) that the major contribution from pairing

to nuclei is given in the mid-shell configuration, that is, when the shell is half full. When

particles are added to the system, they can rearrange in time-reversed states to form correlated

pairs and contribute to the total energy. However, when particles are added after the shell is

half full, the number of states available decrease due to the Pauli principle and particles are

not free to move anywhere, thus making a smaller contribution to the total energy. For a full

shell, where all states are occupied, no correlated pairs can be formed and therefore the pairing

contribution is zero. For this reason, magic nuclei can be described perfectly by means of a

pure single-particle approach, with no need of pairing interaction. Under this line of reasoning,

we also conclude that pairing must be a Fermi surface effect, that is, it is only concerned with

the last shells, that are not fully occupied yet.

2.2 SO(8) model of proton-neutron pairing

Considering A nucleons moving in one or several degenerate `−shell orbits subject to a constant

interaction between them, the system has a total degeneracy of 4Ω, where Ω =
∑

i(2`i + 1) is

the spatial degeneracy and the factor of 4 comes from the degeneracy of spin and isospin (we

do not consider separate protons and neutrons). We assume these nucleons in the system to

be paired, coupled to total angular momentum L = 0, this channel is experimentally known to

give the major contribution to pairing in nuclei [BMS10] and to spin S and isospin T . Because

the wavefunction describing the system needs to be antisymmetric, the only possible pairing

couplings for L = 0 are (S, T ) = (1, 0), the isoscalar coupling, and (S, T ) = (0, 1), the isovector

coupling. The Hamiltonian describing the system is written as [KA06]

Ĥ = −g(1− x)
∑
ν

P̂+
ν P̂ν − g(1 + x)

∑
µ

D̂+
µ D̂µ, (2.17)

where the isoscalar and isovector operators read

P̂+
ν =

∑
`

√
2`+ 1

2

(
â+
` 1
2

1
2

â+
` 1
2

1
2

)L=0,S=0,T=1

M=0,Sz=0,Tz=ν
,

D̂+
µ =

∑
`

√
2`+ 1

2

(
â+
` 1
2

1
2

â+
` 1
2

1
2

)L=0,S=1,T=0

M=0,Sz=µ,Tz=0
.

(2.18)

g is the constant pairing strength and x is the mixing parameter controlling the relative com-

petition between isoscalar and isovector pairing. The single-particle operators â+
` 1
2

1
2

create a
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2.2. SO(8) model of proton-neutron pairing

particle with angular momentum `, spin 1
2

and isospin 1
2
. The six different pairs created by

these operators are sketched in Fig. (2.2). The Hamiltonian (2.17) has spherical symmetry and

it is scalar and isoscalar, that is, invariant under rotations in spin and isospin space. For this

reason, the different isoscalar and isovector contributions are sometimes referred to as spin-

triplet and spin-singlet couplings, to avoid the confusion. For x = −1, it gives rise to a pure

isovector contribution, as only isovector pairs are involved; similarly, for x = 1 it is a pure

isoscalar interaction and for x = 0, they have the same strengths. For any other value of x,

there is a contribution from both pairing couplings. The matrix elements of the Hamiltonian

(2.17) can be evaluated writing the pair operators involved in terms of the 28 generators of the

SO(8) algebra2, Jab, where 1 6 a < b 6 8, which fulfil the following algebraic commutation

relations [GM96; PH67]

[Jpq, Jrs] = i(δspJrq + δrqJsp − δrpJsq − δsqJrp),
Jpq = −Jqp,
J+
pq = Jpq,

(2.19)

and whose matrix elements are known [GMY63]. In the same spirit of the quasispin formalism

described in the former section, we need a set of physical operators that also generates this

algebra. That set consists of the following 28 operators

P̂+
ν , P̂ν , D̂

+
µ , D̂µ,

Ŝµ, T̂ν , Q̂0, Êµν ,
(2.20)

where P̂+
ν , D̂

+
µ were given in Eqs. (2.18). Q̂0, Ŝµ, T̂ν , Êµν are one-body operators

Q̂0 = Ω− Â

2
,

Ŝµ =
(
â+

1
2

1
2

â 1
2

1
2

)S=1,T=0

Sz=µ,Tz=0
,

T̂ν =
(
â+

1
2

1
2

â 1
2

1
2

)S=0,T=1

Sz=0,Tz=ν
,

Êµν =
(
â+

1
2

1
2

â 1
2

1
2

)S=1,T=1

Sz=µ,Tz=ν
,

(2.21)

where ν, µ run over the values -1, 0, 1. We associate Q̂0 to the number operator, as it is

related to Â, Ŝµ and T̂µ to the spin and isospin operators, respectively, holding that Ŝ−µ = Ŝ+
µ

2In general, a O(n) algebra will have 1
2n(n− 1) generators.
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Figure 2.2: The six different pairing couplings constructing the SO(8) Hamiltonian (2.17). The
pairs in the top row corresponds to the three different projections of P̂+

Tz
and the pairs in the

bottom row corresponds to the three different projections of D̂+
Sz

. The arrows denote the two
different projections, up and down, of the spin 1

2
of protons and neutrons.

and T̂−ν = T̂+
ν ; and Êµν are the spin and charge-exchange operators [FS64], holding that

Ê+
µν = Ê−µ−ν . As they generate the eight-dimensional algebra, these quasispin operators need

to be written in terms of the operators in (2.19). Indeed, they were given in [Pan69] and we

summarised them in Table (2.1). Thus, we have an expression for the matrix elements of the

pair operators, which are used for the calculation of spectroscopic amplitudes of deuteron and

alpha transfers, and consequently of the Hamiltonian, in the so called Gel’fand basis, that is,

the vectors of the irreducible representation of the SO(8) algebra [PH67]. Moreover, for specific

values of the interaction, namely x = ±1, 0, the states can be labelled by the representation of

the following subalgebras [KA06]

x = 0 : SO(8) ⊃ SOST (6) ⊃ SOS(3)⊗ SOT (3),

x = 1 : SO(8) ⊃ [SOS(5) ⊃ SOS(3)]⊗ SOT (3),

x = −1 : SO(8) ⊃ [SOT (5) ⊃ SOT (3)]⊗ SOS(3).

(2.22)

In these cases, the energy will follow a formula similar to the one derived à la seniority model

in the former section using the generators of the SO(3) angular momentum algebra. For details

of these formulas and the general matrix elements of the Hamiltonian we refer to Appendix A.
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Spectra

The SO(8) Hamiltonian (2.17) is a separable interaction, in the sense that it has the form

V̂ = Q̂+Q̂, (2.23)

with Q̂ =
∑

ij qij âiâj. That is, the force can be written as a separate bilinear product of a pair

of particles and a pair of holes. We will extend this notion of separate coordinates when we port

the mean-field plus symmetry restoration methodology to the realistic case of a finite nucleus

using a phenomenological effective interaction in coordinate space. We refer to Section 6.1 for

details.

P̂+
1

1
2

[i (J57 + iJ67) + (J58 + iJ68)] T̂0 J56

P̂+
0

1√
2
(J47 − iJ48) T̂−1

1√
2
(J45 − iJ46)

P̂+
−1

1
2
[i(J57 − iJ67) + (J58 − iJ68)] Ê00 J34

D̂+
1

1
2
[−(J17 + iJ27) + i(J18 + iJ28)] Ê11

1
2

[(J15 + iJ25) + i(J16 + iJ26)]

D̂+
0

−i√
2
(J37 − iJ38) Ê−1−1

1
2

[(J15 − iJ25)− i(J16 − iJ26)]

D̂+
−1

1
2
[−(J17 − iJ27) + i(J18 − iJ28)] Ê1−1

1
2

[−(J15 + iJ25) + i(J16 + iJ26)]

Q̂0 J78 Ê−11
1
2

[−(J15 − iJ25)− i(J16 − iJ26)]

Ŝ1
1√
2
(J13 + iJ23) Ê10

i√
2
(J14 + iJ24)

Ŝ0 J12 Ê−10 − i√
2
(J14 − iJ24)

Ŝ−1
1√
2
(J13 − iJ23) Ê01

−i√
2
(J35 + iJ36)

T̂1
1√
2
(J45 + iJ46) Ê0−1

i√
2
(J35 − iJ36)

Table 2.1: Reproduction of Table 1 from [Pan69] of the quasispin operators expressed in terms
of the generators of the SO(8) algebra (2.19).

2.2.1 Spectra

Using the algebraic methods described in Section 2.2, exact matrix elements of the pairing

Hamiltonian in Eq. (2.17) can be computed and the full solution is obtained by diagonalisation.

In particular, we discuss in this Section the physical properties and symmetries of the excitation

spectra of the SO(8) Hamiltonian obtained for different values of the spin S and the isospin T .

In Fig. (2.3), we plot the ground-state energies for a half-occupied system, for several values of

the mixing parameter x. The states are labelled by the spin S in the abscissa and by the isospin

T following the classification of states of Table (A.1). We notice the spin vibrational pattern

followed by the energies when the interaction is isoscalar dominant (x > 0), i.e., panels (d) and
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Chapter 2. Interaction models for proton-neutron pairing

(e). Another interesting feature is the symmetric pattern observed in panel (c) for x = 0, where

both isoscalar and isovector contributions to the pairing Hamiltonian are equal. For this case,

an exchange of the labels S ↔ T leaves the Hamiltonian invariant and this is reflected in the

figure, where states with the same S + T number have the same energy. The SO(8) algebra

of the Hamiltonian in this case boils down to the Wigner’s SU(4) spin-isospin algebra [Wig37]

and, as detailed in Appendix A, it can be exploited to obtain a simple formula for the energies

of these ground-states and states with broken pairs (non zero seniority).
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Figure 2.3: Energies, in units of g, of the states labelled with different spin S (abscissa) and
isospin T (starting from the bottom with 0 or 1 if S is even or odd, respectively, and increasing
in steps of 2, in accordance with the classification of states given in Table (A.1)) for a particle
number of A = 24 (mid shell configuration) in a system with spatial degeneracy Ω = 12 for
x = −1, 0.5, 0, 0.5, 1 in the pairing Hamiltonian (2.17) in panels (a)-(e), respectively.
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Chapter 3

Self-consistent mean-field methods

When studying properties of nuclei, three main models are predominant within the scientific

community: ab-initio, shell-model and mean-field or density-functional theory methods. Ab-

initio methods rely upon the exact calculation of the solution of a many-body Hamiltonian with

an effective nucleon-nucleon interaction. They have proven to be very successful, but their range

of application is limited, and heavy nuclei can not be studied within their methods. Among

the various ab-initio techniques we can cite the self-consistent Green function methods [DM92;

DB04], coupled clusters [KLZ78; Dug14] and quantum Monte Carlo methods [Car15], with

a typical accuracy of 1% on the binding energies, which is much worse than the precision

of the density-functional theory techniques. Shell-model methods use an active configuration

space to build all possible many-body states allowed in the system starting from single-particle

states [Tal03; BW88; Cau05]. Although very successful methods too, the size of this configura-

tion space grows exponentially and this mechanism is not suitable for computation of nuclear

structure properties in the heavy region. Finally, the self-consistent mean-field methods are fo-

cused on the treatment of a general average potential, an interaction, in which all the nucleons

move independently from each other, and taking special consideration of the wavefunction of

the compound system, the nucleus itself [BHR03]. The energy of the nucleus, when averaged

with respect its wavefunction, will be a functional of the density of the nuclear system, even

when the potential is not density dependent. The main advantage of these density-functional

techniques is that they are the only ones being able to study nuclei all across the nuclear chart,

from light to heavy and from stable to exotic regions. The range of application of the three

different theories is depicted in Fig. (3.1).

The problem of the coexistence of isoscalar and isovector condensates will be reviewed in

this work under these mean-field techniques, working explicitly with nuclear wavefunctions

whose structure can be analysed in terms of the different contributions from both kind of
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pair condensates. First, we will describe the Hartree-Fock framework, in Section 3.1, dealing

Figure 3.1: Range of application of the three different methods in nuclear structure. Figure
taken from [Nam12].

with antisymmetrized product states as ansatzs for the wavefunction of the total system. It

will be followed by the Bardeen-Cooper-Schrieffer (BCS) formalism of pairing in Section 3.2,

introduced by them to successfully explain superconductivity in metals using the concept of

a correlated electron pair (also referred to as Cooper pair) that acts effectively as a boson.

The BCS theory was ported to the nuclear field with outstanding success for the description

of like-particle (proton-proton and neutron-neutron) pairing using the HF+BCS approach.

However, there is a lack of consistency in these approaches as they are not self-consistent, that

is, both methods are applied and solved separately and they do not have an influence on each

other. A generalisation of this technique to include self-consistenly the long-range particle-hole

and the short-range particle-particle pictures is given by the Hartree-Fock-Bogoliubov (HFB)

approach, introduced in Section 3.3 which solves for both potentials on the same footing. The

HFB method has proven to be very successful in applications over the whole nuclear chart,

becoming the cornerstone of nuclear structure calculations within the mean-field or density

functional theory. This Chapter will be mostly devoted to describe such framework, involved
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Chapter 3. Self-consistent mean-field methods

in all the results from this project.

3.1 Hartree-Fock picture for a many-body system

It is fair to say that the birth of the mean-field methods comes from atomic and molecu-

lar physics, where from the single-particle basis states |ψi(rj)〉 of the electrons forming the

compound system, a total wavefunction |Ψ〉 is constructed as the product state of all the single-

electrons’ wavefunctions,

|Ψ〉 ∝
∏
i

|ψi(rj)〉, (3.1)

called the Hartree wavefunction. This wavefunction is not antisymmetric under the exchange

of particles, lacking consistency as the system described is fermionic in nature as well. This is

solved by introducing the Slater determinant and writing the total wavefunction as

|Ψ〉 ∝ det


|ψ1(r1)〉 |ψ2(r1)〉 . . . |ψA(r1)〉
|ψ1(r2)〉 |ψ2(r2)〉 . . . |ψA(r2)〉

...
...

. . .
...

|ψ1(rA)〉 |ψ2(rA)〉 . . . |ψA(rA)〉

 , (3.2)

which is the usual Hartree-Fock (HF) wavefunction, used conventionally in shell-model and

mean-field methods, both in atomic and nuclear physics. Using the usual definition of a many-

body Hamiltonian in second quantization [RS80]

H =
∑
ij

tij â
+
i âj +

1

4

∑
ijkl

vijklâ
+
i â

+
j âlâk, (3.3)

t are the kinetic energy terms and v the antisymmetrised two-body matrix elements, we are

able to cast a Hartree-Fock potential h, defined as

h|ψi〉 = εi|ψi〉, (3.4)

with εi being the energy of the single-particle state |ψi〉. The HF potential h is written as

h = t+ Γ, (3.5)

which is the sum of the kinetic energy and a self-consistent field Γ. The HF potential takes into

account correlations given by the long-range part of the nuclear interaction, described by the
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3.1. Hartree-Fock picture for a many-body system

field Γ. The Hartree-Fock picture can be described by means of a density-matrix formalism. In

the second-quantization framework, the matrix elements of the density ρ are,

ρij = 〈Ψ|â+
j âi|Ψ〉, (3.6)

where â+, â are the single-particle creation and annihilation operators, respectively, described

in Section 2.1. The matrix elements of the self-consistent field Γ are defined in terms of the

density matrix as

Γij =
∑
kl

viljkρkl. (3.7)

The Hartree-Fock equations can be compactly casted as

[h, ρ] = 0, (3.8)

that is, the problem is reduced to an eigenvalue problem to find the basis of states in which

both the density ρ and the potential field h are diagonal. In this basis, the density has two

fundamental properties

ρ2 = ρ,

Tr ρ = A.
(3.9)

The first relation shows that the density is idempotent and therefore its eigenvalues are either

1 or 0, indicating that a certain level is either filled or empty. As a consequence of this relation,

the second holds in any case as the trace is invariant under a change of basis. Sometimes it

is convenient to rewrite this problem as a minimisation problem instead of a diagonalisation

problem, defining the total energy to be minimised as

EHF = Tr

(
tρ+

1

2
Γρ

)
. (3.10)

Effects of deformation and collective motion are well described within this methodology. How-

ever, it is not a proper picture to describe systems heavily influenced by the short-range part

of the nuclear interactions, responsible of pairing correlations.
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Chapter 3. Self-consistent mean-field methods

3.2 BCS framework for treating pairing correlations

The BCS formalism used for treating superconductivity by means of Cooper pairs in metals

can be analogously used to treat proton-proton and neutron-neutron pairing in nuclei. The

BCS wavefunction reads

|BCS〉 =
∏
k>0

(uk + vkâ
+
k â

+
k̄

)|0〉, (3.11)

where |0〉 is the single-particle vacuum, k denotes the single-particle indices and k̄ indicates time-

reversal. The BCS wavefunction is a superposition of different Slater determinants where there

is a probability |vk|2 that the states with quantum numbers k and k̄ are filled and a probability

|uk|2 that those states are empty. These probabilities are treated as variational parameters in

order to obtain the optimal wavefunction in (3.11) that gives the energy minimum. Naturally,

they must fulfil the condition

|vk|2 + |uk|2 = 1. (3.12)

One of the major implications of the BCS formalism is the automatic breaking of the particle-

number symmetry by the ansatz wavefunction (3.11). Instead of having a sharp value, we

obtain an average value with fluctuations given by

A = 〈BCS|Â|BCS〉 = 2
∑
k>0

v2
k, (3.13)

∆A2 = 〈BCS|Â2|BCS〉 − 〈BCS|Â|BCS〉2 = 4
∑
k

u2
kv

2
k. (3.14)

As the fluctuations are given by the product of partially filled and empty states vk, uk, setting

one of these values to zero will force the other to be one according to (3.12) and the BCS

wavefunction will collapse to a Slater determinant. Therefore, we conclude that the particle-

number breaking is a consequence of the partial filling of the different pair states.

The probability amplitudes are determined by a constrained minimisation of the energy

surface E including condition (3.13). It is achieved by means of a Lagrange parameter λ

λ =
dE

dA
, (3.15)

which is also referred to as the chemical potential, adding a contribution of −λÂ to the Hamil-

tonian. The Lagrange parameter λ is fixed by the average particle condition in Eq. (3.13).

Considering a general Hamiltonian of the form (3.3) and the Lagrange multiplier λ, we variate
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3.2. BCS framework for treating pairing correlations

with respect vk
1

d

dvk
〈BCS|Ĥ − λÂ|BCS〉, (3.16)

to obtain

2(εk − λ)ukvk + ∆k(v
2
k − u2

k) = 0, (3.17)

with

∆k =
1

4

∑
l

v̄kk̄ll̄ulvl. (3.18)

The former quantity ∆ is called the gap parameter and it gives the strength of the pairing

correlations present in the system, as we shall see in the following derivations. From (3.17) and

(3.12), we finally obtain

v2
k =

1

2

(
1− εk − λ√

(εk − λ)2 + ∆2
k

)
, u2

k =
1

2

(
1 +

εk − λ√
(εk − λ)2 + ∆2

k

)
, (3.19)

that is, the occupation probabilities are a function of the gap parameter ∆. We illustrate

the behaviour of these quantities in Fig. (3.2) in a schematic way. For vanishing pairing

λ ǫk
0

1
v2k

u2k

Figure 3.2: Occupation probabilities in the BCS formalism.

1Only variation with respect vk is needed, because of the normalisation condition (3.12).
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interactions, that is, for ∆ = 0, u2
k and v2

k collapse to step functions

v2
k =

1 if εk < λ,

0 if εk > λ,

u2
k =

0 if εk < λ,

1 if εk > λ,

(3.20)

and particle-number is again a good quantum number as there is no partial filling of the states,

returning to the usual single-particle Hartree-Fock limit. From Equation (3.20), we see that

v2
k is the probability of the state k to be occupied and u2

k the probability of the state k to be

empty. Also, as seen in Fig. (3.2), λ acts as a generalised Fermi energy, corresponding to the

collapsing value of the step functions in the Hartree-Fock limit.

Since the BCS formalism is uniquely determined by the gap parameter ∆, we need a set of

equations to solve for this quantity as a function of the two-body interaction matrix elements

and the single-particle energies. From (3.18), we have

∆k =
1

8

∑
l

v̄kk̄ll̄

√
1− (εl − λ)2

(εl − λ)2 + ∆2
l

=
1

8

∑
l

v̄kk̄ll̄
∆l√

(εl − λ)2 + ∆2
l

, (3.21)

referred in the literature as the BCS gap equation, a nonlinear equation that needs to be

solved self-consistently, along with a known expression for the single-particle energies εk and

the Lagrange parameter λ fixed by condition (3.15). In infinite nuclear matter, a system

where no finite-size effects are present, there is an equal number of protons and neutrons, it is

spin saturated and there is translational invariance, we have a continuum of states. The gap

equation in this system is formulated as an integral instead of a sum over all possible states,

labelled by the plane-wave momentum k. In the nuclear community, a popular calculation of

isovector pairing gaps in nuclear matter was given by Gogny and collaborators with the so-called

D1 [DG80] and D1S [BGG91] interactions, which we recreate in Fig. (3.3), and many energy

density functionals have been fitted in order to reproduce these benchmark results. In Fig. (3.3),

we observe that the pairing gap vanishes at low and high densities, and the typical value of 1

MeV is reproduced at the saturation density of nuclear matter ρ0 = 0.16 fm−3, corresponding

to kF = 1.33 fm−1 as shown by the dotted line. Pairing gaps beyond the densities shown in the

figure are thought to be important as well [Bal98].

From the gap equation we confirm again that pairing is a Fermi surface effect, as the states

whose energy are near the Fermi energy (εk ∼ λ) contribute more to the gap parameter.
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Figure 3.3: Pairing gaps in nuclear matter as a function of the Fermi momentum (which
is proportional, according to the free Fermi gas approximation, to ρ1/3). Figure extracted
from [Kuc89].

3.2.1 Degenerate shell case

If we consider a degenerate system, where all particles sit on single-particle states which have

the same energy, the occupation probabilities v2
k are the same. Using (3.12) and (3.13) we

obtain

v2 =
A

2Ω
, u2 = 1− A

2Ω
, (3.22)

with Ω being the total degeneracy of the system. For this case the pairing gap has a very simple

expression, as all the matrix elements v in Eq. (3.18) are constant, which we will denote by g,

given by

∆ = g

√
A

2

(
Ω− A

2

)
, (3.23)

and the particle fluctuations are

∆A

A
=

√
2

A
− 1

Ω
. (3.24)

Thus, for a very large system, with a very large configuration space, the fluctuations tend

to zero. For this reason, in the application of the BCS formalism to superconducting metals

and generally in condensed-matter physics, which deal with a large number of particles, these

fluctuations are not taken into account as they become negligible. In Fig. (3.4), we observe

that even with a very simple expression of the pairing gap as in Eq. (3.23), we capture many

features when comparing the results to the realistic case, as it follows a bell-shaped curve with
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Figure 3.4: Neutron pairing gaps ∆N as a function of the even number of neutrons N in the open
shell for the isotopic chain of Sn (left) using the realistic functional interaction UNEDF0 [Erl12]
and pairing gaps in a degenerate shell as in Eq. (3.23) for Ω = 16 (right). We see that they
both follow a bell-shaped curve and reach a maximum approximately around the middle of the
occupied shell.

maximum centred in the middle of the shell and vanishing values where the shell is empty or

full. As the used model is purely schematic, only the qualitative trend is reproduced, and the

energy scales are different.

3.2.2 Bogoliubov transformation. Quasiparticle operators.

The former results can be obtained in a more general manner by the introduction of quasiparticle

operators. In the second quantization formalism, we define a bare vacuum state |0〉 as the one

that vanishes after applying a single-particle annihilation operator â. In the same spirit, we

define, for a BCS wavefunction describing a superfluid nucleus

β̂|BCS〉 = 0, (3.25)

where β̂ is a quasiparticle annihilation operator. These new operators are written in terms of

the usual single-particle ones using the linear transformation

β̂k = ukâk − vkâ+
k̄
, β̂+

k = ukâ
+
k − vkâk̄,

β̂k̄ = ukâk̄ + vkâ
+
k , β̂+

k̄
= ukâ

+
k̄

+ vkâk,
(3.26)
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called Bogoliubov transformation. We observe that the application of β̂ on Eq. (3.11) is zero

as required. The Bogoliubov transformation may be rewritten in matrix form as(
β̂+
k̄

β̂k

)
=

(
uk vk

−vk uk

)(
â+
k̄

âk

)
,(

β̂+
k

β̂k̄

)
=

(
uk −vk
vk uk

)(
â+
k

âk̄

)
.

(3.27)

The transformation is unitary, as the determinant of the transformation matrix is one, ensuring

no loss of probability and the existence of the inverse transformation to write the single-particle

operators in terms of quasiparticle operators. From this transformation, we observe that the

BCS wavefunction is created from these operators and it does not have a good particle-number,

as we are mixing explicitly particles â+ and holes â, labelled with the index k.

A simple calculation proves that quasiparticles are fermions,

[β̂k, β̂
+
k′ ]+ = [u∗kâk ± v∗kâ+

k , u
∗
k′ âk′ ± v∗k′ â+

k′ ]+

= u∗kuk′ [âk, â
+
k′ ]+ ± u∗kvk′ [âk, âk′ ]+ ± v∗kuk′ [â+

k , â
+
k′ ]+ + v∗kvk′ [â

+
k , âk′ ]+

= (u∗kuk′ + v∗kvk′)δkk′ = δkk′ ,

(3.28)

where we have made use of the anticommutation relations (2.5, 2.6) and the normalisation

condition of the quasiparticle amplitudes (3.12). It is a crucial required condition, since we

need quasiparticles to fulfil Pauli’s exclusion principle.

From the mathematical point of view, the Bogoliubov transformation was introduced in

order to diagonalise the matrix elements of the two-body Hamiltonian Ĥ − λÂ. Indeed, if we

expand the single-particle operators in terms of the quasiparticle operators we would obtain

Ĥ − λÂ = Ĥ00 + Ĥ11 + Ĥ20 + Ĥ22 + Ĥ31 + Ĥ40, (3.29)

where Ĥij denotes a contribution with i quasiparticle creation and j quasiparticle annihilation

operators. An usual approximation is done by neglecting the terms Ĥ22, Ĥ31 and Ĥ40. The

BCS equations (3.17) are obtained within this approximation by establishing Ĥ20 = 0, i.e.,

by setting to zero the quasiparticle fluctuations, in a similar fashion to how the Hartree-Fock

equations are derived in the single-particle picture. Thus, we observe in Eq. (3.29) that, while

the Hamiltonian in the left-hand side has a pair-wise interaction of particles, the Hamiltonian

written in the right-hand side only has one quasiparticle terms, that is, it describes a system

of non-interacting quasiparticles, which is much easier and convenient to describe, at the cost
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Chapter 3. Self-consistent mean-field methods

of its eigenfunctions not being eigenfunctions of the particle-number operator.

The BCS formalism has proven itself very successful when describing pairing gaps all along

the nuclear chart. While it can be applied even for very deformed nuclei2, the validity of the

BCS formalism crucially depends on the fluctuations of the particle-number (3.14), as large

values of this quantity is a symptom of many spurious correlations in the wavefunction and

values near zero indicate an incorrect use of this wavefunction as particle-number breaking

terms are not present. A formal solution to this problem is based upon the projected BCS

(PBCS) formalism, where by means of projection methods, the particle-number symmetry is

restored (see Section 4.3).

The described formalism can be applied for protons and neutrons separately, using pairing

gaps ∆p and ∆p accordingly, but we have omitted the matrix elements of the neutron-proton

interaction. In light nuclei around the N = Z line, this assumption is not correct as stressed

before and therefore we need to include proton-neutron pairing into consideration. There is

a formalism based on BCS which generalises the results including this isoscalar interaction,

see [Bes00], but the most general way to describe pairing correlations will be given by the

Hartree-Fock-Bogoliubov approach, explained in the following Section.

3.3 Hartree-Fock-Bogoliubov framework for treating pair-

ing correlations

The BCS formalism treats only short-range correlations between particles and it is independent

of the long-range correlations usually described by a Hartree-Fock picture. A general formalism

that unifies both approaches is given by the Hartree-Fock-Bogoliubov formalism. As the name

states, it is similar in structure to Hartree-Fock but including the Bogoliubov transformation

for a quasiparticle treatment. The Bogoliubov transformation now reads

β̂+
k =

∑
i

vkiâi + ukiâ
+
i ,

β̂k =
∑
i

v∗kiâ
+
i + u∗kiâi,

(3.30)

2We note that for nuclei near the dripline or very close to the continuum, the generalised Fermi energy λ
vanishes and the BCS approximation is not a suitable framework anymore
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where the difference with (3.26) is that this transformation mixes different levels. In matrix

form the transformation reads (
β̂+

β̂

)
=

(
UT V T

V + U+

)(
â+

â

)
. (3.31)

Requesting that the transformation must be unitary, that is

U+U + V +V = 1, UU+ + V ∗V T = 1,

UTV + V TU = 0, UV + + V ∗UT = 0,
(3.32)

we ensure that the inverse transformation from the quasiparticle picture to the single-particle

picture exists (
â+

â

)
=

(
U∗ V

V ∗ U

)(
β̂+

β̂

)
. (3.33)

The wavefunction of the nuclear system, |Ψ〉, is again represented by a quasiparticle vacuum

β̂|Ψ〉 = 0, (3.34)

completely determined by the quantities U, V . Similarly to the Hartree-Fock picture, we con-

struct an analogous density matrix formalism where, in addition to the usual single-particle

density ρ, an anomalous density denoted by κ is introduced to take into account the short-range

pairing correlations. The matrix elements of these densities are defined as

ρij = 〈Ψ|â+
j âi|Ψ〉, (3.35)

κij = 〈Ψ|âj âi|Ψ〉. (3.36)

They can be casted again in matrix form, replacing the single-particle operators using the

transformation (3.33)

ρ = V ∗V T , κ = V ∗UT = −UV +, (3.37)

where we have made use of the unitary conditions in (3.32) for the last equality in κ. The normal

density matrix ρ is hermitian, as expected, and its matrix elements will be proportional to

factors of the form vivj, that is, to occupation probabilities. The matrix elements of the pairing

tensor κ are proportional to uivj and contain the information about the pairing structure in the

system, because of the u factor. The unitary conditions (3.32) reveal that κ is antihermitian,

43



Chapter 3. Self-consistent mean-field methods

therefore

ρ+ = ρ, κ+ = −κ, (3.38)

which is also physically sensible, as we deal with fermions and under exchange there is a

negative phase from antisymmetrization (or, in the mathematical point of view, the annihilation

operators a anticommute with each other). Using again the unitary conditions (3.32), two

relations between these densities hold

ρ2 − ρ = −κκ+,

ρκ = κρ∗.
(3.39)

We observe that the deviation from the usual single-particle Hartree-Fock picture, correspond-

ing to an idempotent density matrix, ρ2 = ρ, is given by the pairing correlations describe by

the pairing tensor κ. We derive a set of equations that solves the quasiparticle vacuum, |Ψ〉, or,

equivalently, the transformation coefficients U, V under the HFB picture. In a similar fashion

to the Hartree-Fock picture, where V would be the eigenvector of the density matrix ρ, we

realise the vector (U, V ) is an eigenvector of the following generalised density matrix

R =

(
ρ κ

−κ∗ I− ρ∗

)
, (3.40)

which is hermitian and idempotent. The generalised hamiltonian matrix (namely, the HFB

matrix ) which commutes with the former generalised density is given by

H =

(
h ∆

−∆∗ −h∗

)
, (3.41)

where

hij = εij +
∑
kl

v̄ikjlρkl = εij + Γij, (3.42)

∆ij =
1

2

∑
kl

v̄ijklκkl, (3.43)

are the Hartree-Fock and pairing fields. Therefore, analogously to Hartree-Fock formalism, we

cast the HFB equations in a compact form

[H,R] = 0, (3.44)
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yielding the desired HFB equations(
h ∆

−∆∗ −h∗

)(
Uq

Vq

)
= Eq

(
Uq

Vq

)
. (3.45)

We denote the different quasiparticles by q and the eigenvalue E is the quasiparticle energy. It

is a double-dimensional matrix, because of the specific shape adopted to allocate the pairing

field ∆. It is easy to see that, if (Uq, Vq) is an eigenstate of the HFB equations with eigenvalue

Eq, then (−V ∗q ,−U∗q ) is also an eigenstate with eigenvalue −Eq. That is, we only work with

the set of solutions corresponding to either negative or positive quasiparticle energies3.

The HFB equations need to be solved self-consistently. Starting from an ansatz to the wave-

function (U, V ), densities and fields are computed and the HFB supermatrix is diagonalised to

obtain the new (U, V ). This process is repeated self-consistently until the updated wavefunction

is equal to the former one up to a threshold value, that is, the wavefunction has converged. A

diagram depicting the process is shown in Fig. (3.5). The total energy of the system described

U, V ansatz

Compute ρ, κ

Compute h, ∆

Diagonalise HFB matrix

Has it converged?

Extract U, V as eigenstates

Return U, V

Yes

No

Figure 3.5: Diagram for HFB algorithm.

3For Eq = 0, the HFB matrix is singular (its determinant is zero) and the only possible solution is the trivial
solution (Uq, Vq) = (0, 0).
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by this wavefunction will be given by

EHFB = 〈Ψ|Ĥ|Ψ〉 = Tr

(
ερ+

1

2
Γρ− 1

2
∆κ∗

)
. (3.46)

In the limit of vanishing pairing (or Hartree-Fock limit), ∆ −→ 0, the HFB equations reduce

to (
h 0

0 −h∗

)(
Uq

Vq

)
= Eq

(
Uq

Vq

)
−→ hvq = Eqvq, (3.47)

where vq = Uq corresponds now to the usual occupation probabilities in the single-particle

picture. It is now clear that the HFB formalism is a generalisation of the single-particle picture

to include the pairing correlations by means of an independent potential, which translates,

mathematically speaking, to double the dimension of the eigensystem of equations that solves

for the wavefunction of the nuclear state. An analogous BCS picture is obtained in this case

by using the canonical basis, in which the density matrix ρ is diagonal. Because of equation

(3.39), if ρ is diagonal, then ρ2 − ρ is also diagonal, and therefore κ needs to be antidiagonal,

given it is skew-symmetric. The matrices then take the form

ρ(can) =



v2
1 0 · · · · · · · · · · · · 0

0 v2
2 · · · · · · · · · · · ·

...
... · · · . . . · · · · · · · · ·

...
... · · · · · · v2

n · · · · · ·
...

... · · · · · · · · · v2
n · · ·

...
... · · · · · · · · · · · · . . . 0

0 · · · · · · · · · · · · 0 v2
1


, (3.48)

κ(can) =



0 · · · · · · · · · · · · 0 u1v1

...
. . . · · · · · · · · · u2v2 0

... · · · . . . · · · . .
. · · ·

...
... · · · · · · unvn · · · · · ·

...
... · · · −unvn · · · . . . · · ·

...

0 . .
. · · · · · · · · · . . .

...

−u1v1 0 · · · · · · · · · · · · 0


. (3.49)

The double degeneracy imposed by the HFB approach is explicitly observed in the structure of
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the former matrices. The occupation probabilities uk, vk have a BCS-like expression

v
2(can)
k =

1

2

1− hkk + hkk√
(hkk − hkk)2 + 4∆2

kk

 ,

u
2(can)
k =

1

2

1 +
hkk + hkk√

(hkk − hkk)2 + 4∆2
kk

 ,

(3.50)

where k corresponds to the time-reversed state. We observe that for a fully paired system,

time-reversal symmetry is conserved and the fields h and ∆ are diagonal and antidiagonal,

respectively, as the density matrices ρ and κ.

The major obstacle when performing HFB calculations lies in the spontaneous symmetry

breaking in the quasiparticle vacuum wavefunction given by the mixing imposed by the Bo-

goliubov transformation in (3.30). In addition to the breaking particle-number symmetry as

in the BCS formalism, angular momentum, spin and isospin symmetries may be broken as

well if we mix states of different quantum numbers in transformation (3.30), and they must be

constrained at least on average to obtain sensible physical results. It will be imposed by means

of Lagrange parameters for each magnitude, modifying the Routhian4 h in (3.42) as required.

A useful algorithm to deal with this vector of Lagrange parameters is reviewed in Section 3.3.3.

The exact model reviewed in Section 2.2 was used extensively to benchmark the results of

HFB plus symmetry-restoration method (introduced in Chapter 4), which eventually proved

the coexistence of isoscalar and isovector pair condensates [RDP19b]. We derived the anti-

symmetrized two-body matrix elements of the SO(8) Hamiltonian (2.17) that are used for the

computation of the fields (3.42, 3.43) in the HFB calculation, which allowed us to write it in

the usual form as in Eq. (3.3). We refer to Appendix H for details.

3.3.1 Thouless state

A conventional and very useful parametrisation of the quasiparticle vacuum |Ψ〉 was given by

Thouless [Tho60]. Formally, it states that a product state |Ψa〉 is related to another, non

orthogonal product state |Ψb〉 by

|Ψa〉 = N e
∑

ij Zij β̂
+
i β̂

+
j |Ψb〉. (3.51)

4In the nuclear physics literature, it is frequent to read about the Routhian, which is a mathematical object
analogous to the Hamiltonian, used when constrains are imposed on the system.
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N is a normalisation constant and Z is an antisymmetric matrix (the Thouless matrix )

ZT = −Z, (3.52)

because of the fermionic nature of the quasiparticle operators, that is, the wavefunction changes

sign when we exchange two quasiparticles. Using this theorem with the bare vacuum and

expanding the quasiparticle operators in terms of single-particle operators, we thus obtain

β̂iβ̂j =
∑
kk′

(vikâ
+
k + uikâk)(vjk′ â

+
k′ + ujk′ âk′)

=
∑
kk′

(vikvjk′ â
+
k â

+
k′ + vikujk′ â

+
k âk′ + uikvjk′ âkâ

+
k′ + uikujk′ âkâk′).

(3.53)

Evaluation of the single-particle operators leads to â|0〉 = 0 and âkâ
+
k′ |0〉 = δkk′|0〉. Therefore,

the Thouless wavefunction can be written as

|Ψ〉 = N e
∑

ij Zij â
+
i â

+
j |0〉, (3.54)

where it is implied that the coefficients vikvjk′ of the Bogoliubov transformation were absorbed

in the renormalised Thouless matrix Z and the factor exp
(∑

ij

∑
k uikvjk

)
in the normalisation

constant N . The former expression can be used for a parametrised wavefunction of an even

nucleus. It is convenient since, when applying any transformation T̂ on |Ψ〉

|Ψ′〉 = T̂ |Ψ〉 = T̂
∑
k

Zk
ij

k!
(â+
i â

+
j )k|0〉 =

∑
k

Z
′k
ij

k!
(â+
i â

+
j )k|0〉, (3.55)

that is, it is equivalent to transform the pair â+â+ accordingly and absorb the terms in the

Thouless matrix Z. The transformed wavefunction has then the same functional shape as the

original one. We now use the Thouless state for the particular case of the SO(8) Hamiltonian,

which is the subject of the present thesis. Using the intrinsic pairs defined in (2.18) and used in

this model, we define the Thouless pair Ẑ+, for the computation of the Thouless representation

of the HFB wavefunction, as

Ẑ+ =
∑

ν=0,±1

pνP̂
+
ν +

∑
µ=0,±1

dµD̂
+
µ , (3.56)

where pν , dµ are the set of six amplitudes stating the importance of each pair. We notice

that, since the SO(8) Hamiltonian is invariant under rotations in spin and isospin space, we

can reduce the number of parameters needed to describe the mean-field HFB wavefunction.
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Indeed, if the system described by this Hamiltonian is independent of the direction of the

wavefunction, and only depends on its norm, we could always rotate the pairs that build the

wavefunction and align them along a desired direction. Obviously, we would like to exploit this

symmetry to simplify the calculations, and to that purpose the desired direction is the z−axis

in spin and isospin space, where only the respective pair with projection zero will give a nonzero

contribution to the wavefunction, while the two others vanish. Thus, the Thouless pair can be

effectively reduced to

Ẑ+ = p0P̂
+
0 + d0D̂

+
0 . (3.57)

The amplitudes can be reparametrised to have a normalised pair

p0 = sin

(
1

2
α

)
e−iϕ,

d0 = cos

(
1

2
α

)
eiϕ,

(3.58)

where α is the mixing angle that controls the relative amplitude between isoscalar and isovector

pairs and ϕ the relative phase between the two pair condensates.

3.3.2 Isocranking

The isocranking technique is an extension of the usual mean-field formalism to study the effect

of the isospin degree of freedom along isobaric analog states, namely, systems with the same

number of particles (baryons) and isospin [SW01a]. This method can be regarded as arbitrary

rotations, the usual method of cranking [Ing54; Ing56], in isospin space [SW01b]. This technique

allows arbitrary mixing between proton and neutron single-particle states which is what we

desire in order to describe the importance of isoscalar pairing correlations [Sat13]. Under this

extended method, the Routhian h from the HFB equations (3.45) is transformed as

h′ = h− λ · T , (3.59)

where T = (Tx, Ty, Tz) is the isospin vector and λ = (λx, λy, λz) is the set of Lagrange param-

eters that controls the direction and magnitude of the isospin. The third component of the

isospin fixes the imbalance between protons and neutrons in the nucleus

Tz =
N − Z

2
, (3.60)
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and changing the third Lagrange parameter λz will then change the number of protons and

neutrons in the system, spanning from the z−isoaligned Tz = −T state (a pure proton system)

to the also z−isoaligned Tz = T state (a pure neutron system). For this case, the modulus of

λ can be fixed as λ0 and used as the radius of rotations in isospin space. The first Lagrange

parameter λx will control the degree of mixing between proton and neutron single particle

states, being zero for the aforementioned z−isoaligned states. The first component of the

isospin gives excitations to different isobaric analog states, that is, different T , with Tz = 0,

the third component of the isospin gives excitations to different isobaric analog states with

Tz = T . A schematic representation of these processes is depicted in Fig. (3.6). In practical

0 1 2-1-2

0

1

2

T

Tz

λxTx λzTz

Figure 3.6: Isospin triangle spanned for allowed states of different T and Tz. The term λxTx
gives rise to a vertical excitation and λzTz to a diagonal excitation.

applications with even nuclei, rotations of Ty are neglected since they are redundant when Tx is

already under control and they give rise to time-reversal symmetry breaking, which we do not

consider since we work in a fully paired system. Therefore it is common to adopt the following

parametrisation of the Lagrange parameters λ

λ = (λ0 sin θ, 0, λ0 cos θ), (3.61)

where θ varies from 0 to π.
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3.3.3 Augmented Lagrangian Method

For any HFB calculation, constraints must be implemented to fix average values of certain

observables like particle-number or isospin, using Lagrange parameters. A recent method that

has become standard to calculate the values of these Lagrange parameters is the Augmented

Lagrangian Method (ALM) introduced in Ref. [Sta10]. Conventionally, if we constrain the

observable Q̂ to have a certain value q0, the Routhian h is modified such as

h′ = h− λQ̂. (3.62)

The Lagrange parameter λ can be obtained by means of a bisection method or other root-

solving algorithms. Within the ALM algorithm, it is suggested that the Routhian is modified

as

h′ = h− cALM [q − q0(λ)]Q̂, (3.63)

where cALM is the update constant, q is the current average value of Q̂ and q0(λ) = q0−λ/cALM .

Then, the Lagrange parameter λ is updated in iteration i as

λi+1 = λi − cALM(q − q0). (3.64)

The Augmented Lagrangian Method is easily generalised for several constraints using a vector

of independent Lagrange parameters λ. This method has been successfully applied in our HFB

implementation to constrain average values of particle-number, the isospin degree of freedom

for isocranking, and the spin for polarization.

3.3.4 Gradient method

An alternative solution to the HFB problem that does not rely upon iterative diagonalisation

with the convergence relations formerly introduced is based on the gradient method. Under

this method, we aim to find the minimum of the energy surface spanned by

EHFB =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 , (3.65)

which will depend on the chosen parameters (3.58) of the wavefunction |Ψ〉, written using the

Thouless expression (3.54). The gradient method is not exclusive for the HFB problem, it is a

well known numerical method to find the minimum of a function. It relies upon an update of

the parameter domain by a factor proportional to the gradient of the function, that is, its first
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derivative, finding the minimum when the gradient is zero up to a threshold value. This gradient

can be computed by finite differences of the function, but in the HFB framework, however, we

already have an expression for this gradient when we derived the HFB equations, corresponding

to the quantity H20. Since in the later sections, we will mostly work on Thouless states, we

found this method was easier to manipulate for both the HFB framework with constraints on

particle number and going beyond mean-field by applying the symmetry-restoration techniques.

An illustrative diagram, using the axial parametrisation of the Thouless pair (3.58), is depicted

in Fig. (3.7). A general constrained HFB calculation using the gradient method can be found

in [RB11; Egi95].

α,ϕ ansatz

Build Thouless pair Ẑ+(α,ϕ)

Compute ρ, κ

Compute h, ∆

Compute energy E = 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

Is it a minimum? δE = 0?

Update α,ϕ in
the opposite

direction of gradient

Return α,ϕ as converged parameters

Yes

No

Figure 3.7: Diagram depicting the gradient method using the Thouless axial parametrisation.

3.3.5 Overlap of two quasiparticle states

For many practical purposes, as for example in the computation of transfer matrix elements,

where there are different initial and final states, the overlap 〈Ψf |Ψi〉 between an initial quasi-

particle state |Ψi〉 and a final quasiparticle state |Ψf〉 is needed. For many years, the only
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available method to compute this overlap was by means of the Onishi formula [OY66]

〈Ψf |Ψi〉 = ±
√

det
(
I− Z∗fZi

)
. (3.66)

The problem with this formula is the undefined sign as a consequence of the square root

operation, leaving an overall undefined phase. An alternative computation of the norm overlap,

which does not possess this phase problem, was given by Robledo [Rob09]

〈Ψf |Ψi〉 = sNpf

(
Zi −I
I −Z∗f

)
, (3.67)

where sN is a phase constant that depends on the size of the configuration space and pf stands

for the pfaffian of a matrix, which fulfils the condition pf(A)2 = det(A), therefore making the

connection with the Onishi formula while removing the phase problem. The pfaffian of a matrix

can be evaluated upon the Householder decomposition [GRB11].

3.3.6 Convergence of the HFB calculation

In order to obtain the proper mean-field energy after an iterative, self-consistent HFB calcula-

tion, we derive an alternative formula for this energy that must agree with the HFB result in

Eq. (3.46) up to a very small number, therefore we will not only rely upon the self-consistency

of the HFB equations to obtain the solution. Bennaceur [Ben16] suggested an implementation

for the scalar constraint on the total number of particles, defining this implementation as the

magic formula. In the same spirit, in the following subsections, we derive these magic formulas

including Lagrange parameters we are interested in to constrain not only the particle-number,

but also the first and third components of the isospin.

3.3.6.1 Scalar case: constrain on the particle-number

For the scalar Lagrange parameter λ to fix the total number of particles, the HFB equations

read (
h− λ ∆

−∆∗ −h∗ + λ

)(
v∗i

u∗i

)
= Ei

(
v∗i

u∗i

)
, (3.68)

where i denotes the quantum numbers of the different quasiparticles and we are concerned only

with the negative eigenvalues. Taking the first row of the matrix multiplication

(h− λ)v∗i + ∆u∗i = Eiv
∗
i , (3.69)
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multiplying by vi

(h− λ)viv
∗
i + ∆u∗i vi = Eiviv

∗
i , (3.70)

and summing over all possible quantum numbers in the collective coordinate i, we obtain

∑
i

(hρi + ∆κ∗i ) =
∑
i

(Ei + λ)ρi. (3.71)

Including the factor 1
2
, in accordance with Eq. (3.46), we finally get for the HFB energy

Emagic =
1

2

∑
i

(Ei + λ)ρi, (3.72)

which is a test for convergence of the right physical solution including constrains on the particle-

number, thus |Emagic − EHFB| ∼ 0.

3.3.6.2 Third component of the isospin: constrain on protons and neutrons

We denote λz as the Lagrange parameter fixing the third component of the isospin. Since the

third pauli matrix is

τz =

(
1 0

0 −1

)
, (3.73)

then the HFB equations read now
hnn − λ− λz hpn ∆nn ∆np

hpn hpp − λ+ λz ∆pn ∆pp

−∆∗nn −∆∗np −h∗nn + λ+ λz −h∗pn
−∆∗pn −∆∗pp −h∗pn −h∗pp + λ− λz



v∗i (n)

v∗i (p)

u∗i (n)

u∗i (p)

 = Ei


v∗i (n)

v∗i (p)

u∗i (n)

u∗i (p)

 ,

(3.74)

where we have made clear the distinction between different isospin projections, neutrons and

protons. We take the first two rows in the matrix multiplication

(hnn − λ− λz)v∗i (n) + hpnv
∗
i (p) + ∆nnu

∗
i (n) + ∆npu

∗
i (p) = Eiv

∗
i (n),

(hpp − λ+ λz)v
∗
i (p) + hpnv

∗
i (n) + ∆pnu

∗
i (n) + ∆ppu

∗
i (p) = Eiv

∗
i (p).

(3.75)

We multiply these equations by vi(n) and vi(p), respectively

(hnn − λ− λz)v∗i (n)vi(n) + hpnv
∗
i (p)vi(n) + ∆nnu

∗
i (n)vi(n) + ∆npu

∗
i (p)vi(n) = Eiv

∗
i (n)vi(n),

(hpp − λ+ λz)v
∗
i (p)vi(p) + hpnv

∗
i (n)vi(p) + ∆pnu

∗
i (n)vi(p) + ∆ppu

∗
i (p)vi(p) = Eiv

∗
i (p)vi(p),

(3.76)
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and we have

(hnn − λ− λz)ρi(n) + hpnρi(pn) + ∆nnκ
∗
i (n) + ∆npu

∗
i (p)vi(n) = Eiρi(n),

(hpp − λ+ λz)ρi(p) + hpnρi(pn) + ∆pnu
∗
i (n)vi(p) + ∆ppκ

∗
i (p) = Eiρi(p).

(3.77)

Taking special attention at the cross terms like u∗i (p)vi(n) in the κ matrix. They were in the

scalar case as well but here we need to explicitly write them down as we separate protons and

neutrons. The density matrix ρ is hermitian and we were able to write ρ(pn) = v∗i (p)vi(n) =

v∗i (n)vi(p). By summing these two equations we have

hppρi(p) + hnnρi(n)+2hpnρi(pn) + ∆nnκ
∗
i (n) + ∆npu

∗
i (p)vi(n) + ∆pnu

∗
i (n)vi(p) + ∆ppκ

∗
i (p)

= Ei[ρi(p) + ρi(n)] + (λ+ λz)ρi(n) + (λ− λz)ρi(p).
(3.78)

Finally, including the factor 1
2

we obtain

Emagic =
1

2

∑
i

{(Ei + λ)[ρi(p) + ρi(n)] + λz[ρi(n)− ρi(p)]}, (3.79)

which should be implemented if we are constraining the particle-number and the specific number

of protons and neutrons.

3.3.6.3 First component of the isospin: vertical excitations

We denote by λx the Lagrange parameter fixing the first component of the isospin. Since the

first Pauli matrix is

τx =

(
0 1

1 0

)
, (3.80)

then the HFB equations read now
hnn − λ− λz hpn − λx ∆nn ∆np

hpn − λx hpp − λ+ λz ∆pn ∆pp

−∆∗nn −∆∗np −h∗nn + λ+ λz −h∗pn + λx

−∆∗pn −∆∗pp −h∗pn + λx −h∗pp + λ− λz



v∗i (n)

v∗i (p)

u∗i (n)

u∗i (p)

 = Ei


v∗i (n)

v∗i (p)

u∗i (n)

u∗i (p)

 .

(3.81)

We take the first two rows in the matrix multiplication

(hnn − λ− λz)v∗i (n) + (hpn − λx)v∗i (p) + ∆nnu
∗
i (n) + ∆npu

∗
i (p) = Eiv

∗
i (n),

(hpp − λ+ λz)v
∗
i (p) + (hpn − λx)v∗i (n) + ∆pnu

∗
i (n) + ∆ppu

∗
i (p) = Eiv

∗
i (p).

(3.82)
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We multiply these equations by vi(n) and vi(p), respectively

(hnn − λ− λz)v∗i (n)vi(n) + (hpn − λx)v∗i (p)vi(n) + ∆nnu
∗
i (n)vi(n) + ∆npu

∗
i (p)vi(n) = εiv

∗
i (n)vi(n),

(hpp − λ+ λz)v
∗
i (p)vi(p) + (hpn − λx)v∗i (n)vi(p) + ∆pnu

∗
i (n)vi(p) + ∆ppu

∗
i (p)vi(p) = εiv

∗
i (p)vi(p).

(3.83)

So we have the same equations as in the former case but with an additional λx multiplying non

diagonal elements of the density matrix. The final result is

Emagic =
1

2

∑
i

{(Ei + λ)[ρi(p) + ρi(n)] + λz[ρi(n)− ρi(p)] + 2λxρi(pn)}. (3.84)

This method can be extended as long as required, including other observables as spin po-

larization, for example. The set of Lagrange parameters λ, λx, λz in the magic formula are the

output of the Augmented Lagrangian Method and need to be used accordingly. In Fig. (3.8)

we show again a diagram depicting the HFB algorightm with constraints.

U, V ansatz

Compute ρ, κ

Compute h, ∆ with ALM

Compute EHFB, Emagic

Has it converged?

Return U, V

Diagonalise HFB matrix

Yes

No

Extract U, V as eigenstates

Figure 3.8: HFB algorithm introducing the magic formulas (3.72, 3.79, 3.84) using the Aug-
mented Lagrangian Method for an improved convergence.
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Chapter 4

Beyond mean-field: restoration of

broken symmetries

The concept of symmetry is linked to physics since its conception. The mathematical tools

associated with symmetries have shown a tremendous success in describing many physical

phenomena, especially in nuclear and particle physics. Namely, Noether’s theorem states that

a symmetry of a system is related to a conserved quantity, which can be used to identify the

different configurations of said system. We must exploit the symmetries to get an intrinsic

set of coordinates whose total dimension is less than the dimension of the space in which the

system is embedded. For example, a system with spherical symmetry in three dimensions is

completely described by a number, its radial coordinate, while in general we would need three

numbers, therefore reducing the complexity of the problem. Although many symmetries are

important in the nuclear Hamiltonian for the description of several observables, the centre of

interest in this work will be aimed at the particle-number, angular momentum, spin and isospin

symmetries, with devoted sections.

One can define a symmetry transformation Ŝ, satisfying four important conditions

• Given another symmetry transformation Ŝ ′, belonging to the same symmetry group, the

products Ŝ ′Ŝ and ŜŜ ′, which do not necessarily commute, are also symmetry transfor-

mations. There is closure.

• Given another symmetry transformation Ŝ ′′, belonging to the same symmetry group, it

fulfils (ŜŜ ′)Ŝ ′′ = Ŝ(Ŝ ′Ŝ ′′). There is associativity.

• There exists an identity element Î such that ŜÎ = ÎŜ = Ŝ.

• There is an inverse element Ŝ−1 such that ŜŜ−1 = Ŝ−1Ŝ = Î
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Chapter 4. Beyond mean-field: restoration of broken symmetries

A symmetry is thus mathematically associated with the concept of group, a set of elements

which meet the former criteria. As a consequence, we say that symmetries have a group

structure, and the algebraic mathematical methods already developed in the literature can be

applied. Conservation of symmetries plays an important role in the structure of new theories in

physics, as systems are invariant under certain symmetry transformation by direct observation.

Many examples exist in nuclear physics: nuclear matter is translationally invariant and therefore

its states are built from plane-waves of continuous linear momentum, magic nuclei are spherical

and therefore they can be labelled by states of different angular momentum, and axial nuclei

have a rotational symmetry around a specific axis and therefore they can be labelled by the

different projections of angular momentum. This Chapter is structured as follows, a brief

introduction to the mathematical tools from group theory applied to symmetries is reviewed

in the following subsections, giving special emphasis on the angular momentum symmetry, but

whose extrapolation to other cases is automatic. Next, we will review under what conditions

a symmetry can be broken even when the system itself is symmetric and its consequences,

often happening in the mean-field picture. The remaining and main part of the Chapter will

be devoted to the technical details of how to properly restore these broken symmetries using

projection methods within the mean-field picture and in specific with the HFB framework and

the SO(8) Hamiltonian.

4.1 Relevant symmetries in nuclear structure

4.1.1 Angular momentum symmetry

In this Section, we will focus in the rotation symmetry and its relation to the angular momen-

tum, as its mathematical treatment is widely used in many other applications in nuclear and

particle physics.

Let us consider that we spatially rotate a wavefunction Ψ(r, ϕ, φ) an angle θ about the z−axis.

In terms of the rotation operator R̂z(θ), we have

R̂z(θ)Ψ(r, ϕ, φ) = Ψ(r, ϕ, φ− θ). (4.1)

By performing a Taylor expansion, we obtain

Ψ(r, ϕ, φ− θ) = Ψ(r, ϕ, φ)− θ ∂
∂φ

Ψ(r, ϕ, φ) +
θ2

2

∂2

∂φ2
Ψ(r, ϕ, φ) + · · ·

=
∞∑
n=0

1

n!

(
− θ ∂

∂φ

)n
Ψ(r, ϕ, φ),

(4.2)
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Angular momentum symmetry

and the rotation operator can be written as

R̂z(θ) = e−iθĴz . (4.3)

Ĵz is the well-known angular momentum projection operator on the z−axis

Ĵz = −i ∂
∂φ
, (4.4)

which is associated with the rotation transformations, also named as the generator of these

transformations. Expression in Eq. (4.3) is called the exponential representation of the symme-

try operator, well described in the Lie algebra literature [Wyb74]. A Lie algebra is completely

described by the commutation relations fulfilled by the operators involved, in the case of angular

momentum Ĵ

[Ĵl, Ĵm] = i
3∑

n=1

εlmnĴn, (4.5)

where εlmn is the Levi-Civita tensor. These commutation relations are associated with the

structure of the special and unitary algebra of dimension 2, SU(2)1, very important in many-

body physics, as it describes particles of spin 1
2
, and whose elements can be represented by

unitary matrices of determinant one.

We have now stated that spatial rotations are intimately related to the angular momentum

operators. Moreover, because of Noether’s theorem, we know that if a system is invariant

under rotations, then the angular momentum is conserved. In quantum mechanics, this is of

tremendous importance as the different states of the system can be labelled with the eigenvalues

of the angular momentum operators Ĵ2 and one of its components, usually Ĵz, labelled as j,m,

respectively. In particular

Ĵ2|j,m〉 = j(j + 1)|j,m〉,
Ĵz|j,m〉 = m|j,m〉.

(4.6)

Ĵ2 is also called the Casimir invariant of the SO(3) algebra, defined as the operator that

commutes with all the generators,

[Ĵ2, Ĵi] = 0. (4.7)

Because SO(3) is a spectrum generating algebra [RW10], that is, its structure generates a set

of different states, it is of great importance the introduction of the ladder operators Ĵ+, Ĵ−,

1Although the group associated with spatial rotations is SO(3), all its elements are in SU(2) but not vice
versa and relation (4.5) corresponds only to SU(2)
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Chapter 4. Beyond mean-field: restoration of broken symmetries

which spans said states generated by the algebra, defined as

Ĵ+ = Ĵx + iĴy,

Ĵ− = Ĵx − iĴy,
(4.8)

which raises or lowers the magnetic quantum number m, respectively,

Ĵ+|j,m〉 =
√

(j +m+ 1)(j −m)|j,m+ 1〉,
Ĵ−|j,m〉 =

√
(j −m+ 1)(j +m)|j,m− 1〉.

(4.9)

It is easily checked that, for the maximum and minimum values of m,

Ĵ+|j, j〉 = Ĵ−|j,−j〉 = 0. (4.10)

From the definition of the ladder operators, we observe the following equalities

Ĵ2 = Ĵ±Ĵ∓ + Ĵ2
z ± Ĵz, (4.11)

[Ĵ+, Ĵ−] = −i[Ĵx, Ĵy] + i[Ĵy, Ĵx] = −2i[Ĵx, Ĵy] = 2Ĵz, (4.12)

[Ĵz, Ĵ±] = ±Ĵ±. (4.13)

Spatial rotations are labelled by the Euler angles Ω = (α, β, γ), and a general expression of

these transformations will be given by

R̂(Ω) = R̂(α, β, γ) = e−iαĴze−iβĴye−iγĴz . (4.14)

The matrix elements between different states with good quantum numbers |j,m〉 are given by

〈j′m′|R̂(Ω)|jm〉 = δjj′D
j
m′m(Ω), (4.15)

where Dj
m′m(Ω) are the Wigner D-functions [VMK88], defining completely the transformation

from a state |j,m〉 to |j,m〉′ after a rotation of angle Ω. These functions fulfil the following

orthogonality relation∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγDJ1
M1M ′1

(Ω)DJ2
M2M ′2

(Ω) = (−1)M2−M ′2
8π2

2J2 + 1
δJ1J2δM1−M2δM ′1−M ′2 .

(4.16)
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Particle number symmetry

4.1.2 Particle number symmetry

The particle-number symmetry, related to systems having a fixed number of particles, is asso-

ciated with the unitary group of dimension one, U(1), also known as the circle group because it

involves the numbers enclosed in a circle on the complex plane. Analogous to the spatial case

with the angular momentum operators, symmetry transformations associated to this group can

also be defined in terms of rotations in the space generated by the variables involved in the

transformation (the Euler angles in the case of spatial rotations). The operators of this group

acting on a state of definite particle number will just change the phase of said state, while

leaving the norm invariant. For this reason, sometimes this space is referred as the gauge space,

and the only parameter involved is the gauge angle.

In the occupation number representation for fermions, we define a single-particle creation â+
i

and annihilation âi operator in the state i as with relations (2.5, 2.6), which fulfil the following

commutation relations

[âi, â
+
j ] = 2âiâ

+
j − δij,

[â+
i , â

+
j ] = 2â+

i â
+
j ,

[âi, âj] = 2âiâj.

(4.17)

The mathematical structure of the fermionic creation and annihilation operators is referred in

the literature as the Grasmann algebra. The number operator, defined as

Â =
∑
i

â+
i âi, (4.18)

is the generator of the U(1) algebra, and therefore the rotation operator in gauge space is given

by

R̂(ϕ) = e−iϕÂ. (4.19)

The matrix elements of this operator reads

〈Ψ′|R̂(ϕ)|Ψ〉 = e−iϕA, (4.20)

with A = 〈Ψ′|Â|Ψ〉/〈Ψ′|Ψ〉, necessarily assuming that the states preserve the particle-number

symmetry. The matrix elements fulfil the following orthogonalisation conditions∫ 2π

0

dαe−iαAe−iαA
′
= 2πδAA′ . (4.21)
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Chapter 4. Beyond mean-field: restoration of broken symmetries

The action of the rotation operator (4.19) over the single-particle operator â+ and, subsequently,

over the pair â+â+, is [BR86]

R̂+(ϕ)â+R̂(ϕ) = eiϕâ+, (4.22)

R̂+(ϕ)â+â+R̂(ϕ) = e2iϕâ+â+. (4.23)

4.1.3 Spin symmetry

Spin is an intrinsic property which makes nucleons align or antialign under an applied mag-

netic field. The mathematical structure of the spin symmetry operators are the same as those

of angular momentum. Protons and neutrons are fermions of spin 1
2

and thus two different pro-

jections (spin up and down). The spin symmetry follows the structure of the SU(2) symmetry

group, thus it can be represented by two-dimensional matrices. A convenient representation is

given by the Pauli matrices, defined by

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (4.24)

The two-dimensional angular momentum operators are then defined as Ji = 1
2
σi. Similar

formulas derived in Section 4.1.1 hold in this case, where now rotations are done in spin space

and not coordinate space.

4.1.4 Isospin symmetry

The substantial difference between protons and neutrons is the charge, protons are positively

charged and neutrons are neutral. If we neglect the Coulomb interaction associated to the charge

of the protons, the interaction among protons and neutrons is the same as between protons and

neutrons themselves2. There is experimental evidence of this claim, as mirror nuclei, i.e., nuclei

with exchanged numbers of protons and neutrons, have similar binding energy once corrected

with the Coulomb interaction, and the same spin and parity. This fact lead us to treat protons

and neutrons as specific states of a general particle: the nucleon. Introducing the isospin degree

of freedom, whose mathematical structure is analogous to the one of the spin, we treat protons

and neutrons as different projections (isospin up and isospin down) of a nucleon of isospin 1
2
,

as depicted in Fig. (4.1). In this sense, we say that the nuclear Hamiltonian is invariant under

rotations in isospin space, that is, under the change of the number of protons and neutrons,

2This is not exactly true, as protons and neutrons have different quark constituents, differences in the strong
interaction, which lead to the nuclear interaction, are observed [Bac19].
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keeping the total number of neutrons invariant. Isospin allows us to treat protons and neutrons

self-consistently (that is, protons and neutrons are not independent) and, as we shall see later, it

is of great importance to treat the isoscalar pairing correlations. As the mathematical structure

n

p

Figure 4.1: Neutron and proton as different states of a nucleon of isospin t = 1
2
.

is completely analogous to the spin case, the same relations regarding the angular momentum

symmetry hold for the isospin symmetry.

4.1.5 Spin and isospin signatures

The spin and isospin signature operators are defined as

R̂S = e−iπŜy , (4.25)

R̂T = e−iπT̂y . (4.26)

The signature is a discrete symmetry involving a rotation of angle π about the y−axis in the

respective spin/isospin space. Obviously, if the system is already invariant under any rotation

in these spaces, the signature symmetries are already conserved. However, there is in principle

no need to conserve spin/isospin symmetries in order to conserve their signatures, just an axial

symmetry, that is, the projection onto one axis, needs to be conserved. This result is analogous

to the fact that parity, which is related to the space reflection symmetry, is conserved in nuclei

even when the linear momentum, related to the translational symmetry of space, is not3.

The matrix elements of the signature for states with good quantum numbers of spin and

isospin can be evaluated by making use of the small Wigner functions

〈SS ′′z |R̂S|SSz〉 =
∑
S′z

dSSzS′z
(π)δS′z ,S′′z = dSSzS′′z

(π), (4.27)

3Obviously a finite nucleus will not conserve the linear momentum symmetry as it is localised in space
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Chapter 4. Beyond mean-field: restoration of broken symmetries

where dJMM ′(β) is related to the usual DJ
MM ′(α, β, γ) as [VMK88]

DJ
MM ′(α, β, γ) = e−iMαdJMM ′(β)e−iM

′γ. (4.28)

The resulting Wigner function has a special value with the following phase convention

dJMM ′(π) = (−1)J+MδM,−M ′ = (−1)J−Mδ−M,M ′ , (4.29)

so

〈SS ′′z |R̂S|SSz〉 =
∑
S′z

dSSzS′z
(π)δS′z ,S′′z = (−1)S+SzδSz ,−S′′z . (4.30)

A similar expression holds for the isospin as well. From the former equation it is possible to

obtain the eigenstates and eigenvalues of the signature operator, using the closure relation

R̂S|SSz〉 =
∑
S′′z

(−1)S+SzδSz ,−S′′z |SS ′′z 〉 = (−1)S+Sz |S − Sz〉. (4.31)

The eigenstate of the spin signature operator are those with projection zero |S0〉 with eigenvalue

(−1)S and for the isospin signature operator |T0〉 with eigenvalue (−1)T . From the last equation

we see that the former transformation involves the spin flipping of all the nucleons in the system

and, analogously, the exchange of the number of protons and neutrons for the latter. For this

reason, the isospin signature symmetry is sometimes referred to as charge symmetry. Selection

rules can be obtained from the fulfilling of these symmetries as we shall see in Section (4.7).

Isoscalar and isovector pairs in Eq. (3.57) are transformed under the product of signature

operators (4.25) as

R̂SR̂T

(
â+

1
2

1
2

â+
1
2

1
2

)S=1,T=0

Sz=0,Tz=0
R̂+
T R̂

+
S = d1

00(π)d0
00(π)

(
â+

1
2

1
2

â+
1
2

1
2

)S=1,T=0

Sz=0,Tz=0
= −

(
â+

1
2

1
2

â+
1
2

1
2

)S=1,T=0

Sz=0,Tz=0
,

(4.32)

R̂SR̂T

(
â+

1
2

1
2

â+
1
2

1
2

)S=0,T=1

Sz=0,Tz=0
R̂+
T R̂

+
S = d1

00(π)d0
00(π)

(
â+

1
2

1
2

â+
1
2

1
2

)S=0,T=1

Sz=0,Tz=0
= −

(
â+

1
2

1
2

â+
1
2

1
2

)S=0,T=1

Sz=0,Tz=0
,

(4.33)

therefore, a Thouless state parametrised as in Eq. (3.58) will be transformed under the spin

and isospin signature operators as

R̂SẐ
+(α, ϕ)R̂+

S = iẐ+
(
α, ϕ+

π

2

)
,

R̂T Ẑ
+(α, ϕ)R̂+

T = iẐ+
(
α, ϕ− π

2

)
.

(4.34)
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That is, it will render a periodic function of ϕ with period π
2
, as we shall see in the Results

Chapter.

4.1.6 Time-reversal symmetry

The time-reversal symmetry K̂ is an antiunitary transformation4 which reverses the sign of

momentum p and angular momentum m and spin projections σ

K̂|p,m, σ〉 = | − p,−m,−σ〉. (4.35)

Similarly to parity (spatial reflection), the eigenvalues of the time-reversal operator are ±1,

denoting time-odd and time-even states corresponding to systems with odd and even number

of particles. Consequently, the ground states of all even nuclei, which we consider in this work,

are invariant under time-reversal symmetry and they must be time-even.

Odd nuclei are difficult to describe because of the single nucleon which flips the direction

of spin under time-reversal. However, there is a fascinating feature about odd nuclei and

odd-particle systems in general. As all their states change sign under time-reversal, but the

Hamiltonian is time-reversal invariant, these states come in pairwise degeneracy, called Kramers

degenerate states [Mes66; BM98], only removed when a magnetic field is applied, arising spin

polarisation [DE05].

Time-reversal symmetry allows us to fix a phase convention for the single-particle operators.

The one of Condon-Shortley is universally accepted [VMK88], under which

K̂â+
`m; 1

2
σ; 1

2
τ
K̂+ = (−1)`−m(−1)

1
2
−σâ+

`−m; 1
2
−σ; 1

2
τ
. (4.36)

From this convention, it is easy to see that the axial pairs in Eq. (3.57) transform under

time-reversal as

K̂
(
â+
` 1
2

1
2

â+
` 1
2

1
2

)L=0,S=1,T=0

M=0,Sz=0,Tz=0
K̂+ = (−1)2`+1

(
â+
` 1
2

1
2

â+
` 1
2

1
2

)L=0,S=1,T=0

M=0,Sz=0,Tz=0
= −

(
â+
` 1
2

1
2

â+
` 1
2

1
2

)L=0,S=1,T=0

M=0,Sz=0,Tz=0
,

(4.37)

K̂
(
â+
` 1
2

1
2

â+
` 1
2

1
2

)L=0,S=0,T=1

M=0,Sz=0,Tz=0
K̂+ = (−1)2`

(
â+
` 1
2

1
2

â+
` 1
2

1
2

)L=0,S=0,T=1

M=0,Sz=0,Tz=0
=
(
â+
` 1
2

1
2

â+
` 1
2

1
2

)L=0,S=0,T=1

M=0,Sz=0,Tz=0
,

(4.38)

4An antiunitary transformation A is defined as A = UK, where U is unitary andK is the complex conjugation
operator. In the case of time-reversal, it is an antiunitary transformation because it changes the sign of the
commutation relations.

65



Chapter 4. Beyond mean-field: restoration of broken symmetries

that is, isoscalar and isovector pairs are time-odd (it changes sign) and time-even (invariant),

respectively. A Thouless state parametrised as in Eq. (3.58) will be transformed under time-

reversal as

K̂Ẑ+(α, ϕ)K̂+ = iẐ+
(
α,
π

2
− ϕ

)
, (4.39)

where we had taken into account that the time-reversal operator is antiunitary and subsequently

it carries a complex conjugation operation.

From Eq. (4.39) we observe that, for a fully paired system where time-reversal symmetry

must be fulfilled, it is necessary that ϕ = π
2
, as we shall see in the Results chapter.

4.2 Breaking of symmetries

In the quantum mechanical picture, the breaking of symmetries is measured with the fluctua-

tions of observables. Given an operator P̂ of an observable quantity and the wavefunction |Ψ〉,
the fluctuations ∆P 2 on = 〈Ψ|P̂ |Ψ〉 are defined as

∆P 2 = 〈Ψ|P̂ 2|Ψ〉 − 〈Ψ|P̂ |Ψ〉2. (4.40)

The origin of these fluctuations is twofold: on one hand, it is certainly possible that the system

is not symmetric, and this operator P̂ is not invariant under unitary transformations of the

relevant symmetry operator Ŝ, that is, the very famous result

[P̂ , Ŝ] 6= 0. (4.41)

On the other hand, if P̂ and Ŝ commute and there are common eigenstates of P̂ and Ŝ, a

superposition of these eigenstates gives rise to fluctuations. It is not only needed that P̂ is

invariant under symmetry transformations,

P̂ = Ŝ+P̂ Ŝ, (4.42)

but also the wavefunction |Ψ〉 itself, for the average value to be invariant,

〈Ψ|P̂ |Ψ〉 = 〈Ψ|Ŝ+P̂ Ŝ|Ψ〉 −→ |Ψ〉 = Ŝ|Ψ〉. (4.43)

For illustrative purposes, let us put the textbook example of the Hamiltonian of a rotor,

Ĥ = aĴ2 + bĴz, (4.44)
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which is obviously rotationally invariant,

[Ĥ, Ĵ2] = [Ĥ, Ĵz] = 0, (4.45)

and has eigenstates |JM〉. If the system is in a specific eigenstate, then the fluctuations of the

energy are

∆E2 = 〈JM |Ĥ2|JM〉 − 〈JM |Ĥ|JM〉2

= [aJ(J + 1) + bM ]2 − [aJ(J + 1) + bM ]2

= 0.

(4.46)

The symmetry is not broken as the fluctuations are zero. However, if we take a superposition

of these eigenstates

|Ψ〉 =
∑
i

ci|JMi〉, (4.47)

then we have

∆E2 = 〈Ψ|Ĥ2|Ψ〉 − 〈Ψ|Ĥ|Ψ〉2

= a2J2(J + 1)2 + b2
∑
i

c2
iM

2
i + 2abJ(J + 1)

∑
i

c2
iMi

− a2J2(J + 1)2 − b2

(∑
i

ciMi

)2

− 2abJ(J + 1)
∑
i

c2
iMi

= b2

[∑
i

c2
iM

2
i −

(∑
i

ciMi

)2]
,

(4.48)

which, in general, is not zero. Therefore a wavefunction of the system written as a superposition

of eigenstates of the symmetry operator gives rise to fluctuations on certain observables even

when these symmetry operators commute with the Hamiltonian. This even affects the symmetry

operator itself, as we observe from the last equation, the fluctuations on Ĵz are not zero,

∆J2
z =

[∑
i

c2
iM

2
i −

(∑
i

ciMi

)2]
. (4.49)

Thus, we conclude that it is not only necessary for the Hamiltonian of the system to be invariant

under symmetry transformations, but also the wavefunction describing a given state of the

system needs to be symmetry-invariant.
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4.3 Projection operators

As we have seen in the former section, the application of the rotation operator on a state

results in a final state which is a superposition. If we extract, from this superposition of

states, a particular one, we need to make use of projection operators. We give in this section a

derivation of the general form of this operators, extracted from Ref. [She19] and [Ham12]. We

start from a general definition of the rotation of a state

R̂(ω)|Ψj〉 =
∑
i

Dij(ω)|Ψi〉. (4.50)

We know that the matrix elements Dij(ω) need to fulfil the orthogonality relation∫
dωD∗i′j′(ω)Dij(ω) =

V

n
δii′δjj′ , (4.51)

with n being the dimension of the symmetry group and V the volume of the coordinates ω

space. If we multiply the first equation by D∗i′j′(ω) and integrate over the whole space∫
dωD∗i′j′(ω)R̂(ω)|Ψj〉 =

∑
i

∫
dωD∗i′j′(ω)Dij(ω)|Ψi〉

=
V

n

∑
i

δii′δjj′ |Ψi〉

=
V

n
δjj′ |Ψ′i〉.

(4.52)

Therefore we have for a particular state

|Ψi〉 =
n

V

∫
dωD∗i′j′(ω)R̂(ω)|Ψj〉. (4.53)

We define the projection operator as

P̂ij =
n

V

∫
dωD∗i′j′(ω)R̂(ω), (4.54)

which can also be applied to restore symmetries broken implicitly by a state, as this will be a

superposition of states with good quantum number, associated with the broken symmetry. For

the purposes of this work, we are mostly interested with restoration of particle-number, spin

and isospin symmetries and in the following sections we will just be concerned about them,

properties of these symmetries are summarised in Table (4.1).
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Symmetry Group Ω R̂(Ω) n V D(Ω)

Particle Number (Â) U(1) ϕ eiϕÂ 1 2π eiϕA

Angular momentum (L̂) SO(3) {α, β, γ} e−iαL̂ze−iβL̂ye−iγL̂z 2L+ 1 16π2 DL
LzL′z

(Ω)

Spin (Ŝ) SU(2) {αS, βS, γS} e−iαS Ŝze−iβS Ŝye−iγS Ŝz 2S + 1 8π2 DS
SzS′z

(ΩS)

Isospin (T̂ ) SU(2) {αT , βT , γT} e−iαT T̂ze−iβT T̂ye−iγT T̂z 2T + 1 8π2 DT
TzT ′z

(ΩT )

Table 4.1: Properties of the the most relevant symmetries involved in nuclear structure. It
is listed the mathematical group, the domain Ω of the pertinent space, the rotation operator
R̂(Ω) which is the generator of the symmetry transformations, the degeneracy n, the integration
volume V of the rotation operator and the matrix elements D(Ω) of R̂(Ω) between symmetry-
conserving states.

4.4 Average values of observables using a symmetry-

restored wavefunction

The application of the projection operators to a symmetry-violating wavefunction |Ψ〉 yields a

state with a good quantum number pertaining to the symmetry in consideration. Let us define

a certain general symmetry Î with good quantum number I, the projected state is

|I〉 = P̂ I |Ψ〉. (4.55)

We now compute average values of the usual observables like the energy using these projected

symmetry-restored states, that is,

E =
〈I|Ĥ|I〉
〈I|I〉 =

〈Ψ|P̂ I+ĤP̂ I |Ψ〉
〈Ψ|P̂ I+P̂ I |Ψ〉

. (4.56)

If the only source of violation of symmetry is given in the mean-field wavefunction and the

Hamiltonian is invariant,

[Ĥ, Î] = 0, (4.57)

then the equation for the energy is rewritten as

E =
〈I|Ĥ|I〉
〈I|I〉 =

〈Ψ|P̂ I+ĤP̂ I |Ψ〉
〈Ψ|P̂ I+P̂ I |Ψ〉

=
〈Ψ|ĤP̂ I |Ψ〉
〈Ψ|P̂ I |Ψ〉

, (4.58)
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Chapter 4. Beyond mean-field: restoration of broken symmetries

where we have made use of the fact that the projectors are idempotent and hermitian5. For the

case of broken particle-number A, spin S and isospin T symmetries, we define the operators

P̂A =
1

2π

∫ 2π

0

dγeiγ(Â−A), (4.59)

P̂ S
MK =

2S + 1

8π2

∫
dΩSD

S∗
MK(ΩS)R̂S(ΩS), (4.60)

P̂ T
NL =

2T + 1

8π2

∫
dΩTD

T∗
NL(ΩT )R̂T (ΩT ), (4.61)

where M and K are the spin projections on the z−axis on the intrinsic and laboratory frame,

respectively, and similarly for the isospin. The projected energy reads

E =
HAST

IAST
, (4.62)

where

HAST =
1

2π

2S + 1

8π2

2T + 1

8π2

∫
dϕdΩSdΩTD

T∗
ν′ν(ΩT )DS∗

µ′µ(ΩS)e−iAϕH(ϕ,ΩS,ΩT ), (4.63)

and

IAST =
1

2π

2S + 1

8π2

2T + 1

8π2

∫
dϕdΩSdΩTD

T∗
ν′ν(ΩT )DS∗

µ′µ(ΩS)e−iAϕI(ϕ,ΩS,ΩT ). (4.64)

H and I are the Hamilton and overlap kernels, respectively,

H = 〈Ψ|ĤR̂A(ϕ)R̂S(ΩS)R̂T (ΩT )|Ψ〉 = 〈Ψ|Ĥ|Ψ(ϕ,ΩS,ΩT )〉, (4.65)

I = 〈Ψ|R̂A(ϕ)R̂S(ΩS)R̂T (ΩT )|Ψ〉 = 〈Ψ|Ψ(ϕ,ΩS,ΩT )〉. (4.66)

|Ψ(ϕ,ΩS,ΩT )〉 is the rotated mean-field wavefunction. Associating set of parameters Z0 to the

unrotated Thouless state |Ψ〉 and the generally different set ZR to the rotated Thouless state

|Ψ(ϕ,ΩS,ΩT )〉, that is, using (3.54)

|Ψ〉 = N0e
Z0â+â+ |0〉,

|Ψ(ϕ,ΩS,ΩT )〉 = NReZ
R(ϕ,ΩS ,ΩT )â+â+ |0〉.

(4.67)

5This is, in general, not true, but it holds for particle-number, spin and isospin restoration with axial
symmetry. The general case will be presented in Section 4.8.
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4.4. Average values of observables using a symmetry-restored wavefunction

It is possible write explicit compact expressions for the Hamilton and overlap kernels

H = 〈Ψ|Ψ(ϕ,ΩS,ΩT )〉
[
Tr
(
ερ10

)
+

1

2
Tr
(
Γ10ρ10

)
− 1

2
Tr
(
∆10κ01∗)] , (4.68)

I = sNpf

(
ZR −I
I −Z0∗

)
. (4.69)

The densities and fields are constructed with two different mean-field states on the ket and the

bra, defined as transition densities and fields. The transition densities read

ρ10 = −Z0∗(I− ZRZ0∗)−1ZR, (4.70)

κ10 = Z0∗(I− ZRZ0∗)−1, (4.71)

κ01∗ = (I− ZRZ0∗)−1ZR. (4.72)

As κ is antisymmetric, two matrix expressions are needed to completely define the pairing

tensor between different mean-field states. Apart from the known relation (3.36), κ01∗ reads

κ01∗
ij =

〈Ψ1|â+
i â

+
j |Ψ0〉

〈Ψ1|Ψ0〉
. (4.73)

The transition fields are defined using the transition densities

Γ10
ll′ =

∑
qq′

v̄lq′l′qρ
10
qq′ , (4.74)

∆10
ll′ =

1

2

∑
qq′

v̄ll′qq′κ
10
qq′ . (4.75)

For a derivation of the expression of the transition densities from two generally different Thou-

less states, we refer to Appendix D. While we have written explicitly the example for the

projected energy, the methodology is analogous to any other quantity. For example, for the

particle-number observable, written as

Â =
∑
i

â+
i âi, (4.76)

with i denoting any single-particle state, its kernel is given by the transition density

A =
∑
i

〈Ψ|Ψ(ϕ,ΩS,ΩT )〉ρ10
ii = I Tr ρ10, (4.77)
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Chapter 4. Beyond mean-field: restoration of broken symmetries

so the projected number of particles is

A =

∫
dϕdΩSdΩTD

T∗
ν′ν(ΩT )DS∗

µ′µ(ΩS)e−iAϕA∫
dϕdΩSdΩTDT∗

ν′ν(ΩT )DS∗
µ′µ(ΩS)e−iAϕI , (4.78)

which has to be the same as the input we give in the complex exponential within the integrand.

For the particle number fluctuations, its formula is

σ2
A = 〈Ψ|Â2|Ψ〉 − 〈Ψ|Â|Ψ〉2 = −2 Tr

(
ρ2 − ρ

)
, (4.79)

therefore, the particle-number fluctuations kernel is

σ2
A = −2I Tr

(
ρ102 − ρ10

)
, (4.80)

and its projected value is

σ2
A =

∫
dϕdΩSdΩTD

T∗
ν′ν(ΩT )DS∗

µ′µ(ΩS)e−iAϕσ2
A∫

dϕdΩSdΩTDT∗
ν′ν(ΩT )DS∗

µ′µ(ΩS)e−iAϕI , (4.81)

and, obviously, this quantity has to be zero. Alternatively, it is possible to derive an expression

for the projected isospin. The one-body isospin operator is

T̂ =
∑
ab

tabâ
+
a âb, (4.82)

where tab is the compact expression of the three Pauli matrices, i.e.,

tab =

(
1 1− i

1 + i −1

)
. (4.83)

Making use again of the definition of the transition density we have

T = I
(∑

ab

tabρ
10
ba

)
, (4.84)

and therefore the projected isospin will be

T =

∫
dϕdΩSdΩTD

T∗
ν′ν(ΩT )DS∗

µ′µ(ΩS)e−iAϕT∫
dϕdΩSdΩTDT∗

ν′ν(ΩT )DS∗
µ′µ(ΩS)e−iAϕI , (4.85)
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where it has to be the same value as given in the input of the Wigner D−function. These exam-

ples become a benchmark for a proper numerical implementation of the symmetry restoration

techniques.

4.4.1 Reduction to the axial case

In many cases, the system has an axial symmetry which becomes useful to exploit when pro-

jecting onto states of good spin and isospin. From a general wavefunction |Ψ〉, we get an

isospin-projected state by the application of the projection operator P̂ T
T ′zTz

as

|T, T ′z, Tz〉 = P̂ T
T ′zTz
|Ψ〉 =

2T + 1

8π2

∫
dΩDT∗

T ′zTz
(Ω)R̂(Ω)|Ψ〉, (4.86)

where Ω is the set of three Euler angles (α, β, γ) and dΩ = sin βdαdβdγ. We expand the integral

to obtain

|T, T ′z, Tz〉 =
2T + 1

8π2

∫ 2π

0

dα

∫ 2π

0

dγ

∫ π

0

dβ sin βDT∗
T ′zTz

(α, β, γ)R̂(α, β, γ)|φ〉. (4.87)

The definitions of the Wigner D-function and the rotation operator are

DT∗
T ′zTz

(α, β, γ) = eiT
′
zαdTT ′zTz(β)eiTzγ, (4.88)

R̂(α, β, γ) = e−iαT̂ze−iβT̂ye−iγT̂z . (4.89)

If the state |Ψ〉 has an axial symmetry around the Tz−axis, then it is an eigenstate of the T̂z

operator. Therefore

e−iγT̂z |Ψ〉 = e−iγTz0 |Ψ〉. (4.90)

Using this fact and the former definitions of Wigner function and rotation operator, we find

the overlap I = 〈Ψ|T, T ′z, Tz〉 to be

I =
2T + 1

8π2

∫ 2π

0

dα

∫ 2π

0

dγ

∫ π

0

dβ sin βei(T
′
z−Tz0 )αdTT ′zTz(β)ei(Tz−Tz0 )γI(β), (4.91)

where I(β) = 〈Ψ|e−iβT̂y |Ψ〉 is the overlap kernel. We now focus on the integral over α (or γ),∫ 2π

0

dαei(T
′
z−Tz0 )α, (4.92)
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and define n = T ′z − Tz0 , which is an integer quantity. If n = 0, i.e., T ′z = Tz0 , we have∫ 2π

0

dα = 2π. (4.93)

If n 6= 0, then we get ∫ 2π

0

dαeinα =
einα

in

∣∣∣∣2π
0

=
e2πni − 1

in
= 0. (4.94)

In summary, the integral over α (and, similarly, the integral over γ) can be expressed as∫ 2π

0

dαei(T
′
z−Tz0 )α = 2πδT ′z ,Tz0 . (4.95)

The final expression will be

I =
2T + 1

2
δT ′z ,Tz0δTz ,Tz0

∫ π

0

dβ sin(β)dTT ′zTzI(β). (4.96)

A similar derivation can be applied to the Hamiltonian matrix elements H = 〈Ψ|Ĥ|T, T ′z, Tz〉
to obtain

H =
2T + 1

2
δT ′z ,Tz0δTz ,Tz0

∫ π

0

dβ sin(β)dTT ′zTzH(β), (4.97)

where H(β) = 〈Ψ|Ĥe−iβT̂y |Ψ〉. The procedure is analogous for the spin projection.

The computation of the energy in the case of axial symmetry is simpler, as the quantities

(4.65, 4.66) reduce to

H =
1

2π

2S + 1

2

2T + 1

2

∫
dϕdβSdβT sin(βS) sin(βT )dT00(βT )dS00(βS)e−iAϕH(ϕ, βS, βT ), (4.98)

I =
1

2π

2S + 1

2

2T + 1

2

∫
dϕdβSdβT sin(βS) sin(βT )dT00(βT )dS00(βS)e−iAϕI(ϕ, βS, βT ). (4.99)

The integration is easily performed numerically using a Gauss-Chebyshev quadrature for

the gauge space and a Gauss-Legendre quadrature for the spin and isospin spaces [Pre92].

We emphasise here again the huge importance of the proper exploitation of the symmetries

of the system, as we have reduced a seven-dimensional integration calculation to just a three-

dimensional one, not only saving computational time, but eventually making this sort of cal-

culations feasible.
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4.5. Variation after projection versus projection after variation

4.5 Variation after projection versus projection after vari-

ation

When restoring the symmetries broken by the mixing in the Bogoliubov transformation, two

different approaches exist for the implementation. Either the projectors (4.59) are applied to

the optimal HFB wavefunction giving the minimum of the energy (3.46), a technique called

projection after variation (PAV)

δ
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

∣∣∣∣∣
|ΨPAV〉

= 0 −→ EPAV
AST =

〈ΨPAV|Ĥ|AST 〉
〈ΨPAV|AST 〉

, (4.100)

or the energy is computed with respect to the symmetry-restored state |AST 〉 and then finding

its minimum, a technique called variation after projection (VAP)

δ
〈Ψ|Ĥ|AST 〉
〈Ψ|AST 〉

∣∣∣∣∣
|ΨVAP〉

= 0 −→ EVAP
AST =

〈ΨVAP|Ĥ|AST 〉
〈ΨVAP|AST 〉

. (4.101)

The former implies only one application of the projectors at the minimum of the mean-

field energy. The latter will imply the application of the projectors at every iteration of our

minimisation procedure, such as the gradient method depicted in Fig. (3.7), and consequently

it takes a lot of computational effort. However, any mean-field formalism relies upon the

variational principle, which states that the choosing of an ansatz closer to the exact state will

result on a closer upper bound to the exact energy. Obviously, a symmetry-restored mean-field

wavefunction is a much better ansatz than a symmetry-breaking mean-field one, as we shall see

in Section 5, when the system fulfils these symmetries.

4.6 General rotation of the Thouless state in spin and

isospin space

To restore the broken symmetries, we have observed that we need to integrate over the whole

volume using kernels that are computed using a rotated wavefunction in the respective space. In

this Section, we derive expressions for these rotated wavefunctions in terms of the six intrinsic

pairs building up the mean-field wavefunction: isoscalar and isovector pairs, with three different
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projections. Using the Thouless parametrisation, the wavefunction of our system is

|Ψ〉 = N exp

(∑
ij

Zij â
+
i â

+
j

)
|0〉. (4.102)

The initial Thouless matrix is defined as

Z0(i, j) =
1

2

(∑
µ

C00
lmi;lmj

C1µ
1
2
σi;

1
2
σj
C00

1
2
τi;

1
2
τj
Z10
µ0 +

∑
ν

C00
lmi;lmj

C00
1
2
σi;

1
2
σj
C1ν

1
2
τi;

1
2
τj
Z01

0ν

)
, (4.103)

with Ccγ
aα;bβ being the Clebsch-Gordan coefficients needed for the coupling of the pairs and ZST

µν

will be our set of six general parameters modelling the strength of each pair. In order to perform

a general rotation of the parameters in spin and isospin space, we define R̂(ΩS) as the rotation

operator in spin space, being ΩS the set of three Euler angles (αS, βS, γS). Similarly, we define

R̂(ΩT ) as the rotation operator in isospin space.

For a pair coupled to T = 0 and S = 1 (isoscalar pair), we have

R̂(ΩS)R̂(ΩT )
∑
µ

Z10
µ0

(
â+

1
2

1
2

â+
1
2

1
2

)S=1,T=0

Sz=µ,Tz=0
R̂(ΩT )+R̂(ΩS)+. (4.104)

Since this pair is coupled to total isospin zero, the parameters will be invariant under rotations

in this space, therefore we are left with

R̂(ΩS)
∑
µ

Z10
µ0

(
â+

1
2

1
2

â+
1
2

1
2

)S=1,T=0

Sz=µ,Tz=0
R̂(ΩS)+. (4.105)

The rotation of the coupled pair will be given by the following transformation

R̂(ΩS)
∑
µ

Z10
µ0

( ∑
σ1σ2τ1τ2

C1µ
1
2
σ1

1
2
σ2
C00

1
2
τ1

1
2
τ2
â+
σ1τ1

â+
σ2τ2

)
R̂(ΩS)+ =

=
∑

µσ′1σ
′
2τ1τ2

Z10
µ0C

00
1
2
τ1

1
2
τ2

(∑
σ1σ2

C1µ
1
2
σ1

1
2
σ2
D

1
2
∗

σ′1σ1
(ΩS)D

1
2
∗

σ′2σ2
(ΩS)

)
â+
σ′1τ1

â+
σ′2τ2

.

(4.106)

Using now the coupling of the Wigner D-functions [BR86]

∑
Nσ1σ2

C1µ
1
2
σ1

1
2
σ2
D

1
2
∗

σ′1σ1
(ΩS)D

1
2
∗

σ′2σ2
(ΩS) =

∑
N

C1N
1
2
σ′1

1
2
σ′2
D1∗
Nµ(ΩS), (4.107)
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where the Clebsch-Gordan coefficients are real, we get

R̂(ΩS)
∑
µ

Z10
µ0

(
â+

1
2

1
2

â+
1
2

1
2

)S=1,T=0

Sz=µ,Tz=0
R̂(ΩS)+ =

=
∑

µσ′1σ
′
2τ1τ2

Z10
µ0C

00
1
2
τ1

1
2
τ2
C1N

1
2
σ′1

1
2
σ′2
D1∗
Nµ(ΩS)â+

σ′1τ1
â+
σ′2τ2

.
(4.108)

Defining the rotated parameters as

Z10
N0(ΩS) =

∑
µ

D1∗
Nµ(ΩS)Z10

µ0, (4.109)

we obtain a general compact expression for the spin and isospin rotated isoscalar pair

R̂(ΩS)
∑
µ

Z10
µ0

(
â+

1
2

1
2

â+
1
2

1
2

)S=1,T=0

Sz=µ,Tz=0
R̂(ΩS)+ =

=
∑

Nσ′1σ
′
2τ1τ2

C00
1
2
τ1

1
2
τ2
C1N

1
2
σ′1

1
2
σ′2
Z10
N0(ΩS)â+

σ′1τ1
â+
σ′2τ2

.
(4.110)

We have introduced an additional sum over N , the projection of the total spin along the

laboratory frame, for completeness. An analogous formula holds for the pair coupled to T = 1

and S = 0 (isovector pair)

R̂(ΩT )
∑
ν

Z01
0ν

(
â+

1
2

1
2

â+
1
2

1
2

)S=0,T=1

Sz=0,Tz=ν
R̂(ΩT )+ =

=
∑

Mσ1σ2τ ′1τ
′
2

C00
1
2
σ1

1
2
σ2
C1M

1
2
τ ′1

1
2
τ ′2
Z01

0M(ΩT )â+
σ1τ ′1

â+
σ2τ ′2

,
(4.111)

where in this case the rotated parameters are

Z01
0M(ΩT ) =

∑
ν

D1∗
Mν(ΩT )Z01

0ν . (4.112)

Expressions (4.110) and (4.111) for the rotated isoscalar and isovector pairs have the same

structure as the unrotated ones, where now the parameters ZST
µν depend on the angle ΩS and

ΩT , respectively.

In the axial case, we only work with two kinds of pairs: Z10
00 and Z01

00 , corresponding to

isoscalar and isovector pairs with projection zero. The rest of them will be set to zero, since

they are not needed as only variations in the magnitude of these pairs, not their directions in

spin and isospin space, will yield different results. In this case, equations (4.110) and (4.111)
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reduce to

R̂(ΩS)Z10
00

(
â+

1
2

1
2

â+
1
2

1
2

)S=1,T=0

Sz=0,Tz=0
R̂(ΩS)+ =

=
∑

Nσ′1σ
′
2τ1τ2

C00
1
2
τ1

1
2
τ2
C1N

1
2
σ′1

1
2
σ′2
Z10
N0(ΩS)â+

σ′1τ1
â+
σ′2τ2

,
(4.113)

with

Z10
N0(ΩS) = D1∗

N0(ΩS)Z10
00 , (4.114)

and

R̂(ΩT )
∑
ν

Z01
0ν

(
â+

1
2

1
2

â+
1
2

1
2

)S=0,T=1

Sz=0,Tz=ν
R̂(ΩT )+ =

=
∑

Mσ1σ2τ ′1τ
′
2

C00
1
2
σ1

1
2
σ2
C1M

1
2
τ ′1

1
2
τ ′2
Z01

0M(ΩT )â+
σ1τ ′1

â+
σ2τ ′2

,
(4.115)

with

Z01
0M(ΩT ) = D1∗

M0(ΩT )Z01
00 . (4.116)

We notice that, even when we have fixed the projections µ, ν, there is still a sum over N,M

corresponding to the projections of spin and isospin in the laboratory frame when constructing

the rotated wavefunction. Finally, we define the rotated Z matrix

ZR(i, j) =
1

2

[∑
N

C00
`mi;`mj

C00
1
2
τi;

1
2
τj
C1N

1
2
σi;

1
2
σj
Z10
N0(ϕ,ΩS)+

+
∑
M

C00
`mi;`mj

C00
1
2
σi;

1
2
σj
C1M

1
2
τi;

1
2
τj
Z01

0M(ϕ,ΩT )

]
,

(4.117)

with Z10
N0(ϕ,ΩS) and Z01

0M(ϕ,ΩT ) being

Z01
0M(ϕ,ΩT ) = e2iϕD1∗

M0(ΩT )Z
01(0)
00 , (4.118)

Z10
N0(ϕ,ΩS) = e2iϕD1∗

N0(ΩS)Z
10(0)
00 , (4.119)

which will be used alongside the unrotated Z matrix (4.103) for the definition of the mean-field

quasiparticle wavefunction.
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Axial symmetry test with isovector pairs

4.6.1 Axial symmetry test with isovector pairs

For the general computation of the projected energy, we define our integrated hamiltonian and

overlap kernels with Eqs. (4.98, 4.99). We have made use of the axial symmetry because all

the intrinsic states can be built from axial pairs (the isovector Z01
00 and the isoscalar Z10

00). In

order to make sure that this implementation is correct, we test it by doing the following: first,

we choose some values for the pairs Z01
00 and Z10

00 and calculate the projected energy using

Eqs. (4.98, 4.99). Secondly, we rotate only the isovector pair using the Wigner D-functions as

Z01
0−1(ΩT ) = D1∗

−10(ΩT )Z01
00 ,

Z01
00(ΩT ) = D1∗

00(ΩT )Z01
00 ,

Z01
01(ΩT ) = D1∗

10(ΩT )Z01
00 ,

(4.120)

where the set of Euler angles in isospin space ΩT is arbitrary. These results come from the

general formula of the rotation of the pairs

Z01
0M(ΩT ) =

∑
ν

D1∗
Mν(ΩT )Z01

0ν , (4.121)

where only Z01
00 is nonzero. Lastly, with these new isovector pairs with three projections (not

axial anymore) we compute the projected energy using a full integration in isospin space as

EAST =
HAST

IAST
, (4.122)

with

HAST =
1

2π

2S + 1

2

2T + 1

8π2

∫
dϕdβSdΩT sin(βS)dSµµ(βS)DT∗

ν′ν(ΩT )e−iAϕH(ϕ, βS,ΩT ), (4.123)

IAST =
1

2π

2S + 1

2

2T + 1

8π2

∫
dϕdβSdΩT sin(βS)dSµµ(βS)DT∗

ν′ν(ΩT )e−iAϕI(ϕ, βS,ΩT ). (4.124)

Both energies, computed with axial and non-axial pairs, must be the same. Equivalently,

the same condition holds for rotations of the isoscalar pair. If they are not, the system does

not possess an axial symmetry.
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Chapter 4. Beyond mean-field: restoration of broken symmetries

4.7 Signature analysis of the Thouless pairs

Applying the signature operators to the isovector pairs (only the isospin signature will have an

effect, as these pairs are scalar in spin space) we obtain the following rotated parameters

Z01
0M(π) =

∑
ν

d1
Mν(π)Z01

0ν , (4.125)

or, in matrix form 
Z01

0−1(π)

Z01
00(π)

Z01
01(π)

 =


d1
−1−1(π) d1

−10(π) d1
−11(π)

d1
0−1(π) d1

00(π) d1
01(π)

d1
1−1(π) d1

10(π) d1
11(π)



Z01

0−1

Z01
00

Z01
01



=


0 0 1

0 −1 0

1 0 0



Z01

0−1

Z01
00

Z01
01

 .

(4.126)

We observe that

• Axial Thouless pairs (with isospin projection zero) always have a definite signature of -1.

• The superposition of Thouless pairs with projection ±1 has a definite signature of +1,

that is

Z01
0−1(π) + Z01

01(π) = Z01
01 + Z01

0−1. (4.127)

• In general, an arbitrary combination of the Thouless pairs will not have a definite signa-

ture.

We also calculate the exact eigenstates |TTzSSz〉 of the product of both signatures, correspond-

ing as demonstrated before to the case where Tz = Sz = 0,

R̂T (π)R̂S(π)|T0S0〉 = (−1)S+T |T0S0〉. (4.128)

In Table (4.2) we gather all the information obtained from the application of the signature

operators in spin and isospin space on the exact states and the axial and non-axial Thouless

pairs.

Now that we have the expressions of the tranformed Thouless pairs under signature, we

apply the signature operator to particle-number projected (PNP) states |A〉. Indeed, these
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Selection rules for the projected states

Operator Exact Sig Thouless (axial) Sig Thouless (non axial) Sig

R̂T |T0〉 (−1)T Z01
00 −1 Z01

01 + Z01
0−1 1

R̂S |S0〉 (−1)S Z10
00 −1 Z10

10 + Z10
−10 1

R̂T R̂S |T0S0〉 (−1)S+T Z01
00 , Z

10
00 −1

Z10
10 + Z10

−10

Z01
01 + Z01

0−1

1

Table 4.2: Exact and Thouless pairs (axial and non axial, only nonzero parameters composing
the different pairs) eigenstates of the signature operator in spin, isospin and both spaces. Next
to the column of the states is the corresponding eigenvalue referred to as the signature (Sig).

states are defined as

|A〉 = P̂A|Ψ〉 =
1

2π

∫ 2π

0

dϕeiϕ(Â−A)|Ψ〉, (4.129)

where Â is the particle number operator and we remember that the Thouless state is given by

|Ψ〉 = eẐ |0〉 with Ẑ our Thouless matrix composed by the pairs. These PNP states are then

|A〉 =
ẐA/2

(A/2)!
|0〉. (4.130)

Applying now the general product of signatures in spin and isospin space on this state is

equivalent to transform the Thouless pair ẐA/2, therefore

R̂T (π)R̂S(π)ẐA/2R̂+
T (π)R̂+

S (π) = (−1)A/2ẐA/2. (4.131)

In the case of axial pairs, thus we see that the particle-number projected states are good

signature states with value (−1)A/2.

4.7.1 Selection rules for the projected states

The Thouless state |Ψ〉 is a superposition of states of good particle number, spin and isospin

|AST 〉 but we do not know which of these states are part of the generalised product state. We

check this, for a given Thouless state, performing the full projection and then computing the

overlap between this exact state and the Thouless state, 〈Ψ|AST 〉. If this overlap is zero, it

means that it is not possible to extract an exact state with given particle number, spin and

isospin because it is not part of the Thouless state.

From the analysis in the former section of the Thouless states, we come to the following
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Chapter 4. Beyond mean-field: restoration of broken symmetries

selection rule for the projected states |AST 〉

(−1)S+T = (−1)A/2. (4.132)

Therefore, if S + T is an even number, then the number of pairs A/2 must be even. Secondly,

if S + T is an odd number, then there is an odd number of pairs.

This selection rule must be fulfilled, as the Hamiltonian is invariant under the product of

signatures and the axial Thouless states are eigenstates of these operators, as shown in the last

Section.

4.8 Projection methods for different initial and final states

So far, we have applied projection methods for restoration of broken symmetries for the com-

putation of several observables in cases where the operator related to the observable commutes

with the symmetry operator and we project onto the same good state on the ket and the bra.

There are cases where we would like to have different initial and final states, as it happens for

example in any particle-transfer reaction, or where the observable is not invariant under trans-

formations from the symmetry operator. As it happens when we include Coulomb potential in

the Hamiltonian, for example, it will no longer be invariant under isospin transformations. Un-

der such cases, a transformation rule for an arbitrary spherical tensor of rank λ and projection

µ [Dob09] needs to be applied

P̂
If
KfMf

T̂λµP̂
Ii
MiKi

= C
IfMf

IiMiλµ

∑
Mµ′

(−1)2µ′C
IfKf

IiMλµ′T̂λµ′P̂
Ii
MKi

. (4.133)

Applying this transformation will cast a familiar equation of similar structure to the diagonal

case. For illustrative purposes, we apply this method to the deuteron and alpha transfer case.

This is of special interest as it is a potential experimental microscopic probe of the presence of

proton-neutron condensates in nuclei.

4.8.1 Symmetry-restored deuteron transfer matrix elements

We define the deuteron transfer matrix element as the addition of an isoscalar pair into the

system

Pd = 〈A+ 2, S + 1, T |D̂+
µ |A, S, T 〉. (4.134)

The reaction is sketched in Fig. (4.2).
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Symmetry-restored deuteron transfer matrix elements

(S, T )

(A,Z)
(S + 1, T )

(A+ 2, Z + 1)

Figure 4.2: Schematic representation of a general deuteron addition transfer. A proton-neutron
pair coupled to total spin one and isospin zero is transferred to the system.

We realise that the pair D̂+
µ in (4.134) can be written as the tensor product of a tensor of

rank 1 in spin space and a tensor of rank 0 in isospin space(
â 1

2
1
2
â 1

2
1
2

)S=1,T=0

Sz=µ,Tz=0
=
(
â 1

2
â 1

2

)S=1

Sz=µ
⊗
(
â 1

2
â 1

2

)T=0

Tz=0
, (4.135)

therefore the projection operators in spin and isospin spaces are applied separately. For the

case of isospin, the result is

P̂ T
00

(
â 1

2
â 1

2

)T=0

Tz=0
P̂ T

00 = CT0
T000

∑
Mµ′

(−1)2µ′CT0
TM0µ′

(
â 1

2
â 1

2

)T=0

Tz=0
P̂ T
M0

=
(
â 1

2
â 1

2

)T=0

Tz=0
P̂ T

00,

(4.136)

that is, there is no change with respect to the diagonal case, as expected, since the deuteron is

a scalar in isospin space and therefore invariant under isorotations. For spin case, we obtain

P̂ S+1
00

(
â 1

2
â 1

2

)S=1

Sz=µ
P̂ S

00 = CS+1,0
S01µ

∑
M

(−1)−2MCS+1,0
SM1−M

(
â 1

2
â 1

2

)S=1

Sz=−M
P̂ S
M0, (4.137)

thus

P̂ T
00P̂

S+1
00

(
â 1

2
1
2
â 1

2
1
2

)S=1,T=0

Sz=µ,Tz=0
P̂ S

00P̂
T
00 = CS+1,0

S01µ

∑
M

(−1)−2MCS+1,0
SM1−M

(
â 1

2
1
2
â 1

2
1
2

)S=1,T=0

Sz=−M,Tz=0
P̂ S
M0P̂

T
00.

(4.138)

Now we need to compute non-diagonal matrix elements between different particle-number pro-

jected states

〈A+ 2|â+â+|A〉 = 〈ΨL|P̂A+2â+â+P̂A|ΨR〉. (4.139)

|ΨL〉 and |ΨR〉 are the Left and Right optimal quasiparticle states obtained after a HFB cal-
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Chapter 4. Beyond mean-field: restoration of broken symmetries

culation. Now we have to prove how P̂A and â+â+ commutes. We know that the projection

operator is related to the rotation operator in gauge space as

P̂A −→ eiϕ(Â−A), (4.140)

and we work with two general fermion annihilation operators âi, âj, where i, j denote the single-

particle states. The problem can be reduced to see how Â and âiâj commute. Using the

anticommutation relations (2.5, 2.6) we see that

Ââiâj =
∑
l

â+
l âlâiâj =

∑
l

(δliâj âl − δlj âiâl + âiâj â
+
l âl) = −2âiâj + âiâjÂ, (4.141)

and thus

Ââiâj = âiâj(Â− 2). (4.142)

We realise that the following relation is also true

Âkâiâj = âiâj(Â− 2)k. (4.143)

Finally, the particle-number exponential and the pair removal operator commute as

eiϕ(Â−A)
(
â 1

2
1
2
â 1

2
1
2

)
=
(
â 1

2
1
2
â 1

2
1
2

)
eiϕ(Â−A−2), (4.144)

or, equivalently

P̂A
(
â 1

2
1
2
â 1

2
1
2

)
=
(
â 1

2
1
2
â 1

2
1
2

)
P̂A+2. (4.145)

As we are interested in a pair addition instead of a pair removal, the following relation is fulfilled

instead

P̂A+2
(
â+

1
2

1
2

â+
1
2

1
2

)
=
(
â+

1
2

1
2

â+
1
2

1
2

)
P̂A. (4.146)

Finally, Eq. (4.139) is reduced to

〈Ψ|P̂A
(
â 1

2
1
2
â 1

2
1
2

)
P̂A+2|Ψ〉 = 〈Ψ|

(
â 1

2
1
2
â 1

2
1
2

)(
P̂A+2

)2

|Ψ〉 = 〈Ψ|
(
â 1

2
1
2
â 1

2
1
2

)
P̂A+2|Ψ〉, (4.147)

where we have made use of the fact that P̂A is an idempotent projector. Now we have everything

to construct our deuteron transfer matrix element from Eq. (4.134)6, combining equations we

6Note that Eq. (4.134) is not a probability, as its computation involves setting up a specific reaction.
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Symmetry-restored deuteron transfer matrix elements

obtain

Pd = CS+1,0
S01µ

∑
M

(−1)−2MCS+1,0
SM1−M〈Ψf |D̂+

−M P̂
AP̂ S

M0P̂
T
00|Ψi〉, (4.148)

and evaluating the former expression we come up to

Pd =
(2S + 1)(2T + 1)

8π
CS+1,0
S01µ

∑
M

(−1)−2MCS+1,0
SM1−M

∑
`mσ1σ2τ

C1−M
1
2
σ1

1
2
σ2

(−1)`−m+ 1
2

+τ√
2(2`+ 1)

×
∫ 2π

0

dϕe−iϕA
∫ π

0

dβT sin(βT )

∫ π

0

dβS sin(βS)dSM0(βS)I(ϕ, βT , βS)κ01∗
kk′ (ϕ, βT , βS),

(4.149)

with

κ01∗
kk′ (ϕ, βT , βS) =

〈ΨL
A+2,S+1,T |â+

k â
+
k′ |ΨR

A,S,T (ϕ, βT , βS)〉
I(ϕ, βT , βS)

, (4.150)

where

k ≡
{
l,m,

1

2
, σ2,

1

2
, τ

}
, (4.151)

k′ ≡
{
l,−m, 1

2
, σ1,

1

2
,−τ

}
. (4.152)

I(ϕ, βT , βS) = 〈ΨL
A+2,S+1,T |ΨR

A,S,T (ϕ, βT , βS)〉 is the overlap kernel between the rotated Thouless

state with A, S, T quantum numbers and the unrotated Thouless state with A + 2, S + 1, T

quantum numbers.

To guarantee that the deuteron transfer matrix element is properly normalised, we need to

rescale Pd as

Pd →
Pd√

IA+2,S=1,T=0IA,S=0,T=0

, (4.153)

where IAST is the norm of the projected state |AST 〉

IAST =
1

2π

2S + 1

2

2T + 1

2

∫ 2π

0

dϕe−iAϕ
∫ π

0

dβS sin(βS)dS00(βS)

∫ π

0

dβT sin(βT )dT00(βT )

× 〈ΨL
AST |ΨR

AST (ϕ, βS, βT )〉.
(4.154)

We realise that combining expressions in Eqs. (4.134) and (4.149) is a specific application of

the formula

〈IfMfKf |T̂λµ|IiMiKi〉 = C
IfMf

IiMiλµ

∑
Mµ′

(−1)2µ′C
IfKf

IiMλµ′〈Ψf |T̂λµ′P̂ Ii
MKi
|Ψi〉, (4.155)

thus, we go further and compute the reduced matrix elements of the general tensor T̂λµ, which
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will be independent of the orientation µ (in our case, the projection Sz). Using the Wigner-

Eckhart theorem

〈IfMfKf |T̂λµ|IiMiKi〉 = (−1)2λC
IfMf

IiMiλµ

〈IfKf ||T̂λ||IiKi〉√
2If + 1

, (4.156)

where the phases (−1)2µ′ and (−1)2λ are equal to one as we deal with integer ranks. Combining

equations we obtain

〈IfKf ||T̂λ||IiKi〉 =
√

2If + 1
∑
Mµ′

C
IfKf

IiMλµ′〈Ψf |T̂λµ′P̂ Ii
MKi
|Ψi〉, (4.157)

which is exactly equation (4.155) apart from a factor
√

2If + 1/C
IfMf

IiMiλµ
. Therefore the reduced

deuteron transfer matrix elements are evaluated as

〈A+ 2, S + 1, T ||D̂+||A, S, T 〉 =

√
2If + 1

C
IfMf

IiMiλµ

Pd =

√
2S + 3

CS+1,0
S01µ

Pd, (4.158)

to obtain the final expression

〈A+2, S+1, T ||D̂+||A, S, T 〉 =
√

2S + 3
∑
M

(−1)−2MCS+1,0
SM1−M〈Ψf |D̂+

−M P̂
AP̂ S

M0P̂
T
00|Ψi〉. (4.159)

These reduced matrix elements are used in the evaluation of the probability of a pair transfer

reaction, which we do not consider here.

4.8.2 Symmetry-restored alpha transfer matrix elements

We define the alpha transfer as

Pα = 〈A+ 4ST |T̂+
α |AST 〉 = 〈ΨL|P̂A+4P̂ SP̂ T T̂+

α P̂
AP̂ SP̂ T |ΨR〉, (4.160)

where

T̂+
α = (P̂+P̂+)00 + (D̂+D̂+)00. (4.161)

Since T̂+
α is a spherical tensor of rank zero, the alpha transfer is equal to

〈A+ 4ST |T̂+
α |AST 〉 = 〈ΨL|T̂+

α P̂
AP̂ SP̂ T |ΨR〉. (4.162)
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Symmetry-restored alpha transfer matrix elements

We proceed to evaluate the former expression. For the product of isoscalar pairs, we have

〈ΨL|(D̂+D̂+)00P̂AP̂ SP̂ T |ΨR〉 =
∑
µµ′

C00
1µ1µ′〈ΨL|D̂+

µ D̂
+
µ′P̂

AP̂ SP̂ T |ΨR〉

=
∑
ijklµµ′

C00
1µ1µ′C

00
lmilmj

C00
1
2
τi

1
2
τj
C1µ

1
2
σi

1
2
σj

× C00
lmklml

C00
1
2
τk

1
2
τl
C1µ

1
2
σk

1
2
σl

× 〈ΨL|â+
i â

+
j â

+
k â

+
l P̂

AP̂ SP̂ T |ΨR〉.

(4.163)

The i label stands for the orbital angular momentum and projection, spin and isospin of the

single-particle. Making use of the definition of the projectors

〈ΨL|(D̂+D̂+)00P̂AP̂ SP̂ T |ΨR〉 =
∑
ijklµµ′

C00
1µ1µ′C

00
lmilmj

C00
1
2
τi

1
2
τj
C1µ

1
2
σi

1
2
σj

× C00
lmklml

C00
1
2
τk

1
2
τl
C1µ

1
2
σk

1
2
σl

1

2π

2S + 1

2

2T + 1

2

×
∫ 2π

0

dϕdϕe−iϕA
∫ π

0

dβT sin(βT )dT00(βT )

×
∫ π

0

dβS sin(βS)dS00(βS)〈ΨL|â+
i â

+
j â

+
k â

+
l |ΨR(ϕ, βT , βS)〉.

(4.164)

The evaluation of the matrix elements of the product of four single-particle operators can be

easily done by means of Wick’s theorem, the general result being

〈Ψ|â+
i â

+
j â

+
k â

+
l |Ψ〉 = κ∗ijκ

∗
kl + κ∗ilκ

∗
jk − κ∗ikκ∗jl. (4.165)

Thus, defining the following quantity

K0R
ijkl = κ∗

0R

ij κ∗
0R

kl + κ∗
0R

il κ∗
0R

jk − κ∗
0R

ik κ∗
0R

jl , (4.166)

we finally have

〈ΨL|(D̂+D̂+)00P̂AP̂ SP̂ T |ΨR〉 =
∑
ijklµµ′

C00
1µ1µ′C

00
lmilmj

C00
1
2
τi

1
2
τj
C1µ

1
2
σi

1
2
σj

× C00
lmklml

C00
1
2
τk

1
2
τl
C1µ′

1
2
σk

1
2
σl

1

2π

2S + 1

2

2T + 1

2

×
∫ 2π

0

dϕdϕe−iϕA
∫ π

0

dβT sin(βT )dT00(βT )

×
∫ π

0

dβS sin(βS)dS00(βS)I0RK0R
ijkl.

(4.167)
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The contribution from the isovector pairs is analogous

〈ΨL|(P̂+P̂+)00P̂AP̂ SP̂ T |ΨR〉 =
∑
ijklνν′

C00
1ν1ν′C

00
lmilmj

C00
1
2
σi

1
2
σj
C1ν

1
2
τi

1
2
τj

× C00
lmklml

C00
1
2
σk

1
2
σl
C1ν′

1
2
τk

1
2
τl

1

2π

2S + 1

2

2T + 1

2

×
∫ 2π

0

dϕdϕe−iϕA
∫ π

0

dβT sin(βT )dT00(βT )

×
∫ π

0

dβS sin(βS)dS00(βS)I0RK0R
ijkl,

(4.168)

and the alpha particle transfer matrix element is

Pα = 〈ΨL|(D̂+D̂+)00P̂AP̂ SP̂ T |ΨR〉+ 〈ΨL|(P̂+P̂+)00P̂AP̂ SP̂ T |ΨR〉. (4.169)

We observe at light of these calculations that the simplistic SO(8) model is a powerful tool

that allows us to compute exactly deuteron and alpha particle transfers. These results may be

used in the future to inspect the origins of pairing, if it comes from the coupling of pairs or

quarters. We refer to Section 5.4 for more details about this aspect.
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Chapter 5

Results

In this Chapter, we present and comment results for the different theoretical tools reviewed in

the former Chapters with the goal of the pairing coexistence description, as it is our main moti-

vation from the beginning. The exact solution given by the SO(8) algebraic model Hamiltonian

described in Section 2 will be used as a benchmark.

We start with results from a mean-field HFB calculation, where symmetries are sponta-

neously broken in the intrinsic state, and continue with symmetry restoration techniques using

the VAP framework, which this Chapter is really focused on. We finish the Chapter with a

comment on the implementation of the realistic separable interaction reviewed in Section 6.1.

5.1 HFB results

When using the SO(8) pure pairing Hamiltonian, as it does not include any single-particle

interaction that splits the levels, a HFB calculation is reduced to the BCS picture, generalised

now for the case where protons and neutrons are mixed in the transformation (3.30) [Bes00].

Firstly, as mentioned in Section 3.3, the single-particle density ρ and pairing tensor κ will have a

diagonal and antidiagonal structure, respectively, as in Eqs. (3.48, 3.49), because the solutions

are in the canonical basis. Secondly, we notice in the implementation of the matrices needed

for the HFB algorithm that the Hamiltonian (2.17) has spherical symmetry, as the pairs are

coupled to total angular momentum L = 0. Thus, both the densities and the fields matrices

will render a periodic block structure of identical 4× 4 matrices, corresponding to the spin and
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isospin degrees of freedom considered in the model,

h =


H 0 · · · 0

0 H · · · 0
...

...
. . .

...

0 0 · · · H

 , ∆ =


0 · · · 0 D
...

. . . −D 0

0 . .
. . . .

...

−D 0 · · · 0

 , (5.1)

where there is a phase factor of the form (−1)`−m in the structure of the ∆ matrix as a conse-

quence of time-reversal invariance. Thus, for the purposes of diagonalisation and evaluation of

the field matrices, only the computation of the 4× 4 matrices H and D is necessary.

Analytical results for this generalised BCS treatment have been obtained in [Bes00] and

are summarised in Table (5.1). In the HFB picture, while working self-consistently with the

single-particle and pairing fields, it is possible to separate contributions to the total energy

coming from the mean field and from the pairing field as

EHF =
1

2
Tr(hρ), (5.2)

Epair = −1

2
Tr(∆κ∗). (5.3)

Notice that, compared to the standard form given in Eq. (3.46), in the SO(8) model Hamilto-

nian we do not consider any one-body kinetic energy contribution as previously stated.

Isovector Isoscalar

Isovector ∆1
1
2
g(1− x)Ω

√
1− η2 0

Isoscalar ∆0 0 1√
2
g(1 + x)Ω

√
1− η2

Quasiparticle energy Eqs
1
2
g(1− x)Ω 1

2
g(1 + x)Ω

Single-particle energy ε −ηEqs −ηEqs
HFB energy Epair −1

2
g(1− x)Ω2(1− η2) 1

2
g(1 + x)Ω(1− η2)

Table 5.1: Isovector (first row) and isoscalar (second row) gaps and quasiparticle (third row),
single-particle, or eigenvalues of the HF field (fourth row), and total HFB (fifth row) energies
analytical expressions from [Bes00], where η = Z

Ω
− 1. The first column shows results when the

isovector interaction in the pairing Hamiltonian is dominant (x < 0) and the second column
shows results when the isoscalar interaction is dominant (x > 0).

The results from the generalised BCS formalism were an important benchmark to test our

implementation of the HFB method including isospin mixing in the Bogoliubov transformation,
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5.1. HFB results

which was completely successful with differences of the order of machine precision. Our HFB

calculations were run with just the usual constraint on the average value of particle number A,

using a Lagrange multiplier with ALM and average values of spin and isospin equal to zero,

for which the corresponding Lagrange parameters are zero as well. In Fig. (5.1) we plot the

trend followed by the pairing energy as a function of the mixing parameter x as in the fourth

row of Table (5.1). The energy is symmetric under the exchange x −→ −x, which is obvious
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Figure 5.1: Pairing energy Epair as a function of the mixing parameter x according to the
analytical formula in Table (5.1), where g∗ = gΩ2(1 − η2). The trend of the pairing energy is
dictated by (1± x) terms.

from the fact that it is computed for a system with equal values of spin and isospin and the

pairing Hamiltonian (2.17) is again symmetric under that exchange when we exchange the spin

S and isospin T numbers as well. It is seen that the trend is completely dictated by the terms

(1 ± x), suggesting that the contributions from the isoscalar and isovector pairs, that is, the

terms 〈Ψ|D̂+D̂+|Ψ〉 and 〈Ψ|P̂+P̂+|Ψ〉, where |Ψ〉 is the optimal quasiparticle vacuum, are mere

constants for all possible interactions. In Fig. (5.2) we plot the same pairing energy now as a

function of the number of particles occupying the shells, for different values of the interaction

parameter x and for a system with total degeneracy of 4Ω = 48. We see that it follows a

symmetric parabola centred at the middle of the shell, where the contribution to the pairing

energy is peaked, for any value of x, recalling the symmetry under x −→ −x exchange. This

parabolic symmetric behaviour is a consequence of the total number of correlated pairs that is

found in such a system, which is a combination of the particles allocated and the possible states

that they could occupy, referred as holes. As the sum of particles and holes is constant, an
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Figure 5.2: Pairing energy Epair as a function of the number of particles A according to the
analytical formula in Table (5.1), where g∗ = gΩ2. It is observed that the trend follows a
bell-shaped curve, reaching the maximum contribution to the energy in the half-occupied shell
(A = 24), where pairing correlations are expected to contribute most.

exchange of these results in the same contribution to the pairing energy, therefore displaying

this symmetry around the half-occupied shell. We notice again from Table (5.1) that the

quasiparticle energies Eqs and subsequently the single-particle energies, that is, the eigenvalues

of the HF field h, do not depend on the number of particles in the shells but only on the total size

of the configuration space, related to Ω. It is a consequence of the complete degeneracy of the

shells, as no one-body terms are included in the Hamiltonian (2.17), and its only contribution

is coming from the pairing interaction, which is a constant of strength g. Thus, the HF field h

is a diagonal matrix whose entries are all ε. Obviously, the parabolic symmetry in Fig. (5.2)

is manifested only when all the states in the shells are degenerate, thus the probability of a

particle occupying any state is constant, that is, there is no preferred configuration of particles

which gives a lower energy.

After we have guaranteed that all the results and features of the HFB method were properly

benchmarked, we compare them to the generalised BCS model and the exact results provided by

the SO(8) model, namely, the lowest eigenvalues of the pairing Hamiltonian (2.17) in Fig. (5.3).

It is observed that the total HFB and generalised BCS formalisms reproduce trends of the

exact results, with the HFB results being closer, as it does not neglect the HF field h, which is

responsible for the shift towards the exact results. However, for this simplistic case of a single-`
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Pairing gaps

shell, they are not similar to these exact results predicted by the SO(8) model.

Figure 5.3: Pairing energy EBCS, computed using formula (5.3), total HFB energy EHFB,
computed using formula (3.46) and the exact energy result, in arbitrary units, as a function of
the mixing parameter x of the pairing Hamiltonian (2.17) for a single-` shell with ` = 12 and
A = 24 particles and spin and isospin S = T = 0. We observe how the mean-field results are
not close to the exact values. Figure extracted from [MDP17].

5.1.1 Pairing gaps

The main goal in this project is the description of coexistence between isoscalar and isovector

pairing couplings. Pairing gaps are very interesting quantities to analyse, as they provide

indirect measurements of the presence of isoscalar and isovector pairs. In Fig. (5.4), the pairing

gaps resulting from the HFB calculations are plotted as functions of the interaction parameter

x, following the expressions given in the first two rows of Table (5.1), and they were computed

in our implementation using the following formulas

∆q = −g(1− x)
∑
w

uqwvqw, (5.4)

∆0 = −g(1 + x)√
2

∑
w

(upwvnw + unvvpv), (5.5)

where q stands for protons p and neutrons n and w runs for all quasiparticle eigenstates U, V

of the diagonalised HFB supermatrix as in (3.45). As we do not make any difference between
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protons and neutrons at the moment, the isovector pairing gaps are equal, ∆n = ∆p = ∆1.

These formulas were extracted from [Bes00].

In Fig. (5.4) we observe that, for a specific number of particles, the gaps follow a linear

trend given by ±x, indicating that coexistence is not allowed in this model by means of just

a mean-field HFB method, and suddenly they drop to zero when the dominant interaction in

the pairing Hamiltonian changes from isoscalar to isovector. Only around x = 0, where both

interactions are similar in strength in the Hamiltonian, both pairing couplings can coexist. The

difference in the values of the isoscalar and isovector gaps comes from the different definitions

used in [Bes00], where a factor of
√

2 is inserted in the isoscalar gap in Eq. (5.4). Apart from

this factor, the gaps are symmetrical under the exchange x −→ −x, as expected to be since the

average values of the spin and isospin of the system are zero, indicating a similar behaviour for

the isoscalar and isovector couplings. To summarise, this sharp phase transition in the pairing

gaps resulting from a HFB calculation does not correspond to the physical picture we should

expect from the pair condensation behaviour.
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Figure 5.4: Isoscalar and isovector pairing gaps ∆ as a function of the mixing parameter x
according to the analytical formulas in Table (5.1), where g∗ = gΩ

√
1− η2. They are an

indirect measure of the presence of isoscalar and isovector pairs in the system.

We therefore conclude that the HFB approximation is an unsatisfactory approximation to

the description of the states of the pairing Hamiltonian and the problem of pairing coexistence

in general.
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Isocranking and number of pairs

5.1.2 Isocranking and number of pairs

The HFB results from the last Section were performed imposing only a constraint on the average

number of particles using ALM. After we tested our HFB implementation of the SO(8) pairing

Hamiltonian with analytical results given in [Bes00], our aim is to implement the isocranking

technology to control the isospin degree of freedom. The Routhian is changed as in Eq. (3.59)

and we fix the Lagrange parameters constraining average values of the first and third component

of the isospin as in Eq. (3.61). We perform isorotations in the Tx − Tz plane in isospace

by changing θ from 0 to π, being then able to study the entire multiplet of isobaric analog

states [MDP17]. The radius λ0 was obtained fixing the proton and neutron average numbers,

giving a z−isoaligned state of 〈T̂z〉|θ=0= 15. Results from this calculation are shown in Fig. (5.5).

We see that the average values of these components of the isospin are parallel to the λ isovector,

as it was concluded from [Sat13], because the Hamiltonian (2.17) does not include any isospin

breaking term. The proton-neutron mixing is effectively implemented within this method for

all values of the isocranking angle 0 < θ < π, being a pure neutron or proton state for θ = 0, π,

respectively, and becoming fully mixed for θ = π
2
, as seen in the trend of 〈T̂x〉 in Fig. (5.5).

These results are in complete agreements with those shown in [She14]. We are also interested
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Figure 5.5: Average values of the first and third components of the isospin, in units of the Planck
constant ~. We see that they follow the same trend as the chosen Lagrange parametrisation in
(3.61). Figure extracted from [MDP17].

in the behaviour of the pairs when the average projection of the isospin Tz is different from

zero, that is, there is an imbalance between protons and neutrons. The number of pairs can

be investigated using the pair operators P̂+ and D̂+ [Dob97; ELV96] from the pairing model
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Hamiltonian, computing the quantities 〈Ψ|P̂+P̂ |Ψ〉 and 〈Ψ|D̂+D̂|Ψ〉 and normalising them to

unity. Expressions for the matrix elements of two-body operators were derived in general terms

of the density ρ and pairing tensor κ in Appendix B, resulting for this case of degenerate `−shells

in a combination of elements from κ. As we see in Fig. (5.6), where we plot these measures,

the HFB plus ALM method allows coexistence for an extended region around x = 0 on the

isoscalar side. It also follows a smooth curve rapidly, but not sharply, converging to constant

values, contrary to the results shown in Fig. (5.4), being the isovector pairs more present in

the isoscalar region. On the isovector side of the plot, no difference is shown with respect to

the Tz = 0 case. The asymmetric behaviour of pairs is due to the nonzero value of the average

value of T̂z, and increases with larger values of this quantity. Neither the isoscalar nor the

isovector pairs go to zero when x approaches the value of full isoscalar or isovector contribution

in the pairing Hamiltonian because of the chosen normalisation of the pairs. Making a direct

comparison of the gaps in Fig. (5.6) with the pairs in Fig. (5.4), we conclude that the ratio

from both measures yields a (1± x) factor.
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Figure 5.6: Number of pairs computed using a HFB calculation plus a constraint on the third
component of the isospin T̂z to have a proton-neutron imbalance in the system. Isovector pairs
have more presence in the isoscalar region of the interaction x > 0, not suddenly dropping to
zero in a sharp phase transition.

While the results including constraints on the isospin in the HFB picture improve consider-

ably, coexistence between isoscalar and isovector pairs is still not shown for all possible values
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5.2. Symmetry restoration

of the mixing parameter x. For this reason, we need to go beyond mean-field and remove the

fluctuations caused by using a quasiparticle vacuum which mixes different states, by means of

symmetry restoration with projection methods.

5.2 Symmetry restoration

In this Section, we will discuss the results obtained after we restore the symmetries broken by

the intrinsic HFB state. We have seen in Section 4.5 that two methods can be implemented to

restore these symmetries, namely, VAP and PAV, concluding that the former will always yield

better results, being closer upper bounds to the energies of the exact state. In the following,

we will only be concerned about VAP calculations and results, making a comment on Section

5.3 about the accuracy of the PAV method.

5.2.1 Energy manifold

Because of the symmetry considerations given in Section 2.2 and exploited in Section 4.4.1, we

will only work with axial Thouless states parametrised by expressions (3.58). The parametri-

sation is compact, that is, (α, ϕ) ∈ [0, π], then it is possible to plot the whole energy manifold

in this domain region, the average of the SO(8) pairing Hamiltonian (2.17) with respect to the

projected states |AST 〉 as a function of these parameters and find its minimum using, in this

case, the gradient method. We evaluate the quantity

〈Ψ|Ĥ|AST 〉
〈Ψ|AST 〉 , (5.6)

for all α, ϕ considered. The minimum of this energy manifold is then found, as sketched in Eq.

(4.101).

We show these results in Fig. (5.7), where we also compare the VAP results with the results

obtained from the mean-field HFB method, without symmetry restoration, for several values

of the mixing parameter x spanning from −1 to 1.

Firstly, we notice the periodicity of the energy manifold with respect to the parameter ϕ

with period π
2
. This is a fingerprint of the invariance of the pairing Hamiltonian (2.17) with

respect to the spin and isospin signatures. Indeed, as the intrinsic Thouless state does not

break these symmetries, the energies will be periodic as a consequence of the transformation

relation of the Thouless pairs as in Eq. (4.34).

Secondly, we notice that, disregarding the periodicity of the energies, the position of the
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Figure 5.7: Energy surface as a function of α (relative amplitude) and ϕ (relative phase) from
Eqs. (3.58) for different values of x computed using the HFB method (upper panels) and VAP
method (lower panels) for a system with A = 24 particles and spin and isospin S = T = 0 and
spatial degeneracy Ω = 12 (total degeneracy being 4Ω). From left to right panel, the colour
bands correspond to steps of ∆E = 20, 15, 13, 17 and 20, respectively. The minima of the
different surfaces are plotted within by red dots (bands). All results are in units of g. Figure
taken from [RDP19b].

minima is always at ϕ = π
4
. This is the fingerprint of time-reversal symmetry, as expected

since the system is fully paired and the pairing Hamiltonian is time-reversal invariant. It is a

consequence of the transformation of the Thouless pair under time reversal, as in Eq. (4.39),

where it is easily seen that it will be invariant for ϕ = π
4
.

Again, these energy manifolds are symmetric with respect to the exchange x −→ −x,

transforming the parameter α −→ α+π, as they were computed for a system with the number

of particles A = 24 and spin and isospin S = T = 0.

Let’s focus on the position of the minima with respect to the angle α, shown in the plot by

red dots and bands. We see that for the HFB calculations (top row panels), there are only two

possible cases for the position of these minima: either we have α = π when x < 0 in panels

(a) and (b), or α = 0 when x > 0 in panels (d) and (e), with a sharp transition at x = 0 in

panel (c), where any value of α is possible. According to Eqs. (3.58), for α = 0 we get p0 = 0

and d0 = 1, thus a pure condensation of isoscalar pairs is present in the system, and for α = π,

we get p0 = 1 and d0 = 0, thus a pure condensation of isovector pairs is present in the system.

That is, under the HFB mechanism, only isoscalar or isovector condensation is allowed in the

system and coexistence between these two pairing couplings is not possible apart from a very
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Energy, accuracy, pairing coexistence and deuteron transfer

small region around x = 0, where it could mix as it pleases. These results are in agreement

with the HFB results we found in Section 5.1.1.

However, for the VAP results (bottom row panels), projecting onto states of good particle-

number, spin and isospin, the picture changes completely. Now the position of the minima with

respect to the mixing angle α varies smoothly for different values of x, decreasing from π to 0

as x increases meaning that isovector pairing gains more importance but coexistence is shown

for all values of x, as physically expected from this model. Specifically, for x = 0, shown in

panel (h), the minimum at α = π
2

indicates an equal presence of isoscalar and isovector pairs

in the system according to the parametrisation in Eq. (3.58), as predicted from the SO(8)

pairing Hamiltonian since the isoscalar and isovector contributions are equal in strength. In

view of these results, we conclude that the existence of a proton-neutron condensate in the self-

consistent mean-field picture relies upon the full mixing and proper restoration of the broken

symmetries in the intrinsic HFB quasiparticle vacuum state, which is the norm in mean-field

calculations.

5.2.2 Energy, accuracy, pairing coexistence and deuteron transfer

We generalise the results obtained in the former section for all values of particle-number, spin

and isospin, in order to analyse the behaviour of the coexistence between isoscalar and isovec-

tor pairs. We have in mind the powerful versatility of the SO(8) model and the mean-field

description, which allows us to compute important observables such as the deuteron transfer.

All these results are summarised in Fig. (5.8), where we plot the ground-state energies result-

ing from the minimization of the energy manifold built using Eq. (5.6) and the exact energies

corresponding to the lowest eigenvalue of the pairing Hamiltonian in panels (a) and (b) and

their relative differences are plotted in panels (c) and (d).

The isoscalar norm of the Thouless pairs, that is, the quantity |d0|2 from the parametrisation

used in (3.58), where obviously the isovector norm will be given by |p0|2 = 1− |d0|2, is plotted

in panels (e) and (f), and the deuteron transfer matrix elements, as calculated in Eqs. (4.159)

and (A.13), is plotted in panels (g) and (h). The different plots in the grid correspond to

several values of particle-number and isospin in a system with spatial degeneracy Ω = 12,

being the total degeneracy 4Ω = 48. The results were computed using the VAP symmetry

restoration method, denoted by symbols, and where applicable they are compared to the exact

results, denoted by solid lines. As the pair norm in the Thouless state is not an observable, the

exact model can not calculate it, and we rely upon the match of the rest of observables as the

assurance of the correctness for these results.
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Figure 5.8: Energies, in units of g (First row), relative errors in comparison to the exact results
shown in logarithmic scale (second row), norm of the isoscalar Thouless pair from Eq. (3.58)
(third row), and deuteron transfer matrix elements (fourth row) computed using VAP method,
for different values of isospin (left column) and particle-number (right column). Figure taken
from [RDP19b].

Because of the total degeneracy of the shells, the panels in Fig. (5.8) are symmetrical with

respect to the exchange of particles and holes, thus results are only shown up to mid-shell

occupation. The panels are also symmetrical under the exchange of spin and isospin quantum
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Energy, accuracy, pairing coexistence and deuteron transfer

numbers, transforming the mixing parameter as x −→ −x and the mixing angle in Eq. (3.58)

as α −→ α + π. Therefore, all the information varying particle-number, spin and isospin is

contained in the figure, exploiting the symmetries of the system.

We observe that there is a remarkable accuracy for the energy computed using the VAP

method (EVAP in the figures) and the exact ones in panels (a) and (b). We recall that this kind

of precision was not met at all by the results from the HFB method shown in Fig. (5.3).

In fact, only by plotting the relative differences between the VAP energies EV AP and the

exact ones we are able to notice the disagreement, with maximum errors of around 2% for

x ∼ 0, as shown in panels (c) and (d). When x heads towards ±1, that is, towards a pure

isovector or isoscalar interaction, the differences decrease significantly to the point of just noise

around the machine precision. The trend followed by these differences is indicative of missing

correlations in the wavefunction and this aspect will be discussed in more detail in Section 5.4.

We see in panels (e) and (f) that there is always pairing coexistence for all values of particle-

number, spin and isospin, but the isoscalar norm starts to decrease when increasing the isospin

of the system, as expected, since we know it starts fading off when there is a large proton-

neutron difference. Still, it does not vanish as quickly as we may have previously thought,

although we can not extrapolate these conclusions to the case of finite real nuclei as important

ingredients such as the spin-orbit interaction are not taken into account in the SO(8) model.

The deuteron transfer, the potential link between theory and experiment for the micro-

scopic description of proton-neutron condensates, is reproduced remarkably well within the

VAP method, as we see in the comparison with the exact results in panels (g) and (h), where

the results are normalised to one by dividing with respect to the maximum amplitude value

obtained, which is plotted as well in the correspondent inset figure. As expected, this maximum

amplitude decreases and increases for larger values of the isospin and particle-number, respec-

tively. It is interesting to notice, in panel (h), how they all converge to one in the isoscalar

region (x > 0), while you can distinguish different amplitudes in the isovector region (x < 0)

as a result of the different spin in the initial and final states. In addition, we observe that

at x = −1, when the contribution in the pairing Hamiltonian is purely isovector, while the

deuteron transfer is very small, it is not actually zero. The system allows a deuteron to be

added even when it is only composed of isovector pairs.

At last, we also notice that the selection rules provided by the signature analysis of the

Thouless pairs in Section 4.7.1 hold, as the total spin in the left column panels is S = 0 for the

full symbols and S = 1 for the empty symbols, in order to make S + T even, as the number

of pairs in a system with number of particles A = 24 is even. A similar convention is used

in the right column panels, where now we fix T = 0 and we vary A. If we do not take these
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considerations into account, the numerical implementation of this method will fail to find a

solution, as it does not exist, as discussed in Section 4.7.1.

5.2.3 Pairing gaps

While we have evaluated the coexistence between isoscalar and isovector pairs using the norms

parametrised by Eqs. (3.58), it could also be measured using the pairing gaps, which are

quantities that can be measured experimentally. The isovector ∆1 (proton ∆p and neutron

∆n, being equal in strength) and isoscalar ∆0 pairing gaps can be directly extracted from the

pairing field matrix. Denoting them by ∆σ,τ ;σ′,τ ′ , the expressions for the isovector and isoscalar

gaps are

∆p =
1

2

∑
σ=± 1

2

(−1)1+2σ∆σ,− 1
2

;−σ,− 1
2
,

∆n =
1

2

∑
σ=± 1

2

(−1)1+2σ∆σ, 1
2

;−σ, 1
2
,

∆0 =
1

2

∑
τ=± 1

2

(−1)1+2τ∆ 1
2
,τ ; 1

2
,−τ .

(5.7)

The phase factor (−1)1+2σ is necessary to take into consideration that the pairing field is anti-

symmetric under exchange of spin indices (and, equivalently, for the isospin indices). Observing

Fig. (5.9), we come to the same conclusions as in the former section. The isoscalar and isovec-

tor gaps computed using the HFB method follow a straight line given by the interaction terms

(1 ± x) and abruptly jumping at x = 0, meaning that coexistence between the two pairing

couplings is not possible, only a pure isovector or isoscalar condensates builds up the nucleus.

On the contrary, the isoscalar and isovector gaps computed with the VAP method follow a

smooth trend that coexists for all different interactions and matches with the HFB results

when x = ±1. In Fig. (5.10), the isoscalar and isovector gaps are plotted for different values of

the total isospin T of the system, observing that the isoscalar gap starts to decrease when the

isospin is larger, in agreement with panel (e) of Fig. (5.8), in the isoscalar region, x > 0, where

we clearly distinguish three different lines.

5.3 Projection after variation

So far, we have only plotted results obtained from the variation after projection approach to

go beyond-mean-field and restore the broken symmetries. As mentioned in Section 4.5, this is
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5.3. Projection after variation
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Figure 5.9: Isoscalar ∆0 (full symbols) and isovector ∆1 (open symbols) pairing gaps, rescaled
by ∆0(x = 1), computed using a mean-field HFB (squares) and a VAP (circles) calculation
for a system with A = 24 particles (half-occupied shell) with spin and isospin equal to zero.
Isoscalar (isovector) gaps suddenly drops to zero at x = 0 when the interaction is isovector
(isoscalar) stronger for the HFB method, while the pairing gaps computed for the VAP method
follow a smooth curve, showing coexistence for all x.

the method that will yield the best results, but due to the numerical intensive evaluations of

the integrals of projectors (4.59), it is not the most used method to go beyond-mean-field. In

this Section, we make a brief comment about the accuracy and validity of the PAV approach

to the problem of pairing coexistence and the exact solution of the SO(8) Hamiltonian.

We recall that PAV only applies the projectors in Eq. (4.59) at one point only, namely the

minimum computed using a mean-field HFB method. Therefore the position of the minimum

in the energy manifold spanned by parameters (3.58) will not be changed by the application of

the projectors to this point, in opposition to the VAP mechanism, where it is applied for every

point considered before reaching the minimum. Consequently, as well as the HFB method,

PAV fails to reproduce the coexistence between isoscalar and isovector pairing couplings.

The improvement of the PAV method with respect to the HFB method over the results is

reflected in the magnitude of the observables computed with the projected wavefunction at the

HFB minimum. In Fig. (5.11), we plot the energies as a function of the mixing parameter x

of the pairing Hamiltonian (2.17) for the three different methods that we have discussed so

far. We see that, while PAV does a better job in getting closer to the exact results, it fails to

reproduce the smooth curve at x ∼ 0 and shows the sharp peak also present in the HFB result.

From this perspective, the HFB and PAV methods only differ in a constant shift of the absolute
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Figure 5.10: Isoscalar ∆0 (full symbols) and isovector ∆1 (open symbols) pairing gaps, com-
puted using the VAP method, for a system with A = 24 particles, spin S = 1 and isospin T = 1
(squares), T = 3 (circles) and T = 5 (triangles). As the isospin increases, the point where
∆0 = ∆1 is shifted towards the isoscalar side, and ∆0 gets weaker.

values, as the trend followed by the results is identical. However, at the limits of pure isoscalar

or isovector pairing, that is, at around x = ±1, the PAV method is successful in describing the

ground-state energy of the exact states.

There is another underlying problem with PAV calculations. It was said already that a

mean-field calculation of the many-body wavefunction of the system will result on a pure

condensation of isoscalar or isovector pairs, with a sharp transition from one to another if the

interaction has a slightly stronger isovector contribution than isoscalar, around x = 0. Due to

this feature, it is not possible to apply the PAV method for the restoration of broken symmetries

in the cases where S, T 6= 0 for all values x of the interaction.

Physically, the interpretation is simple: if the wavefunction is written as a condensation of

isovector pairs of spin zero, the only possible total spin coupling of the system has to be zero.

It is not possible to project to a state of total spin one because it is not part of the intrinsic

wavefunction.

Mathematically, we prove it using the form of the Thouless parametrised wavefunction and

the projectors: if the wavefunction is composed of a condensation of isovector pairs, the only

nonvanishing parameter of the wavefunction is ZST = Z01. Since S = 0, this wavefunction will

be invariant under rotations in spin space and therefore the overlap kernel will be

I =
2S + 1

2

∫ π

0

sin βdS00(β)I(β)dβ, (5.8)

104



5.3. Projection after variation
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Figure 5.11: Energy as a function of the mixing parameter x for a system with A = 24 particles,
S = T = 0 and spatial degeneracy Ω = 12.

where now I(β) = I(0) = 1. Consequently

I =
2S + 1

2

∫ π

0

sin βdS00(β)dβ = (2S + 1)δS0, (5.9)

and given that I is the overlap of the mean-field wavefunction and the projected state, this

result proves that the HFB wavefunction only has a S = 0 component and therefore it is not

possible to project to a state with S = 1. An analogous logic applies for the isospin as well.

We conclude from these arguments that PAV is not suitable for the restoration of broken

symmetries in systems with an odd number of pairs (where, because of the signature symmetries,

the system is forced to have S + T equal to an odd number, cf Section 4.7.1). Specifically, the

spin symmetry can not be restored in these systems, if S 6= 0, for x < 0, where the state

is a condensate of isovector pairs according to the HFB description. Similarly, the isospin

symmetry can not be restored in these systems, if T 6= 0, for x > 0, where the state is a

condensate of isoscalar pairs according to the HFB description. The same argument applies for

all particle-numbers in order to describe states with total S + T > 0.
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5.4 Analogy between the pairing and quartetting pic-

tures

When we look carefully at panel (d) of Fig. (5.8), we observe there are two cases for which the

VAP results correspond exactly to the results obtained from the diagonalisation of the SO(8)

Hamiltonian. Indeed, for A = 4 and A = 6, the relative differences show little fluctuations

around machine precision, indicating that the projected states used in the numerical imple-

mentation of the VAP framework exactly corresponds to the eigenstates |AST 〉 of the SO(8)

Hamiltonian (2.17).

The reason behind this absolute agreement relies upon the structure of the exact states as

combinations of the pairs considered in the Thouless state. An exact state with four particles

coupled to total spin and isospin zero (that is, an alpha particle) necessarily needs to be built

up as a linear combination of a quadruple, being two coupled isovector pairs; and a quartet,

two coupled isoscalar pairs,

|A = 4, S = T = 0〉 =
[
a(P̂+P̂+)(00) + b(D̂+D̂+)(00)

]
|0〉. (5.10)

A sketch of this nuclear system is depicted in Fig. (5.12). An exact state with six particles

(a) (b)

p p

n n

p p

n n

Figure 5.12: Quartet (a) and quadruple (b) structures, coupled to form an α-particle state with
S = T = 0.

coupled to total spin one and isospin zero necessarily needs to be built up from the former

alpha particle state, adding an isoscalar pair on top. No other combination is possible, as long
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5.5. Partial projections

as these nuclear systems are fully paired,

|A = 6, S = 1, T = 0〉 = D̂+|A = 4, S = T = 0〉. (5.11)

As these states are built from isoscalar and isovector pairs only, they can be represented exactly

by means of a projected Thouless state. Indeed, a particle-number projected Thouless state is

written as

|A〉 =
(Ẑ+)A/2

(A/2)!
|0〉. (5.12)

For A = 4, the square of the Thouless pair Ẑ+ needs to be evaluated, which involves a com-

bination of five different terms, namely (P̂+P̂+)(00), (D̂+D̂+)(00), (P̂+D̂+)(11), (P̂+P̂+)(02) and

(D̂+D̂+)(20), where the superscripts (ST ) denotes coupling to total spin S and isospin T . Thus,

a spin and isospin symmetry restoration by projection methods will yield a projected wavefunc-

tion where only the two first terms are involved, removing the last three and this corresponds

to the structure of the exact state as in Eq. (5.10).

We see that by means of symmetry restoration with projection methods, we obtain under

certain circumstances the exact wavefunction. For A > 6, as we see from the trend in the

differences in panel (d) of Fig. (5.8), the VAP method does not obtain the exact wavefunction,

though it is successful in taking into account the main components of the wavefunction being

given by the two scalar-isoscalar quartets [RDP19b].

As it is seen in Appendix G, we make the analogy between the exact and projected states

writing them explicitly in terms of isoscalar and isovector pairs that are used in the SO(8)

model for A = 4 and A = 6 particles. It would an interesting and educational exercise to

extrapolate this analogy to exact A > 6 states and identify the missing ingredients in the

wavefunction, that is, apart from the isoscalar and isovector pairs, what particle correlations

need to be taken into account.

5.5 Partial projections

The remarkable accuracy of the energy and deuteron transfer results from the VAP method in

comparison to the exact results of the SO(8) model, which lead us to conclude the importance

of VAP for the description of pairing coexistence, was due to the restoration of all relevant

symmetries in the system in consideration: particle number, spin and isospin. A calculation

of this sort implies the evaluation of the projection integrals 4.59 for every point of the energy

parametrised by the isoscalar and isovector pairs we minimize, thus it is very intensive in terms
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of computational time.

This Section is devoted to an examination of the quantitative importance of each and every

one of the broken symmetries that are restored using this method. Since there are three of them,

six possible combinations of projections need to be considered, without taking into account the

full restoration considered in the last sections

• Particle-number projection (PNP).

• Spin projection (AMP).

• Isospin projection (ISOP).

• Particle-number plus spin projection (PNPAMP).

• Particle-number plus isospin projection (PNPISOP).

• Spin plus isospin projection (AMPISOP).

The energy surfaces of Fig. (5.7) are reproduced for PNP and AMPISOP in Figs. (5.13,

5.15), respectively. The energy, its differences with respect to the exact results, the isoscalar

pair norms and deuteron transfer matrix elements that were shown in Fig. (5.8) are reproduced

for PNP and AMPISOP in Figs. (5.14, 5.16), respectively.

We observe that coexistence is not seen by restoration of particle-number symmetry only

(and similarly for spin or isospin symmetries restoration only, that is, for AMP and ISOP),

as shown by the position of the minima on the bottom row panels in Fig. (5.13), which do

not differ from the HFB results in the top row panels, and the step-like functions displayed

in panels (e) and (f) of Fig. (5.14). We conclude that particle-number symmetry restoration,

even when employing the VAP method, is not accountable for the presence of coexistence in

the system, and it merely shifts the results obtained from the HFB method.

In Fig. (5.14) we observe how, when not implementing the projection onto states of good

isospin, all energies are collapsing to the same values in panel (a), while they are different in

panel (b) as we are restoring the particle-number symmetry.

The trend shown in the relative differences in panels (c) and (d) is lost, now observing

random fluctuations around 2%, the largest error shown when restoring all the symmetries.

Lastly, it is important to notice the role played by the coexistence of isoscalar and isovector

pairs in the deuteron transfer. As we do not observe it using only particle-number symmetry

restoration, the deuteron transfer behaves in a similar fashion to the isoscalar norms, as depicted
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5.5. Partial projections
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Figure 5.13: Energy surface as a function of α (relative amplitude) and ϕ (relative phase) for
different values of x computed using the HFB method (upper panels) and VAP method with
PNP only (lower panels). Coexistence between isoscalar and isovector pairing couplings is not
shown, as the minima of the VAP energy surfaces are identical to those of the HFB energy
surfaces.

in panels (g) and (h). A promising indication of the deuteron transfer observable as a measure

of pair coexistence in nuclei.

If, on top of the particle-number symmetry restoration, we restore the spin (isospin) symme-

try, coexistence is only seen for stronger isovector (isoscalar) contribution in the Hamiltonian,

suddenly jumping onto the HFB results when the stronger contribution is isoscalar (isovector).

In other words, coexistence between isoscalar and isovector pairing couplings is not shown for

all possible interactions.

We come to the conclusion that the restoration of angular momentum (spin) and isospin is

crucial for the observation of coexistence of np and like-particle pairing, as the position of the

minima of the energy surfaces for the AMPISOP method in Fig. (5.15) is almost identical to

the full restoration of broken symmetries, for all values of x modelling the isoscalar-isovector

competition in the Hamiltonian.

In Fig. (5.16), we observe that, while accuracy with the exact results is lost because of lack

of particle-number symmetry restoration, especially in the right column panels, where results

are shown for different values of the particle-number of the system, the trend followed by the

AMPISOP results is identical to that of the exact results, and the accuracy improves heading

towards half-occupation of the variational space, where pairing correlations are strongest. The
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Figure 5.14: Energies in units of g (First row), relative errors (second row), norm of the
isoscalar pair (third row), and deuteron transfer matrix elements (fourth row). The results were
computed using the VAP method with PNP only, for different values of isospin (left column) and
particle-number (right column). Coexistence between isoscalar and isovector pairing couplings
is not shown. As the isospin symmetry restoration is not implemented, all the results in the
left column are on top of each other.
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Figure 5.15: Energy surface as a function of α (relative amplitude) and ϕ (relative phase) for
different values of x computed using the HFB method (upper panels) and VAP method with
AMPISOP (lower panels). Coexistence between isoscalar and isovector pairing couplings is
shown with proper values of mixing.

position of the minima in the bottom row panels of Fig. (5.15) and the plots of the isoscalar

norms in panels (c) and (d) show that coexistence is present in all cases, but it is affected for low

particle-number systems where restoration of this symmetry becomes important. Moreover, the

AMPISOP values for the deuteron transfer matrix elements in panels (g) and (h) of Fig. (5.16)

agree as well on the trend in comparison with the exact results, behaviour that was not shown

in any other combination of partial restoration of broken symmetries, demonstrating once

again the delicate sensitivity of the pairing coexistence under non-zero fluctuations of angular

momentum and isospin and consequently the huge importance of the proper restoration of

these symmetries. We observe again in panel (h) the poor accuracy of AMPISOP for low

particle-number systems.

From the analysis of the partial projection figures we draw the following conclusions: first,

the restoration of spin or isospin symmetries on top of particle-number symmetry restoration is

needed to see the coexistence between isoscalar and isovector pairs. Second, the restoration of

spin and isospin symmetries gives the best results overall, apart from the restoration of all the

symmetries present on the system, while particle-number symmetry restoration is inconspicuous

for the purposes of pairing coexistence.
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Figure 5.16: Energies in units of g (First row), relative errors (second row), norm of the
isoscalar pair (third row), and deuteron transfer matrix elements (fourth row). The results
were computed using the VAP method with AMPISOP only, for different values of isospin
(left column) and particle-number (right column). Coexistence between isoscalar and isovector
pairing couplings is shown properly. Consequently, the deuteron transfer matrix elements are
very close to the exact results.
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Chapter 6

Pairing coexistence in finite nuclei

The algebraic SO(8) model of exact solutions of the pairing Hamiltonian (2.17) was studied

thoroughly in this work, obtaining not only ground-state energies particle transfer results for

different values of particle-number, spin and isospin. We could advance in this direction and

study a myriad of features on top of this model, as for example including the Coulomb inter-

action or adding a spin-orbit splitting term and analyse the behaviour of pairing coexistence

under those cases. We could also compute the matrix elements of more observables such as the

Gamow-Teller operator and study the influence of np pairing on β decay transitions [Eng99].

However, we have opted for a more pragmatic endeavour, namely, the description of pairing

coexistence in finite nuclei. To that end, we introduce in this Chapter the necessary tools in

order to address this problem incorporating the symmetry-restoration machinery developed in

the former chapters.

The most important object to take into account is the choice of the interaction modelling

the nuclei. A natural problem in nuclear physics is the multiple variety of functionals that were

fitted to describe certain properties of certain nuclei, and thus no general parametrisation is

found to work all across the nuclear chart.

After the decision of a suitable interaction, we make a determination to implement it in an

already written and benchmarked nuclear physics software well-known for its versatility: the

code HFODD [Sch17], which is able to solve the Hartree-Fock-Bogoliubov equations using a

deformed Cartesian harmonic oscillator basis.

This Chapter is organised as follows: first, we introduce the realistic interactions we will

use in the particle-hole (ph) and particle-particle (pp) channels, putting special emphasis on

the latter as we focus on the modelling of pairing coexistence. Next, we review the necessary

tools in order to program this interaction for practical purposes in the code HFODD. Lastly,

we show promising results obtained by these means and compare them to those obtained from
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usual pairing interactions and experimentally measured.

6.1 Realistic separable interaction in the pairing channel

In the non-relativistic nuclear physics literature, two main interactions are used for the fitting

of properties of nuclei: the zero-range Skyrme interaction [Sky56; Sky58] and the finite-range

Gogny interaction [DG80].

We would like to extend the idea of separability, as introduced in the function form of

the interaction (2.23) and used in the SO(8) Hamiltonian (2.17) for a realistic interaction

able to model the case of a finite nucleus. The ideal goal is to have matrix elements of such

an interaction that can be separated as a product of different terms, making its numerical

implementation easier in terms of computational time. Starting from the central direct terms

of the Gogny interaction

V̂ (r, r′) = (W +BP̂σ −HP̂τ −MP̂σP̂τ )e
−(r−r′)2/µ2 , (6.1)

with the Wigner (W ), Bartlett (B), Heisenberg (H) and Majorana (M) as coupling constants

parametrising the interaction. P̂ σ and P̂ τ are the spin and isospin exchange operators, respec-

tively. In order to compute mean-field potentials out of this interaction, we need to calculate

integrals of the form ∫
drdr′V̂ (r, r′), (6.2)

whose implementation is computationally intensive, as there are crossed terms in the exponent

of (6.1), making the integral non separable as a product.

In 2009, Tian and collaborators [TMR09] introduced such a separable interaction in the

isovector pairing 1S0 channel, being able to reproduce pairing gaps in nuclear matter given by

the Gogny interaction. The interaction has the form

V̂ (r1, r2, r
′
1, r
′
2) = −G

2
δ(R−R′)P (r)P (r′)(1− P̂ σ), (6.3)

where r = r2 − r1 and R = r1+r2
2

are the relative and center of mass coordinates, respectively.

The form factor has a Gaussian shape of the relative coordinates

P (r) =
1

(4πa2)3/2
e−

r2

4a2 , (6.4)

with a being the range of the interaction. We observe immediately that interaction (6.3) has a
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Realistic separable interaction in Cartesian coordinates

separable functional form as the two form factors for the four particles involved are written as a

product of separate terms, analogous to (2.23). The operator P̂ σ is the spin exchange operator

between a pair of particles, therefore, for a pair coupled to total spin S, which can only be zero

(singlet state) or one (triplet state), this operator has the following eigenvalues

〈S|P̂ σ|S〉 =

+1, if S = 1

−1, if S = 0
. (6.5)

Thus, the expression 1
2
(1− P̂ σ) will project the wavefunction onto the 1S0 channel, as done in

this interaction, and 1
2
(1 + P̂ σ) onto the 3P1 channel, associated with isoscalar pairing.

6.1.1 Realistic separable interaction in Cartesian coordinates

We implement the former interaction in the code HFODD [Sch17], which has a three-dimensional

Cartesian coordinates harmonic oscillator basis implementation. To that end, we devote this

section to derive the matrix elements of the separable interaction (6.3) in these (x, y, z) coor-

dinates.

Since we know that the form factor is a Gaussian that depends only on the norm, and using

that the radius of a sphere is

r2 = x2 + y2 + z2, (6.6)

the form factor can be written as a product in each Cartesian direction,

P (r) = P (x)P (y)P (z), (6.7)

where we used

P (x) =
1√

4πa2
e−

x2

4a2 . (6.8)

Using the properties of the Delta function, we also know that

δ(R−R′) = δ(X −X ′)δ(Y − Y ′)δ(Z − Z ′), (6.9)

with

X =
x1 + x2

2
. (6.10)
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Therefore, the analogous form of the interaction in three-dimensional Cartesian coordinates is

V̂ (r1, r2; r′1, r
′
2) = −δ(X −X ′)δ(Y − Y ′)δ(Z − Z ′)P (x)P (y)P (z)P (x′)P (y′)P (z′)

× [W +BP̂ σ −HP̂ τ −MP̂ σP̂ τ ],
(6.11)

where ri = (xi, yi, zi), x = x1 − x2 and X = 1
2
(x1 + x2), with analogous expressions for Y and

Z. Our definition of the Gaussian form factor is

P (x) =
1√
πa
e−

x2

a2 , (6.12)

with a being the range of the interaction. We have written a general spin-isospin dependence

using the W,B,H,M coupling constants but, since the Gaussian form factor is symmetric in

space coordinates, only W and B are independent.

The single-particle harmonic oscillator basis in which we evaluate this interaction, in the
1S0 channel, is

|n1n2, S = 0〉 = φn1(x1, b)φn2(x2, b)|S = 0〉, (6.13)

with

φn(x, b) = b1/2(
√
π2nn!)−1/2Hn(bx)e−b

2x2/2, (6.14)

where Hn(x) are the Hermite polynomials [AS48], n is the quantum number labelling the

harmonic oscillator states and b is the harmonic oscillator constant. We use the following

definition [DD97]

H(0)
n (x) = (

√
π2nn!)−1/2Hn(x), (6.15)

to cast the harmonic oscillator wavefunction in a simpler form

φn(x, b) = b1/2H(0)
n (bx)e−b

2x2/2. (6.16)

The separable pairing matrix elements in this basis will then have the following structure

〈n′1n′2, S = 0|V |n1n2, S = 0〉 = −IxIyIz(W −B), (6.17)

with

Ix(n1n2;n′1n
′
2) =

∫
dx1dx2dx

′
1dx

′
2δ(X −X ′)P (x)P (x′)φn1(x1, b)φn2(x2, b)φn′1(x

′
1, b)φn′2(x

′
2, b),

(6.18)

and similarly for Iy and Iz. For the evaluation of this expression we need to transform to the
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Realistic separable interaction in Cartesian coordinates

center of mass coordinates, using the Moshinsky coefficients [Mos59], given by

φn1(x1, b)φn2(x2, b) =
∑
nN

MnN
n1n2

φn(x̃, b)φN(X̃, b), (6.19)

with x̃ = 1√
2
(x1 − x2) = x√

2
and X̃ = 1√

2
(x1 + x2) =

√
2X. The original derivation of these

coefficients just involved spherical coordinates, the expression for Cartesian coordinates was

published in [Dob09], and we refer to Appendix C for its elegant derivation.

The matrix elements involve the product of three analogous quantities like (6.18). We

transform the integral in that expression to the center of mass coordinates (the Jacobian of the

transformation is one)

Ix(n1n2;n′1n
′
2) =

∑
n,n′,N,N ′

MnN
n1n2

Mn′N ′

n′1n
′
2

×
∫
dxdx′dXdX ′δ(X −X ′)P (x)P (x′)φn(x̃, b)φn′(x̃

′, b)φN(X̃, b)φN ′(X̃
′, b).

(6.20)

We integrate over the coordinates X,X ′ using the δ function,∫
dXdX ′δ(X −X ′)φN(X̃, b)φN ′(X̃ ′, b) =∫
dXφN(X̃, b)φN ′(X̃, b) =

b√
2

∫
dX̃H

(0)
N (bX̃)H

(0)
N ′ (bX̃)e−b

2X̃2

,

(6.21)

making the change t = bX̃ we observe immediately that the integral is the normalisation

condition of the Hermite polynomials H
(0)
n (x)

1√
2

∫
dtH

(0)
N (t)H

(0)
N ′ (t)e

−t2 =
δNN ′√

2
. (6.22)

Inserting this result, we get

Ix(n1n2;n′1n
′
2) =

1√
2

∑
n,n′,N

MnN
n1n2

Mn′N
n′1n
′
2

∫
dxdx′P (x)P (x′)φn(x̃, b)φn′(x̃

′, b), (6.23)

which can be written in terms of

Ix(n1n2;n′1n
′
2) =

1√
2

∑
n,n′,N

MnN
n1n2

Mn′N
n′1n
′
2
W (n)W (n′), (6.24)
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with

W (n) =

∫
dxP (x)φn(x̃, b). (6.25)

Expanding the harmonic oscillator wavefunction, the integral can be expressed as

W (n) =
b1/2

√
πa2

∫
dxe−x

2/a2H(0)
n (bx̃)e−

b2x̃2

2

=
b1/2

√
πa2

∫
dxe−x

2/a2H(0)
n (bx/

√
2)e−

b2x2

4 ,

(6.26)

and making the change t = bx/
√

2, we get

Wx(n) =

√
2√

πba2

∫
dte−2t2/(ba)2H(0)

n (t)e−
t2

2 . (6.27)

Using the following identity [GR14]

∫ +∞

−∞
duH

(0)
2m(αu)e−u

2

= π1/4

√
(2m)!

m!

(
α2 − 1

2

)m
, (6.28)

we obtain for the final result

W (n) =
2π−1/4

√
b√

a2b2 + 4

√
n!

(n/2)!

(
a2b2 − 4

2a2b2 + 8

)n/2
. (6.29)

We observe that the sum over n, n′ in Eq. (6.23) can be reduced making use of the fact

that the Moshinsky coefficients will be zero unless n = n1 + n2 −N and n′ = n′1 + n′2 −N . It

is convenient to rewrite the final expression of the matrix elements as

Ix(n1n2;n′1n
′
2) =

1√
2

n1+n2∑
N=0

G(N, n1, n2)G(N, n′1, n
′
2), (6.30)

defining the auxiliary functions

G(N, n1, n2) = Mn1+n2−N,N
n1n2

W (n1 + n2 −N). (6.31)

A similar derivation of these matrix elements in Cartesian space coordinates was already

given in [Nik10], but we found several errors and missing factors in the final expressions. A

general and compact formalism to obtain local separable terms from an expansion in an inter-

action is found in [Rob10]. An alternative approach can be followed to obtain the same results,

we refer to Appendix I for details.
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Spin-isospin decomposition of the separable force

6.1.2 Spin-isospin decomposition of the separable force

It is necessary to implement the separable interaction in the different spin-isospin channels VST

to model the isoscalar or isovector pairing, starting from the general expression

V̂ (r) = P (r)(W +BP̂σ −HP̂τ −MP̂σP̂τ ), (6.32)

where P (r) is the Gaussian form factor (6.12) and the exchange operators are written as

P̂σ =
1

2
+

1

2

∑
µ=x,y,z

σ(1)
µ σ(2)

µ , (6.33)

P̂τ =
1

2
+

1

2

∑
k=1,2,3

τ
(1)
k τ

(2)
k , (6.34)

fulfilling that P̂ 2
σ = P̂ 2

τ = 1. An antisymmetrized expression of the former force is written as

V̂ant = V̂ (1− P̂σP̂τ P̂M) = V̂dir + V̂exc. (6.35)

PM being the spatial exchange operator and where we denoted by V̂dir and V̂exc the direct and

exchange terms of the interaction, respectively.

Inserting the exchange operators definitions in the expression of the force we get, for the

direct term

V̂dir(r) = P (r)

[
W +B

(
1

2
+

1

2

∑
µ=x,y,z

σ(1)
µ σ(2)

µ

)
−H

(
1

2
+

1

2

∑
k=1,2,3

τ
(1)
k τ

(2)
k

)
−M

(
1

2
+

1

2

∑
µ=x,y,z

σ(1)
µ σ(2)

µ

)(
1

2
+

1

2

∑
k=1,2,3

τ
(1)
k τ

(2)
k

)]
.

(6.36)

Thus, in order to write the former expression in the compact form of

V̂dir = P (r)
∑
µk

V D
STσ

(1)
µ σ(2)

µ τ
(1)
k τ

(2)
k . (6.37)
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We have to set the following relations

V D
00 = W +

1

2
B − 1

2
H − 1

4
M (6.38)

V D
01 = −1

2
H − 1

2
M (6.39)

V D
10 =

1

2
B − 1

2
M (6.40)

V D
11 = −1

4
M. (6.41)

Analogously, for the exchange term, we have

V̂exc = P (r)

[
W

(
1

2
+

1

2

∑
µ=x,y,z

σ(1)
µ σ(2)

µ

)(
1

2
+

1

2

∑
k=1,2,3

τ
(1)
k τ

(2)
k

)
PM

+B

(
1

2
+

1

2

∑
µ=x,y,z

σ(1)
µ σ(2)

µ

)2(
1

2
+

1

2

∑
k=1,2,3

τ
(1)
k τ

(2)
k

)
PM

−H
(

1

2
+

1

2

∑
µ=x,y,z

σ(1)
µ σ(2)

µ

)(
1

2
+

1

2

∑
k=1,2,3

τ
(1)
k τ

(2)
k

)2

PM

−M
(

1

2
+

1

2

∑
µ=x,y,z

σ(1)
µ σ(2)

µ

)2(
1

2
+

1

2

∑
k=1,2,3

τ
(1)
k τ

(2)
k

)2

PM

]
,

(6.42)

and again, rewriting it in a compact form like

Vexc = P (r)
∑
µk

V E
ST P̂Mσ

(1)
µ σ(2)

µ τ
(1)
k τ

(2)
k , (6.43)

we get

V E
00 = −W

4
− 1

2
B +

1

2
H +M (6.44)

V E
01 = −1

4
W − 1

2
B (6.45)

V E
10 =

1

4
W +

1

2
H (6.46)

V E
11 = −1

4
W. (6.47)

For the pairing channel, we need the following compact form

V̂ = P (r)
∑
µk

V P
ST σ̃

L
µ σ̃

R
µ τ̃

L
k τ̃

R
k , (6.48)
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Spin-isospin decomposition of the separable force

with L and R denoting the left (bra) and the right (ket) states, respectively, and where the

new Pauli matrices read

σ̃0 =

(
0 −1

1 0

)
, σ̃1 =

(
−1 0

0 1

)
, σ̃2 =

(
−i 0

0 −i

)
, σ̃3 =

(
0 1

1 0

)
, (6.49)

The spin and isospin identity and exchange operators in the particle-particle representation

have a different form [Per04]

Îσ =
1

2
σ̃L0 σ̃

R
0 +

1

2

∑
µ=x,y,z

σ̃Lµ σ̃
R
µ , (6.50)

P̂ σ = −1

2
σ̃L0 σ̃

R
0 +

1

2

∑
µ=x,y,z

σ̃Lµ σ̃
R
µ , (6.51)

Îτ =
1

2
τ̃L0 τ̃

R
0 +

1

2

∑
k=x,y,z

τ̃Lk τ̃
R
k , (6.52)

P̂ τ = −1

2
τ̃L0 τ̃

R
0 +

1

2

∑
µ=x,y,z

τ̃Lk τ̃
R
k . (6.53)

We get then

V̂ = P (r)

[
W

(
1

2
σ̃L0 σ̃

R
0 +

1

2

∑
µ=x,y,z

σ̃Lµ σ̃
R
µ

)(
1

2
τ̃L0 τ̃

R
0 +

1

2

∑
k=x,y,z

τ̃Lk τ̃
R
k

)
+B

(
− 1

2
σ̃L0 σ̃

R
0 +

1

2

∑
µ=x,y,z

σ̃Lµ σ̃
R
µ

)(
1

2
τ̃L0 τ̃

R
0 +

1

2

∑
k=x,y,z

τ̃Lk τ̃
R
k

)
−H

(
1

2
σ̃L0 σ̃

R
0 +

1

2

∑
µ=x,y,z

σ̃Lµ σ̃
R
µ

)(
− 1

2
τ̃L0 τ̃

R
0 +

1

2

∑
k=x,y,z

τ̃Lk τ̃
R
k

)
−M

(
− 1

2
σ̃L0 σ̃

R
0 +

1

2

∑
µ=x,y,z

σ̃Lµ σ̃
R
µ

)(
− 1

2
τ̃L0 τ̃

R
0 +

1

2

∑
k=x,y,z

τ̃Lk τ̃
R
k

)]
,

(6.54)

and making the comparison with Eq. (6.48), we finally get

V P
00 =

1

4
(W −B +H −M) ,

V P
01 =

1

4
(W −B −H +M),

V P
10 =

1

4
(W +B +H +M),

V P
11 =

1

4
(W +B −H −M).

(6.55)
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Figure 6.1: Energies computed using the 3D Cartesian code HFODD and the spherical code
HOSPHE for the chain of Sn isotopes, evaluated on a basis consisting on eight harmonic
oscillator shells whose frequency was chosen to be ~ω = 1.2×41 MeV

A1/3 with A = 132.

That is, we have rewritten the coupling constants W,B,H,M of the interaction in Eq. (6.1) in

order to obtain the direct (D), exchange (E) and pairing (P) contributions to the total energy

in the four different channels given by the coupling of the pair of particles to total spin and

isospin [Sch17].

6.2 Implementation of the realistic separable interaction

As mentioned before, we will implement the VAP technology using realistic interactions and

shell structure settings in the 3D Cartesian coordinates harmonic oscillator basis code HFODD.

We implemented the separable generators reviewed in Section 6.1 in the pp channel and tested

them against the results obtained from the spherical basis code HOSPHE [Car10], evaluating

the ground-state energies of the chain of tin isotopes, as shown in Fig. (6.1), with a very

successful agreement up to the order of keV. The number of shells in the harmonic oscillator

basis was chosen to be eight in order to make calculations faster. After the implementation

was succesful, we made sure that the results stood correctly for any number of shells. In

both programs, the Skyrme functional SLy4 [Cha97] in the ph channel was implemented and

benchmarked.

After we have made sure that the implementation is correct, we evaluate pairing gaps

using this interaction. We compare these results with those obtained using a conventional
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6.2. Implementation of the realistic separable interaction
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Figure 6.2: Neutron ∆N and proton ∆P pairing gaps for the isotopic chain of Erbium com-
puted using a separable (6.32) and a volume (6.56) interaction in the right and left panels,
respectively. Experimental results are also shown using the three-point indicator (1.1). Figure
taken from [RDP19a].

density dependent delta interaction (DDDI) for protons and neutrons in the pairing channel,

also referred to as the volume pairing interaction [DNS03; BHM67; Cha76], whose functional

form is

V̂ (r, r′) = V0

{
1−

[
ρ(r)

ρ0

]α}
δ(r − r′), (6.56)

where V0, α are the parameters defining the interaction and ρ0 is the saturation density.

In Fig. (6.2), we plot the gaps of the chain of Erbium isotopes for 14 shells using the

separable and volume pairing interactions, and we compare them to experimental results of

neutron and proton gaps based on the binding energies according to the three-point indicator

formula (1.1) for consistency. For the separable pairing, we fit the values of W = −B = 300

MeV that best reproduce the experimental proton and neutron gaps of 170Er. Similarly, for

the zero-range volume pairing, a value of V0 = −195 MeV fm and α = 1 was chosen to this

purpose, used for the interaction in protons and neutrons, making it charge-symmetric. Also,

the usual cut-off of 60 MeV was chosen in order to avoid divergences in the integrals with this

zero-range interaction.
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We observe that the separable pairing tends to give a weaker pairing for neutrons and a

stronger for protons than the volume pairing. It is interesting to note that in some nuclei the

separable interaction leads to a vanishing neutron gap, whereas the volume interaction may

still give a non-zero value of ∆N ≈ 0.5 MeV. Since Erbium nuclei are deformed (apart from

the semi-magic isotopes), we checked that the values of the quadrupole moment, obtained for

both interactions, are the same.
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Chapter 7

Conclusions and perspectives

Neutron-proton pairing has recently gained abundant attention due to the evidence of such

a paired phase in 92Pd [Ced11]. While envisioned more than half a century ago, coexistence

between this pairing coupling and the usual isovector like-particle coupling is still under dis-

cussion in the scientific community and no definitive conclusions can be drawn, as it is quite

elusive both in experimental measures and in theoretical predictions.

In this PhD project, we have shown that by means of a symmetry-unrestricted self-consistent

mean-field formalism with restoration of broken symmetries using the variation after projection

approach, based on the minimisation of the energy after all symmetries are restored, we were

able to reproduce exact solutions of an algebraic SO(8) model based on degenerate `−shells,

while observing the elusive isoscalar and isovector pairing coexistence as well. This is the first

time that such a coexistence is described within self-consistent mean-field techniques.

The observed outstanding results open the possibility of new studies within self-consistent

mean-field methods to examine the role of neutron-proton pairing in the structure of nuclei

near the proton dripline. Realistic density functional theory calculations with a proper effective

interaction (including spin-orbit, of course, as it makes pairing correlations weaker because of

the breaking of the degeneracy of the shells) and shell structure settings are required.

A potential experimental probe with direct links to theoretical estimates is the deuteron

transfer. We suggest that a profound study of this observable in nuclei along the proton

dripline and in heavy nuclei, where the neutron-proton paired phase is predicted to vanish, will

be extremely valuable and be a conclusive argument to the role and existence of this pairing

coupling. So far, the deuteron transfer are hard to measure experimentally, due to its diluted

neutron-proton pair composition in the nucleus, in opposition to, for example, alpha particles,

which are known to form clusters in certain nuclei.

The major obstacle in the implementation of this sophisticated approach is the burden in

125



computational resources. A fully fledged realistic VAP calculation is not feasible yet in a reason-

able time frame and every problem needs to be examined carefully, exploiting the symmetries

of the system or making good approximations in order to accelerate the computation. The

Madrid group studies a possible implementation using a restricted variational space [RER05;

Rod05].

Restoration of angular momentum (spin) and isospin becomes more important than particle-

number symmetry restoration when describing pairing coexistence, especially in systems known

to have strong pairing correlations (mid-shell systems). Consequently, a straightforward pro-

jected BCS approach is not suitable to describe this desired coexistence, and focus should be

placed on angular momentum (orbital and spin) and isospin symmetry unrestricted methods.

The main perspectives from this project would be to continue by implementing the idea

within a realistic mean-field calculation and energy density functionals, proven to be very suc-

cessful and versatile in all regions of the nuclear chart. Running such a calculation would be

extremely enlightening and a crucial key to solve one of the main puzzles in nuclear struc-

ture physics. Important quantities can be extracted as results from these calculations, e.g.,

nuclear pairing gaps. On top of that, a quasiparticle random phase approximation (QRPA) or

Generator Coordinate Method (GCM) may be implemented, with inputs given by the mean-

field density function theory calculation, with wide applications such as to obtain accurate

nuclear matrix elements for extracting the neutrino mass [AEE08] or the Pygmy Dipole Res-

onance [Paa05], where in the latter a good isoscalar-isovector coexistence as a function of the

isospin is fundamental.

A realistic, self-consistent mean-field with VAP implementation is currently ongoing in the

nuclear structure code HFODD, with separable generators for the interaction already achieved.

Care should be placed not only on the mixing of protons and neutrons in the Bogoliubov trans-

formation for the HFB calculation, but also in the Coulomb term of the potential Hamiltonian.
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Appendix A

Exact solutions of the SO(8) model

A.1 Ground-state energies

In order to compute the energies given by the pairing SO(8) Hamiltonian (2.17) for all possible

values of the mixing parameter x, we need an expression of its matrix elements in a given basis.

Pang [Pan69] computed explicitly these matrix elements for the seniority zero case, that is, for

the case of no unpaired nucleons, in the Gelfand basis (or SU(4) basis) |n,A, S, T 〉, where n

is the representation label, A is the total number of nucleons, S is the total spin and T is the

total isospin. They read

Hnn = −g(1− x)

2

{
(Ω + n+ λ+ 6)(Ω− n− λ)

8(n+ 2)(n+ 3)

×
[

(S + 1)(n+ S + T + 4)(n+ S − T + 3) + S(n− S + T + 3)(n− S − T + 2)

2S + 1

]
+

(Ω− n+ λ+ 2)(Ω + n− λ+ 4)

8(n+ 1)(n+ 2)

×
[

(S + 1)(n− S + T + 1)(n− S − T ) + S(n+ S − T + 1)(n+ S + T + 2)

2S + 1

]}
− g(1 + x)

2

{
(Ω + n+ λ+ 6)(Ω− n− λ)

8(n+ 2)(n+ 3)

×
[

(T + 1)(n+ S + T + 4)(n− S + T + 3) + T (n− T + S + 3)(n− S − T + 2)

2T + 1

]
+

(Ω− n+ λ+ 2)(Ω + n− λ+ 4)

8(n+ 1)(n+ 2)

×
[

(T + 1)(n− T + S + 1)(n− S − T ) + T (n+ T − S + 1)(n+ S + T + 2)

2T + 1

]}
,

(A.1)
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A n (S, T )

2 1 (10)(01)

4

0 (00)

2
(02)(11)(20)

(00)

6

1 (10)(01)

3
(03)(12)(21)(30)

(01)(10)

8

0 (00)

2
(02)(11)(20)

(00)

4

(04)(13)(22)(31)(40)

(02)(11)(20)

(00)

Table A.1: Classification of states for a system with A = 2, 4, 6, 8 particles.

Hn+2,n = − gx

8(n+ 3)

[
(Ω + n+ λ+ 6)(Ω + n− λ+ 6)(Ω− n+ λ)(Ω− n− λ)

(n+ 2)(n+ 4)
,

× (n+ S + T + 4)(n+ S − T + 3)(n− S + T + 3)(n− S − T + 2)

]1/2

,

(A.2)

and Hn−2,n = Hn,n−2. g is the strength of the interaction and x is the mixing parameter;

Ω =
∑

`(2`+1) is the number of spatial states and λ = Ω−A. Of course, H has to be hermitian

and it is tridiagonal because a pair creation (annihilation) operator can only connect a given

state with itself or to a state plus (minus) a pair. The size of this matrix is K = 1 + A
4
− S+T

2
.

In equation (A.2), the factor (n+4) in the denominator is not found in the original derivation

[Pan69] because of a typo, as reported in [Eng97]. Equation (A.2) gives the proper expression for

the non-diagonal matrix elements of the pairing Hamiltonian. The quantum numbers n,A, S, T

defining our basis follow a specific classification that is different for an even and an odd number

of pairs N = A
2
. From Table (A.1) we find the following pattern:

• For odd N , the representation label n is odd, starting from S + T and ending in N .
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A.1. Ground-state energies

• For even N , the representation label n is even, starting from S + T and ending in N .

• The number K = S + T can not be bigger than N , and it is odd for odd N and even for

even N . This conclusion was also drawn after an analysis of the signature symmetry of

the states in Section (4.7).

Therefore, the exact ground-state energy of a system of A particles with total spin S and

isospin T is obtained as the lowest eigenvalue of the Hamiltonian matrix (A.3)

Ĥ =



HKK HK+2K 0 0 . . . 0

HK+2K HK+2K+2 HK+4K+2 0 . . . 0

0 HK+4K+2 HK+4K+4 HK+6K+4 . . . 0

0 0 HK+6K+4 HK+6K+6 . . . 0
...

...
...

...
. . .

...

0 0 0 0 HNN−2 HNN


. (A.3)

For x = ±1, 0, the general SO(8) symmetry of the Hamiltonian reduces to a SO(5) and

SU(4) symmetry, respectively, and in those cases there are explicit formulas for the computation

of the ground-state energy of the system [Eng97; KA06]

• For x = −1 (pure isovector case):

E = −g
4

[2N (4Ω + 6− 2N )− 4T (T + 1)]. (A.4)

• For x = 1 (pure isoscalar case):

E = −g
4

[2N (4Ω + 6− 2N )− 4S(S + 1)]. (A.5)

• For x = 0 (equal isoscalar-isovector interaction case):

E = −g
2

[2N (Ω + 3)−N 2 − n(n+ 4)]. (A.6)

These formulas become extraordinary benchmarks for the energy matrix (A.3) and, in fact,

they were essential for finding the typo in the non-diagonal matrix elements of the pairing

Hamiltonian (A.2).
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A.2 Deuteron transfer

As part of the ingredients for the computation of the matrix elements of the pairing Hamil-

tonian in [Pan69], the first step was to compute the matrix elements of the pair creation and

annihilation operators composing it. The deuteron transfer is an observable entirely related to

these quantities, as it is described as the spectroscopic amplitude of a scalar-isoscalar pair from

an initial state |A, S, T 〉 to a final state |A + 2, S + 1, T 〉. We focus explicitly in the case of a

deuteron addition

〈A+ 2, S + 1, T |D̂+
µ |A, S, T 〉. (A.7)

Owing to the symmetry of the system, we choose the spin projection to be zero. The matrix

elements of this pair operator, in the Gelfand basis of states |n,A, S, T 〉, are then written as

〈n′, A+ 2, S ′, T ′|D̂+
0 |n,A, S, T 〉 = CS′0

S010C
T ′0
T000F (Ω;λ, λ− 1;n′, n)

〈
[nn0]

ST
;
[110]

10

∣∣∣∣∣
∣∣∣∣∣[n′n′0]

S ′T ′

〉
, (A.8)

where the C quantities are Clebsch-Gordan coefficients. The F−factors, in this case, read

F (Ω;λ+ 1, λ;n− 1, n) =
1

2

√
n(Ω− n+ λ+ 2)(Ω + n− λ+ 4)

n+ 2
,

F (Ω;λ+ 1, λ;n+ 1, n) =
1

2

√
(n+ 4)(Ω + n+ λ+ 6)(Ω− n− λ)

n+ 2
,

(A.9)

and the Wigner supermultiplets [HP69]〈
[nn0]

S − 1T
;
[110]

10

∣∣∣∣∣
∣∣∣∣∣[n+ 1n+ 10]

ST

〉
=

√
S(n+ S + T + 3)(n+ S − T + 2)

2(n+ 1)(n+ 2)(2S + 1)
,〈

[nn0]

S − 1T
;
[110]

10

∣∣∣∣∣
∣∣∣∣∣[n− 1n− 10]

ST

〉
= −

√
S(n− S − T + 1)(n− S + T + 2)

2(n+ 2)(n+ 3)(2S + 1)
.

(A.10)

Our goal is to compute this quantity in the basis |AST 〉, corresponding to the ground state

of a system with A particles, spin S and isospin T . These states were the eigenvectors of

the Hamiltonian matrix (A.3), written in the Gelfand basis as well. Therefore, we apply this

transformation

|AST 〉 =
∑
i

ci|niAST 〉, (A.11)

where ci are the components of the eigenvector of the Hamiltonian matrix (A.3) corresponding
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A.3. Alpha transfer

to the ground-state energy. Therefore, our desired quantity is written as

〈A+ 2, S + 1, T |D̂+
0 |AST 〉 =

∑
ij

c∗i cj〈ni, A+ 2, S + 1, T ′|D̂+
0 |nj, A, S, T 〉, (A.12)

with ci being the coefficients of the eigenvector corresponding to the state on the left and cj

corresponding to the state on the right. Applying the Wigner-Eckhart theorem, the final result

for the deuteron transfer is

〈A+ 2, S + 1, T ||D̂+||AST 〉 =

√
2S + 3

CS+1,0
S010

〈A+ 2, S + 1, T |D̂+
0 |AST 〉. (A.13)

Analogous expressions can be worked out for the pair operator P̂+ and the pair removals matrix

elements can be obtained from these by hermitian conjugation, for the case of deuteron removal.

A.3 Alpha transfer

The SO(8) model is also suitable for the computation of matrix elements of an alpha particle

transfer, whose operator is defined as

T̂+
α = (P̂+P̂+)00 + (D̂+D̂+)00

=
1√
3

[∑
ν

(−1)1−νP̂+
ν P̂

+
−ν +

∑
µ

(−1)1−µD̂+
µ D̂

+
−µ

]
.

(A.14)

For its evaluation, we need the matrix elements of the pair creation operators, which were

given in [Pan69]. We write them explicitly

D̂+
0 |nλST 〉 =

∑
n′S′T ′

CS′0
S010C

T ′0
T000F (Ω, λ, λ− 1, n, n′)

〈
[nn0]

ST
;
[110]

10

∣∣∣∣∣
∣∣∣∣∣[n′n′0]

S ′T ′

〉
|n′λ− 1S ′T ′〉, (A.15)

where λ is related to the particle number A as λ = Ω−A, C are the Clebsch-Gordan coefficients

and expressions for the F−factors and the Wigner supermultiplets can be found in [HP69].
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Therefore,

〈n′′λ− 2ST |D̂+
0 D̂

+
0 |nλST 〉 =

∑
n′S′T ′

CS′0
S010C

T ′0
T000C

S0
S′010C

T0
T ′000

× F (Ω, λ, λ− 1, n, n′)F (Ω, λ− 1, λ− 2, n′, n′′)

×
〈

[nn0]

ST
;
[110]

10

∣∣∣∣∣
∣∣∣∣∣[n′n′0]

S ′T ′

〉〈
[n′n′0]

S ′T ′
;
[110]

10

∣∣∣∣∣
∣∣∣∣∣[n′′n′′0]

ST

〉
,

(A.16)

reduced to,

〈n′′λ− 2ST |D̂+
0 D̂

+
0 |nλST 〉 =

∑
n′S′

CS′0
S010C

S0
S′010

× F (Ω, λ, λ− 1, n, n′)F (Ω, λ− 1, λ− 2, n′, n′′)

×
〈

[nn0]

ST
;
[110]

10

∣∣∣∣∣
∣∣∣∣∣[n′n′0]

S ′T

〉〈
[n′n′0]

S ′T
;
[110]

10

∣∣∣∣∣
∣∣∣∣∣[n′′n′′0]

ST

〉
.

(A.17)

More generally we have

〈n′′λ− 2ST |D̂+
µ D̂

+
−µ|nλST 〉 =

∑
n′S′

CS′−µ
S01−µC

S0
S′−µ1µ

× F (Ω, λ, λ− 1, n, n′)F (Ω, λ− 1, λ− 2, n′, n′′)

×
〈

[nn0]

ST
;
[110]

10

∣∣∣∣∣
∣∣∣∣∣[n′n′0]

S ′T

〉〈
[n′n′0]

S ′T
;
[110]

10

∣∣∣∣∣
∣∣∣∣∣[n′′n′′0]

ST

〉
.

(A.18)

For the isovector pair operators, the result is analogous

〈n′′λ− 2ST |P̂+
ν P̂

+
−ν |nλST 〉 =

∑
n′T ′

CT ′−ν
T01−νC

T0
T ′−ν1ν

× F (Ω, λ, λ− 1, n, n′)F (Ω, λ− 1, λ− 2, n′, n′′)

×
〈

[nn0]

ST
;
[110]

01

∣∣∣∣∣
∣∣∣∣∣[n′n′0]

ST ′

〉〈
[n′n′0]

ST ′
;
[110]

01

∣∣∣∣∣
∣∣∣∣∣[n′′n′′0]

ST

〉
.

(A.19)

The matrix elements of the alpha particle transfer are written in the Gelfand basis. We

need to transform them to the physical basis by the transformation

〈A+ 4ST |T̂+
α |AST 〉 =

∑
ij

c∗i cj〈n′A+ 4ST |T̂+
α |nAST 〉, (A.20)

where c∗i and cj are the elements of the eigenvector of the Hamiltonian of the SO(8) interaction.
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Appendix B

Matrix elements of one and two-body

operators

B.1 Wick’s theorem

The mechanism needed for the computation of matrix elements of any operator relies upon

Wick’s theorem. We refer to the extensive literature about the theoretical aspects of this well-

known theorem and the purpose of this appendix only concerns its practical implementation.

We will follow closely the derivation given in [Suh07].

Given two fermion creation or annihilation operators, Â and B̂, we define a contraction, or

contracted pair, as

ÂB̂ = 〈Ψ|ÂB̂|Ψ〉, (B.1)

where |Ψ〉 is the vacuum with respect to the fermion operators Â, B̂, e.g., the bare vacuum |0〉
for the case of the single particle operators â, â†. If we now define Âi as a fermion creation

operator and B̂j as a fermion annihilation operator, the four possible contractions are

B̂jÂi = δij , ÂiB̂j = ÂiÂj = B̂iB̂j = 0. (B.2)

Wick’s theorem establishes that the vacuum expectation value of any product of n fermion

creation and annihilation operators is given by

〈Ψ|A1A2 . . . An|Ψ〉 =
N∑
i

(−1)r × A1A2 . . . An︸ ︷︷ ︸
i-th combination of
all contracted pairs

, (B.3)

133



where r is the number of contraction line crossings and i runs over all the possible combinations

of all contracted pairs in the ordered product, whose total number is

N =
n!

(n/2)!2
n
2

. (B.4)

For the sake of clarity, we will give here two examples of the application of the former

formula for the normal density and pairing tensor matrix elements and the following subsections

we will use Wick’s theorem again for the computation of matrix elements of one- and two-body

operators.

The normal density matrix elements are given by

ρll′ = 〈Ψ|â+
l′ âl|Ψ〉, (B.5)

where |Ψ〉 is now the HFB vacuum and â+, â are the single-particle creation and annihilation

operators, respectively. The state |Ψ〉 is the vacuum defined by the quasiparticle operator β̂,

therefore, for a proper application of Wick’s theorem, we need to transform the single-particle

operators to quasiparticle operators, given by formula (3.30). The matrix elements of the

density then become

ρll′ =
∑
kk′

〈Ψ|(u∗l′k′ β̂+
k′ + vl′k′ β̂k)(ulkβ̂k′ + v∗lkβ̂

+
k )|Ψ〉, (B.6)

owing to formula (B.2), the only non-vanishing contraction is given by β̂β̂+, reducing the former

expression to

ρll′ =
∑
kk′

vl′k′v
∗
lkβ̂k′ β̂

†
k =

∑
kk′

vl′k′v
∗
lkδkk′ =

∑
k

v∗lkvl′k = V ∗V T . (B.7)

This is the usual matrix expression of the normal density. For the pairing tensor we have

κll′ = 〈Ψ|âl′ âl|Ψ〉, (B.8)

therefore, in a similar fashion

κll′ =
∑
kk′

ul′k′v
∗
lkβ̂k′ β̂

+
k =

∑
kk′

ul′k′v
∗
lkδkk′ =

∑
k

v∗lkul′k = V ∗UT , (B.9)

which is again the usual matrix expression of the pairing tensor.
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B.2. One-body operators

B.2 One-body operators

Any one-body operator Ô can be written in the basis of the single-particle operators as

Ô =
∑
αβ

Oαβâ
+
β âα, (B.10)

where Oαβ = 〈α|Ô|β〉 are its matrix elements in the single-particle basis spanned by |α〉, |β〉.
Its expectation value in the quasiparticle HFB vacuum |Ψ〉 will be

〈Ψ|Ô|Ψ〉 =
∑
αβ

Oαβ〈Ψ|â+
β âα|Ψ〉 =

∑
αβ

Oαβραβ, (B.11)

that is, the quasiparticle vacuum expectation value of any one-body operator will be completely

defined by the density matrix. For example, the particle-number operator is defined by

Â =
∑
ij

δij â
+
j âi, (B.12)

so its expectation value in the HFB framework will be

A = 〈Ψ|Â|Ψ〉 =
∑
ij

δijρij =
∑
i

ρii = Tr ρ. (B.13)

The isospin operator is defined by

T̂ =
∑
lk

tlkâ
+
k âl, (B.14)

where tlk = 1
2
τlk with τlk being the Pauli vector in the usual representation (4.83). Therefore

T = 〈Ψ|T̂ |Ψ〉 =
∑
ij

tlkρlk =
1

2
(ρ11 − ρ22 + 2ρ12), (B.15)

where we have made use of the symmetry of the density matrix.

B.2.1 One-body operators squared and fluctuations

When the quasiparticle vacuum state |Ψ〉 is not an eigenstate of the operator Ô, there will be

fluctuations around the expectation value 〈Ψ|Ô|Ψ〉. These fluctuations, which we shall denote
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∆O can be computed using the formula

∆O2 = 〈Ψ|Ô2|Ψ〉 − 〈Ψ|Ô|Ψ〉2. (B.16)

If Ô is a one-body operator, its squared is given by

Ô2 = Ô · Ô =
∑
ij

Oij â
+
j âi
∑
lk

Olkâ
+
k âl =

∑
ijlk

OijOlkâ
+
j âiâ

+
k âl. (B.17)

Evaluating this squared one-body operator over the quasiparticle vacuum and performing the

transformation from the single-particle basis to the quasiparticle basis, we obtain

O2 =
∑
ijlk

OijOlk

∑
k1k2k3k4

〈Ψ|(u∗jk1 β̂+
k1

+ vjk1 β̂k1)

× (uik2 β̂k2 + v∗ik2 β̂
+
k2

)

× (u∗kk3 β̂
+
k3

+ vkk3 β̂k3)

× (ulk4 β̂k4 + v∗lk4 β̂
+
k4

)|Ψ〉.

(B.18)

The only non-zero expectation values are

O2 =
∑
ijlk

OijOlk

∑
k1k2k3k4

vjk1uik2u
∗
kk3
v∗lk4〈Ψ|β̂k1 β̂k2+̂

+
k3
β̂+
k4
|Ψ〉+

+ vjk1v
∗
ik2
vkk3v

∗
lk4
〈Ψ|β̂k1 β̂+

k2
β̂k3 β̂

+
k4
|Ψ〉,

(B.19)

and we evaluate them using Wick’s theorem

〈Ψ|β̂k1 β̂+
k2
β̂k3 β̂

+
k4
|Ψ〉 = (−1)0β̂k1 β̂

+
k2
β̂k3 β̂

+
k4

= δk1k2δk3k4 , (B.20)

〈Ψ|β̂k1 β̂k2 β̂+
k3
β̂+
k4
|Ψ〉 = (−1)0β̂k1 β̂k2 β̂

+
k3
β̂+
k4

+ (−1)1β̂k1 β̂k2 β̂
+
k3
β̂†k4

= δk1k4δk2k3 − δk1k3δk2k4 .
(B.21)

The sum is then reduced to

O2 =
∑
ijlk

OijOlk

∑
ab

(vjauibu
∗
kbv
∗
la − vjauibu∗kav∗lb + vjav

∗
iavkbv

∗
lb). (B.22)
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One-body operators squared and fluctuations

Using now definitions (B.7), (B.9) and

δll′ − ρll′ =
∑
k

ulku
∗
l′k, (B.23)

the addends in (B.22) are reduced to

∑
ab

vjav
∗
iavkbv

∗
lb = ρijρlk, (B.24)

∑
ab

vjauibu
∗
kbv
∗
la = ρlj(δki − ρki), (B.25)

∑
ab

vjauibu
∗
kav
∗
lb = κliκ

∗
jk. (B.26)

Finally, the one-body operator squared takes the form

O2 = 〈Ψ|Ô2|Ψ〉 =
∑
ijlk

OijOlk(ρijρlk + ρlj(δki − ρki)− κliκ∗jk). (B.27)

Now we evaluate the fluctuations, using (B.16)

∆O2 =
∑
ijlk

OijOlk(ρijρlk + ρlj(δki − ρki)− κliκ∗jk)−
∑
ijlk

OijOlkρijρlk

=
∑
ijlk

OijOlk(ρlj(δki − ρki)− κliκ∗jk).
(B.28)

Let us work with the specific example of the particle-number operator N̂ . Its fluctuations

will then be

∆A2 =
∑
ijlk

δijδlk(ρlj(δki − ρki)− κliκ∗jk) =
∑
ij

(ρji(δij − ρji)− κjiκ∗ij), (B.29)

reduced to a compact expression knowing that ρ2 − ρ = −κκ+ = κκ∗

∆A2 = 2 Tr
(
ρ− ρ2

)
= −2 Tr

(
κκ+

)
. (B.30)
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B.3 Two-body operators

Any two-body operator Ô, as for example the particle-particle or pairing interaction, can be

written in the basis of single-particle operators as

Ô =
1

4

∑
ijlk

Oijlkâ
+
i â

+
j âkâl, (B.31)

withOijlk = Oijlk−Oijkl being the anti-symmetrized matrix elements. We evaluate this operator

over the HFB vacuum |Ψ〉 and perform the transformation from the single-particle basis to the

quasiparticle basis

O = 〈Ψ|Ô|Ψ〉 =
∑
ijlk

Oijlk

∑
k1k2k3k4

〈Ψ|(u∗ik1 β̂+
k1

+ vik1 β̂k1)

× (u∗jk2 β̂
+
k2

+ v∗jk2 β̂k2)

× (ukk3 β̂k3 + v∗kk3 β̂
+
k3

)

× (ulk4 β̂k4 + v∗lk4 β̂
+
k4

)|Ψ〉,

(B.32)

O =
∑
ijlk

Oijlk

∑
k1k2k3k4

vik1u
∗
jk2
ukk3v

∗
lk4
〈Ψ|β̂k1 β̂+

k2
β̂k3 β̂

+
k4
|Ψ〉+

+ vik1vjk2v
∗
kk3
v∗lk4〈Ψ|β̂k1 β̂k2 β̂+

k3
β̂+
k4
|Ψ〉.

(B.33)

Using the contractions (B.20), (B.21), we find

O =
∑
ijlk

Oijlk

∑
ab

(viau
∗
jaukbv

∗
lb + viavjbv

∗
kbv
∗
la − viavjbv∗kav∗lb), (B.34)

and, finally, with expressions (B.24), (B.26), we reduce the two-body operator expectation value

to a compact form

O =
∑
ijlk

Oijlk(ρliρkj − ρkiρlj + κlkκ
∗
ij) =

∑
ijlk

Oijlk(ρliρkj + κlkκ
∗
ij). (B.35)
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Appendix C

Moshinsky coefficients for the

one-dimensional harmonic oscillator

For the evaluation of matrix elements of the interaction in the harmonic oscillator basis, some-

times it is convenient to perform a transformation from the individual particle coordinates

frame, spanned by the states |n1n2〉, where ni denotes the wavefunction of particle i; to the

relative n and center-of-mass N coordinates, spanned by |nN〉. That is

|nN〉 =
∑
n1n2

MnN
n1n2
|n1n2〉, (C.1)

where the brackets MnN
n1n2

= 〈n1n2|nN〉 are called the Moshinsky coefficients and uniquely

describe such transformation. In the coordinate-space frame, such a transformation reads

x =
1√
2

(x1 − x2), X =
1√
2

(x1 − x2). (C.2)

In the second-quantization frame, then we have [Dob09]

ârel =
1√
2

(â1 − â2), âCM =
1√
2

(â1 + â2). (C.3)

A one-dimensional harmonic oscillator state with quantum number n is written as

|n〉 =
(â+)n√
n!
|0〉, (C.4)
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with |0〉 being the particle vacuum. Thus, the brackets can be written as

〈n1n2|nN〉 = (n1!n2!n!N !)−
1
2 〈0|(â1)n1(â2)n2(â+

rel)
n(â+

CM)N |0〉. (C.5)

Using (C.3) and the binomial expansion, we obtain

(â+
rel)

n =
(â+

1 − â+
2 )n

2n/2
=

1

2n/2

n∑
k=0

(
n

k

)
(−1)n−k(â+

1 )k(â+
2 )n−k, (C.6)

(â+
CM)N =

(â+
1 + â+

2 )N

2N/2
=

1

2N/2

N∑
k′=0

(
N

k′

)
(â+

1 )k
′
(â+

2 )N−k
′
. (C.7)

Therefore, (C.5) becomes

〈n1n2|nN〉 = (n1!n2!n!N !)−
1
2

1

2
n+N

2

N∑
k′=0

n∑
k=0

(−1)n−k
(
N

k′

)(
n

k

)
× 〈0|(â1)n1(â2)n2(â+

1 )k(â+
2 )n−k(â+

1 )k
′
(â+

2 )N−k
′ |0〉.

(C.8)

Using now the commutators for the harmonic oscillator operators

[â, â+] = 1, [â, â] = [â+, â+] = 0, (C.9)

we reorder the operators in the bracket in (C.8)

〈0|(â1)n1(â+
1 )k(â+

1 )k
′
(â2)n2(â+

2 )n−k(â+
2 )N−k

′ |0〉. (C.10)

It is obvious that this bracket will be different from zero only if the following selection rules are

fulfilled

n1 + n2 = n+N, (C.11)

n1 = k + k′. (C.12)

We see that, starting from the left in (C.10), n1−k annihilation operators will be compensated

with (â+
1 )k, and then n1 − k − k′ annihilation operators will be compensated with (â+

1 )k
′
.

Applying this logic everywhere in the bracket and the following identity, valid for the harmonic

oscillator operators

[ân, â] = nân−1, (C.13)
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the bracket can be computed as

〈0|(â1)n1(â+
1 )k(â+

1 )k
′
(â2)n2(â+

2 )n−k(â+
2 )N−k

′ |0〉 = δn1+n2,n+Nδn1,k+k′

× n1!

(n1 − k)!

(n1 − k)!

(n1 − k − k′)!
n2!

(n2 − n+ k)!

(n2 − n+ k)!

(n2 − n+ k −N + k′)!
.

(C.14)

Finally, (C.5) is written as

〈n1n2|nN〉 = (n1!n2!n!N !)−
1
2

1

2
n+N

2

N∑
k′=0

n∑
k=0

(−1)n−k
(
N

k′

)(
n

k

)
δn1+n2,n+Nδn1,k+k′

× n1!

(n1 − k − k′)!
n2!

(n2 − n+ k −N + k′)!
.

(C.15)

We choose to reduce one of the two sums using the second Kronecker delta, if we reduce the

first one, then the final expression for the Moshinsky brackets is

〈n1n2|nN〉 =

√
n1!n2!n!N !

2
n+N

2

δn1+n2,n+N

n∑
k=0

(−1)n−k

k!(n− k)!(n1 − k)!(N − n1 + k)!
, (C.16)

which is exactly the expression given in [Nik10]. Beware that, because of the factorials in the

denominator, we must change the lower and upper limits of the sum, a, b, to a = max(0, n1−N),

b = max(n, n1). If we decide to reduced the second sum, then the Moshinsky brackets are

〈n1n2|nN〉 =

√
n1!n2!n!N !

2
n+N

2

δn1+n2,n+N

N∑
k=0

(−1)n−n1+k

k!(N − k)!(n1 − k)!(n− n1 + k)!
, (C.17)

which is exactly the expression given in [Dob09]. Again, because of the factorials in the de-

nominator, we must change the lower and upper limits of the sum, a, b, to a = max(0, n1 − n),

b = min(N, n1).
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Appendix D

Derivation of the transition densities

expressed by the Thouless matrices

We start with the transition pairing tensor

κ10
µν =

〈Ψ1|âν âµ|Ψ0〉
〈Ψ1|Ψ0〉

. (D.1)

If a Thouless state |Ψ0〉 can be written as

|Ψ0〉 = exp

(∑
ij

Z0
ij â

+
i â

+
j

)
|0〉, (D.2)

then the transition pairing tensor is

〈Ψ1|Ψ0〉κ10
µν = 〈0| exp

(∑
ij

Z1∗
ij âj âi

)
âν âµ|Ψ0〉 =

∂

∂Z1∗
µν

〈0| exp

(∑
ij

Z1∗
ij âj âi

)
|Ψ0〉

=
∂

∂Z1∗
µν

〈Ψ1|Ψ0〉 =
∂

∂Z1∗
µν

√
det(I− Z1∗Z0).

(D.3)

〈Ψ1|Ψ0〉 is the overlap and we have made use of the Onishi formula (3.66). Now we make use

of the Jacobi formula for the derivative of the determinant of a matrix

d

dt
detA(t) = Tr

(
CT (A)

dA(t)

dt

)
, (D.4)

where C(A) is the cofactor of the matrix A. This is related again to the determinant as

A · CT (A) = det(A)I, (D.5)
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therefore
d

dt
detA(t) = det(A) Tr

(
A−1dA(t)

dt

)
. (D.6)

Applying these relations to our case we obtain

〈Ψ1|Ψ0〉κ10
µν = − det(I− Z1∗Z0)

2
√

det(I− Z1∗Z0)
Tr

(
(I− Z1∗Z0)−1∂(Z1∗Z0)

∂Z1∗
µν

)
, (D.7)

thus

κ10
µν = −1

2
Tr

(
(I− Z1∗Z0)−1∂(Z1∗Z0)

∂Z1∗
µν

)
. (D.8)

Now, we use the following identities

(I− Z1∗Z0)−1
ij = (δij −

∑
k

Z1∗
ik Z

0
kj)
−1,(

∂(Z1∗Z0)

∂Z1∗
µν

)
ij

= Z0
νjδiµ − Z0

µjδiν ,

(D.9)

where we have made use, in the second identity, the derivative of a second order antisymmetric

tensor Aµν
dAµν
dAij

= δµiδνj − δµjδνi. (D.10)

Therefore, we have(
(I− Z1∗Z0)−1∂(Z1∗Z0)

∂Z1∗
µν

)
ij

=
∑
k

(I− Z1∗Z0)−1
ik

(
∂(Z1∗Z0)

∂Z1∗
µν

)
kj

=
∑
k

(
(δik −

∑
k′

Z1∗
ik′Z

0
k′k)

−1(Z0
νjδkµ − Z0

µjδkν)

)
=

(
(δiµ −

∑
k′

Z1∗
ik′Z

0
k′µ)−1Z0

νi − (δiν −
∑
k′

Z1∗
ik′Z

0
k′ν)

−1Z0
µj

)
.

(D.11)

Applying the trace operation on both sides

Tr(A) =
∑
i

Aii, (D.12)
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we obtain

Tr

(
(I− Z1∗Z0)−1∂(Z1∗Z0)

∂Z1∗
µν

)
=
∑
i

(δiµ −
∑
k′

Z1∗
ik′Z

0
k′µ)−1Z0

νi −
∑
i

(δiν −
∑
k′

Z1∗
ik′Z

0
k′ν)

−1Z0
µi

=
∑
i

(I− Z1∗Z0)−1
iµ Z

0
νi −

∑
i

(I− Z1∗Z0)−1
iν Z

0
µi

=

(
Z0(I− Z1∗Z0)−1

)
νµ

−
(
Z0(I− Z1∗Z0)−1

)
µν

.

(D.13)

Comparing this expression with Eq. (D.8) we obtain

κ10
µν =

1

2

[(
Z0(I− Z1∗Z0)−1

)
µν

−
(
Z0(I− Z1∗Z0)−1

)
νµ

]
, (D.14)

and this expression is the definition of a skew-symmetric matrix, ie, A = 1
2
(A−AT ), therefore

κ10 = Z0(I− Z1∗Z0)−1. (D.15)

For κ01∗, a similar derivation holds, using the derivative with respect Zµν instead of Z∗µν , to

obtain

κ01∗ = (I− Z1∗Z0)−1Z1∗. (D.16)

For the transition density matrix ρ10, we first write the Bogoliubov transformation

βk =
∑
l

U∗lkâl + V ∗lkâ
+
l , (D.17)

and we define a new quasiparticle annihilation operator as

ˆ̃βk =
∑
k′

U∗−1
k′k β̂k′ . (D.18)

Since β̂ annihilates the quasiparticle vacuum, ˆ̃β does as well. Explicitly

ˆ̃βk =
∑
k′l

U∗−1
k′k U

∗
lk′ âl + U∗−1

k′k V
∗
lk′ â

+
l = âk +

∑
l

Zlkâ
+
l , (D.19)

and, analogously
ˆ̃β+
k = â+

k +
∑
l

Z∗lkâl. (D.20)
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Using the fact that 〈Ψ1| ˆ̃β+
ν = 0 we write

〈Ψ1|â+
ν âµ +

∑
l

Z1∗
lν âlâµ|Ψ0〉 = 0, (D.21)

thus

〈Ψ1|â+
ν âµ|Ψ0〉 = −

∑
l

Z1∗
lν 〈Ψ1|âlâµ|Ψ0〉 = −

∑
l

Z1∗
lν 〈Ψ1|Ψ0〉κ10

µl . (D.22)

Finally, the transition density matrix is obtained using the transition pairing tensor

ρ10
µν =

〈Ψ1|â+
ν âµ|Ψ0〉

〈Ψ1|Ψ0〉
= −

∑
l

κ10
µlZ

1∗
lν = −Z0(I− Z1∗Z0)−1Z1∗. (D.23)
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Appendix E

Sum rules for the projected states

As the symmetry-violating HFB state is a superposition of states with good particle, spin and

isospin numbers, the so called projected states |AST 〉

|Ψ〉 =
∑
AST

|AST 〉. (E.1)

We obtain, for a properly normalized HFB quasiparticle vacuum,

〈Ψ|Ψ〉 = 1 =
∑
AST

〈Ψ|AST 〉 =
∑
AST

〈Ψ|P̂AP̂ SP̂ T |Ψ〉 =
∑
AST

IAST , (E.2)

that is, the sum of the projected norms has to be unity, as physically expected since there

is no loss in probability. The former equation not only becomes a benchmark for the correct

implementation of the symmetry-restoration techniques, but it is also a useful mechanism to see

which states contribute more to the quasiparticle vacuum. The projected energies also follow

a sum rule. The HFB energy can be rewritten as

EHFB = 〈Ψ|Ĥ|Ψ〉 =
∑
AST

〈Ψ|Ĥ|AST 〉 =
∑
AST

IASTEAST , (E.3)

where

EAST =
〈Ψ|Ĥ|Ψ〉
〈Ψ|AST 〉 . (E.4)

The numerical accuracy of the symmetry-restoration implementation can be tested using Eqs.

(E.2, E.3) [Dob07].
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E.1. Non-diagonal sum rule

E.1 Non-diagonal sum rule

An analogous sum-rule formula for the case of non-diagonal matrix elements, that is, with

generally different ket and bra states, can be implemented. We will use again the deuteron

transfer as an example to write a non-diagonal sum rule. The HFB state |Ψ〉 is a superposition

of the projected states |AST 〉, the deuteron transfer, associated with the pair addition operator

D̂+
0 , needs to fulfil ∑

ASTA′S′T ′

〈AST |D+
0 |A′S ′T ′〉 = 〈ΨL|D+

0 |ΨR〉. (E.5)

D+
0 is

D+
0 =

∑
`

√
2`+ 1

2

(
â+
` 1
2

1
2

â+
` 1
2

1
2

)L=0,S=1,T=0

Lz=0,Sz=0,Tz=0
. (E.6)

The rhs of (E.5) is written in the uncoupled (single-particle) basis as

〈Ψ|D+
0 |Ψ′〉 =

∑
`mimjσiσjτiτj

C00
`mi`mj

C10
1
2
σi

1
2
σj
C00

1
2
τi

1
2
τj
〈ΨL|â+

`mi
1
2
σi

1
2
τi
â+
`mj

1
2
σj

1
2
τj
|ΨR〉. (E.7)

For the lhs, the projected states can be written as |AST 〉 = P̂AP̂ S
00P̂

T
00|Ψ〉. Using the transfor-

mation rule (4.133) again, we obtain for the sum rule

∑
ASTA′S′T ′

δTT ′δA′,A−2C
S0
S′010

∑
Mµ′

(−1)2µ′CS0
S′M1µ′〈ΨL|D+

µ′P̂
A′P̂ S′

M0P̂
T ′

00 |ΨR〉 = 〈ΨL|D̂+
0 |ΨR〉, (E.8)

reduced to

∑
ASTS′

CS0
S′010

∑
M=±1,0

CS0
S′M1−M〈ΨL|D+

−M P̂
A−2P̂ S′

M0P̂
T
00|ΨR〉 = 〈ΨL|D+

0 |ΨR〉. (E.9)

Writing down the integrals from the projectors we obtain

∑
ASTS′

CS0
S′010

∑
M=±1,0

CS0
S′M1−M

1

2π

(2T + 1)

2

(2S ′ + 1)

4π

×
∫ 2π

0

dϕe−iϕ(A−2)

∫ π

0

dβT sin(βT )dT00(βT )

∫ 2π

0

dαS′e
iMαS′

∫ π

0

dβS′ sin(βS′)d
S′

M0(βS′)

× 〈ΨL|D+
−M R̂(ϕ)R̂(βT )R̂(αS′)R̂(βS′)|ΨR〉 = 〈ΨL|D̂+

0 |ΨR〉,

(E.10)
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and the dependence on αS′ is removed using the fact that the operator R̂(αS′) = exp
(
−iαS′Ŝ ′z

)
commutes with the coupled creation pair as

eiαS′ (Ŝ
′
z−M)D̂+

−M = D̂+
−Me

−iαS′ Ŝ
′
z , (E.11)

and, since |Ψ〉 is an axial state with projection zero

eiαS′ Ŝ
′
z |Ψ〉 = eiαS′S

′
z |Ψ〉 = |Ψ〉, (E.12)

the integral in αS′ is ∫ 2π

0

dαS′ = 2π. (E.13)

The non-diagonal sum rule is reduced then to

∑
ASTS′

CS0
S′010

∑
M=±1,0

CS0
S′M1−M

1

2π

(2T + 1)

2

(2S ′ + 1)

2

∫ 2π

0

dϕe−iϕ(A−2)

∫ π

0

dβT sin(βT )dT00(βT )

×
∫ π

0

dβS′ sin(βS′)d
S′

M0(βS′)〈ΨL|D+
−M |ΨR(ϕ, βT , βS)〉 = 〈ΨL|D+

0 |ΨR〉.

(E.14)

The deuteron transfer is just, from formula (E.14), a term in the non-diagonal sum rule,

〈AST |D̂+
0 |A− 2S ′T 〉 =

1√
IAST IA−2S′T

CS0
S′010

∑
M=±1,0

CS0
S′M1−M

1

2π

(2T + 1)

2

(2S ′ + 1)

2

×
∫ 2π

0

dϕe−iϕ(A−2)

∫ π

0

dβT sin(βT )dT00(βT )

∫ π

0

dβS′ sin(βS′)d
S′

M0(βS′)〈ΨL|D+
−M |ΨR(ϕ, βT , β

′
S)〉,

(E.15)

properly rescaled by the norms of the projected states |AST 〉. With the non-diagonal pairing

tensor

κ01∗
ij =

〈ΨL|â+
i a

+
j |ΨR〉

〈ΨL|ΨR〉
. (E.16)

We rewrite the quantities

〈Ψ|D̂+
0 |Ψ′〉 =

∑
`mimjσiσjτiτj

√
2`+ 1

2
C00
`mi`mj

C10
1
2
σi

1
2
σj
C00

1
2
τi

1
2
τj
〈Ψ|â+

`mi
1
2
σi

1
2
τi
â+
`mj

1
2
σj

1
2
τj
|Ψ′〉 =

=
∑

`mimjσiσjτiτj

√
2`+ 1

2
C00
`mi`mj

C10
1
2
σi

1
2
σj
C00

1
2
τi

1
2
τj
〈ΨL|ΨR〉κ01∗

ij ,

(E.17)
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E.2. Non-diagonal sum rule for the projected norms

where i = {`,mi;
1
2
, σi, ;

1
2
, τi}, j = {`,mj;

1
2
, σj, ;

1
2
, τj} and “0” stands for |ΨL〉 and “1” for |ΨR〉

in the superscripts of the pairing tensor. Analogously,

〈ΨL|D+
−M |ΨR(ϕ, βT , βS)〉 =

∑
`mimj
σiσjτiτj

√
2`+ 1

2
C00
`mi`mj

C1−M
1
2
σi

1
2
σj
C00

1
2
τi

1
2
τj
〈ΨL|â+

`mi
1
2
σi

1
2
τi
â+
`mj

1
2
σj

1
2
τj
|ΨR(ϕ, βT , βS)〉

=
∑
`mimj
σiσjτiτj

√
2`+ 1

2
C00
`mi`mj

C1−M
1
2
σi

1
2
σj
C00

1
2
τi

1
2
τj
〈ΨL|ΨR(ϕ, βT , βS)〉κ01∗

ij (ϕ, βT , βS).

(E.18)

Another strong benchmark to test the deuteron transfer formula is to use full projection in spin

space, ie, from formula (E.15)

〈AST |D+
0 |A− 2S ′T 〉 =

1√
IAST IA−2S′T

CS0
S′010

∑
M=±1,0

CS0
S′M1−M

1

2π

(2T + 1)

2

(2S ′ + 1)

8π2

×
∫ 2π

0

dϕe−iϕ(N−2)

∫ π

0

dβT sin(βT )dT00(βT )

∫
dΩS′D

S′∗
M0(ΩS′)〈ΨL|D+

−M |ΨR(ϕ, βT ,ΩS′)〉,

(E.19)

with ΩS′ = (αS′ , βS′ , γS′). The results must be the same.

E.2 Non-diagonal sum rule for the projected norms

As we have mentioned, the mean-field state |Ψ〉 is a superposition of the projected states. For

the case of two different mean-field states |ΨR〉, |ΨL〉, we have

|ΨR〉 =
∑
AST

|AST 〉R, (E.20)

|ΨL〉 =
∑
AST

|AST 〉L. (E.21)

Making emphasis that the projected states |AST 〉 building up the different mean-field wave-

functions are not the same. Therefore, the non-diagonal sum rule for the projected norms

is

〈ΨL|ΨR〉 =
∑
AST

〈ΨL|AST 〉R =
∑
AST

〈ΨL|P̂AP̂ SP̂ T |ΨR〉, (E.22)

where the mean-field overlap norm 〈ΨL|ΨR〉 is evaluated using the pfaffian formula (3.67).
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Appendix F

Matrix elements of the angular

momentum operator in `−scheme

The matrix elements of the angular-momentum operator in the single-particle basis are needed

to evaluate its expectation value over the quasiparticle vacuum to benchmark the spherical

symmetry of the system.

To evaluate the matrix elements of L̂, lmm′ . We use the fact that

L̂x =
1

2
(L̂+ + L̂−),

L̂y =
1

2i
(L̂+ − L̂−),

L̂z |`m〉 = m |`m〉 ,

(F.1)

where

L̂± |`m〉 =
√
`(`+ 1)−m(m± 1) |`m± 1〉 . (F.2)

The matrix elements lmm′ = 〈`m′|L̂|`m〉 can now be evaluated

lmm′ = mδmm′ +
1

2
(1− i)

√
`(`+ 1)−m(m+ 1)δm+1,m′

+
1

2
(1 + i)

√
`(`+ 1)−m(m− 1)δm−1,m′ ,

(F.3)

in the form of a tridiagonal matrix.
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Appendix G

Analytical expressions of the deuteron

transfer for the A = 2, 4 particles (holes)

cases

The powerful tools of algebraic models are used in this Appendix to derive the deuteron transfer

from an initial |A = 2, S = 1, T = 0〉 state to a |A = 4, S = 0, T = 0〉 state by means of only the

commutations relations of the generators of the SO(8) algebra. The general case was already

reviewed in Appendix A.

The deuteron addition transfer is defined as

Pd = 〈A = 4, S = 0, T = 0|D̂+
0 |A = 2, S = 1, T = 0〉. (G.1)

We observe that there is only one way to build up the state |A = 2, S = 1, T = 0〉 from the

isoscalar and isovector pairs considered in the SO(8) model

|A = 2, S = 1, T = 0〉 = D̂+
0 |0〉, (G.2)

and two possible ways to build up the state |A = 4, S = 0, T = 0〉, from the coupling of two

isoscalar pairs or coupling of two isovector pairs

|A = 4, S = 0, T = 0〉 =

[
α
(
P̂+P̂+

)S=0T=0

+ β
(
D̂+D̂+

)S=0T=0
]
|0〉. (G.3)

The pair operators P̂+, D̂+, P̂ , D̂ are quasispin operators which can be written as a linear

combination of the generators of the SO(8) algebra, as seen in Table (2.1). Their commutators
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are going to be equal to a linear combination of the rest of the generators of the algebra, in

general being a scalar (spin or isospin equal to zero), vector (spin or isospin equal to one) or

tensor (spin or isospin equal to two).

The different commutators between the pair operators are then

[P̂µ′ , P̂
+
µ ] =Q̂0δµ0δµ′0 − T̂−δµ0δµ′1 − T̂+δµ0δµ′−1 − T̂+δµ1δµ′0

+ (Q̂0 − T̂0)δµ1δµ′1 + (Q̂0 + T̂0)δµ−1δµ′−1 − T̂−δµ−1δµ′0,

[D̂µ′ , D̂
+
µ ] =Q̂0δµ0δµ′0 − Ŝ−δµ0δµ′1 − Ŝ+δµ0δµ′−1 − Ŝ+δµ1δµ′0

+ (Q̂0 − Ŝ0)δµ1δµ′1 + (Q̂0 + Ŝ0)δµ−1δµ′−1 − Ŝ−δµ−1δµ′0,

(G.4)

[P̂µ′ , D̂
+
µ ] =− Ê00δµ0δµ′0 + Ê0−1δµ0δµ′1 − Ê01δµ0δµ′−1

+ Ê10δµ1δµ′0 − Ê1−1δµ1δµ′1 + Ê11δµ1δµ′−1

− Ê−10δµ−1δµ′0 + Ê−1−1δµ−1δµ′1 − Ê−11δµ−1δµ′−1,

[D̂µ′ , P̂
+
µ ] =− Ê00δµ0δµ′0 + Ê−10δµ0δµ′1 − Ê10δµ0δµ′−1

+ Ê01δµ1δµ′0 − Ê−11δµ1δµ′1 + Ê11δµ1δµ′−1

− Ê0−1δµ−1δµ′0 + Ê−1−1δµ−1δµ′1 − Ê1−1δµ−1δµ′−1.

(G.5)

We apply the Hamiltonian (2.17) to the state (G.3), and for that we will need the following

identities

ˆ̂
HP̂+

µ1
P̂+
µ2

= P̂+
µ1
P̂+
µ2

ˆ̂
H + P̂+

µ1
[
ˆ̂
H, P̂+

µ2
] + [

ˆ̂
H, P̂+

µ1
]P̂+
µ2
,

ˆ̂
HD̂+

ν1
D̂+
ν2

= D̂+
ν1
D̂+
ν2
Ĥ + D̂+

ν1
[Ĥ, D̂+

ν2
] + [Ĥ, D̂+

ν1
]D̂+

ν2
.

(G.6)

Thus

ˆ̂
H|A = 4, S = 0, T = 0〉 =

[
α
∑
µ1µ2

C00
1µ11µ2

(
P̂+
µ1

[Ĥ, P̂+
µ2

] + [Ĥ, P̂+
µ1

]P̂+
µ2

)
+

+ β
∑
ν1ν2

C00
1ν11ν2

(
D̂+
ν1

[Ĥ, D̂+
ν2

] + [Ĥ, D̂+
ν1

]D̂+
ν2

)]
|0〉,

(G.7)

with

[Ĥ, P̂+
µ′ ] = −(1− x)

∑
µ

P̂+
µ [P̂µ, P̂

+
µ′ ]− (1 + x)

∑
ν

D̂+
ν [D̂ν , P̂

+
µ′ ],

[Ĥ, D̂+
ν′ ] = −(1− x)

∑
µ

P̂+
µ [P̂µ, D̂

+
ν′ ]− (1 + x)

∑
ν

D̂+
ν [D̂ν , D̂

+
ν′ ].

(G.8)
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It can be shown by direct application on the vacuum that the following commutators obey

[P̂µ, P̂
+
µ′ ]|0〉 = Ωδµµ′(δµ1 + δµ0 + δµ−1)|0〉,

[D̂ν , D̂
+
ν′ ]|0〉 = Ωδνν′(δν1 + δν0 + δν−1)|0〉,

[D̂ν , P̂
+
µ ]|0〉 = [P̂µ, D̂

+
ν ]|0〉 = 0,

(G.9)

therefore

[Ĥ, P̂+
µ2

]|0〉 = −(1− x)(δµ21 + δµ20 + δµ2−1)ΩP̂+
µ2
|0〉,

[Ĥ, D̂+
ν2

]|0〉 = −(1 + x)(δν21 + δν20 + δν2−1)ΩD̂+
ν2
|0〉.

(G.10)

We now evaluate the term [Ĥ, P̂+
µ1

]P̂+
µ2

[Ĥ, P̂+
µ1

]P̂+
µ2

= −(1− x)
∑
µ

P̂+
µ [P̂µ, P̂

+
µ1

]P̂+
µ2
− (1 + x)

∑
ν

D̂+
ν [D̂ν , P̂

+
µ1

]P̂+
µ2

= −(1− x)
∑
µ

P̂+
µ

(
Q̂0P̂

+
µ2
δµ10δµ0 − T̂−P̂+

µ2
δµ10δµ1 − T̂+P̂

+
µ2
δµ10δµ−1 − T̂+P̂

+
µ2
δµ11δµ0

+ (Q̂0 − T̂0)P̂+
µ2
δµ11δµ1 + (Q̂0 + T̂0)P̂+

µ2
δµ1−1δµ−1 − T̂−P̂+

µ2
δµ1−1δµ0

)
− (1 + x)

∑
ν

D̂+
ν

(
− Ê00P̂

+
µ2
δµ10δν0 + Ê−10P̂

+
µ2
δµ10δν1 − Ê10P̂

+
µ2
δµ10δν−1

+ Ê01P̂
+
µ2
δµ11δν0 − Ê−11P̂

+
µ2
δµ11δν1 + Ê11P̂

+
µ2
δµ11δν−1

− Ê0−1P̂
+
µ2
δµ1−1δν0 + Ê−1−1P̂

+
µ2
δµ1−1δν1 − Ê1−1P̂

+
µ2
δµ1−1δν−1

)
,

(G.11)

where we need to make use of the commutation relations of P̂+ with the rest of the generators
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of the SO(8) algebra, tabulated in Table (G.1), becoming

[Ĥ, P̂+
µ1

]P̂+
µ2

= −(1− x)
∑
µ

P̂+
µ

[
(P̂+

µ2
Q̂0 − P̂+

µ2
)δµ10δµ0 − (P̂+

µ2
T̂− + P̂+

µ2−1)δµ10δµ1

− (P̂+
µ2
T̂+ + P̂+

µ2+1)δµ10δµ−1 − (P̂+
µ2
T̂+ + P̂+

µ2+1)δµ11δµ0 + P̂+
µ2

(Q̂0 − T̂0 − µ2 − 1)δµ11δµ1

+ P̂+
µ2

(Q̂0 + T̂0 + µ2 − 1)δµ1−1δµ−1 − (P̂+
µ2
T̂− + P̂+

µ2−1)δµ1−1δµ0

]
− (1 + x)

∑
ν

D̂+
ν

[
− (P̂+

µ2
Ê00 + D̂+

µ2
δµ20)δµ10δν0 + (P̂+

µ2
Ê−10 + D̂+

µ2−1δµ20)δµ10δν1

− (P̂+
µ2
Ê10 − D̂+

µ2+1δµ20)δµ10δν−1 + (P̂+
µ2
Ê01 + D̂+

µ2+1δµ2−1)δµ11δν0

− (P̂+
µ2
Ê−11 + D̂+

µ2
δµ2−1)δµ11δν1 + (P̂+

µ2
Ê11 − D̂+

−µ2δµ2−1)δµ11δν−1

− (P̂+
µ2
Ê0−1 − D̂+

µ2−1δµ21)δµ1−1δν0 + (P̂+
µ2
Ê−1−1 − D̂+

−µ2δµ21)δµ1−1δν1

− (P̂+
µ2
Ê1−1 + D̂+

µ2
δµ21)δµ1−1δν−1

)
.

(G.12)

We reduce the former expression knowing that it is applied to the bare vacuum |0〉

[Ĥ, P̂+
µ1

]P̂+
µ2
|0〉 =

{
− (1− x)

∑
µ

P̂+
µ

[
(P̂+

µ2
Q̂0 − P̂+

µ2
)δµ10δµ0 − P̂+

µ2−1δµ10δµ1 − P̂+
µ2+1δµ10δµ−1

− P̂+
µ2+1δµ11δµ0 + P̂+

µ2
(Q̂0 − µ2 − 1)δµ11δµ1 + P̂+

µ2
(Q̂0 + µ2 − 1)δµ1−1δµ−1 − P̂+

µ2−1δµ1−1δµ0

]
− (1 + x)

∑
ν

D̂+
ν

(
− D̂+

µ2
δµ20δµ10δν0 + D̂+

µ2−1δµ20δµ10δν1 + D̂+
µ2+1δµ20δµ10δν−1

+ D̂+
µ2+1δµ2−1δµ11δν0 − D̂+

µ2
δµ2−1δµ11δν1 − D̂+

−µ2δµ2−1δµ11δν−1

+ D̂+
µ2−1δµ21δµ1−1δν0 − D̂+

−µ2δµ21δµ1−1δν1 − D̂+
µ2
δµ21δµ1−1δν−1

)}
|0〉,

(G.13)
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finally obtaining the expression

[Ĥ, P̂+
µ1

]P̂+
µ2
|0〉 =

{
− (1− x)

[
P̂+

0 (P̂+
µ2
Q̂0 − P̂+

µ2
)δµ10 − P̂+

1 P̂
+
µ2−1δµ10 − P̂+

−1P̂
+
µ2+1δµ10

− P̂+
0 P̂

+
µ2+1δµ11 + P̂+

1 P̂
+
µ2

(Q̂0 − µ2 − 1)δµ11 + P̂+
−1P̂

+
µ2

(Q̂0 + µ2 − 1)δµ1−1 − P̂+
0 P̂

+
µ2−1δµ1−1

]
− (1 + x)

(
− D̂+

0 D̂
+
µ2
δµ20δµ10 + D̂+

1 D̂
+
µ2−1δµ20δµ10 + D̂+

−1D̂
+
µ2+1δµ20δµ10 + D̂+

0 D̂
+
µ2+1δµ2−1δµ11

− D̂+
1 D̂

+
µ2
δµ2−1δµ11 − D̂+

−1D̂
+
−µ2δµ2−1δµ11 + D̂+

0 D̂
+
µ2−1δµ21δµ1−1 − D̂+

1 D̂
+
−µ2δµ21δµ1−1

− D̂+
−1D̂

+
µ2
δµ21δµ1−1

)}
|0〉.

(G.14)

In a similar fashion, for the evaluation of the term [Ĥ, D̂+
ν1

]D̂+
ν2

we obtain

[Ĥ, D̂+
ν1

]D̂+
ν2
|0〉 =

{
− (1− x)

(
− P̂+

0 P̂
+
ν2
δν20δν10 + P̂+

1 P̂
+
ν2−1δν20δν10 + P̂+

−1P̂
+
ν2+1δν20δν10 + P̂+

0 P̂
+
ν2+1δν2−1δν11

− P̂+
1 P̂

+
ν2
δν2−1δν11 − P̂+

−1P̂
+
−ν2δν2−1δν11 + P̂+

0 P̂
+
ν2−1δν21δν1−1 − P̂+

1 P̂
+
−ν2δν21δν1−1

− P̂+
−1P̂

+
ν2
δν21δν1−1

)
− (1 + x)

[
D̂+

0 (D̂+
ν2
Q̂0 − D̂ν2)δν10 − D̂+

1 D̂
+
ν2−1δν10 − D̂+

−1D̂
+
ν2+1δν10 − D̂+

0 D̂
+
ν2+1δν11

+ D̂+
1 D̂

+
ν2

(Q̂0 − ν2 − 1)δν11 + D̂+
−1D̂

+
ν2

(Q̂0 + ν2 − 1)δν1−1 − D̂+
0 D̂

+
ν2−1δν1−1

]}
|0〉.

(G.15)

We have now all the necessary terms for writing the final expression

Ĥ|A = 4, S = 0, T = 0〉 =

{
α√
3

(
− P̂+

0 [Ĥ, P̂+
0 ]− [Ĥ, P̂+

0 ]P̂+
0 + P̂+

1 [Ĥ, P̂+
−1] + [Ĥ, P̂+

1 ]P̂+
−1

+ P̂+
−1[Ĥ, P̂+

1 ] + [Ĥ, P̂+
−1]P̂+

1

)
+

β√
3

(
− D̂+

0 [Ĥ, D̂+
0 ]− [Ĥ, D̂+

0 ]D̂+
0 + D̂+

1 [Ĥ, D̂+
−1] + [Ĥ, D̂+

1 ]D̂+
−1

+ D̂+
−1[Ĥ, D̂+

1 ] + [Ĥ, D̂+
−1]D̂+

1

)}
|0〉,

(G.16)
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explicitly

−P̂+
0 [Ĥ, P̂+

0 ]− [Ĥ, P̂+
0 ]P̂+

0 = (1− x)ΩP̂+
0 P̂

+
0 + (1− x)

[
(Ω− 1)P̂+

0 P̂
+
0 − P̂+

1 P̂
+
−1 − P̂+

−1P̂
+
1

]
+ (1 + x)(−D̂+

0 D̂
+
0 + D̂+

1 D̂
+
−1 + D̂+

−1D̂
+
1 ),

P̂+
1 [Ĥ, P̂+

−1] + [Ĥ, P̂+
1 ]P̂+

−1 = −(1− x)ΩP̂+
1 P̂

+
−1 − (1− x)(−P̂+

0 P̂
+
0 + ΩP̂+

1 P̂
+
−1)

− (1 + x)(D̂+
0 D̂

+
0 − D̂+

1 D̂
+
−1 − D̂+

−1D̂
+
1 ),

P̂+
−1[Ĥ, P̂+

1 ] + [Ĥ, P̂+
−1]P̂+

1 = −(1− x)ΩP̂+
−1P̂

+
1 − (1− x)(−P̂+

0 P̂
+
0 + ΩP̂+

−1P̂
+
1 )

− (1 + x)(D̂+
0 D̂

+
0 − D̂+

1 D̂
+
−1 − D̂+

−1D̂
+
1 ),

(G.17)

−D̂+
0 [Ĥ, D̂+

0 ]− [Ĥ, D̂+
0 ]D̂+

0 = (1 + x)ΩD̂+
0 D̂

+
0 + (1− x)(−P̂+

0 P̂
+
0 + P̂+

1 P̂
+
−1 + P̂+

−1P̂
+
1 )

+ (1 + x)

[
(Ω− 1)D̂+

0 D̂
+
0 − D̂+

1 D̂
+
−1 − D̂+

−1D̂
+
1

]
,

D̂+
1 [Ĥ, D̂+

−1] + [Ĥ, D̂+
1 ]D̂+

−1 = −(1 + x)ΩD̂+
1 D̂

+
−1 − (1− x)(P̂+

0 P̂
+
0 − P̂+

1 P̂
+
−1 − P̂+

−1P̂
+
1 )

− (1 + x)(ΩD̂+
1 D̂

+
−1 − D̂+

0 D̂
+
0 ),

D̂+
−1[Ĥ, D̂+

1 ] + [Ĥ, D̂+
−1]D̂+

1 = −(1 + x)ΩD̂+
−1D̂

+
1 − (1− x)(P̂+

0 P̂
+
0 − P̂+

1 P̂
+
−1 − P̂+

−1P̂
+
1 )

− (1 + x)(ΩD̂+
−1D̂

+
1 − D̂+

0 D̂
+
0 ).

(G.18)

Therefore, collecting all the terms

Ĥ|A = 4, S = 0, T = 0〉 =
1√
3

{
−
[
2α(1− x)Ω + α(1− x)− 3β(1− x)

][
− P̂+

0 P̂
+
0 + P̂+

1 P̂
+
−1 + P̂+

−1P̂
+
1

]
−
[
2β(1 + x)Ω + β(1 + x)− 3α(1 + x)

][
− D̂+

0 D̂
+
0 + D̂+

1 D̂
+
−1 + D̂+

−1D̂
+
1

]}
|0〉

= ÊA=4,S=0,T=0

[
α
(
P̂+
µ1
P̂+
µ2

)S=0T=0

+ β
(
D̂+
ν1
D̂+
ν2

)S=0T=0
]
|0〉,

(G.19)

sets up an eigenvalue problem for the complex amplitudes α and β(
−2(1− x)Ω− (1− x) 3(1− x)

3(1 + x) −2(1 + x)Ω− (1 + x)

)(
α

β

)
= ÊA=4,S=0,T=0

(
α

β

)
. (G.20)

The deuteron transfer is computed as

Pd = 〈0|(α∗(PP )00 + β∗(DD)00)D̂+
0 D̂

+
0 |0〉, (G.21)
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thus

Pd =
α∗√

3

(
− 〈0|P̂0P̂0D̂

+
0 D̂

+
0 |0〉+ 〈0|P̂1P̂−1D̂

+
0 D̂

+
0 |0〉+ 〈0|P̂−1P̂1D̂

+
0 D̂

+
0 |0〉

)
+
β∗√

3

(
− 〈0|D̂0D̂0D̂

+
0 D̂

+
0 |0〉+ 〈0|D̂1D̂−1D̂

+
0 D̂

+
0 |0〉+ 〈0|D̂−1D̂1D̂

+
0 D̂

+
0 |0〉

)
,

(G.22)

and, computing the terms explicitly

〈0|P̂0P̂0D̂
+
0 D̂

+
0 |0〉 = −Ω,

〈0|P̂1P̂−1D̂
+
0 D̂

+
0 |0〉 = Ω,

〈0|P̂−1P̂1D̂
+
0 D̂

+
0 |0〉 = Ω,

〈0|D̂0D̂0D̂
+
0 D̂

+
0 |0〉 = Ω(2Ω− 1),

〈0|D̂1D̂−1D̂
+
0 D̂

+
0 |0〉 = −Ω,

〈0|D̂−1D̂1D̂
+
0 D̂

+
0 |0〉 = −Ω,

(G.23)

we end up with

Pd = 〈A = 4, S = 0, T = 0|D̂+
0 |A = 2, S = 1, T = 0〉 =

√
3Ωα∗ − 2Ω2 + Ω√

3
β∗. (G.24)

We have to make sure that the ket and the bra are properly normalized. To that end, we

compute the norm c210 of the right state |A = 2, S = 1, T = 0〉

c210 = 〈A = 2, S = 1, T = 0|A = 2, S = 1, T = 0〉 = 〈0|D̂0D̂
+
0 |0〉 = Ω〈0|0〉 = Ω, (G.25)

and the norm c400 of left state |A = 4, S = 0, T = 0〉

〈A = 4, S = 0, T = 0|A = 4, S = 0, T = 0〉 = 〈0|[α∗(PP )00 + β∗(DD)00][α(P̂+P̂+)00 + β(D̂+D̂+)00]|0〉,
(G.26)

writing explicitly

〈0|(PP )00(P̂+P̂+)00|0〉 = Ω(2Ω + 1),

〈0|(PP )00(D̂+D̂+)00|0〉 = −3Ω,

〈0|(DD)00(D̂+D̂+)00|0〉 = Ω(2Ω + 1),

〈0|(DD)00(P̂+P̂+)00|0〉 = −3Ω,

(G.27)
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we obtain

c400 = 〈A = 4, S = 0, T = 0|A = 4, S = 0, T = 0〉 = Ω

[ (
|α|2 + |β|2

)
(2Ω + 1)− 3α∗β − 3αβ∗

]
.

(G.28)

Finally, the properly normalized deuteron transfer is obtained as

P̂d =
〈A = 4, S = 0, T = 0|D̂+

0 |A = 2, S = 1, T = 0〉√
c210c400

. (G.29)

A

B
P̂+
µ D̂+

ν

Q̂0 −P̂+
µ −D̂+

ν

T̂0 µP̂+
µ 0

T̂+ P̂+
µ+1 0

T̂− P̂+
µ−1 0

Ŝ0 0 νD̂+
ν

Ŝ+ 0 D̂+
ν+1

Ŝ− 0 D̂+
ν−1

Ê00 D̂+
µ δµ0 P̂+

ν δν0

Ê−10 D̂+
µ−1δµ0 −P̂+

−ν−1δν1

Ê10 −D̂+
µ+1δµ0 P̂+

ν+1δν−1

Ê0−1 −D̂+
µ−1δµ1 P̂+

ν−1δν0

Ê01 D̂+
µ+1δµ−1 −P̂+

ν+1δν0

Ê−1−1 −D̂+
−µδµ1 −P̂+

−νδν1

Ê1−1 D̂+
µ δµ1 P̂+

ν δν−1

Ê−11 D̂+
µ δµ−1 P̂+

ν δν1

Ê11 −D̂+
−µδµ−1 −P̂+

−νδν−1

Table G.1: Evaluation of commutators [A,B] of the SO(8) algebra.
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G.1. Analytical computation of the projected norms

G.1 Analytical computation of the projected norms

For the A = 2 and A = 4 cases, it is possible to compute analytical expressions for the norms

of the projected states. First, we are concerned with particle-number projected states, which

have the form

|A〉 =
(Ẑ+)A/2

(A/2)!
|0〉, (G.30)

where Ẑ+ = Z01P̂+
0 + Z10D̂+

0 , with Z01 = cos(α/2)eiϕ and Z10 = sin(α/2)e−iϕ, is the Thouless

pair, for A = 2, 4 we obtain

|2〉 = Ẑ+|0〉,

|4〉 =
1

2
(Ẑ+)2|0〉.

(G.31)

To obtain projected states on spin and isospin, we need to apply the convenient projection

operators. For the state |AST 〉 = |A = 2, S = 1, T = 0〉 we will have then

|A = 2, S = 1, T = 0〉 = P̂ 1P̂ 0|2〉 =
3

8π2

1

8π2

∫
dΩTdΩSD̂

0∗
00(ΩT )D̂1∗

00(ΩS)R̂S(ΩS)R̂T (ΩT )|2〉,
(G.32)

where, to rotate the state |A = 2〉, it is equivalent to rotate the Thouless pair

R̂S(ΩS)R̂T (ΩT )|2〉 =

(
Z01

∑
N

D̂1∗
N0(ΩT )P̂+

N + Z10
∑
M

D̂1∗
M0(ΩS)D̂+

M

)
|0〉, (G.33)

now, using the well-known integration properties of the Wigner functions∫
dΩD0∗

00(Ω) = 8π2,∫
dΩTD

0∗
00(ΩT )D1∗

N0(ΩT ) = 0,∫
dΩSD

1∗
00(ΩS)D1∗

M0(ΩS) = (−1)M
8π2

3
δM0,

(G.34)

we have for the projected |A = 2, S = 1, T = 0〉 state

|A = 2, S = 1, T = 0〉 = Z10D̂+
0 |0〉, (G.35)
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whose norm is

〈A = 2, S = 1, T = 0|A = 2, S = 1, T = 0〉 = |Z10|2〈0|D̂0D̂
+
0 |0〉 = |Z10|2Ω. (G.36)

For the projected state |A = 4, S = 0, T = 0〉 we analogously proceed

|A = 4, S = 0, T = 0〉 = P̂ 0P̂ 0|4〉 =
1

8π2

1

8π2

∫
dΩTdΩSD̂

0∗
00(ΩT )D0∗

00(ΩS)R̂S(ΩS)R̂T (ΩT )|4〉,
(G.37)

with

R̂S(ΩS)R̂T (ΩT )|4〉 =
1

2

(∑
NN ′

D1∗
N0(ΩT )D1∗

N ′0(ΩT )Z102P̂+
N P̂

+
N ′

+
∑
MM ′

D1∗
M0(ΩS)D1∗

M ′0(ΩS)Z012D̂+
MD̂

+
M ′

+ 2
∑
MN

D1∗
N0(ΩT )D1∗

M0(ΩS)Z10Z01P̂+
N D̂

+
M

)
|0〉.

(G.38)

Using yet another integration property of the Wigner functions∫
dΩD0∗

00(Ω)D1∗
N0(Ω)D1∗

N ′0(Ω) = 8π2C00
1N1N ′C

00
1010, (G.39)

we finally have

|A = 4, S = 0, T = 0〉 =
1

2

(
Z012

∑
NN ′

C00
1N1N ′C

00
1010P̂

+
N P̂

+
N ′ + Z102

∑
MM ′

C00
1M1M ′C

00
1010D̂

+
MD̂

+
M ′

)
|0〉

= − 1

2
√

3

[
Z012(P̂+P̂+)00 + Z102(D̂+D̂+)00

]
|0〉,

(G.40)

and the norm of this state is

〈A = 4, S = 0, T = 0|A = 4, S = 0, T = 0〉 =
1

12

(
|Z01|4〈0|(PP )00(P̂+P̂+)00|0〉

+ |Z10|4〈0|(DD)00(D̂+D̂+)00|0〉+ (Z10∗Z01)2〈0|(DD)00(P̂+P̂+)00|0〉

+ (Z10Z01∗)2〈0|(PP )00(D̂+D̂+)00|0〉
)

=
Ω

12

[
(|Z01|4 + |Z10|4)(2Ω + 1)− 3(Z10∗Z01)2 − 3(Z10Z01∗)2

]
.

(G.41)
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G.1. Analytical computation of the projected norms

We now compare if the exact and projected results are equivalent. Indeed, the exact state (G.2)

and the projected state (G.35) for |AST 〉 = |A = 2, S = 1, T = 0〉 are the same if |Z10|2 = 1,

which has to be if the system is just an isoscalar pair. We see that in that case then the norms

(G.25) and (G.36) are also equivalent and constant. For |AST 〉 = |A = 4, S = 0, T = 0〉, the

comparison of the exact state (G.3) and the projected state (G.40) yields

α = −Z
012

2
√

3
, β = −Z

102

2
√

3
, (G.42)

and by the substitution of these coefficients in the exact norm (G.28), we see that we obtain

the projected norm (G.41). We now have everything in order to compute the deuteron transfer

using projected states (G.35) and (G.40)

〈A = 4, S = 0, T = 0|D̂+
0 |A = 2, S = 1, T = 0〉 = − Z

10
R

2
√

3

(
Z01∗2
L 〈0|(PP )00D̂+

0 D̂
+
0 |0〉

+ Z10∗2
L 〈0|(DD)00D̂+

0 D̂
+
0 |0〉

) (G.43)

where we have introduced subindices L,R to differentiate between right and left states, respec-

tively. Explicitly,

〈0|(PP )00D̂+
0 D̂

+
0 |0〉 =

3√
3

Ω,

〈0|(DD)00D̂+
0 D̂

+
0 |0〉 = − Ω√

3
(2Ω + 1),

(G.44)

thus

〈A = 4, S = 0, T = 0|D̂+
0 |A = 2, S = 1, T = 0〉 = −Ω

6
Z10
R

(
3Z01∗2

L − (2Ω + 1)Z10∗2
L

)
, (G.45)

and we see that this expression is exactly (G.24) when Z10
R = 1 and

α = −Z
012

L

2
√

3
, β = −Z

102

L

2
√

3
. (G.46)

We conclude from these calculations that, while in general a HFB plus VAP symmetry

restoration calculation will yield a result which is an upper bound of the exact one, under certain

circumstances this method can obtain the proper exact result. This could be achieved because

the exact states in these cases, for two and four particles, can be built from purely isoscalar

and isovector pairs, with no other possible combinations. These isoscalar and isovector pairs
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are also the only ones that build our intrinsic state that we use for the mean-field calculation,

neglecting other particle correlations that now are obvious to play a role, since they do not

match the exact results for A > 6 particles, as seen in the Results section.
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Appendix H

Matrix elements of the SO(8)

interaction

In this Appendix we address the problem of dealing with time-reversed single-particle creation

and annihilation operators and how they are related to the usual ones by a phase. The single-

particle creation operator reads

â+
`m; 1

2
σ; 1

2
τ
, (H.1)

where {`,m; 1
2
, σ; 1

2
, τ} are the orbital angular momentum and its projection, spin and its pro-

jection and isospin and its projection; quantum numbers, respectively.

For the single-particle annihilation operator we have two choices. The time-reversed will be

denoted by ˆ̃a

ˆ̃a`m; 1
2
σ; 1

2
τ , (H.2)

and the usual one will be denoted by a

â`m; 1
2
σ; 1

2
τ . (H.3)

The reason is that only ˆ̃a is a spherical tensor of rank `. â is not but we like to work with

this one instead of ã.

According to Kota [KA06], ˆ̃a and â are related by

â`m; 1
2
σ; 1

2
τ = (−1)`+1+m−σ−τ ã`−m; 1

2
−σ; 1

2
−τ (H.4)

according to Evans [Eva81], ã and a are related by

ã`m; 1
2
σ; 1

2
τ = (−1)`+1+m+σ+τ â`−m; 1

2
−σ; 1

2
−τ . (H.5)
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It is easily seen that both relations are equivalent. However, there are more ways to define

â from ˆ̃a, as in for example

ˆ̃a`m; 1
2
σ; 1

2
τ = (−1)`+1−m−σ−τ â`−m; 1

2
−σ; 1

2
−τ , (H.6)

being equivalent to the relation (H.4) and concluding that the phase that relates â and ˆ̃a is

entirely up to convention.

Following Kota’s convention, defining the isovector pair creation operator as

P̂+
µ` =

√
2`+ 1

2

(
â+

`m+
1 ; 1

2
σ+
1 ; 1

2
τ+1
â+

`m+
2 ; 1

2
σ+
2 ; 1

2
τ+2

)0,0,1

0,0,µ
, (H.7)

and the isovector pair annihilation operator

P̂µ` = (−1)µ
√

2`+ 1

2

(
ˆ̃a`m1; 1

2
σ1; 1

2
τ1

ˆ̃a`m2; 1
2
σ2; 1

2
τ2

)0,0,1

0,0,−µ
, (H.8)

with similar relations hold up for the isoscalar pair creation and annihilation operators, it is

explicitly used time-reversed single-particle operators. As we see for the number, spin and

isospin operators

Â = 2
√

2`+ 1
(
â+

`m+
1 ; 1

2
σ+
1 ; 1

2
τ+1

ˆ̃a`m2; 1
2
σ2; 1

2
τ2

)0,0,0

0,0,0
,

Ŝ =
√

2`+ 1
(
â+

`m+
1 ; 1

2
σ+
1 ; 1

2
τ+1

ˆ̃a`m2; 1
2
σ2; 1

2
τ2

)0,µ,0

0,1,0
,

T̂ =
√

2`+ 1
(
â+

`m+
1 ; 1

2
σ+
1 ; 1

2
τ+1

ˆ̃a`m2; 1
2
σ2; 1

2
τ2

)0,0,µ

0,0,1
,

(H.9)

which are of course computed using a density matrix of the form ρij = 〈Φ|â+
j

ˆ̃ai|Φ〉.
Therefore, if we use Kota’s phase convention for the construction of the matrix elements of

the interaction, we must also include this phase in the density matrix (and subsequent operators

as they depend on the density matrix) as it includes ˆ̃a. Otherwise, we are not consistent and

the solver will retrieve wrong solutions.

However, if we are not enforcing any symmetry in our system, the usual convention has to

be used with â+ and â single-particle creation and annihilation operators. Defining now our

density matrix (and subsequent operators) in the usual way ρij = 〈Φ|â+
j âi|Φ〉. In the following,

we will stick to this convention, rewriting all ˆ̃a operators in terms of â.
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We expand the pair creation and annihilation operators as

P̂+
µ` =

∑
q+

C00
`m+

1 ;`m+
2
C00

1
2
σ+
1 ; 1

2
σ+
2
C1,µ

1
2
τ+1 ; 1

2
τ+2

√
2`+ 1

2
â+

`m+
1 ; 1

2
σ+
1 ; 1

2
τ+1
â+

`m+
2 ; 1

2
σ+
2 ; 1

2
τ+2
, (H.10)

P̂µ` = (−1)µ
∑
q

(−1)2`+m1+m2+σ1+σ2+τ1+τ2C00
`−m1;`−m2

C00
1
2
−σ1; 1

2
−σ2C

1,−µ
1
2
−τ1; 1

2
−τ2

×
√

2`+ 1

2
â`−m1;− 1

2
−σ1; 1

2
−τ1 â`−m2; 1

2
−σ2; 1

2
−τ2 ,

(H.11)

where q+ spans over the quantum numbers of both particles: q+ = {m+
1 , σ

+
1 , τ

+
1 ;m+

2 , σ
+
2 , τ

+
2 }

and q is: q = {m1, σ1, τ1;m2, σ2, τ2}.
We change the signs of the projections of angular momentum, spin and isospin (m,σ, τ),

taking into account that the Clebsch-Gordan coefficients transform under this sign changing as

Cc−γ
a−αb−β = (−1)a+b−cCcγ

aαbβ, (H.12)

obtaining

P̂µ` = (−1)µ
∑
q

(−1)4`−m1−m2−σ1−σ2−τ1−τ2+1C00
`m1;`m2

C00
1
2
σ1; 1

2
σ2
C1,µ

1
2
τ1; 1

2
τ2

×
√

2l + 1

2
â`m1; 1

2
σ1; 1

2
τ1
â`m2; 1

2
σ2; 1

2
τ2
.

(H.13)

Using the following identities

C00
`m1;`m2

C00
`m+

1 ;`m+
2

=
1

2`+ 1
(−1)2`−m1−m+

1 δm1−m2δm+
1 −m

+
2
,

C00
1
2
σ1; 1

2
σ2
C00

1
2
σ+
1 ; 1

2
σ+
2

=
1

2
(−1)1+−σ1−σ+

1 δσ1−σ2δσ+
1 −σ

+
2
,

(H.14)

we are ready to obtain the matrix elements of the interaction. The product P̂+
µ P̂µ gives

P̂+
µ`P̂µ` =

1

4
(−1)µ

∑
q,q+

(−1)2`−m1−m+
1 (−1)1−σ1−σ+

1 (−1)4`−m1−m2−σ1−σ2−τ1−τ2+1δm1−m2

× δm+
1 −m

+
2
δσ+

1 −σ
+
2
δσ1−σ2C

1,µ
1
2
τ+1 ; 1

2
τ+2
C1,µ

1
2
τ1; 1

2
τ2
â+

`m+
1 ; 1

2
σ+
1 ; 1

2
τ+1
â+

`m+
2 ; 1

2
σ+
2 ; 1

2
τ+2
â`m1; 1

2
σ1; 1

2
τ1
â`m2; 1

2
σ2; 1

2
τ2
,

(H.15)
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and, equivalently, for the product of isoscalar pair creation and annihilation operators D̂+
µ D̂µ

D̂+
µ`D̂µ` =

1

4
(−1)µ

∑
q,q+

(−1)2`−m1−m+
1 (−1)1−τ1−τ+1 (−1)4`−m1−m2−σ1−σ2−τ1−τ2+1δm1−m2

× δm+
1 −m

+
2
δτ+1 −τ

+
2
δτ1−τ2C

1,µ
1
2
σ+
1 ; 1

2
σ+
2

C1,µ
1
2
σ1; 1

2
σ2
â+

`m+
1 ; 1

2
σ+
1 ; 1

2
τ+1
â+

`m+
2 ; 1

2
σ+
2 ; 1

2
τ+2
â`m1; 1

2
σ1; 1

2
τ1
â`m2; 1

2
σ2; 1

2
τ2
,

(H.16)

where we have expanded the Clebsch-Gordan coefficients. Rearranging the phases we obtain

P̂+
µ`P̂µ` =

1

4
(−1)µ

∑
q,q+

(−1)2l−2m1−m2−m+
1 −σ

+
1 −σ2−τ1−τ2+1δm1−m2δm+

1 −m
+
2
δσ+

1 −σ
+
2
δσ1−σ2

× C1,µ
1
2
τ+1 ; 1

2
τ+2
C1,µ

1
2
τ1; 1

2
τ2
â+

`m+
1 ; 1

2
σ+
1 ; 1

2
τ+1
â+

`m+
2 ; 1

2
σ+
2 ; 1

2
τ+2
â`m1; 1

2
σ1; 1

2
τ1
â`m2; 1

2
σ2; 1

2
τ2
,

(H.17)

D̂+
µ`D̂µ` =

1

4
(−1)µ

∑
q,q+

(−1)2`−2m1−m2−m+
1 −τ

+
1 −τ2−σ1−σ2+1δm1−m2δm+

1 −m
+
2
δτ+1 −τ

+
2
δτ1−τ2

× C1,µ
1
2
σ+
1 ; 1

2
σ+
2

C1,µ
1
2
σ1; 1

2
σ2
â+

`m+
1 ; 1

2
σ+
1 ; 1

2
τ+1
â+

`m+
2 ; 1

2
σ+
2 ; 1

2
τ+2
â`m1; 1

2
σ1; 1

2
τ1
â`m2; 1

2
σ2; 1

2
τ2
.

(H.18)

The pairing Hamiltonian is of the form (2.17), so we obtain

−1

4

∑
q,q+

∑
µ

(−1)µ(−1)2`−2m1−m2−m+
1 −σ2−τ2+1δm1−m2δm+

1 −m
+
2

[(1− x)(−1)−σ
+
1 −τ1δσ+

1 −σ
+
2
δσ1−σ2

× C1,µ
1
2
τ+1 ; 1

2
τ+2
C1,µ

1
2
τ1; 1

2
τ2

+ (1 + x)(−1)−τ
+
1 −σ1δτ+1 −τ

+
2
δτ1−τ2C

1,µ
1
2
σ+
1 ; 1

2
σ+
2

C1,µ
1
2
σ1; 1

2
σ2

]

× â+

`m+
1 ; 1

2
σ+
1 ; 1

2
τ+1
â+

`m+
2 ; 1

2
σ+
2 ; 1

2
τ+2
â`m1; 1

2
σ1; 1

2
τ1
â`m2; 1

2
σ2; 1

2
τ2
.

(H.19)

Therefore, the general matrix elements, comparing the former formula with the usual form of

the pairing Hamiltonian [RS80]

1

4

∑
l1l2l3l4

vl1l2l3l4 â
+
l1
â+
l2
âl4 âl3 , (H.20)
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H.1. Multi-orbit case

are

vl1l2l3l4 = −
∑
µ

(−1)µ(−1)−m2−m+
1 −σ2−τ2+1δm1−m2δm+

1 −m
+
2

[
(1− x)(−1)−σ

+
1 −τ1δσ+

1 −σ
+
2
δσ1−σ2

× C1,µ
1
2
τ+1 ; 1

2
τ+2
C1,µ

1
2
τ1; 1

2
τ2

+ (1 + x)(−1)−τ
+
1 −σ1δτ+1 −τ

+
2
δτ1−τ2C

1,µ
1
2
σ+
1 ; 1

2
σ+
2

C1,µ
1
2
σ1; 1

2
σ2

]
,

(H.21)

where in this case

l1 = {m+
1 ;σ+

1 ; τ+
1 },

l2 = {m+
2 ;σ+

2 ; τ+
2 },

l3 = {m2;σ2; τ2},
l4 = {m1;σ1; τ1}.

(H.22)

H.1 Multi-orbit case

In this case, we define the multi-orbit pair creation and annihilation operators as a sum of the

single-orbit pair operators

P̂+
µ =

∑
`

β`P̂
+
µ`,

D̂+
µ =

∑
`

β`D̂
+
µ`,

(H.23)

where for convenience we will take the phase factors β` = 1. The product becomes

P̂+
µ P̂µ =

∑
`+`

P̂+
µ`+P̂µ`,

D̂+
µ D̂µ =

∑
`+`

D̂+
µ`+D̂µ`.

(H.24)

We compute now P̂+
µ`+P̂µ`, evaluating the pair operators

P̂+
µ`+ =

∑
q+

C00
`+m+

1 ;`+m+
2
C00

1
2
σ+
1 ; 1

2
σ+
2
C1,µ

1
2
τ+1 ; 1

2
τ+2

√
2`+ + 1

2
â+

`+m+
1 ; 1

2
σ+
1 ; 1

2
τ+1
â+

`+m+
2 ; 1

2
σ+
2 ; 1

2
τ+2
, (H.25)
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P̂µ` = (−1)µ
∑
q

(−1)4`−m1−m2−σ1−σ2−τ1−τ2+1C00
`m1;`m2

C00
1
2
σ1; 1

2
σ2
C1,µ

1
2
τ1; 1

2
τ2

√
2`+ 1

2

× â`m1; 1
2
σ1; 1

2
τ1
â`m2; 1

2
σ2; 1

2
τ2
,

(H.26)

and using the identity

C00
`+m+

1 ;`+m+
2
C00
`m1;`m2

=
1√

(2`+ 1)(2`+ + 1)
(−1)`

++`−m1−m+
1 δm1−m2δm+

1 −m
+
2
. (H.27)

Thus

P̂+
µ`+P̂µ` =

1

4
(−1)µ

∑
qq+

(−1)4`−m1−m2−σ1−σ2−τ1−τ2+1(−1)`
++`−m+

1 −m1(−1)1−σ+
1 −σ1C1,µ

1
2
τ1; 1

2
τ2
C1,µ

1
2
τ+1 ; 1

2
τ+2

× δm1−m2δm+
1 −m

+
2
δσ1−σ2δσ+

1 −σ
+
2
â+

`+m+
1 ; 1

2
σ+
1 ; 1

2
τ+1
â+

`+m+
2 ; 1

2
σ+
2 ; 1

2
τ+2
â`m1; 1

2
σ1; 1

2
τ1
â`m2; 1

2
σ2; 1

2
τ2
,

(H.28)

and, rearranging the phases

P̂+
µ`+P̂µ` =

1

4
(−1)µ

∑
qq+

(−1)`
++`−m+

1 −m2−σ+
1 −σ2−τ1−τ2+1C1,µ

1
2
τ1; 1

2
τ2
C1,µ

1
2
τ+1 ; 1

2
τ+2

× δm1−m2δm+
1 −m

+
2
δσ1−σ2δσ+

1 −σ
+
2
â+

`+m+
1 ; 1

2
σ+
1 ; 1

2
τ+1
â+

`+m+
2 ; 1

2
σ+
2 ; 1

2
τ+2
â`m1; 1

2
σ1; 1

2
τ1
â`m2; 1

2
σ2; 1

2
τ2
.

(H.29)

Equivalently for D̂+
µ`+D̂µ` we obtain

D̂+
µ`+D̂µ` =

1

4
(−1)µ

∑
qq+

(−1)`
++`−m+

1 −m2−τ+1 −τ2−σ1−σ2+1C1,µ
1
2
σ1; 1

2
σ2
C1,µ

1
2
σ+
1 ; 1

2
σ+
2

× δm1−m2δm+
1 −m

+
2
δτ1−τ2δτ+1 −τ

+
2
â+

`+m+
1 ; 1

2
σ+
1 ; 1

2
τ+1
â+

`+m+
2 ; 1

2
σ+
2 ; 1

2
τ+2
â`m1; 1

2
σ1; 1

2
τ1
â`m2; 1

2
σ2; 1

2
τ2
.

(H.30)

We observe that these expressions correspond to the single orbit case when ` = `+.

Now we are able to construct the matrix elements of the interaction. The Hamiltonian is
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H.1. Multi-orbit case

again given by expression (2.17), so we obtain

−1

4

∑
q,q+

∑
µ

(−1)µ(−1)`
++`−m2−m+

1 −σ2−τ2+1δm1−m2δm+
1 −m

+
2

[
(1− x)(−1)−σ

+
1 −τ1δσ+

1 −σ
+
2
δσ1−σ2

× C1,µ
1
2
τ+1 ; 1

2
τ+2
C1,µ

1
2
τ1; 1

2
τ2

+ (1 + x)(−1)−τ
+
1 −σ1δτ+1 −τ

+
2
δτ1−τ2C

1,µ
1
2
σ+
1 ; 1

2
σ+
2

C1,µ
1
2
σ1; 1

2
σ2

]
× â+

`+m+
1 ; 1

2
σ+
1 ; 1

2
τ+1
â+

`+m+
2 ; 1

2
σ+
2 ; 1

2
τ+2
â`m1; 1

2
σ1; 1

2
τ1
â`m2; 1

2
σ2; 1

2
τ2
,

(H.31)

where we have to keep in mind that we are also summing over the shells l, l+ in q, q+, respec-

tively. Comparing the former formula with the pairing Hamiltonian (H.20) the matrix elements

are

vl1l2l3l4 = −
∑
µ

(−1)µ(−1)`
++`−m2−m+

1 −σ2−τ2+1δm1−m2δm+
1 −m

+
2

[
(1− x)(−1)−σ

+
1 −τ1δσ+

1 −σ
+
2
δσ1−σ2

× C1,µ
1
2
τ+1 ; 1

2
τ+2
C1,µ

1
2
τ1; 1

2
τ2

+ (1 + x)(−1)−τ
+
1 −σ1δτ+1 −τ

+
2
δτ1−τ2C

1,µ
1
2
σ+
1 ; 1

2
σ+
2

C1,µ
1
2
σ1; 1

2
σ2

]
,

(H.32)

where in this case

l1 = {`+;m+
1 ;σ+

1 ; τ+
1 },

l2 = {`+;m+
2 ;σ+

2 ; τ+
2 },

l3 = {`;m2;σ2; τ2},
l4 = {`;m1;σ1; τ1}.

(H.33)

Instead of dealing with several single `−shell, we will deal with the total degeneracy Ω =∑
`(2`+ 1).

The size of the wavefunction, densities and fields matrices is N = 4Ω and the size of the

matrix elements is N2. For the case of interest, namely a pair of l = 2, 3 shells, N = 48 and

N2 = 2304.

169



Appendix I

Alternative derivation of the matrix

elements of the separable interaction

An alternative derivation of the separable matrix elements computed in Section 6.1.1 can be

performed noticing that the Moshinsky transformation (6.19) can be rewritten as

φn1(x1, b)φn2(x2, b) =
∑
nN

MnN
n1n2

φn(x, br)φN(X, bR), (I.1)

where br = b/
√

2 and bR =
√

2b. Using this expression instead, we perform the following

integration

Ix(n1n2;n′1n
′
2) =

∑
n,n′,N,N ′

MnN
n1n2

Mn′N ′

n′1n
′
2

×
∫
dxdx′dXdX ′δ(X −X ′)P (x)P (x′)φn(x, br)φn′(x

′, br)φN(X, bR)φN ′(X
′, bR),

(I.2)

again, integrating over the variables X,X ′,∫
dXdX ′δ(X −X ′)φN(X, bR)φN ′(X

′, bR) =

∫
dXφN(X, bR)φN ′(X, bR) =

=

∫
d(bRX)H

(0)
N (bRX)H

(0)
N ′ (bRX)e−b

2
RX

2

= δNN ′ ,

(I.3)

we find the matrix elements can be written as

Ix(n1n2;n′1n
′
2) =

1√
2

∑
n,n′,N

MnN
n1n2

Mn′N
n′1n
′
2
W (n)W (n′), (I.4)
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with

W (n) =

∫
dxP (x)φn(x, br), (I.5)

and integrating now over x

W (n) =
b

1/2
r√
πa2

∫
dxe−x

2/a2H(0)
n (brx)e−

b2rx
2

2 =
b

1/2
r√
πa2

∫
dxH(0)

n (brx)e−c
2x2 , (I.6)

with c =
√

2+a2b2r
2a2

. Making the change t = cx we obtain

W (n) =
b

1/2
r√
πa2

1

c

∫
dtH(0)

n (brt/c)e
−t2 , (I.7)

and making use of identity (6.28)

W (n) =
b

1/2
r√
πa2

1

c
π1/4

√
n!

(n/2)!

(
b2
r/c

2 − 1

2

)n/2
= b1/2

r π−1/4

√
2

2 + a2b2
r

√
n!

(n/2)!

(
a2b2

r − 2

2a2b2
r + 4

)n/2
,

(I.8)

disentangling the scaling br = b/
√

2, we finally obtain

W (n) =

(
8

π

)1/4
√

b

4 + a2b2

√
n!

(n/2)!

(
a2b2 − 4

2a2b2 + 8

)n/2
. (I.9)

Therefore, defining the auxiliary functions

G(N, n1, n2) = Mn1+n2−N,N
n1n2

W (n1 + n2 −N), (I.10)

we have for the total matrix element

Ix(n1n2;n′1n
′
2) =

n1+n2∑
N=0

G(N, n1, n2)G(N, n′1, n
′
2), (I.11)

which is the same expression as (6.30), where the factor of
√

2 was taken into the expression of

the matrix elements (I.8).
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List of abbreviations

BCS Bardeen-Cooper-Schrieffer

HF Hartree-Fock

HFB Hartree-Fock-Bogoliubov

ALM Augmented Lagrangian Method

VAP Variation After Projection

PAV Projection After Variation

PNP Particle-Number Projection

AMP Angular Momentum (Spin) Projection

ISOP Isospin Projection

np neutron-proton

ph particle-hole

pp particle-particle

rhs right-hand side

lhs left-hand side
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[FGG13] T Faestermann, M Górska, and H Grawe. “The structure of 100Sn and neighbouring

nuclei”. In: Progress in Particle and Nuclear Physics 69 (2013), pp. 85–130.

[FM14] S. Frauendorf and A.O. Macchiavelli. “Overview of neutron-proton pairing”. In:

Prog. Part. Nucl. Phys. 78 (2014), pp. 24–90.

[FS64] B H Flowers and S Szpikowski. “Quasi-spin in LS coupling”. In: Proceedings of the

Physical Society 84.5 (1964), p. 673.

[Fu16] GJ Fu et al. “Shell model study of T= 0 states for Cd 96 by the nucleon-pair

approximation”. In: Physical Review C 94.2 (2016), p. 024336.

176



Bibliography

[GBL11] Alexandros Gezerlis, GF Bertsch, and YL Luo. “Mixed-spin pairing condensates in

heavy nuclei”. In: Physical review letters 106.25 (2011), p. 252502.

[GK65] A Goswami and LS Kisslinger. “Particle Correlation Arising from Isospin Pairing

in Light Nuclei”. In: Physical Review 140.1B (1965), B26.

[GM96] Walter Greiner and Joachim A Maruhn. Nuclear models. Springer, 1996.

[GMY63] IM Gel’fand, RA Milnos, and Z Ya. Shapiro, Representations of the Rotation and

Lorentz Groups. 1963.

[Goo01] Alan L Goodman. “T= 0 and T= 1 pairing in rotational states of the N= Z nucleus

80 Zr”. In: Physical Review C 63.4 (2001), p. 044325.

[Goo72] AL Goodman. “Generalized gap equations and the coherence of the α-α pair field”.

In: Nuclear Physics A 186.3 (1972), pp. 475–492.

[Goo99] Alan L. Goodman. “Proton-neutron pairing in Z = N nuclei with A = 76 − 96”.

In: Phys. Rev. C 60 (1999), p. 014311.

[GR14] Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. Table of integrals,

series, and products. Academic press, 2014.
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