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Abstract 

This thesis describes a novel method for the cyclisation of linear precursors possessing 

multiple internal nucleophiles, via multi internal nucleophile ring expansion (multi-INRE) 

cascade reactions to yield novel heterocyclic-macrocyclic lactones. 

Section 2.1 describes the design of proposed novel linear multi-INRE precursor A and 

associated synthetic strategies. Section 2.2 presents the multistep synthesis route to linear 

multi-INRE precursor A which, after considerable optimisation, was achieved on a three-

gram scale with an overall yield of 50%. Section 2.3 details the first reported multi-INRE 

reaction, with the synthesis of heterocyclic-macrocyclic lactone B. Section 2.3 also 

comments on the atroposelectivity of the multi-INRE reaction A → B with a kinetic model 

proposed to explain the selectivity. Section 3.3 details the synthesis and subsequent 

cyclisation of two aliphatic linear precursors (C) via multi-INRE reactions. In this section, 

two novel aliphatic linear precursors possessing two internal amine nucleophiles (C) and 

their respective multi-INRE heterocyclic-macrocyclic lactone products (D) are synthesised. 

Section 3.4 details the screening of multi-INRE reaction A → B, culminating in the 

discovery of conditions that enable a yield of 73% for the initial multi-INRE. Finally, chapter 

four details the design of three other potential linear precursors containing two internal 

nucleophiles and describes the progress made towards the synthesis of each (E, F and G). 
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Introduction 

1.1 Medium-sized rings and macrocycles 

Medium-sized rings and macrocycles are important in several diverse areas of chemistry and 

applied science; for example, they are present in  many bioactive natural products,1–4 and 

medicinal compounds (e.g. 1–2),5,6 as well as in countless man-made molecules with varied 

applications, including ligands, sensors (e.g. 3), advanced materials and molecular machines 

(Figure 1).7–10 Molecules containing medium-sized rings and macrocycles are therefore in 

high demand, prompting chemists to develop improved routes to prepare them. However, 

both macrocycles and medium-sized rings can be challenging synthetic targets.  

 

Figure 1: Medium-sized rings and macrocycles in relevant compounds. 1 (-)-ovatolide, 2 PI3Kα inhibitor, 3 

NMR chiral shift reagent. 

The classical way to make medium sized rings and macrocycles is via the direct end-to-end 

cyclisation of linear precursors (Figure 2).11 However, when the target ring size is eight 

atoms or more, end-to-end cyclisation is often unsuccessful; this is due to several 

thermodynamic factors, such as the statistical improbability of either end of the linear 

precursor coming in contact, a net loss of entropy in the cyclisation, and transannular strain 

present in the target rings (and associated transition states).12  
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Figure 2: Simple diagram showing the difficulty of end-to-end cyclisation using longer linear precursors. 

When cyclisation is relatively inefficient, intermolecular coupling becomes a major 

competing pathway, resulting in the unwanted formation of dimers and polymers (Figure 

2).13 To minimise these unwanted intermolecular side reactions, different approaches have 

been adopted over the years, including, but not limited to: high-dilution,14 pseudo high-

dilution,15 kinetic templation, and thermodynamic templation.16,17 However, these methods 

are often impractical and can introduce new problems of their own, for example, the 

increased financial and environmental cost of running reactions with very high solvent to 

substrate ratios.18 One strategy which avoids the dilution problem is the use of ring-

expansion reactions.19 Ring-expansion reactions, in general, take already formed rings and 

enlarge the ring via a rearrangement reaction. By keeping the size of cyclic transition states 

lower, this can dramatically reduce the impact of competing intermolecular reactions 

(providing the rearrangement process is efficient), and as a result such reactions often do not 

require a specialised set-up or high-dilution.20 

There is a diverse array of literature on the topic of ring expansion.8,19,21 This thesis will 

cover several ring expansion strategies, focusing mainly on sequential/cascade ring 

expansion, as this subgenre of ring expansion reactions relates most closely to the work done 

in this thesis. However, selected non-sequential ring expansion reactions have also been 

included, either to introduce a complex sequential ring expansion strategy, or to exemplify 

key preliminary work. 
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1.2 Synthesis of Medium-Sized Rings and Macrocycles via Sequential 

Ring Expansion Reactions  

1.2.1 Transesterification/Transamidation 

In general, transesterification/transamidation involves the exchange of acyl subunits of an 

amide/ester with an amine/alcohol. An instructive example of the use of transamidation in 

the ring expansion field is a reaction sequence known as the ‘zip reaction’, a term coined by 

its pioneer, the late Manfred Hesse,22 which starts with the N-alkylation of a lactam 4 

(Scheme 1). In the example below, sodiated lactam 4 was alkylated by undergoing conjugate 

addition with acrylonitrile and reduced by hydrogenation to form primary amine 5. The 

tethered amine of 5 was then alkylated a second time in similar fashion to give 6. Then, 

addition of the strong base potassium 3-aminopropylamide (KAPA) promotes 

intramolecular cyclisation via a kinetically favourable 6-membered cyclic transition state (6 

→ 7a) before fragmentation of the bridging bond (7a → 7b), thus forming the 17-membered 

ring, 7b. The same type of ring expansion process then takes place a second time, with the 

primary amine of 7b attacking into the lactam, again via a 6-membered ring transitions state, 

to form the 21-membered macrocycle 8. 

 

Scheme 1: The first reported incident of a zip reaction using a simple cyclic amide. 

The zip reaction has the potential to increase the size of the starting lactam greatly, with the 

reaction taking its name from an analogy to the ring expansion resembling a zip unfurling. 

Scheme 2 shows the extent of this method, with the 53-membered macrocycle 10 being 
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formed from the 13-membered lactam with a long linear alkyl chain containing multiple 

secondary amines (9).23 It is worth noting that while the yield reported is highly impressive 

(38%), the resulting 53-membered lactam 10 was characterised only by IR and TLC, and not 

by NMR spectroscopy or mass spectrometry, so the presence of isomeric impurities in the 

product cannot be ruled out. 

 

Scheme 2: A zip reaction forming a 53-membered macrocycle. 

Transamidation has been frequently used in the total synthesis of macrocyclic lactam natural 

products (Figure 3).24–26 A distinct feature of transamidation products is an N–N relationship 

separated by three to five carbons with functionalised amides, an artefact of the branched 

linear chain attached to the starting material, and the five to seven membered ring transition 

states used to make them. This relationship is highlighted in red in total synthesis products 

(Figure 3).  
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Figure 3: Natural products formed using zip reactions. Celacinnine 11, homaline 12, and inandenin-12-one 13. 

There are also examples of related ring expansion transesterification reactions that proceed 

from esters and thioesters.27,28 For example, Scheme 3 shows 9-membered lactone 14 

undergoing ring expansion via transesterification, to form the ring expanded lactone 15 in 

excellent 97% yield. The transthioesterification cascade shown in Scheme 4 is an interesting 

example of macrocyclic peptide synthesis, where the linear peptide with several free thiols, 

represented in a simplified form by 16, first forms the thioester 17a before going on to 

undergo repeated reversible transthioesterification exchange reactions (e.g. 17a → 17b), to 

form the macrocyclic peptide 18, which is the thermodynamic product in this reaction.  

 

Scheme 3: Corey and Nicolaou – transesterification ring expansion to make a 12-membered ring. 

 

Scheme 4: J. P. Tam et al. – the use of transthioesterification to make large peptide macrocycles (N-terminal 

cysteine in orange and C-terminal residues in green). 
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However, transamidation/transesterification reactions become far less effective when trying 

to make medium-sized rings which are less than ten atoms in size.21 This is largely due to 

the destabilising transannular interactions which are very often  present between the 

functional groups in functionalised medium-sized rings (e.g. torsional strain and lone pair 

repulsion). This problem is especially important in reactions under thermodynamic control 

(which transamidation reactions usually are), because if the precursors are lower in energy 

than the ring expanded products, this renders ring expansion unfeasible via this approach.  

 

1.2.2 Radical Cascade Reactions 

The formation of medium-sized rings and macrocycles via ring expansion reactions which 

involve free radical intermediates has been well documented in the literature.29 Many radical 

cyclisations involve a single ring expansion step, such as the Dowd–Beckwith reaction, 

shown in Scheme 5.30 In this example, pentanone (19) was alkylated with dibromomethane 

to form 20. The bromine in 20 was abstracted by a tributyltin radical generated using 

classical azobisisobutyronitrile (AIBN) initiation, to give the free radical intermediate 21a, 

which then cyclises to form a cyclopropane unit, giving the bicyclic intermediate 21b. The 

bridging bond of the bicyclic intermediate 21b then fragments, forming cyclohexane 

structure 21c, in which the radical is much more stable. Finally, this radial goes on to abstract 

a hydrogen from tributyltin hydride to give the target molecule 22 in a yield of 73%. This is 

a simple example of how free radicals can be used in a ring expansion. 

 

Scheme 5: Free radical ring expansion of 5-membered ring 18 into 6-membered ring 21.  

Free radical ring expansion can also be paired with other ring expansion reactions as part of 

sequential ring expansion strategies. Dowd and Zhang  introduced sequential ring expansions 

mediated by free radical generation,31 allowing for the generation of much larger cyclic 
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ketones (Scheme 6). Thus, silyl enolate 23 underwent a [2+2] cycloaddition with a ketene 

formed in situ from acid chloride 24, thus forming cyclobutane 25. Next, free radical 26a 

was created from the abstraction of bromine from 25 using tributyltin hydride and AIBN. 

The free radical 26a went on to cyclise and then fragment, which is presumably driven by 

relief of ring strain in the cyclobutene unit, affording 26b. Hydrogen was abstracted from 

tributyltin hydride to give 27 before radical de-chlorination furnished the bicyclic ketone 29. 

Reduction, mesylation and deprotection gave 30, which underwent a final Grob-type 

fragmentation to form the final 11-membered macrocycle 31 in an overall yield of 20%.  

 

Scheme 6: Cascade radical ring expansion followed by Grob fragmentation. 

Pattenden and Schulz also reported a radical-based cascade ring-expansion reaction method, 

that showcases the ability to use free radicals in two discrete sequential ring expansions 

(Scheme 7).32 The initial vinyl radical, 33a, was made from the alkyne 32 using HSi(SiMe3)3 

and AIBN. Then, free radical 33a readily cyclised to form the bicycle intermediate 33b. 

Fragmentation of the bridged bond of bicyclic molecule 33b led to the formation of 8-

membered intermediate 33c, which then recyclised to form the more stabilised α-silyl radical 

33d. Free radical 33d then reacted with the oxime group to form an unstable cyclopropane 

unit 33e, which ring expanded to form 6-membered ring 33f before a silane radical was 
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ejected, thus propagating the chain, and forming the ring expanded oxime 34, in a good yield 

of 70%.  

 
Scheme 7: Radical cascade for the conversion of four membered ring oxime 31 into 6 and 5 membered bicyclic 

oxime 34. 

 

1.2.3 Fragmentation Reactions 

A classic method for forming macrocycles from polycyclic precursors is through sigma-

bond fragmentation of bicyclic precursors. This is arguably best demonstrated through 

Grob/Wharton/Eschenmoser-type fragmentations,33 which are all reactions in which a 

bridging bond in a bicyclic starting material fragments, forming a single, larger ring. Work 

done by Thommen et al., shows an impressive example of a reaction sequence featuring 

sequential Grob fragmentation reactions, in which 15-membered ketone 41 was made from 

the tricyclic ketone 35 (Scheme 8).34 Reduction of ketone 35 gave the tricyclic triol 36, which 

was tosylated to give 37. Diol 37 underwent Grob fragmentation promoted by tert-butoxide, 

thus ejecting the tosylate group, resulting in the ring expansion of 37 into 38 in a yield of 

59%. The Grob fragmentation process was then repeated, with reduction of ketone 38 using 

lithium aluminium hydride to give diol 39, tosylation to form 40 then a second Grob 

fragmentation to furnish the 15-membered ketone 41, with defined Z,Z stereochemistry, in 

excellent yield of 90%. 
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Scheme 8: Double ring expansion via Grob fragmentation. 

As detailed before (Scheme 6), Grob fragmentation can be used in conjunction with other 

ring expansion reactions. This is demonstrated by Ikeda et al 35 in the synthesis of the natural 

product (±)-phoracantholide M (Scheme 9). In this example, an initial Grob-type 

fragmentation (44 → 46) preceded an oxidative ring expansion fragmentation of bicyclic 

molecule 46, to form the 12-membered lactone 47. Initial cyclisation of tethered alkene 42 

was achieved through a [2+2] photocycloaddition, forming the strained tricyclic structure of 

43. Mesylation of the alcohol 43 gave 44, which underwent Grob fragmentation giving 45, 

which tautomerised to form the bicyclic ether 46. Oxidation of the more nucleophilic alkene 

of diene 46 to epoxide 47 with m-CPBA and subsequent ring expansion of 47 furnished the 

12-membered lactone 48 in a yield of 58%. 

 

Scheme 9: Grob fragmentation followed by oxidative expansion leading to a cascade ring expansion. 

Work from Maio et al.36 shows an interesting oxidative fragmentation reaction preceding 

transesterification to give sequential ring expansions, thus forming the 11-membered lactone 
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54 (Scheme 10). Nucleophilic attack of α-silyl cycloalkanone enolate 49 into oxetane 50 

gave the bicyclic hemiketal 51. Oxidative fragmentation of hemiketal 51 with ceric 

ammonium nitrate (CAN) then formed the 8-membered lactone 52. Lactone 52 was reduced 

by hydrogen on palladium before undergoing acid catalysed transesterification (53 → 54), 

forming the 11-membered lactone 54, in yield of 47%. 

 

Scheme 10: Oxidative fragmentation followed by a transesterification. 

With numerous routes to build multicyclic rings and the ability to combine fragmentation 

with other classes of ring expansion, fragmentation reactions have great scope and versatility 

when forming medium-sized rings and macrocycles through sequential ring expansions. 

 

1.2.4 Pericyclic Reactions 

A pericyclic reaction is the process by which bonds are made or broken via 

a concerted, cyclic transition state.37 They have been used to make medium-sized rings and 

macrocycles in cascade ring expansion sequences, examples of which are summarised in this 

section. The examples shown focus on the use of hetero-conjugated species with sigmatropic 

rearrangements mediated by nitrogen and sulfur.  

Taking advantage of the diverse reactivity of sulfur ylides, a reaction conceived by Vedejs 

et al.,38 (Scheme 11) is a good example of consecutive sigmatropic rearrangements. Acid 

catalysed addition of diazo 56 to cyclic sulfide 55 formed sulfide salt 57, which was 

subsequently deprotonated to form sulfur ylide 58. The first of two [2,3]-sigmatropic 

rearrangements then gave the expanded 8-membered ring 59. Next, sulfide 59 was converted 

into 60 via a Wittig olefination, before the alkylation process was then repeated with the 
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addition of diazo 61 to form the ylide 62, followed by a sigmatropic rearrangement to form 

the 11-membered sulfide ring 63, with Z,Z stereochemistry. 

 

Scheme 11: Successive sigmatropic rearrangement using sulfur ylides to form an 11-membered ring. 

This strategy of consecutive ring expansion via sigmatropic rearrangements of cyclic 

sulfides was simplified and expanded by Schmid et al.39 who built upon the procedure 

presented by Vedejs through simple alkylation of cyclic sulfides using alkyl halides and TFA 

as part of a two-step addition/expansion. This is illustrated in Scheme 12; alkylation of 

sulfide 55 with allyl bromide which gave sulfide salt 64, and subsequent deprotonation with 

potassium hydroxide gave sulfur ylide 65. Ylide 65 then rearranged to give the ring expanded 

sulfide 66. This is the key point where Schmid’s sigmatropic rearrangement approach differs 

to that of Vedejs is that 66 now is ready for alkylation without further modification, making 

cascade ring expansions much easier in fewer steps. Thus, Scheme 12 also shows a second 

iteration of alkylation/expansion forming the 11-membered ring 69 with overall yield of 

49%.  

 
Scheme 12: Ring expansion via alkylation and sigmatropic rearrangement. 
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However, a drawback to the simplified alkylation rearrangement method (Scheme 12) was 

highlighted by Vedejs et al.,40 who isolated a side-product in equal quantities to the ring 

expanded product 66, thus revealing an unwanted side reaction. As is shown in Scheme 13, 

deprotonation of the proton α- to sulfur on the ring in sulfide 70, rather than the exocyclic 

proton, forms ylide 71 and this led to a rearrangement to form undesired side product 72. 

Sulfide 72 can go on to become alkylated and disrupt the reaction further. This problem is 

caused by the lack of regioselectivity from the DBU in the deprotonation step (70 → 71); as 

both environments appear to be relatively similar, and hence would be expected to have a 

similar pKa value, arguably this side reaction is not surprising. 

 

Scheme 13: Undesired side product formation in sulfur ylide sigmatropic rearrangement. 

Sequential ring-expanding sigmatropic rearrangements of molecules containing nitrogen are 

less common than those containing sulfur, but there are notable exceptions. Work done by 

Back et al.41 (Scheme 14) shows two [3,3]-sigmatropic rearrangements of a pyrrolidine to 

form the 14-membered N-heterocycle 80. Electrophilic addition of the acetylenic sulfone to 

heterocycle 73 gave ammonium zwitterion 74 which underwent aza-Cope sigmatropic 

rearrangement, expanding 74 to the neutral 10-membered enamine 75. Enamine 75 was 

selectively hydrogenated in the presence of palladium on carbon to give enamine 76. 

Alkylation of enamine 76 with a Grignard reagent and removal of the tosyl group furnished 

the saturated heterocycle 78, which underwent electrophilic addition with acetylenic sulfone 

to give ammonium zwitterion 79. The unstable ammonium zwitterion 79 once more 

underwent a sigmatropic rearrangement forming the expanded 14-membered ring 80 in a 

good yield of 89%. 
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Scheme 14: Consecutive aza-Cope sigmatropic rearrangement. 

Scheme 15 shows a tertiary amine mediated sigmatropic rearrangement by Suh et al.,42 who 

demonstrated the use of aza-Claisen rearrangements in consecutive ring expansions in their 

total syntheses of fluvirucinines. Enolisation of the cyclic amide 81 to enolate 82 gave the 

conjugation needed for the aza-Claisen rearrangement. This rearrangement proceeded via 

the breaking of the cyclic N-C bond and formation of the cyclic C-C σ-bond and 

thermodynamically favoured E-isomer π-bond in turn expanding the ring into the medium-

sized lactam (83). After several steps (83 → 84, not shown) the same process was repeated 

to convert 85 into 87. Cyclic secondary amine 85 was then acylated before undergoing 

enolization and sigmatropic rearrangement to give lactam 87 in good yield of 74%.  

 

Scheme 15: aza-Claisen rearrangements giving ring expanded macrocycles. 
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A creative method of expanding a ring in an iterative fashion is presented by Seyden-Penne 

et al. 43 who reported a way to expand saturated lactones by one carbon at a time. This is 

done through the generation of chlorocarbenes and their subsequent cycloaddition with silyl 

enolates to form cyclopropane units which collapse into rings one atom larger than the 

precursor (Scheme 16). Starting with enolization of lactone 88, silyl enolate 89 was reacted 

with a chlorocarbene (formed in situ) to form the strained bicyclic system 90 which readily 

collapsed into the much less strained lactone 91. After hydrogenation (91 → 92), the same 

process can be repeated until the desired sized lactone is formed, in this case a 10-membered 

lactone was formed (93) through two more iterations. 

 

Scheme 16: Formation of macrocycles through iterative carbene cyclopropanation and expansion. 

This single atom ring expansion strategy could theoretically be performed any number of 

times to make any ring size desired; however, the overall yield of 88 → 92 is 63%, and this 

restricts the utility of the reaction somewhat, as after only three iterations, the ring is 

expanded by three atoms with an overall yield of 25%. Compared to other methods which 

allow for ring expansion of similar magnitudes with higher yields, single atom ring 

expansion is therefore less favourable, at least when larger changes in ring size are required. 

 

1.2.5 Ring Expansion Metathesis Polymerisation 

Olefin metathesis is a reaction popular in synthesis that involves the exchange of substituents 

between a pair of alkenes to generate a new pair of different alkenes.44 This reaction has 

been expanded on greatly since its inception, and has been used in many areas of synthetic 

chemistry, including macrocycle formation. However, many methods to make macrocycles 

through metathesis do so through ring-closing metathesis (RCM),45 using a long, linear 

precursor, which can encounter the same problems with competing intermolecular reaction 
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discussed earlier.13 In order to avoid this, metathesis can be used to expand the size of an 

olefin containing cyclic compounds. 

Scheme 17 is an example of ring expansion metathesis polymerisation (REMP), first 

showcased by Grubbs et al. 46,47 Cyclopentene 95, Grubbs catalyst II (94) and acyclic diene 

96 were heated at reflux for 12 hours in DCM to yield the ring expanded product 100 in  

43% yield, in going from a 5-membered ring to an 18-membered ring. Mechanistically, this 

proceeded through the ring opening metathesis of 95 to form 97b, which underwent cross 

metathesis with diene 96 to award the long linear diene 98. Diene 98 then underwent ring 

closing metathesis (RCM) using the same catalyst 94 to yield the final macrocycle 100 in 

yield of 43%. Scheme 16 shows the formation of an 18-membered ring using the bis-vinyl 

ketone 96 which reacts selectively with terminal olefins in excellent yields, minimising by-

products and driving the reaction forward. The largest ring size reported in this manuscript 

using REMP was 26, however, it is worth noting that once ring opening metathesis of 

pentene (95) occurs, the molecule becomes linear. For this reason, it could be argued that 

with the ring opening of pentene (97a → 97b) diminishes the advantages that ring expansion 

has over end-to-end cyclisation. 

 

 

Scheme 17: Formation of 18-membered macrocycle 100 through REMP. 
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This idea was developed further by Veige et al.,48 who reported a tungsten catalyst (101) 

able to cyclise norbornene monomers into a single large cyclic polymer using successive 

REMP in a catalytic cycle. A generic example is shown in Scheme 18, in which an n number 

of norbornene units are cyclised to form a ring which is 5n carbons in size.  

 

Scheme 18: Catalytic cycle of successive REMP through polymerisation of norbornene units. 

Tungsten catalyst 101 is activated by a norbornene through the [2+2] cycloaddition between 

the alkene group of the norbornene and the catalyst to form complex 103a. Intermediate 

103a then underwent a [2+2] cycloaddition to give the less strained active catalyst 103b, 

possessing a reactive alkene which underwent metathesis with another norbornene, 

expanding the intermediate ring, to give 103c. This process is repeated until the intermediate 

undergoes a final RCM step, to yield a macrocycle with 5n carbons in size, where n is the 

number of norbornene units. Once the macrocycle product is detached (103c → 104) the 

active catalyst 103b can go on to react further to generate more macrocyclic polymers. A 

noteworthy point is the ring expanded macrocycle contains only cis alkene isomers, and is 

highly syndiotactic, demonstrating the stereoselectivity of the catalyst. 

Although REMP allows for the construction of large macrocycles and cyclic polymers alike, 

there are few examples of using pre-functionalised rings and reagents, most likely due to the 

difficulty of finding suitable reaction conditions that avoid competing cross metathesis and 
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linear polymerisation.47 This somewhat limits the scope of this reaction for the synthesis of 

bioactive molecules and natural products, and at present, there are no examples of this 

method being used in total synthesis. 

 

1.2.6 Rhodium-Catalysed Ring Expansion 

Over the past decade there has been keen interest in the use of rhodium complexes to expand 

strained cyclopropane/cyclopropene rings into larger medium sized rings via the generation 

of rhodacyclopentanones.49 Expansion of a ring through the insertion of a rhodium complex 

was first reported in 2010 by Wang et al.,50 who expanded a strained cyclopropene unit into 

a 5,6-bicyclic molecule in a Rh(I)-catalysed carbonylative carbocyclisation reaction 

(Scheme 19). 

The catalytic cycle is summarised in Scheme 19, for the formation of bicyclic amine 108 

from propene 105 using [Rh(CO)2Cl]2 (5% mol) in DCE at 80 oC for 12 h. The rhodium 

catalyst undergoes an oxidative addition reaction via insertion into the cyclopropene 105 to 

form intermediate 4-membered rhodium complex 106a, partially relieving the strain of the 

previous cyclopropene unit. Insertion of carbon monoxide into the ring then increases the 

size of the rhodium-containing ring from a 4- to a 5-membered ring, affording the 

rhodacyclopentenone complex 106b which then undergoes a [3+1+2] cycloaddition with the 

tethered alkyne, to give rhodium intermediate 106c. Reductive elimination of intermediate 

106c then takes place to regenerate the active catalyst and yield the target 5,6-bicyclic 

compound 107, which tautomerises to form the aromatic compound 108 in yield of 83%.  
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Scheme 19: Proposed catalytic cycle for Rh(I)-catalysed carbonylative carbocyclisation of cyclopropene. 

This work has since been expanded on, by increasing the ring size of the target molecule and 

by the introduction of heteroatoms into the ring. Bower et al. showcase both of these features 

in their work summarised in Scheme 20, with the directed ring expansion of an 

aminocyclopropane into an 8-membered N-hetrocycle.51 The rhodium catalyst inserts into 

cyclopropane unit of indole 109 to give the 4-membered rhodium ring 110a. Next, chelation 

to the amide carbonyl group directs the insertion of CO, forming rhodacyclopentenone 110b. 

The nucleophilic C3-position of the indole unit on 110b can coordinate to the rhodium metal 

centre, a process termed “capture”, to form 110c, and the tricyclic structure 110c then 

“collapses” by undergoing reductive elimination, in turn gaining a proton and forming the 

8-membered target N-heterocycle 111, in a good yield of 77%.  



19 
 

 

Scheme 20: “Capture-collapse” directed carbonylative C-C ring expansion of aminocyclopropane. 

It is also possible for rhodium to insert into cyclobutane units. Ito et al.52 showcased the 

ability of rhodacyclopentanone complexes to form lactones from cyclobutene units via the 

ring expansion of cyclobutanone 112 (Scheme 21). In this study, the rhodium complex 

inserts into the cyclobutanone unit of 112 to generate rhodacyclopentanone complex 113a. 

Thus, the rhodium atom first coordinated to the phenolic hydroxy group of 112, bringing the 

rhodium into close proximity to the α C-C bond, allowing for insertion and formation of 

113b, and finally, β-hydride elimination yields the target 7-membered lactone 114 in 86% 

yield. It is worth noting that although the reaction was carried out under a CO atmosphere, 

CO is not directly involved in the reaction mechanism unlike previous rhodium-catalysed 

ring expansion reactions (See Scheme 19). 

 

Scheme 21: Lactone formation by rhodium‐catalyzed C−C bond cleavage of cyclobutanone. 
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1.2.7 Successive Ring Expansion 

Successive ring expansion (SuRE) is a method pioneered in York by Unsworth et al.,53 and 

is based on the iterative insertion of hydroxy acids/amino acid derivatives into cyclic β-

ketoesters to form lactones/lactams. The iterative nature of the method enables ring 

expansion to be performed several times to form a range of different sized rings via a 

relatively short reaction sequence. An early example is summarised in Scheme 22. In this 

reaction, 12-membered β-ketoester 115 was reacted with acid chloride 116 in the presence 

of magnesium chloride and pyridine to promote acylation of the β-ketoester. Following 

acylation, the Fmoc protecting group on the tethered amine of 117 was cleaved using 

piperidine, exposing primary amine 118a which then underwent rapid cyclisation to form 

118b, via a 6-membered ring transition, and fragmented to form the ring expanded 

macrocyclic lactam 119, in an impressive overall yield of 80%. As the product 119 also 

contains a cyclic β-ketoester motif, the same sequence of reactions can then be repeated; 

thus, the process was repeated using the same conditions, to yield the 20-membered 

macrocycle 120, and then again to form the large 24-membered macrocycle 121.  

 
Scheme 22: Successive ring expansion reactions with β-amino acid fragments. 
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Successive ring expansion allows for the acylation of rings with amino acid fragments 

varying from three or four atoms long, and the high yielding nature of successive ring 

expansion allows for up to three iterations, before inefficient acylation prevents further 

expansion. This makes it an appealing and practical route for macrocycle synthesis. The 

linear fragments can be pre-functionalised with a variety of useful handles before ring 

expansion, make SuRE an attractive way to construct diverse functional macrocycles and 

medium sized rings, and to exemplify this, the group used the method to create a of library 

medium-sized ring scaffolds for inclusion in a high-throughput-screening library. 54 

Successive ring expansion can also be used for the expansion of lactam starting materials 

(Scheme 23).55 For example, 12-membered lactam 122 can be acylated with  acid chloride 

123 at reflux in DCM with 4-dimethylaminopyridine (DMAP) and pyridine. In this work, 

tethered amine 125a was revealed through Fmoc cleavage of 124, this time using DBU as 

base, and this amine underwent in situ cyclisation to 125b and fragmentation, forming the 

ring expanded lactam 126 in an excellent overall yield of 91%. Lactam 126 can be acylated 

and expanded again in the same way, and thus, using this procedure the expansion (steps a 

and b) was repeated three times to form the 24-membered lactam 128. After three iterations 

of the SuRE method, the lactam 122 had near doubled in size with an overall yield of 58%. 

 
Scheme 23: Successive ring expansion using simple lactams and β-amino acid fragments. 
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The insertion of hydroxy acid fragments is also possible using lactam starting materials, 

allowing for the synthesis of macrocyclic lactones.56 The chemistry outlined in Scheme 24 

is conceptually similar to the amino acid variant shown in Scheme 23, with the same 

acylation conditions used to convert lactam  129 into 131, but in this case acylation was done 

with a benzyl protected hydroxy acid derivative 130. Now, the deprotection step was 

performed via hydrogenolysis to cleave the benzyl group and reveal the tethered alcohol 

(131→132a) and following addition of triethylamine as a weak base, lactam 132a underwent 

smooth ring expansion to form lactone 133 in high yield of 94%. Expanded lactam 133 could 

then be acylated and ring expanded twice more in the same way, to form first 17-membered 

macrocycle 134, and then the 21-membered macrocycle 135 in 84% yield. 

 

Scheme 24: Successive ring expansion using simple lactams and β-hydroxy acid fragments. 

Hydroxy and amino acid fragments (both α and β) can be used interchangeably in successive 

ring-expansion reactions. This is illustrated by the successive ring expansion product 138, 

where the starting material, 13-membered lactam 123, was acylated and expanded using β-

hydroxy acid fragment 130 (red) before being acylated and expanded by α-amino acid 

fragment 137 (blue), to furnish the 20-membered macrocycle 138 in overall yield of 77%, 

with several similar mixed examples also having been reported.  
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Scheme 25: Successive ring expansion with both hydroxy and amino acids. 

 

1.2.8 Internal Nucleophile Ring Expansion 

Internal nucleophile ring expansion (INRE) is a methodology discovered and reported 

recently (2019) by the Unsworth group.,57 and is a method by which medium-sized rings can 

be made directly from linear precursors via a cyclisation/ring expansion cascade. A central 

design feature of this approach is to ensure that all cyclisation reactions involved in the 

overall process proceed via thermodynamically favourable transition states in terms of ring 

size (specifically 5–7-membered ring cyclic transition states). In contrast, medium-sized ring 

transition states, which are typically destabilised by transannular interactions and strain, are 

completely avoided. This is done by installing an internal nucleophilic into the linear starting 

material, to promote a cyclisation/ring expansion cascade (Figure 4). By ensuring that the 

reaction proceeds through “normal” sized cyclic transition states, this is proposed to result 

in a more kinetically favourable reaction profile. This more favourable reaction profile will 

be followed, as illustrated in the stylised reaction coordinate for cyclisation of linear 

precursors which do (blue line) and do not (red line) contain an internal nucleophile, depicted 

in Figure 5.  In turn, this lower energy pathway reduces likelihood that intermolecular side 

reactions compete with the desired process, even at normal dilution, which contrasts to 

classical end-to-end cyclisations of medium sized rings, in which high dilution is often 

required to minimise side reactions. This concept is summarised as a generic scheme in 

Figure 4. 
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Figure 4: Model demonstrating function of the internal nucleophilic catalyst (green) in an internal nucleophile 

ring expansion reaction. 

 

Figure 5: Hypothetical reaction coordinate of a generic INRE reaction. 

An illustrative example is shown in Scheme 26, for the lactonisation of linear biaryl acid 

144. First, carboxylic acid 144 is activated by the coupling reagent propanephosphonic acid 

anhydride (T3P) to form the activated acid 145. It is then proposed that the pyridine motif 

present in 145 attacks the activate acid intramolecularly to form the positively charged 6-

membered ring acyl ammonium intermediate 146a. The tethered alcohol of 146a can then 

attack the same carbonyl, forming bicyclic intermediate 146b, before fragmenting to form 

the medium sized lactone 147, in an excellent yield of 90%. Crucially, if the same conditions 

are used on an analogous starting reagent lacking an internal nucleophile pyridine (148), the 

only product isolated is dimer 150, with none of lactone 149 formed, clearly highlighting the 

importance of the internal N-nucleophile (Scheme 27). 

With internal 

nucleophile 

141 → 143 

 

Without internal 

nucleophile 

139 → 140 

  

139 
140 

141 
142 143 
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Scheme 26: INRE with a biaryl linear precursor. 

 

Scheme 27: Dimerization of N-free precursor 148. 

An interesting feature of INRE is its atroposelectivity. Atropisomerism can play a vital role 

in drug discovery and development, given the key role shape and conformation play in any 

ligand-target interaction in biology.58 Due to the biaryl nature of the compound there is a 

lack of free rotation around the C-C bond connecting the two aryl groups in the products 

(supported by DFT studies). As a result of this, it is possible to form and isolate single 

atropisomers of medium-sized ring products using this chemistry. For example, in biaryl 

systems containing secondary alcohols as the terminal nucleophile, two atropisomers are 

possible, but only one atropisomer is formed exclusively. Scheme 28 shows a kinetic model 

for why it is thought that only one atropisomer is observed, based on a sterically preferred 

Si face attack to form the acyl ammonium intermediate.  
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It is proposed that the 6-membered transition state 146a is similar to that of a chair/boat-like 

conformation. The observed stereochemical outcome 147(i) arises from the facial selectivity 

of the alcohol attacking the prochiral intermediate N-acylammonium ion, and when attacking 

via the Si face, this places the methyl group of the secondary alcohol in a pseudo-equatorial 

orientation (146a → 146b(i)). However, when the alcohol attacks the Re face (146a → 

146b(ii)), this would force the methyl group to be in a pseudo-axial orientation, presumably 

resulting in increased steric repulsion, and leading to the transition state being higher in 

energy.  

 

Scheme 28: A kinetic model based on diastereoselective attack into prochiral N-acyliminiumion 

It is also possible to use INRE with precursors which use free amines instead of alcohols as 

the terminal nucleophile to form lactams, such as 155 → 156 (Scheme 29). Equally, aliphatic 

tertiary amines can be used as the internal nucleophilic catalyst (151 → 152), and the length 

of the linear precursor can also be varied, with ring sizes from 8 (lactone 154) to 11 atoms 

(lactone 152) all being made via INRE. 
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Scheme 29: Diverse selection of INRE reactions. 

 

1.3 Project Aims 

Heterocyclic medium-sized rings and macrocycles are interesting compounds in medicinal 

chemistry, and developing improved ways to make complex systems of this type is 

important.59 Therefore, in this project, we wanted to further develop the INRE strategy, with 

specific focus on the development of more elaborate cascade sequences to form larger, more 

complex ring systems more quickly. Thus, a new strategy was conceived, whereby longer 

linear precursors would be designed, that contain more than one internal nucleophile. In 

theory, this would allow for multiple cyclisation/expansion processes in a single cascade 

sequence, thus enabling the formation of larger macrocycles from a linear precursor in one 

pot, in a multi internal nucleophile induced ring expansion (multi-INRE). 

A generic representation of this concept is shown is Scheme 30, where “X” and “Y” 

represent internal nucleophiles and “ZH” signifies a terminal nucleophile. Thus, a linear 
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precursor 159 would be activated by a coupling reagent before cyclising to form the 

intermediate 160a. The carbonyl of this intermediate could then be attacked by the internal 

nucleophile ‘Y’ of 160a to form the 10-membered intermediate 160b, before finally being 

attacked by the tethered nucleophile ‘ZH’ and expanded again, to form the ring expanded 

14-membered macrocycle product 161. As with single internal nucleophile ring expansion, 

the system in question is expected to follow a more kinetically favourable reaction profile 

when compared with the analogous direct end-to-end cyclisation. Figure 6 illustrates a 

hypothetical reaction coordinate for cyclisation of a generic linear precursor which 

constitutes two internal nucleophiles. Intriguingly, there is also no obvious reason why the 

linear starting material could not be extended even further to include more internal 

nucleophiles.  

 

Scheme 30: Example of an internal nucleophile ring expansion reaction with two internal nucleophiles. 

 

Figure 6: Hypothetical reaction coordinate of a general multi-INRE reaction. 

160a 
160

b 

Without internal 

nucleophiles 

 

With internal 

nucleophiles 

159 → 161 
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The overriding aim of this project was to establish the multi-INRE concept as an important 

new method for macrocycle synthesis. To facilitate this, the following objectives were 

devised: 

• To explore the viability of the multi-INRE strategy using a simple model system. 

• To optimise the multi-INRE reaction by screening against an array of different 

reaction conditions. 

• To explore the scope and limitations of the multi-INRE strategy by building and 

testing an assortment of linear precursors.  

• To gain insight into the diastereoselectivity of multi-INRE when used on longer 

precursors. 

• To gain further insight into the mechanistic pathway by which INRE proceeds. 
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Initial Multi-Internal Nucleophile Ring Expansion Precursor Design 

and Synthesis 

2.1 Designing an Initial Precursor 

To explore the viability of a multi-INRE system with more than one internal nucleophile, 

we first designed a linear starting material that contains two internal nucleophiles which 

were previously shown to be successful in single-INRE reactions in the Unsworth group.57 

It was hoped that by incorporating an additional nucleophile into a system already known to 

undergo single-INRE with one internal nucleophile, it would allow two successive ring 

expansions to occur in a cascade process. It was also hoped that the toolbox of synthetic 

procedures already in place for making single-INRE precursors would facilitate the 

preparation of novel multi-INRE precursors. 

The first precursor conceived, and the proposed multi-INRE mechanistic pathway, is shown 

in Scheme 31. The precursor 162 is based on the use of two tertiary amine groups as the 

internal nucleophiles, the first a pyridine, which was the most successful internal nucleophile 

in the previous Unsworth group work, and the second a simple aliphatic tertiary amine. The 

idea was that the carboxylic acid in 162 would be activated by a suitable coupling agent 

before undergoing nucleophilic attack with the pyridine internal nucleophile to give the first 

intermediate 163a, a 6-membered pyridinium ring. The hope then was that the carbonyl 

generated would then be electrophilic enough to be attacked by the second internal 

nucleophile, the tertiary amine, to give the 10-membered ammonium ring 163b. Then, the 

10-membered intermediate 163b would be primed to undergo another ring expansion as the 

terminal alcohol attacks the electrophilic carbonyl moiety to open the ring and form 

macrocyclic lactone 164.  
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Scheme 31: Mechanistic pathway of ring expansion using precursor 162. 

Scheme 32 shows our planned retrosynthetic route to precursor 151. It was envisaged that 

the initial precursor 151 would be constructed from the pyridine 160 containing two 

synthetic handles; an ortho-halide for cross-coupling and an ortho-methyl group suitable for 

lithium ion-trapping.  

Protection of the carboxylic acid when building the precursor was thought to be prudent to 

avoid unwanted side reactions, and this could be done via esterification. The key 

retrosynthetic disconnection would be the C-C biaryl bond, which splits the precursor into 

two synthetic targets, aryl halide 167 and borylated aryl ester 166, which would be connected 

through a cross-coupling reaction. Borylated aryl ester 166 would be accessed through a 

Miyaura cross-coupling between haloaryl ester 168 and B2Pin2. The tertiary amine internal 

nucleophile present in pyridine 167, would be prepared via an SN2 reaction between 

secondary amine 169 and alcohol 170. Finally, secondary amine 169 would be synthesised 

via lithiation-trapping of the 2-methyl present in pyridine 171 with electrophilic imine 172. 

With a synthetic strategy in place, the synthesis of a haloaryl of the form 169 was attempted. 
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Scheme 32: Retrosynthetic route towards the initial multi-INRE precursor 162. 

 

2.2 Building Initial Multi-INRE Precursor 162 

We started by seeking to establish conditions for the lithiation-trapping of bromopyridine 

173 with imine 172. Several lithiation-trapping reactions were performed using conditions 

previously identified for similar reactions.57 Table 1 shows all the different conditions tested, 

each with their respective yield. Thus, when using two equivalents of both imine 172 and 

LDA (Entry 1) a moderate yield of 70% was obtained for amine 174. However, both TLC 

and 1H NMR spectroscopy analysis of the unpurified reaction mixture showed pyridine 173 

was still present. In an attempt to convert all starting material 173 into product, the reaction 

time was increased from 30 minutes to two hours (Entry 2), which led to an increase in yield 

to 81%. Next, we questioned whether the use of two equivalents of LDA was necessary, 

given that only one deprotonation was required; thus, the reaction was trialled using reduced 

equivalents of LDA (1.2 equiv.) but this led to a significant drop in yield from 81% to 60% 

(Entry 3). Furthermore, a number of uncharacterisable side-products were also observed by 

TLC and 1H NMR spectroscopy under these conditions, most likely caused by the 
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polymerisation of 173 via SNAr. Simultaneously, a lithiation-trapping reaction with both 

reduced equivalents of imine 172 and LDA was trialled in the same hope of generating a 

more efficient lithiation-trapping reaction (Entry 4). Using only 1.5 equivalents of imine 172 

and LDA gave the best result, furnishing amine 174 in 80% yield; this result was particularly 

pleasing as the amount of imine 172 could be reduced, allowing for a more efficient 

synthesis.  

Table 1: Lithiation trapping optimisation for amine 174 synthesis 

 

Entry LDA (Equiv.) Imine 172 (Equiv.) Reaction Time (b) / h Yield / % 

1 2.0 2.0 0.5 70 

2 2.0 2.0 2 81 

3 1.2 2.0 2 60 

4 1.2 1.5 2 80 

The next step in the synthesis towards precursor 162 was the alkylation of secondary amine 

174. It was envisioned that an SN2 reaction between amine 174 and a halogenated propanol 

should be an efficient and high yielding way to install the terminal alcohol group. However, 

this reaction transpired to be the most challenging to optimise, with the conditions of the SN2 

reaction requiring five revisions until the yield was brought up to an acceptable level. 

Scheme 33 shows the different reaction conditions tested for the synthesis of alcohol 176. 

Scheme 33 (i) shows the first attempted SN2 reaction, in which amine 174 was heated at 

reflux in acetonitrile for three hours with 2.0 equivalents of potassium carbonate and 1.5 

equivalents of chloropropanol 175. Surprisingly, TLC and 1H NMR spectrum analysis of the 

unpurified reaction mixture showed no evidence of product 176 being formed, despite 

believing that secondary amine 174 would be reactive enough to undergo the desired SN2 

reaction. This lack of reactivity is thought to be caused by amine 174 being a worse 

nucleophile than initially thought. 

In an attempt to improve the reactivity, bromopropanol 177 was used instead of 

chloropropanol 175 in the hope that this switch to a superior leaving group would help 

promote the SN2 reaction (Scheme 33 (ii)). The SN2 reaction was heated overnight to give 

the best chance of success. This change did have a positive effect, with product 176 isolated 

successfully, but the yield was poor (24%). TLC and 1H NMR spectrum analysis of the 
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unpurified reaction mixture again showed starting material 174 was still present, indicating 

that the reaction did not go to completion. Scheme 33 (iii) shows the next modification: 

leaving the reaction over the weekend to allow all starting material 174 to be consumed. 

Pleasingly, the yield increased to 53%, however, starting material 174 was again identified 

in the unpurified reaction mixture. This prolonged reaction time was also impractical, as a 

three-day reaction would likely create a bottleneck in the synthesis of precursor 162. 

More forcing conditions were therefore used in an attempt to convert all starting material 

174 into product. Scheme 33 (iv) shows an increase in bromopropanol 177 equivalents to 

2.5 afforded product 176 in a yield of 65%. However, starting material was still present in 

the reaction mixture, suggesting that the yield of 176 could be increased further. Scheme 33 

(v) showcases a final attempt to increase the yield, using a better electrophile, iodopropanol 

178, at a higher concentration (0.5 M) to drive conversion of starting material 174 into 

product 176. The reaction furnished alcohol 176 in a good yield of 75% which signifies a 

major improvement upon the initial reactions. However, a small amount of starting material 

174 was still identified from the unpurified reaction mixture in both TLC and 1H NMR 

spectroscopy, albeit in much smaller quantities, suggesting that further optimisation could 

still be possible in future studies. Use of a stronger base, such as sodium hydride, was 

avoided as it was suspected that a stronger base would lead to the E2 elimination of the 

haloalkane. 

 
Scheme 33: SN2 reactions for precursor 164 synthesis. 
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The next step was to start making the other half of the precursor (166) needed to cross-couple 

with bromopyridine 176. As previously shown in Scheme 32, the target molecule 166 should 

possess a boron synthetic handle, which could be made from an aryl halide ester (168). 

However, no such aryl halide ester was commercially available, so a commercially available 

acid analogue, bromoaryl acid 179, was used instead and converted into an ester, via the 

simple procedure shown in Scheme 34; thus, esterification of acid 179 using sulfuric acid in 

methanol at reflux for 90 mins afforded methyl ester 180 in an excellent yield of 99%.  

 

Scheme 34: Fischer esterification of aryl halide. 

With the carboxylic acid group protected as a methyl ester, the bromide could now be 

converted into the desired pinacol borate 181 using a Miyaura cross-coupling. Using 

conditions based on previous literature,57 aryl bromide 180 was stirred in dioxane at 80 °C 

overnight under argon with [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II), 

potassium acetate, and bis(pinacolato)diboron to give aryl borate 181 in an isolated yield of 

56% after purification (Scheme 35). While successful, this reaction was a bottleneck in the 

construction of precursor 162 for several reasons. First, for the subsequent cross-coupling 

reaction (166 + 167 →165) aryl borate 181 was used in excess of 2.0 equivalents, which 

meant that a large quantity of 181 needed to be produced. This in turn required a relatively 

large quantity of reagents, including a large amount of the expensive catalyst Pd(dppf)Cl2. 

Second, the chromatographic purification of boronic ester pinacol 181 was extremely 

difficult, especially on scales of 2 g and above. Analysis using 2D TLC revealed that boronic 

ester pinacol 181 slowly decomposes on silica. This instability, coupled with the presence 

of an undesired side-product in the crude reaction mixture, which had a similar Rf to the 

boronic ester pinacol 170 in all tested solvent systems, made the isolation of 181 from 

chromatographic purification very challenging. Third, to make purification easier, a 

proportionally large column was required for the purification, which was costly in terms of 

solvent, silica requirements, and in time. This limited the amount of product 181 which could 

be successfully purified in a single column to 2 g, this required the purification of boronic 

ester pinacol 181 to be performed in batches.   
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Scheme 35: Miyaura cross-coupling of aryl bromide 170 with bis(pinacolato)diboron. 

Having successfully synthesised both halves of the target precursor 162, the next stage of 

the synthesis was to couple the two molecules 176 and 181. Scheme 36 shows the Suzuki-

Miyaura cross-coupling reaction, which was adapted from conditions reported in the 

literature.57 Aryl bromide 176 and boronic ester pinacol 181 were stirred overnight at 80 °C 

under argon with potassium phosphate and Pd(dppf)Cl2 in a THF/H2O mixture to make the 

biaryl 182 in a pleasingly high yield of 87%. As the Suzuki-Miyaura cross-coupling reaction 

was high yielding, no further optimisation was required, and every repeated synthesis of 182 

used the conditions shown in Scheme 36. 

 

Scheme 36: Suzuki-Miyaura cross-coupling of boronic ester pinacol 181 and bromopyridine 176. 

The final step in the synthesis of precursor 162 is the hydrolysis of the methyl ester 182 

(Scheme 37). Typical ester hydrolysis conditions were used; ester 182 was stirred overnight 

in a lithium hydroxide/THF solution at room temperature to yield the desired precursor 162. 

Although it was thought that the hydrolysis cleanly converted all starting material 182 into 

product 162, based on 1H NMR spectrum analysis, the product was still purified via column 

chromatography to remove any trace impurities carried through from previous reactions. 

After purification, precursor 162 was isolated in an excellent yield of 96%. The purified 

product was isolated as a powder. We believe that hydroxy acid 162 takes the form of 

zwitterion 162a based on typical acid and amine pKa values, however, the 1H NMR peaks 

of environments near the protonated quaternary amine do not show a significant change in 

chemical shift when compared to the 1H NMR of methyl ester 182, which would be expected 

after protonating the tertiary amine. 
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Scheme 37: Hydrolysis of methyl ester 182. 

With the initial precursor synthesised and each step having good yield, we focused on 

making a relatively large quantity of precursor 162 in order to screen the initial internal 

nucleophile ring expansion reaction (162 → 164) against a large array of conditions. Scheme 

38 shows all the reactions involved in the synthesis of the linear precursor 162 from 

bromomethyl pyridine 173 in an overall yield of 50%. Considering the number of steps in 

the synthesis, with each one requiring chromatographic purification in highly polar solvent 

systems, the overall yield is pleasing. With an optimised synthetic route in hand, 3 g of 

bromomethyl pyridine 173 was used to furnish 3.5 g of hydroxy acid 162, which was ample 

for initial screening to commence. 

 

Scheme 38: Synthesis route to linear precursor 162. 
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2.3 Initial Multi-INRE Reaction 

With access to a sufficient quantity of precursor 162, we could now attempt a multi-INRE 

reaction. The INRE reaction was performed on precursor 162 by adapting conditions 

previously reported for ring expansion by the Unsworth group. It was assumed that more 

energy would be required to promote this multi-INRE reaction as two successive 

intramolecular nucleophilic substitutions needed to take place, compared to single-INRE 

reactions which used precursors containing one internal nucleophile. With this considered, 

the initial multi-INRE reaction using precursor 162 was heated overnight at reflux (60 °C) 

to allow for the best chance of success (Scheme 39). Thus, hydroxy acid 162 was refluxed 

in chloroform with the coupling agent T3P and DIPEA which afforded lactone 164 in an 

isolated yield of 17%. Notably, biaryl lactone 164 was isolated as a single atropisomer, with 

the reasoning behind this stereoselectivity explained below. 

 

Scheme 39: First trialled multi-INRE using hydroxy acid 162. 

Cyclisation of hydroxy acid 162 to form macrocyclic lactone 164 was confirmed by HRMS, 

and IR, 1H NMR and 13C NMR spectroscopic analysis. Figure 7 shows the 1H NMR 

spectrum of macrocyclic lactone 164 with all non-aromatic peaks assigned to their respective 

environments. In lactone 164, free rotation is expected to be restricted relative to the linear 

precursor; indeed, this is seen in the 1H NMR spectra, with the aliphatic protons that were 

previously equivalent in precursor 162 distinguishable in the 1H NMR spectrum of 

macrocyclic lactone 164. This is clearly seen with the CH2 protons adjacent to the carbonyl 

in lactone 164 (Hj and Hk in Figure 7). In the linear precursor 162, the two protons are 

indistinguishable by 1H NMR, however, due to the presumably more rigid confirmation, they 

can be differentiated via 1H NMR spectroscopy, with Hj and Hk presenting a distinct doublet 

at δH 4.46 and δH 4.00, respectively. Thus, with evidence obtained from the all spectroscopic 

methods described, including the 1H NMR spectrum (Figure 7), we could confidently 

confirm the synthesis of novel macrocyclic lactone 164 via a multi-INRE reaction, the first 

of its kind. 
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Figure 7: 1H NMR Spectrum of multi-INRE product lactone 164. 

The isolation and characterisation of macrocyclic lactone 164 demonstrates that INRE can 

be achieved using linear precursors containing more than one internal nucleophile. This 

gratifying discovery underpinned the direction taken for the rest of the project; focus was 

turned towards increasing the yield and exploring the limitations of multi-INRE reactions 

using linear precursors containing multiple internal nucleophiles. 

Interestingly, analysis of the 1H and 13C NMR spectra of lactone 164 also gave additional 

insight into the stereoselectivity of multi-INRE systems which use precursors containing 

multiple internal nucleophiles. Both 1H and 13C NMR spectra provided evidence suggesting 

that the multi-INRE reaction 162 → 164 produced only one diastereoisomer. Figure 9 shows 

the 13C NMR spectrum of the isolated lactone 164, with all appropriate peaks assigned to 

their respective carbon environment. The 13C NMR spectrum of lactone 164 shows a notable 

absence of peaks corresponding to a chemically different diastereomer, suggesting that only 

one diastereoisomer is formed in the multi-INRE reaction. It could be argued that such a 

diastereoisomer could have been removed during chromatographic purification of the 

unpurified reaction mixture containing lactone 164. However, only one macrocyclic 

compound could be identified from 1H NMR spectroscopy of the unpurified reaction 

mixture.  
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Figure 8: Possible diastereoisomers which could yield from the multi-INRE reaction.  

 

 

Figure 9: 13C NMR spectrum of macrocyclic lactone 164. 

To assign the relative stereochemistry of 164, we turned to X-ray crystallography. Thus, a 

crystal was grown (from 164) and the result is shown in Figure 10. The structure of the 

crystal grown revealed it to be atropisomer 164(i), which possessed the same sense of 

stereochemistry as that seen in the previously reported single-INRE biaryl lactone 147.57  
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Figure 10: Single crystal XRD structure of macrocyclic lactone 164(i). 

This atroposelectivity is presumed to have the same origin as in the previous work, resulting 

from facial selectivity of the attacking internal nucleophile. Similar to previous single-INRE 

reactions, this system allows for point-to-axial chirality transfer.58 The atroposelectivity in 

both single- and multi-INRE reactions can be explained using the same kinetic argument 

(Scheme 40). It is presumed that the observed stereochemical outcome (formation of 164(i)) 

arises from the facial selectivity of the tertiary amine attacking into the prochiral 

intermediate N-acylammonium ion, and when attacking via the Si face, it places the phenyl 

group in a pseudo-equatorial orientation (163a → 163b(i)). However, when the tertiary 

amine attacks the Re face (163a → 163b(ii)), this would force the phenyl group to be placed 

in a pseudo-axial orientation, presumably causing steric hinderance, and leading to the 

transition state being higher in energy, in turn preventing the formation of atropisomer 

164(ii). It was pleasing to see that the diastereoselectivity of INRE reactions was transferred 

when synthesising larger macrocycles from linear precursors containing two internal 

nucleophiles. 

 

 

 

164(i) (CCDC 2004423) 
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Scheme 40: A kinetic model based on diastereoselective attack into prochiral N-acyliminium ion. 

 

2.4 Summary 

The first cyclisation of a linear precursor containing two internal nucleophiles via a multi-

INRE reaction has been reported. The design and subsequent synthesis of the novel biaryl 

linear precursor 162 was achieved in 50% overall yield over four steps. The synthetic route 

to access novel precursor 162 was optimised to ensure all reaction steps gave their respective 

product in good yield, allowing for the efficient generation of precursor 162 for subsequent 

screening. 

The initial cyclisation of precursor 162 affording novel heterocyclic-macrocycle 164 via 

multi-INRE was successfully achieved in 17% yield, using modified conditions previously 

identified for single-INRE reactions. This result demonstrates that INRE reactions are 

possible with precursors containing two internal nucleophiles. 

A single diastereoisomer of heterocyclic-macrocyclic lactone 164 was isolated and 

characterised via 1H and 13C NMR spectroscopy and single crystal XRD. This data 

suggested that the multi-INRE reaction was atroposelective; allowing for point-to-axial 

chirality transfer. A kinetic argument based on single-INRE atroposelectivity was also 

developed. 
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Multi-INRE Screening and Aliphatic Precursor Synthesis 

3.1 Initial Screening of multi-INRE reaction 162 → 164 

Having established that a multi-INRE reaction using a precursor containing two internal 

nucleophiles is possible, the next step was to increase the yield of product 164 through 

optimisation of reaction 162 → 164. This was done by testing a range of reaction conditions 

for the INRE of precursor 162. Screening was carried out on 100 mg scale unless stated and 

the variables changed during the initial screening process of reaction 162 → 164 were 

solvent, temperature, reaction time, concentration, and coupling agent. Table 2 shows the 

reaction conditions tested and the respective yield from each reaction. 

Table 2: Initial screening conditions for reaction 162 → 164 and their respective isolated yields. a Performed 

on 300 mg scale. 

 

Entry 
Coupling 

Agent 
Solvent 

Concentration / 

M 
Time 

Temperature / 
oC 

Yield / 

% 

1 T3P CHCl3 0.1 18 h 60 17a 

2 T3P CHCl3 0.001 18 h 60 7 

3 T3P DCE 0.1 18 h 85 9 

4 T3P CHCl3 0.1 18 h 25 6 

5 T3P CHCl3 0.1 1 w 60 8 

6 T3P DMF 0.1 18 h 60 33 

7 T3P DMA 0.1 18 h 60 19 

8 CDI DMF 0.1 18 h 60 11 

9 HATU DMF 0.1 18 h 60 19 

 

First, the concentration of hydroxy acid 162 in solution was changed from 0.1 M to 0.001 M 

(Table 2, Entry 2). It was assumed that a higher dilution would lower the probability of 

hydroxy acid 162 reacting with other hydroxy acid molecules, and although ideally we did 

not want to resort to high dilution in INRE reactions, we still considered that testing at lower 

concentrations would allow for greater insight into multi-INRE systems. If a higher yield of 

product 164 was observed using high dilution, it could be inferred that intermolecular 

reactions and the formation of polymers are the underlying reason for the poor yield of 164 

at standard concentrations of 0.1 M. However, the yield of the diluted reaction was lower, 
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7%, suggesting that competing intermolecular reactions were not the main cause of the poor 

yield of product 164. 

Next, the reaction solvent was switched from chloroform to a chlorinated solvent with a 

higher boiling point, 1,2-dichloroethane (DCE) (Entry 3), allowing the reaction temperature 

to be raised to 85 °C. It was hoped that increasing the reaction temperature would supply 

intermediates 163a and 163b with enough energy to overcome any possible kinetic barriers 

that may have been preventing formation of the product 164. However, the decreased yield 

of 9% contradicted the proposed hypothesis. Next, the opposite was tested, with the hope 

that lowering the reaction temperature and in turn reducing the energy supplied to the INRE 

system we would reduce the prevalence of competing side-reactions that could be consuming 

starting material 162 and in turn reduce the number of undesired side-products (Entry 4). 

However, a lower yield of 6% was observed which once again contradicted this assumption. 

In an attempt to allow complete conversion of starting material 162 into product 164, the 

reaction time was increased to one week (Entry 5), however this also led to a lower yield of 

8%. Next, a change to the more polar solvent DMF was explored, based on a notion that a 

more polar would help stabilise any charged intermediates formed during the reaction (163a 

and 163b). We hoped this would in turn lower the energy required to form intermediates 

163a and 163b, thereby increasing the rate of product 164 formation (Entry 6). Pleasingly, 

this led to a relatively large increase in yield to 33%, nearly double the yield of the initial 

multi-INRE reaction (Entry 1). Dimethylacetamide (DMA), another polar solvent, was also 

screened in the reaction (Entry 7) but a lower yield of 19% was obtained. 

As DMF gave the best results for multi-INRE reactions at this stage, it was then used as a 

standard when screening other variables, such as the coupling agent. Both 1,1'-

carbonyldiimidazole (CDI) (Entry 8) and hexafluorophosphate azabenzotriazole tetramethyl 

uronium (HATU) (Entry 9) were used as alternative coupling agents to T3P in the hope of 

finding a more suitable coupling agent, however, both reagents led to a decrease in the yield 

of lactone 164 to 11% and 19% respectively.  

With moderate screening of reaction 162 → 164 we achieved a significant increase in yield 

(17% to 33%). Although there is substantial room for improvement, the noteworthy increase 

in yield arising from a small number of screening experiments suggests that with more 

intensive screening of the multi-INRE reaction 162 → 164 and further optimisation, a 

considerable increase in the yield of lactone 164 is possible. Interestingly, throughout the 
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initial screening process, none of starting material 162 could be identified in the unpurified 

reaction mixture by TLC or 1H NMR spectroscopy, suggesting that all starting material had 

been consumed. Due to the low yields of lactone 164, it was assumed that hydroxy acid 162 

was instead being converted to an undesired side-product in greater quantities than the 

desired lactone 164. At this point, optimisation of this reaction was paused, to examine 

alternative substrates (section 3.3) and the reaction mechanism (section 3.2). However, 

additional optimisation of this system (leading to much improved yields) is described later 

in the thesis (section 3.4). 

 

3.2 Theorised INRE Reaction Intermediate 

When performing the INRE reaction, the addition of T3P to the hydroxy acid 162 causes the 

reaction solution to instantaneously undergo a colour change, from colourless to deep red. 

This suggested that a highly conjugated intermediate could be formed in the reaction 162 → 

164, given that strong colours in organic molecules are often associated with extended 

conjugation. Scheme 41 shows the proposed formation of a highly conjugated, aromatic 

species (183) which could be formed from intermediate 163a. Thus, deprotonation α to the 

carbonyl of charged intermediate 163a would give conjugated heterocycle 183, which would 

be both aromatic and neutral, hence this putative intermediate 183 might be expected to be 

more thermodynamically stable than intermediate 163a. It was therefore speculated that 

intermediates 163a and 183 are in equilibrium, and in order for ring expansion to procced, 

heterocycle 183 would first need to revert to intermediate 163a, thus introducing an energy 

barrier that slows the rate of formation of product 164. A hypothetical reaction coordinate 

for this scenario (which assumes that 183 is lower in energy than 163a) is depicted in Figure 

11. 
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Scheme 41: Mechanism for the formation of the theorised undesired by-product 183. 

It was believed that if the reaction pathway 162 → 164 proceeded without formation of by-

product 183 (blue), the reaction would proceed to form product 164, as the two intermediates 

163a and 163b possess favoured energy minimums. However, if the reaction pathway 

proceeded via the formation of by-product 183 (red), then the energy minimum would 

hypothetically be much lower than the energy minimum possessed by charged intermediate 

163a, in turn creating a steep energy barrier which slows the rate of formation of intermediate 

163b and in turn product 164. 

 

Figure 11: Hypothetical reaction coordinate illustrating energy minimums with and without formation of by-

product 183. 

All attempts to isolate intermediate 183 from the reaction mixture were unsuccessful. This 

is presumed to be due to its decomposition either during chromatographic purification or 

upon work up of the reaction mixture with water. Nevertheless, there is evidence suggesting 
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that products of similar type to 183, are formed in related work conducted in the Unsworth 

group, which led to the isolation of a similar aromatic heterocycle (189). Scheme 42 shows 

the formation of aromatic heterocycle 189 using standard single-INRE conditions. In  this 

example, there is a key difference with the precursor compared with typical starting 

materials; the terminal nucleophile of the INRE precursor 187 is protected with a TBS group, 

making INRE unfeasable.60  

When unprotected hydroxy acid 184 was reacted with T3P and DIPEA using typical single-

INRE conditions, lactone 186 was formed in excellent yield of 90%. However, when the 

alcohol was protected by TBS (187) and reacted using the same conditions, the now 

protected alcohol of intermediate 188 cannot promote ring expansion, which instead allows 

deprotonation and subsequent aromatisation of intermediate 188 to occur to form the 

aromatic heterocycle 189 in over 99% yield. Heterocycle 189 can be isolated whilst side-

product 183 cannot. It is assumed that the toluene group present on heterocycle 189 provides 

further conjugation into the aromatic moiety, in turn increasing the stability of heterocycle 

189 and making the conjugated molecule less prone to decomposition, thus allowing 

aromatic 189 to be isolated and characterised. 

 

Scheme 42: Attempted INRE of a precursor that does (187) and does not (184) have a protected alcohol. 
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3.3 Exploration of Aliphatic Precursors 

In an attempt to circumvent the formation of side-product 183, we decided to design an 

aliphatic linear precursor which could undergo a multi-INRE reaction without the possibility 

of a highly conjugated stable intermediate forming. This proposed precursor (190) contains 

two tertiary benzylic amines functioning as internal nucleophiles as well as a primary alcohol 

group functioning as the terminal nucleophile. Scheme 43 shows the designed aliphatic 

precursor 190 and the proposed multi-INRE mechanistic pathway. Thus, the carboxylic acid 

of 190 would undergo activation by the coupling agent T3P, in turn activating acid 190, 

allowing for the first internal nucleophile (benzylic amine) to attack into the carbonyl to form 

cyclic intermediate 191a. The second internal nucleophile (benzylic amine) would then 

attack into the same carbonyl, displacing the first internal nucleophile to form the 9-

membered intermediate 191b. Finally, the terminal nucleophile (primary alcohol) would 

attack into the carbonyl, displacing the second internal nucleophile before stabilising the 

charge via deprotonation to form the saturated ring expanded lactone 192. It was hoped that 

the lack of aryl groups in the main carbon backbone would remove the possibility of 

aromatisation during the reaction, and hopefully in turn would reduce the formation of any 

competing conjugated side-products. 

 
Scheme 43: Proposed multi-INRE mechanism of aliphatic precursor 190 to form aliphatic lactone 192. 

We envisaged the synthesis of precursor 192 to procced via repeated SN2 reactions between 

alkyl bromides (193) with secondary amines (194) to afford longer alkyl chains containing 

primary alcohols (195) which could be converted into alkyl bromides (196) in order to repeat 

the sequence. Scheme 44 outlines the general synthetic strategy used. If successful, this 

strategy would allow for the synthesis of multiple alkyl precursors of differing lengths from 

a single synthetic strategy. It was also hoped that by altering the alkyl chain length between 

functional groups and in turn altering the ring size of individual intermediates, greater insight 

into the optimum intermediate ring size for multi-INRE reactions would be obtained. 
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Scheme 44: General synthetic strategy for the synthesis of aliphatic multi-INRE precursors. 

For the synthesis of precursor 190, we started with methyl-4-bromobutyrate (197) (Scheme 

45). Alkyl bromide 197 underwent nucleophilic attack from benzylic amine 198 in an SN2 

reaction to afford hydroxy ester 199 in a yield of 39%. As with similar SN2 reactions 

previously conducted with an alkyl bromide electrophile, the yield of product 199 was not 

ideal, however, we could not readily access the iodoester analogue of bromoester 197 and in 

turn could not easily test previously optimised SN2 conditions for the synthesis of precursor 

190. For future optimisation, a catalytic amount of sodium iodide could be added to the SN2 

reaction to form an alkyl iodide in situ, which in turn could lead to an increased in yield of 

199. 

 

Scheme 45: SN2 of bromobutyrate 197 to yield hydroxy ester 199. 

With the hydroxy ester 199 in hand, we then looked to install the second benzylic amine and 

terminal alcohol. To prepare hydroxy ester 199 for a another SN2 reaction using benzylic 

amine 198, the nucleophilic alcohol would first need to be swapped for an electrophile. This 

was achieved using an Appel reaction, in which the terminal alcohol was converted into a 

bromide (Scheme 46); thus, hydroxy ester 199 was stirred in DCM with carbon tetrabromide 

and triphenylphosphine at 0 °C for one hour to give alkyl bromide 200 in good yield of 72%.  

 

Scheme 46: Appel reaction of hydroxy ester 199 to alkyl bromide 200. 

The next step in the synthesis of aliphatic precursor 190 was an SN2 reaction between 

benzylic amine 198 and alkyl bromide 200 (Scheme 47). The conditions for the SN2 reaction 

were identical to the conditions used in the previous SN2 reaction 197 → 199. The alkyl 
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bromide 200 was reacted with 3-(benzylamino)propan-1-ol (198) and potassium carbonate 

in acetonitrile at 85 °C for 3 h to afford hydroxy ester 201 in yield of 45%. The yield for this 

reaction was not ideal, and could potentially be improved with further optimisation (see 

future work); nevertheless, sufficient quantities of hydroxy ester 201 was synthesised to 

allow the synthesis of precursor 190 to continue.  

 

Scheme 47: Alkylation of alkyl bromide 200 to yield hydroxy ester 201. 

The final step of the synthetic route was hydrolysis of ester 201 to reveal the hydroxy acid 

precursor (190) that would undergo the aliphatic multi-INRE reaction. Scheme 48 shows the 

hydrolysis of ester 201 using previously identified conditions (182 → 162). Accordingly, 

hydroxy ester 201 was vigorously stirred in a solution of water and THF with lithium 

hydroxide for 18 h at room temperature to afford hydroxy acid 190 in yield of 40%. As we 

would expect the hydrolysis of methyl ester 201 into acid 190 to proceed to completion under 

the conditions used, the 40% yield obtained was disappointing. It is assumed that the poor 

yield was caused by two key factors. First, impurities carried forward from previous 

reactions were removed in a more polar chromatographic purification solvent system (ethyl 

acetate and methanol), reducing the isolated mass retrieved. Second, the impurities carried 

forward were eluting at similar Rfs to product 190, making separation of product 190 from 

side-products via column chromatography more challenging. It is hoped that revising the 

synthesis of hydroxy acid 190, the quantity of impurities could be severely reduced. 

 

Scheme 48: Hydrolysis of ester 201 to yield INRE precursor 190. 

With the synthesis of linear precursor 190 complete, we now had a synthetic route (albeit 

unoptimised) to access both the aliphatic precursor at hand, that could also be applied to 

make other aliphatic linear precursors of differing lengths. Scheme 50 shows the synthetic 

route for hydroxy acid 190, which has an overall yield of 5% over four steps. As previously 
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mentioned, we are confident that the synthetic route could be improved if needed in future 

work, with specific focus on improving the SN2 reaction conditions. Nevertheless, a 

sufficient quantity of aliphatic hydroxy acid 190 was synthesised and could now be used to 

perform the first multi-INRE reaction with an aliphatic linear precursor. 

 

Scheme 49: Synthetic route for the aliphatic precursor 190. 

As well as having precursor 190 available for INRE testing, a 15-membered analogue (202) 

was inherited from a previous member of the Unsworth group (T. Stephens), which was 

synthesised using a similar synthetic strategy.61 With both aliphatic linear precursors 190 

and 202 in hand, it was time to conduct multi-INRE tests on both (Scheme 51). Precursors 

190 and 202 were stirred with T3P and DIPEA at 60 °C overnight to yield lactones 192 and 

203 in yields of 29% and 15%, respectively. Surprisingly, the shorter precursor 190 gave a 

higher yield than the standard 6-membered precursor 202, despite the formation of a more 

strained 5-membered ring intermediate. This is speculated to be due to the shorter distance 

between the activated acid and the first internal nucleophile, in turn providing a higher 

chance of contact between the two groups.  

Nevertheless, the yield of neither product 192 nor 203 is greater than the yield of lactone 

164 from the multi-INRE of biaryl precursor 162. As aromatisation of the aliphatic 

intermediate 191a is impossible, the formation of unwanted side-products of the form 183 

cannot be reason for low yields, in these systems at least. However, the aliphatic precursors 

lack any conformational bias imparted by aromatic rings and possess more flexibility from 

unrestricted C-C rotation, leading to higher degrees of freedom when compared to aromatic 
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precursor 162, leading to a higher entropic penalty when cyclising, which could explain the 

decreased in yields. 

 

Scheme 50: INRE reactions yielding 13- and 14-membered lactones (192/203). 

In spite of this unsatisfying result, the isolation of macrocyclic lactones 192 and 203 

confirmed that multi-INRE reactions are possible with aliphatic linear precursors containing 

two internal nucleophiles to make both 13- and 14-membered heterocyclic lactones. 

Lactones 192 and 203 were characterised by HRMS, IR, and both 1H and 13C NMR 

spectroscopy. The key evidence for cyclisation of both linear hydroxy acids 192 and 203 is 

the change in chemical shift of the 13C NMR peak representing the carbonyl environment (a 

in Figure 12).  Figure 12 shows the stacked 13C NMR spectra of biaryl lactone 164 (top), 13-

membered aliphatic lactone 192 (middle) and 14-membered aliphatic lactone 203 (bottom). 

It can be seen that the carbonyl peak of the 13- and 14-membered aliphatic lactones are at 

δC 174.3 ppm and δC 174.0 ppm respectively, and the carbonyl peak of biaryl lactone 164 is 

seen at δC 172.1. ppm. The chemical shift of the key carbonyl peak of the 13- and 14-

membered aliphatic lactones 192 and 203 is near identical to the carbonyl peak of the biaryl 

lactone 164, strongly suggesting that the carboxylic acid’s 190 and 202 have been converted 

into their respective lactones via INRE. The chemical shift of the carbonyls in 13C NMR, 

along with other means of characterisation, strongly support the successful multi-INRE of 

linear hydroxy acids 190 and 202 to form the novel aliphatic macrocyclic lactone 192 and 

203. As anticipated, there was no proton peak splitting in the 1H NMR which indicated 

restricted rotation of C-C bonds in the formed aliphatic macrocycles. 
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Figure 12: 13C NMR spectra of biaryl lactone 164 (top), 13-membered aliphatic lactone 192 (middle), and 14-

membered aliphatic lactone 203 (bottom). 

 

3.4 Screening of Multi-INRE Reaction 162 → 164 With Internal 

Standard 

With the multi-INRE reactions of aliphatic precursors constantly presenting low yields, 

attention was directed back to the biaryl multi-INRE precursor 162 with the intention to 

further screen conditions for the reaction of 162 → 164 in order to find higher yielding 

reaction conditions which could be used for the cyclisation of all linear multi-INRE 

precursors. As the purification and isolation of product 164 from several reactions performed 

simultaneously would be time consuming, a more efficient screening method employing an 

internal standard was used to avoid purification of the crude reaction mixtures. Thus, a 

known amount of internal standard was added to the crude reaction mixture before 

performing an aqueous workup to remove water soluble impurities, such as the T3P by-

product tripropyl-diphosphonic acid. With the use of 1H NMR spectroscopy, the unpurified 

reaction mixture is then analysed, where a ratio of the quantifiable internal standard and 

product 164 can be calculated. From this, the yield of product 164 present in the crude 

c 
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reaction mixture could be determined. Figure 12 shows an example of a 1H NMR spectrum 

of the unpurified reaction mixture from a multi-INRE reaction containing the internal 

standard. 1,3,5-Trimethoxybenzene (TMB) was chosen as the internal standard, as its 

aromatic protons give a distinct singlet at δH 6.08 ppm in a clear region of the 1H NMR 

spectrum of the reaction mixture 164 (Figure 13). Screening of 162 → 164 was performed 

on a 0.1 mmol scale, therefore addition of 100 µL of a 0.1 M solution of internal standard, 

added 0.01 mmol of internal standard into each reaction. Thus, for every 1.0 equivalent of 

starting material 162 there was 0.1 equivalents of TMB. To account for this, the internal 

standard singlet at 6.08 ppm (which correlates to three identical proton environments) is 

integrated and set to 0.3 so that the yield of product 164 is proportional to the integration of 

its environments. An example of this is shown in the following spectra (Figure 13); the area 

integrated at 4.51 ppm correlates to two overlapping peaks produced by two protons 

(Ha+Hb*) belonging to product 164, thus the yield of product 164 is equal to half of the 

multiplet’s integration (at 100% yield the multiplet Ha+Hb* would integrate for 2.00). In 

Figure 13 the Ha+Hb* peak integrates to 0.57, thus the yield of product 164 is 29%. Like with 

all INRE reactions conducted, there is no evidence of starting material 162 present, so 

complete starting material consumption is assumed. 

 

 

Figure 13: 1H NMR spectrum of crude reaction mixture and internal standard 1,3,5-trimethoxybenzene. 

1 

TMB 

Ha + Hb* 
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By using this method of high throughput screening, eight reactions could be set up 

simultaneously, and analysed relatively quickly, increasing our screening capabilities 

considerably. In total, 21 INRE reactions were conducted using this method, as seen in Table 

3, with modifications to the temperature, coupling agent and solvent. 

Table 3: Screening conditions using internal standard and their respective yield. b Solvent dried out. 

 
Entry Coupling Agent Solvent Temperature / oC Yield / % 

1 T3P DMF 60 30 

2 EDC DMF 60 15 

3 2-Chloro-1-methylpyridinium 

iodide 

DMF 60 0 

4 T3P DMSO 25 29 

5 T3P PhMe 25 16 

6 T3P THF 25 22 

7 T3P MeCN 25 31 

8 T3P CHCl3 25 10 

9 T3P DMSO 60 29 

10 T3P PhMe 60 5 

11 T3P THF 60 20 

12 T3P CHCl3 60 15 

13 T3P DMSO 190 0 b 

14 T3P PhMe 110 7 

15 T3P THF 66 trace 

16 T3P MeCN 82 trace 

17 EDC + HOBt DMF 25 72 

18 EDC + HOBt DMSO 25 40 

19 EDC + HOBt PhMe 25 69 

20 EDC +HOBt THF 25 66 

21 EDC + HOBt MeCN 25 70 

The first modification came from replacing T3P for other coupling agents commonly used 

in peptide coupling reactions in an attempt to find a better suited coupling agent. The 

coupling agents tested were 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (Entry 

1) and 2-chloro-1-methylpyridinium iodide (Entry 2). Disappointingly, when using these 

coupling agents the yield of 164 was dramatically reduced, which led us to focus our 

attention on changing other variables, such as solvents. Five solvents, DMSO, toluene, THF, 

acetonitrile, and chloroform were screened at room temperature, 60 °C, and reflux (Entry 4–
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16). It was hoped that using a diverse selection of solvents with varying polarities and boiling 

points would give further insight into how the reaction proceeded, and in turn would lead to 

further optimisation. However, after screening each solvent at the aforementioned 

temperatures, none of these solvents proved to be particularly effective, however, multi-

INRE reactions conducted in DMSO and acetonitrile gave yields similar to the multi-INRE 

reactions carried out in DMF. The ~30% yield obtained in different polar solvents further 

supports the idea that a charged intermediate, such as pyridinium 163a and ammonium 163b 

are formed during the reaction. Also, the yield of lactone 164 was reduced when solvents 

were heated to reflux (Entry 13–16), indicating that temperatures above 60 °C are 

unfavourable for multi-INRE reactions. 

EDC was then used once again, but now with the addition of a hydroxybenzotriazole (HOBt) 

additive using DMF as the solvent. Pleasingly, this gave a significant increase in yield of 

product 164, with an increase in yield from 30% to 72% (Entry 17). The HOBt additive was 

tested in combination with other solvents in hope of finding a less toxic alternative which 

was more volatile. Pleasingly, a solvent swap to acetonitrile was found to be similarly 

successful, and due to easier removal (in view of its volatility) and lower toxicity compared 

with DMF, it was retained for future studies.  

Scheme 51 shows the optimised conditions; EDC and HOBt (1.5 equivalents), and DIPEA 

in acetonitrile (0.1 M) at room temperature for 18 h, as well as the mechanism for carboxylic 

acid activation using EDC. The electrophilic carbodiimide 204 was attacked by the 

deprotonated carboxylic acid of precursor 162 to give the intermediate 205a. The now more 

electrophilic carbonyl of intermediate 205a was then attacked again by the hydroxylamine 

of HOBt (206), ejecting a urea by-product and forming the activated acid 205b. The carbonyl 

of the activated acid 205b was then attacked by the pyridine internal nucleophile, starting 

the multi-INRE cascade which subsequently yields product 164. Pleasingly, we found the 

isolated yield (following column chromatography) using these conditions to be 73%, slightly 

higher than what was seen using internal standard. 
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Scheme 51: Mechanism of activation of precursor 162 using finalised multi-INRE reaction conditions. 

The aliphatic multi-INRE precursors 190 and 202 were then cyclised using the improved 

HOBt and EDC conditions. Pleasingly, both saw a significant increase in yield of their 

respective product (Scheme 52) compared to previously tested conditions, however, the yield 

of neither product was higher than 50%, suggesting that the biaryl INRE precursor 162 is 

more susceptible to cyclisation in the presence of HOBt and EDC when compared to 

aliphatic precursors 190 and 202. However, as previously mentioned, precursors 190 and 

202 may be less prone to cyclisation due to a larger loss of entropy during cyclisation when 

compared to cyclisation of precursor 162. 

 

Scheme 52: Multi-INRE of aliphatic precursors 190 and 202 using finalised conditions (EDC, HOBt and 

MeCN). 
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3.4 Summary 

The yield for the cyclisation of linear precursor 162 into heterocyclic-macrocycle 164 via a 

multi-INRE reaction has been raised from the initial 17% to a much more satisfying 73%. 

The increase in yield was achieved through the high throughput screening of the INRE 

reaction with use of an internal standard. EDC was found to be the optimal coupling reagent 

along with an HOBt additive and acetonitrile was the optimal solvent. 

A novel aliphatic linear multi-INRE precursor (190) was prepared in a four-step synthesis. 

Using aliphatic precursors 190 and 202, novel aliphatic heterocyclic-macrocycles 192 and 

203 were synthesised via a multi-INRE in yields of 49% and 20% respectively. Thus, multi-

INRE reactions have proven to be successful when synthesising both 13- and 14-membered 

aliphatic heterocyclic-macrocycles. 

The possible formation of a conjugated side-product (183) from the multi-INRE of biaryl 

precursors has been explored, although no firm conclusions have been made and its role in 

the mechanistic pathway is still unclear. 
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Further Exploration of Scope 

4.1 Synthetic Targets 

With the conditions for multi-INRE reactions finalised, we moved towards exploring what 

macrocycles could and could not be made via multi-INRE, giving insight into the limitations 

of the multi-INRE reaction. Several precursors and their respective products were designed 

in order to investigate factors which could contribute towards the success or limitation of the 

INRE reaction (Scheme 53).  

The first precursor designed, amino acid 207, possesses an aniline moiety as the terminal 

nucleophile. A similar system was envisioned when designing precursor 209, but with the 

change of the second internal nucleophile from a tertiary methyl amine to a less nucleophilic 

tertiary phenylamine. The third precursor designed, the mono-aryl precursor 211, is near 

identical to precursor 162 except with the absence of an aryl group adjacent to the pyridine 

internal nucleophile. 

 

Scheme 53: Designed multi-INRE precursors and their respective INRE products. 

It was hoped that a synthetic route could be developed for most, if not all, precursors listed 

in Scheme 53. Due to complications caused by the SARS-CoV-2 pandemic,62 laboratory 

work was abruptly stopped, and many envisioned synthetic routes could not be fully 
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developed and no further INRE reactions could be carried out. Nonetheless, progress to date 

on each route is provided. 

 

4.2 Synthesis of a Precursor with Phenylamine Terminal Nucleophile (207)  

A full synthetic route was designed for precursor 207. As the carbon framework of precursor 

207 is identical to the initial multi-INRE precursor 162, much of the synthetic route to access 

precursor 207 is based on the route used to access precursor 162. The main deviation from 

the synthetic route to precursor 162 is the alkylation of secondary amine 174 (Scheme 54). 

In order to install a phenylamine as the tertiary nucleophile, an SN2 reaction was attempted 

using bromo phenylamine 213. Thus, secondary amine 174 was stirred with bromo 

phenylamine 213 in acetonitrile with potassium carbonate for 18 h at 85 °C to give the 

tertiary amine 214 in yield of 30%.  

 

Scheme 54: Alkylation of secondary amine 174 to give phenylamine 214. 

Although the SN2 reaction shown in Scheme 54 was low yielding, a more electrophilic 

replacement for bromo phenylamine 213 with a better leaving group (such as iodide) was 

unavailable. This is in part due to the unstable nature of reagent 213, which contains both an 

electrophilic bromide and nucleophilic phenylamine, which causes reagent 213 to cyclise 

slowly over time. Due to the instability of phenylamine 213, it was prepared the day of use 

through a separate SN2 reaction (Scheme 55). Aniline (215) underwent a single addition to 

dibromopropane (216), which was in large excess (6.0 equivalents), in acetonitrile at reflux 

for 3 h to afford bromo phenylamine 213 in a yield of 33%. The secondary amine of product 

213 would then undergo an additional SN2 to cyclise and form heterocycle 217 when left for 

a prolonged time at room temperature.  In view of both the low yield of product 214 and the 

instability of reagent 213, this step of the synthetic route to precursor 207 would need to be 

revisited and improved in future work. 
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Scheme 55: Synthesis of bromo phenylamine 213 and its subsequent decomposition 213 → 217. 

The following steps of the synthetic route towards precursor 207 are near identical to the 

final steps towards precursor 162 (Scheme 56). Bromopyridine 214 was coupled to boronic 

ester pinacol 181 in a Suzuki-Miyaura cross-coupling reaction with potassium phosphate 

and Pd(dppf)Cl2 to afford hydroxy ester 218 in yield of 76%, before subsequently 

undergoing hydrolysis with lithium hydroxide to furnish the final precursor 207 in yield of 

68%. Pleasingly, both reactions provided their respective product in adequate yield, leading 

to no further consideration of reaction optimisation.  

 

Scheme 56: Suzuki-Miyaura coupling and subsequent hydrolysis of bromopyridine 214 to award precursor 

207. 

Scheme 57 shows all the reactions involved in the synthesis of the linear precursor 207 from 

bromomethyl pyridine 173 with an overall yield of 14%. As previously mentioned, there is 

room for further optimisation if time had allowed. With the synthesis of precursor 207 

complete, we could now test this substrate in a novel multi-INRE precursor using a free 

amine as the terminal nucleophile, which in turn could be used for the synthesis of the first 

macrocyclic lactam containing multiple internal nucleophiles (208) via multi-INRE. 

Because of the SARS-CoV-2 pandemic, this reaction has not yet been tested. 
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Scheme 57: Synthesis route to linear precursor 207. 

 

4.3 Work Towards a Precursor with Phenylamine Internal Nucleophile 

(210)  

Considerable progress towards a linear precursor containing a phenylamine internal 

nucleophile (210) was also made. The first synthetic route to precursor 210 attempted to 

alkylate phenylamine 221 with an alkyl halide, similar to previous SN2 attempts shown in 

Scheme 33 and Scheme 54. It was initially hoped that bromomethyl pyridine 173 could be 

reacted with a phenyl imine analogue similar to 172, however, no such imine was 

commercially available. Instead, synthesis of phenylamine 221  was achieved via the 

lithiation-trapping of bromomethyl pyridine 173 and its subsequent reductive amination, 

using conditions previously reported in the literature (Scheme 58).57 Bromomethyl pyridine 

173 was deprotonated by LDA before subsequently attacking into N-methoxy-N-

methylacetamide 219, consequently undergoing nucleophilic substitution to give ketone 220 

in a yield of 84%. Ketone 220 then underwent reductive amination with aniline using the 

reducing agent sodium triacetoxyborohydride (STAB) to afford phenylamine 221 in a yield 

of 88%. 
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Scheme 58: Lithiation-trapping and subsequent reductive amination of bromomethyl pyridine 173 to afford 

phenylamine 221. 

With a large quantity of phenylamine 221 at our disposal, alkylation was attempted using a 

variety of alkyl halides. Scheme 59 shows all the alkylation reactions attempted in the hope 

of synthesising alcohol 222. Using typical SN2 conditions, alkylation of phenylamine was 

attempted with electrophilic reagents including chloropropanol 175, bromopropanol 177, 

and iodopropanol 178. These alkylation reactions were all unsuccessful, with none of 

product 222 identified from either TLC or the 1H NMR spectrum of the unpurified reaction 

mixture, and a large quantity of unreacted starting material 221 was observed in the reaction 

mixtures. This is likely due to the fact that the aniline group of 221 is much less nucleophilic 

than analogous aliphatic amines used in other systems, due to delocalisation into the bonded 

phenyl group. 

 

Scheme 59: Attempted alkylation of phenylamine 221 using alkyl halides 175, 177 and 178. 

With realisation that phenylamine 221 is unable to undergo an SN2 reaction, an alternative 

strategy was conceived, where ketone 220 would undergo reductive amination with a 

phenylamine to give tertiary amine 222 (Scheme 60). The first reductive amination 

attempted was with phenylamine 223, acetic acid, and sodium triacetoxyborohydride 

(STAB) in 1,2-dichloroethene (DCE) overnight at room temperature. Disappointingly, this 

did not yield product 222. 

 

Scheme 60: Attempted reductive amination of ketone 220 with phenylamine 223. 
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However, an uncharacterised side-product was identified by HRMS. Although full data was 

not obtained to confirm this, it was speculated that the alcohol present in phenylamine 223 

was acting as a competing nucleophile, in turn attacking ketone 220 to produce a hemiaminal 

species (225) (Scheme 61). Thus, the alcohol present on phenylamine 223 could have 

attacked into the protonated carbonyl of ketone 220 to give the hemiketal intermediate 224a, 

which would then eject water via condensation to give intermediate 224b that could be 

attacked once more by the secondary phenylamine to cyclise to give hemiaminal 225. 

 

Scheme 61: Proposed mechanistic route for the formation of hemiaminal side-product 225. 

To prevent possible interference from a competing nucleophile, the alcohol of 223 was 

protected using TBS, to give reagent 226 (Scheme 62). However, when reductive amination 

of 220 was attempted using protected phenylamine 226, the 1H NMR spectrum and TLC of 

the unpurified reaction mixture showed no evidence of product 227 being formed. 

 

Scheme 62: Attempted reductive amination of ketone 220 with protected alcohol 226. 

A final reductive amination reaction was attempted in hope of synthesising a precursor 

possessing a phenylamine internal nucleophile. It was anticipated that a more electrophilic 

carbonyl, such as an aldehyde, would be more susceptible to attack from phenylamine 210, 

and in turn would allow for reductive amination to proceed. Scheme 63 shows the in situ 

synthesis of the aldehyde 228 from bromomethyl pyridine 173, followed by the subsequent 

reductive amination of aldehyde 228 with phenylamine 223. Thus, bromomethyl pyridine 
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173 underwent deprotonation with LDA before undergoing nucleophilic substitution with 

DMF to form aldehyde 228, which subsequently underwent reductive amination with 

phenylamine 223 to afford tertiary amine 229 in a yield of 24%. Pleasingly, the reaction was 

successful, with the novel product 229 being isolated and characterised.  

 

Scheme 63: Lithiation-trapping and subsequent reductive amination of bromomethyl pyridine 162. 

This is the extent of progress before lab work was halted. With bromopyridine 229 in hand, 

the next steps to prepare precursor 210 would be a Suzuki cross-coupling reaction with 

boronic ester pinacol 181 followed by a hydrolysis to furnish the final precursor. It is 

assumed that the conditions for the stated reactions would again be identical to the other 

Suzuki cross-coupling and hydrolysis conditions used previously in this report. 

 

4.4 Work Towards a Mono-Aryl Precursor (211)  

Finally, a mono-aryl precursor with a pyridine internal nucleophile (211) was designed, 

which would be used to form INRE product 212. However, a single-INRE mono-aryl 

precursor with a similar carbon framework containing one internal nucleophile had not been 

previously synthesised by the Unsworth group. Therefore, to test the viability of a single-

INRE with a mono-aryl system, a mono-aryl precursor containing one internal nucleophile 

was designed and its synthesis was attempted. Scheme 64 shows the desired precursor 230 

and its respective single-INRE product 231. 
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Scheme 64: Both single- and multi-INRE of precursors 211 and 230 to give lactone 212 and 231. 

The biggest challenge in the synthesis of mono-aryl precursor 230 was the C-2 alkylation of 

bromopyridine 220 with a linear alkyl carboxylic acid (Scheme 65). Any Heck or Wittig 

reactions requiring a 4-membered alkyl carboxylic acid or ester with a terminal alkene would 

be difficult, as the out-of-conjugation alkene would readily tautomerise in acidic or basic 

conditions at high temperatures to form the more thermodynamically stable conjugated 

alkene (Scheme 66).  

 

Scheme 65: Alkylation of C-2 position of bromopyridine 220 with linear ester/acid. X represents a possible 

synthetic handle. 

 

Scheme 66: Tautomerisation of out-of-conjugation alkene to thermodynamically stable conjugated alkene. 

To combat this, a one-pot borylation-Suzuki-Miyaura reaction based on a literature example 

was attempted,63 using vinyl ester 235 and bromopyridine 220 (Scheme 67). It was hoped 

that the conditions used for the initial formation of borylated ester 236 would be mild enough 

to avoid potential tautomerisation. Thus, 9-borabicyclo[3.3. 1]nonane (9-BBN) was added 
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to vinyl ester 235 in THF at 0 °C before being brought to room temperature for four hours 

to form the borylated ester 236 in situ. Bromopyridine 220 was then added before heating to 

95 °C with Pd(PPh3)4 for 90 min before being cooled and directly concentrated in vacuo. 

Unfortunately, none of product 237 could be identified from the unpurified reaction mixture 

via TLC or 1H NMR spectroscopy, indicating that the reaction had been unsuccessful. It is 

possible that 9-BBN instead reacted with the ester, leading to a side-reaction which 

interfered with the synthesis of alkyl borane 236 and in turn stopped the formation of product 

237. Although less likely, it is also possible that vinyl ester 235 underwent tautomerisation 

during the addition of 9-BBN, even with such mild reaction conditions, again interfering 

with the synthesis of alkyl borane 237. 

 

Scheme 67: Attempted one-pot borylation-Suzuki-Miyaura coupling of vinyl ester 235 with bromopyridine 

220. 

With borylation of ester 235 and subsequent Suzuki-Miyaura cross-coupling unlikely, we 

moved onto other methods of installing an alkyl group onto bromopyridine 220. The next 

attempt to synthesise 237 utilised a Negishi cross-coupling which is commonly used to 

install alkyl groups onto aryl rings. An organozinc bromide reagent would first need to be 

synthesised before undergoing cross-coupling with bromopyridine 220. The required reagent 

was organozinc bromide 239, which was synthesised from bromoester 197 via the formation 

of iodoester 238 (Scheme 68). Thus, bromoester 197 was heated with sodium iodide in 

acetonitrile for 90 mins to afford iodoester 238. Separately, 1,2-dibromoethane was then 

stirred vigorously with solid zinc in DMF at 90 °C for 30 minutes, before triethylsilane 

chloride was added to the solution which was then stirred at room temperature for 15 

minutes. Finally, iodoester 238 in THF was added to the reaction before heating to 45 °C for 

2.5 hours to afford organozinc bromide 237, which was then immediately used in the 

following Negishi reaction. 
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Scheme 68: Formation of organozinc bromide 239 from bromo ester 197. 

The organozinc product 239 was taken forward in solution to react with bromopyridine 220 

in a Negishi cross-coupling reaction (Scheme 69). Bromopyridine 220 was stirred with 

organozinc bromide 239 and Pd(PPh3)2Cl2 in THF at reflux for 4 hours to furnish keto-ester 

237 in an isolated yield of 33%. Although we were pleased that some of the desired product 

has been formed, 1H NMR spectroscopy and TLC analysis of the unpurified reaction mixture 

identified a large quantity of starting material still present, accounting for the modest yield 

of product 237. One possible solution which could increase the amount of starting material 

conversion, and in turn increase the yield of product 223, would be to leave the reaction to 

reflux overnight. 

 

Scheme 69: Negishi cross-coupling of bromopyridine 220 with organozinc bromide 239. 

With keto-ester 237 synthesised, the rest of the synthetic route towards precursor 230 would 

only require two final steps, a reduction of the ketone to an alcohol followed by a hydrolysis 

of the methyl ester to give the acid. Similar compounds have been hydrolysed and reduced 

in the literature,57 which would likely allow for an unproblematic synthesis of precursor 230 

in future work. 
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4.5 Summary 

A novel linear multi-INRE precursor containing a phenylamine terminal nucleophile (207) 

was synthesised over four steps and can now be tested in a multi-INRE reaction. Two other 

novel multi-INRE precursors were also designed; a linear multi-INRE precursor containing 

a phenylamine internal nucleophile (210) and a linear single-INRE mono-aryl precursor 

(288). Considerable progress has also been made towards a synthetic route to access the two 

aforementioned precursors. 
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Future Work 

5.1 Short-Term Objectives 

As previously stated, the SARS-CoV-2 pandemic abruptly halted all lab work prematurely.62 

As a result of the pandemic many short-term objectives were left unfinished, but we predict 

that they could be completed quickly and would provide much insight into the multi-INRE 

reaction. The most straightforward of these short-term objectives is conducting INRE tests 

on all synthesised precursors using the best conditions: HOBt, EDC, MeCN, DIPEA, 25 °C 

for 18 h (Scheme 70). If the optimised conditions are successful with the system shown in 

Scheme 70 it would suggest that the finalised conditions would be well suited for use in 

future multi-INRE reactions using novel linear precursors containing several internal 

nucleophiles. 

 

Scheme 70: Cyclisation of precursor 207 via INRE using finalised conditions.  

Another short-term objective is the synthesis of the phenylamine internal nucleophile 

precursor 209 and the mono-aryl single-INRE precursor 230 as well as forming their 

respective INRE products using the finalised conditions. Scheme 71 shows the completion 

of the synthetic route to build precursor 209 from previously synthesised tertiary amine 229. 

Thus, tertiary amine 229 would undergo a Suzuki-Miyaura cross-coupling reaction with 

boronic ester pinacol 181 to afford hydroxy ester 240 before undergoing hydrolysis to 

generate hydroxy acid 209. Hydroxy acid 209 could then undergo cyclisation via a multi-

INRE reaction using EDC and HOBt to give lactone 210. As all reactions shown in Scheme 

71 are based on previous conditions found in the literature,57 the reactions would be 

hopefully be unproblematic and could be carried out in an efficient manner. 
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Scheme 71: Synthesis of precursor 209 from tertiary amine 229 and subsequent INRE to award lactone 210. 

Scheme 72 shows the steps necessary to complete the synthesis of precursor 230. Reduction 

of keto-ester 237 using sodium borohydride should furnish hydroxy ester 241 which could 

then undergo hydrolysis to give hydroxy acid 230. Hydroxy acid 230 could then undergo 

cyclisation via INRE to yield lactone 231. Again, all steps use conditions reported in the 

literature for the synthesis of near identical analogues, therefore the synthesis of precursor 

230 should be unproblematic. If formation of lactone 231 via INRE of hydroxy acid 230 is 

successful, work could be then focus towards preparing the mono-aryl precursor with two 

internal nucleophiles 211. 

 
Scheme 72: Synthesis of precursor 230 from keto-ester 237 and subsequent INRE to award lactone 231. 
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5.2 Long-Term Objectives 

There are also many long-term objectives which could build upon the foundations achieved 

so far in this project. The most apparent would be further exploration of scope via the 

synthesis of a diverse array of linear multi-INRE precursors. The easiest would be the 

synthesis of precursor 211, as again most of the steps used to build the precursor have been 

reported in the synthesis of previous multi-INRE precursors in this report. Scheme 73 shows 

the synthetic route which could potentially be used to make precursor 211 from 

bromopyridine 176, and the subsequent INRE reaction. Thus, bromopyridine 176 would 

undergo a Negishi cross-coupling with organozinc bromide 239 to give hydroxy ester 242, 

which could then be hydrolysed to give precursor 211. Finally, hydroxy acid 211 could 

undergo cyclisation via a multi-INRE reaction using the finalised conditions to furnish the 

14-membered lactone 212.  

 

Scheme 73: Synthesis of precursor 211 from bromopyridine 176 and subsequent INRE to award lactone 212. 

To further build on the work done in this report, additional optimisation of previous synthetic 

routes would allow for streamlined syntheses of both multi-INRE precursors which have 

been previously made, and also structurally similar novel analogues, in turn making future 

substrate scope studies easier. One such route which could be optimised is the synthesis of 

saturated alkyl precursors, such as aliphatic hydroxy acid 190. Optimisation could be 

achieved through the synthesis of an alternative electrophilic reagent that possesses a 

different leaving group, which could in turn lead to higher yielding SN2 reactions. Scheme 

74 outlines one strategy which could potentially increase the efficiency of the synthetic route 
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and in turn increase the yield of precursor 190. Scheme 74 shows the tosylation of alcohol 

199 with tosyl chloride to give the electrophilic alkyl tosylate 243 which could then undergo 

SN2 with benzylic amine 198 to award hydroxy ester 201. It is hoped that an SN2 reaction 

between benzylic amine 198 and tosylate 243 would allow for a higher yield of hydroxy acid 

201 compared to an SN2 reaction with its bromide counterpart 200. 

 

Scheme 74: Alternative route for synthesis of hydroxy ester 201; tosylation of alcohol 199 followed by an 

SN2 reaction with benzylic amine 198. 

This alternative strategy can also be employed in the synthesis of the phenylamine precursor 

207. Scheme 74 shows the synthesis of secondary phenylamine 214 from alcohol 176. Rather 

than performing an SN2 reaction between secondary amine 174 and bromo phenylamine 213, 

the synthetic method shown below instead start from alcohol 176. Scheme 75 shows the 

formation of tosylate 244 from alcohol 176 and the subsequent SN2 reaction with aniline to 

give phenylamine 214. This strategy would avoid the use of the unstable reagent bromo 

phenylamine 213, streamlining the synthetic route and potentially increasing the yield of 

phenylamine 214.  

 

Scheme 75: Alternative route for synthesis of phenylamine 214; tosylation of alcohol 176 followed by an 

SN2 reaction with aniline. 

A key step for the synthetic route of biaryl precursors is the synthesis and subsequent cross-

coupling of boronic pinacol ester 181. However, as previously stated, the purification of this 

compound is difficult due to the susceptibility of boronic esters to decompose on silica.64 A 

potentially simple solution to this problem would be to purify the boronic ester 181 crude 

reaction mixture using aluminium oxide column chromatography. It is hoped that boronic 

pinacol ester 181 would be stable in the presence of aluminium oxide, in turn decreasing the 

rate of degradation and increasing the retrieval of isolated boronic pinacol ester 181.  
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Finally, a number of novel linear precursors could be developed and subsequently cyclised 

via INRE in order to explore the scope and limitations of multi-INRE. Scheme 76 shows 

variety of designed precursors and their respective products. One designed precursor could 

contain two different heteroatoms that both function as internal nucleophiles (225). If the 

subsequent INRE reaction 245 → 246 was successful, it would prove that INRE is possible 

with heterocyclic linear precursors containing different heteroatoms acting as internal 

nucleophiles, which could lead to further exploration of other nucleophilic heteroatoms such 

as phosphorous. Designing precursors which have “swapped” the positions of internal 

nucleophiles in the linear chain would provide insight into the importance of the order of 

internal nucleophiles. An example is hydroxy acid 247, which structurally is similar to 

precursor 162, however, the pyridine and tertiary amine internal nucleophiles have 

“swapped” their positions in the linear carbon chain. If the yield of reaction 247 → 248 is 

significantly lower or higher than the yield of the reaction 162 → 164, it could be concluded 

that the success of a multi-INRE reaction is determined not only by what internal 

nucleophiles are used, but also where the internal nucleophiles appear in the linear carbon 

chain relative to the carboxylic acid.  

A precursor containing three internal nucleophiles could be designed (249). If INRE is 

possible with such a precursor (249) it would not only allow for the synthesis of even larger 

heterocyclic macrocycles from linear precursors but would suggest that INRE could 

hypothetically be used to build macrocycles of impressive sizes with numerous internal 

nucleophiles. Finally, atroposelectivity could be explored further, by designing precursors 

which possessed chiral centres adjacent to both nucleophiles, such as precursor 251. If the 

yield of 251 is significantly higher or lower than the yield of 162→164 it would give further 

insight into how the multi-INRE mechanistic pathway proceeds. 
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Scheme 76: Potential INRE precursors and their respective ring expanded products. 
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Conclusion 

In conclusion, multi-INRE reactions have been developed for the synthesis of 13- and 14-

membered macrocycles from linear, pre-functionalised precursors containing more than one 

internal nucleophile in up to 73% yield. This strategy builds on previous work using internal 

nucleophile induced cyclisations of single internal nucleophile precursors, allowing for 

efficient end-to-end cyclisation of longer linear precursors to form subsequently larger 

heterocyclic macrocycles. 

We have shown that macrocyclic heterocycles which both do and do not possess an aryl 

moiety can be synthesised via INRE of linear precursors containing several internal 

nucleophiles (Scheme 77). As part of this process, multiple novel synthetic routes to access 

precursors containing several internal nucleophiles have been developed, allowing for a 

streamlined route to make analogues for future scope. There have also been successful 

attempts to build an array of other precursors with slightly altered structures, with each 

precursor in different stages of their development. 

 

Scheme 77: All macrocycles synthesised in this report. 

We have also shown that internal nucleophile induced ring expansion reactions of biaryl 

precursors containing two internal precursors show atroposelectivity, allowing for point-to-

axial chirality transfer (Scheme 78). This form of diastereoselectivity, and the construction 

of heterocyclic macrocycles, is of evermore importance in drug discovery.8 It is hoped that 
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the development of INRE shown in this work has allowed for INRE to become a more 

reliable and practical tool for the synthesis of important bioactive macrocycles via the 

internal nucleophile ring expansion of pre-functionalised linear precursors. 

 

Scheme 78: Atroposelectivity of INRE of precursors containing two internal precursors. 
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Experimental 

7.1 General Experimental 

Except where stated, all reagents and solvents were purchased from commercial sources and 

used directly without further purification. Thin-layer chromatography was carried out using 

Merck silica gel 60F254 pre-coated aluminium foil sheets and visualised using UV radiation 

(254 nm) before being stained with basic aqueous potassium permanganate. Flash column 

chromatography was carried out using Fluka silica gel (SiO2) 35–70 μm, 60 Ǻ under light 

positive pressure, eluting with the specified solvent system.  

All 1H and 13C NMR experiments were recorded on a JEOL ECS-400 operating at 400 MHz 

and 100 MHz respectively. Samples were taken at a temperature of 298 K dissolved in CDCl3 

unless specified otherwise. Chemical shifts (δ) are reported in parts per million (ppm), with 

residual solvent peaks δH 7.27 and δC 77.0 being used for internal reference. Coupling 

constants (J) are reported in Hertz (Hz) and are quoted to the nearest 0.1 Hz. Multiplicity 

abbreviations are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, 

doublet of doublets; td, triplet of doublets; ddd, doublet of doublets of doublets; where br 

indicates a broad signal. 1H experiments are reported as: chemical shift, ppm (integration, 

multiplicity, coupling constant and assignment (where possible)). 13C experiments are 

reported as: chemical shift, ppm (carbon assignment). Assignment of compounds was 

achieved through use of DEPT, COSY, and HMQC experiments.  

High resolution mass spectra were recorded on a Bruker Micro-TOF spectrometer using 

electrospray ionisation (ESI). Infra-red spectra were recorded on a PerkinElmer UATR 2 

spectrometer, either as a thin film dispersed with DCM or neat. Melting points were obtained 

using a Gallenkamp melting point apparatus. 
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7.2 List of Experimental Procedures and Characterisations 

2-(6-Bromopyridin-2-yl)-N-methyl-1-phenylethan-1-amine (174) 

 

N,N-Diisopropylamine (4.35 mL, 35.1 mmol) was dissolved in THF (175 mL) and cooled to 

0 ⁰C before n-BuLi (2.5 M solution in hexanes, 14.0 mL, 35.1 mmol) was added dropwise 

and stirred for 30 mins. The LDA solution was then cooled to −78 °C, where 2-bromo-6-

methylpyridine (173) (1.98 mL, 17.5 mmol) was added dropwise and stirred for 1 h. N-

Benzylidenemethylamine (4.35 mL, 35.1 mmol) was added and stirred for a further 2 h at 

−78 °C before slowly warming to RT. The solution was then quenched with sat. aq. NH4Cl 

(150 mL) and extracted with ethyl acetate (3 × 100 mL) and washed with brine (150 mL). 

The combined organic extracts were dried over MgSO4, filtered and removed in vacuo. 

Purification by flash column chromatography (SiO2, 5% methanol in ethyl acetate) afforded 

the title compound as a yellow oil (3.82 g, 81%); Rf. 0.23 (5% methanol in ethyl acetate); δH 

(400 MHz, CDCl3) 7.35–7.27 (7H, m, ArH), 6.86 (1H, d, J = 7.0 Hz, ArH), 3.98 (1H, dd, J 

= 8.4, 6.1 Hz, CH2CHNMe), 3.12 (1H, dd, J = 13.7, 6.1 Hz, CCHH′CHPh), 3.01 (1H, dd, J 

= 13.7, 8.4 Hz, CCHH′CHPh), 2.25 (3H, s, NHCH3), 1.68–1.65 (1H, br s, NH). 

Spectroscopic data matched those reported in the literature.57 
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Compound 174  

 

 

 

 

 

 

 

 

 

 

 



81 
 

3-{[2-(6-Bromopyridin-2-yl)-1-phenylethyl](methyl)amino}propan-1-ol (176)  

 

2-(6-Bromopyridin-2-yl)-N-methyl-1-phenylethan-1-amine (174) (1.00 g, 3.45 mmol), 3-

iodo-1-propanol (178) (660 µL, 6.89 mmol) and potassium carbonate (953 mg, 6.90 mmol) 

were dissolved in acetonitrile (7 mL). After stirring at 85 °C for 18 h the reaction mixture 

was diluted with water (5 mL) and extracted with ethyl acetate (3 × 5 mL). The combined 

organic layers were dried with anhydrous MgSO4, filtered, and then purified by flash column 

chromatography (SiO2, 5% methanol in ethyl acetate) affording the title compound as a 

colourless oil (900 mg, 53%); Rf. 0.23 (5% methanol in ethyl acetate); νmax/cm–1 (neat) 3369, 

3029, 2943, 2850, 2237, 1583, 1553, 1435, 1406, 1175, 1156, 1116, 1068, 1033; δH (400 

MHz, CDCl3) 7.37–7.24 (7H, m, ArH), 6.92 (1H, d, J = 7.0 Hz, ArH), 4.19 (1H, t, J = 7.0 

Hz, PhCHN), 3.71–3.68 (2H, m, CH2OH), 3.55–3.50 (1H, dd, J = 13.7, 7.4 Hz, CHH'CHPh), 

3.20–3.14 (1H, dd, J = 13.7 8.0 Hz, CHH'CHPh), 2.73–2.67 (1H, ddd, J = 12.1, 7.9, 4.3 Hz, 

NCHH'CH2), 2.62–2.56 (1H, ddd, J = 12.1, 7.0, 4.2 Hz, NCHH'CH2), 2.31 (3H, s, CH3N), 

1.74–1.63 (2H, m, CH2); δC (100 MHz, CDCl3) 160.8 (ArC), 141.4 (ArC), 138.5 (ArC), 

137.9 (ArCH), 128.8 (ArCH), 128.1 (ArCH), 127.5 (ArCH), 125.6 (ArCH), 122.7 (ArCH), 

69.1 (CH2CHN), 64.0 (CH2OH), 54.6 (CCH2CH), 40.4 (NCH2), 37.5 (CH3N), 27.8 (CH2); 

HRMS (ESI): calcd. for C17H22
79BrN2O, 349.0910. Found: [MH]+, 349.0906 (1.1 ppm 

error)]. 
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Compound 176 
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Methyl 2-(2-bromophenyl)acetate (180) 

 

To a stirring solution of 2-(2-bromophenyl)acetic acid (179) (6.00 g, 28.0 mmol) in methanol 

(60 mL) was added concentrated sulfuric acid (1.20 mL) and the resulting solution was 

refluxed for 90 mins. After cooling to RT, the reaction was quenched with water (40 mL) 

and extracted with diethyl ether (3 × 50 mL). The organic extract was washed with sat. aq. 

brine (40 mL), dried over anhydrous MgSO4, filtered and concentrated in vacuo to afford 

the title compound as a clear oil (6.33 g, 99%); δH (400 MHz, CDCl3) 7.57 (1H, d, J = 8.2 

Hz, ArH), 7.30−7.26 (2H, m, ArH), 7.19–7.12 (1H, m, ArH), 3.81 (2H, s, CH2), 3.72 (3H, 

s, CH3). 

Spectroscopic data matched those reported in the literature.65 
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Compound 180 
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Methyl 2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetate (181)  

 

To a stirring solution of methyl 2-(2-bromophenyl)acetate (180) (2.05 g, 8.98 mmol) in 1,4- 

dioxane (36 mL), was added bis(pinacalato)diboron (2.51 g, 9.88 mmol), potassium acetate 

(3.35 g, 34.1 mmol) and PdCl2(dppf)·CH2Cl2 (367 mg, 450 µmol). The reaction mixture was 

flushed with argon and heated under reflux for 18 h. The reaction mixture was quenched 

with water (40 mL) and extracted with diethyl ether (3 × 30 mL). The organic extract was 

washed with sat. brine (30 mL), dried over anhydrous MgSO4, filtered and concentrated in 

vacuo. Purification via silica gel chromatography (10% hexane in dichloromethane) yielded 

the pure product as an off-white solid (1.40 g, 56%); δH (400 MHz, CDCl3) 7.83 (1H, d, J = 

7.6 Hz, ArH), 7.40−7.37 (1H, m, ArH), 7.29−7.25 (1H, m, ArH), 7.19 (1H, d, J = 7.5 Hz, 

ArH), 3.98 (2H, s, CH2), 3.66 (3H, s, OCH3), 1.32 (12H, s, 4 × CH3).  

Spectroscopic data matched those reported in the literature.66 
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Compound 181 
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Methyl 2-[2-(6-{2-[(3-hydroxypropyl)(methyl)amino]-2-phenylethyl}pyridin-2-

yl)phenyl]acetate (182) 

 

3-{[2-(6-Bromopyridin-2-yl)-1-phenylethyl](methyl)amino}propan-1-ol (176) (683 mg, 

1.96 mmol), methyl 2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl) acetate (181) 

(813 mg, 2.94 mmol), potassium phosphate (833 mg, 3.92 mmol) and PdCl2(dppf)·CH2Cl2 

(80.0 mg, 89.0 µmol) were charged into an round bottom flask purged with nitrogen. THF 

(20 mL) and de-ionised water (178 µL, 9.81 mmol) were added and heated to 80 °C, at 

reflux, for 18 h. Upon completion the solution was cooled to room temperature, diluted with 

water (15 mL), extracted with ethyl acetate (3 × 20 mL) and washed with sat. brine (10 mL). 

The combined organic extracts were dried over MgSO4, filtered, and removed in vacuo. 

Purification by flash column chromatography (SiO2, 10% methanol in ethyl acetate) afforded 

the title compound as a brown oil (713 mg, 87%); Rf. 0.38 (10% methanol in ethyl acetate); 

νmax/cm–1 (neat) 3367, 3061, 3025, 2950, 2852, 1736, 1587, 1570, 1496, 1448, 1339, 1254, 

1211, 1159, 1071; δH (400 MHz, CDCl3) 7.54 (1H, t, J = 7.8 Hz, ArH), 7.41–7.21 (10H, m, 

ArH), 6.91 (1H, d, J = 7.6 Hz, ArH), 4.22 (1H, t, J = 8.0 Hz, NCHPh), 3.85–3.74 (2H, m, 

CH2CO2), 3.64 (2H, t, J = 5.1 Hz, CH2OH), 3.57–3.51 (4H, m, CO2CH3 and CHH′CHN), 

3.25–3.19 (1H, dd, J = 13.6, 8.0 Hz, CHH′CHN), 2.70–2.57 (2H, m, NCH2), 2.30 (1H, s, 

NCH3), 1.70–1.60 (2H, m, CH2); δC (100 MHz, CDCl3) 172.5 (CO2), 159.0 (ArC), 158.6 

(ArC), 140.7 (ArC), 138.2 (ArC), 136.7 (ArCH), 132.4 (ArC), 131.4 (ArCH), 130.1 

(ArCH), 129.1 (ArCH), 128.5 (ArCH), 128.2 (ArCH), 127.5 (ArCH), 126.8 (ArCH)* 122.1 

(ArCH), 121.7 (ArCH), 69.4 (NCHPh), 64.3 (CH2OH), 55.1 (NCH2), 52.0 (CO2CH3), 40.7 

(CH2CHN), 39.2 (CH2CO2), 37.4 (NCH3), 27.8 (CH2); HRMS (ESI): calcd. for C26H31N2O3, 

419.2329. Found: [MH]+, 419.2326 (0.7 ppm error)].  

*Peak obtained from HMQC, no detectable signal in the 13C NMR spectrum. 
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Compound 182 
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[2-(6-{2-[(3-Hydroxypropyl)(methyl)amino]-2-phenylethyl}pyridin-2-yl)phenyl]acetic 

acid (162) 

 

Methyl 2-[2-(6-{2-[(3-hydroxypropyl)(methyl)amino]-2-phenylethyl}pyridin-2-

yl)phenyl]acetate (182) (713 mg, 1.70 mmol) was dissolved in aqueous lithium hydroxide 

solution (0.5 M, 17 mL, 8.52 mmol) and THF (17 mL). The resulting bi-phasic solution was 

vigorously stirred for 18 h at 25 °C. Upon completion, the solvent was removed in vacuo. 

Purification by flash column chromatography (SiO2, 50% methanol in ethyl acetate) afforded 

the title compound as a brown powder (687 mg, 96%); m.p. 73–76 °C; Rf 0.20 (50% 

methanol in ethyl acetate); νmax/cm–1 (neat) 3323, 3061, 3028, 2943, 2244, 1717, 1571, 1493, 

1453, 1375, 1158, 1065; δH (400 MHz, CDCl3) 7.36 (1H, s, ArH), 7.47–7.45 (1H, d, J = 7.6 

Hz, ArH), 7.38–7.17 (9H, m, ArH), 6.96 (1H, s, ArH), 4.07–4.03 (1H, t, J = 7.0 Hz, 

NCHPh), 3.72–3.59 (2H, br, CH2CO2), 3.55–3.48 (3H, m, CH2OH and CHH′CHN), 3.20 

(1H, br, CHH′CHN), 2.58 (2H, t, J = 7.0 Hz, NCH2), 2.28 (3H, s, NCH3), 1.75–1.53 (2H, 

m, CH2); δC (100 MHz, CDCl3) 175.4 (CO2), 157.9 (ArC), 157.6 (ArC), 138.4 (ArC), 138.2 

(ArC), 136.4 (ArCH), 134.1 (ArC), 131.3 (ArCH), 130.0 (ArCH), 129.1 (ArCH), 129.0 

(ArCH), 128.3 (ArCH), 127.9 (ArCH), 127.1 (ArCH), 123.0 (ArCH), 122.6 (ArCH), 69.4 

(NCHPh), 62.7 (CH2OH), 53.9 (NCH2), 42.1 (CH2CHN), 39.7 (CH2CO2), 37.3 (NCH3), 

27.6 (CH2); HRMS (ESI): calcd. for C25H29N2O3, 405.2173. Found: [MH]+, 405.2176 (−0.8 

ppm error)]. 
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14-Methyl-15-phenyl-10-oxa-14,21-diazatricyclo[15.3.1.0²,⁷]henicosa-1(21),2,4,6,17,19-

hexaen-9-one (164) 

 

To a stirring solution of [2-(6-{2-[(3-hydroxypropyl)(methyl)amino]-2-

phenylethyl}pyridin-2-yl)phenyl]acetic acid (162) (202 mg, 0.52 mmol) in acetonitrile (5 

mL), was added diisopropylethylamine (430 µL, 2.47 mmol), followed by the addition of 

EDC·HCl (144 mg, 0.75 mmol) and HOBt (101 mg, 0.75 mmol). After stirring for 18 h at 

25 °C, the reaction mixture was directly concentrated in vacuo. Only one diastereomer was 

observed. Purification by flash column chromatography (SiO2, 50% ethyl acetate in hexanes) 

afforded the title compound as a red oil (142 mg, 73%); Rf 0.59 (ethyl acetate); νmax/cm–1 

(neat) 3069, 3025, 2941, 2851, 1735, 1590, 1569, 1450, 1360, 1341, 1289, 1213, 1173, 1085, 

1008; δH (400 MHz, CDCl3)
 7.71 (1H, t, J = 7.7 Hz, ArH), 7.51 (1H, dd, J = 6.9, 2.1 Hz, 

ArH), 7.42–7.26 (9H, m, ArH), 7.18 (1H, d, J = 7.7 Hz, ArH), 4.48–4.40 (2H, m, NCHPh 

and ArCHH’CO2), 4.00 (1H, d, J = 17.5 Hz, ArCHH’CO2), 3.80–3.75 (1H, m, OCHH’CH2), 

3.69–3.62 (2H, m, OCHH’CH2 and ArCHH’CH), 3.10–3.05 (1H, dd, J = 15.2, 4.5 Hz, 

ArCHH’CH), 2.80–2.73 (1H, m, NCHH’CH2), 2.28–2.20 (4H, m, NCHH’CH2 and NCH3), 

1.66–1.60 (2H, m, CH2CH2CH2); δC (100 MHz, CDCl3) 172.0 (CO2), 160.0 (ArC), 158.9 

(ArC), 140.2 (ArC), 138.0 (ArCH), 137.0 (ArCH), 133.1 (ArC), 132.3 (ArCH), 130.2 

(ArCH), 128.6 (ArCH), 128.4 (ArCH), 128.0 (ArCH), 127.7 (ArCH), 127.3 (ArCH), 121.5 

(ArCH), 120.6 (ArCH), 67.4 (NCHPh), 61.3 (CO2CH2CH2), 47.5 (NCH2), 40.6 (2 signals, 

ArCH2CH and ArCH2CO2), 37.6 (NCH3), 24.9 (CH2CH2CH2); HRMS (ESI): calcd. for 

C25H27N2O2, 387.2067. Found: [MH]+, 387.2065 (0.5 ppm error)]. 
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Compound 164 
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Methyl 4-[benzyl(3-hydroxypropyl)amino]butanoate (199) 

 

Methyl 4-bromobutyrate (197) (0.69 mL, 5.54 mmol) and 3-(benzylamino)propan-1-ol (198) 

(1.32 mL, 8.29 mmol) were dissolved in acetonitrile (55 mL) and potassium carbonate (1.53 

g, 11.05 mmol) was added and the solution heated, at reflux, to 85 oC for 3 h. Upon 

completion the solution was diluted with water (50 mL) before being extracted with ethyl 

acetate (3 × 50 mL) and washed with sat. aq. brine (40 mL). The combined organic extracts 

were dried over MgSO4, filtered and removed in vacuo. Purification by flash column 

chromatography (SiO2, ethyl acetate) afforded the title compound as a colourless oil (572 

mg, 39%); Rf 0.30 (ethyl acetate); νmax/cm-1 (neat) 3424, 2950, 2813, 1736; δH (400 MHz, 

CDCl3) 7.33–7.26 (5H, m, Ph), 3.73 (2H, t, J = 3.7 Hz, CH2OH), 3.63 (1H, s, OCH3), 3.58 

(2H, s, NCH2Ph), 2.67 (2H, t, J = 2.7 Hz, CH2CO2), 2.60 (2H, t, J = 2.5, NCH2CH2), 2.29 

(2H, t, J = 2.3, NCH2CH2), 1.88–1.81 (2H, m, CH2CH2CH2), 1.76–1.68 (2H, m, 

CH2CH2CH2); δC (100 MHz, CDCl3) 173.6 (CO2Me), 138.0 (C), 129.2 (CH), 128.6 (CH), 

127.4 (CH), 64.2 (CH3O), 58.8 (CH2OH), 54.0 (CH2N), 52.9 (CH2N), 51.7 (CH2N), 31.8 

(CH2CH2CO2), 28.1 (CH2CH2), 22.0 (CH2CH2); HRMS (ESI): calcd for C15H24NO3 

266.1751. Found: [MNa]+, 266.1744 (2.6 ppm error). 
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Compound 199 
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Methyl 4-[benzyl(3-bromopropyl)amino]butanoate (200) 

 

Methyl 4-[benzyl(3-hydroxypropyl)amino]butanoate (199) (572 mg, 2.17 mmol) and carbon 

tetrabromide (787 mg, 2.37 mmol) were dissolved in CH2Cl2 (8.6 mL) and cooled to 0 °C 

before triphenylphosphine (622 mg, 2.37 mmol) was added portion-wise. After stirring for 

1 h at 25 °C, the reaction mixture was concentrated directly and then purified by flash column 

chromatography (SiO2, 30% ethyl acetate in hexanes → 40% ethyl acetate in hexanes) 

affording the title compound as a yellow oil (582 mg, 72%); Rf 0.81 (50% ethyl acetate in 

hexanes); νmax/cm–1 (neat) 2950, 2806, 1734, 1494, 1452, 1436, 1365, 1256, 1199, 1170, 

1125, 1074, 1028; δH (400 MHz, CDCl3) 7.27–7.20 (5H, m, Ph), 3.60 (3H, s, CH3O), 3.52 

(2H, s, CH2Ph), 3.40 (2H, t, J = 6.8 Hz, CH2Br), 2.54 (2H, t, J = 6.7 Hz, NCH2), 2.42 (2H, 

t, J = 6.9 Hz, NCH2), 2.30 (2H, t, J = 7.3 Hz, CO2CH2), 1.99–1.94 (2H, m, CH2), 1.81–1.76 

(2H, m, CH2); δC (100 MHz, CDCl3) 174.4 (CO), 139.5 (ArC), 129.2 (ArC), 128.6 (ArC), 

127.4 (ArC), 59.0 (CH2Ph), 53.2 (CH2N), 52.2 (CH2N), 51.9 (CH3O), 32.2 (CH2), 31.9 

(CH2), 30.8 (CH2), 22.7 (CH2); HRMS (ESI): calcd. for C15H23
79BrNO2, 328.0907. Found: 

[MH]+, 328.0899 (2.3 ppm error)]. 
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Compound 200 
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Methyl 4-[benzyl({3-[benzyl(3-hydroxypropyl)amino]propyl})amino]butanoate (201) 

 

Methyl 4-[benzyl(3-bromopropyl)amino]butanoate (200) (1.21 g, 3.71 mmol), 3-

(benzylamino)propan-1-ol (198) (885 µL, 5.56 mmol) and potassium carbonate (1.03 g, 7.42 

mmol) were dissolved in acetonitrile (37 mL). After stirring at 85 °C for 3 h the reaction 

mixture was concentrated directly and then purified by flash column chromatography (SiO2, 

5% methanol in ethyl acetae) affording the title compound as a yellow oil (710 mg, 45%); 

Rf. 0.53 (10% methanol in ethyl acetate); νmax/cm–1 (neat) 3417, 3027, 2948, 2803, 1735, 

1602, 1494, 1452, 1366, 1170, 1071, 1028; δH (400 MHz, CDCl3) 7.33–7.23 (10H, m, 2 × 

Ph), 3.73–3.70 (2H, m, CH2OH), 3.64 (3H, s, OCH3), 3.56 (2H, s, CH2Ph), 3.51 (2H, s, 

CH2Ph), 2.65–2.62 (2H, t, J = 5.9 Hz, NCH2), 2.47–2.38 (6H, m, 3 × NCH2), 2.31–2.27 (2H, 

t, J = 7.5 Hz, OCCH2), 1.75–1.65 (6H, m, 3 × CH2); δC (100 MHz, CDCl3) 174.2 (CO), 

139.6 (ArC), 138.3 (ArC), 129.1 (ArC), 128.8 (ArC), 128.4 (ArC), 128.1 (ArC), 127.2 

(ArC), 126.8 (ArC), 64.0 (CH2OH), 58.9 (CH2Ph), 58.6 (CH2Ph), 54.0 (CH2N), 52.8 

(CH2N), 51.9 (CH2N), 51.7 (CH2N), 51.4 (COCH3), 31.7 (CH2), 28.0 (CH2), 24.3 (CH2), 

22.4 (CH2); HRMS (ESI): calcd. for C25H37N2O3, 413.2799. Found: [MH]+, 413.2795 (1.0 

ppm error)]. 
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Compound 201 
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4-[Benzyl({3-[benzyl(3-hydroxypropyl)amino]propyl})amino]butanoic acid (190) 

 

Methyl 4-[benzyl({3-[benzyl(3 hydroxypropyl)amino]propyl})amino]butanoate (201) (710 

mg, 1.72 mmol) was dissolved in aqueous lithium hydroxide solution (0.5 M, 12 mL, 6.03 

mmol) and THF (12 mL). The resulting bi-phasic solution was vigorously stirred for 18 h. 

Upon completion, the solvent was removed in vacuo. The crude material was then passed 

through a silica plug and eluted with 50% methanol in ethyl acetate to afford the title 

compound as a colourless oil (272 mg, 40%); Rf. 0.17 (20% methanol in ethyl acetate); 

νmax/cm–1 (neat) 2943, 2811, 1575, 1494, 1453, 1407, 1072; δH (400 MHz, CDCl3) 7.31–

7.21 (10H, m, 2 × Ph), 3.69–3.64 (4H, m, CH2Ph and HOCH2), 3.54 (2H, s, CH2Ph), 2.62–

2.55 (4H, m, 2 × CH2N), 2.48–2.45 (2H, m, CH2N), 2.38 (2H, t, J = 7.1 Hz, CH2N), 2.26 

(2H, t, J  = 6.5 Hz, CH2CO2H), 1.79–1.68 (6H, m, 3 × CH2); δC (100 MHz, CDCl3) 179.3 

(CO2H), 137.9 (ArC), 136.4 (ArC), 129.7 (ArCH), 129.4 (ArCH), 128.6 (ArCH), 128.5 

(ArCH), 127.8 (ArCH), 127.4 (ArCH), 62.6 (CH2OH), 58.9 (CH2Ph), 58.3 (CH2Ph), 53.6 

(CH2N), 52.8 (CH2N), 51.5 (CH2N), 51.2 (CH2N), 35.4 (CH2), 31.0 (CH2), 28.3 (CH2), 23.4 

(CH2); HRMS (ESI): calcd. for C24H35N2O3, 399.2624. Found: [MH]+, 299.2640 (0.5 ppm 

error)]. 
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Compound 190 
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5,9-Dibenzyl-1-oxa-5,9-diazacyclotridecan-13-one (192) 

 

To a stirring solution of 4-[benzyl({3-[benzyl(3-

hydroxypropyl)amino]propyl})amino]butanoic acid (190) (186 mg, 0.47 mmol) in 

acetonitrile (5 mL), was added diisopropylethylamine (435 μL, 2.50 mmol), followed by the 

addition of EDC·HCl (144 mg, 0.75 mmol) and HOBt (101 mg, 0.75 mmol). After stirring 

for 18 h at 25 °C, the reaction mixture was concentrated directly and then purified by flash 

column chromatography (SiO2, 50% ethyl acetate in hexanes) to afford the title compound 

as a colourless oil (87 mg, 49%); Rf. 0.40 (50% ethyl acetate in hexanes); νmax/cm–1 (neat) 

3027, 2928, 2796, 1728, 1602, 1494, 1452, 1372, 1356, 1340, 1231, 1208, 1171, 1119, 1070, 

1028; δH (400 MHz, CDCl3)
 7.29–7.20 (10H, m, 2 × Ph), 4.23–4.20 (2H, m, OCH2), 3.49 

(2H, s, CH2Ph), 3.47 (2H, s, CH2Ph), 2.65–2.62 (2H, t, J = 6.3 Hz, NCH2), 2.51–2.44 (4H, 

m, 2 × NCH2), 2.35–2.31 (4H, m, NCH2 and CH2CO2), 1.19–1.68 (4H, m, 2 × CH2), 1.59–

1.53 (2H, m, CH2); δC (100 MHz, CDCl3) 174.3 (CO2), 140.1 (ArC), 139.8 (ArC), 129.2 

(ArCH), 129.0 (ArCH), 128.3 (ArCH), 128.2 (ArCH), 127.0 (ArCH), 126.9 (ArCH), 62.1 

(CH2O), 59.4 (CH2Ph), 59.2 (CH2Ph), 52.7 (CH2N), 52.6 (CH2N), 52.2 (CH2N), 49.7 

(CH2N), 31.9 (CH2CO2), 26.6 (CH2), 26.4 (CH2), 23.3 (CH2); HRMS (ESI): calcd. for 

C24H33N2O2, 381.2537. Found: [MH]+, 381.2530 (1.7 ppm error)]. 
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Compound 192 
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5,9-Dibenzyl-1-oxa-5,9-diazacyclotetradecan-14-one (203) 

 

To a stirring solution of 5-(benzyl(3-(benzyl(3-

hydroxypropyl)amino)propyl)amino)pentanoic acid (202) (261 mg, 0.633 mmol) in 

acetonitrile (6 mL), was added diisopropylethylamine (550 μL, 3.17 mmol), followed by the 

addition of EDC·HCl (182 mg, 0.95 mmol) and HOBt (128 mg, 0.95 mmol). After stirring 

for 18 h at 25 °C, the reaction mixture was concentrated directly and then purified by flash 

column chromatography (SiO2, 50% ethyl acetate in hexanes) to afford the title compound 

as a colourless oil (52 mg, 20%); Rf 0.45 (ethyl acetate); νmax/cm–1 (neat) 2930, 2795, 1730, 

1699, 1494, 1452, 1238, 1238, 1155, 1070, 1028; δH (400 MHz, CDCl3) 7.23–7.20 (10H, m, 

2 × Ph), 4.24 (2H, t, J = 5.3 Hz, OCH2), 3.51 (2H, s, CH2Ph), 3.48 (2H, s, CH2Ph), 2.63 

(2H, t, J = 6.8 Hz, NCH2), 2.47–2.34 (8H, m, 3 × NCH2 and CH2CO2), 1.90–1.84 (2H, m, 

CH2), 1.73–1.60 (2H, m, CH2), 1.56–1.48 (2H, m, CH2); δC (100 MHz, CDCl3) 174.1 (CO2), 

139.8 (2 × ArC), 128.8 (ArCH), 128.8 (ArCH), 128.3 (ArCH), 128.2 (ArCH), 126.9 

(ArCH), 126.8 (ArCH), 61.4 (CH2O), 60.0 (CH2Ph), 58.7 (CH2Ph), 52.4 (CH2N), 52.2 

(CH2N), 49.8 (CH2N), 48.5 (CH2N), 34.7 (CH2CO2), 26.66 (CH2), 25.5 (CH2), 24.5 (CH2), 

23.1 (CH2); HRMS (ESI): calcd. for C25H35N2O2, 395.2687 Found: [MH]+, 395.2693 (1.6 

ppm error)]. 

 

 

 

 

 

 

 

 

 



104 
 

Compound 203 
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N-(3-bromopropyl)aniline (213)  

 

1,3-Dibromopropane (216) (19.6 mL, 0.19 mol) and aniline (2.94 mL, 32.2 mmol) were 

dissolved in acetonitrile (65 mL). After stirring at 85 °C for 3 h the reaction mixture was 

diluted with water (50 mL), extracted with ethyl acetate (3 × 30 mL) and washed with sat. 

brine (30 mL). The combined organic extracts were dried over MgSO4, filtered, and then 

purified by flash column chromatography (SiO2, 5% diethyl ether in hexanes) affording the 

title compound as an orange oil (2.23 g, 33%); Rf. 0.39 (10% ethyl acetate in hexanes); δH 

(400 MHz, CDCl3) 7.23–7.19 (2H, m, 2 × PhH), 6.80–6.71 (3H, m, 3 × PhH), 3.51 (2H, t, J 

= 6.5 Hz, BrCH2), 3.35 (2H, t, J = 6.6 Hz, CH2N), 2.22–2.15 (2H, m, CH2CH2CH2). 

Spectroscopic data matched those reported in the literature.67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 
 

Compound 213 
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N1-(2-(6-Bromopyridin-2-yl)-1-phenylethyl)-N1-methyl-N3-phenylpropane-1,3-

diamine (214) 

 

[2-(6-Bromopyridin-2-yl)-1-phenylethyl](methyl)amine (174) (1.53 g, 5.31 mmol), N-(3-

bromopropyl)aniline (213) (1.69 g, 7.96 mmol) and potassium carbonate (1.46 g, 10.6 mmol) 

was dissolved in acetonitrile (50 mL). After stirring at 85 °C for 18 h the reaction mixture 

was quenched with water and extracted with ethyl acetate (3 × 30 mL). The combined 

organic layers were dried with anhydrous MgSO4, filtered, and concentrated in vacuo. 

Purification via flash column chromatography (SiO2, 50% diethyl ether in hexane) afforded 

the title compound as a yellow oil (667 mg, 30%); Rf 0.61 (ethyl acetate); νmax/cm–1 (neat) 

3030, 2941, 2856, 2796, 1602, 1583, 1563, 1505, 1434, 1405, 1319, 1259, 1178, 1115; δH 

(400 MHz, CDCl3)
 7.34–7.17 (9H, m, ArH), 6.93 (1H, d, J = 7.4 Hz, ArH), 6.71 (1H, t, J = 

7.3 Hz, ArH), 6.54 (2H, d, J = 7.8 Hz, ArH), 4.18 (1H, t, J = 7.0 Hz, NCHPh), 3.54–3.48 

(1H, dd, J = 13.7, 7.0 Hz, ArCHH’CH), 3.16–3.10 (1H, dd, J = 13.7, 7.0 Hz, CCHH’CH), 

3.08–3.03 (2H, m, CH2NHPh), 2.60–2.53 (1H, dt, J = 12.8, 6.2 Hz, CH3NCHH’CH2), 2.47–

2.41 (1H, dt, J = 12.8, 6.2 Hz, CH3NCHH’CH2), 2.26 (3H, s, CH3N), 1.78–1.67 (2H, m, 

CH2CH2CH2); δC (100 MHz, CDCl3)
 161.6 (ArC), 148.6 (ArC), 141.3 (ArC), 138.8 (ArC), 

138.3 (ArC), 129.7 (ArC), 128.8 (ArC), 128.0 (ArC), 127.3 (ArC), 125.4 (ArC), 122.7 

(ArC), 116.8 (ArC), 112.8 (ArC), 68.3 (PhCHN), 52.2 (CH3NCH2), 42.1 (CH2CH2NHPh), 

40.3 (CCH2CHN), 37.7 (CH3N), 26.2 (CH2CH2CH2); HRMS (ESI): calcd. for 

C23H27
79BrN3, 424.1383. Found: [MH]+, 424.1388 (−1.1 ppm error)]. 
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Compound 214 
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Methyl 2-(2-(6-(2-(methyl(3-(phenylamino)propyl)amino)-2-phenylethyl)pyridin-2-

yl)phenyl)acetate (218) 

 

N1-(2-(6-bromopyridin-2-yl)-1-phenylethyl)-N1-methyl-N3-phenylpropane-1,3-diamine 

(214) (667 mg, 1.85 mmol), methyl 2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl) acetate (181) (765 mg, 2.77 mmol), potassium phosphate (784 mg, 3.69 mmol) 

and PdCl2(dppf).CH2Cl2 (75.0 mg, 0.092 mmol) were charged into an RBF purged with 

nitrogen. THF (18 mL) and de-ionised water (140 µL, 4.37 mmol) were added and heated to 

80 °C, at reflux, for 18 h. Upon completion the solution was cooled to room temperature, 

diluted with water (20 mL), extracted with ethyl acetate (3 × 30 mL) and washed with brine 

(15 mL). The combined organic extracts were dried over MgSO4, filtered, and removed in 

vacuo. Purification by flash column chromatography (SiO2, 5% methanol in diethyl ether) 

afforded the title compound as a yellow oil (715 mg, 76%); Rf 0.70 (10% methanol in ethyl 

acetate); νmax/cm–1 (neat) 3403, 3025, 2948, 2848, 2803, 1733, 1602, 1569, 1506, 1447, 

1320, 1254, 1211, 1157, 1083, 1044, 1004; δH (400 MHz, CDCl3) 7.49 (1H, t, J = 7.7 Hz, 

ArH), 7.40–7.18 (10H, m, ArH), 6.92 (1H, d, J = 7.7 Hz, ArH), 6.64–6.66 (1H, m, ArH), 

6.46 (2H, d, J = 7.9, ArH), 4.19 (1H, dd, J = 8.3, 6.7 Hz, NCHPh), 3.80 (2H, d, J = 9.9 Hz, 

CH2CO2Me), 3.55–3.50 (4H, m, CO2CH3 and CCHH’CHPh), 3.23–3.18 (1H, dd, J = 13.4, 

8.3 Hz, CCHH’CHPh), 3.06–2.99 (2H, m, CH2CH2CNHPh), 2.58–2.51 (1H, dt, J = 13.4, 

6.7 Hz, MeNCHH’CH2), 2.48–2.41 (1H, dt, J = 12.9, 6.7 Hz, MeNCHH’CH2), 2.27 (3H, s, 

CH3N), 1.75–1.64 (2H, m, CH2CH2CH2); δC (100 MHz, CDCl3) 172.4 (CO2Me), 159.1 

(ArC), 158.8 (ArC), 148.6 (ArC), 140.6 (ArC), 139.3 (ArC), 136.5 (ArCH), 132.4 (ArC), 

131.4 (ArCH), 130.0 (ArCH), 129.1 (ArCH), 128.9 (ArCH), 128.4 (ArCH), 128.0 (ArCH), 

127.4 (ArCH), 127.1 (ArCH), 122.0 (ArCH), 121.3 (ArCH), 116.8 (ArCH), 112.7 (ArCH), 

68.5 (NCHPh), 52.4 (MeNCH2CH2), 51.8 (CO2CH3), 42.2 (CH2CH2NHPh), 40.5 

(CCH2CHPh), 39.1 (CCH2CO2), 37.7 (CH3N), 26.3 (CH2CH2CH2); HRMS (ESI): calcd. 

For C32H36N3O2, 494.2802. Found: [MH]+, 494.2809 (−1.4 ppm error)]. 
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Compound 218 
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2-(2-(6-(2-(Methyl(3-(phenylamino)propyl)amino)-2-phenylethyl)pyridin-2-

yl)phenyl)acetic acid (207) 

 

Methyl 2-(2-(6-(2-(methyl(3-(phenylamino)propyl)amino)-2-phenylethyl)pyridin-2-

yl)phenyl)acetate (218) (587 mg, 1.19 mmol) was dissolved in aqueous lithium hydroxide 

solution (0.5 M, 12 mL, 5.95 mmol) and THF (12 mL). The resulting bi-phasic solution was 

vigorously stirred at room temperature for 18 h. Upon completion, the solvent was removed 

in vacuo. Purification by flash column chromatography (SiO2, 30% methanol in diethyl 

ether) afforded the title compound as a white powder (378 mg, 68%); mp. 56–59 °C; Rf 0.26 

(10% methanol in ethyl acetate); νmax/cm–1 (neat) 3371, 3026, 2945, 2851, 2798, 1721, 1601, 

1505, 1452, 1320, 1260, 1145, 1098; δH (400 MHz, CDCl3) 7.85 (1H, t, J = 7.9 Hz, ArH), 

7.65 (1H, d, J = 7.5 Hz, ArH), 7.57–7.24 (13H, m, ArH), 6.78 (1H, t, J = 7.4 Hz, ArH), 6.62 

(2H, d, J = 7.8 Hz, ArH), 4.13 (1H, t, J = 7.8 Hz, NCHPh), 3.82–3.67 (1H, dd, J = 13.6, 7.8 

Hz, CCHH’CHPh), 3.69 (1H, d, J = 12.7 Hz, CCHH’CO2), 3.56 (1H, d, J = 12.7 Hz, 

CCHH’CO2), 3.43–3.38 (1H, dd, J = 13.6, 7.8 Hz, CCHH’CHPh), 3.20–3.10 (2H, m, 

CH2CH2NHPh), 2.73–2.66 (1H, dt, J = 13.0, 6.5 Hz, MeNCHH’), 2.63–2.56 (1H, dt, J = 

13.0, 6.5 Hz, MeNCHH’), 2.42 (3H, s, CH3N), 1.93–1.77 (2H, m, CH2CH2CH2); δC (100 

MHz, CDCl3) 173.0 (CO2H), 158.2 (ArC), 157.0 (ArC), 148.6 (ArC), 139.1 (ArCH), 137.5 

(ArC), 133.1 (ArC), 131.6 (ArCH), 130.7 (ArCH), 129.9 (ArCH), 129.2 (ArCH), 128.8 

(ArCH), 128.4 (ArCH), 127.9 (ArCH), 127.8 (ArCH), 123.7 (ArCH), 122.8 (ArCH), 117.0 

(ArCH), 112.8 (ArCH), 69.6 (NCHPh), 52.6 (MeNCH2CH2), 42.2 (CH2CH2NHPh), 42.2 

(CCH2CHPh), 39.7 (CCH2CO2), 38.0 (CH3N), 26.2 (CH2CH2CH2); HRMS (ESI): calcd. 

For C31H33N3NaO2, 502.2465. Found: [MNa]+, 502.2475 (−2.1 ppm error)]. 
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Compound 207 
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1-(6-Bromopyridin-2-yl)propan-2-one (220) 

 

N,N-Diisopropylamine (4.95 mL, 35.1 mmol) was dissolved in THF (90 mL) and cooled to 

0 ⁰C before n-BuLi (2.5 M solution in hexanes, 14.0 mL, 35.1 mmol) was added dropwise 

and stirred for 30 mins. The LDA solution was then cooled to −78 °C, where 2-bromo-6-

methylpyridine (173) (1.98 mL, 17.5 mmol) was added dropwise and stirred for 1 h. N-

Methoxy-N-methylacetamide (3.74 mL, 35.1 mmol) was added and stirred for a further 2 h 

at −78 °C before slowly warming to RT. The solution was then quenched with H2O (70 mL) 

and extracted with ethyl acetate (3 × 50 mL) and washed with sat. brine (50 mL). The 

combined organic extracts were dried over MgSO4, filtered and removed in vacuo. 

Purification by flash column chromatography (SiO2, 20% ethyl acetate in hexanes) afforded 

the title compound as a yellow oil (3.15 g, 84%); Rf. 0.37 (30% ethyl acetate in hexanes); δH 

(400 MHz, CDCl3) 7.52 (1H, t, J = 7.7 Hz, ArH), 7.39 (1H, d, J = 7.7 Hz, ArH), 7.17 (1H, 

d, J = 7.7 Hz, ArH), 3.19 (2H, s, CCH2CO), 2.25 (3H, s, COCH3). 

Spectroscopic data matched those reported in the literature.57 
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Compound 220 
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N-(1-(6-Bromopyridin-2-yl)propan-2-yl)aniline (221) 

 

To a solution of 1-(6-bromopyridin-2-yl)propan-2-one (220) (3.15 g, 14.8 mmol) in 

dichloroethane (73 mL) at room temperature, aniline (1.62 mL, 17.7 mmol), acetic acid (1.02 

mL, 17.7 mmol) and sodium triacetoxyborohydride (4.70 g, 22.2 mmol) were added 

sequentially. The reaction mixture was stirred at room temperature overnight. The solution 

was then quenched with 70 mL of 1 M NaOH and extracted with ethyl acetate (3× 50 mL) 

and washed with sat. brine (50 mL). The combined organic layers were dried over anhydrous 

MgSO4, filtered and concentrated in vacuo. Purification via flash column chromatography 

(SiO2, 20% ethyl acetate in hexanes) afforded the title compound as a yellow oil (3.76 g, 

88%); Rf. 0.41 (20% ethyl acetate in hexanes); δH (400 MHz, CDCl3) 7.43 (1H, t, J = 7.7 

Hz, ArH), 7.32 (1H, d, J = 7.7 Hz, ArH), 7.18–7.10 (3H, m, ArH), 6.69 (1H, t, J = 7.32 Hz, 

ArH), 6.62 (2H, d, J = 7.3 Hz, ArH), 3.97–3.89 (1H, m, CH2CHN), 3.01 (1H, dd, J = 13.7, 

6.7 Hz, CHH’CHN), 2.90 (1H, dd, J = 13.7, 6.7 Hz, CHH’CHN), 1.22 (3H, d, J = 6.2 Hz, 

CH3). 

Spectroscopic data matched those reported in the literature. 57 
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Compound 221 
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N-(3-((tert-Butyldimethylsilyl)oxy)propyl)aniline (226) 

 

To a solution of 3-(phenylamino)propan-1-ol (223) (1.81 mL, 13.2 mmol) in 

dichloromethane (130 mL) at room temperature, tert-butylchlorodimethylsilane (3.99 g, 

26.5 mmol), imidazole (1.35 g, 19.9 mmol) and 4-dimethylaminopyridine (162 mg, 1.33 

mmol) were added. The reaction mixture was stirred at room temperature for 2 hours. The 

solution was then worked up with 100 mL of water and extracted with ethyl acetate (3× 50 

mL) and washed with sat. brine (50 mL). The combined organic layers were dried over 

anhydrous MgSO4, filtered and concentrated in vacuo. Purification via flash column 

chromatography (SiO2, 5% ethyl acetate in hexanes) afforded the title compound as a yellow 

oil (2.06 g, 59%) Rf. 0.45 (5% ethyl acetate in hexanes); δH (400 MHz, CDCl3) 7.18 (2H, t, 

J = 7.8 Hz, Ph), 6.72–6.70 (1H, m, Ph), 6.63 (2H, d, J = 7.8 Hz, Ph), 3.77 (2H, t, J = 5.8 Hz, 

PhNCH2), 3.24 (2H, t, J = 6.4, CH2OTBS), 1.88–1.82 (2H, m, CH2CH2CH2), 0.92 (9H, s, 3 

× SiCCH3), 0.07 (6H, s, 2 × SiCH3). 

Spectroscopic data matched those reported in the literature.68 
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Compound 226 
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3-((2-(6-Bromopyridin-2-yl)ethyl)(phenyl)amino)propan-1-ol (229) 

 

To a stirring solution of diisopropylamine (825 µL, 5.85 mmol) in dry THF (30 mL), was 

added n-butyllithium (2.5 M solution in hexane, 2.34 mL, 5.85 mmol) dropwise at 0 °C. The 

resulting solution was stirred at 0 oC for 30 mins, after which the solution was cooled to −78 

°C. 2-Bromo-6-methylpyridine (173) (330 µg, 2.92 mmol) was then added dropwise and the 

solution was stirred for an additional 1 h. Dimethylformamide (340 µL, 4.39 mmol) was 

then added and the solution was stirred for a further 2 h at −78 °C. Sodium 

triacetoxyborohydride (930 mg, 4.39 mmol) dissolved in 1,2-dichloroethane (5.0 mL), was 

added, followed by acetic acid (536 µL) and 3-(phenylamino)propan-1-ol (491 µL, 3.51 

mmol) and the reaction mixture was stirred overnight at r.t. The reaction mixture was 

quenched with 1 M NaOH (30 mL) and extracted with ethyl acetate (3 × 20 mL). The 

combined organic layers were dried (MgSO4), filtered and concentrated in vacuo. 

Purification by flash column chromatography (SiO2, 50% toluene in diethyl ether) afforded 

the title compound as a yellow oil (230 mg, 24%); Rf 0.33 (50% toluene in diethyl ether); 

νmax/cm–1 (neat) 3366, 2936, 2872, 1598, 1553, 1505, 1436, 1405, 1359, 1124, 1040; δH (400 

MHz, CDCl3) 7.44 (1H, t, J = 7.7 Hz, ArH), 7.33 (1H, d, J = 7.7 ArH), 7.26–7.22 (2H, m, 

PhH), 7.08 (1H, d, J = 7.7, ArH), 6.77 (2H, d, J = 8.3, PhH), 6.71 (1H, t, J = 7.3, PhH), 

3.72–3.68 (4H, m, ArCH2CH2N and NCH2CH2CH2), 3.37 (2H, t, J = 6.9 Hz, CH2OH), 3.02 

(2H, t, J = 7.3 Hz, ArCH2), 1.83–1.76 (2H, tt, J = 6.9, 6.5 Hz, CH2CH2CH2); δC (100 MHz, 

CDCl3) 161.2 (ArC), 147.9 (ArC), 141.9 (ArC), 138.9 (ArCH), 129.5 (ArCH), 125.9 

(ArCH), 122.6 (ArCH), 116.8 (ArCH), 113.1 (ArCH), 60.8 (NCH2CH2CH2), 51.5 

(ArCH2CH2N), 48.2 (CH2OH), 35.5 (Ar-CH2), 30.2 (CH2CH2CH2); HRMS (ESI): calcd. 

For C16H20
79BrN2O, 335.0754. Found: [MH]+, 335.0743 (3.2 ppm error). 
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Compound 229 
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Methyl 4-iodobutanoate (238) 

 

Methyl 4-bromobutanoate (197) (630 µL, 5.00 mmol) and sodium iodide (2.98 g, 20.0 

mmol) was dissolved in acetonitrile (12 mL). After stirring at 70 °C for 90 min the reaction 

mixture was quenched with sat. aq. sodium thiosulfate (20 mL), extracted with ethyl acetate 

(3 × 20 mL) and washed with sat. brine (10 mL). The combined organic extracts were dried 

over MgSO4, filtered and concentrated in vacuo to afford the title compound as a yellow oil 

(1.14 g, 100%); Rf. 0.8 (50% ethyl acetate in hexanes); δH (400 MHz, CDCl3) 3.69 (3H, s, 

CH3CO2), 3.24 (2H, t, J = 6.0 Hz, ICH2), 2.46 (2H, t, J = 7.0 Hz, CO2CH2), 2.16–2.11 (2H, 

tt, J = 7.0, 6.0 Hz, CH2CH2CH2).  

Spectroscopic data matched those reported in the literature.69 
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Compound 238 
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(4-Methoxy-4-oxobutyl)zinc(II) bromide (239) 

 

To a round bottom flask purged with nitrogen 1,2-dibromoethane (43 µL, 0.50 mmol) was 

dissolved in dry DMF (8 mL) before zinc powder (654 mg, 10.0 mmol) was added and the 

solution was heated at 90 ⁰C and stirred for 30 mins. The solution was then cooled to r.t., 

where chlorotriethylsilane (23.0 µL, 0.13 mmol) was added and stirred for 15 min. Methyl 

4-iodobutanoate (238) (1.14 g, 5.00 mmol) dissolved in THF (4 mL) was then added and 

stirred for a further 2.5 h at 40 °C before cooling to room temperature. The resulting grey 

precipitate in the solution was then left to settle for 18 h before the supernatant liquid was 

transferred and stored in a separate round bottom flask purged with nitrogen. 
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Methyl 4-(6-(2-oxopropyl)pyridin-2-yl)butanoate (237) 

 

1-(6-bromopyridin-2-yl)propan-2-one (220) (355 mg, 1.67 mmol) and Pd(PPh3)2Cl2 (60.0 

mg, 83.0 µmol) were charged into a round bottom flask purged with nitrogen. (4-ethoxy-4-

oxobutyl)zinc(II) bromide (239) dissolved in solution was added and heated to 55 °C for 4 

h. Upon completion the solution was cooled to room temperature, concentrated in vacuo, 

quenched with sat. aq. NaHCO3 (10 mL), extracted with dichloromethane (3 × 10 mL) and 

washed with brine (15 mL). The combined organic extracts were dried over MgSO4, filtered, 

and removed in vacuo. Purification by flash column chromatography (SiO2, 30% diethyl 

ether in hexanes → diethyl ether) afforded the title compound as a yellow oil (129 mg, 33%); 

Rf 0.51 (ethyl acetate); νmax/cm–1 (neat) 2953, 2735, 1651, 1592, 1576, 1456, 1358, 1209, 

1160; δH (400 MHz, CDCl3) 7.55 (1H, t, J = 7.6 Hz, ArH), 7.05–7.01 (2H, m, 2 × ArH), 

3.87 (2H, s, ArCH2CO), 3.65 (3H, s, CO2CH3), 2.79 (2H, t, J = 7.7 Hz, CH2CH2Ar), 2.36 

(2H, t, J = 7.6 Hz, CH2CO2), 2.21 (3H, s, COCH3), 2.08–2.01 (2H, m, CH2CH2CH2); δC 

(100 MHz, CDCl3) 205.9 (CH2COCH3), 174.0 (CO2), 161.2 (ArC), 154.3 (ArC), 137.1 

(ArCH), 121.6 (ArCH), 121.2 (ArCH), 53.4 (CCH2CO), 51.7 (OCH3), 37.5 (CH2CH2CN), 

33.5 (CH2CO2), 30.1 (COCH3), 25.0 (CH2CH2CH2); HRMS (ESI): calcd. For C13H18NO3, 

236.1281. Found: [MH]+, 236.1281 (0.3 ppm error).  
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Compound 237 
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Abbreviations 

Ac  Acetyl 

AIBN  Azobisisobutyronitrile 

a.q.  Aqueous 

Ar  Aromatic 

 

Bn  Benzyl 

bp  Boiling Point 

br  Broad 

nBu  n-Butyl 

tBu  tert-Butyl 

 

CAN  Ceric ammonium nitrate 

calcd.  Calculated 

CDI  Carbonyl diimidazole 

cm-1   Wavenumber 

cod  1,5-Cyclooctadiene 

COSY  Correlated Spectroscopy 

Cy  Cyclohexyl 

 

d  Doublet 

DBU  1,8-Diazabicyclo[5.4.0]undec-7-ene 

DCE  1,2-Dichloroethane 

dd  Doublet of doublets 

ddd  Doublet of doublets of doublets 

DCM  Dichloromethane 

DEAD  Diethyl azodicarboxylate 

DEPT  Distortionless enhancement by polarization transfer 

DFT  Density functional theory 

DIPA  Diisopropylamine 

DIPEA  N, N-Diisopropylethylamine 

DMA  Dimethylacetamide 

DMAP  4-Dimethylaminopyridine 



127 
 

DMF  Dimethylformamide 

DMSO  Dimethyl sulfoxide 

dppf  1,1'-Bis(diphenylphosphino)ferrocene 

 

EDC  N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 

Equiv.  Equivalents 

ESI  Electrospray Ionisation 

Et  Ethyl 

 

Fmoc  Fluorenylmethoxycarbonyl 

 

g  Gram(s) 

 

h  Hour(s) 

HATU  Hexafluorophosphate Azabenzotriazole Tetramethyl Uronium 

HMQC Heteronuclear multiple-quantum coherence 

HOBt  Hydroxybenzotriazole7 

HRMS  High resolution mass spectroscopy 

Hz  Hertz 

hν  Energy 

 

INRE  Internal nucleophile ring expansion 

IR  Infra-red  

 

J   Coupling constant in Hz 

 

K  Kelvin 

KAPA  Potassium 3-aminopropylamide 

 

L  Ligand 

LDA  Lithium diisopropylamide 

LHMDS Lithium bis(trimethylsilyl)amide 
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M  Molar 

[M]+  Molecular Ion 

m  multiplet 

m-CPBA Meta-chloroperbenzoic acid 

Me  Methyl 

mg  milligram(s) 

MHz  Megahertz 

min  Minute(s) 

mL  Millilitre(s) 

mmol  Millimole(s) 

mol  Mole(s) 

mp  Melting point 

Ms  Mesyl 

m/z  Mass to charge ratio 

 

NMR  Nuclear magnetic resonance 

 

Ph  Phenyl 

Pin  Pinacol 

ppm  Parts per million 

Pyr  Pyridine 

P13K   Phosphoinositide 3-kinase inhibitor 

 

q  Quartet 

 

RCM  Ring closing metathesis 

Red-Al  Sodium bis(2-methoxyethoxy)aluminium hydride  

REMP  Ring expansion metathesis polymerisation 

Rf  Retention Factor 

RT  Room temperature 

 

sat.  Saturated 

STAB  Sodium triacetoxyborohydride 

SuRE  Successive ring expansion 
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t  Triplet 

TBS  tert-Butylsilane 

td  Triplet of doublets 

Tf  Triflyl 

TFA  Trifluoroacetic acid 

THF  Tetrahydrofuran 

TLC  Thin layer chromatography 

TMS  Trimethylsilane 

Ts  Tosyl 

T3P  Propylphosphonic anhydride 

 

UV  Ultra-violet 

 

W  Week(s) 

 

XRD   X-ray diffraction 

 

9-BBN  9-Borabicyclo[3.3.1]nonane 

 

µL  Microlitre(s) 

µmol  Micromole(s) 

 

δ  Chemical Shift 
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