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Abstract 

Uveal melanoma (UM) is the most common primary intraocular disease of adults 

and has a high mortality rate compared to other melanomas. Non-random 

chromosomal aberrations have been associated with UM, such as monosomy 3, 

gain of chromosome 8q, loss of chromosome 1p and gain of chromosome 6p and 

loss of 6q (isochromosome 6p). Monosomy 3 and gain of chromosome 8q have 

the strongest association with poor prognosis for UM. That said, although 

structural aberrations of chromosome 6 have been detected in some studies of 

UM, the alterations in this chromosome have been underestimated, possibly 

because of the focus on other chromosomes or the use of classical technologies 

such as karyotyping and comparative genomic hybridisation (CGH).   

This thesis, therefore, will look to identify candidate genes on altered 

chromosome 6 that may contribute to the development, prognosis and 

metastasis of UM.  

This thesis aims to associate different alterations of chromosome 6 with the 

known genetic mutations in UM. In order to achieve this, the aberrations within 

chromosome 6 will be analysed in detail using a specifically designed high-

resolution array-CGH for UM in order to determine candidate genes that have an 

association with UM. Ultimately, these candidate genes will be explored using 

various technologies to corroborate their effect on the UM. 
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1.1 Introduction  

Cancer is a genetic disease arising as a result of a failure to control cell growth. 

Most cancers are considered sporadic or somatic events, although there are 

some germline mutations that influence hereditary malignancy. According to the 

World Health Organization (WHO), malignant neoplasms are now considered to 

be the leading cause of death in Europe and North America (Bray et al., 2018). 

According to Cancer Research UK (CRUK), in 2016, there were more than 

300,000 new cancer cases registered in the U.K. (Cancer Research UK, 2016). 

The number of new cases is expected to rise by 2% annually in the next two 

decades to be more than half million cases by 2035 (Smittenaar et al., 2016). 

Although some types of cancer can be treated effectively, others still have no 

effective treatment. This combination of the increasing number of cases of cancer 

and the lack of effective treatment highlights the need for new and improved ways 

of understanding and promoting suitable treatments for the disease. 

1.1.1 Historical aspect of cancer as a genetic disease 

Many theories have tried to explain the role of genetics in cancer and how its 

development is initiated. According to Balmain (2001), the first theory was 

established by Boveri (1902), who hypothesised that chromosomal changes 

occur in cancer cells that do not necessarily transpire in normal cells. According 

to Wunderlich (2007), meanwhile, Tyzzer (1916) was the first to use the term 

“somatic mutation” to describe the events of cancer progression. It was not until 

1960, however, that Nowell and Hungerford became the first to discover a 

particular chromosomal translocation, now referred to as the Philadelphia 

chromosome, that could be linked to the incidence of chronic myeloid leukaemia 

(CML) (Nowell and Hungerford, 1960). In the Philadelphia chromosome, 

translocation occurred between chromosomes 9 and 22, resulting in tyrosine 

kinase gene fusion between the breakpoint cluster region (BCR) and Abelson 

murine leukaemia viral oncogene (ABL) (Rowley, 1973a, Rowley, 1973b, Thijsen 

et al., 1999). The final product of this BCR-ABL gene fusion is a new protein that 

led to a constitutive activation of the tyrosine kinase and increased myeloid cell 
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proliferation in the bone marrow and blood stream, which is an essential step in 

the transformation towards malignancy in CML (Daley and Baltimore, 1988).  

This led to a hypothesis called the ‘two hits hypothesis’, that was proposed by 

Knudson (1971), and which stated that tumour suppressor genes should have 

two mutations, consequently affecting both alleles to cause a carcinogenesis, as 

reviewed by Knudson (2001). This hypothesis was evaluated on hereditary and 

non-hereditary retinoblastoma using age and family history, with the findings 

indicating that the retinoblastoma 1 (Rb1) gene was mutated on both alleles and 

was involved in both cell proliferation and the cell cycle (Murphree and Benedict, 

1984, Knudson, 1988, Knudson, 1993). However, this theory did not explain other 

cancer characteristics, such as haploinsufficiency or epigenetic hypermethylation 

of the gene, rather than genetic mutation (Merlo et al., 1995, Tsihlias et al., 1999). 

For instance, PTEN is a tumour suppressor gene and it was found that 

haploinsufficiency of this gene is correlated with prostate cancer (Muller et al., 

2000). In addition, the promoter hypermethylation of PTEN found in various types 

of cancers such as gastric, cervical and lung (Kang et al., 2002, Soria et al., 2002, 

Rizvi et al., 2011).  

In 1947, Berenblum and Shubik proposed another theory, arguing that, rather 

than cancer resulting from a single genetic mutation, a multistage process is 

involved, where DNA is damaged first, and this unrepaired DNA segment then 

progresses into further cancer cell growth, which may finally convert into a fully-

fledged malignant disease. Subsequently, many studies have provided evidence 

in support of this contention, as reviewed in Jeggo et al. (2016).  

At the beginning of the twenty-first century, a remarkable paper was published 

by Hanahan and Weinberg (2000) explaining six important capabilities acquired 

in cell physiology that together dictate cancer development: self-sufficiency in 

growth signals, insensitivity to antigrowth signals, evasion from apoptosis, 

limitless replicative potential, sustained angiogenesis and tissue evasion and 

metastasis. A decade later, Hanahan and Weinberg (2011) expanded these 

capabilities to include four new ones: genome instability and mutation, tumour-

promoting inflammation, avoiding immune surveillance and deregulation of 
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cellular energetics. These capabilities have helped researchers gain a greater 

understanding of cancer development and its essential mechanisms. 

1.1.2 Aetiology of cancer development  

Carcinogenesis may be promoted because of different aetiologies such as 

environmental agents, bacterial and viral infection as well as the ageing process. 

As reviewed by Luch (2005), Brookes and Lawley (1964) were the first to 

document the carcinogenic effect of DNA adducts and chemical agents, such as 

mustard gas. These researchers showed how alkylating agents can directly react 

with DNA to form a stable chemical adduct that might disrupt the normal function 

of the DNA molecule. The chemical adducts that bind with DNA induced the DNA 

repair machinery, which may result in DNA mutations that is correlated with an 

increased chance of carcinogenesis. Another example is smoking tobacco, which 

plays a definitive role in oral, lung and other types of cancers due to the fact that 

it increases the chemical adducts in the DNA molecule which in turn can damage 

the DNA to such a point that it can no longer be repaired, and this may initiate 

cancer (Hecht, 2002, Ma and Li, 2017, O'Keeffe et al., 2018). In addition, many 

reports have emphasised the role of obesity in oesophageal, colorectal and 

breast cancer, among others (Calle et al., 2003, Renehan et al., 2008, Basen-

Engquist and Chang, 2011). Thus, there are myriad environmental factors that 

can cause cancer, some of which are not yet fully known; and an individual’s risk 

for cancer will therefore reflect exposure to these numerous environmental 

factors.  

Microorganisms, such as bacteria and viruses, also play an important role in 

increasing the likelihood of an individual developing cancer. One example of a 

strain of bacteria that can cause cancer is Helicobacter pylori, since infection with 

this bacterium increases one’s risk of developing gastric cancer (Parsonnet et al., 

1991, Eslick et al., 1999, Ishaq and Nunn, 2015). Viruses can also increase the 

risk of cancer among infected individuals. For instance, the human papilloma 

virus (HPV) increases the risk of cervical, breast and head and neck cancers 

(Boshart et al., 1984, Durst et al., 1983, Heng et al., 2009), while Hepatitis B and 

C both show a strong association with liver cancer development (Dane et al., 
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1970, Choo et al., 1989, Bartosch, 2010). Epstein-Barr virus (EBV) is strongly 

correlated with Burkitt’s lymphoma (Epstein et al., 1964, Brady et al., 2007) and 

has also shown a moderate correlation in the development of Hodgkin’s 

lymphoma (Glaser et al., 1997, Sarwari et al., 2016). These viral and bacterial 

infections can disrupt the integrity of human DNA at the infection site, potentially 

increasing the chances of cancer initiating.  

Age or the ageing process may also be associated with the likelihood of an 

individual developing cancer, since in ageing persons cells exhibit a decreased 

ability to repair the DNA abnormalities that occur during replication, particularly 

in response to other environmental factors, as described in the review by 

DePinho (2000). The transformation of a normal cell into a cancerous cell is 

therefore a multifactorial process that includes an accumulation of DNA damage 

and mutations, which over time disrupt the DNA repair and cell growth regulation 

system (Vijg and Suh, 2013). It is still not well known, however, whether the 

relationship between cancer risk and age is due to an accumulation of genetic 

and epigenetic mutations over time or to the high susceptibility to oncogenic 

mutations of elderly people (Rodriguez-Rodero et al., 2011, Lepez-Otin et al., 

2013).  

1.1.3 Genetic changes associated with cancer 

There are different types of cytogenetic and genetic mutations that can lead to 

the onset of cancer. Most cancers have changes at the chromosomal level, such 

as the loss or gain of chromosomes (aneuploidy), or the loss or gain of part of a 

chromosome (Mitelman et al., 1994). In addition, chromosome translocation 

plays a role in initiating cancer, as has been mentioned before with respect to 

CML (Nowell and Hungerford, 1960). These aberrations can be detected using 

various cytogenetic techniques for obtaining images of clonal and non-clonal 

aberrations at the single cell level, such as karyotyping, fluorescence in situ 

hybridisation (FISH) and spectral karyotyping (SKY). Additionally, molecular 

cytogenetic techniques, such as array comparative genomic hybridisation (array-

CGH), can be used to detect genomic amplification, deletion and information 

about copy number aberrations in cancer cells (Albertson and Pinkel, 2003, 

Evangelidou et al., 2010, Hillman et al., 2011). These molecular cytogenetic 
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techniques cannot detect balanced chromosomal alterations, translocations or 

inversions. Furthermore, these techniques do not have sufficient resolution to 

detect nucleotide mutations.  

Two key inventions opened a new era for molecular genetics and the effective 

and accurate identification of point mutations in DNA. These were the 

development of Sanger DNA sequencing technology, which uses chain inhibitor 

termination to detect DNA bases and determine the sequence of the targeted 

DNA (Sanger et al., 1977), and the discovery of the polymerase chain reaction 

(PCR) process by (Mullis et al., 1986), which allowed a particular piece of DNA 

to generate millions of copies using an enzyme called Taq DNA polymerase. 

Furthermore, in the past decade, the field of cancer research has experienced 

immense developments following the completion of the human genome project 

by the International Human Genome Sequencing (2004). This completion has led 

to an improvement in the understanding of the mutational screening of regulatory 

genes that regulate the cell cycle and other cellular pathways, as reviewed by 

Stratton et al. (2009). This has revealed that some genes that can cause cancer 

are tumour suppressor genes in their original form, involved in DNA repair 

machinery and serving to control cell division when functioning normally; in their 

mutated state, however, they can lead to loss-of-function and the development 

of cancer. In addition to tumour suppressor genes, oncogenes can also cause 

normal cells to grow uncontrollably because of gain-of-function mutations in the 

normal proto-oncogene. 

More recently, the introduction of next-generation sequencing (NGS) technology 

has revolutionised genetic research, allowing the investigation of different types 

of mutational, translocational and epigenetic phenomena. In addition, a 

previously unrecognised phenomenon of genetic instability in cancer, called 

chromothripsis, was discovered by Stephens et al. (2011) using microarray 

analysis and confirmed by NGS. This is a phenomenon where hundreds of 

genomic rearrangements occur in a single cellular crisis. While, surprisingly, the 

cell can survive this event, ultimately it stimulates cancer development.  
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1.2 Overview of Melanoma 

Melanoma is a type of cancer that affects the melanocytes, which produce a 

pigment called melanin that serves to protect the human body from ultraviolet 

(UV)-light radiation damage. Melanocytes are found mostly in the skin and uveal 

tract. Although some melanomas may develop when a group of melanocytes 

(naevi) undergo malignant transformation, the majority of melanomas are 

developed without the association with naevi. Annually, there are around 300,000 

new cases of cutaneous melanoma worldwide, this being the most common form 

of melanoma that is responsible for about 60,000 deaths annually, based on an 

estimate from 2018 (Bray et al., 2018). It is thus considered the fifth most 

frequently-diagnosed cancer in developed countries (Siegel et al., 2019).  

1.3 Uveal Melanoma (UM) 

Uveal melanoma (UM) is considered the most common primary intraocular 

malignancy among adults, accounting for 80% of all non-cutaneous melanoma 

(Singh et al., 2011). The incidence of UM is between 5.3 and 10.9 cases for every 

million individuals in the general population. While this means that UM is an 

uncommon disease when compared to other malignancies (Singh and Topham, 

2003), it has a higher mortality rate than cutaneous melanoma (Jemal et al., 

2010).  

UM is a tumour that arises from neural crest-derived melanocytes, which 

populate the pigmented layer of the uveal tract. The uveal tract consists of two 

segments: the anterior segment and the posterior segment (Figure 1.1). The 

anterior segment contains the iris, which accounts for 10% of all UM and rarely 

metastasises (Shields et al., 2012). The most common form of UM, however, (90% 

of all cases) arises from the posterior segment, which consists of choroid tissue 

and the ciliary body (Damato, 2006).  
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Figure 1.1. The anatomy of the eye and the origins of UM.  

The eye consists of an anterior segment (iris) and a posterior segment (choroid and 
ciliary body). The sclera is the eye’s outer membrane, while the retina is the inner 
membrane. The eye is filled with vitreous humour, which gives the eye its round shape. 
UM is dependent on the location in which it develops, such as in the choroid, ciliary body 
or iris. Modified from Chattopadhyay et al. (2016). 

 

1.3.1 Risk factors of UM 

There are different risk factors that can increase the incidence of melanoma 

disease. The primary risk factor in cutaneous melanoma, for instance, is sun 

exposure (UV-radiation exposure) among those with white skin pigment; as such, 

this cancer occurs at higher incidences among Caucasian populations who live 

in North America, Europe, Australia and New Zealand, and is far less common 

among darker-skinned populations, such as those in Africa or Asia, where the 

incidence of acral and mucosal melanomas is low, as reviewed by Schadendorf 

et al. (2015). Although exposure to UV radiation exhibits a strong association with 

cutaneous melanoma (IARC, 2012), extending this association to the onset of 
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UM is still controversial (Singh et al., 2004). For example, while some research 

articles correlated UV exposure to UM as a risk factor (Holly et al., 1990, Seddon 

et al., 1990, Vajdic et al., 2003), others showed no such correlation (Pane and 

Hirst, 2000, Lutz et al., 2005). In addition, cutaneous melanoma occurs in young 

adults and also commonly occurs in people aged between 40 to 60 (Garbe and 

Leiter, 2009). However, diagnoses of UM are usually made in older adults, 

especially those patients who are between the ages of 60 and 80 years old, with 

no apparent difference in incidence rates between males and females (Shields 

and Shields, 1992, Singh and Topham, 2003, Virgili et al., 2007).  

UM is believed to be associated with ocular melanocytic lesions, including 

choroidal naevi and ocular melanocytosis. In addition, there are some skin 

disorders associated with UM, such as dysplastic nevus syndrome and the nevus 

of Ota (Hammer et al., 1996). A light-coloured iris, which is common in Caucasian 

populations, is considered to be a risk factor for the development of UM (Schmidt-

Pokrzywniak et al., 2009). No association has been found, however, between UM 

and other environmental habits, such as smoking, alcohol consumption or dietary 

habits (Seddon et al., 1989). 

1.3.2 Diagnosis of UM  

Most UM patients present with metamorphopsia or a painless loss of vision, but 

larger tumours may sometimes be linked to retinal detachment, which causes 

photopsia (Eskelin and Kivela, 2002). Also, in some cases, patients may be 

entirely asymptomatic and unaware that they have UM until the tumour is 

identified through a routine funduscopic examination by the ophthalmologist. 

Most UM tumours have a very distinct dome or mushroom shape (Bedi et al., 

2006). Patients who have anterior UM may notice discoloration of the iris or a 

permanent injection in the outer layer of the eye (episclera). The presence of sub-

retinal fluid and an orange pigment are also associated with a diagnosis of UM 

(Melia et al., 1997). The Collaborative Ocular Melanoma Study (COMS, 1990) 

reported that the accuracy of a UM diagnosis is greater than 99% with enucleated 

eyes. The characterisation of UM is usually done by using different supportive 

tests such as ultrasonography, angiography, optical tomography and 
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autofluorescence (Shields et al., 2014). Additionally, fine-needle aspiration 

biopsy (FNAB) can also aid in the accurate diagnosis of UM, and this can also 

help the analysis of cytogenetic and gene expression to determine the prognostic 

factors (Char and Miller, 1995, McCannel, 2013). 

1.3.3 Metastasis of UM 

The prognosis with UM patients is that about 50% of them will develop metastasis 

to another organ within five to ten years, and when this occurs the survival rate 

is strikingly decreased to less than a year (Gragoudas et al., 1991, Kath et al., 

1993, Diener-West et al., 2005, Rietschel et al., 2005). The most common organ 

that UM cells disseminate to is the liver, accounting for about 90% of cases. The 

survival rate after secondary metastasis of UM patients to the liver varies 

between six and twelve months (Diener-West et al., 2005). UM cells are 

disseminated directly through blood circulation due to the absence of lymph 

nodes in the uvea tract. Additionally, UM patients with metastasis risk may 

develop metastasis to other organs such as lungs, bone and, rarely, the skin and 

brain (The Collaborative Ocular Melanoma Study, 2001, Kujala et al., 2003, 

Bedikian, 2006). UM patients who experience metastasis to organs than the liver 

as a first site showed longer survival rate and more favourable prognosis (Kath 

et al., 1993).  

1.3.4 Treatment of UM 

Due to the poor survival rate once UM metastasises, a key aim in the treatment 

of UM is the prevention of the metastasis of the primary tumour. As mentioned 

earlier, however, half of UM cases show metastasis to the liver, with an 

associated reduction in the survival rate to less than a year. The main approach 

once UM has been diagnosed therefore is eye enucleation, as reviewed in 

Shields and Shields (2015). Even with eye enucleation, however, metastasis to 

the liver has not decreased.  

In the 1970s, Zimmerman and colleagues hypothesised that eye enucleation may 

contribute to metastasis by releasing the tumour cells into the blood circulation 

(Zimmerman et al., 1978). This hypothesis was proposed around the time at 
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which radioactive plaque brachytherapy became available for selective UM 

patients (Packer and Rotman, 1980). This allowed the hypothesis to be tested in 

three trials that found that the survival for both medium- and large-sized UM 

tumours were similar after enucleation of the eye and use of brachytherapy, thus 

rejecting the ‘Zimmerman hypothesis’ (Davis et al., 1994, The Collaborative 

Ocular Melanoma Study, 1998, Diener-West et al., 2005). Besides surgical 

enucleation and radiotherapy, phototherapy using photocoagulation and 

transpupillary thermal therapy appear to be effective for some select small-sized 

UM. However, these types of therapy are associated with various side effects 

such as haemorrhage, occlusions of the retina and retinopathy (Singh et al., 2003, 

Mashayekhi et al., 2015). In addition, the use of new surgical techniques, such 

as stereotactic radiosurgery and proton beam therapy, appear to be effective for 

some UM patients with large-sized tumours and for cases that are unsuitable for 

plaque radiotherapy (Fakiris et al., 2007, Damato et al., 2013, Sikuade et al., 

2015). These surgical techniques, however, have failed to increase the 

progression survival rate and overall survival for UM patients (Fabian et al., 2017). 

Furthermore, adjuvant therapy for UM patients using surgical techniques 

followed by chemo- or immunotherapy, have also failed to decrease the 

metastasis risk and improve the survival rate (Desjardins et al., 1998, Lane et al., 

2009).  

The chemotherapeutic regimens used for metastatic UM were originally adapted 

from cutaneous melanoma. These include dacarbazine, temozolomide, cisplatin 

and other combinations; however, the use of these drugs has neither led to an 

improvement in the survival rate nor lowered the risk of metastasis (Schmittel et 

al., 2006, Augsburger et al., 2009, Spagnolo et al., 2012, Spagnolo et al., 2013). 

In addition, several attempts have been made to use immunotherapeutic agents 

such as anti-CTLA-4 and anti-PD-1 on metastatic UM onsets, but the outcome 

remains unclear (Rodriguez et al., 2014, Kottschade et al., 2015, Zimmer et al., 

2015). Recently, some molecular targeted therapies, such as mitogen-activated 

protein kinase (MAPK) pathway, have been tested for use in UM, however, the 

preliminary results showed that there was a partial response was found among 

UM patients (Park et al., 2020). Also, the clinical trials using epigenetic drugs are 
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ongoing without any result been published yet, as reviewed in Chokhachi 

Baradaran et al. (2020). 

1.3.5 Prognosis of UM  

The prognosis of UM depends on a myriad of factors, such as clinical findings, 

histopathology, cytogenetics and genetics. The point of origin of the tumour (the 

ciliary body, choroid or iris) has clinical implications for predicting the mortality 

rate of UM patients (Shields et al., 2001). Origin in the ciliary body usually has 

the worst prognosis and highest risk of metastasis, while origin in the choroid and 

iris suggests a good prognosis (Shields et al., 2009). Additionally, the tumour size, 

which is calculated from the height and base diameter of the mass, plays a role 

in predicting the prognosis of UM (Dienerwest et al., 1992). The large-tumour 

size is considered as a poor prognosis while the small-tumour size is considered 

as a good prognosis for UM. Moreover, a solid mushroom-shaped tumour 

correlates with a good prognosis while a diffuse lesion is considered as a bad 

prognostic marker for UM (Shields et al., 1996). Furthermore, the older patient’s 

age is also correlated with UM poor prognosis; however, no correlations between 

prognosis and gender have been shown for UM (Kroll et al., 1998). 

In addition to these clinical prognostic factors, the histopathology of the tumour 

following enucleation can be used to accurately predict a patient’s survival. 

Callender (1931) was the first to propose a classification system for UM patients, 

which depended on cell type, while McLean et al. (1977) improved this system, 

as reviewed by Rennie (1997). McLean’s classification system showed that there 

are three types of cells in UM, namely spindle, epithelioid and mixed cell, which 

combined both epithelioid and spindle cells in the same tumour. These cells are 

respectively associated with a good, poor and intermediate prognosis. (McLean 

et al., 1983). However, these clinical and histopathological parameters do not 

provide a conclusive determination of the prognostication risk for UM onsets. For 

this, there is a need to determine the effect of both cytogenetic and molecular 

genetic mutations of UM.  
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1.3.6 Chromosomal alteration in UM 

Cutaneous melanoma and UM have distinctive genetic differences, despite both 

being considered to be melanomas. For instance, cutaneous melanoma exhibits 

different chromosomal and genetic aberrations that turn normal melanocyte cells 

into cancerous cells. The main chromosomal aberration found in cutaneous 

melanoma is the loss of chromosome 10 (monosomy 10), which accounts for 

about 60% of the cases (Bastian et al., 1998, Hoglund et al., 2004, Carless and 

Griffiths, 2008, Lin et al., 2008). Moreover, a recent study by Hirsch et al. (2013) 

using array-CGH found that the chromothripsis phenomenon occurs in malignant 

melanoma patients with a poor prognosis, and this result was confirmed using 

NGS (with paired-end sequencing) to emphasise the role of both inter- and intra-

chromosomal rearrangement. Chromosomal instabilities such as the partial or 

complete loss of chromosomes 1p and 6q also occur in cutaneous melanoma, 

similar to UM, however, the cytogenetic changes in UM are not random and can 

in fact be characterised by key chromosomal aberrations, such as loss of 

chromosome 3 (monosomy 3), gain of the chromosome 8q arm and gain of 

chromosome 6p arm (Bastian et al., 2003, van den Bosch et al., 2010, van der 

Kooij et al., 2019).  

The first chromosomal changes to be reported in UM were determined by Rey et 

al. (1985), who found abnormalities in both chromosomes 6 and 8 that are 

associated with increased risk of brain metastasis. Furthermore, the first two 

cytogenetic analyses were performed on a set of UM cases, revealing consistent 

abnormalities at the chromosomal level (Prescher et al., 1990, Sisley et al., 1990). 

These studies reported that the most frequently found abnormality was 

monosomy 3, while gain of chromosome 8q and deletion of the 1p arm were seen 

less frequently. Sisley et al. (1990) emphasised that UM originating in the ciliary 

body was associated with abnormalities at chromosomes 3 and 8. Detection of 

these anomalies was usually made by karyotyping and FISH using tumour 

biopsies obtained from UM patients (Sisley et al., 1990, Patel et al., 2001). 

Furthermore, microarray analysis using array-CGH is able to provide high-

resolution evidence of chromosomal changes in UM; moreover, this method can 
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be used with different tissues, such as paraffin-embedded, formalin-fixed or 

frozen samples (Minca et al., 2014). 

Monosomy 3 is associated with high rates of metastasis to the liver and is 

therefore also linked with a poor prognosis (Sisley et al., 1990, Prescher et al., 

1996, Damato et al., 2007, Shields et al., 2007). Several studies have shown a 

correlation between large-size tumours, epithelioid cells and monosomy 3 with a 

poor overall prognosis (Prescher et al., 1996, Kilic et al., 2006, Damato et al., 

2009, Shields et al., 2011, Van Beek et al., 2015). Moreover, Sisley et al. (1997) 

revealed that monosomy 3 and gains in chromosome 8q are associated with a 

poor prognosis. Additionally, the deletion of chromosome 1p and a gain of 

chromosome 8q are believed to be markers for a poor prognosis of UM (Aalto et 

al., 2001, Kilic et al., 2005). Conversely, Cross et al. (2006) and Abdel-Rahman 

et al. (2011) showed that the partial deletion of chromosome 3 correlated with an 

intermediate prognosis, while Trolet et al. (2009) reported that a normal 

chromosome 3 (disomy 3) is correlated with a good prognosis. In addition to 

disomy 3, a gain in chromosome 6p is associated with the best prognosis and 

non-metastatic UM (Landreville et al., 2008). The structural aberrations of 

chromosome 6 will be discussed in-depth in section 1.4. 

Gain of chromosome 8q is usually associated with monosomy 3 and a ciliary 

body origin, which is correlated with poor prognosis in 50% of UM cases (Sisley 

et al., 1997, White et al., 1998, Singh et al., 2009). In fact, the use of more modern 

molecular cytogenetic technologies, such as array-CGH, has indicated the 

presence of monosomy 3 and gain of chromosome 8q in an even higher 

proportion of UM samples, between 51% and 75%, respectively (Hammond et 

al., 2015). Some researchers, however, have argued that the gain of 

chromosome 8q, either alone or with monosomy 3, is not a reliable prognostic 

factor to predict the outcome for UM patients (Kilic et al., 2005, Ehlers et al., 

2008).  

Besides these major chromosomal abnormalities in UM, there are other 

aberrations in chromosomes 1, 9, 11, 16 and 21. The loss of chromosome 1p 

arm in UM appears to be correlated with monosomy 3 and thence a poor 

prognosis (Naus et al., 2001, Aalto et al., 2001, Hausler et al., 2005). In addition, 
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loss of chromosome 9p and structural re-arrangement of chromosome 11 in UM 

appears to correlate with good prognosis (Speicher et al., 1994, Sisley et al., 

2000, Sisley et al., 2006). Small recurrent aberrations, such as trisomy 21 and 

loss of chromosome 16q arm, have also been found to have a role in the UM 

prognosis (Horsman and White, 1993, Sisley et al., 2000, Kilic et al., 2006).  

1.3.7 Mutations associated with Melanoma 

Although cytogenetic analysis is able to provide a more accurate prognosis than 

when using clinical and histopathologic characteristics alone to assess different 

types of melanomas, the determination of a high or low risk for metastasis 

requires still more accurate information. In this regard, the main genetic mutation, 

accounting for more than half of melanomas, occurs in the B-Raf proto-oncogene 

(BRAF) (Davies et al., 2002), while the neuroblastoma Ras viral oncogene 

(NRAS) is responsible for around 20% of melanomas (Wilson and Nathanson, 

2012). Kit proto-oncogene receptor tyrosine kinase (KIT) mutations commonly 

take place in acral and mucosal melanomas, although they rarely occur in skin 

cancer (Carvajal et al., 2011). While other types of melanomas, such as 

cutaneous, conjunctival and iris, also exhibit mutations in BRAF and KIT (Davies 

et al., 2002, Cohen et al., 2003, Spendlove et al., 2004, Thomas et al., 2006, 

Henriquez et al., 2007), they are rare or absent in cases of UM (Malaponte et al., 

2006).  

New technologies, however, are now identifying the unique genetic mutations in 

UM cells and thus a greater understanding of the associated molecular 

mechanisms and interactions. Genetic profiling of UM using COMS has been 

able to establish two classes of tumours based on the prognosis: class 1 and 

class 2 tumours. These respectively represent a tumour’s low and high metastatic 

potential (Onken et al., 2010, Onken et al., 2012).  

1.3.7.1 GNAQ and GNA11 mutations  

Guanine nucleotide-binding protein Q polypeptide (GNAQ) and guanine 

nucleotide-binding protein alpha 11 (GNA11) gene mutations commonly occur in 

uveal melanoma patients (Onken et al., 2008, Van Raamsdonk et al., 2009, Van 
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Raamsdonk et al., 2010). The GNAQ and GNA11 genes are located in 

chromosomes 9q21 and 19p13, respectively, which are found to have mutated 

in around 90% of UM patients (Van Raamsdonk et al., 2009, Van Raamsdonk et 

al., 2010, Koopmans et al., 2013). These mutated genes also tend to be found 

mutated in more than half of those patients with blue naevi (Van Raamsdonk et 

al., 2010, Sisley et al., 2011). Most of the GNAQ and GNA11 mutations are found 

in codon Q209 of exon 5, although some are also found in codon R183 of exon 

4. Furthermore, GNAQ and GNA11 mutations appeared to occur in early 

tumourigenesis in UM; these mutations have also been observed throughout all 

tumour progression processes. GNAQ and GNA11 play a role in oncogenic 

behaviour because they encode G-proteins, meaning that their mutation can lead 

to G-proteins becoming constitutively active, upregulating the MAPK pathway. 

Recently, cases with mutations in GNAQ and GNA11 have showed activation of 

the yes-associated protein (YAP), an effector on the Hippo tumour-suppressor 

pathway, which may enhance the oncogenic properties of these genes (Feng et 

al., 2014, Yu et al., 2014). Although GNAQ and GNA11 are important because 

they are a driver mutations for melanocytic transformation, these genes do not 

have an impact on the prognosis for UM because they are found in early stages 

of UM, including in benign lesions, as well as in all further stages of progression 

(Dhillon et al., 2007, Bauer et al., 2009, Kim and Choi, 2010).  

There are other genetic mutations besides GNAQ and GNA11 that correlate with 

the development of UM. For instance, cysteinyl-leukotriene receptor 2 (CYSLTR2) 

which is a member of the G-protein family, similar to GNAQ and GNA11 (Moore 

et al., 2016). In addition, phospholipase C Beta 4 (PLCB4) has been found to be 

mutated in UM, apparently activated by its interaction with GNAQ (Johansson et 

al., 2016). The mutations of CYSLTR2 and PLCB4 account for around 5% of UM, 

yet these mutations appear to be mutually exclusive from mutations of GNAQ 

and GNA11 (Robertson et al., 2017). Although these newly identified gene 

mutations seem to have a similar functional effect on UM development as the 

GNAQ and GNA11 mutations, their effect on the progression of UM is still 

undetermined.  
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1.3.7.2 BAP1 mutations  

Harbour et al. (2010) were the first to describe the inactivation of a mutated 

BRCA1-associated protein 1 (BAP1) gene in more than 80% of UM cases 

exhibiting tumour metastasis. This gene is interestingly located in chromosome 

3p21, which is an area that is frequently lost in metastatic UM. Mutations in the 

BAP1 gene can terminate the BAP1 premature protein and some of these 

mutations can affect the ubiquitin carboxyl-terminal hydrolase domain which alter 

its deubiquitinase activity (Jensen et al., 1998). Pan et al. (2015) showed that the 

BAP1 protein may interact with the promoters that regulate E2F transcription 

factor 1 (E2F1), which may in turn have an effect on those genes involved in cell 

cycle progression that are controlled by the E2F family. In addition, the 

dysfunction of  BAP1 protein has implications on cell pluripotency (Moon et al., 

2017). Although the genetic mutations of BAP1 appear to be correlated with the 

dysregulated expression of BAP1 protein, immunohistochemical assessment of 

the protein is more reliable than genetic mutational analysis (Kalirai et al., 2014). 

Furthermore, BAP1 has been described in germline mutations among younger 

patients with UM, which suggests that it may be a predisposing gene among 

hereditary UM patients (Singh et al., 1996a, Singh et al., 1996b, Aoude et al., 

2013, Cebulla et al., 2015). When BAP1 mutations are found in UM, they are 

considered class 2 tumours (i.e. they are associated with a high risk of metastasis 

and a poor prognosis) (Harbour et al., 2013, Martin et al., 2013). The complete 

role of the dysregulation of BAP1 protein in UM is still unclear, however, and 

BAP1 dysregulation alone does not predict poor prognosis in UM cases (Harbour 

et al., 2010, Abdel-Rahman et al., 2011, Robertson et al., 2017). 

1.3.7.3 SF3B1 mutations 

The splicing factor 3B subunit 1 (SF3B1) gene is located in chromosome 2q33. 

It is a component of the spliceosome, which is a large and complex intracellular 

machine that processes precursor messenger RNA (pre-mRNA) into the mature 

transcript (Alsafadi et al., 2016). The mutation of this gene is responsible for 

different alternative splicing events, such as alternative terminal exon usage, 

intron retention and cryptic splicing within exons, for both protein coding and non-

coding genes (Furney et al., 2013). Intriguingly, mutations in SF3B1 have been 
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reported in different types of cancers, such as blood, breast and pancreatic 

cancer, where the predominant mutation hotspot in these cancers is in codon 

K700 (Malcovati et al., 2011, Wang et al., 2011, Biankin et al., 2012, Cancer 

Genome Atlas, 2012). The most common mutation hotspot of this gene in UM, 

however, is found in codon R625 of exon 14, occurring in between 10 and 20% 

of UM cases without the complete or partial loss of chromosome 3 (Furney et al., 

2013, Harbour et al., 2013, Martin et al., 2013). In contrast, mutations in SF3B1 

occur only rarely in cutaneous melanoma (1% of cases) (Kong et al., 2014). 

Mutations in SF3B1 gene are associated with a good UM prognosis, and are 

almost completely exclusive of mutations in BAP1 (Harbour et al., 2013). A recent 

report by Luscan et al. (2015), however, revealed that some UM cells with 

mutations in the SF3B1 gene can be observed in UM cases featuring liver 

metastasis. In addition, Yavuzyigitoglu et al. (2016b) showed that 79% of UM 

patients with mutated SF3B1 exhibited late metastasis, although those patients 

were disomy 3. They emphasised that mutations of SF3B1 in UM were likely to 

be correlated with gain of chromosome 6p, possibly indicating a role for 

chromosome 6 in terms of predicting the UM prognosis. Furthermore, this may 

be because of the partial gain of chromosome 8q in UM that appears to correlate 

with the poor prognosis (Sisley et al., 1997, Hammond et al., 2015, Robertson et 

al., 2017). Although it has been shown that SF3B1 mutations in leukaemia lead 

to the accumulation of DNA damage by altering the DNA damage response (Te 

Raa et al., 2015), the biological role of splicing genes by mutated SF3B1 in UM 

remains unclear (Furney et al., 2013, DeBoever et al., 2015). 

1.3.7.4 EIF1AX mutations 

Eukaryotic translation initiation factor 1A, X-linked (EIF1AX), which is located in 

chromosome Xp22, encodes for a protein that plays an essential role in both the 

recognition of the target mRNA start codon and mRNA translation (Chaudhuri et 

al., 1997). The use of new technologies, such as whole exome sequencing 

(WES), has revealed that 13% of UM with disomy 3 demonstrates mutations in 

EIF1AX exons 1 and 2 (Martin et al., 2013). Mutations in this gene are uncommon 

in UM patients with monosomy 3 and it appears to be mutually exclusive to 

SF3B1, which emphasises the rarity of mutated EIF1AX in metastasis to the liver. 
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Similar to SF3B1, mutations of EIF1AX in UM appear also to be correlated with 

the gain of chromosome 6p (Yavuzyigitoglu et al., 2016a). This is another gene 

that has recently been shown to be associated with UM prognosis when it is 

mutated. EIF1AX mutations are therefore considered class 1 tumours (at low risk 

of metastasis) and are associated with a good prognosis (Harbour et al., 2013, 

Decatur et al., 2016, Robertson et al., 2017). In addition, about 42% of EIF1AX 

mutations occur in iris melanoma cases, while mutations in other types of UM, 

such as ciliary body and choroidal, accounted for only 13% (Scholz et al., 2017). 

In a recent study Johnson et al. (2017) performed analyses on EIF1AX aiming to 

understand its function in UM cells. They found that UM cells with mutated 

EIF1AX have a deviant translational regulation in comparison with the normal 

EIF1AX, and they suggest that this may explain the selective advantage of 

mutant EIF1AX in UM.  

1.3.7.5 TERTp mutations 

The telomerase reverse transcriptase (TERT) gene is located in chromosome 

5p15, where it encodes the catalytic reverse transcriptase subunit of telomerase, 

which is part of the ribonucleoprotein complex that maintains the telomere length 

(Cesare and Reddel, 2010, Horn et al., 2013). Telomerase activity has been 

found to be present in more than 90% of somatic cancer cells, but is absent in 

normal human cells (Shay and Bacchetti, 1997). Telomere maintenance is not 

TERT’s only function: it is also involved in regulation of gene expression, cellular 

signalling, cell cycle and DNA damage response, apoptosis inhibition and 

maintenance of mitochondria DNA (mtDNA), as reviewed in Wu et al. (2013). 

These diverse functions indicate that the disruption of this protein may increase 

the cellular instability and thus tumourgenesis. Mutations in TERT promoter 

(TERTp) create a new binding motif for E-twenty-six (ETS) transcription factors 

and upregulate the expression of TERT (Huang et al., 2013). Interestingly, 

TERTp mutations have been shown to be a good prognostic marker in various 

cancers such as melanoma, thyroid, lung, liver and glioma (Yuan et al., 2016). 

Only two studies, however, have found mutations in TERTp gene in UM (one UM 

case in each study), which indicates the rarity of mutated TERTp mutations for 

UM cells (Dono et al., 2014, Koopmans et al., 2014a). The prognostic effect of 
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TERTp mutations for UM cells has been found to be similar to patients with good 

prognosis. Although the TERTp mutations are more common in other types of 

melanomas, such as cutaneous (Horn et al., 2013, Huang et al., 2013) and 

conjunctival melanomas (Griewank et al., 2013) than in UM, the discovery that 

they do appear in UM cells may provide a new insight into the role of TERTp in 

UM. 

1.4 Ambiguity of chromosome 6 changes in UM 

While structural aberrations of chromosome 6 have often been observed in UM, 

such as gain of 6p only, or loss of chromosome 6q and gain of 6p 

(isochromosome 6p), little is known about the implications of this chromosome 

and the involvement of genes in this chromosome. Chromosome 6 aberrations 

in other types of cancer, such as cutaneous melanoma, retinoblastoma and 

osteosarcoma, are correlated with poor prognosis (Ozaki et al., 2002, Bastian et 

al., 2003, Namiki et al., 2005, Zielinski et al., 2005, Gerami et al., 2010, Martin et 

al., 2012, Theriault et al., 2014) but in UM the gain of chromosome 6p is 

correlated with good prognosis and favourable outcomes (Aalto et al., 2001, 

Onken et al., 2004). Although some studies have argued that the gain of 

chromosome 6p is unlikely to be correlated with monosomy 3 in UM and thus the 

outcome is good prognosis (Prescher et al., 1995, Parrella et al., 1999, Ehlers et 

al., 2008, Landreville et al., 2008), other studies have showed that monosomy 3 

occurs with gain of chromosome 6p in the same UM tumour  (Sisley et al., 2000, 

Aalto et al., 2001).   

The deletion of chromosome 6q has also been reported in different cancer types 

such as cutaneous melanoma, prostate cancer and acute lymphoblastic 

leukaemia, and correlates with a poor outcome (Healy et al., 1998, Nupponen et 

al., 1998, Mancini et al., 2002). The change in UM for chromosome 6q is usually 

correlated with gain of 6p to form an isochromosome 6p, which is correlated with 

monosomy 3, gain of chromosome 8q and poor prognosis (Sisley et al., 2000, 

Aalto et al., 2001, Kilic et al., 2006, Damato et al., 2009). Little is known, however, 

about the effect of the loss of chromosome 6q in UM because it is believed that 

this aberration is a late event resulting from the progression of the cancer 
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(Prescher et al., 1990, Gordon et al., 1994, White et al., 1998). Sisley et al. (2006) 

rationalised that structural aberrations and translocation events for chromosome 

6 been found in around 70% of the UM cases. This finding may indicate that 

structural aberrations of chromosome 6 have a role in the prognosis of the UM.  

Parrella et al. proposed a bifurcated pathway for UM tumour prognosis describing 

the chromosomal alteration events in which monosomy 3 and gain of 

chromosome 6p were mutually exclusive and then both advanced to gain of 

chromosome 8q that indicates a poor prognosis (Parrella et al., 1999). In an 

extension of this proposal, Sisley (2015) proposed an alternative pathway that 

include aberrations in chromosome 3 and chromosome 6 as an initiative pathway 

for UM progression and one correlated with the tumour origin, as seen in Figure 

1.2. These genetic pathways for UM may therefore indicate the role of those 

aberrant chromosomes and determine their effect on UM development and 

progression. Generally, different research groups have come up with different 

results regarding the alterations of chromosome 6 in UM, making this 

chromosome a priority for further studies and gene exploration to clarify its role 

in both the development and progression of UM.  
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Figure 1.2. The chromosomal changes that occur in UM cells. 

The figure indicates the tumour’s origin (ciliary or choroid) then these cells develop to 
gain of 6p, loss of 6q or monosomy 3 (M3) that determine a patient’s prognosis. The 
dashed lines indicate that these changes are possible, albeit this finding is not yet well 
established. Adapted from Sisley (2015). 
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1.5 Summary  

In summary, the prognosis of UM depends on different clinical and cellular 

characteristics. An increasingly important area of research over the last twenty 

years has been the association of chromosomes 1, 3, 6 and 8 in predicting the 

prognosis of UM patients. Little is known, however, about the effect of 

chromosome 6 alterations on the progression of UM and thus it is necessary to 

identify genes in chromosome 6 and determine their effect on UM development 

and progression. Moreover, the last ten years have witnessed an increase in the 

identification of specific mutations in genes such as GNAQ and GNA11 which 

have an association with the development of UM; while mutations in SF3B1, 

EIF1AX and TERTp have showed some association with the prognosis of UM; 

as summarised in Figure 1.3 (Doherty et al., 2018). 

This introduction has emphasised the role of both chromosomal and genetic 

alterations in UM cells that can lead to an increase or decrease in metastasis to 

the liver. Although a number of studies have reported associations between 

chromosomal and genetic mutations and the development and progression of 

UM, some of these studies are fairly preliminary, and data on long-term follow up 

is not yet available, meaning that the evidence is not yet strong enough to validate 

their claims. Moreover, these genetic mutations do not seem to provide a clear 

indication of the way UM patients are going to behave, and instead the best 

information still comes from the actual chromosomal imbalances. 
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Figure 1.3. The correlation of prognostic biomarkers in UM with different 
clinical, histological, chromosomal and genetic changes. 

This simple model elucidates the tumour progression in UM from a normal melanocyte 
to the mutations in GNAQ and GNA11 that transformed it into a malignant melanocyte. 
Clinicopathological considerations then determine the progression of UM, along with 
changes in chromosomes such as chromosomes 1, 3, 6 and 8; and the effect of genetic 
mutations in BAP1, SF3B1, EIF1AX, and TERTp on the prognosis of UM.  
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1.6 Hypothesis and aims of the study  

UM is an aggressive disease and there is not yet an effective therapeutic 

approach for secondary disease (Violanti et al., 2019). Genetic biomarkers of UM 

can successfully indicate prognosis, yet there is some debate over the 

importance and implications of changes in chromosome 6 aberrations. 

Furthermore, the genes involved in chromomere 6 are not yet identified. 

Therefore, the hypothesis is that:  

Chromosome 6 aberrations can affect UM prognosis and there are genes 

on both arms which contribute to the development, prognosis and 

metastasis of UM. 

This present study aims to continue the investigation initiated previously for a 

PhD study by Nawal Alshammari (Alshammari, 2017), which found candidate 

genes in chromosomes 6p and 6q that are relevant to the prognosis of UM using 

high-resolution array-CGH.  

 The present study will continue this investigation to cover in more detail 

the cytogenetic changes effect of chromosome 6 aberrations associated 

with known genetic mutations.  

 This study will then use high-resolution array-CGH to further assess other 

implicated regions of chromosomes 6p and 6q in respect the prognosis of 

UM.  

 This study will also determine some of the underlying genetic 

abnormalities in those regions and explore the effect of targeting, using 

various techniques.  
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2.1 Materials  

2.1.1 General reagents and consumables  

Reagents  

Reagent Supplier Reagent Supplier 

Agarose  Fisher 
Scientific™ 

Glycerol  Fisher 
Scientific™ 

Bromophenol 
blue 

Sigma™ Glycine  Sigma™ 

Deionised H2O Millipore™ Hydrogen Peroxide (H2O2) Sigma™ 

DPX Sigma™ Methanol  Fisher 
Scientific™ 

EDTA Fisher 
Scientific™ 

Nuclease Free H2O Invitrogen™ 

Ethanol (EtOH) Fisher 
Scientific™ 

Sterile phosphate buffered 
saline (PBS) 

Fisher 
Scientific™ 

Ethidium 
Bromide (EtBr) 

Sigma™ Tris base  Fluorochem® 

Gill's 
haematoxylin 

Fisher 
Scientific™ 

Tween-20  Sigma™ 

Glacial acetic 
acid  

Fisher 
Scientific™ 

Xylene  Fisher 
Scientific™ 

Consumables 

Reagent Supplier Reagent Supplier 

Centrifuge tubes 
(15, 25 and 50ml)  

Starstedt™ Sterile filter pipette tips (10, 

20, 200 and 1000l) 

StarLab™ 

Coverslips (22 x 
22mm and 22 x 
30mm) 

VWR™ Sterile needles (20G and 
31G) 

Becton 
Dickinson 
(BD™) 

Eppendorf 
microfuge tubes 
(0.2, 0.5, 1.5 and 
2.0ml) 

Starstedt™ Sterile plastic syringes  Becton 
Dickinson 
(BD™) 

Nitrile examination 
gloves  

StarLab™ Sterile pipette tips (10, 20, 

200 and 1000l) 

StarLab™ 

Serological 
pipettes (5ml, 10ml 
and 25ml) 

Corning® Tissue culture flasks (T25 
and T75) 

Nunc® 

Sterile petri dishes  Nunc® Tissue culture plates (6, 12, 
24, 48 and 96 wells) 

Nunc® 

Sterile scalpels  Swann 
Morton™ 
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2.1.2 Sample collection  

Tumour tissue from 30 patients who were diagnosed with primary UM and who 

had undergone enucleation between 1994 and 2016, was instantly snap frozen 

and stored at -80 °C until DNA extraction (the Ocular Oncology Unit at the Royal 

Hallamshire Hospital, Sheffield, UK). Some of genomic DNA (gDNA) was 

previously extracted from the same patients’ whole blood using standard 

extraction methods and was available for the archived samples. Ethical approval 

and patient consent were obtained from the Central Research Ethics Committee 

for research purposes (SSREC 94/247 and 09/H1008/141).  

2.1.3 Cell lines  

In this study, four cell lines were used as disease models. The cell lines were 

derived at the University of Sheffield from tumours that were diagnosed as UM 

and collected between 2009 and 2017 by Dr. Karen Sisley. These cell lines were 

given a laboratory designation numbers of MEL-577, MEL-585, MEL-627 and 

MEL-644. All these cell lines were phenotypically and genetically examined and 

correlated with their parent tumours by Dr. Karen Sisley. The HepG2 cell line 

(supplied by Dr. Nigel Bird) was used as a biological positive control for both 

immunocytochemistry and western blot (WB) experiments, following the 

manufacturer’s recommended protocol.  

2.1.4 DNA extraction from patients’ blood and frozen 

tumour tissue samples 

Patients’ whole blood DNA extraction was prepared using QIAamp® DNA blood 

midi kit (QIAGEN®). Reagents that were used contained:  

• QIAGEN® Protease. 

• Lysis buffer (Buffer AL). 

• Washing buffers (Buffer AW1 and AW2) after an addition of the 

appropriate volumes of absolute ethanol. 

• Elution buffer (Buffer AE). 

• QIAamp® midi columns and collection tubes.  
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DNA extraction for patients’ snap-frozen tumour tissue was prepared using 

DNeasy® blood and tissue kit (QIAGEN®). Reagents that were used contained:  

• QIAGEN® proteinase K. 

• Tissue lysis buffer (Buffer ATL). 

• RNase A 

• Lysis buffer (Buffer AL).  

• Washing buffers (Buffers AW1 and AW2) after an addition of the 

appropriate volumes of absolute ethanol.  

• Elution buffer (Buffer AE)  

• DNeasy® mini spin columns and collection tubes.  

 

2.1.5 Primer design for GNAQ, GNA11, SF3B1, 

EIF1AX and TERTp 

Forward and reverse primers for GNAQ and GNA11 were previously designed 

by Onken et al. (2008) and Van Raamsdonk et al. (2010) (Table 2.1). Forward 

and reverse primers for SF3B1, EIF1AX and TERTp were also designed by Dono 

et al. (2014). In this study, these primers were confirmed using primer-BLAST 

website (www.ncbi.nlm.nih.gov/tools/primer-blast) to determine their specificity 

for the targeted genes. These primers were supplied lyophilised from (Eurofins 

Genomics) and were re-concentrated with nuclease free H2O to a concentration 

of 100 pmol/l and stored at -20 °C. 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/tools/primer-blast
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Table 2.1: Primer design for GNAQ, GNA11, SF3B1, EIF1AX, and TERTp. 

Gene Exon Primer 
Direction 

Primer sequence  

(5'->3') 

Length 
(mer) 

Tm 
(°C) 

Product 
size 
(bp) 

GNAQ 4 Forward 
TCTTTTTCTCCCACCC
CTTGC 

21 60.0 509 

Reverse 
TTGTTTTGAAGCCTAC
ACATGATTCC 

26 57.2 

5 Forward 
AGAAGTAAGTTCACTC
CATTCCC 

23 56.0 317 

Reverse 
TTCCCTAAGTTTGTAA
GTAGTGC 

23 54.2 

GNA11 4 Forward 
GTGCTGTGTCCCTGT
CCTG 

15 60.1 249 

Reverse 
GGCAAATGAGCCTCT
CAGTG 

20 58.2 

5 Forward 
CGCTGTGTCCTTTCA
GGATG 

20 58.3 147 

Reverse 
CCTCGTTGTCCGACT 

15 52.5 

SF3B1 14 Forward TGATTATGGAAAGAAA
TGGTTGAAG 

25 56.0 343 

Reverse CATGTTCAATGATTTC
AACTAAACTTC 

27 56.5 

EIF1AX 1 Forward GAAAAGCGACGCAAA
GAGTC 

20 58.0 320 

Reverse CTGGGTGACCTGCAA
TCTAC 

20 57.9 

2 Forward GGGTAGGGAGGTGAT
AATGTG 

21 57.2 406 

Reverse CTGTAATCGTGCCAC
CACAC 

20 59.2 

TERTp Promoter Forward GTCCTGCCCCTTCAC
CTT 

18 58.8 187 

Reverse GCTTCCCACGTGCGC
A 

16 60.7 
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2.1.6 Polymerase chain reaction (PCR) 

For all PCR reactions, IMMOLASE™ DNA polymerase kit (BIOLINE, London, UK) 

was used and stored at -20 °C. The kit contained:  

• 10✕ ImmunoBuffer. 

• 50 mM MgCl2 solution. 

• IMMOLASE™ DNA polymerase. 

Deoxyribonucleotide triphosphates (dNTPs): dNTPs set (BIOLINE™) 

containing dATP, dCTP, dGTP, and dTTP (100 mM). To make the working 

concentration of 50 mM of dNTPs, 25 l of each was added to 100 l of dH2O.  

Thermal cycler: Mastercycler® nexus gradient (Eppendorf). 

Running buffer: 50✕ Tris-Acetate-EDTA (TAE) stock solution, prepared in 1000 

ml of dH2O as followed: 

• 242 g tris base. 

• 57.1 ml glacial acetic acid. 

• 18.6 g EDTA.  

Storage was at room temperature and was diluted to 1✕ for use. 

Electrophoresis unit: Multi sub-choice electrophoresis unit (Geneflow), 

comprising: 

• Gel casting tray (15 ✕ 15 cm).  

• Sample comb (20 samples).  

• Electrophoresis tank. 

Power source: Power-Pac 3000 basic power supply for electrophoresis (Biorad).  

Ethidium bromide: Ready-to-use 20 mg/ml ethidium bromide (Sigma™) and 

stored at room temperature.  

DNA ladder: 100 bp ladder (Promega™) stored at 4 °C. 
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Loading buffer: 6✕ loading buffer 0.25% (w/v) bromophenol blue and 30% (v/v) 

glycerol prepared by adding 25 mg bromophenol blue to 3 ml glycerol and made 

up to 10 ml using dH2O and stored at 4 °C. 

Gel documentation: Gel Doc™ EZ imager (Biorad). 

2.1.7 Array-comparative genomic hybridisation 

(array-CGH) 

Restriction digestion enzymes (Promega™) were stored -20 °C and contained: 

• 10✕ Buffer C. 

• Alu1 (10U/l). 

• Rsa1 (10U/l). 

• Acetylated bovine serum albumin (10g/ml). 

Genomic DNA enzymatic labelling kit (Agilent™) was stored at -20 °C containing:  

• Random primers.  

• 5✕ Buffer. 

• 10✕ dNTPs. 

• Cyanine 3-dUTP (Cy3) (1.0 mM). 

• Cyanine 5-dUTP (Cy5) (1.0 mM). 

• Exo-Klenow fragment. 

Amicon® 30 kDA filters and 1✕ TE buffer for labelling DNA purification stored at 

room temperature.  

Human Cot-1 DNA™ (Invitrogen™). 

Oligo array-CGH Hybridisation kit (Agilent™) containing: 

• Agilent 2✕ Hi-RPM hybridisation buffer stored at room temperature.  

• Agilent 10✕ Blocking agent.  

Microarray Hybridisation Assembly (Agilent™) containing:  
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• SurePrint® G3 Human CGH Microarray Slide 4✕180K. 

• Hybridisation gasket slide.  

• Hybridisation champer kit-SureHyb® enabled, stainless steel.  

Microarray hybridisation oven (Agilent™) fitted out with removable rotator rack.  

Washing buffer kit: oligo array-CGH/ChIP-on chip wash buffer kit containing:  

• Oligo array-CGH wash buffer 1. 

• Oligo array-CGH wash buffer 2.  

Microarray slide scanner system (G2565CA) (Aglient™).  

2.1.8 Immunochemistry 

Phosphate Buffered Saline (PBS): 10 tablets of PBS (Oxiod) dissolved into 1 L 

of H2O. 

Phosphate Buffered Saline with TWEEN 20 (PBST): 10 tablets of PBS 

dissolved into 1 L of H2O with 0.1% of TWEEN 20® (1ml) (Sigma™). 

Peroxidase quenching solution: 3% of hydrogen peroxide (H2O2) (Sigma™) in 

Methanol (Fisher Scientific™) prepared freshly by adding 30 ml of 30% H2O2 into 

270 ml absolute methanol. 

Melanin bleaching: 1.5% of H2O2 (Sigma™) in PBS prepared freshly by adding 

15 ml of H2O2 into 285 ml of PBS. 

Target retrieval solution (10✕): 1:10 working solution prepared by adding 10 ml 

of DAKO (DAKO™) into 90 ml of deionised H2O adjusted to pH 6.0.  

Antigen retrieval instrument: 2100 Antigen Retriever (Aptum®) 

Blocking kit: Consisting of two solutions: solution A (Avidin) and B (Biotin) 

(Vector Laboratories). 

Blocking serum: Normal goat serum (Vector Laboratories) was stored at 4 °C 

and diluted in PBS with 10✕ casein solution (Vector Laboratories) to give a 10% 

working solution.  
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Primary antibodies: All primary antibodies were provided by (Abcam), and were 

stored at -20 C, and diluted in 2% normal goat serum prior to use (Table 2.2).  

Table 2.2: Summary of primary antibodies and their conditions. 

Antibodies Type Source Class Control 
Tissue 

Dilution and 
conditions 

Anti-FARS2 Polyclonal Rabbit IgG Human colon 
tissue 

1:400 

Overnight at 
4°C 

Anti-FOXQ1 Polyclonal Rabbit IgG Human kidney 
tissue 

1:200 

Overnight at 
4°C 

Anti-AMD1 Polyclonal Rabbit IgG Human 
mammary 
tissue 

1:500 

Overnight at 
4°C 

 

Secondary antibody: Made from goat anti-rabbit, biotinylated IgG (Vector 

Laboratories) was stored at 4 C and diluted 1:200 in 2% blocking serum. 

Avidin/Biotin peroxidase kit: VECTASTAIN® Avidin-biotin complex (ABC) kit 

stored at 4C and used according to the manufacturer’s instructions.  

Peroxidase Substrate Kit: 3,3’-dianimobenzidine (DAB) peroxidase (HRP) 

substrate kit (with Nickel) (VECTASTAIN®) stored at 4 C and used according to 

the manufacturer’s instructions.  

Mounting media: DPX mountant, a mixture of Distyrene, a Plasticiser, and 

Xylene; stored in the fume hood to preserve the tissue after staining. 
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2.1.9 Tissue culture  

Culture medium: RPMI-1640 culture medium (Lonza™) was used and 

supplemented with 10% foetal bovine serum (Lonza™), 1% L-Glutamine (200mM 

in 0.85% NaCl; Lonza™), 1% Penicillin/streptomycin (10kU/ml; Lonza™) and 0.4% 

D-glucose (45% solution, Sigma™) in order to maintain UM cell lines; the media 

was then stored at 4 C and warmed to 37 C prior to use. 

Trypsin-EDTA: 0.4% Trypsin-EDTA solution (Lonza™) was stored -20 C and 

warmed to 37 C prior to use. 

Dulbecco’s phosphate buffer saline (DPBS): 1✕ of DPBS that contains 

9.5 mM PO4 without Calcium and Magnesium, 500 ml (Lonza™). 

2.1.10 Western blot (WB) 

Lysis buffer: Radioimmunoprecipitation assay (RIPA) buffer is a ready-to-use 

reagent containing 150 mM of NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium 

deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0. Stored at 4 C (Sigma™) 

Protease and phosphatase inhibitor: Ready-to-use cocktail stored at -20 C 

(Sigma-Aldrich™). 

Bradford protein assay: BCA protein assay Dye reagent (Biorad). 

Filter paper: Whatman® qualitative filter paper, grade 1 (Sigma™). 

Protein standard: Measuring 1 mg of BSA (Fisher Scientific™) and diluted with 

1 ml of deionised H2O. 

Spectrophotometer reader: Multiskan™ microplate photometer (Thermo 

Scientific™).  

Sample Loading buffer: NuPAGE® 4✕ lithium dodecyl sulphate (LDS) 

(Thermofisher™). 

Reducing buffer: NuPAGE® 10✕ reducing agent (Thermofisher™). 
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Protein marker standard: Precision plus protein™, dual colour standards 

(Biorad). 

Running buffer: For 10✕ buffer, 250 mM Tris-base (30.3 g) (Fluorochem) with 

1.9M Glycine (Sigma™) (144 g) and 50 ml of 20% Sodium dodecyl sulphate (SDS) 

(Fisher Scientific™) with the volume being brought up to 1 L with H2O. 

Precast gel: 4-15% mini-PROTEAN® TGX™ precast protein gel (Biorad). 

Electrophoresis chamber: Mini-PROREAN® tetra vertical electrophoresis cell 

(Bio-rad) 

Transfer buffer: For 1✕ buffer, measuring 25 mM of Tris-base (Fluorochem) 

(3.03 g) with 192 mM Glycine (Sigma™) (14.4 g) and 20% of methanol (Fisher 

Scientific™) (200 ml), with the volume being brought up to 1 L with H2O. 

Filter papers: Whatman® gel blotting paper 30 ✕ 60 cm (Sigma Aldrich™). 

Polyvinylidene difluoride (PVDF) membrane: Immobilon-P PVDF membrane 

(Millipore™) 1 roll, 26.5 cm ✕ 3.75 m, 0.45 µm pore size. 

Semi-dry transfer system: Transblot® turbo™ transfer system (Biorad). 

PBST: 1✕ phosphate buffer saline (PBS) with 0.1% TWEEN® 20 (Fisher 

Scientific™). 

TBST: Supplied in a powder pouch containing (0.05M Tris-buffered saline 

(0.138M NaCl; 0.0027M KCl); 0.1% TWEEN® 20, pH 8.0) (Sigma™) and 

dissolved in 1 L of H2O. 

Blocking reagent: 5% non-fat dry milk diluted in PBST or TBST.  

Primary antibody: Anti-AMD1 polyclonal rabbit antibody was provided by 

(Proteintech), stored at -20 C and diluted to 1:300 with blocking solution prior to 

use. 
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Secondary antibody: Goat anti-rabbit IgG antibody conjugated to horseradish 

peroxidase (HRP) (Cell signalling Technology®) stored at -20 C and diluted to 

1:2000 with blocking solution prior to use.  

Stripping buffer: Restore™ western blot stripping buffer (Thermofisher 

Scientific™). 

Housekeeping antibody: Anti-beta tubulin antibody was provided by (Abcam), 

stored at -20 C and diluted 1:5000 with blocking solution prior to use.  

Detection reagent: Amersham™ Enhanced Chemiluminescence (ECL) western 

blotting detection reagent consist of two reagents, reagent A: luminol solution and 

reagent B: peroxide solution (GE healthcare). 

Detection instrument: ChemiDoc™ MP (Biorad) imaging System. 

2.1.11 CRISPR knockout 

Single-guide RNA (sgRNA): TrueGuide™ Modified Synthetic sgRNA for AMD1 

(ID: CRISPR843561_SGM), sequence (5’CCGACGCAAACCAAGGATCT’3) 

(Invitrogen™). 

Cas9 protein: GeneArt™ TrueCut™ Cas9 Protein v2, 1µg/µl, (Invitrogen™). 

Lipofectamine: Lipofectamine CRISPRMAX Transfection Kit (Invitrogen™) 

containing the following: 

• Lipofectamine CRISPRMAX Transfection reagent.  

• Lipofectamine™ Cas9 Plus™ reagent.  

Serum-free media: Opti-MEM™ I Reduced serum media (Gibco™).  

Full growth media: RPMI-1640 complete growth media (Lonza™).  

Genomic cleavage detection (GCD): GeneArt™ Genomic Cleavage Detection 

Kit, containing the following:  

• Cell lysis buffer, 1 ml.  

• Protein degrader, 96 µl. 
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• AmpliTaq Gold™ 360 master mix, 1 ml.  

• Water, 1 ml.  

• Detection enzyme, 20 µl.  

• 10✕ Detection reaction buffer, 40 µl.  

• Control template and primers, 10 µl.  

 

2.1.12 MTT proliferation assay 

Tetrazolium reagent (Sigma™): (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide) (MTT) was dissolved to 5mg/ml stock 

concentration in sterile PBS and stored at 4 C. 

Cell counter: TC20™ automated cell counter (Biorad). 

Dimethyl sulfoxide (DMSO): (Sigma™). 
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2.2 Methods 

The laboratory work was done according to the health and safety measures. All 

Chemicals were used according to the Control of Substances Hazardous to 

Health (COSHH) guidelines.   

2.2.1 DNA isolation and purification  

2.2.1.1 Whole blood DNA isolation and purification  

Patients’ peripheral blood was collected into both purple 

ethylenediaminetetraacetic acid (EDTA) and light blue (sodium citrate) bottles 

provided by BD™ Vacutainer® to avoid blood clotting. Then, 200 l of protease 

was added into a 15 ml centrifuge tube and 2 ml of whole blood were added to 

the same tube. After shaking and mixing several times, 2.4 ml of Buffer AL was 

added to the tube with another shaking and mixing step for the tube. The mixture 

was then incubated at 70 C for 10 minutes. After incubation, 2 ml of absolute 

ethanol were added to the mixture with subsequent vigorous shaking and 

inverting. Following the addition of absolute ethanol, half of the mixture (around 

3 ml) was transferred to a QIAamp® midi column (provided by the kit) and the 

tube were centrifuged at 1850✕g for three minutes. The filtrate was then 

discarded. This prior step was repeated again with the remaining (around 3 ml) 

of the mixture, again with centrifuging at 1850✕g for three minutes and discarding 

of the filtrate. 2 ml of Buffer AW1 was then added to the column and centrifuged 

at 3,500✕g for one minute. 2 ml of Buffer AW2 was added to the column and 

centrifuged at 3,500✕g for 15 minutes; the tube was discarded and a new 15 ml 

collection tube was used. The column was incubated at 70 C for ten minutes to 

remove any ethanol residue. Finally, 300 l of Buffer AE was added to the column, 

incubated for five minutes at room temperature and centrifuged at 3,500✕g for 

two minutes; and this step was repeated again to gain a higher concentration of 

DNA.  
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2.2.1.2 DNA isolation and purification from frozen tumour 

tissue 

Frozen tumour tissue that been stored at -80 C was transferred into a 1.5 ml 

centrifuge tube and cut into small pieces using a sterile 32G needle (BD™). Then, 

180 l of Buffer ATL and 20 l of proteinase K were added to the sliced tumour 

tissue; and the sample was incubated overnight at 56 C to homogenise the solid 

tissue. After the incubation, 4 l of RNase A was added to the sample which was 

vortexed for 15 seconds and incubated at room temperature for one minute. 

Afterwards, 200 l of Buffer AL and 200 l absolute ethanol were added to the 

sample and vortexed. The whole mixture was then transferred to a DNeasy® mini 

spin column (provided by the kit) and was centrifuged at 6,000✕g for one minute. 

The column was then transferred to a new collection tube and 500 l of Buffer 

AW1 was added to the column and centrifuged at 6,000✕g for one minute; the 

flow-through was discarded. The column was transferred again to a new 

collection tube and 500 l of Buffer AW2 was added to the column and 

centrifuged at 16,100✕g for three minutes. The spin column was transferred after 

the centrifugation to a new-clean 1.5 ml collection tube and 200 l of Buffer AE 

was added and incubated at room temperature for one minute. The sample was 

finally centrifuged at 6,000✕g for one minute; the last step was repeated again 

in another new and clean 1.5 ml collection tube to have a higher quantity of DNA. 

2.2.1.3 Genomic DNA quantification and purity assessment  

The DNA extracted and purified from both the blood and frozen tumour samples 

was measured to establish its concentration in ng/l using UV-VIS 

spectrophotometry NanoDrop® ND-1000 (Fisher Scientific™). The DNA 

absorbance at a wavelength of 260 nm was used to determine the amount of 

nucleic acid in the solution. The determination of DNA purity was measured using 

the ratio of absorbance 260/280 nm, which indicates any protein contamination 

at 280 nm while the ratio of absorbance 260/230nm indicates any contamination 

from other organic compounds such as phenol, EDTA and carbohydrates, which 

usually absorbed at a wavelength of 230 nm. 
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To operate the NanoDrop® ND-1000, the lens was first wiped with Kimwipes® 

and 2 l of nuclease-free H2O was added to initialise the instrument. A similar 

volume of Buffer AE was added to serve as a blank solution. After that, 2 l of 

the DNA sample was applied into the cleaned lens and the concentration of DNA 

was recorded in ng/l, as well as the absorbance at both 260/280 nm and 

260/230 nm, where an acceptable range was considered to be between 1.8 and 

2. 

2.2.2 Sequencing analysis for GNAQ, GNA11, SF3B1, 

EIF1AX and TERTp 

2.2.2.1 Standard PCR  

Standard PCR was used to amplify a specific DNA fragment based on three main 

steps: denaturation, annealing and extension. Denaturation means the double 

strand DNA was separated at 95 C; annealing allows the primers to bind to a 

specific location on the DNA; where the annealing temperature varies between 

50 and 65 C. The final step of PCR is primer extension when the Taq polymerase 

together with dNTPs copies the original strand. These three steps are repeated 

across 25 to 30 cycles so as to produce an exponential amount of the specific 

product. Table 2.3 specifies each component and the amount that was added to 

attain 23 l of master mix. Then, 2 l of DNA (25 ng/l) was added to the sample 

in addition to a negative control to check for any contamination that may occur 

during the protocol. Afterwards, PCR reaction tubes were transferred to the 

thermocycler using either three-step PCR, touchdown PCR or modified 

touchdown PCR as set out in Tables 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 and 2.10.  

 

 

 

 

 



 
 

54 

Table 2.3: PCR master mix for GNAQ, GNA11, SF3B1, EIF1AX, and TERTp. 

GNAQ exons 4, 5 and EIF1AX exon 1 SF3B1 exon 14 

Component 
Per 

sample 
Component 

Per 
sample 

Immunobuffer 10X 2.5l Immunobuffer 10X 2.5l 

MgCl2 50mM 0.75l MgCl2 50mM 0.75l 

dNTPs 50mM 0.5l dNTPs 50mM 0.5l 

Forward Primer 10pmol/l 1l Forward Primer 10pmol/l 1l 

Reverse Primer 10pmol/l 1l Reverse Primer 10pmol/l 1l 

Immolase 250U 0.5l Immolase 250U 0.5l 

H2O  16.75l H2O  16.75l 

Amount of DNA 50ng 2l Amount of DNA 50ng 2l 

GNA11 exon 4 and EIF1AX exon 2 GNA11 exon 5 and TERTp 

Component 
Per 

sample 
Component 

Per 
sample 

Immunobuffer 10X 2.5l Immunobuffer 10X 2.5l 

MgCl2 50 mM 0.375l MgCl2 50mM 0.25l 

dNTPs 50 mM 0.5l dNTPs 50mM 0.5l 

Forward Primer 10pmol/l 1l Forward Primer 10pmol/l 1l 

Reverse Primer 10pmol/l 1l Reverse Primer 10pmol/l 1l 

Immolase 250U 0.5l Immolase 250U 0.5l 

H2O  17.125l H2O  17.25l 

Amount of DNA 50ng 2l Amount of DNA 50ng 2l 
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Table 2.4: 3-step PCR conditions for GNAQ exon 4 

Stage Temperature Time Cycles Comment 

Activation 95 °C 10 min 1X  

Denature 95 °C 30 sec 

30X  Anneal 53 °C 30 sec 

Extension 72 °C 60 sec 

Hold 4 °C ∞   

Table 2.5: 3-step PCR conditions for GNAQ exon 5 

Stage Temperature Time Cycles Comment 

Activation 95 °C 10 min 1X  

Denature 95 °C 30 sec 

30X  Anneal 60 °C 30 sec 

Extension 72 °C 60 sec 

Hold 4 °C ∞   

Table 2.6: 3-Step PCR conditions for SF3B1 exon 14 and EIF1AX exon 1. 

Stage Temperature Time Cycles Comment 

Activation 95 °C 10 min 1X  

Denature 95 °C 30 sec 

30X  Anneal 61 °C 30 sec 

Extension 72 °C 90 sec 

Final 
extension 

72 °C 5 min 1X  

Hold 4 °C ∞   
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Table 2.7: Touchdown PCR conditions for EIF1AX exon 2 

Stage Temperature Time Cycles Comment 

Activation 95 °C 10 min 1X  

Denature 95 °C 30 sec 

10X 
-1°C increment 

each cycle 
Anneal 64 °C 30 sec 

Extension 72 °C 90 sec 

Denature 95 °C 30 sec 

30X  Anneal 60 °C 30 sec 

Extension 72 °C 90 sec 

Final 
extension 

72 °C 5 min 1X  

Hold 4 °C ∞   

Table 2.8: Touchdown PCR conditions for TERTp. 

Stage Temperature Time Cycles Comment 

Activation 95 °C 10 min 1X  

Denature 95 °C 30 sec 

10X 
-1°C increment 

each cycle 
Anneal 61 °C 30 sec 

Extension 72 °C 90 sec 

Denature 95 °C 30 sec 

30X  Anneal 56 °C 30 sec 

Extension 72 °C 90 sec 

Final 
extension 

72 °C 5 min 1X  

Hold 4 °C ∞   
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Table 2.9: Modified Touchdown PCR conditions for GNA11 exon 4. 

Stage Temperature Time Cycles Comment 

Activation 95 °C 10 min 1X  

Denature 95 °C 30 sec 

3X  Anneal 64 °C 30 sec 

Extension 72 °C 60 sec 

Denature 95 °C 30 sec 

3X 

 

Anneal 62 °C 30 sec  

Extension 72 °C 60 sec  

Denature 95 °C 30 sec 

3X 

 

Anneal 59 °C 30 sec  

Extension 72 °C 60 sec  

Denature 95 °C 30 sec 

30X  Anneal 56 °C 30 sec 

Extension 72 °C 60 sec 

Hold 4 °C ∞   
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Table 2.10: Modified Touchdown PCR for GNA11 exon 5. 

Stage Temperature Time Cycles Comment 

Activation 95 °C 10 min 1X  

Denature 95 °C 30 sec 

3X  Anneal 62 °C 30 sec 

Extension 72 °C 60 sec 

Denature 95 °C 30 sec 

3X 

 

Anneal 59 °C 30 sec  

Extension 72 °C 60 sec  

Denature 95 °C 30 sec 

3X 

 

Anneal 56 °C 30 sec  

Extension 72 °C 60 sec  

Denature 95 °C 30 sec 

30X  Anneal 53 °C 30 sec 

Extension 72 °C 60 sec 

Hold 4 °C ∞   

 

2.2.2.2 Agarose gel electrophoresis  

Agarose gel was prepared in 1.8% by dissolving 2.7 g of agarose into 150 ml of 

1X TAE buffer in a flask. The mixture was then heated in a microwave at high 

power to have a clear solution without any residue of undissolved agarose. The 

solution was cooled to be warm and 10 l of EtBr was added to the solution, 

which was then poured into the gel tray with a comb and left for around twenty 

minutes to solidify. After gel solidification, the rubber around the tray was 
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removed and the gel tray was put into a gel tank prefilled with 1X TAE buffer. 

Then, 5 l of the sample was mixed with 1 l of 6✕ loading dye and pipetted into 

the well. Also, 5 l of 100 bp standard size marker was applied into the well to 

determine the actual size of the product. The power source was turn on at 120V 

for 40 minutes; and then the gel was visualised using a UV trans-illuminator gel 

documentation instrument (Biorad) and it was photographed. 

2.2.2.3 DNA sequencing  

DNA sequencing of the PCR products was achieved using the Sanger 

sequencing method. The aim of this procedure is to identify any insertion, 

deletion or substitution within the targeted gene. The DNA sequencing for all 

samples was carried out by the sequencing core facility at University of Sheffield, 

Medical School, UK. Briefly, the PCR product that was generated previously was 

added with one primer direction (forward or reverse) together with DNA 

polymerase and a fluorescent dideoxyribonucleotide triphosphate (ddNTPs) in a 

programmed thermocycler. The ddNTPs is similar to the dNTPs used for PCR 

except lacking the 3’ hydroxyl group that allows the nucleotide synthesis to 

terminate for the next nucleotide binding. These ddNTPs were randomly 

incorporated with the PCR product on different sizes. Thus, unique nucleotide 

sequences of A, T, C, G were generated based on the size of each incorporated 

ddNTPs after running the sample in a capillary gel which was then detected by 

laser camera using API 3730xl (Applied Biosystems™).  

2.2.2.4 Sequencing analysis  

FinchTV sequence analysis software (Geospiza) was used to visualise the 

generated sequence data. The sequences were screened in comparison to 

reference sequences for GNAQ, GNA11, SF3B1, EIF1AX and TERTp in order to 

identify any mutations in those genes.  
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2.2.3 Genomic-wide analysis using array-CGH 

2.2.3.1 Array-CGH concept  

This recently developed molecular cytogenetic technique is used to study whole 

gDNA to detect copy number aberrations (CNAs). The gDNA isolated from 

tumour and blood samples of the same patient were labelled with two different 

fluorescent dyes, Cyanine-5 (Cy5) and Cyanine-3 (Cy3). The Agilent™ labelling 

system uses random priming with exo-klenow DNA polymerase (enzymatic 

method) to label the gDNA; and this method uses Human Cot-1 DNA 

(Invitrogen™) to block the binding of repetitive elements prior to hybridisation. 

The labelled gDNA was then hybridised to a customised microarray slide 

specifically designed for UM (4✕180K probes) (Hammond et al., 2015), and 

focused on specific areas of the genome such as chromosomes 1, 3, 6, 8 and 

11. For example, the probes in chromosome 6 had a spacing mean of 14.5 kb 

compared to the off-shelf array that had a mean probe spacing of 36.6 kb. This 

customised microarray slide helps to uncover regions of chromosomal gain and 

loss which may contain oncogenes and tumour suppressor genes. The array was 

then washed and scanned, whereby the differential intensity of the fluorescent 

dyes at each probe served as a surrogate for the ratio of copy numbers of the 

probe sequence in the tumour versus the reference genome, as shown in Figure 

2.1 below. In the figure, the red spots specify a duplicate region in the genome 

of the patient’s DNA whereas the green spots specify the missing regions in the 

patient’s genome compared to the reference genome; consequently, 

chromosomal aberration is shown as amplification and deletion.  
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Figure 2.1: Flowchart of the array-CGH protocol.  

The experiment starts by labelling and mixing Cy3-reference DNA with Cy5-tumour DNA 
and hybridising them on an Agilent™ slide. The slide then was incubated for 24 hours at 
65 °C followed by washing steps. Directly, the slide was scanned so as to produces an 
image that will be analysed using the software. The image of the microarray laser 
scanner was adapted from www.biocompare.com. 

 

2.2.3.2 Array-CGH protocol  

DNA digestion  

A gDNA input of between 0.5-1.0 g for each sample was required and the DNA 

digestion for both patient and control samples was carried out by adding two 

restriction enzymes, Alu1 and Rsa1, to digest the DNA into smaller strands of 

random size; a digestion master mix was prepared for nine samples (four 

reference DNA and four tumour DNA with one dead volume), as shown in Table 

2.11. Then, 5.8 l of the digestion master mix was added to each tube containing 

20.2 l of gDNA to make a total volume of 26 l. Tubes were transferred to a 

thermocycler with the heated lid programmed for incubation at 37 C for two 
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hours, then turned up to 65 C for 20 minutes. The samples were then held at 

4 C. 

Table 2.11: Digestion master mix components. 

Component Per tube (l) For 9 tubes (l) 

Nuclease-free H2O 2.0 18 

10X buffer 2.6 23.4 

Acetylated BSA (10 g/l) 0.2 1.8 

Alu1 (10 g/l) 0.5 4.5 

Rsa1 (10 g/l) 0.5 4.5 

Total 5.8 52.2 

 

DNA labelling and purification  

The digested gDNA was then labelled by two fluorescent dyes using the Agilent® 

labelling kit; 5 l of random primers were added to each reaction tube, the DNA 

was denatured and the primers were annealed at 95 C for three minutes. A total 

of 19 l of labelling master mix was made of the components illustrated in Table 

2.12 with 3 l of Cy3-dUTP (1.0 mM) being added to each control sample and a 

similar labelling master mix with 3 l of Cy5-dUTP (1.0 mM) being added to each 

tumour sample with an extra tube for dead volume; reaction tubes were then 

transferred to thermocycler and incubated for two hours at 37 C, then at 65 C 

for ten minutes. The samples were then held at 4 C. 

The labelled gDNA was purified using Amicon® 30 kDA filters that trapped the 

labelled gDNA based on their size. Firstly, the samples were centrifuged at 

6,000✕g for one minute. Then, each sample was mixed by adding 430 l of 1✕ 
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TE buffer and transferred to Amicon® 30 kDA filters that were placed in a 1.5 ml 

collection tube and centrifuged at 14,000✕g for ten minutes. The flow-through 

was discarded and the wash repeated again by adding 480 l 1✕ TE buffer to 

each sample and centrifuged at 14,000✕g for ten minutes.  The flow-through and 

collection tubes were discarded, and the filter was inverted into a fresh collection 

tube and centrifuged at 1,000✕g for one minute. The final volume expected in 

the collection tube was around 21 l of clean, labelled DNA.  

Table 2.12: Components of labelling master mix. 

Component Per tube (l) For 5 tubes (l) 

5X buffer 10.0 50.0 

10X dNTPs 5.0 25.0 

Cy3-dUTP or Cy5-dUTP 3.0 15.0 

Exo-klenow fragment 1.0 5.0 

Total 19.0 95.0 

 

The total mixture volume of each sample was measured after purification, and 

the clean, labelled gDNA was used to quantifiy the concentrations of Cy3 at 550 

m and Cy5 at 650 nm using NanoDrop® with 1✕ TE buffer as a blank. These 

values were used to determine the yield of gDNA and the dye specific activity of 

the labelled DNA. The calculation methods for these parameters are shown 

below, with a normal range for the DNA yield being between 8 and 11 g, and 

the normal range for Cy3 and Cy5 specific activity varying between 20 and 35 

pmol/g, and 20 and 30 pmol/g, respectively. Samples within the optimum 

range were then hybridised or stored at -20 C in the dark. 
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𝑫𝒚𝒆 𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄 𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚 (𝒑𝒎𝒐𝒍/𝝁𝒈) =
𝒅𝒚𝒆 𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 (𝒑𝒎𝒐𝒍/𝝁𝒍)

𝑫𝑵𝑨 𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 (𝝁𝒈/𝝁𝒍)
 

𝑫𝑵𝑨 𝒚𝒊𝒆𝒍𝒅 (𝝁𝒈) = 𝑫𝑵𝑨 𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏(𝝁𝒈/𝝁𝒍) × 𝒗𝒐𝒍𝒖𝒎𝒆(𝝁𝒍) 

 

Microarray hybridisation and assembly  

The optimum range of labelled gDNA for both the tumour and the reference were 

mixed together by taking 19.5 l of each of them and mixing in a 0.5 ml microfuge 

tube. The hybridisation master mix was prepared as shown in Table 2.13; and 71 

l of this master mix was added to each sample with an extra tube for dead 

volume. Then, the reaction tube was transferred to the thermocycler at 95 C for 

three minutes, and 37 C for thirty minutes. The samples were then immediately 

centrifuged at 16,100✕g for one minute to pull the mixture down. Finally, 100 l 

of the mixture was added to a gasket slide and sandwiched with the active side 

of the Agilent™ SurePrint® G3 human microarray slide 4✕180K and placed into 

a clamped chamber; the assembled slide chamber was placed into the rotator 

rack in the hybridisation oven set at 65 C and 20 rpm for 24 hours.  

Table 2.13: Components of the hybridisation master mix. 

Component Per tube (l) For 5 tubes (l) 

Human Cot-1 DNA 5.0 25.0 

10✕ Blocking agent 11.0 55.0 

2✕ Hi-RPM buffer 55.0 275.0 

Total 71.0 355.0 
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Microarray washing and scanning  

Oligo array-CGH Wash Buffer 2 with a slide-staining dish 3 was pre-warmed at 

37 C overnight for optimal performance. A slide-staining dish 1 with an Oligo 

array-CGH wash buffer 1 was used to detach the array-gasket sandwich so as 

to obtain the array slide after being removed from the hybridisation oven. After 

that, the slide rack was placed into the slide dish with washing buffer 1 for five 

minutes at room temperature, and then into wash buffer 2 (37 C) for one minute, 

the slide rack was removed slowly in order to minimise the number of droplets 

left on the slides. The microarray slide was then scanned directly using an 

Agilent™ DNA Microarray scanner with Sure-scan® high-resolution technology. 

The scanned images were saved in a *.tiff format to evaluate any microarray 

damage or hybridisation artefacts.  

Array quality assessment  

The scanned images were analysed with Agilent™ feature extraction (FE) 

software (version 11.0.1.1). The software normalises the intensity of both 

fluorescents (red and green) and calculates the ratio for each probe. It expresses 

the probe intensity on a logarithmic scale (log ratio), which is then exported as a 

*.txt file. Then, the FE software produces an image processing quality control 

(QC) report that assess the reliability and reproducibility of the experiment, 

including the background noise (BGNoise), signal to noise ratio (SNR) of the 

array and the derivative log ratio spread (DLRS) (Table 2.14). The DLRS is the 

standard deviation of the log ratio difference between consecutive probes, where 

this algorithm estimates the noise from the array only. This ratio is necessary if 

amplification or deletion is to be detected reliably.  
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Table 2.14: Quality control metric to assess the array performance. 

Background noise 

(BGNoise) 

This metric is calculated as the standard 

deviation of the signals on the negative control 

probes after rejecting the outlier features. 

Excellent: <5 

Good: 5-10 

Evaluate: >10 

Signal to noise 

ratio (SNR) 

This metric calculates the ratio signal to noise 

ratio by dividing the signal intensity by BGNoise. 

It is used to distinguish the real signal from the 

signals obtained due to the experimental 

variation, 

Excellent: >100 

Good: 30-100 

Evaluate: <30 

Derivative Log 

ratio spread 

(DLRSD) 

This metric calculates the standard deviation of 

the log ratio differences between consecutive 

probes, so as to smooth the data and estimate 

the measure of the noise of an array. 

Excellent: <0.2 

Good: 0.2-0.3 

Evaluate: >0.3 

 

Microarray analysis using Agilent Genomic Workbench 

Agilent Genomic Workbench (Version 7.0.4.0) analysis software with an array-

CGH licence obtained from http://www.genomics.agilent.com was used to 

analyse, visualise and detect any chromosomal aberration from the microarray 

profiles. The Agilent Genomic Workbench software requires a design file 

matched to the feature extraction files; thus, Agilent GEML-based (*.xml) array 

design files were imported prior to any FE data. The Agilent Feature Extraction 

(*.txt) data files from each experiment were imported into the software and a new 

experiment was created for the FE files. A centralisation algorithm was applied 

to centre the log ratio after applying preselected filters. Afterwards, the data were 

analysed by applying the Aberration Detection Method-2 (ADM-2) algorithm, 

which incorporates quality information for each log ratio value, with the threshold 

adjusted to 6.0, as recommended by the manufacture. In addition, fuzzy zero was 

used with ADM-2 to identify extended aberrant segments with a low mean ratio. 

The genomic viewer was used to display the data alongside chromosome 

ideograms.  

http://www.genomics.agilent.com/
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2.2.4 Tissue culture  

The procedure was carried out under the class II biological hood. Cells were sub-

cultured when they reached 80-90% confluence by checking the flask under the 

inverted microscope (4✕ magnification) prior to the sub-culture for any noted 

changes. Afterwards, culture media was carefully removed, and cells were 

washed twice with DPBS. Trypsin-EDTA was added (2 ml for T25 and 4 ml for 

T75) and cells were incubated for 1-3 minutes in a humidified incubator at 37 C 

and 5% CO2. Then, cells were monitored under an inverted microscope until the 

cells detached. The trypsinisation was then stopped by adding an equivalent 

volume of fresh culture media. The cell suspension was mixed up and down 

several times to recover any residual cells. Afterwards, the cell suspension was 

transferred into a 15 ml conical tube and spun down at 1,000✕g for five minutes 

at room temperature and the supernatant was discarded. Cells were then 

resuspended in a fresh culture media and were split into an appropriate number 

of flasks. The new flasks were then incubated in the humidified incubator at 37 C 

and 5% CO2. 

2.2.5 Immunochemistry  

Cultured cells fixed on glass slides were used for Immunocytochemistry (ICC) 

while FFPE sections (0.45 m thickness) were used for immunohistochemistry 

(IHC) experiments. These experiments were done at the histopathology core 

facility laboratory at The University of Sheffield Medical School with help of (lead 

technician Mrs. Maggie Glover).  

This experiment used a modified Avidin-Biotin-Peroxidase complex (ABC) 

method, as described by Hsu et al. (1981). A melanin removal step was also 

used, because the UM tissue sections were highly melanotic. This step was 

adapted from Sheffield Teaching Hospital, UK.  

To summarise the experiment, tissue sections were processed to remove the 

melanin because UM sections were highly melanotic. This served to expose the 

relevant antigen and to block any non-specific antibody binding by incubating 

these sections in 10% species-specific relevant normal serum. The tissue 
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sections were then incubated overnight with the specific primary antibody at its 

optimum dilution. The next day, these tissue sections were washed and a 

relevant biotinylated secondary antibody was added, which binds to the FC 

portion of any bound primary antibody. Then, a colorimetric reaction was used in 

forms of complexes of avidin molecules linked to an enzyme reporter system and 

bound to the secondary antibody.  

Negative control tissues were incubated in the absence of the primary antibody; 

however, both positive control tissues and test tissue samples were incubated 

with primary antibody diluted in blocking serum, and these controls were included 

in every run.  

2.2.5.1 Antibody optimisation  

All antibodies used in this study were optimised prior to staining. The 

manufacturer’s recommended conditions were used as a guide, with a range of 

antibody dilutions. In this study, three independent observers (Mohammed 

Alfawaz (MA), Ahmad Alshammari (AA) and Dr. Karen Sisley (KS)) assessed the 

specific antibody staining with minimal non-specific background staining, and 

identified the optimal antibody conditions, as summarised earlier in Table 2.2.  

2.2.5.2 Formalin fixed paraffin-embedded (FFPE) tissue 

preparation  

The FFPE tissues were cut into pieces 0.45 m thick and were collected onto 

positively charged slides that had been dried in an oven overnight at 37 C. The 

tissue cutting and preparation was conducted by Mrs. Maggie Glover.  

Prior to staining, tissue sections were dewaxed by placing them into two 

consecutive xylenes for ten minutes and five minutes, respectively. They were 

then hydrated in a graded series of EtOH (100% EtOH for five minutes, 100% 

EtOH for five minutes, and 95% EtOH for three minutes). The endogenous 

peroxidase was then blocked by placing the tissue sections in a freshly prepared 

3% H2O2/methanol for thirty minutes at room temperature, which then 

subsequently washed for five minutes under running tap water.  
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2.2.5.3 Melanin bleaching  

The melanin removal or bleaching was done by preparing 1.5% of H2O2/PBS into 

a staining dish and the tissue sections were incubated in the dark overnight at 

room temperature. The next day, the tissue sections were washed for five 

minutes under running tap water.    

2.2.5.4 Antigen retrieval treatment for IHC 

Antigen retrieval treatment was an essential step for the preparation of FFPE 

tissue sections for staining. It was carried out by immersing the tissue sections in 

target retrieval solution, so as to detach the protein cross-links cluster formed 

from formalin particles on the tissues’ antigen binding sites. The complexity of 

this cluster increased in the tissue with longer formalin embedding time; therefore, 

inadequate antigen retrieval treatment risks leaving some clusters that may 

shield the antigen binding site from antibody attachment. Many antigen retrieval 

methods are available in the laboratory. The method applied in this study started 

by immersing the tissue sections in a pressure cooker in 0.01M DAKO (PH 6.0) 

for twenty minutes. Then, the tissue sections were allowed to cool down in the 

same buffer for approximately two hours. This was followed by rinsing with PBST 

and washing twice for five minutes, before the remaining staining steps were 

completed.  

2.2.5.5 Slide preparation of ICC 

For the ICC, glass slides were cleaned by immersion in absolute methanol for at 

least 24 hours at room temperature; left to dry under a laminar flow hood for at 

least ten minutes and arranged in a single layer in a sterile petri dish (145/20 mm). 

Cells were trypsinised and dissociated from the flask as described in Section 

2.2.4, and then suspended in fresh media and counted (12,000 cells per 0.5 ml). 

After counting, cells were seeded onto a glass slide that been put onto the petri 

dish lengthways to ensure even distribution. The petri dish was carefully placed 

in the humidifier incubator at 37 C and 5% CO2 for three hours to allow the cells 

to adhere to the slide. Then, 30 ml of prewarmed fresh media was added to the 

petri dish and incubated at 37 C and 5% CO2 for 48 hours. The slides were then 
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washed four times with PBS and slides were immersed and fixed by incubation 

on 1:1 ice-cold methanol/acetone for ten minutes. The slides were left to dry 

under the laminar flow hood for ten minutes before use or stored at -20 C until 

needed. The cells on slides were then treated similar to tissue sections for 

blocking, antibody incubation, counter staining and mounting. 

2.2.5.6 Blocking and primary antibody incubation for 

immunochemistry  

An ImmEdge™ hydrophobic Barrier Pen was used to outline the relevant area of 

tissue sections. Afterwards, a blocking step was conducted using an avidin/biotin 

blocking kit. Solution A from the kit was applied to the tissue sections and 

incubated for fifteen minutes at room temperature. This was then washed by 

PBST and then the solution B from the blocking kit was applied to the tissue 

sections, which were again washed subsequently by PBST. In addition, another 

blocking step was done by applying 10% of appropriate blocking serum (normal 

goat serum and casein) before incubation at room temperature for thirty minutes. 

These blocking steps were done to eliminate any non-specific binding 

substances present in the tissue sections. After incubation for thirty minutes with 

10% blocking serum, it was removed by tapping the slide only. Next, the primary 

antibody was diluted in 2% blocking serum and applied to the positive control and 

the tissue sections. In addition, 2% blocking serum (without antibody) was 

applied to the negative control. These slides were subsequently incubated 

overnight at 4 C. 

2.2.5.7 Secondary antibody incubation and immunoreactivity 

The next day, the tissue sections were rinsed and washed twice in PBST for five 

minutes each, and the appropriate Secondary Antibody (goat anti-rabbit, 

Biotinylated IgG), diluted in 2% blocking serum, was applied on all tissue sections 

and incubated at room temperature for one hour. During the secondary antibody 

incubation, ABC reagent was prepared and allowed to stand at room temperature 

for thirty minutes. The tissue sections were then rinsed and washed twice with 

PBST for five minutes each, and the ABC reagent was applied and incubated at 

room temperature for thirty minutes. This was followed by rinsing and washing 
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twice with PBST for five minutes each. During the last wash, the peroxidase 

enzyme substrate (DAB) was freshly prepared, and this was then applied on the 

tissue sections after the last wash and incubated at room temperature for up to 

ten minutes so as to allow the stain to develop until the desired brown stain 

intensity was reached. At this point, the reaction was stopped by washing the 

stained tissue sections with deionised H2O.   

2.2.5.8 Counterstaining and mounting  

The tissue sections were washed under running tap water for five minutes, and 

these sections were counterstained in Gill’s haematoxylin for 60 seconds and 

washed again under running tap water for five minutes. The stained tissue 

sections were then dehydrated with graded series of EtOH (70%, 90%, 95%, 100% 

and 100%) for three minutes each. Afterwards, the stained sections were cleared 

two consecutive incubations in xylene for three minutes each, under a fume hood. 

Finally, while the stained sections were wet with xylene, they were mounted with 

DPX and covered with 22 mm ✕ 32 mm coverslips, and then allowed to dry 

overnight at room temperature. The ICC was analysed using a light microscope 

at 40✕ magnification, while the tissue slides were examined using an automated 

slide scanner (3DHISTECH, Panoramic 250 Flash III). 

2.2.6 Western blot  

2.2.6.1 Protein extraction  

To get a cell lysate, cells were grown in a T75 flask until they reached a 

confluence of 80-90% and being checked under the inverted microscope (4✕ 

magnification) prior to the extraction for any noted changes. This procedure was 

carried out under a class II biological hood. The media in the T75 flask was 

carefully removed and discarded and cells were washed twice with 4 ml of DPBS. 

4 ml of Trypsin-EDTA was added to the flask and incubated in a humidified 

incubator at 37 C and 5% CO2 for 1-3 minutes in order to detach the cells from 

the surface of the flask. The cells were checked under 4✕ magnification to check 

whether any cells remained adherent to the flask’s wall. The trypsinisation was 

stopped by adding an equivalent amount of fresh culture media. The cell 
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suspension was mixed up and down several times to recover any residual cells. 

Afterwards, the cell suspension was transferred into a 15 ml conical tube and 

spun down at 1000✕g for five minutes at room temperature and the supernatant 

was discarded. Next, 5 ml of ice-cold DPBS was added to the cells and mixed up 

and down several times to wash them before being centrifuged at 1,000✕g for 

five minutes at 4 C. This step was repeated twice. After the supernatant was 

discarded, 100 µl of (RIPA) lysis buffer and 1 µl of protease and phosphatase 

inhibitor was freshly prepared (1% final concentration v/v) and were added to the 

cell pellet. The cells were then transferred to a 1.5 ml micro-centrifuge tube and 

incubated on ice for thirty minutes, the tube was vortexed every ten minutes. The 

cells were passed through a 20G needle up and down ten times. Then, the extract 

was centrifuged at 16,000✕g for twenty minutes at 4 C and the supernatant was 

transferred and aliquoted to a new 1.5 ml micro-centrifuges and stored at -80 C. 

2.2.6.2 Protein quantification  

To measure the protein concentration, the stock protein standards were prepared 

by measuring 1 mg of BSA and dissolving it into 1 ml of deionised water. The dye 

reagent was prepared by diluting 1:4 with deionised water and the mixture was 

filtered using Whatman® grade 1 filter paper. 200 µl of the filtered dye reagent 

was applied into the 96-well plate. Then, six protein standards were prepared in 

serial dilutions (1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml, 0.0625 mg/ml and 

0.0312 mg/ml). The cell lysate was aliquoted and diluted 1:50 and 1:100 to have 

an accurate reading. Afterwards, 10 µl of each standard and the test sample were 

added to the filtered dye reagent in triplicate, after vortexing each sample. All 

wells were mixed up and down several times and incubated at room temperature 

for between five minutes to one hour. The absorbance was measured using the 

spectrophotometer at 595 nm. The background absorbance was eliminated to 

calculate the actual protein concentration by subtracting the control well 

absorbance, which has only 200 µl of filtered dye reagent, from each test well 

absorbance. The results of the absorbances reading were then plotted using 

GraphPad Prism 8 (GraphPad Software, Inc.) to produce a standard curve and 

to calculate the protein concentration of the cell lysate (Figure 2.2).  
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Figure 2.2: The standard curve for the Biorad protein assay. 

This shows the protein standard plotted against the O.D.595 nm with R2: 0.9909. 

 

2.2.6.3 Sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) 

After the determination of the protein concentration, the protein extracts were 

diluted with RIPA buffer to reach 30 µg of protein in a new 1.5 ml micro-centrifuge 

tube. Then, 10 µl of 4✕ sample loading buffer and 4 µl of 10✕ reducing agent 

were added to the micro-centrifuge tube and the volume was made up to 40 µl 

using RIPA buffer. The samples were then heated at 95 °C for five minutes and 

put on ice to cool down. Samples were loaded together with the protein marker 

standard onto the precast gel that the tank been filled with 1✕ running buffer 

(100 ml of 10✕ running buffer with 900 ml of H2O) and run at 80 V for thirty 

minutes for the stacking gel and the voltage was increased to 120 V for the 

separation gel till the end.  
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2.2.6.4 Protein blotting and visualisation  

When the SDS-PAGE run finished, the precast gel was disassembled and blotted 

onto the ethanol-activated PVDF membrane using two types of transfer system: 

semi-dry and wet transfer. The semi-dry transfer was done by making a sandwich 

that consisted of, from cathode to anode: filter papers merged into the transfer 

buffer, the SDS-PAGE gel, the PVDF membrane and more filter papers (Figure 

2.3 A). Then, the sandwich was placed onto the Transblot® turbo™ transfer 

system and run for seven minutes at 25 V. Wet transfer, meanwhile, entailed 

making a sandwich that consisted of, from anode to cathode: sponge, filter 

papers, PVDF membrane, SDS-PAGE gel, filter papers and sponge (Figure 2.3 

B). After the sandwich had been assembled and no bubbles were present, the 

tank was filled with cold transfer buffer and with an ice pack, to keep the transfer 

cold. Then, the wet transfer system was run at 180 mA for ninety minutes. 
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Figure 2.3: The transfer methods for protein from SDS-PAGE gel to PVDF 
membrane. 

 (A) the semi-dry transfer method showing the assembly of filter papers, SDS-PAGE gel 
and PVDF membrane from cathode to anode; (B) the wet transfer method, showing the 
assembly of sponge, filter papers, SDS-PAGE gel, PVDF membrane, filter papers and 
sponge from cathode to anode for the protein transfer. The direction of transfer is the 
same for both systems, i.e. from cathode to anode.  
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The membrane was washed twice with H2O and blocked with blocking reagent 

(5% non-fat dry milk in PBST or TBST) for one hour. Afterwards, the primary 

antibody (AMD1) was diluted 1:300 in blocking reagent and added to the 

membrane and incubated overnight at 4 C. The next day, the membrane was 

washed using PBST or TBST three times for five minutes each. Then, the HRP-

conjugated secondary antibody was diluted 1:2000 using the blocking reagent 

and added to the membrane and incubated for one hour at room temperature. 

The membrane was washed three times for five minutes each using PBST or 

TBST. All incubations and washings were carried out on an orbital shaker. For 

the detection of protein bands, Amersham™ ECL detection reagent was used on 

the membrane according to the manufacturer’s instructions. The membrane 

imaging was done using the ChemiDoc™ MP imaging system to visualise the 

detected bands. 

To incubate the same membrane with the housekeeping antibody (Beta-tubulin), 

the membrane was washed three times with PBST or TBST for ten minutes each 

and the membrane was incubated with stripping buffer for fifteen minutes 

followed by another three times washing for thirty minutes. Then, the membrane 

was blocked using the blocking reagent, as mentioned above. The housekeeping 

antibody was diluted 1:5000 using the blocking reagent and added to the 

membrane and incubated overnight at 4 C. The membrane was treated again 

the next day similar to the procedure described above. 

 

 

 

 

 

 



 
 

77 

2.2.7 AMD1 knockout using CRISPR 

2.2.7.1 CRISPR overview  

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a new 

technology that allows human DNA to be edited, creating stable deletions, 

insertions and modifications. Basically, the CRISPR technology consists of two 

main components: single guide RNA (sgRNA) and CRIPSR associated 

endonuclease protein (Cas9), which together form a ribonucleoprotein (RNP) 

complex.  

SgRNA consists of two segments CRISPR RNA (crRNA) and transactivating 

CRISPR RNA (tracrRNA) (Jinek et al., 2012). The crRNA contains a specific 

sequence of twenty nucleotides that complements the targeted DNA and 

preceded by three nucleotides (5’NGG’3 sequence) called protospacer adjacent 

motif (PAM) sequence (Sternberg et al., 2014). The PAM sequence is a short 

nucleotide sequence that is important to be present in the targeted DNA to allow 

the Cas9 to bind at the specific DNA site. In addition, the tracrRNA activates and 

guide the Cas9 protein to bind with the foreign DNA. Thus, the sgRNA basically 

bind to its target site and the Cas9 nuclease specifically cleaves the targeted 

DNA about three nucleotides after the PAM sequence. 

2.2.7.2 Design the sgRNA 

The sgRNA was designed using ThermoFisher™ software and was confirmed 

using the Synthego™ website (http://www.synthego.com) for any mismatches 

(Figure 2.4). The target has a minimal target-mismatch and is located in a 

common exon with high activity, based on Doneach et al.’s (2016) scoring system.  

In addition, the forward primer 5’ACAGTATGGCCGGCGACATT’3 and reverse 

5’GGAGAGCGGCCATGTCCA’3 were designed using ThermoFisher™ software 

around the area of knockout area to detect the efficiency of the transfection using 

GCD assay and sequencing analysis (Figure 2.5).  

http://www.synthego.com/
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Figure 2.4: The area where gRNA binds and Cas9 will cut.  

The light blue (GGG) is PAM sequence and the green is the designed gRNA together 
with trcrRNA. The orange arrow indicates where the site of cut that will happen. Image 
was adapted from www.synthego.com. 

 

 

>chromosome:GRCh38:6:110874170:110896313:1 

GTGGGACGATGCGTCACTTCCTGGTCTTTTGGGGGGAGCCGGGATATATAAGGGCGGTGC

TCACGCAGCGCTCTCGCTTACACAGTATGGCCGGCGACATTAGCTAGCGCTCGCTCTACT

CTCTCTAACGGGAAAGCAGCGGAATACAAGAGACTGAACTGTATCTGCCTCTATTTCCAA

AAGACTCACGTTCAACTTTCGCTCACACAAAGCCGGGAAAATTTTATTAGTCCTTTTTTT

AAAAAAAGTTAATATAAAATTATAGCAAAAAAAAAAAGGAACCTGAACTTTAGTAACACA

GCTGGAACAATCCGCAGCGGCGGCGGCAGCGGCGGGAGAAGAGGTTTAATTTAGTTGATT

TTCTGTGGTTGTTGGTTGTTCGCTAGTCTCACGGTGATGGAAGCTGCACATTTTTTCGAA

GGGACCGAGAAGCTGCTGGAGGTTTGGTTCTCCCGGCAGCAGCCCGACGCAAACCAAGGA

TCTGGGGATCTTCGCACTATCCCAAGGTGGGTCCCCGGGGCGCTCGCTGACATCCGGGCC

TGGGGGCTGTCGCCGCCGCCGAGGCACCAGCCACGGGTGGAGCCCGAGTTCCCTCAGCTT

TCAGTTGGGGGCAAGTCTGCGGCCTGGGGTCGCTTCGGCGGCCTTGGAAGGTGCGCGGTT

TGGGGGAGAGCGGCCATGTCCACGCGGGCCGGAGCCGGCTTCTCCCGCCGTGGTTGCCGC 

Figure 2.5: The FASTA file for AMD1 exon 1. 

The figure shows the gRNA (green) with PAM sequence (GGG) (pink) and the forward 
and reverse primers (red) around the area of knock-out (600 bp). 

http://www.synthego.com/
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2.2.7.3 Lipid-based transfection of synthetic gRNA and Cas9 

nuclease 

UM cells were seeded, the day before transfection, into a 24-well plate at 90,000 

cells per 0.5 ml of RPMI-1640 media and the plate was incubated in a humidified 

incubator at 37 C and 5% CO2. The next day, cells were checked under an 

inverted microscope (4✕ magnification) to ensure cell adherence. Then, the lipid 

complexing was prepared for transfection together with the negative control, as 

shown in Table 2.15. It is important to note that the Cas9 plus reagent was added 

last. These components were mixed by vortexing and then incubated on ice. In 

another sterile tube, 7.5 µl of lipofectamine CRISPRMAX transfection reagent 

was diluted onto 125 µl of Opti-MEM™I Reduced serum media and then mixed 

and incubated at room temperature for one minute.  

Table 2.15: gRNA complex with Cas9 in Opti-MEM I media. 

Volumes are for 2 reactions 

Tube 1 

Cas9 + AMD1 
gRNA 

Tube 2 

Reagent only 

Control 

Opti-MEM™I Reduced serum media 50 µl 50 µl 

TrueCut™ Cas9 Protein 
2.5 µl 

(2.5 µg) 
- 

gRNA 
2 µl 

(480 ng) 
- 

Cas9 Plus Reagent 5.0 µl 5.0 µl 

 

Afterwards, 50 µl of the diluted CRISPRMAX reagent was added to both tubes 

and mixed up and down without any vortexing and incubated at room 

temperature for fifteen minutes to allow the CRISPR/lipid complexes to form. 

Finally, 50 µl of the complex was added to each well of the plate in duplicate. The 
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plate was then incubated in a humidified incubator 37 °C and 5% CO2 for 48 

hours. 

2.2.7.4 Genomic cleavage detection (GCD) assay 

Cell harvesting and lysis 

The cells that had been transfected with CRISPR were harvested after 48 hours. 

The plate was examined under an inverted microscope to note any changes. 

Then, the media was aspirated and 100 µl of Trypsin-EDTA was added to each 

well. The plate was incubated in the humidified incubator at 37 °C and 5% CO2 

for three minutes and the cells were checked under the inverted microscope to 

confirm that all cells were detached. Immediately, 500 µl of RPMI-1640 media 

was added to each well to stop the trypsinisation reaction, and the cells were 

transferred to a new 1.5 ml micro-centrifuge tube. The tubes were centrifuged at 

1,000Xg for ten minutes and the supernatant was discarded.  Next, 50 µl of lysis 

buffer and 2 µl of protein degrader were mixed by vortexing and added to each 

tube, the suspension was transferred to a new 0.2 ml PCR and these steps were 

performed for all wells. The PCR tubes were then placed onto the thermocycler 

for cell lysis, as described in Table 2.16. 

Table 2.16: Thermocycler condition for cell lysis. 

Temperature Time 

68 °C 15 min 

95 °C 10 min 

4 °C ∞ (Hold) 
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PCR amplification  

The samples were vortexed briefly after the lysis, and the PCR reaction was 

prepared as described in Table 2.17. Then, the tubes were mixed and spun down 

using a mini-centrifuge after adding all components; and the tubes were placed 

onto a thermocycler for PCR amplification, as shown in Table 2.18. The PCR 

products were then examined on 1.8% agarose gel at 120 V for 45 minutes, as 

previously described in Section 2.2.2. 

Table 2.17: components for CRISPR PCR amplification.  

 Samples 

Component GCD Kit positive 
control 

Cells negative 
control 

Lipid gRNA1 

 

Cell Lysate - 2 µl 2 µl 

Target specific 
10µM F and R 
GCD primers 

1 µl 

(Kit primers + 
template) 

1 µl 

(use gRNA1) 

1 µl 

AmpliTaq Gold 
360 master mix 

25 µl 25 µl 25 µl 

Water 24 µl 22 µl 22 µl 

Total 50 µl 50 µl 50 µl 
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Table 2.18: Thermocycler conditions for CRISPR PCR amplification. 

Stage Temperature Time Cycles Comment 

Activation 95 °C 10 min 1 X  

Denature 95 °C 30 sec 

10 X 
-1°C increment 

each cycle 
Anneal 61 °C 30 sec 

Extension 72 °C 30 sec 

Denature 95 °C 30 sec 

30 X  Anneal 58 °C 30 sec 

Extension 72 °C 30 sec 

Final 
extension 

72 °C 5 min 1 X  

Hold 4 °C ∞ 1 X  

 

Mismatch digestion  

The mismatch digestion was bone by denaturing and randomly re-annealing the 

PCR fragments so that some strands for edited samples would anneal with wild-

type strands to form a heterogenous DNA duplex. Accordingly, 2 µl of the PCR 

product was added together with 1 µl of 10X detection reaction buffer and the 

volume was made up to 10 µl by nuclease-free H2O in new 0.2 ml PCR tubes. 

The solution was mixed and spun-down using a mini-centrifuge; and the tubes 

were added onto the thermocycle (Table 2.19). After the program was completed, 

1 µl of detection enzyme was added to all transfected samples and placed onto 

the thermocycler at 37 °C for one hour. Finally, the samples were examined again 

using 1.8% agarose gel, as previously described in Section 2.2.2, so as to detect 

the digestion site and determine the knock-out efficiency using Image Lab 

software (Version 6.0.1) (Biorad). 
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Table 2.19: Thermocycler condition for mismatch digestion. 

Stage Temperature Time Ramp rate 

°C temp/time 

1 95 °C 5 min 3 °C 

2 85 °C 0 sec 2 °C 

3 25 °C 0 sec 0.1 °C/1 second 

4 4 °C ∞ 3 °C 
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2.2.8 MTT proliferation assay  

This experiment was kindly done by Mr. Ahamd Alshammari, a fellow PhD 

student in the RTRG group, as he was very experienced with the methodology 

and time limitations were restrictive. This procedure done to find any differences 

in proliferation between the normal cell lines and the knocked-out cell lines. Cells 

were therefore dissociated with trypsin, as described in Section 2.2.4. Cells were 

counted by adding an equivalent volume of cell suspension to trypan blue which 

was then applied to the cell counter to count the live compared to dead cell. Then, 

cells were seeded at a density of 2000 cells in 100 μl of culture media to each 

well of a 96-well plate and incubated in a humidified incubator at 37 C and 5% 

CO2. Control wells contained only the media without cells being added. Four 

plates were set up to measure the cells’ growth over four days at 24-hour intervals.   

At each time point, 10 μl of MTT solution (5 mg/ml dissolved in PBS) was added 

to each well, including the controls, and the plate was returned to the humidified 

incubator at 37 C and 5% CO2 for three hours. Media were then removed and 

replaced with 100 μl DMSO and incubated again for thirty minutes. A Multiskan™ 

spectrophotometer reader was used to measure the optical density at 570 nm. 

The background absorbance was eliminated to estimate the MTT activity by 

subtracting the control well absorbance from each test well absorbance. The MTT 

activity was then plotted against the time points and standard error of the mean 

(SEM) was calculated using GraphPad® Prism software (Version 8). Using the 

software, the exponential growth equation was used to calculate the doubling 

time and indicative of the proliferation rate. 
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3.1 Introduction  

UMs are considered relatively free of high genetic instability unlike other solid 

tumours (Cross et al., 2003). Different technologies such as FISH, CGH, 

microsatellite analysis (MSA), multiple ligation-dependent probe amplification 

(MLPA) and array-CGH have been used to study the well-known changes of 

chromosomes 1, 3, 6 and 8 (Horsman and White, 1993, Gordon et al., 1993, 

Speicher et al., 1994, Sisley et al., 2000, Kilic et al., 2006, Aronow et al., 2012, 

Cassoux et al., 2014). These studies however provided different frequencies for 

these changes and can still underestimate the effect on the prognosis of UM.  

Thus, the prognosis of UM is still usually linked to changes in chromosomes 3 

and 8, whilst deletion of chromosome 1p is an indicator for poor outcome, but the 

relevance of chromosome 6 aberrations to the prognosis of UM remains unclear 

(Prescher et al., 1996, Sisley et al., 1997, White et al., 1998, Sisley et al., 2000, 

Aalto et al., 2001, Damato, 2010, Hammond et al., 2015, Jager et al., 2018, Shain 

et al., 2019). A large study conducted by Cassoux et al., analysed 338 UM 

samples using array-CGH to confirm that monosomy 3 with chromosome 8q gain 

presents the highest risk, but the role of chromosome 6 in prognosis was not 

described (Cassoux et al., 2014). Other studies have also confirmed that the 

greatest risk is associated to monosomy 3 and more copies of 8q gain (Sisley et 

al., 1997, White et al., 1998, Singh et al., 2009). Most investigations, including 

those using array-CGH, did not specifically emphasize the role of chromosome 6 

alterations in UM cases (Damato et al., 2007, Damato, 2010, Hammond et al., 

2015).  

Chromosome 6 alterations in UM usually occur as a gain of chromosome 6p with 

disomy 3, or as an isochromosome 6p associated with monosomy 3, gain of 

chromosome 8q and loss of chromosome 1p (Aalto et al., 2001, Naus et al., 2001, 

Hausler et al., 2005, Kilic et al., 2005). Additionally, UM patients with gain of 

chromosome 6p only are proposed to be in a separate group associated with 

disomy 3 and having a better prognosis (Prescher et al., 1995, Sisley et al., 1997, 

Parrella et al., 1999, Landreville et al., 2008, Robertson et al., 2017, Drabarek et 

al., 2019). Sisley et al. (2006) indicated that aberrations of chromosome 6 in UM 
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were however likely to be underestimated, depending on the methodology used, 

and more recent studies have confirmed these observations (Cassoux et al., 

2014, Hammond et al., 2015). Although few articles specifically mention the loss 

of chromosome 6q, there may be an association with metastasis; the majority of 

studies emphasize the relationship of gain of chromosome 6p with good 

prognosis (Prescher et al., 1990, Speicher et al., 1994, White et al., 1998, Sisley 

et al., 2000, Kilic et al., 2006, Damato et al., 2007). 

More recently, mutational analysis has identified specific mutations in UM, as 

mentioned in section 1.3.7, but only SF3B1 and EFI1AX are relevant for the 

prognosis of UM (Harbour et al., 2013, Martin et al., 2013, Dono et al., 2014, 

Koopmans et al., 2014a, Luscan et al., 2015, Yavuzyigitoglu et al., 2016b). As 

most mutational changes found in UM do not clearly indicate the way UM patients 

are going to behave, reliance is still placed on chromosomal imbalances 

(Robertson et al., 2017, Shields et al., 2019). Therefore, it is necessary to further 

study known mutations together with chromosomal aberrations, and to seek to 

identify specific genes on these prognostically relevant chromosomes.  

The use of a high-resolution array-CGH specifically designed for UM found 

detailed information about CNA of commonly altered chromosomes such as 

chromosomes 1, 3, 6 and 8 (Hammond et al., 2015). This specifically designed 

array-CGH for UM has more probes on the commonly altered chromosomes, 

including chromosome 6. More detailed information about chromosome 6 allows 

a more in-depth analysis of the relevant changes and relationship to other 

alterations of UM. Previously, the array designed by Dr. Hammond had been 

used to analyse 137 cases (Alshammari, 2017). In this study, a further 22 UM 

cases were analysed by array-CGH to consolidate the dataset, and mutational 

analysis was undertaken specifically on these cases. 
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3.2 Results  

3.2.1 Sample collection and preparation  

The mutation analysis for 28 primary UMs for SF3B1 exon 14, EIF1AX exons 1 

and 2 and TERTp was initially worked up and performed. In addition, two samples, 

MEL-312 and MEL-352, were included in the series as internal controls, because 

they were metastatic samples from another organ to the eye. Therefore, the total 

collection was 30 samples for mutational analysis screening. Later in this study, 

mutational screening been done for GNAQ and GNA11 exons 4 and 5 for the 

same series, however, MEL-672 did not have sufficient DNA and there was not 

enough frozen tissue to re-extract the DNA.  

3.2.2 PCR and gel electrophoresis optimisation  

The PCR was optimised for SF3B1 exon 14, EIF1AX exons 1 and 2 and TERTp 

using different methods such as gradient, touchdown and modified touchdown. 

However, GNAQ and GNA11 exons 4 and 5 had been previously optimised within 

the research group as a 3-step PCR and modified touchdown. To optimise, a 

single blood DNA sample was used to determine the optimum annealing 

temperature for all of these genes and was then used for all UM patients’ DNA 

samples. After optimising all genes, gel electrophoresis was used to visualise the 

amplified product under UV-light, as mentioned in section 2.2.2. All amplified 

products were then sent for Sanger sequencing to obtain detailed information 

and screening for any mutations in those genes. 

3.2.3 Mutational screening for GNAQ and GNA11  

The main mutation for these genes occurs in exon 5; a single substitution 

mutation that changes the amino acid glutamine (Q) into a different amino acid. 

Sanger sequencing was therefore done on 27 primary UMs and 2 metastases to 

the eye to confirm that cases were indeed UM (Figures 3.1 and 3.2).  
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Figure 3.1: The Sanger sequencing chromatogram and gel electrophoresis 
for GNAQ exon 5. 

(A) The chromatogram for the wild type (WT) of GNAQ exon 5, (B) the red arrow 
shows a homozygous substitution mutation of A>C, (C) shows the heterozygous 
mutation from A>T and (D) shows the substitution mutation of two nucleotides AA>TT 
which is the same amino acid change p.Q209L. (E) The gel electrophoresis of GNAQ 
exon 5 that indicates that all bands are amplified on 317 bp. 
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Figure 3.2: The Sanger sequencing chromatogram and gel electrophoresis of 
GNA11 exon 5. 

(A) shows the WT sequence of GNA11 exon 5 while in (B) the red arrow shows the 
substitution mutation of A>T. (C) The gel image of GNA11 exon 5 that indicate all bands 
are amplified on 147bp. 

It was found that about 93% of the samples (25 of 27) had mutations in either 

GNAQ or GNA11 exon 5. However, two samples, MEL-665 and MEL-491, did 

not harbour any mutations for GNAQ or GNA11 exons 4 and 5, as well as the 

control metastatic samples (MEL-312 and MEL-352). In this series, the most 

common mutation for GNAQ and GNA11 exon 5 was a single substitution 

mutation of the amino acid (Q) to leucine (L) [c.626A>T;p.Q209L].  GNA11 exon 

5 was mutated at around 52% (14 of 27 cases), and around 15% of cases (4 of 

27) had mutations of GNAQ exon 5.  Additionally, GNAQ exon 5 had a single 

substitution mutation on the amino acid (Q) that changed to proline (P) 
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[c.626A>C;p.Q209P], which accounted for around 26% (7 out of 27) of all UM 

samples. However, no mutations were detected for exon 4 of GNAQ and GNA11 

after analysing 27 primary UM samples. 

3.2.4 Mutational screening for SF3B1, EIF1AX and 

TERTp 

The main mutation of the SF3B1 gene in patients with UM usually occurs in exon 

14, with a single substitution mutation that changes the amino acid arginine (R) 

into a different amino acid. Thus, mutational analysis using Sanger sequencing 

was done on 30 frozen tissue samples (Figure 3.3).  

 

Figure 3.3: The Sanger sequencing chromatogram and gel electrophoresis of 
SF3B1 exon 14.  

(A) shows the WT sequence of SF3B1 exon 14, (B) the red arrow shows the point 
mutation of G>A, (C) another point mutation for the same nucleotide from C>T and (D) 
shows the gel image of SF3B1 exon 14 indicates that all bands were amplified at 343 
bp. 
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It was found that four out of the 30 analysed samples had a mutation in SF3B1 

exon 14. Two UM samples had a mutation that changes the amino acid (R) into 

cysteine (C) [c.1873C>T;p.R625C], while the other two had a mutation at the 

same spot that changes the amino acid (R) into histidine (H) 

[c.1874G>A;p.R625H]. The results of SF3B1 exon accounts for around 14%, 

which was consistent with previous reports (Harbour et al., 2013, Furney et al., 

2013, Dono et al., 2014).  

Mutations in the EIF1AX gene vary in different codons, but they occur mostly at 

codons 2, 3 and 4. Therefore, two exons were used to screen for genetic 

mutations in the 30 tissue samples. In EIF1AX exon 1, only one sample was 

found to be mutated at the same hotspot that usually had a mutation, but it had 

an interesting insertion of six nucleotides (TCTTGC) (Figure 3.4).  
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Figure 3.4: The Sanger sequencing chromatogram and gel electrophoresis for 
EIF1AX exon 1.  

(A) The chromatogram shows the WT EIF1AX exon 1 and the red arrow indicates the 
area in which six nucleotides (TCTTGC) were inserted as shown further in (B). (C) The 
gel image of EIF1AX exon 1 that indicated all bands were amplified at 320 bp. 
 

Besides EIF1AX exon 1, a mutation in codon 3, lysine (K) to glutamate (E), was 

found in only one sample with the EIF1AX exon 2, where the mutation was 

[c.7A>G;p.K3E] (Figure 3.5), which was similar to previous findings (Martin et al., 

2013, Dono et al., 2014). However, the frequencies detected in the samples 

analysed were about 7% which is broadly consistent with the frequencies in other 

articles (Martin et al., 2013, Yavuzyigitoglu et al., 2016a).  
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Figure 3.5: The Sanger sequencing chromatogram and gel electrophoresis for 
EIF1AX exon 2.  

(A) The chromatogram shows the WT of EIF1AX exon 2 and (B) the red arrow shows 
the point mutation of A>G. (C) The gel image of EIF1AX exon 2 indicates that all bands 
were amplified at 406bp.  
 

For the TERTp gene, however, after amplifying and analysing 30 tissue samples, 

there was no mutation detected, which previous reports concluded that mutations 

of TERTp gene are rarely found in UM cells (Dono et al., 2014, Koopmans et al., 

2014a). Thus, the results of all mutational screening are presented in Table 3.1, 

which shows all samples that were analysed for all with their genetic mutations.
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Table 3.1: The mutational analysis for the 30 UM patient samples and the distribution of mutations. 

 

WT= Wild type; MEL-672 did not have enough DNA for GNAQ and GNA11 mutation analysis; MEL-665 and MEL-491 did not harbour any mutations for all 
tested genes; MEL-312 and MEL-352 were metastatic from another organ to the eye and used as internal controls. 

Sample Number GNAQ Ex.4 GNAQ Ex.5 GNA11 Ex.4 GNA11 Ex.5 SF3B1 Ex.14 EIF1AX Ex.1 EIF1AX Ex.2 TERTp 

MEL-672 FAILED FAILED FAILED FAILED WT WT WT WT

MEL-671 WT A>T (Q209L) WT WT WT WT WT WT

MEL-670 WT WT WT A>T (Q209L) WT WT WT WT

MEL-667 WT WT WT A>T (Q209L) WT WT WT WT

MEL-665 WT WT WT WT WT WT WT WT

MEL-664 WT AA>TT (Q209L) WT WT WT WT WT WT

MEL-663 WT WT WT A>T (Q209L) WT WT WT WT

MEL-661 WT A>T (Q209L) WT WT WT WT WT WT

MEL-660 WT WT WT A>T (Q209L) WT WT WT WT

MEL-659 WT WT WT A>T (Q209L) C>T (R625C) WT WT WT

MEL-658 WT WT WT A>T (Q209L) WT WT A>G (K3E) WT

MEL-657 WT WT WT A>T (Q209L) WT WT WT WT

MEL-656 WT WT WT A>T (Q209L) WT WT WT WT

MEL-655 WT WT WT A>T (Q209L) WT WT WT WT

MEL-654 WT WT WT A>T (Q209L) WT WT WT WT

MEL-652 WT A>C (Q209P) WT WT WT Ins (CTCTTG) WT WT

MEL-530 WT WT WT A>T (Q209L) C>T (R625C) WT WT WT

MEL-529 WT A>C (Q209P) WT WT WT WT WT WT

MEL-528 WT WT WT A>T (Q209L) WT WT WT WT

MEL-524 WT A>C (Q209P) WT WT WT WT WT WT

MEL-523 WT A>C (Q209P) WT WT WT WT WT WT

MEL-522 WT A>C (Q209P) WT WT WT WT WT WT

MEL-521 WT A>T (Q209L) WT WT WT WT WT WT

MEL-492 WT A>C (Q209P) WT WT WT WT WT WT

MEL-491 WT WT WT WT WT WT WT WT

MEL-489 WT A>C (Q209P) WT WT G>A (R625H) WT WT WT

MEL-486 WT WT WT A>T (Q209L) G>A (R625H) WT WT WT

MEL-485 WT WT WT A>T (Q209L) WT WT WT WT

MEL-352 WT WT WT WT WT WT WT WT

MEL-312 WT WT WT WT WT WT WT WT
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3.2.4 Array-CGH 

This study was carried out with array-CGH for 22 primary UM tissue samples to 

investigate any somatic copy number aberrations (SCNAs), as mentioned in 

section 2.2.3. The gDNA were extracted from primary UM frozen tissue and 

compared with the patient’s normal blood gDNA as a reference DNA. The tumour 

and blood gDNA were labelled and hybridised onto a microarray slide comprised 

of 180,000 probes, which was specially designed for UM by Dr. David Hammond, 

Rare Tumour Research Group (RTRG), University of Sheffield. Subsequently, 

the analysis of these samples was done with Agilent Genomic Workbench 

software (Version 7.0.4.0) using ADM-2 algorithm, as shown in Table 3.2. The 

ADM-2 algorithm was based on the probes distribution with a threshold of 6.0. 

The software is validated log ratio using ADM-2 algorithm by having the log ratio 

of amplification of >0.6 and the deletion of ≤–1.0, which appeared as red and 

green, respectively. 

Table 3.2: Default Agilent Genomic Workbench software preferences. 

Genome hg18 

Aberration algorithm ADM-2 (Threshold: 6.0, Fuzzy zero: ON) 

GC correction ON (window size: 2kb) 

Centralisation (legacy) OFF 

Combine replicates (IntraArray) ON 

Array level filter NONE 

Aberration filter DefaultAberrationFilter_V2 

 

After analysing the 22 primary UM tissue samples, the results showed that partial 

or complete gain of chromosome 8q arm was the most detected chromosomal 

aberration, which varied between 60% to 80% depending on whether the 

aberration was a complete or partial gain of chromosome 8q (Figure 3.6). Also, 

monosomy 3 was found in around 60% of all primary UM tissue samples. The 

gain of the chromosome 6p and deletion 6q appeared in around 45% and 32%, 

respectively. Additionally, aberrations in chromosome 1, such as the loss of 1p 

and gain of 1q, were found in around 20% of all samples. However, aberrations 

in other chromosomes did not reach 10%, except for the chromosome 16p and 

19, which showed a deletion in 30% to 35% of the samples, respectively. 
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Figure 3.6: Total percentage of gain and loss in each chromosome among all the primary UM tissue samples.  

The red shows the percentage of gain among the chromosomes, showing chromosome 8q to be the most common gain. The green shows the 
losses, with a loss in chromosome 3 being the most common. Images output from Agilent Genomic Workbench software v7.0.4.0. The ADM-2 
algorithm was used to detect all the aberrations. 
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In addition, these results demonstrated that there was a correlation between the 

complete loss of chromosome 3, the amplification of chromosome 8q and the 

gain of chromosome 6p and loss of 6q (Figure 3.7). The amplification of 6p only 

was found in around 13% of the samples while the gain of chromosome 6p and 

deletion of 6q (isochromosome 6p) was found in around 32% of the samples. 

Furthermore, all the samples with amplification of chromosome 6p only had 

disomy 3 and no gain in chromosome 8q arm.  

There were only two of the samples found to have an isochromosome 6p together 

with a complete loss of chromosome 3 and gain of chromosome 8q. However, 

four samples showed isochromosome 6p, but they had disomy 3. Only one 

sample that showed isochromosome 6p that have partial deletion of chromosome 

3p and complete gain of chromosome 8.   
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Figure 3.7: Comparison between chromosomes 3, 8 and 6 deletion and amplification. 

The figure shows all UM patient samples that were analysed using array-CGH to compare the gain and loss among the most recurrent aberrations 
in these chromosomes. The green shows losses while red shows gains. Images output from Agilent Genomic Workbench software v7.0.4.0. The 
ADM-2 algorithm was used to detect all the aberrations.  
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In addition, one primary UM had greater instability with a much higher level of 

SCNA, and one sample had no SCNA at all (Figure 3.8). The UM that did not 

show any apparent chromosomal aberrations, also had no mutations amongst 

the genes that were screened.  

 

Figure 3.8: Array-CGH for the highest and lowest number of chromosomal 
aberrations. 

Array-CGH ideogram showing: (A) a sample with a deletion of chromosomes 1p, 3, 4, 7, 
10, 12, 15 and 21, and a gain of chromosomes 8, 18, 20 and 22; (B) a sample with no 
chromosomal aberration detected. 
Images output from Agilent Genomic Workbench software v7.0.4.0. The ADM-2 
algorithm was used to detect all the aberrations. 
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3.2.5 The correlation between genetic mutations and 

chromosomal aberrations 

An observation comparison between the samples that were found to have 

mutations for genes SF3B1 and EIF1AX and chromosomal aberrations showed 

some interesting results. Specifically, all the samples that had a mutated SF3B1 

gene showed no deletion in chromosome 3; however, all of those mutated 

samples showed an isochromosome 6p (Figure 3.9). Furthermore, two samples 

showed partial gain of chromosome 8q and one sample showed a complete 

amplification of chromosome 8q, while only one sample (MEL-659) did not have 

any alterations for chromosome 8q. In addition, three out of four samples showed 

a focal deletion of chromosome 11q.  
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Figure 3.9: Ideograms for the samples with a mutation of the for SF3B1 
gene.  

All samples showed a gain of chromosome 6p and loss of 6q (isochromosome 6p). (A) 
The sample showed a partial loss of the bottom chromosome 11q and a complete loss 
of chromosome 19. (B) The sample showed a gain in part of chromosome 8q, partial 
loss of 11q and loss of the chromosome 16q arm. (C) The ideogram shows a partial gain 
of chromosome 8q with a focal deletion in chromosome 11q. (D) The ideogram shows a 
gain in chromosome 8q, deletion in chromosome 1p, and a partial deletion of 
chromosomes 4q, 15q 16q, and 19p arm.  
Images output from Agilent Genomic Workbench software v7.0.4.0. The ADM-2 
algorithm was used to detect all the aberrations. 
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In addition to the SF3B1 mutations and their correlation with chromosome 6, 

chromosomal aberrations in the EIF1AX gene showed that they consisted mainly 

of an amplification in chromosome 6p only (Figure 3.10). 

 

 
 

Figure 3.10: Ideograms for the samples with a mutated EIF1AX gene. 

(A) shows a gain in chromosome 6p arm and similarly (B) shows the same amplification 
of chromosome 6p but there is an addition of a small amplification in the chromosome 
11q.  
Images output from Agilent Genomic Workbench software v7.0.4.0. The ADM-2 
algorithm was used to detect all the aberrations. 
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3.3 Discussion  

The assessment of prognosis by genetic markers for UM has gone through 

different stages of cytogenetic and genetic classifications over the last two 

decades, such as the chromosomal classification (Prescher et al., 1996, Sisley 

et al., 1997), and genetic profiling class 1 and 2 (Onken et al., 2004). However, 

some high-risk UM patients are still misclassified (Field et al., 2016).  

In this study, the SCNA for chromosome 8q (80%) was the most frequent 

chromosome change, followed by monosomy 3 (60%) and abnormalities of 

chromosome 6 (45%). These findings together with other chromosomal 

aberrations of chromosomes 1, 16, and 19 are in agreement with previous reports 

(Sisley et al., 1990, Sisley et al., 1997, Aalto et al., 2001, Kilic et al., 2005, 

Cassoux et al., 2014, Hammond et al., 2015). Activating mutations in UM are in 

GNAQ and GNA11 which occur in a mutually exclusive pattern (Van Raamsdonk 

et al., 2009, Van Raamsdonk et al., 2010, Sisley et al., 2011) and are found in 

around 90% of UM cases that are considered  as early progression events of UM 

(Onken et al., 2008, Bauer et al., 2009). In this current study about 93% of the 

UM samples (25 out 27) were GNAQ and GNA11 mutated, similar to previously 

mentioned reports. One UM sample had no SCNA and also had no mutations. 

However, these mutations are not predictive of UM prognosis in comparison to 

monosomy 3, gain of chromosome 8q and gain of chromosome 6p. Mutations of 

potential relevance to prognosis (SF3B1 and EIF1AX) were also broadly 

consistent with previous studies (Furney et al., 2013, Harbour et al., 2013, Martin 

et al., 2013, Dono et al., 2014, Yavuzyigitoglu et al., 2016b).   

3.3.1 Correlation of genetic changes with clinical 

features  

The involvement of ciliary body is usually indicative of a worse prognosis in UM 

(Kaliki et al., 2015). Monosomy 3 is consistently reported to correlate with ciliary 

body melanomas (Prescher et al., 1996, Scholes et al., 2003, Kilic et al., 2005, 

Damato et al., 2007). Furthermore, mutation frequencies for SF3B1 and EIF1AX 

and ciliary body involvement in UM have been reported for a number of studies 
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(Table 3.3). Overall mutated SF3B1 is more often correlated with ciliary body 

than EIF1AX mutations.  

Table 3.3: Mutation frequency for both SF3B1 and EIF1AX and ciliary body. 

SF3B1 No. of 
samples 

Mutation 
frequency 

Ciliary body 
involvement 

(Harbour et al., 2013) 102 19 (18.6%) 47% 

(Martin et al., 2013) 111 23 (20.7%) 48% 

(Yavuzyigitoglu et al., 2016a) 133 31 (25.6%) 8 (25.8%) 

EIF1AX 
 

No. of 
samples 

Mutation 
frequency 

Ciliary body 
involvement 

(Martin et al., 2013) 111 20 (18%) 30% 

(Yavuzyigitoglu et al., 2016a) 133 28 (21%) 
4 (14.4%) 

 

3.3.2 What other correlations do mutations of SF3B1 

and EIF1AX have? 

The data in this study indicates that most of the cases of disomy 3 (except for 

MEL- 491) also had gain of 6p and mutations in either SF3B1 or EIF1AX.  Disomy 

3 and gain of 6p are well known to be associated with favourable prognosis 

(Parrella et al., 1999). Correlation between chromosome 6 alterations and 

mutations of SF3B1 and EIF1AX have also been related previously 

(Yavuzyigitoglu et al., 2016a). They found that the mutant samples with SF3B1 

harboured a gain of chromosome 6p in more than 80% of their samples, while 

the loss of chromosome 6q was found in about half of the analysed samples. 

They also mentioned that the role of SF3B1 mutations in disomy 3 may have a 

late metastatic risk; and the findings have also been confirmed in more recent 

investigations (Robertson et al., 2017). The results of this current study can 

qualify these observations to some extent. Specifically, cases of UM with disomy 

3 could be further subdivided on the basis of mutational profile and the type of 

chromosome 6 abnormality. Most disomy 3 cases with chromosome 6p gain only 
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had mutations of E1FAX (MEL-652 and MEL-658, Figure 3.10).  Disomy 3 cases 

with both gain of chromosome 6p and loss of 6q (or an effective isochromosome 

6p) had mutations of SF3B1. Given that SF3B1 mutations may indicate later risk 

of metastasis, it is interesting that isochromosome 6p occurs as a potentially later 

event for monosomy 3 cases after gain of chromosome 8q, and the findings were 

again seen for cases in Figure 3.9. The findings of this study are slightly at odds 

with those of Yavuzyigitoglu et al. (2016a), which did not indicate whether there 

is a risk of metastasis or not for UM patients with mutated SF3B1 and EIF1AX,  

because there was no long follow-up for those UM patients in this series. 

A limited number of research studies found deletions on chromosome 11 in UM 

cells (Sisley et al., 2000, Kilic et al., 2006, White et al., 2006, Drabarek et al., 

2019). Sisley et al. (2000) highlighted that aberrations of chromosome 6 and 

deletion of chromosome 11q25 in UM are frequent and associated with choroid 

origin. Moreover, it was found recently that isochromosome 6p is associated with 

gain of chromosome 8q and loss of chromosome 11q in UM (Drabarek et al., 

2019). Remarkably, this study showed that focal deletion of chromosome 11q 

appeared in 3 out of 22 UM samples and were correlated with mutations in SF3B1 

and isochromosome 6p (Figure 3.9). This outcome emphasises that loss of 

chromosome 11q may follow isochromosome 6p in indicating the prognosis of 

UM.  

3.3.3 What is the sequence of genetic progression for 

UM? 

Robertson et al. (2017) clustered the metastatic risk of UM into four distinctive 

groups based on the chromosomal aberrations and concurrent mutations of 

EIF1AX and SF3B1. However, they only considered the role of gain of 

chromosome 6p with disomy 3 and gain of chromosome 8q with the low and 

medium risk of metastasis, respectively. In addition, they proposed a sequence 

of events for UM metastasis which it started with monosomy 3, BAP1 mutation, 

whole genome doubling and then gain of chromosome 8q.  

However, based on Figure 3.7, this study is proposing an alternative sequence 

of events for UM progression based on the results presented.  1)  Starting with 
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mutations in GNAQ and GNA11, which one case of this current study did not 

have a mutation of these genes. Therefore, an alternative pathway may exist, or 

more likely as has been reported previously mutations in other genes affecting 

the same pathway may be implicated such as CYSTLR2 or PLCB4. 2) UM cases 

subdivide on the basis of whether they acquire monosomy 3 or not. 3A) For those 

UM with monosomy 3 the sequence follows as reported in the literature, gain of 

chromosome 8q, loss of chromosome 1p and isochromosome 6p, and no 

mutations of SF3B1 or EIF1AX. 3B) UM cases with disomy 3 and gain of 

chromosome 6p only, then have mutations of EIF1AX. Alternatively, disomy 3 

cases can acquire isochromosome 6p followed by mutations in SF3B1 and then 

partial or complete gain of chromosome 8q. This proposed sequence of events 

highlights the importance of the isochromosome 6p in the prognosis of UM, which 

was ignored by previous reports. In a recent report by Drabarek and colleagues, 

they supported the proposed idea that isochromosome 6p should be in a 

separate group with disomy 3 (Drabarek et al., 2019).  

In summary, this study performed 22 array-CGH analyses out of 28 cases in 

order to obtain a detailed information about the SCNA of UM. The study applied 

mutational screening for SF3B1, EIF1AX and TERTp. The finding of apparent 

associations between mutated SF3B1 and EIF1AX genes with different 

abnormalities in chromosome 6 is an interesting, and qualified some of the 

subgrouping of UM and has potential implications for prognosis. Thus, detailed 

analysis of chromosome 6 aberrations may help identify candidate genes of 

relevance and improve the understanding of the progression of UM. 
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Chapter 4: Analysis of chromosome 6 

using array-CGH to determine candidate 

genes in UM 
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4.1 Introduction  

In the previous chapter, the correlation between chromosome 6 aberrations with 

other genetic alterations in UM was examined. This correlation highlighted the 

importance of the recurrent abnormalities of chromosome 6 in UM such as gain 

of chromosome 6p only and isochromosome 6p, and how the relationship with 

other chromosomes and mutational changes can be used to further subdivide 

UM.  

Beroukhim et al., meanwhile found most cancers that have SCNA of whole 

chromosome length or arm length are more frequent than the focal SCNA 

(Beroukhim et al., 2010). They also highlighted that focal SCNA were more likely 

to have a potential target gene or genes than whole arm SCNA in different 

cancers, as it is easier to identify those potential genes if the region of aberration 

is smaller. Previous studies using SKY, CGH or bacterial artificial chromosome 

(BAC) arrays may have missed these small focal SCNA due to the limited 

resolution (Speicher et al., 1994, Naus et al., 2001, Sisley et al., 2006, Ehlers et 

al., 2008). Therefore, the goal of using a high-resolution array-CGH technology 

is to accurately access these SCNAs, that may help identifying the location of 

novel oncogenes or tumour suppressor genes. For instance, the use of high-

resolution array-CGH helped to identify novel target genes in different tumours 

such as breast and ovarian cancers, lymphomas and oral cancer (Cheng et al., 

2004, Tagawa et al., 2005, Nakaya et al., 2007).  

Although there have been some attempts to identify focal SCNA on the 

chromosome arms implicated in UM (Parrella et al., 2001, Tschentscher et al., 

2001, Cross et al., 2003, Parrella et al., 2003, Ehlers and Harbour, 2005, Ehlers 

et al., 2005, van Gils et al., 2008), for the most part these have failed to identify 

strong candidates. For example, candidate genes within the recurrent abnormal 

chromosomes, such as gain of chromosome 8q, have been investigated in UM, 

with mixed results (Parrella et al., 2001, Ehlers and Harbour, 2005, Ehlers et al., 

2005). It was found that the amplification of the c-Myc oncogene is associated 

with gain of chromosome 8q, however, the expression of c-Myc was significantly 

upregulated followed monosomy 3 instead of gain of chromosome 8q (Royds et 
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al., 1992, Parrella et al., 2001). Furthermore, UM frequently have monosomy of 

chromosome 3 and mutations of BAP1 located on chromosome 3p21 are of 

relevance (Harbour et al., 2010). More specifically, the nuclear protein expression 

of BAP1 in UM is considered as a poor prognostic marker using IHC with 

monosomy 3 rather than the mutational status of BAP1, mainly because there is 

not a specific point mutation to correlate with the prognosis (Koopmans et al., 

2014b, van de Nes et al., 2016, Field et al., 2018). There are also indications that 

other genes on chromosome 3 may also be implicated, but there was no strong 

association with the prognosis of UM (Tschentscher et al., 2001, Parrella et al., 

2003, van Gils et al., 2008). As previously stated, the impact of chromosome 6 

aberrations and relationships to prognosis of UM is unclear. There have been a 

number of studies proposing target genes on chromosome 6 (Millikin et al., 1991, 

Hijiya et al., 1994, Ogino et al., 2006, Gautrey et al., 2015, Shukla et al., 2015), 

but no strong candidates have immerged for UM. A recent study however found 

that there is a gene called PHF10 in the aberrant chromosome 6q27 may have a 

role in UM development and adhesion (Anbunathan et al., 2019).  

Previously, a specifically designed high-resolution array-CGH for UM by 

(Hammond et al., 2015), and used to study 137 UM samples as part of combined 

research group and PhD project (Alshammari, 2017). Preliminary analysis using 

Nexus software (BioDiscovery) identified regions on chromosome 6p and 6q that 

were preferentially amplified and deleted, respectively. Those genes on 

chromosome 6p are forkhead box Q1 (FOXQ1) and phenylalanyl-tRNA 

synthetase (FARS2); and the gene implicated on chromosome 6q is 

adenosylmethionine decarboxylase 1 (AMD1). An attempt to validate the 

expression of these target genes using IHC, was performed by Alshammari 

(2017), the results however were inconclusive, and the sample size was too small 

to validate.  

In this study, array-CGH was previously performed on 22 UM (Figure 3.6). This 

series acted as a small independent cohort and was analysed separately using 

different software, to confirm and validate the previous observations, and IHC 

was performed on a larger set of UMs to explore the expression of these target 

genes. 
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4.2 Results  

4.2.1 The classification of chromosome 6 

Of 22 cases of UM, 10 had abnormalities of chromosome 6 in this study (section 

3.2.4, Figure 3.7). This study, as mentioned in the previous chapter, had 10 UM 

samples with aberrations of chromosome 6 out of 22 and that counts for around 

45%, which is similar to previous reports (Prescher et al., 1996, Sisley et al., 1997, 

White et al., 1998, Sisley et al., 2000, Aalto et al., 2001, Damato et al., 2010).  

The aberrations of chromosome 6 were divided into 4 groups, independent of 

other common aberrations, such as loss of chromosome 1p, monosomy 3 and 

gain of chromosome 8q (Figure 4.1).  

The first group consists of just chromosome 6p amplification located from 6pter-

6p12.1, creating chromosome 6p trisomy, as represented in Figure 4.1 A. There 

were three UM samples which accounted for around 14% of the total samples is 

in the first group. The second group consists of the gain of chromosome 6p arm 

and the loss of chromosome 6q arm (isochromosome 6p or pseudo-

isochromosome 6p). The aberrations of this group consist of gains spanning from 

6pter-6p12.1 and losses spanning from 6qter-6q12 with a breakpoint near the 

centromere (Figure 4.1 B). There were seven UM samples which accounted for 

around 32% of the total samples in this group. The third group covers any other 

aberrations for chromosome 6, either the gain or loss of the whole chromosome 

or any other partial deletions or gains (Figure 4.1 C). However, the collection of 

this present study did not have any UM to fit in this group. The fourth group covers 

examples where there were no aberrations of chromosome 6, as represented in 

Figure 4.1 D, which were 12 UM samples that accounted for 54% of the total 

samples.  
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Figure 4.1: Groups classification of different gain and loss of chromosome 
6 in UM. 

The figure shows the types of aberrations of chromosome 6. The grey line in the middle 
represents zero line with gains on the right and losses on the left. (A) The amplification 
of chromosome 6p only, (B) gain of chromosome 6p and loss of 6q to form 
(isochromosome 6p). (C) An example of different aberrations of chromosome 6 either 
loss of whole chromosome 6 as seen or any other type of aberrations that does not follow 
groups (A) or (B). This image was adapted from Dr. Alshammari’s thesis (Alshammari, 
2017). (D) The last group where no changes in chromosome 6 was identified. Images 
output for ideograms were taken from Agilent Genomic Workbench software v7.0.4.0. 
The ADM-2 algorithm was used to detect all the aberrations. 

 

4.2.2 Confirmation of target genes on chromosome 6 

In Dr. Alshammari’s thesis, three potential genes FOXQ1, FARS2 and AMD1 

were implicated in UM (Alshammari, 2017). Therefore, this study tried to confirm 

these findings by analysing a small independent cohort (22 UM samples). 

Furthermore, as the Nexus software (BioDiscovery) was unavailable, a different 

software (Agilent Genomic Workbench software) was used to independently 

confirm previous findings.  

After searching for genes in group 1 (the gain of chromosome 6p only) (Figure 

4.2 A), the results showed that the Agilent Genomic Workbench software called 

for more than 100 genes within the region. These genes included the FARS2 

gene that located at chr.6p25.1, but not FOXQ1. In addition, for group 2 

(isochromosome 6p) more than 200 genes were called, but neither FARS2 nor 

FOXQ1 were called. However, it been found in group 2 that AMD1 gene was 

called and this gene is located on chromosome 6q21 (Figure 4.2 B). Because the 
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software did not call for FOXQ1, which is located on 6p25.3, for the samples 

within groups 1 and 2, due to limitation in statistical tools, it was manually pointed 

out for illustration (Figure 4.2 C). Even though this outcome is not as reliable, the 

information broadly confirmed the previous findings which suggest these target 

genes are of interest for further study in UM. 
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Figure 4.2: A high-resolution view of the gain of chromosome 6p and 6q 
with gene view. 

The figure shows a high-resolution view with gene view in the Agilent Workbench 
Software shows the red dots represent the gain where the green dots represent the loss, 
the black dots in the middle represent the log ratio that been calculated for gain and loss 
(≤–0.1->0.6). (A) The call for FARS2 gene in the gain of chromosome 6p only, evident 
in three UM samples. (B) The software also the call for AMD1 gene in the 
isochromosome 6p, evident in seven UM samples. However, (C) the FOXQ1 gene was 
pointed out for the isochromosome 6p, evident in seven UM samples. Images output for 
ideograms were taken from Agilent Genomic Workbench software v7.0.4.0. The ADM-2 
algorithm was used to detect all the aberrations. 
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4.2.3 Clinicopathological details for UM data set 

In the next stage, a larger group of UM samples were studied for the expression 

of the target genes. For this part of the study, a total of 80 UM had both array-

CGH analyses and also available tissue sections for IHC. Unfortunately, the 

clinicopathological data was not always complete for all patients, due to patients 

becoming lost to follow up,  

Thus, the range of UM patients’ ages in this series between 13 and 89 years old 

with a median of 62, and the UM tumours’ mean diameter ranged between 7.58 

to 22.15 mm. In addition, the follow-up of this series ranged between 6 to 187 

months with an average of 54.6 months. The follow up of patients with liver 

metastasis ranged between 7 to 131 months with an average of 33.5 months. In 

addition, the metastasis to other organs for UM patients other than liver ranged 

between 11 and 123 months with an average of 49.1 months. Three UM patients 

were lost to follow-up where there were 10 patients died from unknown causes 

and 4 patients died as a result of unrelated causes. Based on this clinical data, 

about 54% of male in this study have UM while female was accounted for around 

46% of the cases. Thus, there were no statistical differences between males and 

females for the tumour distribution (Figure 4.3 A).  

About 62% of the UM tumours in this study were choroid, and these correlated 

with good prognosis while 19% involved the ciliary body and were associated 

with poor prognosis (Figure 4.3 B). The inclusion of choroidal and ciliary body 

tumours comprised about 17% of all cases and were also associated with poor 

prognosis. One sample involved a tumour encompassing the choroid, ciliary body 

and iris. Besides the location, more than 45% of the tumours had a spindle cell, 

10% epithelioid and around 44% have mixed cells morphology (Figure 4.3 C). A 

spindle cells morphology was correlated with better prognosis than epithelioid 

and mixed cells. The survival for UM patients with metastasis to the liver or other 

organs was lower compared to other UM patients (Figure 4.3 D). About 40% of 

patients with UM in this series had a low survival, while more than 17% died for 

reason unrelated to metastasis. About 33% of patients had metastasis to the liver 

and more than 11% to other organs.  
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The outcomes of this current clinical data for UM patients based on sex, age, 

tumour location, cell type and metastasis were comparable with previous 

reported studies (Mooy and De Jong, 1996, Kujala et al., 2003, Kaliki et al., 2015). 

In addition, this suggest that the clinicopathological data for UM in this study is 

representative, and this study has no selection bias.  

 

Figure 4.3: Kaplan-Meier analysis of patients’ mortality based on sex, 
tumour location and cell type. 

The Kaplan-Meier analysis of UM showed that the X-axis represents the survival time in 
months and the Y-axis represents the percentage of survival among UM patients. (A) 
Survival based on sex, indicating no significant difference. (B) Survival based on the 
location of the UM with ciliary body and ciliary body/choroid location having a poor 
prognosis than a choroid location only. (C) Survival according to cell type: a spindle cell 
types suggest longer survival than epithelioid and mixed cell morphology. (D) Survival 
according to metastasis: liver metastasis was associated with a poor prognosis, while 
metastasis to other organs showed a slightly better than liver metastasis. The unrelated 
deaths for UM patients were considered a separate event unrelated to UM prognosis. 
All figures output was produced and calculated using GraphPad Prism (v 8.0).   
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4.2.3.1 Survival analysis based on chromosome 6 groups  

In respect to the groups that were used to categorise chromosome 6 alterations 

group 1 (gain of chromosome 6p arm only) comprised 20% of the series (16 out 

80), group 2 (isochromosome 6p) around 21% (17 out of 80), group 3 (different 

chromosome 6 aberrations) around 19% (15 out of 80) and group 4 (no 

chromosome 6 changes) comprised 40% (32 out of 80) of all cases.  

Survival analysis was undertaken to establish the effect of different chromosome 

6 alterations and relationship to prognosis. For overall survival, group 1 have a 

better survival than the other three groups. Nonetheless, group 2 had poorer 

survival rate than group 1, but better than groups 3 and 4 (Figure 4.4 A).  

Liver metastasis is the most common site for UM patient compared to other 

organs and it showed the worst overall survival, as seen earlier in Figure 4.3 D. 

The comparison of chromosome 6 groups in respect to liver metastasis identified 

that those with group 1 aberrations survived longer than in those other groups, 

while group 3 showed the worst survival rate. (Figure 4.4 B). This is because 

there are differences based on the type of chromosome 6 changes only and 

excluded the classical chromosomal aberrations in UM such as monosomy 3, 

loss of chromosome 1p and gain of chromosome 8q. 
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Figure 4.4: Kaplan-Meier analysis of the patients’ mortality based on 
groups of altered chromosome 6.  

The Kaplan-Meier analysis showed the X-axis represents the survival time in months 
and the Y-axis represents the percentage of survival among UM patients. (A) The overall 
survival rate based on chromosome 6 aberrations, showing that group 1 (gain of 
chromosome 6p only) had a better prognosis than groups 3 and 4 (different aberration 
on chromosome 6 and no chromosome 6 aberrations, respectively). Group 2 
(isochromosome 6p) showed an intermediate survival rate in comparison with other 
groups. (B) In respect to liver metastasis only, group 1 had a better survival than other 
groups while group 3 had the worst survival, (n=56). These graphs were designed and 
calculated using GraphPad Prism (v 8.0). 
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4.2.4 IHC analysis for FOXQ1, FARS2 and AMD1 

The total number of samples used for IHC in this study is 80 FFPE UM tissue 

sections, all with matched array-CGH to compare the subdivision of changes of 

chromosome 6 with survival. This number expanded the pilot study initially 

undertaken in Dr. Alshammari’s thesis where there was also an issue with 

melanin pigmentation. 

In this study, the optimisation of FOXQ1, FARS2 and AMD1 antibodies was done 

to determine the optimum staining of those proteins. Additionally, a melanin 

removal step was applied to enhance the quality of the tissue and decrease the 

melanin pigmentation in the UM tissues by incubating the slides with 1.5% of 

H2O2/PBS in the dark for overnight. This melanin removal technique was 

recommended by the Department of Pathology at Hallamshire Teaching Hospital 

in Sheffield UK, and enhanced the results. There was another issue with staining 

the negative controls at the beginning of the optimisation, however, it showed 

positive results although no primary antibody was added to those negative 

controls. To overcome this issue, an extra blocking step using an avidin/biotin 

blocking kit was added to the protocol before the addition of the primary antibody 

to avoid any endogenous biotin or non-specific binding present in the section. 

This was done to increase the specificity of the IHC and to eliminate any false 

positives appearing in the negative controls and UM tissue sections.  

All of these tissue sections were treated the same with an addition of negative 

and positive control to each run to confirm findings. The slides were scanned 

using the automated slide scanner (Panoramic 350 Flash III) and were then 

stored as a digital image. The image was then viewed and analysed using 

Qupath software (Version 0.1.0) to visualise and zoom in and out for the whole 

of the tissue section.  

4.2.4.1 Allred scoring system  

The scoring system that was used for analysing those tissue sections was the 

Allred scoring system (Allred et al., 1998, Harvey et al., 1999). This system is a 

semi-quantitative assessment of the staining based on a proportion score (PS) 
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from 0 to 5 and an intensity score of the staining (IS) is from 0 to 3, which are 

added together to form a total score (PS+IS=TS) out of 8. The PS score is a six 

score system 0= no stain, 1=≤0.1% of the cells stained, 2=≤10% of the cells 

stained, 3=≤33% of the cells stained, 4=≤67% of the cells stained and 5= all the 

cells stained. The IS score depends on the four categories 0=no stain, 1= weak, 

2= moderate and 3= high stain. This scoring is applied for both the nucleus and 

the cytoplasm. The assessment of this scoring system was by three independent 

scorers (MA, AA) and overview by KS, which show a good agreement for the 

outcome. Finally, all data were analysed using non-parametric one-way 

ANNOVA with SEM by GraphPad Prism (Version 8.0) software as a statistical 

calculation for the scoring of the analysed tissue.  

4.2.4.2 FOXQ1 protein expression  

The FOXQ1 protein is mainly expressed in the nucleus. Thus, the IHC was used 

to assess the FOXQ1 protein expression in 80 UM tissue sections. The control 

used to evaluate the protein expression of FOXQ1 was normal kidney tissue. 

This showed that there was staining in the renal tubules which varies between 

moderate and strong, in comparison with the negative normal kidney tissue 

control (Figure 4.5 A and B).  

The 80 UM FFPE tissue sections were stained with FOXQ1 antibody with the 

extent of staining varying from one tissue to another, regardless to their groups. 

Some UM tissue samples showed low nuclear staining for FOXQ1 protein, as 

seen in Figure 4.5 C. In addition, some of the UM samples had a high FOXQ1 

staining in both the cytoplasm and the nucleus (Figure 4.5 D) while other UM 

samples showed a mixed staining from cell to cell between low to moderate, as 

appeared in Figure 4.5 E. The UM samples showed more staining of the nucleus 

than of the cytoplasm, which is consistent with the reported staining.  
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Figure 4.5: The expression of FOXQ1 protein in UM tissue sections using 
IHC. 

(A) Negative control of normal kidney FFPE tissue section without any FOXQ1 primary 
antibody and only haematoxylin counter staining. (B) Same normal kidney FFPE tissue 
section with FOXQ1 primary antibody, immune staining mainly in the renal tubules 
(brown) rather than the nucleus (blue), varying between moderate to strong, as 
recommended by the manufacturer. (C) The staining of FOXQ1 was mainly low for both 
the cytoplasm and nucleus with exception of a few cells. (D) In contrast, the staining of 
FOXQ1 was high in the cytoplasm encompassing the area of nucleus. (E) Represents 
the moderate nucleus staining of FOXQ1 that appears to vary between cells. All images 
were taken using Qupath software (v 0.1.0).  

 

The analysis of FOXQ1 protein expression using Allred scoring system resulted 

in all groups having the staining in the nucleus more than cytoplasm (Figure 4.6 

A). Based on the Allred scoring system, there was no significant difference 

between groups 1, 3 and 4 of chromosome 6 aberrations which their intensity for 

the nucleus is 5, except for the group 2 that showed a slight increase for the 

intensity compared to other groups. The analysis using one-way ANOVA showed 
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the p value of 0.003, which is significant in respect to the outcome for FOXQ1 

protein.  

In addition, the survival analysis was done to compare the protein expression of 

FOXQ1 with UM patients’ survival. Therefore, the expression of FOXQ1 been 

grouped into three groups based on the TS of the nucleus (Figure 4.6 B). This is 

because, as mentioned before, the expected expression of FOXQ1 is in the 

nucleus, which is similar to the outcome of this study. The TS score for the low 

expression group is between (0-2), the moderate expression group is between 

(3-5) and the high expression group us between (5-8). Therefore, the survival 

analysis showed no significant difference between the expression of FOXQ1 and 

the overall survival.  



 
 

123 

 

Figure 4.6: Allred scoring and Kaplan-Meier analysis of FOXQ1 protein 
expression. 

(A) Based on the chromosome 6 groups, and the amount of TS for each nucleus (N) and 
cytoplasm (C) was calculated based on the Allred scoring system. It shows the staining 
is more in the nucleus than the cytoplasm. The results seemed broadly equal among in 
groups 1, 3 and 4 (5 for nucleus and 3 for cytoplasm) except a slight increase in group 
2 (isochromosome 6p), around 6 for the nucleus and around 5 for cytoplasm. The P 
value is 0.003. (B) The Kaplan-Meier survival analysis for FOXQ1 shows that the X-axis 
represents the survival time in months and the Y-axis represents the percentage of 
survival among UM patients. The high, moderate and low nuclear protein expression for 
FOXQ1 shows no significant difference for survival.  

All charts were designed and calculated using GraphPad Prism (v 8.0).  
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4.2.4.3 FARS2 protein expression 

IHC was used to assess the expression of FARS2 protein in 80 UM tissue 

sections. The FARS2 protein is usually expressed in the cytoplasm. The control 

used to evaluate the protein expression of FARS2 was human colon carcinoma. 

This showed that the staining was mainly in the cytoplasm with a slight nuclear 

staining, in comparison to the negative human colon carcinoma tissue control 

(Figure 4.7 A and B).  

The 80 UM FFPE tissue sections were stained with FARS2 antibody with the 

staining varying from tissue to another, regardless to their groups. For example, 

there was a low cytoplasmic and nucleus staining for FARS2 protein among 

some of the UM tissue samples (Figure 4.7 C). Additionally, some of the UM 

samples showed a strong FARS2 protein expression, as seen in Figure 4.7 D, 

while there was a mix cytoplasmic staining for some UM tissue sections for 

FARS2 that varies between low to moderate from cell to cell, as appeared in 

Figure 4.7 E. Thus, these UM samples showed more staining of the cytoplasm 

than the nucleus.  
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Figure 4.7: The expression of FARS2 protein in UM tissue sections using 
IHC. 

(A) Negative control of human colon carcinoma FFPE tissue section without any FARS2 
primary antibody and only haematoxylin counter staining. (B) Same human colon 
carcinoma FFPE tissue section with FARS2 primary antibody, showing some staining 
was in the cytoplasm (brown), while some of the immune staining in the nucleus varying 
between low and moderate. (C) The staining of FARS2 was low and neither the 
cytoplasm nor nucleus were strongly stained. In contrast, (D) the staining of FARS2 was 
high in the cytoplasm (brown) also encompassed the area of the nucleus. (E) Shows the 
mix staining for FRAS2 from one cell to another. All images were taken using Qupath 
software (v 0.1.0).  
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The analysis of FARS2 protein expression using the Allred scoring system 

revealed that the staining to be more in the cytoplasm than nucleus, as 

mentioned before, although there were broadly low among all chromosome 6 

groups (Figure 4.8 A). The UM samples showed that there was no significant 

difference between chromosome 6 aberration groups and their intensity varies 

between the total of 2 to 4, expect for group 4 (no changes in chromosome 6) 

which had a slight increase. The analysis using one-way ANOVA showed a p 

value of <0.0001, indicating significance in the respect of the FARS2 protein.  

Similar to FOXQ1, the survival analysis was done to compare the protein 

expression of FARS2 with patients’ survival (Figure 4.8 B). Therefore, the 

expression of FARS was grouped into three groups based on the TS of the 

cytoplasm, because FARS2 was expected to be expressed in the cytoplasm 

more than nucleus, which similar to the outcome of this study. The TS of the low 

expression group is between (0-2), the moderate expression group is between 

(3-5) and the high expression group is between (5-8). Although the high FARS2 

expression showed a lower survival at early months compared to the low FARS2 

expression, the results showed that there is no significant difference between the 

expression of FARS2 and the overall survival. 
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Figure 4.8: Allred scoring and Kaplan-Meier analysis of FARS2 protein 
expression. 

(A) Based on the chromosome 6 groups, and the amount of TS for each nucleus (N) and 
cytoplasm (C) was calculated based on the Allred scoring system. The cytoplasm 
appeared to have more staining than the nucleus, as estimated before. The results 
between the three groups 1-3 seemed broadly the same (2 for nucleus and around 4 for 
cytoplasm) except for a slight increase in group 4 (no changes in chromosome 6), of 
around 5 for the cytoplasm and around 4 for nucleus. The P value is <0.0001. (B) The 
Kaplan-Meier survival analysis for FARS2 showed that the X-axis represents the survival 
time in months and the Y-axis represents the percentage of survival among UM patients. 
The high, moderate and low protein expression for FARS2 showed no significant 
difference for survival, although the high expression showed a slight lower survival at 
early months compared to the low FARS2 expression.  

All charts were designed and calculated using GraphPad Prism (v 8.0).  
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4.2.4.4 AMD1 protein expression  

Besides FOXQ1 and FARS2, IHC was used to assess the AMD1 protein 

expression in 80 UM tissue sections. The main site the AMD1 protein expression 

is cytoplasm. The control used to evaluate the protein expression of AMD1 was 

mammary cancer tissue section. Staining was evident in the cytoplasm more than 

the nucleus and it varies between moderate to high, in comparison with the 

negative mammary cancer tissue control (Figure 4.9 A and B).  

The 80 UM FFPE tissue sections were stained with AMD1 antibody and it 

appeared there was a difference in the level of staining intensities among the UM 

tissue sections, regardless to their chromosome 6 groups. For example, there 

was low cytoplasm and nuclear staining for AMD1 protein among some of the 

UM tissue samples (Figure 4.9 C). Additionally, some of the UM sample had a 

high expression of AMD1 in the cytoplasm, as seen in Figure 4.9 D, while other 

UM had a mix of cytoplasm staining that varies between low to moderate from 

cell to cell, as appeared in Figure 4.9 E. Therefore, the expression of AMD1 in 

UM samples overall showed more cytoplasm staining than nucleus, which is 

consistent with the reported staining.  
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Figure 4.9: The expression of AMD1 protein in UM tissue sections using 
IHC. 

(A) Negative control of mammary cancer FFPE tissue section without any AMD1 primary 
antibody and only haematoxylin counter staining. (B) Same mammary cancer FFPE 
tissue section with AMD1 primary antibody revealing some immune staining was mainly 
in the cytoplasm (brown) that appears to be between moderate to strong. (C) The 
staining of AMD1 was lower for both the cytoplasm and nucleus, and it showed a small 
amount of melanin pigmentation remaining even after the recommended treatment. In 
contrast, (D) the staining of AMD1 was high in the cytoplasm and nucleus also. (E) Show 
the mix of staining for AMD1 from one cell to another. All images were taken using 
Qupath software (v 0.1.0). 
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The analysis of AMD1 protein expression using the Allred scoring system 

revealed the cytoplasm is to be more stained than the nucleus amongst all the 

UM samples that were analysed (Figure 4.10 A). Remarkably, there was a 

significant difference between chromosome 6 aberration groups, based on the 

Allred scoring system. In group 1 (gain of chromosome 6p only), there was an 

increase in staining in both the nucleus and cytoplasm between 5 and 6, 

respectively, which is similar to group 4 (no chromosome 6 changes). Groups 2 

(isochromosome 6p) and 3 (different aberrations in chromosome 6), however, 

showed a significant reduction in staining, at between 3 and 4 for both nucleus 

and cytoplasm. The analysis using one-way ANOVA showed p value of <0.0001 

indicating a significance of the outcome in respect to AMD1 protein. 

Moreover, the survival analysis was done to compare the protein expression of 

AMD1 with patients’ survival and it was also grouped into three groups based on 

the TS of the cytoplasm (Figure 4.10 B). The TS of the low expression group is 

between (0-2), the moderate expression group is between (3-5) and the high 

expression group is between (5-8). Therefore, the survival analysis showed no 

significant difference between the expression of AMD1 and the overall survival. 

However, there was a slight difference between high expression and low or 

moderate expression of AMD1 for survival beyond 50 months. Conversely, this 

was the opposite to the survival for groups 2 and 3 where chromosome 6q was 

deleted (Figure 4.4 A)  
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Figure 4.10: Allred scoring and Kaplan-Meier analysis of AMD1 protein 
expression. 

(A) Based on the chromosome 6 groups, and the amount of TS for each nucleus (N) and 
cytoplasm (C) was calculated based on the Allred scoring system. The cytoplasm 
appeared to have more staining than the nucleus, as described earlier. Interestingly, the 
results for group 1 (gain in chromosome 6p) and group 4 (no changes in chromosome 
6) appeared to be equal with a TS between 5 to 6. There was a decrease in groups 2 
(isochromosome 6p) and group 3 (different changes in chromosome 6), in comparison 
with the other groups, however, with scores of between 3 and 4. The P value is <0.0001. 
(B) The Kaplan-Meier survival analysis for AMD1 showed that the X-axis represents the 
survival time in months and the Y-axis represents the percentage of survival among UM 
patients. The high, moderate and low protein expression for AMD1 showed no significant 
difference for survival, although from this figure the differences between these 
expressions of AMD1 appeared to occur after 50 months. 

All charts were designed and calculated using GraphPad Prism (v 8.0).  

 



 
 

132 

4.3 Discussion  

Here array-CGH on 22 UM samples confirmed groupings of chromosome 6 

abnormalities and the previously identified genes (FOXQ1, FARS2 and AMD1) 

were still implicated in different subsets of UM. Expression of target genes was 

investigated in a series of 80 UM samples that could be subdivided similarly on 

the basis of chromosome 6 changes. Based on the clinicopathological data of 

this study, the survival for UM patients were in agreement with a previous reports 

(McLean et al., 1982, Seregard and Kock, 1995, Kujala et al., 2003, Diener-West 

et al., 2005, Shields et al., 2009, Shields et al., 2012). The clinical data of this 

study were collected after the results been done and that indicated there were no 

selection bias toward any type of UM and there were treated anonymously to 

have a clear representation of the UM outcome. 

4.3.1 Chromosome 6 changes and prognosis  

The association of gain chromosome 6p with disomy 3 in UM appears to occur 

early in the progression of some UM (Parrella et al., 1999). The association of 

different chromosome 6 aberrations in UM with survival has recently been 

considered  (Drabarek et al., 2019), which they found that gain of chromosome 

6p and isochromosome 6p are considered as a good and intermediate prognostic 

markers in UM, respectively. Thus, the association in this study was also 

generated to confirm the effect of different chromosome 6 alterations on the 

patient’s overall survival (Figure 4.4 A). Based on the chromosome 6 groups, it 

showed that group 1 (gain of chromosome 6p only) usually have the longest 

survival while group 2 (isochromosome 6p) have a shorter survival than group 1, 

however, group 3 (gain or deletion of whole chromosome 6) and group 4 (disomy 

6) showed the worst prognosis and with a low survival rate. The findings of this 

current study confirm that chromosome 6q indicate a poorer outcome for UM 

patients and also confirmed the initial findings of the previous study undertaken 

by our group (Alshammari, 2017). 
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4.3.2 Confirmation of target genes 

In the earlier study, Nexus software has been used as opposed to Agilent 

Workbench software used in the present study. The Nexus software uses an 

algorithm called FASST2 (Fast Adaptive States Segmentation Technique 2) for 

the aberration calls. This algorithm uses an approach of calling based on Hidden 

Markov Model (HMM), which estimates the copy number based on many states 

of the probe. Similar to the Nexus software, the algorithm of Agilent Genomic 

Workbench software that been used in this study is ADM-2, which makes the 

calls based on the states of the probes, yet it lacks the statistical tools that 

provided in the Nexus software to identify genes. The statistical tools that are 

available for Nexus software are significance testing for aberrant copy number 

(STAC) (Diskin et al., 2006), and genomic identification of significant targets in 

cancer (GISTIC) (Beroukhim et al., 2007). These statistical tools helped to 

precisely identify FOXQ1, FARS2 and AMD1 genes in the aberrant chromosome 

6 (Alshammari, 2017). Therefore, despite lack of similar statistical tools and 

smaller sample, the results of this study were broadly supportive of the previous 

findings with FARS2 called for group 1 and AMD1 called for group 2; however, 

group 3 cases were not in this small series. This independent confirmation 

suggested that further exploration of these genes was warranted.  

4.3.3 Are target genes potentially relevant to UM? 

UMs are now well characterised by mutations of BAP1 and preferential deletion 

of BAP1 (Harbour et al., 2010), There has however been much debate as to 

whether the mutations of BAP1 confer a poor outcome, as previous studies 

suggest that the expression of BAP1 in the nucleus is more reliable than the 

assessment of the mutations  (Shah et al., 2013, Koopmans et al., 2014b, van 

de Nes et al., 2016, Field et al., 2018).  

In this study, the expression of FOXQ1 did not appear to be predictive of outcome 

for UM patients (Figure 4.6). The FOXQ1 gene on chromosome 6p25.3 consists 

of 2319bp which encode for FOXQ1 protein that has 403 amino acids (Bieller et 

al., 2001). It was first discovered in Drosophila melanogaster and there was little 

known about its function and effect in humans at that time (Weigel et al., 1989). 
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Subsequently, It has found that the forkhead box (FOX) family is a transcription 

factor and consists of more than 100 members that been classified into 19 

subfamilies (Kaestner et al., 2000, Benayoun et al., 2011). These subfamilies are 

involved in various human cellular functions such as, cell proliferation, 

differentiation and apoptosis, as reviewed in Carlsson and Mahlapuu (2002). In 

addition to their cellular function, these genes have a role in different human 

health properties, as an example, embryonic development, metabolism of 

glucose and lipid, ageing and immune regulation.  

Thus, FOXQ1 is a key oncogenic transcription factor gene among the Fox family 

of genes and it has an essential role in tumorigenesis (Cao et al., 2004, 

Feuerborn et al., 2011). The overexpression and dysregulation of FOXQ1 

oncogene is also found in other types of cancers including ovarian and breast 

cancers (Gao et al., 2012, Sehrawat et al., 2013), cervical cancer (Fan et al., 

2014), gastric cancer (Xiang et al., 2015), pancreatic cancer (Bao et al., 2014), 

bladder cancer (Zhu et al., 2013), glioma (Sun et al., 2013) and liver cancer (Xia 

et al., 2014).  

The expression of FOXQ1 has a role within the Wnt pathway and the 

transforming growth factor (TGF) pathway, both of which are considered to be 

oncogenic signalling pathways that may transform normal cells into cancerous 

ones (Christensen et al., 2013, Fan et al., 2014). In addition, Peng et al, found 

that FOXQ1 serves as a mediator between Wnt and TGF pathways during the 

tumorigenesis of colorectal cancer (Peng et al., 2015). However, lack of growth 

control in UM that is upregulated by TGF pathway has found to play a role in the 

progression of UM cells to the liver (Myatt et al., 2000, Woodward et al., 2002, 

Woodward et al., 2005). Although the FOXQ1 oncogene implicated in the TGF 

pathway, the expression of FOXQ1 does not appear to be relevant to UM 

outcome. 

Similar to FOXQ1, the expression of FARS2, on chromosome 6p25.1, was not 

significant and did not appear to be predictive of outcome for UM patients (Figure 

4.8). FARS2 gene is a nuclear gene encodes for mitochondrial aminoacyl-

transfer RNA (tRNA) synthetases which use phenylalanine to catalyse and 

charge amino acids on their cognate tRNA. Mutations in this gene have been 
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linked to several infantile and adult diseases, as reviewed in Konovalova and 

Tyynismaa (2013). A few research studies have reported that mutation of FARS2 

mainly causes neurological autosomal recessive disorders such as combined 

oxidative phosphorylation deficiency 14 (COXPD14) (Elo et al., 2012, 

Shamseldin et al., 2012, Almalki et al., 2014) and spastic paraplegia 77 (SPG77) 

(Vernon et al., 2015, Yang et al., 2016).  No studies however have examined 

whether the FARS2 gene is linked to oncogenesis.  

Based on the outcome of this study, AMD1 is an interesting candidate for UM as 

it is supported by the findings of IHC analysis for AMD1 expression for groups 

that have a deletion in chromosome 6q, as seen in Figure 4.10 A. A common 

feature of tumour suppressor genes in different cancer types is somatic deletion 

that acts as a driver for tumorigenesis.  

The AMD1 gene is found on chromosome 6q21, which it consists of around 22kb 

and contains 9 exons (Maric et al., 1992). It encodes for S-adenosylmethionine 

decarboxylase 1 (AdoMetDC) which is the main enzyme in the biosynthesis of 

polyamines and its product serves as a major donor for the catalytic activity of 

various reactions involving DNA methylation, RNA, proteins and metabolites 

(Maric et al., 1995, Chiang et al., 1996, Roje, 2006, Pegg, 2009b, Lu and Mato, 

2012). Additionally, AdoMetDC appear to have an imperative role for embryonic 

stem cell (ESC) self-renewal and the differentiation of neural precursor cells 

(Zhang et al., 2012). Scuoppo and colleagues identified a number of tumour 

suppressor genes that affect lymphoma, one of which was AMD1 (Scuoppo et 

al., 2012). Beside lymphoma, the reduction in AMD1 expression in prostate 

cancer was associated with the inhibition of the polyamine pathway, leading to 

inhibition of cancer growth (Gerner et al., 2005, Kaul et al., 2010). In a recent 

study by Zabala-Letona et al., identified that when AMD1 is upregulated it 

activates the rapamycin complex 1 (mTORC1) pathway in prostate cancer, which 

regulates the dynamics of polyamine and is essential for tumorigenicity (Zabala-

Letona et al., 2017). Furthermore, the inhibition of the mTOR pathway was also 

found to have a significant delay of the UM growth using cell lines and patient-

derived xenograft (Amirouchene-Angelozzi et al., 2014). Although this current 

outcome of AMD1 represent a small study and the findings need to be validated 
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for those UM patients with chromosome 6q deletions, which seem to have the 

worse prognosis, the findings of IHC and survival seem to contradict the role of 

AMD1, as seen in Figure 4.10 B. Therefore, the increased expression of AMD1 

correlates with the presence of chromosome 6q, which this study proposed that 

AMD1 has a tumour suppressor role in UM. 

In summary, this study independently confirmed potential genes of interest in the 

targeted regions of chromosome 6 that been previously identified using GISTIC 

and STAC by Alshammari (2017). This study validated these findings using IHC 

to determine the expression of those genes on UM tissue sections. The 

expression of AMD1 is the most interesting and significant, as shown in Figure 

4.10 A. The effect therefore of AMD1 on UM warrants further investigation to 

understand its implication to UM.  
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Chapter 5: The knockout effect of AMD1 

on UM cell lines 
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5.1 Introduction  

In the previous chapter, the assessment for AMD1 expression was significantly 

reduced among groups that have deletion in chromosome 6q (Figure 4.10 A). 

There was some indication that loss of chromosome 6q was associated with a 

poorer outcome (Figure 4.4 A), but the reduced expression of AMD1 did not 

associate with poorer prognosis, if anything the reverse was true. 

As previously mentioned, AMD1 is around 22kb, consists of 9 exons and encodes 

for S-adenosylmethionine decarboxylase (AdoMetDC), which is an essential 

enzyme for the polyamine pathway (Maric et al., 1992, Maric et al., 1995). There 

are three types of polyamines produced in mammals, putrescine, spermidine, 

and spermine, which are naturally found in all types of cells and have an essential 

role in proliferation and various cellular events, as reviewed by Pegg (2009a). 

These polyamines are positively charged and their charge allows them to bind 

with negatively charged molecules such as DNA, RNA and some proteins (Childs 

et al., 2003). Putrescine is formed by ornithine decarboxylase (ODC), which is 

therefore considered to be a rate-limiting factor in the polyamine pathway (Pegg, 

2006). The overexpression of ODC activity has been reported to have a role in 

various types of cancers such as, squamous cell carcinoma, colorectal and 

prostate cancer (Zhang et al., 2006, Shukla-Dave et al., 2016, He et al., 2017).  

The other rate-limiting enzyme in the biosynthesis of polyamine is AdoMetDC, 

which converts the putrescine into higher polyamines such as spermidine and 

spermine, respectively (Pegg et al., 1998). AMD1 has been shown to be essential 

for embryonic development in mice, and indeed the knockout of AMD1 is lethal 

in mice (Nishimura et al., 2002). Besides ODC, AMD1 acts as a tumour 

suppressor gene and has been correlated with a number of cancers, including 

lymphoma, colorectal and prostate cancers (Zhang et al., 2006, Scuoppo et al., 

2012, Zabala-Letona et al., 2017). Targeting AMD1 in polyamine biosynthesis 

pathway therefore offers the potential to understand in-depth its relation to the 

development and progression of UM.  
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In this current study, an initial exploration of AMD1 function in UM cell was 

undertaken. To achieve this, a relatively recent technology called Clustered 

Regularly Interspaced Short Palindromic Repeat (CRISPR) will be used, which 

was first found in E.coli as a natural defence system against viruses DNA (Ishino 

et al., 1987). The elements of CRISPR and its CRISPR-associated (Cas) proteins 

are linked as an adaptive immunity against viral DNA (Jansen et al., 2002). In 

2013, DNA from mammalian cells was for the first time successfully transfected 

and cleaved using a combination of CRISPR and type II Cas protein from 

Streptococcus pyogenes (SpCas9) or the so-called CRISPR/Cas9 system (Cong 

et al., 2013, Mali et al., 2013).  

The formation of CRISPR system to the target sequence allows the Cas9 to 

unwind the DNA and create a double-strand break (DSB). Consequently, the 

targeted cell will repair that break created using non-homologous end joining 

(NHEJ) that often creates different types of mutations that lead to loss-of-function 

for the targeted gene. Alternatively, the break will be repaired by homology 

directed repair (HDR) that needs a donor DNA strand to repair the break, which 

creates a precise mutation if the donor DNA was already altered, as reviewed in 

Pickar-Oliver and Gersbach (2019).  

In summary, AMD1 is essential in polyamine biosynthesis and its effect on UM is 

still not fully known. This chapter therefore aims to knockout AMD1 using 

CRISPR/Cas9 technology so as to determine its effect on the UM cells. To my 

knowledge, this is the first attempt to knockout AMD1 on UM cell lines. 
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5.2 Results 

5.2.1 UM cell lines and chromosomal aberrations 

Four UM cell lines, MEL-577, MEL-585, MEL-627 and MEL-644, chosen to 

represent different aberrations of chromosome 6, were grown in RPMI-1640 

media with supplements, as described in section 2.2.4, and incubated at 37 ºC 

with 5% CO2. These cell lines were maintained and passaged every week 

depending on their confluency. In addition to these cell lines, a hepatocellular 

carcinoma cell line (HepG2) was used as an internal control for ICC and WB, as 

recommended by the antibody manufacturer; this was grown in similar conditions 

to the UM cell lines. These UM cell lines been chosen to represent different 

aberrations in chromosome 6. Chromosomal aberrations among those four UM 

cell lines were determined previously by members of our group using array-CGH. 

The cellular characteristics of the MEL-577 cell line passage 59 showed a mixed 

cell morphology (Figure 5.1 A-B). The chromosomal aberrations of MEL-577 

passage 53 represented typical UM chromosomal aberrations such as 

monosomy 3, gain of 8q and the aberration for chromosome 6 profile was partial 

gain of 6p and loss of 6q (pseudo-isochromosome 6p) (group 2) (Figure 5.1 C).  
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Figure 5.1: Phase contrast micrographs and array-CGH ideogram of MEL-
577. 

(A) The UM cell line MEL-577 passage 59 shows a mixed cell morphology on 10X 
magnification (B) the cells appear clearly under 20X magnification. (C) An ideogram of 
MEL-577 passage 53 showing  a pseudo-isochromosome 6p, as well as aberrations 
such as gain of 1q, monosomy 3, gain of 8q, monosomy 9, partial loss of chromosome 
11q, loss of chromosome 13, gain of 16p and loss of 16q, loss of 17p and gain of 17q 
and loss of 18p.  

All microscope images were taken using REBEL ECHO (Avantor™). Images output for 
ideograms were taken from Agilent Genomic Workbench software v7.0.4.0. The ADM-2 
algorithm was used to detect all the aberrations. 

 

The cellular characteristics of MEL-585 passage 36 also showed a mixed cell 

morphology, as seen in Figure 5.2 A-B. In addition, the chromosomal profile for 

UM cell line MEL-585 passage 29 showed monosomy 3 and isochromosome 8q 

while the chromosome 6 aberration was pseudo-isochromosome 6p (group 2) 

(Figure 5.2).  
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Figure 5.2: Phase contrast micrographs and array-CGH ideogram of MEL-
585. 

(A) The UM cell line MEL-585 passage 36 shows a mixed cell morphology on 10X 
magnification (B) the cells appear clearly under 20X magnification. (C) An ideogram of 
MEL-585 passage 29 showing a partial gain of chromosome 6p and loss of to the rest 
of chromosome 6 where the cells developed different aberrations such as monosomy 3, 
gain of chromosome 5, loss of 8p and gain of 8q, monosomy 9, partial gain of 
chromosome 12, loss of chromosome 13, gain of 16p and loss of 16q, loss of 
chromosome 17 and partial loss and gain of chromosome 21 and loss of chromosome 
22. 

All microscope images were taken using REBEL ECHO (Avantor™). Images output for 
ideograms were taken from Agilent Genomic Workbench software v7.0.4.0. The ADM-2 
algorithm was used to detect all the aberrations. 
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The UM cell line of MEL-627 passage 27 showed an epithelioid cell morphology, 

as seen in Figure 5.3 A-B. The chromosomal aberrations for MEL-627 passage 

25 were disomy 3, trisomy 8 and gain of chromosome 6p only, this representing 

group 1 (Figure 5.3 C).  

 

Figure 5.3: Phase contrast micrographs and array-CGH ideogram of MEL-
627. 

(A) The UM cell line MEL-627 passage 27 shows an epithelioid cell morphology on 10X 
magnification (B) the cells appear clearly under 20X magnification. (C) An ideogram of 
MEL-627 passage 25 showing gain of chromosome 6p where the cells developed 
different aberrations such as partial gain of chromosome 2p, loss of chromosome 4p, 
trisomy 8, loss of 9p, partial gain of chromosome 11q, partial gain of 13q and loss of 17p.  

All microscope images were taken using REBEL ECHO (Avantor™). Images output for 
ideograms were taken from Agilent Genomic Workbench software v7.0.4.0. The ADM-2 
algorithm was used to detect all the aberrations. 

 



 
 

144 

The cellular characteristics for MEL-644 passage 27 showed a spindle cell 

morphology, in contrast to the other three cell lines (Figure 5.4 A-B). The 

chromosomal aberrations for MEL-644 passage 22 exhibited classical UM 

aberrations such as loss of chromosome 1p, monosomy 3 and gain of 8q 

whereas there was no aberration for chromosome 6 (group 4) (Figure 5.4 C). 

 

Figure 5.4: Phase contrast micrographs and array-CGH ideograms of MEL-
644. 

(A) The UM cell line MEL-644 passage 27 shows a spindle cell morphology on 10X 
magnification (B) the cells appeared clearly under 20X magnification. (C) An ideogram 
of MEL-627 passage 22 showing no aberration in chromosome 6 where the cells 
developed different aberrations such as loss of 1p, monosomy 3, gain of 5q, gain of 8q, 
monosomy 9, loss of 11p, partial loss of chromosome 13, loss of 16q, loss of 17p, partial 
loss of 18q, trisomy 21 and partial loss of chromosome 22.  

All microscope images were taken using REBEL ECHO (Avantor™). Images output for 
ideograms were taken from Agilent Genomic Workbench software v7.0.4.0. The ADM-2 
algorithm was used to detect all the aberrations. 
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5.2.2 Immunocytochemistry of UM cell lines  

Immunocytochemistry (ICC) was conducted on the UM cell lines mentioned in 

order to determine the protein expression of AMD1. The UM cells were seeded 

on slides as mentioned in section 2.2.5, and fixed for used for the ICC. The AMD1 

antibody that been used in this experiment was optimised based on the 

manufacturer’s recommendation. This experiment was done to confirm the 

expression of AMD1 at a cellular level for those selected UM cell lines similar the 

IHC that was undertaken on UM tissue sections in the previous chapter.  

The results showed that the HepG2 cells have a strong expression of AMD1 in 

the nucleus and cytoplasm compared to the negative control (Figure 5.5 A-B). 

Although it is known that the expression of AMD1 is mainly in the cytoplasm for 

IHC, the expression of AMD1 using ICC showed variation of expression in the 

cytoplasm while nuclear staining was stronger. 

The four UM cell lines exhibited various AMD1 protein expression intensity 

(Figure 5.5 C-F). For instance, the mixed cell morphology of MEL-577 showed a 

moderate staining of AMD1 in the cytoplasm while there was a strong staining in 

the nucleus. Similarly, with MEL-585 the mixed cell morphology also showed a 

moderate staining in the nucleus and low staining in the cytoplasm. The 

epithelioid cell morphology of MEL-627, however, showed a low staining for 

AMD1 in the nucleus and no staining appeared in the cytoplasm. The staining for 

AMD1 on MEL-644, which has a spindle cell morphology, showed a strong 

staining in both nucleus and cytoplasm. Therefore, the increased of AMD1 

expression among spindle cell morphology only may indicate a better prognosis 

for UM. 

These UM cell lines have different chromosome 6 groups, and this explains the 

variation in the expression of AMD1 on these cells, as mentioned in the previous 

section. Although the cell lines (MEL-577 and MEL-585) represent (group 2), 

which is partial gain of chromosome 6p and loss of chromosome 6q, have same 

pattern as IHC analysis by exhibiting a lower expression of AMD1 in the 

cytoplasm, the other cell lines (MEL-627 and MEL-644) did not follow this same 

pattern as the IHC analysis. 
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Figure 5.5: Immunocytochemistry for AMD1 antibody against UM cell lines.  

(A) Negative control of HepG2 cells grown on slides without AMD1 staining and only 
haemoxylin. (B) Positive control for AMD1 using HepG2 cells. (C) Staining of AMD1 on 
MEL-577 cells showing the stronger staining in the nucleus than the cytoplasm. (D) 
Staining of AMD1 on MEL-585 showing a moderate staining in the nucleus than the 
cytoplasm. (E) Staining of AMD1 on MEL-627 showing a low staining in nucleus and no 
staining appeared in the cytoplasm. (F) Staining of AMD1 on MEL-644 showing a high 
staining in nucleus and moderate in the cytoplasm.  

All microscope images were taken using REBEL ECHO (Avantor™). 
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5.2.3 AMD1 knockout using CRISPR/Cas9 

The first step in knockout AMD1 gene is to design an appropriate sgRNA to bind 

with the desired DNA target. The design of AMD1 sgRNA was therefore done by 

using the Thermofisher website to generate a modified synthetic sgRNA. It 

appeared that the most efficient location for to knockout of AMD1 was on exon 1, 

as explained in section 2.2.7. The UM cells were therefore transfected using 

lipofectamine (CRISPRMAX), a lipid transfection agent, that was mixed with the 

sgRNA and Cas9 protein to form ribonucleoprotein (RNP) complex and that 

complex was added to each UM cell line, which was then incubated at 37ºC and 

5% CO2 for 48 hours. The UM cell line MEL-585 was excluded from this 

experiment, however, due to its poor cellular growth which there was insufficient 

time to resolve. The downstream applications to assess the efficiency of the 

AMD1 knockout were done by extracting the DNA and protein from each UM cell 

line. 

5.2.3.1 Assessment of AMD1 knockout efficiency using 

Genomic cleavage detection (GCD) assay 

The DNA that was extracted from UM cell lines were used to calculate the 

efficiency of the AMD1 knockout. The DNA was amplified using PCR around the 

target site, as explained in section 2.2.7. The amplified PCR products were then 

incubated with T7 Endonuclease I, which has the ability to recognize the 

heteroduplex mismatches and cleave them to produce a small two bands shorter 

than the original parental band. After amplifying the target and treating it with T7 

Endonuclease I, the results showed that all transfected UM PCR products had a 

parental band and two shorter cut bands, which was as expected because of the 

cut between 202 bp and 398 bp in comparison with the untreated PCR product 

that only had one band, as seen in Figure 5.6 A. The calculation of the knockout 

efficiency from these bands was done using Image Lab (BioRad) to determine 

the percentage of each cleaved band in comparison with its parental band, based 

on the following equation: 

𝐾𝑛𝑜𝑐𝑘𝑜𝑢𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 1 − ((1 − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑙𝑒𝑎𝑣𝑒𝑑)
1

2). 
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This equation was applied to all samples so as to calculate the efficiency of AMD1 

knockout (Figure 5.6 B). The positive control showed a 10.11% efficiency and the 

UM cell lines showed knockout efficiencies of 9.67% for MEL-644, 7.16% for 

MEL-577 and 6.94% for MEL-627.  

 

Figure 5.6: The cleavage efficiency for AMD1 knockout in UM cell lines.  

(A) The gel electrophoresis of both undigested and digested UM cell lines showed that 
the amplified product was at 600 bp and the cuts were at 202 bp and 398 bp, as 
previously designed, while the internal positive control was amplified at 500 bp and the 
cut were at 225 bp and 291 bp, per the manufacturer’s instructions. (B) The calculated 
total efficiency of the transfected cells showed that they were between 7 and 10% in 
comparison with the internal positive control, which was 10%.  
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5.2.3.2 Assessment of AMD1 knockout efficiency using 

Tracking indel by decomposition (TIDE) 

The PCR products that were generated from the knockout and WT UM cell lines 

were sent to the sequencing core facility at the University of Sheffield. The results 

showed that all PCR products from WT UM cell lines and knockout AMD1 

achieved a good sequence trace (Figure 5.7). These sequences were then 

compared with the WT using an online quantifying method called Tracking of 

Indel by Decomposition (TIDE) http://tide.deskgen.com (Brinkman et al., 2014). 

This method is designed to determine the efficiency frequency from cell pools by 

adding the gRNA sequence before the software aligns this sequence with both 

the control and knockout sequence to calculate the percentage of the efficiency 

with the R2 to confirm the findings. The sequence traces were uploaded so as to 

generate the total efficiency percentage by comparing the WT to the knockout. 

The data showed that MEL-644 had the highest total efficiency (7.5%) in 

comparison with the other UM cell lines, which had total efficiencies between 1 

and 5.2%, as seen in Figure 5.6. 

  

http://tide.deskgen.com/
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Figure 5.7: Chromatogram of AMD1 for UM cell lines and total efficiency 
calculation. 

The chromatogram shows that UM cell lines sequenced for AMD1 having the area of 
sgRNA including PAM sequence. The total efficiency percentage calculation for UM cell 
lines using Tracking of Indel by Decomposition (TIDE) appeared to have a variation in 
the total efficiency percentage such as MEL-577 which has a total efficiency of 3.3%, 
MEL-585 of 1%, MEL-627 of 5.2% and MEL-644 of 7.5% with R2 between 0.99 to 0.92. 
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5.2.3.3 Assessment of AMD1 knockout efficiency using 

Western blot  

The protein in both WT and knockout UM cell lines were extracted in order to 

measure the protein expression of AMD1. The protein was extracted successfully 

from the HepG2 control and all the UM cell lines. 

Numerous technical issues occurred when used the WB experiment to check the 

expression of AMD1 among UM lysates. For instance, when the SDS-PAGE was 

done and the gel was transferred to the PVDF membrane using the semi-dry 

method, no result was achieved. The wet transfer was therefore used, which was 

successful. Another issue was that while bands for beta-tubulin appeared, there 

were none for the AMD1 antibody. Because the first AMD1 antibody from 

Abcam™ did not work with the samples, the AMD1 antibody was changed to 

another company (ProteinTech™) which worked with the samples. In addition, 

the band for AMD1 was very faint and could not be detected. To overcome this 

issue, a long exposure time (two hours) was applied to give sufficient time for the 

membrane to develop the AMD1, and this worked with the lysate.   

The results for AMD1 protein expression showed to have four bands for HepG2 

(150 KDa, 80 KDa, 60 KDa and 30 KDa) (Figure 5.8 A). These bands are for the 

AMD1 at 30 KDa, proAMD1 at 60 KDa and an unspecific band at 80 KDa. In 

addition, the band at 150 KDa is also unspecific, which was only expressed with 

HepG2 cell line. Thus, the UM cell lines for both knockout and WT expressed 

only three bands (80 KDa, 60 KDa and 30 KDa) and these three bands did not 

change for the knockout in comparison with the WT UM cell lines. Remarkably, 

only the knockout MEL-644 showed a shift of the proAMD1 in comparison to the 

WT MEL-644 from 60KDa to 75KDa.  

The experiment was repeated again to confirm the findings in the previous 

experiment and the proAMD1 for the knockout MEL-644 compared to the WT 

MEL-644 this time had only one band at 75 KDa without the unspecific band on 

80 KDa (Figure 5.8 B). The beta-tubulin worked for all the samples, however, 

except for the knockout MEL-644.  
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Figure 5.8: The effect of AMD1 protein expression knockout and WT UM cell 
lines.  

(A) The positive control showed four bands for AMD1 in HepG2 while the UM cell lines 
showed only three bands. The first band at 30 KDa was for the AMD1, the band at 60 
KDa was for the proAMD1 and the bands at 80 KDa and 150 KDa were unspecific band. 
MEL-644-KO, however, showed a shift in the proAMD1 to 75 KDa in comparison with its 
WT. The beta-tubulin appeared at 50 KDa for all samples except MEL-644-KO. (B) The 
experiment was repeated to confirm the findings and MEL-644-KO showed the AMD1 at 
30KDa and only shifted band at 75KDa without the unspecific band at 80KDa. Similar to 
the previous experiment, beta-tubulin appeared in all the test samples except for MEL-
644-KO. 
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5.2.3.4 Proliferation assay for WT and knockout UM cell lines  

The UM cell lines that were transfected with AMD1 sgRNA and the WT were 

tested to check for any differences in biological growth, as explained in section 

2.2.8. For this, Mr. Ahmad Alshammari kindly performed the MTT for this study 

due to the limit time for this project and his prior experience with this technique. 

The objective of this experiment was to determine the biological effect of AMD1 

knockout UM cell lines in comparison with the WT UM cell lines. 

The results for MTT showed that there was no significant difference between WT 

UM cell lines MEL- 577 and MEL-627 and the AMD1 knockout, as seen in Figure 

5.9 A-B. Interestingly, the WT UM cell line MEL-644 showed a doubling time of 

around 58 hours while the knockout UM cell line appeared to has a lower doubling 

time of around 50 hours (Figure 5.9 C). This experiment was repeated at least 

three times to confirm the finding and the mean was calculated with SEM.  
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Figure 5.9: Analysis of UM cell viability using MTT assay after AMD1 
knockout. 

These results show the calculation of MTT on O.D. 570nm with images of each knockout 
cell line. (A) The cell viability for both MEL-577 WT and KO showed no difference and 
the doubling time was almost the same. (B) There was a slight difference of MEL-627 
between the WT and the KO of MEL-627 with the doubling time being 93.1 and 104 
hours, respectively; this may due to the erroneous reading difference after 48 hours 
because at 24, 72 and 96 hours the cell growth rates were the same. (C) However, the 
doubling time for MEL-644 the WT and KO were different (57.85 and 49.53 hours, 
respectively). All microscope images were taken using REBEL ECHO (Avantor™). 
These charts were designed and calculated using GraphPad Prism (v 8.0). 
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5.3 Discussion  

This current study, for the first time, knocked out AMD1 in UM cell lines with 

various chromosome 6 abnormalities so as determine its effect using genetic and 

protein analysis. Four UM cell lines were chosen, therefore, representing groups 

1, 2 and 4 of different chromosome 6 aberrations to evaluate the knockout of 

AMD1 in UM cell lines. The determination of the AMD1 protein expression among 

UM cell lines using ICC showed that MEL-644, which is spindle cell morphology, 

had the highest AMD1 expression compared to the other UM cell lines. These 

UM cell lines were then transfected by CRISPR/Cas9 to knockout AMD1 exon 1 

using sgRNA to determine the effect of AMD1 expression on UM cell lines.  

This chapter used the CRISPR/Cas9 knockout instead knock-in of AMD1 gene 

because the knock-in is harder to achieve and has a low efficiency rate. This 

depends on the design of the inserted dsDNA and the number of base pairs that 

should be inserted to the target DNA, as reviewed in Carroll (2016). In addition, 

homology-direct repair (HDR) is necessary to insert the desired dsDNA to the 

targeted DNA, however, the occurrences of error-free HDR in the cells are less 

than the error-prone NHEJ. This is because HDR occurs only in S- or G2-phase 

of the cycle where NHEJ occurs in throughout the cell cycle (Soutoglou et al., 

2007, Zierhut and Diffley, 2008). Furthermore, HDR needs a donor DNA template 

to insert the desired dsDNA to the targeted DNA which NHEJ does not need to 

make the DSB. Subsequently, these issues make knock-in for any piece of 

dsDNA harder to achieve than knockout using CRISPR/Cas9.  

Interestingly, AMD1 showed different sites of expression using WB and that may 

be due to unspecific expression sites of AMD1 appearing in the blot, as recently 

argued by Zabala-Letona et al. (2017). They found that after using WB for AMD1 

expression on their prostate cancer cell lines other expression sites were shown 

as being expressed in the WB, rather than just proAMD1 or AMD1. They also 

exposed their membrane for a longer time to determine the presence of the 

proAMD1, which is similar to the presented WB for both proAMD1 and AMD1. 

This shift of proAMD1 may due the effect of the knockout of AMD1 in UM cell 

lines which may lead to an upregulation of mTOR pathway. This is because the 
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AMD1 is produced as a proAMD1 which is self-cleaved and resulting in an active 

form of AMD1 (Pegg, 2006). However, the knockout of AMD1 in UM cells may 

disturb the normal cleavage process of the proAMD1 and result in an 

upregulation of the mTOR pathway. 

5.3.1 What is the correlation between AMD1 and 

mTOR pathway? 

As mentioned earlier, it appears that there is a relationship between 

chromosomal aberrations and genetic mutations. For example, prostate cancer 

has a similar loss of chromosome 6q to that of UM cells (Nupponen et al., 1998). 

In that case, Nupponen et al., used CGH technology to determine the 

chromosomal aberrations among their prostate cancer cell lines and found that 

the deletion of chromosome 6q was significant in most of their prostate cancer 

cell lines. The correlation in this study between AMD1 and chromosome 6q in 

UM is therefore similar to the prostate cancer. 

In addition, AMD1 expression is upregulated in prostate cancer cells by activating 

the mTOR pathway (Zabala-Letona et al., 2017). The mTOR pathway is part of 

the PTEN-PI3K pathway and together they sustain the growth and proliferation 

of cancer cells (Zoncu et al., 2011, Efeyan et al., 2015). The inhibition of the 

mTOR pathway in UM cells showed a reduction in the growth for the UM cells 

(Ho et al., 2012, Amirouchene-Angelozzi et al., 2014). It is plausible, therefore, 

that AMD1 act as a tumour suppressor gene because when this gene is mutated, 

it may affect UM cells by upregulating the mTOR pathway.  

5.3.2 The knockout efficiency differences in CRISPR 

The knockout efficiency percentages were determined using both GCD assay 

and TIDE to estimate the effect of AMD1 knockout on UM cell lines. The GCD 

assay used T7 endonuclease I to detect and cleave any structural abnormalities 

in the amplified heteroduplex DNA (Mashal et al., 1995). This assay is considered 

to be a simple and cost-effective technique which is also easy to interpret for 

CRISPR edits. A comparison between GCD assay using both T7 endonuclease 

I and Surveyor nuclease revealed T7 endonuclease I to be the more sensitive 



 
 

157 

technique for measuring the editing efficiency of sgRNA (Vouillot et al., 2015). 

Other work has argued that the GCD assay using T7 endonuclease I, however, 

may not be highly sensitive because it is may influenced by various factors such 

as the length of the mismatch, secondary structure, flanking sequence and the 

abundance of mutated sequences (Mashal et al., 1995, Vouillot et al., 2015).  

Sentmanat et al. (2018) evaluated the strategies of different techniques used to 

determine the editing efficiency of CRISPR in comparison to next generation 

sequencing (NGS). They found that the T7 endonuclease I did not accurately 

measure the cells edited by CRISPR in comparison with NGS. On the other hand, 

they also found TIDE has a similar accuracy to that of the. TIDE is an algorithm 

created by Brinkman et al. (2014) which calculates the Sanger sequence traces 

after amplifying the PCR product to detect edited cells created by CRISPR 

compared to the WT cells. Although NGS is more sensitive and reliable more 

than other techniques, it is a high cost and labour intensive approach, and thus 

TIDE was chosen here as a reliable technique for a low number of samples 

(Sentmanat et al., 2018). The results of this study revealed that MEL-644 had the 

highest editing efficiency of the various tested UM cell lines. 

5.3.3 The effect of polyamines on beta-tubulin 

The absence of beta-tubulin expression in the membrane for the knockout UM 

cell line MEL-644, may be due to a relationship between microtubules (alpha- 

and beta-tubulin) and the polyamines (Figure 5.8). Thus, Pohjanpelto et al. (1981) 

found that the starvation of polyamines may cause a disappearance of 

microtubule and actin filaments in the mammalian cells, as reviewed in 

Bouchereau et al. (1999). In addition, Mechulam and colleagues found that there 

was a relation between microtubules and the polyamines such as spermidine and 

spermine both in vitro and in vivo (Mechulam et al., 2009). Therefore, this relation 

between the polyamines and tubulin may have an effect on the edited MEL-644 

which showed a shift in proAMD1 from 60 KDa to 75 KDa compared to the WT, 

while there was no expression for beta-tubulin in that edited sample (Figure 5.8).  

In addition, this relation may also affect the proliferation of the knockout of AMD1 

in MEL-644 which showed an increase in the growth rate compared to the WT 

UM cell line, as seen in Figure 5.9 C. Consequently, there may a relationship 
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between one of the polyamines regulators (AMD1) and beta-tubulin that leads to 

a diffusion of beta-tubulin in the knockout UM cell line in comparison to its WT. 

Although there are a correlation AMD1 and beta-tubulin, the diffusion in beta-

tubulin may have resulted from unexpected off-target effect from CRISPR 

technology. 

In summary, this chapter used CRISPR as a new technology to knockout AMD1 

so as to determine its effect on UM cell lines. The knockout of AMD1 was 

achieved in the UM cell line (MEL-644) with normal chromosome 6 and the 

efficiency was determined to be effective. Although it is known in this study that 

spindle cell morphology is correlated with good prognosis, this UM cell line 

exhibits chromosomal aberrations such as monosomy 3 and gain of chromosome 

8q, which indicates a poor prognosis. In addition, this study also showed that the 

results effectively produce less of the AMD1 and therefore it has a tumour 

suppressor gene role in UM. Although the result of this study found a shift of 

proAMD1 to a higher molecular weight, this outcome needs to be repeated to 

confirm this effect of AMD1 on knockout UM cells. However, due to the limited 

time of this PhD, the repeat of knocking out AMD1 in UM cell line was not 

achievable and that will be done in the future to confirm this outcome. Accordingly, 

further exploration of AMD1 in UM may help in understanding how changes of 

chromosome 6 affect UM development and influence prognosis.  
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Chapter 6: General discussion 
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Figure 6.1: Summary of this study and the findings for each chapter.
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6.1 Overview of this study 

The clinical, histopathological and genetic prognostic factors for UM have been  

well characterised in numerous previous research studies (Mooy and De Jong, 

1996, Sisley et al., 1997, Singh et al., 2001, Coupland et al., 2013). Although the 

chromosomal aberrations in UM have previously been correlated with prognosis 

(Sisley et al., 1990, Prescher et al., 1996, Sisley et al., 1997), these chromosomal 

aberrations have not been explored in detail to identify the relevant drivers of UM 

and its metastasis. Furthermore, although genes may be implicated, such as 

BAP1, the relationship between its mutation, expression and prognosis is unclear 

(Harbour et al., 2010, Koopmans et al., 2014b, Van Beek et al., 2015). The role 

of chromosome 6 has not been fully as extensively studied as other common 

chromosomes changes found in UM, such as chromosomes 3 and 8 (Sisley et 

al., 1997, Cross et al., 2006, van de Nes et al., 2016, Dogrusoz et al., 2017). 

Therefore, the aim of this current thesis was to evaluate in-depth chromosome 6 

aberrations and identify driver genes that may help understand the progression 

of UM, as summarised in Figure 6.1. 

This study started with a comparison between the common chromosome 6 

aberrations in UM along with their relationship to other known genetic biomarkers 

such as SF3B1, EIF1AX and TERTp (Furney et al., 2013, Harbour et al., 2013, 

Martin et al., 2013, Dono et al., 2014, Yavuzyigitoglu et al., 2016b). The outcome 

of chapter 3 proposed an alternative sequence of events in UM considering 

disomy 3 with isochromosome 6p followed by mutations in SF3B1 and then gain 

of chromosome 8q as one of the events that affect the prognosis of UM (Figures 

3.9).  

Moreover, this study broadly confirmed the target genes of interest on 

chromosome 6 (FOXQ1, FARS2 and AMD1) using a small number of cases, 

which been identified previously by Alshammari (2017). This study also evaluated 

the protein expression of those targeted genes using IHC and found that there 

was a significant reduction of AMD1 expression among groups with chromosome 

6q deletion (Figure 4.10). 
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Furthermore, in chapter 5, the AMD1 gene was knocked out in UM cell lines using 

CRISPR/Cas9 technology, for the first time, in order to evaluate the efficiency 

and determine its effect on UM cell lines. In addition, the findings from the specific 

targeting of AMD1 raised a number of questions specifically a depletion beta-

tubulin (Figure 5.8). It was also found that specific targeting of AMD1 raised a 

number of questions, specifically a depletion of beta-tubulin, as seen in Figure 

5.8. 

6.1.1 Can the importance of AMD1 to UM be 

independently validated? 

The Cancer Genome Atlas (TCGA), which is a project supported by the National 

Institute of Health (NIH), aims to provide an extensive genetic analysis for 

different types of cancers, correlated with their clinical outcomes. Robertson and 

colleagues analysed 80 primary UM samples together with their clinico-

pathological profiles, genomic alterations and mutational status and NGS, and  

published their data on TCGA (Robertson et al., 2017). They classified the 

genetic mutations of EIF1AX and SF3B1 similarly to the classification used in 

Chapter 3 of this thesis. In addition, the SCNA of UM were categorised into four 

categories based on monosomy 3, gain of chromosome 8q and gain of 

chromosome 6p. Therefore, TCGA is a good approach to correlate our outcome 

on AMD1 and confirm this gene in a published database.  

The University of California Santa Cruz (UCSC) developed an online analysis 

tool called Xena to explore the TCGA data and analyse them directly from their 

website (www.xenabrowser.net). This online tool allows the users to explore 

genomic data and correlate them with genomic or phenotypic data. This study 

used Xena to explore AMD1 with the outcome of UM TCGA of 80 UM samples 

and generate a correlation between the gene and the published data on UM. It 

was found that AMD1 is lost in 22 out of 80 samples (27.5%) and gained in 6 

samples only (7.5%). Loss of AMD1 was correlated with the isochromosome 6p 

while the gain of AMD1 appeared to be correlated with a gain of whole 

chromosome 6, as appears in Figure 6.2 column C and D. Similarly, loss of AMD1 

showed a low gene expression with an isochromosome 6p while there was 

http://www.xenabrowser.net/
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different high and low gene expressions for the gain of chromosome 6, as shown 

in Figure 6.2 column E.  

 

 

Figure 6.2: Analysis using UCSC Xena for AMD1. 

The figure shows that in column (A) the sample ID and (B) the copy number of gene 
level of AMD1; (C) similar to column B but without the germline mutations. (D) The copy 
number segregation of chromosome 6; (E) showed the gene expression profile of AMD1.   

 

 

The Kaplan-Meier analysis for chromosome 6 alterations with AMD1 showed that 

patients have a poor overall survival with loss of AMD1 than with its gain (Figure 

6.3). Indeed, the loss of AMD1 in UM patients have a lower overall survival, 

although the overall survival in AMD1 gain cases showed to have a late effect on 
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overall survival. This is because the overall survival for both AMD1 gain and loss 

have decreased at about three and half years. This suggests that the loss of 

AMD1 has particularly striking early effect on overall survival in comparison with 

the AMD1 gain. Therefore, the outcome from TCGA is interesting and indicates 

that AMD1 may have a role in the development of UM and subsequent prognosis, 

which is supporting the findings of this study. 

 

 

Figure 6.3: The Kaplan-Meier analysis of AMD1 gain and loss.  

The analysis of AMD1 in TCGA using Xena showed that the loss of AMD1 in UM cells 
appeared to decrease the survival rate in comparison with the gain of AMD1.  
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6.2 Study limitations  

Although this study found an interesting gene (AMD1) that may have a 

relationship to the development and metastasis of UM that has not been reported, 

there were limitations. Technical challenges towards the end of the project did 

not allow in-depth analysis of the functional impact of AMD1 on UM development 

and were limited by the remaining time of the study. In addition, another important 

constrain is that Nexus software licence was not available for analysis in chapter 

4 and some of the clinical follow-up information was limited. In chapter 5, the 

transfection of AMD1 using CRISPR/Cas9 needs to be repeated to confirm the 

findings in UM cell lines and the protein expression of UM among those cell lines. 

Moreover, the gene expression should be measured after the transfection to 

determine any differences in the expression of AMD1 when it was knocked out 

in comparison with its normal status.  

6.3 Future direction 

This thesis used a novel approached to identify AMD1 as a plausible target for 

the future research. Based on this finding, CRISPR/Cas9 knockout for AMD1 

should be done again and including a control cell line such as human embryonic 

kidney (HEK293) to compare the efficiency between the UM cell line and the 

control cell line. It would be advisable to increase the number of UM cell lines in 

order to compare the effect of transfection and thus potentially of generate a 

higher knockout efficiency. Furthermore, although the relationship between 

AMD1 and beta-tubulin showed that there may be an off-target effect resulted 

from CRISPR, it is still an acceptable approach for further exploration which 

needs to be considered for future research.  

In addition, a single cell colony should be achieved after the transfection using 

fluorescence activated cell sorting (FACS) because the cells were in mixed cell 

pools post CRISPR transfection, i.e. some of them were transfected and others 

not, and the single cell colony technique will generate a unified knockout AMD1 

in the UM cell line. This knockout cell line will allow the application of other 
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approaches to validate the AMD1 gene expression in vitro such as gene 

expression, genetic analysis and protein expression. In addition, the use of NGS 

for the UM knockout cells may give a detailed information about other genes that 

may be mutated. After validating the knockout cell line, it would be interesting to 

check the effect of knockout AMD1 on an UM cell line in vivo by transfecting 

those cells into an animal model to check the effect of knockout of AMD1 on the 

animal. 
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Appendix 1: Mapping for genes used in this study and 

mutations hotspots 

GNAQ exon 4 codon R183 

Forward primer: TCTTTTTCTCCCACCCCTTGC 

Reverse primer: TTGTTTTGAAGCCTACACATGATTCC 

Product size = 509bp 

 

TCTTTTTCTCCCACCCCTTGCCTCTGGGGAGTATGAGTTCTAATTGATAATAAGAGAA

GAAATGAGAACTATGGTGTGTATGTAATCCATAGATGGATAACCTTCCAGTAATGGAA

GGTTGACTTTATCTTTCTTTTCCACAGACTCCTCTACCACTTTCTGATATTTTTCTTT

CTCTTCTTTACTTCTCTGTTAGGACTCATTTTTGTCCTTCCCTTTCCGTAGACAGCTT

TGGTGTGATGGTGTCACTGACATTCTCATTGTGTCTTCCCTCCTCTAGCTATCTTAAT

GACTTGGACCGCGTAGCTGACCCTGCCTACCTGCCTACGCAACAAGATGTGCTTAGAG

TTCGAGTCCCCACCACAGGGATCATCGAATACCCCTTTGACTTACAAAGTGTCATTTT

CAGGTAGTAACTGAGTCCATGAAACCTATTTCCCAGCTTTTATGCCTTGAGTACATTT

GGTAAACTCTATAAATACTGGAATCATGTGTAGGCTTCAAAACAA 

Mutation hotspot, primers and sequencing area  

GNAQ exon 5 codon Q209 

Forward primer: AGAAGTAAGTTCACTCCATTCCC 

Reverse primer: TTCCCTAAGTTTGTAAGTAGTGC 

Product size = 317bp 

 

AGAAGTAAGTTCACTCCATTCCCCACACCCTACTTTCTATCATTTACTTGTATCAGAT

AATAAAATGATAATCCATTGCCTGTCTAAAGAACACTTACCTCATTGTCTGACTCCAC

GAGAACTTGATCATATTCACTAAGCGCTACTAGAAACATGATAGAGGTGACATTTTCA

AAGCAGTGTATCCATTTTCTTCTCTCTGACCTTTGGCCCCCTACATCGACCATTCTGC

AAGGTTAACAATACTCATATTAATAACATATAAAGTAAAACTAAAAAGTCAACATAAA

TATAGCACTACTTACAAACTTAGGGAA 

Mutation hotspot, primers and sequencing area  
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GNA11 exon 4 codon R183 

Forward primer: GTGCTGTGTCCCTGTCCTG 

Reverse primer: GGCAAATGAGCCTCTCAGTG 

Product size = 249bp 

 

GTGCTGTGTCCCTGTCCTGCCCCCCCACCCCCGGCAGCCGGCCTGAGCACCCACCGCT

GTGTTGCAGCTACCTGACCGACGTTGACCGCATCGCCACCTTGGGCTACCTGCCCACC

CAGCAGGACGTGCTGCGGGTCCGCGTGCCCACCACCGGCATCATCGAGTACCCTTTCG

ACCTGGAGAACATCATCTTCCGGTACCGCCCGGGCCACAGCAGGCGGGGAGGGGGCAC

TGAGAGGCTCATTTGCC 

Mutation hotspot, primers and sequencing area  

 

GNA11 exon 5 codon Q209  

Forward primer: CGCTGTGTCCTTTCAGGATG 

Reverse primer: CCTCGTTGTCCGACT 

Product size =147bp 

GAGCGTCCTTGCCCGTTCTAAGAGTGGGGGCTCTTCCTGCTCCAGCCGATGTCAGTCT

GGTGTGGCAGGAGGGGCTTGGGTGGGAGCCGTCCTGGGATTGCAGATTGGGCCTTGGG

GCGCCAGGTGGCTGAGTCCTGGCGCTGTGTCCTTTCAGGATGGTGGATGTGGGGGGCC

AGCGGTCGGAGCGGAGGAAGTGGATCCACTGCTTTGAGAACGTGACATCCATCATGTT

TCTCGTCGCCCTCAGCGAATACGACCAAGTCCTGGTGGAGTCGGACAACGAGGTGGGC

CCTGCCCTGAGCAGGGGCAGCGTTGGGGGCCGGGCCTTCCCCACCTGCCAAGCCTGGG

TCCCCTCACCTGGGTCCCCCCAGCTGCCCCTTGGGCTGTGTGCAGTGGGGAGGGCCCC

TCTGATTCCCTCTG 

Mutation hotspot, primers and sequencing area  
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EIF1AX exon 1   

Forward primer: GAAAAGCGACGCAAAGAGTC 

Reverse primer: CTGGGTGACCTGCAATCTAC 

Product size =320bp 

GAGTCAGTCGGCCACGCCTGCGTCATAAAGCCTGGGGGCGGGCCCAGCCGGCGACGGG

AGGCGGGGAAAAGCGACGCAAAGAGTCGCGGCGCCATTTGCTGCCGCCGAGCGTGGAC

GCAGGCGGATCTCTGAAGAGCTGGGTCGCCAGCCTCTCCCGCGCACGTTGCCTGGCCT

CCAGCACCTACTTGGTCCCGCGCGCTCCCTCGTGTCGCCCCTCGGAGCAGCAGCCGCC

GCGGTCGCCGCTACCCGGAAAGAAGTCAGAGACGCCGCGAGGTCGCCGCCACCGCCAT

GCCCAAGAATAAAGGTAATGCCGCCCGGACCCCCGGACCACGGCTCTGCTCGGCCGGG

TCTCCCAGGTCCTGCCCGTAGATTGCAGGTCACCCAGGCCGCAGTGACCCTT 

Mutation hotspot, primers and sequencing area  

 

EIF1AX exon 2 codon K3 

Forward primer: GGGTAGGGAGGTGATAATGTG 

Reverse primer: CTGTAATCGTGCCACCACAC 

Product size =406bp 

TTTAACATAATATCTGCTATTTATGTGTATTTTATGTCAGAAAAATCCCCAAAGGAAA

TTCCAAGAAGGGTAGGGAGGTGATAATGTGTTAATGTTGGGATTGGAGATTGTAAATT

TAATATGATTGTGTAGCTAAAATAGATGAATTTTTTAATTTAAGTGATCTTTTAAAAA

ATGGTTTTATAAGCCTTAATTTCATTTTATTTCATACTGTTTTACAGATAATTAATGT

CATTTACCTCCTTTTCTTTTTTTTAAACCATCAGGTAAAGGAGGTAAAAACAGACGCA

GGGGTAAGAATGAGAATGAATCTGAAAAAAGAGAACTGGTATTCAAAGAGGATGGTCA

GGGTAAGTGTTTTCATAAATTACGCTTTTTAAAATAACATCCTTTCTTTTTTAGCTGG

GGACTTTATTTTTTTGAGACAGCGTCTTGCCCATCGCCCAGGGTGAAGTGTGGTGGCA

CGATTACAGCCCACTG 

Mutation hotspot, primers and sequencing area  
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SF3B1 exon 14  

Forward primer: TGATTATGGAAAGAAATGGTTGAAG 

Reverse primer: CATGTTCAATGATTTCAACTAAACTTC 

Product size =343bp 

TGATTATGGAAAGAAATGGTTGAAGATTAATATTACCAACTCATGACTGTCCTTTCTT

TGTTTACATTTTAGGCTGCTGGTCTGGCTACTATGATCTCTACCATGAGACCTGATAT

AGATAACATGGATGAGTATGTCCGTAACACAACAGCTAGAGCTTTTGCTGTTGTAGCC

TCTGCCCTGGGCATTCCTTCTTTATTGCCCTTCTTAAAAGCTGTGTGCAAAAGCAAGA

AGTCCTGGCAAGCGAGACACACTGGTATTAAGATTGTACAACAGATAGCTATTCTTAT

GGGCTGTGCCATCTTGCCACATCTTAGAAGTTTAGTTGAAATCATTGAACATG 

Mutation hotspot, primers and sequencing area  

 

TERT promoter  

Forward primer: GTCCTGCCCCTTCACCTT 

Reverse primer: GCTTCCCACGTGCGCA 

Product size =187bp 

GACCGCGCTTCCCACGTGGCGGAGGGACTGGGGACCCGGGCACCCGTCCTGCCCCTTC

ACCTTCCAGCTCCGCCTCCTCCGCGCGGACCCCGCCCCGTCCCGACCCCTCCCGGGTC

CCCGGCCCAGCCCCCTCCGGGCCCTCCCAGCCCCTCCCCTTCCTTTCCGCGGCCCCGC

CCTCTCCTCGCGGCGCGAGTTTCAGGCAGCGCTGCGTCCTGCTGCGCACGTGGGAAGC

CCTGGCCCCGGCCACCCCCGCGATGCC 

Mutation hotspot, primers and sequencing area  
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Appendix 2: Samples clinical data  

Sample No. Sex Age Location* Cell Type Mean Diameter (mm) Survival 

157 Male 71 C Epithelioid 22.15 Died from liver metastasis 14 months 

158 Male 54 C Spindle 17 Alive 187 months 

161 Female 68 CB/C Mixed 14 Died 81 months from unrelated death 

166 Female 74 C Spindle 15 Died from liver metastasis 17 months 

167 Female 88 CB Mixed 15 Died from liver metastasis 16 months 

169 Female 76 C Spindle 12 Died from unrelated 142 months 

170 Male 56 CB Mixed 17 Died from liver metastasis 30 months 

171 Female 75 CB Spindle NA Died from liver metastasis 23 months 

209 Female 64 C Mixed 14.5 Died from liver metastasis 12 months 

218 Male 42 C Mixed 12 Died from liver metastasis 38 months 

235 Female 71 CB/C Mixed 14 Died from metastasis 32 months 

244 Female 54 CB Spindle 7.58 Alive 102 months 

255 Female 63 C/CB Spindle 16 Died from liver metastasis 35 months 

284 Male 61 C Spindle 13.5 Died from liver metastasis 30 months 

300 Male 52 C Spindle 14 Alive 154 months 

301 Male 27 C Mixed NA Alive 49 months but lost follow up 

304 Female 45 C Spindle 16.72 Died from metastasis 65 months 

305 Male 67 CB Spindle 15.01 Died from liver metastasis 32 months 

306 Male 78 C Mixed 11.55 Died from unrelated 27 months 

308 Male 71 C Spindle NA Alive 64 months but lost follow up 

316 Male 75 C NA NA Died from liver metastasis 36 months 

317 Male 70 CB Mixed 15.8 Died from liver metastasis 30 months 
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Sample No. Sex Age Location* Cell Type Mean Diameter (mm) Survival 

312 NA NA NA NA NA Died from metastasis 15 months 

323 Female 56 C Spindle 12.1 Alive 169 months 

324 Female 41 CB Spindle 9.6 Alive 18 months but follow up 

325 Male 71 C Spindle 11.05 Alive 118 months 

327 Male 68 C Epithelioid 20.2 Died from liver metastasis 24 months 

328 Male 81 C Spindle 15.2 Died from unrelated 54 months 

330 Male 27 C Spindle 14.4 Died from metastasis 118 months 

335 Female 60 C NA 12.6 Died from metastasis 11 months 

341 Female 63 C Mixed 15 Died from liver metastasis 7 months 

342 Male 53 C Spindle 13.15 Alive 110 months 

343 Female 77 C Spindle 9.7 Alive 111 months 

344 Female 54 C Spindle 12.5 Died 111 months cause not confirmed 

345 Female 55 C NA 21.2 Alive 108 months 

346 Male 62 C Mixed 13.45 Alive 110 months 

352 NA NA NA NA NA Died from metastasis 18 months 

353 Female 65 CB/C Epithelioid 16.7 Died 92 months cause unknown 

355 Male 59 C Spindle 14.05 Alive 104 months 

375 Female 30 CB/C NA 13.7 Alive 84 months 

392 Male 58 CB Spindle 20 Died from liver metastasis 131 months 

401 Male 52 CB Mixed 12.59 Died from liver metastasis 32 months 

408 Male 57 C Spindle 12.5 Died from liver metastasis 18 months 

409 Male 50 C Epithelioid 14.7 Died from liver metastasis 32 months 

410 Female 57 CB Spindle 19.55 Died 73 months cause not confirmed 

411 Male 69 CB/C Mixed 18.29 Died 16 months cause unknown 
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Sample No. Sex Age Location* Cell Type Mean Diameter (mm) Survival 

412 Female 13 C Spindle 14.65 Died from liver metastasis 103 months 

429 Male 46 CB Epithelioid 10.1 Died from liver metastasis 12 months 

432 Female 77 C Spindle 11.74 Alive 81 months 

442 Female 47 C Spindle NA Died from metastases 123 months 

450 Male 73 CB Mixed 19.75 Died from metastases 15 months 

454 Male 60 C Spindle 12.7 Alive 100 months 

456 Male 69 C Spindle 13.6 Alive 134 months 

457 Female 79 C Mixed 14.95 Died from metastasis 18 months 

463 Male 76 C Mixed NA Died from liver metastasis 14 months 

467 Female 56 C Spindle 9.8 Died 128 months cause unknown 

472 Male 54 C Mixed 20.75 Died from metastasis 11 months 

485 NA NA NA NA NA Alive 55 months 

486 NA NA NA NA NA Alive 61 months 

489 NA NA NA NA NA Alive 63 months 

491 NA NA NA NA NA Alive 50 months 

492 NA NA NA NA NA Alive 50 months 

497 Male 63 C Mixed 15.3 Died 31 months cause unknown 

498 Male 80 CB Spindle 13.2 Died from liver metastasis 28 months 

520 Female 21 CB Spindle 10.16 Alive 120 months 

521 NA NA NA NA NA Died from metastasis 10 months 

522 NA NA NA NA NA Died from metastasis 2 months 

523 NA NA NA NA NA Died from metastasis 38 months 

524 NA NA NA NA NA Died from metastasis 11 months 

528 NA NA NA NA NA Died from metastasis 4 months 
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Sample No. Sex Age Location* Cell Type Mean Diameter (mm) Survival 

529 NA NA NA NA NA Alive 36 months 

530 NA NA NA NA NA Alive 38 months 

532 Male 45 C Mixed 13 Alive 70 months 

547 Male 48 C Mixed 15.3 Died from liver metastasis 80 months 

551 Female 31 C Spindle NA Alive 6 months 

578 Male 83 CB/C Mixed 16.35 Died 17 months cause unknown 

579 Male 72 CB Mixed 11.6 Died from liver metastasis 43 months 

580 Male 23 CB Mixed NA Alive 55 months 

581 Female 40 C Spindle 13.4 Alive 13 months 

582 Male 58 CB/C  Mixed NA Alive 12 months 

583 Female 87 CB/C Mixed 12 Died 14 months cause unknown 

584 Male 76 I/CB/C Mixed 9.26 Alive 34 months 

585 Male 59 C Mixed 16.36 Alive 26 months 

586 Female 89 CB/C Epithelioid 11.1 Died from liver metastasis 16 months 

587 Female 64 CB/C Mixed NA Alive 30 months 

588 Male 54 C Mixed 13.53 Alive 18 months 

589 NA 62 CB/C Mixed NA Alive 20 months 

590 Male 74 C Spindle 13.66 Alive 7 months 

591 Female 69 C NA NA Died 52 months cause not confirmed 

592 Male 70 C Spindle 12.605 Alive 51 months 

593 Female 61 C Spindle 13.37 Alive 6 months 

594 Male 54 C Mixed 13.835 Died from liver metastasis 29 months 

595 Female 84 C NA 15.44 Died 47 months cause unknown 

596 Female 64 C Mixed 13.045 Alive 49 months 
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Sample No. Sex Age Location* Cell Type Mean Diameter (mm) Survival 

598 Female 61 CB/C Mixed 15.785 Died from liver metastasis 24 months 

599 Female 69 CB/C Epithelioid 13.54 Alive 48 months 

601 Female 54 CB/C NA 14.125 Alive 46 months 

604 Male 50 C Mixed 16.17 Alive 42 months 

605 Male 81 C Mixed 15.48 Alive 23 months 

611 Male 68 C Epithelioid 14.655 Alive 37 months 

652 NA NA NA NA NA NA 

654 NA NA NA NA NA NA 

655 NA NA NA NA NA NA 

656 NA NA NA NA NA NA 

657 NA NA NA NA NA NA 

658 NA NA NA NA NA NA 

659 NA NA NA NA NA NA 

660 NA NA NA NA NA NA 

661 NA NA NA NA NA NA 

663 NA NA NA NA NA NA 

664 NA NA NA NA NA NA 

665 NA NA NA NA NA NA 

667 NA NA NA NA NA NA 

670 NA NA NA NA NA NA 

671 NA NA NA NA NA NA 

672 NA NA NA NA NA NA 

* Location: C=Choroid, I=Iris, CB=Ciliary body, NA=Not Applicable 



 
 

204 

Appendix 3: Western blot images 
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