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Abstract

Response to treatment for some cancers may result in a proportion of the patients being

permanently cured of the disease, while the rest remain at risk of a relapse or progres-

sion. Standard survival analysis approaches assume that all patients will eventually

experience the event of interest and so are not appropriate in these situations. The

residual disease and tumour re-growth rate following treatment are two of the important

predictors of outcomes among cancer patients following treatment. However, in most

cases, data on these measures is not always available.

Using data from multiple myeloma and chronic lymphocytic leukaemia trials con-

ducted at the Leeds Institute of Clinical Trials Research, we investigated the role of the

residual disease and other important factors associated with time to relapse and overall

survival, as well as the probability of being cured of the malignancy following treatment.

As the multiple myeloma trial also collected data on bio-markers for tumour growth rate,

we used the structural equation modelling approach to investigate the role of growth

rate on the survival outcomes using available statistical software. We then extended

these models to also investigate the association of growth and the probability of be-

ing cured after treatment in a Bayesian framework including in situations where not all

patients will relapse or die after treatment.

This work demonstrates that it is feasible to use structural equation modelling within

survival analysis to investigate the role of latent variables on time to event outcomes

even in situations where not all patients will relapse or die after treatment.
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Abbreviation Meaning
AIC Akaike’s Information Criterion
ADMIRE ADdition of Mitoxantrone to Improve REsponse to FCR chemotherapy

in patients with CLL
ARCTIC Attenuated dose Rituximab with ChemoTherapy In CLL
BIC Bayesian information criterion
BUGS Bayesian inference Using Gibbs Sampling
CC Complete case
CDF Cumulative distribution function
CI Confidence interval
CLL Chronic lymphocytic leukemia
CrI Credible interval
df Degrees of freedom
DIC Deviance Information Criterion
EM Expectation-Maximization
GRD Gelman-Rubin diagnostic
IQR Inter-quartile range
JAGS Just Another Gibbs Sampler
K-M Kaplan-Meier
LL Log-likelihood
MA Missing at random
MC Monte Carlo
MCAR Missing completely at random
MCMC Markov Chain Monte Carlo
ML Maximum likelihood
MRC Medical Research Council
MRD Minimal residual disease
NP Non-parametric
ONS Office for National Statistics
OS Overall survival
PL Partial likelihood
pdf Probability density function
PH Proportional Hazards
PSRF Potential scale reduction factor
RCT Randomised controlled trial
RD Residual disease
SD Standard deviation
SEM Structural equation model
SPMC Semi-parametric mixture cure
TTE Time to event
TTR Time to relapse
UK United Kingdom
VH Variable heavy



Chapter 1

Background

Between 2014 and 2016 there were, on average, just over 360,000 newly diagnosed

cancer cases in the United Kingdom (UK) each year according to Cancer Research UK

[1]. In 2016, 163,000 of the reported 525,000 deaths in the UK were from cancer. Blood

cancers are the fifth most common type of cancer in the UK and include various forms

of leukaemia, lymphoma and myeloma [2]. Survival following treatment among those

diagnosed with cancer can be as high as 50%, range 2-98%, over 10 years or more

based on the 2010-11 Cancer Research UK data and depends on the type of cancer.

Cancer therapy aims to eradicate the primary disease. For solid tumours, the pa-

tient is cured of the disease if all the tumour is removed. However, most treatments will

leave some residual microscopic disease which is resistant to the treatment. Further

courses of treatment, called adjuvant therapy have to be administered to eliminate this

residual disease (RD), and to prevent a relapse or metastasis, where secondary tu-

mours develop at other sites in the body [3]. Whether all the tumour is removed usually

cannot be easily determined in practice. For example, to detect the presence of micro-

scopic disease in solid tumours, a polymerase chain reaction technique can be used to

determine if there are metastases and microscopic tumour cells circulating in the blood

[4, 5]. In blood cancers, the minimal residual disease (MRD), which expresses the RD

3
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Relapse

Residual disease

Re-growth rate

DeathObserved covariates

Figure 1.1: General model for time to relapse and subsequently death with both observed covariates
and unobserved residual disease and tumour re-growth rate

as a percentage of tumour cells in the blood or bone marrow, where malignant cells can

be seen in the blood but without clinical signs or symptoms, is one measure that can

be used to indicate the amount of disease in the blood or bone marrow and hence to

predict time to relapse (TTR) and overall survival (OS) in a group of patients [6, 7]. TTR

and time to death will depend on both the amount of RD and the rate of re-growth of

the primary tumour, as shown in Figure 1.1.

Advances in cancer treatment have resulted in some patients enjoying long-term

disease-free status and better OS [8]. As a result, in some cancers, a proportion of

patients will be considered ’cured’ and will therefore not relapse following treatment, but

will instead enjoy long-term OS that is comparable to that of disease-free individuals

in the general population while the rest who are not cured, will relapse or die from
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the malignancy [9]. The idea of a cure has been investigated in a number of solid

cancers: colon, oesophageal and cervical among others [10, 11, 12, 13]. In Europe,

specific proportions of those cured of lung, stomach, colon and rectal cancer have

been reported [14]. In blood cancers, interest in investigating the possibility of a cure

has been increasing [15]. Overall, an assessment of the trends of survival rates in

different cancers has shown marked improvement in outcomes over time with estimated

TTR curves showing plateaus indicating that a proportion of the patients might have

been cured [16]. In most cases, the analysis of data from cancer patients focuses

on TTR and/or OS and how they are related to important prognostic factors such as

treatment, age, sex, stage (which describes the size of the tumour and its spread) and

other biological markers of the disease where they are available [17]. However, the

standard methods for analysis assume that all patients will either relapse or die from

the disease given a sufficiently long follow-up period.

In order to accommodate the possibility of a cure following treatment, cure rate

models are used to simultaneously estimate the proportion who are ’cured’ following

treatment and to model the TTR or OS for those who are not cured [18]. Cure in cancer

can been defined in a number of ways: 1) the existence of a proportion of patients that

will remain disease-free long-term after treatment often up to a pre-defined time post

treatment, 2) cure in the clinical sense which involves the eradication of all malignant

disease using various treatment methods, and 3) cure in the sense of having, within the

patient population, a proportion whose OS rates are similar to that of individuals in the

general population [19]. In most cases, cure has been defined as not relapsing or dying

for 5 years after treatment. For slow-growing tumours, longer periods up to 10 years

are required for cure to be considered [20].

Whether cure has been achieved cannot always be clinically defined and reported

to the individual patient. However, the presence of a plateau in estimated TTR curves

may lead to clinicians believing cure has been attained for a proportion of the patients.
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With better treatments for cancer in general, has come interest in the investigation of

cure in blood cancers including multiple myeloma [15, 21, 22, 23]. Assuming that cure

is possible, cure rate models can be used to estimate ’cure’ as defined in 1) and 3)

above.

Where interest is in estimating the proportion of patients that will not relapse, plots of

the TTR will level-off to a non-zero plateau, indicating the ’cured proportion’. This sug-

gests that the population has two distinct groups; those that can be considered ’cured’

or will not again relapse during their lifetime, and those who will eventually relapse or die

from the disease or any other causes other than the disease. Patients who relapse can

also get further causes of treatment including maintenance therapy through which they

may end up enjoying long-term overall survival. Various formulations based on a logistic

model for those that are cured, and parametric or semi-parametric models for those not

cured have been extensively discussed in the literature [24, 25, 26, 27, 28]. Estimat-

ing the cured proportion by focusing on those who will not relapse following treatment

can be challenging as such estimates are based on a particular sample of patients that

might not represent the whole population with the disease. Since follow-up is limited,

distinguishing between those who are cured and those who were just censored can be

difficult.

The cure rate models can also be used to estimate the proportion whose OS or

hazard of death returns to the same level as that expected in age-sex matched individ-

uals in the general population [29, 30]. In these models, parametric distributions have

often been used to model the OS for those not cured of the disease. The identifiability

of the cure proportion itself and the parameters of the assumed distribution can be a

challenge and will depend on the choice of the parametric distribution for the OS and

the length of follow-up. Flexible parametric models that use splines to model the under-

lying hazard function can be more appropriate in these situations as they do not require

specification of a parametric distribution for the OS among those not cured [31]. It is
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also possible to specify a semi-parametric model for those who are not cured in these

models.

The outcomes TTR, OS and the probability of a patient being cured of the disease

usually depend on measurable prognostic factors such as age and treatment as well

as measures of RD after treatment. However, relapse also depends on the rate of re-

growth, which cannot always be measured and is not known at baseline. Where these

variables are available, they have been shown to be useful for predicting outcomes. In

breast cancer, RD measurements obtained through magnetic resonance imaging have

been used to model the TTR [32]. In lung cancer, a similar approach has been used

with serial measurements of tumour diameter used to work out the tumour growth rate

[33]. For multiple myeloma and other blood cancers, a measure of the RD can be

obtained by looking at the MRD. In the absence of the measures of RD and/or rate of

re-growth, different methods have been used to estimate them, for example assuming

latent exponential growth of the tumour [34]. The aim of these approaches was to aid in

the design of clinical trials of different treatments based on the supposed understanding

of the tumour (exponential) growth rate [35]. Other tumour growth rate distributions such

as the lognormal and Gompertz have also been proposed [36, 37]. The growth of the

RD following treatment [38], and how it relates to the effect of cytotoxic chemotherapy

[39] has been shown to be important in explaining the chances of a relapse among

cancer patients. Whilst these models are useful for designing trials, in the absence

of data on RD and tumour re-growth rate, they rely on strong assumptions about the

distributions of these measures which could not apply to all cancers.

Alternative methods that aim to infer the pattern of tumour growth and RD from the

observed TTR, OS and the cured proportion have also been proposed [40, 41]. These

methods, while attractive in that they directly obtain measures of the RD and growth

from just the observed TTR or OS, are fraught with identifiability problems as several

potentially correlated quantities are estimated from just the observed time a patient was
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in the trial [42]. They also rely on strong assumptions about the models linking growth,

RD and TTR or OS. Following on from this work, approaches for quantifying the effect

of a treatment on the tumour were suggested [43, 44]. However, these were based on

simulations of the tumour growth dynamics and how, based on this, the tumour would

respond to treatment. The problem with this approach is that one cancer will likely

be different to another in terms of tumour growth and other histopathological features

making the application of such modelling approaches to treating the disease not easily

generalizable [45]. Finally, another challenge is that while there is agreement on the

benefit of modelling the tumour growth dynamics, such methods have not been widely

incorporated in the design and analysis of clinical trials [46].

Rather than attempting to directly measure tumour growth following treatment, sur-

rogate markers for tumour growth rate such as insulin-like growth factor indicators, can

be used [47]. In pancreatic cancer for example, markers such as the epidermal growth

factor, fibroblast growth factor and transforming growth factor beta receptors have been

shown to be associated with aggressive tumour growth and therefore TTR and OS

[48]. In some blood malignancies such as Myeloma and chronic lymphocytic leukaemia

(CLL), measures of the RD can be obtained by measuring the MRD and using it as a

surrogate for RD in prognostic models for the TTR and OS [7, 49, 50, 51].

The availability of potential surrogate measures of the unobserved (latent) tumour

growth and RD make it possible to use structural equation models (SEMs) to model the

role of tumour growth and RD on patient outcomes in cancer. SEM approaches are

a part of a broader range of models that are used to validate relationships based on

observed data [52], and can in this case, be used to model the relationship between

the observed surrogate measures and the growth or RD and how these relate to the

outcomes.

Originally, SEMs were used to model latent variables by assuming a multivariate

normal distribution for the observed variables [53]. The methods have been extended
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to situations where the observed variables are not normally distributed [54]. The rela-

tionship between latent variables and the observed data is modelled by examining the

covariance structure of the proposed model and comparing it to that obtained from the

observed data through the empirical covariance matrix [55]. As a result, most of the

methods for fitting SEMs do not require individual observations of the latent variable.

This feature makes SEMs attractive for investigating the role of measures that would

not be directly observed. SEMs have been widely applied in the social sciences to

model latent constructs, such as happiness, quality of life and intelligence. Recently,

SEMs have been used to model the effect of a latent variable, difficulty in daily living,

on health outcomes [56]. They have also been used to model the association of a la-

tent variable, oxidative stress, with the risk of colorectal adenoma [57]. Building on this,

the aim of this project is to further explore and develop methods for modelling the role

of the often unobserved measures RD and tumour growth following treatment, on the

TTR, OS and on the proportion cured.

When using these methods, decisions need to be made regarding the presence of

potential observed variables that relate to the latent variable of interest and how the

resulting latent variable can be measured [58]. Decisions on which observed variables

to use would best be made by clinicians. However, this thesis will set out a general

framework on how, given the presence of known surrogate measures of tumour growth

or RD, SEMs can be used to model the effect of tumour growth and RD on TTR, OS

and the probability of being cured. The framework will be demonstrated using data from

UK academic clinical trials in Myeloma and CLL.

1.1 Aim

The aim of this project is to model the effect of tumour growth and RD on the TTR

and OS and to estimate the role of these measures on the probability of being cured
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following treatment, with application to Myeloma IX and CLL trial data.

Specific objectives

To investigate the role of available factors affecting TTR and OS following treatment

using trial data, standard survival analysis methods that have been widely discussed

already in the literature will be used. The proportions that will not relapse following treat-

ment and whose OS is similar to individuals in the general population will be estimated

using cure rate models. Finally, the effect of tumour growth and RD on the outcomes will

be modelled using a combination of survival analysis and SEM techniques. Specifically,

this project will:

1. Review standard models for time to event (TTE) data and their application to exist-

ing datasets, assessing goodness of fit and identifying limitations of these models.

2. Use maximum likelihood (ML) and Bayesian inferential approaches to estimate

the proportion cured in 2 example datasets using a range of cure rate models and

to compare the estimates.

3. Extend the current SEMs framework to include TTE and other outcomes to allow

for the modelling of latent tumour characteristics, growth and RD, on outcomes in

cancer.

4. Test the combined SEM-survival models on simulated data to assess how well

these models fit the simulated data. This will include an investigation of the con-

straints and assumptions necessary for these models and how they can be fitted

using maximum likelihood and Bayesian approaches.

5. Finally, apply the extended SEM models to the trial data to include the latent

variables tumour re-growth and RD in modelling TTR, OS and the estimation of

the proportion cured.
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All methods discussed in this thesis will be applied to data from two trials in Myeloma

and CLL conducted at the Clinical Trials Unit at the University of Leeds.

1.2 Outline of thesis

This chapter gives a brief description of the methods used to model outcomes in cancer

trials in general and indicates how these can be extended to model the role of latent

tumour measures on survival outcomes. The aim and objectives of this work are stated.

The rest of the thesis is structured as follows. Chapter 2 gives a general review of

the different methods used in analysing TTE data. A discussion on how parameters

are estimated using both ML and Bayesian approaches is provided and is followed by

graphical and other methods for assessing goodness of fit. Chapter 3 introduces the

two example datasets used throughout this thesis and the application of standard TTE

methods to the example data sets. In Chapter 4, cure rate models are used to estimate

the cured proportion in these diseases. The SEM approach is introduced in Chapter 5,

which also discusses extensions to TTE outcomes with applications to simulated data.

The methods in Chapter 5 are again used to model the effect of tumour growth on the

various TTE outcomes in the Myeloma dataset in Chapter 6. Finally, Chapter 7 reviews

and compares strengths and limitations of all the approaches considered.



Chapter 2

Methods for analysing time-to-event data

2.1 Introduction

In this chapter, various methods for estimating parameters in TTE models are briefly

discussed. In most analyses involving TTE data from randomised control trials (RCTs)

in cancer, researchers are interested in the TTR or OS of a group of patients follow-

ing treatment and how important prognostic factors influence these outcomes including

randomised allocation. To achieve this, survival analysis methods are used to model

the TTE, T . The role of important prognostic factors on T can be investigated using

non-parametric and semi-parametric approaches, where no assumptions about the dis-

tribution of T are made [59, 60]. Alternatively, parametric survival models can be used

where the role of the treatment and other factors on the TTE are modelled through one

or more parameters governing the distribution of T [61]. These methods are briefly

discussed in Sections 2.3, 2.4 and 2.5 respectively.

In instances where not all patients will relapse or die from the cancer following treat-

ment, the usual TTE methods might not be appropriate as they assume that all patients

will experience the event. In these situations, cure rate models have been proposed

to simultaneously estimate the proportion of patients who will not relapse or die from

12
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the cancer following treatment, and also to model the time, T , to relapse or death for

those not cured by the treatment [62]. The cure rate models can also be used to esti-

mate ’cure’ as the proportion whose OS is similar to age-sex matched individuals in the

general population who are without the disease. For this latter case, the ’population’

cure rate models fitted in this thesis incorporate population survival data from the UK

national mortality registers for 2015 - 2017 [63]. Model specifications for the cure rate

models are discussed in Section 2.6 while the derivation of age-sex matched hazard

and survival rates from the UK Office for National Statistics (ONS) data is shown in

Section 2.7.1. We start by presenting a general survival analysis.

2.2 Overview of TTE data

A feature with TTE data is that over the observation period, not all individuals will expe-

rience the event. These individuals are described as ’censored’ if they drop out of the

study, or if the study ends before they experience the event. In the analysis, they are

counted event-free during the study. Throughout this thesis, censoring will be assumed

independent of the event of interest. In our set-up we assume that Ui is the TTE for the

i-th subject and Ci is the censoring time for the i-th individual. We define a censoring

indicator δi depending on whether the i-th individual had the event as

δi =

 1 if Ui < Ci

0 Otherwise

Treating failure and censoring as competing risks, we obtain Ti = min(Ui, Ci) as the

TTE for the i-th individual. The analysis then focuses on the pairs (ti, δi) where ti is the

observed TTE.

The analysis of TTE data usually focuses on two summaries, the survival and haz-

ard functions from which other functions may be obtained [64]. Let T ≥ 0 be a random



14

variable representing the TTE. If T is continuous, then it has a probability density func-

tion (pdf), f(t), and from this we can evaluate the cumulative distribution function (CDF)

of T which is defined as the cumulative probability of an event occurring before time t

i.e.

F (t) = Pr(T < t) =

∫ t

0
f(u)du (2.1)

The survivor function S(t) is defined as the probability that the TTE is at least t, that is

S(t) = Pr(T ≥ t) = 1− F (t). (2.2)

The hazard function is defined as the instantaneous probability of an event occurring at

a time t, conditional on survival up to the time t. It can be expressed in terms of the pdf,

f(t), and the survivor function S(t) as

h(t) =
f(t)

S(t)
. (2.3)

The cumulative hazard of an event occurring by time t can be obtained from the hazard

and survivor functions as

H(t) =

∫ t

0
h(u)du = − logS(t). (2.4)

The hazard, cumulative hazard and survivor functions can then be used to model the

observed data. Inference is made based on the likelihood function which is the joint

probability distribution of a sample of observed data as a function of some unknown

parameters of interest. With TTE data, the likelihood function based on data from the n

individuals is

L(θ) =
n∏
i=1

f(ti|θ)δiS(ti|θ)1−δi , (2.5)



15

where θ is a vector of unknown parameters that govern the distribution of the TTE. Alter-

natively, the likelihood can be expressed in terms of the hazard and survivor functions

as

L(θ) =
n∏
i=1

h(ti|θ)δiS(ti|θ). (2.6)

Covariates can be used to model the shape of the hazard in semi-parametric and

parametric survival models as will be discussed in detail later.

2.3 Non-parametric approaches

The simplest method for analysing TTE data is the non-parametric (NP) approach which

does not impose any assumptions on the distribution of the TTE. The most commonly

used approach is the Kaplan-Meier (K-M) estimate of the survival function which is

based on the empirical data as follows. Let 0 < t(1) < t(2) < · · · < t(m) be the ordered

observed times to the event not including the censored times. Further, let ek be the

number of events at time t(k) and let nk be the number of individuals at risk of the event

just before time t(k). Based on this, the K-M estimate of the survival function is the

product

Ŝ(t) =
∏

k:t(k)<t

(
1− ek

nk

)
(2.7)

where in (2.7), ek
nk

represents the probability of having the event at time t(k) given the

individual is at risk just before t(k). The K-M estimate is a step function characterised by

jumps at the observed event times. If there is no censoring, the K-M estimate coincides

with the empirical survivor function which is itself an estimate of the survivor function

that does not depend on distributional assumptions about T . If the largest observation is

censored, the estimate is undefined beyond the last event time. Comparison of survival
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functions among groups of individuals can be made using the log-rank test [65]. This

method is useful for graphically comparing survival among groups.

2.4 Semi-parametric approaches

Although the NP methods work well in exploratory analysis, they cannot be used in the

presence of several explanatory variables; instead, semi-parametric approaches can be

used to summarise TTE data by estimating the hazard and survivor functions without

making strong assumptions about the baseline hazard function. The most widely used

semi-parametric survival model is the Cox proportional hazards (PH) model [66].

2.4.1 The Cox PH model

The Cox PH model has become the most widely used method for analysing data with

TTE outcomes. In this model, no assumptions are made regarding the distribution of the

baseline hazard function when investigating the role of covariates on the TTE. The Cox

PH model assumes a multiplicative effect of each covariate on the unspecified hazard

function that is constant over time. As an example, suppose that ti is the TTE for an

individual i. Then the hazard function for this individual is

h(ti) = h0(ti)λi, ∀ ti > 0 (2.8)

where h0(ti) is the unspecified baseline hazard and λi is the multiplicative factor for

individual i. If for an individual, i, we observe a vector of p covariates xi, then λi can be

expressed in terms of covariates as

λi = exp(βTxi) = exp(β1x1i + β2x2i + · · ·+ βpxpi).
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2.4.2 Partial likelihood for the Cox PH model

To obtain the parameter estimates in the Cox PH model, a partial likelihood approach

proposed by Cox [67] is used. At each failure time, let Rj = {i, i = 1, . . . , n : Ti ≥ t(j)}

be the set of all patients at risk of the event together with their observed covariate values

xi. Assuming a single patient has the event at time t(j), given Rj were at risk just prior

to time t(j), the probability that subject i had the event is

h0(t(j))λi∑
k∈Rj h0(t(k))λk

=
h0(t(j)) exp(βTxi)∑

k∈Rj h0(t(k)) exp(βTxk)

and since h0(t) is common and can be cancelled out, this is just

exp(βTxi)∑
k∈Rj exp(βTxk)

.

The partial likelihood (PL) is thus based only on the observed covariate values

PL(β) =
∏
j

exp(βTxi(j))∑
k∈Rj exp(βTxk(j))

(2.9)

where i(j) refers to the individual who had the event at time t(j). Its logarithm is

pl(β) =
∑
j

βTxi(j))− log

∑
k∈Rj

exp(βTxk(j))


 .

Differentiating this with respect to β

∂pl(β)

∂β
=
∑
j

(
xi(j))−

∑
k∈Rj xk(j) exp(βTxk(j))∑

k∈Rj exp(βTxk(j))

)
(2.10)

and equating to 0 gives the estimates of β.

In some cases, more than one individual has the event at time t(j). The PL (2.9) can

be modified to take this into account by introducing a failure set, Fj in the numerator to
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the PL to represent all individuals who had the event at time t(j).

2.5 Parametric models

While semi-parametric approaches are attractive in that the baseline hazard function

does not have to be specified when modelling the effect of covariates on the TTE, it

may sometimes be necessary to estimate the actual baseline hazard. In parametric

models, the hazard function is estimated by assuming a distribution to represent the

underlying population. If the assumed distribution is correct, the parametric models

have an advantage over the semi-parametric approach as it is possible to estimate

the distribution of survival time using the full likelihood unlike having to use the partial

likelihood as in semi-parametric methods. Further, if the correct form of the parametric

distribution is specified, parametric models are more efficient and will give more precise

estimates of the covariate effects. Residuals from parametric models take the familiar

form as the difference between observed and estimated values. The main disadvantage

with parametric models is that they rely on the assumption that the correct underlying

population distribution has been specified. This makes semi-parametric models such

as the Cox PH model more attractive in practice as it is possible to model the effect of

covariates on the TTE without having to worry about the underlying distribution of the

hazard function in the population.

Parametric models follow a specified probability distribution based on a number of

fixed parameters [68]. Parameters may represent the hazard function and how it varies

with time, for example. Explanatory variables of the TTE can be modelled through

one or more parameters of the chosen parametric distribution. Common parametric

survival distributions are Exponential, Weibull and Gompertz among several others.

In this thesis we focus on the Weibull and Exponential distributions when referring to

parametric models. The likelihood for the parametric models is similar to (2.5) where, for
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example the parameter vector θ includes the shape and scale parameters if the Weibull

model is specified, both of which may be functions of the observed covariates, or it

may represent the rate parameter if the Exponential model is used. As an example, the

scale parameter of a Weibull model may be related to the observed covariates through

λi = exp(βTxi) = exp(β0 + β1x1i + β2x2i + · · ·+ βpxpi). (2.11)

for i = 1, 2, . . . , n if we observe data from n individuals. Here, β0 is the intercept and

β1, . . . , βp are the coefficients relating each of the p observed covariates to the TTE. We

next briefly describe Exponential and Weibull distributions used to fit parametric TTE

models.

Exponential and Weibull distributions

The Exponential distribution is the simplest parametric TTE model and it assumes a

constant hazard of the event over time. The Exponential model can be specified in

terms of the pdf for individual i as follows

f(ti) = λi exp(−λiti) (2.12)

where λi is as defined in (2.11). From this, the hazard and survivor functions can be

obtained as h(ti) = λi and S(ti) = exp(−λiti), respectively.

The Weibull distribution is one of the most widely used distributions in analysing TTE

data. In its most general form, it is equivalent to other distributions, for specific values of

the shape parameter, γ. We consider the 2-parameter Weibull distribution model. The

pdf can be parameterised as

f(t) = λγtγ−1e−λt
γ

(2.13)
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where λ > 0 is the scale parameter and γ > 0 describes the shape of the distribution.

The hazard function can be expressed as

h(t) = λγtγ−1 (2.14)

which is monotonically increasing if γ > 1, constant if γ = 1 (in which it is equivalent

to the Exponential distribution) and decreasing if γ < 1. The corresponding survivor

function is

S(t) = exp(−λtγ).

The scale parameter can be parametrised in terms of covariates and regression param-

eters whereas the shape γ, is mostly assumed fixed. To model the effect of covariates

on the scale parameter for the i-th individual, we can use (2.11) to obtain the hazard for

individual i at time ti

h(ti) = λiγt
γ−1
i . (2.15)

Inference can then be done by estimating the parameters given data from n individuals

using by maximising the likelihood functions (2.5) and (2.6) using methods that will be

discussed in Section 2.9.

2.6 Cure rate models for the proportion that will never re-

lapse following treatment

To estimate the proportion that will not relapse, further modifications of the likelihood

can be made. In this case, the survivor function is given as

S(t) = π + (1− π)Su(t) (2.16)
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where π represents the proportion that is cured following the treatment and will remain

relapse-free, fu(t) the density and Su(t) represents the survivor function of those who

are not cured following the treatment and will therefore experience a relapse. This type

of cure rate model is referred to as a mixture model. From (2.16), the pdf is given by

f(t) = (1− π)fu(t)

while the hazard is

h(t) =
(1− π)fu(t)

π + (1− π)Su(t)

The resulting likelihood has the same form as (2.5) and (2.6).

2.7 Cure rate models for estimating the proportion with OS

similar to the general population

To estimate the proportion with OS similar to age-sex matched individuals in the general

population, a further modification of (2.16) can be made to incorporate the population

survival rates to get

S(t) = Sp(t) ∗ (π + (1− π)Sd(t)). (2.17)

Here Sp(t) is the survival probability of a sex-aged matched individual in the general

population at the time at which the event is observed in the individual with the disease

and Sd(t) is the survivor function for those who will eventually die from the disease.

The hazard and pdf can then be derived as before to build the likelihood function. The

populations survival or hazard rates are briefly discussed next.
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2.7.1 Calculating the population hazard and survival rate

To fit the models in Section 2.7, the population hazard rate hp(t) for each individual in

the dataset has to be estimated, matched for age and sex at the end of that individual’s

follow-up using the life-table approach in the following manner. Suppose there are Ij

individuals in the study at the start of period j which could be 1 month, 1 year, etcetera.

Suppose dj deaths are observed in period j, then we can calculate the number of

censored individuals wj in this period using

wj = Ij − dj .

Then the effective number of people at risk in the j-th period is

I
′
j = Ij −

wj
2

since under constant within-interval hazard, at least 50% of those censored will be at

risk for at least half the time [69]. Then, the probability of dying in the j-th period is

pj = 1− dj

I
′
j

and we can denote this by Sp(t), the survival probability at time t. If the individual in the

study is followed-up for j = 1, 2, . . . ,K periods, then

Sp(t) =
K∏
j=1

pj . (2.18)

The hazard rate can then be obtained from (2.18) as

hp(t) = − log(Sp(t)). (2.19)
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2.8 Bayesian TTE models

In some situations, a Bayesian approach can be useful, since it allows additional exter-

nal information about the parameters of interest to be incorporated as prior information.

This information could be in the form of data from previous studies, or expert knowl-

edge from those familiar with the field of study. In a Bayesian setting, inference is made

based on the joint posterior distribution of the parameters of interest given the observed

data. The observed data is distributed according to the likelihood p(D|θ) where D could

be a vector or matrix of observed TTEs, censoring indicators or covariates while θ is a

vector of unknown parameters which are assumed to be random. The researcher also

specifies a prior distribution of the parameters θ, p(θ). The posterior is then calculated

as

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

. (2.20)

Note that the likelihood p(D|θ) can be from any of the specified semi-parametric, para-

metric and structural equation models. The fitting of Bayesian models in general is

discussed in Section 2.9.3.

2.9 Overview of parameter estimation in TTE models

Common approaches that exist for fitting models to TTE data are based on maximum

likelihood (ML). These methods are straight-forward to implement when fitting paramet-

ric survival models. For semi-parametric models, it may not be possible to directly esti-

mate parameters from the full likelihood using ML techniques. Instead, the partial likeli-

hood first proposed by Cox [67], is used to estimate parameters in the semi-parametric

models. To fit cure rate models using ML techniques, the Expectation-Maximisation

(EM)algorithm can be used [70]. The EM algorithm is an iterative procedure for max-



24

imising likelihood functions that depend on unobserved or latent variables. As the cure

rate models aim at estimating the proportion cured which is itself not observed, the EM

algorithm has been used to estimate parameters in these models. Finally, by specify-

ing prior distributions on the parameters of the chosen model, we can estimate their

posterior distributions given the observed data to fit both standard and cure rate mod-

els using Markov Chain Monte Carlo (MCMC) methods in a Bayesian setting. For the

semi-parametric TTE models, a counting process is adopted in the Bayesian MCMC

implementation. Each of these approaches are next discussed in turn below.

2.9.1 ML for fitting standard models

ML estimates are found by maximising the likelihood function which is the probability of

observing the data D given some unknown, but fixed parameters θ. Standard statistical

packages such as Stata and R can be used to obtain parameter estimates in these

models [71, 72]. ML estimates of the parameters given a parametric distribution for T

can be obtained by maximising the log-likelihood (LL) of the data D given the parameter

vector θ = (θ1, θ2, . . . , θp), l(D|θ). The ML estimates of of the elements in θ, θ̂j , j =

1, 2, . . . , p can be obtained from the score functions

∂l(D|θ̂j)
∂θ̂j

= 0 (2.21)

To measure the amount of information about the unknown parameters in the data,

we work out the Fisher information matrix which gives the variances of the scores.

Differentiating again and taking expectations provides an estimate of the variance-

covariance matrix

V ar(θ|D) =


−E

{
∂2l(D|θ)
∂θ21

}
. . . −E

{
∂2l(D|θ)
∂θ1θp

}
...

. . .
...

−E
{
∂2l(D|θ)
∂θpθ1

}
. . . −E

{
∂2l(D|θ)
∂θ2p

}
 (2.22)
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where the diagonal elements represent the variances of θ1, θ2, . . . , and θp respectively

[73]. Inference can then be made based on these estimates.

2.9.2 Using the EM algorithm

The EM algorithm provides an alternative way to find parameter estimates using ML in

situations where the model includes latent variables or to deal with missing data. The

EM algorithm can thus be used to find estimates in cure rate models by assuming that

for each individual, there is an unobserved latent variable representing the probability

that they are cured or not. The EM algorithm is briefly described next.

Suppose on the complete dataD, we specify the model p(D|θ). The complete data

D = (X,Z) includes the observed data X and the latent or missing variables Z. The

complete data likelihood is L(θ|X,Z). The unknown parameters θ can be estimated

by maximising the marginal likelihood of the observed data

L(θ|X) =

∫
L(θ|X,Z)dZ. (2.23)

In most cases, the integral in (2.23) is not tractable. The EM algorithm is thus used to

maximise the marginal likelihood by iteratively applying a two-step process. The first

step is the expectation step (E step). At the E step, work out

Q(θ|θ(j)) = EZ|X,θ(j) logL(θ|X,Z) (2.24)

which is the expected value of the LL function of θ, with respect to the current conditional

distribution of Z given X and the current estimates of the parameters θ(j). This is

followed by the maximisation step (M step) which involves working out parameters that

maximise Q(θ|θp),

θ(j+1) = arg max
θ

Q(θ|θ(j)) (2.25)
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For this work, the latent variable Z will represent an indicator for whether a patient is

cured of disease or not. Details of how the EM algorithm can be use in general [74],

and how they can be used in estimating parameters in cure rate models have been

discussed elsewhere [25, 27]. The model fitting follows the following steps:

1. Set the unknown parameters θ to some initial random values

2. Work out the probability of each possible value of the unknown latent variable Z

given θ using (2.24)

3. Work out an improved estimate of θ using the information about Z obtained in

step 2 using (2.25)

4. Repeat steps 2 and 3 until convergence

There are several advantages of the EM algorithm, the most important in our context

is the ability to fit models even if we have missing data or latent variables, which is

sometimes not possible with ML techniques. Moreover, each iteration is guaranteed

to improve the likelihood until the maximum is reached, and convergence will be fast if

analytical expressions for the parameters at the M-step can be found. Finally, the max-

imisation does not involve working out derivatives leading to easier programming. The

main disadvantage is that convergence is generally slow if no analytical expressions

for the parameters are available at the M-step, making it necessary to use numerical

methods that further slow down the maximisation process [75]. Convergence is also in

doubt when there is a large percentage of missing data or we have high dimensional

data. The EM algorithm will be used to estimate parameters from mixture models in

Chapter 4.
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2.9.3 Using Markov Chain Monte Carlo methods to fit Bayesian models

Based on the posterior (2.20), MCMC methods can be used to estimate the parameters

in the model. The MCMC algorithm is attractive because, with only mild conditions, it

makes it possible to draw samples from a joint posterior distribution. This is made

possible by iteratively drawing samples from conditional distributions of parameters until

convergence. It is thus feasible to draw samples from complicated joint distributions

with high dimensionality, something which might not be possible with ML techniques.

MCMC methods are relatively easy to implement as long as we can specify conjugate

prior distributions of the parameters in the model, which are combined with the observed

data via the likelihood, to work out the joint posterior distribution. One challenge with

MCMC is that it is difficult to assess accuracy and convergence. As a result of this, there

is a danger of making incorrect inferences based on an MCMC algorithm that may not

have converged [76]. Another disadvantage of MCMC methods is that of computational

cost when the analysis involves evaluating intractable integrals in complex models which

may result in the algorithm taking a long time to converge [77]. There are several tools

used for checking convergence of MCMC algorithms that will be discussed in Section

2.10.4.

The Gibbs sampler

One of the commonly used MCMC techniques is the Gibbs sampler. Suppose D rep-

resents the observed data and we are interested in estimating the parameter vector

θ = (θ1, . . . , θp). A sufficiently large sample from the joint posterior distribution p(θ|D)

can be obtained from the Gibbs sampler algorithm as follows. At the (j + 1)-th iteration

with current values θ(j)1 , θ
(j)
2 , . . . , θ

(j)
p :

1. Generate θ(j+1)
k from p(θk|θ

(j)
1 , . . . , θ

(j)
k−1, θ

(j)
k+1, . . . , θ

(j)
p , D)

2. Generate θ(j+1)
k+1 from p(θk+1|θ

(j)
1 , . . . , θ

(j+1)
k , θ

(j)
k+2, . . . , θ

(j)
p , D)
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3.
...

4. Generate θ(j+1)
p from p(θp|θ(j+1)

1 , θ
(j+1)
2 , . . . , θ

(j+1)
p−1 , D)

This process is repeated many times until the joint posterior converges to a station-

ary distribution. Inferences can then be made using the parameter values of θ in this

stationary distribution.

There are some problems with using the Gibbs sampler. For example, it works

well when it is easy to sample from the full conditional distributions although but this

might not always be the case. Another challenge is that the algorithm may take long to

converge due to slow mixing if some of the parameters are highly correlated.

The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm can be used to sample from the joint posterior in

situations where the posterior distribution does not take the form of a known conjugate

distribution or where the full conditionals do not resemble known distributions. When

this is the case, the Gibbs sampling algorithm might not work and so it is more appropri-

ate to use the Metropolis-Hastings algorithm. The algorithm is set-up as follows. Given

the full posterior distribution p(θ|x),

1. Choose some arbitrary starting values for the unknown parameters θ(0)

2. At the j-th iteration, draw θ∗ from a proposal distribution q(θ∗|θ(j−1))

3. Calculate the acceptance probability

ϕ =
p(θ∗|x)/q(θ∗|θ(j−1))

p(θ(j−1)|x)/q(θ(j−1)|θ∗)

4. Accept the current value of θj as θ∗ with probability min(ϕ, 1), otherwise, set

θ(j) = θ(j−1)
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Once again, repeat this process until p(θ|x) converges to a stationary distribution.

In both Gibbs and Metropolis-Hastings algorithms, the MCMC chain converges to a

stationary distribution under mild conditions which is itself a random sample θ(1), . . . ,θ(J)

where J is the total number of iterations for which the MCMC algorithm was run [78].

The algorithm is normally run by supplying initial values of the chain θ(0). Since the

chosen initial values may greatly differ from the resulting stationary distribution, they

are removed from the chain such that they do not influence the resulting posterior sum-

maries. This is called the burn-in period. Researchers would normally run multiple

chains with different starting values to ensure convergence to the correct distribution.

As the final MCMC sample itself is not independent it is necessary to monitor the auto-

correlations of the generated values and retain only certain values with a given lag. This

is called thinning and involves discarding all but the r-th sampled values for example

where r > 1 [79].

Bayesian Cox PH models

To fit a Cox PH model in a Bayesian setting, a counting process approach is used in

order to deal with the unspecified baseline hazard h0(t) [80]. This makes the estimation

of the baseline hazard and regression parameters through MCMC methods possible in

the following manner. Suppose we observe data from i = 1, 2, . . . , n individuals, and

that Ni(t) is a process that counts all failures that have occurred up to time t and Ii(t)

is an intensity process given by

Ii(t)dt = E(dNi(t)|Pt−) (2.26)

where dNi(t) is the increment in Ni over the small interval [t, t+dt), and Pt− represents

the available data before time t [81]. The expectation in (2.26) can be looked at as the

probability that an individual i will have the event in the interval and when dt→ 0. This
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is the instantaneous hazard for the i-th subject at time t and can thus take the PH form

Ii(t) = Yi(t)h0(t)λi (2.27)

where (2.27) is now the familiar Cox PH model format with λi = exp(βTxi) and Yi(t) is

an observed process takes the value 1 if individual i is under observation or at risk at

time t and 0 if not.

The observed data is the set D = {Ni(t), Yi(t),xi; i = 1, 2, . . . , n} and we are in-

terested in the unknown parameters β and the cumulative hazard H0(t) =
∫ t
0 h0(u)du.

Given the observed data D and by specifying priors for our unknown parameters, we

can express the posterior distribution as

p(β, H0(t)|D) ∝ p(D|β, H0(t))p(β|H0(t))p(H0(t)). (2.28)

Under non-informative censoring, the likelihood of the data is proportional to

n∏
i=1

∏
t≥0

Ii(t)
dNi(t)

 exp

(
−
∫
t≥0

Ii(v)dv

)
. (2.29)

It now looks like the increments dNi(t) in the small interval [t, t + dt) are independent

Poisson random variables with means Ii(t)dt i.e.

dNi(t) ∼ Poisson(Ii(t))dt

.

We may then write

Ii(t) = Yi(t)λidH0(t)

where dH0(t)dt = H0(t)dt is the increment or jump in the integrated baseline hazard

function during the time interval [t, t+ dt). As the conjugate prior for the Poisson mean
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is the Gamma distribution, we can assume

dH0(t) ∼ Gamma(cdH?
0 (t), c) (2.30)

where dH?
0 (t) is the prior guess of the unknown hazard function and c is some mea-

sure of our confidence in this guess. Small values of c would imply weak prior beliefs.

What remains is to then choose an appropriate prior for β to work out the posterior

distribution.

Posterior summaries and inference based on the MCMC output

The final MCMC output is now a random sample θ(1), . . . ,θ(J
′
) of the joint posterior

distribution of the θ’s, where J
′

is the number of remaining samples with the burn-in

removed. Using this sample, the measures of interest can be calculated as functions of

the parameters of interest. More specifically, the posterior mean and standard deviation

(SE) for a function of θ, g(θ) can be obtained from

Ê(g(θ|D)) = g(θ) =
1

J ′

J
′∑

j=1

g(θ(j)) (2.31)

and

ŜD(g(θ|D)) =

√√√√√ 1

J ′ − 1

J
′∑

j=1

{
g(θ(j))− Ê(g(θ|D))

}2
(2.32)

respectively. In a similar manner, other measures of interest such as the posterior

median and quantiles from which 95% credible intervals (CrIs) may be obtained, can

be calculated.



32

2.10 Assessing the model fit in TTE models

The fitted model can be assessed to see how well it fits the data or, where the Cox

PH model is used, whether it violates the proportional hazards assumption, before any

inference is made. For TTE data, it is not possible to use standard residuals to assess

model fit due to censoring. As a result, various methods for assessing proportional

hazards models have been proposed and we discuss them next.

2.10.1 Schoenfeld residuals

One way to assess the PH assumption is to use Schoenfeld residuals [82]. Schoenfeld

residuals are calculated as the difference between the observed covariate value for the

i-th subject and its conditional expectation given at any event time t(j). It is given by

rj(β) = xi −
∑
m∈Rj

xm exp(βTxm)∑
k∈Rj exp(βTxk)

(2.33)

where β is a coefficient from the PH model. The form given in (2.33) is the contribution

of a given event to the score function of the partial likelihood such that
∑

j r̂j(β̂) = 0.

The PH assumption is then checked by plotting the Schoenfeld residuals against time

for each covariate. If the PH assumption is valid, the residuals have a mean 0 over

the whole range of the observed times. If, however, the plot shows deviations from 0

over time, it might imply that the hazards are not proportional and that there is a time

dependent effect that has to be taken into account [83]. In practice, scaled Schoen-

feld residuals which are obtained by transforming the residual to have an approximate

variance of 1 are used. This makes it possible to formally test hypotheses such as

the PH assumption and procedures for doing there are available in standard statistical

software.
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2.10.2 Other residuals and methods for assessing model fit

Martingale residuals can also be useful when interest is on investigating whether the

correct functional form of a continuous covariate has been given. A plot of these resid-

uals against the covariate will show a smoothing line close to 0 if the functional form is

correct [84]. Alternatively, Cox-Snell residuals can be used to perform goodness-of-fit

tests for proportional hazards survival models (as well as other survival models) by plot-

ting the Cox-Snell residuals against the cumulative hazard function [85]. Good fit will be

depicted by a straight line through the origin with gradient 1. One problem with the Cox-

Snell residuals is that the plot might depict a linear relationship even for models that

do not satisfy the PH assumption. Because of the limitations of the Cox-Snell residuals

and the situations which my require use of Martingale residuals not encountered in this

work, Schoenfeld residuals were used to assess the PH assumption in both univariable

and multivariable models in this work.

For Exponential and Weibull TTE models, goodness of fit may be assessed infor-

mally by looking at how the survivor function S(t) or some function of it varies with the

TTE or some function of t. To assess whether the PH assumption holds for example, a

plot of

log(− log(Ŝ(ti))) against log(ti)

where Ŝ(t) is the K-M estimate can be used [86]. If the PH holds, lines for different

levels of a categorical variables will be parallel for the survival model including para-

metric models such as the Exponential and Weibull models. Another way for assessing

goodness of fit in parametric models is to plot the fitted survival curve based on the

model parameters alongside the K-M plot to see how closely the fitted model matches

the empirical data.
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2.10.3 Assessing model fit in cure rate models

There are no universally used methods for assessing fit in cure rate models such as

Schoenfeld residuals. Pseudo-residuals have been proposed for assessing model fit in

the distribution of T for those not cured [87]. Other methods have focused on testing

the presence of the cured proportion itself (π) and ignored the role of covariates [88],

while other proposed methods test whether the cured proportion as a function of covari-

ates, satisfies a given parametric model [89]. In this thesis, we will not focus on formal

methods for assessing fit in cure rate models. We will instead use graphical methods

to assess if the estimated survivor function from a fitted cure rate model approaches

an asymptote at the estimated cured proportion for all patients [90]. For models fitted

using MCMC, we will use the model diagnostic techniques in Bayesian models which

are discussed next to assess fit.

2.10.4 Checking model convergence in Bayesian models

A number of ways can be used to monitor the convergence of the posterior distribution.

The Monte Carlo (MC) error, which gives an idea of how precisely the measure of

interest is estimated, is given as part of the MCMC output in standard MCMC software

such as Bayesian inference Using Gibbs Sampling (BUGS) [91], Just Another Gibbs

Sampler (JAGS) [92] and Stan [93]. Small values of the MC error would imply that the

resulting estimate is not affected by the MC sampling error and if the chain is ran for

long enough, the MC error would decrease to zero. Autocorrelations can also be used to

give an idea of convergence with low or high values indicating fast or poor convergence

of the Markov Chain. These can be plotted from the MCMC output.

Another way is to use trace plots which show draws from the posterior distribution for

each parameter against the number of iterations. Plots with the burn-in period included

will show the chains starting at different values and then merging into one stationary
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chain indicating the final stationary distribution. The initial iterations can be discarded

from these plots if so desired. These plots also show whether the chain of samples is

moving quickly around the posterior distribution rather than getting stuck in one region

of it.

A more formal way of checking convergence is the Gelman-Rubin diagnostic (GRD)

statistic. It compares output from multiple MCMC chains focusing on the variances

within and between chains. If the target distribution has been attained by each chain,

the posterior variances between and within each chain should be close to each other.

These two variances should give a ratio that is close to 1. The square root of this ratio,

called the potential scale reduction factor (PSRF) is normally used to give a measure

of how close to each other the chains are and therefore whether each of the chains has

converged to the target posterior distribution [94, 95]. The GRD is checked for each

parameter of interest to ensure each has achieved convergence.

Another formal model checking approach is to use the posterior predictive distribu-

tion [96]. This is where, given the observed data D, we can predict future observations

D
′

from the posterior predictive distribution

p(D
′ |D) =

∫
f(D

′ |θ)p(θ|D)dθ. (2.34)

This gives the expected distribution of D
′

having observed the data and averaging over

the posterior distribution of θ given the data. If we have observed data D, the prior

distribution θ shifts to the posterior distribution p(θ|D), and to a different distribution of

variables D
′

which represent hypothetical or future data. If the replicated data is of the

same size and shape as the originalD, then we can conclude that the model represents

the truth.



36

2.11 Model selection

Models are usually fitted to assess the effect of one or more covariates on the outcome.

Interest is normally on obtaining treatment effects that take into account other factors in

the model and thereby avoid confounding. Having fitted models with several covariates,

it might be necessary to perform model selection to end up with the simplest model and

to avoid over-fitting. In a regression analysis, standard methods for model comparisons

can be used to compare nested models for instance the partial likelihood ratio test to

assess the significance of a covariate in the model. This test is usually preferred to the

Wald and score tests [97]. Where models are not nested information criteria can be

used for model selection, for example Akaike and Bayesian Information Criteria which

are briefly discussed next.

2.11.1 Choosing between models using the Deviance Information Crite-

rion and other ways of model selection

As with modelling in general, the distribution of the TTE data depends on a vector of

unknown parameters we are interested in, θ. In the ML paradigm, model assessment

will involve working out the deviance which is the difference in the LL between the full

and reduced models [98]. The Akaike’s Information Criterion (AIC) is used to compare

models fitted using ML based techniques [99] and is given by,

AIC = −2 log p(D|θ̂) + 2p (2.35)

where θ̂ is the ML estimator of θ and p is the number of parameters in the model. In

the Bayesian setting, the Bayesian Information Criterion (BIC) [100] can also be used

in model selection. Another useful measure, the Deviance Information Criterion (DIC)

which is made up of a measure of how well a model fits the data (goodness of fit)
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and a measure of model complexity, can be used to provide an idea of the effective

number of parameters included in the model [101]. In practice, we would use the DIC

instead of the BIC as the concern in our case is not to identify the true model but rather

to assess the model’s predictive ability. Moreover, we would not choose the BIC as

it requires specification of the number of parameters while the DIC will estimate the

effective number of parameters instead. The DIC is given as

DIC = D̄ + pD (2.36)

where D̄ is the posterior expectation of the deviance and is given by

D̄ =
1

J ′

J
′∑

j=1

−2 log p(D|θj) (2.37)

where J
′
is the number of iterations remaining from the MCMC output having discarded

the burn-in, and log p(D|θj) is the LL of the data given the unknown parameters [102]

and pD represents the effective number of parameters which is the difference between

D̄ and the deviance evaluated at the posterior mean of the parameter estimates,

p(D|θj) = D̄ −D(θ̄). (2.38)

Based on this, the DIC can also be written as

DIC = 2D̄ −D(θ̄)

= D(θ̄) + 2pD

= −2 log p(D|θ) + 2pD

(2.39)

which bears some resemblance to the AIC. Models with low DIC, AIC or BIC values

are considered to be a better fit to the observed data. The use of the DIC for model

checking has its own limitations such as pD being invariant to transformation and a
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lack of consistency among others. [102]. However, in this work, the focus is on using

the DIC to assess practical aspects of the rather complex models fitted by checking for

negative values of pD, for example, which would indicate that the model is not properly

specified as well as model selection. In situations where the DIC is not appropriate, the

average deviance D̄ can, on its own, be used as a measure of fit for complex models

by comparing the change in deviance between nested models.

2.12 Summary

In this chapter, we have provided a brief overview of the methods for analysing TTE

data in general when interest is on investigation of factors associated with TTR and

OS in cancer, and where the possibility of some patients being cured is realistic, how

cure rate models can be used to estimate the proportion cured. We have also briefly

described how, in the presence of missing or latent variables, the EM algorithm can be

used to estimate these outcomes.

The chapter has also briefly discussed how parameters can be estimated using ML

based and Bayesian approaches, including checking for model fit using various graphi-

cal and more formal means. For the ML approach, we have described how the param-

eters can be estimated from the score functions and the precision of the estimates can

be approximated using the Fisher Information matrix. In the Bayesian approach, we

have detailed how the Gibbs sampling and Metropolis-Hastings algorithms can be used

to sample from the joint posterior distribution of the unknown parameters, given the ob-

served data. We have finally discussed how to obtain the parameter estimates from the

MCMC output, to check for model adequacy and how to select the most appropriate

model.

Having described the methods in general, and how they can be applied, the next

chapters will focus on how they can be used in practice. The standard methods will be
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used to model the TTR and OS patterns using the example data sets. Mixture models

will be used to estimate the cured proportion.



Chapter 3

Exploring factors affecting survival outcomes

in patients recruited in UK Myeloma and

CLL trials

3.1 Introduction

This chapter introduces two datasets that will be used for illustration throughout the

thesis. Some of the commonly used TTE methods were applied to the Myeloma IX and

CLL datasets to investigate factors associated with TTR and OS following treatment. In

this descriptive analysis, the distributions of continuous covariates were briefly explored

using means and medians. Cross-tabulations were used to show proportion of patients

in groups for categorical variables. Thereafter, K-M curves were used to compare TTR

and OS patterns among the groups with accompanying log-rank tests to test differences

in the observed patterns.

Following this, Cox PH, Exponential and Weibull regression models were used to

model the association of TTR or OS and each covariate in univariable models as an

exploratory first step. In the next step, we built a multivariable model using a back-

ward selection approach. Starting with all potential variables in the model, the least

40
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significant covariate at each stage, according to the likelihood ratio test, was dropped.

To account for the imbalance likely to result from missing data, models with and with-

out the covariate were fitted to the same number of individuals each time, retaining all

available data for that covariate. This process was repeated until no further variables

can be dropped without compromising model fit. In the analysis of the two example

datasets, backward elimination was performed in such a way that important predictors

of interest in this analysis such as log-RD were forced into the final model as we believe

they are associated with both TTR and OS after treatment. The backward selection

was performed in Cox PH models and the variables in the resulting final models were

entered into multivariable Exponential and Weibull TTR and OS models, to enable easy

comparison of models. This analysis was based on complete cases because some of

the variables had a lot of missing cases. All patients with missing data for any of the

variables were excluded from the analysis. Alternative methods for model selection in-

clude the forward selection technique where each covariate is evaluated before being

added to the model and using the AIC or BIC which were discussed in Section 2.11.1.

To assess validity of the PH assumption, plots of Schoenfeld residuals were used

to assess each of the covariates in the univariable and multivariable Cox PH models.

We did not perform further assessments of fit in the Exponential and Weibull model as

the focus at this point was on the role of covariates on the TTR and OS and not on

modelling the hazard function itself.

3.1.1 Outcomes and variable descriptions

The two outcomes TTR and OS were defined as follows:

1. Time to relapse (TTR); this was defined as the time from measurement of the

RD percentage to a relapse and/or death from a relapse whichever was sooner.

Those who died from causes other than Myeloma or were still alive and disease-

free at the end of follow-up were censored at that point.
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2. Overall survival (OS); this was defined as the time from measurement of the RD

percentage to death from any cause. Those still alive at the end of the follow-up

period were censored.

The two example datasets are now briefly described.

3.2 The Myeloma data set

The Myeloma IX trial was a randomised controlled trial of 1,970 newly diagnosed mul-

tiple myeloma patients aged 18 and above from 120 centres in the UK between May

2003 and November 2007 [103]. It was a phase III trial to evaluate bisphosphonate

and thalidomide - based therapy for myeloma. Bisphosphonates are drugs that help to

prevent bone fractures and bone pain in people with myeloma while Thalidomide drugs

work to slow the growth of myeloma cells. The aims of this trial were to: 1) Compare new

combinations of drugs including thalidomide with treatments already used, 2) Compare

two bisphosphonate based treatments, zoledronic acid and clodronate, and 3) Investi-

gate thalidomide as maintenance treatment. The Myeloma IX trial design allowed for

testing the effect of treatments in combination and their interactions.

This analysis focused on 1,099 patients who were in the intensive treatment arm of

the trial as these patients were considered fit to undergo this kind of treatment. Those

in the intensive group had their RD percentage measured at end of treatment. As this

was a measurement for research purposes patients were given the choice of providing

the measurement or not. As a result, there were no RD percentage measurements

recorded for 661 patients in this group. A comparison of those who did and did not

have a recorded RD percentage showed that age at randomisation was slightly higher

(mean age (SD) 58.3 (0.29) years), for missing cases, compared to those with available

data (56.8 (0.34) years, t-test p-value = 0:001). Moreover, 22.8% (151/661 patients)

of those with missing RD percentage data were 65 years or older, compared to only
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14.6% (64/438 patients) for those with complete data. This suggests that older patients

were less likely to agree to the invasive procedure of measuring the RD from the bone

marrow, which may affect the generalisability of results. Finally, 11 patients were ex-

cluded from the analysis because their relapse or death was recorded at or before RD

assessment, leaving 427 patients in the final data set, Figure 3.1. As the focus of this

thesis was on the association between RD percentage measurement and subsequent

clinical events, the date of measurement of RD percentage was treated as the baseline

or time zero. Patients missing this measure were excluded from the analysis.

3.2.1 Predictors of TTE outcomes in Myeloma

The RD percentage, and in most cases its natural logarithm (log-RD), was the main

explanatory variable of TTR and OS that was considered in this analysis. The TTR and

OS were calculated for each patient using the date the RD percentage was measured

as detailed Section 3.1.1. The RD percentage measurements were on the continu-

ous scale, however some patients (40/427) did not have exact values and for these,

cut-offs were used instead. For example < 0.01% was used to represent an RD per-

centage of less than 0.01%. These were represented by specific values such as 0.01

ignoring the inequality. Other covariates used in the analyses were: sex, age at ran-

domisation, stage (I, II, III), a measure of the paraprotein levels in grams per litre (g/L)

in the blood, albumin in grams per decilitre (g/dL) and beta2-microglobulin in milligrams

per litre (mg/L) at baseline. For brevity, paraprotein (g/L), albumin (g/dL) and beta2-

microglobulin (mg/L) will in some instances just be referred to as paraprotein, albumin

and beta2 respectively. Stage is a marker of disease severity at baseline while para-

protein, albumin and beta2 are hypothesised to be related to the tumour re-growth

rate after treatment. The data also included cytogenetic markers: hyperdiploidy, and

the translocations t(4;14), t(11;14), t(14;16), t(6;14) and t(14;20), as well as dp53 and

gain(1q21) [104], which have already been investigated for their association with TTR
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Analysis data set for Myeloma 

Figure 3.1: Derivation of the Myeloma IX final data set

and OS in Myeloma. Treatment is normally included when analysing survival outcomes

when analysing RCTs. As this work was focused on what happens following treatment,

it was not included in the main analyses in analysing the Myeloma data. This was after

quickly checking that the randomisation into four treatment groups was balanced and

that there were no obvious differences in outcomes among treatment arms (data not



45

shown). When we included treatment in some early analyses, it did not have a sig-

nificant effect itself on the TTR or OS and it did not change other effect of the other

observed outcome predictors. In this thesis, the TTE was calculated from the date of

the end of treatment to the date of relapse, death or censoring. As there was a time-lag

between recruitment and measurement of RD percentage after treatment - the baseline

in this analysis, all covariates were assumed to have the same values at time zero as

on the date of recruitment to the trial. We further assumed that treatment had no effect

after it ceased.

As in some studies, there were some missing values for some of the covariates

in the Myeloma dataset after having excluded all those without RD measurement as

shown in Table 3.1. Complete information was collected for log-RD, age, and sex,

while 1 patient did not have a recorded albumin value. Other than that, the binary

covariates; hyperdiploidy, t(4;14), t(11;14), t(14;16), t(6;14), dp53 and gain(1q21) had

over 40% missing information. Stage is calculated from beta2 and albumin, therefore,

117 (27.4%) did not have data for both stage and albumin. This illustrates that there

was a potential problem with missing data in this analysis. The analysis first focused on

the available data in a complete case (CC) analysis. Since using only the available data

might lead biases in the estimates, ways of handling missing data were then applied to

the data and are detailed in Section 3.4.

3.2.2 Descriptive summary of the categorical variables in Myeloma

Cross-tabulations of the categorical variables and the two outcomes TTR and OS are

shown in Table 3.2. As the length of follow-up to relapse or death varied between pa-

tients, it is inappropriate to compare those with and without each event using these

crude summaries; we comment only on the overall proportions in the different cate-

gories (final column in the table). Information on sex was available on all the 427 pa-

tients in the final data set, males constituted 62.8% of the total. Disease stage was
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Covariate Covariate type Available (%) Missing (%)

Log-RD Continuous 427 (100) 0 (0)

Age Continuous 427 (100) 0 (0)

Sex Binary 427 (100) 0 (0)

Stage Categorical 310 (72.6) 117 (27.4)

Hyeperdiploidy Binary 246 (57.6) 181 (42.4)

t(4;14) Binary 249 (58.3) 178 (41.7)

t(11;14) Binary 247 (57.8) 180 (42.2)

t(14;16) Binary 247 (57.8) 180 (42.2)

t(6;14) Binary 243 (56.9) 184 (43.1)

t(14;20) Binary 245 (57.4) 182 (42.6)

dp53 Binary 240 (56.2) 187 (43.8)

Gain(1q21) Binary 222 (52.0) 205 (48.0)

Paraprotein Continuous 334 (78.2) 93 (21.8)

Beta2 Continuous 310 (72.6) 117 (27.4)

Albumin Continuous 426 (99.8) 1 (0.2)

Table 3.1: A summary of the covariates used in the analysis of the Myeloma dataset showing proportion
missing for each covariate. The total number of patients in the analysis was 427
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ascertained for 310 patients with roughly a third in each of the stages I, II and III. Over

half (53.2%) of the 246 patients tested positive for hyperdiploidy. Just over 14% of 249

and 16% of 247 patients were positive for t(4;14) and t(11;14) translocations respec-

tively while the proportions of those with t(14;16), t(6;14), t(14;20) and dp53 were even

lower. Finally, 36% of 222 patients had positive gain(1q21). The cross-tabulations also

showed that there were cells with frequencies less than 5 for some of the transloca-

tions which precludes the use of these variables in our statistical models [105]. These

variables were thus not included in subsequent analyses.

3.2.3 Overall TTR and OS patterns in Myeloma

We next graphically looked at the TTR and OS from the time of RD percentage mea-

surement for these patients by plotting K-M survival curves, Figure 3.2. The median

relapse time for the Myeloma patients after RD measurement was 2 years inter-quartile

range (IQR) [1.7, 2.3 years]. Most of the relapses occurred within the first 2 years as

evidenced by the steep curve. After 5 years, the curve seemed to flatten out at around

20%, suggestive of a plateau with heavy censoring up to the end of follow-up (only 4

events were observed in 51 patients who were followed up for 5 years or longer). For

the OS, the median time to death after RD measurement was more than 6 years. Unlike

in the TTR curve, deaths continued to occur evenly throughout the follow-up time.

3.2.4 Comparing TTR patterns by categorical variables in Myeloma

Comparisons of TTR patterns were made based on stage, sex, hyperdiploidy, t(4;14),

t(11;14) and gain(1q21), Figure 3.3. Log-rank tests were used to test for statistical

significance among groups in the observed TTR patterns. There were no obvious dif-

ferences in the TTR patterns among males and females. Patients with Stage I disease

had longer TTR compared to Stages II and III although these differences not quite sig-

nificant at the 5% level. Those without hyperdiploidy had a shorter median TTR (1.6
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TTR OS

Variable (n) Not relapsed (%) Relapsed (%) Alive (%) Died (%) Total (%)

Sex (427)

Male 67 (63.8) 201 (62.4) 161 (62.9) 107 (62.6) 268 (62.8)

Female 38 (36.2) 121 (37.6) 95 (37.1) 64 (37.4) 159 (37.2)

Stage (310)

I 32 (43.8) 74 (31.2) 72 (38.7) 34 (27.4) 106 (34.2)

II 22 (30.2) 91 (38.4) 73 (64.6) 40 (32.3) 113 (36.4)

III 19 (26.0) 72 (30.4) 41 (22.0) 50 (40.3) 91 (29.4)

Hyperdip. (246)

No 23 (42.6) 92 (47.9) 58 (38.4) 57 (60.0) 115 (46.8)

Yes 31 (57.4) 100 (52.1) 93 (61.6) 38 (40.0) 131 (53.2)

t(4;14) (249)

No 53 (98.2) 161 (82.6) 138 (92.0) 76 (76.8) 214 (85.9)

Yes 1 (1.8) 34 (17.4) 12 (8.0) 23 (23.2) 35 (14.1)

t(11;14) (247)

No 43 (81.1) 164 (84.5) 122 (81.9) 85 (86.7) 207 (83.8)

Yes 10 (18.9) 30 (15.5) 27 (18.1) 13 (13.3) 40 (16.2)

t(14;16) (247)

No 52 (98.1) 188 (96.9) 147 (98.0) 93 (95.9) 240 (97.2)

Yes 1 (1.9) 6 (3.1) 3 (2.0) 4 (4.1) 7 (2.8)

t(6;14) (243)

No 50 (98.0) 191 (99.5) 144 (98.6) 97 (100.0) 241 (99.2)

Yes 1 (2.0) 1 (0.5) 2 (1.4) 0 (0.0) 2 (0.8)

t(14;20) (245)

No 53 (100.0) 188 (97.9) 148 (99.3) 93 (96.9) 241 (98.4)

Yes 0 (0.0) 4 (2.1) 1 (0.7) 3 (3.1) 4 (1.6)

dp53 (249)

No 49 (100.0) 179 (93.7) 144 (99.3) 84 (88.4) 228 (95.0)

Yes 0 (0.0) 12 (6.3) 1 (0.7) 11 (11.6) 12 (5.0)

Gain(1q21) (222)

No 37 (77.1) 105 (60.3) 98 (73.1) 44 (50.0) 142 (64.0)

Yes 11 (22.9) 69 (39.7) 36 (26.9) 44 (50.0) 80 (36.0)

Table 3.2: Summary of categorical variables in the Myeloma dataset by TTR and OS outcomes. The
number of available observations for each variable are shown in parentheses next to the variable name.
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Figure 3.2: K-M estimates of the overall TTR (left) and OS (right) in the Myeloma dataset. Dotted lines
represent 95% CI limits.

years) compared to those with hyperdiploidy (2.2 years), p < 0.081 based on the log-

rank test. Those with the t(4;14) translocation had a median TTR of just over 6 months,

while those without it relapsed after 2.2 years on average, log-rank p < 0.001. More-

over, all but one of the patients with t(4:14) eventually relapsed by the end of follow-

up. There were no differences in the relapse patterns by t(11;14), log-rank p = 0.971.

Those without gain(1q21) had a longer median TTR 2.3 years compared to the those

with gain(1q21) who had a median TTR of 1.1 years, log-rank p < 0.001.
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Figure 3.3: K-M estimates of the overall TTR and OS patterns in the Myeloma dataset

3.2.5 Comparing observed OS patterns by categorical variables in Myeloma

There were differences in OS patterns by disease stage (visibly between stage I or II

and stage III), log-rank p < 0.001, Figure 3.4. Those without hyperdiploidy had poorer

OS while having t(4;14) and gain(1q21) were associated with a shorter time to death.
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There were no differences in OS between males and females and between those with

and without t(11;14).
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Figure 3.4: K-M estimates of OS by categorical variables in the Myeloma dataset
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Original scale Z-standardised

n Mean (SD) Median [IQR] Mean (SD) Median [IQR]

Age (years)∗ 427 56.8 (7.25) 57 [52, 62] - -

Log-RD∗ 427 -0.72 (0.54) -0.70 [-1.00, -0.40] - -

Paraprotein (g/L) 334 4.07 (6.47) 0.00 [0.00, 6.68] 1.29× 10−8 (1.00) -0.63 [-0.63, 0.40]

Beta2 (mg/L) 310 4.98 (4.12) 3.50 [2.60, 5.90] −1.72× 10−9 (1.00) -0.36 [-0.58, 0.22]

Albumin (g/dL) 426 3.55 (0.73) 3.60 [3.10, 4.10] −4.90× 10−10 (1.00) 0.06 [-0.62, 0.75]

Table 3.3: Summary by continuous variables in the Myeloma dataset. Age and log-RD, which was
already log-transformed, were not z-standardised (∗). The summaries for paraprotein, beta2 and

albumin were based on 334, 310 and 426 patients respectively.

3.2.6 Descriptive summaries of the continuous variables in Myeloma

Age, log-RD, paraprotein, beta2 and albumin were the continuous variables in the

Myeloma dataset. The means, standard deviations (SD), medians and IQRs for these

continuous variables are shown in Table 3.3. For each covariate, the number of ob-

servations is included recognising that some patients had missing data as reported in

Table 3.1 had n < 427. The median age at randomisation [IQR] was 57 [52, 62] years.

The mean (SD) log-RD was -0.72 (0.54) at the end of treatment. For paraprotein, the

mean (SD) level in the blood was 4.07 (6.47) at baseline. For beta2 and albumin, the

means (SDs) were 4.98 (4.12) and 3.55 (0.73) respectively. Looking at the medians,

it was clear that paraprotein and beta2 were positively skewed, with around half of the

patients having a paraprotein measure of zero. The values of paraprotein, beta2 and al-

bumin were z-standardised in order to model the effect of these covariates as increases

or decreases in the hazard function for each SD increase/decrease in the value of the

variable when used in TTE model thereby making interpretation easier.

Following the exploratory analysis, univariable Cox PH, Exponential and Weibull re-

gression models were fitted to the Myeloma data to investigate the association of the

various covariates with TTR and OS. In these models, RD percentage was fitted on the
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log-scale (log-RD), while z-standardised values of paraprotien, beta2 and albumin were

used. The ML methods, discussed in Chapter 2, were used to estimate parameters

from these models in Stata, first with each variable fitted singly in univariable mod-

els. Variables found to be significantly associated with either outcome (p < 0.1) were

then included in a multivariable analysis together with log-RD and the z-standardised

paraprotein, beta2 and albumin. These four variables were included in all multivariable

models because log-RD was the main predictor of TTE outcomes following treatment

in this thesis, alongside the tumour growth rate whose markers are paraprotein, beta2

and albumin. Because stage is derived from beta2 and albumin, stage was not included

in the multivariable models with these two variables used instead. These three covari-

ates will be used in modelling the role of the latent variable tumour growth rate in a

structural equation modelling approach in Chapter 6. Model selection using backward

elimination was performed as described earlier in this chapter. We report estimates

of the log-hazard ratios (Log-HR) in univariable models and adjusted log-hazard ratios

(Adj. Log-HR) for all models as well as estimates of the shape parameter (γ) from the

Weibull models.

3.2.7 Modelling independent factors associated with TTR in Myeloma

Results from Cox PH, Exponential and Weibull models for factors associated with TTR

following treatment are shown in Table 3.4. Each log-percentage increase in the RD

was associated with a significant, 0.214 (0.008, 0.421), increase in the log-hazard of a

relapse based on the Cox PH model. This effect was similar to that from the Exponen-

tial 0.200 (-0.006, 0.405) and Weibull 0.200 (-0.005, 0.406) model estimates, although

these were non-significant. Age and sex were not independently associated with the

TTR in any of the univariable models (results not shown). They were thus not consid-

ered in the multivariable analyses. With respect to the disease stage at recruitment,

the log-hazard was 0.221 (-0.086, 0.528) times higher in stage II patients when com-
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pared to those in stage I, although this was not significant, while that of stage III patients

was 0.387 (0.062, 0.712) times significantly higher than that of stage I patients based

on the Cox PH model. Estimates of the log-HR for stage from the Exponential and

Weibull models were generally similar to those from the Cox PH model. Each SD in-

crease in the paraprotein level was significantly associated with a 0.203 (0.096, 0.311)

increase in the log-hazard based on the Cox PH model, a 0.207 (0.098, 0.316) increase

in the log-hazard based on the Exponential and a 0.215 (0.106, 0.324) increase in the

log-hazard from the Weibull model. Similarly, higher beta2 levels were significantly as-

sociated with an increase in the log-HR of 0.193, 0.187, and 0.192 for each SD increase

in beta2 in the Cox PH, Exponential and Weibull models respectively. Contrasting with

paraprotein and beta2, each SD increase in albumin was significantly associated with a

0.138, 0.124 and 0.124 decrease in the log-HR based on the Cox PH, Exponential and

Weibull models respectively. Hyperdiploidy and t(11;14) were not significant associated

with the TTR among these patients. On the other hand, t(4;14) and gain(1q21) were

significantly associated with shorter TTR.

The estimates from the univariable models were generally similar for all three sur-

vival models. In all univariable models for TTR, the 95% CI for the shape parameter

in the Weibull models included 1. As the Exponential distribution is a special case of

the Weibull with shape = 1, there is little to gain from fitting the Weibull model for TTR

over the Exponential model, which assumes constant hazard. Among the three sur-

vival models however, the Cox PH model would be the model of choice where interest

is on the role of covariates on the TTR as it not vulnerable to the misspecification of the

baseline hazard. We thus only assessed whether it was reasonable to assume PH in

the Cox PH model.
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Cox PH Exponential Weibull

Parameter n Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Intercept 427 - -1.043 (-1.219, -0.867) -1.068 (-1.276, -0.861)

Log-RD 0.214 (0.008, 0.421) 0.200 (-0.006, 0.405) 0.200 (-0.005, 0.406)

Shape (γ) - - 1.022 (0.932, 1.120)

Intercept 310 -1.358 (-1.586, -1.130) -1.440 (-1.709, -1.172)

Stage II 0.221 (-0.086, 0.528) 0.210 (-0.096, 0.517) 0.213 (-0.093, 0.520)

Stage III 0.387 (0.062, 0.712) 0.376 (0.051, 0.700) 0.387 (0.062, 0.712)

Shape (γ) - - 1.066 (0.956, 1.185)

Intercept - -1.178 (-1.301, -1.054) -1.270 (-1.451, -1.090)

Paraprotein 334 0.203 (0.096, 0.311) 0.207 (0.098, 0.316) 0.215 (0.106, 0.324)

Shape (γ) - - 1.080 (0.974, 1.197)

Intercept 310 - -1.168 (-1.295, -1.040) -1.249 (-1.434, -1.064)

Beta2 0.193 (0.076, 0.310) 0.187 (0.071, 0.303) 0.192 (0.076, 0.308)

Shape (γ) - - 1.069 (0.962, 1.188)

Intercept 426 - -1.184 (-1.294, -1.075) -1.210 (-1.366, -1.054)

Albumin -0.138 ( -0.241, -0.035) -0.124 (-0.225, -0.023) -0.124 (-0.225, -0.023)

Shape (γ) - - 1.022 (0.932, 1.120)

Intercept 246 - -1.006 (-1.211, -0.802) -1.048 (-1.295, -0.800)

Hyperdiploidy: Yes -0.252 (-0.535, 0.032) -0.230 (-0.513, 0.053) -0.232 (-0.515, 0.051)

Shape (γ) 1.036 (0.922, 1.165)

Intercept 249 - -1.251 (-1.406, -1.097) -1.394 (-1.619, -1.170)

t(4;14): Yes 1.284 (0.899, 1.668) 1.263 (0.893, 1.633) 1.373 (0.984, 1.763)

Shape (γ) - - 1.115 (0.994, 1.251)

Intercept 247 - -1.073 (-1.226, -0.920) -1.112 (-1.318, -0.905)

t(11;14): Yes -0.196 (-0.585, 0.194) -0.246 (-0.636, 0.143) -0.252 (-0.641, 0.138)

Shape - - 1.033 (0.920, 1.161)

Intercept 222 - -1.289 (-1.481, -1.098) -1.345 (-1.592, -1.098)

Gain(1q21): Yes 0.590 (0.284, 0.895) 0.560 (0.256, 0.863) 0.570 (0.265, 0.875)

Shape (γ) - - 1.045 (0.926, 1.180)

Table 3.4: Log-hazard ratio estimates for each covariate from univariable Cox PH, Exponential and
Weibull models for TTR applied to the Myeloma dataset in a CC analysis (details of n for each covariate

are shown based on the summary in Table 3.1). Estimates of the intercept for the Exponential and
Weibull models as well as the shape parameter (γ) for the Weibull model are also reported.
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Test for the PH assumption in univariable models for TTR in Myeloma

To test whether the PH holds in the individual univariable Cox PH models, plots of the

scaled Schoenfeld residuals against time for all the covariates in the univariable models

except age and sex were used, Figure 3.5. Alongside the plots, the proportionality

assumption for each independent predictor was tested using the stphtest command in

Stata. A p-value of greater than 0.05 from this test for a given covariate would imply

that there is no strong evidence to suggest violation of proportionality and we therefore

do not reject the PH assumption in that model.

From the plots the red horizontal line around 0 suggested that the PH generally

held for most of the covariates used in the univariable Cox PH models for TTR in the

Myeloma dataset. Further, the p-values from the test for the PH assumption obtained in

Stata were > 0.05 for all covariates except hyperdiploidy (labelled hyperd in this figure),

(p = 0.025) and gain(1q21) whose p-value was 0.017. There appeared to be deviations

in the scaled residuals after four years for the two covariates.

3.2.8 Modelling independent factors associated with OS in Myeloma

The factors associated with OS were assessed using Cox PH, Exponential and Weibull

models, Table 3.5. Each unit increase in the log-RD was associated 0.087 (-0.203,

0.377) increase in the log-hazard in the Cox PH model, a 0.085 (-0.203, 0.374) increase

in the log-hazard in the Exponential model and a 0.076 (-0.214, 0.366) increase in the

log-hazard in the Weibull model, respectively. However, unlike in the TTR models, this

effect was not significant in any of the three models. Age and sex were again not

associated with the OS in all models (results not shown). As with TTR, an advanced

disease stage (stage II and stage III) was predictive of poorer OS when compared to

those who had stage I disease. However, the log-HR for those with stage II disease was

not significant when compared to those with stage I disease in all three models. On the
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Figure 3.5: Scaled Schoenfeld residuals plotted against time from the univariable Cox PH models for
TTR in the Myeloma dataset ignoring missing data

other hand, stage III patients had a significantly higher log-HR 0.758 (0.321, 1.196) in

the Cox PH, 0.725 (0.289, 1.160) in the Exponential and 0.775 (0.338, 1.212) in the

Weibull models respectively.

Paraprotein was associated with a slight, but non-significant effect on the OS in all

three models. Each SD increase in beta2 associated with a significant 0.278 (0.145,

0.410), 0.266 (0.133, 0.399) and 0.282 (0.149, 0.414) increase in the log-HR in the Cox

PH, Exponential and Weibull models respectively. Each SD increase in albumin levels

was on the other hand significantly associated with a lower hazard of death or better
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OS. Having hyperdiploidy was predictive of better OS while the markers t(4;14) and

gain(1q21) were both significantly associated with poor OS in all three models. There

were no differences in OS among those with and without t(11;14).

Once again, the estimates of the log-HR were similar across the different models

just as in the TTR models. In contrast to the TTR models, the shape parameter in

the Weibull model for OS was significantly > 1 for all models as the 95% CI did not

include a 1, indicating the hazard of death was not constant over time and that perhaps

Weibull model would be a better model for OS than the Exponential model. However, on

comparing the AICs for log-RD, stage, paraprotein, beta2 and albumin which were re-

spectively (871.3, 609.5, 656.2, 608.5, and 866.1) from the Weibull models and (879.7,

619.5, 666.5, 618.4, 874.8) from the Exponential models, it would seem the Weibull

was the better model for OS for these particular covariates. The Cox PH model would

still be considered ideal for modelling the OS because of its non-parametric handling of

the baseline hazard.

Test for the PH assumption in univariable models for OS in Myeloma

Again the scaled Schoenfeld residuals were used to test the PH assumption in the uni-

variable Cox PH models for OS, Figure 3.6. Alongside the plots, the proportionality

assumption was formally tested for each covariate. Residuals from all univariable Cox

PH models for OS suggested that there was no significant departure from the PH as-

sumption. Moreover, all p-values from the global test for the PH assumption for each

covariate were > 0.05. We thus conclude that it was reasonable to model the OS using

the Cox PH models in Myeloma.
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Cox PH Exponential Weibull

Parameter n Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Intercept 427 - -2.257(-2.504, -2.011) -2.671 (-3.039, -2.303)

Log-RD 0.087 (-0.203, 0.377) 0.085 (-0.203, 0.374) 0.076 (-0.214, 0.366)

Shape (γ) - - 1.267 (1.104, 1.453)

Intercept 310 - -2.602 (-2.938, -2.266) -3.161 (-3.642, -2.680)

Stage II 0.075 (-0.384, 0.534) 0.096 (-0.361, 0.554) 0.093 (-0.364, 0.550)

Stage III 0.758 (0.321, 1.196) 0.725 (0.289, 1.160) 0.775 (0.338, 1.212)

Shape (γ) 1.356 (1.156, 1.590)

Intercept 334 - -2.359 (-2.531, -2.187) -2.892 (-3.263, -2.520)

Paraprotein 0.093 (-0.066, 0.251) 0.083 (-0.075, 0.242) 0.091 (-0.067, 0.249)

Shape (γ) - - 1.348 (1.151, 1.579)

Intercept 310 - -2.347 (-2.526, -2.168) -2.877 (-3.255, -2.499)

Beta2 0.278 (0.145, 0.410) 0.266 (0.133, 0.399) 0.282 (0.149, 0.414)

Shape (γ) - - 1.346 (1.148, 1.577)

Intercept 426 - -2.320 (-2.470, -2.169) -2.732 (-3.040, -2.425)

Albumin -0.156 (-0.298, -0.014) -0.150 (-0.293, -0.008) -0.153 (-0.294, -0.012)

Shape (γ) - - 1.271 (1.108, 1.457)

Intercept 246 - -2.064 (-2.324, -1.805) -2.405 (-2.836, -1.973)

Hyperdiploidy: Yes -0.673 (-1.084, -0.262) -0.656 (-1.067, -0.246) -0.672 (-1.083, -0.261)

Shape (γ) 1.225 (1.019, 1.472)

Intercept 249 - -2.491 (-2.716, -2.266) -2.864 (-3.281, -2.447)

t(4;14): Yes 0.890 (0.421, 1.357) 0.875 (0.409, 1.342) 0.912 (0.445, 1.380)

Shape (γ) 1.238 (1.035, 1.481)

Intercept 247 - -2.304 (-2.516, -2.091) -2.665 (-3.075, -2.256)

t(11;14): Yes -0.310 (-0.894, 0.274) -0.315 (-0.899, 0.268) -0.322 (-0.906, 0.262)

Shape (γ) 1.234 (1.029, 1.479)

Intercept 222 - -2.641 (-2.937, -2.346) -2.992 (-3.464, -2.519)

Gain(1q21): Yes 0.707 (0.288, 1.126) 0.699 (0.281, 1.117) 0.712 (0.294, 1.130)

Shape (γ) 1.223 (1.011, 1.479)

Table 3.5: Log-hazard ratio estimates for each covariate from univariable Cox PH, Exponential and
Weibull models for OS applied to the Myeloma dataset in a CC analysis (details of n for each covariate

are shown based on the summary in Table 3.1). Estimates of the intercept for the Exponential and
Weibull models as well as the shape parameter (γ) for the Weibull model are also reported.
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Figure 3.6: Scaled Schoenfeld residuals plotted against time from the univariable Cox PH models for
OS in the Myeloma dataset ignoring missing data

3.2.9 Multivariable models for TTR and OS in Myeloma

Having fit univariable models, the aim is naturally, to investigate whether the observed

associations are independent and to adjust for potential confounders [106]. We first

fit multivariable Cox PH models for TTR and OS, starting with the full model including

all the variables used in the univariable models except age, sex and stage. Starting

with the full model with all covariates, an a backward model selection procedure as

described previously was performed in Stata to come up with the final model. Using

the covariates in the final model obtained from the model selection, multivariable Ex-



61

ponential and Weibull models were again fitted. The results from the final multivariable

Cox PH, Exponential and Weibull TTR and OS models are shown in Table 3.6. Due

to missing data, only 125 individuals were included in the final multivariable models for

TTR and OS in a CC analysis. To enable comparisons between the adjusted and un-

adjusted estimates, we fit univariable Cox PH models for TTR and OS to data from the

125 patients in the final model, Table 3.7. We also report AICs for each multivariable

model.

The adjusted HR estimate in the TTR model was 0.141 (-0.335, 0.616) in the Cox

PH model implying an increase in the log-hazard for each unit increase on the log-

scale in the RD percentage when paraprotein, beta2, albumin, t(4:14) and gain(1q21)

were taken into account. However, this effect was not significant. In comparison, the

unadjusted log-HR estimate from the univariable Cox PH model was much higher and

significant when the univariable Cox PH model was fitted to exactly the same number

of patients, 0.543 (0.135, 0.951), as shown in Table 3.7. Higher levels of paraprotein

were predictive of shorter TTRs and the estimate of the log-HR estimate of 0.408 in

the univariable model increased to 0.454 when the other covariates were taken into

account. Beta2 did not have a significant effect on the TTR in both univariable and

multivariable models for this subset of patients. With respect to albumin, the same

effect seen in the univariable model was also evident in the multivariable models with

each SD increase in albumin being associated with a decrease in the risk of relapsing

following treatment. Finally, t(4:14) and gain(1q21) were predictive of poorer outcomes

in both the univariable and multivariable models.

For OS, the adjusted log-HR (0.321) for log-RD was almost half of that in the uni-

variable Cox PH model (0.634). Moreover, the effect in the multivariable model was

no longer significant. Each SD increase in the paraprotein level was significantly as-

sociated with an even higher increase in the hazard in the multivariable Cox PH model

compared to the univariable model. Again beta2 was not associated with the time to
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death in both models, while the effect of albumin and gain(1q21) remained significantly

associated with OS.

Estimates from the Exponential and Weibull models were generally similar in all

multivariable models. The AIC was lowest in the Weibull model suggesting that it was

the better model. However, because of its flexibility, we may still want model these

outcomes using the Cox PH model. Plots of the scaled Schoenfeld residuals from the

multivariable models showed that the PH assumption was not violated, Figure E.1 and

Figure E.2 in Appendix E. By only including patients with available data on the covari-

ates in the final models for both TTR and OS in the Myeloma dataset, we discarded

data from more than half of patients in the trial which could lead to biased results due

to missing data. We thus performed some sensitivity analyses by discarding covariates

with the highest proportion of missing data to compare estimates.

3.2.10 Sensitivity analysis

By considering only the CC analysis, the final model had 125 patients. This was a drop

of 302 patients and differences in the number of cases in each model could have led

to the major differences between the univariable and multivariable model results. From

the summary of available data in Table 3.1, it was clear that the variables t(4:14) and

gain(1q21) had data from only 249 and 222 patients respectively, which had a large

impact on the number of missing cases overall. For a more appropriate comparison we

fit univariable and multivariable Cox PH models for both TTR and OS with only log-RD,

paraprotein, beta2 and albumin, ignoring t(4:14) and gain(1q21), to see if the estimates

from these models would be different. The resulting dataset had complete information

from 243 individuals. Since all four variables were included in the previous multivariable

models we did not perform model selection. The results are shown in Table 3.8.

The effect of log-RD on the TTR was significant in the univariable model 0.352

(0.066, 0.638) but not in the adjusted model taking into account paraprotein, beta2



63

Cox PH Exponential Weibull

Parameter Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

TTR model

Intercept - -1.421 (-1.827, -1.015) -1.924 (-2.441, -1.407)

Adjusted log-HRs

Log-RD 0.141 (-0.335, 0.616) 0.128 (-0.342, 0.597) 0.147 ( -0.339, 0.633)

Paraprotein 0.454 (0.221, 0.688) 0.344 (0.121, 0.566) 0.428 (0.196, 0.660)

Beta2 0.048 (-0.194 0.289) 0.038 (-0.189, 0.265) 0.037(-0.202, 0.276)

Albumin -0.301 (-0.560, -0.042) -0.272 (-0.520, -0.024) -0.333 (-0.589, -0.077)

t(4;14): Yes 1.460 (0.916, 2.004) 1.095 (0.585, 1.605) 1.462 (0.910, 2.015)

Gain(1q21): Yes 0.702 (0.277, 1.127) 0.512 (0.096, 0.929) 0.659 (0.237, 1.081)

Shape (γ) - - 1.367 ( 1.163, 1.605)

AIC 771.1 333.8 323.4

OS model

Intercept - -2.643 (-3.211, -2.076) -3.212 (-4.012, -2.413)

Adjusted log-HRs

Log-RD 0.321 (-0.344, 0.987) 0.297 (-0.361, 0.954) 0.298 (-0.366, 0.963)

Paraprotein 0.362 (0.067, 0.658) 0.331 (0.042, 0.620) 0.385 (0.091, 0.679)

Beta2 0.185 (-0.044, 0.413) 0.178 (-0.052, 0.407) 0.190 (-0.041, 0.420)

Albumin -0.301 (-0.633, 0.031) -0.297 (-0.629, 0.035) -0.309 (-0.642, 0.025)

Gain(1q21): Yes 0.720 (0.134, 1.306) 0.651 (0.073, 1.230) 0.709 (0.124, 1.294)

Shape (γ) - - 1.346 (1.046, 1.732)

AIC 416.9 243.1 240.3

Table 3.6: Multivariable Cox PH, Exponential and Weibull models for TTR and OS in the Myeloma
dataset. The multivariable TTR and OS models were fitted to data from n = 125 patients
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Cox PH for TTR Cox PH for OS

Log-HR (95% CI) Log-HR (95% CI)

Log-RD 0.543 (0.135, 0.951) 0.634 (0.069, 1.198)

Paraprotein 0.408 (0.229, 0.588) 0.390 (0.164, 0.617)

Beta2 0.071 (-0.135, 0.277) 0.192 (-0.026, 0.411)

Albumin -0.361 (-0.596, -0.127) -0.403 (-0.718, -0.088)

t(4;14): Yes 1.477 (0.958, 1.995)

Gain(1q21): Yes 0.669 (0.264, 1.074) 0.686 (0.119, 1.254)

Table 3.7: Log-hazard ratio estimates from univariable Cox PH models for TTR and OS applied to the
same Myeloma dataset used in the final multivariable models with n = 125 to enable comparisons with

multivariable models

and albumin 0.207 (-0.088, 0.502). For paraprotein, each SD increase resulted in an

increase in the log-HR of 0.310 in the univariable model which was slightly attenuated

(0.282) in the model taking into account other covariates. Contrary to the effect in

the much reduced dataset, higher levels of beta2 were significantly associated with a

higher risk of relapsing in both univariable and multivariable models. Finally, for TTR

the negative effect of albumin persisted in both univariable and multivariable models.

In the OS models, log-RD was not significantly associated with the time to death in

the univariable models and even after adjusting for the other covariates. Higher levels

of paraprotein were predictive of poorer OS in the univariable model. However, this

effect was not significant after adjusting for the other covariates. An increase for each

SD of beta2 was predictive of a 0.219 and 0.222 increase in the log-HR of death in the

univariable and multivariable models respectively. Finally, albumin was again negatively

associated with OS in both models as in all previous models. Its effect was however not

significant in the multivariable model.

While the analysis thus far has shown that log-RD, paraprotein, beta2, t(4:14) and

gain(1q21) are all important in predicting TTR while log-RD, paraprotein, beta2, and
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TTR models Log-HR (95% CI) Adj. Log-HR (95% CI)

Log-RD 0.352 (0.066, 0.638) 0.207 (-0.088, 0.502)

Paraprotein 0.310 (0.166, 0.454) 0.282 (0.130, 0.434)

Beta2 0.178 (0.044, 0.312) 0.168 (0.024, 0.311)

Albumin -0.299 (-0.463, -0.135) -0.248 (-0.421, -0.075)

OS models Log-HR (95% CI) Adj. Log-HR (95% CI)

Log-RD 0.288 (-0.114, 0.689) 0.207 (-0.222, 0.636)

Paraprotein 0.201 (0.007, 0.396) 0.175 (-0.034, 0.384)

Beta2 0.219 (0.059, 0.379) 0.222 (0.053, 0.390)

Albumin -0.248 (-0.472, -0.023) -0.187 (-0.422, 0.048)

Table 3.8: Log-HR and adjusted log-HR estimates from univariable and multivariable Cox PH models for
TTR and OS applied to the Myeloma dataset ignoring t(4:14) and gain(1q21), n = 243.

gain(1q21) are important predictors of OS, the missingness in some of the covariates

posed challenges, illustrating that focusing only on the CC analysis would result in

spurious conclusions as the sensitivity analysis demonstrated. Taking advantage of the

various methods that exist for handling missing data, we used multiple imputation (MI)

to again model the TTR and OS in Section 3.4.
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3.3 Application of standard survival methods to CLL data

To investigate the predictors of TTR and OS in CLL, the methods from Chapter 2 were

applied to a second dataset containing records from 415 patients recruited into two clin-

ical trials comparing treatments in CLL. The first trial was Attenuated dose Rituximab

with ChemoTherapy In CLL (ARCTIC) - a randomised, phase IIB trial which recruited

200 previously untreated patients with CLL to compare two multiple-drug treatment reg-

imens [107]. The second trial was the ADdition of Mitoxantrone to Improve REsponse

to FCR chemotherapy in patients with CLL (ADMIRE), a phase II, multicentre, ran-

domised, controlled, open, parallel group trial of 215 patients [108]. Those without a

recorded RD percentage measurement or date when this measure was taken (87) and

3 others with invalid times to event (RD percentage taken before TTR or death) were

excluded from the final dataset, leaving 325 patients.

3.3.1 Predictors of TTE outcomes in CLL

Similar to the Myeloma dataset, we summarise the covariates used in modelling the

TTR and OS in CLL, Table 3.9. Unlike in the Myeloma trial, there was complete data

for most of the variables in CLL except VH mutation which had data from 39 individu-

als missing, and p-deletion which was not recorded in 24 patients. As in the Myeloma

dataset, we start by performing a CC analysis followed by the use of methods for miss-

ing data in Section 3.4.

3.3.2 Descriptive summary of the categorical variables in CLL

Summaries based on categorical variables are shown in Table 3.10. Once again, due

to differences in the follow-up times, we only comment on the overall numbers in each

categorical variable. There were more males, 72%, recruited to the CLL trials than

females. In the CLL trials, the Binet staging system was used. It has 3 stages given the
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Covariate Covariate type Available (%) Missing (%)

Log-RD Continuous 325 (100) 0 (0)

Age Continuous 325 (100) 0 (0)

Sex Binary 325 (100) 0 (0)

Stage Categorical 325 (100) 0 (0)

Treatment Categorical 325 (100) 0 (0)

Trial Categorical 325 (100) 0 (0)

VH mutation Binary 286 (88.0) 39 (12.0)

P-deletion Binary 301 (92.6) 24 (7.4)

Table 3.9: A summary of the covariates used in the analysis of the CLL dataset showing proportion
missing for each covariate. The total number of patients in the analysis was 325

letters A, B or C which are dependent on the numbers of red blood cells and platelets in

the blood as well as number of areas in the body with enlarged lymphatic tissue [109].

Around 67% of the patients were in stage A or B of the disease and more than 60%

of these did not have a mutation of the immunoglobulin variable heavy chain (VH). VH

mutation is one of the known risk factors of adverse outcomes in CLL. On the other

hand, almost all the patients had a deletion at chromosome 17p-deletion or just p-

deletion, which is another important predictor of survival outcomes in CLL [110]. The

randomisation to treatment was spread across 4 groups. Finally, a similar number of

patients was assigned to both trials.
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TTR OS

Variable (n) Censored Relapsed Censored Died Total (%)

Sex (325)

Male 138 (58.8) 97 (41.2) 193 (82.1) 42 (17.9) 235 (72.3)

Female 67 (74.4) 23 (25.6) 79 (87.8) 11 (12.2) 90 (27.7)

Stage (325)

A or B 137 (62.6) 82 (37.4) 186 (84.9) 33 (15.1) 219 (67.4)

C 68 (64.2) 38 (35.8) 86 (81.1) 20 (18.9) 106 (32.6)

VH mutation (286)

No 97 (54.5) 81 (45.5) 146 (82.0) 32 (18.0) 178 (62.2)

Yes 80 (74.1) 28 (25.9) 93 (86.1) 15 (13.9) 108 (37.8)

P-deletion (301)

No 6 (50.0) 6 (50.0) 8 (66.7) 4 (33.3) 12 (4.0)

Yes 181 (62.6) 108 (37.4) 243 (84.1) 46 (15.9) 289 (96.0)

Treatment (325)

Control 103 (65.2) 55 (34.8) 132 (83.5) 26 (16.5) 158 (48.6)

ADMIRE Exp 49 (56.3) 38 (43.7) 72 (82.8) 15 (17.2) 87 (26.8)

ARCTIC Exp 1 37 (61.7) 23 (38.3) 49 (81.7) 11 (18.3) 60 (18.5)

ARCTIC Exp 2 16 (80.0) 4 (20.0) 19 (95.0) 1 (5.0) 20 (6.2)

Trial (325)

ADMIRE 100 (58.8) 70 (41.2) 138 (81.2) 32 (18.8) 170 (52.3)

ARCTIC 105 (67.7) 50 (32.3) 134 (86.5) 21 (13.5) 155 (47.7)

Table 3.10: Summary of categorical variables in the CLL dataset by TTR and OS outcomes. For VH
mutation∗, n = 286, while n = 301 for p-deletion∗∗

.



69

3.3.3 Summary of the continuous variables by TTR and OS

Boxplots of the two continuous variables in the CLL dataset are shown in Figure 3.7.

The log-RD measurements were positively skewed with a median [IQR] of -2.40 [-2.40,

1.57] The median age for all patients at randomisation was 63.3 years, IQR [57.2, 68.1

years].
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Figure 3.7: Box plots for log-RD and age at randomisation in the CLL dataset
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3.3.4 Overall TTR and OS patterns in CLL

The median TTR for all patients was 2 years inter-quartile range (IQR) [1.7, 2.3 years].

On top of this, relapses appeared to occur over the who range of follow-up. The median

OS after treatment was 6.6 years. Over the 7 years follow-up, around 40% were still

alive, Figure 3.2. The OS curve was less steep than the TTR curve as CLL is disease

patients can live with for several years even if they are not cured.
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Figure 3.8: K-M estimates of the overall TTR (left) and OS (right) in the CLL dataset. Dotted lines
represent 95% CI limits.
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3.3.5 Comparing TTR patterns by categorical variables in CLL

K-M curves were used to compare the TTR patterns using the categorical variables,

Figure 3.9. The TTR curves were continually decreasing over the follow-up time. In

contrast to the survival patterns observed in the Myloma IX patients, the TTR curves

did not have discernible plateaus, suggesting that identification of a proportion of pa-

tients who are cured, by the definition of no relapse, may be difficult. There were no

obvious differences in the relapse patterns by sex, disease stage, trial (ARCTIC versus

ADMIRE) and treatment. The few without 17p-deletion had lower relapse rates than

the majority who had 17p-deletion. Those with VH mutation had better outcomes than

those without a VH mutation.

3.3.6 Comparing OS patterns by categorical variables in CLL

OS patterns were also plotted by the categorical variables. Overall, more than half the

patients were still alive 5 years after the RD percentage measurement, Figure 3.10.

There were no obvious differences in OS by trial, treatment or stage and there were

similar OS patterns by sex and VH mutation risk. Those with p-deletion had better OS

than the few without p-deletion.

3.3.7 Modelling independent factors associated with TTR in CLL

Univariable Cox PH, Exponential and Weibull regression models were fitted to the CLL

data to ascertain which variables were independently associated with TTR. Estimates

of the log-HRs as well as the 95% CIs from these three models relating each covariate

and the TTR are shown in Table 3.11.

In terms of factors associated with TTR in CLL, there were no significant differences

in the relapse probabilities by disease stage. Those with more advanced disease at

recruitment, stage C, had a lower risk of relapsing after RD measurement log-HR (95%
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Figure 3.9: K-M plots for TTR by categorical variables in the CLL dataset

CI) -0.117 (-0.506, 0.272) when compared to those with stage A or B disease, con-

firming the TTR patterns depicted by the K-M survivor curves. Likewise, estimates of

the log-HR from the Exponential and Weibull models while slightly lower, showed no

effect of stage on TTR. In all models, there was no effect of age at randomisation on
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Figure 3.10: K-M plots for OS by categorical variables in the CLL dataset

the TTR. The log-RD was an important predictor of TTR for these CLL patients. Each

log-increase in the RD percentage after treatment was associated in a 0.819 (0.670,

0.967) increase in the log-HR. Again, there were no differences in TTRs among males

and females while those without VH mutation had significantly longer TTR after treat-
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ment, -0.626 (-1.056, -0.195). Finally, p-deletion was not associated with TTR for these

patients. It is worth noting that the majority had p-deletion while only (12/301) were in

the other group without p-deletion.

The shape parameter in the Weibull models was greater than 1 which implies that

the relapse rate increased with time. However, as with the Myeloma data, we focus on

estimates from the more flexible Cox PH models.

Test for the PH assumption in univariable models for TTR in CLL

Once again, plots of the scaled Schoenfeld residuals against time for all the covariates

in the CLL dataset were used to assess the validity of the PH assumption after fitting the

univariable Cox PH models for TTR, Figure 3.11. From the plots, the PH assumption

generally held for most of the covariates used in the univariable Cox PH models for TTR.

Further, the p-values from the global test for the PH assumption and for all covariates

in univariable models were > 0.05. These plots were made based on the available data

ignoring missing values.
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Cox PH Exponential Weibull

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Intercept -2.012 (-2.228, -1.796) -2.674 (-3.042, -2.305)

Stage C -0.117 (-0.506, 0.272) -0.058 (-0.443, 0.326) -0.080 ( -0.465, 0.305)

Shape (γ) 1.575 (1.342, 1.847)

Intercept -2.291 (-3.694, -0.887) -2.932 (-4.371, -1.492)

Age 0.001 (-0.022, 0.023) 0.004 (-0.018, 0.026) 0.004 (-0.019, 0.026)

Shape (γ) 1.573 (1.340, 1.845)

Intercept -1.165 (-1.374, -0.956) -1.933 (-2.283, -1.582)

Log-RD 0.819 (0.670, 0.967) 0.675 (0.537, 0.813) 0.788 (0.642, 0.933)

Shape (γ) 1.809 (1.554, 2.105)

Intercept -1.929 (-2.128, -1.730) -2.595 (-2.957, -2.234)

Sex: Female -0.394 (-0.850, 0.062) -0.444 (-0.899, 0.010) -0.423 (-0.878, 0.031)

Shape (γ) 1.568 (1.336, 1.840)

Intercept - -1.809 (-2.027, -1.591) -2.485 (-2.868, -2.101)

VH mutation∗: Yes -0.626 (-1.056, -0.195) -0.615 (-1.045, -0.186) -0.639 (-1.069, -0.209)

Shape (γ) 1.583 (1.339, 1.870)

Intercept -1.405 (-2.205, -0.605) -2.026 (-2.877, -1.175)

P-deletion∗∗: Yes -0.620 (-1.452, 0.211) -0.617 (-1.439, 0.205) -0.683 (-1.506, 0.139)

Shape (γ) 1.591 (1.352, 1.872)

Table 3.11: Estimates of log-HRs from univariable Cox PH, Exponential and Weibull models for TTR in
the CLL dataset. In the Exponential and Weibull models, estimates of the intercept in the model for the
log-hazard are presented on top of the log-HR, while the shape parameter (γ) is also estimated in the
Weibull models. There were 286 patients with VH mutation∗ records and 301 with p-deletion∗∗. For the

other covariates, models were fitted with n = 325 as they had no missing data.
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Figure 3.11: Scaled Schoenfeld residuals plotted against time from univariable Cox PH models for TTR
in the CLL dataset ignoring missing data

3.3.8 Modelling independent factors associated with OS in CLL

Next we looked at independent factors associated with OS in CLL by fitting univariable

Cox PH, Exponential and Weibull models. Estimates of the log-HRs, their 95% CIs

and the shape parameter (γ) from the Weibull model are shown in Table 3.12. Once

again, a CC analysis was done for VH mutation (286 patients) and p-deletion (301

patients). Patients with higher log-RD were at a significantly higher risk of death than

those with low RD burden after treatment. Each log-increase in the RD percentage

after treatment was associated with a significant increase of 0.452 (0.247, 0.657) in the
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log-hazard of dying. Patients with stage C disease had a higher risk of death than stage

A or B patients although the effect was not significant, log-HR (95% CI), 0.275 (-0.281,

0.831). The age at randomisation was borderline significant in the Cox PH model with a

increase in the log-HR of 0.035 for each year. A similar effect of the age on OS was seen

in the Exponential and Weibull models. Sex and VH mutation risk were not significantly

associated with OS. Finally, patients with p-deletion had significantly longer OS. It is

worth noting that there were only 12 patients without p-deletion so that this effect could

well have been superficially big.

Test for the PH assumption in univariable models for OS in CLL

Again the scaled Schoenfeld residuals were used to test the PH assumption in the

univariable Cox PH models for OS, Figure 3.12. The proportionality assumption was

again formally tested for each covariate. The residuals plots for all covariates from

the univariable Cox PH models for OS showed no significant departures from the PH

assumption. Moreover, all p-values from the formal test for the PH assumption for each

covariate were > 0.05.
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Cox PH Exponential Weibull

Parameter Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Intercept -3.040 (-3.382, -2.699) -3.607 (-4.173, -3.042)

Stage C 0.275 (-0.281, 0.831) 0.257 ( -0.298, 0.813) 0.262 (-0.294, 0.817)

Shape (γ) 1.459 (1.141, 1.867)

Intercept -5.064 ( -7.319, -2.808) -5.717 (-8.029, -3.405)

Age 0.035 (0.000, 0.070) 0.033 (-0.001, 0.068) 0.035 (0.000, 0.069)

Shape (γ) 1.468 (1.148, 1.878)

Intercept -2.392 (-2.718, -2.065) -2.966 (-3.516, -2.417)

Log-RD 0.452 (0.247, 0.657) 0.445 (0.240, 0.650) 0.459 (0.253, 0.665)

Shape (γ) 1.483 (1.162, 1.892)

Intercept -2.878 (-3.180, -2.575) -3.443 (-3.989, -2.896)

Sex: Female -0.237 (-0.906, 0.432) -0.312 (-0.975, 0.352) -0.281 ( -0.945, 0.384)

Shape (γ) 1.453 (1.135, 1.859)

Intercept -2.877 (-3.224, -2.531) -3.347 (-3.923, -2.771)

VH mutation∗: Yes -0.195 (-0.811, 0.420) -0.223 (-0.836, 0.391) -0.212 (-0.825, 0.402)

Shape (γ) 1.375 (1.057, 1.790)

Intercept -1.912 (-2.892, -0.932) -2.353 (-3.408, -1.299)

P-deletion∗∗: Yes -1.198 (-2.228, -0.168) -1.069 (-2.091, -0.047) -1.153 (-2.176, -0.129)

Shape (γ) 1.426 (1.108, 1.835)

Table 3.12: Estimates of log-HRs from univariable Cox PH, Exponential and Weibull models for OS in
the CLL dataset. In the Exponential and Weibull models, estimates of the intercept in the model for the
log-hazard are presented on top of the log-HR, while the shape parameter (γ) is also estimated in the
Weibull models. There were 286 patients with VH mutation∗ records and 301 with p-deletion∗∗. For the

other covariates, models were fitted with n = 325 as they had no missing data.
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Figure 3.12: Scaled Schoenfeld residuals plotted against time from univariable Cox PH models for OS in
the CLL dataset ignoring missing data

3.3.9 Multivariable models for TTR and OS in CLL

Multivariable Cox PH, Exponential and Weibull models were fitted to examine the effect

of the log-RD while taking into account other covariates. The same model selection

approach used in Myeloma was applied in Stata, starting with the Cox PH model and

then fitting the same covariates in the final model to Exponential and Weibull models.

The results are shown in Table 3.13.

The final model for TTR was based on data from 286 individuals who had log-RD,

disease stage and VH mutation recorded. Those with higher log-RD had shorter TTR
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when stage and VH mutation were taken into account. Each log-increase in the RD

percentage at baseline was associated with a significant 0.849 (0.687, 1.011) increase

in the log-HR. Presence of a VH mutation was associated with a lower risk of relapsing

as in the univariable models although this was not significant. The effect of stage was

likewise not significant when log-RD and VH mutation were taken into account. The

estimates from the Cox PH and Weibull models were generally similar while those from

the Exponential model were in some cases slightly different.

The final model for OS included log-RD, stage and p-deletion and was based on

data from 301 patients in a CC analysis. Again a higher disease burden was predic-

tive of poor OS with similar estimates across all models. Each log-increase in the RD

percentage after treatment was significantly associated with a 0.406 (0.193, 0.619) in-

crease in the log-HR in the multivariable Cox PH model. Those with stage C disease

were at a higher risk of dying than those in stages A or B although this was not signifi-

cant. Having p-deletion was associated with improved OS chances, although this effect

was not significant.

The estimates across the various multivariable models for both TTR and OS were

generally similar while the Weibull model had a shape parameter significantly greater

than 1, suggesting an increase in the hazard rate with time. The multivariable Weibull

model also had the smallest AIC for both the TTR and OS meaning it performed better

than the others. However, an inspection of the Schoenfeld residuals showed that the

PH assumption held in both multivariable models for TTR and OS applied to the CLL

dataset as shown in Figure F.1 and Figure F.2 in Appendix F. It would thus suffice to

model the CLL data using the Cox PH model.

As a way of enabling comparisons, we fit univariable Cox PH models for TTR with

the 286 patients who were included in the final adjusted model and the 301 patients in

the final OS model, focusing only on the covariates in these final models, Table 3.14.

For TTR, the effect of log-RD remained significant in both univariable and multivariable



81

Cox PH Exponential Weibull

Parameter Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

TTR model

Intercept - -0.947 (-1.223, -0.671) -1.689 (-2.083, -1.295)

Adjusted log-HRs

Log-RD 0.849 (0.687, 1.011) 0.669 (0.522, 0.815) 0.811 (0.654, 0.969)

Stage C -0.282 (-0.695, 0.130) -0.114 (-0.518, 0.290) -0.212 (-0.618, 0.193)

VH mutation: Yes -0.651 (-1.090, -0.212) -0.544 (-0.976, -0.112) -0.668 (-1.103, -0.232)

Shape (γ) - 1.873 (1.599, 2.195)

AIC 984.1 458.1 413.8

OS model

Intercept - -1.729 (-2.733, -0.725) -2.128 (-3.186, -1.071)

Adjusted log-HRs

Log-RD 0.406 (0.193, 0.619) 0.399 (0.185, 0.612) 0.410 (0.196, 0.625)

Stage C 0.257 (-0.317, 0.832) 0.228 (-0.344, 0.800) 0.243 (-0.330, 0.816)

P-deletion: Yes -1.023 (-2.065, 0.019) -0.815 (-1.847, 0.216) -0.968 (-2.003, 0.067)

Shape (γ) - 1.454 (1.132, 1.868)

AIC 500.9 330.3 324.9

Table 3.13: Estimates of adjusted log-HRs from Cox PH, Exponential and Weibull models for TTR and
OS in the CLL dataset. The final TTR model was fitted to data from 286 individuals while the OS model

had data from 301 patients
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Cox PH for TTR Cox PH for OS

Log-HR (95% CI) Log-HR (95% CI)

Log-RD 0.805 (0.652, 0.959) 0.428 (0.217, 0.639)

Stage C -0.123 (-0.530, 0.284) 0.321 (-0.250, 0.893)

VH mutation: Yes -0.626 (-1.056, -0.195)

P-deletion: Yes -1.198 (-2.228, -0.168)

Table 3.14: Univariable Cox PH models for TTR and OS in the CLL dataset fitted to data from 286
individuals in the multivariable TTR model and the 301 patients in the final OS model respectively

models with a bigger effect when stage and VH mutation are taken into account log-HR

0.805 in the univariable model, versus 0.849 in the adjusted analysis. Stage and VH

mutation were both not associated with the TTR in both models. In the OS models,

log-RD was associated with OS in both the unadjusted and adjusted models. However,

the effect in the multivariable model was slightly smaller. The effect of stage remained

non-significant in both models, just like that of p-deletion. The CC analysis ignoring

the missingness might again lead to wrong conclusions. We thus used methods for

handling missing data to deal with this problem in Section 3.4.
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3.4 Handling missing data

In the models fitted in this analysis so far, we only considered individuals with data

on all the variables included in the models in a CC analysis. In situations where data

are missing completely at random (MCAR) in the terminology of [111], CC analysis

produces unbiased results [112]. However, if data are missing at random (MAR), con-

ditional on data that we do observe (say age and RD) we can fit models with multiply

imputed data in order to obtain less biased estimates. Imputed data are based on impu-

tation models, usually regression models based on observed predictors of the missing

data. However, for more complicated missing data mechanisms, that may be missing

not at random (MNAR) we cannot adjust for missing data using the complete cases and

sensitivity analysis is required. To investigate whether estimates from models based

on the CC analysis are similar to those based on the overall data likelihood as given

in Equation 2.23, MI techniques that have been widely discussed in the literature can

be used, including those specifically developed for handling missing data in Cox PH

models [113]. We restrict attention in this work to that case where the data are missing

at random (MAR) and following the work of others use the three prescribed stages of

MI which involve:

1. Generating m imputed datasets where the missing data are replaced by the pos-

terior predictive distribution of the missing values given the observed data.

2. Fitting the analysis models using the data from the resulting ’complete’ datasets,

and

3. Combining the estimates from the m datasets using Rubin’s rules [114].

As data maybe be missing across several variables in an analysis, an approach

called multiple imputation using chained equations (MICE) has become the method of
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choice for imputing the missing values in the m datasets. MICE is based on a set of im-

putation models, one for each covariate with missing data [115]. Briefly, MICE performs

MI by regressing the first variable with missing values on all other variables that may

include the outcome variable, but only on individuals with data on the first variable. The

missing variables in this particular variable are then replaced by simulated draws from

its predictive distribution. Both imputed and observed values for the first variable, along-

side other observed data are used to build an imputation model (regression) for the next

variable, to provide imputations for missing values of variable the second variable. This

is repeated for all variables with missing values to complete one cycle. Several cycles

may be repeated (analogous to the MCMC approach) to produce a single complete

imputed data set. This procedure is repeated to produce the m datasets.

To impute missing values in the Myeloma and CLL datasets, we used MICE in Stata

with m = 10 (10 datasets with missing covariates values imputed). In this case we

chose m = 10 as it has been shown that 5 to 10 imputed datasets would normally suf-

fice, while bearing in mind that m should ideally depend on the percentage of missing

data [116]. Further, we used linear regression model as the imputation model for con-

tinuous covariates with missing data, and logistic regression for binary covariates with

missing data. We included auxiliary variables that were not part of the analysis model

such as age and sex to help improve prediction of the missing values [117], as well as

the observed log-transformed TTR and/or OS including the censoring indicator. In this

way, we ensured that we utilise all the available data, including the outcome and cen-

soring indicators to help inform the imputation, [118]. To deal with the potential problem

with perfect prediction in the logistic regression imputation models for binary variables,

we used augmented logistic regression which adds extra observations into the dataset

to deal with the problem.
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3.4.1 Missing data in the Myeloma dataset

As summarised in Section 3.2.1, the Myeloma data had several variables with missing

data. We first looked at the missing data patterns to determine if there were systematic

ways in which the data was missing, Table 3.15. In this dataset, there was complete

information for 29% (119/427) of the patients. Further, there were a total of 19 different

patterns of missingness across the 7 covariates with missing information. From this

table, hyperdiploidy, t(4;14), t(11;14) and gain(1q21) were missing together 42% of the

time. Otherwise, it was not evident that the missing data followed a particular pattern

across all covariates. A formal check was done to determine if the fact that a variable

was missing for each covariate were related to the other covariates with available data

(age, sex, TTR, censoring and log-RD) using a logistic model with (1 if value missing

and 0 if not missing). This analysis showed that the probability of a missing observation

was not related to the other fully observed covariates (results not shown). We thus pro-

ceed to perform MI using MICE in Stata using linear regression for missing continuous

covariates and logistic regression for binary covariates respectively as the imputation

models.

3.4.2 Baseline characteristics of participants with complete and incom-

plete data in the Myeloma dataset

After the imputation which resulted in 10 datasets, we compared the means, for con-

tinuous variables, and proportions for categorical variables, between the available data

used in the CC analysis, and the summaries across 10 imputed datasets for the miss-

ing data as shown in Table 3.16. There was a higher proportion of patients with hy-

perdiploidy in those with complete data than in those with missing data (53.3% vs

47.5%). The translocations t(4:14) and t(11:14) were more prevalent among the in-

complete cases after MI compared to the completely observed cases. Gain(1q21) was
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Number of Percent Paraprotein Beta2 Albumin Hyperdiploidy t4;14 t11;14 Gain(1q21)

patients

123 29 + + + + + + +

98 23 + + + - - - -

54 13 + - + + + + +

34 8 - + + - - - -

33 8 + - + - - - -

28 7 - + + + + + +

15 4 + + + + + + -

14 3 - - + + + + +

11 3 - - + - - - -

4 < 1 - + + + + + -

2 < 1 + - + + + + -

2 < 1 + + + - + + -

2 < 1 + + + - + + +

1 < 1 - - + + + - -

1 < 1 - + + - + + -

1 < 1 + - - + + + +

1 < 1 + - + + + - -

1 < 1 + + + + - - -

1 < 1 + + + + - + -

1 < 1 + + + + + - -

427 100

Table 3.15: Missingness patterns in the Myeloma dataset. The (+) represents observed data while the
(-) represents missing data.
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Variable ncc Complete cases nic Incomplete cases

Hyeperdiploidy (Yes), fraction (%) 246 131 (53.3) 181 86 (47.5)

t4;14 (Yes), fraction (%) 249 35 (14.1) 178 28 (15.7)

t11;14 (Yes), fraction (%) 247 40 (16.2) 180 41 (22.8)

Gain(1q21) (Yes), fraction (%) 222 80 (36.0) 205 70 (34.1)

Paraprotein, mean (SD) 334 1.3e-8 (1.00) 93 -0.03 (1.07)

Beta2, mean (SD) 310 -1.7e-9 (1.00) 117 0.04 (1.03)

Albumin, mean (SD) 426 -4.9e-10 (1.00) 1 0.11 (0.00)

Table 3.16: Comparison of incomplete and completed binary and continuous variables in the Myeloma
dataset. Note: SD for albumin not calculated as only one value was missing. ncc represents number of
complete cases while nic is the number of incomplete cases. For the incomplete cases, the means and

proportions are averaged over the 10 datasets.

more prevalent among the complete cases compared to the incomplete cases (36% vs

34%). The means and SDs for the standardised paraprotein, beta2 and albumin were

higher among those with missing data compared to those who had these measures

although the distributions were still approximately standard Normal.

We plotted histograms of the original values of the z-standardised paraprotein and

beta2 and overlaid the histograms with those from the first imputed dataset (grey). Fur-

ther, we plotted boxplots of the original z-standardised paraprotein and beta2 together

with those for these measures from each of the 10 imputed datasets, Figure 3.13. The

distributions of the imputed values spanned the whole range of values compared to the

observed cases which were positively skewed for both paraprotein and beta2 as seen

from the boxplots. The medians were higher in the imputed datasets for both para-

protein and beta2 and imputed values of paraprotein generally fell within the IQR for

most of the datasets. For beta2, some imputed values tended to fall at the lower end

of distribution. Based on this, we can infer that we do not have MCAR, but can instead

reasonably assume MAR.
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Figure 3.13: Histograms of z-standardised paraprotein and beta2 overlaid by imputed values from the
first imputation (grey) and boxplots showing the distributions of the observed and imputed

z-standardised paraprotein and beta2 from 10 imputed datasets (bottom)

3.4.3 Univariable Cox PH models for TTR and OS in Myeloma fitted to

imputed data

We then fit univariable Cox PH models for both TTR and OS to the imputed datasets and

combined the results using standard Stata routines. For comparison, we looked at the
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estimates from the univariable models ignoring missing data. We reported estimates of

the log-HRs, p-values (p) and the fraction of missing information (FMI) for each model,

Table 3.17. The FMI may be used to determine the gains from using MI as it is used

to quantify the loss of information due to the missing data while accounting for the

information retained by the other variables within the dataset. We would expect the

FMI to be less than the proportion of missing data for a given variable as it takes into

account the predictive power of the given imputation model. FMI values range between

0 and 1 with values closer to 1 indicative of high variability between imputed datasets

such that the observed data in the imputation model does not provide much information

about the missing values [119].

The results from the univariable models for TTR showed similar effects to the CC

results for paraprotein (positive significant effect), and albumin (negative significant ef-

fect) on the TTR with more or less similar standard errors (SEs) and low FMI. In both

models, a higher value of beta2 was associated with an increase in the log-HR of re-

lapsing although the estimate with MI was smaller (0.179 v 0.193) compared to the CC

model. The effects of hyperdiploidy and t(11;14) remained non-significant even after MI.

Those with t(4;14) were at a significantly higher risk of relapsing than those without it. It

is worth noting that the FMI from the imputation was bigger, 0.739 and 0.600 for t(4;14)

and t(11;14) respectively, meaning the imputation might not have provided enough in-

formation about the missingness in these variables. This was also evident from the

larger SEs in the imputed models for these variables. Finally, gain(1q21) remained a

significant predictor of quicker relapse for those who had this marker. We checked the

validity of the PH assumption for all models and present the Schoenfeld residuals from

the model fitted to the first imputed dataset, Figure 3.14. For this imputation, the PH

assumption held for paraprotein and t(11;14), otherwise the p-value from the global test

was significant for beta2, hyperdiploidy, t(4;14) and gain(1q21). This could have well

been due to chance.
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CC models Models with MI

Log-HR (SE) p Log-HR (SE) p FMI

TTR models

Paraprotein 0.203 (0.055) < 0.001 0.200 (0.054) < 0.001 0.175

Beta2 0.193 (0.060) 0.001 0.179 (0.068) 0.012 0.432

Albumin -0.138 (0.053) 0.009 -0.137 (0.053) 0.009 0.001

Hyperdiploidy: Yes -0.252 (0.145) 0.082 -0.169 (0.147) 0.258 0.448

t(4;14): Yes 1.284 (0.196) < 0.001 1.191 (0.271) < 0.001 0.739

t(11;14): Yes -0.196 (0.199) 0.326 -0.377 (0.231) 0.114 0.600

Gain(1q21): Yes 0.590 (0.156) < 0.001 0.540 (0.148) 0.001 0.427

OS models

Paraprotein 0.093 (0.081) 0.252 0.114 (0.074) 0.126 0.127

Beta2 0.278 (0.068) < 0.001 0.280 (0.078) 0.001 0.405

Albumin -0.156 (0.072) 0.031 -0.158 (0.072) 0.030 0.001

Hyperdiploidy: Yes -0.673 (0.210) 0.001 -0.654 (0.190) 0.001 0.313

t(4;14): Yes 0.889 (0.239) < 0.001 0.894 (0.237) < 0.001 0.466

t(11;14): Yes -0.310 (0.298) 0.298 -0.429 (0.326) 0.198 0.570

Gain(1q21): Yes 0.707 (0.213) 0.001 0.729 (0.203) 0.001 0.448

Table 3.17: Log-HR estimates and SEs, in brackets, from CC univariable Cox PH models fitted to
covariates with missing data in the Myeloma dataset and equivalent results obtained via MI in Stata

including the fraction of missing information (FMI) for each covariate.
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Figure 3.14: Schoenfeld residuals from univariable Cox PH models for TTR with z-standardised
paraprotein, beta2, hyperdiploidy (hyperdip), t(4:14), t(11:14) and gan(1q21) as covariates, plotted

against time since RD measurement using the first imputed dataset

3.4.4 Multivariable Cox PH models for TTR and OS in Myeloma fitted to

imputed data

To obtain the final multivariable model, we performed the same model selection proce-

dure to each of the 10 datasets and selected covariates appearing together in the final



92

model most of the time. Several formal approaches for model selection within MI have

been proposed some of which include forward selection procedures for models with

time dependent covariates [120]. For our purposes with 10 imputed datasets, it was

feasible to perform model selection for each dataset. We therefore developed a model

in each of the 10 datasets and used these to decide on which were the most important

covariates with respect to both TTR and OS. Following this, we re-fit the model with

the common covariates identified to each of the 10 datasets and then combined the

estimates from these models using Rubin’s rules. While this approach is practical, it

might not work well where the number of imputed datasets is large. Ideally, one would

just make inference based on covariates without performing model selection. Results

from the final multivariable model for TTR and OS in Myeloma are shown in Table 3.18.

For TTR, the multivariable model included log-RD, paraprotein, beta2, albumin,

t(4;14) and gain(1q21). With the MI ensuring that we make inference based on data

from all 427 individuals, each log-increase in the log-RD was associated with a 0.107

(-0.125, 0.339) in the log-HR of a relapse when all the other covariates were taken into

account. This effect was less than that in the univariable model 0.214 (0.008, 0.421)

and also in the final model arrived at in the CC analysis. Higher levels of paraprotein

were predictive of higher relapse chances in both univariable and multivariable models

with the full data. The effect increased from 0.200 in the univariable model to 0.253

when adjusting for other factors. Its FMI indicated that 23.9% of the sampling variance

was attributable to the missing data. As with paraprotein, higher levels of beta2 were

significantly associated with TTR. However, its effect was smaller in the multivariable

model. The variance attributed to the missing data for beta2 was 36.7% which was high

as expected because only 310 patients had data on this marker. Albumin continued to

have an inverse relationship with TTR. The effect was however smaller and not signif-

icant in the final model based on the full dataset. Finally t(4;14) and gain(1q21) were

both significantly associated with shorter TTRs in both univariable and multivariable
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models. However, as expected, the FMIs for these variables were very high as they had

large proportions of missing values.

The multivariable model for OS in Myeloma included log-RD, paraprotein, beta2,

albumin, hyperdiploidy, t(4;14) and gain(1q21). In the multivariable model, log-RD pre-

dicted poorer OS although the effect was not significant. The log-HR for log-RD in

this final model was less than that in the univariable Cox PH model for OS, 0.087 (-

0.203, 0.377) in Table 3.5 of Section 3.2.8, and it was not significant in both models.

All other covariates in this final model except albumin and t(4;14) were significantly

associated with OS. The effects for paraprotein, beta2, albumin, hyperdiploidy, t(4;14)

and gain(1q21) were generally smaller in absolute value when all other covariates were

taken into account except for paraprotein.

This analysis enabled us to identify log-RD, paraprotein, beta2, albumin, t(4;14) and

gain(1q21) as the important predictors of the TTR. While log-RD is a known predictor

of TTR in Myeloma, there were other growth related variables that might play a key role

in determining outcomes such as paraprotein whose effect increased when the other

covariates were taken into account. While the effect of beta2 was slightly attenuated

in the multivariable analysis, it remained another important factor associated with TTR.

Related to beta2 was albumin, which together with beta2 are used to determine dis-

ease stage. On top of this, presence of the translocation t(4;14) and gain(1q21) were

important in predicting TTR in this dataset. This shows that to fully characterise the

TTR in Myeloma, we need to consider other mechanisms other than the residual dis-

ease alone. These other covariates are markers of tumour growth and we will therefore

examine them further to ascertain if they act together in predicting the TTR. For OS, hy-

perdiploidy was an additional important predictor on top of log-RD, paraprotein, beta2,

albumin, t(4;14) and gain(1q21) which were also important in predicting the OS. We

again performed checks of the PH assumption for the first imputed dataset by looking

at the Schoenfeld residuals which showed that the PH assumption was generally not
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Adjusted Log-HR (95% CI) SE p FMI

TTR models

Log-RD 0.107 (-0.125, 0.339) 0.118 0.365 0.147

Paraprotein 0.253 (0.133, 0.373) 0.061 < 0.001 0.239

Beta2 0.157 (0.019, 0.294) 0.069 0.026 0.367

Albumin -0.074 (-0.193, 0.044) 0.060 0.216 0.112

t(4;14): Yes 1.163 (0.653, 1.674) 0.247 < 0.001 0.653

Gain(1q21): Yes 0.442 (0.129, 0.755) 0.156 0.006 0.427

OS models

Log-RD 0.043 (-0.280, 0.365) 0.164 0.796 0.128

Paraprotein 0.183 (0.018, 0.347) 0.084 0.029 0.170

Beta2 0.247 (0.084, 0.409) 0.081 0.004 0.414

Albumin -0.056 (-0.225, 0.113) 0.086 0.515 0.202

Hyperdiploidy: Yes -0.442 ( -0.844, -0.039) 0.203 0.032 0.280

t(4;14): Yes 0.489 (-0.079, 1.057) 0.280 0.090 0.526

Gain(1q21): Yes 0.493 (0.077, 0.909) 0.208 0.021 0.387

Table 3.18: Adjusted log-HR estimates and SEs, in brackets, from multivariable Cox PH models for TTR
and OS in Myeloma fitted to covariates using MI in Stata to account for missing covariate data. The FMI

and 95% CIs are also reported.

violated (plots not shown).

3.4.5 Increasing the number of imputations versus using Bayesian mod-

els to account for missing data in univariable Cox PH models for

TTR and OS in Myeloma

The MI enabled us to make inference based on the full dataset, thereby having more

power to detect covariate effects on the TTR and OS. We used FMIs and SEs to assess

whether the MI led to improved estimates. To properly use MI, the recommended num-
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ber of imputations, m, should depend on the proportion of missing data. In the previous

analysis, we chose m = 10 as others have shown that 5-10 imputations would normally

suffice and that there is no added benefit to increasing the increasing the number of

imputations [121]. We increased the number of imputed datasets to 40 and again fit

univariable Cox PH models for TTR and OS to assess if increasing the number of im-

putations led to more precise estimates. For comparison, we also fit Bayesian Cox PH

models that account for the missing data by treating them as parameters for which we

seek to obtain the posterior distribution alongside the log-HR. In this way, we were able

to specify a joint model for the observed and missing data including the model param-

eters in order to proceed with the estimation in MCMC. Within the Bayesian models,

we specified a linear model for continuous covariates with missing data, and logistic

regression models for binary variables and then specified prior distributions for the pa-

rameters in these models. While we used the auxiliary variables age, sex, censoring

indicator, log-transformed TTR or OS alongside log-RD and the other covariates in the

MI, we did not include covariates in the models for missing data in the Bayesian models.

We present estimates of the combined log-HRs (95% CIs) according to Rubin’s rules,

their SEs and FMIs from the models fitted to the 40 imputed datasets, as well log-HRs

(95% CrIs) and SEs from the Bayesian models for both TTR and OS, Table 3.19.

In the TTR models, similar log-HR estimates for beta2 and albumin were obtained

in both the MI and Bayesian models. Increasing the number of imputations to 40 led

to a slight decrease in the SE from 0.068 and 0.052 to 0.062 and 0.052 for beta2 and

albumin respectively. Again compared to the results from 10 imputations in Table 3.17,

the SEs for hyperdiploidy, gain(1q21) and paraprotein were bigger after the 40 impu-

tations. On top of this, the log-HR for paraprotein was 0.180 after the 40 imputations

while it was 0.200 after 10 imputations while the effect of t(11;14) on the TTR reduced

from -0.377 to -0.296. The FMI was reduced after the 40 imputations for t(4;14) and

t(11;14) from 0.739 and 0.600 to 0.604 and 0.296 respectively, but not for the other co-
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variates where the FMI was bigger, implying increasing the number of imputations did

not necessarily lead to massive improvements in the precision of the estimates. The

Bayesian model on the hand gave robust estimates with small SEs in general with esti-

mates similar to those from MI. Hyperdiploidy had an association with the TTR (CrI did

not include a 0), an association not previously seen even after MI. In the OS models,

the only improvements based on the FMI and smaller SEs were seen for beta2, t(4;14)

and t(11;14) but not the other covariates. Nonetheless, the overall estimates did not

differ much from those based on 10 imputations. Again, the Bayesian model produced

similar estimates to those from MI. On top of this, the CrIs in the Bayesian models were

similar and at times, narrower than the CIs from MI. The Bayesian models converged

without problems when fitted to TTR and OS based on trace plots showing good mix-

ing and density plots centred around a unique mean posterior mean of the estimated

log-HR for selected covariates, and also when using the linear and logistic regression

respectively for missing continuous and dichotomous covariates, Figure 3.15.

Based on this analysis, we can surmise that the 10 imputations were sufficient to

account for the missing data in the Myeloma dataset. The increase in the FMI and

SE for some of the covariates may well have been due to chance, or it could have

pointed to a need to investigate the missing data mechanism further. As the focus of

this analysis was to broadly identify important factors associated with TTR and OS in the

Myeloma dataset, we did not investigate the mechanism further, limiting our analyses

to the MAR assumption. The brief use of the Bayesian models to handle missing data

illustrated the power of these methods in general even when no covariates were used in

the predictive models for the missing observations, the Bayesian model estimates were

similar to those obtained via MI and had smaller SEs in general. Specifying covariates

on the missing observations would therefore further improve the estimates. We next

briefly use MI to deal with missing data in the CLL dataset.
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Cox PH model Bayesian Cox PH model

Log-HR (95% CI) SE FMI Log-HR (95% CrI) SE

TTR models

Paraprotein 0.180 (0.068, 0.293) 0.057 0.222 0.197 (0.075, 0.298) 0.002

Beta2 0.196 (0.075, 0.317) 0.062 0.292 0.196 (0.085, 0.312) 0.002

Albumin -0.138 (-0.241, -0.035) 0.052 0.001 -0.135 (-0.231, -0.035) 0.001

Hyperdiploidy: Yes -0.239 (-0.539, 0.062) 0.152 0.467 -0.479 (-0.753, -0.207) 0.004

t(4;14): Yes 1.133 (0.674, 1.591) 0.231 0.604 1.191 (0.779, 1.557) 0.006

t(11;14): Yes -0.296 (-0.647, 0.056) 0.179 0.296 -0.358 (-0.757, 0.019) 0.006

Gain(1q21): Yes 0.557 (0.211, 0.903) 0.175 0.576 0.407 (0.111, 0.721) 0.005

OS models

Paraprotein 0.076 (-0.084, 0.235) 0.081 0.214 0.092 (-0.068, 0.242) 0.002

Beta2 0.293 (0.166, 0.420) 0.065 0.138 0.263 (0.118, 0.383) 0.002

Albumin -0.156 (-0.298, -0.014) 0.073 0.002 -0.146 (-0.281, -0.011) 0.002

Hyperdiploidy: Yes -0.660 (-1.063, -0.257) 0.204 0.408 -0.838 (-1.271, -0.465) 0.006

t(4;14): Yes 0.805 (0.351, 1.259) 0.231 0.384 0.742 (0.290, 1.228) 0.007

t(11;14): Yes -0.356 (-0.926, 0.214) 0.289 0.435 -0.473 (-1.120, 0.096) 0.009

Gain(1q21): Yes 0.687 (0.271, 1.103) 0.211 0.475 0.488 (0.107, 0.852) 0.005

Table 3.19: Log-HR (95% CI) estimates and SEs as well as the FMI from univariable Cox PH models for
TTR and OS in Myeloma fitted to covariates using MI in Stata to account for missing covariate data
based on m = 40 imputations. The estimated log-HRs (95% CrI) and SEs are also reported from

Bayesian Cox PH models with imputation models for missing data for each covariate.
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Figure 3.15: Trace and density plots for the coefficient of paraprotein (A) and t(11;14) (B) in Cox PH
models for TTR. (C) and (D) are trace and density plots of the coefficients of paraprotein and t(11;14)

respectively in Cox PH models for OS.

3.4.6 Missing data in the CLL dataset

Applying the same methods as before, we used MI to account for the missingness in

the CLL dataset. Two covariates, VH mutation and p-deletion had missing data in the
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CLL dataset, Table 3.9. A look at the missing data patterns showed that there was no

systematic way in which data was missing for these two covariates, Table 3.20. There

was complete data for 83% (271/325) of the patients and there were just 3 missing pat-

terns for the 2 covariates each of which was observed less than 10% of the time. We

again checked if the missingness in VH mutation and p-deletion was related to the other

covariates; trial treatment, stage sex, age, log-RD, whether censored or not and TTR,

using a logistic model with (1 if value missing and 0 if not missing) and found that the

there was no evidence that missingness was not related to the other fully observed co-

variates (results not shown). We thus proceed to perform MI using MICE in Stata based

on the logistic imputation model. From the resulting 10 imputed datasets, we compared

the proportions of those with VH mutation and p-deletion between those had complete

data and those whose values were imputed, From the resulting 10 imputed datasets,

we compared the proportions of those with VH mutation and p-deletion between those

had complete data and those whose values were imputed, Table 3.21. The proportion

with VH mutation was higher among the complete cases compared to the incomplete

cases. In a similar manner, the proportion with p-deletion was almost equivalent for the

complete cases 96% and the incomplete cases 95.8%.
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Number of Percent VH mutation P-deletion

patients

271 83 + +

30 9 - +

15 5 + -

9 3 - -

325 100

Table 3.20: Missingness pattern in the CLL dataset. The (+) represents observed data while the (-)
represents missing data.

Variable ncc Complete cases nic Incomplete cases

VH mutation (Yes), fraction (%) 286 108 (37.8) 39 39 (36.2)

P-deletion (Yes), fraction (%) 301 289 (96.0) 24 23 (95.8)

Table 3.21: Proportion of those who had hyperdiploidy and p-deletion in CLL among the CCs compared
to proportions after MI. ncc represents number of complete cases while nic is the number of incomplete

cases.

3.4.7 Univariable Cox PH models for TTR and OS in CLL fitted to imputed

data

We then fit univariable models for TTR and OS to the imputed datasets and compared

results to those from the CC models, Table 3.22. In the TTR models, having a VH

mutation lowered the hazard of relapsing. The estimated log-HR was slightly bigger

in the model fitted to the imputed data compared to the CC model. The SE was how-

ever smaller in this model based on the full data suggesting a more precise estimate.

Moreover the FMI of 0.069 implied that only 7% of the total variability in this model was

attributable to the missing data. For p-deletion, the effect was again bigger when mod-

elling the TTR although it was not significant in either model. The SE was bigger in the

imputed dataset.

For OS, the effect of VH mutation was significant in the CC model while it had an
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CC models Models with MI

Log-HR (SE) p Log-HR (SE) p FMI

TTR model

VH mutation: Yes -0.626 (0.220) 0.004 -0.633 (0.217) 0.004 0.069

P-deletion: Yes -0.620 (0.424) 0.144 -0.633 (0.444) 0.154 0.124

OS models

VH mutation: Yes 0.203 (0.055) < 0.001 -0.164 (0.306) 0.592 0.079

P-deletion: Yes -0.252 (0.145) 0.082 -1.163 (0.537) 0.030 0.068

Table 3.22: Log-HR estimates and SEs, in brackets, from CC univariable Cox PH models fitted to
covariates with missing data in the CLL dataset and equivalent results obtained via MI in Stata including

the fraction of missing information (FMI) for each covariate.

opposite but non-significant effect on OS in the model fitted to imputed data. For p-

deletion, the log-HR was five-fold larger for the full data model . This could be purely

due to chance; since 96% of the patients had p-deletion, any associations between this

variable and outcome are unlikely to be robust. The high proportion of patients with p-

deletion may have been increased by the imputation since there would be little chance

of sampling a p-deletion negative patient unless the number of imputations were to be

increased substantially. Small changes in the data will result in large changes in the

log-HR estimates. We thus did not include p-deletion in the multivariable models for

this reason. Since VH mutation was not associated with OS, the final multivariable for

OS in CLL would only include log-RD and stage which was already shown in Table 3.13.

We checked the validity of the PH assumption in all Cox PH models for TTR fitted

to the 10 datasets and present residual plots from models fitted to the second imputed

dataset, Figure 3.16. . We could not reject the PH assumption in the model with VH

mutation as the p-value from the global test was not significant. For p-deletion on the
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other hand, p was less than 0.05. As pointed out above, the very small number in the

p-deletion negative group could give a higher probability of the imputed values falling

in the group with p-deletion as seen in this plot. None of the imputed p-deletion values

(black dots) fell in the smaller group which only had the observed values. A similar plot

was obtained for OS but has not been shown.
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Figure 3.16: Schoenfeld residuals from univariable Cox PH models for TTR with VH mutation (vhmut),
and p-deletion (pdel) as covariates, plotted against time since RD measurement using the second

imputated dataset in CLL
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CC models Models with MI

Adj. Log-HR (SE) p Adj. Log-HR (SE) p FMI

TTR models

Log-RD 0.849 (0.083) < 0.001 0.859 (0.080) < 0.001 0.004

Stage C -0.282 (0.210) 0.180 -0.261 (0.202) 0.196 0.005

VH mutation: Yes -0.651 (0.224) 0.004 -0.646 (0.218) 0.003 0.050

Table 3.23: Adjusted log-HR estimates and SEs, in brackets, from multivariable Cox PH models for TTR
in CLL fitted to covariates using MI in Stata to account for missing covariate data. The FMI and 95% CIs

are also reported.

3.4.8 Multivariable Cox PH models for TTR in CLL fitted to imputed data

The same approach for selecting the final model was taken, after excluding p-deletion.

As the variables in the final CC and model with MI were the same, we present the

estimates from both models side by side in Table 3.22. Log-RD was associated with

TTR in both models. The effect was very similar in both CC and full dataset analyses.

The SE in the imputed dataset was slightly smaller indicating better precision, whilst the

total variability attributed to the missing data was 0.4%. The log-HR for stage slightly

smaller in the model based on imputed data where again the SE was smaller and the

FMI was 0.005. There were no significant differences in the risk of a relapse by stage

in either models. Finally, having VH mutation was predictive of longer TTR. Again the

SE was smaller indicating more precise estimates resulting from the MI.

These results indicate that MI helped us obtain more precise estimates in the CLL

dataset. By accounting for missing data, we were able to obtain estimates with smaller

SEs which means the imputation achieved the desired goal. We therefore did not con-

sider increasing the number of imputations or other means of modelling the missing

data and we proceed to discuss the results from the various methods in context.
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3.5 Summary

In this chapter, we explored factors influencing TTR and OS in Myeloma and CLL using

standard TTE models as a way of introducing these datasets which will be used to

explore how well various methods proposed in this thesis perform. We focused on

log-RD as an indicator of the RD burden after treatment in these analyses, and other

prognostic factors that are known to be associated with TTR and OS and are at the

same time markers of the tumour growth rate which is not observed in practice.

Residual disease is clearly an important factor in the time to relapse or progression

of Myeloma, and in the subsequent time to death. Therefore, treatments or combina-

tions of treatments, that aim to eradicate as much of the disease as possible should

be pursued. This is apparent even in this relatively small dataset. There is also some

evidence that biomarkers for tumour growth, such as paraprotein, beta2 and albumin

are important predictors disease progression, although the evidence is less clear. This

may be expected since these variables are markers of growth, rather than direct ev-

idence, which could only be studied if repeat measurements of tumour burden were

available. It is likely that there is some association between RD and markers of tumour

growth, since the coefficients were attenuated in the multivariable model. Transloca-

tions such as t(4;14) and gain(1q21) which have both been associated with TTR and

OS in Myeloma, were also found to be significantly associated with these outcomes in

this analysis [122].

This analysis also showed that log-RD is also an important predictor of both TTR

and OS among the CLL patients, again confirming the need for treatments that are able

to completely eradicate the disease where possible. For patients who have some RD,

additional treatments may be required to prevent progression and subsequent death

with CLL. We did not find evidence of a relationship between outcomes and disease

stage, which is a measure of how aggressive the disease is. This is surprising and
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may result from the low power in this data set and bias or imprecision due to missing

data. VH mutation was an important, though not significant predictor of TTR, whilst

p-deletion had a protective effect on the OS. VH mutation status has been known to

correlate with the clinical outcomes in CLL although why those with VH mutation have

better outcomes than those without this mutation actually depends on the proliferation

rate of CLL cells, [123]. Similarly, patients with p-deletion have been known to not

respond well to therapy, however, others have been known to remain relapse-free for

a long time following treatment, which suggests that there could be other mechanisms

that drive relapse and time to death in CLL which cannot be teased out in this descriptive

analysis, [124].

Both Exponential and Weibull parametric models were explored in the analysis, with

the shape parameters for the Weibull model significantly bigger than 1 models for OS

in Myeloma and both TTR and OS models in CLL. This suggests that the baseline

hazard is increasing over time rather than constant. The estimated log-hazard ratios

were similar in the Cox PH and Weibull models, so that if interest is only on the the

effect of the variables on the TTE outcomes, either of the two models could be used

to good effect for these datasets. However, as interest is usually not on the underlying

baseline hazard, it would suffice to use the Cox PH model.

The estimated survivor curve especially for the TTR following RD measurement in

the Myeloma dataset may suggest the presence of a ’plateau’ at the tail end of the dis-

tribution of the relapse times. This could mean that not all patients would relapse after

treatment and therefore using the standard TTR or OS models ignores the existence of

this proportion of patients. We thus used cure rate models to investigate if there was a

proportion cured and discuss the application of these methods in the next chapter.



Chapter 4

Estimating the cured proportion following

treatment in cancer TTE models

4.1 Introduction

In this chapter, we examine methods for estimating the proportion that is cured of the

disease following treatment using the two definitions of cure in Chapter 1 and using the

cure rate models introduced in Section 2.6.

TTE methods assume all patients will relapse or die following treatment. However,

in some cancers, there is a proportion (π) of individuals that will never experience the

event following treatment and are therefore considered ‘cured’ of the malignancy. The

proportion cured or the cure rate is an important measure of long-term survival benefit.

Plots of the estimated survival functions from a group of patients where a proportion is

cured will reach a non-zero asymptote indicating a cure proportion. Standard analysis

methods are thus inappropriate in this case as they assume that all individuals will have

the event given sufficiently long follow-up.

In this thesis, we consider two types of cure rate models. The first type of cure rate

models assume that the population of interest contains two distinct groups of individ-

106
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uals; those who are considered cured of the disease following treatment and are no

longer at a risk of a relapse while the rest who are not cured, are still prone to a relapse

following treatment [18]. The second type of cure rate models we consider are part of a

broader class of models referred to as relative survival models [69]. These models are

used for estimating the proportion of patients whose OS is equivalent to that of age-sex

matched individuals from the general population without the disease.

The cure rate models are broadly classed as mixture or non-mixture models with a

parametric or semi-parametric model specified for the TTR or OS for those that are not

cured . We briefly discuss each of these models next.

4.2 Parametric mixture models

Mixture models work on the premise that there are 2 groups of patients treated for a

particular disease. The first group consists of patients who are cured while the rest

includes the rest of the patients who are not cured by the treatment, hence the name

mixture models. To segregate those who are cured from the rest, a logistic model is

normally used [62], while a standard TTE model such a Cox PH, Weibull and others

can be used to model the time to death or TTR for those who are not cured [62, 26].

Covariates can thus be used to investigate both the probability of being cured and the

TTR/OS for those who are not cured. This makes it easier investigate the influence of

covariates on the cured proportion and the TTR and/or OS for those who are not cured

separately. This means a covariate effect can be significant on the probability of being

cured and not on the TTR/OS among those not cured and vice versa. Mixture models

are therefore convenient where interest is in ascertaining whether there is a proportion

who are cured following treatment while at the same time modelling the TTR or OS for

the rest. Mixture models are ideal for investigating whether there exists a proportion of

patients who might be cured by the treatment and are therefore the mostly commonly
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used cure rate models.

In this thesis, we use mixture models to estimate the proportion, π, of patients who

will never relapse following treatment and specify a parametric distribution for the TTR

for those who are not cured following treatment [125] in the Myeloma and CLL datasets.

Using the formulation in Section 2.6. Based on data from n individuals, we can express

the full likelihood function following (2.5) as

L(θ) =

n∏
i=1

(1− πi)δi [fr(ti)]δi [πi + (1− πi)Sr(ti)]1−δi (4.1)

where both πi and ti are conditional on some observed covariates and θ is a vector of

parameters on π and the TTR distribution for those not cured. The models are fitted

by specifying a pdf, fr(ti) with associated survivor function Sr(ti), for those who will

relapse, which might take any of the known parametric forms for non-negative random

variables such as the Weibull, Gamma or log-normal distributions. In this thesis, the

logistic model for πi was specified as

log

(
πi

1− πi

)
= α0 + α1z1i + · · ·+ αqzqi (4.2)

where the i-th individual has q observed covariates and the α’s represent the coeffi-

cients quantifying the association of each covariate with πi and α0 represents the inter-

cept. For those not cured, covariates can be modelled through one of the parameters

governing the TTR distribution. For this work, covariates on the TTR for those not cured

were modelled through the scale parameter λ,

log(λi) = β0 + β1x1i + β2x2i + · · ·+ βpxpi

where the β’s represent the association of each of the p observed covariates with the

TTR.
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4.3 Parametric non-mixture models

An alternative cure rate model used for estimating the proportion that will never re-

lapse following treatment is the non-mixture model which is also called the promotion

time cure (PTC) model. The PTC model estimates the cured proportion by defining an

asymptote for the cumulative hazard function. In this model, it is assumed that treat-

ment will leave a number, N , of cancer cells which will, after some time, re-grow to a

detectable level at which point the patient is said to have relapsed [126]. A Poisson

distribution with mean ρ is assumed for this number of remaining cancerous cells. If Mj

is a random variable representing the time it takes for the j-th cancer cell to grow back

to detectable disease, then the TTR is the time it will take for any of the cancerous cells

to grow back to detectable level T = min(Mj , j = 1, 2, ..., N). And assuming the Mj are

independently and identically distributed with a given distribution, the survivor function

for T can be given as

S(t) = Pr[No cancer cells at time t]

= Pr[N = 0] + Pr[M1 > t,M2 > t, . . . ,MN > t,N ≥ 1]

= e−ρ +
∑∞

N=1 S
N (t)ρ

N

N !

−ρ

= e−ρ(1−S(t)) = e−ρF (t) = πF (t)

(4.3)

where π = e−ρ represents the proportion that is cured and will therefore never relapse

[127]. Further, note that

lim
t→∞

S(t) = π = e−ρ > 0
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such that S(t) is an improper survivor function which does not tend to 0 as t gets very

large. From (4.3), we can derive the hazard function as

h(t) = −(logπ)fr(t). (4.4)

Then, given a random sample of n individuals, we can write the likelihood function in

terms of the hazard and survival functions as

L(θ) =
n∏
i=1

[−(logπi)fr(ti)]δiexp[Fr(ti)log(πi)]. (4.5)

As before, fr(.) and Sr(.) may follow any of the standard parametric distributions for

non-negative random variables. The effect of covariates on the cured proportion π, and

the TTR for the chosen parametric distribution be modelled using the logistic model

(4.2) and through the scale parameter for the chosen TTR distribution as in the mixture

model in Section 4.2. Other link functions such as the log-log link have been used in

the model for π in PTC models. This link function is normally used when interest is in

obtaining covariate effects that are log-hazard ratios when the parameters within the

distribution function for T do not vary by covariates [29]. In this way, the PTC model has

a PH structure. In our analysis, we will use the logistic regression to model the effect of

covariates on π as in the mixture models to enable comparison of estimates between

the two models. Covariates on fr(.) and Sr(.) will have a slightly different interpretation

as short-term effects on T , while not necessarily characterising the TTR for those who

are not cured [128]. To obtain the survivor function for those who are not cured, we can

express (4.3) in a form similar to the mixture model formulation of equation (2.16) in

Section 2.6 as

S(ti) = πi + (1− πi)

(
π
Fr(ti)
i − πi
1− πi

)
(4.6)



111

which resembles the survivor function in the mixture model where the survivor function

for those who are not cured is
(
π
Fr(ti)
i −πi
1−πi

)
.

The PTC model attaches biological meaning to the analysis based on its formulation

which makes it more attractive than the mixture model. Another important feature of

the PTC model is that it can take on a PH model structure which makes it possible

to focus on the effect of covariates on π. The other advantage is that it has a simple

structure for the survival function which makes computation easier when compared to

the mixture model [129]. The PTC models are therefore more useful where interest is in

understanding the biology or mechanisms that drive outcomes while at the same time

investigating the role of covariates on the probability of being cured.

4.4 Semi-parametric mixture cure models

The complexities with having to specify and then verify the suitability of a chosen para-

metric form for the survival function for those who will relapse have led some to propose

the semi-parametric mixture cure (SPMC) model [25, 26]. For this model, the only dif-

ference is that the parametric form of the survivor function for modelling the TTR, given

that it occurs, is replaced by the PH model. The survivor function can still be expressed

as

S(t) = π + (1− π)Sr(t) (4.7)

where 0 < π < 1, is the probability of being cured. If z and x are vectors of covariates

on the cure proportion and TTR respectively as previously described, and the PH as-

sumption holds, then we can replace the survival function for those bound to relapse in

(4.7), by the Cox PH model. We can thus write the survival function for the i-th individual

as
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S(ti) = πi + (1− πi)S0r(ti)exp(β
Txi) (4.8)

where πi is related to the zi through a logistic model (4.2) and S0r(ti) = exp(−H0r(ti))

is an unspecified baseline survivor function for those who will relapse where H0r(ti) is

the cumulative hazard up to time ti. These models can be fitted using the EM algorithm

discussed in Section 2.9.2 in standard statistical software.

4.5 Cure rate models that incorporate population survival

data

In instances where OS is the outcome of interest, relative survival models can be used

to estimate the proportion of patients whose survival is similar to that of disease-free

members of the general population. In these situations, ’cure’ is observed when the

hazard rate for death in individuals with a particular disease is the same as that of the

general population. Estimating the cured proportion by incorporating information about

the survival in the general population helps deal with selection bias which might result

from estimating the cured proportion based on a single sample from a trial as in the

previous section [130]. In this thesis, we refer to these models as population mixture

and PTC models.

4.5.1 Population mixture models

At the population level, the overall survivor function is the product of the expected sur-

vival function in the general population without the disease Sp(t) and the assumed sur-

vival function attributable to the disease Sd(t) [130]. Using (2.17), the hazard function

can be worked out as the sum of the population hazard hp(t) and that attributable to the

disease and using the pdf for those bound to die from the disease to give the overall

hazard function
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h(t) = hp(t) +
(1− π)fd(t)

π + (1− π)fd(t)
, (4.9)

since h(t) = f(t)/S(t). We can then use these hazard and survival functions to get the

likelihood for n individuals. Estimates of the parameters can be obtained by maximis-

ing the resulting likelihood as long as information is available on the population hazard,

hp(t), from population mortality statistics, for example. Again, given data from n indi-

viduals, the effect of covariates on the proportion whose OS returns to that of age-sex

matched individuals in the general population and the OS for those who are not cured

can be modelled using the logistic model specified in (4.2) and through the scale pa-

rameter (λ) if we assume a two-parameter parametric distribution such as the Weibull

for the OS of those not cured.

4.5.2 Population non-mixture models

The population PTC model has the same motivation as the PTC models described

for TTR. The survival function in (4.3) can be replaced by the overall survival function

which is the product of the population survival function Sp(t) and a function of the CDF

for those that will eventually die from the disease Fd(t) as in [69], as follows

S(t) = Sp(t)π
Fd(t) (4.10)

and this can be written as

S(t) = Sp(t)exp(log(π)(1− Sd(t)) (4.11)

since Fd(t) = 1− Sd(t), while the hazard function can now be replaced with the sum of

the two hazard functions, that for the general population hp(t), and hd(t) for those that

will eventually die, that is
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h(t) = hp(t)− log(π)fd(t). (4.12)

The LL, given n individuals, can similarly be derived from hazard and survival functions

as before. The term Sp(t) does not depend on the parameters from the distribution gov-

erning the survival of those not cured, fd(t), and can thus be ignored when estimating

the parameters of the distribution.

4.6 Application of cure rate models to the Myeloma and CLL

datasets

The various cure rate models discussed were used to estimate the proportion of pa-

tients who will never relapse and the proportion whose OS is the same as age-sex

matched individuals in the general population in the Myeloma and CLL datasets. In

all models, covariates on the cured proportion were modelled using logistic regression.

Covariates associated with the TTR and OS were modelled through the scale parame-

ter in Weibull models and using Cox PH models in semi-parametric mixture models. All

Bayesian parametric models were fitted using the MCMC methods described in Section

2.9.3. To estimate the proportion, π, that will never relapse following treatment as well

as model TTR for those who were not cured, three types of cure rate models were used:

1. A semi-parametric mixture model with a Cox PH model for those not cured esti-

mated by ML, using the R package smcure [25]

2. A Bayesian parametric mixture model with a Weibull model for the TTR, and

3. A Bayesian parametric PTC model with a Weibull model for the TTR. The semi-

parametric mixture model is well established and should therefore produce esti-

mates similar to the Bayesian models if there exists a proportion that will never

relapse following treatment.
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The proportion whose OS will be similar to age-sex matched individuals in the gen-

eral population was estimated using three types of cure rate models:

1. A Weibull model for those that will eventually die from the disease, estimated by

ML using the Stata function strsmix [69],

2. A Bayesian parametric mixture model with a Weibull model for the OS, and

3. A Bayesian parametric PTC model with a Weibull model for the OS.

Prior to fitting these, the hazard rates, hp(t), in (4.9) and (4.12) we obtained from the

ONS data as described in Section 2.7.

4.6.1 Prior distributions for model parameters in Bayesian cure rate mod-

els

To fit the Bayesian models, prior distributions were specified for both the parameters

associated with the cured proportion and the parameters in the TTR and OS models for

those not cured.

When estimating π without covariates, a Uniform(0, 1) prior was used for the cured

proportion. In the Weibull model for those not cured and bound to relapse or die from

the disease Gamma(1, 1) priors were chosen for both the scale (λ) and shape (γ) pa-

rameters.

For all other models with covariates, a vague N(0, 100) prior was used for both the

intercepts and coefficients in both the logistic model for the cured proportion and the

parameters in the models for TTR or OS for those not cured.

4.7 Cure rate models without covariates in Myeloma

First, the cured proportion π, representing the proportion that will not relapse, was

estimated without covariates using the Bayesian mixture and PTC models. The semi-
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parametric mixture model was not used to estimate π on its own as smcure does not

allow for the estimation of the cured proportion without covariates on both π and the

TTR to ensure identifiability [25].

Estimates of the cured proportion from the Bayesian mixture and PTC models are

shown in Table 4.1. The estimated proportion who will never relapse following was just

under 20% in both the mixture and PTC models. Estimates of π from the two models

including the CrIs were similar. The shape parameter in the PTC model was bigger

than in the mixture model suggesting a higher risk of relapsing for those not cured by

treatment.

Mixture model PTC model
Parameter Estimate (95% CrI) Estimate (95% CrI)

Cure model
π 0.197 (0.147, 0.246) 0.184 (0.126, 0.242)

TTR model
λ 0.391 (0.330, 0.456) 0.201 (0.155, 0.247)
γ 1.290 (1.159, 1.424) 1.409 (1.260, 1.566)

Table 4.1: Estimates of π, the scale (λ) and shape (γ) parameters from Bayesian Weibull mixture and
PTC models for TTR in the Myeloma dataset.

Finally, a plot of the TTR for the cured and non-cure subgroups combined (Overall

TTR, blue line), estimated from the posterior distribution using MCMC according to

equation (2.16), was similar to the K-M estimate for all patients, with the characteristic

plateau observed at around 20%. Considering the non-cured patients only (red line),

the TTR survivor curve is fully observed (all patients progressed) by the end of follow-up

in both models, Figure 4.1.

Both models showed a good fit to the data with good convergence as seen in the

trace, density and auto-correlation function (ACF) plots in Figure 4.2. The trace plots in

both models showed good mixing, while the density plots for both π and λ were centred
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Figure 4.1: Model estimated and K-M survivor curves from Bayesian Weibull mixture (A) and PTC (B)
models for TTR in the Myeloma dataset

around the posterior means.
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Figure 4.2: Trace and density plots for the cured proportion (π) and the scale parameter (λ) from the
MCMC output in Bayesian Weibull mixture (A) and PTC (B) models for TTR fitted to the Myeloma

dataset.

4.7.1 Cure rate models with covariates in Myeloma

The influence of log-RD as well as z-standardised paraprotein, beta2 and albumin as

independent covariates on both the cured proportion and the TTR for those not cured

in the mixture models were simultaneously estimated from the Myeloma data using

the models described in Section 4.6. Log-odds ratios (ORs) were obtained from the

logistical model for the cured proportion, while log-HRs were estimated from the models

for TTR. On top of the log-HRs, the shape parameter and intercept were estimated in

the Bayesian Weibull mixture and PTC models.

The semi-parametric mixture model was fitted using the smcure package in R, while

the Bayesian Weibull and PTC models were fitted using MCMC in OpenBUGS. Albumin

and beta2 were again used to give a measure for disease stage while sex and age

were not included at all as they were not significantly associated with TTR as shown
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previously. The estimates from these models are shown in Table 4.2.

An increase in the log-RD was significantly associated with a lower probability of be-

ing cured following treatment. Each log-increase in the RD percentage after treatment

was predictive of a decrease in the log-OR of -0.804 (-1.455, -0.154) in the PH mixture

model, -0.739 (-1.228, -0.206) in the Weibull mixture model and -0.791 (-1.457, -0.152)

in the Weibull PTC model respectively. The log-RD was however, not significantly asso-

ciated with TTR in any of the three models. This is in contrast to the standard univariable

TTR models where a high log-RD was predictive of a shorter TTR. Actually, log-RD had

a protective effect in the Bayesian mixture and PTC models although the CrIs in these

models included a 0. The estimated log-HR was biggest in absolute value in the PTC

model. The DIC in the two Bayesian models was not very different for log-RD.

Paraprotein is one of the known markers of disease burden, with high levels of

paraprotein associated with a shorter TTR. We thus fitted paraprotein as a covariate on

both the cured proportion and the TTR for those not cured in the mixture models, and

to model the short-term effect of paraprotein on the TTR in the PTC model, considering

only those patients who had data on paraprotein (n = 334) in a CC analysis. In all three

models, higher levels of paraprotein were associated with a lower probability of being

cured, log-OR -0.668 in the PH mixture model, -0.621 in the Bayesian Weibull mixture

model and -0.730 in the Bayesian Weibull PTC model respectively. However, the 95%

CI in the PH mixture and CrIs in the Bayesian equivalents showed that this effect was

not significant. For the TTR, a bigger level of paraprotein was associated with a higher

risk of relapsing and the effect was significant in the PH mixture model log-HR (95% CI)

0.203 (0.035, 0.372) but not in the Bayesian mixture and PTC models.

A higher value of beta2 was associated with a shorter TTR and a lower probability

of being cured in all the models but this was not significant. Log-OR estimates were

variable across the 3 models. For albumin, higher levels of were associated with a lower

probability of being cured (positive log-ORs) in the cure models and lower chances of
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relapsing (negative log-HRs) in the TTR models for those not cured and bound to re-

lapse. Again the models with beta2 and albumin had respectively 310 and 426 patients

in a CC analysis ignoring the missing data.

These results show that while it is possible to obtain the cured proportion from both

the mixture model and the PTC model, the reliability of the results especially in the

PTC model can be put in question. This may be due to the relatively small sample

size and the complex nature of the statistical models. It was also not possible to add

multiple covariates due to the small sample size. To properly model this, we need to

take into account the nature of the data i.e. presence of a plateau that indicates that

some patients have indeed been cured.

On comparison, the mixture model generally performed better than the PH mixture

and the PTC models as it had shorter CrIs in general and therefore more precise es-

timates. Looking the DIC, the PTC model seemed to perform better than the mixture

model. However, the reduction in the DIC was not big to signify it was the better model.

All models reported estimates of log-ORs in the same direction. Differences were seen

when it came to predict the TTR having taken into account the proportion who might

have been cured from the disease where the mixture model performed better.



121

Comparing TTR patterns by log-RD level

We briefly investigated whether it was reasonable to assume the existence of a pro-

portion who might have been cured among the Myeloma patients. Using the estimated

survivor function from the PH mixture model, we plotted predicted values for the overall

survivor function assuming log-RD values of -2, -1, 0, 1 and 2 respectively representing

RD percentage values of 0.1%, 0.4%, 1%, 2.7% and 7.4%, which in the context of the

available Myeloma data represented a high disease burden, Figure 4.3. We also plot-

ted the K-M curve for all patients as well as the estimated cured proportion (π̂ = 0.197)

from the Bayesian mixture model since smcure does not fit PH mixture models without

covariates on π, alongside the lower and upper limits of the 95% CrI. It is worth noting

that the K-M survivor curve for all patients approaches an asymptote at the estimated

cured proportion from the mixture model. This means it is reasonable to use cure rate

models when characterising the TTR in the Myeloma dataset.

A log-decrease in the RD percentage from -1 to -2, 0.4% to 0.1% on the original

scale, increase the probability of being cured from around 20 - 36%, figure on the left.

For those with a log-RD of 0, representing a 1% RD percentage following treatment,

the estimated survivor function plateaued at around 10% meaning 90% of individuals in

this group would relapse while the remaining 10% could be cured. Another log-increase

in the RD percentage to 2.7% reduced the cured proportion from 10 to 5% and finally,

only 2% of those with a high disease burden representing a log-RD of -2, had a chance

of not relapsing again after treatment.

These findings illustrate that the cured proportion decreased rapidly with increasing

log-RD, emphasising the effect of log-RD in all the three models. The coinciding of the

K-M survivor function and the estimated cured proportion also confirmed that we can

estimate the proportion who might have been cured and therefore no longer a risk of

relapsing in the Myeloma dataset.
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B. TTR by increasing log−RD 
 in Myeloma − PH mixture model
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Figure 4.3: Model estimated survivor functions by selected log-RD values from the PH mixture model
fitted using smcure to the Myeloma data. Graph (A) shows curves with decreasing log-RD while (B) are

curves with increasing log-RD. The grey horizontal line shows the estimated π from the Bayesian
mixture model while dotted horizontal lines are upper and lower limits of the 95% CrI for the cured
proportion. The solid black line represents the K-M estimate of the survivor function for all patients.

4.8 Estimating the proportion whose OS returns to that of

general population in Myeloma

To incorporate population survival data, population mixture model and PTC model were

fitted to the Myeloma data to estimate the proportion whose OS returned to that of age-
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sex matched members of the general population and model OS for those not cured.

The mixture models were fitted using ML in the Stata package strsmix, [69], and us-

ing Bayesian methods implemented in OpenBUGS. All the PTC models were fitted in

OpenBUGS.

The estimates (95% CI or CrIs) of π from Weibull ML, Bayesian mixture model and

the Bayesian PTC model were 31%, 28%, (2 - 51 %) and 29%, (3 - 50%) respectively,

Table 4.3. This is approximately 10% more than the estimated proportion who would

never relapse again in the previous section, which suggests that 10% of cases may

relapse but die of something other than Myeloma. The uncertainty intervals for the

estimates of π from all 3 models were much wider than those in the TTR models. Around

30% of these patients would return to the same survival distribution as age-sex matched

controls in the general population after the treatment. Plotted survivor curves from

the Bayesian mixture model and the Bayesian PTC model showed that the estimated

overall survival function was roughly close to the empirical survival curve (blue line),

while the survival function for those not cured rapidly decreased towards 0 as t → ∞

in the mixture model, Figure 4.4. It is worth noting that in both models, the estimated

overall survivor curves did not decrease in such a manner to suggest the curves were

approaching a non-zero asymptote at which cure was possible. With OS in Myeloma, a

longer follow-up would be needed to observe this asymptote if it exists.

The trace and density plots from the Bayesian mixture and PTC models, Figure

4.5 showed that in general the models for π without covariates converged to the target

posterior distribution. However, the density plots from the mixture and PTC models

clearly showed that no unique value for the cured proportion was identified which could

have led to the wide CrIs. We thus could not establish whether for these patients, there

was a proportion whose OS might have returned to the population OS after treatment.
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Figure 4.4: Estimated K-M curve and overall survivor (blue dotted line) curves and OS curves for those
not cured (red dotted line) from the Bayesian Weibull population mixture (A) and Bayesian population

PTC (B) models respectively.

4.8.1 Modelling covariates in cure rate models for OS in Myeloma

To investigate the role of covariates on the proportion of patients whose survival is sim-

ilar to disease-free individuals in the general population, we again fit the three models

with the same covariates on both the cured proportion π and the scale parameter λ of
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Figure 4.5: Trace and density plots for the cured proportion (π) and the scale parameter (λ) from the
MCMC output in Bayesian population Weibull mixture (A) and Bayesian Weibull PTC (B) models for OS

fitted to the Myeloma dataset.

the Weibull models while incorporating age-sex matched population hazard and sur-

vival rates for each individual in the data set from the UK ONS. The results are shown

in Table 4.4.

There was no significant association between log-RD and the probability of having

OS similar to disease-free individuals in all three models. The point estimates in the ML

based Weibull mixture and the Bayesian PTC models indicate that those with lower log-

RD after treatment would have a higher probability of not dying from the lower disease

log-OR -0.313 in the ML mixture, -0.471 in the Bayesian mixture and 0.138 in the PTC

model. The estimate in the PTC model implied a higher log-RD predicted a higher

chance of attaining population OS. However, all effects of log-RD were not significant

as the CI and CrIs included a 0. While the models did not predict the probability of

being attaining population OS, they did not also predict the time to death either. The

ML model estimate actually showed a protective effect of log-RD on the OS, (log-HD
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-0.055).

None of the three models showed a discernible effect of paraprotein on the cure

probability. In the Bayesian mixture and PTC models for instance, higher levels of

paraprotein were predictive of a higher chance of the OS returning to that of disease

free individuals while in the ML mixture model, lower levels of paraprotein led to a

higher chance of attaining the population OS. The point estimates of the log-OR from

all models differed greatly with the largest effect seen in the Bayesian mixture model.

The CIs and CrIs confirmed that the effect of paraprotein on the proportion could not be

precisely estimated. The trace and density plot for the log-OR (alpha1) for paraprotein

in the logistic model for π and the log-HR (beta1) for paraprotein in the OS model are

shown in Figure 4.6. The figures illustrated that while convergence might have been

attained, the effect on the cured proportion could no be precisely estimated as seen

from the density plot and also from the wide CrI. The effect of paraprotein on OS was

not significant in all models.

With respect to beta2, lower measures were suggestive of a higher probability of

not dying from the disease in all models. The estimates of the log-ORs in the Bayesian

mixture and PTC models were larger than those from the ML mixture with very wide

CrIs which implied beta2 was not a predictor for π in this dataset. For the OS, beta2

was significantly associated with the time to death in the ML mixture model but not in

the other two models although the direction of the effect was the same.

Finally, albumin was not associated with the probability of attaining the population

OS in any of the models. The point estimates suggested lower albumin would increase

the chances of attaining the population OS in all three models. However, these esti-

mates had wide CIs or CrIs. Moreover, it is worth noting that throughout the previous

analyses, a higher level of albumin was indicative of adverse outcomes meaning these

effects should have been negative if albumin was a predictor for π. On the other hand,

albumin was associated with OS with higher values of albumin at baseline predictive of
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longer time to death. In the OS model, the expected association of albumin was seen.

Including covariates in the population cure rate models for OS did not provide any

insight on the factors that predict the probability of attaining population OS for these

patients. The estimates from the different models varied widely at times. The CIs and

CrIs for the log-ORs in the logistic models were generally very wide. While convergence

was attained for these models, it was not possible to conclude that any of the covari-

ates predicted the possibility of attaining the population OS. There were no differences

between the Bayesian mixture and PTC models in terms of performance. The ML mix-

ture model produced reasonable results to a large extent compared to the others and

we would therefore recommend using the ML based mixture model when attempting to

estimate π in this model.
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Figure 4.6: Trace and density plots from the Bayesian mixture model for OS fitted to the Myeloma
dataset with paraprotein as a covariate on both π and λ. The model was fitted to data from 334 patients.

4.9 Missing data in cure rate models applied to Myeloma

The cure rate models fitted thus far included only individuals with complete data on

each of the variables used in the analysis. To investigate whether estimates from mod-
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els based on the CC analysis are similar to those based on the complete data likelihood

as given in Equation 2.23, Bayesian models were used. The MI methods for combining

outputs using Rubin’s available in standard statistical software such as mi estimate in

Stata do not presently allow for cure rate models. While it would be possible to fit mod-

els to each dataset and combine the outputs by hand, we used Bayesian methods to

account for the missing data by treating them as unknown quantities for which we seek

to elicit a posterior distribution on top of the usual model parameters we are interested

in. We thus seek to specify a joint model for the observed and missing data including

the model parameters in order to proceed with the estimation in MCMC. The Bayesian

models had produced robust estimates when accounting for missing data in Section

3.4.5.

Paraprotein and beta2 were the two variables used in the cure rate models that had

missing data as only one patient had a missing albumin measure while all 427 indi-

viduals had log-RD data. For the TTR, the Bayesian Weibull mixture model was used

to estimate the proportion who would not relapse after treatment while the Bayesian

Weibull population mixture model was used to model the proportion whose OS would

return to that of disease-free individuals in the general population. The usual N(0, 100)

priors were used for the intercepts and coefficients of the effect of paraprotein and beta2

as independent covariates on π and the scale parameter λ for those not cured. On top

of this, for each covariate with missing data, a N(0, 100) prior distribution was specified

for the mean of the missing observations, while a Gamma(1, 1) prior was specified for

the variance of the unobserved data [131]. Again, the missing data mechanism was

assumed ignorable.

Estimates in the Bayesian mixture model to estimate the proportion who would never

relapse following treatment were similar if not more precise than those from the CC

analysis. For instance in the logistic model for π, the log-OR (95% CrI) for paraprotein

in the CC Bayesian Weibull mixture model for TTR was -0.621 (-1.392, -0.135), while
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it was -0.586 (-1.174, -0.143) after accounting for missing observations. With beta2 as

the covariate on π, the estimated log-ORs (95% CrIs) were respectively -0.370 (-0.939,

0.043) and -0.386 (-0.900, 0.006), Table 4.5. Similarly, when estimating the proportion

whose OS goes back to that of age-sex matched individuals in the general population,

the log-ORs for paraprotein and beta2 were respectively -0.796 (-4.347, 1.231) and -

0.805 (-3.413. 0.754) in the CC analysis, while in the models fitted to complete data,

they were -0.517 (-4.034, 1.101) and -0.749 (-3.024, 0.983) respectively. The effect

sizes were smaller in the models for π when the missing data was taken into account.

On the other hand, the CrIs for the estimates in models fitted to the complete dataset

were narrower implying more precision in the estimates. The models for TTR and OS

yielded similar results to the models based on CCs, with a general improvement in the

precision as evidenced by the narrower CrIs.

The SEs from the models accounting for missing data were bigger in the models

for π than in the TTR or OS models with the biggest SEs seen in the Bayesian mixture

model fitted to OS data. All models generally fitted well as evidenced by the trace and

density plots for paraprotein as a covariate in the cured proportion and the TTR or OS

models, Figure 4.7. The density plot for the log-OR for paraprotein in the Bayesian

population mixture model spanned a whole range of values supporting the wide CrI for

the estimate, confirming that it was hard to estimate π using the OS data in Myeloma

as earlier highlighted.

4.10 Multivariable cure rate models in Myeloma

We investigated models with more than one covariate on the model for π as well as

the TTR and OS. With TTR as the outcome, we used the smcure package in R and

obtained an error showing that the model could not converge and the parameters could

not be estimated even with just two covariates. A trace-back showed that in the logistic
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Figure 4.7: Trace and density plots of the coefficients for paraprotein in the Myeloma dataset on the
cured proportion, alpha1 (top) with the effect on the TTR on the left (A) and on OS (B) on the right.

Estimates of the effect of paraprotein (beta1) on the TTE (TTR or OS) are shown on the second row in
the respective models.
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model for TTR, the estimated parameters were too high such that exp(α0 + α1zi) was

infinite which consequently led to a break in the code. We again tried this for the OS

using the strsmix package in Stata. The results are shown in the Table 4.6 below. It

is clear from these results that it was not possible to model the cured proportion while

adjusting for other factors. The point estimates, SEs and CIs for the log-ORs in the cure

model were very large. In contrast, the estimates from the OS model were plausible

and similar to what had been obtained in the standard analysis. We thus conclude that

we cannot model the OS using cure rate models that include more than one covariate

in the cure model.
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4.11 Comparing estimates in standard and mixture models

in Myeloma

Having fitted univariable models with various covariates on both the cured proportion

and the TTR, forest plots were used to check if the effect of log-RD changed having

taken into account the proportion that may have been cured, Figures 4.8 and 4.9. Es-

timates from the standard Cox PH, Exponential and Weibull models were similar when

modelling the TTR as seen previously. Further, the effect of log-RD was borderline sig-

nificant in all models. When the possibility of a cure was taken into account however,

there was no significant association of log-RD and the TTR as shown by the 95% CI,

for the Cox PH mixture model and 95% CrIs for the Bayesian Weibull mixture and PTC

models. The estimate of the log-HR was generally smaller in the cure rate models, sug-

gesting that perhaps having taken into account those who are cured, the RD following

treatment on its own was not the main predictor of TTR. Finally, the estimate from the

PTC models was much smaller than that in the other two cure rate models based on

the wider CrI.

The estimates from the standard models for OS were comparable when looking at

log-RD. However, the estimates from the ML mixture, Weibull mixture and Weibull PTC

models were more varied. Moreover, the CI for the ML Weibull mixture and the CrI

for the Weibull PTC model were very wide. This emphasises the fact that it is difficult

to identify the proportion whose OS is similar to that in the general population for the

Myeloma data.
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Figure 4.8: Estimates of the log-HR for log-RD in the TTR standard (top) and cure rate models (bottom).
Dots represent point estimates of the log-HR while lines are the 95% CIs in the models fitted using ML

or CrIs in the Bayesian models.

4.12 Cure rate models applied to the CLL dataset

Having fitted the cure rate models to the Myeloma dataset, the mixture and PTC models

were applied to the CLL data to estimate the proportion that will never relapse following

treatment and also that whose OS will return to that of the general population. As

before, a logistic model for π and a Weibull model for TTR and OS was used.

The estimates for the proportion that will never relapse after treatment were 11 and

12% respectively in the mixture and PTC models without taking into account covariates
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Figure 4.9: Estimates of the log-HR for log-RD in the OS standard (top) and cure rate models (bottom).
Dots represent point estimates of the log-HR while lines are the 95% CIs in the models fitted using ML

or CrIs in the Bayesian models.

on π or λ in the Weibull model for TTR. However, both estimates had wide CIs, Table

4.7. Despite this, the conditional posterior distributions for each parameter converged to

stationary distributions, Figure 4.10. The trace plots for both the Bayesian mixture and

Bayesian PTC models showed that convergence was attained. However, the density

plots suggested that for the TTR, the proportion cured and who would not relapse again

in CLL could not be estimated precisely (top two density plots). Again worryingly, the

density plots from the Bayesian mixture (left) and Bayesian PTC (right) spanned the

whole range implying no statements about the identification of a proportion could be
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made.

The population cure models depicted even higher estimates of π at 43 and 46%

in the mixture and PTC models respectively. As before, these models also converged

without problems despite the wide CrIs for the estimate of π, Figure 4.10. Despite the

fact that almost 90% relapsed, the larger proportion who have OS similar to the age-

sex matched general population suggests that many may ultimately die of other causes.

The posterior distributions for π in these models were not centred around a particular

value implying cure could not be identified precisely. This is more likely to be the case

for a chronic disease such as CLL than for a more acute disease such as Myeloma.

In the CLL dataset, the posterior density for π representing the proportion whose OS

would return to that of disease-free individuals in the general population again spanned

the whole range implying it would be hard to make statements about cure.
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(B) Bayesian PTC
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(C) Bayesian population mixture
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(D) Bayesian population PTC

Figure 4.10: Trace and density plots for the cured proportion (π) and the scale parameter (λ) from the
MCMC output in Bayesian Weibull mixture and PTC models (A and B) for TTR as well as Bayesian

Weibull population mixture and PTC models (C and D) for OS fitted to the CLL dataset.

4.12.1 Covariates in cure rate models for OS in CLL

It was not possible to estimate the proportion who will not relapse following treatment in

CLL using mixture or PTC model with covariates on π and λ. This was to be expected
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as the empirical K-M curve for the TTR in CLL did not have an evident plateau from

which π could be reliably identified.

In the population mixture and PTC models with covariates in CLL, log-RD, stage and

sex were fitted as covariates on both π and λ, Table 4.8. A higher log-RD was indicative

of a lower probability of attaining the population level OS in both models though this ef-

fect was not significant. With respect to OS, a higher log-RD was predictive of a shorter

time to death although this effect was not significant in the PTC model. Stage and sex

were not associated with π in both the mixture and PTC models. For the OS, those

with a higher disease stage were more likely to have a shorter time to death, similar

to the trend seen in the Weibull model for OS alone without assuming a proportion are

cured. In contrast to the Weibull model for OS only, females were at a higher risk death

among those not cured than males. However, this effect was not significant. Moreover,

the CrIs in both models were very wide. In the CLL, the Bayesian PTC model for OS

in general had estimates with narrower CrIs compared to the mixture model especially

when estimating the log-ORs in the logistic model for π. However, both models depicted

lack of fit through the trace and density plots in general.
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4.13 Summary

The work thus far has focused on modelling the factors associated with TTR and OS

using the Myeloma IX and CLL trial data, focusing on the role of RD and its logarithm,

log-RD, on these outcomes, Chapter 3.

In this chapter, we examined the factors associated with being cured from Myeloma

following treatment and also modelling the TTR and OS for those not cured in the mix-

ture models, and the short-term effect of these covariates on the TTR and OS in the

PTC models. In both malignancies, log-RD is an important predictor of TTR and OS and

was thus included as a covariate in both the cure model and the TTR or OS model in the

mixture and the PTC models. The K-M estimates for CLL for both TTR and OS showed

curves without the requisite ’plateau’ towards the end of follow-up from which the cured

proportion could be estimated. The follow-up in CLL was around 5 years which may not

have been sufficient to estimate the cured proportion. In Myeloma on the other hand,

the K-M curve ’flattens out’ after approximately 6 years for TTR. It was thus feasible to

estimate the cured proportion for TTR in Myeloma. Mixture and PTC models have been

used to model the time to progression in Myeloma where the possibility of a cured has

been considered [22].

The models for estimating the proportion whose OS was similar to age-sex matched

individuals from the general population showed that while it is feasible to get estimates

of the cured proportion and model OS using the mixture and PTC models, the esti-

mates had very wide CIs and CrIs and the estimate of π itself ranged from 2% to above

70%. The estimates from the PTC models were less reliable than those from mixture

models (4.8) especially when estimating π in population mixture models which was in

agreement with what has been shown [132].

For TTR, the Bayesian mixture model provided better estimates than the PH mixture

and Bayesian PTC models when it came to estimating the proportion likely to have been
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cured following treatment and therefore not bound to relapse as well as modelling the

TTR. The PTC model did not perform better than the PH and Weibull mixture models in

general when estimating the cured proportion and modelling the TTR. The formulation

of the PTC model makes it more suitable for modelling the cured proportion where

interest is on the number of residual malignant cells after treatment and because of

that, it attaches biological meaning. Our focus in this thesis was on whether we could

estimate the cured proportion in the Myeloma and CLL datasets. For this purpose, it

would suffice to use the mixture models. It was not possible to adjust for other covariates

in the cure rate models with TTR outcomes in the Myeloma dataset, while for CLL,

it was not possible to model covariates at all. When applied to OS, the ML mixture

model fitted in Stata performed better than the Bayesian population mixture and PTC

models. However, the presence of a proportion whose OS returned to that of disease-

free individuals in the general population could not be ascertained. Further, modelling

more than one covariate on the cure proportion did not produce meaningful results even

when using the ML population mixture model.

Finally, to account for missing data, we modelled the missing data by specifying

prior distributions for the covariates with missing data in a Bayesian setting. The models

accounting for missing data gave better estimates and were more informative regarding

the size of the effect of paraprotein and beta on the cured proportion and the TTR and

OS.

Having estimated the cured proportion using the mixture and PTC models, it was

evident that the log-RD is not the only important predictor of the cured proportion and

TTR or OS. Another important tumour characteristic to take into account when esti-

mating π is the growth rate of the RD after treatment. In both data sets, this was not

recorded, however for Myeloma, data was available on covariates that reflect the tumour

growth characteristics. It is thus feasible to model the effect of the tumour growth, as a

latent variable on the cured proportion and the TTR or OS using the structural equation
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modelling technique which is discussed in the next chapter.
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PH mixture (TTR) Mixture model (TTR) PTC model (TTR)
Parameter Estimate (95% CI) Estimate (95% CrI) Estimate (95% CrI)

Cure model
Intercept -2.201 (-2.797, -1.605) -1.968 (-2.546, -1.431) -2.131 (-2.992, -1.512)
Log-RD -0.804 (-1.455, -0.154) -0.739 (-1.228, -0.206) -0.791 (-1.457, -0.152)

TTR model
Intercept - -1.023 (-1.275, -0.782) -1.886 (-2.301, -1.529)
Log-RD 0.074 (-0.279, 0.426) -0.127 (-0.410, 0.157) -0.348 (-0.754, 0.125)

Shape (γ) - 1.301 (1.164, 1.437) 1.423 (1.264, 1.575)
DIC - 12,580 12,577

Cure model
Intercept -1.845 (-3.017, -0.673) -1.702 (-2.394, -1.257) -2.032 (-3.174, -1.389)

Paraprotein -0.668 (-2.560, 1.223) -0.621 (-1.392, -0.135) -0.730 (-1.749, -0.036)

TTR model
Intercept - -1.041 (-1.229, -0.861) -1.908 (-2.400, -1.586)

Paraprotein 0.203 (0.035, 0.372) 0.111 (-0.031, 0.227) -0.033 (-0.298, 0.248)
Shape (γ) - 1.296 (1.134, 1.458) 1.392 (1.212, 1.561)

DIC - 9,844 9,843

Cure model
Intercept -1.806 (-2.275, -1.337) -1.652 (-2.208, -1.249) -1.885 (-3.082, -1.302)

Beta2 -0.528 (-1.063, 0.006) -0.370 (-0.939, 0.043) -0.417 (-1.123, 0.048)

TTR model
Intercept - -1.033 (-1.225, -0.846) -1.855 (-2.302, -1.546)

Beta2 0.087 (-0.127, 0.302) 0.138 (0.006, 0.262) 0.098 (-0.168, 0.293)
Shape (γ) - 1.307 ( 1.144, 1.461) 1.430 (1.216, 1.629)

DIC - 9,142 9,138

Cure model
Intercept -1.818 (-3.882, 0.245) -1.513 (-1.984, -1.172) -1.855 (-3.756, -1.273)
Albumin 0.768 (-1.098, 2.634) 0.172 (-0.221, 0.569) 0.057 (-1.004, 0.642)

TTR model
Intercept - -0.967 (-1.147, -0.800) -1.771 (-2.426, -1.456)
Albumin -0.134 (-0.382, 0.112) -0.137 (-0.316, 0.042) -0.191 (-0.615, 0.183)

Shape (γ) - 1.277 (1.147, 1.418) 1.367 (1.163, 1.558)
DIC - 12,551 12,548

Table 4.2: Log-RD (n = 427), paraprotein (n = 334), beta2 (n = 310) and albumin (n = 426) as
independent covariates in mixture and PTC models for TTR in Myeloma. In the cure models, estimates

of the intercept and log-ORs from all models are presented, while estimates from the TTR models
include the log-HRs in all models, and log-HRs as well as the intercept and shape parameter (γ) in the

Weibull models.
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ML mixture Bayesian mixture model Bayesian PTC
Parameter Estimate π (95% CI) Estimate π (95% CrI) Estimate of π (95% CrI)

Cure model
π 0.308 (0.056, 0.770) 0.278 (0.025, 0.508) 0.290 (0.033, 0.503)

OS model
λ 0.082 (0.043, 0.156) 0.084 (0.052, 0.126) 0.049 (0.017, 0.090)
γ 1.390 (1.103, 1.753) 1.373 (1.136, 1.645) 1.439 (1.194, 1.711)

DIC 12,300 12,300

Table 4.3: Estimates of π and the scale (λ) and shape (γ) parameters from Weibull population mixture
and PTC models for OS in the Myeloma dataset fitted using ML and MCMC (Bayesian)
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ML mixture (OS) Mixture model (OS) PTC model (OS)
Parameter Estimate (95% CI) Estimate (95% CrI) Estimate (95% CrI)

Cure model
Intercept -0.893 (-2.270, 0.914) -2.465 (-7.123, -0.109) -1.559 (-4.574, -0.116)
Log-RD -0.313 (-1.721, 1.095) -0.471 (-1.788, 4.187) 0.138 (-1.173, 1.978)

OS model
Intercept -2.498 (-3.169, -1.827) -2.618 (-3.159, -2.071) -3.327 (-4.366, -2.474)
Log-RD -0.055 (-0.937, 0.827) 0.067 (-0.616, 0.584) 0.087 (-0.861, 0.900)

Shape (γ) 1.407 (1.114, 1.775) 1.347 (1.115, 1.617) 1.430 (1.181, 1.706)
DIC - 12,301 12,301

Cure model (π) Log-OR (95% CI) Log-OR (95% CrI) Log-OR (95% CrI)
Intercept -1.215 (-4.487, 2.056) -3.201 (-7.677, -0.144) -1.961 (-5.757, -0.151)

Paraprotein 0.285 (-0.488, 1.058) -0.796 (-4.347, 1.231) -0.066 (-1.782, 1.063)

OS model
Intercept -2.821 (-3.552, -2.090) -2.906 (-3.452, 2.376) -3.733 (-4.858, -2.767)

Paraprotein 0.269 (-0.018, 0.556) 0.110 (-0.151, 0.401) 0.145 (-0.457, 0.649)
Shape (γ) 1.470 (1.131, 1.912) 1.417 (1.175, 1.710) 1.529 (1.258, 1.855)

DIC - 9,604 9,604

Cure model
Intercept -0.449 (-1.658, 0.760) -2.115 (-6.161, 0.005) -1.287 (-3.451, 0.066)

Beta2 -0.269 (-0.769, 0.231) -0.805 (-3.413. 0.754) -0.593 (-1.970, 0.408)

OS model
Intercept -2.606 (-3.204, -2.008) -2.769 (-3.325, -2.190) -3.401 (-4.359, -2.564)

Beta2 0.277 (0.029, 0.524) 0.236 (-0.043, 0.542) 0.120 (-0.332, 0.602)
Shape (γ) 1.565 (1.245, 1.967) 1.434 (1.181, 1.753) 1.546 (1.236, 1.879)

DIC - 8,918 8,917

Cure model
Intercept -1.288 (-3.201, 0.624) -2.330 (-6.070, -0.355) -1.501 (-3.545, -0.135)
Albumin -0.655 (-1.560, 0.251) -0.673 (-2.188 1.294) -0.306 (-1.327, 1.290)

OS model
Intercept -2.638 (-3.095, -2.182) -2.704 (-3.070, -2.320) -3.376 (-4.119, -2.611)
Albumin -0.494 (-0.758, -0.231) -0.360 (-0.708, 0.071) -0.435 (-0.963, 0.447)

Shape (γ) 1.415 (1.166, 1.717) 1.371 (1.160, 1.625) 1.463 (1.218, 1.764)
DIC - 12,265 12,266

Table 4.4: Log-RD (n = 427), paraprotein (n = 334), beta2 (n = 310), albumin (n = 426) as independent
covariates in mixture and PTC models for OS in Myeloma. In the cure models, estimates of the intercept
and log-ORs from all models are presented, while estimates from the OS models include the log-HRs in

all models, and log-HRs as well as the intercept and shape parameter (γ) in the Weibull models.



145

Bayesian mixture model (TTR) Bayesian mixture model (OS)

Cure model Estimate (95% CrI) SE Estimate (95% CrI) SE

Cure model

Intercept -1.559 (-2.013, -1.216) 0.005 -2.807 (-7.161, -0.356) 0.051

Paraprotein -0.586 (-1.174, -0.143) 0.007 -0.517 (-4.034, 1.101) 0.038

TTE model

Intercept -0.967 (-1.142, -0.809) 0.002 -2.703 (-3.102, -2.255) 0.006

Paraprotein 0.107 (-0.037, 0.223) 0.002 0.128 (-0.167, 0.422) 0.004

Shape (γ) 1.292 (1.161, 1.429) 0.002 1.333 (1.134, 1.590) 0.003

DIC 13,518 13,247

Cure model

Intercept -1.505 (-1.927, -1.169) 0.005 -2.524 (-2.725, 0.261) 0.053

Beta2 -0.386 (-0.900, 0.006) 0.006 -0.749 (-3.024, 0.983) 0.027

TTE model

Intercept -0.967 (-1.132, -0.799) 0.002 -2.725 (-3.176, -2.204) 0.007

Beta2 0.133 (0.008, 0.243) 0.002 0.261 (0.021, 0.513) 0.004

Shape (γ) 1.290 (1.159, 1.429) 0.002 1.372 (1.153, 1.642) 0.004

DIC 13,454 13,163

Table 4.5: Estimates of log-OR and log-HRs for paraprotein and beta2 as covariates in Bayesian mixture
models for TTR and OS in Myeloma with imputation models to account for missing data. In the cure
models, estimates of the intercept and log-ORs are presented, while estimates from the TTE models

include log-HRs as well as the intercept and shape parameter (γ) in the Weibull models.
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ML mixture model (OS)

Parameter Estimate (SE) (95% CI)

Cure model

Intercept -1613.1 (98987.4) (-195624.7, 192398.6)

Log-RD 1179.2 (66769.7) (-129687.1, 132045.5)

Paraprotein -709.8 (42903.9) (-84799.8, 83380.3)

Beta2 154.8 (7314.8) (-14182.0, 14491.7)

Albumin -1307.1 (78535.0) (-155232.8, 152618.6)

OS model

Intercept -2.981 (0.304) (-3.577, -2.384)

Log-RD 0.401 (0.259) (-0.106, 0.908)

Paraprotein 0.093 (0.121) (-0.144, 0.329)

Beta2 0.295 (0.090) (0.119, 0.471)

Albumin -0.382 (0.146) (-0.669, -0.095)

Shape (γ) Not shown Not shown

Table 4.6: Log-RD, paraprotein, beta2 and albumin as covariates in a multivariable ML mixture model for
OS in Myeloma fitted to data from n = 243 patients. In the cure model, log-OR estimates as coefficients
of each covariate, the SE and 95% CI are reported, while estimates in the OS model represent log-HRs,

their SE and 95% CI.
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Mixture model PTC model
Parameter Estimate (95% CrI) Estimate (95% CrI)

Cure model
π 0.111 (0.004, 0.322) 0.122 (0.007, 0.317)

TTR model
λ 0.080 (0.055, 0.118) 0.033 (0.013, 0.066)
γ 1.579 (1.324, 1.847) 1.647 (1.402, 1.931)

DIC 9,235 9,237

Cure model
π 0.426 (0.027, 0.798) 0.464 (0.053, 0.796)

OS model
λ 0.040 (0.010, 0.115) 0.032 (0.005, 0.102)
γ 1.657 (1.120, 2.402) 1.672 (1.120, 2.341)

DIC 8,910 8,911

Table 4.7: Bayesian mixture and PTC models for π and TTR and OS with a Weibull model in the CLL
dataset. Estimates of π, the scale (λ) and the shape (γ) are reported for each model.
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Bayesian mixture (OS) Bayesian PTC (OS)
Parameter Estimate (95% CrI) Estimate (95% CrI)

Cure model
Intercept -1.180 (-3.700, 0.990) -1.160 (-4.100, 1.110)
Log-RD -0.430 (-1.890, 0.640) -0.380 (-1.700, 0.660)

OS model
Intercept -3.990 (-5.160, -2.810) -4.670 (-6.290, -2.950)
Log-RD 0.550 (0.090, 0.980) 0.480 (-0.160, 1.090)

Shape (γ) 1.690 (1.140, 2.470) 1.750 (1.170, 2.610)

Cure model
Intercept -0.710(-3.560, 1.560) -0.730 (-3.420, 1.590)
Stage II -0.540 (-3.640, 2.240) -0.520 (-3.660, 2.180)

OS model
Intercept -3.840 (-5.370, -2.280) -4.480 (-6.320, -2.510)
Stage II 0.240 (-1.330, 1.560) 0.180 (-1.940, 2.030)

Shape (γ) 1.770 (1.150, 2.640) 1.830 (1.180, 2.820)

Cure model
Intercept -0.590 (-3.510, 1.410) -0.660 (-3.110, 1.150)

Sex 1.130 (-2.190, 4.110) 0.930 (-2.360, 3.910)

OS model
Intercept -3.720 (-5.410, -2.240) -4.310 (-6.080, -2.820)

Sex 0.330 (-1.570, 2.500) 0.490 (-2.000, 3.280)
Shape (γ) 1.840 (1.140, 2.890) 1.880 (1.210, 2.910)

Table 4.8: Log-RD, stage and sex as covariates in univariable mixture and PTC models for those whose
OS returns to that of disease-free individuals in the CLL dataset. In the cure models, estimates of the

intercept and log-ORs from both models are presented, while estimates from the OS models include the
log-HRs as well as the intercept and shape parameter (γ) in the Weibull models.



Chapter 5

Using structural equation modelling to eval-

uate the effect of a latent covariate on TTE

outcomes

5.1 Introduction

This chapter discusses methods for modelling how latent tumour characteristics such

as tumour re-growth rate and RD disease after treatment influence TTE outcomes and

demonstrate how these models are fitted using available software.

The use of latent variables in modelling survival outcomes has not been widely dis-

cussed in the literature mainly because SEM approaches have not traditionally been

used in medical research. In recent times, there has been a growing interest in using

SEMs to model latent variables in a number of disease areas. For instance, in liver can-

cer, SEMs were used to model drug responses using observed biomarkers [133]. Other

applications in lung cancer have involved examining whether the observed risk fac-

tors act independently or through complex mechanisms likely to be identified in a SEM

framework [134]. This feature might be useful in our case where we have biomarkers

which we believe are related to tumour growth which is itself an important predictor of

149
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TTR and/OS. Rather than modelling the effect of each biomarker independently on the

outcomes, we can explore within a SEM framework, whether these biomarkers together

represent some latent construct which is itself a predictor of the survival outcomes.

SEM extensions that enable the modelling of latent constructs through both binary and

continuous observed variables on survival data in both parametric and semi-parametric

TTE models have been discussed [135]. Again with survival outcomes, SEMs have

been used for their greater explanatory power over independent covariates in data with

small sample sizes but having high dimensionality [136]. SEMs that allow for a propor-

tion who might be cured have been explored by considering the cured fraction as one of

latent classes. However, these methods assumed a discrete time survival model [137].

The discrete time survival model bins the observed TTE into discrete chunks during

which the event of interest could occur. In this thesis, we are interested in continuous

survival times and a latent variable related to the TTE via continuous observed vari-

ables. We also aim to further extend the methods to model the effect of the continuous

latent variable in cure rate models. We briefly discuss the general SEM framework.

Various methods have been proposed for modelling latent variables, some of which

include data augmentation techniques such as the EM algorithm which have been dis-

cussed [74]. For this work, we have demonstrated that the cured proportion is itself

an unobserved measure which can be modelled using cure rate models [18]. To in-

corporate latent covariates, SEMs may be used to elicit them from a set of observed

variables that are known to be related to the latent measures. In both the Myeloma and

CLL trials, there were no measurements of tumour growth. However, using bio-markers

that are known to predict some characteristics of tumour growth, we can use SEMs to

model how the tumour growth is associated with the outcomes TTR and OS and also

the probability of being cured.

The SEM approach forms part of a broader range of models whose aim is to validate

relationships based on observed data. This methodology extends generalised linear
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modelling approaches such as analysis of variance and linear regression. Briefly, SEMs

model latent variables by assuming a multivariate distribution for the observed data

[53]. The relationship between unobserved latent variables and the manifest variables

(observed data) is modelled by examining the covariance structure of the proposed

model and comparing it to that obtained from the observed data through the covariance

matrix. As a result, most of the methods for fitting SEMs do not require individual

observations of the latent variable when using ML based techniques.

SEMs themselves are part of a wider group of models called latent variable mod-

els that fall into three main categories: 1) classical latent variable models also called

common factor models where continuous observed variables depict an underlying con-

tinuous latent variable, 2) item response models where categorical observed variables

relate to a latent continuous variable, and 3) latent class models where observed cat-

egorical variables relate to other latent categorical variables. This work is focused on

classical latent variable models and how they can be extended to model TTE outcomes.

The general SEM has two components: 1) the measurement model, which de-

scribes how latent or unobserved variables are related to observed or manifest random

variables, where the observed random variables are said to be manifestations of the

unobserved latent variable and 2) the structural model which describes the relation-

ships between latent variables [138]. In our case, the measurement model might relate

the biomarkers albumin, beta2, and paraprotein to the latent variable reflecting tumour

growth, whilst the structural model represents the TTE or cure rate model.

5.1.1 The measurement model

In the general case where there are several latent variables, the measurement model

can be presented as follows. Let y = (y1, . . . , yk)
T be a k × 1 vector of observed

continuous random variables which are manifestations of the continuous latent variables

ω = (ω1, . . . , ωq)
T . Assume also that the observed manifest variables relate to the latent
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variables through the measurement equation

y = µ+ Υω + ε. (5.1)

Here, ε ∼ N(0,Ψε) where Ψε is a diagonal matrix of the errors in the measurement

of the variables y, Υ is a k × q matrix of coefficients or factor loadings to be estimated

which describe the relationship between the latent variables and the observed variables

while µ = (µ1, . . . , µk)
T is a k×1 vector of intercepts in the regression equations in (5.1).

The latent scores themselves are assumed to be N(0,Φ), where Φ is the covariance

matrix of the latent variables ω.

5.1.2 Measurement model with binary observed variables

In some instances, we may observe binary random variables that are related to some

unknown latent variable ω as before. In SEM, we assume the observed variables y

represent some latent continuous responses y∗ underlying the dichotomous response

with

y =

 1 if y∗ > 0

0 otherwise
(5.2)

Then we can specify the model for y∗ as in the case of continuous observed SEMs

(5.1)

y∗ = µ+ Υω + ε (5.3)

The parameters for this model can be estimated as before by specifying a link function

between the observed data and the latent variables.
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5.1.3 The structural model

In SEM, interest might also be on how latent variables relate to each other. Struc-

tural models are used to represent these relationships. The structural model can be

expressed as

η = ν +Bω + ζ (5.4)

where η are latent outcome variables and ω ∼ N(0,Φ) as before, ν are intercepts, B

is an r × q non-singular matrix, while ζ is a matrix of the errors in the structural model.

For our purposes, interest is in a TTE outcome in the structural model (5.4) above so

that we have

G(t) = ν +Bω (5.5)

where G(t) could be some function of the TTE such as the log-hazard function or the

logistic model for π. The error term is therefore not required.

5.2 Estimating parameters in SEMs

There are two main approaches to estimating the parameters in SEMs: 1) the frequen-

tist approach where the latent variables are treated as random and the parameters

as fixed or in other instances, where both the latent variables and the parameters are

treated as fixed, mainly to ease computation, and 2) a Bayesian approach where both

the latent variables and the parameters are treated as random variables and inference

is based on drawing samples from the posterior distribution in an MCMC.
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5.2.1 Maximum likelihood estimation for SEMs

To fit the measurement model using maximum likelihood, consider the full likelihood

based on data from n individuals given by

L(µ,Υ, ω,Ψε; y) =
∏n
i=1 f(yi|µ,Υ, ωi,Ψε)

=
∏n
i=1(2π)−

1
2 |Ψε|−

1
2 exp

{
−1

2εi
TΨε

−1εi
} (5.6)

where εi = yi − µ−Υωi from (5.1). For this model, we can integrate out the latent

scores ωi to have a likelihood based only on the observed data as

L(µ,Υ,Ψε; y) =
∫ ∏n

i=1 f(yi|µ,Υ, ωi,Ψε)f(ωi,Φ)∂ωi

=
∏n
i=1(2π)−

1
2 |Σ|−

1
2 exp

{
−1

2(yi − µ)TΣ−1(yi − µ)
} (5.7)

where f(ωi,Φ) is the distribution of the latent variables and Σ = ΥΦΥT + Ψε . To

estimate the parameters, one would have to maximise the likelihood or minimise the LL

l(µ,Σ;Y ) = −n
2

log |Σ| − 1

2

n∑
i=1

(yi − µ)TΣ−1(yi − µ) (5.8)

which can also be expressed as

l(µ,Σ) = n log |Σ| + n tr[Σ−1(S + (ȳ − µ)(ȳ − µ)T )] (5.9)

where

S =
n∑
i=1

(yi − ȳ)T (yi − ȳ) (5.10)

is the observed sample covariance matrix. From this, the ML estimates for the param-

eters can be found by evaluating the score functions. For the mean µ, it is straight-

forward to evaluate
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∂l(µ,Σ;y)

∂µ
= 0

due to the assumed normality of the distributions which results in the estimate µ̂ = ȳ.

Estimating the variance components

To get estimates for Σ, we need to minimize l(µ̂, Σ) with respect to Σ [139]. As we

only want elements that involve Σ, the LL therefore becomes

l(µ̂,Σ; y) = n log |Σ| + n tr(Σ−1S) (5.11)

The estimation of the coefficients, correlations and variances is not usually possible

unless some parameters of the model are constrained [55]. It has been shown that

if y has a multivariate normal distribution, then S follows a Wishart distribution with n

degrees of freedom [140]. Moreover, since in the model definitions Υand Φ are not in-

dependent, that is, the variance of ω also depends on the intercepts or factor loadings,

we need to impose restrictions on Υ and Φ to ensure that we obtain unique estimates.

Two well-known approaches involve fixing one or more of the elements in Υ at known

constants or fixing the variance of the latent variable(s), Φ. The latent variable is often

assumed to have zero mean with the variance fixed at 1 to ensure identifiability or the

coefficients. Numerical procedures have been proposed for finding the maximum likeli-

hood estimates implemented in the standard packages already discussed are available

[141].

5.2.2 Using Bayesian methods to fit SEMs

An attractive feature of the Bayesian approach is that it allows for the incorporation of

additional information through prior distributions. This is done for each of the model

unknowns, including the latent variables and the parameters from the measurement
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and structural models. Inference is based on both the prior distribution and the ob-

served data through the likelihood function. The prior allows external information about

structural relationships, which may be available from previous studies or through expert

knowledge, to be incorporated. Even if there is no prior knowledge, vague priors are

used and the resulting estimates will still be comparable to those based on frequentist

methods for large enough sample sizes [142].

With MCMC, it is possible to fit complex Bayesian models allowing for non-linearity,

interactions and missing data, provided that full conditional distributions have standard

forms. It is also straightforward to fit models with mixed categorical, count, and continu-

ous observed variables. For this project, we implement SEMs that have TTE outcomes

in the structural part. A problem with the MCMC approach is that being computationally

intensive, it takes a long time to fit models and this can be a problem because SEMs

are generally complicated models. Various computational tricks such as exploring the

geometry of the target distribution before constructing the algorithm or using scalable

algorithms that break up the problem into manageable pieces among several other

techniques, can be used to obtain estimates within an acceptable level of error [143]. It

was not necessary to use such tricks when fitting models in this work.

A final important feature is that we are able to obtain from the joint posterior dis-

tribution, a sample from the conditional distribution of the latent variables themselves.

These samples can then be used to obtain important insights into structural relation-

ships, which may not be apparent from just looking at the parameter estimates.

5.2.3 Bayesian estimation of parameters in measurement models

To illustrate how SEMs are fitted, consider the measurement model as defined in (5.1)

and assume we observe data from n individuals so that

yi = µ+ Υωi + εi. (5.12)
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where i = 1, . . . , n, and µ, Υ and εi are defined as before. Let θ = (µ,Υ,Φ,Ψε)

be a vector of the unknown parameters in the model to be estimated. Further, let

Y = (y1, . . . ,yn) be a matrix of the observed random variables related to the matrix of

the latent scores Ω = (ω1, . . . ,ωn). By treating the the latent scores Ω as hypothetical

missing data, the complete data set is (Ω,Y ). It is then possible to generate samples of

(Ω,Y ) from the joint posterior distribution p(θ,Ω|Y ) by considering the full conditional

distributions of the latent scores and model parameters using such MCMC techniques

as the Gibbs sampling algorithm as detailed in Section 2.9.3.

Full conditional distribution for the latent scores Ω

To derive the conditional distribution p(Ω|Ψε,Υ,Φ, Y ) = p(Ω|θ, Y ), note that the ωi

are mutually independent for i = 1, . . . , n and that observed data yi are also indepen-

dent given (ωi, θ). The conditional posterior distribution of Ω given Y and θ can then

be expressed as

p(Ω|y,θ) =
n∏
i=1

p(ωi|yi,θ) ∝
n∏
i=1

p(yi|ωi,θ)p(ωi|θ). (5.13)

Since from the model definition in (5.1), ωi|θ ∼ N(0,Φ) and yi|ωi,θ ∼ N(µ+ Υωi,Ψε),

we can derive the full conditional distribution of ωi given (y,θ) as

p(Ω|y,µ,Υ,Ψε,Φ) ∝ exp
{
−1

2

∑n
i=1(yi − (µ+ Υωi))

TΨ−1ε (yi − (µ+ Υωi))
}

× exp
{
−1

2

∑n
i=1ωi

TΦ−1ωi
}
.

(5.14)

Conditional distributions for the elements in θ

Having determined the conditional distribution of Ω, we can now work out the condi-

tional distributions of the remaining parameters in θ given the complete data (Ω,Y ).
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For the prior for θ, we have

p(θ) = p(µ,Υ,Ψε)p(Φ) (5.15)

and since from the measurement equation in (5.1) the observed data Y depends only

on µ,Υ,Ψε and by definition, the distribution of Ω only depends on Φ. The joint poste-

rior can then be factored as follows.

p(µ,Υ,Ψε,Φ|Y,Ω) = {p(µ,Υ,Ψε)p(Y |µ,Υ,Ψε)} × p(Ω|Φ)p(Φ) (5.16)

This is convenient since we can now look at the conditional densities separately. Hav-

ing factored the joint posterior distribution, we can separately work out the marginal

conditional densities

p(µ,Υ,Ψε|Y,Ω) ∝ p(Y |µ,Υ,Ψε)p(µ,Υ,Ψε)

and

p(Φ|Y,Ω) ∝ p(Ω|Φ)p(Φ)

which makes it possible to specify prior distributions for µ,Υ,Ψε and Φ. For instance

we can have for µ

µ ∼ N(µ0,Σ0)

while for Υ and Ψε, consider the j-th row and diagonal elements ΥT
j and ψεj respec-

tively. The prior distributions for the j-th row and diagonal element are different from

those in the l-th row and diagonal j 6= l. For each of the elements of Ψε, we can then

specify a Gamma prior



159

ψ−1εj ∼ Gamma(α0εj , β0εj).

while for the coefficients Υj , and now given ψεj , we can specify Normal priors

Υj |ψεj ∼ N(Υ0j , ψεjH0yj)

for each of the elements in the matrix of the latent scores Υ. In a similar manner, we

can specify priors for the covariance matrix Φ assuming a Wishart distribution.

5.2.4 TTE model with a latent variable as a predictor

The previous sections provided a general framework for fitting SEMs with several la-

tent variables that may be related to other latent variables. However, our interest is in

modelling the association of the latent variables with TTE outcomes using observed

bio-markers that are assumed to relate to the latent variables. To achieve this, we need

to fit SEMs that have a TTE model in the structural part (5.5). Following [56], the effect

of the latent variable ωi on the TTE can be modelled indirectly through the observed

variables yi as follows.

We assume the likelihood for the specified model with the latent covariates is derived

from responses that are independent and identically distributed. Further, the response

variables, in this case the TTEs are independent, conditional on the latent variables and

the observed variables that are assumed to be related to the latent variable.

As before, the full or joint likelihood is just the product of the distribution of the TTE

and that of the latent variables. We thus just need to integrate out the latent variables.

Let θ be the vector of model parameters, t be the vector of observed response variables,

y be the vector of observed variables that are related to the latent variables, and ω be

the k × 1 vector of latent variables. Then the marginal likelihood can be obtained by

integrating out the latent variables as follows
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L(θ) =

∫
f(t|y, ω, θ)p(ω|µω,Σω)∂ω (5.17)

Here, f(.) is the conditional pdf for the observed response variables, in this case TTE,

p(.) is the multivariate normal density for ω, µω is the expected value of the latent

variables, and Σω is the covariance matrix for ω. The vector of unknown parameters θ

includes parameters in both f(.) and p(.).

Assuming a Weibull model for the TTE, we can use the usual model for on the scale

parameter

log(λ) = z = exp(βTx)

with expected value

µt = Γ(1 + 1/γ) exp(−z/γ)

to model the effect of the latent variables ω on t. The link function essentially maps the

conditional mean of the survival times

µt = E(t|y,ω)

to the linear prediction

z = yTβ + yTΥω (5.18)

where β is the vector of the fixed-effect coefficients that relate to the TTE, and Υ is the

matrix of factor loadings as previously stated. Ultimately, the likelihood (5.17) can be

written as
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L(θ) =
1

(2π)k/2
√
|Σω|

∫
exp

{
log f(t|y, ω, θ)− 1

2
(ω − µω)TΣ−1ω (ω − µω)

}
∂ω

Further, assuming ω ∼ N(0,Φ), this becomes

L(θ) =
1

(2π)k/2
√
|Σω|

∫
exp

{
log f(t|y, ω, θ)− 1

2
ωTΦ−1ω

}
∂ω

This likelihood is generally not tractable and therefore numerical methods have to

be used to estimate the parameters when using ML. In Stata, such models are esti-

mated using Gauss–Hermite quadrature [144]. In MCMC, the independence assump-

tion makes it feasible to specify conditional distributions of the parameters and then use

the methods described in Section 2.9.3 to sample from the joint posterior distribution.

5.3 Ensuring model identifiability

Model identifiability is known to be an issue in latent variable models in general [145].

In many SEM applications that are based on ML techniques, the focus is on the sam-

ple variance-covariance matrix (S) and how closely it resembles the model implied

variance-covariance matrix Σ. In the measurement model (5.1) for instance, the ele-

ments of Σ = ΥTΦΥ + Ψε are a linear combination of the elements in the matrix of

factor loadings Υ, the elements in the variance-covariance matrix of the latent vari-

ables Φ and those from the residuals resulting from the measurement equations Ψε.

All parameters of interest except the intercepts µ are therefore included in these three

matrices that make up Σ. To be able to identify the model, some parameters have to

be fixed. Normally, a constant is chosen for either one or more of the elements of the

matrix of factor loadings, or for the variances of the latent variables. We thus aim to

chose so-called free parameters that are able to vary during the estimation process.
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There are two ways of ensuring identification in SEMs, namely:

1. Unit variance identification: this is where the variance(s) of the latent variable(s)

are fixed at 1 with a mean of 0. This would be more appropriate in the case where

interest is on eliciting the posterior distribution of the unknown latent re-growth

rate and none of the observed variables can be said to be directly related to the

latent growth , and

2. Unit loading identification: this is where the factor loading (coefficient) of one of

the manifest/observed variables is fixed at 1. This would be appropriate when one

of the observed variables which is fixed is known to be directly related to the latent

variable.

Both these identification choices will result in the same overall fit although the inter-

pretation of the models will differ between the two choices [146].

5.3.1 Identifiability in a measurement model with 3 observed variables

The number of unknown parameters in the model will determine how many parameters

must be fixed to ensure that the model is identifiable. As a general rule, if the latent

variable results from k observed variables, the covariance matrix Σ will be of size k × k

with s = k(k + 1)/2 unknown elements that are to be estimated [147]. These are

then compared with the number of elements in the observed covariance matrix S to

determine if the model can be identified. If the number of elements in S is less than s,

then the model cannot be identified unless further constraints are applied or additional

data is available, for example an informative prior distribution in a Bayesian analysis.

As an example, suppose we observe three random variables that associated with a

single unobserved latent variable. For this model, assume that ω ∼ N(0, φ), where the

variance of the latent variable, φ, is fixed at 1. Then, we can list all the known and un-

known elements in the observed and model variance/covariance matrices respectively.
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Known from S Unknown from Σ

Cov(Y1, Y2) V ar(ε1)
Cov(Y1, Y3) V ar(ε2)
Cov(Y2, Y3) V ar(ε3)

V ar(Y1) τ1
V ar(Y2) τ2
V ar(Y3) τ3

Table 5.1: Measurable and estimable parameters in a measurement model with 3 observed variables
with φ fixed at 1. Here, S is the sample covariance matrix, while Σ is the model covariance matrix.

This means that given the observed 3 variables (y1, y2, y3), we have s = k(k+1)
2 =

3(3+1)
2 = 6 observed variances/covariances. We also have 6 parameters to estimate

given that we have fixed the variance of the latent variable, φ = 1, which allows us to

calculate the residual degrees of freedom (df) as df = s−6 = 0. This means our model

is identifiable. In general a model is:

1. Over-identified when the residual df > 0

2. Just identified or saturated when the residual df = 0, and

3. Under-identified when the residual df < 0.

The model would also be identifiable if we had fixed one of the factor loadings say,

τ1 = 1 at 1. The models fitted in this analysis will be based on a fixed variance for the

latent variable.
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5.4 Applications to simulated TTE data

To investigate how well these methods would work with TTE outcomes, a small sim-

ulation study was undertaken. The statistical model had the same structure as our

intended application. We assumed that 3 observed biomarkers were related to a la-

tent variable that is not observed which was itself a covariate in a TTE model where

the simulated TTEs were assumed to come from the two parameter Weibull distribution

with scale (λ) and shape (γ) parameters. The latent variable was assumed to have a

N(0, 1) distribution with the biomarkers related to the latent variable according to the

measurement model (5.1), with true intercepts and factor loadings specified for each

simulated model. Conditional on the latent variable, the TTE was simulated from the

Weibull distribution. The scale parameter in Weibull model was linearly related to the

latent variable on the log-scale.

Ways of simulating survival times have been widely discussed [148, 139], so the

focus was instead on how well the SEMs with TTE extensions perform in the presence

of no censoring, some censoring (around 15%) and considerable censoring (> 30%).

The simulated code is shown in Appendix B.

To investigate whether having more observations will lead to better estimates, datasets

with n = 500 and n = 5, 000 observations were simulated. Comparisons of how well the

models fit the data in each situation were made by looking at the mean (SD) of each

parameter over all simulations, the average bias as a percentage, coverage and the

confidence interval width for each parameter. The simulations, followed the following

steps:

1. Simulate the latent variable, ωi, as a vector of size n = 500 or n = 5, 000 from the

N(0, 1) distribution

2. Simulate the measurement errors εij and specify the µj ’s which are the inter-
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cepts, and the τj ’s, which are the factor loadings according to the measurement

equations

yij = µj + τjωi + εij

where j = 1, 2, 3 and i = 1, 2, . . . , n, to generate the observed random variables

representing the 3 biomarkers.

3. Conditional on the simulated latent variable in step 1, simulate the TTE using the

survsim package in Stata which is used to simulate survival data from parametric

distributions [149]. In survsim, TTEs are simulated by specifying the shape (γ)

and scale (λ) parameters for the chosen Weibull TTE model. Covariates can be

modelled through the scale parameter and taking the latent variable simulated in

step 1 as the covariate on the TTE, we can thus express the log-hazard for the

i-th individual as

log(λi) = β0 + β1ωi

where β0 is the intercept and β1 is the coefficient for the latent variable as it relates

to the hazard of the event. To generate TTEs from the Weibull distribution, we

specify (γ 6= 1) for the shape parameter.

4. To apply censoring, independently simulate TTEs from an Exponential distribution

with a fixed scale parameter (λ) and assign the value of the censoring indicator

as 1 if this TTE is greater than that in step 3 and 0 otherwise. Different values of

λ, β0 and β1 were used to generate data sets with varying levels of censoring.

5. Depending on the parameters from step 4 that give the desired level of censoring,

fit Weibull TTE models relating the latent variable to the TTE in a SEM, but using

only the 3 biomarker variables generated in step 2 using the Stata package gsem

[150]. The unobserved latent variable was assumed to have a N(0, 1) distribution

when fitting these models to ensure model identifiability.
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6. Repeat this process for 1,000 replications of the data and work out the mean

bias for each estimate as a percentage of the true parameter and the coverage

showing in how many of the fitted models, the CI of each estimate included the

true parameter.

In this scheme, the models fitted using gsem should produce parameter estimates

similar to those specified in the measurement equations of step 2 (µj ’s, τj ’s and the

errors εij) and those from the specified TTE distribution in step 3 ( β0, β1, and γ).

We briefly report on results from simulations under the different censoring levels and

sample sizes.

Model performance was assessed following the recommendations by Burton and

others [151]. For our parameters of interest θ, we evaluated the resulting estimates θ̂,

in terms of bias, coverage and average 95% CI width as shown in Table 5.2.

Evaluation criteria Formula

Bias as a percentage
¯̂θ−θ
θ × 100

Coverage (COV) Proportion of times 95% CI for θ̂ includes θ

Average 95% CI length (ACIW)
∑J
j=1 3.92×SE(θ̂j)

J

Table 5.2: Performance measures for evaluating model fit. J is the number of simulations, ¯̂θ is the
average estimate over all simulations, SE(θ̂j) is the SE of the estimate of θ in the j-th dataset,

j = 1, 2, . . . , J , while 3.92 represents twice the z-value (1.96) of the 95% CI for the standard normal
distribution.

5.4.1 Models with no censoring

We first fit Weibull models assuming each individual has the event to the 1,000 sim-

ulated datasets with n = 500 and n = 5, 000 respectively. The estimates and their

performance are shown in Table 5.3.
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Starting with the smaller dataset, the mean (SE) estimate of the intercept in the TTE

model was -0.511 (0.002) which while slightly lower than the set parameter value of -

0.5, was reasonably close. Moreover, the bias was < 1% with a good coverage and a

short ACIW. Similarly, the mean of the estimate of the coefficient of the latent variable,

β1 was the same as the target parameter value, with an even lower bias (0.048%). The

estimate of the shape was on average slightly higher than the true value but the bias was

still less than < 1%. Looking at the SEM part, the estimates of the factor loadings, τ ’s

and intercepts µ’s were all close to the true parameter values. The variance estimates

in the smaller dataset were slightly smaller than the true values with wider ACIWs for ε1

and ε2 when compared to the other parameters in this model.

When fitted to the bigger datasets, the mean parameter estimates were more pre-

cise and in some instances, the same as the true parameters in both the TTE and SEM

parts. The SEs for all estimates across all simulations were very small implying the

models were able to model the effect of the latent variable on the TTE via the three

observed random variables in a SEM that allows for TTE outcomes. The bias as a

percentage was even lower in the models fitted to the bigger dataset while the ACIW

shrunk to less than 0.300 for even those variance parameters that had wide CIs in the

simulations with the smaller dataset. In all models with no censoring, the coverage was

around the target 95% for almost all parameters while for some parameters, it tended

to exceed nominal 95% target in the larger datasets. However, this was not a big issue

and could have been due to chance.

5.4.2 Models with some censoring

To introduce some censoring, we used an independent censoring distribution as de-

tailed in step 4 of the simulation algorithm above. The resulting datasets had on average

17.8%, 95% CI (17.7%, 17.9%) records that did not have the event or were censored.

We then proceeded to fit Weibull models as before to the 1,000 datasets of 500 and
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No censoring Parameter Mean (SE) Bias % COV ACIW

Weibull (n = 500)

TTE model β0 -0.5 -0.514 (0.002) 0.556 97.3 0.251

β1 -0.7 -0.700 (0.003) 0.048 94.92 0.315

γ 1.5 1.509 (0.002) 0.621 100.0 0.266

SEM part

µ1 1.7 1.699 (0.002) -0.036 95.4 0.290

τ1 0.5 0.497 (0.003) -0.626 94.2 0.342

µ2 3.5 3.502 (0.001) 0.048 94.7 0.165

τ2 0.7 0.701 (0.002) 0.131 94.2 0.205

µ3 3.0 3.004 (0.003) 0.123 95.5 0.352

τ3 1.2 1.194 (0.003) -0.466 95.6 0.416

Variances

V ar(η) 1.0

ε1 2.5 2.486 (0.005) -0.568 94.2 0.646

ε2 0.4 0.394 (0.002) -1.575 96.6 0.233

ε3 2.6 2.593 (0.007) -0.272 95.7 0.910

Weibull (n = 5, 000)

TTE model β0 -0.5 -0.511 (0.001) -0.027 97.5 0.079

β1 -0.7 -0.700 (0.001) 0.050 96.1 0.099

γ 1.5 1.502 (0.001) 0.100 100.0 0.083

SEM part

µ1 1.7 1.700 (0.001) 0.021 94.9 0.092

τ1 0.5 0.499 (0.001) -0.179 94.4 0.108

µ2 3.5 3.500 (0.000) -0.012 95.8 0.052

τ2 0.7 0.700 (0.000) 0.002 95.8 0.064

µ3 3.0 3.001 (0.001) 0.036 94.5 0.111

τ3 1.2 1.200 (0.001) -0.020 94.7 0.131

Variances

V ar(η) 1.0

ε1 2.5 2.501 (0.002) 0.054 95.6 0.205

ε2 0.4 0.399 (0.001) -0.131 95.6 0.072

ε3 2.6 2.598 (0.002) -0.080 95.2 0.287

Table 5.3: Mean and empirical SEs for each parameter in Weibull TTE models with a single latent
variable as a covariate. The SEM part gives estimates of the factor loadings τ ’s, intercepts µ’s and
variances ε’s. The bias as a percentage, coverage (COV) and average CI width (ACIW) are also

reported. Results are presented for n = 500 and N = 5, 000 without censoring.
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5,000 respectively to obtain the estimates in Table 5.4.

Again starting with models fitted to the smaller datasets, the parameter estimates in

the TTE model were slightly off the target parameter values. However, the bias, as a

percentage, of the parameters ranged from -1.5% to 0.7%. The COV for most parame-

ters was around the 95%, while ACIWs were reasonably short for most parameters. A

similar trend was observed in the SEM part and also for the variance estimates. The

bias was largest for ε2 while the ACIW was biggest for ε3.

Increasing the sample size again resulted in more precise estimates with lower lev-

els of bias, smaller ACIW and mean of the estimates themselves which were accurate

to 2 decimal places in general, and SEs that were very small. This illustrates that the

SEMs with TTE extensions in the presence of censoring can be used to model TTE

outcomes and that larger datasets will result in better and more accurate estimates.

5.4.3 Models with more than 30% censoring

The final check involved fitting the model to simulated data with a lot of censoring. The

1,000 simulated datasets had an average of 39.4% events, 95% CI (39.3%, 39.5%) for

both n = 500 and n = 5, 000.

With more than 30% of the observations censored, the estimate of the coefficient of

the latent variable, β1, on the TTE was much lower than the true parameter resulting in

a larger negative bias (-34%), Table 5.5. Moreover, COV was at 80% meaning that the

CI included the true parameter less than 95% of the time. The same lack of accuracy

was observed in the estimates of the factor loadings in the SEM part which had large

negative biases of between 28 and 30% with COV around 80%. The variance estimates

however, remained reasonably close to the true parameters in general. To check what

could have led to these problems, histograms of the distribution of the latent variable as

a covariate in the TTE model and in the measurement models were plotted, Figure 5.1.

The estimates flipped between negative or positive values which were of the opposite
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17.8% censoring Parameter Mean (SE) Bias % COV ACIW

Weibull (n = 500)

TTE model β0 -0.5 -0.514 (0.002) 0.712 97.3 0.260

β1 -0.7 -0.703 (0.003) 0.383 94.4 0.340

γ 1.5 1.510 (0.002) 0.681 100.0 0.279

SEM part

µ1 1.7 1.699 (0.002) -0.032 95.3 0.290

τ1 0.5 0.497 (0.003) -0.555 94.8 0.344

µ2 3.5 3.502 (0.001) 0.057 94.7 0.165

τ2 0.7 0.701 (0.002) 0.092 94.3 0.213

µ3 3.0 3.005 (0.003) 0.156 95.5 0.352

τ3 1.2 1.195 (0.003) -0.375 95.8 0.428

Variances

V ar(η) 1.0

ε1 2.5 2.485 (0.005) -0.604 94.4 0.647

ε2 0.4 0.394 (0.002) -1.546 96.3 0.247

ε3 2.6 2.591 (0.008) -0.328 95.2 0.940

Weibull (n = 5, 000)

TTE model β0 -0.5 -0.511 (0.001) -0.006 97.6 0.082

β1 -0.7 -0.700 (0.001) -0.025 95.0 0.106

γ 1.5 1.502 (0.001) 0.104 100.0 0.087

SEM part

µ1 1.7 1.700 (0.001) 0.021 94.9 0.092

τ1 0.5 0.499 (0.001) -0.186 94.4 0.109

µ2 3.5 3.500 (0.000) -0.012 95.8 0.052

τ2 0.7 0.700 (0.001) -0.006 96.1 0.067

µ3 3.0 3.001 (0.001) 0.036 94.5 0.111

τ3 1.2 1.200 (0.001) -0.010 94.6 0.135

Variances

V ar(η) 1.0

ε1 2.5 2.501 (0.002) 0.055 95.5 0.206

ε2 0.4 0.400 (0.001) -0.117 96.1 0.077

ε3 2.6 2.598 (0.002) -0.093 94.3 0.295

Table 5.4: Mean and empirical SEs for each parameter in Weibull TTE models with a single latent
variable as a covariate. The SEM part gives estimates of the factor loadings τ ’s, intercepts µ’s and
variances ε’s. The bias as a percentage, coverage (COV) and average CI width (ACIW) are also

reported. Results are presented for n = 500 and N = 5, 000 with 18% censoring on average.
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sign to the true parameter values in some cases, resulting in the bi-modal distributions.

In 77/500 (15%) of the datasets, the factor loading of the latent variable on the observed

variables, τj , j = 1, 2, 3, was negative. This could have been due to chance, but as the

bias and COV were averaged over all simulations, it could have led to increase in the

bias. Consequently, the bias in the estimate of the effect of the latent variable on the

TTE (β1) would increase as well.

When fitted to the larger datasets, the estimates obtained were reasonably close

to the true parameters as expected. Once again all bias, COV, and ACIWs as well as

the mean estimates were as expected, almost the same as the true parameters. The

problem with the factor loadings and effect of the latent variable on the TTE disappeared

with the increase in the sample size.

5.5 Summary

In this chapter, we have introduced SEMs in general and their applications. We have

discussed how latent constructs can be modelled using measurement equations that

relate observed continuous or binary random variables that are known to be related

to the latent variable of interest, for example tumour growth is related to some avail-

able biomarkers. We also showed how outcomes of interest can be modelled through

structural models to link the latent variable and outcomes of interest. For this thesis,

we considered continuous outcomes and then investigated SEMs with TTE outcomes

in the structural model. We also discussed how parameters are estimated in SEMs

using both ML and Bayesian methods including fixing the variance of the latent variable

to ensure identifiability. We then detailed how the full likelihood function and marginal

distributions can be determined for each of the parameters by integrating out those

parameters that are not of interest.

To illustrate how the SEMs with extensions to include TTE outcomes can be imple-
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39% censoring Parameter Mean (SE) Bias % COV ACIW

Weibull (n = 500)

TTE model β0 -1.6 -1.622 (0.003) 0.809 97.5 0.382

β1 -0.5 -0.329 (0.013) -34.236 80.2 0.334

γ 1.5 1.512 (0.002) 0.825 100.0 0.283

SEM part

µ1 1.7 1.700 (0.002) -0.022 95.6 0.290

τ1 0.5 0.348 (0.012) -30.404 79.7 0.353

µ2 3.5 3.502 (0.001) 0.057 94.7 0.165

τ2 0.7 0.498 (0.016) -28.806 80.6 0.260

µ3 3.0 3.004 (0.002) 0.141 95.3 0.352

τ3 1.2 0.831 (0.028) -30.709 79.9 0.492

Variances

V ar(η) 1.0

ε1 2.5 2.485 (0.005) -0.596 94.3 0.652

ε2 0.4 0.387 (0.002) -3.328 97.0 0.327

ε3 2.6 2.593 (0.009) -0.285 94.9 1.107

Weibull (n = 5, 000)

TTE model β0 -1.6 -1.611 (0.001) 0.108 98.4 0.120

β1 -0.5 -0.501 (0.001) 0.109 95.3 0.105

γ 1.5 1.502 (0.001) 0.124 100.0 0.088

SEM part

µ1 1.7 1.700 (0.001) 0.024 94.8 0.092

τ1 0.5 0.499 (0.001) -0.149 95.0 0.112

µ2 3.5 3.500 (0.000) -0.011 95.7 0.052

τ2 0.7 0.700 (0.001) -0.022 95.3 0.080

µ3 3.0 3.001 (0.001) 0.033 94.5 0.111

τ3 1.2 1.200 (0.001) 0.035 94.8 0.154

Variances

V ar(η) 1.0

ε1 2.5 2.501 (0.002) 0.048 95.7 0.207

ε2 0.4 0.400 (0.001) -0.096 96.2 0.099

ε3 2.6 2.596 (0.003) -0.164 93.6 0.346

Table 5.5: Mean and empirical SEs for each parameter in Weibull TTE models with a single latent
variable as a covariate. The SEM part gives estimates of the factor loadings τ ’s, intercepts µ’s and
variances ε’s. The bias as a percentage, coverage (COV) and average CI width (ACIW) are also

reported. Results are presented for n = 500 and N = 5, 000 with 39% censoring on average.
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Figure 5.1: Histograms depicting the distribution of the latent variable as a covariate on the TTE model
and in the measurement models from simulated datasets with n = 500. The bi-modal distributions

illustrate problems with accuracy in some of the simulations.

mented, we fitted various models with TTE outcomes in the structural model to simu-

lated TTE data from Weibull models with various levels of censoring, by fitting models

to small and large datasets. The simulations showed that it was generally possible to

obtain precise estimates in models with no or some censoring < 20%. The precision of
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the estimates improved with increasing sample size in most cases. Detailed guidance

has been provided on the ideal size of datasets to which SEMs can be fitted, with a

general rule of thumb stating that an average of 10 cases per unknown parameter are

required [152]. Our models had on average, 9 parameters to be estimates which with

data from a minimum of 500 rows made it possible to obtain reasonable estimates.

The simulation showed that with increased censoring, it was hard to obtain accurate

estimates of the effect of the latent variable on both the TTE and as it relates to the

3 observed variables via the measurement equations. In smaller datasets, accuracy

was influenced by a few extreme results. Increasing the sample size resulted in better

estimates in general. However, it is worth bearing in mind that with ML techniques,

there is need to verify that the global maximum has been reached. In SEMs fitted

via ML, a simple way of checking model validity is to check that the latent variable is

significantly associated with both the outcome in the structural (TTE model) and the

observed variables (markers) as a way of verifying that the data supports the proposed

model.

The discussion so far has focused on SEMs with TTE outcomes that are normally

used when analysing survival data. However, we are also interested in how we could

fit cure rate models that have latent variables as covariates. We thus apply further ex-

tensions to these SEMs to model the effect of tumour growth on the TTR and OS in

Myeloma as well on the proportion that will be cured following treatment. However, we

also found in chapter 5 that these latent variable models can be subject to identifiabil-

ity problems. Therefore, if we were to include another latent variable (the marker of

whether an individual is cured or not), it is likely to cause further computational prob-

lems. To explore this issue, a preliminary simulation study was undertaken (results not

included) which showed cure rate models with latent covariates can be fitted within a

Bayesian framework with only mildly informative priors and we illustrate their application

in the next chapter.



Chapter 6

Using SEMs to model the role of unobserved

tumour growth on TTE outcomes: applica-

tion to Myeloma data

6.1 Introduction

In this chapter, we illustrate how SEMs can be used to model the role of tumour growth

rate following treatment on TTR and OS using the methods developed in Chapter 5.

We also use these models to estimate the proportion cured following treatment using

cure rate models with applications to the Myeloma dataset, further extending the current

methodology that is limited to standard TTE outcomes.

The previous applications to the two example datasets investigated the role of fixed

covariates such as log-RD, age, sex, paraprotein, beta2 and albumin on TTR and OS

using the well-known parametric and semi-parametric TTE models. Cure rate models

were then used to assess how these covariates are associated with the proportion who

will never relapse and the proportion whose OS returns to that of age-sex matched

individuals in the general population after treatment.

In these analyses, important predictors of these outcomes were available from the

175
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data sets except the tumour growth rate after treatment, which is another important

predictor of TTR, OS and possibly the probability of a patient being cured. As the

growth rate was not directly measured in the Myeloma dataset, we can use the available

variables that are known to measure the propensity for growth in a SEM framework. In

the Myeloma dataset, paraprotein, albumin and beta2 are associated with TTR and OS.

They can also each be used as surrogates of how fast the tumour is likely to grow.

The cytogenetic aberrations could be used within a SEM with binary observed vari-

ables to model the effect of growth on the TTE outcomes. However, most of the patients

did not have these cytogenetic aberrations available in the Myeloma dataset, Table 3.2.

For the rest of this thesis, we will assume that paraprotein, beta2 and albumin are the

observed variables, that together are manifestations or markers for the latent variable

tumour growth rate which is assumed to be a normally distributed continuous random

variable with a mean of 0 and variance 1.

Using this realised measure of the tumour growth rate, the measurement model will

relate these observed markers to the latent variable which will itself be a covariate in

TTR and OS models, and cure rate models. When modelling the TTR and OS, we

fit Cox PH and Weibull models with the latent variable growth as a fixed covariate.

For the cure rate models, we again consider mixture and PTC models with a Weibull

distribution for the TTR and OS respectively for those that are not cured. We finally

include log-RD in all models to investigate how both these important prognostic factors

relate to the outcomes. As the RD percentage was measured after treatment while

paraprotein, beta2 and albumin were measured at baseline, we assume, for purposes

of this analysis, that values of these three variables were unchanged from those at

baseline at the time of RD percentage measurement. We next briefly describe the

dataset used in these analyses.
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6.1.1 Brief description of the data for modelling the effect of tumour growth

on the TTE outcomes in Myeloma

As some patients did not have records of some of the markers for growth, we only con-

sidered those patients with paraprotein, beta2 and albumin. The final dataset had data

from 243 patients. With respect to TTR, there were 187 (77%) patients who relapsed

during the follow-up period with median TTR 2.1 years (95% CI: 1.78 - 2.38 years) and

94 (38.7%) deaths during follow-up, Figure 6.1. The K-M estimates of survivor func-

tions with TTR and OS show that the patterns are similar to the full data set. We thus

proceed to perform the CC analysis on this sub-set of the data.

As SEMs assume multivariate normality, we took logarithms of paraprotein, beta2

and albumin in order to make these variables approximately normally distributed. Since

some patients had values of zero for some biomarkers after treatment, we take a log-

arithm of 1 plus each of paraprotein, beta2 and albumin before fitting the models. The

distributions of each of the observed variables and scatter plots for pairs of biomark-

ers are shown in Figure 6.2. The log-transformed beta2 and albumin were approx-

imately normally distributed, while for paraprotein, those without paraprotein in their

blood (paraprotein = 0) dominated. The correlations between these 3 measures were

small in general especially between paraprotein and beta2. For a well specified SEM,

the observed variables should be considerably correlated. As this analysis is mainly

exploratory, we proceed to model the effect on tumour growth on the TTE outcomes in

the Myeloma dataset.

From the resulting log-transformed biomarkers, there were no obvious differences in

the median log-paraprotein and log-beta2 between those who relapsed and those who

were censored at the end of the follow-up, while patients who relapsed had lower log-

albumin values on average. For OS, those who died had higher levels of log-paraprotein

and lower log-albumin compared to those who did not, while there were no obvious
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Figure 6.1: K-M plots for the TTR and OS for 243 Myeloma patients with paraprotein, beta2 and albumin
data. Dotted lines represent 95% CI limits.

differences with regards to log-beta2, Figure 6.3. Once again, due to differences in

follow-up time, we do not focus on these differences in our narrative.
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6.2 TTE models with growth and log-RD in Myeloma

We considered models for TTR/OS, first with growth rate as a latent covariate on its

own, related through the three observed bio-markers, and growth rate together with
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Figure 6.3: Boxplots showing log-transformed paraprotein, beta2 and albumin by relapse and survival
status at the end of the study in Myeloma

log-RD in multivariable models for TTR/OS as shown in Figure 6.4. In these models,

we assumed that the growth rate at recruitment was the same as that at the time of RD

measurement. The growth rate and log-RD can thus both be treated as fixed covariates

in the TTR, OS and cure rate models.
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6.2.1 Measurement model for the growth rate

The growth rate was realised from a single factor measurement model with the three

observed variables on the log-scale; paraprotein, beta2 and albumin as markers. The

measurement models for the i-th individual, i = 1, . . . , n can be expressed as

yi = µ+ τωi + εi (6.1)

where µ and τ are 3× 1 vectors of the intercepts and factor loadings in the linear mod-

els relating the observed random variables log-paraprotein, log-beta2 and log-albumin

respectively, to the latent growth rate and εi is a patient-specific 3×3 diagonal matrix of

the errors relating to the linear models of the biomarkers and latent tumour growth and

yi is a vector of 3 biomarker measurements for individual i = 1, ..., n. The full measure-

ment model assuming a variance of 1 for the growth rate had the following parameters

to be estimated:

Intercepts

• µ1: the intercept in the linear model of the effect of tumour growth on log-paraprotein
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• µ2: the intercept in the linear model of the effect of tumour growth on log-beta2

• µ3: the intercept in the linear model of the effect of tumour growth on log-albumin

Factor loadings

• τ1: the coefficient of growth in the linear model relating tumour growth to log-

paraprotein

• τ2: the coefficient of growth in the linear model relating tumour growth to log-beta2

• τ3: the coefficient of growth in the linear model relating tumour growth to log-

albumin

Variances

• ε1: the variance of log-paraprotein

• ε2: the variance of log-beta2

• ε3: the variance of log-albumin

6.2.2 Prior distributions and constraints

When using a Bayesian approach, it is also necessary to specify prior distributions for

model parameters in BUGS language. Assuming independence, we can specify priors

for the latent variable and the TTE model by considering only the form of the conditional

distributions of each of the unknowns in turn. For the measurement model

yij = µj + τjωi + εij ,

we specify vague Normal priors for the intercept µj ∼ N(0, 100) and factor loading τj ∼

N(0, 100), j = 1, 2, 3 and ωi represents the tumour growth rate for the i-th individual. For

the variance components, we specify Inverse-Gamma priors for the diagonal elements
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for Ψε, ψ−1j ∼ InvGamma(ρ0, ρ1) with ρ0 = ρ1 = 1 for j = 1, 2, 3. We constrain the

variance of the ωi’s to be 1 with a mean of 0.

For the TTR and OS, we specify a Weibull model with the growth rate, ωi, modelled

on the scale using λi = exp(β0 + β1ωi). We then specify Normal priors for β0 and β1 as

N(0, 100) and for the shape γ we specify a Gamma(1, 1) prior. We also consider a Cox

PH model

h(ti) = h0(ti)λi

as before, where now λi = exp(β1ωi) and h0(ti) is the unspecified baseline hazard as

before. Priors for the baseline hazard are specified as in Section 2.9.3, while the usual

N(0, 100) prior is used for the hazard ratio, β1.

To fit cure rate models, we use the logistic model as before, but, with the latent

growth rate, ωi, as the covariate on π

log
(

πi
1− πi

)
= α0 + α1ωi,

and again specify Normal priors for α0 and α1, N(0, 100).

Finally, to model the association of both the growth and log-RD with the TTR and

OS in cure rate models, we specify the multivariable model for λ as

λi = exp(β0 + β1ωi + β2xi)

and the model for π as

log
(

πi
1− πi

)
= α0 + α1ωi + α2zi

where ωi is the growth rate and xi represents log-RD as a covariate on the TTR/OS and

zi is the log-RD as a covariate in the model for π. For these extra parameters, we again
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specify N(0, 100) priors.

Using this set-up, we fit Cox PH and Weibull models for TTR and OS with a SEM

component to generate draws from the posterior distribution of the tumour growth rate

from the measurement model based on log-paraprotein, log-beta2 and log-albumin us-

ing MCMC. Where possible we also fit models for TTR and OS assuming a Weibull

distribution for the observed times in Stata using generalised structural equation model

(gsem), a package that enables one to fit SEMs with generalised outcomes including a

parametric survival model (in this case), and one or more latent variables as covariates

in the TTE outcome [150]. We also fit cure rate models with growth as a covariate on

both π and TTR/OS as well as multivariable models with both growth and log-RD as

covariates using MCMC. We next present results from each of these different models.

To assess goodness of fit, we used graphical means such as trace and density

plots to determine whether the MCMC chain of the conditional posterior distribution

for each individual parameter had converged. In cure rate models, graphical checks of

convergence were made using Gelman plots [153], which show how the PSFR changes

through the iterations. These plots compare the within and between chain variability

and convergence is said to have been achieved if the PSFR converges to 1 after some

iterations. The rule of thumb is that a PSFR of 1.1 indicates that the chains have

converged to the target posterior distribution.

6.3 The effect of tumour growth on the TTR in Myeloma

Results from Bayesian Cox PH, Bayesian Weibull and a ML based Weibull model with

the latent variable tumour re-growth rate as a covariate on TTR in Myeloma are shown

in Table 6.1. The Bayesian Weibull and Cox PH models were fitted in OpenBUGS using

the code Appendix C.1 and C.2 respectively, while the Weibull ML model was fitted in

Stata using gsem. In all 3 models, the growth rate was significantly associated with TTR
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for these patients log-HR (95% CrI or CI) 1.463 (0.671, 2.497) in the Cox PH model,

1.385 (0.066, 2.705) in the Weibull ML model, and 1.454 (0.858, 2.347) in the Bayesian

Weibull model. The estimated hazard ratios from these three models suggest that a SD

increase in growth rate was associated with an increase in the hazard of relapsing of

4.32, 3.99 and 4.28, respectively. All 3 models showed that a fast growing tumour was

predictive of a shorter TTR. The Bayesian Weibull model had the narrowest CrI among

the 3 models in the growth parameter on TTR. For the measurement part, the growth

rate was positively associated with both log-paraprotein and log-beta2 and negatively

associated with log-albumin. Estimates of the intercepts, factor loading and variance

components were similar in all 3 models. The association of the growth rate with both

the observed variables and the TTR illustrates that the proposed model underlying the

latent construct, growth rate, was supported by the observed data. These results il-

lustrate that the effect of the unobserved growth rate on the TTR could be indirectly

modelled through the three observed variables in a SEM set-up.

As a check for goodness of fit, trace and density plots of the posterior distribution

of log-HR for growth on the TTR in the Bayesian Cox PH and Bayesian Weibull mod-

els were used, Figure 6.5. Poor mixing was evident especially in the Bayesian Cox

PH model while the Weibull seemed to achieve convergence to a unique mean of the

posterior density. This could be remedied by running longer chains in both models.

The apparent struggles with fitting in the Cox PH model can be related to the number

of events. In this analysis, 187 individuals relapsed and since the counting process

used to fit the Bayesian Cox PH model compares outcomes at each event time, the Cox

model in effect had less data from which to estimate the parameters in the TTR model.

The Weibull ML model fitted in Stata is well established and would thus naturally be

the model of choice. The Bayesian models nonetheless, perform as well as the ML

equivalent in estimating the effect of growth on the TTR.
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Bayesian Cox PH Weibull ML Bayesian Weibull
Parameter Estimate (95 % CrI) Estimate (95 % CI) Estimate (95 % CrI)

TTR model (λ)

Intercept (β0) - -1.748 (-2.488, -1.008) -1.785 (-2.378, -1.365)
Growth (β1) 1.463 (0.671, 2.497) 1.385 (0.066, 2.705) 1.454 (0.858, 2.347)

Shape (γ) - 1.677 (0.985, 2.855) 1.733 (1.316, 2.368)

SEM part

Paraprotein
Intercept (µ1 ) 0.939 (0.797, 1.081) 0.936 (0.793, 1.079) 0.943 (0.803, 1.088)

Growth (τ1) 0.382 (0.182, 0.611) 0.366 (0.178, 0.554) 0.375 (0.197, 0.576)

Beta2
Intercept (µ2 ) 1.586 (1.524, 1.649) 1.586 (1.523, 1.649) 1.587 (1.525, 1.651)

Growth (τ2) 0.093 (0.005, 0.184) 0.121 (0.023, 0.219) 0.106 (0.024, 0.194)

Albumin
Intercept (µ3) 1.489 (1.459, 1.518) 1.489 (1.471, 1.508) 1.488 (1.464, 1.511)

Growth (τ3) -0.035 (-0.068, -0.003) -0.053 (-0.084, -0.022) -0.035 (-0.062, -0.009)
Variances
V ar(ω) 1 (fixed) 1 (fixed) 1 (fixed)

Var(Paraprotein) ( ε1) 1.150 (0.908, 1.408) 1.160 (0.954, 1.410) 1.166 (0.953, 1.420)
Var(Beta2) (ε2) 0.270 (0.226, 0.325) 0.237 (0.195, 0.288) 0.253 (0.209, 0.307)

Var(Albumin) (ε3 ) 0.053 (0.044, 0.063) 0.019 (0.015, 0.024) 0.033 (0.028, 0.039)
LL/DIC 3,056 -813.6 7,815

Table 6.1: Estimates from Cox PH, Weibull ML, and Bayesian Weibull models for TTR fitted to n = 243
Myeloma patients with tumour growth rate as a covariate. In the TTR model, the intercepts (β0) and
shape parameter (γ) from the Weibull models, and log-HRs, as coefficients for growth (β1) from all

models, are reported. For the SEM part, the intercept and coefficients from the measurement models
are reported. Variances for each observed variable are also reported.

6.4 The effect of tumour growth and log-RD on the TTR in

Myeloma

When adjusted for log-RD, a faster growth rate was again associated with a shorter

TTR, Table 6.2. In these adjusted models, effect of the growth rate slightly decreased in
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Figure 6.5: Trace and density plots of the effect growth on the TTR from the Bayesian Cox PH model (A)
and from the Bayesian Weibull model (B) in the Myeloma dataset.

all three models; log-HR 1.463 vs 1.347 in the Cox PH model, log-HR: 1.385 vs 1.198

in the Weibull ML model and log-HR: 1.454 vs 1.385 in the Bayesian Weibull model

when the log-RD was taken into account. This would be expected because log-RD is

also associated with TTR and therefore some of the risk of a relapse was attributable

to log-RD. Each increase on the log-scale of the RD percentage was associated with a

0.538, 0.280 and 0.303 increase in the hazard of relapsing on the log-scale in the Cox

PH, Weibull ML and Bayesian models respectively. The effect in both Weibull models

was not significant. By comparison, the log-HR in the Cox PH model for TTR adjusted

for paraprotein, beta2 and albumin fitted to the same number of patients as part of the

sensitivity analysis (243) was 0.207 (-0.088, 0.502) Section 3.2.10 which was also not

significant.

Looking at the measurement part, the growth rate was again positively associated

with both log-paraprotein and log-beta2 and negatively associated with log-albumin as
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expected. However, for log-beta2 in the SEM part of the Bayesian Cox PH model, the

CrI for the estimate of the effect of growth rate included zero. This means the proposed

SEM model was not well supported by the observed variables in the Cox PH mainly due

to convergence problems similar to those seen in the univariable Cox PH with 5,000 it-

erations, and also because we used non-informative priors in setting up the MCMC.

The power to detect the effect of both log-RD and growth on TTR was low because

of the small sample size and number of events. Again, running longer chains would

remedy this problem. Other than that, all other estimates of the intercepts, factor load-

ings and variance components were similar in the ML and Bayesian Weibull models,

meaning the hypothesised latent construct representing growth rate was supported by

the observed data. By having a CrI that included a 0, there was no evidence supporting

the association of the growth and paraprotein and therefore the existence of the latent

variable growth unlike in the two other models.

Finally looking at the DIC and LL in the models in Table 6.1 and Table 6.2, adding

log-RD does not affect the fit of the models in both the Weibull ML (change in LL: -812.7

- (-813.6) = 0.9) and Bayesian Weibull (change in DIC: 7812 - 7803= 9) models. For the

Cox PH model, the change in DIC was bigger (3045 - 3030 = 15), implying the simpler

model was adequate for these data. However, we retained both covariates in all models

as interest was in modelling the effect of both of them on the TTR while using them in

model adjustment. Again, we would recommend using the well established Weibull ML

model fitted in Stata to model the effect of growth and log-RD on the TTR while pointing

out that the Bayesian Weibull model performs equally well.

6.5 The effect of tumour growth on OS in Myeloma

To model the effect of tumour growth on OS, the Bayesian Cox PH, Weibull ML and

Bayesian Weibull models were used to estimate log-HRs and parameters from the mea-



189

Bayesian Cox PH Weibull ML Bayesian Weibull
Parameter Estimate (95 % CrI) Estimate (95 % CI) Estimate (95 % CrI)

TTR model (λ)

Intercept (β0) - -1.477 (-2.110, -0.843) -1.540 (-2.074, -1.073)
Growth (β1) 1.347 (0.209, 3.188) 1.198 (0.234, 2.161) 1.385 (0.760, 2.143)
Log-RD (β2) 0.538 (0.143, 1.245) 0.280 (-0.133, 0.694) 0.303 (-0.125, 0.750)

Shape (γ) - 1.561 (1.037, 2.349) 1.683 (1.250, 2.239)

SEM part

Paraprotein
Intercept (µ1 ) 0.947 (0.765, 1.086) 0.935 (0.792, 1.078) 0.928 (0.781, 1.081)

Growth (τ1) 0.386 (0.097, 0.933) 0.339 (0.141, 0.537) 0.332 (0.109, 0.552)

Beta2
Intercept (µ2 ) 1.592 (1.528, 1.657) 1.586 (1.523, 1.649) 1.586 (1.524, 1.649)

Growth (τ2) 0.095 (-0.019, 0.197) 0.136 (0.031, 0.240) 0.109 (0.023, 0.206)

Albumin
Intercept (µ3) 1.487 (1.461, 1.517) 1.489 (1.471, 1.508) 1.490 (1.468, 1.512)

Growth (τ3) -0.035 (-0.069, -0.002) -0.057 (-0.091, -0.024) -0.042 (-0.070, -0.017)
Variances
V ar(ω) 1 (fixed) 1 (fixed) 1 (fixed)

Var(Paraprotein) ( ε1) 1.087 (0.416, 1.371) 1.178 (0.970, 1.432) 1.189 (0.957, 1.450)
Var(Beta2) (ε2) 0.260 (0.217, 0.315) 0.233 (0.190, 0.286) 0.248 (0.205, 0.296)

Var(Albumin) (ε3 ) 0.051 (0.042, 0.060) 0.019 (0.015, 0.024) 0.028 (0.024, 0.034)
LL/DIC 3,045 -812.7 7,812

Table 6.2: Estimates from Cox PH, Weibull ML, and Bayesian Weibull models for TTR fitted to n = 243
Myeloma patients with tumour growth rate adjusted for log-RD as covariates. In the TTR model, the
intercepts (β0) and shape parameter (γ) from the Weibull models, and log-HRs, as coefficients for

growth (β1) and log-RD (β2) for all models, are reported. For the SEM part, the intercept and coefficients
from the measurement models are reported. Variances for each observed variable are also reported.

surement models, Table 6.3.

A faster tumour growth rate was predictive of a shorter time to death in all models.

For instance the estimated log-HR was 0.589 in the Cox PH model, 0.527 in the Weibull

ML model and even higher (0.844) in the Bayesian Weibull model. The CrI for the
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log-HR estimated in the Bayesian model was very wide, suggesting a lack of precision

which could have resulted from convergence problems.

In the measurement models, the estimates for the intercepts and variances in the

Weibull ML and Bayesian Weibull were similar to those in the TTR models. However,

the association of growth and log-paraprotein in all models as well as growth and beta2

in the Bayesian Cox PH and Bayesian Weibull models was not significant as the CrIs

and CIs included a 0. Further, in the Bayesian Cox PH model, the association of growth

and albumin was positive, contrary to the negative association observed in the other

models. This suggests that the relationship between these biomarkers and OS, via the

latent variable, was weak. Moreover, in the SEM part for the Cox PH model, the esti-

mate of the variance for log-albumin, was different to those from the other two models.

The problems with these models might have stemmed from attempting to fit complex

models with limited to a small dataset with fewer events in the follow-up period. In this

case, the Weibull ML model provided better estimates than the other models despite

the obvious problems with the available data which did not support the existence of the

latent construct representing growth through the 3 observed covariates.

6.6 The effect of tumour growth and log-RD on OS in Myeloma

Adjusting for the log-RD did not lead to a change in the effect of the growth rate on

the TTR in the Weibull ML model, while it resulted in a decrease in the log-HR from

0.844 to 0.673 in the Bayesian Weibull model. The estimate of the effect of growth on

the TTR in the Cox PH model was very big (5.702) and different from the other two

models, Table 6.6. Ignoring the estimated log-HRs from the Cox PH model which were

not plausible, the estimated log-HR for log-RD was 0.292 in both the Weibull ML and

Bayesian Weibull models when the growth rate was taken into account. This effect was

bigger than the estimate (0.207) obtained when log-RD was adjusted for paraprotein,



191

Bayesian Cox PH Weibull ML Bayesian Weibull
Parameter Estimate (95 % CrI) Estimate (95 % CI) Estimate (95 % CrI)

OS model (λ)

Intercept (β0) - -3.138 (-3.653, -2.623) -3.364 (-4.414, -2.713)
Growth (β1) 0.589 (0.168, 1.246) 0.527 (0.112, 0.942) 0.844 (0.202, 1.811)

Shape (γ) - 1.456 (1.203, 1.761) 1.544 (1.205, 2.0432)

SEM part

Paraprotein
Intercept (µ1 ) 0.936 (0.796, 1.075) 0.935 (0.792, 1.078) 0.937 (0.796, 1.084)

Growth (τ1) 0.215 (-0.024, 0.460) 0.182 (-0.051, 0.416) 0.267 (-0.022, 0.800)

Beta2
Intercept (µ2 ) 1.584 (1.525, 1.648) 1.586 (1.523, 1.649) 1.586 (1.523, 1.647)

Growth (τ2) 0.199 (-0.090, 0.309) 0.232 (0.109, 0.355) 0.160 (-0.012, 0.307)

Albumin
Intercept (µ3) 3.479 (3.399, 3.557) 1.489 (1.471, 1.508) 1.489 (1.468, 1.510)

Growth (τ3) 0.330 (0.175, 0.472) -0.079 (-0.119, -0.038) -0.040 (-0.070, -0.009)
Variances
V ar(ω) 1.0 (fixed) 1.0 (fixed) 1.0 (fixed)

Var(Paraprotein) (ε1) 1.248 (1.030, 1.518) 1.260 (1.046, 1.517) 1.210 (0.629, 1.496)
Var (Beta2) (ε2) 0.219 (0.167, 0.276) 0.198 (0.145, 0.269) 0.229 (0.165, 0.289)

Var(Albumin) (ε3) 0.305 (0.196, 0.407) 0.016 (0.010, 0.024) 0.029 (0.024, 0.034)
LL/DIC 2,662 -731.1 7,757

Table 6.3: Estimates from Cox PH, Weibull ML, and Bayesian Weibull models for OS fitted to n = 243
Myeloma patients with tumour growth rate as a covariate. In the OS model, the intercepts (β0) and
shape parameter (γ) from the Weibull models, and log-HRs, as coefficients for growth (β1) from all

models, are reported. For the SEM part, the intercept and coefficients from the measurement models
are reported. Variances for each observed variable are also reported.

beta2 and albumin in the standard Cox PH model fitted to data from the same number

of patients in Table 3.8, Section 3.2.10. In both cases, the effect of log-RD was not

significant.

The measurement model again had challenges in establishing the relationship be-
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tween the observed log-paraprotein and the latent growth rate (CrI for τ1 included a zero

in all three models). In addition to this, the association of growth and albumin could not

be established in the Cox PH model. Other than that, the other estimates of the factor

loadings and intercepts as well as variances were similar to those in the other models

for the Weibull ML and Bayesian Weibull models. The addition of log-RD as a predictor

of OS led to an increase in the DIC from 7,757 to 7,762 in the Bayesian Weibull model,

an increase in the LL from -731.1 to -730.2 in the Weibull ML model, and an unexpected

decrease in the DIC in the Bayesian Cox PH model from 2,662 to 1,819 which was re-

flective of the implausibly large estimate of the log-HR. The addition of log-RD in the

model for OS did not result in a much higher DIC, and since interest was on the effect

of growth and log-RD on the OS, we would use the multivariable model rather than just

including growth on its own. Again, we would use the well established Weibull ML as

the model of choice. Clearly, the association of paraprotein and growth could not be es-

tablished in all 3 models, suggesting that the data did not support the existence of the

latent construct representing growth, through the three observed variables paraprotein,

beta2 and albumin. Trace plots of the coefficient of growth (beta1) and log-RD (beta2)

in the Bayesian Cox PH model for OS were used to assess the fit of the Bayesian Cox

PH model, Figure 6.6. The trace plots of the coefficients of growth and log-RD in the

model for OS clearly showed that the two chains did not mix well to arrive at the same

target distribution over the 5,000 iterations. The chains explored different parts of the

sample space across iterations in general which could account for the log-HR estimates

which were very different from the estimates from both Weibull models. While all mod-

els had problems in the SEM part, the problems in the Bayesian Cox PH model were

more pronounced, making it clear that the existence of the latent growth rate through

the three observed variables was not supported by the observed data in this model.
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Bayesian Cox PH Weibull ML Bayesian Weibull
Parameter Estimate (95 % CrI) Estimate (95 % CI) Estimate (95 % CrI)

OS model (λ)

Intercept (β0) - -2.952 (-3.518, -2.386) -3.004 (-3.718, -2.424)
Growth (β1) 5.702 (4.845, 6.554) 0.527 (0.127, 0.926) 0.673 (0.200, 1.378)
Log-RD (β2) 6.707 (5.611, 7.888) 0.292 (-0.134, 0.718) 0.292 (-0.122, 0.742)

Shape (γ ) - 1.453 (1.201, 1.757) 1.460 (1.187, 1.791)

SEM part

Paraprotein
Intercept (µ1) 0.887 (0.740, 1.039) 0.935 (0.792, 1.078) 0.938 (0.797, 1.084)

Growth (τ1) -0.145 (-0.325, 0.045) 0.164 (-0.072, 0.400) 0.143 (-0.117, 0.414)

Beta2
Intercept (µ2) 1.614 (1.542, 1.684) 1.586 (1.523, 1.649) 1.583 (1.516, 1.649)

Growth (τ2) 0.080 (0.001, 0.164) 0.239 (0.109, 0.368) 0.219 (0.073, 0.364)

Albumin
Intercept (µ3) 1.484 (1.453, 1.516) 1.489 (1.471, 1.508) 1.490 (1.469, 1.511)

Growth (τ3) -0.018 (-0.051, 0.017) -0.078 (-0.119, -0.037) -0.043 (-0.075, -0.008)
Variances
V ar(ω) 1.0 (fixed) 1.0 (fixed) 1.0 (fixed)

Var(Paraprotein) (ε1) 1.238 (1.041, 1.481) 1.266 (1.053, 1.523) 1.272 (1.041, 1.535)
Var(Beta2) (ε2) 0.265 (0.223, 0.315) 0.195 (0.139, 0.272) 0.210 (0.134, 0.275)

Var(Albumin) (ε3) 0.052 (0.044, 0.061) 0.016 (0.011, 0.024) 0.028 (0.024, 0.034)
LL/DIC 1,819 -730.2 7,762

Table 6.4: Estimates from Cox PH, Weibull ML, and Bayesian Weibull models for OS fitted to n = 243
Myeloma patients with tumour growth rate adjusted for log-RD as covariates. In the OS model, the
intercepts (β0) and shape parameter (γ) from the Weibull models, and log-HRs, as coefficients for

growth (β1) and log-RD (β2) for all models, are reported. For the SEM part, the intercept and coefficients
from the measurement models are reported. Variances for each observed variable are also reported.

6.7 Modelling the effect of tumour growth in cure rate mod-

els for TTR

The role of tumour growth in the probability of not relapsing following treatment was in-

vestigated using cure rate models extended to include the latent variable tumour growth
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Figure 6.6: Trace plots for the log-ORs for growth (beta1) and log-RD (beta2) as well as factor loadings
tau[1] - tau[3] and variances for paraprotein (var[1]), beta2 (var[2]) and albumin (var[3]) from the

Bayesian Cox PH model for OS with growth and log-RD as covariates in Myeloma.
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rate as a fixed covariate on both π and on the scale in the TTR model, Table 6.5. The

OpenBUGS code for fitting these models is shown in Appendix D.1.

In the logistic model for π, each SD increase in the growth rate was associated with a

lower probability of being cured in both the mixture (log-OR estimate -1.813 ) and PTC

models (log-OR estimate -1.372). The CrIs in both models for the cured proportion

included a 0 and were very wide. For the TTR on the other hand, those who had faster

growing tumours were at a higher risk of relapsing in both models. Each SD increase in

the growth rate was associated with a 1.289 (0.766, 1.896) increase in the mixture and

a 0.911 (0.081, 1.853) increase in the PTC model in the log-hazard of relapsing. In both

models, the growth rate was clearly associated with the TTR but not with the probability

of being cured following treatment. Comparatively, the effect of growth on the TTR was

smaller in the mixture and PTC models when compared to that in the standard TTR

model in Table 6.1.

Histograms showing the distribution of the posterior means of the growth rate for

each individual in the dataset, as well as the probability of being cured for each individ-

ual against the growth rate from each model are shown in Figure 6.7. In both models,

there was a clear inverse relationship between the estimated tumour growth rate and

the probability of being cured following treatment. Those within -1.5 SDs of the mean

growth had the highest probability of being cured, while those with aggressive tumours,

for example 1 SD above the mean growth rate, had the lowest probability of being cured.

From the measurement parts in both models, the distribution of the tumour growth

was centred around 0, as expected. However, it is worth noting that these distributions

of the growth rate did not span the whole range, [-3, 3], associated with the N(0, 1)

distribution that was assumed for the growth rate. This could have been due to problems

with model fit, or the small sample size or a combination of both. Estimates from the

SEM part were similar to those from the Cox PH and Weibull models for TTR and OS,

implying the models were fitted using the same underlying latent construct representing
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growth rate. Moreover, all the factor loadings were significant, with sensible variance

estimates in both models. The growth rate was positively associated with paraprotein

and beta2, and had a negative relationship with albumin as expected.

These models show that faster growing tumours were predictive of lower chances

of being cured and a high risk of relapsing among those not cured. In terms of fit, the

mixture model seemed to fit the data better than the PTC model (DIC 7,810 versus

7,848). Further looking at the Gelman plots from the mixture model, the PSRFs for the

factor loadings in the measurement model, tau[2] and tau[3], the coefficient for growth

in the model for π and on the scale parameter in the TTR model, alpha1, and beta1

respectively all tended to move towards 1 after around 4,000 iterations, Figure 6.9.

However, the Gelman plot for the factor loading associated with paraprotein, tau[1] and

its intercept mu[1] depicted PSRFs above 1.1 across the iterations. Other than that,

the conditional posterior distributions of the parameters in the mixture model converged

quicker based on the between and within chain variance being almost the same. On the

other hand, the Gelman plots of the factor loadings, parameters on π and λ as well as

the intercepts in the PTC model were less stable as the PSRF tended to oscillate over

the iterations meaning the two chains used in the MCMC were slower in converging to

the posterior, Figure 6.8. However, the PSRF still fell within the target value of 1.1.

6.8 Modelling the effect of tumour growth and log-RD in cure

rate models for TTR

Estimates of log-ORs in the model for π and log-HRs in the TTR model following treat-

ment for growth rate and log-RD from Bayesian Weibull mixture and PTC models are

shown in Table 6.6.

When adjusted for log-RD, the estimated log-ORs for growth in the model for the

cured proportion were -1.550 and -1.482 in the mixture and PTC models respectively,
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Weibull mixture Weibull PTC
Parameter Estimate (95 % CrI) Estimate (95 % CrI)

Cure model (π)
Intercept (α0) -3.738 (-6.334, -1.916) -3.973 (-7.338, -1.962)
Growth (α1 ) -1.813 (-4.862, 0.578) -1.372 (-4.408, 0.957)

TTR model (λ)
Intercept (β0) -1.664 (-2.041, -1.270) -2.884 (-3.687, -2.101)
Growth (β1 ) 1.289 (0.766, 1.896) 0.911 (0.081, 1.853)

Shape (γ) 1.727 (1.363, 2.145) 1.734 (1.412, 2.218)

SEM part
Paraprotein

Intercept (µ1) 0.924 (0.778, 1.070) 0.931 (0.799, 1.034)
Growth (τ1) 0.368 (0.194, 0.546) 0.402 (0.198, 0.565)

Beta2
Intercept (µ2) 1.580 (1.527, 1.633) 1.586 (1.526, 1.652)

Growth (τ2) 0.117 (0.030, 0.198) 0.114 (0.024, 0.204)

Albumin
Intercept (µ3) 1.490 (1.465, 1.510) 1.490 (1.470, 1.511)

Growth (τ3) -0.045 (-0.074, -0.016) -0.044 (-0.072, -0.016)
Variances
V ar(ω) 1.0 (fixed) 1.0 (fixed)

Var(Paraprotein) (ε1 ) 1.164 (0.964, 1.404) 1.147 (0.932, 1.403)
Var(Beta2) (ε2) 0.247 (0.206, 0.295) 0.246 (0.201, 0.298)

Var(Albumin) (ε3) 0.028 (0.023, 0.035) 0.028 (0.023, 0.034)
DIC 7,810 7,848

Table 6.5: Bayesian Weibull mixture and PTC models for the proportion that will never relapse and the
TTR with growth rate as covariate on both π and λ fitted to Myeloma data based on complete cases

(n = 243). In the cure model, estimates of the intercept (α0) and the log-OR as a coefficient for growth
(α1) are presented. In the TTR model, the intercepts (β0) and shape parameter (γ) from the Weibull

models, and log-HRs, as coefficients for growth (β1) from all models, are reported. For the SEM part,
the intercept and coefficients from the measurement models are reported. Variances for each observed

variable are also reported.

implying each SD increase in the growth was associated with a decrease in the log-

odds of being cured in both models by 1.550 and 1.482 respectively. However, the CrIs
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Figure 6.7: Histograms depicting the posterior distribution of the growth rate as well as scatter plots of
the probability of being cured versus the growth rate from Weibull mixture model and PTC model in the

Myeloma dataset

of the estimates in both models included a 0. Comparatively, the log-OR for growth as

the only covariate in the mixture model for π was bigger at -1.813, while in the PTC

model it was smaller, -1.372. Once again a higher disease burden was associated with

a lower probability of being cured following treatment, log-OR -0.625 and -0.353 in the
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Figure 6.8: Gelman plots showing the PSRF values across iterations in the mixture model for the cured
proportion in the Myeloma dataset. Plotted on the first row are the factor loadings, coefficients of growth

on π (alpha1) and λ (beta1) are on the second row, while the third row shows Gelman plots for the
intercepts in the measurement models.
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Figure 6.9: Gelman plots showing the PSRF values across iterations in the PTC model for the cured
proportion in the Myeloma dataset. Plotted on the first row are the factor loadings, coefficients of growth

on π and λ are on the second row, while the third row shows Gelman plots for the intercepts in the
measurement models.
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mixture and PTC models respectively. The estimated log-OR in the mixture model was

bigger than that in the PTC model, although the CrIs for both estimates included a zero.

In contrast, log-RD on its own, was a predictor of the probability of not relapsing again

after treatment in the cure rate models of Chapter 4. It is worth bearing in mind that the

models in Chapter 4 were fitted to a bigger dataset.

For the TTR, each SD increase in the growth rate was associated with an increase

in the log-hazard of relapsing; log-HR 1.280 and 0.916 in the mixture and PTC models

respectively. The effect in the mixture model was different from 0 based on the CrI

while the PTC model estimate CrI included a zero. Adjusting for the growth rate, an

increase in the RD percentage on the log-scale accounted for some of the increase in

the hazard of relapsing among those who were not cured following treatment; log-HR

0.173 and 0.031 in the mixture and PTC models respectively. This was in contrast to

the negative, though not significant, effect of the log-RD on the TTR in Table 4.2. On the

other hand, the effect of the log-RD adjusted for the growth rate was similar in direction,

but less in magnitude when compared to the effect of the log-RD on TTR adjusted for

paraprotein, beta2 and albumin in the Cox PH model for TTR in Table 3.8 when fitted to

the same number of patients. This was to be expected as the models in Chapter 3 did

not consider the possibility of a cure. The risk of a relapse increased rapidly with time

in both the mixture and the PTC models with estimates of the shape parameter greater

than those from the cure rate models of Chapter 4. Again, this could be explained by the

growth rate driving the TTR for those not cured having taken into account the proportion

who might have been cured by the treatment.

For the measurement parts of the model relating the growth rate and its related ob-

served variables, estimates of the intercepts, factor loadings and variance estimates in

both models were similar to those from the previous models, suggesting that the data

supported the existence of the latent growth rate observed through the three variables.

All CrIs for the estimates of the intercepts and coefficients of growth in the measure-
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ment equations did not include a zero. Moreover, each SD increase in the growth rate

was associated with an increase in the log-transformed paraprotein and beta2 and a

decrease in albumin as expected. The distribution of the growth rate adjusted for log-

RD in the mixture and the PTC models for TTR was approximately normally distributed,

Figure 6.10. Similar to when growth rate was fitted as the only covariate on both the

cured proportion and TTR, the probability of being cured decreased with increasing

growth rate. In both the mixture and PTC models, the relationship was more scattered

in the adjusted models than when growth was the only covariate as shown in Figure

6.7.

Between the two models, the mixture model seemed more effective in modelling the

role of growth and log-RD on both the probability of being cured and the TTR as the

DIC was smaller (7,818) when compared to the PTC model which had a DIC of 7,838.

An examination of the PSRFs across iterations in the mixture model showed that the

chains tended towards the posterior for the coefficient of log-RD (alpha2) in the model

for π and also in the TTR model (beta2). The Gelman plot for the coefficient of growth

in the TTR model (beta1) also showed quick convergence towards the posterior. For

the coefficient of growth in the model for π (alpha1), the PSRF tended to oscillate more

meaning there were still some differences between the two chains even towards 5,000

iterations. This could explain the wide CrI around the estimated log-OR for the growth

rate in the mixture model. There were blips in the plots for the first and second factor

loading for log-beta2, tau[2], Figure 6.11. In the PTC model on the other hand, the

PSRFs were more varied for most of the parameters in both the cure, TTR and SEM

models indicating that this model would need more iterations to reach convergence than

the mixture model, Figure 6.12. In this model, only the Gelman plot for the coefficient

of log-RD in the model for π (alpha2), and in the TTR model, beta2, showed good

convergence. Based on this comparison, we would again recommend using the mixture

model to estimate the proportion who are cured in Myeloma as it performed better than
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the PTC model in general despite both models struggling with convergence after 5,000

iterations.
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Weibull mixture Weibull PTC
Parameter Estimate (95 % CrI) Estimate (95 % CrI)

Cure model (π)
Intercept (α0) -3.992 (-7.226, -2.222) -4.198 (-7.086, -2.433)

Growth (α1) -1.550 (-4.371, 0.419) -1.482 (-3.312, 1.029)
Log-RD (α2 ) -0.625 (-2.088, 1.446) -0.353 (-2.005, 2.260)

TTR model (λ)
Intercept (β0) -1.504 (-1.953, -1.010) -2.885 (-3.763, -2.112)

Growth (β1) 1.280 (0.691, 1.935) 0.916 (-0.063, 1.888)
Log-RD (β2) 0.173 (-0.352, 0.644) 0.031 (-0.670, 0.780)

Shape (γ) 1.743 (1.368, 2.159) 1.828 (1.473, 2.267)

SEM part

Paraprotein
Intercept (µ1) 0.949 (0.823, 1.096) 0.929 (0.803, 1.052)

Growth (τ1 ) 0.346 (0.136, 0.498) 0.363 (0.162, 0.577)

Beta2
Intercept (µ2) 1.591 (1.523, 1.654) 1.584 (1.516, 1.654)

Growth (τ2 ) 0.119 (0.037, 0.219) 0.113 (0.028, 0.211)

Albumin
Intercept (µ3) 1.489 (1.469, 1.510) 1.489 (1.466, 1.510)

Growth (τ3 ) -0.045 (-0.071, -0.021) -0.043 (-0.071, -0.016)
Variances
V ar(ω) 1.0 (fixed) 1.0 (fixed)

Var(Paraprotein) (ε1) 1.180 (0.966, 1.428) 1.176 (0.945, 1.444)
Var(Beta2) (ε2) 0.247 (0.204, 0.297) 0.247 (0.205, 0.297)

Var(Albumin) (ε3) 0.028 (0.023, 0.034) 0.028 (0.023, 0.034)
DIC 7,818 7,838

Table 6.6: Bayesian Weibull mixture and PTC models for the proportion that will never relapse and the
TTR with growth rate and log-RD as covariates on both π and λ fitted to Myeloma data based on
complete cases (n = 243). In the cure model, estimates of the intercept (α0) and the log-ORs as

coefficients for growth (α1) and log-RD (α2) respectively, are presented. In the TTR model, the intercepts
(β0) and shape parameter (γ) from the Weibull models, and log-HRs, as coefficients for growth (β1) and
log-RD (β2) respectively from all models, are reported. For the SEM part, the intercept and coefficients
from the measurement models are reported. Variances for each observed variable are also reported.
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Figure 6.10: Histograms depicting the posterior distribution of the growth rate adjusted for log-RD as
well as scatter plots of the probability of being cured versus the log-RD adjusted growth rate from

Weibull mixture and PTC models in the Myeloma dataset

6.9 Tumour growth rate as a covariate in population mixture

and PTC models

The role of growth on the proportion whose OS returns to that of the general population

was investigated using Bayesian mixture and PTC models, Table 6.7. The models were
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Figure 6.11: Gelman plots showing the PSRF values across iterations in the mixture model for the cured
proportion in the Myeloma dataset with growth and log-RD as covariates on both π and the TTR. Plotted
on the first row are the coefficients of growth (alpha1) and log-RD (alpha2) on π, on the second row are

the factor loadings, while the third row shows Gelman plots for the coefficient of growth (beta1) and
log-RD (beta2) in the TTR model.
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Figure 6.12: Gelman plots showing the PSRF values across iterations in the PTC model for the cured
proportion in the Myeloma dataset with growth and log-RD as covariates on both π and the TTR. Plotted
on the first row are the coefficients of growth (alpha1) and log-RD (alpha2) on π, on the second row are

the factor loadings, while the third row shows Gelman plots for the coefficient of growth (beta1) and
log-RD (beta2) in the TTR model.

fitted using the code in Appendix D.2. The idea in these models was again to investigate

the role of the growth rate as a fixed covariate in the cure rate models similar to Section
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4.8.

In both the mixture and PTC models, the probability of attaining OS similar to

disease-free individuals in the general population was lower for those with faster grow-

ing tumours. The estimated log-OR in the population mixture model was -1.036 while it

was -1.642 in the population PTC model. However, the CrIs in both model were wide

and included a 0, suggesting that once again the possibility of a cure could not be es-

tablished using these data. The posterior means of the coefficient of the growth rate

also differed greatly between the two models, making it difficult to determine which of

the two estimates was the true effect size. On the other hand, the growth rate was

predictive of OS in the population mixture model log-HR 1.270 (0.164, 3.230), but not

in the PTC model, log-HR 0.496 (-1.288, 2.047) where the effect of the growth rate on

OS was less than half that in the mixture model, with a CrI that supported the null by

including a zero. The estimate in the mixture model was also bigger than the stan-

dard Weibull model estimated log-HR of 0.844 (0.202, 1.811) in Table 6.3. The wider

CrI in the mixture model points to issues with model convergence and we therefore

recommend treating the effect size in this model with caution. It can of course still be

surmised that the risk of death among those not cured was high, driven mainly by the

tumour growth rate.

The estimates in the measurement parts for both models showed an association

of the growth rate and the observed variables, with similar estimates to those from the

earlier models except for log-paraprotein which was not associated with the growth rate

in the mixture model as the CrI included a zero. This shows that the population mixture

model struggled to identify the underlying latent growth rate through the 3 observed

variables. In terms of DIC, there was little separating the mixture and PTC models.

The posterior distributions of the growth rate in both models was roughly centred at 0,

Figure 6.13. The scatter plots of π against the growth rate showed a decrease in the

probability of a patient’s OS returning to that of the general population if they had a fast
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growing tumour as expected. Again the distribution of the growth in both models did

not span the whole range of the assumed N(0, 1) distribution, showing that while the

models hinted at the existence of the latent growth rate, the available could not fully

support the proposed model.

For the mixture model, the Gelman plots for the parameters hinted at good conver-

gence in general. The plot for the factor loading for paraprotein (tau[1]), the intercept in

the model for π (alpha0) and the estimate of the log-OR for growth in the model for π

(alpha1) depicted convergence problems alongside the intercepts in the measurement

models for the log-transformed paraprotein and beta2, Figure 6.14. However, these

issues could be remedied by running longer MCMC chains. In the PTC model, prob-

lems with convergence were evident in the Gelman plots of the factor loadings on both

paraprotein and beta2 as well as the intercept in the model for π. The PSRFs for these

parameters were clearly above the threshold of 1.1. In the same vein, the plots for the

intercepts in the measurement models showed wriggling of the PSRF across iterations,

Figure 6.15. This once again re-affirms the superiority of the mixture model over the

PTC in estimating the proportion whose OS returns to that of disease-free individuals

in the general population.

6.10 Tumour growth rate and log-RD as covariates in popu-

lation mixture and PTC models

The role of growth rate adjusted for log-RD on the proportion whose OS returns to that

of the general population was then investigated using the Bayesian Weibull mixture and

PTC models, Table 6.8. The models were fitted using the code in Appendix D.2.

In the model for π, a SD increase in the growth rate was associated with a decrease

in the probability of attaining OS similar to disease-free individuals in the general popu-

lation; log-OR -0.759 and -1.216 in the population mixture and PTC models respectively.
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Weibull population mixture Weibull population PTC
Parameter Estimate (95 % CrI) Estimate (95 % CrI)

Cure model (π)
Intercept (α0) -3.408 (-9.132, -0.385) -2.241 (-5.646, 0.045)

Growth (α1) -1.036 (-6.126, 3.451) -1.642 (-5.457, 2.081)

OS model (λ)
Intercept (β0) -3.659 (-5.995, -2.554) -4.427 (-6.077, -2.844)
Growth (β1 ) 1.270 (0.164, 3.230) 0.496 (-1.288, 2.047)

Shape (γ) 1.826 (1.258, 2.924) 1.822 (1.391, 2.398)

SEM part

Paraprotein
Intercept (µ1) 0.939 (0.800, 1.075) 0.941 (0.795, 1.086)

Growth (τ1) 0.220 (-0.071, 0.449) 0.340 (0.044, 0.664)

Beta2
Intercept (µ2) 1.584 (1.523, 1.644) 1.584 (1.527, 1.637)

Growth (τ2) 0.151 (0.037, 0.325) 0.137 (0.003, 0.285)

Albumin
Intercept (µ3) 1.489 (1.464, 1.511) 1.489 (1.466, 1.509)

Growth (τ3) -0.038 (-0.066, -0.011) -0.041 (-0.075, -0.009)
Variances
V ar(ω) 1.0 (fixed) 1.0 (fixed)

Var(Paraprotein) (ε1) 1.244 (1.021, 1.499) 1.179 (0.846, 1.454)
Var(Beta) (ε2) 0.233 (0.165, 0.294) 0.238 (0.183, 0.293)

Var(Albumin) (ε3) 0.029 (0.023, 0.034) 0.028 (0.023, 0.034)
DIC 7,735 7,738

Table 6.7: Bayesian Weibull mixture and PTC models for the proportion with OS similar to general
population fitted to Myeloma data with tumour growth rate as covariate on both π and the OS fitted to
the Myeloma data based on complete cases (n = 243). In the cure model, estimates of the intercept

(α0) and the log-OR as a coefficient for growth (α1) are presented. In the OS model, the intercepts (β0)
and shape parameter (γ) from the Weibull models, and log-HRs, as coefficients for growth (β1) from all
models, are reported. For the SEM part, the intercept and coefficients from the measurement models

are reported. Variances for each observed variable are also reported.
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Figure 6.13: Histograms depicting the posterior distribution of the growth rate as well as scatter plots of
the probability of attaining population OS versus the growth rate from Weibull population mixture and

PTC models in the Myeloma dataset

However, the CrIs for both estimates were wide and included a zero. With respective

to log-RD, a higher disease burden was associated with an increased probability of

attaining the population level OS when growth was taken into account; log-OR 0.693

(-1.705, 5.5138) in the mixture model and 0.582 (-1.622, 4.535) in the PTC model.
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Figure 6.14: Gelman plots showing the PSRF values across iterations in the population mixture model
for the cured proportion in the Myeloma dataset with growth as a covariate on both π and the OS

distribution. Plotted on the first row are the plots for the factor loadings, while coefficients of growth
(alpha1) on π, and (beta1) on the OS are shown on the second row. Finally, the plots for the intercepts

from the measurement models are on the third row.

These estimates imply having a larger disease burden after treatment was protective,

contrary to the running hypothesis in this thesis. These estimates could have resulted
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Figure 6.15: Gelman plots showing the PSRF values across iterations in the population PTC model for
the cured proportion in the Myeloma dataset with growth as a covariate on both π and the OS. Plotted

on the first row are the plots for the factor loadings, while coefficients of growth (alpha1) on π, and
(beta1) on the OS are shown on the second row. Finally, the plots for the intercepts from the

measurement models are on the third row.

from problems with model fitting or the data not supporting the existence of a proportion

of patients whose OS would return to that of age-sex matched individuals in the general
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population.

In the OS models, an SD increase in the growth rate was predictive a lower risk

of death in the mixture model, log-HR -0.198, and a higher risk of death in the PTC

model, log-HR 0.566 when log-RD was taken into account. The PTC model estimate

was similar to the effect in the standard OS model of Section 6.6, while the mixture

model estimate could be a manifestation of model fit problems. An increase in the log-

RD after treatment was associated with a higher risk of death, log-HRs 0.223 and 0.427

in the mixture and PTC models for OS respectively. Adjusting for the growth tended to

reduce the effect size of the log-RD on the log-hazard of dying as expected.

Despite the obvious problems with convergence, the expected inverse relationship

between the growth and π was visible from the scatter plots, Figure 6.16. In these plots,

the probabilities were not uniformly decreasing with increasing growth rate especially

in the mixture model which had individuals with tumour growth rates more than 1 SD

above the 0 having a high probability of attaining the population level OS. In the PTC,

the distribution of the growth rate ranged from -1 to 1.5 SDs of 0 which was another

manifestation of the data not supporting the proposed model.

From the SEM part, it was clear that the underlying latent variable representing

growth was not fully manifested by the three variables paraprotein, beta2 and albumin.

In all measurement models, the CrI for the estimated coefficient of growth on each of the

log-transformed paraprotein, beta2 and albumin included a 0, suggesting no association

between the growth and each of these variables. This could have contributed to the

problems with model convergence due to the relatively small dataset from which we

aimed to estimate parameters using these complicated models. Gelman plots showing

PSRFs for some select parameters across iterations in the MCMC showed that there

were convergence problems for these models. In the mixture model, the plots for all

parameters except the intercept in the models for π (alpha1) and the OS (beta1) showed

PSRFs well above 1, Figure 6.17. This means the MCMC chains of the conditional



215

posterior distributions for these parameters did not tend towards the target as they

continued to explore different areas of the posterior. From the PTC model, the Gelman

plots depicted a similar trend, with PSRFs way above 1 especially for the factor loadings

for paraprotein and beta2, as well as for the coefficient of log-RD in both the model for

π and OS, Figure 6.18.

Both models struggled to estimate the proportion whose OS returns to that of disease-

free individuals in the general population. In terms of the DIC, the PTC model performed

better after 5,000 iterations when compared to the mixture model. Looking at the SEM

part, estimated of the coefficients of growth in the measurement equations, especially in

the mixture models, were clearly different from those in the earlier models, highlighting

the fit problems further.
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Figure 6.16: Histograms depicting the posterior distribution of the growth rate as well as scatter plots of
the probability of attaining population OS versus the growth rate adjusted for log-RD from Weibull

population mixture and PTC models in the Myeloma dataset

6.11 Checking for the possibility of a cured proportion

The cure rate models enabled us to investigate the role of growth, through SEM, and

log-RD on the probability of not relapsing again or dying from Myeloma as well mod-
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Figure 6.17: Gelman plots showing the PSRF values across iterations in the population mixture model
for the cured proportion in the Myeloma dataset with growth and log-RD as covariates on both π and the

OS. Plotted on the first row are the intercept (alpha0), the coefficient of growth (alpha1) and log-RD
(alpha2) on π, plots of the factor loadings tau[1], tau[2] and tau[2] are on the second row while the third

row has plots for the intercept beta0, the coefficient for growth (beta1) and log-RD (beta2) in the OS
model.

elling the TTR and OS for those who were not cured especially through the mixture

models. While the models provided reasonable estimates of the parameters in some in-
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Figure 6.18: Gelman plots showing the PSRF values across iterations in the population PTC model for
the cured proportion in the Myeloma dataset with growth and log-RD as covariates on both π and the
OS. Plotted on the first row are the intercept (alpha0), the coefficient of growth (alpha1) and log-RD

(alpha2) on π, plots of the factor loadings tau[1], tau[2] and tau[2] are on the second row while the third
row has plots for the intercept beta0, the coefficient for growth (beta1) and log-RD (beta2) in the OS

model.

stances, the nature of the available data itself needed to be checked to confirm whether

cure was possible.
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We used trace and density plots from the Bayesian Weibull mixture model for TTR

and the Bayesian Weibull population mixture model for OS to determine this, Figure

6.19. The trace plots for π and λ in both models suggested that the MCMC chains

converged to the posterior. The estimated proportion who would never relapse and

those whose OS would resemble that of age-sex matched individuals around a third

in this subset of patients. However, from the posterior density plots, it was clear that

the distributions of π did not centre around the posterior mean in each model. The

CrIs for π in the mixture model applied to TTR data spanned the whole range of values

between 0 and 100%, while in the model applied to OS data, the CrI ranged from 0 -

50%. The estimates of π in these models were respectively above the 20% proportion

who had not relapsed in the model applied to TTR and below around 50% who were

still alive at the end of follow-up as shown in Figure 6.1 in Section 6.1.1. This highlights

therefore, that the data did not support the existence of a proportion who might have

been cured following treatment looking at either outcome, which might have led to the

various problems with model encountered when using cure rate models in the previous

sections.

6.12 Relaxing the multivariate normal assumption in SEM

Our approach so far has focused on modelling the growth rate from continuous ob-

served variables assumed to have a multivariate normal distribution in the set-up de-

scribed in Section 6.1.1. It was apparent from the plotted distributions of the observed

variables assumed to depict tumour growth in Figure 6.2, that paraprotein had a bi-

modal distribution because 45% (110/243) of the patients included in this analysis did

not have detectable paraprotein in their blood at baseline and were therefore assigned

a value of 0 for this variable.

Several methods for modelling data that has many zeroes have been investigated in-
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Figure 6.19: Trace and density plots of the scale (lambda) and π (pi) from the Bayesian Weibull mixture
model for TTR (A) and Bayesian Weibull population mixture model for OS (B) in the Myeloma dataset.



221

cluding calibration methods that aim to take into account situations where the normality

assumptions in linear models might be violated [154]. In SEM, methods exist for mod-

elling latent variables using a combination of continuous, categorical and even ordinal

observed variables [142]. Taking advantage of this feature, we can model paraprotein

as a dichotomous random variable in a SEM.

We briefly investigate how the problem with many zeroes in paraprotein may be

handled in a SEM model for TTR and OS in Myeloma using (5.3) in the model relating

paraprotein as a binary observed variable (0 if no paraprotein, or 1 if greater than 0)

and the tumour growth rate and at the same time use (5.1) to relate the continuous

observed variables beta2 and albumin to the growth rate as before. The models with

this mixture of a one binary (paraprotein) and two continuous (beta2 and albumin) ob-

served variables were fitted in Stata using gsem which allows for a mixture of binary

and continuous observed variables. Because paraprotein was a binary variable, there

was no estimate of its variance in the measurement model (ε1) in these models. Again,

a Weibull distribution was assumed for the TTR and OS. Further, we fit both univariable,

with growth as the only covariate on the TTR and OS, as well as multivariable models

where both the effects of growth and log-RD on these outcomes were estimated.

Estimates from these models included log-HRs relating the growth rate and/or log-

RD to the TTR and OS as well as the shape parameter (γ) in the Weibull model. The

model formulation in the SEM part in this case included the usual linear regression

models for the relationship between beta2 and albumin and the growth rate, and a

logistic model relating the binary paraprotein and growth.

6.12.1 The effect of growth and log-RD on TTR with paraprotein as binary

covariate

We again fit the TTR model assuming a Weibull distribution with growth as a covariate,

as well as both growth and log-RD in a multivariable model with the latent growth rate
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modelled through the observed variables as discussed. Estimates from these models

are shown in Table 6.9.

In the model with growth only, the estimates in the TTR model were similar to those

obtained from the original model where paraprotein was on the continuous scale. Each

SD increase in the growth rate was associated with a significant 1.304 increase in the

log-hazard of relapsing, a slight decrease from the log-HR of 1.385 in the original model

assuming all markers were continuous in Section 6.3. The growth rate was also associ-

ated with each of the observed variables via the measurement equations. For instance,

the probability of not having the marker paraprotein in the blood following treatment

decreased with each SD increase in the growth rate, log-OR -0.591 (-0.992, -0.189).

In the linear models, a faster growth rate was associated with higher beta2 and lower

albumin levels similar to the trend seen in the original model. The variance estimates

were again similar to those in the original model. We were thus able to model the effect

of the latent growth rate on its own, on the TTR while at the same time showing strong

associations between the growth rate and its 3 observed markers.

Including log-RD alongside the growth as covariates on the TTR resulted in a slight

reduction in the effect of the growth on the TTR, estimated log-HR 1.086. In this model,

each unit increase in the log-RD was associated with a 0.329 (-0.065, 0.722) increase

in the log-hazard of relapsing. This effect was bigger than that in the original model

(0.280) where paraprotein was a continuous variable, but it was not significant in either

model. All the other estimates in the SEM part were similar to those in the original

model, suggesting that the two approaches support the existence of the latent construct

representing growth which is itself a associated with the TTR in Myeloma through the

continuous observed variables only, or through a combination of binary and continuous

markers of the growth rate.

With the added complexity by including both the growth rate and log-RD in the TTR

model, interest might be on checking whether the simpler model was better than the
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more complicated model with both covariates using the likelihood ratio test. The differ-

ence in the LL values between the two models was 1.4, which when doubled to account

for the additional parameter in the multivariable model was 2.8 which was less than

the (χ2
(1) = 3.84). From a purely statistical point of view, it would suffice to model the

TTR using growth as the only covariate by choosing the simpler model. However, both

growth and log-RD are important predictors of outcomes in cancer. We would thus

recommend characterising the TTR using both covariates taking advantage of these

methods.

6.12.2 The effect of growth and log-RD on OS with paraprotein as binary

covariate

The model was finally used to investigate the association between tumour growth and

OS, Table 6.10. The effect size of the growth rate was almost the same as that in the

original model in Table 6.3. Each SD increase in the growth rate was associated with a

significant 0.525 increase in the log-hazard of dying in this model, an effect almost the

same as that reported in the original model where paraprotein was a continuous vari-

able (log-HR, 0.527). Again in the logistic model relating the growth rate to paraprotein

as a binary covariate, each SD increase in the growth rate was predictive of a lower

probability of having zero levels of paraprotein in the blood after treatment. However,

this effect was not significant. In the SEM part, an increase in the growth rate was

predictive of lower chances of not having paraprotein after treatment, higher beta2, and

lower albumin levels. The association of the growth rate and paraprotein in the logistic

model was also not significant.

When log-RD was included in the model, an increase in the growth rate was as-

sociated with a slightly bigger increase in the hazard of dying when log-RD was taken

into account. Compared to the model based on continuous biomarkers only, the log-HR

for paraprotein was slightly bigger 0.306 in the new model versus 0.292 in the origi-
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nal model. The same associations of the growth rate and the observed variables was

seen in the SEM part, with a non-significant log-OR in the model relating the growth

rate to paraprotein as a binary variable. Again looking at the LL values, there was little

separating the two models and we would recommend using both growth and log-RD in

modelling the OS in Myeloma.

The variances beta2 and albumin were similar in both models. The SEM part in

these models hinted at the same underlying latent construct representing the growth

rate which was itself a predictor of the OS alongside log-RD. However, the inclusion

of a 0 in the 95% CI in the model relating the binary paraprotein and the growth rate

was consistent with what was seen in the other OS models where the data did not fully

support the hypothesised latent growth rate observed through the 3 markers.

6.12.3 Comparison with SEMs based on continuous variables

To compare the models where paraprotein is a binary covariate with those where para-

protein was a continuous variable, we calculated the AIC using (2.35) from the LL values

and number of parameters for each of the TTR and OS models.

The AIC in the TTR model with growth as the only covariate and paraprotein as a

continuous variable was calculated AIC as 1,651.2, while that from the same model but

with paraprotein as a binary covariate was 1,236. In the TTR model with both growth

and log-RD as covariates, the AIC was 1,651.4 when paraprotein was included as a

continuous observed variable, and 1,235.4 when it was binary. In the OS models, with

growth as the only covariate and paraprotein as a continuous variable, the AIC was

1,486.2, while when paraprotein was binary, the AIC was 1,067.8. Finally, in the model

for OS with both growth and log-RD with paraprotein as a continuous covariate, the AIC

was 1,486.4 while with paraprotein as a binary variable, the AIC was 1,067.8.

In all the OS and TTR models, the change in AIC between models with growth only

and with growth and log-RD as covariates was small regardless of whether paraprotein
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was a continuous or binary variable. This re-affirms our belief that both growth and

log-RD are important predictors of these outcomes. The AICs in the models where

paraprotein was a binary variable were less than that in the models where paraprotein

was continuous. Moreover, these models had one less parameter to be estimated than

those where paraprotein was a continuous variable. All things being equal, we would

choose the less complicated models with paraprotein as a binary variable based on the

smaller AIC values over those where paraprotein is continuous. This aspect of the work

could be investigated further and is beyond the scope of this thesis, as is the use of

SEMs with both continuous and binary observed variables to model the effect of growth

in cure rate models.

6.13 Summary

In this chapter, we applied SEMs to the Myeloma data, focusing on the role of the

tumour growth modelled via the observed variables log-paraprotein, log-beta2 and log-

albumin on the various TTE outcomes. This approach provides a departure from the

usual way of analysing survival outcomes in RCTs involving cancer patients, and is mo-

tivated by opportunities provided by a combination of SEM and survival methods, and

the presence of biomarkers in the Myeloma dataset that are can be said to represent

tumour growth. SEM methods have been successfully used in medical research, in-

cluding in studies for rheumatoid arthritis [155], where latent variables such as physical

disability have been investigated based on a number of observed variables.

In the analyses from Chapters 3 to 4, we investigated the role of log-RD and the

three variables which are markers of tumour growth on the various outcomes, mostly

as independent covariates. The SEM approach used here provided a unique opportu-

nity to explore how the three variables co-vary to bring out the underlying latent vari-

able representing growth. When modelled together with log-RD in TTR, OS or cure rate
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models, the latent variable growth always appeared to have a considerable effect on the

outcomes, confirming that the growth rate of the tumour following treatment is an impor-

tant predictor of survival. While this growth rate is not usually observed in practice, we

are able to model its effect on TTE outcomes using SEMs by exploring the covariance

structure between related variables that we believe are related to growth. Rather than

adjusting the effect of log-RD for each of paraprotein, beta2 and albumin, we exploited

the contribution of each of these variables to the growth which we in-turn treated as

a fixed covariate in the TTE model. The SEM approach used in this thesis reiterates

that using the biomarkers to represent the growth rate results in a stronger associa-

tion with the outcomes than when each of these markers is used singly or together in

multivariable models [57].

While the novel methods provide the unique opportunity to model the effect of tu-

mour growth on the outcomes, there were challenges with the available data which

made it difficult for us to fully exploit the strength of these methods. The biggest is-

sue was that of missing data: the final dataset used in these analyses had data from

243/427 (56.9%), missing out on 43% of the full dataset. We thus fit the models to

smaller datasets which could have led to problems with obtaining precise estimates.

While the translocations would have provided good markers of the tumour growth rate,

the amount of missing information for these variables made it impossible to use them

in these models. Unlike in the models fitted in Chapters 3 and 4, there are no stan-

dard methods for handling missing data in the standard statistical software. We would

still be able to use MI to impute a number of datasets, fit the models to each of them

and then combine the output using Rubin’s rules to get around this problem. Alterna-

tively, Bayesian methods for handling missing data in SEMs, which have already been

investigated, would be used. Both of these approaches were not the focus of this the-

sis but could be investigated in future alongside SEMs that combine binary, continuous

and categorical observed variables. The second issue to bear in mind was to do with
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the relatively weak correlations between the three observed variables themselves that

together manifest the growth rate. The correlation was weakest between paraprotein

and beta2 (-0.02), while the correlation between paraprotein and albumin was weak

(-0.12), and it was moderate between beta2 and albumin (-0.26). This was something

worth bearing in mind when interpreting results from these models. On top of this,

log-transforming the three observed variables to satisfy the multivarite normality as-

sumption did not achieve the desired effect for paraprotein where close to half of the

patients did not have detectable levels in their blood. Implementing SEMs with para-

protein as a binary covariate went some way in dealing with this issue. Despite these

problems, the models showed that the latent growth modelled through the three ob-

served variables had an effect on both TTR and OS outcomes. The final potential pitfall

relates to fitting cure rate models to the data. The number of events in terms of those

who did not relapse was 56 (23%) when looking at TTR, and the number who died over

the follow-up period was 94 (39%). It was thus not possible to estimate the proportion

who are cured following treatment when a few of the patients using the complicated

models while allowing for the latent variable which was evident in the analysis involv-

ing cure rate models. With OS as the outcome, there were challenges with fitting cure

rate models to the bigger dataset in Chapter 4, which was also evident in this smaller

dataset.

Due to the complexity of the models, there were some challenges in fitting some of

the models especially those with OS. This might have made it especially hard to fit Cox

PH and cure rate models with the tumour growth as a fixed covariate in MCMC as the

counting process approach focuses on the event times themselves. On the other hand,

where there were enough events as in the TTR, the models generally fitted well and it

was possible to assess the possible role of both the growth rate and the log-RD on the

various TTE outcomes. We also demonstrated that we can use a mixture of SEMs with

binary and continuous observed variables to model the effect of tumour growth on the
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TTR and OS in Myeloma using the available software. Extensions of these methods to

cure models can also be made.

In this chapter, we have used well established methods that combine SEMs and

TTE methods alongside Bayesian equivalents of the methods to model the TTR, OS as

well as the possibility of a cure using cure rate models. The Weibull ML model fitted

in Stata provides a standard way of analysing TTR or OS where we believe there is a

latent variable such as growth in our case, as long as there are biomarkers available.

In the Stata software the available routines only allow for SEMs with TTE outcomes

assumed to come from parametric distributions such as the Exponential and Weibull.

In this thesis, we showed that we can also combine SEMs and the Cox PH model to

model both the TTR and OS in a Bayesian setting. We have also demonstrated that we

can further extend the SEMs to allow for the modelling of latent variables as covariates

in cure rate models in a Bayesian setting. This work therefore sets the stage where

these methods can be fully exploited in larger datasets where there are underlying

latent variables known to influence survival outcomes in RCTs.
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Weibull population mixture Weibull population PTC
Parameter Estimate (95 % CrI) Estimate (95 % CrI)

Cure model (π)
Intercept (α0) -3.066 (-7.167, -0.248) -2.124 (-5.958, -0.220)
Growth (α1 ) -0.759 (-6.014, 5.007) -1.216 (-4.950, 2.453)
Log-RD (α2 ) 0.693 (-1.705, 5.138) 0.582 (-1.622, 4.535)

OS model (λ)
Intercept (β0) -2.805 (-3.597, -2.097) -4.416 (-7.162, -2.876)

Growth (β1) -0.198 (-1.179, 0.720) 0.566 (-0.915, 2.324)
Log-RD (β2 ) 0.223 (-0.330, 0.772) 0.427 (-0.600, 1.420)
Shape ((γ)) 1.530 (1.223, 1.951) 1.909 (1.344, 3.007)

SEM part

Paraprotein
Intercept (µ1) 0.925 (0.803, 1.052) 0.920 (0.784, 1.077)

Growth (τ1 ) 0.337 (-0.167, 0.823) 0.557 (-0.008, 1.025)

Beta2
Intercept (µ2) 1.585 (1.522, 1.645) 1.581 (1.511, 1.649)

Growth (τ2 ) -0.072 (-0.341, 0.195) 0.096 (-0.072, 0.357)

Albumin
Intercept (µ3) 1.490 (1.469, 1.510) 1.492 (1.471, 1.513)

Growth (τ3 ) 0.003 (-0.061, 0.065) -0.029 (-0.062, 0.002)
Variances
V ar(ω) 1.0 (fixed) 1.0 (fixed)

Var(Paraprotein) (ε1) 1.069 (0.573, 1.487) 0.903 (0.317, 1.461)
Var(Beta2) (ε2) 0.231 (0.150, 0.300) 0.240 (0.145, 0.303)

Var(Albumin) (ε3) 0.029 (0.024, 0.035) 0.029 (0.024, 0.036)
DIC 7,755 7,669

Table 6.8: Bayesian Weibull mixture and PTC models for the proportion with OS similar to the general
population fitted to Myeloma data with tumour growth rate and log-RD as covariates on both π and the

OS fitted to Myeloma data based on complete cases (n = 243). In the cure model, estimates of the
intercept (α0) and the log-ORs as coefficients for growth (α1) and log-RD (α2) respectively, are

presented. In the OS model, the intercepts (β0) and shape parameter (γ) from the Weibull models, and
log-HRs, as coefficients for growth (β1) and log-RD (β2) respectively from all models, are reported. For
the SEM part, the intercept and coefficients from the measurement models are reported. Variances for

each observed variable are also reported
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(A) Growth only (B) Growth and log-RD
Parameter Estimate (95% CI) Estimate (95% CI)

TTR model (λ)
Intercept (β0) -1.709 (-2.399, -1.019) -1.392 (-1.976, -0.809)

Growth (β1) 1.304 (0.067, 2.541) 1.086 (0.167, 2.006)
Log-RD (β2) - 0.329 (-0.065, 0.722)

Shape (γ) 1.622 (0.977, 2.694) 1.490 (1.003, 2.215)
SEM part

Paraprotein
Intercept (µ1 ) -0.204 (-0.478, 0.069) -0.201 (-0.470, 0.068)

Growth (τ1) -0.591 (-0.992, -0.189) -0.516 (-0.937, -0.094)

Beta2
Intercept (µ2 ) 1.586 (1.523, 1.649) 1.586 (1.523, 1.649)

Growth (τ2) 0.128 (0.022, 0.234) 0.148 (0.032, 0.264)

Albumin
Intercept (µ2 ) 1.489 (1.471, 1.508) 1.489 (1.471, 1.508)

Growth (τ3) -0.054 (-0.087, -0.021) -0.060 (-0.097, -0.023)
Variances
V ar(ω) 1.0 (fixed) 1.0 (fixed)

Var(Paraprotein) (ε1) - -
Var(Beta2) (ε2) 0.235 (0.192, 0.288) 0.230 (0.184, 0.286)

Var(Albumin) (ε3) 0.019 (0.015, 0.024) 0.018 (0.014, 0.024)
LL -607.0 -605.7

Table 6.9: Weibull ML models for the TTR fitted to Myeloma data based on complete cases (n = 243)
with tumour growth rate only (A) and tumour growth rate and log-RD (B) as covariates on the TTR with
paraprotein treated as binary. In the TTR model, the intercept (β0) and shape parameter (γ), and the

log-HR, as a coefficient for growth (β1) in (A) and for both growth (β1) and log-RD (β2), are reported. For
the SEM part, the intercept and coefficients from the measurement models are reported. Variances for

each observed variable are also reported.
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(A) Growth only (B) Growth and log-RD
Parameter Estimate (95% CI) Estimate (95% CI)

OS model (λ)
Intercept (β0) -3.136 (-3.646, -2.626) -2.944 (-3.506, -2.382)

Growth (α1) 0.525 (0.126, 0.924) 0.528 (0.142, 0.914)
Log-RD (α2 ) - 0.306 (-0.120, 0.734)

Shape (γ ) 1.455 (1.203, 1.758) 1.452 (1.202, 1.755)

SEM part

Paraprotein
Intercept (µ1 ) -0.192 (-0.449, 0.064) -0.192 (-0.447, 0.064)

Growth (τ1) -0.235 (-0.669, 0.199) -0.205 (-0.638, 0.228)

Beta2
Intercept (µ2 ) 1.586 (1.523, 1.649) 1.586 (1.523, 1.649)

Growth (τ2) 0.246 (0.116, 0.377) 0.254 (0.116, 0.392)

Albumin
Intercept (µ3 ) 1.489 (1.471, 1.508) 1.489 (1.471, 1.508)

Growth (τ3) -0.075 (-0.113, -0.036) -0.074 (-0.113, -0.035)
Variances
V ar(ω) 1.0 (fixed) 1.0 (fixed)

Var(Paraprotein) (ε1) - -
Var(Beta2) (ε2) 0.191 (0.134, 0.271) 0.187 (0.127, 0.274)

Var(Albumin) (ε3) 0.016 (0.011, 0.023) 0.016 (0.011, 0.024)
LL/DIC -522.9 -521.9

Table 6.10: Weibull ML models for the OS fitted to Myeloma data based on complete cases (n = 243)
with tumour growth rate only (A) and tumour growth rate and log-RD (B) as covariates on the OS with
paraprotein treated as binary. In the OS model, the intercept (β0) and shape parameter (γ), and the

log-HR, as a coefficient for growth (β1) in (A) and for both growth (β1) and log-RD (β2), are reported. For
the SEM part, the intercept and coefficients from the measurement models are reported. Variances for

each observed variable are also reported.



Chapter 7

Discussion

7.1 Introduction

This chapter summaries the work that has been done in this thesis and provides sug-

gestions on how the proposed methods can be used in practice, while highlighting their

strengths and limitations. Finally, further avenues for this research are proposed.

This thesis was focused on modelling the role of both observed and unobserved

measures of the tumour namely the log-RD and tumour growth rate following treatment,

on survival outcomes, with applications to Myeloma and CLL datasets.

Chapter 1 provided a brief background to the various approaches that are used to

model important survival outcomes such as TTR, OS and where possible, the propor-

tion of patients who are completely cured of the disease following treatment.

Using standard TTE methodology, the role of the log-RD on its own, and in con-

junction with other covariates in predicting TTR and OS was investigated. In Myeloma,

a higher disease burden, measured through the log-RD, had an adverse, though not

statistically significant effect on TTR and OS. This is in agreement with what has been

shown in the clinical literature that in Myeloma, the MRD is an important predictor of

survival outcomes following treatment [156]. Those with advanced disease, detectable
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paraprotein, and a higher beta2 had poorer outcomes in this group of patients while

lower levels of albumin conferred a greater risk of relapsing or dying. Cytogenetic aber-

rations are important markers of how aggressively the tumour is growing and thus pre-

dictors of TTR and OS. They are particularly useful in classifying a patient’s risk as low,

intermediate and high risk of relapse or death [157]. However, in the Myeloma dataset,

about 42-48% of patients did not have data on these cytogenetic markers although they

were significantly associated with the outcomes in a CC analysis including only those

patients who had data on these markers. In the CLL trials, comparisons made with

respect to TTR and OS on sex, treatment given and trial under which the patient was

recruited showed no association with either of the two outcomes. Those with higher log-

RD after treatment had worse outcomes, consistent with what was seen in Myeloma.

The effect of log-RD in CLL was significant for both the TTR and OS. Those with unmu-

tated VH genes had poorer TTR and OS, consistent with what has been reported [158].

Patients with 17p deletion are known to have poor outcomes [159]. However, for this

study, those with 17p deletion seemed to have better outcomes. This could have been

due to the fact that only 12/310 did not have this trait thereby making it hard to observe

heterogeneity with respect to this marker. To account for missing data, the final part

of this chapter focused on fitting Bayesian models with imputation models for the miss-

ing covariates in both datasets. The resulting models showed that the effect sizes for

paraprotein, beta2, albumin and the cytogenetic markers in Myeloma and VH mutation

and 17p deletion in CLL were similar to those in the CC analysis, thereby implying the

missing data was ignorable.

Chapter 4 was concerned with using cure rate models to estimate the proportion

of patients who will remain relapse-free or those whose OS will match that of age-sex

matched members of the general population following treatment. The proportions were

estimated using mixture and PTC models - with both semi-parametric via a Cox PH

model, and parametric Weibull models used to model the TTR for those not cured and
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therefore bound to relapse and/or subsequently die following the treatment [18, 69, 26].

In Myeloma, the empirical estimate of the survival curve plateaued at around 19%

(±5%) for TTR while 30% were estimated to attain the population OS. However, the CrIs

for the estimate from the population cure rate models were wide. The analysis showed

that a higher disease burden was associated with a higher probability of relapsing for

those not cured of Myeloma, based on analysis of TTR. The other covariates: para-

protein, beta2 and albumin did not influence the probability of relapsing. In the relative

survival model, the probability of attaining the population OS was not associated with

log-RD or any of the other observed covariates. The population cure rate models were

wrought with fitting problems and required use of weakly informative priors. Even in

the ML models, the CIs were very wide implying there was not enough evidence a pro-

portion of the patients would have attained long-term OS. The final part of this chapter

compared the effect of the log-RD in the Cox PH, exponential and Weibull models for

TTR and OS with those for the TTR and OS in the cure rate models to investigate if

there was a change when only those not cured were taken into account. For the TTR,

the log-RD effect for those not cured and therefore bound to relapse following treatment

in the cure rate models was smaller than in the standard models while there were no

obvious differences with respect to the OS.

SEMs were introduced in Chapter 5 with a focus on how latent constructs can be

realised from a given number of observed random variables that can be continuous or

binary through measurement equations. To ensure model identifiability and also take

into account the fact that none of the observed variables were known for certain to be

direct measures of the latent construct, only models with the variance of the latent con-

struct fixed at 1 were considered [160]. This was followed by a small simulation study

to assess the performance of the extended SEMs with TTE models in the structural

model under different censoring schemes. The models performed as expected with no

censoring and minimal censoring while with heavy censoring, estimates were not as
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close to the true parameters. With increased sample sizes, all estimates were relatively

close to the true parameters with good coverage.

Finally, Chapter 6 focused on the application of the proposed SEMs to the Myeloma

dataset with a latent variable for tumour growth observed through the three log-transformed

continuous random variables, paraprotein, beta2 and albumin. The analysis was ap-

plied to a reduced dataset including only those individuals who had available data on

each of the markers. The growth rate, on its own and also when fitted with log-RD, was

associated with relapse and death following treatment. Estimates in the measurement

part for the TTR model were comparable, with the growth rate significantly associated

with TTR, OS and the probability of never relapsing after treatment in most cases. The

latent growth rate was also associated with each of the 3 observed variables thereby

indicating good fit especially in the models with TTR outcomes. When fitted as a covari-

ate with OS as the outcome, estimates relating the observed variables and the growth

rate in measurement part were not all significantly associated, and at times the mod-

els fitted used both ML and MCMC showed a lack of fit. The use of SEMs to model

growth in the cure rate models highlighted its relationship with the probability of being

cured and generally, suggested that using the observed variables together in a SEM

was better than modelling them individually in the cure rate models of Chapter 4.

7.2 Results in context

Tumour growth rate as an important characteristic in many cancers, has long been as-

sociated with adverse outcomes in Myeloma and most of the approaches for modelling

the effect of the growth rate on TTE outcomes have involved assuming some distribution

of the growth rate [161]. These distributions have been based on serial measurements

of the tumour size at times, or through simulations. Other methods of attempting to

model the tumour growth rate have involved using surrogate measures of the tumour
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burden and growth rate, [162]. In colorectal cancer, SEMs have been used to model the

association of a latent variable, oxidative stress, with risk of getting the disease through

biomarkers [57]. Other applications of SEMs in cancer have looked at psychosocial

adjustment problems [163] in breast cancer, quality of life [164], and other related psy-

chological constructs depicting the mental well-being of cancer patients in general. The

presence of biomarkers of tumour growth in some cancers provides an opportunity to

use SEMs to model survival outcomes in cancer as illustrated in this thesis. So far, the

use of SEMs in cancer has been restricted to measuring non-clinical latent constructs.

To effectively use these methods, there would be need to elicit expert knowledge from

clinicians on which biomarkers to use in constructing these latent variables depicting

important tumour characteristics.

This work has shown that SEMs can be used with TTE outcomes following [56].

However, we exercise caution in the interpretation of the association of the TTE out-

come with the growth rate as the selection of the biomarkers used in the measuring

this latent construct were not selected based on clinical input, but rather what has been

reported in other studies to be the relationship of each of the three biomarkers to the

growth rate and RD.

7.3 Limitations

The main limitation of this work was that both the available datasets did not have the

requisite plateau from which to estimate both the proportion who will not relapse fol-

lowing treatment or those who will attain the population level OS. The datasets were

relatively small with shorter follow-up time compared to the large cohorts that have

traditionally been used to estimate the cured proportion [69]. Another challenge was

missing data for most of the cytogenetic markers that are known to depict tumour ag-

gressiveness, which made it impossible to use these biomarkers in the SEMs. Finally,



237

as we did not have expert prior knowledge of how any of the biomarkers relate to tu-

mour growth and therefore TTE outcomes and only non-informative priors were used in

the Bayesian models fitted in this analysis, thereby not fully exploiting their power.

7.4 Further work

Several avenues exist for further work. The first would be to work on methods for han-

dling the missing data within the SEMs so that the effect of the latent variable represent-

ing tumour growth can be modelled on the TTE outcomes using the already available

cytogenetic markers. The sensitivity of the SEMs to the multivariate Normal assumption

was only explored by dichotomising paraprotein in the SEM and fitted to the TTR and

OS models using ML in Stata. These models can also be implemented in the Bayesian

set-up and extended to cure rate models. We mainly used Weibull and Cox PH mod-

els for the TTR and OS in the mixture models. More flexible extensions using splines

could be implemented for both baseline hazards and PH models [165]. With more input

from clinicians, the inclusion of informative priors would help to explore the benefit of a

proper Bayesian approach. Due to the limitations seen in the available datasets, these

methods could be applied to larger cancer trials that have longer follow-up data.
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Appendix A

Cure rate models in OpenBUGS

A.1 Mixture model code in OpenBUGS

# This code was used to fit the mixture model to estimate the cured proportion

# and model TTR for those not cured

model {

for (i in 1:n) {

# Specify the likelihood which includes pi

L[i] <- pow(((1-pi[i])*fu[i]), d[i])*pow((pi[i] + (1-pi[i])*Su[i]), (1-d[i]))

# Usual logistic model for pi

pi[i] <- exp(alpha0 + alpha1*z[i])/(1 + exp(alpha0 + alpha1*z[i]))

# Specify model for lambda

lambda[i] <- exp(beta0 + beta1*x[i])

# Survivor function for those not cured and bound to relapse

Su[i] <- exp(-lambda[i]*pow(t[i],alph))

# Overall survival function that includes pi

Sov[i] <- exp((log(pi[i]) - log(pi[i])*Su[i]))

# The pdf for those not cured
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fu[i] <- alph*lambda[i]*pow(t[i],(alph-1))*exp(-lambda[i]*pow(t[i],alph))

# Use Bernoulli trick to maximise likelihood in OpenBUGS

z[i] <- 1

z[i] ~ dbern(p[i])

p[i] <- L[i]/500000

}

# Priors on the model for pi

alpha0 ~ dnorm(0.0, 0.01)

alpha1 ~ dnorm(0.0, 0.01)

# Priors on the model for lambda

beta0 ~ dnorm(0.0, 0.01)

beta1 ~ dnorm(0.0, 0.01)

# Prior for the shape parameter

alph ~ dgamma(1,1)

}

A.2 Population mixture model code in OpenBUGS

# This code was used to fit the population PTC model

model {

for (i in 1:n) {

# Specify the log-likelihood which includes the population hazard h[i]

logLike[i] <- d[i]*log(h[i] + (1-pi[i])*fu[i]/(pi[i] + (1-pi[i])*Su[i])) + log(pi[i]

+ (1-pi[i])*Su[i])

# Usual logistic model for pi

pi[i] <- exp(alpha0 + alpha1*z[i])/(1 + exp(alpha0 + alpha1*z[i]))
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# Specify model for lambda

lambda[i] <- exp(beta0 + beta1*x[i])

# Survivor function for those not cured and bound to die

Su[i] <- exp(-lambda[i]*pow(t[i],alph))

# Overall survival function that includes pi

Sov[i] <- exp((log(pi[i]) - log(pi[i])*Su[i]))

# The pdf for those not cured

fu[i] <- alph*lambda[i]*pow(t[i],(alph-1))*exp(-lambda[i]*pow(t[i],alph))

# Use dummy trick to maximise likelihood in OpenBUGS

dummy[i] <- 0

dummy[i] ~ dloglik(logLike[i]) # likelihood is exp(logLike[i])

}

# Priors on the model for pi

alpha0 ~ dnorm(0.0, 0.01)

alpha1 ~ dnorm(0.0, 0.01)

# Priors on the model for lambda

beta0 ~ dnorm(0.0, 0.01)

beta1 ~ dnorm(0.0, 0.01)

# Prior for the shape parameter

alph ~ dgamma(1,1)

}

A.3 Population PTC model code in OpenBUGS

# This code was used to fit the population PTC model

model {

for (i in 1:n) {
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# Specify the log-likelihood which includes the population hazard h[i]

logLike[i] <- d[i]*log(h[i] - log(pi[i])*fu[i]) + (log(pi[i]) - log(pi[i])*Su[i])

# Usual logistic model for pi

pi[i] <- exp(alpha0 + alpha1*z[i])/(1 + exp(alpha0 + alpha1*z[i]))

# Specify model for lambda

lambda[i] <- exp(beta0 + beta1*x[i])

# Survivor function for those not cured and bound to die

Su[i] <- exp(-lambda[i]*pow(t[i],alph))

# Overall survival function that includes pi

Sov[i] <- exp((log(pi[i]) - log(pi[i])*Su[i]))

# The pdf for those not cured

fu[i] <- alph*lambda[i]*pow(t[i],(alph-1))*exp(-lambda[i]*pow(t[i],alph))

# Use dummy trick to maximise likelihood in OpenBUGS

dummy[i] <- 0

dummy[i] ~ dloglik(logLike[i]) # likelihood is exp(logLike[i])

}

# Priors on the model for pi

alpha0 ~ dnorm(0.0, 0.01)

alpha1 ~ dnorm(0.0, 0.01)

# Priors on the model for lambda

beta0 ~ dnorm(0.0, 0.01)

beta1 ~ dnorm(0.0, 0.01)

# Prior for the shape parameter

alph ~ dgamma(1,1)

}



Appendix B

Simulated TTE model with a latent covari-

ate

* Code for simulating an Exponential TTE model with a latent variable as a covariate

* in Stata using the package survsim for the TTE model

clear all

set seed 6765327

* Start the program

program simstudy1, rclass

set obs 5000

* Relate the latent contruct to 3 manifest variables assuming it has N(0,1)

gen X = rnormal(0,1)

gen x1 = 1.7 + 0.5*X + rnormal(0, sqrt(2.5))

gen x2 = 3.5 + 0.7*X + rnormal(0, sqrt(0.4))

gen x3 = 3.0 + 1.2*X + rnormal(0, sqrt(2.6))

* Simulate the TTE data

survsim stime, distribution(weibull) lambdas(0.6) gammas(1)covariates(X -0.7)

* Simulate the censoring distribution to esnure approximately 20% are censored
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survsim stimes, distribution(weibull) lambdas(0.15) gammas(1)

* Work out those that are censored

generate died = stime <= stimes

replace stime = stimes if died == 0

* Modify model to fit latent construct on TTE

stset stime, failure(died = 1)

* Call the latent variable G in the TTE model since it was created as X above

gsem (stime <- G, family(weibull, fail(died = 1)))( x1 x2 x3 <- G, variance(G@1))

* Create matrix of estimates

matrix test = r(table)

* Extract specific values from the output to calculate bias and coverage later

* Coefficient of G on time to event

scalar bGTime = test[1,1]

scalar bGTimeSE = test[2,1]

* Constant in the TTE model

scalar TTEcons = test[1,2]

scalar TTEconsSE = test[2,2]

* Coefficient of G on X1

scalar bGx1 = test[1,3]

scalar bx1SE = test[2,3]

* Constant in the model for G on X1

scalar x1cons = test[1,4]

scalar x1consSE = test[2,4]

* Coefficient of G on X2

scalar bGx2 = test[1,5]

scalar bx2SE = test[2,5]

* Constant in the model for G on X2
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scalar x2cons = test[1,6]

scalar x2consSE = test[2,6]

* Coefficient of G on X3

scalar bGx3 = test[1,7]

scalar bx3SE = test[2,7]

* Constant in the model for G on X3

scalar x3cons = test[1,8]

scalar x3consSE = test[2,8]

* The shape parameter estimate

scalar shape = exp(test[1,9])

scalar shapeSE1 = exp(test[5,9])

scalar shapeSE2 = exp(test[6,9])

* Variance of X1

scalar varx1 = test[1,11]

scalar varx1SE = test[2,11]

* Variance of X2

scalar varx2 = test[1,12]

scalar varx2SE = test[2,12]

* Variance of X3

scalar varx3 = test[1,13]

scalar varx3SE = test[2,13]

* End of program

end

* Run the sumilation 1,000 times to create a 1,000 observations for each estimate

simulate bgtime=bGTime bgtse= bGTimeSE TTEcons= TTEcons TTEconsSE= TTEconsSE ///

bGx1= bGx1 bx1SE=bx1SE x1cons= x1cons x1consSE = x1consSE bGx2 = bGx2 ///
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bx2SE = bx2SE x2cons = x2cons x2consSE = x2consSE bGx3 = bGx3 ///

bx3SE = bx3SE x3cons = x3cons x3consSE = x3consSE shape = shape ///

shapeSE1 = shapeSE1 shapeSE2 = shapeSE2 varx1 = varx1 ///

varx1SE = varx1SE varx2 = varx2 varx2SE = varx2SE ///

varx3 = varx3 varx3SE = varx3SE, reps(1000) nodots nolegend: simstudy1

* Work out the perecentage bias for each parameter in turn. For example for the

* coefficient for the latent variable on the TTE, we have

/* Bias for G on TTE */

generate biasGT = (bgtime - (-0.7))*(100/-0.7)

summarize biasGT, meanonly

display r(mean)

/* Work out the coverage */

generate covGT = (bgtime + invnorm(0.975)*bgtse>-0.7 & bgtime

- invnorm(0.975)*bgtse< -0.7)

tabulate covGT if biasGT!=.



Appendix C

OpenBUGS code for fitting Weibull TTE mod-

els with SEM extensions

C.1 Bayesian Weibull TTE model with latent tumour growth

# This OpenBUGS code is used to fit a Bayesian Weibull TTE model with a latent

# construct as a covariate on the scale parameter

model {

#Measurement model with logarithms of paraprotein, beta2 and albumin as

observed

for (i in 1:n) {

for (j in 1:3) { y[i,j]~dnorm(mu[i,j], psi[j]) }

mu[i,1]<-u[1]+tau[1]*omega[i]

mu[i,2]<-u[2]+tau[2]*omega[i]

mu[i,3]<-u[3]+tau[3]*omega[i]

# Specify N(0,1) distribution for the latent growth rate

omega[i]~dnorm(nu[i], 1)

# Weibull likelihood function in terms of the pdf and S(t)
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L[i] <- pow((alph*lambda[i]*pow(t[i],(alph-1))*exp(-lambda[i]*pow(t[i], alph))),

d[i])*pow(exp(-lambda[i]*pow(t[i], alph)),(1 - d[i]))

# Model for the hazard on the scale parameter

lambda[i] <- exp(beta0 + beta1*omega[i])

# A Bernoulli trick to estimate the likelihood function

z[i] <- 1

z[i] ~ dbern(p[i])

p[i] <- L[i]/500000

} #end of i

# Prior distributions for the factor loadings

tau[1]~dnorm(0.0,psi[1])

tau[2]~dnorm(0.0,psi[2])

tau[3]~dnorm(0.0,psi[3])

# Priors for the intercepts and variances

for (j in 1:3) {

psi[j]~dgamma(1,1)

sgm[j]<-1/psi[j]

u[j]~dnorm(0.0,0.01)

}

# Prior for the mean of the latent variable omega

for (i in 1:n) { nu[i] <- 0}

# Priors for the model on the scale

beta0 ~ dnorm(0.0, 0.01)

beta1 ~ dnorm(0.0, 0.01)

# Prior for the shape parameter in the Weibull model

alph ~ dgamma(1,1)

} #end of model
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C.2 Bayesian Cox TTE model with latent tumour growth

# This OpenBUGS code is used to fit a Bayesian Cox PH model with a latent

# construct as a covariate on the TTR/OS

model {

for(i in 1:n) {

for(j in 1:T) {

# risk set = 1 if obs.t >= t

Y[i,j] <- step(obs.t[i] - t[j] + eps)

# Counting process jump if t[j] <= obs.t < t[j+1]

dN[i,j] <- Y[i,j]*step(t[j+1] - obs.t[i] - eps)*fail[i]

}

}

# Fit the model

for(j in 1:T) {

for(i in 1:n) {

dN[i,j] ~ dpois(Idt[i,j]) # Likelihood

Idt[i,j] <- Y[i,j]*exp(beta0[j] + beta1*omega[i]) # Intensity

}

beta0[j] ~ dnorm(0.0,0.01); # Include the baseline using the Poisson trick

}

# Use measurement model with logarithms of paraprotein, beta2 and albumin as

# observed to get realisations of the latent omega

for (i in 1:n) {

for (j in 1:3) { y[i,j]~dnorm(mu[i,j], psi[j]) }

mu[i,1]<-u[1]+tau[1]*omega[i]

mu[i,2]<-u[2]+tau[2]*omega[i]
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mu[i,3]<-u[3]+tau[3]*omega[i]

# Specify N(0,1) distribution for the latent growth rate

omega[i]~dnorm(nu[i], 1)

} #end of i

# Prior distributions for the factor loadings

tau[1]~dnorm(0.0,psi[1])

tau[2]~dnorm(0.0,psi[2])

tau[3]~dnorm(0.0,psi[3])

# Priors for the intercepts and variances

for (j in 1:3) {

psi[j]~dgamma(1,1)

sgm[j]<-1/psi[j]

u[j]~dnorm(0.0,0.01)

}

# Prior for the mean of the latent variable omega

for (i in 1:n) { nu[i] <- 0}

# Priors for the coefficient in the PH model

beta1 ~ dnorm(0.0, 0.01)

} #end of model



Appendix D

OpenBUGS code for fitting the mixture, PTC

and SEM models

D.1 Bayesian Weibull mixture or PTC model with latent tu-

mour growth

# This OpenBUGS code is used to fit a Bayesian Weibull TTE model with a latent

# construct from three observed continuous variables on both the cured proportion

# and on the scale parameter for the TTE for those not cured

model {

#Measurement model with logarithms of paraprotein, beta2 and albumin as

observed

for (i in 1:n) {

for (j in 1:3) { y[i,j]~dnorm(mu[i,j], psi[j]) }

mu[i,1]<-u[1]+tau[1]*omega[i]

mu[i,2]<-u[2]+tau[2]*omega[i]

mu[i,3]<-u[3]+tau[3]*omega[i]

# Specify N(0,1) distribution for the latent growth rate
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omega[i]~dnorm(nu[i], 1)

# Weibull likelihood function with cured proportion of the pdf and S(t) and pi

L[i] <- pow(((1-pi[i])*(gamma*lambda[i]*pow(t[i],(gamma-1))*exp(-

lambda[i]*pow(t[i], gamma)))), d[i])*pow((pi[i]

+ (1-pi[i])*exp(-lambda[i]*pow(t[i], gamma))),(1 - d[i]))

# Likelihood used when fitting PTC model

#L[i] <- pow((-log(pi[i])*alph*lambda[i]*pow(t[i],(alph-1))*exp(-

# lambda[i]*pow(t[i], alph))), d[i]) *exp(log(pi[i])-log(pi[i])*exp(-

# lambda[i]*pow(t[i], alph)))

# Logistic model for the cured proportion

pi[i] <- exp(alpha0 + alpha1*omega[i])/(1 + exp(alpha0 + alpha1*omega[i]))

# Model for the TTE for those not cured on the scale parameter

lambda[i] <- exp(beta0 + beta1*omega[i])

# A Bernoulli trick to estimate the likelihood function

z[i] <- 1

z[i] ~ dbern(p[i])

p[i] <- L[i]/500000

} #end of i

# Prior distributions for the factor loadings

tau[1]~dnorm(0.0,psi[1])

tau[2]~dnorm(0.0,psi[2])

tau[3]~dnorm(0.0,psi[3])

# Priors for the intercepts and variances

for (j in 1:3) {

psi[j]~dgamma(1,1)

sgm[j]<-1/psi[j]

u[j]~dnorm(0.0,0.01)
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}

# Prior for the mean of the latent variable omega

for (i in 1:n) { nu[i] <- 0}

# Priors on model for pi

alpha0 ~ dnorm(0.0, 0.01)

alpha1 ~ dnorm(0.0, 0.01)

# Priors for the scale model in T

beta0 ~ dnorm(0.0, 0.01)

beta1 ~ dnorm(0.0, 0.01)

# Prior for the shape parameter in the Weibull model

gamma ~ dgamma(1,1)

} #end of model

D.2 Bayesian Weibull population mixture or PTC models with

latent tumour growth

# This OpenBUGS code is used to fit a Bayesian Weibull TTE model with a latent

# construct from three observed continuous variables on both the cured proportion

# and on the scale parameter for the TTE for those bound to down

model {

#Measurement model with logarithms of paraprotein, beta2 and albumin as

observed

for (i in 1:n) {

for (j in 1:3) { y[i,j]~dnorm(mu[i,j], psi[j]) }

mu[i,1]<-u[1]+tau[1]*omega[i]

mu[i,2]<-u[2]+tau[2]*omega[i]

mu[i,3]<-u[3]+tau[3]*omega[i]
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# Specify N(0,1) distribution for the latent growth rate

omega[i]~dnorm(nu[i], 1)

# Weibull likelihood function with cured proportion of the pdf and S(t) and pi

# with population hazard rate h[i] for each individual

L[i] <- pow((h[i] + (1-pi[i])*(alph*lambda[i]*pow(t[i],(alph-1))*exp(-

lambda[i]*pow(t[i], alph)))/(pi[i] + (1-pi[i])*exp(-lambda[i]*pow(t[i],

alph)))), d[i]) *pow((pi[i] + (1-pi[i])*exp(-lambda[i]*pow(t[i], alph))),1-d[i]))

# Likelihood used when fitting PTC model

#L[i] <- pow((h[i] - log(pi[i])*alph*lambda[i]*pow(t[i],(alph-1))*exp(-

# lambda[i]*pow(t[i],alph))), d[i])*exp((log(pi[i]) - log(pi[i])*exp(-

# lambda[i]*pow(t[i],alph))))

# Logistic model for the cured proportion

pi[i] <- exp(alpha0 + alpha1*omega[i])/(1 + exp(alpha0 + alpha1*omega[i]))

# Model for the TTE for those not cured on the scale parameter

lambda[i] <- exp(beta0 + beta1*omega[i])

# A Bernoulli trick to estimate the likelihood function

z[i] <- 1

z[i] ~ dbern(p[i])

p[i] <- L[i]/500000

} #end of i

# Prior distributions for the factor loadings

tau[1]~dnorm(0.0,psi[1])

tau[2]~dnorm(0.0,psi[2])

tau[3]~dnorm(0.0,psi[3])

# Priors for the intercepts and variances

for (j in 1:3) {
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psi[j]~dgamma(1,1)

sgm[j]<-1/psi[j]

u[j]~dnorm(0.0,0.01)

}

# Prior for the mean of the latent variable omega

for (i in 1:n) { nu[i] <- 0}

# Priors on model for pi

alpha0 ~ dnorm(0.0, 0.01)

alpha1 ~ dnorm(0.0, 0.01)

# Priors for the scale model in T

beta0 ~ dnorm(0.0, 0.01)

beta1 ~ dnorm(0.0, 0.01)

# Prior for the shape parameter in the Weibull model

alph ~ dgamma(1,1)

} #end of model



Appendix E

Assessment of model fits in Myeloma us-

ing scaled Schoenfeld residuals
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E.1 Assessing the multivariable Cox PH model for TTR in

Myeloma
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Figure E.1: Plots of the Schoenfeld residuals for each of the covariates in the final multivariable Cox PH
model for TTR with 125 patients
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E.2 Assessing the multivariable Cox PH model for OS in Myeloma
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Figure E.2: Plots of the Schoenfeld residuals for each of the covariates in the final multivariable Cox PH
model for OS with 125 patients
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Assessment of model fits in CLL using scaled

Schoenfeld residuals

F.1 Assessing the multivariable Cox PH model for TTR in
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Figure F.1: Plots of the Schoenfeld residuals for each of the covariates in the final multivariable Cox PH
model for TTR in CLL fitted to data from 286 patients

F.2 Assessing the multivariable Cox PH model for OS in CLL



261

-.
5

0
.5

1
1
.5

2
sc

a
le

d
 S

ch
o
e
n
fe

ld
 -

 lo
g
rd

0 2 4 6
Time

bandwidth = .8

Test of PH Assumption
-2

-1
0

1
2

3
sc

a
le

d
 S

ch
o
e
n
fe

ld
 -

 2
.s

ta
g
e

0 2 4 6
Time

bandwidth = .8

Test of PH Assumption

-1
5

-1
0

-5
0

5
sc

a
le

d
 S

ch
o
e
n
fe

ld
 -

 2
.p

d
e
le

tio
n

0 2 4 6
Time

bandwidth = .8

Test of PH Assumption

Figure F.2: Plots of the Schoenfeld residuals for each of the covariates in the final multivariable Cox PH
model for OS with 301 patients
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