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Abstract 

Background: Many factors can introduce uncertainty into medical laboratory test 

measurements, and this uncertainty can affect downstream clinical and health-

economic outcomes. Currently, however, the impact of measurement uncertainty 

on outcomes is rarely considered, either within laboratory medicine or Health 

Technology Assessment (HTA) practices.  

Aim: To develop a framework for assessing the impact of test measurement 

uncertainty on clinical and health-economic outcomes.  

Methods: Five hypotheses were addressed in this thesis. Hypothesis A – that 

measurement uncertainty has not been routinely addressed within HTAs – was 

assessed via a systematic review of HTAs. Hypothesis B – that methods for 

assessing the impact of measurement uncertainty on outcomes have been used 

in the broader literature – was assessed via a methodology literature review. The 

remaining hypotheses – that methods from the literature could be used/adapted 

to: [C] evaluate the impact of measurement uncertainty on clinical performance, 

utility and cost-effectiveness; [D] derive outcome-based analytical performance 

specifications (APS); and [E] accommodate real world evidence on measurement 

performance – were assessed via a case study analysis, exploring the role of 

faecal calprotectin for the diagnosis of Inflammatory Bowel Disease (IBD).  

Results: The HTA review confirmed that, to date, HTAs have rarely assessed the 

impact of measurement uncertainty on outcomes. The methodology review, 

meanwhile, identified various relevant methods from the broader literature 

(mostly from the laboratory medicine field). Of those, iterative simulation and 

decision modelling were selected for further exploration based on their ability to 

be integrated into existing HTA methodology. The subsequent case study 

demonstrated a framework of analysis building on these methods. Using both 

hypothetical and real world evidence simulations, the robustness of faecal 

calprotectin clinical pathway outcomes to increasing measurement uncertainty 

was assessed, and regions of acceptable measurement uncertainty (i.e. 

outcome-based APS) were identified. 

Conclusions: The presented framework can help to improve HTA-decision 

making and inform outcome-based laboratory practices.   
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Chapter 1  

Measurement uncertainty and the test evaluation pathway 

1.1 Chapter outline 

This chapter provides an introduction to the key topics addressed in this thesis. 

The central subject of test measurement uncertainty – defined as systematic 

and/or random deviation in test measurements – is first outlined in section 1.2. 

Section 1.3 subsequently discusses the role of measurement uncertainty within 

the broader context of the test evaluation pathway – defined as the trajectory of 

research required to take a new test from the technology discovery phase, to the 

test adoption phase. Section 1.4 then presents the rationale for the thesis – in 

particular highlighting the potential utility that a framework for assessing the 

impact of test measurement uncertainty on outcomes would provide both within 

the medical laboratory setting, and the test evaluation (e.g. HTA) setting. The 

final section of this chapter outlines the thesis scope, aim, hypotheses and 

structure.   

1.2 Measurement uncertainty  

All measurements are subject to uncertainty – whether it be determining the 

distance between two objects, the level of CO2 in the atmosphere, or the pressure 

exerted within a mechanical system. Medical laboratory tests (i.e. in-vitro tests 

conducted on patient samples taken from the human body) are no exception. The 

time of day a test sample is taken, the mode of sample transportation and the 

time between sample collection and analysis, are just a few examples of a 

multitude of factors which may introduce systematic and/or random errors into 

test measurements – known collectively, as measurement uncertainty.   

This section provides an introduction to measurement uncertainty. An initial note 

regarding terminology used within this thesis is provided in section 1.2.1 below. 

This is followed by details of the central components of measurement uncertainty 

(precision and trueness), and aggregate measures of measurement uncertainty 

(total error [TE] and uncertainty of measurement [UM]), in sections 1.2.2 and 1.2.3 

respectively. Regulatory and accreditation requirements for the assessment of 

measurement uncertainty are then outlined in section 1.2.4; and the need for 
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performance specifications for measurement uncertainty – in particular with 

respect to outcome-based approaches – is discussed in section 1.2.5. Section 

1.3 then goes on to discuss measurement uncertainty within the broader context 

of the test evaluation pathway.  

1.2.1 A note on nomenclature 

Nomenclature in the field of medical metrology (the science of measurement, 

applied to medicine) is notoriously varied. For the purpose of this study, 

measurement uncertainty is used to refer to systematic and/or random deviation  

in test measurements; whilst measurement performance is used to refer to the 

overall technical performance of a test, including additional performance 

parameters. This definition of measurement performance is broadly equivalent to 

that of analytical validity commonly used in the clinical sciences literature. The 

term measurement performance is adopted here, to emphasise the fact that 

measurement may be influenced by a range of factors, not limited to the analytical 

phase (i.e. including factors occurring before and after the point of sample 

analysis; as described in section 1.2.2.3).  

A glossary of key terms relating to the content of this introduction (i.e. 

measurement uncertainty, measurement performance and the test evaluation 

pathway) is provided in Appendix A. Where possible, definitions have been taken 

from the Clinical and Laboratory Standards Institute (CLSI) Harmonized 

Terminology Database, which lists internationally accepted terminology for key 

medical metrology concepts (6).  

1.2.2 Central components of measurement uncertainty 

The central components of measurement uncertainty are precision, defined as 

the closeness of agreement between repeated test results, and trueness, defined 

as the closeness of agreement between the mean of repeated test results and 

the underlying ‘true’ value. Precision is characterised by the absence of 

imprecision (i.e. random error) in measurement, whilst trueness is characterised 

by the absence of bias (i.e. systematic error) in measurement.  

Figure 1-1 illustrates these concepts using an example of markers on a dart 

board. A player who exhibits high precision and trueness (i.e. low imprecision and 

bias) will hit the bullseye target every time, and will thus produce results closely 
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clustered around this point – as illustrated on the far left dart board. Reducing 

precision (i.e. increasing imprecision) leads to more widely scattered, but evenly 

spread, results; whilst reducing trueness (i.e. increasing bias) maintains the close 

cluster of results, but results in a shift in the central point around which the points 

are clustered. Introducing imprecision and bias together, leads to an increased 

spread and a shift in the central positioning of the results – as illustrated in the far 

right dart board.  

Figure 1-1. Bullseye illustration of imprecision and bias 

 

1.2.2.1 Imprecision 

Imprecision is assessed by observing the level of dispersion in repeated test 

measurements conducted on replicate test samples (e.g. identical samples 

generated by splitting primary test samples into multiple smaller samples or 

aliquots). The level of imprecision captured in a repeated test experiment 

depends on the conditions under which the analysis is conducted – in particular 

with respect to five key factors known to affect measurement precision at the 

point of sample analysis. These are: time (i.e. whether the time interval between 

successive measurements is short or long), operator (i.e. whether the same or 

different operators carry out the successive measurements), calibration (i.e. 

whether the same equipment is or is not recalibrated between successive groups 

of measurements)1, environment (e.g. whether the temperature and humidity 

                                            

1 Calibration refers to the process of testing and adjusting a test instrument or system, 
to establish a correlation between the measurand (i.e. the substance intended to be 
measured by a given test) and measurement response. The calibration process is 
generally based on the analysis of calibration materials of known concentration. This 
produces a calibration curve which expresses the relationship between the 

measurand quantity and the observed test result, often in the form of a straight line 
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alters between repeated testing) and equipment (i.e. whether the same or 

different equipment is used in the measurements) (6, 7).  

Figure 1-2 illustrates how, as the scope of a repeated test experiment is widened 

to capture variation in these parameters, the level of imprecision captured 

similarly expands. For example, a measure of repeatability is provided if repeated 

testing is conducted over a short period of time, in the same location, using the 

same measurement procedure, the same observer and the same measuring 

instrument (6). If, however, repeated testing is conducted within the same location 

but one or more of the factors listed above is allowed to alter (e.g. by analysing 

samples over a series of days at staggered time intervals), then a measure of 

intermediate precision is provided. Finally, if repeated testing is conducted across 

multiple laboratories, such that all of the listed factors would be expected to vary, 

then the resulting measure of imprecision will reflect between-laboratory 

precision – also known as reproducibility.  

 

Figure 1-2. Illustration of levels of precision 

Since imprecision relates to random variation, it is expressed either as a measure 

of standard deviation (SD) or coefficient of variation (CV) (i.e. the ratio of the SD 

to the mean)2 (8). Although often expressed in terms of the average SD or CV, 

                                            

(e.g. linear regression model) rather than a curve. An example calibration curve is 
reported in Appendix B.3 (Figure B-3).  

2 For SD = 𝜎 and mean = 𝜇, 𝐶𝑉 =  
𝜎

𝜇
× 100. Note: multiplication of the coefficient by 100 

is an optional step to express CV as a percentage, rather than a decimal.  
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imprecision may vary significantly depending on the concentration of the 

measurand (i.e. the substance intended to be measured by a given test). As such, 

examination of imprecision at various concentrations of the measurand is often 

required. The results of such an analysis can be illustrated using a precision 

profile plot, in which imprecision is presented against the measurand 

concentration. Figure 1-3 provides an example of a characteristic U-shaped 

precision profile, which reflects the fact that precision tends to poorer at lower 

and higher ends of the measurand concentration range (9).  

 

Figure 1-3. Illustration of a precision profile 

1.2.2.2 Bias 

The assessment of bias requires some form of comparison between 

measurements from the test of interest (termed the index test) versus 

measurements representative of the truth. Since in reality the ‘true’ measurand 

value is unknown, this must be estimated using a specified reference 

measurement test. An ideal reference test in this context is a reference 

measurement procedure, defined as “a thoroughly investigated measurement 

procedure shown to yield values having an uncertainty of measurement 

commensurate with its intended use, especially in assessing the trueness of other 

measurement procedures” (6, 10). If direct use of a reference measurement 

procedure is not possible, then certified reference materials (CRMs) are also 

useful in this context. CRMs are materials that have been characterised via an 

unbroken chain of measurement processes, each with a defined measurement 
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uncertainty, linking back to a reference measurement procedure3 (6). As such, 

the value of a CRM (+/- uncertainty) may be considered to be known, and 

therefore useful in the context of evaluating bias. If neither a reference 

measurement procedure nor CRM are available, then lower-order reference 

measurements may also be used – for example, bias may be assessed against 

an established gold standard measurement procedure.  

A routine study undertaken in the assessment of bias is the method-comparison 

study, in which test samples are split and independently analysed using the index 

test and reference measurement test4. Paired measurements from method-

comparison studies may then be examined to assess the level of agreement 

between the two test methods. Common approaches to this end include the 

Bland-Altman plot (also called a difference plot; see Appendix B.1 for an 

example); regression analysis (e.g. ordinary least squares [OLS]); and the 

evaluation of inter-rater reliability metrics (e.g. Cohen’s kappa statistic) (9, 11, 

12). Bland-Altman and regression analysis techniques are particularly useful in 

this context, since these enable key details of the method bias to be extracted. 

This includes: (a) whether the bias is fixed (i.e. remains constant over the range 

of measurand concentrations evaluated) or proportional (i.e. increases or 

decreases in line with the measurand concentration); and (b) whether variability 

around the bias increases or decreases in line with the measurand concentration 

(i.e. heteroscedasticity).  

1.2.2.3 A note on pre-analytical and analytical factors  

Multiple factors may introduce bias and imprecision into test measurements. 

These include (i) pre-analytical factors, occurring prior to the point of sample 

analysis (e.g. how the test sample is collected, transported and stored in the 

laboratory); and (ii) analytical factors, occurring at the point of sample analysis 

(e.g. the laboratory environment, testing equipment, and the existence of any 

interfering substances in the test sample). In addition, within-subject biological 

variation – defined as the fluctuation of measurand concentrations in the body 

                                            

3 The sequence of measurement processes linking a CRM to the reference 
measurement procedures is known as the metrological traceability chain.  

4 Alternatively, if using CRMs, then the index test measurements (using the CRMs) may 
simply be compared to the designated CRM values.  
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over time – may further contribute to imprecision (6, 13). Consideration of each 

of these factors is central to any evaluation of measurement uncertainty. A full 

discussion of pre-analytical and analytical factors, including an example ‘feather 

map’ of key factors occurring along the total testing process, is provided in 

Appendix B.2.  

1.2.3 Aggregate measures of measurement uncertainty 

Elements of bias and imprecision, as described in section 1.2.2, may be 

combined to provide an aggregate estimate of total measurement uncertainty. To 

this end, two main approaches have been adopted in the literature: the total error 

(TE) approach, and the uncertainty of measurement (UM) approach. 

The TE approach was originally promoted by Jim Westgard in the USA in the 

1970’s, and became the dominant technique across laboratories over 

subsequent decades (14). Briefly, TE is calculated as the linear sum of bias and 

imprecision, as illustrated in Figure 1-4. Assuming that random error can be 

approximated by a normal distribution, the estimate of imprecision (expressed as 

an SD) is multiplied by a chosen ‘z factor’ to cover a required level of confidence. 

In order to cover a 95% confidence interval (CI), for example, a z value of 1.96 is 

used. The resulting TE estimate provides an upper bound (i.e. worst case 

scenario) for the level of error which may occur for a given measurement.  

 

Figure 1-4. Illustration of TE calculation 
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The uncertainty of measurement (UM) approach emerged as a dominant method 

within the metrology field in the 1990’s in the cornerstone ‘Guide to the 

Expression of Uncertainty in Measurement’ (GUM) document (15). UM is defined 

as “a parameter, associated with the result of a measurement, that characterizes 

the dispersion of the values that could reasonably be attributed to the measurand” 

(15). In the original GUM document, a “bottom-up” procedure was proposed for 

quantifying UM, via the following four-step procedure5:  

1. Identify all elements associated with measurement uncertainty along the 

testing pathway. 

2. Determine the standard uncertainty (expressed as an SD) around each 

element from point 1. 

3. Determine the combined standard uncertainty of all elements from point 1, 

by combining the associated standard uncertainties from point 2 (using, 

for example, the sum of squares rule6 or computer simulation). 

4. Determine the expanded measurement uncertainty by assigning a 

coverage factor, k, to the combined standard uncertainty from point 3. For 

example, k = 2 produces an expanded uncertainty of measurement region 

which may be attributable to the measurand with ~95% confidence.  

Based on the procedure outlined above, the resulting measure of UM (expressed 

as an SD) represents a region around the measured test value, which is expected 

to include the underlying true measurand value to a specified degree of 

probability (i.e. depending on the value of k selected).  

                                            

5 According to the “bottom up” procedure, all individual components of uncertainty along 
a testing pathway are required to be identified and separately measured. More 
recently, owing to the recognized impracticalities of this approach, an alternative 
“top down” procedure has been suggested: this method recognises that high level 
quality assurance and/or method validation data will capture multiple components of 
measurement uncertainty, and can therefore be used in place of having to 
individually assess multiple elements [16. ISO. 15189: 2012 Medical 
laboratories–Requirements for quality and competence. Geneva: International 
Standardisation Organisation. 2012.]. 

6 The sum of squares rule follows Pythagoras’ theorem i.e. 𝑎2 + 𝑏2 =  𝑐2. Thus, if four 
factors (a, b, c and d) contributing to measurement uncertainty have been identified, 
and are associated with standard uncertainties, 𝑠𝑎, 𝑠𝑏, 𝑠𝑐, and 𝑠𝑑, then the combined 

standard uncertainty is equal to: √𝑠𝑎
2  +  𝑠𝑏

2  +  𝑠𝑐
2  + 𝑠𝑑

2. 
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It should be noted that there has been continued debate in the literature regarding 

the differences and relative merits of TE vs. UM (17-20). From a technical point of 

view, a key difference relates to the handling of bias in each case. In the 

calculation of UM, for example, it is assumed that if bias is known then steps 

should be taken to resolve or remove it (e.g. via recalibration) – as such, this 

approach incorporates bias only insofar as imprecision introduced from the 

process of removing bias may be captured (19). TE, on the other hand, assumes 

that not all components of bias are necessarily resolvable in practice, and thus 

explicitly incorporates bias into the calculation (20). In addition, from a conceptual 

point of view, a further key difference between the two approaches relates to the 

notion of true measurement. On the one hand, the TE calculation assumes that 

the true measurand value can be known; whilst on the other hand, UM makes no 

direct assumptions about the truth, but rather represents an expression of a lack 

of knowledge about the true measurand value (17, 19).  

Whilst debate around the use of TE vs. UM is ongoing, both methods have 

maintained widespread adoption. Interestingly, in a recent opinion paper from the 

European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) 

Task and Finish Group on Total Error, it was argued that each approach has 

particular merits in different scenarios (19). TE, for example, may be considered 

to be of most relevance in scenarios where a reference measurement of known 

quantity is in use – for example within quality assurance/ proficiency testing 

schemes utilising a reference measurement procedure or CRMs. UM, meanwhile, 

may be considered of greater applicability in scenarios where the evaluation of 

measurement uncertainty is based on patient samples, wherein the “true” 

measurand value remains essentially unknown. As such, the EFLM recommend 

that the two approaches should be considered as complimentary rather than 

conflicting methods (19).  

1.2.4 Test regulation and laboratory accreditation  

Within the UK (and internationally), the evaluation and monitoring of 

measurement uncertainty is a requirement of two key processes: (i) test 

regulation, which is a legal undertaking required prior to the marketing of new 

tests; and (ii) laboratory accreditation, which is a voluntary process undertaken 

by the majority of medical laboratories in the UK, as a means of quality 
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assurance. This section provides a summary of these two processes, focusing 

on aspects relating to the evaluation and monitoring of measurement uncertainty.  

1.2.4.1 Regulation 

From a UK and EU perspective, anyone wishing to market a new test within the 

European Economic Area (EEA) must, by law, obtain a Conformité Européene 

(CE) mark to confirm compliance with regulatory standards. Until recently these 

standards were defined according to the European In-Vitro Diagnostic Directive 

(IVDD 98/79/EC). In 2017, however, the IVDD was superseded with new 

regulation in the form of the European In-vitro Diagnostics Medical Devices 

Regulation (IVDR 2017/746) (21). The IVDR is set to come in to full force in 2022 

(21).  

In keeping with the IVDD, the IVDR requires manufacturers to provide evidence 

on analytical validity (i.e. measurement performance), in addition to safety and 

scientific validity requirements7. In particular, tests are required to undergo 

complete method validation – defined as the demonstration via objective 

evidence (i.e. experimentation) that the test is appropriate8 for its intended use 

(22). Assessment of a range of performance characteristics is required for 

method validation, including the central components of measurement uncertainty 

(i.e. bias and imprecision, as described in section 1.2.2), as well as additional 

metrics falling under the wider remit of measurement performance. These 

include:  

 test selectivity9 (the ability of a test to measure the specified measurand 

as opposed to other interfering substances in the test sample);  

 detection and quantitation limits (limits describing the smallest and highest 

concentration of a measurand that can be reliably measured by the test); 

                                            

7 Scientific validity is defined as the association between a measurand and a clinical 

condition or disease state.  
8 Note that, benchmarks against which to judge the “appropriateness” of a test’s 

performance are not provided in the IVDR – rather, the onus is on test manufacturers 
to pre-define their own acceptance criteria. Further discussion of international 
guidelines related to the definition of acceptance criteria is provided in section 1.2.5. 

9 Sometimes referred to as analytical specificity.  
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 analytical sensitivity (the rate of change in the measured test value, in 

relation to a given increase in the measurand concentration); 

 linearity (the ability of a test within a given range to provide results that are 

directly proportion to the measurand concentration); and  

 measurement range (the range of measurand values over which 

meaningful test results can be acquired) (6, 21).  

Further description of the above performance metrics falling under the remit of 

measurement performance, is provided in Appendix B.3.  

In addition to requirements concerning test measurement performance, the IVDR 

also includes new requirements for test manufacturers to provide evidence 

relating to clinical performance – defined as the ability of a test to detect patients 

with a particular clinical condition or in a physiological state (23). As discussed 

later in section 1.3, the clinical performance of a test is of central importance to 

the overall value of a test, since this determines the knock-on impact that a test 

has on patient health outcomes and healthcare costs. The requirement for 

evidence on clinical performance within the IVDR is, therefore, a welcome 

addition to the new regulation in terms of securing patient and system-wide 

benefits. A potential limitation with this aspect, however, concerns the lack of 

specific guidance provided within the IVDR as to how clinical performance studies 

should be undertaken (21).  

1.2.4.2 Laboratory accreditation 

In addition to test manufacturers being required to conform to regulatory 

standards in order to market tests across the EEA, further requirements are 

placed on testing laboratories in order to achieve laboratory accreditation – 

defined as independent third-party assurance of the competence, impartiality and 

performance capability of testing centres (24). Internationally, medical 

laboratories are required to show compliance to standards set out by the 

International Organization for Standardization (ISO) in order to achieve 

accreditation (16). In the UK, the United Kingdom Accreditation Service (UKAS) 

is the national accreditation body responsible for granting laboratory accreditation 

(as per ISO standards). Under this scheme, laboratories must undergo an initial 

assessment to obtain their accreditation certificate, and thereafter receive annual 
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surveillance visits with a full re-assessment every fourth year (25). Although 

laboratory accreditation under ISO is voluntary, the majority of UK medical 

laboratories are accredited (26).   

Key requirements for medical laboratories in relation to the assessment of 

measurement uncertainty are outlined in ISO 15189:2012 (16). Under this 

standard, laboratories must conduct appropriate method validation, verification 

and quality assurance of testing procedures. Validation and verification 

processes in this context relate to the initial implementation of a new or modified 

testing procedure: validation is required for tests developed in-house, or for 

previously validated tests which are being used outside of their intended use; 

whilst verification is required to confirm the appropriateness of an already 

validated test (22). Subsequent quality assurance of tests describes the 

comprehensive set of practices used to monitor testing process and ensure that 

the testing site’s results maintain a required level of performance (6). This 

includes: (i) internal quality assurance, which describes procedures run in 

association with the measurement of patients’ samples (e.g. based on running 

CRMs or internal quality control samples of known concentration, to check that 

patients’ results are expected to be valid); and (ii) external quality assessment 

(EQA) (also known as proficiency testing), which describes the evaluation of the 

laboratory’s performance via examination of samples of external origin, to 

establish between-laboratory and between-instrument comparability (e.g. via 

regional, national, or international EQA schemes) (6).  

As with test regulation, the definition of ‘appropriate’ performance for a test within 

the context of accreditation-related exercises (i.e. validation, verification and 

quality assurance) is similarly expected to be pre-defined by the testing laboratory 

(rather than being directly stipulated by ISO). Under current ISO standards, 

therefore, the focus is on ensuring that testing centres take measures to quantify 

and monitor measurement uncertainty. How this measurement uncertainty is then 

judged as appropriate or not, is left largely to the discretion of the test 

manufacturers and testing centres. Further discussion of international guidelines 

related to the definition of acceptance criteria is provided in section 1.2.5. 

A final note with respect to regulation and accreditation, concerns the withdrawal 

of the UK from the EU. Although the UK left the EU on 31 January 2020, an 
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ongoing transition period is in effect until 31 December 2020. During this 

transition period, regulation and accreditation processes are expected to remain 

unchanged (i.e. tests marketed in the UK will continue to be required to conform 

to IVDR regulation; and laboratory accreditation will continue to be determined in  

line with ISO standards) (27, 28). What may transpire after this transition period, 

however, is currently unclear. Whilst there appears to be agreement among key 

stakeholders that the UK should align regulatory and accreditation practices with 

the rest of the EU (29), only time will tell how UK regulation and accreditation 

practices will evolve in the post-Brexit era.  

1.2.5 Analytical performance specifications (APS) 

1.2.5.1 EFLM Milan criteria 

As previously highlighted, the results of any validation, verification or quality 

assurance procedure need to be judged against a specified requirement of 

analytical performance, in order to determine whether the test may be considered 

“fit for purpose”. These requirements are known as analytical performance 

specifications (APS). In the context of measurement uncertainty, APS are 

typically presented as maximum allowable levels of bias, imprecision and/or TE. 

Whilst APS are a necessary requirement of current regulatory and laboratory 

accreditation practices, specific levels of performance are not mandated in the 

IVDR legislation or ISO standards (16, 21). Rather, test manufacturers and 

laboratories are expected to pre-define appropriate APS for tests within any given 

validation, verification or quality assurance exercise.  

Best practice methods for setting APS are outlined in international guidance 

documents, most notably in a 2015 EFLM consensus statement on the topic, 

following the 1st EFLM Strategic Conference held in Milan in 2014 (30). Building 

on previous guidance in this area (31) the EFLM present three models for setting 

APS (henceforth referred to as the ‘EFLM Milan criteria’), outlined below (30).  

 Model 1. Based on the effect of analytical performance on clinical 

outcomes 

Under Model 1, minimum requirements for analytical performance (i.e. 

measurement performance) should be set based on the effect of measurement 
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uncertainty on clinical outcomes. Two types of studies may be undertaken in this 

context: under Model 1a of the EFLM Milan criteria, the impact of measurement 

uncertainty on clinical outcomes is established via direct outcome studies (i.e. 

empirical-based analyses, such as randomised controlled trials [RCTs]); whilst 

under Model 1b, the impact of measurement uncertainty on outcomes is 

established via indirect outcome studies (i.e. non-empirical-based analyses, such 

as simulation or decision analytic modelling). Note that, whilst the emphasis 

within the EFLM Milan criteria is on clinical outcomes, other end-stage outcomes 

– such as cost-effectiveness (see section 1.3) – may also be considered of 

relevance (32). APS defined on the basis of direct or indirect outcome studies are 

known as outcome-based APS.  

 Model 2. Based on components of biological variation of the measurand 

Under Model 2, APS are derived from assessment of the biological variation of 

the measurand. The underlying premise of this approach is that the ‘analytical 

noise’ of a test (i.e. bias and imprecision) should not add significantly to the noise 

created by biological variation (30, 33). The prevailing method applied in this 

context follows a series of rules popularised by Fraser and colleagues in the 

1990’s (34, 35). Via this approach, bias should be maintained under an eighth, a 

quarter or three-eighths of the total within- and between-subject biological 

variation, in order to maintain optimum, desirable or minimum levels of bias, 

respectively10. Analytical imprecision, meanwhile, should be maintained under a 

quarter, a half or three-quarters the level of within-subject biological variation, in 

order to maintain optimum, desirable or minimum levels of analytical 

performance, respectively11 (34, 35).    

 Model 3. Based on state-of-the-art 

                                            

10 i.e. 𝑩𝒊𝒂𝒔 < 𝒙 × √𝑪𝑽𝑰 + 𝑪𝑽𝑮; where 𝐶𝑉𝐼 is within-individual biological variation and 𝐶𝑉𝐺 

is between-individual (i.e. group) biological variation; 𝑥 = 0.125 provides optimum 

performance; 𝑥 = 0.25 provides desirable performance; and 𝑥 = 0.375 provides 
minimum performance. 

11 i.e. 𝑪𝑽𝑨 < 𝒙 × 𝑪𝑽𝑰; where 𝐶𝑉𝐴 is analytical variation and 𝐶𝑉𝐼 is within-individual 

biological variation; 𝑥 = 0.25 provides optimum performance; 𝑥 = 0.5 provides 

desirable performance; and 𝑥 = 0.75 provides minimum performance. 
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Under Model 3, APS are set in relation to what measurement performance is 

achieved by state-of-the-art tests (i.e. the highest level of measurement 

performance technically achievable by field methods), or by other laboratories. 

For example, if most laboratories within an EQA program can achieve a certain 

level of performance, then laboratories achieving significantly below this level 

should be required to change their practice (30).  

1.2.5.2 Outcome-based APS 

Following publication of the EFLM Milan criteria, further EFLM guidance was 

released in 2017, in which criteria for assigning measurands to the EFLM Milan 

Criteria were presented (33). This guidance suggests that, for medical tests that 

“have a central role in the decision-making of a specific disease or clinical 

situation and where cut-off/decision limits are established”, specifications should 

be based on the effect of analytical performance on the clinical outcome (i.e. 

outcome-based APS, under Model 1 of the EFLM Milan criteria). Model 2, 

meanwhile, is presented as the relevant choice for measurands that do not have 

a central role in a specific disease or condition; whilst Model 3 is reserved as a 

backstop for measurands that cannot be included in Models 1 or 2 (e.g. while 

awaiting outcome or biological variability data).  

The justification for the above guidance is clear: if a test is expected to have an 

impact on the clinical pathway, and the goal of the health service is to maximise 

patient health outcomes, then outcome-based APS represent the best approach 

to ensuring this objective. Despite this clear rationale, outcome-based APS have 

remained, thus far, elusive (32). In particular, the conduct of direct outcome 

studies in this context is expected to be limited by challenges related to ethical, 

financial and time constraints (32). In this respect, indirect outcome studies 

present a more pragmatic approach to the derivation of outcome-based APS – 

as of yet, however, there appears to have been limited uptake of indirect methods 

in this context. Whilst the reason for this is unclear, it seems reasonable to 

attribute part of this paucity to a limited awareness and/or expertise amongst the 

clinical sciences community, as to how exactly to undertake indirect outcome 

studies. The lack of methods guidance in this area, in particular, is expected to 

be a key barrier to the effective implementation of outcome-based APS.  
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1.3 The test evaluation pathway 

Section 1.2 provided an introduction to the topic of measurement uncertainty. 

This section discusses the broader context of the test evaluation pathway – 

defined as the trajectory of research required to take a new technology from the 

biomarker discovery phase, to the test adoption phase. Key components of the 

pathway are first outlined below (section 1.3.1); followed by a discussion of end-

stage outcomes of most relevance to policy decision making (i.e. clinical utility 

and cost-effectiveness) (section 1.3.2). Section 1.3.3 then discusses the role of 

HTAs in the context of test reimbursement, and highlights the current lack of 

guidance concerning the evaluation of measurement uncertainty in this context.  

1.3.1 Key components of the test evaluation pathway 

Various authors have provided alternative characterisations of the test evaluation 

pathway. In particular, a systematic review conducted in 2008 identified 19 such 

frameworks (36), and numerous additional pathways (23, 37-47) and 

supplemental tools (48) have since been published. Whilst variation exists in the 

exact detail of the proposed pathways, there is general agreement regarding the 

key performance domains requiring evidence, as illustrated in Figure 1-5.12 A 

brief summary of these elements is provided below.  

  

                                            

12 This figure is an adapted version of the figure provided in: 23. Horvath AR, Lord 

SJ, StJohn A, Sandberg S, Cobbaert CM, Lorenz S, et al. From biomarkers to 
medical tests: the changing landscape of test evaluation. Clinica chimica acta. 
2014;427:49-57. 
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Figure 1-5. The test evaluation pathway 

1. The first phase of the pathway is test discovery and development. 

Essentially this relates to confirming the scientific validity of the test – that 

is, establishing that the test measurand is associated with a given clinical 

condition or disease state, such that there is a mechanism by which the test 

may provide useful information (and is therefore worth evaluating further).   

2. The second element in the pathway is measurement performance. 

Demonstration of measurement performance relates to the process of test 

validation and verification (discussed in section 1.2), including assessment 

of the central components of measurement uncertainty plus additional 

metrics of measurement performance (further outlined in Appendix B.3). 

3. The third element in the pathway is clinical performance. Focusing on 

diagnostic and screening tests, clinical performance is assessed in terms of 

diagnostic accuracy – defined as the ability of a test to discriminate between 

diseased and non-diseased subjects, or between two or more clinical states 

(23). Diagnostic accuracy is evaluated by comparing test-directed 

diagnoses against “true” diagnoses (based, for example, on a gold standard 
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diagnostic reference test); this enables calculation of diagnostic accuracy 

estimates (including diagnostic sensitivity and specificity, and positive and 

negative predictive values), as demonstrated in Appendix C. For predictive 

or prognostic tests, clinical performance may alternatively be evaluated in 

terms of the strength of association between the prognostic/predictive 

marker and the event or health state of interest; whilst for monitoring tests, 

clinical performance generally relates to the ability of changes between or 

trends in serial test values to identify or predict a change in health state.  

4. The fourth element of the pathway is clinical utility, which describes the 

clinical value that can be derived from a test. This includes both intermediate 

clinical utility, relating to the impact of test results on patient management 

decisions (e.g. the decision to treat or not treat); and end-stage clinical 

utility, relating to the impact of test results on patient health outcomes (e.g. 

patient mortality and morbidity).  

5. The fifth element of the pathway is cost-effectiveness, defined as the 

ability of an intervention to produce an efficient impact on patient health 

outcomes in relation to costs. In the context of a publicly funded healthcare 

system (such as the National Health Service [NHS]), the efficiency of 

additional spending is assessed in terms of whether or not the clinical value 

gained from that additional spending (e.g. life years gained), outweighs the 

associated opportunity cost (e.g. life years that could have been gained, had 

the money been spent elsewhere in the healthcare system). A summary of 

key measures of cost-effectiveness (i.e. the incremental cost-effectiveness 

ratio [ICER] and net monetary benefit [NMB]) is provided in Appendix D.   

6. The final element of the pathway concerns broader implications of the 

adoption decision. This includes potential social, psychological, legal, 

ethical, societal and organizational consequences which may result from 

implementing a new test (23). 

1.3.2 End stage outcomes: clinical utility and cost-effectiveness 

In the context of deciding whether or not to adopt a new test into routine clinical 

practice, the primary concern for clinical decision makers and commissioners is 
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establishing the impact of testing strategies on end-stage outcomes – that is, end-

stage clinical utility (i.e. health outcomes) and cost-effectiveness.  

With respect to end-stage clinical utility, the gold standard method of evaluation 

is the randomized controlled trial (RCT)13 (23, 49). However, whilst RCTs are well 

established in the evaluation pathway for pharmaceutical interventions, they are 

less common in the context of test evaluations – primarily due to the complex 

nature of testing pathways. In particular, tests do not have a direct impact on 

patient health, but rather exert an indirect influence by informing clinical 

management decisions. As such, the value of a test depends first on its ability to 

provide correct information on patients’ health status; second on the potential for 

that information to produce a change in healthcare management; and third on the 

resulting impact of healthcare management changes on patient outcomes. Many 

other aspects of testing may further impact on clinical utility – including cognitive, 

emotional, social and behavioural effects of testing (50, 51). The design of test-

treatment RCTs is therefore complicated by the need to appropriately capture 

each of these considerations. As a result RCTs in this context are rare, and the 

overwhelming majority of test evaluations instead focus on the intermediate 

outcome of clinical performance (52-54).  

With respect to cost-effectiveness, test evaluations rely on obtaining evidence 

relating to the overall cost14 and effect15 of both the standard care clinical 

pathway, and the clinical pathway including the test intervention. Two overarching 

approaches are possible: (i) trial-based analyses, in which the required cost and 

effect estimates are derived directly from an RCT (with cost-effectiveness 

evaluated over the time horizon of the RCT); and (ii) model-based analyses, in 

which costs and effects are estimated via a mathematical model representative 

                                            

13 Or, where possible, meta-analysis of multiple RCTs. 
14 Depending on the perspective of the cost-effectiveness evaluation, different costs may 

be included. For example if an NHS perspective is adopted, then any costs relating 
to the consumption of NHS resources (e.g. primary care and secondary care 
appointments, tests, treatments, overheads etc.) should be captured.  

15 Different effects may be evaluated within cost-effectiveness analyses depending on 
the expected impact of the test: effectiveness may be assessed in terms of life years 
saved, for example, or according to quality-adjusted life years (QALYs) gained. 
QALYs provide a composite measure of patient survival weighted by quality of life 
(utility) over time. Cost-effectiveness analyses based on QALYs are also referred to 
as cost-utility analyses.  
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of the clinical pathway, and model input parameters (e.g. clinical performance, 

costs, and treatment efficacy) may be derived from various different sources (with 

cost-effectiveness evaluated over an assigned model time horizon) (55).  

Due to the lack of test-treatment RCTs previously mentioned, cost-effectiveness 

analyses of tests commonly rely on model-based assessments (54, 56). In 

addition, since the majority of direct evidence in this field relates to clinical 

performance, a common approach to modelling in this context is to utilise “linked-

evidence” decision models (54, 57). Essentially, linked-evidence models work on 

the basis of linking data on clinical performance (e.g. diagnostic accuracy) with 

data on (i) clinical decision making (e.g. treatment protocols) and (ii) treatment 

effectiveness (e.g. based on historic treatment RCT data; assuming 

transferability of this data to the tested population) (57). In this way, the use of 

linked-evidence models enable the test-treatment pathway to be modelled 

without the need for test-treatment RCT data. Whilst the potential limitations of 

this approach should be noted (in particular the required assumption of 

transferability of linked data), the pragmatic utility of this approach has resulted 

in linked-evidence models becoming widely endorsed by key technology 

appraisal and reimbursement bodies (discussed in section 1.3.3 below) (58-60).   

1.3.3 Test reimbursement and HTA 

As discussed in section 1.2.4, test manufacturers are required to show 

compliance to regulatory standards before being lawfully entitled to market tests 

and devices across the EEA; securing a CE mark, however, does not secure a 

test’s place into routine clinical practice. Rather, test manufacturers must further 

illustrate to relevant local and/or national technology appraisal and 

reimbursement authorities that their test is of value both to the tested patient 

population, and to the health service as a whole.  

The internationally accepted gold standard tool for informing test adoption and 

reimbursement decisions, is the health technology assessment (HTA). The World 

Health Organisation (WHO) defines HTA as follows:  

“[HTA] refers to the systematic evaluation of properties, effects, and/or 

impacts of health technology. It is a multidisciplinary process to 

evaluate the social, economic, organizational and ethical issues of a 
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health intervention or health technology. The main purpose of 

conducting an assessment is to inform a policy decision making.” (61)  

According to the International Network of Agencies for Health Technology 

Assessment (INAHTA), there are now over 50 HTA agencies registered 

worldwide, affecting decision making for over 1 billion people across 32 countries 

(62). Focusing on the UK, there are two key national bodies relating to the 

conduct of HTAs: (1) the National Institute for Health Research (NIHR) – the 

country’s largest funder of health and care research, which includes a specific 

HTA programme intended to help inform policy decision making (63); and (2) the 

National Institute of Health and Care Research (NICE) – the nation’s primary 

technology reimbursement authority, which makes recommendations on the 

adoption of new health technologies based on HTA-style assessments, and 

produces clinical guideline documents (64).  

In response to the growing importance of tests, many HTA and reimbursement 

authorities now include such technologies within their remit. NICE in particular 

has three schemes under which test evaluations may fall: (i) the Technology 

Appraisal Programme (TAP), primarily for the assessment of pharmaceutical 

interventions but also including companion diagnostics; (ii) the diagnostics 

assessment programme (DAP), for the assessment of stand-alone tests 

expected to increase costs and/or disrupt current care pathways; and (iii) the 

medical technologies guidance (MTG) stream, for the assessment of stand-alone 

tests expected to be cost saving and with limited impact on care pathways (65). 

In addition, population screening tests may be separately evaluated by the UK 

National Screening Committee (NSC) (66). Several other national reimbursement 

authorities have also begun to issue test-specific recommendations over the past 

two decades – most notably the Medical Services Advisory Committee (MSAC) 

in Australia, and the Canadian Agency for  Drugs and Technologies in Health 

(CADTH) (59, 67).  

With respect to the test evaluation pathway, the predominant focus of HTAs is on 

the evaluation of intermediate and end-stage outcomes i.e. clinical performance, 

clinical utility, and cost-effectiveness; whilst the assessment of measurement 

uncertainty (or measurement performance) appears to have been largely 

overlooked. For example, each of the UK NICE and NSC programmes highlighted 



 
 

22 

 

above demands evidence on the clinical performance and clinical utility of testing 

strategies, with the TAP, DAP and NSC schemes also requiring a full economic 

evaluation (65, 68). No requirement for evidence on test measurement 

uncertainty or measurement performance-related concepts, however, is listed in 

any of the associated NICE or NSC programme manuals (58, 68-70). Based on 

an informal review of documentation from other national reimbursement/HTA 

authorities, this stance appears to be largely mirrored on the international stage 

(60, 71-76). The current state of play in the HTA field, therefore, seems to 

disregard the role of measurement uncertainty, and instead focuses on 

subsequent domains of the test evaluation pathway (as per Figure 1-5).  

A notable exception to the above observation relates to the Australian MSAC 

programme: under this scheme, measurement uncertainty is included within the 

requested evidentiary requirements, focusing on the assessment of imprecision 

(in particular reproducibility) as reported in diagnostic accuracy studies included 

in the HTA clinical performance assessment (59). Nevertheless, the assessment 

of measurement uncertainty under this programme is limited in two key respects: 

first, measurement uncertainty is evaluated as a secondary outcome (since the 

evidence review relates only to what happens to have been reported within 

identified diagnostic accuracy studies); and second, the potential impact of 

measurement uncertainty on outcomes is not evaluated. Thus, whilst the MSAC 

programme currently sets the highest bar in terms of the evaluation of 

measurement uncertainty within HTAs, one can argue that this programme does 

not go far enough. Section 1.4 below further expands on the justification for why 

the broad omission of measurement uncertainty should be considered a key 

limitation of prevailing test evaluation methodology.  

1.4 Thesis rationale 

The existence of measurement uncertainty means that any observed test value 

will be different, to some degree, from the underlying true target value one wishes 

to measure. If, as a result, test values are incorrectly observed as lying above or 

below key test decision thresholds, then this uncertainty will – in the first instance 

– affect the clinical performance of testing strategies.  



 
 

23 

 

This impact can be illustrated via a series of simple simulations. Consider the 

case of a diagnostic test which aims to distinguish between ‘diseased’ and 

‘healthy’ patients. Suppose that both populations exhibit normal distributions with 

respect to the measurand, and that, even in the face of perfect measurement a 

proportion of diagnostic errors occur due to a natural overlap between the two 

distributions. This scenario is illustrated in Panel A of Figure 1-6.16 In this case, 

the placement of the diagnostic cut-off threshold (set at 45) produces equal 

proportions (6.67%) of false positive and false negative cases.  

Introducing a fixed positive bias (+5) leads to an upward shift in both populations, 

resulting in an increased false positive rate (15.86%) and a decreased false 

negative rate (2.28%) (Panel B of Figure 1-6); while introducing imprecision (10% 

CV) increases the spread of the distributions resulting in an increased false 

positive rate (7.95%) and false negative rate (9.46%) (Panel C of Figure 1-6). 

Introducing both imprecision and bias together, meanwhile, leads to both 

distributions being shifted upwards and more widely dispersed, resulting in an 

increased false positive rate (16.81%) and decreased false negative rate (3.63%) 

(Panel D of Figure 1-6).  

 

 

  

                                            

16 The distributions of healthy (H) and diseased (D) populations here are based on 
simulations drawn from normal distributions: H~N(30,10) and D~N(60,10). Bias (α) 
is applied by adding α to the population means: H׳~N(30+α,10) and D׳~N(60+α,10). 
Imprecision [CV=β%] is applied at the individual simulation level: for the ith 
simulation from the H and D populations (i.e. Hi and Di), imprecision is applied as an 
additional random draw from N(0,Hi*(β/100)) and N(0,Di*(β/100)) respectively.   
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Figure 1-6. Hypothetical simulation results showing the impact of bias and 
imprecision on test diagnostic accuracy 
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Figure 1-6 illustrates how test measurement uncertainty can affect the clinical 

performance of testing strategies. Since the clinical and health-economic value 

of a test depends crucially on its clinical performance, it stands to reason that 

shifts in clinical performance caused by measurement uncertainty, if uncorrected, 

will lead to associated shifts in clinical utility and cost-effectiveness. In the 

scenario illustrated in Figure 1-6, for example, if an unknown bias of +5 were to 

occur, then the false positive rate is expected to increase from ~7% to ~16%; this 

could have serious consequences for patient and health service outcomes if a 

positive diagnosis initiates a course of expensive and/or risky treatment. The 

seriousness of this effect will clearly be context dependent; nevertheless, this 

example illustrates the mechanisms by which test measurement uncertainty may 

impact on clinical and health-economic outcomes.  

Although the importance of measurement uncertainty has long been appreciated 

in the medical laboratory setting, associated activities in this field (e.g. validation, 

verification and quality assurance procedures) focus primarily on the 

quantification and monitoring of measurement uncertainty, without formal 

consideration of downstream clinical or health-economic effects (see section 1.2). 

In addition, whilst current international guidelines encourage the use of outcome-

based APS, these have – as of yet – been largely overlooked in favour of more 

pragmatically appealing approaches (i.e. Models 2 and 3 of the EFLM Milan 

criteria) (see section 1.2.5). Ultimately this is damaging to patients, since the 

measurement performance of tests is not optimised against patient outcomes.  

In the HTA field meanwhile, where clinical and health-economic outcomes are of 

primary concern, the potentially influential role of measurement uncertainty on 

outcomes appears to have been largely overlooked. Assuming that HTA 

guidance documents are representative of methods used in HTA practice, then it 

can be hypothesised that little to no consideration of measurement uncertainty is 

currently taken within HTA studies (see section 1.3.3). If true, this would mean 

that test adoption decisions based on HTAs are currently being made without an 

understanding of how measurement uncertainty might affect tests’ real-world 

performance. In the worst case scenario this means that test adoption decisions 

may simply be wrong: for example, if the positive assessment of a test is based 

around diagnostic accuracy estimates drawn from clinical studies that have failed 
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to capture real-world measurement uncertainty, and measurement uncertainty is 

also unknowingly a key driver of clinical utility and cost-effectiveness, then the 

expected clinical and economic benefits associated with a testing strategy will fail 

to be met in the routine testing environment. At a less extreme level, the omission 

of measurement uncertainty within the HTA setting represents a lost opportunity 

to inform evidence-based laboratory implementation and monitoring procedures: 

for example, if the outcomes for a given testing strategy are shown to be volatile 

to measurement uncertainty, then this information can be used to inform the need 

for, and design of, a national EQA scheme. Overall, the apparent disregarding of 

measurement uncertainty in the HTA context means that the validity of test-

adoption decisions may be called into question. Based on this, and the lack of 

formal consideration of outcomes within the medical laboratory setting, there is 

clearly potential utility in exploring methods for the assessment of the impact of 

measurement uncertainty on clinical and health-economic outcomes. 

1.5 Scope, aim, hypotheses and structure  

1.5.1 Scope 

In the broadest sense, a medical test comprises any piece of information which 

can inform the presence, nature and/or future trajectory of a patient’s disease, 

from which a clinical course of action can be determined. This information may 

range from a basic review of patient history and presenting signs and symptoms, 

through to more complex and invasive testing such as imaging tests, laboratory 

tests, or biopsies.  

Whilst all of the above tests are clearly important, the focus of this thesis is on 

medical laboratory (i.e. in-vitro) tests. As can be seen from the prior discussion 

of measurement uncertainty (section 1.2), laboratory tests are associated with 

their own specific set of factors which contribute to measurement uncertainty – 

factors which would be expected to differ across different types of medical tests. 

Thus, whilst many of the general concepts and ideas discussed in this thesis in 

relation to measurement uncertainty are likely to be relevant to other tests, the 
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remit of this research is restricted to medical laboratory tests17. Henceforth, 

‘medical laboratory tests’ and ‘tests’ are used interchangeably.  

Further to the above, the introduction to measurement uncertainty provided in 

section 1.2  also centred on the case of quantitative tests – that is, tests which 

measure the quantity of a given measurand on a continuous scale, and which 

report this quantity as a numerical result. Other types of tests include semi-

quantitative tests (which report a range within which the numerical result is 

expected to fall) and qualitative tests (which indicate a binary result [e.g. absent/ 

present] or an ordinal result [e.g. low/ moderate/ high]). Whilst semi-quantitative 

and qualitative tests are not excluded from the remit of the thesis18, the preceding 

introduction to measurement uncertainty focused on quantitative tests due to the 

fact that methods for evaluating test measurement uncertainty in the clinical 

sciences field have largely focused on quantitative tests (77, 78). The thesis case 

study (Chapter 4 to Chapter 7) also relates to a quantitative test.   

In addition to there being many different types of tests, there are also many ways 

in which tests may be used. As well as informing clinical diagnoses, tests may be 

used to screen asymptomatic patients; provide a prognosis or prediction 

regarding the future course of disease; or monitor disease status and/or risk of 

disease. Where possible, this thesis considers each of these different test roles. 

In particular, two literature reviews conducted as part of this research (presented 

in Chapter 2 and Chapter 3), do not exclude any studies on the basis of the 

specific role of the test or tests evaluated. However, the thesis case study 

(presented in Chapter 4 to Chapter 7) necessarily focuses on a particular 

example – in this case, a diagnostic test.  

1.5.2 Aim 

In order to help address key issues previously highlighted in section 1.4, the aim 

of this thesis is to develop a framework for assessing the impact of test 

                                            

17 Note however that the literature reviews presented in Chapter 2 and Chapter 3 of this 
thesis also include point-of-care tests (POCTs) (used outside of the traditional 
laboratory setting) within their remit.  

18 In particular two literature reviews conducted as part of this research (see Chapter 2 
and Chapter 3) do not exclude any studies on the basis of this feature of the 
evaluated tests.  
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measurement uncertainty on clinical and health-economic outcomes (including 

clinical performance, clinical utility and cost-effectiveness). This framework is 

intended to provide utility both in the medical laboratory setting, as a means of 

aligning test measurement performance with clinical and health-economic 

outcomes; and in the HTA setting, as a means of capturing the impact of test 

measurement uncertainty on evaluated outcomes to inform appropriate test 

adoption and reimbursement decisions.  

1.5.3 Hypotheses 

Specific hypotheses assessed in this thesis are listed below:  

 Hypothesis A: That measurement uncertainty has not, to date, been 

routinely addressed within HTAs.  

 Hypothesis B: That methods for assessing the impact of measurement 

uncertainty on outcomes have been used in the broader literature (e.g. in 

laboratory medicine studies).  

 Hypothesis C: That methods from the broader literature (e.g. the medical 

laboratory field) may be applied within HTA-style assessments, to evaluate 

the impact of measurement uncertainty on clinical performance, clinical 

utility and cost-effectiveness outcomes.  

 Hypothesis D: That the application of methods from the broader literature 

to HTA-style assessments (as outlined in Hypothesis C) could enable 

outcome-based APS to be derived. 

 Hypothesis E: That methods from the broader literature may be applied 

or adapted to allow real world evidence (RWE) (relating to test 

measurement performance data) to be utilised within outcome-based 

assessments. 

Section 1.5.4 below highlights which chapters of this thesis address each of these 

hypotheses.  

1.5.4 Structure 

In order to address the thesis aim, the first part of this research focuses on 

evaluating the current methods landscape in this area: first by reviewing methods 
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applied in the HTA setting; and second by reviewing methods used in the wider 

literature. The second part of this thesis is aimed at developing key methods 

identified from the two reviews via a case study analysis. Overall this thesis is 

divided into eight chapters, outlined below.  

 Chapter 1 (the current chapter) provides an introduction to measurement 

uncertainty within the context of the test evaluation pathway.  

 Chapter 2 reports on a systematic review of international HTAs, which aims 

to identify if and how test measurement uncertainty has been assessed 

within HTAs to date. This chapter addresses hypothesis A. 

 Chapter 3 presents a methodology review of the wider literature, which 

aims to identify studies using indirect methods (i.e. excluding trial-based 

analyses) to incorporate or explore the impact of test measurement 

uncertainty on clinical and/or health-economic outcomes. This chapter 

addresses hypothesis B. 

 Chapter 4 introduces the case study used in this thesis: faecal calprotectin 

(FC) for diagnosing Inflammatory Bowel Disease (IBD) in primary care. Two 

FC primary care pathways are introduced: the ‘NICE FC pathway’ (based 

on a single FC test), and the ‘York FC Care Pathway’ (YFCCP) (based on 

a repeat-test strategy).  

 Chapter 5 applies simulation techniques identified in Chapter 3, to evaluate 

the impact of increasing FC measurement uncertainty on the diagnostic 

accuracy of the two FC pathways. Based on the simulated results, APS are 

presented based on assumed diagnostic accuracy requirements. This 

chapter addresses hypotheses C and D. 

 Chapter 6 extends the evaluation outlined in Chapter 5 to cost-

effectiveness outcomes, using an adaptation of a previously constructed 

YFCCP economic model. Based on the simulated results, APS are 

presented based on achieving cost-effectiveness benchmarks. This chapter 

addresses hypotheses C and D. 

 Building on Chapter 5 and Chapter 6, Chapter 7 presents an analysis of 

how real-world measurement performance data may be applied within the 

simulation framework. In this case, EQA data is used to evaluate the 
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performance of alternative FC assays within the YFCCP, in order to address 

the question of how between-assay measurement differences may affect 

clinical and health-economic outcomes. This chapter addresses hypothesis 

E. 

 Chapter 8 provides a summary and discussion of the presented research. 

Key findings and limitations of the research are outlined, and possible areas 

for future applications and development of the methods are discussed.  

Following on from this introduction, Chapter 2 subsequently aims to review 

methods applied in the HTA context, with respect to the evaluation of 

measurement uncertainty.  
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Chapter 2  

The role of measurement uncertainty in HTAs of tests: a 

systematic review 

2.1 Chapter outline 

Chapter 1 provided an introduction to the thesis topic of test measurement 

uncertainty within the context of the test evaluation pathway. The hypothesis 

stated was that, to date, measurement uncertainty has rarely been considered 

within downstream evaluations of tests – such as HTAs – which drive test 

reimbursement and adoption decisions (hypothesis A; sections 1.3.3 and 1.5.3). 

The aim of this chapter, therefore, is to formally identify if and how test 

measurement uncertainty has previously been evaluated within HTA’s, focusing 

on those assessments including a model-based economic evaluation. To that 

end, a systematic review of HTAs of tests was conducted. This chapter first 

outlines the review methods (section 2.2), followed by the study findings (section 

2.3), discussion (section 2.4) and summary (section 2.5).  

The work presented in this chapter has also been published as part of a jointly-

authored peer-reviewed publication in PharmacoEconomics (Smith AF et al. 

[2018]) (1).   

2.2 Methods 

A systematic review was conducted to evaluate if and how measurement 

uncertainty has previously been evaluated within HTAs of tests, focusing on 

studies including a model-based economic evaluation. The review protocol was 

registered in advance on the PROSPERO database and can be accessed at: 

www.crd.york.ac.uk/PROSPERO (ID=CRD42017056778).  

The primary source for this review was the Centre for Reviews and Dissemination 

(CRD) HTA database (79)19. At the time of conducting the review, this database 

consisted of completed and ongoing HTA’s from authorities registered with the 

                                            

19 Whilst the maintenance of other CRD databases (the Database of Abstracts of 

Reviews of Effects [DARE] and the NHS Economic Evaluation Database [NHS 
EED]) ceased in March 2015, the HTA database continued to be updated and 
maintained at the time of conducting this review (March 2017).  

http://www.crd.york.ac.uk/PROSPERO
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International Network of Agencies for HTA (INAHTA) (n=49), in addition to other 

regional and national authorities (n=18). As per the INAHTA membership 

eligibility criteria, INAHTA members are non-profit organisations assessing 

healthcare technologies, relating to a regional or national government, funded at 

least 50% by public sources and providing free access to reports on request 

(http://www.inahta.org/). The additional listed authorities, meanwhile, consisted 

of regional or national bodies who had submitted a request to CRD to be included 

in the database20. The database therefore included reports from: (i) national 

assessment agencies, such as the Institute for Quality and Efficiency in Health 

Care (IQWiG) in Germany; (ii) regional centres, such as Technology Assessment 

at The Hospital for Sick Children (SickKids) (TASK) in Canada; and (iii) publically 

funded research councils such as the UK NIHR. Appendix E provides a full list of 

the included authorities. 

A search was conducted on the CRD HTA database in March 2017. The search 

strategy (provided in Appendix F) aimed to identify HTA reports which had 

evaluated an in-vitro test (including medical laboratory tests and POCTs used 

outside of the laboratory) and included an economic decision model. The strategy 

was developed with support from information specialists at the university of 

Leeds, and combined two elements: (i) MeSH heading and free-text terms related 

to in-vitro tests (lines #1-11); and (ii) a search filter consisting of MeSH heading 

and free-text terms for identifying economic decision models (lines #12-28).  

In addition to the CRD HTA database search, online records of key 

reimbursement authorities expected to be the largest contributors of relevant 

HTAs were cross-checked. These included: NICE in the UK; CADTH in Canada; 

and MSAC in Australia (80-82). Backwards citation checking of all included HTAs 

(in which the bibliographies of included reports were electronically checked) was 

also conducted to identify any additional relevant studies.  

HTA reports were included in the review if they met the inclusion criteria listed in 

Table 2-1. Note that, whilst the CRD HTA database records extend back to 1989 

(83), technology evaluations of tests are a relatively recent phenomenon – the 

                                            

20 Note: no formal selection process was conducted by the CRD to identify or screen 
these additional included authorities. 
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pragmatic decision was therefore made to restrict the search to reports published 

from 1999 onwards (i.e. the year in which NICE was established). As highlighted 

in Table 2-1, only HTAs including a model-based health-economic evaluation 

were included. This restriction was applied so as to focus on reports that: (a) 

would provide information on if and how measurement uncertainty has been 

evaluated within both clinical and health-economic components of HTAs; and (b) 

would be most likely to have attempted to evaluate of the impact of measurement 

uncertainty on outcomes (i.e. focusing on indirect studies, such as model-based 

analyses, and excluding direct [trial-based] analyses unlikely to have attempted 

such an evaluation [as discussed in section 1.2.5.2]).   

Table 2-1. HTA systematic review: inclusion criteria 

Item Inclusion criteria 

Study design 
HTA report including a model-based economic 

evaluation  

Intervention 

In-vitro laboratory medical test or POCT (including 

diagnostic, screening, prognostic, predictive and/or 

monitoring tests) 

Population Any human population 

Setting Any 

Indication Any 

Date 1999 onwards 

Language Full HTA report available in English 

A two-stage screening process was conducted to identify eligible reports. First, 

all titles and abstracts were screened by the primary reviewer (Smith AF) and 

10% were independently screened by a secondary reviewer (Hulme CT). Studies 

judged as potentially meeting the inclusion criteria were included in the second 

round of screening, in which full HTA reports were reviewed by the primary 

reviewer only. Any uncertainties regarding final inclusions were checked with the 

secondary reviewer and, where necessary, additional project supervisors 

(Messenger MP and Hall PS). Identified records were managed using Endnote V 

7.2 (Thompson Reuters). 
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A data extraction table was constructed and piloted on the first 10% of included 

HTAs by the primary reviewer. Details relating to the study and test 

characteristics, components of measurement uncertainty assessed (if any), and 

methods used within such assessments (where applicable) were included in the 

final data extraction table. All data extraction was conducted by the primary 

reviewer, with 10% independently checked by the secondary reviewer. 

It should be noted that a wide remit of what constituted a relevant metric of 

‘measurement uncertainty’ was considered, due to the hypothesis that few HTAs 

would have addressed this topic. This included the central components of 

imprecision and bias, as well as summary metrics (TE and UM), and other 

components related to the broader topic of measurement performance (including 

detection and quantification limits, pre-analytical and analytical affects, linearity 

and test failure21 rates). In addition, in order for a study to be classified as having 

conducted an assessment of measurement uncertainty, relevant components of 

measurement uncertainty had to feature in both the methods and results section 

of the HTA report. This means that studies which mentioned measurement 

uncertainty in the introductory and/or discussion sections of the report, but where 

measurement uncertainty did not clearly feature in the study analysis, were not 

included under the banner of studies having conducted an assessment 

measurement uncertainty.   

                                            

21 A test failure relates to instances wherein no quantitative, semi-quantitative or 

qualitative result is able to be provided for a given test, due to some form of failure 
occurring during the testing pathway (e.g. insufficient sample to run the test, sample 
spillage or equipment failure). 
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2.3  Results 

All data generated from this study (including the endnote library, data extraction 

form and associated analyses) are available in the Research Data Leeds 

Repository (https://doi.org/10.5518/324). From the CRD HTA database search, 

1908 citations were retrieved and one duplicate study was subsequently 

removed. After conducting the two-stage screening process, 90 studies were 

included. Agreement between the primary and secondary reviewers during 

abstract screening was good (k=0.85)22. A further 17 studies were identified via 

checking the online records of key HTA authorities (n=10) and citation tracking 

(n=7), resulting in a total of 107 included HTA reports (see Figure 2-1). A 

summary of included study characteristics is provided in Table 2-2.  

Of the 107 identified HTAs, 71 (66%) did not evaluate measurement uncertainty 

or any of the additional components of measurement performance considered. 

Sixteen (15%) studies incorporated data on test failure rates only – for example, 

including ‘test failures’ as an item within the HTA literature review or as a 

parameter within the economic model. The isolated inclusion of test failure rates 

was considered to be of limited interest for the purposes of this review. This is 

because test failures – whilst clearly important in terms of determining the overall 

clinical performance and utility of a test – do not represent a component of 

measurement uncertainty per se, since quantification of uncertainty around a 

measurement first requires a measurement to be successfully obtained. These 

studies are therefore not included in the subsequent narrative review and are 

henceforth included under the banner of studies not addressing measurement 

uncertainty.  

 

                                            

22 Note that all discrepancies were a result of the primary reviewer being more inclusive 
than the secondary reviewer at the initial screening stage.  
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Figure 2-1. HTA systematic review: PRISMA diagram of included studies 
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Table 2-2. HTA systematic review: summary of study characteristics 

  
  

All studies (N=107) 
Studies including 

measurement uncertainty 
(n=20) 

Number % (out of 107) Number % (out of 20) 

Country         

UK 66 62% 15 75% 

Canada 17 16% 1 5% 

Australia  15 14% 3 15% 

Belgium 3 3% 1 5% 

USA 3 3% 0 0% 

Ireland 2 2% 0 0% 

Italy 1 1% 0 0% 

Disease Area         

Cancer 36 34% 8 40% 

Pregnancy care & screening 14 13% 1 5% 

Cardiology 12 11% 3 15% 

Haematology 12 11% 2 10% 

Infections 13 12% 1 5% 

Diabetes 6 6% 1 5% 

Gastroenterology 5 5% 2 10% 

Other 9 8% 2 10% 

Type of test(s) Evaluated         

Laboratory tests only 85 79% 14 70% 

POCT- clinician led 18 17% 3 15% 

POCT- self led 5 5% 3 15% 

Primary Role of Test(s)         

Diagnosis 39 36% 5 25% 

Screening  37 35% 2 10% 

Prognosis 14 13% 5 25% 

Monitoring 9 8% 5 25% 

Predictive 6 6% 2 10% 

Other 2 2% 1 5% 

Type of Evaluation         

Cost-utility 53 50% 13 65% 

Cost-effectiveness 36 34% 5 25% 
Cost-utility & cost-

effectiveness 17 16% 2 10% 

Cost-consequences 1 1% 0 0% 

Type of Economic Model         

Decision tree 48 45% 7 35% 

Cohort Markov 22 21% 4 20% 

Decision tree + Markov 17 16% 6 30% 

Patient level simulation 12 11% 2 10% 

Infectious disease/ dynamic 6 6% 1 5% 

Not reported 2 2% 0 0% 
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2.3.1 Studies including measurement uncertainty 

Twenty HTAs (19%), summarized in 22 reports (84-105), considered further 

components of measurement uncertainty (i.e. not limited to inclusion of test failure 

rates alone). The majority were UK studies (n=15, 75%), which evaluated 

laboratory tests (n=14, 70%) (Table 2-2) and were published from 2009 onwards 

(n=18, 90%) (Figure 2-2).  

Figure 2-2. HTA systematic review: frequency of HTA reports by year of 

publication and inclusion of measurement uncertainty  

Nineteen of the 20 studies assessed the specified element(s) of measurement 

uncertainty via some form of assessment prior to the economic model, henceforth 

referred to as “pre-model assessments”. Details of the methods used within these 

studies are summarised in Table 2-3.  

The majority of pre-model assessments included elements of measurement 

uncertainty within a systematic (n=13) (85-92, 96, 99-101, 104, 105) or non-

systematic (n=2) (95, 97, 98) literature review. In these cases, components of 

measurement uncertainty were typically included as an additional outcome within 

the primary HTA systematic review alongside clinical performance and/or clinical 

utility outcomes, using a single overarching search strategy (86, 89-92, 99, 101, 

104, 105). Alternatively, a handful of studies conducted a separate review for 
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measurement uncertainty (85, 87, 88, 95-98, 100). Of those, three studies applied 

an outcome-specific search filter: Pearson et al. (2010) simply combined the test 

name with the term ‘measurement’ (87); while in the MSAC (2001) study, several 

key words (‘Precision’, ‘Accuracy’, ‘Quality control’ and ‘Quality assurance’) were 

combined (85); and in the Nicholson et al. (2015) study, key MeSH terms 

(‘Accuracy’, ‘Diagnostic Errors’, ‘Sensitivity and Specificity’ and ‘reproducibility of 

results’) were combined with a title and abstract search for ‘analytic validity’ or 

‘(repeatability or reproducibility)’ (96). 

Whether or not a single or separate searches were conducted, most studies 

either did not attempt to conduct a quality assessment of the included 

measurement literature, or, when quality assessment was undertaken, used 

checklists developed for other primary purposes (e.g. QUADAS/ QUADAS-2 

[Quality Assessment of Diagnostic Accuracy Studies]; a checklist intended to 

assess the risk of bias in diagnostic accuracy studies included in a systematic 

review) (106, 107). One exception was the Nicholson et al. (2015) study, which 

used an adapted version of the Evaluation of Genomic Applications in Prevention 

(EGAPP) initiative checklist – a tool developed for the purpose of evaluating the 

internal validity of analytical validity studies (96, 108).  

A handful of pre-model assessments used alternative/additional methods to 

reviewing the literature. Two HTAs supplemented their systematic review with an 

online survey of laboratories participating in a national EQA scheme, collating 

data on test methods, logistics, technical performance and costs (95, 97, 98). In 

addition, one HTA included a primary pathology study, in which test sample data 

was used to evaluate the measurement agreement between alternative index 

tests (102); and a further study included a clinical trial to evaluate the 

measurement agreement between the same test conducted across alternative 

laboratory sites (103). Finally, two studies used individual patient-level data (IPD) 

datasets to construct statistical models describing the trajectory of test values 

over time, accounting for analytical and biological variation (91, 92).   
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Table 2-3. HTA systematic review: summary of methods used in pre-model assessments  

Study 

Test characteristics Pre-model Assessments of Measurement Uncertainty Measurement 
uncertainty 
included in 
economic 

model? 
POCT? 

Disease 
area 

Primary 
role of 

test 

Components of 
MU assessed 

Method 
(general) 

Method (details) 

Marks et al.       
2000 (UK) 
(84) 

- Cardiology Screening 
NA (no pre-model 

assessment 
conducted) 

NA 
NA (no pre-model assessment 

conducted) 
Yes 

MSAC                    
2001 (AUS) 
(85) 

POCT:     
clinician-

led 
Cardiology Prognosis 

Trueness (% bias); 
precision 

(repeatability and 
reproducibility); 
TE; analytical 
effects (site, 
operator and 
sample type) 

Systematic 
review 

 Separate search for evidence on 
measurement uncertainty (search 
strategy included an outcome search 
filter) 

 Quantitative synthesis conducted to 
derive pooled CV% and % bias 
estimates 

 Quality assessment using: (i) an 
NHMRC grading system (109) and 
(ii) a Cochrane study validity 
checklist (reference NR) 

Yes 

Gailly et al.         
2009 (BEL) 
(86) 

POCT:             
self-led 

Haematology Monitoring 

Precision 
(repeatability and 
intermediate); test 

failures 

Systematic 
review 

 Combined search for evidence on 
measurement uncertainty and clinical 
performance (searching on test 
name only) 

 Measurement uncertainty results 
were narratively synthesised 

 Quality assessment using an 
INAHTA checklist for HTAs (110) and 
the QUADAS checklist for primary 
studies (106) 

- 
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Study 

Test characteristics Pre-model Assessments of Measurement Uncertainty Measurement 
uncertainty 
included in 
economic 

model? 
POCT? 

Disease 
area 

Primary 
role of 

test 

Components of 
MU assessed 

Method 
(general) 

Method (details) 

Pearson et 
al. 2010 
(UK) (87, 
88) 

POCT:    
clinician-

led 

Gastro-
enterology 

Diagnosis 

Biological 
variability; 

distribution in 
faeces; faecal 

matrix; 
interference; 

stability; patient 
compliance; 
normal range 

Systematic 
review 

 Separate search for evidence on 
measurement uncertainty (searching 
by test name + 'measurement') 

 Measurement uncertainty results 
were narratively synthesised 

 Quality assessment stated to be 
based on Oxford Centre for 
Evidence-Based Medicine criteria 
(reference NR); however it was 
unclear if this was used for 
measurement uncertainty studies   

- 

M.A.S                  
2010 (CA) 
(89) 

- Cancer Prognosis 

Precision 
(intermediate and 
reproducibility); 

test failures 

Systematic 
review 

 Combined search for evidence on 
measurement uncertainty, clinical 
performance and utility (searching on 
test name and condition only) 

 Measurement uncertainty results 
were narratively synthesised 

 No quality assessment of 
measurement uncertainty studies 
was conducted 

- 
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Study 

Test characteristics Pre-model Assessments of Measurement Uncertainty Measurement 
uncertainty 
included in 
economic 

model? 
POCT? 

Disease 
area 

Primary 
role of 

test 

Components of 
MU assessed 

Method 
(general) 

Method (details) 

Ward et al.            
2013 (UK) 
(90) 

- Cancer Prognosis 

Precision 
(intermediate and 
reproducibility); 

trueness 
(concordance) 

Systematic 
review 

 Combined search for evidence on 
measurement uncertainty, clinical 
performance and utility (searching on 
test name and condition only) 

 Measurement uncertainty results 
were narratively synthesised 

 Quality assessment of prognostic 
studies was conducted according to 
Altman et al. (2001) (111) 

- 

Westwood 
et al. 2014 
(UK) (91) 

- Cancer Predictive 

Proportion of 
tumour cells 
needed; test 

failures 

Systematic 
review + 
survey 

 Combined search for evidence on 
measurement uncertainty, clinical 
performance and utility (searching on 
test name and condition only) 

 No measurement uncertainty studies 
were identified 

 Additional data obtained from an 
online survey of laboratories (n=31) 
participating in a UK NEQAS EQA 
scheme  

- 

Westwood 
et al. 2014 
(UK) (92) 

- Cancer Predictive 

Proportion of 
tumour cells 

needed; LOD; test 
failures 

Systematic 
review + 
survey 

 Combined search for evidence on 
measurement uncertainty, clinical 
performance and utility (searching on 
test name and condition only) 

 No quality assessment of 
measurement uncertainty studies 
was conducted 

 Additional data obtained from an 
online survey of laboratories (n=13) 

- 
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Study 

Test characteristics Pre-model Assessments of Measurement Uncertainty Measurement 
uncertainty 
included in 
economic 

model? 
POCT? 

Disease 
area 

Primary 
role of 

test 

Components of 
MU assessed 

Method 
(general) 

Method (details) 

participating in a UK NEQAS EQA 
scheme 

Farmer et 
al. 2014 
(UK) (93) 

- Diabetes Screening 
Biological and 

analytical variation 
Analysis of 

IPD 

 A longitudinal hierarchical linear 
model was constructed from IPD to 
model longitudinal test values, 
incorporating biological and 
analytical CV (further details in Table 
2-4) 

Yes 

Perera et 
al. 2015 
(UK) (94) 

- Cardiology Monitoring 
Biological and 

analytical variation 
Analysis of 

IPD 

 A longitudinal hierarchical linear 
model was constructed from IPD to 
model longitudinal test values, 
incorporating biological and 
analytical CV (further details in Table 
2-4) 

Yes 

Sharma et 
al. 2015 
(UK) (95) 

POCT:                   
self-led 

Haematology Monitoring 

Precision 
(reproducibility); 

trueness (r 
correlation 
coefficient) 

Literature 
review 

 A table of studies reporting precision 
and bias outcomes was provided, 
stated to be based on FDA 
documentation and relevant 
published papers (review methods 
NR)  

- 
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Study 

Test characteristics Pre-model Assessments of Measurement Uncertainty Measurement 
uncertainty 
included in 
economic 

model? 
POCT? 

Disease 
area 

Primary 
role of 

test 

Components of 
MU assessed 

Method 
(general) 

Method (details) 

Nicholson 
et al. 2015 
(UK) (96) 

- Cancer Diagnosis 

Precision 
(intermediate and 
reproducibility); 

trueness 
(recovery); LOB, 

LOD, LOQ; 
interference; 

linearity; range; 
pre-analytical 

effects; stability; 
test failures 

Systematic 
review 

 Separate search for evidence on 
measurement uncertainty (search 
strategy included an outcome search 
filter) 

 Measurement uncertainty results 
were narratively synthesised 

 Quality assessment of measurement 
uncertainty studies using a modified 
version of a published checklist 
(Teutsch et al. 2009) (108)  

- 

MSAC 2015 
(AUS) (97, 
98) 

- Cancer Prognosis 

Analytical 
sensitivity and 
specificity (i.e. 

selectivity) 

Literature 
review     

 A table of studies reporting analytical 
sensitivity and specificity was 
provided, stated to be based on a 
recent review of these outcomes 
(review methods NR) 

 No quality assessment of the MU 
studies was conducted 

- 

Kessels et 
al. 2015 
(AUS) (99) 

- 
Pregnancy 

care & 
screening 

Diagnosis 

Imprecision (test-
retest reliability); 

analytical 
sensitivity; test 

failures 

Systematic 
review 

 Combined search for evidence on 
measurement uncertainty and clinical 
performance (searching on test 
name and condition only) 

 Measurement uncertainty results 
were narratively synthesised 

 Quality assessment using the 
QUADAS-2 checklist (107) 

- 
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Study 

Test characteristics Pre-model Assessments of Measurement Uncertainty Measurement 
uncertainty 
included in 
economic 

model? 
POCT? 

Disease 
area 

Primary 
role of 

test 

Components of 
MU assessed 

Method 
(general) 

Method (details) 

Harnan et 
al. 2015 
(UK) (100) 

POCT:                 
self-led 

Other 
(asthma) 

i) Diagnosis 
ii) 

Monitoring 

Trueness (Bland-
Altman analysis, 

correlation 
coefficients); test 

failures 

Systematic 
review 

 Separate search for evidence on 
measurement uncertainty (searching 
on test name only)  

 Measurement uncertainty results 
were narratively synthesised 

 No quality assessment of 
measurement uncertainty studies 
was conducted   

- 

Freeman et 
al. 2015 
(UK) (101) 

- Cancer Monitoring 

Trueness (Bland-
Altman analysis, 

Deming 
regression); test 

failures 

Systematic 
review 

 Combined search for evidence on 
measurement uncertainty and clinical 
utility, (searching by test name, 
condition, and outcome) 

 Measurement uncertainty results 
were narratively synthesised 

 Quality assessment using an 
adapted version of the QUADAS-2 
checklist (107) 

- 

Stein et al.         
2016 (UK) 
(102) 

- Cancer Prognosis 
Trueness (Kappa 

statistic, 
discordance)   

Pathology 
study 

 A pathology study (n=302 samples) 
was conducted, within a wider RCT 
study, to evaluate the agreement 
between alternative tests evaluated 

Yes 

Hay et al.           
2016 (UK) 
(103) 

POCT:    
clinician-

led 

Other 
(urology) 

Diagnosis 
Trueness (Kappa 

statistic); test 
failures 

Clinical study 

 Within a prospective diagnostic 
cohort study, tests with sufficient 
samples (n=4808) were analysed at 
both a central research laboratory 
and NHS laboratory, to assesses 
concordance 

- 
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Study 

Test characteristics Pre-model Assessments of Measurement Uncertainty Measurement 
uncertainty 
included in 
economic 

model? 
POCT? 

Disease 
area 

Primary 
role of 

test 

Components of 
MU assessed 

Method 
(general) 

Method (details) 

Freeman et 
al. 2016 
(UK) (104) 

- 
Gastro-

enterology 
Monitoring 

Trueness (Bland-
Altman analysis, 
Cohen's Kappa); 

test failures 

Systematic 
review 

 Combined search for evidence on 
measurement uncertainty, clinical 
performance and clinical utility 
(searching by test names, condition, 
and general outcome terms) 

 Measurement uncertainty results 
were narratively synthesised 

 Quality assessment using an 
adapted version of the QUADAS-2 
checklist (107) 

- 

Auguste et 
al. 2016 
(UK) (105) 

- 
Infection 

(TB) 
Diagnosis 

Trueness (Kappa 
statistic, 

discordance); test 
failures 

Systematic 
review 

 Combined search for evidence on 
measurement uncertainty and clinical 
performance (searching by test name 
and condition only)  

 Measurement uncertainty results 
were narratively synthesised 

 Quality assessment of clinical 
performance studies using the 
QUIPs tool (112) 

- 

AUS = Australia; BEL = Belgium; CA = Canada; CV = coefficient of variation; EQA = external quality assessment; FDA = U.S Food and Drug Administration; LOB = limit 
of blank; LOD = limit of detection; LOQ = limits of quantification; M.A.S = Medical Advisory Secretariat; NA = not applicable; NEQAS = National EQA Service (UK); 
NHMRC = (Australian) National Health and Medical Research Council; NR = not reported; POCT = point of care test; QUADAS = Quality Assessment of Diagnostic 
Accuracy Studies; QUIPs = Quality In Prognosis Studies; TE = total error; UK = United Kingdom.  
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Further to the identified pre-model assessments, five studies incorporated 

measurement uncertainty within the economic model itself (84, 85, 93, 94, 102). 

These reports are summarised in Table 2-4 and outlined below. Further 

discussion of these studies is provided in section 2.4. 

The earliest of these studies, Marks et al. (2000), was the only HTA to consider 

measurement uncertainty in the economic model alone (i.e. without an 

accompanying pre-model assessment) (84). In this study, a measure of analytical 

and biological variation (CV%) was taken from a single published article, and 

used within the model as an estimate of the test’s false negative rate. In the 

MSAC (2001) study, meanwhile, a more complex simulation process was used 

in which the addition of TE (derived from the HTA systematic review) was 

iteratively applied to baseline “true” test values (sampled from national survey 

data), with the resulting probability of disease misclassifications calculated for 

four levels of TE (0%, 4%, 8% and 11%) (85). The associated misclassification 

rates were then applied within the model to assess the cost-effectiveness of the 

index test at the varying TE levels.  

Of the more recent model-based assessments, both the Farmer et al. (2014) and 

Perera et al. (2015) HTAs included statistical modelling of IPD datasets to 

estimate the longitudinal trajectory of test values, accounting for analytical and 

biological variation (93, 94). These statistical models subsequently formed the 

foundation of the economic decision models used in each study to assess the 

cost-effectiveness of repeated-testing strategies.  

Finally, in the most recent study – Stein et al. (2016) – a pathology sub-study was 

conducted to assess the concordance between multiple alternative index tests 

(102). Within this analysis, the primary test under evaluation (Oncotype DX 

[ODX]) was used as the reference test, against which a series of competitor tests 

were assessed. In the subsequent economic model, the predictive utility of ODX 

was set equal to that observed in a previous clinical trial; the alternative tests 

were then evaluated by applying added uncertainty to the ODX level of predictive 

utility, proportional to the level of discordance observed in the pathology sub-

study.  
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Table 2-4. HTA systematic review: summary of methods used in economic model assessments 

Study 

Model details Assessment of measurement uncertainty 

Tests 
evaluated 

Type of 
model 

Base case results 
Components 

included 
Source of 
evidence   

Value(s) used Method of incorporation 
Impact on cost-
effectiveness 

results 

Marks 
et al.       
2000 
(UK) 
(84)  

Screening test 
for hyper-
cholesterol-
aemia 
(universal, 
opportunistic & 
case finding 
strategies) 

Decision 
Tree 

Cost per LYG: 
£14,842 - £78,060 
(universal 
strategies); £21,106 
- £70,009 
(opportunistic 
strategies); £3,300 - 
£4,914 (case finding 
strategies). 

Biological and 
analytical 
variation 

Individual 
cited paper 
(no formal 
review 
conducted)  

Base case: co-
efficient of 
biological and 
analytical 
variation = 
6.5%. 

Rate of false negatives in the model 
set equal to the reported coefficient of 
biological and analytical variability.  

Not assessed  

MSAC                    
2001 
(AUS) 
(85) 

Cholesterol 
screening 
POCT for 
coronary heart 
disease (vs. 
standard 
laboratory test) 

Decision 
Tree 

Incremental cost per 
LYG: AUS$133,934.  

TE                                    
(% bias + 
1.96*%CV) 

Systematic 
review. 
Calculation 
used average 
of reported 
CV's and total 
% biases.  

Base case: TE 
= 8%. 
Sensitivity 
analysis: TE = 
0%, 4%, 11%. 

10,0000 Monte Carlo simulations: (i) 
patients assigned a 'true' cholesterol 
level based on population survey 
data; (ii) two observed results 
generated based on CI of +/- 8% (i.e. 
TE); (iii) diagnosis based on average 
of the two results against threshold of 
6.5 mmoL/L; (iv) probability of 
misclassifications based on weighted 
average across cholesterol range 
assessed (2.5 – 9.4 mmol/L).  

Incremental cost 
(AUS$) per LYG: 
$101,419 (TE=0%); 
$115,615 (TE= 4%); 
$151,378 
(TE=11%). Cost-
effectiveness 
threshold = 
$100,000 per LYG. 
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Farmer 
et al.      
2014 
(UK) 
(93) 

Screening test 
(ACR) for 
kidney disease 
in diabetes 
patients (1, 2, 
3, 4 and 5-
yearly 
intervals). 

Individual 
patient 
simulation 

Incremental cost per 
QALY (2-year vs. 1-
year screening): 
£9,601 (Type 1 
diabetes; SD = 
34,112); £606 (Type 
2 diabetes; SD = 
1,782).  

Biological and 
analytical 
variation 

Retrospective 
analysis of 
longitudinal 
IPD 
databases 

Estimated SD 
of variability: 
Type 1 
diabetes = 0.79 
(95% CI 0.73 
to 0.86); Type 
2 diabetes =  
0.85 (0.74 to 
1.00). Both  
correspond to 
>100% CV.  

A longitudinal hierarchical linear 
model for log ACR was constructed 
from the IPD. Individual simulations 
as follows: (i) a representative 
population (n=75,000) was generated; 
(ii) baseline log ACR and progression 
rates simulated and used to calculate 
annual true log ACR values post-
diagnosis; (iv) observed ACR values 
derived by adding biological & 
analytical variation to the true ACR 
values; (v) clinical performance 
determined using gender-specific 
threshold values.   

Not assessed  

Perera 
et al.      
2015 
(UK) 
(94) 

Lipid 
monitoring 
tests for 
patients at risk 
or with 
cardiovascular 
disease. 

Individual 
patient 
simulation 

Annual monitoring 
dominated (was less 
costly and more 
effective than) all 
other strategies.  

Biological and 
analytical 
variation 

Retrospective 
analysis of 
longitudinal 
IPD 
databases 

Estimated SD 
of variability 
across tests: 
0.12 - 0.35 
(male 
population); 
0.14 - 0.37 
(females).   

Same method as above [longitudinal 
regression of IPD + individual 
simulations to model impact of 
progression and biological and 
analytical variation over time].  

Not assessed  

Stein 
et al.         
2016 
(UK) 
(102) 

ODX (+ 
additional 
tests) to guide 
use of adjuvant 
chemotherapy 
in breast 
cancer patients 
(vs. 
chemotherapy 
for all).  

Decision 
tree + 
cohort 
Markov 
model 

Net Health Benefit 
(QALYs) for tests 
vs. chemotherapy 
for all: 6.99 QALYs 
(ODX); 7.16 - 7.20 
(alternative tests).  

Test 
discordance 

De novo 
clinical 
pathology 
study 

Kappa 
statistics for 
tests vs. ODX: 
0.40 - 0.53. 
Agreement 
with ODX 
ranged from all 
tests agreeing 
in 39% of 
cases, to no 
test agreeing in 
4% of cases.  

Predictive effect of ODX for 
recurrence-free survival in the model 
was derived from a historic ODX 
clinical trial. For the alternative tests, 
extra uncertainty was introduced in 
the model according to the degree of 
discordance for each test vs. ODX. 
Tests were only included in the model 
if they met inclusion criteria, including 
a requirement of “sufficient evidence 
of analytical validity in support of an 
achievable rollout into routine care in 
the NHS”. 

Not assessed 

ACR = Albumin-to-creatinine ratio; AUS = Australia; CI = confidence interval; CV= coefficient of variation; IPD = individual patient data; LYG = life year gained; ODX = Oncotype DX; POCT = point of care 
test; QALY = quality-adjusted life year; SD = standard deviation; TE = total error; Net Health Benefit (QALYs) = Incremental QALYs - (Incremental costs/ cost-effectiveness threshold); UK = United Kingdom.  
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2.4 Discussion 

2.4.1 Review findings 

The findings of this review verify the introductory claim that measurement 

uncertainty has not, to date, been routinely considered within HTAs of in-vitro 

tests: of 107 identified HTAs, most either did not assess measurement 

uncertainty (n=71, 66%), or only considered test failure rates (n=16, 15%). 

Nevertheless, despite limited guidance in this area, assessment of test 

measurement uncertainty was attempted in a minority of HTAs (n=20; 19%), 

indicating that such analyses are feasible. Indeed the inclusion of measurement 

uncertainty appears to be a predominantly recent phenomenon: of those studies 

which addressed measurement uncertainty, 75% (n=15) were published in the 

last 5 years alone (2012-2017), making up 30% (15/50) of the total HTAs over 

this time period (Figure 2-2). Although identification of the reasons driving the 

inclusion of measurement uncertainty within HTAs was beyond the scope of this 

review, the observation of this recent trend is encouraging.  

The majority of identified HTAs including measurement uncertainty did so via 

some form of pre-model assessment (n=19; 95%). The typical method was to 

include aspects of measurement uncertainty within the primary literature review, 

using one overarching search strategy to identify evidence on multiple outcomes 

(e.g. measurement uncertainty and clinical performance). Although this approach 

is efficient in terms of utilising a single search, it nevertheless requires the use of 

a sensitive (and likely non-specific) search strategy, in order to ensure that 

studies reporting on separate outcomes are identified – for example, searching 

on the test name +/- the clinical condition alone. An alternative approach, taken 

in three of the identified studies, was to conduct a separate review for 

measurement uncertainty applying an outcome-specific search filter (85, 87, 96). 

The concern here is whether or not the adoption of such filters can safely improve 

the efficiency of the overall review whilst maintaining high sensitivity. As of yet, 

this question does not appear to have been addressed within the methodology 

literature.  

There are two further notable aspects relating to the conduct of systematic 

reviews of measurement uncertainty, for which there is a clear lack of current 
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consensus and/or guidance. First, the evaluation of review findings has thus far 

been limited to narrative syntheses. Only one of the identified studies attempted 

to conduct a quantitative analysis, basing pooled estimates of imprecision and 

bias on simple arithmetic means of the individual study values identified (85). 

Whether or not more sophisticated methods of quantitative synthesis may be 

warranted or feasible for measurement uncertainty outcomes is currently unclear. 

Second, in the handful of studies where quality assessment of the measurement 

literature was attempted, only one applied a tool specifically intended for this task 

(the EGAPP checklist) (108). Several other related quality and reporting 

frameworks are available in the literature, including: BRISQ [Biospecimen 

Reporting for Improved Study Quality]; STROBE-ME [Strengthening the reporting 

of Observational studies in Epidemiology-Molecular Epidemiology]; and 

RIPOSTE [Reducing IrreProducibility in laboratory STudiEs]) (113-115). The 

reason for the lack of uptake of these tools is unclear: it may be due to a lack of 

awareness or understanding as to which tool(s) to apply within the HTA 

community, or a lack of direct applicability of these tools to the HTA context.  

A small minority of HTAs (n=5, <5%) included data on test measurement 

uncertainty within the economic model. Of those, the most recent study by Stein 

and colleagues (2016) was not a direct attempt to account for measurement 

uncertainty, but rather the authors here utilised data on between-test discordance 

for a group of prognostic tests, as a means of evaluating additional tests in the 

economic model for which no prognostic utility data was available (102). This 

approach presents an interesting means of evaluating additional tests, which at 

least recognises the fact that measurement discrepancies do impact on clinical 

performance. Nevertheless, meaningful assessment of this impact requires 

knowledge of patients’ true clinical status, in order to ascertain if diagnostic/ 

prognostic classification changes resulting from measurement differences should 

be considered appropriate or inappropriate. The approach adopted herein, 

therefore, should only be considered in the absence of clinical performance or 

utility data, with the results interpreted with due caution.       

The Marks et al. (2000) HTA similarly oversimplified the relationship between 

measurement uncertainty and clinical outcomes, this time in relation to a 

diagnostic biomarker (84). Here the authors set the proportion of false negative 
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results in the model equal to a given level of biological and analytical variability 

(CV%). This approach (similar to the Stein et al. (2016) HTA) fails to account for 

the fact that clinical performance depends on three factors: the true distribution 

of test values, the placement of diagnostic/decision threshold(s), and 

measurement uncertainty. This means that applying 10% imprecision to a healthy 

population distribution, for example, will result in different numbers of false 

positive cases depending on the exact distribution of test values in relation to the 

diagnostic cut-off threshold. As such, one cannot draw conclusions regarding the 

level of clinical performance achieved with a given test based on measurement 

uncertainty data alone: data on the underlying true distribution of measurand 

values to which the measurement uncertainty is applied, and the position of any 

clinical decision thresholds, is also required.  

In contrast to above, the approach taken in the MSAC (2001) HTA (which 

evaluated a cholesterol screening POCT for coronary heart disease) correctly 

accounted for this relationship. In this study, “true” test values were first assigned 

(based on a distribution observed in a published national survey), and ‘measured’ 

test values (i.e. including measurement uncertainty) were simulated assuming a 

95% confidence interval (CI) of +/- 8% around the “true” test value (i.e. TE = 8%). 

For each “true” cholesterol level, the simulation was repeated 10,000 times and 

the probability of an incorrect classification at each cholesterol level (and 

subsequently across the total population distribution) was determined. The 

essential advantage of this approach is that, by first sampling baseline “true” 

values and subsequently simulating error on top of these values, one can 

determine the proportion of test values incorrectly pushed above (or below) the 

test’s diagnostic cut-off threshold, and thereby calculate clinical performance for 

a given level of measurement uncertainty. Nevertheless, there are limitations with 

the approach taken in this study with respect to the data used to inform “true” test 

values (which will likely be subject to high baseline levels of measurement 

uncertainty); and the use of TE to inform CIs (since bias would be expected to 

act in one direction only).  

The MSAC HTA is of further interest, due to the fact that it was the only study 

identified which explored the impact of increasing measurement uncertainty (in 

this case, in the form of TE) on cost-effectiveness (i.e. rather than simply 
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accounting for a baseline level of measurement uncertainty as in the other 

economic evaluations). Here the authors found that, whilst variation in TE was 

not expected to alter the overall decision uncertainty (since all results remained 

above the specified AUS$100,000 cost-effectiveness threshold), it was expected 

to have a significant impact on the base case results (resulting in a 24% drop 

from $133,934 to $101,419 per life year gained when reducing TE from 8% to 

0%). This example therefore clearly illustrates the potential impact that varying 

measurement uncertainty can have on outcomes.   

The final two studies, Farmer et al. (2014) and Perera et al. (2015), also simulated 

the addition of uncertainty on top of “true” baseline values; in this case accounting 

for the impact of uncertainty within repeated testing scenarios, based on 

regression analysis of longitudinal IPD (93, 94). Although the impact of varying 

measurement uncertainty was not explored in these analyses (rather a single 

level of analytical and biological variation was applied to the underlying “true” test 

values), it is possible that a similar approach to that taken in the previous MSAC 

HTA could also be applied within evaluations of repeated test strategies or 

monitoring scenarios. Whilst such analyses would likely impart a higher 

computational burden (since iterative simulations would need to be run over a 

series of test values), this is increasingly feasible with the availability of high level 

performance computing.  

2.4.2 Limitations 

The scope of this review was limited to HTA reports including an economic 

decision model. It is expected that additional findings of interested may have been 

retrieved if a broader perspective had been adopted, for example considering: (a) 

any form of HTA, with or without an economic evaluation and including both 

within-trial and model-based economic analyses; and/or (b) other forms of 

evidence which could inform healthcare decision making, such as stand-alone 

literature reviews, clinical trials and cost-effective analyses. The aim of this 

review, however, was to determine how measurement uncertainty has been 

considered at the test adoption and reimbursement decision point. The remit was 

therefore limited to HTAs so as to focus on gold standard technology 

assessments most likely to have directly informed technology adoption decisions. 

The further restriction to studies including an economic evaluation was taken so 
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as to provide a pragmatic and overarching review of both clinical and economic 

HTA components; whilst the exclusion of trial-based economic analyses was 

based on the reasoning that direct (i.e. trial-based) assessments of the impact of 

measurement uncertainty on outcomes are expected to be extremely rare in light 

of pragmatic and ethical concerns associated with such analyses (previously 

highlighted in section 1.2.5).  

The identification of HTA reports within this review was based primarily on a 

search of the CRD HTA database. There are two key limitations to note with 

respect to this database. First, although the CRD HTA database is the only 

database currently available which provides a collation of international HTA 

reports, it does not necessarily provide a complete account of HTA activities. It 

can be seen from the search results, for example, that few HTA reports were 

identified from the USA, which does not appear to reflect the number of economic 

evaluations undertaken there (in particular by key authorities such as the Agency 

for Healthcare Research and Quality (AHRQ)). It is expected that relevant 

activities from the AHRQ in particular have been excluded from this review due 

to them being published as a series of separate analyses (i.e. a systematic review 

report followed by a separate economic evaluation report) as opposed to a single 

unified HTA report. This reiterates the previous assertion that broadening the 

scope to include individual literature reviews and economic evaluations, may 

have identified further relevant findings. In particular, it should be noted that one 

of the only HTA test evaluation frameworks produced to date that has specified 

the need to review evidence on analytical performance (the EGAPP framework), 

was produced from the USA (108); broadening the scope of the review to ensure 

USA activities were captured, may therefore have identified further studies 

evaluating test analytical performance. Nevertheless, the EGAPP framework 

does not address the question of how to assess the potential impact of 

measurement uncertainty on clinical performance or cost-effectiveness outcomes 

– rather it provides piecewise guidance on appropriate methods for evaluating 

the quality of evidence on analytical performance, clinical performance and cost-

effectiveness separately. It is likely therefore that any assessments of 

measurement uncertainty triggered by this guidance will have been limited to the 
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type of pre-model assessments identified in this study (i.e. literature reviews), 

rather than any novel model-based assessments.  

A second potential limitation with the CRD HTA database concerns the fact that 

HTA reports uploaded onto this database do not undergo any process of quality 

assessment or critical appraisal, and no attempt was made to conduct such an 

assessment in this study. Nevertheless, all of the items included on the CRD 

database were HTA reports conducted by INAHTA members and other 

recognized HTA organizations: as such, this database represents a principle 

resource for international HTAs expected to directly influence regional and 

national healthcare decisions, and should reflect best practice test evaluation 

methodologies. In addition, since the goal of this review was not to inform clinical 

guidelines, but rather to assess the state-of-play in terms of HTA methodology, 

the quality of the included studies (albeit expected to be high in general) is of 

secondary relevance.   

A further limitation with this review concerns the fact that not all screening and 

data extraction was independently checked by a second reviewer. Instead, a 

pragmatic review process was adopted, wherein all initial screening and data 

extraction was conducted by the primary reviewer and a subset of 10% of records 

in each case was independently checked by the secondary reviewer. Note that 

with respect to the abstract screening, all disagreements between the two 

reviewers resulted from the primary reviewer being more cautious (i.e. inclusive) 

than the secondary reviewer, with all of the additional abstract inclusions being 

excluded upon full text reviewing. In addition, none of the disagreements in this 

case were considered to require further clarification of the inclusion criteria, and 

therefore no further abstract checking was deemed necessary23. Similarly for the 

data extraction check, no disagreements were identified and the 10% check was 

therefore deemed sufficient. Whilst this approach should have ensured that 

issues within the review process were identified and corrected, it is possible that 

some screening and extraction errors may have gone undetected.  

                                            

23 Had any disagreements resulted in an amendment of the inclusion criteria, a further 
10% check of abstract screening would have been conducted.  
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A final limitation with this review concerns the fact that, at the time of writing this 

thesis (March 2020), the searches undertaken for this review were three years 

old. It is likely that several studies published since March 2017 will have 

incorporated elements of measurement uncertainty and would therefore be of 

interest. However, given that HTA guidelines have remained largely unchanged 

since 2017, it is not expected that there will have been any meaningful shift in the 

methods used to assess measurement uncertainty in this context, and the results 

of this study should therefore remain valid.  

2.5 Summary 

 This study has verified the introductory claim that measurement 

uncertainty has not, to date, been routinely considered within HTAs of in-

vitro tests (i.e. the findings support hypothesis A).  

 In the minority of identified HTAs that did include measurement 

uncertainty, most consisted of a narrative review of the measurement 

literature in which the potential influence of measurement uncertainty on 

outcomes was not considered.  

 Five of the identified HTAs included measurement uncertainty within the 

economic model itself; however of those, only one study explored the 

impact of increasing measurement uncertainty on cost-effectiveness 

outcomes. Whilst a potentially useful simulation approach was identified 

from this study, little can be concluded on the basis of a single example.  

Given the paucity of applications identified in this review, a methodology 

review – reported in Chapter 3 – was conducted to explore methods used in 

the broader literature to assess the impact of measurement uncertainty on 

outcomes.   
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Chapter 3  

Indirect methods for evaluating the impact of test 

measurement uncertainty on clinical and economic 

outcomes: a methodology review 

3.1 Chapter outline 

In Chapter 2 a systematic review was conducted to identify methods applied 

within HTAs to evaluate test measurement uncertainty. The findings confirmed 

the hypothesis that the impact of measurement uncertainty on clinical and health-

economic outcomes has rarely been considered within HTAs to date. It is likely, 

however, that this topic has been considered elsewhere – in particular within the 

laboratory sciences community within the context of deriving outcome-based 

APS (see Chapter 1, section 1.2.5). The aim of this chapter, therefore, was to 

conduct a methodology review to identify studies using indirect methods (i.e. 

excluding purely empirical, clinical-trial-style analyses) to assess the impact of 

measurement uncertainty on downstream clinical and health-economic 

outcomes. This study addressed hypothesis B of the thesis: that methods for 

assessing the impact of measurement uncertainty on outcomes have been used 

in the broader literature (e.g. in laboratory medicine studies). The review methods 

are first outlined in section 3.2, followed by the study findings (section 3.3), 

discussion (section 3.4) and summary (section 3.5).  

The work presented in this chapter has also been published as part of a jointly-

authored peer-reviewed publication in Clinical Chemistry (Smith AF et al. [2019]) 

(2).    

3.2 Methods 

A methodology review was conducted to identify indirect studies assessing the 

impact of test measurement uncertainty on clinical and economic outcomes. This 

review addresses hypothesis B of the thesis: that methods for assessing the 

impact of measurement uncertainty on outcomes have been used in the broader 

literature (e.g. in laboratory medicine studies) (see section 1.5.3). The restriction 

to indirect methods of assessment (i.e. excluding purely empirical analyses, such 

as clinical trial-based assessments) was set for two primary reasons. First, from 
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a pragmatic standpoint, direct assessments are expected to be rare due primarily 

to ethical barriers associated with this form of analysis. The deliberate exploration 

of measurement errors on downstream clinical outcomes, for example, would not 

be expected to pass current ethical review standards. Second, in the context of 

exploring methods for use in HTA-style assessments, it is expected that 

simulation-based approaches to evaluating the impact of measurement 

uncertainty on outcomes would be easier to integrate within model-based health-

economic evaluations, as frequently used within HTAs.    

The review consisted of two key components: (i) a central database search, which 

aimed to identify contemporary methods of analysis published in the last 10 

years; and (ii) extensive citation tracking of included studies, published on any 

date, to identify key seminal papers informing modern practices. The central 

database search was conducted in November 2017 across four databases: 

Embase, Ovid Medline(R), Web of Science (core collection) and Biosis Citation 

Index. Based on the advice of an experienced information specialist, these 

databases were chosen to provide coverage of a wide cross-section of clinical 

and laboratory journals expected to be the primary contributors of relevant 

studies. The database searches focused on identifying relevant material across 

these four databases over a pragmatic 10-year period: from January 2008 to 

November 2017. A subsequent update of the searches was conducted in March 

2019 (covering the period January 2008 to March 2019). The central 10-year 

search was then supplemented with extensive citation checking to ensure that 

any key methods missed in the database searches would be identified. This 

included: (a) backwards citation checking (in which the bibliographies of included 

studies were electronically checked) and (b) forwards citation checking (in which 

subsequent studies referencing the included studies were electronically 

checked).  

The database search strategies (provided in Appendix G) were developed via 

consultation with expert information specialists. The searches combined key 

terms relating to: (i) in-vitro tests; (ii) measurement uncertainty and related 



 
 

59 

 

performance metrics (including biological variation and quantification limits)24; 

and (iii) simulation/ methodology identifiers. All identified records were managed 

using Endnote V 7.2 (Thompson Reuters). 

Included studies were required to meet the criteria listed in Table 3-1. In 

particular, studies had to incorporate or evaluate the impact of test measurement 

uncertainty on downstream outcomes (including clinical performance, clinical 

utility, costs and/or cost-effectiveness) using indirect methods of assessment (i.e. 

excluding purely empirical-based analyses, such as RCTs). Note that studies 

using indirect methods at any stage of the analysis were eligible for inclusion. 

This means that several method-comparison studies (an essentially empirical 

study design, in which the agreement between index and reference test 

measurements is assessed) were included when an indirect method was applied 

to assess the impact of identified measurement discrepancies on one of the listed 

outcomes (such as in error grid analyses, discussed in section 3.3.3). The 

following studies were excluded from the review: animal (i.e. non-human) studies; 

studies not evaluating an in-vitro test or device (e.g. pharmacological studies); 

studies evaluating non-clinical or non-cost outcomes; studies conducting a direct 

assessment of the impact of measurement uncertainty on outcomes (i.e. clinical 

trial-based analyses); studies not reporting an original analysis (e.g. reviews and  

editorials); and non-English language studies.  

A two-stage screening process – consisting of initial title/abstract screening, 

followed by full-text screening – was conducted by the primary reviewer (Smith 

AF). Uncertainties regarding final inclusions were resolved via discussion with the 

study secondary reviewers (Shinkins B, Messenger MP, Hulme CT and Hall PS). 

A data extraction table (including details relating to the study and test 

characteristics, outcomes and method of assessment) was constructed and 

piloted on the first 10% of included studies. Subsequent full data extraction of 

included studies was conducted by the primary reviewer, with each study double-

checked by one of the four secondary reviewers. Any disagreements with regards 

                                            

24 Note that these related measurement performance metrics were included in the search 

strategy as possible identifiers for studies including measurement uncertainty. To be 
included in the review, studies had to include assessment of measurement 
uncertainty as defined in Table 3-1.  
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to data extraction were resolved via group consensus. The findings of the review 

were narratively synthesised. No formal quality assessment of identified methods 

was conducted, due to the fact that no relevant quality appraisal checklists 

currently exist in this setting.  
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Table 3-1. Methodology review: inclusion criteria 

Population Any human population with any indication 

Intervention 

In-vitro test or device (including medical laboratory tests and 

POCTs; excluding imaging) used for the purpose of 

screening, diagnosis, prognosis, monitoring or predicting 

treatment response 

Comparator Any 

Outcomes 

(a) Clinical performance e.g.:  

- Diagnostic sensitivity and/or specificity 

- Positive/negative predictive values 

- ROC curve/ AUC analysis 

- Likelihood ratios 

(b) Clinical utility: 

- Impact on treatment management decisions 

- Impact on patient health outcomes 

(c) Costs 

(d) Cost-effectiveness 

Method 

Analysis includes indirect methods (i.e. excluding purely 

empirical analyses) to incorporate or assess the impact of one 

or more components of measurement uncertainty (below) on 

one or more outcomes (above):  

- Bias  

- Imprecision  

- Pre-analytical or analytical effects 

- Summary metrics (e.g. total error [TE] or 

uncertainty of measurement [UM]) 

Study type Full paper relating to an original study 

Language Full text in English 

Year of 

publication 

Database search: January 2008 – March 2019 

Citation tracking: any date  

ROC = Receiver operator characteristic; AUC = Area under the curve  
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3.3 Results 

3.3.1 Study characteristics 

From the initial database searches 1709 citations were retrieved, followed by a 

further 362 citations from the review update. After conducting the two-stage 

screening process, 26 studies were included from the database searches. A 

further 56 studies (25 of which were published prior to 2008) were identified via 

citation checking, resulting in a total of 82 included studies (see Figure 3-1). At 

the data extraction checking stage, 35 papers (43%) were checked by Shinkins 

B; 16 (20%) by Hulme CT; 16 (20%) by Messenger MP; and 15 (18%) by Hall 

PS. Agreement between reviewers across extraction items was >99%25.  

A summary of the included study characteristics is provided in Table 3-2, and 

details of the measurement uncertainty components included and outcomes 

evaluated are provided in Table 3-3. The majority of studies focused on 

evaluating technologies used for the purposes of monitoring (n=44, 54%), 

diagnosis (n=24, 29%) and/or screening (n=11, 13%). Imprecision was most 

commonly addressed (n=50, 61%), followed by bias (n=39, 48%) and total error 

(n=26, 32%), and studies primarily evaluated clinical performance outcomes 

(n=45, 55%).  

                                            

25 This statistic is calculated based on the fact that there were 10 data items listed in the 

data extraction table, across 82 papers, giving a total of 820 data extraction items. 
Seven disagreements were identified within the data extraction check, giving an 
agreement rate of >99% (813/820). 
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Figure 3-1. Methodology review: PRISMA diagram 
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Table 3-2. Methodology review: study characteristics 

 Number % (out of 82) 

Year of publication 

Pre-2008 (identified via citation 
tracking alone) 

25 30% 

2008 – 2009  3 4% 

2010 – 2011 7 9% 

2012 – 2013 9 11% 

2014 – 2015  18 22% 

2016 – 2017  13 16% 

2018 – 2019 7 9% 

Clinical areaa 

Diabetes & glycaemic control 43 52% 

Cardiovascular diseases  17 21% 

Cancer 10 12% 

Metabolic & endocrine disorders 8 10% 

Kidney disorders 3 4% 

Prenatal screening 3 4% 

Noise induced hearing loss 2 2% 

Role of testa 

Monitoring 44 54% 

Diagnosis 24 29% 

Screening 11 13% 

Prognosis 7 9% 

aSeveral studies included a test or tests used in multiple clinical areas or roles 

(hence total percentages under these categories sum to >100%).  

 

  



 
 

65 

 

Table 3-3. Methodology review: components of measurement uncertainty 
included and outcomes assessed 

 Number % (out of 82) 

Component(s) of measurement uncertainty includeda 

Imprecision: 

Analyticalb 31 38% 

Pre-analyticalc / combined pre-analytical and 

analytical 
8 10% 

Non-specificd 11 13% 

Total 50 61% 

Bias: 

Analyticalb 18 22% 

Calibration biase 9 11% 

Non-specificd 9 11% 

Pre-analyticalc / combined pre-analytical and 
analytical 

2 2% 

Between-method biasf 1 1% 

Total 39 48% 

Total error: 

Method-comparison studyg 18 22% 

EQA studyh 2 2% 

Other 6 7% 

Total 26 32% 

Biological variationi included? 

Yes - included as a separate element 13 16% 

Yes - combined with imprecision 5 6% 

Total 18 22% 

Primary test outcome assesseda 

Clinical performance 45 55% 

Clinical utility: 

Impact on treatment management 23 28% 

Impact on health outcomes 13 16% 

Costs 7 9% 

Cost-effectiveness 2 2% 

a Several studies included multiple components of measurement uncertainty or assessed multiple 
test outcomes (hence total percentages under these categories sum to >100%). 
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b Analytical bias or imprecision, relates to bias or imprecision occurring at the point of sample 
analysis (see section 1.2.2 and Appendix B.2). 
c Pre-analytical bias or imprecision, relates to bias or imprecision occurring prior to the point of 
sample analysis (see section 1.2.2 and Appendix B.2). 
d Non-specific bias or imprecision, relates to bias or imprecision which has not been clearly 
specified as either analytical or pre-analytical in the associated study.  
e Calibration bias relates to bias resulting from the process of assay calibration (see section 1.2.2 
and Appendix A). 
f Between-method bias relates to systematic differences in measurement resulting from the use of 
different assay methods (e.g. different manufacturer assays or test platforms), typically estimated 
using a method comparison study (see below). 
g Method comparison study refers to any study which aims to determine if two methods for 
measuring the same measurand are equivalent. Typically the assessment of equivalence is based 
on the comparison of paired measurements (e.g. split samples analysed using two different assays 
of interest), using statistical methods of analysis such as regression analysis or Bland-Altman plots 
(see Appendix B.1) to determine the level of between-method bias and variability. 
h EQA (External Quality Assessment) study refers to any study conducted as part of a regional, 
national or international EQA scheme, wherein the aim is to determine between-laboratory and/or 
between-method comparability using samples of external origin (i.e. samples distributed to each 
participating laboratory, as opposed to patient samples).  

3.3.2 Aim of analyses 

Most of the identified evaluations were conducted with the objective of either: (i) 

determining or informing APS (116-134); (ii) exploring the impact of uncertainty 

allowed by current APS (135-146); or (iii) evaluating the potential impact of 

measurement uncertainty on outcomes (without explicitly defining or mentioning 

APS) (147-190). A final group of studies consisted of “incidental” analyses, in 

which the impact of measurement uncertainty on outcomes was incorporated 

within the analysis but was not part of the primary study aim (191-197). 

3.3.3 Methodology framework 

A data extraction summary table, detailing the methods used within each 

individual study identified from the methodology review, is provided within 

supplemental table accompanying the publication of this study (2). Although there 

was variation across the included studies in terms of specific methods adopted, 

a common analytical framework underpinning the various approaches was 

identified. This framework consists of three fundamental steps: 

1. calculation of the “true” test values;  

2. calculation of the measured test values (i.e. incorporating measurement 

uncertainty); and  

3. calculation of the impact of differences between (1) and (2) on the 

outcome(s) under consideration.  
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A high-level summary of the methods adopted within this analytical framework 

across the range of studies identified is provided in Figure 3-2 below, followed by 

a detailed narrative review.   



 
 

68 

 

 

Figure 3-2. Methodology review: summary of the three-step analytical framework 
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1. Step one: calculation of “true” test values 

The first step within the framework is to calculate “true” measurand values for the 

test under assessment. Across the included studies, “true” values were based 

either on empirical and/or simulated data.  

Studies using empirical data here included method comparison and EQA studies, 

which based both the “true” and measured values on empirical data, but used an 

indirect method to determine the impact of between-method measurement 

discrepancies on the specified outcome in Step 3 (for example using the “error 

grid” approach, outlined in Step 3) (147, 149, 153, 154, 163, 165, 168-170, 172, 

176, 178-181, 183, 187, 190). Alternatively, several studies based “true” test 

values on empirical data, but used various non-empirical approaches to derive 

measured test values in Step 2 (including studies using the graphical, simulation 

or regression-based methods, outlined in Step 2) (117, 119, 121-123, 130, 133, 

138, 142-144, 146, 148, 151, 152, 157, 160-162, 164, 173, 189, 197).  

Of those studies using simulation methods, the simplest approach was to assume 

a fixed set26 of individual “true” values specified along the measurement range, 

with uncertainty simulated around these individual points in Step 2 (124, 128, 

139, 145, 148, 150, 191, 195, 196). A handful of studies instead simulated “true” 

values from a specified parametric distribution for a given population: most 

frequently using the uniform distribution (126, 129, 131, 156, 167); or the 

Gaussian or log-Gaussian distribution (116-118, 120, 125-127, 132, 158, 159, 

171, 175, 177). Other parameterisations included mixed Gaussian distributions 

(166, 174), multivariate Gaussian distributions (where data on between-test 

correlations was available) (155), and the exponential distribution (194). Non-

parametric simulation approaches were also used, whereby test values were 

randomly sampled with replacement from an empirical dataset (i.e. bootstrap 

sampling) (130, 142). A final set of studies appeared to base “true” values on 

some form of simulation (or findings from a previous simulation study), but 

reported incomplete details of the data or method used (134-137, 182, 185-188).   

                                            

26 Whilst this approach does not require any simulation for the “true” measurements per 

se, the values here are nevertheless generated rather than using real-world data 
directly. 
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2. Step two: calculation of measured test values (incorporating 

measurement uncertainty) 

Approaches to the calculation of measured test values predominantly fell into four 

categories: empirical assessment, graphical assessment, simulation or 

regression analysis.   

Studies using empirical assessment here included method-comparison studies 

(147, 149, 153, 154, 165, 168-170, 172, 176, 178-181, 183, 187, 190) and an 

EQA study (163) which based “true” test values on the specified reference test 

and measured values on the index test measurements, as previously discussed 

in Step 1.   

Several of the identified studies, dating back to 1980, used a graphical method of 

assessment (117, 119, 121-123, 148). This approach centres on plotting the 

cumulative percentage frequency of “true” test values on the probit scale (y-axis) 

as a function of “true” values on the logarithmic scale (x-axis). Assuming that the 

log-transformed data are normally distributed, then in the bimodal case (where 

healthy and diseased populations are modelled separately), cumulating the 

healthy (diseased) population from high (low) values results in two straight lines 

sloping in opposite directions for each population (i.e. forming an ‘X’ on the plot). 

The addition of bias is then explored by shifting the straight lines along the x-axis; 

whilst the addition of imprecision is explored by rotating the straight lines around 

their mean value (i.e. broadening the 95% CI of the values on the probit scale). 

Given a specified diagnostic cut-off threshold, the proportion of false positives 

and negatives relating to a given level of bias and imprecision can then be derived 

from this plot, by observing the point at which healthy/diseased populations cross 

the threshold line.   

In response to modern computational capabilities, the graphical method has 

since been superseded by computer simulation approaches which can better 

accommodate complex specifications of the measurand distribution and 

measurement uncertainty. The most flexible and widely adopted approach in the 

identified literature is based on a process of iterative simulation, with uncertainty 

added on to “true” test values according to a specified error model: a function 

relating measured test values to baseline “true” values, incorporating specified 

components of measurement uncertainty (126, 129-131, 140-142, 146, 166, 174, 
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191, 194-196). This method is largely attributed to a seminal paper published in 

2001 by Boyd and Bruns (126), which was the first study of this kind to clearly 

specify the error model as a mathematical function (as opposed to earlier (116-

118) and later (133-137, 156, 161, 164, 182, 184, 185, 188, 189, 192, 193, 197) 

studies limited to textual descriptions or indirect referencing).  

The most widely adopted error model in the identified literature specifies 

imprecision as a normally distributed term and bias as a fixed absolute value, as 

shown in Equation 3.1:  

Testsim   =   Testtrue  +  [ Testtrue * N(0,1) * CV ]  +  Bias            (3.1) 

where Testtrue is the “true” measurement value; Testsim is the measured test value 

incorporating the specified level of imprecision (CV%) and absolute bias (Bias); 

and N(0,1) is a normal distribution (mean = 0, standard deviation [SD] = 1) applied 

with the CV% value in order to produce a spread of Gaussian-distributed results 

around Testtrue. Figure 3-3 provides an example of a generic error model 

simulation approach, which may be applied to the case of a single-test continuous 

diagnostic biomarker – that is, where a single test is used to distinguish between 

healthy and diseased populations on a continuous biomarker scale. Where data 

is available on the longitudinal trajectory of test values, the error model approach 

can also be applied to evaluate repeat-test or monitoring scenarios, via repeated 

application of the error model to the series of “true” test values in question. In 

either case, the iterative simulation process can be efficiently implemented using 

standard statistical software, such as Excel or R.  
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Rather than iteratively applying uncertainty via the error model simulation, as in 

Figure 3-3, an alternative approach is to incorporate uncertainty directly within a 

specified probability distribution. Several studies, for example, applied uncertain 

distributions around individual “true” values selected along the measurement 

range (124, 128, 130, 139, 142, 150, 158, 171, 173); whilst others applied added 

bias and/or imprecision to population-level distributions assumed to be 

representative of “true” measurement (120, 127, 143, 175, 177). In the same way 

as with the error model simulation, these distributional simulations can be 

iteratively run applying varying levels of bias and/or imprecision, to establish how 

the clinical performance changes in line with increasing or decreasing 

measurement uncertainty. 

Of the remaining studies, a handful utilised regression analyses (138, 144, 155, 

159). Within these assessments, bias or TE was applied as a multiplicative factor 

to baseline “true” measurements within a specified regression model, with the 

resulting impact on the regression output (e.g. likelihood ratio) subsequently 

determined. The final set of studies used other one-off methods (125, 145, 152, 

157, 160), or reported insufficient details of the simulation technique to identify 

i. A sample of Testtrue values is assigned for the healthy and diseased 

populations (e.g. based on empirical or simulated data)  

ii. For each Testtrue value assigned in step (i), a corresponding Testsim 

value is derived according to a specified error model, for a given level 

of Bias and CV e.g.:  

Testsim = Testtrue + [Testtrue x N(0,1) x CV] + Bias     (3.2) 

iii. The diagnostic accuracy of the simulated data is calculated according 

to the proportion of Testsim values for the healthy and diseased 

populations falling the correct side of the diagnostic cut-off threshold  

iv. Steps (ii) to (iii) are repeated for a range of CV and bias values (e.g. 

CV% ranging from 0-20% and Bias ranging from +/-10% in 1% 

increments) 

Figure 3-3. Methodology review: error model simulation approach for 
a single-test diagnostic strategy 
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the exact method used (186, 187). Details of these individual studies can be 

found in the published data extraction summary table (2). 

3. Step three: calculation of the impact on test outcomes  

The final step in the framework is to assess the impact of deviations between 

“true” and measured values on the outcome(s) of interest.  

Most studies focused on evaluating clinical performance (116-125, 127, 128, 132, 

138-141, 143-145, 150, 151, 155, 157-164, 167, 171, 173-175, 177, 191-197). In 

this case the calculation is generally straightforward. For a diagnostic test, for 

example, as long as each individual patient’s clinical diagnosis is known (e.g. 

“true” test values have been parametrically sampled for diseased vs. healthy 

patients separately; or drawn from an empirical dataset where the confirmed 

clinical diagnosis for each patient is known), then the diagnostic accuracy of the 

simulated test values can be calculated in the usual way (i.e. by comparing the 

diagnoses based on the measured test values with patients’ true clinical 

diagnoses). This was the typical approach taken in studies using the graphical 

and simulation approaches outlined in Step 2, for example.  

Several studies evaluated the impact of measurement uncertainty on treatment 

management decisions (126, 130, 133, 142, 147, 149, 153, 154, 163, 165, 168-

170, 172, 176, 178-181, 183, 186, 187, 190). Most of these were method-

comparison studies which determined the impact of measurement deviations on 

treatment decisions using error grid analysis (147, 149, 153, 154, 165, 168-170, 

172, 176, 178-181, 183, 186, 187, 190). First developed in the 1980s, the original 

error grid aimed to evaluate the impact of measurement discrepancies between 

self-monitoring blood glucose devices and laboratory reference measurements in 

terms of insulin dosing errors (147). Using a scatter plot of reference vs. index 

test measurements, the plotted region was divided into five error grid “zones”, 

based on expert consensus on the assumed severity of dosing errors resulting 

from the measurement discrepancies. These error zones spanned from zone A, 

depicting clinically accurate results; to zone E, depicting erroneous results 

expected to lead to a dangerous (potentially life-threatening) failure to detect and 

treat. Error grid analysis remains common today, with recent studies further 

developing the method – for example by expanding on the small sample of 
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experts used within the original error grid study (149, 186, 187); accounting for 

temporal aspects of measurement (153); or applying the same methodology to 

alternative clinical settings (176).  

Others have attempted to incorporate the impact of measurement uncertainty on 

patient health outcomes (129, 131, 134, 135, 156, 166, 182, 184). All of these 

studies related to evaluations of monitoring devices for glycaemic control, in 

which health outcomes such as hypoglycaemia and hyperglycaemia were 

determined using decision analytic models based on sequential glucose 

measurements (incorporating measurement uncertainty via the error model 

simulation approach, for example). Combined with data on insulin dose 

administrations (resulting from measured values), and additional factors such as 

patient insulin sensitivity, these models were used to track patients’ response to 

administered doses and resulting health outcomes.  

A final group of studies included an assessment of costs or cost-effectiveness 

(119, 120, 123, 136, 137, 152, 185, 188, 189). Of these, one study focused solely 

on costs, with the aim of exploring the potential financial implications of calibration 

bias in serum calcium testing for the diagnosis of hypercalcemia (152). This 

assessment centred around an estimated ‘cost curve’, which related baseline 

serum calcium measurements to expected 12-month hospital follow-up costs. 

This curve was constructed using data on the population frequency distribution 

of calcium (based on a laboratory clinical dataset), linked with data on subsequent 

tests and procedures associated with hypercalcaemia (determined via regression 

analysis), and published costs for each of the included activities. Using the 

constructed cost curve, the impact of bias was explored by shifting the curve to 

reflect the associated shift in observed values that would result from a given 

magnitude of error, and reading off the difference in the annual follow-up costs.   

The remaining eight studies considered cost outcomes alongside clinical 

outcomes. Of these, half were based on a simple assignment of expected costs 

of misdiagnoses to rates of false positive/negative results (119, 120, 123), or 

expected costs of adverse events applied to simulated health outcomes data 

(189). The other half all utilised findings from a previous study by Breton and 

Kovatchev (2010), in which the impact of reduced glucose meter imprecision on 

glycaemic events for patients with Type 1 diabetes was simulated using a 
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published simulation platform (135)27. Using these results, two studies 

constructed simple cost-consequence decision models, combining the data on 

reduced glycaemic events with data on patient population numbers, glucose 

meter costs, and the rate of myocardial infarctions resulting from glycaemic 

outcomes, to estimate annual cost savings associated with improved meter 

precision (185, 188). More recently, the two remaining studies conducted full 

cost-utility analyses. These used cohort Markov (i.e. state-transition) models to 

link the data on improved glycaemic control and reduced glycaemic event rates, 

with data on diabetes complication rates, patient health-related quality of life and 

health service costs (136, 137). Using these models the authors were able to 

estimate ICERs for the incremental cost per additional QALY associated with 

reduced device error. The most recent of these studies, for example, found that 

when accounting for hypoglycaemic events, a self-monitoring blood glucose 

device with an imprecision of 8.4% was cost-saving and more effective compared 

to a device with 15% imprecision, from an English NHS perspective (136). These 

results were similar to the earlier study from the same authors, in which a 

comparable assessment was conducted from a Canadian health care payer 

perspective (137).     

  

                                            

27 The methods used within the original Breton and Kovatchev (2010) study were only 
partially reported. Based on the details provided in this study, different levels of 
imprecision appear to have been applied to baseline glucose values using the error 
model simulation approach, applied within an existing simulation platform for 
glucose and insulin metabolism.  
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3.4 Discussion 

3.4.1 Review findings 

Based on the methodology review findings, a three-step analytical framework for 

determining the impact of measurement uncertainty on outcomes was identified 

(see Figure 3-2). Key points for consideration within this framework are discussed 

below.  

With regards to Step 1 (calculation of “true” test values), the primary advantage 

of using either empirical data or informed parametric distributions is that, by 

accounting for the expected frequency of test values along the entire test 

measurement range, population-level conclusions (such as APS) may be 

derived. In contrast, the primary drawback of the fixed-values approach (i.e. 

taking a selection of fixed values along the measurement range), and by 

extension the uniform distribution approach (assuming this is not a realistic 

parameterisation), is that population-level conclusions cannot be derived. 

Nevertheless, such approaches may be useful for exploring the impact of 

measurement uncertainty in specific scenarios – for example, to explore the 

impact of uncertainty on test values close to the test cut-off threshold.  

For the majority of studies which assigned an informative sample of “true” test 

values in Step 1 (i.e. as opposed to the fixed-values approach), a key issue for 

consideration relates to how well the data may be considered to be a reliable 

proxy for the truth. If values used to inform the “true” distributions are themselves 

subject to measurement uncertainty, then all subsequent analyses may be 

affected by this confounding factor. If this is the case, then care should be taken 

when asserting absolute maximum bounds for imprecision and bias. In general, 

the likelihood that the adopted “true” test values would in fact be representative 

of the truth was either implicitly assumed or not discussed within the identified 

studies. A handful of authors did attempt to address this issue, by “stripping” 

known analytical variation from estimates of total imprecision via statistical 

adjustment to isolate the “pure biologic distribution” (119-122, 125, 127, 143). An 

example of this method is provided in Appendix H. This approach, however, 

depends on having reliable information on the measurement uncertainty 
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contained in the baseline “true” measurement values, which in many cases may 

not be available.   

Within Step 2 (calculation of measured test values) computer simulation methods 

appear to offer the most flexible approach for exploring alternative specifications 

and levels of measurement uncertainty. Studies based on method-comparison 

analyses are of limited utility in this context, given that alternative levels of 

measurement uncertainty cannot be efficiently explored via this method; similarly, 

analyses using the graphical method suffer from the issue that non-Gaussian 

parameterisations or non-constant/ non-linear specifications of imprecision or 

bias cannot be accommodated. The error model simulation approach was found 

to be particularly useful in this respect. While the formula provided in Equation 

3.1 specifies one CV% element representing total imprecision, separate 

components of imprecision (e.g. pre-analytical and analytical) may be specified, 

and alternative characterisations of imprecision may be defined (e.g. using a fixed 

SD; different SD/CV values for different sections of the measurement range; or 

imprecision defined as a linear/ non-linear function of Testtrue). In the same way, 

bias may be characterised in numerous ways. 

The majority of identified error model studies applied bias and imprecision as 

separate elements within the simulation. An alternative method is to apply an 

aggregate metric of measurement uncertainty: this was the approach taken in the 

MSAC (2001) HTA highlighted in Chapter 2 for example. In this case, measured 

test values were derived by applying a 95% CI around the sampled “true” test 

values, based on an estimate of TE, and simulating values from this region (85). 

Although no explicit error model was reported in the MSAC HTA, this approach 

relies on the same concept of iteratively applying varying levels of measurement 

uncertainty onto baseline “true” test values. Nevertheless, it is arguably 

preferable to delineate between systematic and random components of 

measurement uncertainty within the simulation, since each can have a markedly 

different impact on clinical performance. Separately specifying these elements 

(e.g. as in Equation 3.1) is the only way that such variable impacts can be 

appropriately identified and explored.   

When imprecision and bias are separately specified, an effective and useful 

means of illustrating the simulation results is via presentation on a contour plot, 
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as in several of the identified studies (126-131, 133, 142, 146, 174). An illustrative 

example is provided in Figure 3-4. This presents a hypothetical case in which 

bias and imprecision have been iteratively applied (according to the error model 

provided in equation (3.1)) to “true” test values randomly drawn from normally 

distributed healthy [N(30,5)] and diseased [N(60,10)] populations, with a 

diagnostic cut-off threshold of 45 and exploring a range of hypothetical bias (-40 

to +40, in 1 unit increments) and imprecision values (0 to 80%, in 1% increments). 

Panel A presents the contour plot for diagnostic sensitivity; Panel B presents a 

similar plot but for diagnostic specificity; and Panel C presents a joint plot of both 

outcomes together.  

For each panel presented in Figure 3-4, the presented contour lines illustrate for 

what values of bias and imprecision the given level (i.e. ‘contour’) of diagnostic 

sensitivity/specificity is maintained. By inspecting these plots, one can observe 

how increasing measurement uncertainty affects each outcome. For example in 

panel A, holding imprecision at 0% and applying negative bias (i.e. moving 

horizontally to the left of the (0,0) point) leads to decreased diagnostic sensitivity, 

whilst applying positive bias has the opposite (albeit marginal) effect; and holding 

bias at 0 and increasing imprecision (i.e. moving vertically upwards from the (0,0) 

point) has less of a marked effect, resulting in a gradual reduction in sensitivity. 

Inspection of panel B meanwhile indicates that positive bias decreases diagnostic 

specificity and negative bias increases specificity; whilst increasing imprecision 

again has a limited impact. These plots are therefore useful as a means of 

exploring the impact of measurement uncertainty on outcomes (i.e. relating to 

hypothesis C; see section 1.5.3). In addition, it is also possible that these plots 

could be utilised to enable outcome-based APS to be extracted (i.e. relating to 

hypothesis D), by setting a minimum criteria for clinical performance (or whatever 

outcome is being modelled), and identifying the region of analytical performance 

on the contour plot which achieves this goal. The use of contour plots for this aim 

is explored further in Chapter 5 and Chapter 6.  

Note that, whilst the focus of these plots is on showing the differential impact of 

bias and imprecision on the given outcome, the concept of TE can also be 

incorporated by overlaying TE% ‘bands’ onto the plot. This additional feature was 

included in a handful of the identified studies, for example (130, 133, 142, 146, 
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174), and is also explored in the subsequent case study analysis in Chapter 5 

and Chapter 6 (see, for example, section 5.3.2.2, Figure 5-5).  
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Figure 3-4. Methodology review: example contour plots for diagnostic accuracy 
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With regards to Step 3 (calculation of the impact of differences between “true” 

and measured test values on the outcome(s) under consideration), most studies 

focused on the intermediate outcome of clinical performance. Ideally, however, 

technologies should be evaluated in terms of their influence on “end-point” 

outcomes, such as health outcomes and/or cost-effectiveness. Several of the 

identified studies, for example, used analytic decision models to track the impact 

of measurement uncertainty (e.g. using error model simulation) on treatment 

administration and resulting health impacts. While all of these studies related to 

the context of glycaemic control, decision models can feasibly be used to explore 

any clinical pathway of interest, subject to data availability. In addition, such 

models are a key tool used in health-economic evaluations, and as such can be 

used to model cost-effectiveness outcomes. Of the two studies identified in this 

review which did evaluate cost-effectiveness, for example, both assessments 

were based on analytical decision models. Nevertheless, these evaluations were 

considered to be limited in two key respects: first, they were conducted as 

separate analyses from the original error model simulation; and second, they only 

explored a limited set of fixed imprecision levels relating to pre-existing APS (136, 

137). Both of these limitations are addressed in the subsequent case study 

analysis (Chapter 4 to Chapter 7).  

3.4.2 Limitations  

As a methodology review, the aim of this study was not to systematically identify 

all evidence, but rather to ensure that key examples of relevant methods were 

identified. Thus, while the database searches were intended to be as sensitive 

as possible, they were necessarily focused in certain aspects due to the vast 

volume of literature in this area. In particular, the database searches were 

restricted to literature published across four key databases over the past 10 

years, and a simulation and methodology filter was included in an attempt to 

screen out routine measurement performance studies. It is likely that extending 

the search to include additional databases, a longer search period and a more 

sensitive and less specific search strategy could have retrieved further relevant 

material. However, extensive forwards and backwards citation tracking was 

conducted to ensure that all key methods were identified – including both current 

state-of-the-art methods and seminal methods informing modern practices. The 
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primary limitation of the pragmatic methods adopted, therefore, concerns the fact 

that not all relevant material relating to each individual method will have been 

identified – as such, no definitive conclusions can be drawn from this study 

regarding the frequency that each method has been used.  

An additional limitation with this review concerns the fact that citation screening 

was conducted solely by the primary reviewer. There is a further risk, therefore, 

that relevant methods may have been missed during the screening stages. 

Nevertheless, regular discussion of the review inclusions and exclusions with the 

secondary reviewers was conducted throughout the screening process. The risk 

of excluding relevant methods is therefore expected to be small.  
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3.5 Summary 

 This chapter has confirmed hypothesis B: that methods for assessing the 

impact of measurement uncertainty on outcomes have been used in the 

broader literature.  

 Based on 82 indirect outcome studies, this review identified a three-step 

analytical framework underpinning the various approaches adopted 

(summarised in Figure 3-2).  

 Within this framework, several key methods were highlighted as having 

particular utility with respect to facilitating evaluations of the impact of 

measurement uncertainty on outcomes, using methods which it is 

expected could be straightforwardly integrated into existing HTA 

methodology. In particular:  

o Iterative simulation using the error model simulation approach 

offers a flexible and efficient method for exploring the impact of 

measurement uncertainty on clinical performance; 

o Decision analytic modelling provides a useful tool for linking clinical 

performance outputs to downstream clinical and health-economic 

outcomes; and  

o Contour plots provide a useful means of presenting simulation 

results and could possibly be used to identify outcome-based APS.  

The remainder of this thesis is focused on exploring and developing the above 

methods within a de novo test case study, relating to a diagnostic setting. The 

clinical context of this case study is first introduced in Chapter 4, and Chapter 5 

to Chapter 7 present the case study analyses.    
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Chapter 4  

Case study introduction 

4.1 Chapter outline  

In Chapter 3 a methodology review was conducted to identify methods for 

assessing the impact of measurement uncertainty on outcomes. In the following 

case study, key methods identified from that review are applied within an analysis 

of faecal calprotectin (FC) as a diagnostic rule-out test for Inflammatory Bowel 

Disease (IBD) in primary care in the UK.  

This chapter provides an introduction to the thesis case study. The clinical context 

is first outlined (section 4.2), highlighting the key challenge for GPs when faced 

with patients presenting with non-specific lower gastrointestinal symptoms: how 

to distinguish between those with serious organic bowel conditions requiring 

secondary care management, such as IBD, from those with functional conditions 

that can be routinely managed within primary care, such as Irritable Bowel 

Syndrome (IBS). An overview of FC in this setting is then provided (section 4.3). 

In particular, two primary care clinical pathways (explored in the following case 

study analyses) are introduced: the ‘NICE FC pathway’ (section 4.3.2) and ‘York 

FC Care Pathway’ (YFCCP) (section 4.3.3). A summary of recent studies 

reporting on the measurement performance of FC is also presented (section 

4.3.4), before outlining the case study analysis (section 4.4). 

4.2 Clinical context 

4.2.1 Inflammatory Bowel Disease (IBD)  

IBD is a chronic, lifelong condition which causes periodic inflammation of the gut, 

and can result in complications including fistulas, abdominal abscesses, 

malignancy and possible premature mortality (198). The highest rates of IBD are 

found across Europe and North America, where prevalence exceeds 0.3% (199). 

In the UK, the annual incidence of IBD is estimated at 18-20 per 100,000 in people 

aged ≥15 years (200), with the overall prevalence of IBD estimated at 397 per 

100,000 people (0.4%) (201, 202). The exact cause of the disease is currently 

unclear, however unfolding incidence patterns appear to support the argument 



 
 

85 

 

that a Western lifestyle, urbanization and/or industrialisation may play a part in 

the disease aetiology (203-206). 

The two most common forms of IBD are Ulcerative Colitis (UC) and Crohn’s 

Disease (CD). Each can affect the gut in different ways: CD may affect any part 

of the gastrointestinal tract, from the oesophagus to the anus, but is most 

commonly associated with patchy inflammation of the ileum (the last part of the 

small intestine) or the colon; UC, meanwhile, causes inflammation and ulceration 

of the inner lining of the rectum and/or colon (207, 208). UC is the more prevalent 

form of IBD, affecting ~240 per 100,000 people in the UK, compared to ~157 per 

100,000 for CD (201, 202). In total, over 265,000 people in the UK are estimated 

to be affected by IBD – 160,000 with UC and 105,000 with CD28.  

Symptoms of IBD commonly emerge in patients during their late teens to early 

30’s, but onset may occur at any age (209). Presenting symptoms typically 

include: diarrhoea, abdominal pains, tiredness/ fatigue, feeling generally unwell 

or feverish, loss of appetite and weight loss and anaemia (210). When faced with 

these symptoms, the key challenge for clinicians is distinguishing IBD cases from 

other gastrointestinal conditions – in particular, the largely non-specific symptoms 

associated with IBD are also typical of patients suffering from the more common 

condition, IBS.  

4.2.2 Irritable Bowel Syndrome (IBS) 

Estimated to affect over 10% of the population in the UK and worldwide, IBS is 

the most common gastrointestinal disorder seen by primary and secondary care 

practitioners (211). Although IBS is associated with many of the same symptoms 

as IBD, it is a functional bowel disorder, meaning that there is no evidence that 

IBS symptoms are caused by any underlying inflammation or physical damage 

within the gut (212). As such, although IBS is associated with decreased quality 

of life and increased incidence of mental health issues (such as anxiety and 

depression) (213), it does not harbour the same risks of severe complications as 

IBD. In most cases therefore, IBS can be safely managed within primary care, 

                                            

28 These figures are based on an estimated UK 2019 population of >66.8 million (ONS: 
Overview of the UK population: November 2018). 
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whilst IBD requires referral to gastroenterology specialists for definitive diagnosis 

and treatment management (214-216).  

4.2.3 Differentiating between IBD and IBS 

Historically, diagnosis of IBD has relied on clinical assessment, together with 

endoscopic investigations and other imaging modalities (217). Routine blood 

tests, including C-reactive protein (CRP) and erythrocyte sedimentation rate 

(ESR) have also been used as markers indicative of inflammation. However these 

tests are known to have low sensitivity and specificity for IBD, since raised CRP 

and ESR levels may occur as a result of other non-gastrointestinal conditions, 

and normal levels of these markers may occur in patients with IBD (218-220). 

Previously therefore, the only reliable means of diagnosis has been to refer all 

patients with suspected IBD to secondary care for invasive gastrointestinal 

investigations.  

The similarities between IBS and IBD presentation may result in delayed 

diagnosis for patients with IBD (221), as well as exposure of patients with IBS to 

unnecessary and costly secondary care consultations and endoscopic 

investigations (most commonly colonoscopy) (222). In addition to being generally 

uncomfortable and, for some patients, painful, colonoscopy is associated with a 

small risk of bowel bleeding or perforation, and in rare cases, mortality (223). 

Endoscopy units in the UK are also under increasing pressure to deliver 

expedited care for patients referred with suspected cancer (224); minimising the 

volume of unnecessary endoscopic investigations in patients with IBS is therefore 

vital to ensuring that both patients with IBD and cancer can receive timely 

diagnoses and access to appropriate treatments.  

Given the importance of correctly identifying IBD, there has been significant 

interest in the development of new biomarkers to help clinicians identify the 

minority of patients presenting with lower gastrointestinal symptoms who have 

IBD. Over the past decade, the majority of research has centred on the stool test, 

FC, which forms the subject of this case study.  

4.3 Faecal Calprotectin (FC) 

Calprotectin is a protein (belonging to the S100-protein family) found in human 

blood, saliva, cerebrospinal fluid, and urine. It is secreted by white blood cells, 
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called neutrophils, in response to inflammation in the body. When inflammation 

is detected in the gastrointestinal tract, neutrophils migrate to the intestinal lining, 

resulting in elevated levels of calprotectin in faeces. FC, therefore, acts as a 

biomarker for gastrointestinal inflammation (225, 226).  

4.3.1 FC assays 

Several FC assays have been developed and marketed as a tool to help rule out 

IBD and other organic enteric diseases in patients presenting with gastrointestinal 

symptoms. FC assays available in the UK include: fully quantitative laboratory-

based tests, which provide a numerical value for the amount of calprotectin 

detected in a given stool sample (e. g. ‘100 micrograms/ gram [μg/g]’); and 

quantitative or semi-quantitative point of care tests (POCTs), which may be used 

inside or outside of the laboratory setting. In the case of semi-quantitative assays, 

these provide an indication of the region within which the underlying quantitative 

value lies (e.g. ‘50-100 μg/g’), rather reporting a specific numerical result as with 

quantitative tests (227).  

The most commonly used FC assays are based on laboratory enzyme-linked 

immunosorbent assay (ELISA) platforms, the basic principle of which centres on 

a process of antibody-to-antigen binding (227). The BÜHLMANN fCAL® ELISA 

test, for example, uses a sandwich ELISA method consisting of the following 

steps: (1) the assay plate is first coated with a ‘capture antibody’, (2) the faecal 

sample is applied to the plate, resulting in calprotectin protein molecules in the 

sample binding to the capture antibodies, (3) the plates are ‘washed’ to leave the 

antibody-protein elements, and (4) a ‘detection antibody’ is applied, which detects 

the calprotectin molecules bound to the capture antibodies on the plate, and 

informs the resulting quantitative measure of calprotectin in the sample (228).  

A summary of FC assays available in the UK is provided in Table 4-1. This list is 

based on three sources: assays listed within the 2013 NICE DG11 guidance on 

FC (discussed in section 4.3.2) (227); an updated list of technologies provided 

within a NICE 2017 review of DG11 (229); and assays included in national EQA 

reports for FC within the year 2018 (which were used to inform an analysis 

presented in Chapter 7 [data outlined in section 7.2]) (230). Where necessary, 

specific assay details not provided in either of these documentations were 
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identified via FC manufacturer websites or US FDA premarket notification [510(k)] 

documents (231-236). For several tests, the measurement range could not be 

identified from any of the above sources – in those cases, this detail has been 

left blank in the table. Footnotes are provided in the table to provide brief 

explanations of the different assay methods used.  

Table 4-1. FC assays available in the UK 

Manufacturer & platform Assay method Measurement range 

Tests included in both the NICE guidance lists and national EQA reports: 

BÜHLMANN fCAL® ELISA ELISAa – quantitative 
Range 1: 10-600 μg/g 

Range 2: 30-1800 μg/g 

CALPRO® Calprotectin 

ELISA Test (ALP)  
ELISAa – quantitative 

Range 1: up to 1250 mg/kg 

Range 2: up to 2500 mg/kg 

Immundiagnostik (IDK®) 

Calprotectin ELISA  
ELISAa – quantitative Range: up to 2100 µg/g 

(Thermo Fisher) EliATM 

Calprotectin 

Fluorescence enzyme 

immunoassayb – quantitative 
Range: 15-3000 mg/kg 

BÜHLMANN Quantum 

Blue® fCAL 

Immunoassay (lateral flow)c – 

rapid quantitative test 

Range 1: 30-300 μg/g 

Range 2: 100-1800 μg/g 

Tests included the NICE guidance lists only: 

Eurospital Calprest ELISAa – quantitative - 

Eurospital CalFast 
ELISAa – rapid quantitative 

test (with dedicated reader) 
- 

(Preventis) PreventID Cal 

Screen  

Immunochromatographicd 

POCT rapid test – semi-

quantitative 

-  

(Preventis) PreventiD Cal 

Detect 50/200  

Immunochromatographicd  

POCT rapid test – semi-

quantitative  

-  

Tests included national EQA reports only: 

BÜHLMANN fCAL® turbo 
Immunoassay (turbidimetric)e 

- quantitative 
Range: 30 - 2000 µg/g 

(Launch Diagnostics) 

Accusay CalprotectinTM 
ELISAa – quantitative - 

Orgentec Alegria® ELISAa – quantitative Range: 0 - 1000 µg/g 

Inova QUANTA Flash® 
Chemiluminescent 

immunoassayf - quantitative 
Range: 16.1 – 3500.0 mg/kg 

DiaSorin LIAISON® 

Calprotectin 

Chemiluminescent 

immunoassayf - quantitative 
Range: 5 - 800 μg/g 
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(Thermo Fisher) EliATM 

Calprotectin 2 

Fluorescence enzyme 

immunoassayb – quantitative 
- 

 ELISA = Enzyme-linked immunosorbent assay. POCT = point of care test. 

a ELISA tests are plate-based assays which are based on the central principle of antibody-to-antigen 

binding (see section 4.3.1 above). The amount of antibody-to-antigen complexes formed within ELISA 

tests is typically quantified by adding a chromogenic substrate to the sample, which reacts with an 

enzyme bound to the antibody-antigen complexes to form a detectable coloured compound, which can 

be quantified using spectrophotometric absorbance techniques. Quantitative ELISA assays provide a 

numerical result, calibrated against a reference material. ‘Rapid’ ELISA assays provide results in a short 

time frame (usually minutes) compared to standard laboratory-based ELISA assays which may take 

hours or days.  
b Fluorescence enzyme immunoassays are similar to ELISA tests, but the antibodies in this case are 

labelled with fluorescent probes (rather than enzymes) to enable the amount of antibody-to-antigen 

complexes to be quantified based on the measurement of fluorescent intensity. 
c Lateral flow immunoassays are rapid tests in which labelled capture antibodies are immobilised across 

an absorbent strip of material; the test sample is then added to one side of the strip, the sample flows 

over the capture antibody line (driven by lateral capillary force), and the target antigens are captured by 

the capture antibodies. As the captured antibody-to-antigen complexes accumulate, they can typically 

be viewed directly by the naked eye to provide qualitative (i.e. yes/no) or semi-quantitative (i.e. numeric 

range) results. 
d Immunochromatographic tests use the same technology as lateral flow immunoassays. The 

terminology provided for each assay in this table has been based on the terminology used by the 

individual manufacturers. 
e Turbidimetric assays depend on the process of antibody-to-antigen binding. The quantification process 

in this case is based on measuring the loss of intensity of light (of a known wavelength) passed through 

the sample, which occurs due to the effect of light-scattering caused by passing light through the 

antibody-to-antigen complexes in the solution.  
f Chemiluminescent immunoassays are similar to ELISA and fluorescence enzyme immunoassays, but 

the detection antibody has a chemiluminescent label, rather than a chromogenic or fluorescent label. In 

this case, the addition of the substrate to the sample causes a chemiluminescent reaction, which allows 

the concentration of measurand to be measured according to the units of light emitted. 

4.3.2 NICE assessment (DG11) 

In 2013, NICE issued guidance (DG11) under its DAP scheme recommending 

FC as a test to help distinguish between IBD and IBS (227). This section 

summarises the clinical and economic evidence used to inform that NICE 

recommendation.  

The primary source of evidence underpinning the NICE recommendation was an 

independently commissioned External Assessment Group (EAG) report (220). 

This included a systematic review to identify and synthesise data on the 

diagnostic accuracy of FC, and an economic evaluation to determine the 

expected cost-effectiveness of FC compared to standard care. Twelve FC 

technologies were included in the assessment scope, consisting of laboratory 
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based ELISA tests (n=6), immunochromatographic POCTs (n=2), other rapid29 

tests (n=3) and a laboratory quantitative fluorescence enzyme immunoassay test 

(see Table 4-1)30. The reference standard, used to classify the diagnostic 

accuracy of FC assays within the diagnostic accuracy studies, was histology after 

endoscopy.  

Within the EAG systematic review, several scenarios were considered relating to 

paediatric and adult populations. Focusing on the adult population, a total of 7 

studies were identified which assessed the diagnostic accuracy of FC for 

distinguishing between IBS and IBD. All of these studies were conducted within 

secondary care settings and reported diagnostic accuracy across 8 different 

cut‑off thresholds (ranging from 8–150 μg/g). Most (5/8 studies) evaluated ELISA 

assays and reported diagnostic accuracy using a 50 μg/g cut-off threshold: a 

meta-analysis of these five studies (based on a total pool of 596 people) found a 

combined sensitivity of 93% and a specificity of 94%. In addition, one study (Otten 

et al. 2008) was identified which assessed the accuracy of a POCT, CalDetect, 

reporting a sensitivity of 100% and specificity of 95% at a cut-off threshold of 15 

μg/g, based on a sample of 114 patients (237).  

Based on the above review findings, the EAG conducted an economic evaluation 

to assess the cost-effectiveness of FC from an NHS and PSS perspective. Two 

testing strategies were evaluated, both of which assumed that a single FC test 

would be conducted: (1) ELISA FC testing using a 50 μg/g cut-off (with diagnostic 

accuracy as reported in the EAG meta-analysis), and (2) POCT CalDetect using 

a 15 μg/g cut-off off (with diagnostic accuracy as reported in the Otten et al. 2008 

study). Under the standard care comparator strategy, GPs were assumed to have 

a 100% sensitivity and 79% specificity for detecting IBD based on clinical data 

(220). In the EAG economic model, an initial test sub-model was used to combine 

FC diagnostic accuracy estimates with IBD prevalence (assumed to be 6.3%), 

                                            

29 Note: NICE separately classified three tests as “rapid tests” rather than POCTs, stating 
that these tests needed a dedicated reader to process the tests, but that with 
appropriate training and quality assurance processes may be appropriate for future 

use in point‑of‑care settings.  
30 Note: NICE listed tests from the same manufacturer but with different measurement 

ranges as separate assays. For example, the BÜHLMANN fCAL® ELISA test was 
counted as two different assays in the NICE list of technologies, one for each of the 
measurement ranges listed in Table 4-1.  
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and three long-term Markov models were used to track downstream outcomes 

for CD, UC and IBS patients separately, adopting a 10-year time horizon.  

The results of the EAG economic evaluation found FC plus standard care to 

dominate standard care alone, resulting in cost savings of £83 and £82 per 

patient (for ELISA FC and POCT CalDetect and strategies respectively) and a 

marginal QALY gain of 0.0007 for both strategies31 (220). The cost savings were 

stated to be driven by the lower number of referrals to secondary care when using 

FC: within the modelled population, 19.8% of patients were referred to secondary 

care for colonoscopy under the standard care strategy, compared to 5.6% (FC 

ELISA strategy) and 5.1% (FC CalDetect strategy). The QALY gains meanwhile 

were stated to be driven by a slight mortality reduction resulting from fewer 

colonoscopies.  

Based on the EAG analyses, the NICE DAP committee noted a paucity of 

evidence relating to three key areas for FC:    

1. Primary care performance  

The committee noted that, whilst there was a growing focus on the use of FC in 

primary care, there was a lack of data identified in the EAG analysis relating to 

this setting. In particular, all of the studies informing the estimates of FC 

diagnostic sensitivity and specificity used within the EAG adult cohort economic 

evaluation were conducted in secondary care settings. Interestingly, the 

committee concluded that the estimated benefits related to FC testing identified 

from the EAG analysis would nevertheless be expected to generalise to the 

primary care setting. This assumption has since been contradicted by recent 

study findings (238, 239) (see section 4.3.3). 

2. FC assay comparative performance 

The committee noted a lack of data on the head-to-head performance of 

alternative FC assays. In the absence of such data, the committee stated that 

preferred FC tests may be selected locally in the NHS but that potential 

differences between tests should be considered.  

                                            

31 Health care costs were measured in 2011 GBP (£). 
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3. FC cut-off thresholds 

The committee highlighted the range of cut-off thresholds used across FC tests 

and concluded that further research was needed before recommendations 

regarding particular cut-offs could be made. In addition to optimal and assay-

specific cut-offs, the committee recommended research into repeat-testing 

strategies in people with intermediate FC levels. The committee recommended 

that test cut‑offs should be discussed and agreed locally as part of the FC 

implementation process. 

In addition to the above, the committee also highlighted the potential influence of 

pre-analytical and analytical factors on the performance of FC tests, including: 

stool sampling, stool consistency, sample storage, extraction and extract dilution. 

It was noted that a national EQA scheme run by the National EQA Service 

(NEQAS) had been set up for FC, and participation in this scheme as well as 

standardisation of sample preparation methodology, where possible, was 

encouraged. Of note, however, the committee did not include the potential 

influence of pre-analytical and analytical factors on the performance of FC tests 

under their suggested areas for further research; this aligns with the historical 

lack of consideration of these matters within HTA settings, as demonstrated in 

Chapter 2 (1). 

Whilst noting the above considerations, the NICE committee concluded that, 

based on the available evidence, FC testing was a cost‑effective use of NHS 

resources (227).  

4.3.3 The York Faecal Calprotectin Care Pathway (YFCCP) 

Implementation of FC within primary care settings in the UK was initially limited 

following the NICE 2013 DG11 guidance, at least in part because the majority of 

evidence on FC at that time came from secondary care settings using a low (50 

μg/g faeces) cut-off threshold (220, 238). A primary care diagnostic accuracy 

study conducted at the Sheffield Teaching Hospitals NHS Foundation Trust 

following the NICE recommendation, for example, found FC to have significantly 

lower sensitivity (72.7%) and specificity (64.9%) for detecting IBD at the 50 μg/g 

faeces threshold, compared to the previous NICE estimates (238). It is expected 

that this drop in performance is driven by the fact that: (a) the prevalence of 
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disease is lower in primary care, and (b) the spectrum of disease is different, with 

less severe cases likely to be more prevalent in primary vs. secondary care. 

In an attempt to address this issue, led by gastroenterologist Dr Turvill at the York 

Teaching Hospital NHS Foundation Trust, a tailored pathway for the use of FC in 

primary care was established in 2014, called the ‘York FC Care Pathway’ 

(YFCCP). In response to fears over increased false-positive rates when using FC 

in primary care, this pathway applies a raised FC cut-off threshold of 100 μg/g 

(compared to the “standard” cut-off of 50 μg/g), and includes a second FC test to 

confirm suspected IBD following an initially elevated result.  

The YFCCP protocol is outlined in Figure 4-1. Patients entering the pathway are 

required to meet the following eligibility criteria:  

 aged 18-60 years;  

 presenting to primary care with new lower gastrointestinal symptoms;  

 not suspected of having cancer (these patients would be urgently referred 

to secondary care under current NICE guideline NG12 (224)); and 

 having received non-diagnostic standard initial GP investigations (e.g. full 

blood count, renal function tests, CRP with stool culture [and Clostridium 

difficile screen], coeliac screen and thyroid function tests, as indicated). 

Under the YFCCP, patients meeting the above criteria are asked to return an 

initial stool sample for FC testing (henceforth referred to as ‘FC1’) within 24 hours. 

Those with a low FC1 value (<100 μg/g) are treated as having likely IBS and 

managed in primary care, with treatment as per NICE guidance [CG61] (214). As 

a safeguard, these patients are reviewed at six weeks within primary care and 

may be referred if symptoms persist – this enables both false negative IBD cases, 

as well as severe IBS cases, to benefit from subsequent secondary care referral. 

Patients with an elevated FC1 value (≥100 μg/g) have a second test conducted 

(henceforth referred to as ‘FC2’). If the FC2 result is <100 μg/g the patient is 

managed within primary care with suspected IBS, as outlined above. If the result 

is ≥100 μg/g patients are treated as having suspected IBD and referred to 

secondary care for endoscopic investigations: patients with intermediate results 

(100-250 μg/g) receive a routine referral; whilst those with a high result (≥250 

μg/g) receive an urgent referral (see Figure 4-1).  
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Figure 4-1. The York Faecal Calprotectin Care Pathway (YFCCP) 
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The diagnostic accuracy of the YFCCP was first assessed based on a pilot 

scheme run within the York region in 2014, using the BÜHLMANN fCAL® ELISA 

assay with a measurement range of 10-600 μg/g (240). Using data from 262 

patients, FC was found to have a negative predictive value (NPV) of 0.97 and a 

positive predictive value (PPV) of 0.40 when using the YFCCP, which doubled 

the PPV of the test compared to using the standard 50 μg/g cut-off (240). Based 

on these positive findings, the pathway was rolled-out across the York region in 

2016, using the same FC assay.  

An audit evaluation of the first 951 patients treated according to the rolled-out 

YFCCP pathway (between August 2016 and April 2017) was subsequently 

conducted (239). This assessment reported a NPV of 0.99 (95% CI: 0.98 to 1.0) 

and PPV of 0.51 (95% CI: 0.43 to 0.59), with a diagnostic sensitivity of 0.94 (95% 

CI: 0.85 to 0.98) and specificity of 0.92 (95% CI: 0.90 to 0.94). A companion 

economic evaluation, applying these diagnostic accuracy results within a one-

year decision tree model, was also conducted (239). This evaluation found the 

YFCCP to be cost-effective, being less costly and more effective than most of the 

comparators considered in the analysis, which included both standard GP referral 

comparator strategies as well as single-test FC comparator strategies (239, 241). 

Further description of this study and a recent update of the economic evaluation 

is provided in Chapter 6.  

Based on the latest evidence relating to the diagnostic accuracy and cost-

effectiveness of the YFCCP, this pathway has since been introduced within 240 

practices across 9 Clinical Commissioning Groups (CCGs) spanning the York 

region and beyond, and scaling up of implementation of the YFCCP has begun 

in other regions in the UK including South Tees, Oxford, Bristol and Exeter (242). 

In addition, in 2018 NICE endorsed the YFCCP within a new consensus 

document on FC, which advocates a national algorithm for FC as a rule-out test 

for IBD in primary care based on the YFCCP repeat-test strategy (222, 242). The 

YFCCP therefore presents the current best practice for the differential diagnosis 

of IBD and IBS in primary care, supplementing the previous NICE 2013 DG11 

guidance (227).  
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4.3.4 Measurement performance 

Although the NICE DG11 assessment did not include an assessment of FC 

measurement performance, the NICE Committee did discuss pre-analytical 

factors that may affect FC results, and encouraged participation in the UK 

NEQAS scheme for FC (established in early 2012) (227). In the years following 

DG11, research around pre-analytical and analytical factors affecting FC 

measurement performance has continued. A brief description of recent studies in 

this area is provided below; in addition, an analysis of between-assay 

measurement performance based on data from the NEQAS FC EQA scheme is 

provided separately in Chapter 7.  

4.3.4.1 Pre-analytical factors 

With respect to pre-analytical factors affecting the performance of FC in the 

diagnostic setting, researchers have explored a range of factors including sample 

timing, storage procedures and sample extraction method, as outlined below.   

Sample timing 

For patients with IBD, calprotectin levels have been shown to vary significantly 

within individuals over a single day, with levels appearing to increase in line with 

the length of interval between bowel movements (243, 244). This has led to calls 

for a standardised approach to sampling, based on sampling from patients’ first 

bowel action in the morning (245). However, contradictory evidence has indicated 

that FC levels may not be consistently elevated with the first morning bowel 

movement (246). Therefore, in the absence of clear evidence to inform a 

standardised sampling approach, the collection of multiple samples for 

individuals has been recently suggested as an alternative route to minimising 

variability – in both the diagnostic and monitoring contexts (247, 248).  

Sample storage 

A series of studies spanning back to the 1990’s suggested that faecal samples 

could be safely stored at room temperature for up to a week (243, 249-251). More 

recently, however, Padoan and colleagues (2018) found that FC levels fell on 

average by 12% within the first 24 hours following stool collection irrespective of 

storage temperature, whilst samples stored for longer than 24 hours at room 

temperature exhibited further degradation (252). The authors therefore 
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recommend room temperature storage for no longer than 24 hours; refrigeration 

for up to 48 hours; and longer-term storage at -20⁰C (252).  

Sample extraction 

The standard faecal sample extraction procedure involves a series of processes 

including: (i) homogenization (i.e. to obtain an even concentration of calprotectin); 

(ii) extraction of a sample; (iii) weighting; and (iv) dilution (248). Due to the time-

consuming nature of this process, test manufacturers have developed novel 

extraction devices which avoid the need to manually weigh each sample – such 

as the Inova Diagnostics Fecal Extraction Device, or the Bühlmann CALEX® Cap 

Calprotectin Stool Extraction device (253, 254). Despite efficiency gains 

associated with these devices, several studies have highlighted significant 

quantitative differences in FC results depending on the extraction method and/or 

device adopted (248, 255-258).  

4.3.4.2 Analytical factors 

Bias (method comparison) 

With respect to the analytical performance of FC, several recent method-

comparison studies have explored the level of agreement between alternative FC 

assays (248, 259, 260). In particular a 2017 UK study of four FC assays found 

that, depending on the assay manufacturer, up to 3.9-fold differences may occur 

between quantitative FC results, with all inter-assay differences found to be 

significant in all cases (259). Subsequent international studies have also 

demonstrated significant differences depending on the FC assay and platform 

(248, 260). Possible reasons for these differences include the application of 

different antibodies across FC assays, and the use of different immunoassay 

techniques32 (248). Interestingly in the aforementioned 2017 UK study (which 

also included a diagnostic assessment), inter-assay differences were concluded 

to have limited impact on the clinical performance of the assays (with 94-100% 

sensitivity and 82-100% specificity reported across assays, at a 50 μg/g cut-off 

                                            

32 E.g. ELISA vs. chemiluminescence immunoassay (CLIA) vs. fluorimetric enzyme-lined 
immunoassay (FEIA) vs. particle-enhanced turbidimetric immunoassay (PETIA).  
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threshold) (259). It should be noted, however, that this study considered a 

selected population of only IBS and IBD patients. 

Analytical variation 

Several studies have quantified the precision of FC assays (248, 252, 260). In 

particular in a 2018 Italian study, repeatability and intermediate precision were 

evaluated for three FC assays (using assay-specific extraction devices) at low, 

intermediate and high FC values, based on samples from 110 patients with IBD. 

This study found that repeatability (CV%) of the assays ranged from 6.1% to 

15.7% at low FC, 9.7% to 14.7% at intermediate FC, and 9.6% to 25.3% at high 

FC; whilst intermediate precision ranged from 8.1% to 15.6% at low FC, 13% to 

16.4% at intermediate FC, and 11.8% to 27.6% at high FC (252). Subsequently 

in a 2019 Dutch study, an assessment of intermediate precision was conducted 

on four alternative assays (using the manufacturers’ recommended extraction 

devices), based on manufacturer-provided low and high quality control samples33 

run over 20 different days (260). In this case for low FC samples, imprecision 

(CV%) ranged from 4.9% to 52.4% across the different assays; and at high FC 

samples, CV% ranged from 5.6% to 23.8% (260). Interestingly, in most cases, 

the observed CV% levels were substantially higher than the associated 

manufacturer imprecision claims (260).   

4.3.4.3 Towards harmonisation 

Based on the findings highlighted in sections 4.3.4.1 and 4.3.4.2 above, there 

have been continued calls for greater standardisation of FC pre-analytical and 

analytical processes as a means of achieving assay harmonisation (248, 255, 

261-264). Harmonisation in this context means that test results may be 

considered comparable irrespective of the measurement procedure used, and 

where or when a measurement was made (265). For FC, a current barrier to 

harmonisation concerns the lack of FC reference measurement procedure or 

reference materials against which to “anchor” test results: only with a reliable 

                                            

33 Quality control samples are special specimens (in this case developed by the test 
manufacturers), which are intended to represent a known, stable level of the 
measurand (+/- uncertainty). These samples are treated as if they were patient 
samples, undergoing the same pre-analytical and analytical processes. By virtue of 
being “known” quantities, they enable assay imprecision and bias to be monitored. 
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reference can manufacturers make their assay results metrologically traceable to 

the same measurement unit (266). As such, in the absence of standardisation or 

harmonisation, there have been repeated calls for assay-specific cut-off 

thresholds for FC to ensure that diagnostic performance is individually optimised 

(252, 255, 259, 267). As of yet, however, assay-specific thresholds have yet to 

be widely researched or adopted into clinical guidelines, and concerns around 

the lack of FC standardisation and associated potential misinterpretation of FC 

results persists (268).  

4.4 FC case study  

4.4.1 Case study motivation and objectives 

The primary aim of the thesis case study is to explore and develop methods for 

assessing the impact of measurement uncertainty on clinical and health-

economic outcomes. Key objectives with respect to this primary aim are outlined 

in section 4.4.1.1 below. In addition, FC was chosen as the case study test for 

several reasons relating to clinical need, and data characteristics and availability. 

These aspects are outlined in sections 4.4.1.2 and 4.4.1.3.   

4.4.1.1 Methods 

In the methodology review presented in Chapter 3, three methods were 

highlighted as having particular utility with respect to the thesis aim and 

hypotheses (see section 1.5): (i) error model simulation, (ii) decision analytic 

modelling, and (iii) contour plotting (see section 3.4). The focus of the thesis case 

study is therefore on exploring and developing these methods, with the following 

objectives:  

A. To explore the use of the error model simulation approach for (i) assessing 

the impact of increasing measurement uncertainty on the clinical 

performance of testing strategies (i.e. hypothesis C), and (ii) identifying 

outcome-based APS (i.e. hypothesis D).  

B. To explore the use of decision analytic modelling as a means of (i) 

assessing the impact of increasing measurement uncertainty on clinical-

utility and cost-effectiveness outcomes (by linking simulated clinical 
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performance outputs from (A) to downstream outcomes) (i.e. hypothesis 

C) and (ii) identifying outcome-based APS (i.e. hypothesis D). 

C. To explore the use of contour plotting as a means of illustrating 

simulation/model outputs and identifying outcome-based APS (i.e. 

hypotheses C and D).  

D. To explore how real world evidence (RWE) may be utilised within the error 

model and decision analytic model simulation framework, to evaluate real-

world scenarios – in particular to assess the impact of between-assay 

differences on outcomes (i.e. hypothesis E).  

In addition to the points above, the case study analysis is intended to provide 

general utility as a demonstrative example of the impact that measurement 

uncertainty may have on downstream outcomes.  

4.4.1.2 Clinical need 

Whilst the potential influence of pre-analytical and analytical factors on the clinical 

performance of FC tests was highlighted by the NICE committee in 2013 (227), 

no formal assessment was undertaken. A study evaluating the impact of FC 

measurement uncertainty on clinical and health-economic outcomes would 

therefore be of use, to help inform clinical decision makers as to the expected 

robustness of FC testing strategies to increased measurement uncertainty. In 

addition, the NICE committee also highlighted a paucity of data on the head-to-

head performance of alternative FC assays (227). Based on the availability of 

EQA method-comparison data for FC assays (see section 4.4.1.3), this case 

study provides a further opportunity to explore the comparative performance of 

alternative FC assays in terms of clinical and health-economic outcomes. Finally, 

no evidence-based APS (outcome-based or otherwise) are currently in place for 

FC. There is a further opportunity, therefore, for this case study to help inform 

and direct the future development of APS for FC, as well as more broadly 

advancing the field of outcome-based APS – of key concern within the laboratory 

community at the moment (32, 269, 270).  

4.4.1.3 Data characteristics and availability 

IPD pertaining to the most recent diagnostic accuracy evaluation of the YFCCP 

was available for this case study (239). Whilst this data relates to patients treated 
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under the YFCCP, it can also be used to retrospectively evaluate the NICE DG11 

single-test FC pathway by determining what patients’ FC diagnoses would have 

been, had only their initial FC1 test results been available. This dataset therefore 

provides a rich source upon which an evaluation of the two FC pathways can be 

conducted. Through the provision of IPD, a range of methodological approaches 

can be explored within the error model simulation analysis – including both 

bootstrap and parametric sampling (detailed in Chapter 5).     

Two further data items were available for this analysis. First, the economic 

decision model informing the most recent YFCCP economic evaluation was 

kindly provided for this analysis by the model developers (241). This model 

provides a means of exploring how simulation techniques may be utilised within 

decision analytic models, to evaluate the impact of measurement uncertainty on 

clinical utility and cost-effectiveness outcomes (241). It should be noted, 

however, that as this economic model is a short-term deterministic (rather than 

probabilistic) model, the analysis of economic outcomes presented in this thesis 

(Chapter 6) is limited to short-term deterministic outputs. This limitation means 

that: (a) caution is required when attempting to extract clinical policy conclusions 

from the analysis; and (b) the presented analysis does not address questions 

around how measurement uncertainty in this case study impacts on the 

probability of cost-effectiveness for FC, and how the impact of measurement 

uncertainty on clinical-utility and cost-effectiveness outcomes compares to the 

impact of other sampling (i.e. second-order, parameter) uncertainty. The full 

implications of this limitation, including suggested future research activities, are 

discussed in section 6.4.3. In terms of the justification for using this model, the 

primary concern in this case study was to show how the impact of measurement 

uncertainty on clinical utility and cost-effectiveness outcomes could be evaluated 

by embedding the error model simulation approach within a decision analytic 

model, and this model is sufficient for this purpose.  

High-level data on the measurement performance of alternative FC assays was 

also available for this analysis, via the UK NEQAS EQA scheme for FC 

(discussed in Chapter 7, section 7.2). This data provides a means of exploring 

how real world evidence (RWE) may be utilised to evaluate specific testing 

scenarios using the error model approach, to further develop the methods used 
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in previous studies in this area. In particular in this case, this data enables an 

assessment of the impact of between-assay differences on clinical and health-

economic outcomes.  

4.4.2 Outline of case study analysis chapters 

The case study analysis is divided into three chapters, outlined below.  

In Chapter 5, the error model simulation approach introduced in Chapter 3 is 

used to assess the impact of additional FC measurement uncertainty on the 

diagnostic accuracy of two FC testing strategies: the ‘NICE FC pathway’ (a single-

test FC strategy adopting a 50 μg/g faeces threshold, as evaluated in the NICE 

DG11 assessment); and the YFCCP (a repeat-test FC strategy, adopting a 100 

μg/g faeces threshold). The simulation results are used to assess the robustness 

of each pathway’s diagnostic accuracy to increasing measurement uncertainty, 

and to explore the derivation of outcome-based APS – in particular using contour 

plots to provide a visual illustration of the findings.  

In Chapter 6, the framework outlined in Chapter 5 is extended to end-stage 

outcomes using an existing FC economic model. Within this analysis, for each 

FC pathway the diagnostic accuracy results from Chapter 5 are applied within the 

FC economic model, to assess the impact of increasing measurement uncertainty 

on cost, QALY and cost-utility (NMB) outcomes. Contour plots are again used to 

assess the robustness of each pathway’s outcomes to increased measurement 

uncertainty, and to explore the derivation of outcome-based APS.  

In Chapter 7 an analysis of RWE is presented, which explores how between-

method measurement performance data may be used within the error model 

framework to evaluate alternative assay outcomes. In this analysis, national EQA 

data for FC is used to assess the expected impact of switching FC assay within 

the YFCCP on the pathway’s clinical and economic outcomes.  

Note that within each of the case study analysis chapters outlined above, a 

discussion of the specific findings and limitations of the analysis is provided. An 

overarching discussion of the thesis findings, including suggestions for future 

research, is subsequently provided in the final thesis chapter (Chapter 8).  
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4.5 Summary 

 This chapter has outlined the clinical context underpinning the thesis case 

study: FC as a primary care diagnostic test for IBD.  

 Two diagnostic pathways currently used in the UK primary care setting 

were highlighted: the NICE FC pathway (a single-test strategy, using a 50 

μg/g faeces cut-off threshold); and the YFCCP (a repeat-test strategy, 

using a 100 μg/g faeces cut-off threshold). 

 In the following case study analysis, the impact of FC measurement 

uncertainty on the diagnostic accuracy, clinical utility and cost-

effectiveness of the NICE FC pathway, and the YFCCP, is explored.  

In the following chapter (Chapter 5) the first part of the thesis case study analysis 

is presented: an assessment of the impact of increasing FC measurement 

uncertainty on the diagnostic accuracy of the NICE FC pathway and the YFCCP.  
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Chapter 5  

The impact of measurement uncertainty on the diagnostic 

accuracy of FC testing strategies 

5.1 Chapter outline  

The previous chapter outlined the clinical context and motivating factors 

underpinning the thesis case study. This chapter reports on the first section of 

the case study analysis: an assessment of the impact of measurement 

uncertainty on the diagnostic accuracy of FC diagnostic pathways. This part of 

the case study addresses hypotheses C and D of the thesis – i.e. that methods 

from the broader literature may be applied within HTA-style assessments to: [C] 

evaluate the impact of measurement uncertainty on clinical performance 

outcomes, and [D] identify outcome-based APS. 

Two pathways are evaluated in this study: (1) the NICE FC pathway (a single-

test FC strategy, adopting a 50 μg/g faeces cut-off threshold); and (2) the YFCCP 

(a repeat-test FC strategy, adopting a 100 μg/g faeces cut-off threshold). For both 

pathways, baseline FC values were sampled from an IPD dataset of 951 patients 

treated under the YFCCP (summarised in section 5.2). For the NICE FC pathway, 

the impact of measurement uncertainty on the pathway’s diagnostic accuracy 

was explored using the error model simulation approach as outlined in Chapter 3 

For the YFFCP, due to the repeat-test nature of this pathway a slightly adapted 

simulation process was required. The analysis is therefore presented in two parts: 

part 1 reports on the NICE FC pathway evaluation (section 5.3); and part 2 reports 

on the YFCCP evaluation (section 5.4). In both cases the simulation results are 

presented using contour plots. These are used to assess the robustness of each 

pathway’s diagnostic accuracy to increasing measurement uncertainty, and to 

further explore the possibility of outcome-based APS in the form of “acceptable 

regions” of bias and imprecision. The final section of this chapter provides a 

discussion of the key findings and limitations of the analysis (section 5.5).  

5.2 Data 

An anonymised dataset was obtained relating to 951 patients treated under the 

YFCCP between August 2016 and April 2017 – the same patient cohort that 
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informed the latest YFCCP diagnostic accuracy assessment (Turvill et al. 2018) 

(239). Although these patients were treated under the YFCCP, the associated 

dataset included separate FC1 and FC2 values, in addition to patients’ clinical 

diagnoses. This data could therefore be used to evaluate both the single-test 

NICE FC pathway (by reference to the FC1 values only – see section 5.3) and 

the YFCCP (by reference to both the FC1 and FC2 values – see section 5.4). The 

dataset obtained for this study, henceforth referred to as the ‘YFCCP dataset’, 

included information on patients’ FC1 results, FC2 results (where applicable), 

secondary care endoscopic investigations and final clinical diagnoses (discussed 

further below).  

Note that, as this data relates to a routine service evaluation (i.e. audit data) and 

was fully anonymised, formal ethical approval was not required for this study. This 

was confirmed via email correspondence with the ethics teams at both the York 

Teaching Hospital NHS Foundation Trust and the University of Leeds, before 

obtaining the data.   

As per the YFCCP protocol, all patients within the YFCCP dataset were aged 18-

60 years and presented to primary care with new lower gastrointestinal 

symptoms, with initial GP diagnostic workup (e.g. full blood count, CRP, coeliac 

screen, Clostridium difficile screen etc.) being non-confirmatory (239). Of the first 

1005 consecutive patients entering the YFCCP, 52 were subsequently excluded 

from the 2018 diagnostic analysis due to either incompletion of the pathway 

before secondary care referral (n=34), or non-referral despite direction from the 

pathway (n=18). This left a total of 951 patients included in the YFCCP dataset 

(239). Of those, 63% were women and 47% were men, and the median patient 

age was 38 years (IQR: 27-48) (239). 

All FC testing within the YFCCP was conducted at York Teaching Hospital NHS 

Foundation Trust. Samples were extracted using Bühlmann CALEX extraction 

tubes and analysed using the Bühlmann fCAL® ELISA assay (Alpha Laboratories 

Ltd, UK) with a quantitative measurement range of 10-600 μg/g faeces. Faecal 

samples were stored for 1-4 days at 4⁰C before extraction, and extracts were 

analysed within 7 days of storage (also at 4⁰C). As per the York laboratory’s 

standard operating procedures for FC, two internal quality control (IQC) samples 

were run with each FC testing batch to monitor imprecision resulting from the 
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assay platform. Based on the IQC samples run during the data collection period, 

the results indicated an analytical CV of 7% at a lower measurement range (~50 

μg/g), and 4% at a higher measurement range (~150 μg/g) (271).  

A summary of patients’ final clinical diagnoses within the YFCCP dataset is 

provided in Table 5-1. These classifications are based on the results of secondary 

care investigations where available, assuming that colonoscopy is 100% 

accurate at diagnosing patients. An initial diagnosis of IBS (or other functional 

disease) was assumed to be correct so long as patients did not return to their GP 

with persisting symptoms (either at the 6-week GP review, or over a subsequent 

6-month follow-up period). The final clinical diagnosis of those patients who 

remained symptomatic and were referred to secondary care was based on the 

results of any secondary care investigations. 

In line with the original diagnostic accuracy publication (239), clinical diagnoses 

were classified as either ‘IBS’ (a proxy for all functional intestinal diseases) or 

‘IBD’ (a proxy for all organic enteric diseases requiring secondary care 

intervention). Table 5-1 provides details of the various functional and organic 

conditions included under these dichotomous classifications. Out of the 951 

patients included in the YFCCP dataset, 92% (n=873/951) were diagnosed with 

a functional disease (91% with IBS specifically) and 8% (n=78/951) were 

diagnosed with an organic enteric disease (5% with IBD specifically). 
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Table 5-1. YFCCP dataset: patient clinical diagnoses 

Diagnosis N (%) 

Any functional disease  873 (92) 

IBS 862 (91) 

Haemorrhoidal bleeding 8 

Coeliac disease 3 

Any organic enteric disease 78 (8) 

IBD 49 (5) 

Diverticular disease 5 

Gastroenteritis 5 

Microscopic colitis 3 

Adenomatous polyps ≥10 mm 3 

Colorectal cancer 2 

Threadworm 2 

Clostridium difficile 1 

Endometrioma 1 

Giardiasis 1 

Incarcerated hernia 1 

Lymphoma 1 

Mesenteric ischaemia 1 

Non-specific inflammation 1 

Small bowel cyst 1 

Subcentimetre neuroendocrine tumour 1 
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5.2.1.1 Censored data 

A key feature of the YFFCP dataset, pertinent to the subsequent case study 

analysis, concerns the issue of censored FC data. Censoring here relates to the 

analytical measurement range of the Bühlmann fCAL® ELISA assay (10 – 600 

μg/g) used within the YFCCP. Within this range the test returns a numerical result, 

whilst outside of this range the assay returns a semi-quantitative result: i.e. below 

the lower measurement limit (10 μg/g) a value of “<10” is reported (henceforth 

referred to as ‘left-censored data’), whilst above the upper measurement limit 

(600 μg/g) a value of “>600” is reported (referred to as ‘right-censored data’).  

The proportion of censored data within the YFCCP dataset is illustrated in Figure 

5-1. Left-censored data were confined to the IBS population, with 11% (n=97/873) 

of FC1 results and 4% (n=7/172) of FC2 results being left-censored in this cohort. 

Right-censoring was more common in the IBD population, with 56% (n=44/78) 

and 40% (n=25/63) of IBD patients having right-censored FC1 and FC2 values 

respectively, compared to 3% (n=25/873) and 7% (n=12/172) in the IBS 

population.  

Figure 5-1. YFCCP dataset: censored data summary 
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additional hypothetical bias and imprecision is applied. Alternative approaches to 

dealing with censored data were explored in the analysis, as described in the 

following sections.  

5.3 Part 1: NICE FC pathway evaluation 

This section presents the methods and results for the evaluation of the NICE FC 

pathway. All data analysis and simulation conducted within this assessment, and 

in the subsequent YFCCP evaluation presented in part 2 (section 5.4), were 

performed using R software (version 3.4.3) (272).  

5.3.1 Methods 

5.3.1.1 Baseline diagnostic accuracy  

The YFCCP dataset was first used to assess the ‘baseline’ diagnostic accuracy 

of the NICE FC pathway: that is, diagnostic accuracy as calculated using the 

empirical YFCCP dataset FC1 data, without simulating any additional test 

measurement uncertainty (which is the focus of the next section, section 5.3.1.2).  

Using the YFCCP FC1 data, FC diagnoses were assigned according to the NICE 

FC pathway cut-off threshold i.e. patients were categorised as having suspected 

IBD if their FC1 value was ≥50 μg/g, or suspected IBS if their FC1 value was <50 

μg/g. These FC diagnoses were then compared to the YFCCP clinical diagnoses 

(Table 5-1) and classified as true positive, true negative, false positive or false 

negative. Diagnostic sensitivity and specificity was thus calculated based on the 

proportion of results falling into each of these categories, as illustrated in 

Appendix C. Count plots, showing the distribution of FC1 values within the IBS 

and IBD populations, were also produced.  

5.3.1.2 Simulated diagnostic accuracy  

The impact of additional measurement uncertainty on the baseline diagnostic 

accuracy of the NICE FC pathway was assessed using the error model simulation 

approach, introduced in Chapter 3. Figure 3-3 previously outlined the error model 
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simulation process required for a single-test diagnostic strategy. This procedure 

was herein applied to the NICE FC pathway, as summarised in Figure 5-2 below.   

Baseline “true” FC values required in the error model simulation were derived 

from the YFCCP dataset. Given that this dataset provided IPD on patients’ FC1 

results, two approaches were possible for sampling FC1true values within the error 

model simulation – the ‘bootstrap method’ (discussed in section 5.3.1.2.1 below), 

and the ‘parametric method’ (discussed in section 5.3.1.2.2). An additional 

analysis, based on applying the error model directly to the 951 FC1 values within 

the YFCCP dataset (i.e. with no sampling process applied), was also considered 

within a sensitivity analysis under the bootstrap method (see section 5.3.1.2.3).  

5.3.1.2.1 Bootstrap sampling method 

Under the bootstrap sampling method, a bootstrap simulation dataset was 

generated by random sampling with replacement (i.e. bootstrap sampling) from 

the YFCCP dataset rows (with each row including an individual patients’ FC1 

value and final clinical diagnosis). In the base case analysis 10,000 bootstrap 

samples were generated. The FC1 values within each bootstrap sample were 

then used as FC1true values within the error model simulation (i.e. steps (i) and 

(ii) in Figure 5-2).  

i. A sample of FC1true values is assigned;  

ii. For each FC1true value, the addition of bias and imprecision is simulated 

according to the specified error model to generate FC1sim values e.g.:  

FC1sim = FC1true + [FC1true x N(0,1) x CV] + Bias        (5.1) 

iii. The diagnostic accuracy of the NICE FC pathway including additional 

imprecision and bias is calculated by comparing diagnoses based on 

the FC1sim values (using a 50 μg/g threshold) with patients’ clinical 

diagnoses; 

iv. Steps (i) to (iii) are repeated for a range of CV and bias values. 

Figure 5-2. NICE FC pathway: error model simulation approach required 
for a single-test strategy 
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As previously discussed, censored FC data within the YFCCP dataset present a 

problem for the error model simulation approach, since the error model requires 

a numerical FC1true value upon which to apply additional bias and imprecision. 

Note that whilst several studies have explored the performance of bootstrap 

estimators in scenarios involving censored data, most of these have focused on 

the context of survival or regression analysis; nevertheless, the bootstrap method 

has been shown to perform well in these cases (273-276). For the purpose of this 

analysis, the key concern is whether the specific values assigned to left- and 

right-censored data within the analysis (see below) have an impact on the 

estimated impact of measurement uncertainty on the clinical performance 

outputs. Within the bootstrap method base case analysis, censored FC data were 

replaced with numerical values equal to the associated limit value: that is, all left-

censored data were replaced with a value of 10 μg/g and all right-censored data 

were replaced with 600 μg/g. In order to explore the potential impact of these 

replacement values, a range of sensitivity analyses were conducted: in each of 

these analyses, left-censored data were substituted with a ‘half-way point’ value 

(i.e. 5 μg/g) and right-censored data were substituted with values equal to 1.25, 

1.5, 2 and 3 times the 600 upper limit value in turn (i.e. 750, 900, 1200 and 1800 

μg/g). Note that, based on the results of these sensitivity analyses, censored data 

did not have a measureable impact on the analysis in this case (see section 

5.3.2.2.2).   

A final ‘complete case’ analysis was also conducted, in which all censored FC1 

data from the YFCCP dataset were excluded. It should be noted, however, that 

this approach is expected to bias the results, since removal of FC1 censored data 

almost halves the IBD prevalence in the YFCCP dataset from 8.2% to 4.3%. 

Perhaps more importantly this approach lacks face validity, since in reality 

censored FC values are not discarded but are treated as clinically meaningful 

results. This sensitivity analysis is therefore presented for completeness only.  

5.3.1.2.2 Parametric sampling method  

Under the parametric sampling method, parametric distributions were assigned 

to the IBD population FC1 values and the IBS population FC1 values. A range of 

distributions (Normal, Lognormal, Gamma and Weibull) were fitted using the R 

‘fitdistrplus’ package, which uses a maximum likelihood estimation (MLE) process 
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to fit selected parameterizations to the data provided (277). The optimal fitting 

distribution for each population was determined via an analysis of Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) metrics, with 

the parameterisation with the lowest AIC and BIC values for each subgroup 

representing the distribution with the best statistical fit to the data (277).  

The MLE process used within the ‘fitdistrplus’ package enables 

parameterisations to be applied over both complete and censored data regions. 

To allow for censored data, the package uses the ‘fitdistcens’ function, which 

requires the expected regions for censored data to be specified (277). This 

function estimates a vector of univariate distribution parameters by maximising 

the likelihood of censored data using the inputted data on non-censored 

observations, and left- and right-censored observations. The MLE estimation 

process in this case is based on the likelihood estimation formula originally 

derived by Klein and Moeschberger in 2003:  

  𝐿(𝜃) =    ∏ 𝑓(𝑥𝑖|𝜃)𝑁𝑛𝑜𝑛𝐶
𝑖=1  ×  ∏ 𝐹(𝑥𝑗

𝑢𝑝𝑝𝑒𝑟|𝜃)
𝑁𝑙𝑒𝑓𝑡𝐶

𝑗=1
      (5.2) 

      × ∏ (1 −  𝐹(𝑥𝑘
𝑙𝑜𝑤𝑒𝑟|𝜃))

𝑁𝑟𝑖𝑔ℎ𝑡𝐶

𝑘=1
 × ∏ (𝐹(𝑥𝑚

𝑢𝑝𝑝𝑒𝑟|𝜃) −  𝐹(𝑥𝑚
𝑙𝑜𝑤𝑒𝑟|𝜃))

𝑁𝑖𝑛𝑡𝐶
𝑚=1      

with 𝑥𝑖 the 𝑁𝑛𝑜𝑛𝐶  non-censored observations; 𝑥𝑗
𝑢𝑝𝑝𝑒𝑟

 upper values defining the 𝑁𝑙𝑒𝑓𝑡𝐶 

left-censored observations; 𝑥𝑘
𝑙𝑜𝑤𝑒𝑟  lower values defining the 𝑁𝑟𝑖𝑔ℎ𝑡𝐶 right-censored 

observations; [𝑥𝑚
𝑙𝑜𝑤𝑒𝑟 ; 𝑥𝑚

𝑢𝑝𝑝𝑒𝑟
] the intervals defining the 𝑁𝑖𝑛𝑡𝐶  interval-censored 

observations; and 𝐹 the cumulative distribution function of the selected parametric 

distribution (277, 278).  

Whilst left- and right-censored data in this method are specified as falling within 

specified regions, it should be noted that the MLE distributional parameters 

produced from this method result in distributions which may extend beyond the 

extremes of the censored data regions. In other words, the resulting probability 

density profiles are not truncated as a result of specifying censored data regions.  

In this case study, left-censored data were naturally specified as falling within the 

range 0-10 μg/g, given that negative assay values are not possible. For right-

censored data, the lower bound for this censored data region is given as 600 

μg/g, however specifying an upper bound is less straightforward. The 600 μg/g 

upper limit of quantification currently achieved using this version of the Bühlmann 
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assay is restrictive: alternative assays report measurement ranges spanning as 

high as 3,000 μg/g, for example (see Table 4-1). Three alternative values were 

therefore explored for the upper bound of the right-censored data region: 1,000, 

2,000 and 3,000 μg/g. Based on an analysis of AIC and BIC criteria for 

parameterisations produced from each of these specifications, the upper bound 

of 1,000 μg/g was applied within the base case analysis (i.e. application of this 

upper bound for right-censored data produced parameterisations with the lowest 

AIC and BIC results). The two alternative upper bounds for right-censored data 

were applied within sensitivity analyses. (Note, a full summary of the sensitivity 

analyses conducted is provided in section 5.3.1.2.5). As previously mentioned, 

specifying an upper bound of 1,000 μg/g for right-censored data does not mean 

that the resulting parametric distributions are truncated at this point (see the 

associated simulated distributional plots provided in Appendix I.2 which show 

upper distribution tails extending beyond this point).  

Table 5-2 shows the AIC and BIC results for each population, using an upper 

bound for the right-censored data region of 1,000 μg/g. Associated tables using 

the alternative upper bound values are provided in Appendix I.1; Appendix I.2 

also provides a series of density plots showing the simulated probability density 

distributions for each of the parameterisations provided in Table 5-2 (based on 

n=10,000 draws from each distribution). Appendix I.3 further provides example R 

code for fitting parametric distributions to censored data using the ‘fitdistrplus’ 

package, based on a hypothetical dataset of test values. 

Within Table 5-2, the optimal parameterisation for each population (according to 

the AIC and BIC results) is highlighted in blue, and the distributional specifications 

provided by the ‘fitdistrplus’ package for each parameterisation are reported 

under the ‘Parameterisation’ heading (e.g. ‘meanlog’ and ‘sdlog’ for the lognormal 

parameterisation). A face validity metric is also provided, equal to the proportion 

of 10,000 simulations from each distribution falling equal to or above 50 μg/g (i.e. 

the NICE FC pathway cut-off threshold). This proportion can be compared to that 

observed in the YFCCP dataset FC1 data (shown in the final column of the table), 

to assess how closely the diagnostic accuracy of the NICE FC pathway as 

estimated from the simulated parametric distributions would be expected to 

match that based on the empirical YFCCP dataset FC1 values. If the specified 
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distribution over-estimates the proportion of IBS patients above the cut-off 

threshold, for example, then the pathway’s baseline specificity will be 

underestimated.   
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Table 5-2.34 NICE FC pathway: AIC and BID criteria for FC1 parametric distributions (upper bound for right-censored FC1 data = 
1,000 μg/g)  

Subgroup Parameterisation AIC BIC 

% values ≥ 50 

μg/g  

(simulated data) 

% values ≥ 50 

μg/g  

(YFCCP FC1 

data) 

IBS FC1 

Lognormal  [meanlog = 3.706564; sdlog = 1.22697] 8592.265 8601.809 44.1% 

40.3% 
Weibull  [shape = 0.7619224; scale = 73.83344] 8728.559 8738.103 48.0% 

Gamma  [shape = 0.6889856; rate = 0.007743206] 8781.936 8791.479 49.2% 

Normal  [mean = 86.97938; SD = 134.9182] 10375.290 10384.830 59.3% 

IBD FC1 

Lognormal  [meanlog = 6.007434; sdlog = 0.8615051] 615.288 620.002 99.5% 

96.2% 
Weibull  [shape = 1.74992; scale = 589.0402] 588.486 593.199 98.8% 

Gamma  [shape = 2.025055; rate = 0.003819662] 596.323 601.036 94.8% 

Normal  [mean = 526.4776; SD = 291.2407] 588.660 593.373 98.4% 

                                            

34 Note: density plots for these parameterisations are provided in Appendix I.2. 
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Based on the reported AIC and BIC results, the lognormal parameterisation was 

selected for the IBS FC1 subgroup and the Weibull parameterisation was 

selected for the IBD FC1 subgroup. Within the parametric method base case 

analysis, FC1true values within the error model simulation (n=10,000) were 

randomly drawn from the lognormal and Weibull FC1 distributions according to 

the observed YFCCP IBD prevalence (i.e. 8.2% of simulations were drawn from 

the IBD Weibull distribution [n=9,180]; 91.8% from the IBS lognormal distribution 

[n=820]). Sensitivity analyses were also conducted applying each of the 

alternative parametric distributions listed in Table 5-2 (see section 5.3.1.2.5).  

With regards to censored data, as well as exploring different values for the upper 

limit applied to the right-censored data region, a complete case analysis was also 

conducted. This uses the ‘fitdistr’ function within the ‘fitdistrplus’ package, which 

similarly uses a MLE process to derive data parameterisations – but in this case 

ignores any censored data (277). As with the bootstrap method, the complete 

case analysis should be interpreted with caution given the proportion of data 

discarded.  

5.3.1.2.3 Uncertainty 

A certain degree of “noise” exists in the simulation results, due to both the process 

of randomly sampling FC values, and applying a random imprecision factor within 

the error model. In both the bootstrap and parametric base case analyses, a 

pragmatic approach was adopted to smooth the simulation output, based on 

calculating moving averages of the diagnostic accuracy results. For the majority 

of sensitivity and specificity values, moving average values were based on a 

moving window of 10 using central positioning; i.e. for any given point (e.g. 

sensitivity result), the average value was based on an average of 10 points 

including 5 points either side of the value position. Towards the edges of the data 

(where a window of 10 was not possible) a moving window of 5 was used. At the 

very edges of the data (where central positioning was not possible), moving 

averages were based on a window of 5 using left/right positioning as necessary.   

An alternative, more robust (but computationally expensive) method is to run a 

greater number of simulations. An additional sensitivity analysis was therefore 

conducted for both sampling methods, based on running 100,000 simulations 

(compared to 10,000 in the base case). For these analyses, results are reported 
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based on the “noisy” sensitivity and specificity values (i.e. without applying the 

smoothing algorithm), to enable assessment of the agreement between these 

results and the pragmatic smoothing algorithm applied in the base case.  

For the parametric method, additional uncertainty stems from the parametric 

specifications selected. In the base case analysis, distributions were modelled 

based on the mean MLE parameters provided by the ‘fitdistrplus’ package. 

FC1true values for the IBS population, for example, were derived by taking random 

draws from a lognormal distribution with ‘meanlog’ = 3.706564 and ‘sdlog’ = 

1.22697 (as per the specifications provided in Table 5-2). The uncertainty 

inherent in the ‘meanlog’ and ‘sdlog’ parameters, due to the fact they are derived 

on sample data, is not captured using this approach.  

It is possible to derive a series of stochastic values for each of the distribution 

parameters listed in Table 5-2, using an inbuilt function within the ‘fitdistrplus’ 

package called ‘bootdistcens’. This function produces a user-defined number of 

stochastic values for the distributional parameters, by iteratively resampling the 

provided sample data (using bootstrap sampling) and rerunning the MLE 

procedure for each bootstrap sample (277). The resulting set of stochastic 

parameter values can then be iteratively applied within the error model simulation 

by adding an outer loop to the simulation process: that is, the base case error 

model simulation (n=10,000 simulations for each bias and imprecision pair) is run 

by drawing from distributions defined according to the first set of stochastic 

parameter estimates, then again for the second, then the third, and so on. For 

each bias and imprecision pair assessed, the diagnostic accuracy results are then 

based on an average value over both the inner and outer simulation loops.  

Given the additional computational burden associated with adding an outer 

simulation loop to the analysis, a sensitivity analysis was run using 1,000 inner 

simulation loops (i.e. a reduced version of the base case) and 1,000 outer loop 

simulations. This results in 1 million simulations for each bias and imprecision 

pair assessed. As before, the results of this analysis are reported based on the 

“noisy” values of sensitivity and specificity, thus allowing an overall comparison 

of: (i) applying the pragmatic smoothing algorithm (base case analysis); (ii) 

increasing the sampling number to 100,000 (sensitivity analysis); and (iii) 

increasing the sampling number and accounting for parametric uncertainty 
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(sensitivity analysis). Results for all other sensitivity analyses were based on 

applying the smoothing algorithm, as in the base case. 

A final sensitivity analysis was conducted for the bootstrap sampling method, in 

which the bootstrap sampling process was removed entirely. That is, the error 

model was applied directly to the YFCCP dataset FC1 values (n=951) alone. This 

analysis enables an assessment of whether or not increasing the simulation 

dataset via sampling alters the results, compared to simply applying the error 

model directly to the empirical dataset.  

5.3.1.2.4 Outputs 

For each sampling method, the simulation process was repeated for CV% values 

ranging from 0-100% in 0.5% increments, and for bias ranging from -100 to +100 

μg/g in 1 μg/g increments, resulting in a total of 40,401 (201x201) bias and 

imprecision pairs. For each CV and bias pair, the base case simulation process 

produces 10,000 FC1sim values, from which the NICE FC pathway diagnostic 

accuracy was calculated (resulting in 40,401 diagnostic sensitivity and specificity 

values).  

For the base case analyses, the simulation results were illustrated using contour 

plots, which show how the sensitivity and specificity values change over the joint 

space of bias (x-axis) and CV (y-axis) inputs (as previously described in Chapter 

3, section 3.4.1, Figure 3-4). These plots were used to provide an initial 

assessment of the robustness of the NICE FC pathway’s diagnostic accuracy to 

increasing imprecision and bias. In addition the contour plots were used to 

illustrate a novel concept: “acceptable regions” of bias and imprecision (see 

section 5.3.2.2.1, Figure 5-5 for an example). The acceptable region highlights 

the area of the contour plot which meets a given diagnostic accuracy requirement: 

in the first instance this requirement was defined according to the lower 95% CIs 

achieved within the NICE FC pathway baseline diagnostic accuracy assessment 

(i.e. sensitivity ≥ 88% and specificity ≥ 56%; as reported in section 5.3.2.1). A 

lower requirement was also explored, reducing these values arbitrarily by 10% 

(i.e. sensitivity ≥ 78% and specificity ≥ 46%) – this second criterion provides an 

illustration of how relaxing the diagnostic accuracy requirement alters the 

acceptable region. Note that the concept of acceptable regions is further 

extended to cost-effectiveness outcomes in Chapter 6.  
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In line with previous studies that have used contour plots to present error model 

simulation results, TE% bands were also superimposed onto these figures (with 

TE = 1.96*CV% + bias) (130, 133, 142, 146, 174). Whilst the use of TE remains 

contentious within the clinical chemistry community (as discussed in section 

1.2.3), this metric does provide a useful means of summarising the overall level 

of error occurring at any given point on the contour plot. Using this approach, a 

further novel concept is presented: the maximum allowable TE (TEmax), defined 

as the highest TE band completely contained within a specified acceptable 

region. The TEmax metric provides a summary statistic with which the acceptable 

region can be described. A full discussion of the acceptable regions and TEmax 

concepts is provided in section 5.5.2.  

For the simulation sensitivity analyses, results are presented in a table (see 

section 5.3.2.2.2, Table 5-6) including the following information: (i) the diagnostic 

sensitivity and specificity results at the (0,0) point (i.e. at bias = 0 and CV% = 0); 

(ii) TEmax for the two acceptable regions outlined earlier in this section; (iii) the 

range of acceptable bias observed at CV = 0%, for each acceptable region (i.e. 

the width of each acceptable region at zero added CV%); and (iii) the range of 

acceptable CV% observed at bias = 0, for each acceptable region (i.e. the height 

of each acceptable region at zero added bias).    

5.3.1.2.5 Analysis summary 

The simulation processes applied in the NICE FC pathway base case analyses 

are summarised below.  

Bootstrap sampling method:  

i. Left- and right-censored FC values in the YFCCP dataset (n=951) are 

replaced with their associated limit values (10 and 600 μg/g respectively);  

ii. An expanded bootstrap dataset (n=10,000) is generated by sampling  with 

replacement from the YFCCP dataset rows; 

iii. For each FC1true value in the bootstrap dataset, the error model is applied 

to generate FC1sim values at a given level of bias and CV%; 

iv. Diagnostic accuracy of the NICE FC pathway including additional FC bias 

and CV is calculated by comparing diagnoses based on the FC1sim values 
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(using a 50 μg/g cut-off threshold) with patients’ clinical diagnoses in the 

bootstrap dataset; and 

v. Steps (iii) and (iv) are repeated for a range of bias (-100 to +100 in 1μg/g 

increments) and CV% (0 to 100% in 0.5% increments) values. 

Parametric sampling method:  

i. Using the parameter specifications provided in Table 5-2, a total of 10,000 

FC1true values are drawn from (a) the FC1 lognormal parametric 

distribution for IBS patients (n=9180), and (b) the FC1 Weibull parametric 

distribution for IBD patients (n=820); 

ii. For each FC1true value in (i), the error model is applied to generate FC1sim 

values at a given level of bias and CV%; 

iii. Diagnostic accuracy of the NICE FC pathway including additional FC bias 

and CV is calculated by comparing diagnoses based on the FC1sim values 

(using a 50 μg/g cut-off threshold) with patients’ clinical diagnoses 

(according to the population distribution from which simulations were 

drawn); and 

iv. Steps (ii) and (iii) are repeated for a range of bias (-100 to +100 in 1μg/g 

increments) and CV% (0 to 100% in 0.5% increments) values. 

A summary of the sensitivity analyses conducted for each sampling method is 

provided in Table 5-3.  
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Table 5-3. NICE FC pathway: sensitivity analyses conducted 

Code Analysis summary Analysis details 

Bootstrap sampling method analyses 

[1.0] 
Bootstrap method 
base case analysis 

Left- and right-censored data (recorded as “<10” 
and “>600” in the YFCCP database, respectively) 
replaced with limit values (10 and 600 μg/g 
respectively); error model based on 10,000 
bootstrap samples; smoothing algorithm applied to 
sensitivity and specificity results    

[1.1] 
Left-censored data = 
5 μg/g; right-censored 
data =750 μg/g 

Left-censored data replaced with 5 μg/g; right-
censored data replaced with 750 μg/g 

[1.2] 
Left-censored data = 
5 μg/g; right-censored 
data =900 μg/g 

Left-censored data replaced with 5 μg/g; right-
censored data replaced with 900 μg/g 

[1.3] 
Left-censored data = 
5 μg/g; right-censored 
data = 1200 μg/g 

Left-censored data replaced with 5 μg/g; right-
censored data  replaced with 1200 μg/g 

[1.4] 
Left-censored data = 
5 μg/g; right-censored 
data = 1800 μg/g 

Left-censored data replaced with 5 μg/g; right-
censored data replaced with 1800 μg/g 

[1.5] 
Complete case 
analysis 

Censored data excluded 

[1.6] 
Raw data only 
(n=951; no bootstrap 
sampling) 

No bootstrap sampling conducted: error model 
applied to YFCCP database (n=951) FC1 values 
alone 

[1.7]* 
Noisy results (no 
smoothing algorithm) 

No smoothing algorithm applied to the sensitivity 
and specificity results 

[1.8]* 100,000 samples 
Error model based on 100,000 bootstrap samples; 
no smoothing algorithm applied 

Parametric sampling method analyses 
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[2.0] 
Parametric method 
base case analyses 

R ‘fitdistrplus’ function used to fit parametric 
distributions to required patient subgroups (IBS 
FC1, IBD FC1) over complete and censored data 
regions via maximum likelihood estimation; 
lognormal distribution used for IBS subgroup; 
Weibull distribution used for IBD subgroup; region 
for left-censored data set as 0-10 μg/g; region for 
right-censored data set as 600-1000 μg/g; error 
model based on 10,000 draws across the IBS FC1 
and IBD FC1 distributions; smoothing algorithm 
applied to sensitivity and specificity results    

[2.1] 
Right-censored data 
region set to 600-
2000 μg/g 

Upper bound for right censored data region set to 
2,000 μg/g within the R ‘fitdistcens’ function 

[2.2] 
Right-censored data 
region set to 600-
3000 μg/g 

Upper bound for right censored data region set to 
3,000 μg/g within the R ‘fitdistcens’ function 

[2.3] 
Complete case 
analysis 

Censored data excluded 

[2.4] 
Lognormal 
parameterisation 

Lognormal parameterisations used for both patient 
subgroup distributions  

[2.5] 
Weibull 
parameterisation 

Weibull parameterisations used for both patient 
subgroup distributions 

[2.6] 
Gamma 
parameterisation 

Gamma parameterisations used for both patient 
subgroup distributions 

[2.7] 
Normal 
parameterisation 

Normal parameterisations used for both patient 
subgroup distributions 

[2.8]* 
Noisy results (no 
smoothing algorithm) 

No smoothing algorithm applied to the sensitivity 
and specificity results 

[2.9]* 100,000 samples 
Error model based on 100,000 draws across the IBS 
FC1 and IBD FC1 distributions; no smoothing 
algorithm applied  

[2.10]* 

Sampling accounting 
for parametric 
uncertainty: inner 
simulations = 1,000 x 
40,401; outer 
simulations = 1,000 

“Inner” simulation: base case error model process 
using 1,000 draws across the IBS FC1 and IBD FC1 
distributions for each bias and CV% pair (n=40,401). 
“Outer” simulation: for each outer simulation, a 
different stochastic value for the lognormal (IBS) 
and Weibull (IBD) distribution parameter estimates 
was drawn and applied across the 1,000*40,401 
inner simulations. The 1,000 outer simulation 
stochastic parametric values were derived using the 
‘bootdistcens’ function from the ‘fitdistrplus’ package 
(277).   

*These analyses are based on “noisy” results i.e. with no smoothing algorithm applied 
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5.3.2 Results  

5.3.2.1 Baseline diagnostic accuracy 

The baseline diagnostic accuracy results for the NICE FC pathway are 

summarised in Table 5-4. According to this pathway, 75/78 patients with IBD 

would have been correctly identified, giving a high sensitivity of 96.2% (95% CI: 

0.88 to 0.99); whilst 521 out of 873 of patients with IBS would have been correctly 

identified, giving a low specificity of 59.7% (95% CI: 0.56 to 0.63).  

Table 5-4. NICE FC pathway: baseline diagnosis accuracy results 

 Clinical diagnosis 
 

IBD IBS 

YFCCP 

diagnosis  

IBD  
True positives: 

n= 75 

False positives: 

n= 352 

PPV = 75/427 = 

17.6% 

IBS  
False negatives: 

n=3 

True negatives:  

n= 521 

NPV = 521/524 = 

99.4% 

 
Sensitivity = 

75/78 = 96.2% 

Specificity = 

521/873 = 59.7% 
 

 
The low specificity of this pathway is further illustrated by looking at the 

distribution of FC1 results across each population within the YFCCP dataset. 

Figure 5-3 provides count plots for each population, which clearly demonstrates 

the fact that using a cut-off threshold of 50 μg/g faeces misses a high proportion 

of IBS patients (shown in the top panel of the figure) who fall above this threshold 

line. Note that, for the purpose of this figure, left-censored data have been re-

coded as 10 μg/g and right-censored data have been re-coded as 600 μg/g, 

resulting in corresponding peaks at these points within each count plot.   
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Figure 5-3. NICE FC pathway: count plots showing the distribution of FC1 
values for IBS and IBD patients within the YFCCP database 

5.3.2.2 Simulated diagnostic accuracy 

5.3.2.2.1 Base case analysis 

Figure 5-4 provides the base case diagnostic accuracy contour plots for the NICE 

FC pathway. Note that all plots presented in this section are based on the 

simulation results with the smoothing algorithm applied (as described in section 

5.3.1.2.3). “Noisy” versions of these plots are provided in Appendix J.  

The contour plots provide an illustrative tool with which the robustness of the 

pathway’s diagnostic accuracy to increased FC bias and imprecision may be 

inspected. For example, consider the specificity contours for the bootstrap 

method (Figure 5-4, panel A). Starting at the baseline (0,0) point (i.e. zero added 

bias and imprecision), if we hold added imprecision at 0% and introduce 

additional positive bias (move horizontally to the right) then we rapidly pass 

through progressively lower specificity contours (i.e. the pathway specificity is 

volatile to positive bias), whilst if we introduce negative bias we gradually move 

through higher specificity contours (specificity is robust to negative bias). Second, 



 
 

125 

 

if we hold bias at 0 µg/g and introduce imprecision (move vertically), then we do 

not pass through any specificity contours (i.e. the pathway specificity is robust to 

imprecision). Applying the same process to the sensitivity contours, we observe 

that the sensitivity of the pathway is unaffected by positive bias, whilst negative 

bias and imprecision result in a gradual decrease in sensitivity.  

The same general pattern of results was observed with the parametric method 

(Figure 5-4, panel B). However, this sampling method produces slightly higher 

sensitivity (97.7%) and lower specificity (56.5%) at the (0,0) point, compared to 

the baseline diagnostic accuracy values (sensitivity = 96.2%; specificity = 59.7%). 

Running the simulation with zero imprecision and bias should produce the same 

results as the baseline diagnostic accuracy assessment; the fact that this is not 

the case in this analysis suggests that the parametric sampling method provides 

a poor fit to the data. The bootstrap method performs better in this respect, 

reporting 95.9% sensitivity and 60.0% specificity at the (0,0) point.  

Figure 5-5 illustrates the same results, this time highlighting the acceptable 

regions of bias and imprecision relating to an assumed minimum diagnostic 

accuracy requirement of sensitivity ≥88% and specificity ≥56% (the lower 95% 

CIs from the baseline diagnostic accuracy evaluation [section 5.3.2.1]). TE% 

bands are also overlaid onto these plots, to indicate the relationship between the 

acceptable regions of bias and imprecision and the TE summary metric. Based 

on these results, TEmax (i.e. the maximum TE band completely contained within 

the acceptable region) is equal to 5% when using the bootstrap method. For the 

parametric method, due to the fact that this method produces a lower baseline 

specificity estimate (below the 56% minimum specificity requirement), the 

acceptable region is offset from (0,0) and there is subsequently no acceptable TE 

value contained within the acceptable region (Figure 5-5, panel B).  

Figure 5-6 highlights the acceptable regions relating to a lower minimum 

diagnostic accuracy requirement of sensitivity ≥78% and specificity ≥46% (i.e. 

10% below the lower 95% CI’s from the diagnostic accuracy evaluation). In this 

case, TEmax = 15% with the bootstrap method or 13% with the parametric method. 

Further discussion of these plots is provided in section 5.5.2.  
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Figure 5-4. NICE FC pathway: base case diagnostic accuracy contour plots 
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Figure 5-5. NICE FC pathway: base case diagnostic accuracy contour plots 
showing the acceptable region (maintaining sensitivity ≥0.88 and 

specificity ≥0.56) and TE% bands 
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Figure 5-6. NICE FC pathway: base case diagnostic accuracy contour plots 
showing the acceptable region (maintaining sensitivity ≥0.78 and 
specificity ≥0.46) and TE% bands 
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Table 5-5 summarises the key findings from the above contour plots in tabular 

format. The first set of results provided in this table relate to the simulated 

diagnostic sensitivity and specificity results when setting added impression and 

bias to zero. These values can be compared to the empirical baseline diagnostic 

accuracy results reported in section 5.3.2.1, as a means of assessing the internal 

validity of the simulated diagnostic accuracy outcomes. That is, the simulated 

sensitivity and specificity values produced within the error model simulation when 

setting added imprecision and bias to zero, can be compared to the baseline 

diagnostic accuracy values based on the YFCCP dataset (sensitivity = 0.962, 

specificity = 0.597), to assess how closely the simulated data matches the 

empirical data. As previously discussed, it is evident from these results that the 

bootstrap method provides a better fit to the empirical data. Further discussion of 

these results is provided in section 5.5.2.  
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Table 5-5. NICE FC pathway: simulated diagnostic accuracy base case results 

Sampling 

method 

Diagnostic accuracy at         

bias=0 & CV=0% 

Acceptable region 1:                     

sensitivity ≥0.88; specificity ≥0.56 

Acceptable region 2:                     

sensitivity ≥0.78; specificity ≥0.46 

Sensitivity Specificity TEmax 

Range of 

bias at 

CV=0% 

Range of  

CV% at 

bias=0 

TEmax 

Range of 

bias at 

CV=0% 

Range of  

CV% at 

bias=0 

Bootstrap 

method 
0.959 0.600 5% -92 to 5 0 to 63% 15% -100 to 15 0 to 100% 

Parametric 

method 
0.977 0.565 0% -100 to 0 0 to 67% 13% -100 to 13 0 to 100% 
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5.3.2.2.2 Sensitivity analyses 

Table 5-6 reports the results of the sensitivity analyses conducted for the NICE 

FC pathway assessment. Note that TEmax results reported as ‘NA’ in this table 

indicate analyses were the acceptable region was offset from the (0,0) point (as 

opposed to TEmax = 0%, which indicates that the acceptable region touched, but 

did not pass, the baseline point). In addition, any ‘Range of CV% at bias=0’ results 

reported as ‘NA’ similarly indicates cases where the acceptable region did 

encompass the zero bias line.   

Using the bootstrap sampling method, sensitivity analyses exploring alternative 

specifications for dealing with censored data had no measurable impact on the 

results (Table 5-6, analyses 1.1-1.5). This is excluding the complete case 

analysis, which significantly decreases the diagnostic accuracy results and 

restricts the associated acceptable regions across all of the evaluations. This is 

due to the fact that this approach discards a high proportion of data (particularly 

within the IBD population). When using the parametric method, the two analyses 

exploring the use of higher upper bound values for the right-censored data 

regions had marginal impact, producing slightly lower baseline sensitivity and 

specificity values. In the analysis applying an upper bound of 3,000 µg/g limit, the 

first acceptable region was slightly restricted (Table 5-6, analyses 2.1-2.2).  

When using the parametric method, application of the lognormal, Weibull, 

Gamma and normal distributions produced increasingly lower sensitivity and 

specificity values and restricted acceptable regions compared to the base case 

analysis (Table 5-6, analyses 2.4-2.7). The normal distribution was a particularly 

poor fit to the data, as evident in the distribution plots provided in Appendix I.2. 

Finally, all of the sensitivity analyses exploring sampling uncertainty (Table 5-6, 

analyses 1.6-1.8 and 2.8-2.9) and parametric uncertainty (analysis 2.10), had 

little impact on the base case results.  

Full discussion of the  NICE FC pathway simulation results is provided in section  

5.5.
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Table 5-6. NICE FC pathway: simulated diagnostic accuracy sensitivity analysis results  

Analysis 

Diagnostic accuracy at         
bias=0 & CV=0% 

Acceptable region 1:                            
sensitivity ≥0.88; specificity ≥0.56 

Acceptable region 2:                            
sensitivity ≥0.78; specificity ≥0.46 

Sensitivity Specificity TEmax 
Range of 
bias at 
CV=0% 

Range of  
CV% at 
bias=0 

TEmax 
Range of 
bias at 
CV=0% 

Range of  
CV% at 
bias=0 

Bootstrap sampling method 

Base case 
analysis 

[1.0] Bootstrap method 0.959 0.600 5% -92 to 5 0 to 63% 15% -100 to 15 0 to 100% 

Sensitivity 
analyses: FC 
censored data 
handling 

[1.1] Left-censored data = 5 
μg/g; right-censored data = 
750 μg/g 

0.959 0.600 5% -92 to 5 0 to 64% 15% -100 to 15 0 to 100% 

[1.2] Left-censored data = 5 
μg/g; right-censored data = 
900 μg/g 

0.959 0.600 5% -92 to 5 0 to 64% 15% -100 to 15 0 to 100% 

[1.3] Left-censored data = 5 
μg/g; right-censored data = 
1200 μg/g 

0.959 0.600 5% -92 to 5 0 to 65% 15% -100 to 15 0 to 100% 

[1.4] Left-censored data = 5 
μg/g; right-censored data = 
1800 μg/g 

0.959 0.600 5% -92 to 5 0 to 65% 15% -100 to 15 0 to 100% 

[1.5] Complete case analysis 0.896 0.564 0% -6 to 0 0 to 41% 11% -71 to 11 0 to 75% 

Sensitivity 
analyses: 
sampling 
uncertainty 

[1.6] Raw data only (n=951; 
no bootstrap sampling) 

0.957 0.592 4% -86 to 4 0 to 62% 15% -100 to 15 0 to 100% 

[1.7]* Noisy results (no 
smoothing algorithm) 

0.961 0.605 5% -94 to 5 0 to 69% 15% -100 to 15 0 to 99% 

[1.8]* 100,000 samples 0.958 0.599 4% -88 to 4 0 to 62% 15% -100 to 15 0 to 99% 
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Parametric sampling method 

Base case 
analysis 

Parametric method 0.977 0.565 0% -100 to 0 0 to 67% 13% -100 to 13 0 to 100% 

Sensitivity 
analyses: 
censored data 
handling 

[2.1] Right-censored data 
region: 600-2000 μg/g 

0.967 0.562 0% -100 to 0 0 to 65% 13% -100 to 13 0 to 100% 

[2.2] Right-censored data 
region: 600-3000 μg/g 

0.963 0.555 - NA - -88 to -1 0 to 65% 12% -100 to 12 0 to 100% 

[2.3] Complete case analysis 0.950 0.518 - NA - -29 to -5 - NA - 6% -62 to 6 0 to 79% 

Sensitivity 
analyses: 
parameterisation 

[2.4] Lognormal 
parameterisation 

0.994 0.564 0% -100 to 0 0 to 69% 13% -100 to 13 0 to 100% 

[2.5] Weibull 
parameterisation 

0.989 0.521 - NA - -100 to -9 51 to 69% 10% -100 to 10 0 to 100% 

[2.6] Gamma 
parameterisation 

0.986 0.489 - NA - -100 to -15 51 to 69% 4% -100 to 4 0 to 100% 

[2.7] Normal 
parameterisation 

0.951 0.391 - NA - -100 to -58 - NA - - NA - -100 to -24 56 to 97% 

Sensitivity 
analyses: 
sampling and 
parametric 
uncertainty 

[2.8]* Noisy results (no 
smoothing algorithm) 

0.978 0.568 1% -100 to 1 0 to 72% 13% -100 to 13 0 to 100% 

[2.9]* 100,000 samples 0.988 0.563 0% -100 to 0 0 to 70% 13% -100 to 13 0 to 100% 

[2.10]* Sampling accounting 
for parametric uncertainty: 
inner simulations = 1,000 x 
40,401; outer simulations = 
1,000 

0.985 0.567 1% -100 to 1 0 to 70% 14% -100 to 13 0 to 100% 
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5.4 Part 2: YFCCP evaluation 

This section presents the methods and results for the diagnostic accuracy 

evaluation of the YFCCP. All data analysis and simulation modelling conducted 

within this assessment were performed using R software (version 3.4.3) (272).  

5.4.1 Methods 

5.4.1.1 Baseline diagnostic accuracy 

The baseline diagnostic accuracy of the YFCCP was determined using both the 

FC1 and FC2 results within the YFCCP database, as per the YFCCP protocol. 

That is, patients were diagnosed as having suspected IBS if either their FC1 

result was <100 μg/g, or if their FC1 result was ≥100 μg/g and their FC2 result 

was <100 μg/g; and patients were diagnosed as having suspected IBD if their 

FC1 result was ≥100 μg/g and their FC2 result was ≥100 μg/g. By comparison 

with patients’ recorded clinical diagnoses (summarised in Table 5-1), each FC 

diagnosis was classified as true positive, true negative, false positive or false 

negative; and diagnostic sensitivity and specificity was calculated based on the 

proportion of results falling into each of these categories (as illustrated in 

Appendix C). Count plots, showing the distribution of patient FC1 and FC2 values 

across each of the IBS and IBD populations, were also produced.  

5.4.1.2 Simulated diagnostic accuracy 

In contrast to single-test strategies, evaluation of repeat-test strategies – such as 

the YFCCP – requires either multiple applications of the error model, or an 

alternative simulation approach. As a first step, it is useful to consider the different 

factors which may introduce longitudinal variation in test results over time. For 

example, for a given patient, variation in longitudinal FC results (e.g. FC1 vs. FC2 

results) may arise from three primary factors:  

1) Within-person biological variation (i.e. natural fluctuation in an individual’s 

production of calprotectin); 

2) Measurement uncertainty (including imprecision and bias resulting from 

pre-analytical and analytical processes); and  

3) Disease status and/or activity. 
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If no FC2 data were available for this analysis, or if the aim was to explore 

alternative repeat-test strategies (e.g. applying different testing frequencies 

and/or time intervals), then each of the above factors would need to be explicitly 

modelled in order to estimate the trajectory of serial test values.  In this case study 

however, the aim was to assess the impact of increasing measurement 

uncertainty on an established clinical pathway (the YFCCP) with a fixed 

diagnostic protocol, for which sample data is available. The approach taken in 

this case therefore was to directly apply the error model to the FC1 and FC2 data 

available. Thus, rather than explicitly modelling each of the factors contributing to 

longitudinal variation (which would require reliable evidence on each of the 

factors, not yet available for FC), these factors were instead indirectly captured 

within the YFCCP database FC1 and FC2 values.  

The overall simulation process adopted for the YFCCP analysis is summarised 

in Figure 5-7 below.  

i. A sample of FC1true values is assigned;  

ii. For each FC1true value, the addition of bias and imprecision is simulated 

according to the specified error model to generate FC1sim values e.g.:  

FC1sim = FC1true + [FC1true x N(0,1) x CV] + Bias        (5.3) 

iii. For all FC1sim values ≥100 μg/g, an associated sample of FC2true values 

is assigned; 

iv. For each FC2true value, the addition of measurement uncertainty is 

simulated according to the specified error model to generate FC2sim 

values e.g.: 

FC2sim = FC2true + [FC2true x N(0,1) x CV] + Bias        (5.4) 

v. The diagnostic accuracy of the YFCCP including additional imprecision 

and bias is calculated by comparing diagnoses based on the FC1sim and 

FC2sim values (using the YFCCP diagnostic protocol) with patients’ 

clinical diagnoses; 

vi. Steps (i) to (v) are repeated for a range of CV and bias values. 

Figure 5-7. YFCCP: error model simulation approach required for a 
repeat-test strategy 
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As in the NICE FC pathway evaluation, two approaches were explored in this 

assessment for sampling FC1true and FC2true values from the YFCCP dataset – 

the ‘bootstrap method’ (discussed in section 5.4.1.2.1 below), and the ‘parametric 

method’ (discussed in section 5.4.1.2.2). An additional analysis, based on 

applying the error model directly to the YFCCP dataset FC1 and FC2 values (i.e. 

with no sampling process applied), was also considered within a sensitivity 

analysis under the bootstrap method (see section 5.4.1.2.3).  

5.4.1.2.1 Bootstrap sampling method 

For the YFCCP evaluation bootstrap method, the same initial process as applied 

within the NICE FC pathway evaluation was undertaken: a bootstrap simulation 

dataset was generated by drawing 10,000 bootstrap samples from the YFCCP 

dataset, with each sampled row now including patients’ FC1 and FC2 values, as 

well as their final clinical diagnoses. The FC1 values within each bootstrap were 

then used as FC1true values within the first error model application (i.e. step (ii) in 

Figure 5-7). Additional simulation was then required to generate FC2sim values: 

in this case, for all FC1sim values returned as ≥100 μg/g from the first error model 

application, the associated FC2 values from the corresponding rows of the 

bootstrap simulation dataset were then used as the FC2true values within the 

second error model application (step (iv) in Figure 5-7), thereby maintaining the 

within-patient correlation between FC1 and FC2 values. The diagnostic accuracy 

assessment was then based on a comparison of FC diagnoses using the FC1sim 

and FC2sim values (according to the YFCCP diagnostic protocol), with linked data 

on patients’ clinical diagnoses within the bootstrap simulation dataset.  

With regards to censored data, the same method as employed in the NICE FC 

pathway evaluation (see section 5.3.1.2.1) was again applied for the YFCCP 

evaluation – i.e. all left-censored data (now including FC1 and FC2 values) were 

replaced with a value of 10 μg/g and all right-censored data were replaced with 

600 μg/g. In addition, the same set of sensitivity analyses (listed in section 

5.4.1.2.5) were conducted to explore the impact of the censored data substitution 

values. Note that the complete case sensitivity analysis is again expected to 

significantly bias the results, with the removal of FC1 and FC2 censored data in 

this case more than halving the IBD prevalence in the YFCCP dataset from 8.2% 

to 3.5%. This analysis should therefore be considered with caution. 
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A further consideration within the YFCCP evaluation relates to the conduct of FC2 

testing. Within the YFCCP dataset, 5 IBD patients and 701 IBS patients did not 

have an FC2 test conducted due to having an FC1 value <100 μg/g (i.e. no FC2 

test was required in these cases according to the YFCCP protocol). A further 10 

IBD patients did not have an FC2 test conducted due to being directly referred to 

secondary care (i.e. non-compliant referrals). Under the bootstrap method 

therefore, depending on the level of measurement uncertainty applied within the 

first error model application, a number of FC1sim values returned as ≥100 μg/g 

could have a missing FC2true value within that row of the bootstrap dataset.  

In the base case analysis, required FC2 values not available within the bootstrap 

dataset were imputed by resampling from the population-specific YFCCP FC2 

data – i.e. if the missing FC2true value related to an IBS patient, then the FC2true 

value was imputed by taking a random draw from the available YFCCP IBS FC2 

data (n=172); likewise if the missing value related to an IBD patient, then 

imputations were drawn from the available YFCCP IBD FC2 data (n=63).  

An alternative approach to imputing missing FC2 values was considered within a 

sensitivity analysis. For this analysis, required FC2true values were imputed by 

first sampling with replacement from available (population-specific) data on the 

between-test proportional differences (FCdiff), defined as FCdiff = (FC2 – 

FC1)/FC1. Within the error-model simulation, for all FC1sim values returned as ≥ 

100 µg/g, FC2true values (where unavailable in the bootstrap dataset) were 

derived by taking the associated FC1true value and applying a randomly drawn 

FCdiff value (i.e. FC2true = FC1true + FC1true*FCdiff). Note that proportional (rather 

than absolute) differences were used to avoid generating negative FC2true values. 

Count plots, illustrating the population-specific distributions of FCdiff values 

derived from the YFCCP dataset, are provided in Appendix K.  

5.4.1.2.2 Parametric sampling method 

When applying the parametric method in the YFCCP evaluation, the same initial 

process as applied within the NICE FC pathway evaluation was undertaken: 

FC1true values (n=10,000) were randomly drawn from the previously specified 

lognormal and Weibull FC1 distributions for the IBS and IBD populations 

respectively, according to the observed YFCCP IBD prevalence. These FC1true 
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values were then used within the first error model application (i.e. step (ii) in 

Figure 5-7). To generate required FC2true values, the same process of deriving 

optimal parametric distributions as outlined for the FC1 data (section 5.3.1.2.2) 

was similarly applied to data on two further subgroups: IBS FC2 values, and IBD 

FC2 values. That is, a range of distributions (Normal, Lognormal, Gamma and 

Weibull) were fitted to the population-specific YFCCP FC2 data using the R 

‘fitdistcens’ function to derive distributions over both censored and complete data 

regions (277). The optimal parameterisations used within the base case analysis 

were then selected based on an analysis of AIC and BIC metrics.  

Table 5-7 reports the AIC and BIC criteria for the parametric analysis specifying 

a left-censored data region of 0-10 μg/g, and a right-censored data region of 600-

1000 μg/g (as in the NICE FC pathway base case analysis). Note that the IBS 

and IBD population FC1 distributions reported in Table 5-7 are the same as 

previously reported in part 1 (section 5.3.1.2.2); however, an alternative face 

validity metric is here provided, equal to the proportion of simulated FC values 

falling above the YFCCP 100 μg/g cut-off threshold. This metric can be used as 

before to assess the internal validity of the simulated distributions via comparison 

with the YFCCP empirical dataset values. Associated tables using the two 

alternative upper bounds for the right-censored data region (2,000 and 3,000 

μg/g) are provided in Appendix I.1; Appendix I.2 also provides the simulated 

probability density distributions for each of the parameterisations listed in Table 

5-7 (based on n=10,000 draws from each distribution).  

Based on the results reported in Table 5-7, the lognormal distribution was 

selected for both the IBS FC1 and FC2 distributions, and the Weibull distribution 

was selected for both the IBD FC1 and FC2 distributions within the parametric 

method base case analysis. Sensitivity analyses were also conducted to explore 

the impact of adopting each of the alternative parameterisations listed in Table 

5-7 (see section 5.4.1.2.5). Within the error model simulation, the population-

specific proportions of FC1sim values returned as ≥100 µg/g within the first error 

model application informed the number of FC2true simulations drawn from the 

respective population FC2 distributions, to which the second error model was 

applied (i.e. step (iii) in Figure 5-7).  
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Table 5-7. YFCCP: AIC and BIC criteria for FC1 and FC2 distributions (upper bound for right-censored data = 1,000 μg/g)   

Subgroup Parameterisation AIC BIC 
% values ≥ 100 μg/g 

(simulated data) 

% values ≥ 100 μg/g 

(YFCCP dataset) 

IBS FC1 

Lognormal  [meanlog = 3.70656; sdlog = 1.22697] 8592.265 8601.809 23.2% 

19.7% Weibull  [shape = 0.76192; scale = 73.83344] 8728.559 8738.103 28.3% 

Gamma  [shape = 0.68899; rate = 0.00774] 8781.936 8791.479 29.9% 

Normal  [mean = 86.97938; SD = 134.91820] 10375.29 10384.830 45.4% 

IBS FC2 

Lognormal  [meanlog = 4.41576; sdlog = 1.24684] 1915.081 1921.376 44.3% 

40.7% Weibull  [shape = 0.85262; scale = 152.01680] 1926.026 1932.321 49.8% 

Gamma  [shape = 0.814413; rate = 0.00491] 1929.075 1935.370 51.7% 

Normal  [mean = 160.70540; SD = 185.69180] 2134.028 2140.323 61.8% 

IBD FC1 

Lognormal  [meanlog = 6.00743; sdlog = 0.86151] 615.288 620.002 95.2% 

93.6% Weibull  [shape = 1.74992; scale = 589.04020] 588.486 593.199 95.7% 

Gamma  [shape = 2.02506; rate = 0.00382] 596.323 601.036 94.3% 

Normal  [mean = 526.47760; SD = 291.24007] 588.660 593.373 92.4% 

IBD FC2 

Lognormal  [meanlog = 5.91977; sdlog = 0.70842] 588.898 593.185 96.7% 

100% 
Weibull  [shape = 1.75989; scale = 520.63000] 583.813 588.099 94.9% 

Gamma  [shape = 2.42639; rate = 0.00524] 585.347 589.633 95.5% 

Normal  [mean = 458.38920; SD = 266.79900] 593.387 597.673 91.2% 
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As for the bootstrap method, an alternative approach to sampling the FC2 data 

was considered within a sensitivity analysis for the parametric method. In this 

case, all required FC2true values were generated by first sampling from 

population-specific distributions for the between-test proportional differences, 

defined as FCdiff = (FC2 – FC1)/FC1. Within the simulation, for all FC1sim values 

returned as ≥100 µg/g, FC2true values were derived by taking the associated 

FC1true value and applying a randomly drawn FCdiff value (i.e. FC2true = FC1true + 

FC1true*FCdiff). As before, proportional differences were applied so as to avoid 

generating negative FC2true values. Note that this method differs from the 

associated bootstrap sensitivity analysis, in that all FC2 values were here 

generated by drawing from the FCdiff distribution (rather than only for a subset of 

‘missing’ FC2 values within the bootstrap method). 

Parametric distributions for the IBS and IBD FCdiff values were derived using a 

similar process as previously outlined, with four alternative parametrisations 

(normal, lognormal, gamma and Weibull) applied to the FCdiff data, using the 

‘fitdistcens’ function to account for censored data (277). There were two key 

differences in this case, however. First, numerous censored data regions were 

possible for the FCdiff data, depending on whether the FC1 and/or FC2 values 

feeding into the FCdiff calculation were left- or right-censored.35 A range of 

censored data regions for FCdiff were therefore assigned within the ‘fitdiscens’ 

function, depending on the associated FC1 and FC2 values. The second 

complication lies in the fact that, in its natural form, the FCdiff distribution can span 

from -1 (when the test drops from a positive value to zero), to infinity (when the 

test rises from zero to a positive value). In order to enable application of the 

lognormal, Gamma and Weibull distributions (which cannot be applied to 

negative data values), a temporary adjustment was applied, adding +1 to each of 

the FCdiff values. This adjustment was removed after sampling the required FCdiff 

values from the given parametric distribution within the error model simulation.   

The AIC and BIC criteria for each of the parameterisations applied to the adjusted 

FCdiff data are provided in Table 5-8. Based on these results, the Weibull 

                                            

35 For example, if FC1 = “<10” and FC2 = “<10”, then both of these values lie somewhere 
in the left-censored data region (0-10 μg/g). FCdiff in this case may lie anywhere 
between -1 (where FC1=10 and FC2=0) to +infinity (where FC1=0 and FC2=10). 
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distribution was used for the IBS population FCdiff distribution, and the Gamma 

distribution was used for the IBD population FCdiff distribution. Appendix K 

(section K.2) provides corresponding probability density distributions for the listed 

parameterisations (based on n=10,000 draws from each distribution). Each of the 

alternative parameterisations listed in Table 5-8 were also explored in sensitivity 

analyses (see section 5.4.1.2.5).   

5.4.1.2.3 Uncertainty 

The same smoothing algorithm previously outlined in section 5.3.1.2.3 was 

similarly applied to the YFCCP evaluation results, to smooth the sensitivity and 

specificity outputs. As before, sensitivity analyses were also conducted based on: 

(i) removing the smoothing algorithm (i.e. “noisy” results); (ii) increasing the 

simulation number to 100,000; (iii) removing the sampling process altogether 

within the bootstrap method; and (iv) applying an additional outer simulation loop 

within the parametric method, to account for parametric uncertainty within this 

method (in this case, capturing uncertainty within both the FC1 and FC2 

distributional parameters). A full list of sensitivity analyses conducted is provided 

in section 5.4.1.2.5.  

5.4.1.2.4 Outputs 

For each sampling method, the simulation process was repeated for CV values 

ranging from 0-100% in 0.5% increments, and for bias ranging from -100 to +100 

μg/g in 1 μg/g increments, producing 40,401 diagnostic sensitivity and specificity 

results within each analysis. The results were illustrated using the same series of 

contour plots as in the NICE FC evaluation. For the plots illustrating the 

acceptable regions of bias and imprecision, in the first instance these were 

specified based on an assumed minimum accuracy requirement set equal to the 

lower 95% CI’s achieved in the YFCCP baseline diagnostic accuracy assessment 

(reported in section 5.4.2.1): i.e., sensitivity ≥0.85 and specificity ≥0.90. A lower 

requirement was also explored, reducing these values by 10% (i.e. sensitivity 

≥0.75 and specificity ≥0.80). The results of the sensitivity analyses conducted 

were reported in tabular format, as for the NICE FC pathway evaluation.  
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Table 5-8. YFCCP evaluation: AIC and BIC criteria for adjusted FCdiff parametric distributions (upper bound for right-
censored FC data = 1,000 μg/g)   

Subgroup Parameterisation AIC BIC 

IBS FCdiff (adjusted) 

Lognormal  [meanlog = -1.11652; sdlog = 1.31925] 389.945 396.240 

Weibull  [shape = 0.88117; scale = 0.60781] 379.165 385.460 

Gamma  [shape = 0.83202; rate = 1.28402] 380.040 386.335 

Normal  [mean = 0.64413; SD = 0.72701] 571.098 577.393 

IBD FCdiff (adjusted) 

Lognormal  [meanlog = -0.15797; sdlog = 0.70691] 171.663 175.949 

Weibull  [shape = 1.56416; scale = 1.21244] 174.062 178.349 

Gamma  [shape = 2.33821; rate = 2.16255] 171.135 175.422 

Normal  [mean = 1.0947054; SD = 0.7227265] 195.799 200.085 
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5.4.1.2.5 Analysis summary 

The simulation processes used for the YFCCP base case analyses is 

summarised below.  

Bootstrap sampling method:  

i. Left- and right-censored FC values in the YFCCP dataset (n=951) are 

replaced with their associated limit values (10 and 600 μg/g respectively);  

ii. An expanded bootstrap dataset (n=10,000) is generated by sampling with 

replacement from the YFCCP dataset rows; 

iii. For each FC1true value in the bootstrap dataset, the error model is applied 

to generate FC1sim values at a given level of bias and CV%; 

iv. For FC1sim values ≥100 μg/g with missing FC2true values in the bootstrap 

dataset, required values are imputed by randomly sampling with 

replacement from the available population-specific YFCCP FC2 values; 

v. For FC1sim values ≥100 μg/g, the error model is applied to the associated 

FC2true value to generate FC2sim values at a given level of bias and CV%; 

vi. Diagnostic accuracy of the YFCCP including additional FC bias and CV% 

is calculated by comparing diagnoses based on the FC1sim and FC2sim 

values (as per the YFCCP diagnostic protocol) with patients’ clinical 

diagnoses in the bootstrap dataset; and 

vii. Steps (iii) - (vi) are repeated for a range of bias (-100 to +100 in 1μg/g 

increments) and CV (0 to 100% in 0.5% increments) values.  

Parametric sampling method:  

i. Using the parameter specifications provided in Table 5-7, a total of 10,000 

FC1true values are drawn from (a) the FC1 lognormal parametric 

distribution for IBS patients (n=9180), and (b) the FC1 Weibull parametric 

distribution for IBD patients (n=820); 

ii. For each FC1true value in (i), the error model is applied to generate FC1sim 

values at a given level of bias and CV%; 

iii. For FC1sim values ≥100 μg/g, population-specific FC2true values are drawn 

from (a) the FC2 lognormal parametric distribution for IBS patients, and (b) 

the FC2 Weibull parametric distribution for IBD patients (as per Table 5-7); 
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iv. For FC1sim values ≥100 μg/g, the error model is applied to the associated 

FC2true value to generate FC2sim values at a given level of bias and CV%; 

v. Diagnostic accuracy of the YFCCP including additional FC bias and CV% 

is calculated by comparing diagnoses based on the FC1sim and FC2sim 

values (as per the YFCCP diagnostic protocol) with patients’ clinical 

diagnoses (according to the population distribution from which simulations 

were drawn); and  

vi. Steps (iii) - (v) are repeated for a range of bias (-100 to +100 in 1μg/g 

increments) and CV (0 to 100% in 0.5% increments) values.  

A summary of the sensitivity analyses conducted for each sampling method is 

provided in Table 5-9.  
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Table 5-9. YFCCP: sensitivity analyses conducted 

Code Analysis summary Analysis details 

Bootstrap sampling method analyses 

[1.0] 
Bootstrap method 
base case analyses 

Left- and right-censored data (recorded as “<10” 
and “>600” in the YFCCP dataset, respectively) 
replaced with limit values (10 and 600 μg/g 
respectively); error model based on 10,000 
bootstrap samples; missing FC2 data sampled with 
replacement from available population-specific FC2 
data; smoothing algorithm applied to sensitivity and 
specificity results    

[1.1] 
Left-censored data = 
5 μg/g; right-censored 
data = 750 μg/g 

Left-censored data replaced with 5 μg/g; right-
censored data replaced with 750 μg/g 

[1.2] 
Left-censored data = 
5 μg/g; right-censored 
data = 900 μg/g 

Left-censored data replaced with 5 μg/g; right-
censored data replaced with 900 μg/g 

[1.3] 
Left-censored data = 
5 μg/g; right-censored 
data = 1200 μg/g 

Left-censored data replaced with 5 μg/g; right-
censored data  replaced with 1200 μg/g 

[1.4] 
Left-censored data = 
5 μg/g; right-censored 
data = 1800 μg/g 

Left-censored data replaced with 5 μg/g; right-
censored data replaced with 1800 μg/g 

[1.5] 
Complete case 
analysis 

Censored data excluded 

[1.6] 
Missing FC2 data 
imputed using FCdiff 
data 

Missing FC2 values required in the simulation 
generated by sampling from the population-specific 
FCdiff data (FCdiff = (FC2 – FC1)/FC1), with FC2 = 
FC1 + FC1* FCdiff.  

[1.7] 
Raw data only 
(n=951; no bootstrap 
sampling) 

No bootstrap sampling conducted: initial error model 
application applied to YFCCP database (n=951) 
FC1 values alone, followed by the same process of 
re-sampling for FC2 values as used in the base 
case 

[1.8]* 
Noisy results (no 
smoothing algorithm) 

No smoothing algorithm applied to the sensitivity 
and specificity results 

[1.9]* 100,000 samples 
Error model based on 100,000 bootstrap samples; 
no smoothing algorithm applied 

Parametric sampling method analyses 
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[2.0] 
Parametric method 
base case analyses 

R ‘fitdistrplus’ function used to fit parametric 
distributions to required patient subgroups (IBS 
FC1, IBS FC2, IBD FC1, IBD FC2) over complete 
and censored data regions via maximum likelihood 
estimation; lognormal distribution used for IBS 
subgroups; Weibull distribution used for IBD 
subgroups; region for left-censored data set as 0-10 
μg/g; region for right-censored data set as 600-1000 
μg/g; error model based on an initial 10,000 draws 
across the IBS FC1 and IBD FC1 distributions; 
smoothing algorithm applied to sensitivity and 
specificity results    

[2.1] 
Right-censored data 
region = 600 to 2000 
μg/g 

Upper bound for right censored data region set to 
2,000 μg/g within the R ‘fitdistcens’ function 

[2.2] 
Right-censored data 
region = 600 to 3000 
μg/g 

Upper bound for right censored data region set to 
3,000 μg/g within the R ‘fitdistcens’ function 

[2.3] 
Complete case 
analysis 

Censored data excluded 

[2.4] 
Lognormal 
parameterisation 

Lognormal parameterisations used for all patient 
subgroup distributions  

[2.5] 
Weibull 
parameterisation 

Weibull parameterisations used for all patient 
subgroup distributions 

[2.6] 
Gamma 
parameterisation 

Gamma parameterisations used for all patient 
subgroup distributions 

[2.7] 
Normal 
parameterisation 

Normal parameterisations used for all patient 
subgroup distributions 

[2.8] 
FC2true values 
assigned using FCdiff 
distributions  

FC2 values generated by sampling from the 
population-specific FCdiff data (FCdiff = (FC2 – 
FC1)/FC1), drawing on a Weibull distribution for the 
IBS population and a Gamma distribution for the 
IBD population. FC2 = FC1 + FC1* FCdiff. 

[2.9] 
FCdiff lognormal 
parameterisation  

Lognormal parameterisations use for both IBD and 
IBS FCdiff distributions 

[2.10] 
FCdiff Weibull 
parameterisation 

Weibull parameterisations use for both IBD and IBS 
FCdiff distributions 

[2.11] 
FCdiff Gamma 
parameterisation 

Gamma parameterisations use for both IBD and IBS 
FCdiff distributions 

[2.12] 
FCdiff Normal 
parameterisation 

Normal parameterisations use for both IBD and IBS 
FCdiff distributions 

[2.9]* 
Noisy results (no 
smoothing algorithm) 

No smoothing algorithm applied to the sensitivity 
and specificity results 

[2.10]* 100,000 samples 
Error model based on an initial 100,000 draws 
across the IBS FC1 and IBD FC1 distributions; no 
smoothing algorithm applied  
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[2.11]* 

Sampling accounting 
for parametric 
uncertainty: inner 
simulations = 1,000 x 
40,401; outer 
simulations = 1,000 

“Inner” simulation: base case error model process 
using an initial 1,000 draws across the IBS FC1 and 
IBD FC1 distributions for each bias and CV pair 
(n=40,401). “Outer” simulation: for each outer 
simulation, a different stochastic value for the 
lognormal (IBS) and Weibull (IBD) distribution 
parameter estimates was drawn and applied across 
the 1,000*40,401 inner simulations. The 1,000 outer 
simulation stochastic parametric values were 
derived using the ‘bootdistcens’ function from the 
‘fitdistrplus’ package (277).   

*These analyses are based on “noisy” results i.e. with no smoothing algorithm applied 

5.4.2 Results 

5.4.2.1 Baseline diagnostic accuracy 

The diagnostic accuracy of the YFCCP is summarised in Table 5-10. Assigning 

FC diagnoses as per the YFCCP diagnostic protocol results in: 73/78 patients 

with IBD being correctly identified, giving a sensitivity of 93.6% (95% CI: 0.85 to 

0.97); and 803/873 patients with IBS being correctly identified, giving a specificity 

of 92.0% (95% CI: 0.90 to 0.94). 

Table 5-10. YFCCP: baseline diagnosis accuracy results 

 Clinical diagnosis 
 

IBD IBS 

YFCCP 

diagnosis  

IBD  
True positives:  

n= 73 

False positives:  

n= 70 

PPV = 73/143 = 

51.0% 

IBS 
False negatives: 

n= 5 

True negatives:   

n= 803 

NPV = 803/808 = 

99.4% 

 
Sensitivity = 

73/78 = 93.6% 

Specificity = 

803/873 = 92.0% 

 

A further summary of FC diagnoses according to the YFCCP diagnostic protocol 

is provided in Figure 5-8. Note that, whilst the YFCCP includes a safety-net GP 

review at 6 weeks (in which patients with persisting symptoms may receive a 

secondary care referral), this element of the pathway is not considered within the 

diagnostic accuracy calculation (i.e. diagnostic accuracy is based only on the 

initial FC1 and FC2 results only, as outlined in Figure 5-8).  
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Figure 5-8. YFCCP: flow diagram of FC test results 
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The mechanism behind the higher diagnostic specificity of the YFCCP (compared 

to the NICE FC pathway) is illustrated by looking at the distribution of FC1 and 

FC2 results across each population within the YFCCP dataset, shown in Figure 

5-9. Looking first at the top two panels (FC1 results), we can see that using the 

elevated threshold of 100 μg/g in this population leads to significantly fewer false 

positive cases (i.e. fewer IBS patients lying above the threshold cut-off value), 

compared to the standard cut-off threshold of 50 μg/g (Figure 5-3). In addition, it 

is apparent from the FC2 results (shown in the bottom two panels in Figure 5-9) 

that a significant proportion of IBS patients with an initially raised result fall back 

down below the 100 μg/g threshold upon re-testing, whilst all IBD patients remain 

elevated, allowing the repeat-test to further increase the pathway’s specificity 

without reducing the sensitivity.   
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Figure 5-9. YFCCP: count plots showing the distribution of FC1 and FC2 values 
for IBS and IBD patients within the YFCCP database 
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5.4.2.2 Simulated diagnostic accuracy 

5.4.2.2.1 Base case analyses 

Figure 5-10 provides the base case diagnostic accuracy contour plots for the 

YFCCP. “Noisy” versions of these plots, based on the raw simulation results 

without applying the base case smoothing algorithm, are provided in Appendix J.  

As for the NICE FC pathway, these plots can be used to study the robustness of 

the YFCCP’s diagnostic accuracy to increased measurement uncertainty. 

Looking first at the bootstrap method specificity contours, if we hold imprecision 

at 0% and introduce negative bias (move horizontally to the left from the (0,0) 

point) then we see that the pathway’s specificity is unaffected by negative bias; 

whilst if we apply positive bias (move horizontally to the right from the (0,0) point) 

we gradually pass through lower specificity contours (Figure 5-10, panel A) (note 

that the rapidity of change here is much less than that previously observed with 

the NICE FC pathway; section 5.3.2.2, Figure 5-4). Next, if we hold bias at 0 µg/g 

and introduce imprecision (move vertically from the (0,0) point), then we see that 

the pathway’s specificity is largely unchanged by increasing imprecision. 

Applying the same process to the sensitivity contours, we observe that the 

YFCCP’s sensitivity is unaffected by positive bias, but gradually reduces in 

response to negative bias and imprecision. In this case, the drop in sensitivity 

observed in response to negative bias and imprecision is more pronounced for 

the YFCCP than previously seen for the NICE FC pathway (Figure 5-4).  

The same pattern of results was observed with the parametric method (Figure 

5-10, panel B). However, this sampling method produces slightly lower sensitivity 

(90.6%) and lower specificity (89.5%) values at the (0,0) point, compared to the 

baseline sensitivity (93.6%) and specificity (92.0%) values reported in section 

5.3.2.2.1. The bootstrap method meanwhile produces a perfect match to the 

baseline sensitivity and specificity in this case. A full discussion of these results 

is provided in section 5.5.2.  
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Figure 5-10. YFCCP: base case diagnostic accuracy contour plots  
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Figure 5-11 shows the same results, this time highlighting the acceptable regions 

of bias and imprecision relating to an assumed minimum diagnostic accuracy 

requirement of sensitivity ≥85% and specificity ≥90% (the lower 95% CI’s from 

the YFCCP baseline diagnostic accuracy evaluation [section 5.4.2.1]). TE bands 

are also overlaid onto these plots. Based on these results, TEmax = 13% when 

using the bootstrap method; whilst for the parametric method, due to the fact that 

this method produces a lower baseline specificity (below the 90% minimum 

specificity requirement), the acceptable region is offset from the (0,0) point and 

there is subsequently no acceptable TE value contained within the acceptable 

region (Figure 5-5, panel B).  

Figure 5-12 further highlights the acceptable regions relating to a lower minimum 

diagnostic accuracy requirement of sensitivity ≥75% and specificity ≥80% (i.e. 

10% below the lower 95% CI’s from the diagnostic accuracy evaluation). In this 

case, TEmax = 39% with the bootstrap method or 33% with the parametric method 

(compared to 15% and 13% for the associated NICE FC pathway analysis 

respectively, shown in Figure 5-6).  

Table 5-11 summarises key findings from the above contour plots in tabular 

format.  

 

 



 
 

154 

 

 

Figure 5-11. YFCCP: base case diagnostic accuracy contour plots showing 
the acceptable region (maintaining sensitivity ≥0.85 and specificity ≥0.9) 
and TE% bands  
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Figure 5-12. YFCCP: base case diagnostic accuracy contour plots showing 
the acceptable region (maintaining sensitivity ≥0.75 and specificity ≥0.8) 
and TE% bands  
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Table 5-11. YFCCP: simulated diagnostic accuracy base case results 

Sampling 

method 

Diagnostic accuracy at         

bias=0 & CV=0% 

Acceptable region 1:                     

sensitivity ≥0.85; specificity ≥0.90 

Acceptable region 2:                     

sensitivity ≥0.75; specificity ≥0.80 

Sensitivity Specificity TEmax 

Range of 

bias at 

CV=0% 

Range of  

CV% at 

bias=0 

TEmax 

Range of 

bias at 

CV=0% 

Range of  

CV% at 

bias=0 

Bootstrap 

method 
0.936 0.920 13% -19 to 13 0 to 32% 39% -49 to 39 0 to 50% 

Parametric 

method 
0.906 0.895 

NA (no 

results in 

range) 

-30 to -4 27 to 35% 33% -79 to 33 0 to 54% 
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5.4.2.2.2 Sensitivity analyses 

Table 5-12 reports results of the sensitivity analyses conducted for the YFCCP 

evaluation. The pattern of results is broadly similar to that observed with the NICE 

FC pathway (section 5.3.2.2.2). Excluding the complete case analysis (which 

produced significantly lower sensitivity values across both sampling methods), 

the use of alternative censored data substitution values had no measurable 

impact on the bootstrap method results (Table 5-12, analyses 1.1-1.5). The two 

analyses exploring higher upper bound values for the right-censored data region 

in the parametric method analysis produced similar specificity values and slightly 

lower sensitivity values, however the drop in sensitivity values in this case 

resulted in more noticeably diminished acceptable regions (Table 5-12 analyses 

2.1-2.2). When using the parametric method, application of the lognormal, 

Weibull, Gamma and normal distributions produced (generally) increasingly lower 

sensitivity and specificity values and restricted acceptable regions, with the 

normal distribution again providing a particularly poor fit to the data (Table 5-12, 

analyses 2.4-2.7).  

Across both sampling methods, sensitivity analyses exploring sampling 

uncertainty (Table 5-12, analyses 1.7-1.9 and 2.13-2.14) had little impact on the 

results. The exception to this were the results of the acceptable range of CV% at 

zero bias for the YFCCP parametric method (assuming a required sensitivity of 

≥85% and specificity of ≥90%): this region widened when increasing the sampling 

number to 100,000, or removing the smoothing algorithm (analysis 2.13-2.14 in 

Table 5-12). This pattern of results was reflected in the sensitivity analysis 

applying an outer simulation loop to capture parametric uncertainty within the 

parametric sampling method (analysis 2.15 in Table 5-12). The instability of this 

range is due to the placement of the 90% specificity contour in this analysis, which 

straddles the zero bias line: introducing slight uncertainty in the placement of this 

contour line can therefore have a significant impact on how much CV% can be 

tolerated at zero bias, when assuming a specificity requirement of ≥90% (Figure 

5-11, panel B). The impact of this uncertainty is further illustrated in the “noisy” 

contour plots (i.e. with no smoothing algorithm applied), provided in Appendix J.  

An additional set of sensitivity analyses were conducted in this assessment, 

relating to the method used to sample FC2true values within the simulation. Recall 
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that in the base case analyses, missing FC2true values within the bootstrap 

method simulation were replaced by randomly sampling with replacement from 

the available (population-specific) FC2 values; whilst all FC2 values within the 

parametric method simulation were generated by directly sampling from the 

(population-specific) FC2 parametric distributions. In the bootstrap method 

sensitivity analysis (analysis 1.6 in Table 5-12), missing FC2true values were 

instead generated by sampling from the population-specific empirical FCdiff 

distributions as described in section 5.4.1.2.1; and in a corresponding set of 

sensitivity analyses under the parametric method (analyses 2.8-12 in Table 5-12) 

all FC2true values were generated by sampling from the population-specific FCdiff 

parametric distributions, as described in section 5.4.1.2.2. 

Using this approach to sampling FC2true values, the parametric method achieved 

a worsened performance in terms of internal validity, with the diagnostic accuracy 

values at the (0,0) point moving further away from the baseline diagnostic 

accuracy results (analyses 2.8-12 in Table 5-12). As such, the parametric method 

sensitivity analyses results based on drawing from FCdiff distributions are not 

considered further. For the bootstrap method however, this approach to sampling 

missing FC2true values maintains the same level of internal validity as in the base 

case analysis (with the sensitivity and specificity values reported at the (0,0) point 

again matching the baseline diagnostic accuracy results). A key difference 

resulting from this analysis however, is that the pathway exhibits greater 

robustness to positive and negative bias, resulting in wider acceptability regions 

(analysis 1.6 in Table 5-12). Further discussion of these results is provided in 

section 5.5.2.   
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Table 5-12. YFCCP: simulated diagnostic accuracy sensitivity analysis results 

  
Diagnostic accuracy at         

bias=0 & CV=0% 
Acceptable region 1:                            

sensitivity ≥0.85; specificity ≥0.90 
Acceptable region 2:                            

sensitivity ≥0.75; specificity ≥0.80 

Sensitivity Specificity TEmax 
Range of 
bias at 
CV=0% 

Range of  
CV% at 
bias=0 

TEmax 
Range of 
bias at 
CV=0% 

Range of  
CV% at 
bias=0 

Bootstrap sampling method 

Base case [1.0] Bootstrap method 0.936 0.920 13% -19 to 13 0 to 32% 39% -49 to 39 0 to 50% 

Sensitivity 
analyses: FC 
censored data 
handling 

[1.1] Left-censored data = 5; 
right-censored data = 750 μg/g 

0.936 0.920 13% -19 to 13 0 to 32% 39% -49 to 39 0 to 51% 

[1.2] Left-censored data = 5; 
right-censored data = 900 μg/g 

0.936 0.920 13% -19 to 13 0 to 32% 39% -49 to 39 0 to 52% 

[1.3] Left-censored data = 5; 
right-censored data = 1200 
μg/g 

0.936 0.920 13% -19 to 13 0 to 33% 39% -49 to 39 0 to 52% 

[1.4] Left-censored data = 5; 
right-censored data = 1800 
μg/g 

0.936 0.920 13% -19 to 13 0 to 33% 39% -49 to 39 0 to 53% 

[1.5] Complete case analysis 0.810 0.927 - NA - - NA - - NA - 6% -6 to 36 0 to 14% 

Sensitivity 
analyses: FC2 
data handling 

[1.6] Missing FC2true values 
sampled using FCdiff empirical 
distribution 

0.936 0.921 17% -24 to 17 0 to 33% 50% -52 to 52 0 to 50% 

Sensitivity 
analyses: 

[1.7] Raw data only (n=951; no 
bootstrap sampling) 

0.934 0.920 11% -17 to 11 0 to 31% 38% -48 to 38 0 to 50% 
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sampling 
uncertainty 

[1.8]* Noisy results (no 
smoothing algorithm) 

0.941 0.921 14% -19 to 14 0 to 33% 41% -50 to 41 0 to 50% 

[1.9]* 100,000 samples 0.933 0.919 12% -19 to 12 0 to 31% 38% -48 to 38 0 to 49% 

Parametric sampling method 

Base case  [2.0] Parametric method 0.906 0.895 - NA - -30 to -4 27 to 35% 33% -79 to 33 0 to 54% 

SA: censored 
data handling 

[2.1] Right-censored data 
region: 600-2000 μg/g 

0.858 0.894 - NA - -3 to -3 - NA - 33% -61 to 33 0 to 49% 

[2.2] Right-censored data 
region: 600-3000 μg/g 

0.837 0.894 - NA - - NA - - NA - 33% -48 to 33 0 to 46% 

[2.3] Complete case analysis 0.657 0.915 - NA - - NA - - NA - - NA - 22 to 32 - NA - 

SA: 
parameterisation 

[2.4] Lognormal 
parameterisation 

0.910 0.895 - NA - -28 to -3 31 to 34% 33% -58 to 33 0 to 51% 

[2.5] Weibull parameterisation 0.912 0.858 - NA - -31 to -24 - NA - 21% -86 to 21 0 to 54% 

[2.6] Gamma parameterisation 0.903 0.843 - NA - - NA - - NA - 14% -71 to 14 0 to 51% 

[2.7] Normal parameterisation 0.841 0.706 - NA - - NA - - NA - - NA - -76 to -37 - NA - 

SA: FC2 data 
handling 

[2.8] FC2true values sampled 
using FCdiff distributions (IBS = 
Weibull; IBD = Gamma) 

0.882 0.902 1% -18 to 1 0 to 30% 48% -81 to 48 0 to 51% 

[2.9] FCdiff lognormal 
parameterisation  

0.850 0.912 1% -1 to 10 0 to 4% 42% -42 to 53 0 to 44% 

[2.10] FCdiff Weibull 
parameterisation 

0.873 0.882 - NA - -17 to -14 - NA - 39% -76 to 39 0 to 50% 

[2.11] FCdiff Gamma 
parameterisation 

0.868 0.775 - NA - - NA - - NA - - NA - -61 to -11 32 to 48% 

[2.12] FCdiff Normal 
parameterisation 

0.808 0.753 - NA - - NA - - NA - - NA - -56 to -23 - NA - 
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SA: sampling 
and parametric 
uncertainty 

[2.13]* Noisy results (no 
smoothing algorithm) 

0.901 0.895 - NA - -32 to -1 3 to 35% 34% -90 to 34 0 to 56% 

[2.14]* 100,000 samples 0.908 0.898 - NA - -31 to -2 8 to 36% 34% -82 to 34 0 to 53% 

[2.15]* Sampling accounting 
for parametric uncertainty: 
inner simulations = 1,000 x 
40,401; outer simulations = 
1,000 

0.902 0.899 - NA - -30 to -1 15 to 35% 34% -82 to 34 0 to 53% 

*These analyses are based on “noisy” results i.e. using the direct simulation results for sensitivity and specificity, with no moving average calculation applied 
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5.5 Discussion 

5.5.1 Baseline diagnostic accuracy  

Two FC strategies were evaluated in this study: the NICE FC pathway (a single-

test strategy using the standard 50 µg/g cut-off threshold), and the YFCCP (a 

repeat-test strategy using a raised 100 µg/g threshold). The first exercise 

undertaken was to calculate each pathway’s baseline diagnostic accuracy using 

FC values reported in the YFCCP empirical database (see sections 5.3.1.1 and 

5.4.1.1). 

The results of this analyses indicate that additional diagnostic yield can be 

obtained by moving from the NICE FC pathway to the YFCCP. Although the 

YFCCP was associated with a slightly lower sensitivity compared to the NICE FC 

pathway (93.6% vs 96.2%), this was offset by a significant gain in specificity 

(92.0% vs. 59.7%). This shift occurs in this example due to particular features of 

the FC data: first, IBD patients exhibited FC values consistently above the 100 

µg/g threshold, both on initial and repeat testing; and second, whilst many IBS 

patients exhibited raised FC1 values (19.7%; 172/873), the majority of these fell 

below the cut-off threshold upon re-testing (59.3%; 102/172) (see Figure 5-9). 

Based on the FC1 results alone, therefore, the raised 100 µg/g cut-off threshold 

was able to correctly reclassify 180 IBS patients who would have been incorrectly 

referred under the NICE FC strategy (with an additional 2 IBD patients incorrectly 

re-classified as having IBS at this point)36; and a further 102 IBS patients were 

able to be correctly reclassified following the repeated test (with no further loss of 

IBD patients).  

The validity of these findings (and the subsequent simulation exercises) depends 

on the reliability of the clinical diagnoses against which the FC strategies were 

judged. Clinical diagnoses within the YFCCP database were determined 

according to the results of endoscopic investigations where available (i.e. only for 

patients referred to secondary care as per the YFCCP protocol), and assuming 

IBS classifications were otherwise correct. This data is therefore at risk of partial 

                                            

36 Applying a single-test strategy using the 100 µg/g threshold produces a sensitivity of 
93.5% (95% CI: 0.90 – 0.94) and specificity of 80.3% (95% CI: 0.77 - 0.83). 
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verification bias: that is, since a non-random subset of patients underwent the 

gold standard reference test (endoscopy), the number of false negative and true 

negative cases within the non-verified subgroup (patients with assumed IBS who 

did not receive endoscopy) could have been under- and overestimated, 

respectively (279). However, the YFCCP study also included a 6-month follow-

up period, intended to capture patients with persisting symptoms referred to 

secondary care at a later date. Assuming that patients with IBD would indeed 

experience persisting symptoms and return to their GP within this timeframe, this 

safeguard should be sufficient to offset the risk of partial verification bias. This 

was the same assumption as applied in previous publications based on this same 

data (239, 240).  

The applicability of the baseline diagnostic accuracy results to other UK regions, 

meanwhile, will depend upon the generalisability of the YFCCP data. If regional 

variation in the distribution of IBS or IBD patients’ FC results is expected, then 

the high diagnostic accuracy of the YFCCP may not be replicated elsewhere. In 

a recent primary care diagnostic accuracy study conducted in Sheffield, for 

example, a proportion of IBD patients were found to have FC results within the 

50-100 µg/g range (which reduces the sensitivity associated with any strategy 

employing the raised 100 µg/g threshold) (238).37 Whilst this finding may be 

driven by between-assay differences (due to the fact that the Sheffield study used 

the Immundiagnostik (IDK) Calprotectin ELISA rather than the Bühlmann assay 

used within the YFCCP), rather than true population FC differences, it 

nevertheless highlights the fact that application of the YFCCP (or any other 

pathway) across alternative regions should include validation and/or monitoring 

of the strategy’s diagnostic accuracy.  

Alternative FC strategies, incorporating repeated testing within a restricted 

‘intermediate range’ of initial FC results, have also been proposed (227, 240). For 

                                            

37 Applying a similar eligibility criteria as the YFCCP, this study evaluated diagnostic 

accuracy at both the standard (50 µg/g) and raised (100 µg/g) thresholds: at the 

standard threshold, the authors found a sensitivity and specificity of 72.7% and 

64.9% respectively, whilst at the raised threshold these values changed to 54.6% 

and 80.5%. The sensitivity reduction in this case indicates that a proportion of IBD 

patients in the Sheffield population had FC values between 50 and 100 µg/g, which 

contrasts to the FC1 distribution observed in the YFCCP dataset. 
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example, repeated testing could be restricted to FC1 values falling within the 

range 100-400 µg/g, with direct referral to secondary care for values >400 µg/g. 

Based on the YFCCP data, this strategy would maintain the same sensitivity as 

the YFCCP (since all IBD patients’ FC2 values were >100 µg/g), but would 

incorrectly refer an additional 26 IBS patients who had FC1 values >400 µg/g and 

FC2 values <100 µg/g. Figure 5-13 illustrates how the YFCCP specificity would 

alter over various intermediate ranges (using a lower bound of 100 µg/g for the 

intermediate range). The optimal specificity is achieved for an upper bound of 

610 µg/g (equivalent to having no intermediate range at all, since 600 is the upper 

analytical measurement range for this test); whilst diminishing specificity values 

are observed as the intermediate range is tightened. All of the ranges explored 

here exhibited statistically significantly lower specificity compared to the YFCCP 

strategy (95% CI: 0.90 to 0.94). Overall therefore, based on this diagnostic 

accuracy assessment, the YFCCP appears to be the preferred strategy over both 

the NICE FC pathway single-test strategy and intermediate-range strategies.  

 

Figure 5-13. YFCCP: specificity results when restricting FC2 testing to an 
intermediate range of FC1 results 
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5.5.2 Simulated diagnostic accuracy 

The primary objective of this chapter was to explore methodology for assessing 

the impact of increasing measurement uncertainty on the diagnostic accuracy of 

testing strategies. To that end, the error model simulation approach introduced in 

Chapter 3 was used to assess the impact of increasing FC imprecision and bias 

on the diagnostic accuracy of the NICE FC pathway and the YFCCP.  

Both pathways exhibited the same overall pattern of results with respect to the 

impact of increasing measurement uncertainty. Additional bias has an intuitive 

impact, with positive bias increasing diagnostic sensitivity and decreasing 

diagnostic specificity (and vice versa for negative bias), due to patients being 

pushed above (below) the cut-off threshold. The impact of imprecision meanwhile 

depends on the probability density of the measurand distribution to which it is 

applied. For the IBD population, FC1 and FC2 values <100 μg/g were rare, with 

a cluster of values above 100 μg/g: applying imprecision to this population 

increases the spread of results, thereby pushing some IBD patients’ values below 

the threshold and reducing the diagnostic sensitivity. The IBS population 

meanwhile exhibited a more even distribution of results around the cut-off for both 

FC1 and FC2 results, leading to imprecision having less of an impact on 

diagnostic specificity within both pathway analyses.  

Whilst the pattern of results was similar across both assessments, the YFCCP 

produced significantly higher specificity results and slightly lower sensitivity 

results compared to the NICE FC pathway, resulting in a corresponding shift in 

the position of the contour lines across each evaluation (Figure 5-4 vs. Figure 

5-10). Inspection of the NICE FC pathway contour plot also provides further 

indication that this pathway is under-performing in terms of diagnostic accuracy 

(Figure 5-4). In particular it can be seen that (with either sampling method), if a 

negative bias is applied, then significantly higher specificity can be achieved 

without overtly affecting sensitivity. Applying a negative bias of ~50 μg/g, for 

example, increases the NICE FC pathway specificity from ~60% to ~80% and 

maintains a high sensitivity of ~94%. Applying negative bias in this way is 

equivalent to increasing the FC cut-off threshold (in this example, to 100 μg/g); 

these results therefore illustrate the fact that, were a higher cut-off to be used 
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within this population, then a significantly higher diagnostic yield could be 

achieved (although still at a level inferior to the YFCCP).  

In line with the higher sensitivity and lower specificity of the NICE FC pathway, 

this strategy showed greater robustness to increasing measurement uncertainty 

with regards to sensitivity, and lower robustness with regards to specificity. For 

example, over the bias range -50 to 50 μg/g and up to 40% CV, the NICE FC 

pathway maintained sensitivity above 90% (Figure 5-4); whilst over the same 

region the YFCCP sensitivity dropped to just below 70% (Figure 5-10). The main 

driver of reduced sensitivity here was negative bias. For example, applying a -50 

μg/g bias (equivalent to raising the NICE FC threshold to 100 μg/g, or likewise 

raising the YFCCP threshold to 150 μg/g) has a greater detrimental impact on the 

YFCCP sensitivity due to the fact that several IBD patients had results within the 

100-150 μg/g range and would therefore be missed in this scenario. In contrast, 

the YFCCP was substantially more robust to increasing measurement uncertainty 

with regards to specificity. Within the added bias range -50 to 50 μg/g, the YFCCP 

maintained specificity above ~75% across the entire CV range, whilst the NICE 

FC pathway specificity dropped to 0% within this same region. Positive bias was 

the primary driver here: for example, applying a 50 μg/g bias to the NICE FC 

pathway is equivalent to decreasing the threshold to 0 μg/g, which leads to all 

IBS patients being incorrectly referred, resulting in a 0% specificity.  

Two sampling methods were explored in this analysis: parametric and bootstrap 

sampling. For both pathways, the bootstrap method provided a better fit to the 

data, producing baseline results which closely matched the diagnostic accuracy 

results calculated based on the empirical YFCCP dataset (i.e. this method had 

high internal validity). Within the NICE FC pathway evaluation, the parametric 

method overestimated the baseline sensitivity and underestimated the specificity, 

due to the fact that both the IBD Weibull FC1 distribution and the IBS lognormal 

FC1 distribution overestimated the proportion of values >100 µg/g, respectively 

(as shown by the face validity metric in Table 5-2). Within the YFCCP evaluation, 

the parametric method underestimated both sensitivity and specificity, due to the 

fact that the IBS lognormal FC2 distribution overestimated the proportion of 

values >100 µg/g (i.e. decreasing specificity), whilst the IBD Weibull FC2 
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distribution underestimated this same proportion (i.e. decreasing sensitivity) 

(Table 5-7).  

A range of sensitivity analyses were conducted to explore the impact of key 

methodology assumptions on both sampling methods (Table 5-6 and Table 5-12). 

The bootstrap method was largely robust to the analyses explored. In particular, 

ignoring the biased complete-case analysis, censored data handling had no 

measurable impact within either pathway evaluation for the bootstrap method. 

This indicates that the pragmatic option of replacing censored data with their 

associated limit values was, in this example, a reasonable approach. The 

pragmatic approach to handing sampling uncertainty meanwhile – namely 

applying the smoothing algorithm – also appeared to be reasonable, producing 

similar results to both the “noisy” analysis and the extended approach of 

increasing the sampling number to 100,000, for both sampling methods. 

Interestingly, removing the sampling process altogether and running the error 

model directly on the YFCCP dataset produced only slightly different results to 

the bootstrap base case, suggesting that the dataset in this case study was 

sufficiently large to avoid sampling altogether.  

In contrast to the bootstrap method, the parametric method exhibited large 

variability to several of the sensitivity analyses conducted. In particular the 

parametric method was sensitive to the parameterisation selected, with the 

adoption of alternative parametric distributions leading to a further reduction in 

the internal validity of this method; and this method was sensitive to the choice of 

upper bound selected for right-censored data within the ‘fitdistcens’ function used 

to elicit parameterisations. Based on these findings it would appear reasonable 

to discount this approach in favour of the bootstrap method, which is clearly 

optimal in terms of internal validity and stability.    

The one sensitivity analysis which did have a notable impact on the bootstrap 

method results, was the analysis in which missing FC2true values were sampled 

by drawing from the population-specific empirical FCdiff distributions (as described 

in section 5.4.1.2.1). This approach maintained the high internal validity of the 

bootstrap method, but produced wider regions of acceptable bias within the 

acceptable regions (Table 5-12). Note that the acceptable bias boundaries here 

are driven by the sensitivity contours in the negative bias region, and the 
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specificity contours in the positive bias region (see Figure 5-10). The wider region 

of acceptable bias therefore indicates an increase in the robustness of the 

pathway’s sensitivity and specificity to negative and positive bias, respectively.  

These two changes result from the fact that: (i) the IBD population FC2 values 

generated from this approach are higher on average than those produced in the 

base case analysis – resulting in a greater tolerance to negative bias in terms of 

correctly classifying IBD patients (i.e. sensitivity); and (ii) the IBS population FC2 

values generated from this approach are lower on average than in the base case 

analysis – resulting in a greater tolerance to positive bias in terms of correctly 

classifying IBS patients (i.e. specificity). Crucially, without access to data on the 

expected distribution of FC2 values for patients with FC1 values <100 μg/g, it is 

not possible to provide any definitive conclusions as to the best approach to 

sampling missing FC2 values with the bootstrap method. Nevertheless, the 

results of this sensitivity analysis indicate that the approach taken to sampling 

missing FC2 values in the base case analysis, is likely to have produced 

conservative estimates of the acceptable regions.  

Overall the simulation results showed that, whilst the NICE FC pathway’s high 

sensitivity is robust to increases in bias and imprecision, the low specificity of this 

pathway is highly volatile – particularly to positive bias. The YFCCP meanwhile 

exhibits greater overall robustness: although the high sensitivity of this pathway 

is slightly less robust compared to the NICE FC pathway, the specificity is 

substantially more stable; furthermore, the diagnostic performance of this 

pathway is maximised around the point of zero added measurement uncertainty 

– as would be expected for an optimised pathway.        

5.5.2.1 Acceptable regions 

The primary tool used within this study to illustrate the simulation results was the 

contour plot. Behind each contour plot lies a 201x201 matrix of simulation results 

for each of the sensitivity and specificity outcomes (i.e. for each of the bias and 

imprecision pairs simulated); the contour plot function highlights the position of 

points within each matrix that matches selected levels (i.e. contours) for each 

outcome. In the first instance, these plots provide a visual summary of how the 

baseline diagnostic accuracy of each FC pathway changes over the space of 

increasing bias (in this case shown on the x-axis) and imprecision (y-axis). This 
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provides a useful tool for assessing the robustness of each pathway’s diagnostic 

accuracy to increasing measurement uncertainty, as previously discussed.  

In addition to providing a framework for the assessment of the robustness of each 

pathway to increased measurement uncertainty, the contour plots were further 

utilised in this study to present a new concept of acceptable regions of bias and 

imprecision. These regions were derived by specifying a minimum requirement 

for diagnostic sensitivity and specificity. The purpose was to illustrate how much 

additional FC measurement uncertainty could be tolerated within each pathway, 

in order to maintain a given outcome of interest: the acceptable regions, 

therefore, represent a form of outcome-based APS.  

For the NICE FC pathway, both of the acceptable regions explored (including (a) 

the lower 95% CI values based on the baseline diagnostic accuracy assessment, 

and (b) 10% below the lower 95% CI values), appeared as off-centre from the 

baseline (0,0) point, for both sampling methods (Figure 5-5 and Figure 5-6). This 

is a result of the differential impact of bias on the pathway’s sensitivity and 

specificity: positive bias resulted in a rapid decline of specificity, meaning that a 

limited amount of positive bias could be tolerated before breaching the minimum 

specificity level; whilst negative bias resulted in a less pronounced decline in 

sensitivity, meaning that a greater magnitude of negative bias could be tolerated 

before breaching the minimum sensitivity level. In particular, due to the fact that 

the parametric method underestimates the baseline specificity, the affect is most 

pronounced for the parametric method. The petal-like shape of the regions is due 

to the differential impact of imprecision: the right-side boundary is an (almost) 

straight vertical edge, resulting from the fact that increasing imprecision has little 

impact on the pathway specificity; whilst the left-side boundary is a diagonal 

sloping edge, resulting from the fact that increasing imprecision reduces the 

pathway sensitivity, as previously outlined.  

For the YFCCP, the overall shape of the acceptable regions was similar to that 

observed for the NICE FC pathway, however the regions were much smaller (in 

terms of area under the curve). This was due to the greater impact of negative 

bias and increasing CV% on reducing the sensitivity of this pathway, resulting in 

lower levels of negative bias and CV being tolerated compared to the NICE FC 

pathway (Figure 5-11 and Figure 5-12). However, due to the increased 
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robustness of this pathways’ specificity to positive bias, the resulting acceptable 

regions tended to lie more symmetrically over the (0,0) point, which resulted in 

higher TEmax values (compared to the NICE FC pathway). The exception to this 

was with the parametric method for the more stringent diagnostic accuracy 

requirement (Figure 5-11): in this case, the acceptable region was completely 

offset from the (0,0) point, due to the fact that this method underestimates the 

pathways’ baseline specificity, to a value below the specified minimum 

requirement.  

An interesting consequence of the off-centred positioning of the acceptable 

regions for the NICE FC pathway is that, whilst these regions are larger than 

those presented for the YFCCP in terms of area under the curve, the associated 

TEmax values are much smaller (Table 5-5 and Table 5-11). In this respect, the 

use of the TEmax summary metric represents a loss of information, since it fails to 

indicate that the NICE FC pathway is robust to high values of negative bias (albeit 

actually due to the fact that this pathway diagnostic cut-off threshold is not 

optimised). Nevertheless, the higher TEmax statistic achieved with the YFCCP 

appropriately reflects the fact that this pathway is more evenly robust to positive 

and negative bias, around an optimised (0,0) point.38  

The principle question to consider when defining outcome-based APS is how to 

define a meaningful outcome specification – that is, what should be the minimum 

requirement for diagnostic sensitivity and specificity? For an intermediate 

outcome such as diagnostic accuracy, the knock-on impacts of misclassifying 

patients are not explicitly captured, and instead a judgement must be made about 

the clinical impact of a reduction in sensitivity and specificity and what is 

acceptable in this respect. Such a judgement will be context dependant. In this 

study, the primary utility of FC lies in avoiding unnecessary referrals for IBS 

patients, with minimal risk of severe outcomes resulting from delayed diagnosis 

                                            

38 It should be noted here that the acceptability regions across the two pathway analyses 

are not comparing like-for-like in absolute terms: if the primary acceptable region for the 

YFCCP (sensitivity ≥0.85; specificity ≥0.90) was applied directly to the NICE FC pathway, 

then the acceptability regions in this case would be empty (due to the fact that the NICE 

FC pathway fails to achieve the required specificity level at any point over the simulation 

space).  
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for IBD patients. High diagnostic specificity is therefore critical in this case. In 

alternative contexts, delayed diagnosis may be associated with greater risks, and 

high diagnostic sensitivity would instead be priority.  

The primary acceptable region considered in this analysis was determined 

according to specifying minimum diagnostic accuracy at the lower 95% CI level 

of that achieved in practice. Whilst this was a somewhat arbitrary choice, it 

nevertheless aligns with the priority of maintaining high specificity, and reflects a 

reasonable assumption that laboratories and clinicians alike should want to 

maintain the performance levels of a test achieved within the research used to 

inform the adoption of that test. Another approach would be to conduct additional 

consultations with key stakeholders (e.g. clinicians, patients and payers), to 

identify a consensus on the minimum outcome required. Whilst this would require 

additional resources, it would ensure that the assumed requirement of clinical 

performance was acceptable to the relevant end-users.   

Another alternative (evidence-based) approach would be to extend the 

framework presented herein to formally account for the knock-on effects of 

misclassifying patients, both in terms of costs and clinical consequences. This is 

the approach explored in Chapter 6, wherein the acceptable regions for FC within 

each clinical pathway are instead derived based on an analysis of cost-

effectiveness – thus introducing an alternative concept of “cost-effective regions” 

of bias and imprecision.  

5.5.3 Limitations 

There are several key limitations with this study which relate to the data 

underpinning the analysis. Potential issues concerning partial verification bias 

within the diagnostic accuracy assessment, and the need to verify the applicability 

of the diagnostic accuracy findings beyond the York region, have already been 

discussed. Two further key limitations are discussed below.  

The first issue relates to the incomplete availability of FC2 values within the 

YFCCP dataset. That is, the fact that FC2 data was only available for patients 

with an FC1 result above the 100 µg/g threshold (as per the YFCCP protocol), 

necessitating the assumption that missing FC2 values for FC1 values <100 µg/g 

(when required in the simulation) would follow the same distribution as 
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population-specific FC2 values available in the dataset. For the IBD population, 

this assumption only had to be applied for a maximum of 15 patients (19% of the 

IBD population): those who had FC1 values < 100 µg/g (n=5) and those who had 

FC1 values ≥100 µg/g but who were directly referred to secondary care without 

an FC2 test (n=10) (i.e. non-compliant referrals). For the IBS population, this 

assumption could, depending on the level of imprecision and bias applied within 

the initial error model, affect up to 701 patients who had an FC1 value <100 µg/g 

(80% of the IBS population).  

Whilst the assumption of distributional equivalence cannot be directly tested or 

verified in the absence of complete FC2 data, a sensitivity analysis was 

conducted to explore an alternative approach: deriving missing FC2 values by 

sampling from available FCdiff values. As previously discussed, this analysis 

resulted in larger acceptable regions due to an increased tolerance to positive 

and negative bias (stemming from higher FC2 values being generated in the IBD 

population and lower FC2 values being generated in the IBS population). As 

such, the acceptable region estimated in the base case analysis may be 

considered conservative. No definite conclusions regarding the validity of either 

approach can be made, however, given per protocol truncated testing within the 

YFCCP dataset. In particular, if ‘missing’ FC2 values are expected to have a 

significantly different distribution than the available FC2 values, then both the 

base case and sensitivity analysis in this case may be biased. Clearly, if future 

studies wish to evaluate repeated testing scenarios using a similar simulation 

approach then attempts should be made to ensure that the data upon which the 

analysis is based provides complete information on all repeated tests (rather than 

per-protocol truncated testing, as in the YFCCP dataset).  

The second key limitation in this analysis relates to the applicability of the study 

findings, and concerns the fact that the YFCCP FC data were not in fact “error-

free” but rather incorporated a level of baseline uncertainty. The simulation results 

must therefore be interpreted as indicative of the change in diagnostic accuracy 

resulting from additional bias and imprecision, on top of this baseline uncertainty. 

Ideally, for the findings to be of use to other laboratories outside of York (i.e. within 

the context of APS), one would want to know the impact of bias and imprecision 

starting from an error-free position, such that laboratories could directly relate 
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their levels of bias and imprecision to the acceptable region presented. As it is, 

the results provided herein represent levels of bias and imprecision which can be 

tolerated on top of that contained within the YFCCP data itself, which is a clear 

barrier to wider implementation of the study findings.  

This issue can be partially addressed by attempting to quantify the baseline 

uncertainty contained within the YFCCP dataset FC values. Two pieces of 

information are available for this task. First, the internal quality control results 

conducted within the York laboratory over the study period provide evidence of 

the imprecision resulting from the ELISA platform (with a reported CV of 7% at 

~50 μg/g, and 4% at ~150 μg/g) (271). Second, results from a further in-house 

analysis assessed variability resulting from the sample extraction process. This 

study found a CV range of 10-15% (271). Using the upper value of 15%, for 

example, one can calculate a combined baseline imprecision of 16.6% (at ~50 

μg/g) and 15.5% (at ~150 μg/g), using the sum of squares rule.39 The baseline 

‘zero’ CV% point on the contour plots therefore actually represents this baseline 

imprecision, which would need to be subtracted from the CV associated with any 

new FC assay being assessed, in order to avoid double counting. Note, however, 

that there are likely other elements of imprecision, resulting from additional pre-

analytical and analytical processes, which would also need to be accounted for 

in this calculation. Furthermore, reliable estimation of baseline bias is 

unfortunately not possible in this case study due to a lack of reference 

measurement procedure for FC.   

An alternative approach to this issue, if using the parametric method, is to apply 

statistical adjustments to baseline distributions to remove known bias and 

imprecision (2). As previously outlined in Chapter 3 (section 3.4.1), this approach 

has been used in a handful of previous studies assuming simple normal or 

lognormal distributions, to remove analytical variability from an associated 

estimate of total imprecision to isolate variability associated with the “pure biologic  

distribution” (as illustrated in Appendix H) (119-121, 125, 127, 143). It should be 

noted however that, like with the above analysis, in order to provide valid results 

this approach would require complete and reliable information on the baseline 

                                            

39 At 50 μg/g: √152 + 72 = 16.6. At 150 μg/g: √152 + 42 = 15.5.  
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levels of bias and imprecision. In addition in the context of the current case study, 

the parametric method exhibited a lack of internal validity – this approach to 

removing baseline uncertainty was therefore not explored further in this study.  

Determining better approaches to the issue of baseline measurement uncertainty 

is an important aspect for consideration in future research. In particular more 

sophisticated, prospective approaches could be explored: for example, the value 

of reference measurement procedures and certified reference materials (not yet 

available for FC) for deriving Testtrue values, could be considered for alternative 

test evaluations. In the current example, in the absence of any clear means to 

removing baseline measurement uncertainty, the results of this case study should 

be interpreted as illustrating the impact of additional bias and imprecision, on top 

of baseline measurement uncertainty.  
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5.6 Summary 

 In this chapter, the error model simulation approach was used to assess 

the impact of increasing FC measurement uncertainty on the diagnostic 

accuracy of the NICE FC pathway and the YFCCP. These results support 

hypothesis C of this thesis: that methods from the broader literature (i.e. 

identified in Chapter 3) may be applied within HTA-style assessments, to 

evaluate the impact of measurement uncertainty on clinical performance 

outcomes (note clinical utility and cost-effectiveness outcomes are further 

evaluated in Chapter 6).  

 The simulated diagnostic accuracy results were presented using contour 

plots, which provided a visual aid to assess the robustness of each 

pathway’s diagnostic accuracy to increased bias and imprecision.  

 The contour plots were also used to illustrate a new concept of “acceptable 

regions” of bias and imprecision, defined according to an assumed 

minimum diagnostic accuracy requirement. This concept relates to 

hypothesis D of this thesis: that the application of methods from the 

broader literature to HTA-style assessments could enable outcome-based 

APS to be derived. 

 The results indicated that the NICE FC pathway is a sub-optimal pathway 

which is highly volatile to positive bias. In contrast, the YFCCP was found 

to be to be an optimised and relatively robust strategy.  

 Whilst the acceptability regions provided useful information on maximum 

boundaries for bias and imprecision, a key limitation of this approach is the 

need to set a minimum diagnostic accuracy requirement.  

In Chapter 6, the analysis presented in this chapter is extended to clinical utility 

(QALY) and cost-effectiveness (NMB and INMB) outcomes (described in 

Appendix D).   
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Chapter 6  

The impact of measurement uncertainty on the cost-

effectiveness of FC testing strategies 

6.1 Chapter outline 

In Chapter 5, the error model simulation approach was used to assess the impact 

of increasing FC imprecision and bias on the diagnostic accuracy of the NICE FC 

pathway and the YFCCP. Although these results illustrate the robustness of each 

pathway’s diagnostic accuracy to measurement uncertainty, the question 

remains as to how these findings translate to “end stage” outcomes, such as 

patient health outcomes (e.g. QALYs) and cost-effectiveness. The aim of this 

chapter was to extend the simulation framework presented in Chapter 5, to 

evaluate the impact of increasing FC measurement uncertainty on end-stage 

outcomes. As in Chapter 5, the analysis presented in this chapter addresses 

hypotheses C and D of the thesis (see section 1.5.3).  

A linked-evidence economic decision model, previously developed to evaluate 

the cost-utility of the YFCCP (which also included a NICE FC pathway-equivalent 

comparator arm), was used as the foundation for this analysis. The impact of 

increasing FC measurement uncertainty on the modelled cost, QALY and NMB 

outcomes was explored by embedding the simulation results from Chapter 5 

(including the parametric and bootstrap sampling method results) within the FC 

cost-utility model. The findings are again presented using contour plots, which 

are here used to illustrate the concept of “cost-effective regions” of bias and 

imprecision. In addition, the concept of “optimal regions” is introduced, as a 

means of setting analytical performance to maximise NMB. Section 6.2 below 

describes the methods of this analysis, followed by the results (section 6.3) and 

a discussion (section 6.4).  

6.2 Methods 

6.2.1 YFCCP economic model 

The economic model used as the basis for this analysis was previously developed 

by the York Health Economics Consortium (YHEC) group. An initial version of the 

model, commissioned by the Yorkshire and Humberside Academic Health 
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Science Network (YHAHSN), was developed by YHEC to conduct a cost-

consequences analysis of the YFCCP (i.e. evaluating cost and effect estimates 

separately) (239). The cost-consequences model was subsequently updated by 

YHEC in 2018/19 to capture the impact of delayed diagnosis on patient health-

related quality of life, thereby providing cost-utility40 estimates (i.e. ICERs and 

INMB) (241). The updated model (henceforth referred to as the ‘FC cost-utility 

model’) was used for the basis of this analysis. A final version of the FC cost-

utility model was kindly provided for the purpose of this analysis by the model 

developer, Hayden Holmes (Senior Consultant, YHEC), in June 2019. This 

section provides an overview of the FC cost-utility model; the model details are 

also provided in an associated YHEC publication (241). Note that, within the de 

novo analysis presented in this chapter, no alterations were made to the FC cost-

utility model structure or parameters, other than those required to capture the 

impact of measurement uncertainty as outlined in section 6.2.2.  

6.2.1.1 Model structure 

The FC cost-utility model adopted a 1-year time horizon, which was intended to 

track patients from initial presentation with lower gastrointestinal symptoms in 

primary care, through to confirmed diagnosis. The structure of the model is 

illustrated in Figure 6-1 (YFCCP intervention pathway) and Figure 6-2 (example 

comparator pathway, using a single FC test). A full list of input parameters used 

in the model is provided in Appendix L.     

In the FC cost-utility model YFCCP intervention arm (referred to as the ‘fixed’ 

YFCCP arm within the subsequent de novo analysis), patients present at an initial 

GP visit and are administered their first FC test (FC1) (Figure 6-1). After this, 

patients return for a follow-up visit, where a confirmatory FC test (FC2) may be 

administered (as per the YFCCP protocol). Patients diagnosed with suspected 

IBD are assumed to be referred directly to secondary care, where all patients 

receive a specialist visit followed by colonoscopy (after which patients receive a 

definitive diagnosis, including both true positive and false positive cases). 

                                            

40 Note: a cost-utility analysis (or model) refers to a cost-effectiveness analysis in which 

QALYs are used as the measure of health benefit. Since cost-utility analysis is a 
type of cost-effectiveness analysis, these terms are used interchangeably in this 
study.  
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Patients diagnosed with IBS are assumed to be managed in primary care, and 

receive first-line IBS medication. All false negative patients (i.e. patients with IBD 

incorrectly classified as IBS) are assumed to return to their GP with persisting 

symptoms, whilst a proportion of true negative patients are also assumed to 

return. The majority of returning patients are administered second line IBS 

treatment: all false-negative patients are assumed to return again with persisting 

symptoms and are subsequently referred to secondary care (again with a 

specialist visit followed by colonoscopy); whilst second-line IBS treatment is 

considered to be effective in all IBS patients. Of those patients referred to 

secondary care without attempting second line IBS treatment, all IBD patients are 

assumed to receive a specialist visit followed by colonoscopy; whilst a subset of 

IBS patients are assumed to receive colonoscopy.  
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Figure 6-1. FC cost-utility model structure: YFCCP intervention arm 
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Figure 6-2. FC cost-utility model structure: example comparator arm (single FC test) 
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Five comparator arms were included in the FC cost-utility model. The general 

structure of the comparator arms was the same as the intervention arm, however 

initial diagnoses were based on alternative mechanisms. The comparators 

included two ‘No FC’ pathways, and three ‘FC testing’ pathways (each assuming 

the standard 50 µg/g cut-off threshold). The different arms in each case relate to 

alternative data sources used to inform the diagnostic accuracy of the referral 

strategy, as outlined below:   

1. No FC (Tibble data): This comparator assumed that secondary care 

referrals would be based on ESR and CRP tests conducted by the GP. 

The diagnostic accuracy was based on a published assessment of ESR 

and CRP conducted within a cohort of patients referred to a secondary 

care gastroenterology unit (Tibble et al. 2002) (218). The accuracy 

estimates were taken from the study analysis of “low-risk” patients, which 

excluded patients with red flag cancer symptoms (including anaemia, 

weight loss or rectal bleeding) (218)).  

2. No FC (NICE data): This comparator assumed that secondary care 

referrals would similarly be based on GP decision-making, this time 

encompassing additional factors considered by the GP as well as ESR 

and CRP results. The diagnostic accuracy of this pathway was based on 

data from the systematic review conducted by Waugh et al. (2013) as part 

of the 2013 NICE DAP assessment of FC (220). The majority of studies 

identified in this review came from secondary care (220).    

3. FC testing (YFCCP data, 50 μg/g cut-off): This comparator assumed that 

a single FC test using the standard cut-off threshold would be conducted. 

Diagnostic accuracy was derived from the YFCCP primary care dataset, 

by calculating what the accuracy would have been had only the FC1 result 

been used at the standard cut-off value. Note that this pathway is 

equivalent to the baseline NICE FC pathway presented in Chapter 5 (but 

not accounting for the impact of measurement uncertainty).  

4. FC testing (Tibble data): This comparator also assumed that referrals 

would be based on the NICE FC pathway, this time basing diagnostic 

accuracy on an assessment of FC conducted within the Tibble et al. (2002) 

study (again using the “low-risk” patient cohort) (218). 
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5. FC testing (NICE data): This comparator also assumed that referrals 

would be based on the NICE FC pathway, this time basing diagnostic 

accuracy on the 2013 NICE DAP systematic review findings (Waugh et al. 

2013) (220).  

6.2.1.2 Model parameters 

The FC cost-utility model was deterministic in nature (i.e. all input parameters 

were fixed at their mean expected value). A full list of the parameters applied in 

the model (including costs, utilities and event timings, discussed further below), 

is provided in Appendix L. A summary of the diagnostic sensitivity and specificity 

values applied within each arm in the model is also provided in Table 6-1 below. 

For the YFCCP intervention arm and the FC testing comparator arm (YFCCP 

data, 50 µg/g cut-off), diagnostic accuracy was derived from the YFCCP dataset 

– i.e. using the same baseline diagnostic accuracy values as reported in Chapter 

5 (sections 5.4.2.1 and 5.3.2.1 respectively). For the remaining comparators, 

YHEC identified two key data sources to inform the diagnostic accuracy 

estimates, from a targeted search of the literature: (1) the Waugh et al. (2013) 

systematic review, which informed the NICE DG11 guidance (hence referred to 

as the ‘NICE data’) (220)41; and (2) the Tibble et al. (2002) study, which was used 

as a primary evidence source in a 2010 NHS report on FC (88, 218).  

Table 6-1. FC cost-utility model: diagnostic accuracy estimates  

Test strategy Sensitivity Specificity 

Intervention (YFCCP data) 94% 92% 

No FC (Tibble data) 35% 73% 

No FC (NICE data) 100% 79% 

FC testing (YFCCP data, 50 µg/g cut-off) 96% 60% 

FC testing (Tibble data) 90% 80% 

FC testing (NICE data) 93% 94% 

                                            

41 YHEC noted that NICE had conducted a review of the DG11 guidance in May 2017, 

and subsequently moved this guidance to the static list, indicating that there had 

been no significant new evidence published in the literature over that time period. 

As such, YHEC considered the Waugh review to represent a key source for the most 

up-to-date evidence. 
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The YHEC cost-effectiveness analysis was conducted from an NHS perspective. 

Health care costs captured in the model (reported in 2017/ 2018 GBP) included: 

(i) primary care costs (i.e. GP initial and follow-up visits); (ii) test costs (i.e. FC, 

ESR, CRP); (iii) secondary care costs (specialist visit and colonoscopy); and (iv) 

IBS treatment costs (first and second line treatments). Health-related quality of 

life was captured in the model according to how long patients occupied ‘treated’ 

or ‘untreated’ IBS/IBD health states, which were each associated with different 

utility values. The time spent in untreated vs. treated health states was derived 

based on assigned timings of modelled events. For example, the time to achieve 

a correct diagnosis for IBD true positive cases was composed of the sum of the 

time assigned to the following events: GP visit and FC1 testing, follow-up GP visit 

and FC2 testing (where applicable), secondary care specialist visit, and 

colonoscopy. The ‘IBD untreated’ utility was then applied in the model for the time 

to correct diagnosis, and the ‘IBD treated’ utility was applied for the remainder of 

the 1-year time horizon. This same process was completed for four diagnostic 

subgroups: true positives, false positives, true negatives and false negatives.  

The impact of the YFCCP intervention in the model depends on the comparator 

arm selected. For most comparators, the YFFCP was associated with a higher 

sensitivity (Table 6-1). In those cases, the intervention leads to a higher 

proportion of true positive cases and a lower proportion of false negative cases, 

resulting in: more IBD patients receiving a faster diagnosis (and thereby higher 

QALYs due to spending less time untreated); cost savings resulting from avoiding 

unnecessary IBS treatment, re-testing and additional GP visits; and a cost 

increment resulting from the FC testing itself. In most cases the YFCCP was 

similarly associated with a higher specificity value. In those cases the intervention 

leads to a higher proportion of true negative cases and a lower proportion of false 

positive cases, resulting in: more IBS patients receiving a faster diagnosis (and 

higher QALYs due to spending less time untreated); cost savings resulting from 

avoiding unnecessary secondary care specialist appointments and 

colonoscopies; and a cost increment incurred from the FC testing itself. In those 

cases where the YFCCP sensitivity or specificity was lower than the selected 

comparator arm, the relationships outlined above were reversed.  
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Key results of the original FC cost-utility model are presented in Table 6-242. The 

YFCCP intervention was found to dominate the majority of the comparator 

strategies evaluated, being associated with lower mean costs and higher mean 

QALYs. The only comparator that the YFCCP did not dominate was the ‘FC 

testing (NICE data)’ strategy, which had a comparable performance to the 

YFCCP in terms of diagnostic sensitivity and specificity. Nevertheless, the 

YFCCP was found to be cost-effective compared to this strategy, producing an 

INMB of £19 per patient. In contrast, the equivalent of the NICE FC pathway, the 

‘FC testing (YFCCP, 50 μg/g cut-off)’ comparator, was associated with the 

highest costs and lowest QALYs of all the strategies assessed, resulting in the 

lowest NMB.  

Table 6-2. FC cost-utility model: fixed strategy results 

Comparator 

Model Inputs Model Results 

Sensitivity Specificity 
Mean 
cost 

Mean 
QALY 

Mean 
NMB (£) 

INMB (£) 
YFCCP vs. 
comparator 

YFCCP 
intervention 

94% 92% £212 0.7896 £15,581 - 

No FC (Tibble 
data) 

35% 73% £259 0.7836 £15,412 £169 

No FC (NICE 
data) 

100% 79% £232 0.7879 £15,526 £55 

FC testing 
(YFCCP, 50 
μg/g cut-off) 

96% 60% £314 0.7836 £15,359 £222 

FC testing 
(Tibble data) 

90% 80% £245 0.7860 £15,474 £107 

FC testing 
(NICE data) 

93% 94% £197 0.7880 £15,562 £19 

6.2.2 Error model simulation  

The FC cost-utility model was based on the “linked evidence” approach – i.e. 

linking diagnostic accuracy inputs with data on disease prevalence, costs and 

utilities. This structure enabled the diagnostic accuracy results reported in 

Chapter 5 to be “bolted-on” or embedded into the FC cost-utility model. That is, 

a sensitivity analysis was run, in which each of the sensitivity and specificity 

                                            

42 For an overview of how NMB and INMB statistics are calculated, please see Appendix 
D.  
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results from the base case error model simulation analyses reported in Chapter 

5, were iteratively applied within the economic model. The observed cost-utility 

outputs were then recorded for each iteration, and linked back to the underlying 

values of bias and imprecision used in the error model simulation.  

The FC cost-utility model was built in Excel. As such, the iterative simulation 

outlined above was implemented using an Excel (2016) macro coded using the 

visual basics language. Due to the lower computational efficiency of Excel 

compared to R, a subset of n=10,20143 diagnostic accuracy outputs from the 

preceding error model simulation analysis were implemented within the Excel 

macro (rather than the total set of n=40,401 results). This number was sufficient 

to produce stable contour graphs when using the base case simulation results 

(i.e. based on the smoothed simulation results, as described in section 5.3.1.2.3).   

For the NICE FC pathway, base case results from the error model simulation (as 

reported in section 5.3.2.2.1)44 were iteratively applied to the diagnostic accuracy 

inputs for the ‘FC testing (YFCCP, 50 μg/g cut-off)’ comparator arm within the FC 

cost-utility model. Similarly for the YFCCP, the base case error model simulation 

results (reported in section 5.4.2.2.1) were applied to the fixed YFCCP 

intervention arm within the FC cost-utility model. For each iteration of the FC cost-

utility model, the following results were recorded: mean costs, QALYs and NMB. 

Contour plots for each of the modelled outcomes were then constructed (in the 

same way as for diagnostic accuracy in Chapter 5), to illustrate the impact of 

increasing FC bias and imprecision on the modelled outcomes for each pathway 

in isolation (referred to in the following results section as the pathway “absolute” 

outcomes). Note that in the primary analysis, the calculation of NMB (and INMB, 

discussed below) assumed a cost-effectiveness threshold of £20,000 per 

additional QALY, in line with the current threshold adopted by NICE (280). 

In addition to absolute outcomes, INMB was derived for each of the simulated 

pathways. Since the original FC cost-utility model did not explore the impact of 

                                            

43 Corresponding to an analysis of CV ranging from 0 to 100% (in 1% increments) and 

bias ranging from -100 to 100 μg/g (in 2 μg/g increments).  
44 Note: this analysis focused on the base case simulations (bootstrap and parametric) 

for each of the NICE FC pathway and the YFCCP. The sensitivity analyses explored 

in Chapter 5 were not applied in this analysis.  
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increasing measurement uncertainty, each of the strategies explored in that 

model produced fixed NMB results (summarised in Table 6-2). For the simulated 

YFCCP and NICE FC pathways however (i.e. including the impact of increasing 

measurement uncertainty), n=10,201 separate NMB results were produced for 

each of the bias and imprecision values explored. INMB for each of the simulated 

strategies was therefore calculated by subtracting the fixed intervention and 

comparator strategy NMB results (n=6, Table 6-2), from each of the two simulated 

pathway results. Note that, since this process simply subtracts the same fixed 

value from each of the simulated NMB results (n=10,201), the resulting INMB 

contour plots exhibit the same shape as the associated absolute NMB contour 

plots, but with different values attached to the contours (see section 6.3.2 for an 

example).  

An alternative analysis of interest is to compare the two simulated FC strategies 

against each other. An additional incremental analysis was therefore conducted, 

comparing the simulated YFCCP with the simulated NICE FC pathway. Note that 

in this case, since the results of both of these strategies alter over the simulated 

space of bias and imprecision, the shape of the resulting INMB contour plots is 

different to that of the associated absolute NMB contours (see section 6.3.2.2).  

As in the previous chapter, contour plots were used to highlight acceptable 

regions of bias and imprecision. For the INMB evaluation, each point on the 

contour plot (n=10,201) was classified as either cost-effective, where INMB ≥ £0, 

or non-cost-effective, where INMB<0. The “cost-effective region” was then 

defined as the area of the contour plot in which positive INMB was maintained. 

The advantage of this approach to specifying a region of acceptable analytical 

performance, is that it does not require any user-based judgement to be made as 

to what level of outcome is required. As in Chapter 5, TE bands were overlaid 

onto the contour plots and TEmax values were extracted. In addition, in order to 

explore the influence of the cost-effectiveness threshold within the evaluation, a 

further analysis was conducted in which the cost-effective region TEmax value was 

recorded for a range of threshold values (from £0 to £150,000, in £1,000 

increments).   

In addition to the cost-effective region, a further novel concept is introduced in 

this analysis: the “optimal region” of bias and imprecision. This region is defined 
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as the area of the INMB (or NMB) contour plot maintaining the top x% of cost-

effectiveness results (where ‘x’ is user defined). In this example, ‘x’ was arbitrarily 

set at 10% – for the INMB plot, this is equivalent to maintaining INMB ≥ the INMB 

90th percentile. The motivation for presenting the optimal region, and the potential 

advantages of this approach, are outlined in the following results (section 6.3.2) 

and discussion sections (section 6.4.2).  

6.3 Results 

6.3.1 Absolute results: mean costs, QALYs and NMB 

6.3.1.1 Simulated NICE FC pathway 

Figure 6-3, Figure 6-4 and Figure 6-5 provide contour plots showing the mean 

cost, QALY and NMB results for the NICE FC pathway respectively.  

As in Chapter 5, from these figures we can assess how the specified outcome 

changes in response to additional FC bias and imprecision. Focusing on costs, 

for both sampling methods, positive bias increases costs and negative bias 

decreases costs; while increasing imprecision has marginal impact (Figure 6-3). 

By reference to Figure 5-4 from Chapter 5 (which showed the base case 

diagnostic accuracy contour plots for the NICE FC pathway), it is clear that the 

costs in this case are driven by the pathway specificity values (since the cost and 

specificity contours follow the same pattern). As such, the pathway costs in this 

case appear to be similarly volatile to increased positive bias. Observation of the 

QALY contour plots, meanwhile, illustrates that positive bias decreases QALYs 

and negative bias increases QALYs; whilst increasing imprecision slightly 

decreases QALYs (Figure 6-4). Again it appears that the QALY results are driven 

by the pathway’s specificity, with QALYs decreasing rapidly in line with added 

positive bias. Finally, the NMB contour plots combine the cost and QALY data, 

with the resulting effect that NMB is volatile to increased positive bias; whilst 

increasing imprecision has marginal impact (Figure 6-5).  

Due to the lower internal validity exhibited with the parametric method (as 

discussed in Chapter 5), the cost, QALY and NMB estimates for this method at 

the (0,0) point also displayed discrepancies when compared to the baseline 

results produced from the FC cost-utility model. Running the FC cost-utility model 
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for the baseline (fixed) NICE FC pathway (i.e. the ‘FC testing (YFCCP, 50 μg/g 

cut-off)’ comparator; sensitivity=96% and specificity=60%) produced a mean cost 

of £314, QALY of 0.7837, and NMB of £15,359 (Table 6-2). Within the simulation, 

the bootstrap method produces the closest match to the baseline values (£313, 

0.7837 and £15,361 respectively); whilst the parametric method produces slightly 

diverging values (£325, 0.7833 and £15,342, respectively).45 

                                            

45 Reported values have been rounded to the nearest pound (for costs and NMB) and to 
4 decimal places (for QALYs).  
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Figure 6-3. NICE FC pathway: contour plot of mean cost (£)   
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Figure 6-4. NICE FC pathway: contour plot of mean QALYs   
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Figure 6-5. NICE FC pathway: contour plot of mean NMB (£1,000’s) 
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6.3.1.2 Simulated YFCCP pathway  

Figure 6-6, Figure 6-7 and Figure 6-8 provide contour plots showing the mean 

costs, QALYs and NMB results for the simulated YFCCP pathway.  

Similarly to the NICE FC pathway evaluation, for both sampling methods positive 

bias increases the YFCCP costs, and negative bias decreases costs; while 

increasing imprecision has marginal impact on this outcome (Figure 6-6). By 

reference to Figure 5-10 from Chapter 5 (which showed the base case diagnostic 

accuracy contour plots for the YFCCP), we can see that the costs in this case are 

similarly driven by the pathway specificity. Based on the greater robustness of 

this pathway’s specificity to positive bias, the costs in this case similarly exhibit a 

slower decline in the region of positive bias compared to the NICE FC pathway 

(Figure 6-6 vs. Figure 6-3). The QALY contour plots meanwhile illustrate that 

positive bias decreases QALYs and negative bias increases QALYs; whilst 

increasing imprecision also decreases QALYs, except in the region of high 

positive bias (Figure 6-7). The shape of the QALY contours is markedly different 

for the YFCCP compared to the NICE FC pathway. The results indicate that the 

YFCCP diagnostic sensitivity is a greater driver of QALYs, particularly in the 

negative bias region, with specificity appearing to be the predominant 

determinant of QALYs in the higher positive bias region (Figure 6-7). The NMB 

contour plots reflect a similar shape to the QALYs, with positive bias decreasing 

NMB and negative bias increasing NMB; and imprecision decreasing NMB up to 

a moderate range of positive bias (Figure 6-8). Focusing on the bootstrap method 

results, the overall effect is that the YFCCP’s NMB is robust to imprecision and 

bias up to a moderate region of positive bias.  

As with the NICE FC pathway analysis, due to the lower internal validity exhibited 

with the parametric method, this method produces slightly biased baseline cost, 

QALY and NMB estimates. Running the original cost-utility model for the YFCCP 

based on the baseline YFCCP diagnostic accuracy estimates (i.e. 94% sensitivity 

and 92% specificity) produced a mean cost of £212, a mean QALY of 0.7896, 

and a mean NMB of £15,581 (Table 6-2). The bootstrap method simulation 

results produced matching baseline values (£212, 0.7896 and £15,581 

respectively); whilst the parametric method produced diverging values (£221, 

0.7892 and £15,563, respectively). 
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Figure 6-6. YFCCP: contour plot of mean cost (£)  
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Figure 6-7. YFCCP: contour plot of mean QALYs 

 



 
 

195 

 

 

Figure 6-8. YFCCP: contour plot of mean NMB (£1,000’s)
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6.3.2 Incremental results  

6.3.2.1 Simulated FC pathways vs. fixed model comparators 

As previously discussed, calculation of INMB for each of the simulated FC 

pathways (including measurement uncertainty) compared to the six fixed model 

comparators produces contour plots exhibiting the same shape (but different 

values) as the NMB plots previously presented. To illustrate this point, an 

example is provided in Figure 6-9. This shows the INMB contour plots for the 

simulated YFCCP strategy versus the ‘FC testing (NICE data)’ comparator 

strategy, which has a fixed NMB of £15,562 (Table 6-2). This value has therefore 

been subtracted from each point (n=10,201) on the previously reported YFCCP 

NMB contour plot (Figure 6-8), to produce the INMB plot reported in Figure 6-9. 

It is clear by comparison of Figure 6-8 and Figure 6-9, that the shape of the 

corresponding contour plots is unchanged – only the value attached to the given 

contours is altered.46 

Figure 6-9 highlights the position of the zero INMB contour as a dashed line. This 

contour is of particular interest, as it separates the plot into the cost-effective 

region (in this case, all points below the zero INMB line, where INMB >£0) and 

the non-cost-effective region (all points above the zero INMB line, where INMB 

<£0). The cost-effective region for this example has been highlighted in Figure 

6-10, and TE bands have been additionally overlaid. In this case, for the bootstrap 

method, TEmax = 20%; whilst for the parametric method TEmax = 0%, due to the 

fact that the cost-effective region with this method is off-centre from the baseline 

(0,0) and only just touches the zero bias point.  

 

                                            

46 Note however that due to selecting slightly different relative contour values to present 
in each figure, the contour lines shown in Figure 6-9 do not appear in exactly the 
same position as those shown previously in Figure 6-8.  
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Figure 6-9. YFCCP: contour plot of INMB (£) for simulated YFCCP vs. FC 
testing (NICE data)  
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Figure 6-10. YFCCP: contour plot of INMB (£) for simulated YFCCP vs. FC 
testing (NICE data) showing the cost-effective region (INMB > £0) 
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In the same way as above, the cost-effective region associated with each of the 

other fixed comparators can be identified, using both the simulated NICE FC 

pathway and the simulated YFCCP as the intervention strategies in turn. Rather 

than presenting each of the individual INMB contour plots, Figure 6-11 and Figure 

6-12 below illustrate the position of the zero INMB line (indicative of the cost-

effective region) for the simulated NICE FC pathway and the YFCCP respectively, 

compared to each of the fixed comparators. In addition, Figure 6-13 provides the 

same plot for the YFCCP analysis, this time with TE bands overlaid. Since TEmax 

was equal to 0 (or NA) for all of the comparators within the NICE FC pathway 

evaluation, the equivalent plot for that pathway is not shown.  

Note that, due to the fact that the simulated NICE FC pathway was dominated by 

several of the comparators over the simulated space of added bias and 

imprecision, Figure 6-11 only shows three comparators for which the NICE FC 

pathway was not universally dominated (i.e. where a non-empty cost-effective 

region was observed). Similarly for the YFCCP analysis, only the non-dominating 

comparators are shown: for the case of the bootstrap method, this includes all of 

the comparators; whilst for the parametric method, this includes all of the 

comparators except the original fixed YFCCP strategy (Figure 6-12 and Figure 

6-13). In each case, the cost-effective regions lie to the left (i.e. south-west) of 

each of the zero INMB contours presented. 
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Figure 6-11. NICE FC pathway: contour plot showing the position of the zero 
INMB contour for the simulated NICE FC pathway vs. fixed comparator 
strategies 
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Figure 6-12. YFCCP: contour plot showing the position of the zero INMB 

contour for the simulated YFCCP vs. fixed comparator strategies  
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Figure 6-13. YFCCP: contour plot showing the position of the zero INMB 

contour for the simulated YFCCP vs. fixed comparator strategies, with TE% 
bands overlaid 
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The cost-effective regions present areas of acceptable performance in terms of 

ensuring a positive INMB is maintained. In some cases investigators may wish to 

explore a more stringent requirement: for example in Figure 6-13, it can be seen 

that several of the comparators result in large cost-effective regions for the 

YFCCP, which suggest that considerable magnitudes of imprecision and bias can 

be tolerated before cost-effectiveness is adversely affected. In the context of 

setting outcome-based APS, it is unlikely that such low benchmarks of analytical 

performance would be considered acceptable in the laboratory. Laboratory 

professionals may therefore be interested in knowing what the added benefit 

would be, if a more stringent requirement for analytical performance was 

prescribed. In addition, once the decision to adopt a particular testing strategy 

has been taken, but where the cost-effective region indicates a wide tolerance to 

imprecision and bias, it may be of further interest to assess how positive NMB 

could be optimised, rather than simply maintained. If a meaningfully higher NMB47 

could be obtained by demanding an (achievable) higher level of measurement 

performance, then it would be of interest to determine whether this additional 

benefit outweighs the expected cost of securing the associated higher region of 

performance (e.g. the cost associated with increased internal or external quality 

assurance measures).  

Figure 6-14 illustrates an example of an “optimal region” for the YFCCP vs. the 

fixed comparator ‘FC testing (NICE data)’. In this case, the optimal region has 

been arbitrarily defined as the region of bias and imprecision containing the top 

10% of INMB achieved across the simulation space (i.e. INMB ≥ the INMB 90th 

percentile). Due to the fact that the optimal region has here been defined as a 

relative region (i.e. a top percentage of INMB, rather than a fixed INMB 

requirement), the position of this region for both sampling methods is the same 

regardless of which fixed comparator strategy is applied in the analysis. As a 

result, whilst there is little difference between the optimal region and the cost-

effective region for the example shown in Figure 6-14, the difference is much 

greater when considering the alternative comparators.  

                                            

47 Note that whilst the focus of this analysis is on cost-effectiveness outputs (e.g. NMB), 
these concepts may equally be applied to other outcomes (e.g. QALYs, life-years, 
costs etc.). 
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A key element of interest with the optimal regions, is the value of the minimum 

INMB that can be achieved within the optimal region (which changes when 

selecting alterative comparators for the cost-effectiveness calculation). For 

example, for the comparison illustrated in Figure 6-14, the INMB 90th percentile 

is £1.5 for the bootstrap method, and £10 for the parametric method, and it is 

these values which define the minimum INMB achieved within the optimal region. 

The position of the optimal region boundary for each sampling method does not 

change when adopting alternative fixed comparators, however the value of the 

INMB 90th percentile does change (see Table 6-3 and Table 6-4 for the INMB 90th 

percentile values). The optimal region boundary value is of interest since it 

reflects the value (in terms of added NMB) which may be obtained by moving 

from the edge of the cost-effective region (where minimum performance is set 

such that INMB = £0) to the edge of the optimal region (where minimum 

performance is set such that INMB ≥ 90th percentile, for example). The possible 

advantages of being able to quantify this value are discussed in section 6.4.2.   

Table 6-3 and Table 6-4 provide a summary of the results for the simulated NICE 

FC pathway and the YFCCP respectively. This includes the incremental costs, 

incremental QALYs and INMB for each simulated pathway at the (0,0) point 

(versus the fixed comparator strategies); alongside key outputs relating to each 

of the cost-effective and optimal regions – including the TEmax values, the range 

of CV% tolerated at bias = 0 µg/g, and the range of bias tolerated at CV = 0%.  
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Figure 6-14.  YFCCP: contour plot showing the optimal region of INMB (£) 
for simulated YFCCP vs. FC testing (NICE data) fixed comparator 
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Table 6-3. NICE FC pathway: incremental results for simulated NICE FC pathway vs. fixed comparators  

Fixed comparator 

strategy 

Outcomes at 

bias=0 & CV=0% 

Cost-effective region:                            

INMB > £0 

Optimal region: 

INMB ≥ INMB 90th percentile 

∆ Cost ∆ QALY INMB TEmax 

Range of 

bias at 

CV=0% 

Range of  

CV% at 

bias=0 

TEmax 

Range of 

bias at 

CV=0% 

Range of  

CV% at 

bias=0 

INMB 90th 

percentile 

Bootstrap method 

YFCCP intervention 
(fixed) 

£101 -0.0059 -£219 - NA - - NA - - NA - - NA - -100 to -58 - NA - -£92 

No FC (Tibble data) £54 0.0001 -£52 - NA - -100 to  -18 - NA - - NA - -100 to -58 - NA - £76 

No FC (NICE data) £80 -0.0042 -£165 - NA - - NA - - NA - - NA - -100 to -58 - NA - -£37 

FC testing (YFCCP, 50 
μg/g cut-off) 

-£1 0.0000 £2 0% -100 to 0 0 to 88% - NA - -100 to -58 - NA - £129 

FC testing (Tibble data) £67 -0.0022 -£113 - NA - -100 to -44 - NA - - NA - -100 to -58 - NA - £15 

FC testing (NICE data) £115 -0.0043 -£201 - NA - - NA - - NA - - NA - -100 to -58 - NA - -£74 

Parametric method 

YFCCP intervention 
(fixed) 

£113 -0.0063 -£239 - NA - - NA - - NA - - NA - -100 to -68 - NA - -£96 

No FC (Tibble data) £66 -0.0002 -£71 - NA - -100 to -24 - NA - - NA - -100 to -68 - NA - £72 

No FC (NICE data) £92 -0.0046 -£184 - NA - - NA - - NA - - NA - -100 to -68 - NA - -£41 

FC testing (YFCCP, 50 
μg/g cut-off) 

£11 -0.0003 -£18 - NA - -100 to -6 - NA - - NA - -100 to -68 - NA - £125 

FC testing (Tibble data) £79 -0.0027 -£133 - NA - -100 to -60 - NA - - NA - -100 to -68 - NA - £10 

FC testing (NICE data) £127 -0.0047 -£221 - NA - - NA - - NA - - NA - -100 to -68 - NA - -£77 
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Table 6-4. YFCCP: incremental results for simulated YFCCP vs. fixed comparators  

Fixed comparator 

strategy 

Outcomes at 

bias=0 & CV=0% 

Cost-effective region:                            

INMB > £0 

Optimal region: 

INMB ≥ INMB 90th percentile 

∆ Cost ∆ QALY INMB TEmax 

Range of 

bias at 

CV=0% 

Range of  

CV% at 

bias=0 

TEmax 

Range of 

bias at 

CV=0% 

Range of  

CV% at 

bias=0 

INMB 90th 

percentile 

Bootstrap method 

YFCCP intervention 
(fixed) 

£0 0 £0 0% 0 to 2 0 to 2% 18% -48 to 18 0 to 33.0% -£17 

No FC (Tibble data) -£47 0.0060 £168 66% -100 to 66 0 to 100% 18% -48 to 18 0 to 33.0% £151 

No FC (NICE data) -£21 0.0017 £55 38% -100 to 38 0 to 84% 18% -48 to 18 0 to 33.0% £38 

FC testing (YFCCP, 50 
μg/g cut-off) 

-£102 0.0060 £221 72% -100 to 72 0 to 100% 18% -48 to 18 0 to 33.0% £202 

FC testing (Tibble data) -£34 0.0036 £107 54% -100 to 54 0 to 100% 18% -48 to 18 0 to 33.0% £90 

FC testing (NICE data) £14 0.0016 £18 20% -50 to 20 0 to 35% 18% -48 to 18 0 to 33.0% £1.5 

Parametric method 

YFCCP intervention 
(fixed) 

£9 -0.0004 -£17 - NA -  - NA - - NA - - NA - -100 to -16 - NA - -£8 

No FC (Tibble data) -£38 0.0057 £151 64% -100 to 64 0 to 100% - NA - -100 to -16 - NA - £160 

No FC (NICE data) -£11 0.0013 £37 30% -100 to 30 0 to 80% - NA - -100 to -16 - NA - £46 

FC testing (YFCCP, 50 
μg/g cut-off) 

-£93 0.0056 £204 72% -100 to 72 0 to 100% - NA - -100 to -16 - NA - £213 

FC testing (Tibble data) -£24 0.0032 £89 50% -100 to 50 0 to 100% - NA - -100 to -16 - NA - £98 

FC testing (NICE data) £24 0.0012 £1 0% -100 to 0 0 to 27% - NA - -100 to -16 - NA - £10 
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6.3.2.2 Simulated YFCCP vs. simulated NICE FC pathway 

The INMB results for the analysis comparing the simulated YFCCP strategy with 

the simulated NICE FC pathway (i.e. both accounting for the impact of increasing 

measurement uncertainty) are provided in Figure 6-15. The YFCCP is associated 

with lower costs and higher QALYs compared to the NICE FC pathway over 

(almost) the entire simulated space of bias and imprecision values. As a result, 

the YFCCP dominates the NICE FC pathway, and is associated with positive 

INMB values over the whole contour plot (Figure 6-15).  

Since the YFCCP in this case is cost-effective compared to the NICE FC pathway 

over the simulated space, the cost-effective region plot is not provided (i.e. the 

YFCCP remains cost-effective over the entire contour plot area). Figure 6-16 

shows the optimal region of the YFCCP for this analysis, equal to maintaining the 

YFCCP INMB ≥ the INMB 90th percentile (in this case, equal to £432 for the 

bootstrap method, and £417 for the parametric method). Tabular results are 

provided in Table 6-5. 
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Figure 6-15. YFCCP: contour plot of INMB (£) for simulated YFCCP vs. 
simulated NICE FC pathway 
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Figure 6-16. YFCCP: contour plot showing the INMB optimal region for the 
simulated YFCCP vs. the simulated NICE FC pathway
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Table 6-5. YFCCP: incremental results for simulated YFCCP strategy vs. simulated NICE FC pathway 

Outcomes at 

bias=0 & CV=0% 

Cost-effective region:                            

INMB > £0 

Optimal region: 

INMB ≥ 90th percentile 

∆ Cost ∆ QALY INMB TEmax 

Range of 

bias at 

CV=0% 

Range of  

CV% at 

bias=0 

TEmax 

Range of 

bias at 

CV=0% 

Range of  

CV% at 

bias=0 

INMB 90th 

percentile 

Bootstrap method 

-£101 0.0059 £220 100% -100 to 100 0 to 100% - NA - 36 to 62 - NA - £432 

Parametric method 

-£104 0.0059 £222 100% -100 to 100 0 to 100% - NA - 38 to 62 - NA - £417 
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6.3.2.3 TEmax vs. cost-effectiveness threshold 

In each of the analyses thus far presented, cost-effectiveness has been 

calculated assuming a cost-effectiveness threshold of £20,000 per additional 

QALY. For the simulated YFCCP strategy, Figure 6-17 illustrates how the cost-

effective region alters as the cost-effectiveness threshold is varied for the 

bootstrap method results, using TEmax as a summary metric for the size of the 

cost-effective region.48 In this case, increasing the cost-effectiveness threshold 

increases the size of the cost-effective region, more noticeably at the lower 

threshold values. This result stems from the fact that the YFCCP intervention 

strategy is mostly cost-saving and QALY-increasing, compared to the comparator 

strategies considered. As such, increasing the value attached to QALY gains, 

results in an increase in the associated cost-effective region for the YFCCP.  

Figure 6-17. YFCCP: cost-effective region TEmax, over a range of cost-
effectiveness threshold values (bootstrap method) 

 

 

  

                                            

48 Note that this figure excludes the fixed YFCCP comparator, since this strategy 
dominated the simulated YFCCP over the vast majority of the cost-effectiveness 
threshold values. 
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6.4 Discussion 

6.4.1 Absolute results: mean cost, QALYs and NMB 

The primary objective of this analysis was to extend the methodology presented 

in Chapter 5, to assess the impact of increasing FC imprecision and bias on end-

stage outcomes for the NICE FC pathway and the YFCCP. To this end, the 

previously reported error model simulation results were applied within an existing 

FC cost-utility model, to determine the resulting impact on cost, utility and cost-

utility outcomes.  

As discussed in Chapter 5, the bootstrap method provided a better fit to the data 

within the error model simulation compared to the parametric method (section 

5.5.2). Since the cost-utility results presented herein are directly dependant on 

the error model simulation results, the bootstrap method similarly provided a 

close match to the data in this analysis (with cost, QALY and NMB results at the 

(0,0) point matching those produced from the original FC cost-utility model) 

(section 6.3.1). In contrast, the parametric method produced diverging results, 

with the diagnostic accuracy discrepancies outlined in Chapter 5 leading to higher 

cost and lower QALY estimates for both pathways. This resulted in an 

underestimation of NMB, leading to the subsequent cost-effective and optimal 

regions (reported in section 6.3.2) being offset from the (0,0) point for each 

comparative assessment when using the parametric method. In light of these 

discrepancies this discussion focuses on the bootstrap method results.  

Both pathways exhibited the same overall pattern of results with respect to the 

impact of increasing measurement uncertainty on costs: additional positive bias 

increased costs whilst negative bias reduced costs; and imprecision had minimal 

impact (Figure 6-3 and Figure 6-6). These results reflect the specificity findings 

from Chapter 5, with increased costs occurring in line with decreased specificity 

(see section 5.3.2.2, Figure 5-4; and section 5.4.2.2, Figure 5-10). Sensitivity, in 

contrast, had little impact on costs. The greater influence of specificity in this case 

was due to the fact that: (a) falsely diagnosed IBD patients in the FC cost-utility 

model were assumed to eventually obtain a secondary care referral (due to 

persisting symptoms), and incurred minimal costs as a result of delayed 

diagnosis; whilst (b) falsely referred IBS patients incurred a significant cost in the 
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model (i.e. colonoscopy), and IBS patients formed a larger percentage of the 

model population (92%). In alternative clinical contexts, however, sensitivity 

would be expected to have a greater influence – for example in cases where false 

negative diagnoses are associated with greater financial implications compared 

to false positive cases.   

With regards to QALYs, markedly different results were observed across the two 

pathways. For the NICE FC pathway, QALYs were again driven by specificity: 

additional positive bias decreased QALYs, due to more IBS patients suffering 

from a delayed diagnosis and spending longer in the ‘Untreated IBS’ health state 

(i.e. reduced specificity); whilst negative bias had the opposite effect (Figure 6-4). 

Recall that, due to the lower FC cut-off threshold applied in this pathway (50 

μg/g), a moderate sensitivity was maintained over a wide range of added bias 

and imprecision, at the expense of a relatively low baseline specificity which was 

highly volatile to added bias (section 5.3.2.2, Figure 5-4). As such, although 

sensitivity was a driver of QALYs in the model (since delayed diagnosis for IBD 

patients is also associated with a utility decrement), specificity had the more 

dominant impact in this case, with the highest QALYs achieved in the region of 

maximised specificity (i.e. at -100 μg/g bias).  

For the YFCCP, both sensitivity and specificity were key drivers of QALYs. 

Reductions in QALYs occurred in line with both positive bias (due to reduced 

specificity), and negative bias and/or imprecision (due to reduced sensitivity), 

resulting in QALY contours which decreased in distinctive, outward concentric 

semi-circles from the (0,0) point of highest QALY accrual (Figure 6-7). Recall that, 

in contrast to the NICE FC pathway, the YFCCP achieved a high baseline 

diagnostic sensitivity and specificity, and exhibited a more even and tempered 

performance in terms of robustness of these two outcomes to increased 

measurement uncertainty (section 5.4.2.2.1, Figure 5-10). As a result, QALYs for 

this pathway are maximised around the (0,0) point (for the bootstrap method), 

and gradually diminish in response to increasing or decreasing bias, and 

increasing imprecision.  

The combined impact of measurement uncertainty on each pathways’ costs and 

QALYs was evaluated using the NMB metric, assuming a cost-effectiveness 

threshold of £20,000 per additional QALY. For the NICE FC pathway, since 
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specificity was the key determinant of both costs and QALYs, the NMB was 

similarly driven by this factor (Figure 6-5). In line with the findings from Chapter 

5, the NMB contour plot in this case provides further evidence of the sub-optimal 

performance of this pathway, with the highest NMB being achieved at -100 μg/g 

added bias (equivalent to increasing the cut-off threshold to 150 μg/g). For the 

YFCCP meanwhile, although costs were driven by specificity, QALYs were 

affected by both sensitivity and specificity; as a result, the NMB for this pathway 

followed a similar pattern as the corresponding QALY contour plot (Figure 6-8). 

In addition, the NMB for the YFCCP was optimal close to the (0,0) point (with 

NMB maximised at CV=0% and bias=+2μg/g for the bootstrap method), indicating 

that the cut-off threshold used in this pathway is appropriate. Based purely on the 

individual NMB plots therefore, it would appear that the YFCCP outperforms the 

NICE FC pathway, even over regions of increased measurement uncertainty – 

the incremental analysis discussed below further confirms this.  

It should be noted that an alternative, more simplistic approach to exploring the 

robustness of modelled outcomes, would be to run standard one-way sensitivity 

analysis on the baseline diagnostic sensitivity and specificity values for each 

pathway in the base case YFCCP cost-utility model. This traditional approach 

provides information on the sensitivity of the modelled outcomes to changes in 

the diagnostic sensitivity and specificity inputs. A key limitation with that 

approach, however, is that it fails to provide any information on how changes in 

diagnostic accuracy inputs relate to changes in the underlying measurement 

performance of the test. Instead, by linking changes in the modelled outputs back 

to changes in the measurement bias and imprecision of the test, the error model 

simulation approach presented in this thesis provides additional information on 

what fundamental aspects of the test’s performance are driving the observed 

changes in clinical and health-economic outcomes. This provides useful 

information for clinical and reimbursement decision makers, and can further help 

to inform optimal laboratory practices via the derivation of outcome-based APS.  

 

6.4.2 Incremental (INMB) results 

6.4.2.1 Cost-effective regions 
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The cost-effectiveness of the two simulated FC pathways was evaluated using 

the INMB metric (section 6.3.2). Each pathway was first assessed in relation to 

the six fixed intervention and comparator arms included in the original FC cost-

utility model (section 6.3.2.1). The results of this analysis enable assessment of 

the robustness of each pathway’s cost-effectiveness to added bias and 

imprecision, and further identification of the region of added bias and imprecision 

which achieves cost-effectiveness.  

For the NICE FC pathway, all of the comparators dominated this pathway at the 

(0,0) point (i.e. they were cheaper and more effective) (Table 6-2). Figure 6-11 

further demonstrates that, for the higher performing comparators (i.e. the two 

‘NICE data’ comparators, and the YFCCP), the NICE FC pathway failed to 

achieve cost-effectiveness at any value of added bias and imprecision. For the 

lower performing comparators (i.e. the two ‘Tibble data’ comparators and the 

fixed NICE FC pathway), the NICE FC pathway did achieve cost-effectiveness, 

in the region of negative bias. The offset placement of the cost-effective regions 

in this case is a clear sign of the sub-optimal design of this pathway, since for an 

optimal strategy one would expect cost-effectiveness to be maximised around the 

area of lowest measurement uncertainty. These results confirm that, as well as 

not being cost-effective at the baseline, the NICE FC pathway is only cost-

effective against lower performing comparator strategies when applying high 

negative bias (equivalent to raising the cut-off threshold).  

For the YFCCP, at the (0,0) point this pathway was cost-effective compared to all 

of the fixed comparators, and dominated all but the FC testing (NICE data) 

strategy (Table 6-2). As with the NICE FC pathway, the largest cost-effective 

regions for the YFCCP were obtained via assessment against those comparators 

with the lowest NMB. However, since the YFCCP’s performance was maximised 

around the baseline (0,0) point and lowest in the region of high positive bias, the 

zero INMB contour for this pathway when compared to low performing 

comparators fell within the region of high positive bias. In these cases therefore, 

the cost-effective region covered the entire domain of imprecision (up to 100% 
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CV), for a wide range of bias (-100 to >50 μg/g).49 Meanwhile for higher 

performing comparators (i.e. associated with higher NMB), the associated zero 

INMB line for the YFCCP fell closer to the region of optimal performance, resulting 

in a contraction of the cost-effective region. Nevertheless, even when compared 

to its highest performing comparator [the ‘FC testing (NICE data)’ arm]50 the 

YFCCP maintained a sizable cost-effective region (TEmax=20%) (Table 6-4). As 

such, these results confirm that the cost-effectiveness of the YFCCP is expected 

to be robust to variations in analytical performance, and further support the case 

for the adoption of this pathway.  

An additional incremental analysis was conducted comparing the two simulated 

pathways against each other (i.e. assuming that the same magnitude of 

measurement uncertainty occurs within both pathways) (section 6.3.2.2). In the 

INMB plots thus far presented for the YFCCP, the pathway’s optimal INMB was 

achieved around the (0,0) point, in line with location of the highest NMB achieved 

with this pathway. In this incremental analysis however, the highest INMB for the 

YFCCP was achieved just below 50 μg/g bias (0% CV), where the relative 

performance of the YFCCP vs. NICE FC pathway was highest (Figure 6-15) (see 

section 6.4.2.2 for further discussion of the optimal region of this plot). Due to the 

consistently higher performance of the YFCCP over the complete space of 

simulated bias and imprecision, the cost-effective region in this case covered the 

entire contour plot. This confirms that the YFCCP is consistently more robust to 

increased measurement uncertainty compared to the NICE FC pathway. 

A key advantage of basing APS on cost-effective regions (as opposed to 

acceptable regions as presented in Chapter 5), is that no user-based, subjective 

                                            

49 See for example the placement of the zero INMB line for the three worst performing 

comparators in Figure 6-12: FC testing (YFCCP, 50 μg/g cut-off), No FC (Tibble 

data), FC testing (Tibble data). In these cases, TEmax ranged from 54 to 72%.  
50 Note that the fixed YFCCP comparator in this example represents a special case. For 

an optimised testing strategy, it is expected that when comparing that strategy 

(accounting for the impact of added measurement uncertainty), against the same 

fixed strategy (not accounting for added measurement uncertainty), that any 

additional bias or imprecision would reduce the performance of that pathway. Hence 

why the fixed YFCCP comparator is associated with a near-empty cost-effective 

region in this analysis. As such, this comparator only really serves as a validity 

check, to confirm that the pathway is indeed optimised. 
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judgement is required to identify this region, since cost-effectiveness (within the 

UK context) can be directly determined based on the NICE cost-effectiveness 

threshold (280). Thus, once the costs and QALYs associated with an intervention 

and comparator are known, this threshold can be applied to determine the INMB, 

with cost-effectiveness defined as INMB > £0. In contrast in Chapter 5, an 

assumption had to be made regarding the minimum level of diagnostic accuracy 

which was considered acceptable, in order to define the acceptable region of bias 

and imprecision. Of course, the validity of the NICE threshold used to define the 

cost-effective region may be questioned, and alternative values may be explored 

within sensitivity analyses (as in section 6.3.2.3). Nevertheless, in the UK HTA 

context, the NICE threshold is typically considered as an externally pre-

determined variable. Thus, whilst modelling cost-effectiveness outcomes 

requires additional work compared to modelling diagnostic accuracy outcomes, 

the avoidance of subjectivity within setting APS may be considered a useful 

advantage.  

The extraction of clearly defined APS from cost-effectiveness analysis ideally 

requires a single, clearly defined comparator. In the context of primary care IBD 

diagnosis, however, selection of an appropriate comparator is challenging due to 

two issues. First, standard care in the UK is variable, due to an inconsistent 

uptake of FC across primary care following the NICE 2013 recommendation (i.e. 

there is no single “standard care” pathway) (239). Second, a paucity of primary 

care studies in this area means that the validity of secondary-care-based 

diagnostic accuracy estimates used within the FC cost-utility model can, and 

have, been questioned (239).  

Focusing on the YFCCP (as the only robust cost-effective pathway where APS 

may therefore be required), it may be assumed that this pathway is most likely to 

be considered in areas where the single-test NICE FC pathway is already in 

place. Assuming for arguments sake that this is the case, then the ‘FC testing 

(YFCCP, 50 μg/g cut-off)’ [i.e. the fixed NICE FC pathway] comparator is likely to 

be of most relevance, since this is the only FC comparator based on primary care 

data. Basing APS for FC on this analysis, however, suggests that a substantial 

magnitude of additional bias and imprecision can be tolerated before breaching 

cost-effectiveness (TEmax = 72%). For the purposes of deciding whether or not to 
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adopt the YFCCP, such a large cost-effective region is encouraging. For the 

purposing of setting APS, however, this region sets a very low bar for analytical 

performance, which would most likely be considered unacceptable as a 

performance benchmark within the laboratory. A possible alternative route for 

setting APS in the form of “optimal regions” was therefore presented.   

6.4.2.2 Optimal regions 

The concept of optimal regions was presented in this analysis as an alternative 

and/or supplementary means of setting outcome-based APS alongside cost-

effective regions. Rather than informing test adoption decisions, the idea behind 

the optimal region is to assess the appropriate level of analytical performance 

that should be demanded for a given test in practice. This approach may be useful 

in two key scenarios. First, a tighter restriction on measurement performance may 

be desired from the laboratory professionals perspective, in cases where the 

cost-effective region allows an unacceptably large magnitude of measurement 

uncertainty (e.g. a level of measurement uncertainty much higher than that 

typically achieved in the laboratory). Second, if a substantially higher NMB can 

be achieved within a subsection of the cost-effective region, then this is useful to 

know. For example, it may be that a meaningfully higher NMB could be obtained 

by restricting the acceptable bounds of bias and imprecision to a region inside 

that indicated by the cost-effective region. Assuming that the requirement for 

heightened measurement performance would be associated with some form of 

cost (e.g. related to increased internal and/or external quality assurance 

activities), then the key question in this case concerns whether or not the 

associated benefit outweighs this cost of raising the analytical performance goals. 

The use of NMB as the evaluated outcome is useful in this context, since the 

expected costs associated with achieving a specified optimal region can be 

directly compared to the expected gain in NMB in monetary terms (i.e. the NMB 

gain associated with moving from the edge of the cost-effective region, where 

NMB is zero, to the edge of the specified optimal region). If the cost associated 

with achieving a higher benchmark of measurement performance outweighs the 

expected gain in NMB, then the use of the optimal region would not be justified. 

Conversely, if the expected benefit outweighed the cost, then the use of the 

specified optimal region would be justified.  
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In this case study, the optimal region was arbitrarily defined as the region of 

added bias and imprecision maintaining INMB at or above the INMB 90th 

percentile (i.e. the top 10% of INMB across the simulated space). Focusing on 

the YFCCP (as the only robust cost-effective pathway where APS may therefore 

be required), this optimal region spanned a bias range of -48 to 18 μg/g (at 0% 

CV), allowed CV up to 33% (at 0 μg/g bias), with an associated TEmax of 18% 

(Table 6-4). Interestingly, when evaluating the YFCCP against its closest 

performing comparator – the FC testing (NICE data) comparator – there was little 

to be gained by restricting performance to the optimal region as opposed to the 

cost-effective region (TEmax =20%). In this case, the INMB 90th percentile was 

equal to £1.5, meaning that an additional benefit of £1.50 is achieved by moving 

from the zero INMB line (the edge of the cost-effective region), to the 90th 

percentile line (the edge of the optimal region). In contrast, there is a lot to be 

gained from imposing the optimal region in cases where cost-effectiveness has 

been established against a relatively low performing comparator. For example, 

when comparing the YFCCP to the FC testing (YFCCP, 50 μg/g cut-off) 

comparator, an average benefit of at least £202 could be obtained by maintaining 

analytical performance within the optimal region (TEmax=18%), as opposed to the 

cost-effective region (TEmax=72%). The comparison of different optimal region 

boundary values, therefore, provides a mechanism by which to quantify the 

added value of imposing restricted APS.  

For the analyses based on fixed comparator strategies, the presented INMB 

optimal regions are equivalent (in terms of allowable bias and imprecision) to 

extracting the top 10% of the absolute NMB for the associated intervention (since 

in relative terms, the NMB and INMB plots are equivalent). The optimal region in 

this case can therefore be defined using the NMB plot alone, without incremental 

assessment against comparator pathways. Of course, assessment against 

relevant comparators is a key step to ensuring that an intervention does in fact 

achieve cost-effectiveness. If, however, the cost-effectiveness of a testing 

pathway has already been confirmed – for example where a test is already in use 

following an evidence-based adoption decision – then NMB data alone may be 

used to derive APS.  
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For the analysis comparing the two simulated pathways against each other, 

interpretation of the optimal region is more complex. When using the fixed 

comparator arms, the INMB plots for each pathway exhibited the same shape as 

their associated absolute NMB plots. The optimal regions in this case therefore 

reflected the area of measurement performance within which the simulated 

pathway performed best. This is not so for the analysis comparing the two 

simulated pathways against each other. The YFCCP optimal region in this case 

shifts towards +50 μg/g bias, wherein the performance of both pathways was 

reduced, but significantly more so in the NICE FC pathway (due to the FC cut-off 

threshold in this case dropping to zero, resulting in 0% specificity). It would be 

inappropriate in this case to conclude that the optimal performance of the YFCCP 

is at the region of 50 μg/g bias. Rather, this result highlights that the YFCCP is 

more robust to measurement uncertainty than the NICE FC pathway, and most 

notably so in the region of positive bias.  

Historically, APS have often been set at multiple levels. Performance goals based 

on biological variation, for example, have typically been reported at three levels 

– ‘minimum, ‘desirable’, and ‘optimal’ – based on allowing different proportions of 

test values to fall beyond test reference limits (35). In a similar way, optimal 

regions may be presented alongside cost-effective regions, to provide an upper 

and lower benchmark for APS. Indeed multiple optimal regions may be explored. 

The optimal region produced according to specifying INMB ≥ 90 th percentile 

above, for example, may instead be considered as a ‘desirable’ achievement, 

and an ‘optimal’ goal may be defined as INMB ≥ INMB 95th percentile. For the 

YFCCP (bootstrap method), defining the optimal region in this way produces a 

slightly restricted region spanning a bias range of -34 to 14 μg/g at 0% CV (-48 

to 18 in the base case), allowing CV up to 24% at 0 μg/g bias (33% in the base 

case), and with an associated TEmax of 14% (18% in the base case).  

As with the acceptable regions presented in Chapter 5, the concept of optimal 

regions again requires a judgement to be made as to what level of outcome 

should be considered, in this case, optimal. The advantage here, however, is that 

the full range of INMB percentile values can be compared to provide a 

quantitative assessment of additional value gained by moving from the cost-

effective region (INMB ≥ £0) to the optimal region (INMB ≥ selected INMB 
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percentile). Various optimal regions may therefore be considered, and the 

associated added INMB’s judged against the expected cost of obtaining and 

maintaining the higher performance levels. Whilst this would require assessment 

of the relevant costs, it would allow optimal APS to be set based on a full 

consideration of both the potential benefits of optimising measurement, and the 

cost of achieving this optimisation. This concept is akin to that of value of 

information analysis in health economics, for example – wherein the cost of 

conducting further research is compared to the potential benefits of reducing 

decision uncertainty as a result of increasing the precision around key parameters 

of interest within the health-economic analysis (281). A similar approach could be 

explored for the design of laboratory quality assurance programs in future studies.  

6.4.3 Limitations 

The analysis presented in this chapter used the error model simulation results 

from Chapter 5. As a result, the same limitations apply to this analysis as 

previously highlighted in Chapter 5 (section 5.5). In particular, the results are 

similarly affected by the existence of baseline measurement uncertainty within 

the sampled FC data; and the YFCCP assessment is affected by the need to 

resample missing FC2 data within the error model simulation, due to per protocol 

truncated testing applied within the YFCCP dataset (section 5.5.3).   

There are further limitations in this case which relate to the FC cost-utility model 

used to inform the assessment of cost-effectiveness. As previously mentioned, 

there are limitations with the evidence used to inform several of the comparator 

strategies in this model, which came from secondary care settings due to a 

paucity of primary care evidence in the literature. This means that the validity of 

secondary-care-based diagnostic accuracy estimates used within the FC cost-

utility model can, and have, been questioned (239). The primary limitation 

however, concerns the fact that the model uses a short time horizon (1 year), 

which only captures patient outcomes up to the point of true diagnosis; and the 

fact that the model is deterministic, meaning that uncertainty around the fixed 

model input parameters has not been captured. This means that: first, the base-

case cost and QALY estimates produced from the FC cost-utility model may not 

provide a complete and accurate reflection of the cost-effectiveness of primary 

care FC testing strategies; and second, that the analysis of the impact of 
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measurement uncertainty on the base-case outputs has not been able to address 

questions around how FC measurement uncertainty impacts on the probability of 

cost-effectiveness for the FC strategies (which requires probabilistic sensitivity 

analysis [PSA] results), or  how the impact of measurement uncertainty on the 

modelled outcomes compares to the overall impact of other sampling (i.e. 

second-order, parameter) uncertainty.  

In their evaluation of the YFCCP, NICE considered the deterministic model 

results to be sufficient to guide a positive recommendation of this pathway (most 

likely due to the fact that this pathway was found to be highly cost-effective). In 

most cases, however, a probabilistic model would be expected to be required in 

order to accurately guide policy decision making, and in this context the 

exploration of additional methods to address the impact of measurement 

uncertainty on probabilistic outputs would be useful. It is expected that, if 

implementing the methods presented in this chapter within a probabilistic 

economic model, one would need to apply an inner and outer loop of simulation. 

That is, for each level of bias and imprecision applied, the associated sensitivity 

and specificity values (produced from the error-model analysis) would be applied 

as fixed parameters within the economic model, and the PSA analysis would be 

run (e.g. n=10,000 Monte-Carlo simulations) to produce a probabilistic estimate 

of cost-effectiveness at that specific level of bias and imprecision. This process 

would then be repeated for each of the bias and imprecision values explored, 

which would allow contour plots to be constructed in the same way as presented 

in this thesis, but for the alternative outcome of the probability of cost-

effectiveness. This would mean, for example, that the cost-effective region as 

presented in this chapter could be extended to instead present the region of 

analytical performance maintaining a specified minimum likelihood of cost-

effectiveness (e.g. ≥80% probability of being cost-effective).  

It should be noted that the above approach – centring on the addition of 

hypothetical bias and imprecision via the error model – does not allow for the 

assessment of the relative importance of measurement uncertainty compared to 

other parameter uncertainty in the model. In order to address this question, one 

would first need to establish an expected distribution of measurement uncertainty 

around the baseline test measurements in the model, and apply this as an 
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uncertain parameter in the same way as for other stochastic parameters feeding 

into the PSA model. This approach would require additional information on the 

real world distribution of measurement uncertainty, which may be hard, if not 

impossible, to identify. Nevertheless, in cases where this is achievable, then a 

clear advantage lies in the fact that the expected value of perfect parameter 

information on measurement uncertainty could be evaluated within a value of 

information analysis, using the PSA outputs51. This would mean that the relative 

importance of measurement uncertainty compared to other uncertain parameters 

could be addressed, enabling a more comprehensive assessment of whether 

measurement uncertainty matters for clinical decision making. Further research 

is required, however, to confirm whether both of the above suggested approaches 

are feasible and appropriate.52  

In the context of this case study the primary purpose of this analysis was to 

explore and illustrate how the error model simulation approach could be 

embedded within a decision analytic modelling framework to evaluate cost-

effectiveness outcomes. Whilst the restriction to deterministic outputs represents 

a clear limitation,  this study nevertheless clearly demonstrates a useful 

mechanism for linking measurement uncertainty to health-economic outcomes, 

and presents possible approaches to deriving outcome-based APS and 

assessing the value of different APS requirements. Future studies could apply 

this same methodology within long-term, fully probabilistic decision models.  

  

                                            

51 Modern approaches to value of information analysis (e.g. efficient regression—based 
approaches) can be undertaken using PSA outputs alone. For example the Sheffield 
Accelerated Value of Information (SAVI) online tool can calculate value of 
information results, including the expected value of perfect parameter results, based 
on user-inputted information on the probabilistic parameters and the PSA 
incremental cost and effect results (see http://savi.shef.ac.uk/SAVI/).  

52 It should be noted that with either approach, the inclusion of direct test measurements, 
measurement uncertainty, and an assigned diagnostic cut-off threshold in the model 
essentially subverts the need to include user-defined diagnostic sensitivity or 
specificity values (since diagnostic sensitivity and specificity are products of the true 
values, measurement uncertainty, and the cut-off threshold).  
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6.5 Summary 

 In this chapter, the error model simulation results from Chapter 5 were 

embedded within a previously developed economic decision model, to 

extend the case study analysis to cost, QALY, and cost-effectiveness 

outcomes. Together with Chapter 5, these results support hypothesis C of 

this thesis: that methods from the broader literature (i.e. identified in 

Chapter 3) may be applied within HTA-style assessments, to evaluate the 

impact of measurement uncertainty on clinical performance, clinical utility 

and cost-effectiveness outcomes.  

 The results were presented using contour plots, which were again used to 

assess the robustness of each pathway’s outcomes to increase bias and 

imprecision. Based on this analysis, the NICE FC pathway was confirmed 

to be a sub-optimal pathway which is volatile to positive bias; whilst the 

YFCCP was confirmed to be to be an optimised and robust strategy.  

 The contour plots were further utilised to illustrate two new concepts:  

“cost-effective regions” of bias and imprecision (where INMB ≥ £0); and 

“optimal regions” of bias and imprecision (where INMB ≥ a selected INMB 

percentile). As for the acceptable regions presented in Chapter 5, these 

concepts similarly relate to hypothesis D of this thesis: that the application 

of methods from the broader literature to HTA-style assessments could 

enable outcome-based APS to be derived. 

 For the YFCCP, the cost-effective regions were found to allow high levels 

of imprecision and bias. Optimal regions provided a useful alternative in 

this scenario, and further enable the added benefit of imposing tighter APS 

to be quantified.  

Overall, the results from Chapter 5 and Chapter 6 have illustrated how the 

impact of measurement uncertainty on pathway outcomes can be assessed, 

based on applying hypothetical bias and imprecision via error model simulation. 

In Chapter 7, an alternative error model simulation analysis is presented, drawing 

on RWE: in this example, between-assay performance data derived from a 

national EQA scheme for FC is used to evaluate the impact of between-assay 

differences on clinical and health-economic outcomes.   
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Chapter 7  

Real World Evidence (RWE) analysis 

7.1 Chapter Outline 

In Chapter 5 and Chapter 6, the error model simulation approach was used to 

explore the impact of hypothetical bias and imprecison on FC pathway outcomes. 

The aim of this chapter was to explore how RWE may be used within the error 

model simulation approach, to address hypothesis E of this thesis: that methods 

from the broader literature may be applied or adapted to allow RWE to be utilised 

within outcome-based assessments. In this case, RWE on FC measurement 

performance was used as a means of assessing the impact of between-assay 

differences on clinical and health-economic outcomes. Using data from a national 

EQA scheme for FC, a RWE analysis was conducted to assess whether or not 

the YFCCP could achieve the same clinical and economic benefit as 

demonstrated in the previous chapters, if alternative FC assays were applied.  

Two alternative assays were explored in this analysis: the BÜHLMANN fCAL® 

turbo assay, and the Thermo Fisher EliATM Calprotectin 2 assay. Between-assay 

bias and SD profiles for each assay were first derived from the EQA data, using 

the BÜHLMANN fCAL® ELISA assay as the reference measurement. Using a 

modified version of the error model presented in Chapter 5, the bias and SD 

profiles were used to estimate the diagnostic accuracy of the YFCCP when using 

the alternative assays. These estimates were then applied within the FC cost-

utility model, to assess the pathway’s cost-effectiveness. The EQA data is first 

summarised below (section 7.2), followed by the methods (section 7.3), results 

(section 7.4) and discussion (section 7.5).  

7.2 Data  

The ongoing UK NEQAS EQA scheme for FC (run by the Birmingham Quality 

group) was established in February 2012 to monitor the performance of FC 

assays (230). Under this scheme, three specimens of human faeces are 

distributed monthly to participating laboratories53 for analysis using each centre’s 

                                            

53 Participation in this scheme is open to NHS laboratories, private laboratories, 
university departments, diagnostic manufacturers and point-of-care users (e.g. GP 
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chosen FC assay. The three specimens are typically formulated from a mixture 

of IBD patient samples, and vary in terms of composition from month to month. 

Each month the participating laboratories analyse the three specimens provided 

(based on an individual sample analysis) and submit their results electronically to 

Birmingham Quality.  

Based on the submitted FC results, monthly EQA reports are compiled and 

returned to the participating laboratories (see Appendix M for an example 

anonymised report provided by Birmingham Quality). Due to a curent lack of 

reference measurement procedure or CRM for FC (268), rather than presenting 

a “true” target value for each EQA specimen, the ‘all laboratory trimmed mean’ 

(ALTM) is instead reported. The ALTM represents the Healy-trimmed mean (in 

which specified outlier values are excluded) of all numerical measurements for a 

given specimen, irrespective of the assay used to obtain the result (282). For 

each specimen, the EQA reports include data on the ALTM, as well as assay-

specific means, CV% and SD values (also based on numerical FC data only). 

The reports also include an end table (see pages 9-18 in the example report 

provided in Appendix M) which lists the individual FC results returned across all 

laboratories, including both numerical values and semi-quantitative results (i.e. 

left- and right-censored vales, such as “<10” or “>600”).  

The analysis presented in this chapter uses the individual results reported in the 

end tables of 11 EQA reports, covering the period January 2018 to December 

2018.54  Note that, although individual laboratory results are provided in the report 

end tables, the laboratory from which each individual result pertains is not 

reported (i.e. each laboratory is anonymised). No laboratory-identifiable data was 

thus used in this analysis. The EQA reports were provided by the laboratory at 

the York Teaching Hospitals NHS Trust in January 2019. Since the reports relate 

to routine quality assurance data and do not include any patient-identifiable data, 

formal ethical approval was not required for this case study. Nevertheless, use of 

this data for publication purposes requires approval from Birmingham Quality 

                                            

practices, private clinics etc.) (Personal communication with Jane French, 
Consultant Clinical Scientist at Birmingham Quality, January 2020).  

54 Note that no samples were distributed by NEQAS in February 2018. As a result, there 
are 11 rather than 12 reports coving the 2018 period.  
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(who run the scheme), since each EQA report is considered confidential between 

Birmingham Quality and the participant laboratory. Permission to use this data 

was obtained from Birmingham Quality in August 2019.  

Individual FC values (including numerical and semi-quantitative results) listed in 

the end tables of the 11 EQA reports, were extracted for three assays: (1) 

BÜHLMANN fCAL® ELISA – the assay used to measure FC values in the YFCCP 

dataset (listed as ‘Bühlmann [2BU]’ in the EQA reports); (2) BÜHLMANN fCAL® 

turbo (listed as ‘Bühlmann fCAL turbo [4BU]’); and (3) (Thermo Fisher) EliATM 

Calprotectin 2 (listed as ‘Thermo EliA Calpro 2 [2KO2]’). Henceforth, these 

assays are referred to as 2BU, 4BU and 2KO2 respectively. Although several 

other FC assays were included in the EQA reports (as reported in Chapter 4, 

Table 4-1), these three assays represent those most commonly used across the 

2018 EQA reports. From the 11 reports extracted (each including 3 FC 

specimens), a total of 804 results were returned for the 2BU assay, followed by 

686 for the 2KO2 assay, and 366 for the 4BU assay. Thus, on average, 24 

laboratories returned results for the 2BU test, followed by 21 for the 2KO2 test, 

and 11 for the 4BU test.  

7.2.1  Censored data  

As with the YFCCP dataset, the EQA data used in this analysis included left- and 

right-censored FC values. In this case, a range of lower and upper measurement 

range limits were observed, due to the fact that different assays and different 

laboratories report different limit values. A summary of censored data observed 

within the EQA reports for the three assays evaluated is provided in Table 7-1. 

For each observed limit, this table reports the frequency of associated censored 

data for each assay.  

Table 7-1 indicates that the 2BU assay had the smallest measurement range, 

with an upper limit of either 600 μg/g (as in the YFCCP dataset) or 1800 μg/g 

(achieved by applying different dilution factors to the test samples). The 

alternative assays meanwhile reported up to ~2,000 μg/g. As a result, the 2BU 

assay was associated with the highest frequency of right-censored data. The 4BU 

assay meanwhile had the highest proportion of left-censored data, with lower 

limits of 20 or 30 μg/g commonly in use; whilst the most common left-censored 
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data for the 2BU and 2KO2 assays related to lower limits of 30 μg/g and 15 μg/g 

respectively. Two different methods for handling censored data within the 

following RWE analysis are discussed in section 7.3 below.  

Table 7-1. FC EQA data: censored data  

Reported lower/ 

upper limit 

Frequency of censored data N (%) 

2BU 

[Total N = 804] 

4BU 

[Total N = 366] 

2KO2 

[Total N = 686] 

Left-censored data 

<4 - - 3 (<1%) 

<10 4 (<1%) - - 

<15 - - 16 (2%) 

<19 - 2 (<1%) - 

<20 1 (<1%) 36 (10%) - 

<24 - 3 (1%) 2 (<1%) 

<25 - 1 (<1%) - 

<26 - 2 (<1%) - 

<30 46 (6%) 23 (6%) 4 (<1%) 

<50 - 9 (2%) - 

Right-censored data 

>600 100 (12%) 2 (<1%) - 

>1,799 - 2 (<1%) - 

>1,800 13 (2%) 2 (<1%) - 

>1,932 - 1 (<1%) - 

>2,000 - 2 (<1%) 1 (<1%) 

>2,100 - - 1 (<1%) 
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7.3 Methods 

7.3.1 EQA data analysis: bias and SD profiles 

The EQA data summarised in section 7.2 was used to evaluate the comparative 

performance of two alternative assays, 2KO2 and 4BU, compared to 2BU. The 

research question framing this analysis, is whether or not the clinical and 

economic performance of the YFCCP could be maintained when using alternative 

assays to the 2BU assay. Whilst the 2BU assay is not representative of “true” 

measurement, it is the assay which has informed the development and 

optimisation of the YFCCP. For the specific research question considered in this 

analysis therefore (and in the absence of a reference measurement procedure 

for FC), 2BU represents the relevant reference assay.  

For each specimen included in this analysis (n=33), the 2BU reference 

measurement was calculated as the mean of the reported 2BU measurements 

for that specimen55. Mean 2BU specimen values were calculated using both 

numerical and semi-quantitative FC results, with semi-quantitative values set 

equal to their respective limits in the base case analysis (full details of censored 

data handling are provided further below). Between-assay differences were 

calculated by subtracting the 2BU specimen mean reference measurement 

(n=33) from each 2KO2 (n=686) and 4BU (n=366) individual specimen value. For 

completeness, this calculation was also conducted for the individual 2BU 

measurements (n=804) (but note that in the following bias analysis the expected 

(i.e. mean) bias for the 2BU reference assay is, by default, zero).   

Using the calculated between-assay differences, bias profiles were produced for 

each assay. The EQA data was first plotted on a difference plot, which shows the 

individual between-assay differences (presented on the y-axis) against the 2BU 

reference assay measurements (presented on the x-axis). At each reported 

reference measurement (n=33 specimens), a scatter of between-assay 

difference values were produced for each assay, depending on the number of 

laboratories returning results for that assay. Using these difference plots, bias 

                                            

55 Note that there was little difference between mean vs. median values across the 2BU 
measurements for each specimen.  
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profiles for each assay were derived by fitting a loess regression model to the 

difference plot.  

Loess is a non-parametric regression approach, similar to ordinary least squares 

(OLS) regression, in which a series of OLS models are fitted to localised subsets 

of the data (283). This form of regression is useful for fitting a function of 

expectation over data where the relationship between variables is non-linear or 

the parametric form is complex or unclear (283). In contrast to the typical 

approach taken in Bland Altman difference plots – where mean bias is presented 

as a fixed value over the measurement range (284, 285) – the use of loess 

regression provides bias profiles which show how the value of expected bias (i.e. 

average between-assay differences) changes over the reference measurement 

range (see the resulting bias profile plots, reported in section 7.4.1).  

In a similar way to above, SD profiles were also derived for each assay, according 

to the SD observed across the between-assay differences. For each specimen 

(n=33), the SD of the reported between-assay differences was calculated for 

each assay. These values were similarly plotted on a scatter plot as described 

for the between-assay differences above (this time presenting SD on the y-axis). 

In this case however, only a single SD estimate for each assay specimen was 

derived, based on the spread of values observed at each reference measurement 

point for each assay. The SD profiles for each assay were again derived by fitting 

a loess regression model to the plotted data. The resulting plots (reported in 

section 7.4.1) illustrate how the expected variability of between-assay differences 

for each assay changes over the observed FC measurement range.  

The bias and SD profiles were constructed using all available FC data provided 

within the EQA report end tables, including both numerical and semi-quantitative 

(i.e. left-censored or right-censored) values. Two approaches were implemented 

for dealing with censored data. In the base case analysis, all censored FC data 

were replaced with their respective limit values (i.e. values reported as “>600” 

were replaced with 600, “<10” replaced with 10, etc.). Alternatively in a sensitivity 

analysis, censored data were instead replaced with associated median estimates 

derived from the EQA data. For this sensitivity analysis, median estimates were 

calculated by taking the median of numerical FC values reported across all three 

assays and all EQA reports, where data within the associated lower and upper 
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regions were available. For example, for right-censored data reported as “>600” 

in the EQA reports, an associated quantitative estimate for FC was calculated by 

taking the median of all numerical FC values reported as >600 μg/g, across all 

the EQA reports and all three assays (in this case providing a median estimate 

of 915 μg/g). The median estimates and number of values informing these 

estimates for each of the observed lower and upper limits, are provided in Table 

7-2. 

Table 7-2. FC EQA data: median estimates for censored data 

Reported 

Limit 

Frequency of censored data N (%) 

Median 

estimate  

Number of 

values 

informing 

median 

estimate  

2BU 

[Total N = 

804] 

4BU 

[Total N = 

366] 

2KO2 

[Total N = 

686] 

Left-censored data 

<4 - - 3 (<1%) NA 0 

<10 4 (<1%) - - 8 27 

<15 - - 16 (2%) 11 63 

<19 - 2 (<1%) - 13 103 

<20 1 (<1%) 36 (10%) - 14 120 

<24 - 3 (1%) 2 (<1%) 17 169 

<25 - 1 (<1%) - 17 179 

<26 - 2 (<1%) - 18 192 

<30 46 (6%) 23 (6%) 4 (<1%) 19 239 

<50 - 9 (2%) - 29 459 

Right-censored data 

>600 100 (12%) 2 (<1%) - 915 260 

>1,799 - 2 (<1%) - 2,318 31 

>1,800 13 (2%) 2 (<1%) - 2,318 31 

>1,932 - 1 (<1%) - 2,581 25 

>2,000 - 2 (<1%) 1 (<1%) 2,654 22 

>2,100 - - 1 (<1%) 2,797 19 
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7.3.2 Outcome assessment 

7.3.2.1 Error model framework 

In the error model formula used in Chapter 5 (Figure 5-2, Equation 5.1), fixed 

values of bias and CV were applied to a sample of underlying “true” measurement 

values. Bias and CV were “fixed” in the sense that, within a given simulation run 

(e.g. n=10,000), the same values of bias and CV were applied across all of the 

sampled YFCCP FC1 and FC2 values. In the current analysis however, the 

impact of between-assay differences (i.e. bias), and variability around those 

differences (i.e. SD), can be explored using the bias and SD profiles outlined in 

section 7.3.1. With this data, individual bias and SD values can instead be applied 

to each of the sampled FC values within a given simulation run, by drawing the 

expected bias and SD values for each Testtrue value from the bias and SD profiles. 

A slightly modified error model was therefore used in this case, as outlined in 

Equation 7.1 below:  

𝑻𝒆𝒔𝒕𝒔𝒊𝒎𝒊
=  𝑻𝒆𝒔𝒕𝒕𝒓𝒖𝒆𝒊 

+  𝑵(𝑩𝒊𝒂𝒔𝒊, 𝑺𝑫𝒊)          (7.1) 

where Biasi represents the mean between-assay difference associated with the 

Testtrue value in the bias profile, and SDi represents the expected variation in 

between-assay difference at the same Testtrue point in the SD profile.  

Figure 7-1 summarises the modified error model simulation process used to 

model the impact of FC between-assay differences on the performance of the 

YFCCP. As in the analysis presented in Chapter 5, “true” FC values within this 

simulation were again sampled from the YFCCP dataset, which used the 2BU 

assay. The “true” FC values may again be sampled using the bootstrap method 

or the parametric method. However, as previously discussed in Chapter 5 

(section 5.5.2) and Chapter 6 (section 6.4.1), the bootstrap method provides a 

close fit to the YFCCP data, in contrast to the parametric method which produces 

consistently biased results. For the purposes of this anlaysis therefore, only the 

bootstrap method is used.  
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The process outlined in Figure 7-1 was run twice: once for each of the alternative 

FC assays assessed. Each analysis in this case produces one diagnostic 

sensitivity and specificity result, based on the specified bias and SD profile. 

Contour plots and acceptability regions are therefore not applicable in this 

assessment, and no smoothing algorithm – as used in the base case analyses 

presented in Chapter 5 – could be applied. The simulations in this case were 

therefore based on drawing a higher number of bootstrap samples (n=100,000). 

For each alternative FC assay assessed, the individual values of Biasi and SDi in 

the simulation were drawn from the bias and SD profiles reported in section 7.4.1. 

These values were simulated using the loess ‘predict’ function in R – a function 

which draws values from a fitted loess function, for each point along the observed 

measurement range. Note that values of bias and associated SD can only be 

derived in this way over the range of observed data: no predictions of bias or SD 

can be provided below the lowest reference 2BU measurement, or above the 

i. A sample of FC1true values is assigned; 

ii. For each FC1true value, the addition of measurement uncertainty is 

simulated according to the specified error model to generate FC1sim 

values:  

𝑭𝑪𝟏𝒔𝒊𝒎𝒊
=  𝑭𝑪𝟏𝒕𝒓𝒖𝒆𝒊 

+  𝑵(𝑩𝒊𝒂𝒔𝒊, 𝑺𝑫𝒊)         (7.2) 

iii. For all FC1sim values ≥100 μg/g, an associated sample of FC2true values is 

assigned; 

iv. For each FC2true value, the addition of measurement uncertainty is 

simulated according to the specified error model to generate FC2sim values: 

𝑭𝑪𝟐𝒔𝒊𝒎𝒊
=  𝑭𝑪𝟐𝒕𝒓𝒖𝒆𝒊 

+  𝑵(𝑩𝒊𝒂𝒔𝒊, 𝑺𝑫𝒊)        (7.3) 

v. The diagnostic accuracy of the YFCCP including additional measurement 

uncertainty is calculated by comparing diagnoses based on the FC1sim and 

FC2sim values (using the YFCCP diagnostic protocol) with patients’ clinical 

diagnoses; 

vi. Steps (i) to (v) are repeated for each assay’s bias and SD profiles 

Figure 7-1. Modified error model simulation approach: two-stage FC testing 

method 
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highest reference 2BU measurement. As such, within the error model simulation, 

Biasi and SDi values relating to FC1true or FC2true values below the lowest defined 

value, or above the highest defined value within the bias and SD profiles, were 

set equal to the lowest and highest observed values respectively (i.e. “nearest 

neighbour” method).   

In the base case analysis, all censored FC data – both within the EQA data and 

the YFCCP dataset – were replaced with their respective limit values. In the 

sensitivity analysis, all censored FC data were instead replaced with the 

associated median estimates reported in Table 7-2. In order to be consistent, the 

same substitutions were applied within the YFCCP bootstrap dataset as in the 

EQA data in this analysis: that is, left- and right-censored YFCCP FC data (“<10” 

and “>600”) were replaced with the associated EQA median estimates (8 and 915 

μg/g, respectively) within the sensitivity analysis. In both the base case and 

sensitivity anlayses, the simulation results were compared to the baseline 

diagnostic accuracy of the YFCCP, which was based on 2BU FC values (as 

reported in Chapter 5, section 5.4.2.1).  

7.3.2.2 Cost-effectiveness outcomes 

As well as evaluating the diagnostic accuracy of the two alternative FC assays, 

the simulation results were applied to the YFCCP arm of the FC cost-utility model 

described in Chapter 6 to determine the expected cost, QALY and NMB results 

for the YFCCP using the alternative assays. Note that it was assumed within this 

analysis that the cost of the alternative assays would be the same as the cost of 

the 2BU assay applied within the FC cost-utility model (£24)56 – i.e. only the 

diagnostic accuracy inputs within the FC cost-utility model were updated. As 

such, any resulting cost differences between the 2BU, 4BU and 2KO2 YFCCP 

strategies reported in section 7.4.2, are driven purely by changes in the diagnostic 

accuracy of the assays. 

The resulting NMB estimates were compared to the NMB results produced by the 

FC cost-utility model intervention and comparator strategies (as reported in 

                                            

56 YHEC derived the unit cost of FC from the NICE MIB 132 report, based on the cost 
quoted for standard care laboratory-based FC ELISA testing (£23.30, inflated by 
YHEC to 2017/18 prices).   
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section 6.2.1, Table 6-2). In particular, INMB values were calculated based on 

comparing the YFCCP using each of the alternative assays, against the YFCCP 

using the 2BU reference method (i.e. the original intervention arm of the FC cost-

utility model). These INMB values indicate the closeness of agreement between 

the YFCCP strategy when using the alternative assays vs. the 2BU assay, with a 

negative INMB indicating that the alternative assays are associated with worse 

NMB than the 2BU assay.    

7.3.3 Bias correction exercise 

It may be that, even if the clinical and economic performance of the YFCCP is 

negatively affected by adopting the 4BU or 2KO2 assays, this difference could be 

easily corrected by applying a simple adjustment to the measured FC values to 

offset the between-assay differences. For example, a simple FC adjustment may 

adequately restore the YFCCP performance in cases where a relatively constant 

bias is the main driver of between-assay differences. To explore this possibility, 

a simulation was run applying a series of alternative correction values to the 

measured FC1 and FC2 values (i.e. FC1sim and FC2sim) within the simulation.  

Two exercises were conducted. In the first, the addition of an absolute correction 

value was applied, ranging from -50 to +100 μg/g in 5 μg/g increments. Note that 

this analysis is equivalent to adjusting the diagnostic cut-off threshold for the 

alternative assays: for example, applying a uniform +10 μg/g adjustment to 

measured test values is equivalent to reducing the cut-off threshold by 10 μg/g 

(from 100 to 90 μg/g). In the second exercise, a proportional adjustment factor 

was instead applied. In this case, factors ranging from 0.5 (equivalent to a 50% 

reduction in the measured FC values) to 2.0 (equivalent to a uniform 100% 

increase in the measured FC values) were explored, in 0.05 increments.  

The results of this analysis were assessed in terms of the YFCCP diagnostic 

sensitivity and specificity achieved within each scenario. The objective was to 

determine if the YFCCP’s sensitivity and specificity could be made to match that 

of the baseline levels achieved when using the 2BU assay within the YFCCP 

dataset (94% sensitivity, 92% specificity). In each case the correction value 

achieving the highest combined sensitivity and specificity (i.e. highest diagnostic 

yield) was identified; and the correction value achieving the closest match to the 
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YFCCP [2BU] sensitivity and specificity values was also identified57. The latter 

values were applied within the FC cost-utility model to further determine the mean 

cost, QALYs and NMB associated with this particular point. As before, the 

simulations in this analysis were based on drawing 100,000 bootstrap samples.       

7.4 Results 

7.4.1 EQA data analysis: bias and SD profiles 

Figure 7-2 presents the bias profiles derived in the base case analysis (plot A) 

and sensitivity analysis (plot B). The vertical scatter of difference results 

distributed at fixed points along the measurement range illustrates the cluster of 

values reported for each EQA specimen. The dashed light green line illustrates 

the bias profile for the 4BU assay (i.e. the loess regression function fitted to the 

4BU assay between-assay difference results); and the dot-dashed purple line 

illustrates the bias profile for the 2KO2 assay. The 2BU reference assay has zero 

expected bias by definition, and the fitted loess function in this case therefore 

presents as a solid black line along the zero bias line.  

Figure 7-3 illustrates the corresponding SD profiles for each assay. Here one 

value of SD is calculated for each assay for each specimen. The 2BU reference 

assay is associated with non-zero SD values in this case, since a spread of 

individual 2BU specimen results informs each of the mean specimen values used 

as the reference measurements within the between-assay difference 

calculations.   

Note that, whilst the bias associated with the alternative FC assays appears to 

be marginal across a large portion of the measurement range, the scale of the 

plot is heavily skewed by large difference values occurring at both the lower and 

higher end of the measurement range. At the point of 100 μg/g, for example, in 

the base case analysis the 4BU assay is associated with an expected bias of -22 

μg/g compared to the 2BU assay, and the 2KO2 assay is associated with an 

                                            

57 The correction value achieving the “closest match” to the YFCCP [2BU] strategy was 
defined as the correction value associated with sensitivity (A) and specificity (B) 
values which had the lowest combined squared difference from the YFCCP [2BU] 
sensitivity (93.6%) and specificity (92.0%) i.e. those values for which ((93.6-A)2 + 
(92.0-B)2)1/2 was minimised.   
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expected bias of -39 μg/g. Although this magnitude of bias appears marginal in 

Figure 7-2, at this region of the measurement range (i.e. close to the FC 100 μg/g 

cut-off value) these values could nevertheless be influential in terms of patient 

outcomes.  

Appendix N.1 also provides density plots for the FC1sim and FC2sim values 

produced within the error model simulation from the 4BU and 2KO2 bias and SD 

profiles. These figures further illustrate the impact of bias and SD on the 

simulated FC values for each alternative assay in the analysis, compared to the 

bootstrapped YFCCP data.  
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Figure 7-2. FC EQA data: bias profiles  
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Figure 7-3. FC EQA data: SD profiles 
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7.4.2 Outcome assessment 

Table 7-3 presents the diagnostic accuracy results, and associated cost-

effectiveness results, for the 4BU and 2KO2 assays. For reference, the bottom 

half of this table also presents the diagnostic accuracy inputs and cost-

effectiveness outputs for each strategy evaluated in the original FC cost-utility 

model (as reported in Chapter 6, section 6.2.1). The YFCCP intervention arm of 

the FC cost-utility model used the baseline diagnostic accuracy results from the 

YFCCP dataset, and therefore represents the 2BU-relevant comparator in this 

analysis. The INMB results in this table present the INMB for each alternative 

assay YFCCP strategy vs. the YFCCP [2BU] comparator strategy. A negative 

INMB therefore indicates that the strategy in question is not cost-effective 

compared to the YFCCP [2BU] strategy.  

From the diagnostic accuracy results, it can be seen that, when using the 4BU 

assay the YFCCP is associated with notably lower sensitivity (80.2% vs. 93.8%) 

and marginally higher specificity (93.5% vs. 92.0%) compared to using the 2BU 

assay. The 2KO2 assay meanwhile is associated with lower sensitivity (65.5% 

vs. 93.8%) and specificity (82.8% vs. 92.0%) compared to the 2BU assay. For 

both of the alternative assays, there was marginal difference between the base 

case and sensitivity analysis results. Further discussion of these results – in 

particular the key determinants driving the different findings for each assay – is 

provided in the discussion (section 7.5.1).  

In terms of cost-effectiveness, when using the 4BU assay the YFCCP is 

associated with slightly lower mean costs and QALYs than the 2BU assay; with 

the associated NMB also being reduced (£15,567 vs. £15,581; INMB = -£14). 

However, when compared to the comparator strategies from in the original FC 

cost-utilty model, the YFCCP remained cost-effective when applying the 4BU 

assay sensitivity and specificity results, producing higher NMB than each of the 

fixed comparator strategies.  

When using the 2KO2 assay meanwhile, the YFCCP was associated with higher 

costs and lower QALYs than the 2BU assay, resulting in a lower NMB (£15,493 

vs. £15,581, INMB = -£88). In this case the YFCCP was no longer cost-effective 

compared to the two highest performing comparator strategies within the FC cost-

utility model [i.e. the ‘FC (NICE data)’ and the ‘No FC (NICE data)’ strategies].  
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Table 7-3. YFCCP RWE analysis: outcome results  

FC assay 

Diagnostic accuracy  Cost-effectiveness 

Sensitivity Specificity Cost QALY NMB 
INMB (£) vs. 

YFCCP [2BU]  

EQA analysis results 

YFCCP [4BU] base case 0.802 0.935 £207 0.7887 £15,567 -£14 

YFCCP [4BU] sensitivity analysis 0.812  0.935 £208 0.7889 £15,569 -£12 

YFCCP [2KO2] base case 0.655 0.828 £246 0.7869 £15,493 -£88 

YFCCP [2KO2] sensitivity analysis 0.650 0.831 £247 0.7870 £15,493 -£88 

FC cost-utility model diagnostic accuracy inputs and cost-effectiveness outputs (for reference) 

YFCCP [2BU] intervention  0.936 0.920 £212 0.7896 £15,581 - 

No FC (Tibble data) 0.350 0.730 £259 0.7836 £15,412 -£169 

No FC (NICE data) 1.000 0.790 £232 0.7879 £15,526 -£55 

FC testing (YFCCP, 50 μg/g cut-
off) 

0.960 0.600 £314 0.7836 £15,359 -£222 

FC testing (Tibble data) 0.900 0.800 £245 0.7860 £15,474 -£107 

FC testing (NICE data) 0.930 0.940 £197 0.7880 £15,562 -£19 
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7.4.3 Bias correction exercise 

Figure 7-4 illustrates the results of the bias correction exercise when applying an 

absolute correction value; and Figure 7-5 illustrates the results when applying a 

proportional correction factor. In both exercises, the results of the base case and 

sensitivity analyses were very similar: for simplicity therefore, only the base case 

results have been presented. In Figure 7-4, an absolute correction value of 0 

indicates that no adjustment was made to the measured FC values within the 

simulation; whilst a correction value of -50 μg/g corresponds to increasing the FC 

cut-off threshold from 100 to 150 μg/g; and a correction value of 100 μg/g 

corresponds to decreasing the cut-off threshold from 100 to 0 μg/g. In Figure 7-5 

meanwhile, a proportional adjustment factor of 1 indicates that no adjustment was 

applied; whilst an adjustment factor of 0.5 corresponds to halving the measured 

results, and a factor of 2 corresponds to doubling the measured FC results. 

The results of both exercises indicate that with the 4BU assay, significant gains 

in pathway sensitivity could be achieved if a positive correction value were 

applied. In particular, the highest diagnostic yield was achieved when: (i) applying 

an absolute correction value of 35 μg/g (which increased the YFCCP [4BU] 

sensitivity from 80% to 93%, and decreased specificity from 93% to 89%); or (ii) 

applying a proportional correction factor of 1.45 (which increased sensitivity to 

92%, and reduced specificity to 90%). In the proportional correction factor 

exercise, the point of highest diagnostic yield (sensitivity 93%, specificity 89%) 

was also the closest match to that of the YFCCP [2BU] reference strategy 

(sensitivity 94%, specificity 92%). In the absolute correction value exercise 

however, a correction value of 30 μg/g achieved the closest match, giving a 

sensitivity of 91% and specificity of 90%. When applying either a proportional 

correction factor of 1.45, or an absolute correction value of 30 μg/g, the same 

cost-effectiveness results were produced: the YFCCP [4BU] strategy costs were 

increased from £207 (in the base case) to £219 (applying the measurement 

correction factor), mean QALYs were increased from 0.7887 to 0.7893, and the 

expected NMB was marginally increased from £15,567 to £15,568.   

For the 2KO2 assay, it appears that the performance of the YFCCP when using 

this test remains substantially below that associated with the 2BU assay, 

regardless of what correction value is applied. Similar to the 4BU analysis, higher 
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pathway sensitivity can be achieved with the 2KO2 assay by applying a positive 

absolute or proportional correction value. In this case, the highest diagnostic yield 

and closest match to the YFCCP [2BU] strategy results was achieved when 

applying an absolute correction value of 20 μg/g, which increased sensitivity from 

66% to 74% and decreasing specificity from 83% to 77%; or a proportional 

correction value of 1.35, which increased sensitivity to 75% and reduced 

specificity to 75%. However, in both cases the sensitivity and specificity remained 

notably lower than that achieved in the YFCCP when using the 2BU assay. When 

running these results through the YFCCP arm of the FC cost-utility model, the 

2KO2 pathway base case mean cost (£246) was increased to £268 (20 μg/g 

absolute correction) or £274 (1.35 proportional correction); the pathway mean 

QALYs (0.7869) was marginally increased to 0.7870 (both correction values); and 

the pathway NMB (£15,493) was decreased to £15,473 (20 μg/g absolute 

correction value) or £15,467 (1.35 proportional correction factor). The reduced 

specificity in this case therefore results in worsened, rather than improved, cost-

effectiveness.  
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Figure 7-4. RWE analysis: plot of absolute adjustment value vs. diagnostic 
accuracy for 4BU and 2KO2 FC assays 

 

Figure 7-5. RWE analysis: plot of proportional adjustment factor vs. 
diagnostic accuracy for 4BU and 2KO2 FC assays 
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7.5 Discussion 

7.5.1 Outcome assessment 

The objective of this analysis was to explore how RWE may be used within the 

error model simulation framework presented in the previous case study chapters. 

For this analysis, RWE was available in the form of EQA reports produced from 

the UK NEQAS EQA scheme for FC. This data – which included individual test 

results for a range of assays – enabled an evaluation of the impact of between-

assay differences on clinical and health-economic outcomes. In particular the 

individual-level nature of the EQA data enabled bias and SD profiles to be utilised 

within an error model simulation, to capture the impact of variable between-assay 

differences across the FC measurement range.   

For the 4BU assay, the results indicate that if used in the YFCCP, this assay 

would produce notably worse sensitivity (80% vs. 94%) and slightly higher 

specificity (94% vs. 92%) compared to the same pathway using the 2BU 

reference assay (Table 7-3). In terms of cost-effectiveness, the higher pathway 

specificity achieved with the 4BU assay resulted in lower mean costs compared 

to the 2BU assay (£207 vs £212); whilst the lower sensitivity in this case resulted 

in reduced mean QALYs (0.7887 vs. 0.7896) (Table 7-3). The overall impact on 

the cost-effectiveness of the YFCCP was marginal: although a slightly lower 

mean NMB was achieved with the 4BU assay compared to the 2BU assay 

(£15,567 vs. £15,581), the YFCCP [4BU] strategy nevertheless remained cost-

effective when compared to all comparators included in the FC cost-utility model 

(Table 7-3). In this case therefore, whilst a drop in sensitivity was observed with 

the 4BU assay, the cost-effectiveness of the YFCCP was maintained thanks to 

the YFCCP’s robustness to increases in measurement uncertainty (as 

demonstrated in Chapter 6).  

For the 2KO2 assay, the results indicate that if used in the YFCCP, this assay 

would produce substantially worse sensitivity (66% vs. 94%) and specificity (83% 

vs. 92%), compared to the same pathway using the 2BU reference assay (Table 

7-3). This results in higher mean costs for the YFCCP compared to using the 2BU 

assay (£246 vs. £212), as well as lower QALYs (0.7869 vs. 0.7896) and lower 

NMB (£15,493 vs. £15,581) (Table 7-3). The reduced NMB in this case leads to 
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the YFCCP no longer being cost-effective when compared to the two highest 

performing comparator strategies included in the FC cost-utility analysis (Table 

7-3). For the 2KO2 assay therefore, the drop in diagnostic accuracy associated 

with this assay was sufficient to render the YFCCP no longer uniformly cost-

effective.   

To understand the different results obtained for the 4BU and 2KO2 assays 

outlined above, a closer inspection of the associated bias and SD profiles is 

required (Figure 7-2 and Figure 7-3). For the 4BU assay, a negative mean bias 

was obtained at the lowest reference measurement point of 24 μg/g (bias= -8 

μg/g), with a peak in negative bias at 380 μg/g (bias = -38 μg/g). Positive bias did 

not occur with this assay until a reference measurement of 579 μg/g was reached, 

after which a steep rise in positive bias occurred. The consistent negative bias 

observed below 579 μg/g, together with moderate SD over the same region, 

means that FC1sim and FC2sim values within the error model simulation tended to 

be under-estimated compared to the 2BU assay, for both the IBD and IBS 

populations. This results in decreased sensitivity (due to IBD patients being 

incorrectly pulled under the 100 μg/g cut-off threshold) and increased specificity 

(due to IBS patients being correctly pulled under the cut-off threshold).  

For the 2KO2 assay, the bias profile exhibited a small positive bias at the lowest 

reference measurement point of 24 μg/g (bias= 15 μg/g), which gradually reduced 

to zero bias at a reference measurement of 44 μg/g (Figure 7-2). Negative bias 

in this case reached its peak at 359 μg/g (bias = -135 μg/g), before returning to a 

positive bias at 743 μg/g and rapidly increasing thereafter. The positive bias 

observed with this assay at the lower end of the measurement range leads to test 

values within the IBS population, but not the IBD population, being pushed above 

the test cut-off threshold (100 μg/g). This differential impact occurs for two 

reasons. First, it is almost exclusively IBS patients who occupy the lower region 

of the measurement range within the YFCCP dataset (see Chapter 5, Figure 5-9). 

Second, a corresponding peak in SD at the lower measurement range with the 

2KO2 assay means that the bias applied within the error model simulation was 

sufficient to push some low FC1true and FC2true values above the 100 μg/g YFCCP 

cut-off threshold (Figure 7-3). As such, the 2KO2 bias profile has a negative 
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impact on both the sensitivity and specificity of the YFCCP, leading to reduced 

cost-effectiveness.   

With regards to the 2KO2 findings, the positive bias and heightened variation 

observed at the lower measurement range for this assay appears to be driven by 

two disproportionately high FC measurements in this region. At a reference 

measurement of 31 μg/g, one laboratory returned a 2KO2 value of 1,751 μg/g 

(producing a between-assay difference of 1,720 μg/g); and at a reference 

measurement of 34 μg/g one laboratory returned a 2KO2 value of 3,068 μg/g 

(producing a between-assay difference of 3,034 μg/g) (Figure 7-2). These two 

extreme values increased the average bias and SD associated with the given 

samples (Figure 7-2 and Figure 7-3). It is unknown if these extreme values were 

a result of between-assay differences (and therefore have appropriately informed 

the 2KO2 bias and SD profiles), or if the error in these cases relates to pre-

analytical and/or post-analytical factors (such as a technical misreporting of the 

data). If it could be shown that the extreme values were a result of reporting error, 

then it may be argued that these values should be treated as outliers and 

removed from the analysis. Whilst this question cannot be answered with the data 

at hand, it is of interest to explore how influential these extreme values were in 

the analysis.  

Appendix N.2 presents the results of a post-hoc sensitivity analysis in which the 

two extreme 2KO2 values discussed above were removed from the analysis. In 

brief, removal of these values results in an important shift in the bias and SD 

profiles: the positive expected bias previously observed at the lower end of the 

measurement range for 2KO2 was no longer maintained, with negative bias 

instead occurring from the lowest reference measurement up to 742 μg/g; and at 

the same time, the large SD previously observed at the lower measurement range 

for 2KO2 was notably attenuated. The combined effect of these changes is that 

the FC measurements are more consistently under-estimated in the simulation 

analysis, resulting in reduced YFCCP sensitivity (from 66% in the primary 2KO2 

analysis to 62% in the post-hoc sensitivity analysis) and increased specificity 

(from 83% to 96%). This leads to reduced costs and increased QALYs for the 

YFCCP [2KO2] strategy, resulting in an increase in NMB (from £15,493 to 

£15,551). In this scenario the YFCCP [2KO2] strategy is cost-effective against all 
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but the highest performing comparator in the NICE FC cost-utility model (i.e. the 

‘FC testing (NICE data)’ comparator). Based on these results, it is clear that the 

two extreme values in this case are having a disproportionate effect on the results 

for this assay. Nevertheless, the reliability of the two extreme values explored in 

this analysis cannot be ascertained based on the available data. If the two 

extreme values could be confirmed as being valid, then the base case analysis 

should be applied.      

Two methods for dealing with censored data were explored in this analysis. In 

the base case, censored data were replaced with their associated limit values (as 

in the base case analyses presented in Chapter 5 and Chapter 6); whilst in a 

sensitivity analysis, all censored data (both in the YFCCP bootstrap dataset and 

in the EQA data) were alternatively replaced with median estimates derived from 

the EQA data (Table 7-2). A key motivation for running this sensitivity analysis 

was to assess whether the relatively low upper limit of the 2BU assay used within 

the YFCCP dataset (600 μg/g) could have introduced bias into the analysis. Such 

bias may be expected, for example, since higher numerical and semi-quantitative 

values achieved with the alternative assays (both of which tended to achieve 

higher upper limits than the 2BU assay) would be penalised with higher bias and 

SD values in the analysis, due to their between-assay differences being 

calculated against 2BU values truncated at 600 μg/g. Based on the results 

however, there was little difference between the base case and sensitivity 

analyses. This indicates that overestimating between-assay differences within FC 

values at the higher end of the measurement range had little impact on the 

simulation results. It should be noted, however, that the median estimates applied 

within this sensitivity analysis are highly uncertain, since they were based on 

pooling data across different assays and specimens. Ideally one would need to 

derive such estimates based on assay- and population-specific data in order to 

ascertain reliable results. 

7.5.2 Bias correction exercise 

The results of the outcome assessment discussed above illustrate that switching 

to an alternative FC assay could have a negative impact on both the diagnostic 

accuracy and cost-effectiveness of the YFCCP. A bias correction exercise was 

undertaken to explore if this drop in performance could be offset via a simple 
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measurement correction. Two exercises were conducted: in the first, a fixed 

absolute correction value was applied to all measured FC values within the 

simulation (ranging from -50 to +100 μg/g); and in the second, a proportional 

correction factor was applied (ranging from 0.5 to 2.0).  

For the 4BU assay, the results of the bias correction exercise indicate that the 

diagnostic accuracy of the YFCCP could be restored to a similar level as achieved 

when using the 2BU assay. The closest diagnostic accuracy was obtained by 

applying a fixed absolute correction value of 30 μg/g, or a proportional correction 

factor of 1.45 (i.e. 45% increase). Both of these correction values caused the 

YFCCP [4BU] sensitivity to increase from ~80% to ~91%, with a corresponding 

drop in specificity from ~93% to ~90%. Recall that for the 4BU assay, the bias 

profile exhibited a consistently negative bias up to a moderate region of the 

measurement range, with an expected bias of -8 μg/g at the lowest reference 

measurement point (24 μg/g), increasing to -22 μg/g bias at 100 μg/g, and 

peaking at -38 μg/g bias at a reference measurement of 380 μg/g. As such, whilst 

the negative bias was variable in magnitude, it was consistent enough to be 

adequately offset by a fixed correction value. Although high positive bias values 

were observed at the upper end of the measurement range, this appears to be of 

little importance in terms of affecting the pathway diagnostic accuracy.  

For the 2KO2 assay, the results of the bias correction exercise indicate that the 

diagnostic accuracy of the YFCCP cannot be straightforwardly corrected in the 

same way as the 4BU assay. In this case, the optimal diagnostic yield was 

achieved when: (i) applying a positive absolute correction value of 20 μg/g, which 

increased the YFCCP [2KO2] sensitivity from 66% to 74% but also reduced the 

specificity from 83% to 77%; or (ii) applying a proportional correction value of 

1.35, which increased sensitivity to 75% and reduced specificity to 75%. For the 

2KO2 assay, the inability to restore diagnostic accuracy lies in the inconsistency 

of bias over the lower region of the measurement range i.e. the fact that positive 

bias and high SD occurred at the lower end of the measurement range (below 44 

μg/g), followed by negative bias up to 359 μg/g. This inconsistency in direction 

and magnitude of error in regions close to the test cut-off threshold means that 

the between-assay differences can no longer be easily adjusted using a fixed 

absolute or proportional correction factor.  
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As outlined in section 7.5.1, the results for the 2KO2 assay appear to be driven 

by two extreme values at the lower end of the measurement range. As well as re-

running the outcome assessment removing these two values, the bias correction 

exercise was also repeated for the post-hoc sensitivity analysis (see Appendix 

N.2). Recall that in the base case analysis, the YFCCP [2KO2] strategy achieved 

a sensitivity of 66% and a specificity of 83%, and no correction value was able to 

achieve sensitivity and specificity values both above 80%. Repeating this 

assessment in the post-hoc sensitivity analysis (i.e. removing the two extreme 

values), a maximum diagnostic yield was obtained when applying: (i) a fixed 

absolute correction value of 60 μg/g, which achieved 83% sensitivity and 87% 

specificity; or (ii) a proportional correction factor of 2.75, which achieved 85% 

sensitivity and 86% specificity. The shift to a more consistent bias profile and less 

volatile SD profile for 2KO2 in this sensitivity analysis therefore resulted in more 

favourable results within the correction exercise. Nevertheless, in contrast to the 

4BU assay, the performance levels for 2KO2 in this case remained sub-optimal 

compared to that achieved with the 2BU assay (94% sensitivity, 92% specificity). 

This is due to the fact that, compared to the 4BU assay, the 2KO2 maintained 

higher magnitudes of negative bias and SD58 across the majority of the lower 

measurement region, even after removal of the two suspected outliers.  

The bias correction exercise results presented herein indicate that, where 

between-assay differences have been confirmed to impact on clinical and/or 

health-economic outcomes, an effective approach to restoring expected 

outcomes may be to apply a simple measurement adjustment – at least in cases 

where consistent bias is the key driver of between-assay differences (particularly 

around the cut-off threshold). An alternative but equivalent approach, in this 

scenario, is to apply assay-specific diagnostic cut-off thresholds. Indeed, several 

authors have previously suggested such an approach for FC assays, given 

documented evidence on between-assay biases in this context (see section 

4.3.4.2). In this case study, for example, for the 4BU assay the correction value 

                                            

58 For example, at a reference measurement of 100 μg/g, the 4BU assay was associated 

with an expected bias of -22 μg/g (SD = 16 μg/g), whilst the 2KO2 assay (excluding 
the two extreme values) was associated with an expected bias of -47 μg/g (SD = 34 
μg/g).  
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of +30 μg/g (which restored diagnostic accuracy) implies an assay-specific cut-

off threshold of 70 μg/g (i.e. 100 - 30). This approach is similar to using health 

economic analysis to optimise diagnostic thresholds; but in this case patient test 

measurements available for one assay have been combined with data on 

between-assay measurement differences, to enable threshold optimisation for 

the additional assays (with available comparative measurement performance 

data). This approach may be useful, therefore, in scenarios where patient test 

measurements are not available for all assays, but comparative measurement 

performance data is available. The question remains as to what could be done in 

practice to reconcile complex between-assay differences, such as that observed 

with the 2KO2 assay. If we accept the base case results for the 2KO2 assay, then 

simply altering the cut-off threshold in this case does not meaningfully improve 

the YFCCP diagnostic accuracy or cost-effectiveness. It may be that more 

sophisticated methods of measurement adjustment could be applied to 

counteract inconsistent and/or higher magnitudes of between-assay bias; 

however offsetting the impact of high variability in bias (i.e. SD) is likely to be 

challenging – if not impossible. Where the volatility of an assay’s performance 

has been confirmed, it would clearly be preferable, where possible, to suspend 

use of such an assay in favour of a higher performing, more consistent procedure. 

7.5.3 Limitations 

The analysis conducted in this chapter applied a modified version of the error 

model to the YFCCP dataset, using the bootstrap sampling method. Since this 

analysis draws on the YFCCP dataset, the same limitations as originally 

discussed in Chapter 5 are applicable here (see section 5.5.3).  

Additional limitations in this case relate to the RWE used to inform the 

assessment – i.e. assay measurement performance data extracted from 11 

NEQAS EQA reports for FC. This is high-order measurement data collected 

under reproducibility conditions – as such, this data captures variability resulting 

from assay-specific factors, within-laboratory factors, and between-laboratory 

factors. An advantage of using this data, therefore, is that the results should 

reflect how different assays would be expected to perform in practice across the 

NHS (i.e. incorporating all of the factors of measurement uncertainty listed 

above). There are two key limitations with this data however. The first relates to 
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what extent the EQA samples may be considered to be representative of patient 

samples. Commutability of EQA samples – that is, that they should behave in the 

same way as patient samples do in routine practice – is a desired requirement 

for any EQA scheme, and current EQA guidelines stipulate that a clear statement 

of commutability (whether or not this is achieved, and how) should be provided 

alongside EQA reports (286). No such statements, however, are currently 

included in the NEQAS reports for FC (see Appendix M). The only sample 

information provided in the EQA reports used in this analysis was that the FC 

EQA samples consisted of ‘mixed patient samples’. It is unclear if these samples 

could be reasonably expected to exhibit commutability – as such, it is not known 

if the assay differences observed when running these samples in the EQA 

scheme will accurately reflect assay differences that would occur when analysing 

individual patients’ samples (i.e. non-mixed samples). The second limitation 

concerns the fact that based on this data, one cannot identify the root causes of 

observed assay differences. For example, it may be that bias observed between 

the 4BU and 2BU assays was actually driven by variation in pre-analytical or 

analytical factors, such as the sample extraction method. Without additional data 

on the specific pre-analytical and analytical processes applied at each testing 

laboratory, no definitive conclusions can be drawn regarding the root causes of 

observed measurement differences.  

A further limitation with the EQA data in this case relates to the fact that a range 

of lower and upper measurement limits were used across assays and 

laboratories. This introduces censored data into the analysis, which may have 

biased the study findings. A sensitivity analysis was conducted to explore the 

potential impact of this censoring, which indicated that the censored data were 

not expected to have biased the study results in this case. Nevertheless, this 

sensitivity analysis was based on applying quantitative estimates for censored 

data calculated by pooling values from across different assays and specimens. 

Future prospective studies in this area could explore more robust methods for 

dealing with censored data.  

A final limitation in this analysis concerns the fact that only one source of RWE – 

national EQA data – was explored. It is expected that this type of data would not 

be routinely available for HTA analyses (although it should be noted that the EQA 
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scheme for FC was already underway when NICE originally assessed the test 

back in 2013). Future studies could therefore explore the utility of other sources 

of RWE, such as published laboratory studies, manufacturer data, laboratory 

databases and laboratory surveys. It may be that measurement uncertainty 

profiles could also be derived from these alternative RWE sources, enabling a 

similar analysis to be conducted as presented in this chapter. In addition, the 

ability of RWE to address other research questions also warrants further 

investigation.  

7.6 Summary 

 This chapter has illustrated how RWE in the form of EQA measurement 

performance data may be used to evaluate the impact of between-assay 

differences on clinical and health-economic outcomes. These results 

support hypothesis E of this thesis: that methods from the broader 

literature may be applied or adapted to allow RWE (relating to test 

measurement performance data) to be utilised within outcome-based 

assessments. 

 Using a modified version of the error model, data on between-assay bias 

and variability was captured by drawing on bias and SD profiles derived 

from the EQA data. The resulting diagnostic accuracy estimates were 

extended to cost-effectiveness outcomes using the FC cost-utility model.  

 The results showed that between-assay differences can negatively impact 

on downstream outcomes. In cases where between-assay differences are 

driven by a consistent bias component, a pathway’s performance may be 

effectively restored by shifting the assay cut-off threshold.  

The final chapter of this thesis, Chapter 8, provides a summary and discussion 

of the thesis, outlining key findings and limitations of the research as well as 

possible areas for future research. 
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Chapter 8  

Discussion 

8.1 Chapter outline 

The aim of this thesis was to develop a framework for assessing the impact of 

test measurement uncertainty on clinical and health-economic outcomes. To this 

end, two reviews were conducted to evaluate the methodological landscape in 

this area: the first review focused on methods applied specifically within HTAs 

(Chapter 2), while the second review aimed to capture methods used in the wider 

literature (Chapter 3). A subsequent case study was conducted to develop key 

methods identified from the reviews (Chapter 4 to Chapter 7), focusing on the 

error model simulation approach and decision analytic modelling.   

This final chapter of this thesis provides a discussion of the research findings. 

The main findings from each chapter are first summarised (section 8.2 below), 

followed by a discussion of the implications of the findings and recommendations 

for future research (section 8.3). The thesis then closes with a final section 

summarising the key messages of the research (section 8.4).  

8.2 Research findings 

Chapter 1 of this thesis highlighted an important inconsistency in the research 

pathway for tests: that is, that although test measurement uncertainty is a key 

consideration within the test evaluation pathway, it is rarely assessed within 

downstream test evaluations – such as HTAs – which direct test adoption 

decisions. In particular, the argument was made that the failure to quantify the 

impact of test measurement uncertainty on outcomes within the evaluation 

process may lead to inefficient reimbursement and funding allocation decisions.  

The aim of the systematic review presented in Chapter 2 was to identify if and 

how test measurement uncertainty has been assessed within HTAs to date (1). 

The findings of this review verified the introductory hypothesis that measurement 

uncertainty has not, thus far, been routinely assessed within this context. In the 

minority of identified HTAs that did include an assessment of measurement 

uncertainty (19%; 20/107), most consisted of a narrative review of the 

measurement literature in which the potential influence of measurement 
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uncertainty on outcomes was not considered. Similarly, of five identified studies 

which included measurement uncertainty within the HTA economic model, most 

simply incorporated a baseline level of measurement uncertainty. Only one study 

– a model-based assessment – attempted to formally quantify the impact of 

measurement uncertainty on outcomes (in this case, evaluating cost-

effectiveness). Overall therefore, this review confirmed that there has been little 

consideration of measurement uncertainty – in particular the impact of 

measurement uncertainty on outcomes – within the HTA context. 

Based on the limited applications identified in Chapter 2, a methodology review 

was conducted in Chapter 3 (2). This review aimed to identify studies from the 

wider literature which had used an indirect method to assess the impact of 

measurement uncertainty on clinical or economic outcomes. Based on 82 

identified studies, a three-step analytical framework underpinning the various 

methods identified was apparent: (1) calculation of “true” test values; (2) 

calculation of measured test values (i.e. incorporating measurement uncertainty); 

and (3) calculation of the impact of differences between (1) and (2) on the 

evaluated outcome(s). Within this framework, the error model simulation 

approach was indicated as an efficient method for exploring the impact of 

measurement uncertainty on diagnostic accuracy. In addition, decision analytic 

modelling was highlighted as a flexible tool for linking diagnostic accuracy outputs 

to downstream clinical and health-economic outcomes; and contour plots were 

identified as a useful visual aid for presenting and analysing simulation results. 

Based on these factors, and the ability of these methods to be straightforwardly 

integrated into existing HTA methodology (e.g. model-based economic 

evaluation), these methods were selected for further investigation.  

In order to explore and develop the methods highlighted above, a case study 

assessment was undertaken (Chapter 4 to Chapter 7). Chapter 4 provided a 

general introduction to the case study. The role of the case study test, FC, as a 

diagnostic tool for IBD was first outlined, and two primary care pathways – the 

NICE FC pathway and the YFCCP – were introduced. Motivating factors for 

choosing FC as the case study test were also highlighted, including: known 

concerns with the test’s measurement performance; a lack of defined APS in this 

area; and the availability of clinical, economic and EQA data upon which to base 
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the case study analysis. In the following analysis chapters, the impact of 

measurement uncertainty on the diagnostic accuracy, clinical utility and cost-

effectiveness of the two FC pathways was evaluated using the previously 

highlighted methods.   

Chapter 5 presented the first part of the case study analysis. Using the error 

model simulation approach identified in Chapter 3, the impact of increasing FC 

measurement uncertainty on the diagnostic accuracy of the NICE FC pathway, 

and the YFCCP, was assessed. The simulation results were presented using 

contour plots, which provided a useful visual aid to examine the robustness of 

each pathway’s diagnostic accuracy to bias and imprecision. These plots were 

further utilised to illustrate a novel concept of acceptable regions of bias and 

imprecision. The potential for acceptable regions to inform outcome-based APS 

was discussed, and key challenges were identified: in particular, baseline 

measurement uncertainty within “true” test values complicates the interpretation 

of acceptable regions; and the need to set a minimum diagnostic accuracy 

requirement relies on subjective judgement. Further limitations, relating to the 

data underpinning the analysis, were also discussed.   

In Chapter 6, diagnostic accuracy results from Chapter 5 were embedded into 

an existing economic model to extend the evaluation to clinical utility (QALY) and 

cost-effectiveness (NMB and INMB) outcomes. Acceptable performance was 

here alternatively defined as the cost-effective region – i.e. the region of the INMB 

contour plot maintaining INMB > £0. Whilst this approach avoids subjective 

judgement, cost-effective regions were found to set an inappropriately low 

benchmark for analytical performance in certain circumstances. The notion of 

optimal regions was therefore introduced, based on selecting a specified top 

percentile of INMB (or NMB) results. This method was found to be useful for 

setting hierarchical APS (by specifying a series of percentile values), and for 

quantifying the added benefit of imposing tighter APS (by comparing the INMB 

value of different optimal region boundaries).  

In the final analysis presented in Chapter 7, the framework presented in Chapter 

5 and Chapter 6 was extended to incorporate RWE data. In this case, EQA data 

was used to evaluate the impact of FC between-assay differences on clinical and 

health-economic outcomes for the YFCCP.  Using a modified version of the error 
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model (drawing on bias and SD profiles), this analysis illustrated how information 

on the variability of measurement uncertainty over a test’s measurement range 

may be captured within the simulation. The results showed that assay differences 

can negatively impact on outcomes, but that this impact may be effectively offset 

by shifting the test cut-off threshold – at least in cases where between-assay 

differences are driven by consistent bias component. This approach is similar to 

using health economic analysis to optimise diagnostic thresholds; but in this case 

patient test measurements available for one assay have been combined with data 

on between-assay measurement differences, to enable threshold optimisation for 

the additional assays (with available comparative measurement performance 

data). This approach may be useful, therefore, in scenarios where patient test 

measurements are not available for all assays, but comparative measurement 

performance data is available. 

8.3 Implications of findings and future research 

recommendations 

This thesis has outlined a framework for assessing the impact of measurement 

uncertainty on outcomes. Whilst this framework is of relevance and interest to the 

laboratory community (given the focus on outcome-based APS), the case study 

centred on an HTA-style evaluation in which an extended HTA perspective was 

adopted. This perspective includes: (i) the traditional HTA remit – focused on the 

assessment of clinical performance (diagnostic accuracy), utility and cost-

effectiveness; and (ii) evaluation of measurement uncertainty (historically 

confined to laboratory studies) – including assessment of the robustness of test 

outcomes to measurement uncertainty and the derivation of outcome-based 

APS. The aim of the extended HTA perspective is to bridge the gap between HTA 

and laboratory fields (as evidenced in Chapter 2), by establishing test 

measurement as a core component of HTAs.   

In this section, implications of the research findings and recommendations for 

future research are presented. Section 8.3.1 discusses implications relating to 

the HTA setting, in particular outlining recommendations for future HTA methods 

guidance on this topic. Section 8.3.2 then focuses on the topic of outcome-based 
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APS (which has implications for both HTA and laboratory contexts), highlighting 

key implementation barriers for consideration in future research.  

8.3.1 HTA methods guidance 

Appropriate consideration of measurement uncertainty within future HTAs 

requires HTA authorities to formally recognize this component of the test 

evaluation pathway, and to provide specific guidance on this topic. In particular, 

the development of HTA guidance in this area requires two key questions to be 

addressed: (1) when should measurement uncertainty be formally assessed 

within HTAs; and (2) how should HTA assessments of measurement uncertainty 

be conducted? These questions are considered below. 

8.3.1.1 When should measurement uncertainty be formally assessed 

within HTAs? 

This thesis has highlighted the crucial dependence between precise and true 

measurement on the one hand, and clinical and health-economic outcomes on 

the other. This relationship means that failing to appropriately assess 

measurement uncertainty, risks failing to appropriately assess outcomes. For the 

FC case study presented in this thesis, for example, inclusion of measurement 

uncertainty in the original HTA assessment for the NICE FC pathway would have 

highlighted the volatility of this pathway to positive bias, and could have thus 

triggered a recommendation for raising the test cut-off threshold, further research 

and/or tighter analytical monitoring procedures. For the YFCCP meanwhile, 

inclusion of measurement uncertainty in the FC cost-utility model would not have 

been expected to alter the test adoption decision, but rather would have provided 

further support for the adoption of the YFCCP over the NICE FC pathway. It 

should be noted that the limitations of this case study analysis (in particular the 

short and deterministic nature of the decision model) preclude the possibility of 

drawing definitive clinical conclusions with regards to the impact of measurement 

uncertainty comparative to other aspects of sampling uncertainty. Nevertheless, 

these findings clearly highlight that the impact of measurement uncertainty on 

outcomes needs to be assessed on a on a case-by-case basis – that is, unless a 

formal evaluation is undertaken, the impact of measurement uncertainty on 

outcomes cannot be known, and there can be no guarantee that a different 
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clinical decision wouldn’t be made were this additional information available. For 

this reason, it is herein recommended that assessment of measurement 

uncertainty should be considered a best-practice requirement for all HTAs in 

which a test or measurement device is evaluated. The remainder of this section 

therefore focuses on when specific types of assessment should be undertaken, 

and key factors influencing when these analyses should be considered a priority 

of the HTA.   

As outlined in Chapter 2, formal assessment of measurement uncertainty in HTAs 

may include pre-model assessments (e.g. systematic review, laboratory survey 

etc.) and/or model-based assessments (1). The primary utility of pre-model 

assessments lies in quantifying the level of measurement uncertainty associated 

with a given test, and identifying important pre-analytical and analytical factors 

expected to influence measurement uncertainty. These assessments may also 

include a broader analysis of measurement performance – for example 

considering aspects such as detection limits and selectivity (Appendix B.3). 

Model-based assessments, meanwhile, provide valuable information on the 

impact of measurement uncertainty on outcomes: this enables assessment of the 

robustness of outcomes to measurement uncertainty; estimation of real-world 

performance levels (taking into account expected increases in measurement 

uncertainty); and derivation of outcome-based APS.  

Whilst pre-model assessments have proved more common in HTAs to date (1), 

formal assessment of measurement uncertainty in this context should ideally 

include both a pre-model assessment (to review the measurement evidence 

base) and a model-based assessment (to evaluate the impact of measurement 

uncertainty on outcomes). Consider, for example, a “best case” scenario, in which 

a test is found to have minimal and well-controlled measurement uncertainty on 

the basis of a pre-model assessment (e.g. from the laboratory professional’s 

perspective). It does not follow that measurement uncertainty should not be a 

concern within the subsequent clinical and economic evaluation: depending on 

the distribution of patient test values around key decision thresholds, and the 

knock-on impact of test results within the clinical pathway, small deviations in 

measurement may absolutely have a significant impact on outcomes. Crucially, 

without a formal assessment, it is extremely difficult to predict this impact. In 
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addition, excluding the model-based component of the assessment further 

ignores the potential utility of this analysis to support the implementation and 

monitoring of tests in the post-adoption phase (i.e. via the identification of 

outcome-based APS). As such, it is recommended that formal assessment of 

measurement uncertainty within HTAs should endeavour to include both the pre-

model and model-based components.   

There are several factors relating to test evaluations which may warrant the 

formal assessment of measurement uncertainty to be considered a particular 

priority of the HTA. Three such factors are highlighted below.  

(i) The role of the test in the clinical pathway  

The role of a test in the clinical pathway dictates what knock-on effects the test is 

expected to have with respect to patient health outcomes and resource utilisation. 

As such, consideration of a test’s role is crucial to understanding when 

measurement uncertainty might be expected to have a serious impact on 

outcomes. If, for example, a slight change in the rate of false negative cases for 

a diagnostic test is associated with a significant risk of patient harm, then formal 

assessment of the impact of measurement uncertainty on outcomes (in addition 

to a pre-model review of the measurement evidence base) will be of particular 

importance. Equally, when changes to a test’s diagnostic accuracy are expected 

to result in a significant change in costs, then an impact assessment will similarly 

be of greater importance.  

(ii) The need for outcome-based APS  

The introduction to this thesis highlighted the fact that, based on current EFLM 

guidelines, most tests evaluated within the HTA context are expected to fall under 

Model 1 of the Milan criteria – i.e. requiring APS to be set based on an 

assessment of the impact of analytical performance on outcomes (30, 33). Given 

that the analysis of outcomes is the primary directive of HTAs, these studies are 

perfectly placed to help inform outcome-based APS and could thereby help to 

improve system quality, efficiency, and ultimately, patient safety. Formal 

assessment of measurement uncertainty – in particular using model-based 

approaches as illustrated in this thesis case study – can therefore provide added 

utility in this respect. Furthermore, there are particular cases where the need for 
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outcome-based APS may be heightened. For example, when outcomes are 

expected to be highly sensitive to slight changes in measurement uncertainty 

(see point (i) above), or when measurement uncertainty is expected to be variable 

during the post-adoption phase, then identification of outcome-based APS will be 

of particular importance. If there is potential for the analysis to inform the 

establishment and/or design of a test EQA scheme, then the assessment will 

provide additional utility. In these cases, formal assessment of measurement 

uncertainty within the HTA should be considered a priority. 

(iii) Multiple assay assessments  

If several assays (for the same measurand) are under assessment, then the 

evaluation of between-assay differences will be crucial. A pre-model assessment 

(e.g. literature review) should be conducted in these cases, to assess the 

equivalence of assays in terms of measurement (ideally via head-to-head 

comparison studies). If assays are found to be comparable, then equivalent 

clinical performance (e.g. diagnostic accuracy) may be assumed within the 

economic model; if not, then the impact of between-assay differences on 

outcomes should be determined. In particular, in scenarios where clinical 

performance data is not available for all of the considered assays, but where 

between-assay measurement performance data is available, then a similar 

approach to that undertaken in Chapter 7 could be explored to model the impact 

of between-assay discrepancies on outcomes.  

A final point to note here is that, for formal assessments of measurement 

uncertainty to be meaningfully undertaken in the HTA context, then greater 

interaction with laboratory professionals (and other relevant testing experts) is 

required, throughout the HTA process. For example, laboratory professionals can 

help provide a steer on which elements should be addressed in the pre-model 

assessment; relevant search terms to include in literature review strategies; 

primary evidence sources which may be available; and the need for outcome-

based APS. As well as informing the HTA research process, laboratory 

professionals should be established as a key stakeholder at the adoption-

decision point, to ensure that any evaluation of measurement uncertainty is 

appropriately considered at this stage. Only by instigating relevant measurement 
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experts within the HTA pipeline will appropriate research and test-adoption 

decisions be achieved.  

8.3.1.2 How should assessments of measurement uncertainty be 

conducted within HTAs? 

As previously highlighted, formal assessment of measurement uncertainty within 

HTAs may consist of: (1) pre-model assessments (to review the measurement 

evidence base); and/or (2) model-based assessments (to evaluate the impact of 

measurement uncertainty on outcomes). This section outlines recommendations 

for the conduct of each type of analysis – in particular highlighting outstanding 

issues for consideration in future research.  

8.3.1.2.1 Assessing the evidence base for measurement uncertainty 

The HTA systematic review reported in Chapter 2 identified several methods for 

reviewing the measurement evidence base, in the form of pre-model 

assessments. Across the identified studies, literature reviewing was found to be 

the most common approach with respect to pre-model assessments. Based on 

evaluation of the identified studies, however, several key aspects of the reported 

reviews were found to be lacking in methodological rigor. These included:  

(i) the design of search strategies including a measurement outcome filter;  

(ii) statistical methods for the quantitative synthesis of measurement 

uncertainty data; and  

(iii) the selection of tool(s) for the quality assessment of measurement 

literature.  

Whilst each of these aspects was highlighted as a potential issue based on the 

HTA review findings, it may be that relevant literature and/or guidance on these 

topics is available in the broader literature (i.e. non-HTA studies). Several tools 

relevant to point (iii) are available, for example, but have not yet been applied 

within the HTA context (113-115). The development of HTA-specific guidance on 

each of the above issues, therefore, may simply require a methodology review of 

the broader literature and/or consultation with relevant methodology experts. If a 

paucity of relevant guidance were to be identified in the wider literature, then 

further research on these topics may be required before formal guidance can be 

issued.  
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Other forms of pre-model assessment may also be useful for assessing the 

measurement evidence base. In situations where there is a paucity of published 

measurement data, for example, laboratory surveys and/or databases may 

provide useful information on a test’s measurement performance. Future 

qualitative research, such as consultation with laboratory professionals and test 

manufacturers, could provide further insight into when and how these alternative 

forms of pre-model assessments are likely to provide meaningful information.  

It should be noted that, in all of the HTA pre-model assessments identified in 

Chapter 2, data on test measurement performance was summarised 

independently from clinical performance data. An additional issue of relevance, 

however, concerns the assessment of measurement uncertainty within clinical 

studies used to estimate clinical performance. In the diagnostic context for 

example, checklists such as STARD and QUADAS-2 aim to assess the quality of 

diagnostic accuracy studies; however, neither of these tools address potential 

issues associated with measurement procedures applied within the clinical 

studies, which could bias or invalidate the clinical performance findings (107, 

287). A tool built for this specific purpose could help to inform when formal 

assessment of the impact of measurement uncertainty on outcomes is required, 

due to a lack of applicability of the clinical study findings to real-world testing 

scenarios.  

In a recent HTA (Hall et al., 2018; published after the thesis HTA systematic 

review was conducted), a checklist for assessing the quality of measurement 

procedures applied within clinical studies was developed, called the ‘Quality 

Assessment of Measurement Procedures (QAMPs) framework’ (288). In this 

study, ‘quality’ of measurement procedures was defined according to three 

features: bias (i.e. bias in the clinical performance findings resulting from 

measurement issues), reproducibility (i.e. reproducibility of the study with respect 

to measurement procedures) and applicability (i.e. the applicability of the clinical 

performance findings to real world practice, with respect to measurement 

procedures). The framework presents an initial list of measurement-related 

parameters (including pre-analytical and analytical factors and a range of 

measurement performance metrics), followed by four signalling questions (below) 

intended to help reviewers determine whether the risk of bias, irreproducibility 
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and inapplicability within an individual study should each be considered as ‘low’, 

‘high’ or ‘uncertain’:  

1) Were measurement procedures different between groups?  

2) Were measurement procedures described in enough detail to be 

repeated?  

3) Were measurement factors appropriately controlled for?  

4) Were measurement procedures applicable to the final clinical setting? 

To explore the potential utility of the QAMPs framework, the authors applied it to 

four studies reporting on the diagnostic accuracy of Nephrocheck® – a test to 

identify patients with acute kidney injury (AKI) in the critical care setting. These 

four studies were included within a meta-analysis of the Nephrocheck® test, 

conducted as part of the broader HTA study (in which several alternative tests for 

AKI were evaluated). Interestingly, all of the studies in this pilot were classified 

as having either ‘high’ or ‘unknown’ risk across the three quality features. In 

particular the authors reported that:  

“Application of this framework within the four Nephrocheck case 

studies identified several measurement parameters that present a high 

risk of irreproducibility, including a failure to exclude samples with 

known interferents, a lack of internal and external quality control and 

a complete lack of analytical measurement verification in all studies. It 

also highlighted several issues that might affect the clinical 

applicability of test results, including freeze–thawing of samples in the 

absence of validation data and against the recommendations of the 

manufacturer, potentially biasing clinical cut-off points and 

overestimating precision; use of a device in an unvalidated patient 

population (i.e. aged < 18 years); and reporting the median value of 

three measurements from different laboratories. Furthermore, it 

identified several issues that made assessment of the risk of bias 

uncertain.” (288) 

Based on their pilot analysis, the authors concluded that there were likely to be 

serious issues with the validity and applicability of the Nephrocheck® study 

findings. This study therefore illustrates how issues with measurement 

procedures applied within clinical studies can significantly affect the legitimacy of 

clinical performance estimates – a topic further highlighted in additional recent 

studies (289, 290). The availability of a quality assessment tool such as the 

QAMPs framework would therefore be useful for future HTAs, as a means of 
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determining the validity of clinical performance results, and identifying when 

further assessment of the impact of measurement on outcomes may be of 

particular importance within the HTA assessment (e.g. when the applicability of 

clinical study findings is found to be low). As of yet, however, the QAMPs 

framework has not undergone any form of comprehensive validation procedure, 

and the authors highlighted the need for input from the wider IVD community 

before adopting this tool in future research (288). There is clearly a need, 

therefore, for future studies to build on this work.  

8.3.1.2.2 Assessing the impact of measurement uncertainty on outcomes 

Error model simulation and the “two-step” linked-evidence approach  

In Chapter 3, various indirect methods for assessing the impact of measurement 

uncertainty on outcomes were identified, and a common three-step analytical 

framework was presented (see Figure 3-3). Within this framework, error model 

simulation and decision analytical modelling were identified as particularly useful 

methods within the context of HTA analysis and the derivation of outcome-based 

APS. These methods were therefore explored further in the thesis case study 

(Chapter 4 to Chapter 7).  

The error model simulation approach essentially provides a mechanism for 

linking test measurements to clinical performance outcomes. Decision modelling 

meanwhile – in particular using the linked-evidence approach – provides a means 

of linking clinical performance inputs to downstream clinical utility and cost-

effectiveness outcomes. Combination of these two methods therefore enables 

test measurements to be linked to end-stage outcomes. This overall process may 

be described as a “two-step” linked-evidence approach: the first link establishes 

the relationship between test measurements and clinically accuracy (via error 

model simulation), and the second link establishes the impact of test 

classifications on downstream outcomes (via decision modelling). Whilst in the 

case study presented in this thesis was limited to deterministic model outputs, 

this same general mechanism could be applied to probabilistic models also. Most 

importantly, in contrast to standard decision modelling techniques, this approach 

appropriately reflects the true course of testing strategies: that is, starting with 

test measurement as the first, crucial element of any test-directed pathway.   
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Within HTAs, decision analytic modelling is a well-established tool for assessing 

cost-effectiveness, and linked-evidence models are commonplace. The novel 

aspect in this context, therefore, is the error model simulation component, and 

the embedding of this analysis within decision analytic models. At its core, error 

model simulation depends on the ability to represent baseline test measurements 

using either empirical data or parametric distributions. In the diagnostic context, 

sampled measurements also need to be linked in some way to true clinical 

diagnoses. Future studies wanting to adopt the two-step linked-evidence 

approach must therefore first ascertain if and how the necessary data will be 

obtained. In most cases, this will ultimately depend on the approach taken to 

evaluating clinical performance within the HTA, as outlined below.  

Consider the case of diagnostic test assessments. Depending on data 

availability, there are four general approaches taken to the estimation of 

diagnostic accuracy within HTAs, with estimates being based either on: (i) clinical 

trial/study data, (ii) a single published paper, (iii) an IPD meta-analysis, or (iv) 

standard (aggregate-level) meta-analysis. The applicability of the error model 

simulation approach within each of these scenarios is discussed below. 

Ultimately, future studies intending to apply the error model approach should 

consider upfront the data requirements for such an assessment, to ensure 

feasibility of the analysis alongside the planned clinical performance assessment.   

(i) Clinical trial/study data  

When diagnostic accuracy is based on clinical trial or study data (i.e. an IPD 

dataset), the error model simulation approach may be applied using the same 

methods as demonstrated in the thesis case study. This includes both the 

parametric and bootstrap sampling methods, as well as direct simulation based 

on the raw empirical dataset, as presented in Chapter 5.   

(ii) A single published paper  

When diagnostic accuracy is based on findings from a single study, error model 

simulation may be undertaken if: (i) the underlying IPD can be obtained from the 

study authors, or (ii) the test distributional parameters (i.e. for the diseased and 

non-diseased populations) have been reported, or can be obtained from the study 

authors. In the latter case, baseline “true” test values within the error model 
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simulation may be sampled from the assigned parametric distribution(s). Note, 

however, that the validity of this approach depends essentially on the validity of 

the assumed parametric distribution(s) – ideally therefore, parametric 

distributions should be used only if appropriate justification for the chosen 

parameterisations can be obtained.    

(iii) Meta-analysis of IPD data  

When diagnostic accuracy is based on a meta-analysis of IPD data, the error 

model can be applied either to the individual study IPD datasets, or using 

parametric distributions derived from the evidence synthesis. For example, the 

meta-analysis method outlined by Steinhauser and colleagues (2016) is based 

on the concept of estimating the underlying parametric distribution functions of 

the test for the diseased and non-diseased populations, across the IPD datasets 

(291). In theory, the error model parametric sampling method could be applied in 

this case, by using the pooled distributional parameters estimated within the 

meta-analysis to define parametric distributions for the “true” diseased and non-

diseased populations within the simulation. Future studies could explore the 

feasibility of this approach.   

(iv) Meta-analysis of aggregate-level data  

When diagnostic accuracy is based on a meta-analysis of aggregate-level data, 

the error model approach cannot be applied, unless there is some mechanism by 

which the underlying ‘pooled’ distributions of non-diseased and diseased 

populations may be estimated. For example, if individual studies report 

distributional parameters (or this data can be obtained from the study authors), 

then it may be possible to synthesise this data. In this case, the results of such 

an analysis would need to be calibrated against the results of the diagnostic 

accuracy meta-analysis (i.e. to ensure the two sets of results are compatible). As 

for point (iii) above, future studies in this area are needed to explore the feasibility 

and validity of this approach. 

In addition to the data requirements highlighted above, future studies intending 

to use the error model simulation approach should address the particular method 

considerations highlighted in Chapter 5. In particular, two key limitations were 

emphasised in the case study: first, the issue of baseline measurement 



 
 

269 

 

uncertainty was identified as a potential confounding factor (this topic is 

discussed further in section 8.3.2); and second, missing test data were found to 

pose a problem in the context of evaluating the YFCCP repeat-test strategy. 

Ideally, formal assessments of measurement uncertainty should be planned prior 

to the collection of measurement data, to ensure that missing data issues can be 

avoided. For example in the thesis case study, missing data could have been 

avoided by making sure repeated tests were conducted in all patients, or a 

relevant random subset of patients.  

A final point to note here is that, since this thesis focused on the diagnostic 

setting, further studies are needed to explore the application of these methods to 

alternative testing scenarios – e.g. monitoring, predictive and prognostic testing 

pathways. In the monitoring context, for example, it was previously highlighted in 

Chapter 5 that rather than basing repeated test values on empirical sample data 

(as in the thesis case study), these values could instead be simulated using data 

on individual patients’ baseline “true” test values, their trajectory of disease (e.g. 

an annual rate of progression), and biological variation (see section 5.4.1.2). 

Future studies could explore whether other amendments and/or variations of the 

presented methods are possible (or required) for each of the alternative testing 

scenarios.  

A note on alternative approaches 

This thesis has focused on application of the error model simulation approach 

within a linked-evidence modelling framework. It is possible that alternative – if 

not entirely different – approaches, could also be used for the same purposes. 

For example: risk categorisations produced from error grid analyses (as 

described in Chapter 3, section 3.3.3) could be applied within the decision 

modelling framework, in a similar way as illustrated in this thesis using clinical 

performance estimates; or alternatively, the regression-based approach (also 

described in section 3.3.3) could be applied to trial-based cost-effectiveness 

analyses, to explore the impact of hypothetical measurement error on regression-

based cost and utility estimates. Future studies could explore the potential utility 

of these approaches, and others, for evaluating the impact of measurement 

uncertainty on outcomes.    
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Overall, this section has highlighted the need for formal assessment of 

measurement uncertainty within future HTAs. Where possible this assessment 

should include both pre-model and model-based analyses, to review the 

measurement evidence base and quantify the impact of measurement 

uncertainty on outcomes. It is acknowledged that the requirement for formal 

assessment of measurement uncertainty places an added burden on an already 

under-resourced system (292). Nevertheless, this is a necessary demand if HTAs 

are to retain their position as the gold standard method for technology evaluation, 

and to ensure that estimated benefits to patient health are realised and 

maintained in real-world clinical practice.   

8.3.2 Outcome-based APS  

This thesis has highlighted the potential for HTAs to play a greater role in 

informing laboratory and testing practices in the post-adoption phase – most 

notably via the derivation of outcome-based APS. Three novel classifications of 

outcome-based APS were presented within the case study analysis: (i) 

acceptable regions of bias and imprecision, based on an assumed minimum 

requirement for diagnostic accuracy (Chapter 5); (ii) cost-effective regions of bias 

and imprecision, based on INMB calculated against a chosen comparator 

strategy (Chapter 6); and (iii) optimal regions of bias and imprecision, based on 

selecting INMB (or NMB) results falling above a specified percentile value 

(Chapter 6). For each of these classifications, there are several important 

implementation issues to consider.  

The first concern relates to the issue of baseline measurement uncertainty. As 

previously discussed in Chapter 5 (section 5.5.3), if “true” test measurements 

applied within the error model simulation are in fact subject to baseline 

measurement uncertainty, then the simulation results must be interpreted as 

indicative of the change in diagnostic accuracy resulting from additional bias and 

imprecision, on top of the baseline uncertainty. This means that in the case study 

analysis, bias and imprecision boundaries relating to each of the presented APS 

regions actually represent levels of bias and imprecision which can be tolerated 

on top of that contained within the YFCCP data itself. The existence of baseline 

measurement uncertainty therefore confounds direct interpretation of the error 
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model simulation results, and presents a potential barrier to the wider 

implementation of APS derived in this way.   

Two possible means of dealing with this issue were previously discussed: (i) 

attempting to quantify the baseline measurement uncertainty; and (ii) “stripping” 

baseline measurement uncertainty via statistical adjustment of parametric 

distributions (see section 5.5.3). Both of these methods, however, require reliable 

information on the baseline level of measurement uncertainty, and the statistical 

adjustment approach is further limited to simulations based on parametric 

sampling. Clearly, the best remedy for this issue is to avoid it altogether: for 

example by ensuring that “true” test values applied within the error model 

simulation are based on a gold standard reference measurement procedure 

considered to be a reliably proxy for the truth. Whilst this was not a possibility for 

the FC case study (no reference measurement procedure is yet in place for FC), 

future studies wishing to derive APS should to aim utilise reference measurement 

procedures where possible. If no such procedure is available, then additional care 

may be required to ensure that the baseline measurement uncertainty is closely 

measured and monitored so that it can be meaningfully quantified. Better 

approaches for dealing with the issue of baseline measurement uncertainty, in 

particular strategies to enable meaningful APS to be derived in spite of baseline 

measurement uncertainty, should be explored in future research.  

A second concern with each of the presented APS relates to the use of 

acceptable regions of performance, as opposed to fixed bias and imprecision 

goals. Representing outcome-based APS as regions reflects the fact that, in 

practice, random and systematic errors can occur concurrently, and each may 

have a very different effect on outcomes. This means that assessing the impact 

of bias and imprecision in isolation provides an incomplete picture of the impact 

of total measurement uncertainty on outcomes. Nevertheless, within the context 

of APS implementation, the use of two-dimensional regions presents a challenge, 

since the maximum allowable level of bias depends on the level of CV achieved 

(and vice versa), leaving laboratory professionals with no clear, fixed goal to 

target.  

Two possible mechanisms for simplifying and distilling the information contained 

in the APS regions were presented in the case study analysis: first, fixed 
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specifications of bias and imprecision were presented based on extracting (a) the 

range of added bias allowed at zero added imprecision, and (b) the range of 

imprecision allowed at zero added bias; and second, a maximum combined value 

of imprecision and bias was presented in the form of the TEmax summary metric 

(see results Table 5-5 and Table 5-11). Whilst these approaches are 

pragmatically appealing, there are clearly inefficiencies with both methods 

resulting from a loss of information. In the case study analysis for example, setting 

bias at the maximum absolute value indicated in (a), and imprecision at the 

maximum value indicated in (b), pushes the analytical performance outside of the 

APS acceptable regions; whilst in contrast, higher levels of imprecision than 

indicated by the TEmax values are permissible when bias is restricted to a smaller 

region (e.g. as illustrated in Figure 5-12). Based on these results, the use of TEmax 

may be preferable (as a simple summary metric), since this approach ensures 

that the acceptable region of bias and imprecision is not breached59. 

Nevertheless, it would clearly be preferable to retain all of the information 

contained in the APS regions. Future research in this area, therefore, could 

further explore how outcome-based APS defined as regions could be better 

presented and/or summarised, in order to maximise the pragmatic usability of 

these concepts whilst minimising any loss of detail.  

Improved implementation of outcome-based APS could be partly addressed by 

supplying the error-model simulation via a user-friendly web-based application – 

for example using the R shiny app platform (293). This type of application could 

allow users to input their own data and/or parametric distributions; specify their 

own error model function; access the raw simulation results underlying the 

contour plots; and explore alternative outcome requirements (e.g. adjusting the 

acceptable level of diagnostic accuracy assumed within the acceptable region). 

This could help to illustrate to wider audiences how the error model simulation 

works, and provide a greater understanding of the simulation results. Other types 

of simulation approaches as outlined in Chapter 3 (e.g. simulation around fixed 

points along the measurement range), could also be accommodated. Again, 

                                            

59 It should be noted however, that there is significant resistance to the use of TE metrics 
in parts of the clinical chemistry field (as discussed in section 1.2.3). 
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further consultation with relevant end-users of such an application could be 

conducted, to identify what features the system should include.  

A third issue relating to outcome-based APS, concerns to the acceptability of the 

outcome assumptions applied in the analysis amongst laboratory, clinical and 

HTA communities. Acceptability of the presented acceptable regions, for 

example, would likely require some form of consultation with clinical experts in 

order to ensure that the assumed minimum requirement for diagnostic accuracy 

was appropriate and acceptable to the clinical audience. Acceptability of regions 

determined according to cost-effectiveness, meanwhile, may be limited in the 

laboratory setting due to an unfamiliarity with this concept amongst laboratory 

professionals – for this reason, clinical outcomes such as diagnostic accuracy or 

utility (i.e. QALYs) may be preferred in that setting, whilst cost-effectiveness may 

be more acceptable (if not preferable) in the HTA setting. Further consultation 

work would also be useful here, to determine which outcomes different 

stakeholders deem acceptable.   

A key novel aspect of this research was the derivation of APS based on cost-

effectiveness outcomes, in the form of cost-effective regions (as presented in 

Chapter 6). A concern highlighted with the cost-effective regions, however, was 

that, whilst they are useful in respect of avoiding any user-based subjective 

judgements, they may result in inappropriately low APS in certain cases. It should 

be noted that this issue is not only a concern for cost-effective regions – a 

clinically agreed level of acceptable diagnostic accuracy, for example, could also 

result in unacceptably wide acceptable regions, from the laboratory perspective. 

The key issue is that acceptable outcome performance may have very little 

correlation with acceptable analytical performance (i.e. considering currently 

achieved levels of analytical performance). If there is a wide discrepancy between 

these two perspectives, this should be considered. For example, the optimal 

regions presented in Chapter 6 present one possible solution for scenarios where 

the benchmark set by the cost-effective region is far below that achievable in 

practice. Alternatively, in situations where the cost-effective region is believed to 

be unachievable by current working standards, then the INMB analysis can be 

utilised to quantify the opportunity cost associated with failing to achieve this 

benchmark, and this information can be used to inform the test-adoption decision.  
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A final, more general consideration relating to outcome-based APS, concerns the 

fact that any performance specifications derived from an analysis of clinical utility 

and/or cost-effectiveness outcomes will necessarily be subject to the same 

considerations and limitations that apply to outcome analyses conducted in the 

HTA setting. In particular, this includes the need to consider the specific clinical 

pathway that an intervention sits in, and the intervention’s role in that pathway: 

the impact of FC on patient health outcomes, for example, depends crucially on 

whether the test is used in the diagnostic context, or for some other purpose (e.g. 

in the IBD monitoring context). Additional considerations apply in analyses of 

cost-effectiveness: for example, cost-effectiveness depends essentially on the 

comparative strategy selected, as well as the wider health care infrastructure and 

payment mechanisms in place. Each of these factors means that different APS 

may be derived for the same test used in different contexts, and APS results may 

not be applicable beyond the centre, region or county in which they were derived. 

Unfortunately, this increased complexity is a necessary consequence of any 

analysis in which clinical and/or health-economic outcomes are evaluated.  

Overall, this section has outlined key concerns relating to the implementation of 

outcome-based APS. Whilst these factors represent potential barriers to 

straightforward implementation of outcome-based APS, it should be recognised 

that even with these limitations, outcome-based APS represent the only approach 

to setting APS that takes into account the impact of analytical performance on 

patients health and resource utilisation. If the goal of the health system is to 

improve patient outcomes, then outcome-based APS are required.  
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8.4 Summary  

The following points summarise the key messages of this thesis: 

 Test measurement uncertainty can and does have an impact on 

downstream clinical and health-economic outcomes.  

 Methods to assess the impact of measurement uncertainty on outcomes 

used in the literature follow a three-step analytical framework: (i) 

calculation of the “true” test values; (ii) calculation of the measured test 

values (i.e. incorporating measurement uncertainty); and (iii) calculation of 

the impact of differences between (1) and (2) on the outcome(s) under 

consideration.  

 Within this framework, the error model simulation approach provides a 

useful mechanism for assessing the impact of measurement uncertainty 

on diagnostic accuracy. Using error model simulation outputs, outcome-

based APS can be derived based on setting a minimum diagnostic 

accuracy requirement. 

 By embedding the error model within an economic decision model, the 

impact of measurement uncertainty on clinical utility and cost-

effectiveness outcomes can be explored. Using model outputs, outcome-

based APS may be derived based on analysis of NMB outcomes.    

 Between-assay differences can negatively affect clinical and health-

economic outcomes. Whilst assay-specific cut-off thresholds may alleviate 

the impact of consistent bias, variability in bias is less easy to counteract.  

 Within HTAs, evaluation of the impact of measurement uncertainty on 

outcomes can help to inform appropriate test-adoption decisions. Further 

guidance from HTA authorities is required to ensure that meaningful 

assessment of measurement uncertainty is undertaken in future studies.  

 Within the laboratory, outcome-based APS are vital for ensuring that 

expected clinical and health-economic benefits associated with testing 

strategies are obtained and maintained. Further consideration of the 

appropriate interpretation and implementation of outcome-based APS is 

required.  
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Appendix A  

Glossary table60 

  Synonyms  General definition Definition from CLSI Harmonized Terminology Database  

Analytical phase Examination procedure 
All processes in the total testing process occurring at the 
point of sample analysis. 

Set of operations, described specifically, used in the performance of 
examinations according to a given method 

Analytical sensitivity - 
The rate of change in the measured test value, in relation 
to a given increase in the measurand concentration 

Quotient of the change in an indication and the corresponding change 
in the value of a quantity being measured 

Analytical variation - 
The component of imprecision attributable to variation in 
analytical factors (factors occurring during the analytical 
phase of the total testing process).  

- 

Batch Lot - 

One or more components or finished devices that consist of a single 
type, model, class, size, composition, or software version that are 
manufactured under essentially the same conditions and that are 
intended to have uniform characteristics and quality within specified 
limits.  

Between-subject 
biological variation 

Inter-individual biological 
variation; group biological 
variation 

Variation observed across individuals in terms of their 
homeostatic set points.  

- 

Bias - Systematic error in measurement. Estimate of a systematic measurement error. 

Biological variation - 
Within-subject and between-subject variation in 
measurand concentrations over time.  

Consists of within-subject (CVI, intra-individual) and between-subject 
(CVG, inter-individual, group) variation. 

                                            

60 This table provides two definitions for each term: first, the general definitions used in this thesis; second, formal definitions from the Clinical and 
Laboratory Standards Institute (CLSI) Harmonized Terminology Database (https://clsi.org/resources/harmonized-terminology-database/), using 
internationally preferred terms where these are provided.  

https://clsi.org/resources/harmonized-terminology-database/
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  Synonyms  General definition Definition from CLSI Harmonized Terminology Database  

Bland-Altman plot Difference plot 

A scatter plot of the difference between index and 
reference test measurements vs. the mean of the paired 
results, allowing estimation of mean difference, limits of 
agreement, outliers and constant and proportional bias.  

A plot of the difference between a measured value and a reference 
concentration plotted on the y-axis vs the reference concentration on 
the x-axis. 

Calibration - 
The process of testing and adjusting a test instrument or 
system, to establish a correlation between the measurand 
and measurement response 

Operation that, under specified conditions, in a first step, establishes a 
relation between the quantity values with measurement uncertainties 
provided by measurement standards and corresponding indications 
with associated measurement uncertainties and, in a second step, 
uses this information to establish a relation for obtaining a 
measurement result from an indication 

Certified reference 
material (CRM) 

- 

Materials that have been characterised via an unbroken 
chain of measurement processes, each with a defined 
measurement uncertainty, linking back to a reference 
measurement procedure 

Reference material, accompanied by a certificate, one or more of 
whose property values are certified by a procedure which establishes 
traceability to an accurate realization of the unit in which the property 
values are expressed, and for which each certified value is 
accompanied by an uncertainty at a stated level of confidence 

Clinical performance 
Clinical validity; test 
accuracy; test efficacy 

The ability of a test to detect patients with a particular 
clinical condition or in a physiological state  

The sum of all attributes that may be important for clinical use of 
results from a measurement procedure when applied to a specific 
intended use 

Clinical utility 
Clinical effectiveness; 
clinical usefulness 

The clinical value that can be derived from a test, which 
may be quantified in terms of intermediate clinical utility 
(relating to the impact of test results on patient 
management decisions e.g. the decision to treat or not 
treat), or end-stage clinical utility (relating to the impact of 
test results on patient health outcomes e.g. patient 
mortality and morbidity).  

Value or benefit assigned to a particular outcome or state; diagnostic 
information that contributes to the identification of a particular 
condition or disease. 

Cost-effectiveness Efficiency 
The ability of an intervention to produce an efficient 
impact on patient health outcomes in relation to costs.  

- 

Cross-reactivity - 
The existence of obstruction from substances in the test 
sample which are mistaken for the target analyte leading 
to ‘unintentional’ binding. 

The ability of a drug, metabolite, a structurally similar compound other 
than the primary measurand, or even an unrelated compound, to 
affect the measurement procedure.  

Diagnostic accuracy - 
The ability of a test to discriminate between diseased and 
non-diseased subjects, or between two or more clinical 
states.  

The ability of a diagnostic test to discriminate between diseased and 
non-diseased subjects, or between two or more clinical states.  

Diagnostic sensitivity Clinical sensitivity 
The proportion of diseased patients which the test 
correctly identifies as having the disease.  

The proportion of patients with a well-defined clinical disorder (or 
condition of interest) whose test values are positive or exceed a 
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  Synonyms  General definition Definition from CLSI Harmonized Terminology Database  

defined decision limit (i.e. a positive result and identification of the 
patients who have a disease). 

Diagnostic specificity Clinical specificity 
The proportion of healthy patients which the test correctly 
identifies as not having the disease.  

The proportion of patients who do not have a specified clinical 
disorder whose test results are negative or within the defined decision 
limit. 

False negative case - 
A person with the disease or clinical condition of interest, 
who is incorrectly classified as not having the 
disease/condition based on a negative test result 

- 

False positive case - 

A person who does not have the disease or clinical 
condition of interest, who is incorrectly classified as 
having the disease/condition based on a positive test 
result 

- 

Harmonisation - 
The comparability of test results, irrespective of the 
measurement procedure used, and where or when a 
measurement was made.  

The process of recognizing, understanding, and explaining differences 
while taking steps to achieve uniformity of results, or at a minimum, a 
means of conversion of results such that different groups can use the 
data obtained from assays interchangeably. 

Imprecision - Random error in measurement. 
The random dispersion of a set of replicate measurements and/or 
values expressed quantitatively by a statistic, such as standard 
deviation or coefficient of variation. 

Interference - 
The existence of obstruction from substances in the test 
sample which either inhibit the process of binding with the 
target analyte.  

Artificial increase or decrease in apparent concentration or intensity of 
an analyte (measurand) due to the presence of a substance that 
reacts non-specifically with either the detecting reagent or the signal 
itself.  

Intermediate precision 
Within-laboratory 
precision; inter-operator 
precision 

Level of imprecision observed when conducting repeated 
testing within the same laboratory but altering one or 
more of the following factors: time, operator, calibration, 
environment and equipment.  

Measurement precision under a set of intermediate precision 
conditions of measurement. Intermediate precision conditions of 
measurement = condition of measurement, out of a set of conditions 
that includes the same measurement procedure, same location, and 
replicate measurements on the same or similar objects over an 
extended period of time, but may include other conditions involving 
changes.  

Limit of Blank (LOB) - 
The highest (apparent) concentration of analyte expected 
to be identified when processing blank samples (i.e. 
samples containing zero quantity of analyte). 

The highest measurement result that is likely to be observed (with a 
stated probability [alpha]) for a blank sample. 
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  Synonyms  General definition Definition from CLSI Harmonized Terminology Database  

Limit of Detection 
(LOD) 

- 
The lowest analyte concentration which the test can 
reliably distinguish from the LOB. 

Measured quantity value, obtained by a given measurement 
procedure, for which the probability of falsely claiming the absence of 
a component in a material is β, given a probability α of falsely claiming 
its presence. 

Lower limit of 
Quantification 
(LOQlower) 

- 
The lowest concentration of analyte in a sample that a 
test can measure with a specified level of imprecision and 
trueness. 

The lowest concentration of measurand that can be detected with 
acceptable precision and trueness, under routine clinical laboratory 
conditions, in a defined type of sample.  

Lower limit of 
Quantification 
(LOQupper) 

- 
The highest concentration of analyte in a sample that a 
test can measure with a specified level of imprecision and 
trueness. 

The highest concentration of measurand that can be detected with 
acceptable precision and trueness, under routine clinical laboratory 
conditions, in a defined type of sample. 

Linear range - 
The region of measurand values over which linearity is 
maintained.  

The range over which the testing systems results are acceptably 
linear; that is, where nonlinear error is less than the error criterion. 

Linearity - 
Linearity relates to how well the slope of the calibration 
curve follows a straight line.  

The ability (within a given range) to provide results that are directly 
proportional to the concentration (amount) of the analyte in the test 
sample.  

Measurand Analyte The substance intended to be measured by a given test. Quantity intended to be measured. 

Measurement 
performance 

Analytical validity; 
analytical performance; 
technical performance; 
technical efficacy 

Refers to the overall technical performance of a test, 
including the central components of measurement 
uncertainty (precision and trueness) as well as additional 
performance parameters including test selectivity, 
detection and quantitation limits, analytical sensitivity, 
linearity and measurement range.  

- 

Measurement range 

Reportable range; 
measuring interval; 
working interval; working 
range 

The range of measurand concentrations over which a test 
is demonstrated to perform adequately. 

Range of analyte concentrations over which meaningful results can be 
acquired 

Measurement 
uncertainty 

- 
Uncertainty around the underlying ‘true’ measurand value 
associated with an observed test measurement, resulting 
from systematic and/or random error.  

Non-negative parameter characterizing the dispersion of the quantity 
values being attributed to a measurand, based on the information 
used.  

Medical in-vitro test - 
Tests conducted on patient samples taken from the 
human body.  

- 

Metrological chain of 
traceability 

-  
The sequence of measurement processes linking a CRM 
to the reference measurement procedure. 

Sequence of measurement standards and calibrations that is used to 
relate a measurement result to a reference. 
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  Synonyms  General definition Definition from CLSI Harmonized Terminology Database  

Negative predictive 
value (NPV) 

-  
The likelihood that a patient has the disease given that 
the test result is positive.  

The likelihood that an individual with a negative test does not have the 
disease, or other characteristic, which the test is designed to detect. 

Positive predictive 
value (PPV) 

-  
The likelihood that a patient is healthy given that the test 
result is negative.  

The likelihood that an individual with a positive test result has a 
particular disease or characteristic that the test is designed to detect. 

Pre-analytical phase 
Pre-examination 
processes 

All processes in the total testing process occurring prior 
to the point of sample analysis. 

[Defined as "pre-examination processes"] Processes starting, in 
chronological order, from the request for examination and including 
the examination requisition, preparation of the patient, collection of the 
primary sample, and transportation to or within the laboratory, and 
ending when the analytical examination procedure begins 

Pre-analytical variation - 
The component of imprecision attributable to variation in 
analytical factors (factors occurring during the analytical 
phase of the total testing process).  

- 

Precision - 
The closeness of agreement between repeated test 
results. 

Closeness of agreement between indications or measured quantity 
values obtained by replicate measurements on the same or similar 
objects under specified conditions. 

Reference change 
value 

- 
The change that must occur in an individual’s serial 
results before that change may be considered significant.  

Represents the statistically significant difference between consecutive 
results based on the combined inherent variation of both results. The 
total variation of a result is a combination of pre-examination, 
examination, post-examination, and within-subject biological variation 

Reference 
measurement 
procedure 

 - 

A thoroughly investigated measurement procedure shown 
to yield values having an uncertainty of measurement 
commensurate with its intended use, especially in 
assessing the trueness of other measurement procedures 

Measurement procedure accepted as providing measurement results 
fit for their intended use in assessing measurement trueness of 
measured quantity values obtained from other measurement 
procedures for quantities of the same kind, in calibration, or in 
characterizing reference materials.  

Repeatability 
Within-run precision; 
Intra-assay precision; 
Intra-operator precision 

Level of imprecision observed when conducting repeated 
testing one after another (in the same batch or run) on 
the same day, by the same operator, using the same 
method and equipment and in the same laboratory.  

Measurement precision under a set of repeatability conditions of 
measurement. Repeatability condition of measurement = condition of 
measurement, out of a set of conditions that includes the same 
measurement procedure, same operators, same measuring system, 
same operating conditions and same location, and replicate 
measurements on the same or similar objects over a short period of 
time.  

Reproducibility 
Between-laboratory 
precision 

Level of imprecision observed when conducting repeated 
testing across different laboratories, in which the following 
factors would be expected to vary: time, operator, 
calibration, environment and equipment.  

Measurement precision under reproducibility conditions of 
measurement. Reproducibility conditions of measurement = condition 
of measurement, out of a set of conditions that includes different 
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  Synonyms  General definition Definition from CLSI Harmonized Terminology Database  

locations, operators, measuring systems, and replicate measurements 
on the same or similar objects.  

Selectivity Analytical specificity 
The ability of a test to measure the target measurand of 
interest as opposed to any other components in the test 
sample. 

Property of a measuring system, used with a specified measurement 
procedure, whereby it provides measured quantity values for one or 
more measurands such that the values of each measurand are 
independent of other measurands or other quantities in the 
phenomenon, body, or substance being investigated 

Scientific validity - 
The association between a measurand and a clinical 
condition or disease state.  

- 

Test evaluation 
pathway 

- 
The trajectory of research required to take a new 
technology from the biomarker discovery phase, to the 
test adoption phase 

- 

Total error (TE) - 
An upper limit on the expected error within a given 
measurement, calculated as a linear sum of random error 
(imprecision) and systematic error (bias). 

The combined impact of any set of defined precision and bias errors 
that can affect the accuracy of an analytical result. 

Total testing process - 
The complete process of events occurring from the point 
at which a test is initially ordered, through to the point at 
which the test result is made available to the clinician.  

- 

Traceability - - 
Property of a measurement result whereby the result can be related to 
a reference through a documented unbroken chain of calibrations, 
each contributing to the measurement uncertainty 

Trueness Accuracy 
The closeness of agreement between observed test 
results and the underlying 'true' value. 

Closeness of agreement between the average of an infinite number of 
replicate measured quantity values and a reference quantity value. 

Uncertainty of 
Measurement (UM) 

- 
A parameter, associated with the result of a 
measurement, that characterizes the dispersion of the 
values that could reasonably be attributed to the analyte. 

Non-negative parameter characterizing the dispersion of the quantity 
values being attributed to a measurand, based on the information 
used. 

Within-subject 
biological variation 

- 
The fluctuation of measurand concentrations in the body 
over time.  

- 

 

 

 



 
 

306 

 

Appendix B  

Measurement uncertainty and measurement performance: 

supplementary material 

This appendix presents further details relating to test measurement uncertainty 

and measurement performance, supplemental to the introduction provided in 

Chapter 1 (section 1.2). Appendix B.1 provides an example of a Bland-Altman 

plot, relevant to the discussion of bias in section 1.2.2.2. Section B.2 provides a 

discussion of pre-analytical and analytical factors (including a generic illustration 

of a ‘feather map’), which is relevant to the discussion of bias and imprecision in 

section 1.2.2. Finally section B.3 provides details of additional metrics of 

measurement performance (in addition to the central components of 

measurement uncertainty reviewed in Chapter 1), which are relevant to the 

discussion of method validation and verification provided in section 1.2.4.  

B.1 Example Bland-Altman plot 

According to the original Bland-Altman plot (proposed by the authors JM Bland 

and DG Altman in 1986), the mean of each paired measurement [(A+B)/2] from 

a method-comparison study is plotted against the absolute difference [A-B] (11). 

An example of such a plot is provided in Figure B-1. In this case, there does not 

appear to be a relationship between the mean and differences, and the bias can 

therefore be summarised as the average difference between the two sets of 

measurements – shown as the solid blue line in Figure B-1. In addition, based on 

the fact that the differences are normally distributed, ‘95% limits of agreement’ 

(equivalent to +/- 1.96*SD of the differences) are also presented (the dashed 

upper and lower lines in Figure B-1). Based on this example, the average bias is 

indicated as 15.95, and 95% of differences lie within the lower limit of -3.05 and 

the upper limit of 34.85.  
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Figure B-1. Example of a Bland Altman plot 

In alternative scenarios, different variations of the Bland-Altman plot may be 

applied. For example, if the spread of differences had been observed to increase 

in relation to the mean, then a logarithmic or percentage y scale could have been 

used (11, 294); and if a proportional bias had been observed (i.e. if bias increased 

or decreased in line with the measurement value), then linear regression could 

have been applied to fit a line of best fit describing the average bias (295). 

Furthermore, Figure B-1 presents a Bland-Altman plot with the mean of paired 

measurements [(A+B)/2] presented on the x-axis, as originally proposed by Bland 

and Altman in their seminal 1986 paper. Taking the mean of paired 

measurements in this way is the required approach when comparing two 

uncertain testing procedures. If, however, one set of measurements may be 

considered to be without measurement uncertainty (e.g. when using a reference 

measurement procedure or CRMs), then differences may instead be plotted 

against the reference value directly (rather than the mean) (9). 
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B.2 Pre-analytical, analytical and post-analytical factors 

affecting measurement uncertainty 

Multiple factors may introduce bias and imprecision into test measurements, 

occurring at different points along the total testing process (i.e. the complete 

process of events occurring from the point at which a test is initially ordered, 

through to the point at which the test result is made available to the clinician) 

(296). The total testing process can be divided into two core phases: (i) the pre-

analytical phase – which includes all processes occurring prior to the point of 

sample analysis; and (ii) the analytical phase – which includes all processes 

occurring at the point of sample analysis.61 For a given test, pre-analytical and 

analytical factors (i.e. relevant factors occurring in each phase of the testing 

process) can be summarised using a ‘feather diagram’. Figure B-2 provides a 

generalised example, in which relevant factors are presented in a (roughly) 

chronological order along the testing pathway.   

The first important factor is within-subject biological variation – defined as the 

fluctuation of measurand concentrations in the body over time (6). Technically 

biological variation occurs during the pre-analytical phase of the testing pathway; 

however, this component of variation is conceptually different to variation caused 

by other pre-analytical factors, since it reflects a natural phenomenon occurring 

in the body. Other pre-analytical factors, meanwhile, result from human 

processes which can be altered and largely controlled via standardisation of pre-

analytical procedures. As such, biological variation is typically considered as a 

separate component of imprecision, distinct from pre-analytical and analytical 

variation (discussed further below).   

In its simplest form, biological variation relates to the natural fluctuation of 

measurand concentrations in the body around a ‘homeostatic set point’ (i.e. the 

                                            

61 Two further phases of the total testing process may be described: (i) the pre-pre-
analytical phase, which relates to whether or not the appropriate test was ordered 
by the clinician and subsequently undertaken in the laboratory; and (ii) the post-
analytical phase, which relates to how the test result is recorded, and subsequently 

presented to and interpreted by the clinician. Errors introduced at these phases are 
of critical importance, since they impact on whether or not the right test is conducted 
and how that test is acted on. However, these errors do not influence measurement 
uncertainty per se, and are therefore not addressed in this thesis.   
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average of repeated test values for an individual) (297). For example, many liver 

function tests (such as serum bilirubin and alanine transaminase) display 

randomly fluctuating values within monitored individuals (13). Biological variation 

also describes variation resulting from cyclic events related to circadian rhythms 

(e.g. time of day, month, or year etc.); female hormones associated with 

reproductive health, for example, exhibit peaks and troughs relating to the female 

menstrual cycle (13). For many measurands however, cyclical variations are 

considered to have limited clinical importance, and biological variation is 

evaluated as a component of random fluctuation (expressed as an SD or CV) 

acting on an individual’s “true” measurand value (13). At the group level, variation 

is also observed across individuals in terms of their homeostatic set points – this 

is referred to as between-subject biological variation (13, 297).  

The evaluation of biological variation is of particular importance in scenarios 

where repeated tests are used to inform patient management. In this case, data 

on biological variation is required to determine the change that must occur in an 

individual’s serial results before that change may be considered significant (i.e. 

the reference change value) (13). Studies of biological variation rely on serial test 

results from individuals over time, with the influence of other sources of variation 

minimised via careful control of testing processes (13, 297). The total variation 

observed in serial test results can then be analysed using statistical techniques 

(i.e. analysis of variance [ANOVA]) to quantify the individual components of 

within-subject and between-subject biological variation, and analytical variation62 

(13, 297). Given the importance of biological variation in the interpretation of test 

results, significant international efforts have been applied to collate and generate 

evidence on biological variation for a range of measurands (298-300).  

                                            

62 The component of analytical variation (discussed later in this section) can be isolated 
within biological variation studies by including replicate measurements in the 
experiment, to provide an estimate of repeatability.  
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Figure B-2. Generalised feather diagram depicting factors contributing to measurement uncertainty 
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The remaining factors occurring in the pre-analytical phase (henceforth referred 

to as pre-analytical factors) include: (i) pre-analytical patient factors – related to 

patient preparation prior to taking the test sample, such as their posture, food 

intake and exercise; and (ii) pre-analytical technical factors – related to how the 

test sample is collected, transported to and stored in the laboratory. Exposure to 

sunlight, for example, can cause a breakdown of certain measurands (e.g. 

bilirubin); care is therefore required in the handling of these samples, to ensure 

that the measurand is not unknowingly degraded (301). Since sudden changes 

in pre-analytical processes may lead to bias in test measurements, 

standardisation of this phase of the total testing process is crucial (302, 303). 

Once a pre-analytical protocol is in place, then insofar as subsequent deviations 

in pre-analytical factors would be expected to occur randomly over time, the 

resulting impact on measurement is increased variability in the form of pre-

analytical variation. Together with analytical variation (below), these components 

of variation are expressed as an SD or CV, which feed into the overall imprecision 

of a test.  

Analytical factors are those factors occurring during the analytical phase of the 

total testing process (i.e. at the point of sample analysis). In Figure B-2 these 

parameters have been divided into those predominantly associated with 

imprecision, versus those predominantly associated with bias. The influence of 

key analytical factors on imprecision (i.e. time, operator, calibration, environment 

and equipment) is discussed in section 1.2.2.1. In the same way as for pre-

analytical factors, the key with controlling the influence of these factors is to 

ensure standardisation of the analytical phase, as far as possible. Subsequent 

deviation in analytical factors over time may then be considered to act mainly on 

imprecision, in the form of analytical variation.  

Analytical factors associated with bias, meanwhile, include bias resulting from the 

test method and equipment, and bias resulting from other components in the test 

sample which may interrupt the measurement process (e.g. via interference or 

cross-reactivity). Bias resulting from the test method and equipment is the primary 

focus of bias studies, as discussed in section 1.2.2.2. The concepts of 

interference and cross-reactivity, meanwhile, are typically examined separately 

from primary bias assessments, and are thus included under the wider banner of 
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measurement performance. These concepts are therefore discussed further in 

Appendix B.3.   

The analysis of pre-analytical and analytical factors is relevant at each stage of 

the test evaluation pathway – from the initial test development phase through to 

the routine implementation phase. During the initial development and 

optimisation phases of test development, some exploration of key pre-analytical 

and analytical factors is routinely conducted, however testing procedures are 

often developed around tightly controlled pre-analytical and analytical 

procedures. As such, validation, verification and ongoing quality assurance 

procedures in the laboratory are crucial (304).  

B.3 Measurement performance: additional parameters 

Further to the central components of measurement uncertainty (i.e. bias and 

imprecision), the concept of measurement performance includes additional 

parameters which contribute to and describe the overall technical performance of 

a test. This includes: selectivity, detection limits, analytical sensitivity, linearity 

and measurement range. Whilst the focus of this thesis is on the central 

components of measurement uncertainty (bias and imprecision), a brief summary 

of these additional measurement performance parameters is provided here for 

completeness.  

B.3.1 Selectivity 

Selectivity is defined as the ability of a test to measure a specified measurand in 

the presence of interferences that may be expected to be present in the sample 

matrix (i.e. all the components of a sample, excluding the measurand). Naturally 

occurring substances in the test matrix may interfere with the test measurement 

in one of two ways: first, substances may inhibit the process of binding with the 

target measurand (known as interference); and second, substances may be 

mistaken for the target measurand, leading to ‘unintentional’ binding (known as 

cross-reactivity) (see Figure B-2) (305, 306). For example, a heightened level of 

bilirubin (a natural by-product of liver functioning), is known to produce bias in 

certain tests for creatinine (used to monitor kidney functioning) (307). 

One way of evaluating test selectivity, is to take test samples with a known 

quantity of measurand (e.g. CRM samples) and deliberate ‘spike’ them with a 
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known quantity of suspected interferent (308). If the additional component leads 

to a significant change in the test value, then the substance can be confirmed as 

an interferent. In general, interferents should be identified by the test 

manufacturer during the test development phase, and appropriately accounted 

for in test standard operating procedures. Further exploration of interferents in 

the clinical laboratory may be undertaken if, for example, interference is a 

suspected cause of an identified bias of unknown origin.     

B.3.2 Detection limits  

Various limits can be specified which describe the smallest concentration of a 

measurand that can be reliably measured by the test. These are: (i) the limit of 

blank (LOB), defined as the highest (apparent) concentration of measurand 

expected to be identified when processing blank samples (i.e. samples containing 

zero quantity of the measurand); (ii) the limit of detection (LOD), defined as the 

lowest measurand concentration which a test can reliably distinguish from the 

LOB; and (iii) the lower limit of quantification (LOQlower), defined as the lowest 

concentration of measurand which a test can detect with a specified level of 

precision and trueness (typically set an order of magnitude higher than the LOD) 

(6). These concepts are of key importance for tests in which trace measurements 

(i.e. low concentrations of the measurand) are expected; if only high 

concentrations of the measurand are expected then evaluation of the detection 

limits is of little consequence. Where trace measurements are expected, then the 

ability of a test to measure low concentrations will be a key determinant of the 

test’s clinical performance.   

A further related concept is that of the upper limit of quantification (LOQupper). In 

line with the LOQlower, the LOQupper is defined as the highest concentration of 

measurand which a test can detect with a specified level of precision and 

trueness (6). Together, the concepts of LOQlower and LOQupper are important in 

determining the measurement range of a test, as discussed in section B.3.3.  

B.3.3 Analytical sensitivity, linearity and measuring range 

Figure B-3 shows a standard calibration curve, which may be derived by running 

a series of samples of known concentrations (or known relative concentrations). 

The analytical sensitivity of a test refers to the rate of change in the measured 
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test value, in relation to a given increase in the measurand concentration – this 

is equal to the slope of the calibration curve shown in Figure B-3 (6). Linearity, 

meanwhile, relates to how well the slope of this line follows a straight line; and 

the linear range refers to the region of measurand values over which linearity is 

maintained (6). Beyond the linear range, samples become saturated and the 

analytical sensitivity of the method begins to drop – shown by a “tailing off” of the 

calibration curve. Finally, the measurement range of a test describes the range 

of concentrations over which a test is demonstrated to perform adequately. 

Typically this is set equal to the region in-between the LOQlower and LOQupper, as 

shown in Figure B-3.  

 

Figure B-3. Calibration curve illustrating limits of detection and  
measurement range  



 
 

315 

 

Appendix C  

Diagnostic accuracy calculation 

Diagnostic accuracy is defined as the ability of a test to discriminate between 

diseased and non-diseased subjects, or between two or more clinical states. It is 

evaluated by comparing test-directed diagnoses against “true” diagnoses (based, 

for example, on an established gold standard reference test). This comparison 

enables test-directed diagnoses to be classified as true positive, false positive, 

true negative or false negative, as illustrated in Table C-1. 

Diagnostic sensitivity is calculated as the proportion of diseased patients which 

the test correctly identifies as having the disease; whilst diagnostic specificity is 

calculated as the proportion of healthy patients which the test correctly identifies 

as not having the disease. Alternatively, diagnostic accuracy may be summarized 

in terms of predictive measures: the positive predictive value (PPV) of a test is 

defined as the likelihood that a patient has the disease given that the test result 

is positive; whilst the negative predictive value (NPV) is defined as the likelihood 

that a patient is healthy given that the test result is negative. 

Table C-1. Confusion matrix showing diagnostic accuracy measures 

 True diagnosis 
 

Diseased Healthy 

Test 

diagnosis 

Diseased 
True positives 

(TP) 

False positives:  

(FP) 

PPV = 

TP/(TP+FP) 

Healthy 
False negatives: 

(FN) 

True negatives: 

(TN) 

NPV = 

TN/(TN+FN) 

 
Sensitivity = 

TP/(TP+FN)  

Specificity = 

TN/(TN+FP) 
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Appendix D  

Cost-effectiveness metrics 

Cost-effectiveness may be measured in terms of the Incremental cost-

effectiveness ratio (ICER), or Incremental Net Monetary Benefit (INMB). Both of 

these metrics depend on having estimates for the total costs associated with the 

intervention test arm (CT) and the standard care comparator arm (CSC); and 

estimates for the total health effect for the intervention test arm (ET) and the 

standard care comparator arm (ESC). These estimates depend on the perspective 

taken in the economic evaluation, and may be derived from either a trial-based 

or model-based study (as discussed in section 1.3.2). In the UK context costs are 

measured in GBP (£) and a common unit of health effect is the QALY.  

The ICER is calculated by dividing the difference in costs between two arms (∆C), 

by the difference in health effects (∆E), as illustrated in equation D.1 below.   

𝐼𝐶𝐸𝑅 =
𝐶𝑇 − 𝐶𝑆𝐶

𝐸𝑇 − 𝐸𝑆𝐶
=  

∆𝐶

∆𝐸
   (D.1) 

Assuming that the test intervention is more costly and more effective than 

standard care, the ICER represents the additional cost required to be spent on 

the intervention to gain an additional unit of health.63  The cost-effectiveness of 

an intervention is determined by whether or not this rate of gain in terms of the 

health effect, outweighs the opportunity cost of the additional spending – that is, 

the amount of health that will be lost to other patients elsewhere in the healthcare 

system, as a result of redirecting funding to the more costly intervention.  

Assuming that required additional funding will be taken from the least effective 

healthcare services currently provided by the NHS, then the opportunity cost is 

captured by the productivity of the health service at the margin. The threshold 

capturing the marginal productivity of the NHS is referred to as the supply side 

cost-effectiveness threshold.64  

                                            

63 Note: if the intervention produces lower costs and higher effects than the comparator, 
then the intervention is said to dominate standard care, and the ICER is not required. 

64 The cost-effectiveness threshold may alternatively be conceptualised as the decision 
maker’s willingness to pay per additional unit of health (i.e. the demand side cost-
effectiveness threshold). 
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In the UK, NICE stipulates a cost-effectiveness threshold (λ) of £20,000 per 

additional QALY (58). This means that if a new intervention has an ICER of < 

£20,000 per additional QALY then it is likely to be considered a cost-effective use 

of NHS resources; whilst an ICER of > £20,000 indicates that the intervention is 

not expected to be a cost-effective use of resources or is required to meet 

additional criteria. This decision rule is expressed as per equation D.2 below.   

𝐼𝐶𝐸𝑅 =  
∆𝐶

∆𝐸
<  𝜆   (D.2) 

When the threshold (λ) is defined, one can multiply the QALYs by the threshold 

value to express QALYs on the monetary scale (or, conversely, one may divide 

the incremental cost by the threshold value to convert costs onto the QALY 

scale). For example, assuming the NICE adopted threshold of £20,000, we can 

convert 0.5 QALYs into an equivalent cost of £10,000. This enables the total 

benefit associated with each strategy to be expressed in terms of net monetary 

benefit (NMB) as illustrated below:  

𝑁𝑀𝐵𝑇 = (𝐸𝑇 × 𝜆) − 𝐶𝑇   (D.3) 

𝑁𝑀𝐵𝑆𝐶 = (𝐸𝑆𝐶 × 𝜆) − 𝐶𝑆𝐶   (D.4) 

The INMB is then calculated either as outlined in equation D.5 or D.6 below.   

𝐼𝑁𝑀𝐵 = 𝑁𝑀𝐵𝑇 − 𝑁𝑀𝐵𝑆𝐶    (D.5) 

𝐼𝑁𝑀𝐵 = (∆𝐸 ×  𝜆) − ∆𝐶    (D.6) 

Unlike the ICER, for which the exact interpretation of cost-effectiveness depends 

on whether or not the incremental cost and QALYs are positive or negative, the 

interpretation of the NMB statistics is straightforward: for any given set of 

strategies, the strategy with the greatest NMB is the most cost-effective 

alternative; and for a given pair-wise comparison, an intervention is cost-effective 

if it is associated with a positive INMB.  
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Appendix E  

HTA systematic review: listed authorities on the CRD HTA 

database 

Table E-1. INAHTA members and additional organisations listed on the CRD 
HTA database (as of March 2017) 

N 
Organisation 
abbreviation 

Organisation name, country 

INAHTA Members 

1 AETS  Agencia de Evaluación de Tecnologias Sanitarias, SPAIN 

2 ACE  Agency for Care Effectiveness, SINGAPORE 

3 AETSA  Andalusian Agency for Health Technology Assessment, 
SPAIN 

4 Age.Na.S  The Agency for Regional Healthcare, ITALY 

5 AHRQ Agency for Healthcare Research and Quality, USA 

6 AHTA Adelaide Health Technology Assessment, AUSTRALIA 

7 AHTAPol Agency for Health Technology Assessment in Poland, 
POLAND 

8 AQuAS Agència de Qualitat i Avaluació Sanitàries de Catalunya, 
SPAIN 

9 ASERNIP-S  Australian Safety and Efficacy Register of New 
Interventional Procedures -Surgical, AUSTRALIA 

10 ASSR Agenzia Sanitaria e Sociale Regionale (Regional Agency 
for Health and Social Care), ITALY 

11 AVALIA-T  Galician Agency for Health Technology Assessment, 
SPAIN 

12 CADTH Canadian Agency for Drugs and Technologies in Health, 
CANADA 

13 CDE  Center for Drug Evaluation, Taiwan, REPUBLIC OF 
CHINA 

14 CEDIT Comité d’Evaluation et de Diffusion des Innovations 
Technologiques, FRANCE 

15 CEM Inspection générale de la sécurité sociale (IGSS), Cellule 
d’expertise médicale, LUXEMBOURG 

16 CENETEC  Centro Nacional de Excelencia Tecnológica en Salud, 
MEXICO 

17 CMeRC HTA 
Unit 

Charlotte Maxeke Research Consortium, SOUTH 
AFRICA 

18 CONITEC National Committee for Technology Incorporation, 
BRAZIL 

19 DAHTA @ 
DIMDI  

Deutsche Agentur für Health Technology Assessment, 
GERMANY 

20 DECIT-CGATS  Coordenação Geral de Avaliação de Tecnologias em 
Saúde; Departamento de Ciência e Tecnologia, BRAZIL 

21 G-BA The Federal Joint Committee (Gemeinsamer 
Bundesausschuss), GERMANY 

22 GÖeG  Gesunheit Österreich GmbH, AUSTRIA 

23 HAS  Haute Autorité de Santé, FRANCE 
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24 HealthPACT  The Health Policy Advisory Committee on Technology, 
AUSTRALIA & NEW ZEALAND 

25 HIQA  Health Information and Quality Authority, IRELAND 

26 HIS Healthcare Improvement Scotland, UNITED KINGDOM 

27 HQO Evidence Development and Standards Branch, CANADA 

28 DEFACTUM Social & Health Services and Labour Market, DENMARK 

29 IACS Health Sciences Institute in Aragon, SPAIN 

30 IECS  Institute for Clinical Effectiveness and Health Policy, 
ARGENTINA 

31 IETS  Instituto de Evaluación Tecnológica en Salud, COLOMBIA 

32 IHE  Institute of Health Economics, CANADA 

33 INASante National Authority for Assessment and Accreditation in 
Healthcare, TUNISIA 

34 INESSS  Institut national d’excellence en santé et en services, 
CANADA 

35 IQWiG Institut für Qualität und Wirtschaftlichkeit im 
Gesundheitswesen, GERMANY 

36 KCE Belgian Health Care Knowledge Centre, BELGIUM 

37 LBI-HTA  Ludwig Boltzmann Institute for Health Technology 
Assessment, AUSTRIA 

38 MaHTAS Health Technology Assessment Section, Ministry of 
Health Malaysia, MALAYSIA 

39 MSP-Uruguay Ministerio-Salud-Publica, URUGUAY 

40 MTU-SFOPH Swiss Federal Office of Public Health, SWITZERLAND 

41 NECA  National Evidence-based healthcare Collaborating 
Agency, KOREA 

42 NIHR National Institute for Health Research, UNITED 
KINGDOM 

43 NIPH Norwegian Institute of Public Health, NORWAY 

44 OSTEBA Basque Office for Health Technology Assessment, SPAIN 

45 RCHD-CS  Ministry of Public Health of the Republic of Kazakhstan, 
Republican Centre for Health Development, 
KAZAKHSTAN 

46 SBU  Swedish Agency for Health Technology Assessment and 
Assessment of Social Services, SWEDEN 

47 UVT HTA Unit in A. Gemelli Teaching Hospital, ITALY 

48 ZIN Zorginstituut Nederland, THE NETHERLANDS 

49 ZonMw The Netherlands Organisation for Health Research and 
Development, THE NETHERLANDS 

Additional organisations 

1 - Scottish Health Purchasing Information Centre 

2 SCTIE Secretaria de Cencia, Tecnologia e Insumos Estrategicos, 
Departmento de Ciencia e Tecnologia, BRAZIL  

3 VASPVT State Health Care Accreditation Agency under the Ministry 
of Health of the republic of Lithuania, LITHUANIA 

4 TASK Technology Assessment at SickKids, CANADA 

5 -  Technology Assessment Unit of the McGill University 
Health Centre 

6 - Stockholm County Council Support for evidence-based 
medicine Method Council, HTA 
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7 TNO Netherlands Organisation for Applied Scientific 
Research,THE NETHERLANDS 

8 OTA US Congress Office of Technology Assessment 

9 UETS Unidad de Evaluacion de Tecnologias Sanitarias, SPAIN 

10 - Unidad de Tecnologias de Salud, MEXICO 

11 HEHTA Unit of Health Economics and Technology Assessment in 
Health Care, UNITED KINGDOM 

12 UHC University HealthSystem Consortium, USA 

13 - University of York, UNITED KINGDOM 

14 VATAP Veteran Affairs Technology Assessment Program, USA 

15 
L&I 

Washington State Department of Labor and Industries, 
USA 

16 - Wessex Institute for Health Research and Development, 
UNITED KINGDOM 

17 WMHTAC West Midlands Health Technology Assessment 
Collaboration, UNITED KINGDOM 

18 WorkSafeBC Worksafe British Columbia, CANADA 
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Appendix F  

HTA systematic review: CRD HTA database search strategy 

Date Run: 01/03/17 11:10:24 

ID Search          [Hits] 

#1 MeSH descriptor: [Diagnosis] explode all trees      [301036] 

#2 MeSH descriptor: [Reagent Kits, Diagnostic] explode all trees    [351] 

#3 MeSH descriptor: [Investigative Techniques] explode all trees    [440907] 

#4 MeSH descriptor: [Precision Medicine] explode all trees     [251] 

#5 MeSH descriptor: [Biomarkers] explode all trees      [18996] 

#6 #1 or #2 or #3 or #4 or #5         [491884] 

#7 "in vitro*" or test* or assay* or microarray* or "micro array*" or urinalys?s or ELISA* or diagnos* or biomarker* 
or marker* or signature* or investigat*  (Word variations have been searched)   [450916] 

#8 monitor* or screen* or prognos* or predict* or diagnos* or stratif* or detect*  (Word variations have been 
searched)          [297700] 

#9 (analytic* near/2 valid*) or sensitiv* or specific* or (positiv* near/2 predict*) or (negativ* near/2 predict*) or "true 
positive*" or "true negative*" or "false positive*" or "false negative*" or ((pre-test* or pretest*) near/2 probability) 
or ("post test*" near/2 probability) or "likelihood ratio*"  (Word variations have been searched)  
         [136399] 

#10 #7 or #8 or #9          [560305] 

#11 #6 or #10          [735569] 

#12 MeSH descriptor: [Economics] this term only      [63] 

#13 MeSH descriptor: [Economics, Nursing] this term only     [19] 

#14 MeSH descriptor: [Economics, Pharmaceutical] this term only    [244] 

#15 MeSH descriptor: [Economics, Hospital] explode all trees     [1774] 

#16 MeSH descriptor: [Economics, Medical] explode all trees     [105] 

#17 MeSH descriptor: [Economics, Dental] explode all trees     [10] 

#18 MeSH descriptor: [Costs and Cost Analysis] explode all trees    [25219] 

#19 MeSH descriptor: [Fees and Charges] explode all trees     [506] 

#20 MeSH descriptor: [Budgets] explode all trees      [72] 

#21 MeSH descriptor: [Value of Life] explode all trees     [146] 

#22 MeSH descriptor: [Quality-Adjusted Life Years] explode all trees    [4194] 

#23 MeSH descriptor: [Quality of Life] explode all trees     [19488] 

#24 MeSH descriptor: [Models, Economic] explode all trees     [2012] 

#25 MeSH descriptor: [Markov Chains] explode all trees     [2161] 

#26 cost* or pharmacoeconomic* or pharmaco-economic* or economic* or price* or pricing* or budget* or eq5d* or 
eq-5d* or euroquol* or euroqol* or euroqual* or euro-quol* or euro-qol* or euro-qual* or finance* or financial* 
or fee or fees or "economic model*" or markov* or "quality adjusted life" or qaly* or qald* or qale* or qtime* or 
"disability adjusted life" or daly* or SF6D or "sf 6d" or "short form 6d" or shortform6d or "health* year* 
equivalent*" or hye or hyes or "health utilit*" or hui or hui1 or hui2 or hui3 or disutil* or "standard gamble*" or 
"time trade off" or time tradeoff or tto or (value near/2 money) or (value near/2 monetary) or hql or hqol or "h qol" 
or hrqol or "hr qol" or pqol or qls  (Word variations have been searched)   [94942] 

#27 Cost* near/2 (effective* or utilit* or benefit* or minimi* or evaluat* or analy* or study or studies or consequenc* 
or compar* or efficienc*)  (Word variations have been searched)    [43044] 

#28 #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20 or #21 or #22 or #23 or #24 or #25 or #26 or #27 
          [108553] 

#29 #11 and #28          [90863] 

#30 #29 in Technology Assessments       [2036] 

#31 #30 Publication Year from 1999 to 2017      [1908] 
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Appendix G  

Methodology review: search strategies 

G.1 EMBASE  

Database:  Embase Classic+Embase <1947 to 2019 March 27> 

------------------------------------------------------------------------------------------------------------- 

1      exp diagnostic test/ 

2     exp assay/ 

3      exp laboratory diagnosis/ 

4      exp molecular diagnosis/ 

5      exp in vitro study/ 

6      (assay* or biomarker* or predictor*).tw. 

7      test*.ti. 

8      1 or 2 or 3 or 4 or 5 or 6 or 7 

9      ((total or measur* or systematic or random or analytic* or preanalytic* or pre-analytic*) 

adj3 (error* or uncertain*)).tw. 

10      misclassif*.tw. 

11      (trueness or imprecision).tw. 

12     (bias or precision).ti. 

13      (biological adj2 (variation or variability)).tw. 

14      ((analytic* or preanalytic* or pre-analytic* or technical*) adj3 (goal* or perform* or valid* 

or verif*)).tw. 

15      ((limit* adj2 (detect* or blank or quantification or quantitation)) or LOD or LOB or LOQ or 

LLoQ or ULoQ).tw.  

16      9 or 10 or 11 or 12 or 13 or 14 or 15 

17      simulation*.tw. 

18      exp *Computer Simulation/ 

19      exp *Monte Carlo Method/ 

20      exp *Models, Statistical/ 

21      17 or 18 or 19 or 20 

22      methodol*.ti. 

23      8 and 16 and 21 

24      8 and 16 and 22 

25      23 or 24 

26      limit 25 to (human and yr="2008 -Current") 

------------------------------------------------------------------------------------------------------------- 
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G.2 Ovid Medline(R) 

 

 

 

Database:  Ovid MEDLINE(R) Epub Ahead of Print, In-Process & Other Non-Indexed 

Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) <1946 to 2019 

March 27> 

------------------------------------------------------------------------------------------------------------- 

1      exp Clinical Laboratory Techniques/ 

2     exp In Vitro Techniques/ 

3      exp Biomarkers/ 

4      exp diagnostic techniques, cardiovascular/ or exp diagnostic techniques, digestive system/ 

or exp diagnostic techniques, endocrine/ or exp diagnostic techniques, neurological/ or exp 

"diagnostic techniques, obstetrical and gynecological"/ or exp diagnostic techniques, 

ophthalmological/ or exp diagnostic techniques, otological/ or exp diagnostic techniques, 

radioisotope/ or exp diagnostic techniques, respiratory system/ or exp diagnostic techniques, 

surgical/ or exp diagnostic techniques, urological/ or exp diagnostic tests, routine/ 

5      (assay* or biomarker* or predictor*).tw. 

6      test*.ti. 

7      1 or 2 or 3 or 4 or 5 or 6 

8      ((total or measur* or systematic or random or analytic* or preanalytic* or pre-analytic*) 

adj2 (error* or uncertain*)).tw. 

9      misclassif*.tw. 

10      (trueness or imprecision).tw. 

11      (bias or precision).ti. 

12      (biological adj2 (variation or variability)).tw. 

13      ((analytic* or preanalytic* or pre-analytic* or technical*) adj2 (goal* or perform* or valid* 

or verif*)).tw. 

14      ((limit* adj2 (detect* or blank or quantification or quantitation)) or LOD or LOB or LOQ or 

LLoQ or ULoQ).tw. 

15      8 or 9 or 10 or 11 or 12 or 13 or 14 

16      simulation*.tw. 

17      exp *Computer Simulation/ 

18      exp *Monte Carlo Method/ 

19      exp *Models, Statistical/ 

20      16 or 17 or 18 or 19 

21      methodol*.ti. 

22      7 and 15 and 20 

23      7 and 15 and 21 

24      22 or 23 

25      limit 24 to (humans and yr="2008 -Current") 

------------------------------------------------------------------------------------------------------------- 
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G.3 Web of Science (Core Collection) 

Set Search terms 

# 13 

#12 OR #11 

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, 
ESCI Timespan=2008-2019 

# 12 #10 AND #9 AND #1 

# 11 #10 AND #8 AND #1 

# 10 #6 OR #5 OR #4 OR #3 OR #2 

# 9 TI = methodol* 

# 8 
TS = (simulation* OR "Monte Carlo simulation*" OR "computer simulation*" OR 
"statistical model*") 

# 7 
TS = ((limit* NEAR/2 (detect* OR blank OR quantification OR quantitation)) OR LOD 
OR LOB OR LOQ OR LLoQ OR ULoQ). 

# 6 
TS = ((analytic* OR preanalytic* OR pre-analytic* OR technical*) NEAR/3 (goal* OR 

perform* OR valid* OR verif*)) 

# 5 TS = (biological NEAR/2 (variation OR variability)) 

# 4 TS = (trueness OR imprecision) 

# 3 TI = (bias OR precision) 

# 2 
TS = (((total OR measur* OR systematic OR random OR analytic* OR preanalytic* 
OR pre-analytic*) NEAR/3 (error* OR uncertain*)) OR misclassif*) 

# 1 
TS = ((laboratory NEAR/2 (test* OR diagnosis)) OR (("in vitro" OR in-vitro) NEAR/2 

(technique* OR test*)) OR "biomarker*" OR "assay*" OR "predictor*") 

 

  



 
 

325 

 

G.4 BIOSIS (Citation Index) 

Set Search terms 

# 13 
#12 OR #11 

Indexes=BCI Timespan=2008-2019 

# 12 
#10 AND #9 AND #1 

Indexes=BCI Timespan=2008-2019 

# 11 
#10 AND #8 AND #1 

Indexes=BCI Timespan=2008-2019 

# 10 
#6 OR #5 OR #4 OR #3 OR #2 

Indexes=BCI Timespan=2008-2019 

# 9 
TI = methodol* 

Indexes=BCI Timespan=2008-2019 

# 8 

TS = (simulation* OR "Monte Carlo simulation*" OR "computer simulation*" OR 

"statistical model*") 

Indexes=BCI Timespan=2008-2019 

# 7 

TS = ((limit* NEAR/2 (detect* OR blank OR quantification OR quantitation)) OR LOD 
OR LOB OR LOQ OR LLoQ OR ULoQ). 

Indexes=BCI Timespan=2008-2019 

# 6 

TS = ((analytic* OR preanalytic* OR pre-analytic* OR technical*) NEAR/3 (goal* OR 
perform* OR valid* OR verif*)) 

Indexes=BCI Timespan=2008-2019 

# 5 
TS = (biological NEAR/2 (variation OR variability)) 

Indexes=BCI Timespan=2008-2019 

# 4 
TS = (trueness OR imprecision) 

Indexes=BCI Timespan=2008-2019 

# 3 
TI = (bias OR precision) 

Indexes=BCI Timespan=2008-2019 

# 2 

TS = ((total OR measur* OR systematic OR random OR analytic* OR preanalytic* OR 

pre-analytic*) NEAR/3 (error* OR uncertain*)) 

Indexes=BCI Timespan=2008-2019 

# 1 

TS = ((laboratory NEAR/2 (test* OR diagnosis)) OR (("in vitro" OR in-vitro) NEAR/2 
(technique* OR test*)) OR "biomarker*" OR "assay*" OR "predictor*") 

Indexes=BCI Timespan=2008-2019 

 

 

 



 
 

326 

 

Appendix H  

Error “stripping” example 

The total imprecision of a test (𝐶𝑉𝑇) may be described as comprising of three core 

components: within-individual biological variation (𝐶𝑉𝐼), pre-analytical variation 

(𝐶𝑉𝑃𝑟𝑒−𝐴), and analytical variation (𝐶𝑉𝐴) (127). In this case, 𝐶𝑉𝑇 can be described 

as per Equation H.1 below: 

𝐶𝑉𝑇 = √𝐶𝑉𝐼
2 + 𝐶𝑉𝑃𝑟𝑒−𝐴

2 +  𝐶𝑉𝐴
2
  (H.1) 

To isolate the “pure biologic distribution”, free of pre-analytical and analytical 

variation, these components of imprecision can be removed or “stripped” from the 

estimate of total imprecision, to leave the within-individual biological variation 

(127). Suppose, for example, that quality assurance data indicates that total 

imprecision for a given test is equal to 12.3%, and the individual components of 

pre-analytical and analytical variation are equal to 5.9% and 2.9% respectively. 

𝐶𝑉𝐼  can then be calculated as per Equation H.2:   

𝐶𝑉𝐼 = √𝐶𝑉𝑇
2 − 𝐶𝑉𝑃𝑟𝑒−𝐴

2 −  𝐶𝑉𝐴
2     (H.2) 

Substituting our estimated values we have: 

𝐶𝑉𝐼 = √12.32 − 5.92 −  2.92 = 10.39              (H.3) 

This value can then be used to inform the distribution of “true” measurand values.  
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Appendix I  

Parametric sampling method 

I.1 AIC and BIC results for alternative right-censored data 

regions 

For the NICE FC pathway evaluation, Table I-1 and Table I-2 show the AIC and 

BIC results for the simulated parametric FC1 distributions for each population, 

using the alternative upper bounds for the right-censored data region of 2,000 

and 3,000 μg/g respectively.  

Similarly for the YFCCP evaluation, Table I-3 and Table I-4 show the AIC and 

BIC results for the simulated parametric FC1 and FC2 distributions for each 

population, using the alternative upper bounds for the right-censored data region 

of 2,000 and 3,000 μg/g respectively.  
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Table I-1. NICE FC pathway: AIC and BIC criteria for FC1 parametric distributions (upper bound for right-censored FC 
data region = 2,000 μg/g) 

Subgroup Parameterisation AIC BIC 

% values ≥ 50 

μg/g  

(simulated data) 

% values ≥ 50 μg/g  

(YFCCP FC1 data) 

IBS FC1 

Lognormal   8575.469 8585.013 45.6% 

40.3% 
Weibull   8723.379 8732.923 49.1% 

Gamma   8779.891 8789.435 48.1% 

Normal   10375.29 10384.83 61.9% 

IBD FC1 

Lognormal  565.9061 570.6195 98.6% 

96.2% 
Weibull   551.4574 556.1708 97.5% 

Gamma   553.3666 558.08 97.4% 

Normal  568.471 573.1845 92.5% 
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Table I-2. NICE FC pathway: AIC and BIC criteria for FC1 parametric distributions (upper bound for right-censored FC 
data region = 3,000 μg/g) 

Subgroup Parameterisation AIC BIC 

% values ≥ 50 

μg/g  

(simulated data) 

% values ≥ 50 μg/g  

(YFCCP FC1 data) 

IBS FC1 

Lognormal   8573.435 8582.979 45.7% 

40.3% 
Weibull   8723.341 8732.885 49.1% 

Gamma   8779.891 8789.434 48.1% 

Normal   10375.29 10384.83 61.9% 

IBD FC1 

Lognormal   554.2693 558.9827 97.9% 

96.2% 
Weibull   545.3042 550.0176 96.8% 

Gamma*   - - - 

Normal   568.4071 573.1205 92.2% 

*For the IBD FC1 population, the MLE estimation would not converge for the Gamma specification in this analysis, so no results are provided for this 
parameterisation in this population. 
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Table I-3. YFCCP: AIC and BIC criteria for FC1 and FC2 parametric distributions (upper bound for right-censored FC 
data region = 2,000 μg/g) 

Subgroup Parameterisation AIC BIC 

% values ≥ 100 

μg/g  

(simulated data) 

% values ≥ 100 μg/g  

(YFCCP data) 

IBS 

FC1 

Lognormal   8575.469 8585.013 23.8% 

19.7% 
Weibull   8723.379 8732.923 28.4% 

Gamma   8779.891 8789.435 30.5% 

Normal   10375.29 10384.83 47.0% 

FC2 

Lognormal   1904.728 1911.023 44.4% 

40.7% 
Weibull   1921.202 1927.497 50.1% 

Gamma   1925.586 1931.881 52.4% 

Normal   2134.02 2140.315 63.7% 

IBD 

FC1 

Lognormal   565.9061 570.6195 94.8% 

93.6% 
Weibull   551.4574 556.1708 92.8% 

Gamma   553.3666 558.08 93.5% 

Normal   568.471 573.1845 90.0% 

FC2 

Lognormal   568.1996 572.4859 95.5% 

100% 

Weibull   570.6714 574.9577 92.7% 

Gamma   569.4821 573.7684 93.9% 

Normal   588.505 592.7913 90.4% 

Normal   588.505 592.7912 89.4% 
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Table I-4. YFCCP: AIC and BIC criteria for FC1 and FC2 parametric distributions (upper bound for right-censored FC 
data = 3,000 μg/g) 

Subgroup Parameterisation AIC BIC 

% values ≥ 100 

μg/g  

(simulated data) 

% values ≥ 100 μg/g  

(YFCCP data) 

IBS 

FC1 

Lognormal   8573.435 8582.979 23.9% 

19.7% 
Weibull   8723.341 8732.885 28.5% 

Gamma   8779.891 8789.434 30.5% 

Normal   10375.29 10384.83 45.1% 

FC2 

Lognormal   1903.045 1909.34 45.5% 

40.7% 
Weibull   1921.075 1927.37 49.2% 

Gamma   1925.557 1931.852 53.0% 

Normal   2134.02 2140.315 62.7% 

IBD 

FC1 

Lognormal   554.2693 558.9827 93.9% 

93.6% 
Weibull   545.3042 550.0176 92.6% 

Gamma   - - - 

Normal   568.4071 573.1205 90.0% 

FC2 

Lognormal   564.8118 569.0981 95.1% 

100% 
Weibull   570.0538 574.3401 92.0% 

Gamma   568.4333 572.7196 93.3% 

Normal   588.505 592.7912 89.4% 

*For the IBD FC1 population, the MLE estimation would not converge for the Gamma specification in this analysis, so no results are provided for this parameterisation in this 
population. 
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I.2 Parametric sampling method – density plots 

Figure I-1 and Figure I-2 show the density plots for 10,000 simulations from each 

of the parametric distributions explored within the parametric method base case, 

across four patient-test subgroups (IBD FC1, IBS FC1, IBD FC2 and IBS FC2). 

The probability density based on the underlying YFCCP data is shown by the 

solid black line in each figure, with the alternative parametric distributions 

illustrated by the various coloured lines. Note that for the sake of illustration left- 

and right-censored data values in the YFCCP dataset have again been set equal 

to 10μg/g and 600 μg/g respectively. This results in secondary ‘peaks’ at the 600 

mark, most noticeable in the FC2 distributions, as a result of the large proportion 

of right-censored data within the YFCCP dataset: these peaks are artificial 

however, since in reality these censored values would be spread across the 

upper measurement range, as in the simulated parametric distributions 

accounting for censoring.  
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Figure I-1. FC1 values: density plot of parametric distribution fits for IBS 
and IBD populations 
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Figure I-2. FC2 values: density plot for parametric distribution fits for IBS 
and IBD populations 
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I.3 Example R code for parametric sampling method 

#Example code for fitting distributions to censored data using the R 'fitdistrplus' package, 
using a simulated (hypothetical) dataset. 

 

#----------------- Set up code ---------- 

#Set working directory for storing plots: 

setwd("insert\\file\\pathname") 

 

#Load required packages: 

if (!require("fitdistrplus"))   install.packages("fitdistrplus");    library("fitdistrplus") 

 

#Set random number seed: 

set.seed(10) 

 

#-------------- Generate a hypothetical dataset of lognormally distributed data -------------- 

 

#Calculate lnorm parameters based on natural mean = 80 and SD = 100: 

mean <- 80 

sd <- 100 

meanlog <- log(mean^2/ sqrt(sd^2 + mean^2)) 

sdlog <- sqrt(log(1 + (sd^2/ mean^2))) 

print(meanlog); print(sdlog) 

 

#Simulate dataset: 

data <-  rlnorm(n=1000, meanlog, sdlog) 

data <- as.data.frame(data) 

 

#Inspect data: 

head(data) 

hist(data[,1], breaks=100) 

min(data[,1]); max(data[,1]) 

 

#Generate a new data column, with values <10 reset to character value "<10", and values >600 
rest to ">600": 

data[,2] <- data[,1] 

colnames(data) <- c("complete", "cens_character") 

data$cens_character[data$complete < 10]  <-  "<10" 

data$cens_character[data$complete > 600] <-  ">600" 

 

#Generate a final data column, with any censored values set to a temporary numerical value 
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#In this case, left-censored values are set to 5, and right-censored values are set to 650 

#These temporary numerical values are used as placeholders only.  

data[,3] <- data$complete 

colnames(data) <- c("complete", "cens_character", "cens_numerical") 

data$cens_numerical[data$complete < 10]  <-  5 

data$cens_numerical[data$complete > 600] <-  650 

 

#Check the replacement worked: 

data$cens_numerical[data$complete < 10]  

data$cens_numerical[data$complete > 600]  

 

#-------------- Parametric fitting code -------------- 

#To use fitdistr for censored data the data needs to be in the appropriate format: 

#Two columns are required - 'left' and 'right'. 

#Left defines the left (i.e. lower) boundary of the censored data region.  

#Right defines the right (i.e. upper) boundary of the censored data region.  

#For complete data, left and right are set equal to the numerical value observed.  

 

data$left <- data$cens_numerical 

data$right  <- data$cens_numerical 

 

#Left-censored data lie somewhere between 0 and 10, so replace left with 0, right with 10: 

data$left[data$cens_numerical==5]     <- 0                

data$right[data$cens_numerical==5]   <- 10 

 

#Right-censored data lie somewhere above 600. So left = 600, right =NA, or a defined upper 
boundary.  

#In this case use an upper bound for the right-censored data region of 1000: 

data$left[data$cens_numerical==650]   <- 600 

data$right[data$cens_numerical==650]  <- 1000    

 

#---- Run the fitdistcens code 

temp  <- data.frame(data$left, data$right) 

colnames(temp) <- c("left", "right") 

 

#Plot CDF of censored data (turnbull plot) 

#plotdistcens(temp) 

 

fit_norm    <- fitdistcens(temp, "norm")     #;summary(fit_norm) 

fit_ln      <- fitdistcens(temp, "lnorm")    #;summary(fit_ln) 
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fit_gamma   <- fitdistcens(temp, "gamma")    #;summary(fit_gamma) 

fit_weib    <- fitdistcens(temp, "weibull")  #;summary(fit_weib) 

#Note: summary code provides the AIC and BIC values for each model 

 

#---- Simulate parametric distributions using the estimated distributional parameters 

Nsim <- 10000 

sim_norm    <- rnorm   (Nsim,  mean=    fit_norm$estimate[1],  sd=    fit_norm$estimate[2]) 

sim_lnorm   <- rlnorm  (Nsim,  meanlog= fit_ln$estimate[1],    sdlog= fit_ln$estimate[2]) 

sim_gamma   <- rgamma  (Nsim,  shape=   fit_gamma$estimate[1], rate=  fit_gamma$estimate[2]) 

sim_weib    <- rweibull(Nsim,  shape=   fit_weib$estimate[1],  scale= fit_weib$estimate[2]) 

 

#---- Plot frequency density distributions 

tiff(filename="temp.tiff", units="in", width=10, height=7, res=300)  

plot (density(data$complete), lwd=2, xlim=c(-200,1500), main="", xlab="Test values", 
ylab="Density") 

lines(density(sim_gamma), col="seagreen2",   lty="longdash", lwd=3) 

lines(density(sim_weib),  col="purple",      lty="twodash",  lwd=3) 

lines(density(sim_lnorm), col="deepskyblue", lty="dotdash",  lwd=3) 

lines(density(sim_norm),  col="gold2"      , lty="dotted",   lwd=3) 

legend(600,0.012, legend=c("Raw data", "Gamma fit", "Weibull fit", "Lognormal fit", "Normal fit"), 
col=c("black", "seagreen2", "purple", "deepskyblue", "gold2"), lty=c("solid", "longdash", 
"twodash","dotdash","dotted"), lwd=c(2,2,2,2,2), cex=1.2) 

dev.off() 

 

  



 
 

338 

 

Appendix J  

Results: “noisy” contour plots  

The plots below provide “noisy” versions of each of the base case contour plots 

reported in the simulated diagnostic accuracy results sections (sections 5.3.2.2.1 

and 5.4.2.2.1). These relate to the raw simulation results, in which the smoothing 

algorithm applied within the base case contour plots has been removed (i.e. 

sensitivity analyses 1.7 and 2.8 as described in Table 5-3; and sensitivity 

analyses 1.8 and 2.9 as described in Table 5-9).  
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Figure J-1. NICE FC pathway: diagnostic accuracy contour plots (no 
smoothing algorithm applied) 
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Figure J-2. NICE FC pathway: contour plots showing acceptable region (for 
diagnostic accuracy requirement: sensitivity ≥0.88, specificity ≥0.56) and TE 
bands (no smoothing algorithm applied) 
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Figure J-3. YFCCP: diagnostic accuracy contour plots (no smoothing 
algorithm applied) 
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Figure J-4. YFCCP: contour plots showing acceptable region (for diagnostic 
accuracy requirement: sensitivity ≥0.85, specificity ≥0.9) and TE bands (no 
smoothing algorithm applied) 
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Figure J-5. YFCCP: contour plots showing acceptable region (for diagnostic 
accuracy requirement: sensitivity ≥0.75, specificity ≥0.8) and TE bands (no 
smoothing algorithm applied) 
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Appendix K  

FCdiff distributions 

K.1 Bootstrap sampling method 

Figure K-1 presents the FCdiff distributions for the IBS and IBD populations, based 

on FCdiff values calculated from the YFCCP dataset FC1 and FC2 values [FCdiff 

= (FC2-FC1)/FC1)]. These empirical distributions were used in the bootstrap 

method FCdiff sensitivity analysis described in section 5.4.1.2.1. 

 

Figure K-1. FCdiff count plots 

K.2 Parametric sampling method 

Figure K-2 and Figure K-3 show the FCdiff density plots based on 10,000 draws 

from each of the parametric distributions explored within the FCdiff sensitivity 

analysis described in section 5.4.1.2.2. Note that, whereas Figure K-1 above 

reports the FCdiff empirical values on their natural scale (spanning from -1 to 

infinity), Figure K-2 and Figure K-3 report the parametric distributions fitted to the 

adjusted FCdiff values (i.e. in which +1 has been applied to all of the FCdiff values).  
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Figure K-2. IBS FCdiff values: density plot for parametric distribution fits  

 

 

Figure K-3. IBD FCdiff values: density plot for parametric distribution fits  
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Appendix L  

FC cost-utility model parameters 

Table L-1. FC cost-utility model: model parameters 

Parameter 
Value in 
model 

Source 

Global parameters 

Time horizon 1 year - 

Discount rate NA - 

IBD prevalence 8% YFCCP dataset 

Diagnostic accuracy 

YFCCP sensitivity 94% 
YFCCP dataset 

YFCCP specificity 92% 

No FC (Tibble data) 
sensitivity 

35% 

Tibble et al. (2002) (218) 
No FC (Tibble data)  
specificity 

73% 

No FC (NICE data)  
sensitivity 

100% 

Waugh et al. (2013) (220) 
No FC (NICE data)  
specificity 

79% 

YFCCP (50 μg/g cut-off 
applied) sensitivity [NICE FC 
Pathway] 

96% YFCCP dataset 

YFCCP (50 μg/g cut-off 
applied) specificity [NICE FC 
Pathway] 

60% YFCCP dataset 

FC testing (Tibble data) 
sensitivity 

90% 

Tibble et al. (2002) (218) 
FC testing (Tibble data) 
specificity 

80% 

FC testing (NICE data) 
sensitivity 

93% 

Waugh et al. (2013) (220) 
FC testing (NICE data) 
specificity 

94% 

Unit Costs 

GP visit £37 
PSSRU, unit costs of health and social 

care 2018 (309) 

Calprotectin test £24 

NICE MIB 132 (costs inflated to 
2017/18 using PSSRU inflation index) 

(310) 

Specialist visit £155 

NHS reference costs 2017-18, 
consultant led gastroenterology 

outpatient attendance (311) 
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Colonoscopy £264 

NHS Reference costs 2017-18, 
Outpatient colonoscopy without biopsy 

(311) 

IBS first line medication £22 Drug tariff, July 2017 

IBS second line medication £77 Calculated from Drug tariff, July 2017 

ESR + CRP test (positive 
test) 

£5.85 
NICE MIB 132 (Costs inflated to 

2017/18 using PSSRU inflation index) 
(310) 

ESR + CRP test (negative 
test) 

£9.28 

NICE costing template for Faecal 
calprotectin, 

https://www.nice.org.uk/guidance/dg11
/resources 

Utilities 

Untreated IBS 0.68 NICE CG61, Appendix G (214) 

Treated IBS 0.81 NICE CG61, Appendix G (214) 

Untreated Crohn’s Disease 0.61 
NICE CG152, Appendix H (since 
updated by NICE NG129) (215) 

Treated Crohn’s Disease 0.88 
NICE CG152, Appendix H (since 
updated by NICE NG129) (215) 

Untreated Ulcerative Colitis 0.32 NICE TA163 (2008) (312) 

Treated Ulcerative Colitis 0.79 NICE TA163 (2008) (312) 

Proportion IBD Crohn’s 
Disease 

39% Turvill et al. 2018 (239) 

Timings (days) 

YFCCP intervention arm 

GP visit (initial) 14 Clinical advice 

Calprotectin test (initial) 2 Clinical advice 

GP follow-up (for positive 
screening) 

7 Clinical advice 

GP follow-up (for negative 
screening) 

18 Clinical advice 

Calprotectin re-test (for 
positive screening) 

18 Turvill et al. (2018) (239) 

Calprotectin re-test (for 
negative screening) 

0 Turvill et al. (2018) (239) 

Specialist visit (for positive 
screening) 

0 Clinical advice 

Colonoscopy (for positive 
screening) 

25 Turvill et al. (2018) (239) 

GP visit (for negative 
screening, unresolved 
symptoms) 

30 Clinical advice 

Specialist visit (for negative 
screening, following 
unresolved symptoms) 

42 Clinical advice 
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Colonoscopy (for negative 
screening, following 
unresolved symptoms) 

42 Clinical advice 

No FC comparator arms (where different to intervention) 

ESR + CRP test (for No FC 
testing comparators) 

1 Clinical advice 

Specialist visit (for positive 
screening, following GP 
referral) 

21 Clinical advice 

Colonoscopy (for positive 
screening, following GP 
referral) 

39 Clinical advice 

GP follow-up (following 
negative GP assessment) 

14  

Proportions 

FC arms only: calprotectin 
re-test (for negative 
screening) 

20% Clinical advice 

IBS medication (for negative 
screening) 

50% Clinical advice 

Returning to GP with 
unresolved symptoms (for 
negative screening, true 
negatives) 

20% YFCCP dataset 

Returning to GP with 
unresolved symptoms (for 
negative screening, false 
negatives) 

100% YFCCP dataset 

Second line IBS medication 
(for negative screening, true 
negatives) 

13% 

Clinical advice, 65% of patients with 
unresolved symptoms after first line 
will be prescribed second line IBS 

medication 

Second line IBS medication 
(for negative screening, false 
negatives) 

33% Clinical advice 

Additional GP visit (for 
negative screening, true 
negatives) 

0% Assumption 

Additional GP visit (for 
negative screening, false 
negatives) 

100% Clinical advice 

Additional specialist visit (for 
negative screening, true 
negatives) 

7.5% YFCCP dataset 

Additional specialist visit (for 
negative screening, false 
negatives) 

100% Clinical advice 

Colonoscopy (for negative 
screening, true negatives) 

2.9% 
Clinical advice - 38% of patients 

referred with a negative screening for 
IBD will have  colonoscopy 

Colonoscopy (for negative 
screening, false negatives) 

100% Clinical advice 
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Appendix M  

Example EQA report from the UK NEQAS EQA scheme for FC 

An example EQA report from the UK NEQAS EQA scheme for FC (run by the 

Birmingham Quality group) is provided below. This is an anonymised version of 

the EQA report (i.e. all laboratory-identifiable data has been removed), which was 

produced for distribution #167 (distributed in May 2018) and was downloaded 

from the Birmingham Quality website in December 2019 (230).  
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Appendix N  

RWE analysis 

N.1 FC density plots 

Figure N-1 shows the population density plots for FC1 values used within the 

RWE analysis. Plots A and B illustrate the IBS and IBD populations in the base 

case analysis (setting censored FC data equal to their respective limits), and plots 

C and D illustrate the IBS and IBD populations in the sensitivity analysis (setting 

censored FC data equal to the EQA median estimates as outlined in Table 7-2). 

The solid black line in each plot illustrates the density of FC1 values based on 

the bootstrapped YFCCP dataset, with notable peaks occurring at 600 μg/g (in 

plots A and B) and 915 μg/g (in plots C and D) due to all right-censored 2BU data 

being set equal to these values within the base case and sensitivity analyses 

respectively. The dashed light green line illustrates the FC1sim values generated 

for the 4BU assay within the error model simulation, and the dotted purple line 

illustrates the FC1sim values generated for the 2KO2 assay. Figure N-2 provides 

the same plots but for the FC2 values.  
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Figure N-1. RWE analysis: FC1 density plots 
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Figure N-2. RWE analysis: FC2 density plots 
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N.2 Post-hoc sensitivity analysis 

Figure N-3 provides the FC1 density plots for the post-hoc sensitivity analysis 

(i.e. excluding the two extreme FC values discussed in section 7.5.1); whilst  

Figure N-4 provides the FC2 density plots for the same analysis. Comparison of 

these figures with the corresponding plots provided in section N.1 above, 

illustrates the significant impact that removal of the two extreme 2KO2 values has 

in terms of the simulated 2KO2 FC distributions. This difference is particularly 

noticeable within the IBS population FC1 and FC2 distributions.  

Table N-1 provides the results of the RWE post-hoc sensitivity analysis for the 

2KO2 method.  

Figure N-5 provides the results of the bias correction exercise for the post-hoc 

sensitivity analysis, based on applying a fixed absolute correction value; and 

Figure N-6 provides the corresponding results of the bias correction exercise 

applying a proportional correction factor. The results are discussed in the main 

thesis text (see section 7.5.2). Note that for the proportional correction factor 

exercise, the range of factors simulated was shifted (from 1.0 to 2.5 in 0.05 

increments in the base case) to 2.0 to 3.5 in 0.05 increments: this is due to the 

fact that based on initial simulations, it was found that higher proportional 

correction factors were required in order to capture the points of highest 

diagnostic yield and closest match to the 2BU assay results. 
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Figure N-3. RWE analysis: FC1 density plots for the post-hoc sensitivity analysis 
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Figure N-4. RWE analysis: FC2 density plots for the post-hoc sensitivity analysis 
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Table N-1. YFCCP RWE analysis: outcome results for 2KO2 method, including the post-hoc sensitivity analysis 

FC assay method 

Diagnostic accuracy  Cost-effectiveness 

Sensitivity Specificity Cost QALY NMB 

INMB (£) 

YFCCP [2BU] 

vs. comparator 

EQA analysis results 

YFCCP [2KO2] base case 0.655 0.828 £246 0.7869 £15,493 £88 

YFCCP [2KO2] post-hoc 
sensitivity analysis 

0.622 0.957 £201 0.7876 £15,551 £30 

FC cost-utility model diagnostic accuracy inputs and cost-effectiveness outputs (for reference) 

YFCCP [2BU] intervention  0.938 0.920 £212 0.7896 £15,581 - 

No FC (Tibble data) 0.350 0.730 £259 0.7836 £15,412 £169 

No FC (NICE data) 1.000 0.790 £232 0.7879 £15,526 £55 

FC testing (YFCCP, 50 μg/g cut-
off) 

0.960 0.600 £314 0.7836 £15,359 £222 

FC testing (Tibble data) 0.900 0.800 £245 0.7860 £15,474 £107 

FC testing (NICE data) 0.930 0.940 £197 0.7880 £15,562 £19 
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Figure N-5. RWE analysis: plot of absolute correction value vs. diagnostic 
accuracy for 2KO2 FC assay (post-hoc sensitivity analysis results) 

 

 

Figure N-6. RWE analysis: plot of proportional correction factor vs. 
diagnostic accuracy for 2KO2 FC assay (post-hoc sensitivity analysis 
results) 


