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Abstract

‘Soft’ colloids are typically micron or sub-micron scale structured ob-

jects such as polymer microgels, which consist of chemically cross-

linked polymer networks that are compressible and deformable. Ex-

periments suggest that at packing ratios where the structural dynam-

ics of hard colloids are arrested, a soft colloid system may still be able

to flow as a consequence of cage-breaking due to particle deformation.

However, the link between the detailed elastic properties of soft col-

loids and the resulting dynamics are presently not well understood.

Soft packed colloids show rich and complex rheological and flow be-

haviour and it is important to derive the links between the single

particle elastic properties and the resulting suspension’s behaviour.

The simulations described in this thesis utilise a recently developed

computational algorithm, Fluctuating Finite Element Analysis, for

simulating viscoelastic objects undergoing thermal excitation. This

approach captures the detailed shape deformations of the colloidal

particles allowing the structure of the objects as well as the effect of

anisotropic deformation to be considered.

I apply Fluctuating Finite Element Analysis to soft colloidal systems,

investigating the effects of varying effective volume fraction and ma-

terial parameters on the dynamics, structure and rheology of both



thermally diffusing and linearly sheared soft colloidal systems. Ad-

ditionally, I present results of an experimental rheology investigation

of ultrasoft polymer microgels, and compare to sheared simulation

results.

I find evidence of a diffusive regime between cages in all quiescent

simulations, and frustration of long rage ordering. I find the struc-

tural modulus of systems depends on the volume fraction, while mean

squared displacement does not. Applying shear, I find a relationship

between the diffusion timescale of the system and the timescale at

which the system yields and layers. I find that shear response is sim-

ilar to less expensive simulation techniques, and does not reproduce

ultrasoft behaviour.
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Chapter 1

Introduction

1.1 What is a colloid?

The simplest definition of a colloidal mixture is a phase suspended in another

phase, where a discrete unit of the suspended phase typically has a size between

1nm and 1µm. We primarily discuss colloidal suspensions, discrete particles sus-

pended in a liquid, and use the term colloid to refer to these particles. These occur

in many places in every day life - in products, and biology - blood, toothpaste

and ink to drug delivery, oil recovery and photonics. They are also often used

in research laboratories as models for phases of matter, as large scale analogies

to both atomic and molecular crystals and glasses. This size range means that

quantum effects do not need to be considered, outside of their role in chemical

or charge interactions. Their size range also means they are typically thermally

active and undergo Brownian motion.

Colloids are often described as ‘hard’ or ‘soft’. Soft colloids are capable of

deformation and/or compression, while hard colloids are assumed to be incom-
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1. INTRODUCTION

pressible and have a fixed shape. Additionally, colloids may be characterised by

long range interactions which typically have a repulsive and/or attractive compo-

nent. In hard sphere colloids, short time motion is diffusive rather than ballistic.

Hydrodynamics can couple particle motion in complex ways (Di Cola et al., 2009).

Colloids are usually spherically symmetric, and when practically created almost

always slightly polydisperse (have a distrubution of sizes).

1.2 Diffusion

A key concept to introduce is diffusion, or more precisely ‘self diffusion’, which

acts to set the rate of dynamics in colloids. Let x(t) be the position of a colloid

at time t in a quiescent fluid. Although there is no large scale motion, individual

colloids will be subject to random, uncorrelated collisions with solvent molecules,

causing a displacement ∆r = x(t+τ)−x(t) after a time lag τ . The average particle

displacement 〈∆r〉 is zero. However, the mean square displacement (MSD):

〈∆r2〉 = 〈(x(t+ τ)− x(t)) · (x(t+ τ)− x(t))〉 (1.1)

where 〈〉 indicates an average over all particles and all initial times t for a time

lag τ . For an isolated spherical particle of radius R in a solvent of viscosity η,

the MSD is:

〈∆r2〉 = 6Dτ (1.2)
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1.2 Diffusion

(a) (b) (c)

Figure 1.1: Schematic representation of cage-breaking or rearrangement through
collective motion of hard particles. Note that the cage must break entirely and
particles experience significant change in their centroid position.

For free diffusion, with no other colloids or hindrances in the suspension, MSD

grows linearly with τ . Here D is given by

D =
kBT

6πηR
, (1.3)

the Stokes-Einstein-Sutherland equation, where kB is Boltzmann’s constant and

T is the system temperature (Einstein, 1905). This sets the diffusive timescale

τD = R2

6D
, or the average time needed for a particle to diffuse its own radius. As

the concentration of colloids increases they begin to sterically confine each other.

A colloidal glass occurs when the proportion of the continuous medium is

reduced such that relative motion of the colloids is strongly hindered by inter-

particle interactions. In a concentrated hard-sphere colloid, movement of the

colloids past each other requires a rearrangement of the nearest neighbours of

the colloid, referred to as ”cage-breaking”, which in turn requires those neigh-

bours to break their cages, shown schematically in Figure 1.1. Cage breaking

therefore requires collective movement of multiple particles, which under thermal

fluctuations may be unlikely or even virtually impossible. However, if the parti-
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(a) (b) (c)

Figure 1.2: Schematic representation of cage-breaking or rearrangement through
collective motion of soft particles. Note that few of the caging particles experience
significant change in their centroid positions.

cles are soft, rearrangement may require much less displacement of neighbouring

particles as each particle can elastically deform (Mattsson et al., 2009; Rahmani

et al., 2012). Colloids are structured objects and can be deformable, which may

facilitate cage-breaking through deformation allowing lower required movement

per colloid (shown schematically in Fig. 1.2) and altering properties in shear flow

(Rahmani et al., 2012).

The effects of steric hindrance can be observed in the MSD. At short times the

MSD grows linearly, but as the colloids feel a caging effect their MSD will begin

to plateau, as they are prevented from moving beyond their local cage. If they

are entirely trapped, this plateau will continue indefinitely, but if they are able

to rearrange, a second diffusive regime will occur at longer timescales after the

plateau, as the colloids enter a diffusive regime between cages. For hard colloids,

these cages will become kinetically arrested at high enough volume fraction, but

as soft colloids can compress and deform, they may continue to rearrange even
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at very high volume fractions. This is a key question we wish to study - to what

extent does the ability of our colloids to compress and deform allow rearrangement

at high volume fraction and how does this affect dynamics and structure?

1.3 Hard and soft colloids

Hard sphere colloids are defined as having an excluded-volume interaction poten-

tial:

U(r) =


∞, if r ≤ 2R

0, if r > 2R

(1.4)

where R is the sphere radius and r is the distance between their centres. When

practically implemented for simulations or modelling this is usually softened

slightly, with a slight ramp up to allow for numerical stability(Hirschfelder, 1939).

If no other interactions are present in the system, the only variable that can

affect the dynamics is the volume fraction φ (Hoover & Ree, 1967):

φ =
V0

VSystem
(1.5)

where V0 is the volume of the colloids and VSystem is the volume of the system.

For a monodisperse system, where all colloids are the same size, V0 = nVColloid

where n is the number of colloids and VColloid is the volume of each colloid.

The phase diagram for hard spheres is shown in Figure 1.3. The particle size

may affect the rate of system evolution due to diffusion, but does not affect the

phase diagram. At volume fractions φ below 0.494, the suspension is a liquid.

Above this we may have supercooled or glassy states, which involves increasing
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φ fast enough to prevent crystallisation. Between φ = 0.494 and 0.58, we have

a super cooled state, and between 0.58 and the limit of random close packing,

0.64, a glassy state is possible (Hunter & Weeks, 2012). To achieve a glassy state

requires somewhat polydisperse colloids (with a distribution of sizes) to frustrate

crystallisation (Pusey et al., 2009). Glasses can be characterised as solids that lack

long range order. While crystals have a Bragg diffraction signal, glasses do not.

Short range order may be present but bulk crystallisation is frustrated. From 0.64

to 0.74, samples must be partially crystallised. Volume fractions above 0.74 must

again have some amount of polydispersity, as 0.74 is the limit of monodisperse

close packing in the form of hexagonal close packing.

(a)

Figure 1.3: Phase diagram of monodisperse hard spheres as a function of volume
fraction φ. Equilibrium states are indicated by solid arrows while dashed ar-
rows are non-equilibrium states. Glassy states require at least 8% polydispersity.
Image reproduced from Hunter & Weeks (2012).

In soft colloids it is possible to exceed this random packing threshold due to

the deformability and compressibility of the particles. For this reason it is usful

to define a modified volume fraction for compressible objects (Mattsson et al.,
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2009):

ζe =
nV0

VTot
, (1.6)

where n is number of particles and V0 is the uncompressed, undeformed volume of

each colloid, assuming they are monodisperse. This volume fraction may exceed

unity. Mattsson et al. (2009) find that varying this at a steady temperature

affects the fragility of the system in a manner similar to varying temperature

in a molecular glass (where a lower temperature would lead to an increase in

viscosity), and therefore the study of these systems may provide greater insight

into glass formation in general. Fragility of the glass refers to its sensitivity to a

change in temperature or particle concentration at the glass transition, and the

disruption or rearrangement due to changes to the local environment.

Real examples of colloids are unlikely to have a true spherical form that fully

excludes volume at all radii (Royall et al., 2013). This is often dealt with by defin-

ing an effective radius, such as the radius of gyration, or an effective interparticle

potential, that is softer than for hard colloids, which we will discuss later. When

used as practical model systems, these are often treated in ways that sterically

stabilise them, or the solvent is chosen to minimise the effects of gravity, which

can be relevant.

Both hard and soft colloids can interact through steric, attractive and re-

pulsive interactions, and these can be localised to specific sites on the colloid.

Attractive interactions include Van der Waals or osmotic interactions. Repul-

sive interactions include steric interactions, charge, osmotic interactions, or mag-

netism.

Caging behaviour can actually be stronger for a highly packed soft system than
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in a hard particle system(Romeo et al., 2012). Average particle displacement may

be lower as each particle can deform to move a smaller distance out of the way,

but a result of this is that movement can be coordinated in collective strings of

highly displaced fast particles. In general soft glassy systems exhibit coordinated

motion with significantly longer lengthscales, spanning the whole system, whilst

having much shorter relaxation timescales(Rahmani et al., 2012). This suggests

soft colloidal glasses are dynamically distinct from hard colloids.

When discussing interactions of soft colloids, an additional complication is

present in that the word soft can have multiple meanings. Simulations of soft

colloids often use spherically symmetric potentials, running from simple 1
rn

po-

tentials where smaller values of n correspond to softer colloids, to Hertzian-derived

potentials that take faceting into account and that are modified to consider elec-

trohydrodynamics. However, softness in experimental colloids may be more com-

plex, with multiple meanings of softness (De Michele et al., 2011; Mattsson et al.,

2009) and with the difficulty of arriving at a simple measure for deformation due

to multiple contacts (Höhler & Weaire, 2019). For some systems softness can be

defined from experimental elastic moduli measured for spherical colloidal parti-

cles, but is more complex for other structures such as star polymers, that do not

map easily onto traditional spherical models, especially when undergoing forcing.

1.3.1 Polymer microgels

Polymer microgels are a common form for both hard and soft colloids. Their in-

ternal structure arises from five inter-molecular forces(Sierra-Martin et al., 2011);

Van der Waals, hydrophobic interactions, hydrogen bonding, electrostatic inter-
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actions, and osmotic pressure due to the presence of ions/counter ions introduced

during creation of the polymer. These interactions can be altered and there-

fore swelling can be controlled by the choice of solvent(Perry, 1987). Hydrogen

bonds break at higher temperatures, causing deswelling which can be discontin-

uous(Shenoy et al., 1999). Hydrophobic interactions increase in strength with

temperature, but actually drive deswelling themselves, as the polymer seeks to

minimise exposed surface area. However, this is a weak interaction. Electrostatic

groups may interact with each other, but the primary source of swelling due to

the presence of electrostatic regions is osmotic pressure. As these all depend on

distance between each polymer strand, the structure of each microgel may affect

the elastic response. For example, Stieger et al. (2004) find a flat density profile in

a dense core that then decays gradually to the outer limit of the particle, though

they can be made more homogeneously crosslinked (Witte et al., 2019). Sim-

ulating these microgels as continuum objects may require these discontinuities

and density profiles to be taken into account. These interactions are common

amongst a wide variety of colloids.

It is also possible to use a broad variety of experimental techniques to study

these systems, as the time and length scales can be experimentally accessible - a

particle with µm diameter can diffuse its own diameter in approximately a second,

which makes observation tractable for optical microscopy and light scattering.

1.4 Experimental characterisation

Common experimental techniques used to explore the dynamics and structure

of soft colloidal systems are: optical microscopy, including video microscopy,
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confocal microscopy and particle tracking; static and dynamic light scattering;

and rheology.

In video microscopy, a camera is attached to a microscope and used to capture

images, which are then stored for later analysis. Common forms of microscopy

include brightfield and fluorescence microscopy. Brightfield microscopy functions

through scattering or absorption of light by the the sample for image contrast.

As this depends on the optical properties of the sample, dyes or related tech-

niques that aim to improve contrast may need to be used. As a traditional

microscope illuminates the entire sample and therefore has difficulty resolving

three dimensional motion, this technique is easiest to implement in the study of

two-dimensional samples.

Fluorescence microscopy is is similar, but the sample is tagged with a fluores-

cent dye, and high energy light is used to illuminate the sample, which excites the

dye and emits light at a lower wavelength. An advantage of this is that specific

objects can be tagged, such as the colloids in a suspension, or a particular kind

of colloid, if the suspension is a mixture. However the introduction of this sort

of dye can have issues. As the dye is expected to interact with some part of

the system, it naturally can influence interactions, such as introducing a slight

charge. Additionally, the dye is eventually degraded through contact with light

and oxygen, known as photobleaching.

To effectively use optical microscopy in three dimensions, confocal microscopy

is often used. This technique still uses fluorescence, but avoids issues with dense

systems where objects outside the focal plane are fluorescing, producing bright

objects against a bright background. This is achieved through illumination of a

small sample volume, and rejection of out of focus light (Prasad et al., 2007).
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Laser light is emitted and passes through a dichroic mirror, and onto rotating

mirrors that scan light in horizontal planes. This light enters the microscope

optics and excites the sample. The light then follows the reverse path, again

passing through the dichroic mirror, which reflects it onto a screen with a pinhole

before collection by a detector. This acts to reject light not in focus and limits

depth of field (Habdas & Weeks, 2002). This technique allows two and three

dimensional observations to be taken.

Particle tracking is the computational analysis of the collected visual data to

identify centroids of particles in images and track them between images (Crocker

& Grier, 1996; Habdas & Weeks, 2002). This allows access to both structural and

dynamical information, although difficulty can be encountered when attempting

to identify a particular particle across multiple frames, essential for the retrieval

of dynamical data. Challenges may include small sizes of particles, poor contrast,

sedimentation, and highly crowded samples. Using video microscopy, one may

recover behaviour of individual particles or the behaviour of a population of up

to several thousand.

Light scattering can also be used to probe average structure and dynamics of

a system. A laser is shone through a sample, and a detector is placed at a given

angle to detect scattered light. The scattered light interferes with itself, and the

details of this interference at different angles allow reconstruction of information

about structure of the sample. Of common interest is the static structure factor

S(k), which provides information about the spatial correlation between objects in

the medium, reflecting interactions between scattering elements or concentration
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fluctuations. Here k is the wave vector of the scattered light, given by

k =
4πn

λ
sin

(
θ

2

)
, (1.7)

where n is the refractive index of the sample medium, λ is the the laser wavelength

and θ the angle between the incident and detected light (Jones & Pusey, 1991).

When performing investigations using dynamic light scattering, fluctuations

in light intensity I(t) are analysed as functions of time. The fluctuations in

time arise from motions of the particles within the sample volume. This measure

fluctuates with rearrangements in the sample, affecting the interference pattern of

the scattered light. Of specific interest is the autocorrelation function of intensity,

g2(τ) =
〈I(t+ τ)I(t)〉t
〈I(t)〉2

(1.8)

and fluctuations with time lag τ . This decays with increasing τ from a maximum

value at τ = 0. Measuring the rate of decay gives information about particle

movement, including data related to the diffusion coefficient. If the particles

move on the order of the length-scale probed (inversely related to the k-vector

chosen), the two intensities in Equation 1.8 are uncorrelated, so the correlation

will decay to zero. By determining the relevant time scale for this decay for a

diffusive system, the diffusion coefficient will be given by the square of the length

scale over the time scale. Altering k will allow probing of local or collective

particle dynamics. The autocorrelation function may be calculated from very

short timescales ( 10−6s) to days or weeks. Accurate MSD measurements for an

entire system are relatively easy to recover, but local dynamics are much more
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difficult to measure due to ensemble-averaging (Jones & Pusey, 1991).

An advantage of recovering this information through light scattering is it al-

lows for smaller colloids to be used. Additionally, colloidal suspensions near a

glass transition become difficult to treat, as they do not rearrange enough to have

confidence in the time-average from the sample, though there are workarounds.

Another issue is that light is often scattered multiple times in a dense suspension,

which can be mitigated by techniques such as Diffusive Wave spectroscopy, par-

ticularly useful in multiply scattering systems with small motions such as dense

colloidal systems (Pine, D.J. et al., 1990).

Finally, rheology is the study of material flow and deformation. In most

situations, common fluids will exhibit a Newtonian response, i.e. one where the

stress σ is related to the viscosity η of a fluid by:

σ = ηγ̇ (1.9)

where γ̇ is the the shear rate.

Where the material is viscoelastic, and has a mixed solid and liquid like re-

sponse depending on the applied shear rate, one would apply a varying strain of

the form

γ = γ0 sin(ωt) (1.10)

where t is time, ω is the frequency of oscillatory stress and γ0 is the maximum

amplitude of the oscillating strain. In the linear regime, the measured stress is:

σ(t) = γ0 (G′(ω) sin(ωt) +G′′(t) cos(ωt)) (1.11)
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Here G′(t) and G′′(t) are the conservative, elastic contribution to the shear mod-

ulus, and the viscous dissipative contribution to the shear modulus, respectively.

These are often referred to as ‘solid-like’ and ‘liquid-like’ behaviours. Rheometers

either create a constant or oscillatory stress and study the deformation response,

or measure the stress required to deform a material at a constant rate of strain.

A key difference in Newtonian and non-Newtonian fluids is that Newtonian

fluids have only a single, scalar viscosity, whereas viscoelastic materials have a

viscosity tensor which can be different for each direction and involve interactions

betwen directions.

The conceptually simplest version of a rheometer and geometry would be a

cone shaped plate above a circular plate, where the bottom is fixed and the top

can be rotated in a well controlled manner. Shear is then applied to this by ro-

tating the top plate. The cone shaped geometry of the upper plate means shear

is consistent throught the radius of the plate Examples of this for an idealised

solid-like and liquid-like situation can be seen in Figure 1.4. An idealised solid

is displaced by the movement of the top plate perfectly, while the idealised liq-

uid depends on the current rate of applied shear. As above, shearing can be

(a)

Figure 1.4: Schematic of simple rotational rheometer with cone-plate geometry
viewed from the side, describing the edge of the plate, with idealised solid-like
behaviour on the left and idealised liquid like behaviour on the right.

sinusoidal and oscillatory, probing structure and morphology of a material with
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small oscillations. By increasing the the amplitude of the oscillations, the internal

mechanisms of stress relaxation may be probed. The structure of the system is

disrupted by these large amplitude oscillations, and by varying their timescale

the relaxation timescale can be investigated.

Another class of common shearing investigations is rotational steady shear,

where the sample is simply sheared in one angular direction at a consistent shear

rate, investigating the bulk response to simple linear shear. A complication of

these sort of steady state shear measurements is that it can take some time to

reach a steady state - strain may eventually destroy the structure of the sample,

and a steady state will not be reached until the structure is destroyed and is

flowing freely. In this case, there will be a transient stress that is higher, as stress

builds, relaxes, and then reaches a steady state.

Additionally, many materials or suspensions may not flow until a minimum

amount of force is exceeded, known as the yield stress. In dense colloidal sus-

pensions, this is often the forcing required to break the cages of the suspended

particles, often adapting a flow induced arrangement typically including layering.

Under this yield stress, the sample acts like a solid, with G′ greater than G′′.

Above, it begins to flow, and G′′ is the greater (Pham et al., 2006).

Dense colloidal suspensions, both hard and soft, are likely to be viscoelastic

(Mason & Weitz, 1995), as the response of the system in general will often depend

on the dynamics and structure of the suspended particles in a complex way, for

example forming chains of particles, depletion through force increasing friction,

or shear thinning due to forming attractive clumps.

Macrorheology, or the response of a material bulk is mainly studied through

the use of a rheometer between various measuring geometries designed to measure
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different systems, but video microscopy, particle tracking and light scattering can

also be used for microrheology alongside this. Microrheology is concerned with

local, microscopic properties, and these microscopic dynamics and structure can

relate to the macrorheology of the system.

In general, the motion of a bulk material may not be homogenous, especially

under forcing. Different regimes of a system may relax differently, stress may be

trapped in certain areas of systems, or there may be sub populations of particles

with differing dynamics (Ediger, 2000; Richert, 2002; Sillescu, 1999). Often, in

very densely packed suspensions, cooperation is necessary for stress relaxation

(Adam & Gibbs, 1965). As mentioned previously, for hard spheres this often

involves significant displacements of the centroids around a particle to allow it

to break its cage, but for soft spheres this can be compressions or deformations,

allowing rearrangement with much smaller centroid displacment, and this can

happen in system-spanning strings. This necessitates an understanding of the

microrheology to effectively design for the macroscopic results desired.

1.5 Simulation techniques for colloidal systems

To date, simulations of colloidal particles have mainly been carried out using hard

sphere or radially-symmetric soft sphere potentials (Hunter & Weeks, 2012). Hard

sphere potentials are usually considered as infinite if particles are overlapping.

For the simplest case in Equation 1.4, the potential is zero if particles do not

overlap, but friction or longer range forces such as electrostatics can also be

considered. For soft colloids Equation 1.4 can be replaced by a softer repulsive

potential. Such radially symmetric soft sphere potentials consider only the core-
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to-core distance between particles. This ignores effects that arise where soft

spheres become anisotropically deformed (Höhler & Weaire, 2019).

Winkler et al. (2014) comment on several theoretical approaches employed in

recent years. They conclude that systems of soft colloidal particles exhibit several

generic behaviours, such as ”tank-treading” (where the particles deform contin-

uously so that the axis of deformation is fixed in space and thus appear similar

to tank treads while rotating), as well as tumbling motions. These behaviours

are found in different soft matter systems, including star polymers, vesicles, soft

capsules, red blood cells, and linear polymers. However, they comment that while

similar phenomena may be present, the quantitative or qualitative properties dif-

fer greatly; a polymeric system does not necessarily have an internal viscosity,

whereas an encapsulation might, and therefore care should be taken when gener-

alising findings across systems.

De Michele et al. (2011) conducted simulations with radially symmetric ‘softer’

repulsive potentials, with more rapidly decaying inverse power laws that weakly

exclude volume. They did not find the dependence of fragility on particle softness

that Mattsson et al. (2009) observe. However, Mattsson et al. (2009) use softness

to refer to the elastic moduli of the particles, as well as their charged nature giving

an additional contribution of softness, rather than the strength of an excluding

potential. While these are linked, it is not clear they are interchangeable.

A number of approaches to colloidal simulation use Hertzian potentials (Berthier

et al., 2010; Seth et al., 2011), obtained from the analytic solution of the compres-

sion of an elastic particle due to a faceting contact. Seth et al. (2011) propose a

micromechanical three-dimensional model that predicts nonlinear rheology of soft

glasses. This potential is based on the overlap of the particles and is effectively
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radially-symmetric, and approximates an elastic contact force, which cannot ac-

count for multiple contact deformation of a continuous object. Additionally, it

uses an elastohydrodynamic drag force parallel to the implicit facet, arising due

to the existence of thin films of solvent between these facets during shear defor-

mation. This was successfully validated with model systems in shear situations,

using a Hertzian potential at low shear modified at high shear to model elastic

interactions between particles. They find that the elastic contact forces domi-

nate the dynamics compared to the thermal energy, and find general behaviour

of the soft glasses arises from a combination of both the elasticity of the par-

ticles particles and their structural rearrangements. This collaboration between

research groups also found in Liu et al. (2018) that results are not highly sensitive

to the exact form of the elastic overlap interaction potential. This investigation

modified the Hertzian potential to more appropriately deal with larger overlaps,

attempting to elucidate the minimal interparticle interactions necessary for soft

particle glasses. By using this simulation technique and forcing motion of select

particles through a frozen colloidal glass, Mohan et al. (2014) find some agree-

ment between the microrheology they observe and macrorheology. An advantage

of this model is the inclusion of the elastohydrodynamic interactions which may

be important to ”lubricating” cage-breaking and rearrangement.

Berthier et al. (2010), using Hertzian potentials, find a reentrant behaviour -

increasing density results in fluid-glass-fluid transitions, due to particle softness.

This is also seen in the more computationally complex simulations of Gnan &

Zaccarelli (2019); Lo Verso et al. (2016), though this results from particle de-

formation leading to accumulation of internal stresses, unlike Hertzian systems,

where this results from significant overlap.
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The relaxation of stress after shear is relevant to the phenomenon of glass

‘aging’, which is the process of a glass relaxing due to thermal motion or other-

wise as time passes, towards a true equilibrium state if one exists. Even though

glasses may be stable over extremely long timescales, their disordered nature can

mean they are not at a global free energy minimum. They find that relaxation

occurs quite differently when shear is switched off in a plastic-flow regime to an

elastic regime, with the former being much more rapid, and that these can be

distinguished by observing the local stress. Zausch & Horbach (2009) performed

simulations of soft spheres to probe relaxation of stress after shear. They im-

plement a Yukawa potential, which is also radially-symmetric but acts at longer

ranges than the nominal particle radius.

Das et al. (2020) use a simple harmonic potential of a binary mixture of

athermal soft spheres, using cyclic shearing to construct a phase diagram includ-

ing isolating phase space for reversible and irreversible transitions. They also

observe jamming and yielding transitions, all in a frictionless system. The amor-

phous solids yield at a well defined strain, and they investigate contact number

as it relates to shear stress - if this is below 6, shear stress discontinuously goes to

zero. They find a jamming regime at φ = 0.648, which then unjams at φ = 0.661.

Below this, there are 2 varieties of reversible phase present - one that is point

reversible, where particles self organise back into a similar layout to their starting,

and one that is loop reversible, where original particle positions can be recovered

as the shear cycles. Above this regime, it behaves as an elastic amorphous solid.

This shows the rich behaviour of even simple colloid models.

Another class of approaches to colloidal simulations is Multi-Particle Collision

Dynamics (MPCD). This is a particle based simulation technique, including ther-
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mal fluctuations and hydrodynamic correlations, whilst being capable of coupled

with MD for the microgels. In this approach, the solvent is modelled explic-

itly, by coarse-grained particle dynamic approximations. This method and DPD

methods are effectively similar particle based approaches that consider Fluid Dy-

namics, but make different approximations and use different models to do so.

For example, Malevanets & Kapral (1999) use this approach coupled with coarse-

grained linear polymers with tetra-functionally crosslinked monomers to directly

investigate internal polymer dynamics in responsive microgels, observing confor-

mational changes due to external stimuli. Tran et al. (2018) implement MPCD

efficiently on Graphics Processing Unit (GPU) hardware. An advantage of MPCD

approaches is the detailed representation of hydrodynamic and friction (Theers

et al., 2016), although they tend to be focussed on relatively dilute regimes.

A further class of approaches to colloidal simulations are Lattice-Boltzmann

methods. Lattice Boltzmann approaches fluid simulation through a kinetic model

of fluid particle velocity distributions confined to a lattice. The advantages of

this approach are its ability to parallelise easily and to treat complex boundaries.

Rivas et al. (2018) use this approach with submerged spherical particles, which

when projected onto the LBM lattice introduce structure to the particles, with

solid fraction and ion concentration in the solvent varying within the particle -

this treats particles in a somewhat structured way, while simple enough to allow

direct simulation of colloid coated droplets and their breakup, particles at fluid

interface and electrophoresis.

Another example of LBM simulation for soft flowing systems is the work of Fei

et al. (2018). This treats the suspension as a binary mixture, and allows signifi-

cant distortion, but in this case is limited to two-dimensions and small numbers of
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1.5 Simulation techniques for colloidal systems

particles. Despite that, it reaches relatively high volume fractions. This method

appears more suitable for approaching flow undergoing forcing, rather than qui-

escent systems.

Depletion effects can be important to colloidal systems, as the work by Stop-

per et al. (2016) simulates. This approach uses the Asakura-Oosawa model for

depletion effects, which is again spherically symmetric. Mixtures of polymers

and colloids are simulated, and dynamical density functional theory is used to

construct the van Hove distribution function for a dilute system.

Fedosov et al. (2012) compare both Dissipative Particle Dynamics (DPD) and

MPCD approaches in simulations of star polymers which offer a similar paradig-

matic model as microgels for soft colloids, but their approach uses multiple single

branch chains emanating from a core representing a quite different particle than a

crosslinked system such as microgels. Their DPD approach uses radially symmet-

ric potentials between monomers, with a general ball and spring model between

bonded monomers in the same colloid. These demonstrate marked dependence

on arm length and arm number, transitioning from soft-sphere to hard-sphere.

This allows consideration of the variance in structure in microgels, as these can

be cross-linked to a greater or lesser extent, or may be grown around a hard core.

They also exhibit lengthening under shear, an example of tank-treading, but as

the arms are not linked they may be more susceptible. They find that there is

small difference in absolute value found for key outputs, such as characteristic

arm relaxation time, but that these hydrodynamic approaches largely agree.

Locatelli et al. (2016) use a multi-scale approach for star polymers as soft

spherical potentials in a mixture with coarse-grained linear polymers, coarse-

graining where they expect a departure from simple soft sphere behaviour, al-
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though this publication represents a validation of the method against more de-

tailed approaches rather than presenting new results.

Another approach to soft colloidal simulation is that of Gnan & Zaccarelli

(2019). While these simulations are two-dimensional, they utilise a very differ-

ent approach to most others reviewed. Here, each colloid is simulated as a ring

of circular particles, with a Weeks-Chandler-Andersen (WCA) and Finitely Ex-

tensible Nonlinear Elastic (FENE) potential between neighbouring members of

the ring, and a Hertzian potential from each particle to the edge of the ring.

This allows for more complex deformation, and to go to a high effective pack-

ing fraction. The most relevant observation is that of a second diffusive regime

between cages in all cases. These simulations can also measure and report on

deformation and its correlation with movement, and observe strings of correlated

super-diffusive movement. They observe a variation with softness of the relax-

ation time dependence on packing fraction, which provides an effective dynamic

fragility parameter.

Another technique that treats soft colloids as structured materials, in this case

in three dimensions, is that of Lo Verso et al. (2016). They use a Langevin dynam-

ics monomer-resolved bead-spring model, validated against MPCD, to simulate

globular single-chain nanoparticles, which consist of a linear polymer with side

chains, such that volume of the polymer appears globular. Increasing the concen-

tration shows reentrant behaviour in structure and dynamics, a soft caging regime

and weak dynamic heterogeneity. They find that the Stokes-Einstein-Sutherland

relation persists above overlap density, and reach effective volume fractions of

2.7. They investigate the shape and find a tendency to be prolate, due to the

backbone of the particle. The also find no crystallisation, and that the system is
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always fluid.

1.6 Key research questions

We can see from the previous section a number of approaches to simulations

of colloids. Simulations with simple radially symmetric potentials allow a large

number of particles to be simulated, but these are largely athermal - they do not

allow spontaneous rearrangements past contact packing fraction through thermal

motion. The existence of ultrasoft colloids suggests that there are situations

where thermal motion remains important even when the system is not being

forced. Many simulations that represent colloids with more complex, deformable

structures consider very dilute regimes, or small numbers of colloids due to the

computational expense. Simulations that represent colloids as being structured

and deformable suggest that soft colloids retain the ability to rearrange even at

very high volume fractions. However, simulations of these types of system with

reasonable numbers of colloids use simplistic bead-spring models for the colloidal

particles, which will become less accurate as the coarse-graining increases.

There is therefore a need for an approach capable of considering the volumetric

compression and deformation of thermally fluctuating material as a continuum.

Additionally, as the colloids are further coarse-grained, continuum methods will

become more accurate rather than less. For this reason, we choose the method

Fluctuating Finite Element Analysis, as detailed in Chapter 2.

Our key research questions involve the structure and dynamics of soft colloidal

suspensions.

• Is the ability to describe these deformations due to thermal motion enough
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to alter the dynamics in highly packed systems?

• How does varying the volume fraction or material parameters of the particles

affect rearrangement?

• How does this correspond to experimental examples of ultrasoft colloids?

• What effect does shear have on the structure and dynamics of these soft

colloidal simulations?

• Can we construct bulk rheology from microscopic simulations?

1.7 Thesis outline

In this thesis, we present the further development and usage of Fluctuating Finite

Element Analysis (FFEA), a simulation technique that began development in

Oliver et al. (2013). This technique was initially implemented to model the

dynamics of globular biomolecules, but is also a suitable technique to provide

novel insight into the dynamics, structure and rheology of soft colloids. Chapter 2

discusses FFEA, including the underlying mathematical model and the particular

aspects that make it suitable for simulating soft colloidal systems. Chapter 3

describes the development of FFEA required to simulate soft colloidal systems.

In Chapter 4 we then discuss the results of simulations of quiescent (i.e. unforced)

packed soft colloidal systems, and present analysis of dynamics and structure.

We vary material parameters and degree of packing, and investigate effective and

observed volume fractions, diffusive behaviour, rheological measures, asphericity

and light scattering. Chapter 5 discusses experimental rheology conducted on

ultrasoft microgels. This includes both steady state and oscillatory rheology.
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1.7 Thesis outline

Finally, in Chapter 6 we simulate systems undergoing linear shear and discuss

the results and analysis obtained. We vary degree of packing and shear rate, and

discuss effective and observed volume fractions, diffusive behaviour, rheological

measurements and light scattering.
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Chapter 2

Fluctuating Finite Element

Analysis (FFEA)

In Chapter 1, we discussed that most simulations of soft colloidal systems are

based on spherically symmetric potentials, i.e. potentials which depend only on

the distance between particles. These methods of simulation may miss effects

arising from anisotropic deformation of the colloidal particles; one would expect

the interparticle potential to depend upon the current particle shape. Likewise,

systems based on isotropic potentials do not account for variations in interaction

energy due to multi-particle contacts, and therefore are most accurate for consid-

ering particles that deform only slightly, or facet at contact but do not experience

significant deformation such as the objects in the simulations of Khabaz et al.

(2017, 2018).

We must therefore use a model that is able to capture the three-dimensional

deformability of soft colloids, and specifically microgels with their three-dimensional

structure. Soft colloids are objects which can change their shape and volume,
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2. FLUCTUATING FINITE ELEMENT ANALYSIS (FFEA)

swelling with solvent and deswelling with its absence, as well as interacting with

neighbouring particles. To reflect these attributes, we chose a simulation tech-

nique called Fluctuating Finite Element analysis (FFEA). This was developed

as a method for simulating the dynamics of biomolecules by modelling them as

viscoelastic solids, developed originally by Oliver et al. (2013) and further refined

into a C++ implementation by Richardson (2014).

In FFEA, each biomolecule is envisaged as a deformable object. The ob-

jects can change shape, with an internal stress arising from internal elasticity

(parametrised by moduli) and internal viscosity, and a stochastic thermal stress

from Brownian motion. This thermal stress gives rise to fluctuations in the shape

of the object. Interactions between objects can be introduced as a steric force

preventing overlap, and also specific surface-surface interactions such as Lennard-

Jones interactions. The technique aimed to cover larger timescales (up to 1µs)

and length (in the range of 5nm to 1µm) scales of biomolecular simulation that

full atomistic simulations cannot currently reach with available computational

resources, allowing more complete exploration of their conformational space.

Although FFEA was developed for biomolecules, it has all the ingredients we

require for simulation of soft colloids: internal elasticity of objects, viscous dissi-

pation, thermal fluctuations, and interaction between objects. These ingredients

address the deformability, steric interaction and the thermal dependence of the

dynamics of soft colloids such as microgels. Additionally, soft colloids are small

enough that thermal motion remains important, and large enough for a contin-

uum approximation to be appropriate, rather than an atomistic or coarse-grained

molecular dynamics approach.
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2.1 Mathematical model of FFEA

In FFEA, the material viscoelasticity is modelled using the Kelvin-Voigt consti-

tutive model where viscous and elastic stresses act in parallel. This is chosen to

provide a simple non-linear model for a viscoelastic solid.

The equation of motion, Cauchy’s momentum equation, is

ρ
Du

Dt
= ∇ · (σe + σv + π) + f, (2.1)

where ρ is the density and

Du

Dt
=
∂u

∂t
+ u · ∇u, (2.2)

is the material derivative of the velocity with respect to time.

Here, the total stress, σ, is the sum of three separate stresses: σe, the elastic

stress, σv, the viscous stress, and π, the stochastic thermal stress. The vector f is

the external force density which includes all other interactions with the system,

including steric interactions with other bodies, and a drag against the surrounding

fluid.

The elastic stress σe is assumed to be hyperelastic meaning that the stress-

strain response is non-linear with respect to deformation, allowing us to address

more significant compression and deformation of our particles as well as consid-

ering the internal elastic shear stress in each element. A relatively simple choice

of this stress-strain relationship is (Hanson, 2018):

σe = G det(F )(F TF − I) +
1

2

(
K − 2G

3

)(
det(F )− 1

det(F )

)
I (2.3)
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2. FLUCTUATING FINITE ELEMENT ANALYSIS (FFEA)

where G and K are the shear and bulk moduli respectively, and F is the defor-

mation gradient tensor, defined as

F =
∂x

∂X
, (2.4)

where x = x(X, t) is the current position of the material initially located at X.

The internal viscous stress is assumed to be isotropic and linear so that it

takes the form:

σv = µ
(
∇u+∇uT

)
+ λ∇ · uI, (2.5)

where µ is shear viscosity, and λ is the second coefficient of viscosity, related to

compressibility.

The statistics of the thermal stress π must satisfy the fluctuation-dissipation

theorem and so depend on the form of σv. As shown by Oliver et al. (2013),

Equation 2.1 can be discretised using the finite element method in a way that

enables the thermal stress to be calculated locally. In the finite element method

we replace Equation 2.1 with a weak formulation(Reddy, 2006), which relaxes

the requirement for the equation to hold absolutely, and instead only requires

solutions to satisfy a set of weighted integrals.

The weak form of Equation 2.1 is obtained by integrating over the volume of

the object, Ω, with a weight function w,

∫
Ω

w

(
ρ
Dui
Dt
− ∂σij
∂xj
− fi

)
dV = 0. (2.6)

Here σij is the total stress tensor σij = σvij+σ
e
ij+πij, and i, j are indices referring to

orthogonal spatial directions. The summation convention is applied. Integrating
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2.1 Mathematical model of FFEA

the stress term by parts gives:

∫
w
∂σij
∂xj

=

∫
Γ

wFidA−
∫

Ω

σij
∂w

∂xj
dV (2.7)

where Γ is the surface of the object and Fi = σijnj is the surface force density.

The completed weak form of Equation 2.1 is therefore:

∫
Ω

wρ
Dui
Dt

+

∫
Ω

σij
∂w

∂xj
dV =

∫
Ω

wfidV +

∫
Γ

wFidA. (2.8)

With the derivative on w, the stress does not need to be differentiable.

In the finite element formulation, velocity at any point in the simulation do-

main is set by shape functions, ψα(x):

ui(x) =
∑
α

viαψα(x), (2.9)

where viα is the value of the ith component of velocity at node α. The nodes are

fixed to the material frame of the object. In the Galerkin formulation (Reddy,

2006), the weight functions, w, are chosen to be equal to the shape functions,

ψα. Oliver et al. (2013) sought an approximate solution to Equation 2.1 using

tetrahedral elements, where ψα are chosen to be linear interpolation functions

over the element. It then follows that:

Du

Dt
=
∑
α

dvα
dt

ψα(x). (2.10)

Equation 2.8 can then be computed by summing the contributions from each
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element to give a matrix equation of the form:

Mpq
dvq
dt

= −Λpqvq + Ep +Np +Op, (2.11)

where indices p = i, α and q = j, β run over both nodes, α, β and Cartesian

directions i, j. Mpq is the mass matrix which distributes the density contained

within an element to its associated nodes, vq is a component of velocity at a

node, and Λpq is the viscosity matrix which is the sum of internal contribution,

ΛInt
pq and an external component, ΛExt

pq . Ep is the elastic force vector (a non-

linear function of node position), Np is the stochastic noise force vector, and Op

represents all additional conservative external forces. In our case, Op contains

the steric interaction between elements, which will be discussed in section 2.2.

As in Brownian dynamics, we assume that the system is overdamped, so that

the time scale on which the mass affects the dynamics is small compared to the

timescale of interest. This assumption is discussed in Chapter 3. Hanson (2018)

therefore sought the solution of Equation 2.11 where the mass matrix is zero:

Λpqvq = Ep +Np +Op. (2.12)

The elastic force vector E can be calculated from an the elastic stress σe:

Ep(i,β) = −
∫

Ω

∂ψβ
∂xj

σeijdV, (2.13)

integrated over the volume of the tetrahedral element.
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The internal contribution to the viscosity matrix is given by

ΛInt
p(i,β)q(j,α) =

∫
Ω

µ
∂ψβ
∂xc

∂ψα
∂xc

δij + µ
∂ψβ
∂xj

∂ψα
∂xi

+ λ
∂ψβ
∂xi

∂ψα
∂xj

dV. (2.14)

Since ∇ψ is piecewise constant over elements, this is a straightforward sum over

elements allowing internal stochastic noise to be calculated locally on each ele-

ment.

External viscosity from the solvent is applied via a Stokes drag on each node,

contributing

ΛExt
pq vq =

∫
Ω

fiψβdV (2.15)

to the viscosity matrix. For the purposes of this calculation, the drag at each

node is modelled by the Stokes drag of a sphere located at that node with an

effective radius scaled to the volume of the object to give the correct drag to a

coarse-grained sphere, recovering Stokes drag on the scale of the whole object.

This is scaled by a variable referred to as dS.

The internal viscosity in microgel colloidal systems arises from the solvent

moving within and being expelled from or entering the swollen microgel, although

the solvent is not modelled explicitly. Aditionally, Equation 2.14 shows the in-

ternal stresses are decoupled from the solvent drag terms and therefore there is

no global viscous coupling, meaning internal and external contributions to N can

be considered separately.

As the solvent is not explicitly modelled, there is currently no hydrodynamic

coupling between colloids. As we choose systems with effective volume fraction

ζe of 0.6 and above with monodisperse particles, we assume that physical inter-

actions between the particles dominate over hydrodynamic interactions at such
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high volume fractions.

The thermal noise, Np, is chosen such that Equation 2.12 satisfies the fluctuation-

dissipation theorem: viscous dissipation must be associated with a stochastic

thermal noise as they arise from the same processes. This requires that the

statistics of N int from internal deformation be related to the form of Λ.

With time step, ∆t, components of N therefore have the form:

〈N int
i N int

j 〉 =
kBT

∆t
(Λij + Λji), (2.16)

This requires forming the square-root of the viscosity matrix (Öttinger, 1996),

which is normally computationally expensive to calculate. However in the FFEA

formulation the viscous stress is constant over each element, and contributions

come only from the elements of which the specific node is a part. This gives us

delta-correlation of internal thermal noise in both time and space, and allows us

to assemble N on an element-by-element basis.

As the velocity gradient is constant within each element, Oliver et al. (2013)

showed that thermal stress in an element of volume V for simulation timestep ∆t

is given by

π =

√
2kBT

V∆t
(X
√
µ+X0

√
λI) (2.17)

where X0 is an independent stochastic variable and X a symmetric stochastic
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tensor, satisfying

〈Xij〉 = 〈X0〉 = 0, (2.18)

〈X0X0〉 = 1, (2.19)

〈X0Xij〉 = 0, (2.20)

〈XijXkl〉 = δikδjl + δilδjk, (2.21)

leading to the internal viscosity contribution to N

N Int
p(i,β) = −

∫
Ω

δψβ
∂xj

πijdV. (2.22)

The dissipation due to the drag against the implicit solvent is given by:

NExt
p =

(
12kBTπREffµ

s

∆t

) 1
2

XExt
p , (2.23)

where XExt is an independent stochastic vector with the properties

〈XExt
p 〉 = 0, (2.24)

〈XExt
p XExt

p 〉 = δpq. (2.25)

Having defined the constituent terms, we finally solve Equation 2.12 for v

using a preconditioned conjugate gradient technique. We then use v to perform a

single forward Euler integration, chosen for simplicity and computational speed,

calculating the new positions of each node after timestep ∆t as

x(t+ ∆t) = x+ v∆t. (2.26)
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Mechanical accuracy is acceptable, as covered by Solernou et al. (2018).

2.2 Colloid interactions

We utilise an overlap potential energy term to represent steric repulsion between

different objects. Overlapping elements gain an unfavourable positive energy

proportional to their intersecting volume, giving rise to a conservative force.

The repulsive force between two surface elements is calculated as

F steric = −∇kV, (2.27)

where V is the overlapping volume of the tetrahedra, and k is an prefactor that

governs the strength of the response to overlap. This has units of modulus, but

does not represent a modulus of the physical system simulated, but rather a

resistance to overlap. This modulus should be chosen to be larger than that of

the bulk modulus of the particle to prevent overlap.

When two elements overlap, the repulsive force is applied in equal and opposite

directions to each of the two elements. The point of application of the force

is chosen to be the centre of mass of the overlap volume. This force is then

transferred to the element nodes by linear interpolation. Choosing the point of

action of the steric force in this way also avoids introducing an unphysical torque

into the collision.

If all external surfaces in a simulation were tested for interactions with all other

faces, computational expense would scale as the square of the number of faces. To

reduce this computational expense, we split the computational volume into cubic
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2.2 Colloid interactions

(a)

Figure 2.1: 2D illustration of FFEA steric repulsion with 3D tetrahedra reduced
to triangles a and b. V is the volume overlap and Fba is the force applied on
tetrahedron a by the overlap with tetrahedron b. Fab = −Fba is the Force ap-
plied to tetrahedron b. This force is linearly interpolated over all nodes of the
tetrahedron(Solernou et al., 2018).
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cells, or voxels. The external surfaces are then assigned to a voxel based on the

position of their centre of mass within the grid. Interactions are only considered

between surfaces in the same voxel or the 26 surrounding voxels. The lengths of

these cubic voxels are chosen based on the dimension of the particles considered.

The length is required to be longer than the longest edge of an element in these

particles, so an element will consider all other elements it could possibly interact

with.

Finally, external surfaces only interact if the dot product of their normals is

zero or negative, i.e. if they are facing each other, both as a rapid numerical check

to avoid unnecessary calculations, and also to avoid transmitting interactions

inside the object’s interior.

FFEA is also capable of including longer range interactions such as Lennard-

Jones, but these were not utilised for our systems due to computational cost: the

longer range the force, the more interactions have to be considered, and consid-

ering interactions already makes up 85-90% of compute time for our systems.

2.3 Summary

In this chapter, we have discussed the underlying mathematical model of FFEA.

We have also introduced the treatment of colloids and microgels as continuum

soft objects with a viscoelastic response to deformation, due both to thermal-

induced deformation and to deformation due to interaction. We have introduced

the surface interactions included in our simulations.

With the trajectories of each node, we have the volumetric deformation of

each element. This is the key difference between this approach and the majority
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of other approaches for simulating packed colloidal systems: while most others

use radially symmetric potentials, we can capture reactions to compression and

to anisotropic deformation with our continuum approach. While the elastic stress

acts to return the object to its equilibrium configuration, the thermal stress acts to

continuously deform it. This interplay allows cooperative deformations to result

in rearrangement, as will be seen in Chapter 4. The elastic response corresponds

to to both the osmotic pressure due to swelling and deswelling, as well as the

elasticity of the polymer network itself.

FFEA also includes standard mechanical validation that can be run upon

compilation of the software. The most relevant of these verify that the steric

forces in this chapter are effective in preventing overlap of simulated bodies, and

additionally verify that the simulation produces the expected result for a freely

diffusing coarse-grained sphere.

However, as this software was designed for simulation of biological macro-

molecules, a number of modifications were required to render it suitable for sim-

ulating a bulk of soft colloids and recover rheological properties. These modifi-

cations, and the basics of constructing a soft colloidal simulation in FFEA, are

discussed in the following chapter.
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Chapter 3

Simulations of Soft Colloids using

FFEA

In this chapter we describe the method used to simulate the dynamics of an en-

semble of soft colloids. The experimental system that initially inspired our simu-

lations is soft-colloidal microgels. These are typically comprised of small particles

(100-1000 nm) made from cross-linked polymer chains. These particles are highly

compressible and deformable as they are swollen by solvent, salt, surfactant or

a combination thereof. The solvent mixture inhabits the voids between polymer

strands, and this can be expelled and reabsorbed to swell and deswell the mi-

crogel. This will result in both elastic responses to compression and deformation

due to the polymer structure and interactions, but also an internal viscosity from

the relative movement of the solvent through the polymer network. Because of

this structure and size (sub-micron to micron) they can therefore be compressed

and deformed significantly under typical force of order nanoNewtons per particle.

Our choice of system is guided by the size range of real microgels and ensuring
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efficency of computation with regard to timestep length. Moreover, these sys-

tems are sufficiently small and flexible that thermal noise plays a significant role

in their dynamics.

We wish to study the dynamics of rearrangement of soft colloidal particles

where rearrangements of the equivalent hard spheres would be impossible. We

also wish to study rheology: the response of such systems to flow. Rearrange-

ment and rheology are both influenced by system structure: studying them re-

quires simulating systems with sufficiently large population that the structure

and dynamics are not strongly affected by the system size.

In the following sections we detail the modifications required and implemented

to adapt the FFEA code for simulating a collection of soft colloidal particles.

We also discuss the assumptions and approximations that define our parameter

space. We consider how we define and generate a single particle in isolation.

We then discuss requirements for a simulation of a finite number of particles to

be representative of bulk material, including modification and use of Periodic

Boundary Conditions (PBCs) for a quiescent bulk material and the addition of

Lees-Edwards Boundary Conditions (LEBCs) for sheared bulk material. We ex-

plain the method of generation of initial configurations for the simulations. We

discuss the requirement for and implementation of an efficient multi-τ correlator

to extract statistical measures of particle diffusion and stress. To conclude, we

discuss practical considerations of using FFEA to simulate these systems. This

includes a discussion of simulation performance, including parallelisation, perfor-

mance bottlenecks, and finally limitations of this simulation approach.
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3.1 Building a soft colloidal simulation

To simulate systems from which we can extract rearrangement dynamics and

rheological information, we must attempt to approximate a macroscopic bulk

material using a finite simulation with a limited number of particles. We first

define a simulation box as a box with side lengths Lx, Ly, Lz, within which N

colloidal particles, with properties discussed in subsection 3.1.1, will be placed.

To best approximate a quiescent bulk material through simulation, we must

introduce Periodic Boundary conditions (PBCs) on all three axes, where the sim-

ulation box interacts with periodically repeated images of itself. To approximate

a sheared bulk material, we must also introduce Lees-Edwards Boundary condi-

tions (LEBCs), where the periodic images in the gradient direction are offset in

the flow direction.

3.1.1 Construction of a single colloidal particle

To begin, we must define our computational representation of a soft colloid. We

do this by first defining a tetrahedral finite element mesh by coarse graining a

sphere. Representation of approximately spherical particles with a tetrahedral

finite element mesh is a compromise between accurately representing a sphere

using more elements, and the computational efficiency of using fewer elements.

Additionally, thermal fluctuations of small elements can cause significant element

distortion and therefore computational instability, requiring shorter timesteps to

keep stable. However, there are also issues with using too coarse a representation.

Icosahedral meshes were trialled, but these were deemed too simplistic, as their

regularity and ability to tessellate could bias results. Faceting can be important
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for packed soft systems, and the more simplistic mesh one uses, the more inherent

faceting that is introduced to the colloids due to the lower number of tetrahedra

they contain.

The mesh for our particle was generated using the software package Netgen

(Schöberl, 1997), using the ‘Very Coarse’ setting from a sphere. All simulated

colloids are identical, being initialised with the same input files. All the results in

this thesis were generated using particles composed of a mesh of 44 tetrahedral

elements with a single internal node that all elements share.

The particles have an equilibrium diameter of approximately 10−7m , with an

actual volume of 4.07× 10−22m3 after coarse-graining. All simulations presented

use monodisperse particles. This size is relatively small for a microgel but within a

realistic range. We limit the size to remain in a regime where thermal fluctuations

might be most relevant. Bulk moduli are varied between 2-12kPa, held at a

constant Poisson ratio of 0.33 as measured by Voudouris et al. (2013) at 302.15K

for pNIPAM microgels. This corresponds to a range of 0.6-3.7kPa for shear

moduli. These moduli were chosen to be within a reasonable range for Poly(N-

isopropylacrylamide) (pNIPAM) microgels, as measured by Aufderhorst-Roberts

et al. (2018), from a range of 3-50kPa. Our simulational range was chosen to allow

for a longer timestep, as the higher the modulus, the less stable the simulation

will be. Water viscosities for the simulated colloids were sourced from the work

of Holmes et al. (2011); a shear viscosity of 8.8 × 10−4Pa.s and a bulk viscosity

of 2.47 × 10−3Pa.s, and the Stokes viscosity for the implicit background solvent

was set to 1.00× 10−3 Pa.s.
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3.1 Building a soft colloidal simulation

Damping

As discussed in Chapter 2, we expect that this system is overdamped and that we

can use the version of the FFEA solver that takes advantage of this fact. In this

subsection, we verify that these approximations are appropriate for the parameter

space we explore. As shown by Hanson (2018), we can check this by evaluating

the ratio τm
τK

, where τm and τK are the time constants associated with the inertial

and elastic relaxation respectively. If we assume a homogeneous object, we can

approximate τM as

τM ∼
ρ

µ
, (3.1)

and τK as

τK ∼
µ

K
. (3.2)

Here ρ, µ and K are the density, viscosity and bulk modulus of the object,

respectively. The system is overdamped if 4 τM
τK

< 1, so the inertial relaxation

time is faster than the viscoelastic relaxation, meaning that the inertial forces

decay quickly and the longer time motion is a balance of viscous and elastic

forces.

Hanson (2018) further shows that for a globular or spherical body,

4
τM
τK
≈ 16

9

ρK

µ2
(3.3)

and for the range of values outlined above, this evaluates to:

8.89× 10−5 ≤ 4
τM
τK
≤ 5.33× 10−4 (3.4)
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and we therefore remain comfortably in the overdamped regime for all discussed

simulations.

Deformablity of colloids

It is worth also quickly calculating a measure that would indicate how likely our

colloids are to deform under thermal motion, to check whether we are in a regime

where the unique capabilities of FFEA would be relevant. To do this we calculate

an approximate strain γ:

γ =

√
kBT

GPVP
, (3.5)

where GP is the shear modulus of the particle and VP is the volume per particle.

This gives strains between

0.04 ≤ γ ≤ 0.13. (3.6)

Meaning that quite substantial shape changes are possible with only thermal

motion.

3.1.2 Periodic Boundary Conditions

Implementation of periodic boundaries required two separate modifications to the

FFEA code: particles must be returned appropriately to the simulation box when

they exit, and we must include the periodic interactions of colloids across the box

boundaries.

We first consider returning particles to the simulation box. This requires any

colloid whose centre of mass exits the simulation boundaries to be moved by the

box length, LDim, in the appropriate dimension to return it to the opposite side

of the simulation box.
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3.1 Building a soft colloidal simulation

Second, we must account for interactions across a box boundary where the

centre of mass of a particle remains inside the simulation box, but part of the

colloid protrudes outside of the simulation box. To deal with this consistently,

we must consider interactions between the colloids across the simulation box

boundaries in each dimension. As discussed in Chapter 2, the simulation box

is decomposed into cubic voxels. The simulation box decomposition then cre-

ates a list of elements whose centre of mass is in each voxel. The list considers

interactions of external surfaces of a colloid in a voxel with the 26 surrounding

voxels, accounting for a box boundary by adding or subtracting the total number

of voxels in that dimension, NDim, as appropriate. Elements in this list are then

checked for overlap, with each possible collision being considered once. A visual

reference for this implementation can be found in Figure 3.1

To check for collisions between pairs of colloidal particles, an array of ’correc-

tions’ to the centre of mass displacement for all colloid pairs is constructed such

that they can be projected appropriately, using the following equation in each

dimension:

Cx = Lx

⌊
xβ − xα + Lx

2

Lx

⌋
(3.7)

where xα and xβ are the centre of mass x-coordinates of the two colloids, Cx is the

stored correction between a pair of colloids α and β for the x-direction, and Lx

is the box length in the x-direction. In the above equation, the bracket notation

bc denotes the greatest integer less than the enclosed quantity. Calculation of

corrections for y- and z-directions proceeds similarly.

Any distance between colloids greater than half a box length apart in any

dimension will then result in a correction such that the projected position will
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always be be within LDim
2

in that dimension, thus finding the closest projected

image to be used for calculation of interaction forces. This correction is calculated

once per frame for all particle pairs.

This PBC implementation was tested and found to be functioning correctly by

verifying identical incidence of surface contact and energy of overlap for equivalent

simulations between pairs of colloids across the simulation box boundaries.

This is illustrated in Figure 3.1 in which a collision between two particles at

the centre of a box, or an identical collision across the periodic boundary, gives

the same results.
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3.1 Building a soft colloidal simulation

(a) (b)

Figure 3.1: (a) 2-dimensional cartoon of PBCs. Straight dotted lines denote
voxels while straight solid lines denote simulation box boundaries. Solid particle
lines denote position of particle in simulation. Dotted particle lines indicate pro-
jected image of particle through PBCs. The particle filled in solid black considers
interactions with particles in surrounding voxels, finding particles to consider in-
teractions in all voxels from the opposite edge. All projected images of particles
from these voxels are checked for collision, and only the gray, hatched particle is
found to overlap. The black particle and the hatched grey particle experience a
corrective steric force due to this overlap.
(b) Illustrative visualisation of identical collisions simulated in FFEA using cor-
rected PBCs in the centre of the simulation box and at the edge.
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3.1.3 Lees-Edwards Boundary Conditions and external forc-

ing due to shear

To simulate bulk conditions in shear flow, we use Lees-Edwards Boundary Condi-

tions (LEBCs). These modify PBCs by having the projected images of the system

in the gradient direction move in the flow direction relative to the simulation box.

In all sheared systems we have simulated, the gradient is in the y-direction, flow

is in the x direction and vorticity in the z.

For the projected image in the positive y-direction, the offset distance Obox in

the x direction is

Obox = γLy − nLy (3.8)

where n ∈ Z such that 0 < Obox < Ly. This is to ensure that an image adequately

close to the simulation box is always selected. γ is calculated as

γ = γ̇t (3.9)

and strain rate γ̇ is supplied as a constant scalar. The image in the negative

y-direction is offset by −Obox.

If a colloid’s centre of mass exits the simulation box in the y- direction, it is

moved back into the simulation box in the y-direction by Ly, and its x-coordinate

offset by Obox, to account for the relative motion of the projected image.

The voxels considered for interactions must also be altered to account for this

offset. This correction is calculated as

Ocell =

⌊
Obox

rc
+

1

2

⌋
(3.10)
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where rc is the length of each side of a voxel. Ocell is an integer that adjusts which

voxels are considered for collision, shifting to voxels corresponding to Obox in the

x-direction. The 1
2

ensures that particles whose centre of mass is near the edge

of a voxel are consistently dealt with and are mapped to an appropriate voxel for

comparison with the surrounding voxels.

LEBCs also require a slightly modified set of calculations for the corrections to

interactions across the box boundary. For the y and z directions, these remain the

same as in subsection 3.1.2, but for the x-direction the shortest particle separation

becomes

Cx = Lx

⌊
xβ − xα + Lx

2
−Obox

Cy
Ly

Lx

⌋
+
OboxCy
Ly

. (3.11)

This is similar to the correction discussed in Equation 3.7, with additional cor-

rections of
Obox

Cy
Ly

Lx
, to account for the relative x-displacement of images in the

y-direction. A visualisation of LEBCs can be seen in Figure 3.2.

In addition to the modification of boundary conditions, the drag force on

the colloids is also modified to account for the implied background shear flow of

solvent. This gives an additional force on each node of

Fx = γ̇LydS

(
ynode
Ly
− 1

2

)
, (3.12)

where Fx is the x-component of the drag force, ynode is the y position of the node,

and dS is the Stokes drag scaling on the node. This gives zero force on the central

plane of the box, and a linear velocity gradient in the y-direction.

This implementation of LEBC and velocity gradient in the background solvent

was tested and found to be functioning correctly by verifying identical incidence

of surface contact and energy of overlap for equivalent simulations in both the

51



3. SIMULATIONS OF SOFT COLLOIDS USING FFEA

(a)

Figure 3.2: Cartoon of LEBCs. Thick lines denote the boundary of the simulation
box and thin lines denote the edge of voxels. The solid black particle on the edge
of the box in the x-direction interacts with the grey hatched particle as it would
in standard PBCs. The black particle on the edge of the box in the y-direction
interacts with the image of the white hatched particle, with the image offset by
Obox in the x-direction due to the implementation of LEBCs.
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centre of the box and edges in the y direction. This is visualised in Figure 3.3.

(a) (b)

Figure 3.3: Identical collisions between two colloids in a shear gradient in the (a)
middle and (b) edge of the simulation box, illustrating the offset due to LEBCs.

3.2 Initialisation of a simulation

Having defined the simulation box and the relevant boundary conditions for sim-

ulating a bulk material, we now describe the initialisation of our system. This

includes three major considerations - the compressed state of our system, place-

ment of the particles, and an initialisation step of the simulation to allow the

system to relax approximately to equilibrium.

Firstly, we need to equilibrate our systems in a compressed state. We consid-

ered two possible approaches for this - one where the system starts in an uncom-

pressed state, and the simulation box volume is slowly reduced until the particles
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are in contact, and a second where the particles themselves begin in a compressed

state and are allowed to expand into contact. The latter scheme was used, as it

was the easiest to implement, and the schemes are otherwise equivalent.

Our initialisation strategy is aimed at achieving as random a distribution of

particles as possible. To this end, initial placement of particles is decided through

the use of code generously shared by Dr. Mike Evans, which generates a random

placement of hard spheres at 50% volume fraction. The algorithm proceeds by

starting with randomly placed particles of small radius and then progressively

increases particle radius until the the target volume fraction is met. During this

process particles are moved via random Monte-Carlo moves subject to a hard core

potential (preventing overlap) plus a weaker interparticle potential to minimise

move rejection. Once this algorithm has generated an acceptable distribution, it

saves the coordinates to a file. A python script then takes these coordinates and

creates an FFEA input file with each particle compressed to the size of the hard

sphere and placed with its centroid at each of the coordinates. Once particles

are placed in this manner, FFEA is run in an initialisation step so that particles

decompress and come into contact with each other.

Inter-particle forces are calculated using the steric interaction detailed in sec-

tion 2.2, with steric factors generally varied proportionally to K, and additionally

varied to ensure simulation stability. These values are detailed in Table 4.1. Sim-

ulations output the full trajectory every 10000 frames (or 10−5s). We assume

we require significantly longer than the time for a free particle to diffuse its own

diameter (approximately 10−4s, given the above parameterisation) to see cage-

breaking events occur.

Timestep for all simulations was chosen as 10−9s and systems are run for
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9.5 × 106 steps or 9.5 × 10−3s. This timestep was stable for the colloids with

highest modulus, and is kept constant as time constraints made it infeasible to

analyse the stable timestep for each softness of particle.

Once the particles are placed, FFEA is run so that the particles decompress

and come into contact with each other. The initialisation step is run for 5× 105

steps, equivalent to 5× 10−4s. Tests indicate 2× 105 steps, or 2× 10−4s are the

longest needed for decompression of free particles with the range of moduli we

simulate, so we leave enough time for decompression and some initial relaxation.

3.3 Stress calculation

To calculate macrorheological properties, we must calculate both the average

values of viscous and elastic stresses. These stresses are derived from Equation 2.3

for the elastic stress and from Equation 2.5 for the viscous stress.

Whilst simulating the system dynamics, we construct Equation 2.3 in the

course of the internal elastic stress calculation within each element, and so we

can simply sum the contribution from all elements of all objects in the simulation,

and then normalise by the volume of the simulation box to retrieve the elastic

stress for the bulk material.

By contrast, Equation 2.5 is not calculated directly as part of the simulation,

so we add an explicit calculation, and store a normalised version as with the

elastic stress.

For quiescent simulations, we use these quantities to calculate a stress auto-

correlation function, which is discussed in section 3.4. For sheared simulations,

we extract the mean of σexy to construct a flowcurve.
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3.4 Multi-τ correlator

3.4.1 General background

Consider a dynamically stochastic system in which some function of the system

state f(t) fluctuates around some equilibrium mean value 〈f〉. Instantaneous

fluctuations away from the mean are expected to relax back towards the mean

on sufficiently long timescales, to be replaced by new fluctuations. One can

recover dynamical effects such as the average time for a fluctuation to decay by

considering the autocorrelation of the instantaneous value of ∆f(t) = f(t)− 〈f〉

at different times: 〈∆f(t)∆f(0)〉, where 〈〉 represents a time average over all

possible origins of the time axis, or an ensemble average over many equilibrium

realisations of the same system. If the system is ergodic, these two averages are

equivalent. We also assume the form of system dynamics to be time invariant.

This allows us to consider any single trajectory as multiple trajectories of a shorter

length, which we may use to improve our statistical error for shorter correlation

times.

Such time autocorrelation functions can be used to reveal relaxation proper-

ties of systems. We use them to determine the the Mean-Square Displacement

(MSD) of particles to deduce the statistics of particle motion including the occur-

rence and timescales of caging effects and cage-breaking, and the deviatoric stress

autocorrelation function, allowing us to deduce the timescales of stress relaxation

in quiescent systems. This latter function will also aid in ascertaining whether

quiescent systems have entirely relaxed to their equilibrium state. Stress auto-

correlation and MSD behave slightly differently, and so will need to be discussed

separately. The deviatoric stress relaxes to a fixed equilibrium value, in this case
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zero, and so calculating the correlation function for this quantity is easier and

is discussed in subsection 3.4.2. For quantities such as the MSD of the system,

which is an increasing function of time, we must introduce a correction to the

correlation function discussed in subsection 3.4.4.

Methods of calculating a time autocorrelation function can often consume sig-

nificant computational and memory resources, especially in simulations such as

ours, which span 7 decades in time between an individual timestep and the total

time of the simulation. To overcome this we have implemented a memory and

computationally efficient correlator, that was proposed by Ramı́rez et al. (2010).

This algorithm uses hierarchical averaging in time to obtain correlation at differ-

ent timescales in a way that is computationally and memory efficient. It is based

on a well known multiple-τ correlator method used in dynamic light scattering

experiments(Magatti & Ferri, 2001; Schtzel et al., 1988). Information is added to

correlators every 100 timesteps (or 10−7s, for our our choice of timestep), to avoid

undue computational cost from calculating values to be fed to the correlator.

3.4.2 Theory and implementation

The time autocorrelation of a dynamical function f(t) obtained from a simulation

may be expressed as

F (τ) =
1

T − τ

∫ T−τ

0

f(t+ τ)f(t)dt, (3.13)
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where T is the duration of the simulation trajectory, and τ the lag time. Where

a simulation has N − 1 discrete steps of length ∆t, this is approximated as:

Fj =
1

N − j

N−j−1∑
i=0

fifi+j, (3.14)

where Fj ≡ F (j∆t) and fi ≡ f(i∆t).

For large systems, with a large number of timesteps, evaluating Equation 3.14

can require processing a huge amount of data. Following Ramı́rez et al. (2010),

we consider averaging the function f over k neighbouring points,

f̄i,k =
1

k

k−1∑
j=0

fi+j, (3.15)

and define a correlator of these averages as

F̄j,k =
1

N − j − k + 1

N−j−k∑
i=0

f̄i,kf̄i+j,k (3.16)

=
1

k2(N − j − k + 1)

N−j−k∑
i=0

k−1∑
q=0

k−1∑
s=0

fi+qfi+j+s. (3.17)

In the limit where N � j, small differences in the upper limits can be neglected

and we obtain

F̄j,k ≈
1

k2

k−1∑
q=0

k−1∑
s=0

Fj+s−q (3.18)

=
1

k2

k−1∑
q=−k+1

(k − |q|)Fj+q, (3.19)

which is equivalent to applying a triangular smoothing to the correlation function.

58



3.4 Multi-τ correlator

Such smoothing is likely to be acceptable for j � k.

(a)

Figure 3.4: Schematic view of the data structure implemented in the multi-τ
correlator. We represent each level of storage, with the arrow representing the
averaging and transferring between different levels of the correlator. Schematic
used from Ramı́rez et al. (2010).

In practice, the pre-averaging and storage of the values the correlation function

will be calculated with is implemented through a layered data structure, shown

schematically in Figure 3.4, which introduces greater levels of smoothing as the

correlation time increases, i.e. k increases as j increases. New values of the

function f are introduced at the zeroth layer and short time correlations are

calculated within this layer, without any averaging. As values are introduced to

this layer older values are pushed along the zeroth layer, while also being placed

into a buffer of a user-defined size m. When m values are stored in the buffer,

these are averaged and this single averaged value is pushed to the layer below,

i.e. the first layer. Therefore, k = mn where n is the number of the layer, as we
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have multiple resolutions of data, and the layers average more and more points

as n grows. As these new, average values are added to layer 1, time correlations

of these average values are calculated within that layer. This process of storing

m values in a buffer, averaging them, and then sending the averaged value to the

next layer proceeds in a hierarchical manner: so, averaged values from layer 1 are

sent to layer 2, and so on. Time autocorrelation functions of the averaged values

are calculated within each layer. Any given layer stores only the p
2

most recent

values added to it, other than the zeroth layer which stores p values. Entries are

discarded at the end of the level as new entries are recorded. This information

will already be part of the layer below. The values of p and m are chosen to be 16

and 2, respectively, which correspond to the default values suggested by Ramı́rez

et al. (2010). A large value of p compared to m will reduce error. Increasing p will

increase the amount of data stored at any given resolution, which will improve

accuracy at that resolution, but will also increase memory requirements and the

number of operations to add to and evaluate the correlator.

The correlators used for the deviatoric stress calculation were tested using a

simple 1-dimensional simulation of a particle diffusing in a potential well, with a

Langevin equation of

dx

dt
= −k

ζ
x+

f

ζ
. (3.20)

Here, x is position, t is time, k is the strength of the potential, ζ is the frictional

drag, and f is the noise term. F (t) obeys statistics 〈f(t)f(t′)〉 = 2kBTζδ(t− t′).

These dynamics discretise to:

∆x = −k
ζ
x∆t+

f

ζ
∆t (3.21)
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where f is evaluated at each time from

fi =

√
24ζkBT

∆t
ri (3.22)

where ri is a random number from a uniform distribution over -0.5 to 0.5. In

units where k, ζ, kBT are all equal to 1, the autocorrelation is expected to be

〈x(s)x(s + t)〉 = e−t. We simulate this with timestep ∆t = 0.005 over 109 steps.

Figure 3.5 shows that the computed autocorrelation is as expected.

(a)

Figure 3.5: Verification of the correlator for a particle diffusing in a potential well.
Correlator output matches e−t until its value is low enough that noise begins to
cause deviation from the analytic result.
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3.4.3 Stress autocorrelation

The correlation function for stress fluctuations in a finite system is related to the

dynamic shear modulus G(t) via the fluctuation-dissipation theorem. For our soft

colloidal system stress relaxation will involve a convolution of both the timescale

for relaxation of each individual colloid, and also a timescale for relaxation of the

entire suspension. Although G(t) can be obtained from individual stress compo-

nents, the statistical sampling error can be reduced by averaging over correlation

functions for different components of the deviatoric stress, as in Ramı́rez et al.

(2010):

(3.23)
G(t) =

V

5kBT
[〈σxy(t)σxy(0)〉+ 〈σyz(t)σyz(0)〉+ 〈σzx(t)σzx(0)〉]

+
V

30kBT
[〈Nxy(t)Nxy(0)〉+ 〈Nyz(t)Nyz(0)〉+ 〈Nxz(t)Nxz(0)〉] .

Here σαβ denotes a component of the stress tensor for the system, V is volume

and T is temperature, and Nαβ = σαα − σββ are the normal stress differences.

This measure includes all stresses that act to change the shape of the particles,

but not the isotropic stress (pressure) that produces changes in volume. The

stress of the implicit background solvent is not included in this calculation.

3.4.4 Mean-Square Displacement

For a quantity such as MSD, whose expectation value grows monotonically with

time, we must use a modified approach to autocorrelation functions, again as

proposed by Ramı́rez et al. (2010). For a particle with position r(t), average
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MSD may be calculated as:

gj =
1

N − j

N−j−1∑
i=1

〈(ri+j − ri)2〉. (3.24)

where N is the number of steps in the simulation, j is the time lag τ in steps of

∆t, i the initial step being considered and rq the position at timestep q. We may

define the time-averaged position of the particle:

r̄i,k =
1

k

k−1∑
j=0

ri+j. (3.25)

The mean square displacement of the time average is:

ḡj,k =
1

N − j − k + 1

N−j−k∑
i=0

(r̄i+j,k − r̄i,k)2 (3.26)

=
1

k2(N − j − k + 1)

k−1∑
p=0

k−1∑
q=0

N−j−k∑
i=0

(ri+j+p − ri+p)× (ri+j+p − ri+q), (3.27)

In the limit of N � j this can be shown (Ramı́rez et al., 2010) to give

ḡj,k ≈
1

k2

k−1∑
p=−k+1

(k − |p|)gj+p −
1

k2

k−1∑
p=−k+1

(k − |p|)gp. (3.28)

The first sum is of the same form as Equation 3.19. The second sum is an

additional required correction that depends on the MSD at smaller timescales,

arising because MSD is expected to grow continuously in free diffusion.

To calculate the particle position to supply to the MSD correlator, we must

make a few corrections to account for periodic boundary conditions. In the case of

quiescent systems, to find the ‘true’ position of the particle relative to its starting
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position, we count the number of times a particle crosses each box boundary.

Thus the ‘true’ position in the x-direction is

x = xsim + pxLx (3.29)

where xsim is the position within the simulation box, Lx is the length of the

simulation box in the x-direction and px is the integer number of box lengths

to correct by - px is increased by 1 each time a particle exits in the positive x-

direction and decreased by 1 if it exits in the negative x-direction. The y- and

z-directions proceed similarly.

We are interested in motion of individual particles relative to the reference

frame of the material. Due to finite simulation size, the material bulk itself

diffuses, so we must correct for the diffusion of the system as a whole. To do this,

we calculate the average of Equation 3.29, and subtract this average from each

individual particle displacement to obtain the relative motion of the particles to

the centre of mass.

For sheared systems, we are still interested in the MSD of individual par-

ticles, to assess whether they leave their cage. We make a first order attempt

to remove the effects of Taylor dispersion(Taylor, 1954), by removing advective

transport of the particles by the mean shear flow, so as to isolate diffusion due

to cage-breaking. This will allow us to more closely observe the effect on cage-

breaking due to shear. In this case, for each colloid we store a variable X(t) which

increments by ∆x(t) during one timestep, such that:

∆X(t) =
∆t

N

∑
α

(
∆xα − γ̇Ly

(
yα
Ly
− 1

2

))
, (3.30)
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where the α is the node in the colloid, ∆xα is the motion of each node in the

x-direction during the timestep, N is the number of nodes in the colloid, yα is

the y-position of the node in the simulation box, and γ̇ is strain rate. The second

term on the right subtracts the flow advection.

The MSD correlator was tested with both long runs with single particles

diffusing and over the average of multiple shorter runs, and was tested by verifying

agreement with the expected result for free diffusion:〈r2〉 ∝ τ.

3.5 Practical considerations

Having set up how we build the idealised system, we now discuss the practical

issues of running these simulations, including performance and limitations of the

implementation.

3.5.1 Parallelisation

To run at the maximum system size possible and to reach the longest timescales,

we must investigate the way to achieve best parallel performance for FFEA.

FFEA uses shared memory parallelisation with OpenMP, so is currently capable

of running in parallel on a single node (i.e. a set of processors sharing the same

memory), but not across multiple nodes. By default, the FFEA code compiles

two binary executables with different parallelisation strategies. One parallelises

by sharing the task of solving the dynamics of each simulation object (colloid)

amongst the specified number of threads in the environment it is run, i.e each

colloids is split across multiple processors. This approach is suited for small

numbers of large, complex meshes. This parallelisation scheme, even if used with
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more fine-grained spherical meshes, peaks in performance on a single processor

with multiple cores. On a workstation or HPC node with 2 or more processors,

thread count and affinity should be localised to a single processor. This scheme

is not well suited to our simulations, because our colloid meshes are simple and

do not benefit from being split.

The second parallelisation strategy solves the dynamics for the entirety of any

given colloid on a single thread, but distributes the colloids across the specified

number of threads in the environment it is run. We select this parallelisation

scheme for all simulations presented in our main results, since each colloid is

made up of a small number of elements, and we wish to run with large numbers

of colloids. This parallelisation scheme also scales well over multiple processors

in a node, as we will discuss next.

Scaling performance

(a) (b)

Figure 3.6: (a)Speedup of simulation relative to single core performance of both
ARC3 and ARC4. (b) Relative efficiency of each core compared to single core
performance.
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Simulations included in the main results were performed on the HPC re-

sources at University of Leeds, ARC3 and ARC4, using the standard nodes. Each

node on ARC3 contains 2 Broadwell E5-2650v4 processors containing 12 cores,

whereas each node on ARC4 has 2 Intel Xeon Gold 6138 processors containing

20 cores. The computational cost per timestep within the multi-colloid paralleli-

sation scheme ideally scales in number of operations somewhere between n log(n)

and n2, due to the voxel decomposition, where n is number of particles.

To test the efficiency of parallelisation 10,000 steps with the same initial con-

figuration were simulated on ARC3 on 1, 2, 4, 8, 12, 18, and 24 cores and on ARC4

on 1, 2, 5, 10, 20, 30, and 40 cores. The configuration was selected from the last

point of a simulation with an effective volume fraction of 0.8 to ensure significant

contact and a highly equilibrated system. The simulation is not identical for each

trial run, as a different thermal noise was used. However, the computation for

a step is quite similar across different configurations of systems with the same

input parameters.

As can be seen in Figure 3.6, scaling performance is good, with speedup

increasing as more cores are added and relative efficiency per core - defined here

as
Speedup

No. of Cores
- decreasing only moderately. These results clearly demonstrate

that it is worthwhile to increase core count. Speedup and relative efficiency

are also plotted for ARC4 relative to a single core of ARC3, as ARC4 has a

significantly higher single core clock speed(3.7 GHz) than its multi-core clock

speed (2.0GHz). We only discuss strong scaling performance here, i.e. scaling

for fixed system size with increasing number of processors, as finite size effects

dictate a minimum population on the order of 1000 objects regardless.

A trial was also run on ARC3’s Xeon Phi Knight’s Landing equipped nodes.
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These are x86 manycore processors that share similarities with GPU architecture

but still retain x86 compatibility. Unfortunately, this yielded similar performance

to the standard compute nodes; it is likely that significant refactoring of the

FFEA code would be required to achieve significant performance gains on this

architecture. For the purposes of packed colloidal systems such as the ones in

this paper, it is likely that implementation of MPI for multi-colloid simulations

would yield better results for the effort involved.

3.5.2 Bottlenecks

The performance of FFEA was profiled with allinea, a debugging and performance

mapping tool for HPCs, and found that for the systems discussed in this thesis,

85-90% of compute time is spent calculating whether an overlap of elements has

occured, and therefore whether steric forces need to be applied to these elements

to push them apart. This is the key bottleneck for these populations of systems

in FFEA.

3.5.3 General limitations and further work

While FFEA offers a novel method to approach the simulation of soft colloids,

the complexity of the approach does introduce some limitations which we will

discuss here.

Finite element approach

Due to the requirement for for computational efficiency, the mesh we use is rel-

atively simplistic, and therefore cannot reflect the denser core and less dense
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periphery that is common to the precipitation polymerisation method used to

make many common microgels. However, there are methods to make more ho-

mogeneously cross-linked polymer microgels, such as those used to make the

microgels discussed in Chapter 5. If the code could be further parallelised, sim-

ulating meshes of greater internal complexity is a possible future direction for

research to proceed. We could also introduce longer range interaction potentials

between faces. This would be especially interesting with patchy colloids, where

only certain areas of the colloid are attractive.

For systems of different moduli, timestep is limited by the particles with the

largest moduli, as the numerics of these particles would require shorter timesteps

for stability. The most sensible route, which we again did not have time to

implement, would be to explore mixtures of soft and rigid particles. These would

not be deformable at all, and therefore do not change the required timestep as

there is no oscillation to keep numerically stable. However, modification of the

code would be required to implement these rigid particles and allow them to

move.

Boundary conditions

Although we consider only small, spherical colloids in this work, for PBCs care

must be taken with definition of box size relative to colloid size and shape. If

a colloid is larger than LDim
2

, or is unusually shaped and therefore has areas

significantly distant from its centre of mass relative to box size, the projected

image for surface-surface interactions may not be properly located for calculation

of all interactions.

For LEBCs, extra care should be taken that the acceptable accuracy of numer-
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ical solutions and the maximum number of solver iterations are set appropriately.

Using the default parameters for FFEA, at high strain rates, inaccuracies can be

introduced that cause a mismatch of the edge and centre collision cases. If the

acceptable accuracy is set too loosely, the high strain rate can introduce differ-

ences in force and displacement at the edges of the simulation box. If we then

decrease the bounds of acceptable accuracy to counteract this, it may be neces-

sary to increase the number of iterations of the solver that are allowed to reach

this higher accuracy. These are slight, but should be validated before use.

Voxel decomposition

In the simulations detailed in this thesis, voxel lengths vary because a rare issue

was found in some simulations, with FFEA failing to apply the correct steric

repulsive force to simulated colloids. In such cases, some colloids would entirely

and permanently overlap. These simulations were rejected and no data from them

is included in this thesis, as they represent an effective removal of a particle from

a densely packed simulation.

This can be rectified by increasing the voxel length, but as the the length of

each simulation box side results from a multiplication of the number of cells in

each direction with the voxel length, these must be varied together to reach the

desired volume and therefore the desired ζe. Increasing the cutoff length comes

at a cost to performance, so voxel lengths should take as small a value as possible

in balance against this. Appropriate voxel lengths should be calculated by the

length of the longest edge in a single element.
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3.6 Summary

In this chapter, we have discussed how we build a soft colloidal simulations in

FFEA. We have described some of the features that have been added to the

code, including boundary conditions and the implementation of a runtime multi-

τ correlator. We have discussed how we initialise our systems and the bounds

of our parameter space. Finally, we have discussed limitations and important

considerations for use of FFEA for soft colloidal simulations. In the next chapter,

we will use this knowledge to perform quiescent soft colloidal simulations, and

discuss the results.
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Chapter 4

Quiescent Simulations

Having detailed the simulation software and the modifications required for simula-

tion of soft colloidal systems, we now move to analyse and discuss the simulations

we have performed. A list of the parameters varied in these simulations can be

found in Table 4.1, and the exploration of phase space is illustrated in Figure 4.1.

The main aim is to investigate the effects of: particle packing fraction; viscoelas-

tic material parameters; and the ability of particles within the simulations to

deform on dynamical observables such as: thermal motion of colloids; particle-

particle and structural arrangement; detailed behaviour during cage breaking;

structural relaxation; flow. We choose these parameters to vary as in packed

monodisperse hard-sphere systems particle packing fraction is the main control

parameter (Hoover & Ree, 1967), so the manner in which volume fraction varies

with other measures will be important to understanding how the softness of the

colloids changes their dynamics. We compare particle-particle and structural ar-

rangement and whether we the behaviour maps through volume fraction to hard

sphere like behaviour. We vary viscoelastic material parameters, as the softness
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of particles has been shown previously to affect on packed dynamics and struc-

ture (Mattsson et al., 2009) and indeed change the control parameter of this

systems, if a single one exists at all. Particle bulk and shear moduli and vis-

cosities are also parameters that we are uniquely able to vary with FFEA in a

physically meaningful way, within bounds originating from direct measurement

(Aufderhorst-Roberts et al., 2018; Voudouris et al., 2013). We initially target

thermal motion of colloids as it quickly demonstrates meaningful differences from

both hard spheres, which would jam at the packing fractions we observe (Hunter

& Weeks, 2012) and other simulations of soft spheres, which do not tend to be

thermally active as we discussed in section 1.5. We can also uniquely investi-

gate stress due to the ability to carry out simulations of large numbers of truly

deformable and compressible three-dimensional colloids as continua.

In this chapter we first compare the true observed volume fraction (after

particle decompression) with the effective volume fraction we use to define the

parameter space. We also discuss the structural arrangement of particles, calcu-

lating representative static structure factors to investigate the extent and distance

of correlated structures within the systems. We then discuss the time-dependent

Mean-Square Displacement (MSD), discussing what we would expect to see if

cage-breaking is occurring on the timescales we can investigate. To underline

this point, we present a small number of representative visualisations of par-

ticle trajectories with the highest displacement. We then further discuss the

indication of cage-breaking through an investigation of the extent to which the

distribution of particle displacements is non-Gaussian, both with use of a non-

Gaussian parameter and via explicit sampling of the distribution for various time

lags. We briefly discuss simple measures of correlations between the asphericity

74



4.1 Parameter space

and velocity of colloids, as an initial means to probe whether particle deforma-

tion affects cage-breaking events. Finally, we discuss the stress autocorrelation

function, which gives the modulus of relaxation of an instantaneous step-strain

for our simulation, and discuss the implications of the results.

4.1 Parameter space

The reasons for the choice of parameter space and key research questions are

discussed in Chapter 3. We were inspired by the experimental studies of ‘soft’

matter colloidal systems, and seek to investigate the extent to which FFEA can be

used to probe their behaviour in a manner that other simulation techniques can-

not. Looking at commonly used microgel systems such as pNIPAM (Aufderhorst-

Roberts et al., 2018; Bachman et al., 2015; Hunter & Weeks, 2012; Sierra-Martin

et al., 2011; Voudouris et al., 2013), we use representative experimental parame-

ter values, shown in detail in Table 4.1, that overlap with the regimes we expect

FFEA to be most likely to be relevant to study.

Our exploration of phase space is split into 3 tranches, as illustrated in Fig-

ure 4.1: (i) an exploration of ζe with the bulk modulus, K, held at 12kPa; (ii) an

exploration of ζe with K held at 2kPa; (iii) simulations with K varied from 2kPa

to 12kPa, with ζe held at 0.7. The Poisson ratio is held fixed at 0.33 throughout.

These tranches will be referred to in the rest of the chapter by the shorthand

[12kPa varied ζe], [2kPa varied ζe] and [ζe = 0.7, varied K], respectively.

The above ranges were chosen to explore whether there are qualitative dif-

ferences in these simulations within a physically reasonable parameter space for

pNIPAM-based experimental systems, as discussed in Aufderhorst-Roberts et al.
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(2018), with the Poisson ratio chosen for pNIPAM microgels near the Lower Criti-

cal Solution Temperature from Voudouris et al. (2013). Additionally, this range is

further constrained by simulation stability and the timescales we can reach, both

of which are affected negatively by higher moduli. Thus, we explore the softer end

of the relevant modulus space, largely due to these computational considerations.

(a)

Figure 4.1: Space explored with quiescent simulations.

4.2 Repeated simulations and consistency

With the chosen simulation parameters, simulations corresponding to a timescale

of 9.5 × 10−3s were possible within reasonable time, taking up to a month of

compute time to simulate. Such simulations would gather good statistics for

events occurring on short timescales (e.g 10−7s to 10−3s), but may not adequately
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sample dynamics for longer times. Additionally, if a simulation does not fully

relax from its initial configuration in 9.5 × 10−3s, that initial configuration may

significantly weight the results of that simulation. Hence, we aim for 10 repeat

simulations at each set of parameters to probe variation from initial conditions,

though for some parameters not all of these simulations were viable, as we will

discuss in this section. The population size of these systems was also varied, to

see if finite size effects were experienced.

4.2.1 Overlapping simulations

While there was an aim to have 10 instances of each simulation, an issue occurred

in some simulations where the steric repulsive interactions were not sufficient to

prevent significant overlap of colloids. When this occurred, for a pair of colloids,

the two particles would overlap almost completely and remain overlapped for the

remainder of the simulation with centres of mass within 10−8m of each other.

Interactions with surrounding particles prevent escape from the overlapped state.

The remedy to this behaviour was to increase the voxel length, which eliminated

the issue at a cost of performance.

The 2kPa simulations and nine of ten each of 4kPa and 8kPa simulations

did not exhibit this behaviour, and so the original simulations were retained.

As can be seen in Figure 4.2 changing the voxel length does result in slightly

quantitatively different behaviour for the same material parameters. We utilise

only the results from the simulations with larger surface interaction length for

the [12kPa varied ζe] simulations, but care should be taken when comparing these

results with those from the simulations with softer moduli, as they are likely to
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be comparing slightly different dynamics due to the different force calculations.

It is interesting to note that capturing more interactions enables faster dynamics.

(a)

Figure 4.2: Quantitative difference between simulation instances with larger sur-
face interaction cutoff (upper curves) and original interaction cutoff (lower curves)
for 12kPa simulations with ζe = 0.6.

4.2.2 Finite size effects and Convergence

In addition to considerations of the resolution of individual colloids, we must also

consider the effects of the finite size of the simulation box. To probe this effect,

we simulated systems with populations of N = 100 and N = 1000, attempting to

reach longer timescales with fewer colloids and testing what size of simulations we

could run on an acceptable timescale. Additionally populations up to N = 8000
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were trialled, but time and computational resource constraints, as well as the

inherent lower stability of larger populations sizes in a system with stochastic dy-

namics did not allow this to be properly explored. While time and computational

resource constraints limited us in this way, works such as Seth et al. (2011) do

not see observe substantively different dynamics moving from populations of 103

to populations of 104. This suggests populations of 103 can be sufficient, but we

have been unable to ascertain the extent of finite size effects beyond this popu-

lation size in these simulations, which are thermally active, whereas particles in

the work of Seth et al. (2011) were not.

In Figure 4.3 we can see that for the less populous simulations we found

significant differences within each volume fraction depending on initial configura-

tion; some configurations reach a second diffusive regime, while other simulations

plateau indefinitely. This difference in behaviour is evident even in a sample size

of ten, and is observed multiple times. With 1000 colloid simulations, behaviour

of each set of simulations at a particular effective volume fraction (ζe = NV0
Vbox

,

where N is number of particles, V0 is uncompressed volume of the colloid, and

Vbox is volume of the box) is more consistent, and we do not observe the plateau-

ing subtype of simulation. Comparing to systems of 1000 particles, the MSD

observed also diverges significantly at longer timescales between the two system

sizes. Given the clear finite size effects occurring here, we in general chose the

population of N = 1000 colloid simulations as the largest size we would reason-

ably be able to simulate.

In general, the degree to which the simulations are converged will vary in

several ways and depend on the measure we are discussing. Firstly, we have the

finite size effects already mentioned, although the closer behaviour in multiple
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realisations of the system with the larger populations suggests that we have sim-

ulated a population that is at least somewhat close to convergence. Secondly, we

can consider the resolution of the particles. As mentioned in subsection 3.1.1,

there is a balance between computational stability and efficiency and the reso-

lution of the meshes used. Unlike many finite element approaches, we cannot

arbitrarily increase the refinement of meshes due to the stochastic nature of the

simulations. Refinement will increase the likelihood of element inversion due to

stochastic stress, and relative strains will be larger due to smaller elements, as

well as our elements eventually being so small their elements are smaller than

atoms. Because of this, we must choose a level of coarse-graining, and therefore

convergence to the behaviour of true sphere, for example, may not be perfectly

attainable. Thirdly, in measures such as Mean Squared Displacement the longest

timescales in a simulation of arbitrary length will not converge, i.e. we must

simulate significantly longer than the timescale of interest to be confident of con-

verged behaviour in a single simulation. Instead, one must simulate sufficient

realisations of the same set of parameters, and infer through an ensemble that

behaviour is converged. We have taken precautions to have the simulations as

close to convergence as possible balanced against suitable performance to actually

be able to observe interesting dynamics, and have sampled an ensemble to ensure

these issues are not overwhelming otherwise. We also pursue multiple measures

to verify the existence of unconverged behaviour at the longest timescales, i.e the

second diffusive regime.
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(a)

(b)

Figure 4.3: (a)Plot of MSD of 10 instances of 100-colloid systems at ζe = 0.8,
and a single instance of an 1000-colloid system at the same ζe. The 100 colloid
systems have significant variance in behaviour, and diverge significantly from the
1000-colloid results due to finite size effects. (b) Consistency in MSD of ten 1000
colloid simulations at ζe = 0.8.
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ζe
K

(kPa)
G

(kPa)
No. of

cells

Interaction
Cutoff (m)

Steric
Factor

No. of Vi-
able Runs

0.6 12.34 3.700 25 3.51× 10−8 1× 10−5 3
0.7 12.34 3.700 26 3.48× 10−8 1× 10−5 7
0.8 12.34 3.700 26 3.07× 10−8 1× 10−5 10
0.7 8.00 2.400 45 1.86× 10−8 2.59× 10−5 9
0.7 4.00 1.200 45 1.86× 10−8 1.30× 10−5 9
0.6 2.00 0.600 45 1.65× 10−8 6.48× 10−6 10
0.7 2.00 0.600 45 1.86× 10−8 6.48× 10−6 10
0.8 2.00 0.600 45 1.77× 10−8 6.48× 10−6 10
0.9 2.00 0.600 45 1.70× 10−8 6.48× 10−6 10
1.0 2.00 0.600 45 1.65× 10−8 6.48× 10−6 10

Table 4.1: Table of parameters varied in quiescent simulations

4.3 Observed volume fraction

Before discussing any other results from the quiescent simulations, we must first

discuss the actual observed volume fractions for these simulations. The behaviour

of systems of monodisperse hard-sphere colloids are mainly characterised by the

volume fraction φ = nV
VTot

, where n is the number of particles, V is the volume

of a particle, and VTot is the total volume of the system. In a system of soft,

compressible particles, we can only initialise systems according to the effective

volume fraction ζe = nV0
VTot

, where we use the uncompressed, undeformed volume

of the colloid, V0.

The difference between these may be instructive - to what extent does φ alone

determine the dynamics of soft colloidal systems? We can see from Figure 4.4 that

harder and softer systems often have quite similar φ with different initial ζe. So

we can compare the results from simulations with similar φ but different modulus,

specifically: ζe = 0.7,K =2kPa and ζe = 0.6,K =12kPa have φ = 0.594, 0.590,

respectively; ζe = 0.9,K =2kPa and ζe = 0.7,K =12kPa have φ = 0.684, 0.673,
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(a) (b)

Figure 4.4: (a)Observed real volume fraction φ versus ζe for 12kPa and 2kPa
series, dashed line indicates φ = ζe. (b) φ versus bulk modulus K.

respectively; and finally ζe = 0.8, K =2kPa has a value intermediate to ζe =

0.7,K = 4, 8kPa with φ = 0.642, 0.631, 0.655, respectively.

The trends visible in Figure 4.4 are expected. As we increase ζe in both

harder and softer colloids, φ increases. In both plots, we can see that higher

moduli result in higher volume fractions. Interestingly, we do not see a φ higher

than approximately the limit of ordered hard-sphere packing, φ = 0.74, and it

appears from the limited data points we have that the curve could be approaching

a maximum value. For those simulations where we can directly compare φ and

ζe, increasing ζe results in a larger deviation from φ = ζe. All sampling errors

are smaller than the markers as plotted, so φ is very closely determined by the

corresponding ζe and material parameters of the system. Observed φ values are

featured in parentheses on relevant plot legends to three significant figures in

all subsequent plots. Without thermal fluctuations, we would expect φ to be a
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ζe K (kPa) |q| Scaling
S(|q|)

Scaling
S(|q|) Verti-

cal translation

0.6 12.00 1.135 0.6 0.35
0.8 12.00 1.2 0.65 0.33
0.6 2.00 1.15 0.65 0.0.35
0.8 2.00 1.25 0.65 0.35
1.0 2.00 1.325 0.65 0.35

Table 4.2: Table of Scaling factors for Scattering radial profiles for various simu-
lation parameters.

unique function of ζe, especially as we disallow large overlaps. One such possible

function appears in the work of van der Scheer et al. (2017).

4.4 Structure

To investigate the structure of the systems, we calculate for each checkpoint

output from the simulation the average of the scattering intensity, |ρq|2. We

calculate ρq from:

ρq =
1

Np

Np∑
α

exp(iq · rα) (4.1)

where rα is the position of the centre of mass of particle α and Np is the number

of particles. Since simulations are performed in a periodic box, q is chosen from

the set of wavevectors consistent with box periodicity, i.e.

q = 2π

(
l

Lx
,
m

Ly
,
n

Lz

)
(4.2)

where Lx, Ly, Lz are the simulation box length in the corresponding dimension

and choices of l,m, n are integers. For computational efficiency, and to restrict
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(a) (b)

(c) (d)

Figure 4.5: Representative sample of scattering amplitude averaged over x−y, y−
z, x − z planes for all simulations and every 10th simulation checkpoint output
at given parameter values. The solid line in radial profiles represent spherical
average of the corresponding data, while the square markers represent Perkus-
Yevick behaviour (Percus & Yevick, 1958) for φ = 0.55 with an effective radius
of the particles is 500nm, scaled to have a coincident first peak, y-intercept and
high |q| value, as a representative example of amorphous hard-sphere behaviour.
Results shown for (a)ζe = 0.6, K = 2kPa, φ = 0.525, (b)Radial profile of a,
(c)ζe = 0.8, K = 2kPa, φ = 0.642, (d) Radial profile of c.
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(a) (b)

Figure 4.6: Representative sample of scattering amplitude averaged over x−y, y−
z, x − z planes for all simulations and every 10th simulation checkpoint output
at given parameter values. The solid line in radial profiles represent spherical
average of the corresponding data, while the square markers represent Perkus-
Yevick behaviour (Percus & Yevick, 1958) for φ = 0.55 with an effective radius
of the particles is 500nm, scaled to have a coincident first peak, y-intercept and
high |q| value, as a representative example of amorphous hard-sphere behaviour.
Results shown for (a)ζe = 1.0, K = 2kPa, φ = 0.720, (b) Radial profile of a.
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(a) (b)

(c) (d)

Figure 4.7: Representative sample of scattering amplitude averaged over x−y, y−
z, x − z planes for all simulations and every 10th simulation checkpoint output
at given parameter values. The solid line in radial profiles represent spherical
average of the corresponding data, while the square markers represent Perkus-
Yevick behaviour (Percus & Yevick, 1958) for φ = 0.55 with an effective radius
of the particles is 500nm, scaled to have a coincident first peak, y-intercept and
high |q| value, as a representative example of amorphous hard-sphere behaviour.
Results shown for (a)ζe = 0.6, K = 12kPa, φ = 0.586, (b) Radial profile of a,
(c)ζe = 0.8, K = 12kPa, φ = 0.748, (d) Radial profile of c.
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the range of wavevectors to a two-dimensional plane, we restrict the range of

integers to

l = 0,m = (−mmax,mmax), n = (−nmax, nmax) (4.3)

m = 0, l = (−lmax, lmax), n = (−nmax, nmax) (4.4)

n = 0, l = (−lmax, lmax),m = (−mmax,mmax) (4.5)

where lmax,mmax, nmax = 50. We evaluate |ρq|2 for each q for every tenth saved

checkpoint step (or every 10−4s). All instances of each set of parameters and

from all 3 planes are averaged into a single two-dimensional plane, as we would

assume isotropy with monodisperse, identical particles. The resulting average

instensity S(|q|) = 〈|ρq|2〉 is then colormapped logarithmically, and the results

can be seen in Figure 4.5, Figure 4.6, and Figure 4.7 for the same representative

sample of parameter choices covered in section 4.6, alongside a radial average of

each scattering plot. This representative set of simulations was chosen to bound

the parameter space we explore. Time constraints prevented calculation of this

quantity for all simulated systems.

The quantity S(|q|) is the three-dimensional Fourier transform of 〈ρ(r)ρ(0)〉 =

g(r)ρ2
0. We will briefly discuss the features we would expect to see in various

circumstances. In the case where crystalline order is present, we would expect to

see clear peaks in a lattice ordering in the plot, which would correspond to the

reciprocal lattice of whichever crystalline form was present. As we do not observe

such peaks in any of the plots in this section, we will not discuss this in detail.

These behaviours can be seen in Foss & Brady (2000). More broadly, if there is

no long range order or crystallinity, the key features of these plots will come from
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local order, so the nearest neighbour cage or at most the second shell. If there

is a sharp, well defined nearest neighbour distance, S(|q|) will feature multiple

defined rings - when taking a radial profile, this signature would be similar to

the Perkus-Yevick profile (Percus & Yevick, 1958) we plot against. A broader

distribution of distances will give fewer, broader rings. Finally, even if long range

order is not present local correlations of non-contacting particles that still fall

close to the nearest neighbour shell will give shoulders in those peaks, where the

transform of the peaks from two different distances are superposed.

In Figure 4.5, Figure 4.6 and Figure 4.7, we can see that none of the systems

display signs of crystallinity as no reciprocal lattice is visible. Focussing on the

K = 2kPa simulations in Figure 4.5 and Figure 4.6 we can see only a few rings,

suggesting that the distribution of nearest neighbour lengths is wide enough that

the transform of this measurement is weak. For the K = 12kPa simulations in

Figure 4.7, we can see significantly more rings, suggesting that the distribution of

nearest neighbour distances is tighter, therefore giving a greater quantity of more

pronounced peaks in the transform of this quantity. Additionally, we can clearly

see in Figure 4.7d a shoulder in the second peak, which indicates that there is a

local ordering close to hexagonal close packing, but only within the diameter of

another particle. We can deduce this as longer range order would not show up

as rings, and that a shoulder indicates there are two close but subtly different

length scales at play. Additionally, the non-zero value of the y-intercept arises

from the compressibility of the system.

We also compare the radial profile of our plots to the idealised hard sphere

structure factor for amorphous monodisperse hard spheres, generated by using

the SasView implementation of the Perkus-Yevick (Percus & Yevick, 1958) model
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with an effective radius of 500nm and φ = 0.55. This model was then scaled along

the |q|-axis so that the position of the first peak coincides with the data, and

then scaled in S(|q|) as S(|q|) = a+ bSP−Y (|q|) where a vertically translates and

b scales the Perkus-Yevick result SP−Y to give a rough visual aid for interpreting

the results with matched y-intercept and high |q| values. These scaling quantities

are included in Table 4.2. Discussing the K = 12kPa results first, we can see that

using this simple scaling we achieve a good agreement at both values of ζe. We

have matched the y-intercept and the approximate size and width of most of the

peaks. We interpret this as that the structural arrangement of these colloids with

harder moduli somewhat matches a significantly less packed amorphous system

just below the onset of the glassy regime, where thermal rearrangement is still

possible, though the actual φ of these 12kPa systems is 0.59 and 0.74, compared

to a scaled Perkus˙Yevick curve for φ = 0.55. It is important to remember the

shoulder in Figure 4.7d - these are volume fractions that would be hexagonally

close packed for hard spheres, but this is disrupted at any longer range by the

softness and thermal activity of the colloids. Of note in the K = 2kPa simulations

in Figure 4.5 and Figure 4.6 is that we cannot achieve good agreement with

the Perkus-Yevick predictions. The peaks for these predictions are higher and

narrower, and therefore persist to higher |q|, regardless of our choice of scaling. We

also conducted this analysis on a K = 8kPa, ζe = 0.7, and found similar results

to K = 12kPa, ζe = 0.6, indicating the structure cannot be used to differentiate

between these simulation parameters, which as we will see in Figure 4.9 give

very similar mean-square displacement results. That we can effectively scale this

hard-sphere theory for results for harder spheres that are still deformable, but not

for the softer spheres is an interesting result, suggesting the softness allows for
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quite different structuring than the harder counterpart. Given this observation,

it is also interesting that the hexagonal close packing is still somewhat visible,

suggesting short range order may vary with φ while longer range order is destroyed

by the softness of the particles.

4.5 Mean-Squared Displacement

4.5.1 Expected behaviour

As a first measure to probe rearrangement of particles, we choose the time-

dependent Mean-Squared Displacement, or MSD, of their centre of mass. For

free diffusion of a sphere in three dimensions, we would expect the standard re-

sults of 〈x(τ)〉 = 0 and 〈x(τ)2〉 = 6Dτ , where x is the displacement over some

time lag τ as a scalar value, and D is diffusivity. This is because we expect

each step in the diffusion of a free sphere to be uncorrelated in time and space,

and therefore when sufficiently well sampled any exploration in one direction will

eventually be cancelled out by an equivalent exploration in the opposite direc-

tion. However, the mean square displacement, considering the magnitude of the

displacement and not its direction, will continuously grow.

In the case of a packed system where each particle is surrounded by a cage of

other particles, we would expect the centre of mass of a particle to first explore

its own cage in a manner similar to a free particle. It would then transition

to experiencing caging effects, and enter a regime where it is more restricted

by its cage. If the particles are truly caged, then this plateau would continue

indefinitely. However, if the particles are able to rearrange to escape their cage,
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we would expect to see a second diffusive regime, in which 〈x(τ)2〉 is again roughly

proportional to τ , but with a smaller diffusivity. Here, hopping between the cages

is analogous to diffusion on a discrete grid. In addition to plotting MSD versus τ ,

we also show 〈x(τ)2〉
τ

versus τ . In the latter, we would expect diffusive regimes to be

plateaus, with the plateau value of 6D, and caged regimes to be downward slopes.

As discussed in section 3.4, the displayed results for MSD have the diffusion of

the entire system removed from particle displacements.

4.5.2 Results and discussion

(a) (b)

Figure 4.8: MSD of [2kPa varied ζe]: (a)Simple MSD, (b) MSD divided by τ .

First, we discuss the [2kPa varied ζe] Simulations. We can see clearly in

Figure 4.8a that while these systems all appear to have 3 regimes in their MSD,

they do not exhibit a strong plateau in the MSD. Although the particles in these

systems are experiencing some caging effects, they are not experiencing them

strongly enough to obviously produce a true cage at any timescale. We can also
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see that while the ζe = 0.6 curve appears to have little deviation from diffusive

behaviour plotted in this manner, the middle regime where caging is most strongly

felt grows more pronounced as the effective volume fraction is raised, and is most

clear when ζe = 1.0.

Looking instead at Figure 4.8b, we can see the 3 distinct regimes quite clearly

when divided through by τ . This is a consequence of dividing MSD by τ to

remove the leading order diffusive behaviour: as a result the y-axis in Figure 4.8b

covers a range of 1 decade, so that the 3 regimes are clear. Here plateaus are

diffusive regimes, and downward slopes are caging effects. We can see in the

short timescales that the higher volume fractions feel their cage more strongly

and sooner, curving off the plateau immediately, whereas ζe = 0.6, 0.7 briefly have

an initial diffusive plateau before fully experiencing their cage. All appear to

return towards a plateau, indicating the emergence of a second diffusive regime,

between cages. While they may not have fully reached that plateau, with the

corroboration of the analysis included in the rest of the chapter, a return to a

second diffusive regime is certainly indicated.

For the MSD results for the [ζe = 0.7, Varied K] systems in Figure 4.9, we

must first observe that the 8kPa and 12kPa results track each other almost exactly

in longer timescales. This is an intriguing result, but is possibly an artifact

of the difference in surface interaction length discussed in section 4.2. This is

therefore likely a demonstration of softness of particles being quite difficult to

define - both the interactions between particles and the material parameters of

the particles themselves contribute to the effective softness and dynamics. It is

also interesting that on short timescales the 12kPa system tracks the 4kPa system

before switching to the 8kPa.
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(a) (b)

Figure 4.9: MSD of [ζe = 0.7, Varied K]: (a)Simple MSD, (b) MSD divided by
τ .

As we increase the moduli, we can see that the middle, caged regime is more

obviously separate from the entirely diffusive regimes, and in a more significant

way than when was obtained by varying ζe. It would be interesting in further

work to attempt to simulate higher volume fractions for this reason - we are

comparing logarithmic variation in moduli to a geometric variation in ζe at the

low modulus of 2kPa. Again, Figure 4.9b makes clear that at least 2 clear regimes

exist in all cases, and there is a tendency towards a 3rd emerging.

Finally, we present the [2kPa varied ζe] simulations. We can observe the three

regimes in Figure 4.10a for all packing fractions, with the middle regime more

pronounced at higher ζe. In Figure 4.10b we can see that again, the higher the

ζe, the earlier the cage is felt. We can also observe that none of these systems

have fully established a second diffusive regime.

In Figure 4.11, we compare systems from the previous datasets with similar
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(a) (b)

Figure 4.10: MSD of [12kPa varied ζe]: (a)Simple MSD, (b) MSD divided by τ .

observed volume fraction φ. From this we can assert that the dynamics of these

soft colloidal systems do not appear to be dictated entirely by their volume frac-

tion, but rather that the modulus of the colloids is also a strong determining

factor for the dynamics. Of note is that short timescale behaviour is quite similar

between systems of similar φ, which is a sensible but perhaps not obvious result.

Cage size is likely to be defined largely by φ and therefore the time for the centre

of mass to diffuse long enough to encounter the resistance of that cage is likely

to be similar, even though the resistance of that cage is quite different.

To approximate the diffusion coefficient, D, we assume diffusive behaviour,

i.e 〈r2〉 = 6Dτ , and use the final value from each 〈(x(t+τ)−x(t))2〉
τ

curve. As these

simulations have not definitively reached their second diffusive plateau, these are

approximations and we cannot reasonably calculate error, but they may still be

instructive. We can see these values plotted against observed volume fraction

φ in Figure 4.12 for the series [2kPa varied ζe], [12kPa varied ζe], [ζe = 0.7,
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(a) (b)

(c)

Figure 4.11: Comparisons of MSD for systems with similar φ: (a)Systems with
φ ' 0.59, (b)Systems with φ ' 0.68, (c)Systems with φ ' 0.64.
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(a)

Figure 4.12: Approximate diffusivities against φ for all simulations.

varied K] . Here we confirm that similar volume fractions do not necessarily have

similar diffusivities, and therefore that the material properties of the colloids are

relevant to the mobility of the colloids as well as the volume fraction. For the

softest colloids, we can see that the relationship between D and volume fraction φ

is roughly linear, whereas for the hardest this is less clear - there may be a curve

in this data, but we have too few datapoints to be sure. This linear behaviour to

non-linear or a different linear behaviour, if confirmed, could be symptomatic of

a transition into a different regime.

Additionally, we can discuss the lengthscale of cage-breaking, which has two

components; the displacement of a single particle moving between cages, and

the lengthscale of any cooperative deformation that may occur between multiple

shells of particles. The first we can extract from the MSD at the second shoulder,
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which we would expect to be approximately the average diameter of a compressed

particle, which we find to be correct. We can see in Figure 4.8a, Figure 4.10a and

Figure 4.9a that increasing the moduli and effective volume fraction ζe, which

both lead to lower volume fraction φ, gives lower lengthscales of rearrangement.

All of these values are within approximately one compressed particle diameter.

The second is harder to directly calculate using the information we have measured

and analysed within this work. However, we can estimate it using evidence dis-

cussed in subsection 4.2.2: the smaller simulations clearly have finite size effects

at play, suggesting a lengthscale longer than 2 particle diameters radially around

any given particle, given a population of 100 particles is a little under five in each

spatial dimension. That these finite size effects are significantly less at 1000, or

ten in each spatial dimension, suggests a lengthscale in these simulations of less

than approximately 5 particle diameters, though subtler effects may remain at

still larger populations.

To conclude, we can in general observe that there is a tendency towards a

second diffusive regime in all cases. Higher ζe and higher moduli both result in

the particle feeling the cage at shorter timescales and in more pronounced ways, as

would be expected. We have also found that the dynamics of these systems do not

appear to be dominated simply by the true volume fraction φ, except possibly on

the shortest timescales. These conclusions have much in common with the results

for softer potentials in Gnan & Zaccarelli (2019), where colloids are represented 2-

dimensionally by a ring of particles experiencing a Hertzian potential, which acts

to capture shape deformation information. A key difference is that the simulations

we present uniformly display two diffusive regimes with an intermediate caged

regime, whereas their simulations display similar regimes to ours at lower volume
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fraction, to a truly caged state at a higher volume fraction, and finally re-entrant

melting at still higher volume fraction, although at much higher ζe than we probe

in this thesis, and with a potential that does not easily map onto our parameters

for comparison. Closer to our results are the three-dimensional simulations of

Lo Verso et al. (2016), using deformable coarse-grained MD models of spherical

nanoparticles, going to ζe of well above two and not observing this re-entrant

melting behaviour, though they only report this for a single type of nanoparticle,

and it is unclear how our continuum moduli would correspond. Similar results

were also observed in the work of Gebremichael et al. (2001) with bead-spring

simulations of polymer melts, and in Holler et al. (2018) probing the MSD of

branch points in entangled star polymers. In terms of experimental results, the

three regimes we observe are largely seen for sub-glassy volume fractions for hard

sphere colloids (Hunter & Weeks, 2012; Weeks & Weitz, 2002), but have also been

observed in soft colloidal experimental systems such as Yoon et al. (2018) using

Diffusion Wave spectroscopy to extract MSD at φ = 0.6, although extracting

measurements at higher volume fractions is challenging due to the sheer number

of objects to resolve.

4.6 Visualisation of trajectories of colloids

In this section we use the simulation trajectories to corroborate the occurrence

of rearrangement. We do this by showing a representative sample of visualised

trajectories of the particles with the highest displacement over the course of the

simulation. We show their behaviour matches what we would expect for an

initially caged particle that eventually breaks its cage.
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(a) (b)

(c)

Figure 4.13: Representative sample of particle trajectories for 50 particles with
highest displacement over course of simulation. Particle begins at yellow and
transitions to red, with each section of the trajectory representing displacement
over 10−4s. Results shown for systems where K = 2kPa: (a)ζe = 0.6, φ = 0.525,
(b)ζe = 0.8, φ = 0.642, (c)ζe = 1.0, φ = 0.720.
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(a) (b)

Figure 4.14: Representative sample of particle trajectories for 50 particles with
highest displacement over course of simulation. Particle begins at yellow and
transitions to red, with each section of the trajectory representing displacement
over 10−4s. Results shown for systems where K = 12kPa: (a)ζe = 0.6, φ = 0.586,
(b)ζe = 0.8, φ = 0.748.
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(a) (b)

(c) (d)

Figure 4.15: Single particle trajectories of particle with highest displacement over
course of simulation. Particle begins at yellow and transitions to red, with each
section of the trajectory representing displacement over 10−4s. Results shown for
softest, least packed system and most packed hard system: (a)ζe = 0.6, K =
2kPa, φ = 0.525. (b) 50th highest displacement particle in simulation a, showing
more intermittent cage breaking. (c)ζe = 0.8, K = 12kPa, φ = 0.748. (d) 50th
highest-displacement particle in simulation c, showing a greater degree of caging.
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Figure 4.13 and Figure 4.14 show a representative sample of visualisations of

particle trajectories, chosen from simulations at the boundary of the parameter

space. If we observe common behaviour in these, it is likely that the simulations

within with intermediate parameter choices also share these behaviours. These

images take the 50 particles with the largest displacement over the course of the

simulation and show the 3-D trajectories of those particles over 9× 10−3s.

For particles jumping between cages, we expect a period in which they ‘rattle’

in their cages (many low displacement jumps confined to a local area) followed

by occasional escapes (particles travel a significant distance in a short time). We

would expect very few particles to experience multiple jumps, given that we have

not definitively reached a second diffusive regime with the timescales we have

access to. Indeed, this is what we observe, across the full range of simulation

parameters, with a representative sample of single particles shown in Figure 4.15.

An example of similar plots can be seen in Holler et al. (2018).

As we raise the volume fraction, we can see that the particle trajectories

become more confined, and we have fewer large jumps, and likewise when the

particle moduli increase. We can see that the ζe = 0.6, K = 2kPa system appears

relatively unconfined, while the ζe = 0.8, K = 12kPa system is almost entirely

confined, with only a few cage escapes even when viewing the 50 particles with

largest displacement. All K = 2kPa systems experience greater rearrangement,

and even the most packed of those systems still appears to contain particles that

change cages multiple times.

One might expect to see some correlation or clustering of particles with large

displacement, i.e. motion of one particle creates motion of others nearby, as

has been observed in both hard and soft sphere systems, both experimentally
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and with simulatiom (Franklin & Weeks, 2014; Gnan & Zaccarelli, 2019; Laevi

& Glotzer, 2004; Rahmani et al., 2012). In general, it does appear that there

may be a weak clustering of the particles with largest displacement, or possibly

even a network of rearrangements. Speculating this from visual evidence is very

poorly-sampled, as we show only a single realisation. This means the evidence

is quite weak at this time. This would require a quantitative measure in future

work.

4.7 Peak in non-Gaussian behaviour

As another tool to assess the particle dynamics and whether we have truly reached

timescales sufficient to observe an approach to a second diffusive regime, we in-

vestigate how Gaussian the behaviour of the systems appear. That is, we assess

whether there is a move away from Gaussian behaviour paired with a subse-

quent partial relative return to Gaussian behaviour. For a random walk in three-

dimensional space, we would expect the probability distribution of particle dis-

placements over a fixed time interval to be a Gaussian, or Normal, distribution.

This is due to the Central Limit Theorem. The sum of a large number of random

variables (i.e the displacement of diffusing particles) should be a Gaussian distri-

bution. However, one of the ways this theorem can begin to fail is when a small

number of the elements of this sum are extremely large, so that the sum is domi-

nated by a few large values. In the case where we are only beginning to approach

the second diffusive regime, only a few particles will have broken their cages -

meaning a very few particles take large steps, and the distribution will diverge

from Gaussian behaviour. Once the timescale reaches closer to a true diffusive
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(a)

(b) (c)

Figure 4.16: Non-gaussian parameter α2(τ)) for each set of parameters for
(a)2kPa varied ζe, (b)Varied moduli, ζe = 0.7. (c)12kPa varied ζe.
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regime, we return to a Gaussian behaviour, with motion between cages rather

than diffusion of the centre of mass within a cage. This measure has been used

for some time in the study of glassy dynamics, where they expected and observed

the results outlined here: for a numerical model for cage to cage movement glassy

dynamics (Vorselaars et al., 2007); with confocal microscopy with packed samples

(Weeks et al., 2007); in mobility of colloidal liquid crystals (Cuetos et al., 2018);

in shear melting of a colloidal glass (Eisenmann et al., 2010); in glassy behaviour

at grain boundaries of colloidal crystals (Nagamanasa et al., 2011). All measures

in this section were based on post-processed data from trajectory files (i.e not

calculated during simulation), and therefore cover only timescales from 10−5s

to 10−2s at most. We calculate error bars through taking the sample standard

deviation from the multiple instances of each set of parameters.

We initially calculate a Non-Gaussian parameter. Our choice of Non-Gaussian

parameter α2(τ) (Vorselaars et al., 2007; Weeks et al., 2000) is:

α2(τ) =
〈∆r(τ)4〉

5
3
〈∆r(τ)2〉2

− 1. (4.6)

where ∆r(τ) = |r(t0 + τ)− r(t0)| for some time lag τ . This measure will be zero

when behaviour is Gaussian, and can peak and then fall for a move from a caged

regime to a diffusive regime as in Vorselaars et al. (2007).

As we can see from Figure 4.16, we have a peak in Non-Gaussian behaviour

in all simulations, followed by a return to Gaussian behaviour closer to the full

timescale of the simulations. This peak has a mild tendency to occur at longer

timescales as we increase both ζe and K, apart from the most packed system at

K=2kPa. We can also see that the return to Gaussian behaviour is almost com-
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plete (i.e values of α2 are close to zero) in the less packed φ = 2kPa simulations,

indicating that these have reached the second diffusive regime, while the more

packed and harder simulations still have high values of α2 at longer timescales.

This indicates that while the peak, and subsequent fall of α2 is universal in our

simulations and all are tending towards a return to the diffusive regime, not all

have reached it, and the harder and more packed the system is, the less likely it

is to have returned to the second diffusive regime in simulated timescales.

We can also see that the modulus K has the most significant effect on the

magnitude of α2(τ). We can also observe that the K=12kPa simulations have

a lower peak than the 8kPa simulations, which we interpret as arising from the

longer interaction length for the 12kPa as discussed in section 4.2. Another

observation is that the non-Gaussian parameter for glassy or supercooled systems

is typically 1-6 (Guan et al., 2014), while values for the simulated systems here

are far below this number. As our systems are fluids in all cases, we can see this

as a manifestation of the fluidity of the system and softness of the particles.

We again plot systems with similar φ in Figure 4.17. Here we see that the non-

Gaussian behaviour of these systems differs quite significantly, with higher values

at longer timescales for systems with higher moduli. In Figure 4.17c especially,

we see that the system with intermediate φ has the lowest value and earliest

peak, again confirming that φ alone is not a sufficient predictor of the dynamics

of these soft systems. To further probe the deviation from Gaussian distribution

of particle displacement, we also construct histograms of particle displacements

∆r(τ) = |r(t0 + τ) − r(t0)| with various time lags τ , and compare it to the

Probability Distribution Function (PDF) we would expect for a Gaussian system
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(a) (b)

(c)

Figure 4.17: Comparisons of non-Gaussian parameter α2 for systems with similar
φ: (a)Systems with φ ' 0.59, (b)Systems with φ ' 0.68, (c)Systems with φ '
0.64.
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(a) (b)

(c)

Figure 4.18: Histogram of displacements in units of RMSD for ζe = 0.7, K = 4kPa
simulations for various timelags as denoted in the plots. Red line represents the
PDF for a gaussian system with the MSD of this system.
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(a) (b)

Figure 4.19: MSD divided by τ and α2 for ζe = 0.7, K = 4kPa simulations with
timescales used for displacement histograms marked.

with the same MSD diffusing in three-dimensional space, given by:

P (r) =
4πr2

(2
3
π〈r2〉)3/2

e
−r2
2
3 〈r

2〉 (4.7)

We pick a single set of simulation parameters, as showing this data for all systems

at a selection of timescales would be unfeasible in this format. A representative

example is shown in Figure 4.18 for ζe = 0.7, k = 4kPa. We can see on short

timescales a very Gaussian behaviour, in which the histogram closely matches the

Gaussian PDF. At later times, there is a shift away from Gaussian behaviour,

approximately at the timescale of the second shoulder in the corresponding MSD.

Finally, there is a partial return to Gaussian behaviour. We observe similar results

in all simulations, though the largest deviation from Gaussianity depends on the

simulation. Simulations with softer moduli do not shift as far away from Gaussian

behaviour as the harder systems. Harder and more packed systems have a less
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pronounced return to Gaussian behaviour at the lowest simulation times, which

we would expect as these systems do not have as pronounced a return to a second

diffusive regime. We expect that if simulations could be run for longer, eventually

Gaussian behaviour would be observed.

4.8 Correlation between particle deformation and

motion

(a) (b)

Figure 4.20: (a)Covariance of instantaneous velocity with ratio λmax
λmin

of the shape
tensor of the particle for a representative sample of simulations. (b)Measure of
correlation of eigenvector corresponding to λmax and instantaneous velocity.

Given that the simulated particles are able to alter their shape due to thermal

fluctuations, we might expect that there is a correlation between particle defor-

mation and particle motion, i.e. a deformed particle can more easily ‘break its

cage’. Such behaviour could not be observed in simulations with radially sym-

metric particle interactions. As a simple attempt to see whether the shape of
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particles is correlated with their velocity, we have calculated two quantities for a

representative set of simulations. We have been limited by time constraints and

the computational expense of these calculations.

The first quantity calculated, σλmax
λmin

,v is the covariance between the average

particle velocity, |v|, and the quantity λmax
λmin

. The average velocity vi for a partic-

ular checkpoint i is given by a central difference:

v =
xi+1 − xi−1

2∆t
(4.8)

where xi is the displacement of the centre of mass of the particle at checkpoint i,

and ∆t is the time between checkpoint output. The value λmax
λmin

is the ratio of the

largest and smallest eigenvalues of the shape tensor, which is given for a finite

element simulation by:

S =

[
1

M

∑
e

meYe

]
−Xc ⊗Xc, (4.9)

where M is the mass of the colloid, subscript e denotes elements, me is the mass

of element e, ⊗ is the outer product, Xc is the centre of mass of the colloid and

Ye is given by

Ye =
1

20

(∑
i

∑
j

Xi ⊗Xj +
∑
i

Xi ⊗Xi

)
(4.10)

where indices i, j denote nodes in the element.

The eigenvalues of this shape tensor correspond to the semi-axes of an ellip-

soid: each eigenvalue is 1
5
a2, where a is the relevant semi-axis. The ratio λmax

λmin

then gives us a rough measure of how distended the particle is. The covariance
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is averaged over all particles on all checkpoints output over all realisations of a

system. This measure investigates whether colloids that are more deformed than

average move faster than average.

Our second measure again uses the eigenvalues and eigenvectors of the shape

tensor. For this measure, we calculate the quantity:

A = 3
〈(ei,α · vi,α)2〉i,α
〈(vi,α · vi,α)〉i,α

− 1 (4.11)

where ei is the eigenvector of the largest eigenvalue of the shape tensor for particle

α at frame i, and vi,α is the central difference of the velocity for particle α at frame

i. This is averaged over all particles on all checkpoints output over all instances

of a system with a particular set of parameters. This quantity measures whether

particles tend to move in the direction of their largest semi-axis. We have A > 0

if vi,α tends to be directed along ei,α, but zero if vi,α is isotropic.

While we can see in Figure 4.20 that neither of these measures suggest a strong

correlation between particle deformation and motion of the centre of mass of the

colloid, they are both consistently positively correlated in all the simulations we

have analysed. They also both appear to peak at ζe = 0.8 for both measures for

the 2kPa simulations, though with the paucity of information we have here this

conclusion can be drawn only weakly. It is interesting to note that we have a

slight positive correlation in both measures. The covariance measures whether

colloids more deformed than average move faster than average, whilst the second

measure simply checks whether particles tend to move in the direction of the

eigenvector with the largest eigenvalue. In this latter measure the particles do

not need to be more deformed than the average. It is interesting both of these
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measures should give a positive result.

A weakness of the approach we take here is that we have only approached the

analysis through post-processing. As a result, the velocity we are using is aver-

aged over a significant timescale rather than being instantaneous, whilst we can

only calculate an instantaneous value of the asphericity of the particles, and these

quantities may not be correspondingly representative of motion and deformation

in that period, given the lack of inertia in the simulations. If we were to repeat

this analysis, we might compute the asphericity as a rolling average on the fly

during simulations, with a similar window as the velocity. It might be interesting

in further work also to see if there are sub-populations of faster moving parti-

cles that behave differently with regards to shape, rather than averaging overall

populations. Gnan & Zaccarelli (2019) study an asphericity parameter for mo-

tion of rings in two dimensions, and while their work is two dimensional and the

asphericity measures are not directly comparable, they find that the rings with

largest asphericity are not the fastest rings, and also that there are significant

differences in behaviour of sub-populations.

4.9 Stress correlator

We calculate a correlation function for the deviatoric stress. The stress tensor

for the simulation is calculated as described in section 3.3 and the correlation

function is calculated as described in subsection 3.4.2. To remind the reader, the
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(a) (b)

(c) (d)

Figure 4.21: Stress correlation function against time lag τ and i-Rheo (Tassieri
et al., 2018) converter embedded in RepTate (Boudara et al., 2020) deconvolution
of ofG′, G′′ for (a)2kPa varied ζe, (b)G′, G′′ generated using data from a, (c)Varied
moduli, ζe = 0.7, (d)G′, G′′ generated using data from c.
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(a) (b)

Figure 4.22: Stress correlation function against time lag τ and i-Rheo (Tassieri
et al., 2018) converter embedded in RepTate (Boudara et al., 2020) deconvolution
of of G′, G′′ for (a)12kPa varied ζe, (b)G′, G′′ generated using data from a.

correlation function calculated is:

(4.12)
G(τ) =

V

5kbT
[〈σxy(τ)σxy(0)〉+ 〈σyz(τ)σyz(0)〉+ 〈σzx(τ)σzx(0)〉]

+
V

30kbT
[〈Nxy(τ)Nxy(0)〉+ 〈Nyz(τ)Nyz(0)〉+ 〈Nxz(τ)Nxz(0)〉]

where σαβ denotes a component of the stress tensor for the system, Nαβ = σαα−

σββ correspond to normal stress differences, V is volume and T is temperature.

This considers correlations of the deviatoric stress, i.e. stress related to changes of

particle shape, as opposed to changes in particle volume, which relate to pressure.

For a liquid system that has a single characteristic timescale for relaxation, we

would expect G(τ) to reach zero beyond that timescale. We would further expect,

for systems that establish a second diffusive regime in MSD, that this ability to

rearrange particles would also allow them to completely relax the stress, i.e. we

expect G(τ) → 0 as the second diffusive regime is established. We can see from
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Figure 4.21 and Figure 4.22 that this has only happened in a few simulations on

the timescales that we are currently able to reach. In this Figure, we show the

total elastic G(τ), left. We also show the storage and loss moduli, G′, G′′ as a

function of frequency as obtained using the i-Rheo (Tassieri et al., 2018) converter

embedded within RepTate (Boudara et al., 2020).

We can see from these plots that we have a characteristic shape in all sim-

ulations with a first decay at short timescales, and a slowly relaxing decay at

long timescales. We attribute the short timescale relaxation to the relaxation

of individual particle stresses, which we evidence by considering the timescale

over which we would expect this relaxation, given by τParticle = ζParticle
GParticle

, and find

rough agreement for the timescale of relaxation. From this ratio, we would also

expect that particles with higher modulus would perform this initial decay more

rapidly, which we also observe. This also corresponds roughly to the timescale

where the MSD goes from the initial diffusive to the plateau regime. The long

timescale relaxation we then attribute to structural stress arising from particle-

particle interactions. In many simulations this does not relax entirely. These

typical relaxation times depend on the choice of parameters in manners we shall

now discuss.

We can observe in Figure 4.21 that the stress component from individual par-

ticle stresses increases with particle modulus, but is not strongly varying with

ζe or φ, i.e. there is a consistent surplus above the structural stress. Again, the

short-term relaxation time decreases as modulus increases. For the long timescale

stress, we can see from a representative example in Figure 4.23 that there is a con-

sistent shape and rate of relaxation of structural stress across different instances

of the same parameter, suggesting that there is a dependence of the autocorre-
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(a)

Figure 4.23: Output of stress correlation function against time lag τ for all in-
stances of simulation at ζe = 0.8, K = 12kPa.

lation of the structural stress on the initial configuration. This manifests as a

constant error for the plots on all regimes, as they can all only relax differing

amounts of structural stress in different configurations at the same rate. As a

general trend, we can also see that increasing packing at a fixed particle modulus

increases the long term structural modulus, and likely results in a slower rate of

relaxation of that modulus.

We now turn our attention to simulations with similar φ where other values

are varied, shown in Figure 4.24. While the individual particle moduli are, as

expected, quite different, the long term structural modulus seems much more

similar for simulations with similar φ. A larger value of φ here corresponds to a

larger intermediate value of the modulus, even for particles with higher modulus.

In this case the simulations in Figure 4.24c are ordered relative to φ, which was

not true for their MSD.

Given this observation, we now plot in Figure 4.25 the moduli of these sys-
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(a) (b)

(c)

Figure 4.24: Comparisons of deviatoric stress correlation functions for systems
with similar φ.
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(a) (b)

(c) (d)

Figure 4.25: Comparisons of deviatoric stress correlation functions at intermedi-
ate value of 10−4s versus (a) volume fraction φ, linear scaled, (b) φ, log scaled in
GElastic, (c) effective volume fraction ζe, (d) ζe, with GElastic scaled by 1

GParticle
,

log scaled in GElastic
GParticle

.
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tems observed at a typical intermediate timescale of 10−4s to investigate the

dependence of the structural modulus on relevant parameters. We can see from

Figure 4.25a and Figure 4.25b that there is a clear dependence of the structural

modulus of our systems at intermediate timescale on φ, that is not true for ζe in

Figure 4.25c. It is a curious result the long time modulus appears to depend on

φ independently of GParticle, as GElastic has units of Pa, whilst φ is dimensionless.

We therefore normalise by GParticle in Figure 4.25d, as a candidate modulus for

scaling, but as we can see this does not scale the systems well at low ζe, though it

appears to collapse better as ζe increases, though simulations with higher modu-

lus at higher ζe would be necessary to confirm this. Without thermal fluctuations,

we would expect φ to be a unique function of ζe, especially as we disallow large

overlaps. As the thermal fluctuations allow for substantial shape changes (as dis-

cussed in subsection 3.1.1), especially in the softest particles, these simulations

can reach better packed states, there is no longer a unique relationship between

φ and ζe. One further combination of parameters with dimensions of modulus

is the ratio kBT
VParticle

. It is possible that that there is a relationship similar to

G(10−4s) = kBT
VParticle

1
1−kφ , where k is some constant. In this scenario, (1 − kφ)

represents a measure of free volume per particle, rather than simple volume per

particle. This has a modulus arising from an entropic argument - that there is

some amount of space for the particle to ‘rattle’ in its cage. As hardness increases,

the space in which which the colloid can rattle decreases, working against entropy

and increasing the modulus. This scaling, in the limit of infinite hardness, would

also need to map back onto hard sphere behaviour, as the modulus in hard sphere

systems arises entirely from entropic arguments (Petekidis et al., 2004). Finally,

it is possible that the long time modulus could depend on a combination of mul-
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tiple different dimensionless groups, or another effective modulus that we have

overlooked. There may be a transition from an entropy dominated stress to a

modulus dominated one when the system is more constrained at high volume

fraction. Additionally, the monodisperse nature of our systems perhaps makes

these effects stronger than they would be for polydisperse systems, which can

pack in different ways to monodisperse systems. Ultimately, the results are so

far not conclusive, and would need targeted exploration to elucidate, exploring

higher volume fractions at higher moduli, and whether all moduli still collapse

onto the same trend.

(a) (b)

Figure 4.26: Comparisons of deviatoric stress correlation functions at short
timescale of 10−7s normalised by 1

GParticle
versus (a) volume fraction φ, (b) ef-

fective volume fraction ζe.

Taking the short timescale values of GElastic normalised by 1
GParticle

plotted in

Figure 4.26, we can see that this collapses to some extent against ζe, but does

not collapse for φ, confirming the early decay does arise from individual particle

stresses. We should note though that these short time moduli do vary with φ even
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at fixed ζe, indicating that while the initial decay arises from the decay of indi-

vidual particles stresses and therefore corresponds to individual particle moduli,

the short time value depends on the structural stress as well. We might expect

the short time modulus to set cage-breaking times for our system, as cage-breaks

would be fast events, even if they enable relaxation of stress on longer timescales.

Relating this to the MSD, neither the short time nor long time modulus appear

entirely consistent with setting the cage-breaking time, as both are dependent

on the structural stress which varies significantly between simulated instances of

each set of parameters, while MSD and φ both vary little across instances. How-

ever, cage-breaking clearly must involve particle deformation, and must therefore

be dependent on the particle modulus.

The work of van der Scheer et al. (2017) may be relevant here, as they present

a simple model that nonlinearly relates ζe and φ, through osmotic deswelling.

The degree of nonlinearity depends only on the elastic energy per particle which

scales inversely with particle volume. However, as can be seen in section 4.5, the

dynamics of the system are not set by the true value of φ, so this or a similar

model would not account for all the behaviour we observe.

This result is significant in two important aspects. Firstly, only methods

of simulation that take into account anisotropic deformation could probe this

behaviour. Secondly, this result directly relates microscopic dynamics and struc-

ture to a macroscopic quantity. Hertzian soft spheres such as Bonnecaze et al.

(2020) cannot relate these quantities in this way, as the stress calculation arises

simply from Hertzian deformation and does not fully address multiple contacts,

although the dynamics of the systems in that paper do follow from excess en-

tropy and confinement. Similarly, approaches such as Brownian dynamics only

123



4. QUIESCENT SIMULATIONS

take into account thermal stress and distance between two particles (Zia et al.,

2014).

4.10 Conclusion

In this chapter, we have presented quiescent simulation results showing rearrange-

ments in all simulations at all effective volume fractions and material parameters

attempted, and the tendency towards a second diffusive regime between cages in

all cases. We have discussed the relationship between observed volume fraction

and effective volume fraction, showing that even at the limit of φ for monodis-

perse hard spheres, we still witness rearrangement. We have found no evidence

of long-range ordering in our soft colloidal systems, but we have some agreement

with sub-glassy hard sphere theory in structure of our higher moduli systems and

some short-range HCP ordering. We have shown that MSD results are consis-

tent with (if not wholly conclusive in isolation) all systems approaching a cage

breaking diffusive regime, as well as demonstrating that MSD behaviour is not

dominated by φ. We have demonstrated that there is a rise, peak and fall in

non-Gaussian behaviour, consistent with an approach to a cage-breaking regime.

We have made a limited investigation of correlations between particle shape and

motion, but have concluded that more targeted work would need to be done to

reach more substantial conclusions. Investigating the stress autocorrelation func-

tion, we find a superposition of intra-particle and structural deviatoric stresses,

and observe that the structural stress scales with φ, in opposition to the MSD,

and conduct a preliminary discussion of the cause.

While simulations with spherically symmetric potentials may include thermal
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noise acting on each particle, this generally results in systems that are athermal,

as these simplistic potentials can only produce sensible results when consider-

ing particles that are relatively stiff compared to those simulated in this work.

Alongside this, if we simulated only the response to the deformation and compres-

sion of particles, without thermally driven shape fluctuations, the system would

eventually reach an equilibrium configuration. This would also have resulted in

a different, single equilibrium structure per simulation, possibly crystalline due

to the monodisperse particles, rather than the structural behaviours recovered.

Alongside the evidence of a second diffusive regime, this shows that the simula-

tion of thermal fluctuations resulting in deformation is a key component of the

novelty of this work.
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Chapter 5

Experimental Rheology

In this chapter I describe experimental measurements on microgel colloids con-

ducted at École supérieure de physique et de chimie industrielles de la Ville de

Paris (ESPCI Paris) Matière Molle et Chemie (MMC, Soft Matter and Chem-

istry) lab, under the supervision of Dr. Michel Cloitre during a secondment as

part of my studies. These measurements were performed on a set of microgels

with very low crosslink density which Mattiello (2018) proposed as a new class

of soft microgels, referred to as ultrasoft microgels. The least densely crosslinked

microgels studied display qualitatively different behaviour than most soft micro-

gels, and in some ways are much more similar to star polymers (Likos et al., 1998;

Singh et al., 2011, 2013).

For most soft colloids, two distinct regimes of glassy behaviour can be ob-

served; entropic glass near the liquid-solid transition, and a jammed glass regime

at higher concentrations. In the entropic glass regime, dynamics are controlled

by kinetic arrest of the particles. The particles are caged, but are not yet in con-

tinuous contact. This caging gives rise to entropic elasticity, which at maximum
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reaches 100kBT for hard spheres (Petekidis et al., 2004), and does not scale with

concentration. This can be seen in the first regime of Figure 5.1a. The onset

of the jammed glass regime occurs only in highly packed soft colloidal systems,

where suspension elasticity arises from elastic contacts between particles due to

deformation. The rheological properties of the jammed regime exhibit linear

scaling of the elastic modulus with concentration as can be seen in the second

regime of Figure 5.1a, and are not influenced by temperature. The yield strain,

γy increases with concentration, due to rearrangement and yielding being more

challenging with greater crowding. For most soft particles, we would expect a

discontinuity in G0, the low-frequency modulus, which can be seen in Figure 5.1a

and Figure 5.1c, and in experimental studies such as Pellet & Cloitre (2016).

This quantity is approximated by taking the value of G′ at the minimum of G′′

in a frequency sweep. Flow curves (discussed in subsection 5.3.2) for the jammed

regime can be collapsed onto a master curve with the stress scaled by 1
σy

and

shear rate by characteristic time ηs
G0

. These behaviours have been qualitatively

reproduced in simulations (Mohan et al., 2013; Seth et al., 2011).

For ultrasoft microgels, entropic and jammed glass regimes cannot be distin-

guished, with the elastic modulus increasing across the liquid-solid regime in a

way that does not correspond to either standard regime, as can be seen in Fig-

ure 5.1. This behaviour is discussed for star polymers in Erwin et al. (2010). The

yield strain does not depend on concentration, suggesting that crowding effects

are not dominant in the way particles escape their cage under strain, compared

to standard soft colloids. Additionally, the yield point is frequency dependent,

so if the microgels have more time to deform, they yield at lower deformation.

As a consequence the dependence on the time scale ηs
G0

is not found, with scaling

128



(a) (b)

(c) (d)

Figure 5.1: Variation of elastic modulus G0 with concentration for lin-lin plots of
(a) Standard soft colloid, (b) Ultrasoft colloid and the same data on log-lin plots
for (c) and (d). Plots and data from Mattiello (2018).
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onto a master curve only requiring the σy correction. Mattiello (2018) posit that

the extreme softness of their particles allows deformation and yielding without

the energetically costly deformation of the cage, and that they have the capabil-

ity of self-squeezing for rearrangement. To the best of the author’s knowledge,

rearrangement attributes have only previously been reproduced through simula-

tion with techniques that represent and directly simulate particle deformation or

compressibility (Gnan & Zaccarelli, 2019; Lo Verso et al., 2016; Zakhari et al.,

2018), and the indistinguishable regimes have not been reproduced. We discuss

the synthesis and preparation of these microgels in section 5.1.

We therefore conducted an experimental investigation of the ultrasoft micro-

gels, to confirm this behaviour and compare them to our simulation results, which

are discussed in Chapter 6, with the practical experimental results discussed in

isolation here.

In the following sections, we discuss the microgels themselves and how they

are prepared, and tested for the presence of free chains of polymer which could

distort the results. Once this is excluded, we move onto steady state and oscil-

latory rheology, and discuss differences between specific syntheses of microgels,

the possibility of aging behaviour where rheological responses could change over

time, and to what extent the results obtained are consistent with behaviours of

Erwin et al. (2010); Mattiello (2018).
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5.1 Microgels

5.1.1 Material

The French company Coatex Sas, a subsidiary of the Arkema group, supplied the

microgels used in these experiments to MMC. A non-disclosure agreement relates

to MMC’s collaboration with the synthesising company, and some details of the

synthesis are omitted.

These microgels were synthesised using starved-fed direct emulsion polymeri-

sation. They are polymer networks, smaller than 1µm, made of a copolymer of

Ethyl-Acrylate (EA) and Methacrylic Acid (MAA). These copolymers are cross-

linked using Trimethylpropane Triacylate (TMPTA). The reaction occurs in in a

micellar dispersion of surfactants and microdroplets of monomer, with water as

the continuous phase. The initiator is a hydrophilic module added to the contin-

uous phase, which decomposes and forms radicals on monomers that migrate to

the surfactant micelles. The micelles act as the site for polymerisation. To better

control the microgel growth, only a small amount of reagent is initally put in

the reactor, with further reagent added slowly and steadily during the course of

the reaction. This is to allow for finer control of the composition of the polymer

network, and to create a more uniform, more sparse distribution of crosslinks

within microgels to ensure softness(Acciaro et al., 2011; Still et al., 2013). This is

in contrast to the more widely used precipitation polymerisation commonly used

in Poly(N-isopropylacrylamide) (pNIPAM) synthesis, which produces a structure

with a denser core and less dense outer layers (Fernandez-Nieves et al., 2011;

Romeo & Ciamarra, 2013; Scheffold et al., 2010; Stieger et al., 2004).

This synthesis process yields a highly concentrated colloidal suspension of the
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(a)

Figure 5.2: Constituent monomers of the microgel polymer network. Above, the
two monomers EA and MAA, and below the crosslinker TMPTA. Figure from
Mattiello (2018).

gels of approx. 30wt%, verified both by the supplying company and by Mattiello

(2018). These suspensions will be referred to as stock solutions. The copolymer

is hydrophobic and the backbone is not charged, so the microgels do not swell in

pure water. Adding a salt to ionise the acidic functions of MAA generates counter

ions that increase the osmotic pressure in the microgel, causing an influx of water

into the microgel that leads to swelling. As the water swells these particles, it

can also be expelled, meaning these particles are compressible and deformable.

As the swelled state is their preferred state, they also have material modulus, and

have viscoelastic properties.

As these microgels are extremely soft, have an amount of polydispersity, and

are a swollen network rather than a continuous particle, it is difficult to determine

a volume fraction. For this reason we vary weight concentration, which will be a
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related variable to volume fraction.

For the rheological experiments included here, we use a single, loosely crosslinked

example of this type of microgel. As shown by Mattiello (2018) the amount

of crosslinker reagent affects crosslink density and therefore softness, as well as

changing the general profile of the rheological response. The chemical make up

of this sample as described is 59.68% EA, 40.22% MAA and 0.20% TMPTA.

We measured the rheological behaviour of two batches of microgels synthesised

by Coatex Sas, noted as Batch 1 and 2 in results. Batch 1 is used in the work

of Mattiello (2018), and Batch 2 is a newer batch following identical synthesis

and preparation procedures. The differences between these two batches will be

discussed in subsection 5.4.1.

5.1.2 Sample preparation

To prepare the sample, the first step is to dilute the original stock solution in a

flask with half the volume of the deionised water necessary to reach the required

dilution. The required amount of NaOH is mixed with the remaining half of the

deonised water in second flask, to ionise the MAA functions. The second flask is

poured into the first while the first is tilted and rotated, to ensure the solutions

are well mixed. To rid the sample of air bubbles, the sample is placed on a shaker

for at least 24 hours, prior to centrifugation at 8000 RPM for 5 minutes to remove

bubbles, with temperature at 25◦C in a TA10-4-50t rotor.

The amount of NaOH is chosen so that the ionisation ratio, defined as:

α =
[NaOH]

[−COOH]
, (5.1)
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where [NaOH] is the molar amount of NaOH added to achieve ionisation and

[−COOH] the molar amount of acid functions in the microgels, is equal to one as

this results in maximal swelling (Mattiello, 2018). The measured microgel radius

is approximately 335±12nm for Batch 1 as shown in the work of Mattiello (2018),

and 240±10nm for batch 2, measured by another member of the laboratory.

5.2 Free chains

To test for the presence of free chains of polymer after synthesis, we used Static

Light Scattering (SLS) and thermogravimetry. This was necessary to ensure

that rheological results are purely due to the nature of the microgels, and are

not influenced by free-chains interacting with or between microgels, or with other

free-chains, which might give more complicated polymer entanglement behaviour.

Due to the homogeneous crosslinking of this microgel, Mattiello (2018) esti-

mates the free chain length at the edges as 10nm, which is too short for inter-

digitation. This quantity was calculated by assuming a uniform distribution of

the crosslink density in the polymer network, the hydrodynamic radius obtained

from Light Scattering experiments, and the number of monomer units between

crosslinks.

5.2.1 Sample preparation

Before performing Static light scattering or thermogravimetric analysis, we mi-

crofiltered a low wt% sample to filter out the microgels, which would be swollen,

leaving only objects significantly smaller or capable of presenting a much smaller

aspect in the suspension, such as free polymer chains. To prepare the samples for

134



5.2 Free chains

analysis, a 0.1wt% suspension of microgels was prepared as described in subsec-

tion 5.1.2, except using filtered deionised water. This was run through a 10kDa

microfilter while being stirred and pressurised, and three 3-4ml samples taken

of the product using a pipette, and transferred directly into a clean cylindrical

light scattering sample tube and sealed. The filtration was then repeated on the

product and 3 more samples taken in the same manner. The outside of the sealed

tube was then cleaned again using ethanol, directly before being placed into the

sample chamber.

5.2.2 Static Light Scattering

Static light scattering in the dilute regime was performed with an ALV/CGS-3

Compact Goniometer System combined with a He-Ne laser with λ = 632.8nm.

The scattered intensity was collected by two photomultipliers, located on a go-

niometer that can span scattering angles between 20◦ and 150◦ with respect to

the direction of the incident beam. The temperature of the measuring cell was

kept constant by a thermostatic bath at 20◦ C. We took the mean of three 60

second measurements every 10◦ from 30◦ to 150◦ for all samples.

Samples taken as described in subsection 5.2.1 are first compared to reference

values for a sample tube containing only filtered deionised water, and the count

rate of these was subtracted. Next, a sample containing the unfiltered suspension

of microgels is analysed. For this and the filtered samples, the measurement CR
I

was taken. Here, CR is the count rate, the number count of photons scattered

towards the detector by the scattering objects in a second, and I is the intensity.

Comparing the ratio of this value for filtered and unfiltered measurements gives us
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an approximation of the relative amount of matter in the sample. The maximum

value of this ratio for sample SLS measurements across all samples and angles

measured was 0.007. This indicates that free chain content in these systems is

within experimental error of zero, and therefore negligible or non-existent.

5.2.3 Thermogravimetry

To corroborate the SLS, thermogravimetric analysis was performed on two of

the samples after performing light scattering. This analysis allows us to weigh

the solid content of our sample, removing the solvent. Performing this on the

filtered sample will allow us to measure the mass of the free chain content of the

sample, if it exists. A metal sample tray with a weighing paper was placed in a

thermogravimetric device. This device was calibrated by raising the temperature

to 120◦ C, ensuring the moisture content was removed from the weighing paper;

the scale of the device was then zeroed. Approximately 2g of sample was soaked

into the paper at room temperature, and the temperature was increased to 120◦C

until the measured mass stabilised. The mass measured at this point should

be the mass of the free-chain content, as the suspending medium should have

evaporated. The remaining mass after evaporation from thermogravimetry was

within the experimental error of zero, again indicating that free-chain polymer

content in these systems is negligible.

5.2.4 Centrifugation

An attempt was also made to drop the swollen microgels out of solution using

centrifugation, leaving only free chains in the supernatant to be analysed with
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light scattering. However this did not succeed, likely due to an insufficient den-

sity differential between the microgels and the suspending medium. This was

performed with an ultracentrifuge, reaching acceleration in excess of 200000g,

but resulted in no visible deposition occurring, followed by positive detection of

microgels while light scattering. To verify the concept of this experiment, this

was repeated with more densely cross-linked microgels of similar chemical com-

position and homogeneity of crosslinking. These microgels visibly deposited and

compacted enough that it was necessary to apply manual pressure to clean the

inside of the sample tube. While qualitative, this is included as a demonstration

of the sparseness of crosslinking of these microgels, as this imples the microgels

are very closely density matched with water, in turn indicating a low crosslink

density and ideal solvent and counterion condition.

5.3 Rheological experiments

The key information we wish to extract from these systems is their rheology, their

response to a mechanical stimulus such as shearing in a plate geometry. We are

also interested in comparing the macrorheological responses to the results of our

simulations, including the macroscopic moduli of the system, or whether there

exists a true yield strain or stress, but this will be discussed in Chapter 6.

5.3.1 Experimental setup

All measurements in this chapter were performed on stress-imposed rheometers

manufactured and maintained by Anton Paar GmbH: the Physica MCR 502 and

302. The geometries used were a cone-plate (CP) geometry with diameter 50mm,
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(a)

Figure 5.3: Schematic of plate and cell geometries used for rheological measure-
ments.

cone angle 2◦, and a simple couette cell with bob diameter 28.7mm and a gap of

0.099mm. A schematic of these geometries can be seen in Figure 5.3.

The CP geometry was used for the majority of measurements, with the cou-

ette cell being used to extend the accessible range of shear rates possible in the

experiment, which is possible due to the lower inertia of this geometry. With the

CP geometry, we systematically use a solvent trap to keep humidity constant close

to the sample. All rheological measurements were performed at 20◦C, ensured by

a water bath connected to the lower section of the geometry.

In all cases, flowcurve measurements were performed first, with an hour of

rest between these and frequency sweep measurements to allow trapped stress to

decay.
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5.3.2 Steady shear

A selection of tests were performed in rotational steady shear. These consist of

targeting an applied strain rate, γ̇ whilst applying a stress σ, using the measured

strain rate to continually adjust the applied stress such that corresponding values

are arrived at for a steady state in stress. This may involve an initial ’hump’ of

stress, as the material resists rearrangement until it yields, so shear rate is held

constant until the steady state value is determined. This investigation of the

steady shear response is sometimes referred to as a flowcurve experiment. Flow

curve experiments were conducted via two different protocols. The originating

protocol used is indicated with each set of results. Where it is not indicated, only

the automatic protocol was used for that concentration.

The first is to use the automatic protocol of the rheometer, which uses a pro-

prietary algorithm to determine when each measurement has reached its steady

state value. The low shear rate stress measurements were verified through setting

steady stresses and measuring the shear rate. This is referred to as ‘auto’ in fig-

ures. The second is to manually set a logarithmic ramp, and hold each shear rate

constant for a time proportional to the shear rate, and then determine the steady

state value from the last 5% of measurements. This is referred to as ‘startup’.

Both of these measurements were conducted ramping from high shear rates to

low, 103 s−1 to 10−2 s−1, for reproducibility of results, with a logarithmic interval.

The rheological response can be history dependent, and the higher initial shear

rates will destroy whatever structures are trapping stress in the system, if they

exist, giving reproducible data at the more history sensitive lower shear rates.

The number of of points per decade is 5 for most measurements, but may vary.
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‘Auto’ and ‘Startup’ terminology are also used for plots of oscillatory data,

as described below. This denotes whether they were performed after the cor-

responding flowcurve experiment, with the same sample and loading. This is

indicated as the startup method is likely to keep the sample at high shear rates

for significantly longer; rheology can be history dependent, as well as possibly

resulting in a change in hydration of the sample even with the solvent trap or

the chance of some sample being expelled, though this was not observed upon

visual inspection after measurement. If not specifically stated, the measurement

is made with the auto method.

Automatic ramping measurements were also conducted with the Couette cell

on a few samples, logarithmically ramping both up and down through the range

1s−1 to 4.5×104s−1, to extend the experimental range. Due to time pressures,

this was only performed with a limited number of samples.

5.3.3 Oscillatory rheology

Frequency sweep

In the limit of small deformations, oscillatory manipulation can be used to probe

the rest structure and morphology of a material. This can be done in the linear

regime, where the storage and loss moduli, G′ and G′′, can be decomposed. To

probe the structure at rest, a frequency sweep is performed, applying a small

sinusoidal oscillatory strain to the sample of the form:

γ = γ0 sin(ωt) (5.2)
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where strain γ0 is kept to 1%, and the frequency ω is varied logarithmically from

100rad/s to 0.01rad/s.

The standard response received from a viscoelastic fluid is of the form:

σ = σ0 sin(ωt+ δ) (5.3)

where δ is the phase shift between the applied strain γ and the corresponding

stress response σ. In the linear regime, in-phase and out-of-phase responses can

be decomposed as:

σ = γ0G
′ sin(ωt) + γ0G

′′ cos(ωt). (5.4)

Here, G′ represents the conservative, elastic response in phase with the strain γ,

while G′′ represents the viscous, dissipative response in phase with the applied

strain rate, γ̇. For this reason, G′ andG′′ are sometimes referred to as representing

‘solid-like’ and ‘liquid-like’ behaviours respectively. As we used stress-imposed

rheometers, we apply a stress and measure the strain or strain-rate. Performing a

frequency sweep such as this, we can see whether solid-like or liquid-like behaviour

dominates in the range investigated. We can extract the value of G′ at the

minimum of G′′ to acquire an estimate the value of the elastic modulus of the

suspension, G0.

Amplitude sweep

As the amplitude of shear is increased, solid-like suspensions will eventually yield,

and begin to flow. This regime is non-linear, and is used here to investigate the

yield stress and strain. Similarly to a frequency sweep, we apply oscillatory strain,

but instead hold frequency ω constant while varying strain γ0. For each sample,
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unless otherwise specified, ω takes values of 0.1, 1 and 10 rad/s for respective

amplitude sweeps, with γ0 varied between 0.01% and 1000%, in a logarithmic

fashion. Due to time pressure, this was only done with a limited number of

samples.

5.4 Results and discussion

5.4.1 Batches

The aim of the work discussed in this section was to obtain rheological data

on very soft microgels, and assess them as a candidate system to compare our

simulation results to, as previous simulation work had been unable to reproduce

the rheological properties of these particular microgels. As these were synthesised

by a third party and Batch 1 was previously characterised in Mattiello (2018), we

include results from this previous work and use it to augment the work carried

out. Following this, the aim was to further investigate consistency between Batch

1 and Batch 2.

Firstly, we will discuss the flowcurves, the measurement for which we have

the most complete data, then the frequency sweeps, and finally the amplitude

sweeps. Data is only included in these plots if we have comparable measurements

from Batch 1 and Batch 2. As mentioned, Batch 1 and Batch 2 of this microgel

were synthesised and prepared in an identical manner. However, we observe that

their rheological response differs.

In Figure 5.4, we observe that in flowcurves for 1.5wt%, 2.5wt%, 3wt%, 4wt%

and 5wt%, there is good agreement between our measurements of Batch 1 and the
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(a) (b)

(c) (d)

Figure 5.4: Log-log Flowcurves showing difference between previous measure-
ments of Batch 1 by Mattiello (2018), new measurements of Batch 1 and mea-
surements of Batch 2 at various wt% of microgel: (a)1.5wt%, (b) 2.5wt%, (c)
3wt%, (d) 4wt%,
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(e)

Figure 5.4: (e)5wt%.

measurements of Mattiello (2018). This both confirms the reproducibility of the

data and the stability of these microgels. Additionally, in the high rate regime,

we can see similar behaviour between all 3 sets of measurements. However, at

lower shear rates we can observe a disparity in responses between Batch 1 and

Batch 2. For concentrations of 1.5wt%, 2.5wt%, 3wt%, 4wt%, the lower shear

rate stress response of Batch 2 is consistently below that of Batch 1, with Batch

1 producing up to 1 to 2.5 times the stress. Conversely, for the 5wt% flowcurve,

batch 2 actually has a higher stress response than Batch 1 measurements, with

the maximum ratio of 1.38×.

Low shear rate values will naturally have the most variation due to their low

magnitude and the difficulty of ensuring that the stress response has truly con-

verged to a steady state. As we lower the shear rate, we also raise the importance

of the natural relaxation timescales in the measured response - high shear rates

or frequencies correspond to forcing the system faster than it is able to rearrange
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itself to respond, whereas at lower shear rates the particular response of the sys-

tem may be more dependent an its ability to rearrange. The significantly smaller

dimensions of the microgels in batch 2 would allow faster relaxation of structural

stress, as smaller particles would be more mobile. If the batches differ in their

ability to dissipate stress, this will manifest most clearly at low shear rates.

Despite differences at low shear rates, it can be seen that the flowcurve re-

sponse of both batches is qualitatively similar, with both reaching a similar gra-

dient at high shear, and neither displaying a true plateau at low shear rate,

indicating that neither is a true yield stress material.

Comparing the linear rheology of the two batches, in Figure 5.5, we can see

that for 1.5wt% and 3wt%, G′ and G′′ for Batch 1 are greater than their counter-

parts in Batch 2. Curiously we see that for 5wt%, while G′ is higher for all ω for

Batch 1, G′′ is similar at high shear rates and Batch 2 exceeds that of Batch 1 at

lower shear rates. Additionally, G′′ converges at the lowest shear rates, although

the low frequency G′′ measurements are the the most likely to have high relative

error, due to their low magnitude.

Batch 1 results taken are less consistent than those for the flowcurves, with the

work of Mattiello (2018) showing results intermediate between the more recent

measures of both batches at 3wt%. It should be noted that the 3wt% results

were taken with slightly different experimental conditions due to the difference

in flowcurve protocol, as discussed in subsection 5.3.2, which may affect their

response. Rheology can be history dependent, and the time that a sample is held

at a particular shear rate may affect this, as well as there being the possibility

of variation of hydration level, or expulsion of sample. Due to probing of the

structure of the sample, frequency sweeps are more likely to be affected by the
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(a) (b)

(c)

Figure 5.5: Log-log Frequency sweeps showing difference between previous mea-
surements of Batch 1 by Mattiello (2018), new measurements of Batch 1 and
measurements of Batch 2 at various wt% of microgel: (a)1.5wt%, (b) 3wt%, (c)
5wt%.
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history and therefore the structure of the sample. For 5wt%, we again see a slight

mismatch between G′ values for high frequencies, although this lessened at lower

frequencies.

General behaviour is largely similar for both batches, with both having a

primarily elastic response in the regime, and minima in the viscous response

within the experimental range. The shape of the decline in both moduli are

similar. The appearance and placement of the viscous minima appears to differ

between the work of Mattiello (2018), but the experimental protocol may vary

slightly; they do not provide detail of whether their experiments are conducted

on the same sample loading, which could influence results.

(a) (b)

Figure 5.6: Log-log amplitude Sweeps showing difference between measurements
of Batch 1 and measurements of Batch 2 at 1.5 wt% of microgel at ω = for (a)1
rads−1, (b) 10 rads−1.

Amplitude sweeps comparing the two batches were conducted on a single

concentration due to time constraints. Stress responses of Batch 1 are higher
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than Batch 2, consistent with other methods of investigation. Yield stress and

strain on these plots, indicated by the crossover and subsequent dominance of

G′′, is quite similar for the lower frequency, but at the higher frequency we can

see that the yield strain is notably lower on Batch 2, although the yield stress is

again quite similar.

Unfortunately, time was not sufficient to explore structure differences in Batch

2 through other techniques. It is possible that there are structural differences

between the batches, which affect their ability to rearrange at lower shear rates

and frequencies. Due to the weakness of crosslinking, there could be an extreme

dependence of particle stress response on the internal structure of those particles.

It is also possible that the smaller size of Batch 2 contributes to these effects. It is

difficult to speculate further without further characterisation of the two batches,

or comparing more identically prepared batches to see if a range of behaviours is

observed.

To summarise, results between the batches are qualitatively similar, with dif-

ferences more generally more significant at lower shear rates or frequencies. This

is unlikely to arise solely from structural differences of the overall sample as the

amplitude sweep shows greater difference at the higher frequency at higher ampli-

tude strain, where the sample structure is likely to have been destroyed. Ideally,

a greater number of amplitude sweeps at higher concentrations would have been

useful to compare, as we can see from the flowcurves and frequency sweeps that

101s−1 at 1.5wt% concentration is lower than the value at which the batches col-

lapse onto the same gradient for this concentration. It would be interesting to see

if this crossover of stresses is consistent. It is possible that the difference in size

allows for easier relaxation at longer timescales, but further investigation would
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be required. Additionally, we have shown there is no significant degradation in

the batch over time, as Batch 1 results are in good agreement with the work of

Mattiello (2018)

5.4.2 Aging and history dependence

For both glassy and soft colloidal systems, relaxation of trapped stress can take

a significant amount of time(Hunter & Weeks, 2012). For this reason, we inves-

tigated the aging behaviour of several samples, performing experiments on fresh

samples and then allowing them to age for approximately a week, left at rest

before repeating.

As can be seen in Figure 5.7, differences between fresh and aged samples of

both batches are minimal, and can be reasonably assumed to be within experi-

mental error, given variation between loadings and error of the equipment. There

are some indications of a slight relaxation for all samples except for 5wt% of

Batch 2 from fresh to aged measurements, but this is not consistent in all cases

and is small in magnitude. The minimal ratio is of 5wt% Batch 1, with the aged

measurement being 0.83 of the fresh measurement. The flowcurve measurements

therefore do not show significant aging in these systems.

Frequency sweep results, as can be seen in Figure 5.8, paint a similar picture.

Results are similar between all measurements, although a slight relaxation can

possibly be seen for the 3wt% and 5wt% Batch 1 results. Curiously, the results

of batch 2 after the startup steady shear experimental protocol appear even more

consistent - this possibly indicates dependence on history of the sample, as the

startup experimental protocol will always measure at a particular shear rate for
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(a) (b)

(c) (d)

Figure 5.7: Log-log Flowcurves showing difference between measurements fresh
(1 day after sample preparation) and aged (1-2 weeks after sample preparation)
for (a) 3wt%, Batch 1, (b) 3wt%, Batch 2, (c) 5wt% Batch 1, (d) 5wt% Batch 2.
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(a) (b)

(c)

Figure 5.8: Log-log frequency sweeps showing difference between measurements
fresh (1 day after sample preparation) and aged (1-2 weeks after sample prepa-
ration) for (a) 3wt%, Batch 1, (b) 3wt%, Batch 2, (c) 5wt% Batch 1.
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a fixed time, whereas the auto protocol may vary time overall somewhat. This

may indicate a history dependence that is stronger than any aging dependence.

If true, this would also suggest that the experimental protocol of an hour rest

between steady shear measurement and oscillatory measurement is not enough

to relax all trapped stress from the system. However, as we can see in Figure 5.9,

while there is a higher stress following the startup flowcurve measurements, this

difference is minimal. As measurement for each protocol presented here were

taken on a single sample loading, a strong history dependence is not indicated by

these results, though they are restricted to a single concentration with a single

sample loading for each.

In general, these results do not show a strong dependence on aging in the

sample, and do not indicate a strong history dependence, although the history

dependence may need more investigation to entirely rule out.

5.4.3 Master flowcurve

Through appropriate scaling choices, it is possible to collapse the flowcurves

from different concentrations onto a single flowcurve. For the more densely

crosslinked syntheses, and other soft matter systems such as emulsions and films,

the flowcurves can be collapsed by scaling shear rate with ηs
G0

and stress by 1
σy

,

with a high shear gradient of 0.5 generically across different systems (Basu et al.,

2014; Bécu et al., 2006; Cloitre et al., 2003; Liu et al., 2018; Mattiello, 2018;

Nordstrom et al., 2010; Paredes et al., 2013; Pellet & Cloitre, 2016; Seth et al.,

2011). In these scalings, ηs is the viscosity of the solvent, G0 is the low-frequency

modulus, the yield stress σy is obtained by taking σ at the point where the gra-
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(a) (b)

(c)

Figure 5.9: Log-log amplitude sweeps showing difference between measurements
for 2.5wt% Batch 2 for (a)0.1rads−1, (b)1rads−1(c)10rads−1.
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dient changes when plotting γ against σ from the amplitude sweep experiments

from a linear law at low strains; an example can be seen in Figure 5.10. For these

syntheses, the master flowcurve is described by the Herschel-Bulkley equation:

σ

σy
= 1 + kγ̇n (5.5)

with an exponent n of approximately 0.5. However, for the ultrasoft colloids, they

(a)

Figure 5.10: Representative stress-strain plot from which we extract σy, as an al-
ternate presentation of values from amplitude sweep experiments shown elsewhere
in the chapter. Value extracted marked on plot by cross.

found that simply scaling the stress by 1
σy

was sufficient to recover a master curve,

meaning that the characteristic timescale of these colloids is independent of vol-

ume fraction. However, the resulting curve is not described well by Equation 5.5,

as it is not a true yield-stress material, and therefore does not feature the well-

defined plateau at low shear rates. Additionally, the high shear rate behaviour

follows a power law with an exponent of 0.65, rather than 0.5 as is found for more

densely crosslinked colloids. They interpreted this as demonstrating that these
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ultrasoft colloids behave quite differently to other soft colloidal systems.

(a) (b)

Figure 5.11: Log-log steady-state shear Flowcurves with Couette cell measure-
ments for a range of Batch 2 measurements presented (a)unscaled, (b)scaled as
indicated in Table 5.1.

To examine this further we shall consider whether the flowcurves from Batch 2 can

be superimposed in a similar manner. In Figure 5.11, we present the unscaled

and scaled flowcurves, including Couette cell measurements. We can see that

an appropriate vertical scaling does collapse the results into good agreement,

suggesting that this scaling behaviour is consistent across both batches. We

chose scaling values based on the the gradient change as in Figure 5.10, but

altered these values as shown in Table 5.1 to show that better scaling could be

achieved. This is justifed as the absolute values of σy are quite low (between

2.8Pa and 4.1Pa) and so are quite likely to have higher relative error associated
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Measurement
σy

(kPa)
Manual
Scaling

1.5% 3 2.8
1.75% 2.9 3.3

2% 4.0 4.0
2% Couette down 4.0 3.9

2.5% 4.0 4.0
2.5% Couette down 4.0 4.8

3% 4.1 4.1
3% Couette down 4.1 5.3

Table 5.1: Table of Scaling factors for Flowcurves.

with them. Additionally, this is a loose approximation in identifying the point at

which the gradient changes, and these are not true yield stress fluids. In general,

the Couette measurements require different σy values to collapse onto the master

curve, but as these use a different geometry this is consistent with the scaling. It

can be remarked that values of the viscosity ηs and modulus G0 are in fact very

similar between samples, suggesting that the x-axis can be rescaled to recover

the master curve. That we can achieve good agreement scaling only the y-axis

then suggests that the characteristic timescale of these ultrasoft colloidal systems

is not dependent on the concentration of the system.

The high shear rate gradient for cone plate measurements up to 103s−1, has

an exponent of approximately 0.62, which is similar to the 0.65 found for Batch 1.

For the lone Batch 1 curve we have the measurements to scale in this manner, we

recover an exponent of 0.62, possibly hinting at a systematic difference between

measurements. The Couette measurements, while agreeing with this exponent at

the maximum shear rate for the cone and plate, tend to values between 0.52 and

0.55 at the highest shear rates. The high shear Couette measurements do not

collapse as well as the lower shear rates, but any relative error in σy would create
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a greater error in scaling at the highest shear rates. However this does suggest

the higher values of the exponent found for the highest rate for Batch 1 may be

an intermediate that gives way to a 0.5 scaling at even higher strain rates.

5.5 Conclusion

In this Chapter, we have presented experimental results that build upon the

work of Mattiello (2018). We have verified that there is a negligible amount of

free chain content in these syntheses which does not influence rheological mea-

surement. We have shown that the 2 batches of identically synthesised microgels

show somewhat different low shear rate behaviour, but behave similarly at high

shear rates. This low shear rate behaviour may also be adequately explained by

the difference in volume of the microgels. We also conclude that both batches

do not show typical soft microgel behaviour, with no true yield stress, and lend

support to the existence of a new class of ultrasoft microgels with qualitatively

distinct behaviour. We show that neither Batch has significant aging or history

dependent properties, which is consistent with the proposed ability to self-squeeze

to rearrange. Finally we find evidence that Batch 2 can be collapsed onto a single

master curve solely through scaling by σy, though we find a slight mismatch in

the exponents we recover.
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Chapter 6

Sheared Simulation Results

Having discussed quiescent simulations in Chapter 4 and sheared bulk material

responses for a candidate experimental system in Chapter 5, in this chapter we

simulate the response of our simulated colloidal systems to steady shear. We

characterise the shear response of our simulated systems, and examine the ef-

fect shearing has on the rearrangement dynamics of the systems. The measures

of rearrangement dynamics again consist of the time-dependent mean-squared

displacement of the centre of mass of the colloids, with advective transport sub-

tracted. We discuss the quantitative and qualitative similarities to the rheology

from the experimental systems, constructing a flowcurve for steady state shear

and the normal stress differences. We also will see the extent to which the ran-

domised initial configuration is relevant to the measured stress. Finally, we will

investigate how the structure of the system is altered by applying shear through

calculating the scattering amplitude, in a manner suitably modified for a linearly

sheared system. As an example of how shear might affect the structure of a sys-

tem, Khabaz et al. (2017) find in their soft sphere systems that varying shear
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rates can induce ordering, such as face centred cubic, hexagonal close packed or

layered arrangements - the latter being the existence of discrete layers of parti-

cles, with centres of mass of particles within a layer all closely matching the same

y-coordinate within.

6.1 Shear

In this section we will briefly reiterate how linear shear is implemented within

FFEA. We modify the periodic boundary conditions to Lees-Edwards boundary

conditions, where projected images of the system in the gradient direction move

in the flow direction relative to the simulation box. In all sheared systems we

have simulated, the gradient is in the y-direction, flow is in the x direction and

vorticity in the z. For the projected image in the positive y-direction, the offset

distance Obox in the x direction is

Obox = γLy − nLy (6.1)

where n ∈ Z such that 0 < Obox < Ly, where Ly is the dimension of the box in

the y-direction, and the total strain γ is calculated as

γ = γ̇t (6.2)

where γ̇ is the shear rate or strain rate - they are equivalent in these simulations

- and t is the total time of the simulation. Interactions across box boundaries are

modified accordingly, which is detailed in subsection 3.1.3.

Additionally, an implicit linear shear in the solvent is implemented through
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modification of the drag force on colloids, acting as a force on each node in the

simulation of

Fx = γ̇LydS

(
ynode
Ly
− 1

2

)
, (6.3)

where Fx is the x-component of the drag force, γ̇ is the shear rate, Ly is the length

of the simulation box in the y-direction, ynode is the y position of the node, and

dS is the Stokes drag scaling on the node. This gives zero force on the central

plane of the box, and a linear velocity gradient in the y-direction.

6.2 Parameter space and number of simulations

We seek to simulate soft colloidal systems and, as discussed in section 4.1, we

were guided in our choice of parameter space by a combination of realistic repre-

sentative values from experimental microgel systems (Aufderhorst-Roberts et al.,

2018; Voudouris et al., 2013) and practical constraints. As each simulation can

take up to a month of compute time, we were forced to be selective in our choices

of parameters, with the time available allowing an aim of only 5 instances of

each set. Shear rates were chosen to match that of the experimental systems in

Chapter 5 for shear rates of simulations with ζe = 1.0. For the lower value of ζe,

we selected only shear rates where we would reach at least a significant fraction

of a strain unit (i.e where the strain is equivalent to a simulation box length.)

with the lower effective volume fraction. An initial attempt was made at shearing

systems with higher moduli, but system stability with higher moduli and high

rates of shear excluded pursuing this further at this time. With further work, it

would certainly be interesting to expand to sheared systems with higher moduli

for comparison. The higher shear rates are simulated for a shorter time, as they
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ζe K (kPa) G (kPa) γ̇ (s−1) t (s)
Strain
Units

No. of Vi-
able Runs

1.0 2.00 0.600 0.01 9.5×10−3 9.5×10−5 5
1.0 2.00 0.600 0.1 9.5×10−3 9.5×10−4 4
1.0 2.00 0.600 1 9.5×10−3 9.5×10−3 4
1.0 2.00 0.600 10 9.5×10−3 9.5×10−2 5
1.0 2.00 0.600 102 9.5×10−3 0.95 5
1.0 2.00 0.600 103 9.5×10−3 9.5 5
1.0 2.00 0.600 104 1.5×10−3 15 5
1.0 2.00 0.600 105 1.5×10−3 150 5
0.7 2.00 0.600 102 9.5×10−3 0.95 5
0.7 2.00 0.600 103 9.5×10−3 9.5 5
0.7 2.00 0.600 104 1.5×10−3 15 5
0.7 2.00 0.600 105 1.5×10−3 150 4

Table 6.1: Table of parameters varied in sheared simulations

do not require as much time to have experienced at least a strain unit.

6.3 Results

6.3.1 Observed volume fraction

In a system of soft, compressible particles, we can only initialise our systems

according to the effective volume fraction ζe = nV0
VTot

, where V0 is the equilibrium

volume of the colloid, n is number of colloids, and VTot is the total volume of the

system. This may be quite different from the actual volume fraction φ, calculated

from the volume of the compressible colloids in the simulation divided by the

volume of the simulation box. As a system is sheared, it may adopt a different

structure, in a way that is related to the relaxation dynamics of the individual

particles (Khabaz et al., 2017). One way we can understand this restructuring is
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(a)

Figure 6.1: Observed Volume Fractions of Sheared simulations.

the shear timescale becoming faster than the relaxation timescale of the system

- it can no longer revert to its default state and instead might flow differently.

It is also possible that shear may give enough energy to the system to allow it

to reach denser states such as crystalline ordering, that it could not easily reach

from an initial disordered configuration simply through relaxation.

We display the the observed volume fraction at each shear rate in Figure 6.1.

We can see that below a shear rate of 103s−1 the mean volume fraction for the

simulations is not affected, but above decreases for higher shear rates. As we

saw in Chapter 4, the approximate timescale of the second shoulder for quiescent

simulations (the return to a second diffusive regime, between the cages) for the

2kPa systems is approximately 10−3s. This suggests that at lower shear rates,

although the shearing may assist cage-breaking, the main mechanism for mobility
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remains diffusive, between cages. When the shear rate corresponds to a timescale

faster than that of the cage-breaking, the reduction in φ implies a change in

structure of the system.

6.3.2 Mean-Squared Displacement

We discussed in detail how we calculate and collect the MSD for sheared systems

in subsection 3.4.4, and presented results for quiescent systems in section 4.5. To

briefly reiterate, we calculate the time-dependent Mean-Squared displacement, or

MSD, of the centre of mass of the colloids. Standard results for free diffusion of

a sphere suspended in a fluid are 〈x(τ)〉 = 0 and 〈x(τ)2〉 = 6Dτ , where x is the

displacement over some time lag τ as a scalar value, and D is diffusivity. Each

step in diffusion is expected to be uncorrelated, and therefore sufficient sampling

in any one direction will eventually be cancelled out by exploration in the opposite

direction. We consider the MSD, and therefore magnitude of displacement, which

will continuously grow.

As we apply a linear shear gradient through drag against our implicit sol-

vent, each node in each colloid will undergo advective transport, which if used

unmodified will be difficult to interpret and compare. We therefore attempt to

remove the effects of Taylor dispersion (Taylor, 1954), by removing homogenous

advective transport of the particles due to the shear gradient through Stokes

drag against implicit background solvent. This is to isolate diffusion due to cage-

breaking. This is discussed in more detail in subsection 3.4.4. When analysing

these results, we must consider that we may not entirely remove the effects of

advective transport from the MSD - we remove the average of the advective trans-
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port applied to each node of the colloid, but calculate MSD only for the centre

of mass. As an example, in a large system where shear was applied only through

the use of Lees-Edwards boundary conditions, without a shear gradient inside the

simulation box, shear banding may occur. In this case, a homogeneous removal

of shear would not be appropriate, and instead constructing a velocity field and

removing the average of the local velocity would give a more accurate measure,

as what we are really interested in is the movement of a particle relative to its

nearest neighbours. However, this would require larger numbers of particles than

we are able to simulate to be a sensible approach in our simulations, even though

we may have advection driven by the boundary conditions.

We present mean-square displacement (MSD) of the sheared systems in Fig-

ure 6.2 and Figure 6.3. As in section 4.5, we display our MSD results both in

the format of their raw data, where periods of diffusive behaviour will display as

linear slopes on a log-log plot, and caging will see a deviation away from that

slope. Additionally, we plot this data divided through by the time lag τ . As

MSD grows as τ , this will more clearly display diffusive behaviour as a plateau,

caging as a decline, and faster motion than can be explained simply by MSD as

an upwards slope. This measure will be a multiple of diffusivity at a plateau,

but is more difficult to interpret otherwise as this would not represent perfectly

diffusive behaviour.

In Figure 6.2 we present results for the most highly packed systems we have

simulated, covering the largest range of shear rates. We can observe that at shear

rates of 102s−1 and below, we have a very similar behaviour to the quiescent

systems. There is a slight upward trend in diffusivity as we raise our shear rate

up to this point, but the behaviour of these systems as measured through MSD
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(a) (b)

Figure 6.2: MSD of systems with ζe = 1.0 and varied γ̇: (a)Simple MSD, (b)
MSD divided by τ .

is not greatly altered. At 103s−1, we see a marked increase in diffusivity, but we

still have clearly diffusive behaviour, with the emergence of the second plateau.

At the higher shear rates, we transition to an upwards slope in long timescale

MSD, which is no longer a normal diffusive behaviour, and for the highest shear

rate the colloids do not actually experience a decline in MSD due to caging.

We can interpret the long timescale higher diffusivity of the 103s−1 curve (taken

from a plateau value in Figure 6.2b), and the slight increases of diffusivity at

lower shear rates as an effective lowering of the energy barrier for rearrangement

through shear. From the quiescent results in Chapter 4, a key timescale appears

to be approximately 10−3s (depending on volume fraction and moduli), where

the approach to the second diffusive regime occurs, as well as the peak in non-

Gaussian measures. We can then interpret the quantitatively different behaviour

at this shear rate and the qualitatively different behaviour above it to be the
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timescale of the shear approaching, and then exceeding the ability of the system

to rearrange itself through thermal and elastic means to remove stress.

(a) (b)

Figure 6.3: MSD of systems with ζe = 0.7 and varied γ̇: (a)Simple MSD, (b)
MSD divided by τ .

In the plots that make up Figure 6.3, we see similar behaviour. The results

for a shear rate of 102s−1 are not significantly different to quiescent, at 103s−1 we

see an elevated diffusivity, and for 104s−1 and 105s−1, long timescale behaviour

does not appear diffusive, and again the highest shear rate does not exhibit a

caging decline.

Finally, we compare these results for the shear rates we have for both ζe in

Figure 6.4. From this, we can see that at values 102s−1 and 103s−1, the value

of the MSD is significantly affected by ζe. Above this value, we can see that ζe

becomes much less important to the dynamics, and while still relevant, the largest

effect on the MSD is the new dynamics resulting from shear rates exceeding the

timescale at which the system can relax, signifying that these systems transition
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(a) (b)

Figure 6.4: MSD of systems with ζe = 0.7, 1.0 and varied γ̇ for comparison:
(a)Simple MSD, (b) MSD divided by τ .

into a new regime of particle dynamics at these shear rates.

As we can see from the errors in general, system initial configuration does not

have a significant effect on observed MSD.

6.4 Flowcurve

In this section, we discuss the flowcurve generated from the shear response of

these simulated soft colloidal systems, and how it compares to examples from

the experiments we described in Chapter 5. We can see the flowcurves for the

x-y component of stress for these systems, sampled at the decades of shear rates

in Figure 6.5. To generate the values we take the mean of the stress for the

latter half of each simulation, allowing time for shear response to reach a steady

state. To ensure that this is the case, we plotted the moving average of the stress
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(a)

Figure 6.5: Flowcurve of systems with ζe = 1.0 and varied γ̇.
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for these simulations and manually verified that simulations did not exhibit a

transient startup stress. For the lower shear rate simulations, we can see that

there is significant error, as these simulations have only experienced a fraction of

a strain unit. The error in these stress measurements may therefore result from

the stochastic nature of both the simulation initial configuration and the thermal

activity of these systems. At higher shear rates, we can see the sampling error

is smaller than the markers as plotted, and we can safely assume that a steady

state stress response has been measured.

As anything under 103s−1 has not undergone a significant fraction of a strain

unit in the timescales we are able to simulate, we must be careful what we infer

from this data. As discussed previously, these simulations take up to a month

of compute time to complete, and simulating another decade in time is therefore

impractical. Regardless, our systems appear to be shear thinning yield stress

fluids with a low yield stress. This would explain also why the MSD only appears

to be greatly affected at values where the systems have begun to yield. We can

see that the stochastic element of our simulations is much more important at low

shear rates, with the error being smaller than the marker for the data in our plot

at higher shear rates.

As this curve appears at first glance to be consistent with standard shear-

thinning behaviour, we analyse the gradient of this graph. A standard model

for shear thinning fluids is the empirical Herschel-Bulkley relation (Herschel &

Bulkley, 1926), which has the form:

σ = σy + kγ̇n, (6.4)
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where σ is the stress, k is a consistency index, σy the yield stress and n is the flow

index. The gradient of the log-log plot therefore indicates the type of behaviour

of the system. Where n > 1, the system is shear thickening, and where n < 1 the

system is shear thinning. If n = 1 the system is simply a Newtonian fluid.

The curves for both volume fractions flatten out, with gradients going from a

high for ζe = 0.7 of 0.66 between 102s−1 and 103s−1 to 0.36 between 104s−1 and

105s−1, and for ζe = 1.0 the gradients are 0.54 and 0.32 at the same intervals.

This is firmly below 1, and is decreasing, and so we conclude that we have a

shear-thinning fluid. The decrease in scaling of the stress response at high shear

rates is consistent with a rearrangement of the system once the timescale of shear

exceeds the timescale at which it can rearrange, which we have seen previously

in the decrease of volume fraction and qualitative change in MSD. We will also

see evidence consistent with this in subsection 6.4.2. Below this rearrangement,

the stress is able to dissipate at low shear rates, then grows at 103s−1 as stress

builds against an amorphous structure. Above this shear rate, the system begins

to layer, and while the stress response continues to grow, it grows more slowly

due to the layering effect.

6.4.1 Normal stress differences

We look next at the normal stress differences N1 = σxx−σyy and N2 = σyy−σzz,

which will tell us whether we have compressive stress aligning with the main axes,

and how this compressive stress varies in different directions. The absolute values

of these measures can be seen in Figure 6.6. As we can see, these values match

the behaviour of the general stress - low until 103s−1 and then growing rapidly
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(a) (b)

(c) (d)

Figure 6.6: Magnitude of normal stress differences for all sheared simulations.
If not visible, error bars smaller than markers. (a)N1 for ζe = 0.7, (b)N1 for
ζe = 1.0, (c)N2 for ζe = 0.7, (d)N2 for ζe = 1.0.
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thereafter. Due to the low size of the stress differences and the corresponding high

relative error, alongside a comparatively high stress amplitude for the individual

stresses, we should not read meaning into the lower values in the N2 plots. These

values are all below one. The magnitude of N1 is approximately double N2 for

all systems above a shear rate of 103s−1. The first normal stress difference is

negative at these shear rates, and the second is positive, for both ζe values. Due

to the highly packed nature of the systems, the colloids are under compressive

stress in all dimensions, and therefore σxx, σyy, σzz are all negative. This means

they are experiencing more elastic stress in the y-direction than the x- or z-

directions, which is consistent with layering under shear, as this would force

greater compression than with a structure more similar to quiescent systems.

Finally, σzz > σxx, which again is consistent with the shear acting to extend the

particles in the x-direction as one would expect.

In general, N2 is negative, and of comparable size to N1, which is consistent

with previous predictions of fluids with internal deformable interfaces, such as

emulsions, foams and polymer blends (Larson, 1997), although it is possible to

observe this quality with the simpler Hertzian model with elastohydrodynamic

lubrication that Khabaz et al. (2020) use, and does not require representing that

deformability directly.

6.4.2 Scattering

In Figure 6.7 and Figure 6.8 we present the amplitude of the scattering in the

x-y plane, generated similarly to section 4.4 with an appropriate correction to

the wavevectors q, as the unit cell is being sheared. We use this measurement to
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(a) (b)

(c) (d)

Figure 6.7: Averaged scattering amplitude for the x−y planes for all simulations
at given parameter values. Results shown for ζe = 0.7, K = 2kPa at various
shear rates: (a)102s−1, (b)103s−1, (c)104s−1, (d)105s−1.
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(a) (b)

(c) (d)

Figure 6.8: Averaged scattering amplitude for the x-y planes for all simulations
at given parameter values. Results shown for ζe = 1.0, K = 2kPa at various
shear rates: (a)102s−1, (b)103s−1, (c)104s−1, (d)105s−1.
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probe the structure of the system, to measure whether it is undergoing crystalline,

amorphous or layered structures, or patterns of short range particle arrangement.

With this correction, values of q are chosen as:

q =
2π

L
(l,m− αl, n) (6.5)

where L is the box length, the offset of the box is R = αL, and choices of l,m, n

correspond to:

n = 0, l = (−lmax, lmax),m = (b−mmax + αlc, bmmax + αlc) (6.6)

where lmax,mmax = 50. This correction is necessary for a sheared system, as the

reciprocal lattice vectors will move with the strain, and m values are chosen to

correspond to our fixed grid for plotting. Considering the reciprocal lattice, shear

in the x-direction will manifest in the negative y-direction in these plots. As this

is a shear-corrected case, we would expect to see a similar case to section 4.4 for

low shear: in the case where crystalline order is present, we would expect clear

peaks in a lattice ordering, which would correspond to the reciprocal lattice of

whichever crystalline form was pleasant, and rings with number and sharpness

dependent on the on the nearest neighbour distance if amorphous. For higher

shear rates, we would expect to see a distortion of the central ring, and smeared

peaks if crystalline. These behaviours can be seen in Foss & Brady (2000).

In both cases, we can see similar behaviour, with a shear rate of 102s−1 barely

distorting the quiescent result, and no evidence of longer range order, leading us

to conclude this is an amorphous fluid. With a shear rate of 103s−1, we start
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to reach timescales equivalent to the relaxation of the system, and therefore the

shearing distortion is more pronounced. Finally, as we move to 104s−1 and 105s−1,

we see strong vertical scattering peaks present, showing layering - the systems are

more strongly ordered in the y-direction. There is also a diffuse diagonal peak,

which we interpret as a build up of particles forced together in their layers. While

the stronger peak is a layer-layer correlation, the weaker peak is a colloid-colloid

correlation, as they bunch in the direction of flow.

(a) (b)

Figure 6.9: z-y plane for simulations at 105s−1 and at given parameter values.
We vary ζe: (a)ζe = 0.7, (b)ζe = 1.0.

Following this, we present results for the z-y plane in Figure 6.9. Calculation

of this is unmodified from section 4.4, as the reciprocal lattice is not affected in

this plane by the shear. We present this only for the highest shear rate at each

ζe, as for lower shear rates it is not noticeably altered from the quiescent result.

We can see in both cases there is a slight peak in the y-direction. The nearest

neighbour scattering ring is also slightly longer in the y-direction and slightly

thinner in the z-direction. We interpret this, due to the reciprocal relation to real
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distances, to be a compression in the y-direction, and a slight relative extension

in the z-direction, which is again consistent with layering. To the resolution of

the plot, the z-y aspect ration is approximately 1.2.

6.5 Comparison to experiments and other sim-

ulation techniques

From simulations of quiescent systems in Chapter 4, we can see that all simulated

systems are thermal within the timescale of 0.01s. Our simulated colloids are soft

enough to rearrange solely due to thermal motion up to high volume fractions

on a relatively short timescale. Due to this ability to deform, we compare them

to the experimental results from ultrasoft colloids in Chapter 5. The intent with

this comparison is to see if having anisotropically deformable and compressible

colloids is sufficient to avoid measuring a yield-stress fluid overall, or whether

there are further subtleties to this phenomenon.

The curves for both volume fractions flatten out, with gradients going from a

high for ζe = 0.7 of 0.66 between 102s−1 and 103s−1 to 0.36 between 104s−1 and

105s−1, and for ζe = 1.0 the gradients are 0.54 and 0.32 at the same intervals.

Compared to the ultrasoft colloids we study in Chapter 5, which have gradients

with the range of 0.62-0.65 for the range up to 103s−1, and 0.52-55 above (Mea-

sured in a Couette cell). Qualitatively, at high shear rates, these numbers agree

- at a higher shear rate, the shear thinning is greater as the exponent falls. The

precise gradients differ, but this would be expected - any realisation of a micro-

gel system will have some amount of polydispersity, and it is probably that this
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would affect structure and dynamics of rearrangement, offering more resistance

or a more complicated response to layering as the particles are of different size.

Additionally, the gradients differ depending on ζe, so further exploration of ζe or

K might allow more closely matched shear thinning behaviour to be recovered.

At lower shear rates, their behaviour differs more significantly. The ultrasoft

colloidal systems in Chapter 5 were not yield-stress fluids, whereas to the best of

our knowledge we observe a yield stress, shear thinning fluid in our simulations.

This indicates that merely having colloids that are thermal and can respond

anisotropically to contact is not by itself enough to reproduce the behaviour of

ultrasoft colloids in simulation. While more complex than many contemporary

approaches, reproducing more behaviour, our model is still making many sim-

plifying assumptions compared to real systems. Additionally, similar flowcurves

have been produced in simulation techniques that do not require such a computa-

tionally expensive approach (Khabaz et al., 2017, 2020). Simply having Hertzian

behaviour in a system is not enough to produce this behaviour either - Zakhari

et al. (2018) consider packed (φ = 0.739−0.916) colloidal systems with a Hertzian

potential under Brownian dynamics, and find discontinuous diffusivity and shear

responses while increasing the Peclet number, and they do observe ordering into

string like dynamics.

However, we must again remark that we cannot have high confidence in our

low shear rate results, especially as we simulate a microrheological system and

therefore may see results that would be within experimental error in a practical

bulk system. For example, our systems for the lowest shear rates are almost un-

strained, and yet we have a definitively positive stress response, but in a practical

system we would expect this response to be lost in noise. Additionally, if we were
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to cherry pick within our range of error, we could also have behaviour that does

not match yield stress. As discussed above, due to time and computational con-

straints, we cannot be confident either that we have fully characterised sampling

error or reached the steady state stress response.

While simulations of colloids based on Hertzian potentials can undergo shear-

induced diffusion (Bonnecaze et al., 2020), they do not tend to be thermal systems

at high volume fraction, as the underlying assumptions of these models prevent

sensible simulation of particles that are too soft. For regimes such as the ones we

choose, thermally driven large deformations of particles are possible. As well as

this, if particles under shear are distorted, this may aid in diffusion. Observing the

effect of shear on the diffusion of the colloids, at the timescale of rearrangement, is

a result that would be difficult to sensibly achieve in other simulation techniques.

In general, while any of the quantities measured here could be measured through

more simplistic simulation techniques, any effect of multi-contact deformation or

shape change through homogenous shear and thermal deformation could affect

those results. This makes simpler techniques unlikely to be able to recover the

behaviour we see in these results other than the steady-state flowcurve.

6.6 Conclusion

In this chapter we have applied a linear shear to simulations with the lowest

moduli. We have measured the corresponding stress response and found it to

be consistent with a shear thinning yield stress fluid. We have found that ap-

plying shear to the simulations seems to yield significant dynamical differences

only where the shear rate operates on timescales faster than the timescale of cage
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escapes measured in Chapter 4. This can be interpreted as the point at which

the shear overwhelms the systems ability to dissipate stress. At this point, scat-

tering indicates we move into another, layered structure, and our MSD results

indicate that this first significantly lowers the energy barrier for cage breaking,

and at the highest shear rate is not consistent with cage-breaking or diffusive

behaviour at medium to long timescales. Normal stress difference measurements

are consistent with measurements from the literature of systems with deformable

interfaces, but we observe no qualitative difference from measures with simpler

interactions that approximate deformablity. This change in regime also sees a re-

duction in the observed volume fraction, which further supports the existence of

a layered structure. Finally, we have found that simply simulating monodisperse

compressible and deformable particles is not sufficient to generate qualitatively

different shear responses compared to less computationally expensive methods.
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Chapter 7

Conclusion

In this chapter, we briefly reiterate the progress made in this thesis, and then

discuss future development and research directions based on this progress.

7.1 Progress overview

The approach of using FFEA to simulate packed soft colloidal systems has al-

lowed us to address multiparticle contacts and the resulting anisotropic deforma-

tion in three dimensions, using physically meaningful parameter choices, which

has not been done before. We have modified the code to include Periodic Bound-

ary conditions to approximate a bulk solution by simulating up to 1000 colloids

in a simulation box. We have further modified this implementation to support

Lees-Edwards boundary conditions, which approximate a bulk solution undergo-

ing linear shear. We have also implemented a runtime multi-τ correlator, which

allows collection of data from a range of timescales in both a memory and com-

putationally efficient manner.
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In Chapter 4 we used FFEA to simulate quiescent systems. We have shown

that rearrangements occur for all the effective volume fractions and material

parameters we have simulated, with evidence of a cage-breaking regime at long

times. A key advantage of our approach is that we can vary the effective volume

fraction and observe the resulting volume fraction, along with varying material

parameters in a physically meaningful way. We have found that, even at very

high volume fractions that would have crystalline order for hard sphere systems,

the thermal activity of our colloids is sufficient that we see no long-range ordering

in our systems, though possibly with some short range ordering. In addition we

observed a rise and fall in non-Gaussian behaviour of displacement coinciding with

the approach to the cage-breaking regime, corroborating its existence. We made

a preliminary investigation of correlations between particle shape and motion,

but found there was insufficient data to draw conclusions.

We also investigated the stress autocorrelation function of quiescent systems,

finding a superposition of intra-particle and structural deviatoric stresses. A key

unexpected finding is that we observed that the structural stress scales with φ,

unlike the MSD, which does not. This result would not be possible for types of

simulation which cannot represent deformation directly.

In Chapter 5 we discussed our experimental investigation of ultrasoft micro-

gels, building on the work of Mattiello (2018) by verifying negligible free chain

content from synthesis. We confirm the observations that this class of ultrasoft

microgels have qualitatively distinct behaviour to most other microgels, as they do

not have distinguishable entropic and jammed glass regimes. We observe a lack of

aging or history dependence, consistent with the proposed explanation that this

microgels self-squeeze and thereby rearrange. We also confirm that these systems
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can be mapped onto a master curve solely through scaling their shear stress, and

do not require scaling of strain rate as more densely crosslinked systems do, sug-

gesting that the the associated timescales are independent of volume fraction for

these systems.

Finally, in Chapter 6 we applied linear shear to simulations of an ensemble

of low modulus colloids, to determine the corresponding shear modulus for the

system. We have found that applying shear produces substantial dynamical and

structural differences only when the shear rate exceeds the inverse timescale of

cage escapes found in the corresponding quiescent simulations. We found that

this initially lowers the energy barrier for cage breaking, and then moves to non-

diffusive behaviour at the highest shear rate. We find evidence of a switch to

a layered structure at these high shear rates. However, we find that overall we

generate qualitatively similar shear responses to those seen with computationally

less expensive methods. Layering, the shape of the flowcurve and normal stress

differences have been reproduced before by simpler methods, and it is reason-

able to conclude that self-squeezing is not the only unusual attribute of ultrasoft

microgels, at least with our simulation method.

7.2 Future applications and development

As many of the results presented in this work are qualitative or preliminary, we

might make them more robust largely through running more simulations with

different parameters. We also might approach measures such as correlation of

asphericity and movement with a run-time correlator, making this measure more

robust. We would also conduct a more detailed exploration of the parameter
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space studied, and expand it with higher moduli and volume fractions, as this

would allow us to quantitatively understand the scaling of structural modulus

with volume fractions. This might also allow us to more strongly relate the

structure of the system with the modulus. It would also be useful to run some

simulations for longer timescales, to ensure greater convergence, and to confirm

the system is ergodic as we assume, as well as more strongly confirming the

existence of the second diffusive regime. Varying the size of the simulations, and

constructing measures for the spatial correlation of particle motion would also

allow us to calculate the lengthscales of diffusion in these systems.

The immediately obvious next step for using FFEA to model packed soft col-

loidal systems is to find an effective way to approach polydispersity. Most soft

matter systems will have some amount of polydispersity, and so to truly approx-

imate these systems this must be added. We attempted to add polydispersity to

our simulations, but time constraints meant that we were not able to implement

solutions to the issues we encountered. In this case, we simply scaled the same

input files by different amounts to approximate a normal or triangle distribution

in particle size. To introduce a polydispersity of even 0.05, however, can require

a 3× range in volume. In turn, for scaled element size, this would require altered

timesteps for the smaller elements and therefore the greater chance of inversion,

and interactions cutoffs would need to be scaled with the largest elements. An al-

ternate approach would be to keep element size roughly the same, but scale mesh

complexity with size. However, this is only easily achievable with systems with

discrete levels of dispersity, such as bidisperse and tridisperse systems. It is not

clear that these systems would appropriately model true polydisperse systems.

Another development would be to mix particles of various moduli, or incor-
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porate particles that are not deformable. This would be helpful as it would allow

an assessment of formulation stability, as most real industrial formulations would

be multi-component systems, unlike the monodisperse, identical systems we sim-

ulate here. However, there is a challenge to mixing systems with populations of

differing moduli, as the timestep will need to be decreased for higher moduli to

ensure simulation stability. The neater approach would be to make some particles

entirely rigid. This will not affect the necessary timestep as there is no possibility

of element inversion, and the steric interactions do not need to be altered. This

does mean that the code would need to be altered to add the ability to incor-

porate these particles. This would be of particular interest for systems of soft

particles with tracer particles mixed in, such as drilling muds, as it is not clear

that the movement of these tracer particles accurately represents the movement

of the emulsion in general.

Another direction for development is coupling the particle meshes to a hydro-

dynamic mesh using a boundary element method. The already high computa-

tional expense of simulating sufficiently large systems of packed colloids currently

precludes pursuing this line of research for highly packed systems, and we have al-

ready made the argument that contact forces should be more important for highly

packed systems. However, it would be far more important for intermediate values

of packing, below a volume fraction of 0.5, as contact becomes less relevant. It

may also be useful for the interactions between objects with a significant size

differential.

Another key way to improve FFEA for specifically the simulation of soft col-

loidal systems is code optimisation; specifically, the handling of interactions,

and the approach to parallelisation. The handling of interaction currently in-
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volves second order elements which are not necessary for stability with steric or

Lennard-Jones interactions. These subdivide each surface face of a colloid into 4,

meaning that checking for interactions is approximately sixteen times as costly

as necessary. However, to remove this structure from FFEA would take signif-

icant development work. For parallelisation, an efficient MPI implementation

is required, and this would allow more populous systems or systems with more

complex internal structure to be simulated.

For future experimental investigations, it would be interesting to see high

resolution confocal microscopy of ultrasoft particles such as those discussed in

Chapter 5. As Mattiello (2018) posited a key behaviour of these particles might

be that they are soft enough to self-squeeze, much like our thermally diffusing

systems, it would be interesting to see this experimentally confirmed. The results

could then be compared to our simulations. It would also be interesting to see

micro-rheology with particle tracking performed on these systems, to compare to

our simulated, sheared systems, and to see if the behaviour is similar. It appears

from our results that we are missing a quality of these systems and how they

respond to shear, and direct observation might begin to elucidate what this is.
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