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Abstract

Understanding the factors that affect species survival and coexistence

is a problem of significant importance. Species survival and repro-

duction can be affected by intrinsic (i.e. the composition of the

population) and environmental factors (e.g. light, moisture, heat),

and analysing their combined effect is a difficult task. This thesis

will investigate the combined effect of internal (demographic) noise,

caused by random birth-death events in a finite population, and ex-

ternal (environmental) noise on two models of microbial competition.

These models are inspired by the well known Prisoner’s Dilemma and

Rock-Paper-Scissors games of Evolutionary Game Theory, and their

dynamics in a static environment is well known. In well mixed (i.e.

non-spatial), finite populations without mutation between species, in-

ternal noise ultimately leads to the death of all but one species. The

strength of these demographic fluctuations is dependent on the pop-

ulation size, hence the probability that a certain species takes over

(fixates) the population depends on the structure of the game and

the size of the population. The majority of this thesis will focus on

the case where external noise is modelled as a randomly switching

carrying capacity, following a dichotomous Markov process to mimic

periods of abundant and scarce resources. This results in a fluctuating

population size, coupling the demographic noise to the environmental

noise, leading to interesting, complex effects on the population dy-

namics. The effects of this coupling within these models is analysed

using numerical and analytical techniques, and in general it is found

that external noise promotes the fixation of the species that is the

least likely to fixate in a static environment, but does not prolong

species coexistence.



Abbreviations

IN Internal (demographic) Noise

EN External (environmental) Noise

DMN Dichotomous Markov noise

PN Periodic Noise (rectangular wave)

OU Ornstein-Uhlenbeck

cCLV chemical cyclic Lotka-Volterra model

MLM May-Leonard model of cyclic competition

BDCLV Birth-Death cyclic Lotka-Volterra model

LNA Linear noise approximation

IDH Intermediate Disturbance Hypothesis
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Chapter 1

Introduction

Understanding the factors that affect the extinction and survival of species in

ecological communities is one of the most important questions in modern sci-

ence (Pennisi (2005)). Initially, biological processes were modelled as continuous

processes with ordinary differential equations describing the population densities.

However this necessarily ignores the random nature of biological processes: the

number of individuals of a species does not change continuously, but is rather

the result of births and deaths within the population. Hence this continuous de-

scription does not describe the dynamics exactly. In situations without mutation,

demographic fluctuations (internal noise - IN) caused by birth-death events can

ultimately lead to fixation - where one species takes over the whole community

(Crow & Kimura (2009); Ewens (2004); Gardiner (1985); Van Kampen (1992)).

The strength of these fluctuations is inversely proportional to the square root

of size of the population, and hence decreases with the size of the community,

and their nature depends on the internal community structure and composition.

Furthermore, external factors like temperature, humidity, light etc. also have an

influence on the community, leading to periods that are more or less favourable

to growth and/or survival. Detailed knowledge about exogenous factors is gen-

erally unknown, so they are often modelled as external noise (EN) by assuming

that the birth and/or death rates of one or all species varies in time (Acar et al.

(2008); Ashcroft et al. (2014); Assaf et al. (2013a,b); Balaban et al. (2004); Ches-

son & Warner (1981); Danino & Shnerb (2018); Dobramysl & Täuber (2013); He

et al. (2010); Hidalgo et al. (2017); Hufton et al. (2016, 2018); Kussell & Leibler
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(2005); Kussell et al. (2005); May (1974); Melbinger & Vergassola (2015); That-

tai & Van Oudenaarden (2001); Visco et al. (2010); West et al. (2018); Xue &

Leibler (2017)). In this thesis I will present the effects of dichotomous Markov

noise (DMN) (see Bena (2006) for a review of this process) on two paradigmatic

models of species competition.

DMN, also known as the telegraph process, is a two-state Markov process

that switches randomly between two values. The amount of time it spends at

either value is drawn from an exponential distribution, with rate parameters that

are constant, but not necessarily the same for each state. When applied to the

death rates of a system, it is used to mimic the effects of a fluctuating level of

resources available. This is particularly relevant for bacterial communities, in

which relatively small changes in environmental factors can lead to population

bottlenecks: a large fraction of the population die, and the community is re-

populated by a small number of survivors. When the population size is small,

demographic fluctuations are more important, leading to scenarios different from

the case of a constant environment (West & Mobilia (2020); West et al. (2018);

Wienand et al. (2015, 2017, 2018)). Dichotomous noise also has the advantage of

being straightforward to simulate, and sufficiently simple that analytical results

are possible for some systems, whilst also being a form of coloured noise (Bena

(2006)). This means that it is correlated in time, which makes it more relevant

for biological modelling of external fluctuations than white noise. White noise,

which is uncorrelated in time, is relevant when the environmental fluctuations

occur on a much shorter timescale than the biological processes in the system. In

this case the rapid environmental fluctuations are in effect not felt by the system,

and it feels the average effect of the noise. By contrast, when the environmen-

tal fluctuations and internal biological processes occur on similar timescales, or

the timescale of the biological process is much shorter than the environmental

noise, the external noise becomes a driving process within the main system, and

its correlations must be taken into account (Ridolfi et al. (2011)). Furthermore,

white noise and white shot noise can be recovered by taking appropriate limits

in dichotomous noise (Bena (2006)). Another noise process relevant in biological

settings is the Ornstein-Uhlenbeck process, a coloured Gaussian process. This

cannot be recovered by taking a limit in DMN, but is not the focus of this thesis
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as it has a couple of limitations (however, see Appendix A.2). Firstly, it is an un-

bounded process. Hence if it is used to drive the population size via the carrying

capacity, it can go negative leading to unphysical results. This can be avoided by

imposing a reflecting boundary at zero, and by using a small variance so that the

probability of going negative is small. The first of these changes the distribution

leading to inaccurate analytical results, and the second places a large restriction

on the parameters of the process. Secondly, since it is a continuous process, it is

more difficult to simulate systems where this drives the rates of another process.

The quickest method is to approximate the OU process as a birth-death process

with suitable rates so that the Fokker-Planck equation is the same (Roberts et al.

(2015)), but this still leads to slow simulations since these rates are much larger

than those for the rest of the system. Furthermore, analytical results even in

one-species systems are only recoverable in the limits of fast and slow correlation

times (Assaf et al. (2013a,b); Bena (2006)).

The bacterial models I will investigate are inspired by two classical exam-

ples from game theory, the Prisoner’s Dilemma and Rock-Paper-Scissors Game.

Originally developed in the 1940s and 1950s by John von Neumann, Oskar Mor-

genstern and John Nash, Game Theory attempts to address situations where

a player may choose from certain strategies, bearing in mind the decisions of

their competitors. In the 1970s, John Maynard Smith and George Price devel-

oped Evolutionary Game Theory by applying these ideas to the natural world,

making predictions about how the composition of biological communities change

over time (Smith (1982)). Since then advances in computing power have enabled

the study of demographic fluctuations, as well the effects of spatial and network

structure.

In the Prisoner’s Dilemma, a two-person symmetric game, individuals may

choose from two pure strategies: co-operation (C), where an individual chooses

to share resources with its opponent, or defection (D) where they choose to take

all the resources for themselves (Smith (1982)). Co-operation comes at an indi-

vidual cost, but often with a global benefit (i.e. shared with all individuals). In

evolutionary game theory, these are interpreted as ‘population games’, with the

strategies (C) and (D) becoming species and their frequencies as the fractions

of the population that are type C- or D- players/species respectively. This is
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Figure 1.1: Cooperation and defection in Pseudomonas aeruginosa. Cooperators

(blue) produce the siderophore pyoverdine (green) that binds to the iron (red) in

the environment. The resulting complex is taken into the periplasm (membrane

between the cytoplasm and outer membrane) of both cooperators and defectors

(non-producers, orange), where the iron is reduced and incorporated into cells,

while the pyoverdine is recycled back into the environment. Reproduced from

Becker et al. (2018).

particularly relevant in biofilm formation, where some cells sacrifice their own

metabolic rate and/or motility, in favour of developing features like thicker cell

walls, antimicrobial factors and/or inhibitors, molecules that release nutrients

from the environment and extracellular structures that benefit the whole com-

munity (Caro-Astorga et al. (2020)). For example, in Pseudomonas aeruginosa

colonies, co-operative strains produce iron-scavenging molecules (siderophores)

when iron is lacking in the environment (Becker et al. (2018); Buckling et al.

(2007); Diggle et al. (2007); Griffin et al. (2004) - see Figure 1.1). The ‘defec-

tors’ in this setting are the strains that do not produce siderphores, but still feel

the benefit of their production due to increased increased iron uptake. Previous

work has found that in finite, well mixed populations defectors fixate (i.e. the

whole population is defectors) with a much larger probability than co-operators

(Ewens (2004); Gardiner (1985); Hofbauer & Sigmund (2003); Hofbauer et al.

(1998); Nowak & Sigmund (2004); Smith (1982)), due to their fitness advantage

(because of a selective bias towards the defection strategy - in the deterministic

counterpart, defection is an evolutionary stable strategy i.e. a stable fixed point),

that manifests itself as a faster growth rate than the co-operators.

Why then is co-operative behaviour so prevalent in nature? Answering this
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question is one of the central questions in modern evolutionary biology (Frank

(1998); Hamilton (1995); Smith & Szathmary (1997)) and several possible mech-

anisms have been suggested. Spatial structure in terms of a lattice or more

general networks, where individuals interact with their nearest neighbours has

been shown to result in both cooperators and defectors coexisting for a time that

scales roughly exponentially with the system size (Doebeli & Knowlton (1998);

Durrett & Levin (1994); Hassell et al. (1994); Killingback et al. (1999); Lieberman

et al. (2005); May (2006); Nowak & May (1992)). Here co-operators can form

groups within the network mostly only helping each other, meaning that the ben-

efit they produce is shared with other co-operators1. This is known as ‘Network

Reciprocity’ and is one of the factors that can lead to selection of co-operative

behaviour (Nowak (2006b)). Another consideration is the life-cycle of microbial

colonies. In Cremer et al. (2012) and Melbinger et al. (2015) the authors describe

the evolution of microbial colonies in three stages: a large group splits randomly

into smaller groups, these then evolve independently, and then recombine after a

certain time. In this case, when the average size of the smaller groups is small

enough, the fact that groups with more cooperators will reach bigger sizes before

the recombination favours co-operative traits. Here the selection occurs on two

scales, first defectors out-compete co-operators within groups, but groups with

more cooperators outcompete those with less. This ‘Group Selection’ counteracts

the effect of individual level selection to favour co-operation.

There is also evidence that aforementioned population bottlenecks (where a

large proportion of the community dies out, and is repopulated from the small

amount of remaining survivors) can promote cooperation in bacterial biofilms

(Brockhurst (2007); Brockhurst et al. (2007)). These experiments have found

that cooperative strains of the bacteria are promoted when the disturbances that

1It should be noted that this is due to the underlying microscopic structure of the Prisoner’s

Dilemma, where cooperators survive by forming large compact clusters that reduce potential

for exploitation by defectors. By contrast, in the snowdrift game, an alternative model of

cooperation/defection that allows for stable coexistence of both strategies in the well mixed

case, spatial structure reduces the frequency of cooperation. This is because the best reply

to any strategy is the opposite one. Hence, cooperators act as a base for expanding finger-

like structures, but cannot form clusters that protect against exploitation (Hauert & Doebeli

(2004))
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cause the bottlenecks occur at an intermediate rate. Too slow and selective

advantage of non-cooperation leads to the defectors being promoted, while if the

disturbances occur at a fast rate, the population never reaches a large enough size

for co-operation to be beneficial (Brockhurst et al. (2007)). Furthermore, it has

also been found that in this intermediate disturbance regime, larger disturbances

(i.e. where a larger proportion of the population die out) are more likely to favour

cooperators (Brockhurst (2007)).

After this brief overview, I will now more directly focus on the lines of research

pursued in this thesis. These build on two recent works Wienand et al. (2017,

2018) where the authors show that symmetric dichotomous noise (i.e. the noise

process spends on averate the same time in each state) applied to the death rate in

the form of a randomly switching carrying capacity can also promote co-operation

in a well mixed setting, as co-operators in some cases can have a higher fixation

probability than without external noise. In Chapter 3, I will analyse the effect

of asymmetric dichotomous noise on a version of the Prisoner’s Dilemma. These

results are more general, since they account for environmental noise that spends

more time in either state and are also compared with a periodically switching

environment.

The other model that I will consider is the Rock-Paper-Scissors game. This

is the archetypal model of cyclic competition: rock blunts scissors, scissors cut

paper, and paper wraps rock. Similar interactions have been observed in toxin

producing-susceptible-resistant strains of Escherichia coli and the mating strate-

gies of male Uta stansburiana lizards (Hibbing et al. (2010); Kerr et al. (2002);

Kirkup & Riley (2004); Nahum et al. (2011); Sinervo & Lively (1996); Smith

(1996); Zamudio & Sinervo (2000)). The E. coli community is comprised of three

different strains; one that produces a toxin that kills the sensitive strain, and a

resistant strain that does not produce the toxin. The sensitive strain grows faster

than the resistant strain (since it is not subject to the cost of resistance), which in

turn grows faster than the producing (since it does not incur the cost of producing

the toxin). The cycle is closed by producing strain killing the sensitive strain (see

Figure 1.2). In the case U. stansburiana lizards, males have three phenotypes

characterised by different sizes and colours: large orange, medium blue and small

yellow; while females are all small and yellow. Large orange males command a

6



Figure 1.2: Examples of Rock-Paper-Scissors games in nature: (Left): toxin

mediated cyclic dominance between sensitive, resistant and producing strains of

E. coli. Reproduced from Hibbing et al. (2010). (Right): Mating strategy cyclic

dominance in U. stansburiana lizards. Reproduced from HumonComics (2012).

large territory due to their size, meaning that they have many partners with whom

they form weak bonds; medium blue males have smaller territories, within which

they form strong bonds with fewer females. Hence the orange lizards dominate

the blue ones. The small yellow males are indistinguishable from the females and

do not have their own territories. Instead they sneak into those of others and try

to mate with the females there. In orange territories they are successful because

the host males have weak bonds with the females; while in blue territories they

are not, due to the strong bonds between the host males and the females (see

figure Fig. 1.2). Hence, orange dominates blue, blue dominates yellow and yellow

dominates orange.

Mathematically, this is described by the cyclic Lotka-Volterra model (zero-

sum case) and May-Leonard model (non-zero-sum case) (see Chapter 2 for more

on zero- and non-zero-sum games). Ignoring all forms of noise, species densities

oscillate around a coexistence fixed point, which is stable, neutrally stable or

unstable. Together with the fact that the states corresponding to fixation of

each species are saddle points, this can result in spirals towards the interior

fixed point, limit cycles, neutral orbits or heteroclinic cycles depending on the

parameters, this will be discussed in more detail in Chapter 4. Similarly to two

species models, the inclusion of demographic fluctuations means that fixation is

certain in the well mixed case, resulting various fixation and survival scenarios in

populations of different size, with two simple laws for fixation in large and small
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populations. (Berr et al. (2009); Frean & Abraham (2001); Frey (2010); Ifti &

Bergersen (2003); Szolnoki et al. (2014)). Again, spatial and network structure

have been shown to have a profound effect on the dynamics, in particular the

interaction of the former coupled with mobility can promote or jeopardise species

coexistence (Mobilia et al. (2016); Reichenbach et al. (2007a,b, 2008); Szczesny

et al. (2013, 2014); Szolnoki et al. (2014)), while the latter results in limit cycles

and noisy oscillations of species densities (Sato et al. (1997); Szabó et al. (2004);

Szolnoki & Szabó (2004); Tainaka (1994)). Environmental noise in form of white

noise on the reaction rates has been shown to have a minimal effect on the system

dynamics (He et al. (2010)), but our understanding of the effects of coloured

external noise is still poor. In Chapter 5 I will present the effects of a fluctuating

population size (i.e. subject to both internal and external noise) on the fixation

properties of the non-spatial rock-paper-scissors game, and in Chapter 6 I will

present the results of a fluctuating reaction rate on a similar, but simpler model of

cyclic competition. In both cases, the results are compared against the previously

established laws for fixation in small and large population sizes (described in

Chapter 4). Chapter 6 is a departure from the rest of the thesis, where instead of

a fluctuating population size, we suppose that the fluctuating environment result

in more/less favourable conditions for one of the species.

Having read this thesis, it is my goal that the reader should understand the

effects of: Firstly, fluctuating population size driven by a dichotomous Markov

noise on the two models introduced above. In the case of the Prisoner’s dilemma

I show that the fixation probability of the co-operators depends non-trivially on

the asymmetry of the underlying external noise and the rate at which the switch-

ing takes place. Furthermore I will compare these results with periodic switching,

where it will be shown that the transition between fast and slow switching oc-

curs much earlier (i.e. for smaller switching rates) in the periodic case. In the

case of Rock-Paper-Scissors games, due to the complicated dependence of the

fixation probability of each species on the system size, letting this vary in time

produces intricate, novel fixation scenarios that would not be possible with con-

stant population size. External noise makes the competition more egalitarian,

but does not prolong coexistence. Finally, I will present the results of a variable

reaction rate on the zero-sum Rock-Paper-Scissors game. Again, external noise
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produces new fixation scenarios, but does not prolong species coexistence. I hope

that understanding the effect of simple, but coloured noise sources on these rela-

tively simple models of species competition will become a small piece in the large,

incomplete jigsaw of our understanding of the world around us (which we are try-

ing to complete without the lid). First, in the next Chapter I will introduce the

mathematical techniques I will use in the remainder of the Thesis.
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Chapter 2

Mathematical Methods and

Preliminary Results

This Chapter will introduce the mathematical techniques and results that will be

used in the subsequent chapters. First I will review two methods for stochastic

modelling of biotic populations: the Moran process where the total population

size is fixed, and the birth-death process where the total population size fluctuates

in time, and show how the first can be used to approximate the second. Then I

will introduce dichotomous Markov noise and present its effect on the population

size distribution of the logistic growth model, as these results will be central to

the analysis in later chapters.

2.1 Mathematical Modelling of Biotic Popula-

tions

Mathematical modelling of biotic systems is by no means a new discipline. The

famous Fibonacci sequence 1, 1, 2, 3, 5, 8, ..., introduced in 1202 in his book Liber

Abaci by Fibonacci1 can crudely describe the population growth of mating pairs:

Suppose that we start with one mating pair, that each mating pair takes one

timestep to reach maturity, once they have they give birth to another mating

1This was its first appearance in Western Mathematics, however it was known to Indian

Mathematicians in as early as 200 BC.
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2.1 Mathematical Modelling of Biotic Populations

pair in each timestep, and that there are no deaths. The number of mating pairs

after the first time step is n1 = 1. In the next timestep they reach sexual maturity,

n2 = 1, then in the following they give birth to another mating pair, n3 = 2. For

a general time k, the number of mating pairs nk will be the number at the last

timestep nk−1, plus the number of sexually mature pairs that will give birth to

another i.e. the number of pairs two timesteps ago, nk−2. After many timesteps,

the number of pairs is roughly
(

1+
√

5
2

)k
: the growth is exponential.

The first model for human population growth was proposed by Malthus in

his seminal work An Essay on the Principle of Population in 1789, where he ob-

served that the global population was growing exponentially. Due to a linearly

increasing food supply, a point would be reached where this is no longer sustain-

able, subjecting much of the population to famine, poverty and ultimately death.

This idea of population growth being limited by a resource was formalised by

Verhulst in a series of papers between 1838 and 1847: in small population sizes

growth is still exponential but reduces as the number of individuals increases and

approaches the maximum supportable size, known as the carrying capacity. This

maximum supportable population size can be thought of as relating to the amount

of resources available to individuals in the system. If N is a variable representing

the total population size, b is the per-capita growth rate at small population sizes

and K is carrying capacity then we write this with the well-known formula

dN

dt
= bN

(
1− N

K

)
. (2.1)

A similar, historically important model for two species systems was intro-

duced in 1926, simultaneously but independently by Vito Volterra and Alfred

James Lotka, who were trying to model predator-prey and chemical oscillations

respectively. Taking Volterra’s ecological context, the growth of the prey is ex-

ponential in small population sizes but is limited by the presence of predators,

who die without prey to feed on:

dN1

dt
= N1 (b− αN2)

dN2

dt
= N2 (βN1 − d) , (2.2)

11



2.1 Mathematical Modelling of Biotic Populations

where b is the per-capita birth rate of prey in the absence of predators, d is the

death rate of predators in the absence of prey, and α, β are parameters that

are related the rate of predation, efficiency of biomass conversion and carrying

capacity. This model admits periodic solutions around the non-trivial steady state

(d/β, b/α), and has been derived in several disciplines: not only ecology (Lotka

(1926); Volterra (1926a,b)) and chemistry (Semenov et al. (1935)), but others

such as economics (Galbraith (2008)) and epidemics (Kermack & McKendrick

(1927, 1932, 1933)). It should be noted that this model is fundamentally flawed:

the periodic orbits are neutrally stable, set by the initial conditions and are

therefore not robust - different initial conditions lead to different orbits. This can

be seen by noting that the quantity C = b lnN2(t)−αN2(t)−βN1(t) + d lnN1(t)

is conserved. The orbits will therefore be those along which this is constant.

In later chapters we will also see that a form of cyclic competition, the cyclic

Lotka-Volterra model also has orbits defined by a conserved quantity. These are

both examples of zero-sum games, which always exhibit a conserved quantity (see

below).

As humanity’s understanding of the world around us has improved we started

asking larger scale scientific questions. A natural extension of the Lotka-Volterra

predator-prey model above is to ask, if we knew the relative strengths of interac-

tions between all species in a community, could we model a system of M different

species in the same way? In this case we write:

dNi

dt
= riNi

(
1− 1

Ki

M∑
i=1

αijNj

)
, (2.3)

where ri are the species growth rates, Ki is the carrying capacity of species i (the

maximum number of species i individuals that can be supported) and the signs of

αij and αji tell us about the type of relationship between species i and j: if they

are both zero then the species do not directly affect one another, if they are both

positive then they are in direct competition, negatively affecting one another.

If one is positive and the other negative then there is a predator-prey relation-

ship, while the rarer case of the both being negative indicates to a mutualistic

relationship where both species promote the other. Due to the large number of

parameters and variables, this system has rich, varied possible behaviour. These

12



2.1 Mathematical Modelling of Biotic Populations

include, but are not limited to: extinction of all but one species, limit cycles,

strange attractors and chaos. In practice it is difficult to accurately quantify

the intra- and interspecific interaction strengths (αii and αij respectively), so in

practice these are drawn from a normal distribution with mean 0 and variance σ2

with probability c (called ‘connectance’) and are zero otherwise. Similar assump-

tions are made for the growth rates ri and carrying capacities Ki. Models of this

type were first studied by R. M. May, who found that stability decreases with

the number of species M , the connectance c and the variance of the interaction

strength σ2 (May (1971, 1972, 1974)). This result seems to be at odds with the

wide variety of diverse co-habiting species observed in nature, and has inspired

a large body of work to try and address this (see, for example Allesina & Tang

(2012); Biroli et al. (2018); Bunin (2017); Donohue et al. (2013); Galla (2018);

Ives & Carpenter (2007); Loreau & De Mazancourt (2013); McCann (2000)). In-

terestingly it has been found that spatial structure in terms of a meta-population

model with dispersal between patches can promote stability (Gravel et al. (2016)),

while saturating non-linear feedback between species can lead to either a unique

stable fixed point, multiple fixed points or non-convergent dynamics (chaotic or

periodic orbits) (Sidhom & Galla (2020)).

An important limitation of these models is that they assume that the popula-

tions change continuously in time. We know that this is not the case: populations

fluctuate due to birth and death events, and these happen with a certain rate.

A further complication is that these rates are in general not constant: they may

depend explicitly on time, some external variables like temperature or sunlight

and on the composition of the system.

Concurrently to our understanding of ecology, Game theory was formalised

by Von Neumann and Morgenstern in 1944, with further seminal contributions

by John Nash in the 1950s, in order to explain human economic behaviour (Mor-

genstern & Von Neumann (1944); Nash (1951, 1953, 1950); Nash et al. (1950)).

It is concerned with situations where interacting individuals (‘players’) make de-

cisions, depending on the available options (‘strategies’) and the choices of those

they are interacting with. Their decisions come with an associated payoff against

other strategies, and players act in a rational, self-interested manner in order to

maximise their individual payoff. Thus everything that a player uses to make

13
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their decision is summarised in a payoff table, which shows the resulting payoff of

playing each strategy against another. Furthermore, we must suppose that every

player knows everything about the structure of the game, in particular knows

all the possible strategies and is able to play all of them. This thesis will focus

on pairwise contests between identical players, so-called symmetric two-player

games, with M strategies. In this case the payoff matrix for each player is the

same, defined by an M ×M matrix. For example the following matrix defines

a symmetric two-player game where two individuals playing strategy S1 both re-

ceive the payoff a against each other, two S2 individuals both receive d, while

when S1 receives b against S2 and S2 receives c against S1:

P =
Strategy S1 S2

S1 a b
S2 c d

The goal is to find a strategy ~x (here meaning a vector where the entry in the i-th

column gives the probability of playing the pure strategy Si, the entries must be

non-negative and sum to 1) such that if almost all individuals adopt it, a player

playing a different one cannot invade the population. This is called a strict Nash

equilibrium (sNE), defined as a strategy that is the unique best reply itself, i.e.

satisfies ~x ·P~x > ~y ·P~x ∀~y 6= ~x (~y ·P~x is the payoff of strategy ~y against strategy

~x). The simplest case is when this is always playing S1 or S2 (i.e. ~x = [1, 0]T or

[0, 1]T ) (‘pure strategies’), however if a < c and d < b the sNE is a mixed strategy,

playing S1 with probability p = b−d
b+c−a−d and S2 with probability 1 − p (Smith

(1982)).

These ideas were applied to the behaviour of animals by John Maynard Smith

and George Price in 1973 (Smith & Price (1973)) and then further formalised in

Smith (1982). There are a few differences between classical game theory and this

new evolutionary game theory (EGT). First, the strategy sets are no longer strate-

gies that individuals choose, but are now inherited genotypic variants. Hence,

pure strategies become species. Secondly, strict Nash equilibriums now, with

a slight relaxation of the conditions become evolutionary stable strategies (the

inequality above for a strict Nash equilibrium must hold, or if there is instead

an equality then the condition ~x · P~x > ~y · P~y ∀~y 6= ~x must also be satisfied).

Finally, mixed strategies ~x =
∑M

i=1 xi~ei now correspond to a population with

14
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a fraction xi individuals of species i. These populations then evolve according

to repeated random parings of individuals, with outcomes defined in the payoff

matrix. These models are called ‘population games’ and EGT aims to describe

the dynamics of these populations. The dynamics of the population densities xi

follows dxi/dt = xi [(P~x)i − ~x · P~x], which is the celebrated replicator equation

(see, for example Schuster & Sigmund (1983)) The first term is the expected

payoff of and individual of species i, while the second is the average payoff of the

population. From this, the steady states and their stability can be found using

traditional methods (linear stability analysis, bifurcation theory).

In a stochastic setting, births and deaths occur with a randomly, each with a

certain rate. In this context, the expected payoff to a species i individual, given by

(P~x)i, (where ~x = [N1/N,N2/N ]T , Ni, i = 1, 2 refers to the number of individuals

playing strategy i and N = N1 +N2 is the total population size) is interpreted as

its fitness, and is proportional to the per-capita birth rate. We also suppose that

deaths are due to competition for resources, manifested by a per-capita death

rate N/K, where K is the carrying capacity - the maximum supportable popu-

lation size. I will refer to processes where births and deaths happen separately,

leading to fluctuating total population size around the carrying capacity K, as a

‘Birth-Death Process’, however it is sometimes more convenient mathematically

to assume that a birth and death occur simultaneously, keeping the population

size fixed (at K) and reducing the number of variables by 1. This is known as

the ‘Moran Process’ and will also be used extensively in this thesis.

In Sections Sec. 2.1.1 and Sec. 2.1.2 I will describe the Moran process and

the Birth-Process in static environments. These are two classical formulations

of bacterial competition with slightly different properties (Benaim et al. (2004);

Doebeli et al. (2017); Ewens (2004); Fudenberg et al. (2004); Hofbauer et al.

(1998); Kimura (1957); Méndez et al. (2015); Moran et al. (1962); Nee et al.

(1994); Nowak (2006a); Nowak et al. (2004)). The second is used in Chapters

3 and 5 when considering fluctuating population size, and the first is used in

Chapter 6 where the population size is fixed. However I will also show that the

considering the Moran process approximation of Birth-Death processes in useful

in Chapters 3 and 5. Section 2.2 introduces external noise, its importance in

biological modelling and the form that I will use - dichotomous Markov noise
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(Section 2.2.1). To prepare the reader for analysis of its effects on two and three

species models, I will show its effects on the one species logistic growth model.

2.1.1 The Moran Process

We first consider the case where the total population size of the system is fixed,

known as the Moran Process. This describes competition between individuals

of different species where at each time-step firstly an individual is chosen for

reproduction, creating an exact copy of itself. Simultaneously, another is chosen

to die so that the total population size (here denoted by K) remains fixed. The

exact reaction network and rates at which these reactions occur is related to the

population composition and the parameters of your system, and to illustrate the

methods used I first consider populations of two competing species. In this case

there are two possible reactions:

[N1, N2]
W21−−→ [N1 + 1, N2 − 1] and,

[N1, N2]
W12−−→ [N1 − 1, N2 + 1] (2.4)

where the transition rates W12 and W21 are general functions of the population

densities ~x = [N1, N2]T /K (i.e. x1 + x2 = 1), of the form Wji = hji(~x)xixjK.

This choice of transition rates means that we are considering Markov process

with absorbing boundaries, i.e. ~x = [x1, x2]T = [1, 0]T and [0, 1]T are absorbing

states, and cannot be left once they have been entered. Hence this guarantees

that the stochastic dynamics will end up in one of these states. This thesis will

be focused on the fixation probability of each species, defined (for species i) as the

probability that the system reaches the absorbing state in which only species i is

present: lim
t→∞

P (~x(t) = ~ei) denoted as φi (~ei is the unit vector in the i direction).

Another quantity of interest will be the mean fixation time, defined as the mean

time for an absorbing state to be reached, independent of the species that has

fixated the population.

The analysis starts with the Master equation, written as:

d

dt
P ( ~N, t) =

[(
E−N1

E+
N2
− 1
)
W21 +

(
E+
N1
E−N2
− 1
)
W12

]
P ( ~N, t), (2.5)
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where E±Ni are shift operators such that E±Nih( ~N) = h( ~N ± ~ei) and P ( ~N, t) = 0

whenever any Ni < 0. From this a recursive formula for the fixation probability

of species 1 can be obtained from a first-step analysis of the underlying Markov

process. In this case one can define the recursive formula for φ(m), the probability

that a population of focal species (w.l.o.g. species 1) of size m will fixate the

population:

φ(m) =
W21(m)

W21(m) +W12(m)
φ(m+ 1) +

W12(m)

W21(m) +W12(m)
φ(m− 1), (2.6)

the first term accounts for a species of type 1 replacing one of type 2, and the

second accounts for the opposite. This has boundary conditions φ(0) = 0 and

φ(K) = 1. Following Ewens (2004) we define χm = φ(m)−φ(m−1), to find that
χm+1

χm
= W12(m)

W21(m)
, from which it is simple to show that:

χm = χ1

m∏
i=1

W12(i)

W21(i)
and φ(m) = χ1

m∑
q=1

(
q∏
i=1

W12(i)

W21(i)

)
. (2.7)

When the ratio in the product is constant (= α) the expression above reduces to

a geometric series. Using this and the boundary condition for m = K we find

that:

φ(m) =
αm − 1

αK − 1
. (2.8)

A similar first-step analysis can be used to find the unconditional mean fixa-

tion time. In this case the recursive formula for T (m), the mean fixation time for

a system starting with m individuals of species 1 is (Antal & Scheuring (2006);

Assaf & Mobilia (2010); Gardiner (1985)):

W21(m) [T (m+ 1)− T (m)] +W12(m) [T (m− 1)− T (m)] = −1, (2.9)

With boundary conditions T (0) = T (K) = 0. The solution to this problem, given

by

T (m) = −T (1)
N−1∑
k=m

k∏
j=1

W12(j)

W21(j)
+

N−1∑
k=m

k∑
l=1

1

W21(l)

k∏
j=l+1

W12(j)

W21(j)
,(2.10)

where T (1) = φ(1)
N−1∑
k=1

k∑
l=1

1

W21(l)

k∏
j=l+1

W12(j)

W21(j)
, (2.11)
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is in general too complicated and unwieldy to be useful, however approximations

may be made in the limit of large population sizes, for example see Antal &

Scheuring (2006).

These results are for two species systems with a fixed population size. However

I will also consider populations of three competing species. In this case, while it

is possible to use the first-step analysis to write down expressions similar to (2.6)

and (2.9), the equations are not easily solvable, so expressions similar to (2.8)

and (2.10) for the fixation probability and mean fixation time are not readily

available. However, from the Master equation, it is possible to derive the mean

field equations, as I will now show. The mean field equations are a deterministic

theory describing how the averages 〈xi〉 = 〈Ni〉/K = 1
K

∑
~N NiP ( ~N, t) vary in

time. Due to the correlations between the xi’s, this results in an infinite hierarchy

of equations. Progress is made by treating the xi’s as independent variables

(ignoring the correlations). We write:

∂

∂t
〈xi〉 =

∑
~N

Ni

K

∂

∂t
P (N, t) =

∑
~N

Ni

K

3∑
i=1

3∑
j=1
j 6=i

(
E−NiE

+
Nj
− 1
)
Wji( ~N)P ( ~N, t)

=
∑
~N

Ni

K

3∑
i=1

3∑
j=1
j 6=i

[
Wji( ~N − ~ei + ~ej)P ( ~N − ~ei + ~ej, t)−Wji( ~N)P ( ~N, t)

]

=
∑
~N

(
Ni + 1

K
− Ni

K

) 3∑
j=1
j 6=i

Wji(N)P (N, t)

+
∑
~N

(
Ni − 1

K
− Ni

K

) 3∑
j=1
j 6=i

Wij(N)P (N, t)

=
3∑
j=1
j 6=i

〈
Wji −Wij

K

〉
=

3∑
j=1
j 6=i

〈
xixj [hji(~x)− hij(~x)]

〉

≈
3∑
j=1
j 6=i

〈xi〉〈xj〉 [〈hji(~x)〉 − 〈hij(~x)〉] , (2.12)

where the last line is a result of factorising 〈xixjg(~x)〉 = 〈xi〉〈xj〉〈g(~x)〉 for general

g(~x). This comes from the fundamental assumption of the mean field approxi-
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mation: that the effect of all the other individuals in the system on any given

individual can be approximated by a single averaged effect. Then, due to the

central limit theorem, the ratio of the size of demographic fluctuations to the

mean is of order N−1/2. One may then write:

xi ≈ 〈xi〉+
1√
N
di, (2.13)

where di ∼ O(1). When substituted into the penultimate line of (2.12) this gives:

3∑
j=1
j 6=i

〈
xixj [hji(~x)− hij(~x)]

〉
≈

3∑
j=1
j 6=i

〈xi〉〈xj〉 [〈hji(~x)〉 − 〈hij(~x)〉] + O

(
1√
N

)
,

(2.14)

yielding the final line of (2.12) in the deterministic limit when N → ∞ and

demographic fluctuations are ignored.

This is a crude and uncontrolled approximation, and as a result the mean

field equations (which are deterministic) omit a lot of information about the

system. They describe the dynamics of the average values reasonably well for

large population sizes, and can tell us the location of the fixed points of the

system. However, in the full stochastic system these will only remain fixed points

if they absorbing (i.e. there is no pathway by which to escape once entered). If

there is more than one of these such fixed points (as in the models considered in

later chapters) these equations tell us nothing about the probability of each one

being hit.

At this point, it is convenient to write the probability distribution in terms of

the population densities, ~x, where the shift operators are now defined as E±i g(~x) =

g(~x±ei/K) (with a slight abuse of notation g(xi) ≡ g(xiK) = g(Ni)) for a general

function g. Then one can perform a size expansion of (2.5) in 1/K (known as

van Kampen’s system size expansion), keeping the terms of E±i up to order 1
K2
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so that E±i = 1± 1
K

∂
∂xi

+ 1
2K2

∂2

∂x2
i

+ O
(

1
K3

)
, and to first order in 1

K
we have:

∂

∂t
P (~x, t) =

[(
E−1 E+

2 − 1
)
W21 +

(
E+

1 E−2 − 1
)
W12

]
P (~x, t)

= −
[(

∂

∂x1

− ∂

∂x2

)
h21(~x)x1x2 +

(
∂

∂x2

− ∂

∂x1

)
h12(~x)x2x1

]
P (~x, t)

+
1

2K

[(
∂

∂x1

− ∂

∂x2

)2

h21(~x)x1x2 +(
∂

∂x2

− ∂

∂x1

)2

h12(~x)x2x1

]
P (~x, t) + O

(
1

K2

)
, (2.15)

With absorbing boundaries at ~x = ~ei, i = 1, 2, i.e. P (~e1, t) = P (~e2, t) = 0. Since

I am considering two species, and the total population size is fixed, this equation

is simplified by writing x1 = x and x2 = 1 − x. From (2.15) the Fokker-Planck

equation can be written:

∂P (x, t)

dt
= − ∂

∂x
A(x)P (x, t) +

1

2

∂2

∂x2
B(x)P (x, t) (2.16)

Where A(x) = x(1−x) [h21(x)− h12(x)] andB(x) = x(1−x) [h21(x) + h12(x)] /K.

From this one can use the results of Gardiner (1985) to find closed equations

and solutions for the fixation probability of the either species and the mean time

to fixation. The fixation probability of the focal species, φ(x) is the solution of

the equation:

A(x)
d

dx
φ(x) +

1

2
B(x)

d2

dx2
φ(x) = 0,

with boundary conditions:

{
φ(0) = 0 and

φ(1) = 1
(2.17)

which is shown to be

φ(x) =

∫ x
0

Ψ(y)dy∫ 1

0
Ψ(y)dy

, where Ψ(x) = exp

[
2

∫ x

0

A(x′)

B(x′)
dx′
]
. (2.18)

The unconditional mean fixation time T (x) is the solution to the equation

A(x)
d

dt
T (x) +

1

2
B(x)

d2

dx2
T (x) = −1,

with boundary condition: T (0) = T (1) = 0. (2.19)
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There is a closed solution to this equation however when both the boundaries

are absorbing the given expression is singular. In practice this equation is solved

numerically.

2.1.2 The Birth-Death Process

The above formulation is applicable to systems with fixed population size, how-

ever I will chiefly be interested in modelling competition in populations with vari-

able population size as a birth-death process, in which births and death events

that increase/decrease the total population size by 1 individual occur separately,

with different rates. As before, Ni is the number of species i and the events and

probabilities are defined as follows:

Ni

T+
i−−→ Ni + 1 and Ni

T−i−−→ Ni − 1, with i ∈ {1, ...,M}

where T+
i = g( ~N)fi( ~N)Ni/f̄ , T−i = d( ~N)ωi( ~N)Ni/ω̄, (2.20)

f̄ =
M∑
i=1

Nifi and ω̄ =
M∑
i=1

Niωi, (2.21)

where, in this thesis M ∈ {2, 3}. This is the most general setting, where the

biological factors determining the birth and death rates are written as the prod-

uct of global and relative terms: g( ~N) and d( ~N) are referred to as the global

birth fitness and global weakness respectively and are species-independent acting

similarly on all strains, whereas fi( ~N) and ωi( ~N) are species-dependent relative

birth fitness and relative weakness respectively (Cremer et al. (2011); Melbinger

et al. (2010)). Hence, g and fi affect the species birth rates, while d and ωi affect

their survival or viability. Various evolutionary scenarios have been investigated

within this framework (Cremer et al. (2011, 2012); Melbinger et al. (2010, 2015);

West & Mobilia (2020); Wienand et al. (2017, 2018)).

In this thesis the relative birth fitness (‘fitness’), fi, will depend on the pop-

ulation composition via the payoff matrix (which will be defined in the relevant

subsequent Chapters) but not the environment, while the global fitness will gener-

ally be assumed to be constant (i.e. g( ~N) = 1) apart from in Section 3.4 where we

model a public good game by supposing that it depends linearly on the density of

one of the species. Additionally, I will assume that all strains have equal survival
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chances and are subject to logistic growth, hence ωi = 1 ∀i and d( ~N) = N/K,

where K is the carrying capacity of the system and N =
∑M

i=1Ni is the total

population size. In Chapters 3 and 5 we will assume that K varies in time so

the population size will fluctuate not only due to the natural demographic noise

in the birth-death formulation, but also due to the carrying capacity changing in

time. For now, we assume it is constant.

In general, even when there are only two species, it is not possible to find

expressions like (2.18) and (2.19) for the fixation probability and mean fixation

time. This is because the Master equation is multivariate, and approximation

methods (van Kampen’s system size expansion also known as the diffusion ap-

proximation) lead to equations that are themselves multidimensional and difficult

or impossible to solve. However it is possible to find mean field equations for the

total population size and population densities which we will use later on. The

Master equation for N can be written as:

∂

∂t
P ( ~N, t) =

M∑
i=1

[(
E−Ni − 1

)
T+
i +

(
E+
Ni
− 1
)
T−i
]
P ( ~N, t), (2.22)

from which a similar calculation to (2.12) gives the mean field equation for N :

∂

∂t
〈N〉 =

M∑
i=1

[
〈T+

i 〉 − 〈T−i 〉
]
≈ 〈N〉

(
〈h( ~N)〉 − 〈N〉

K

)
, (2.23)

where 〈h( ~N)〉 =
∑M

i=1〈hi( ~N)〉〈Ni〉/〈N〉 and hi( ~N) = g( ~N)fi( ~N)/f̄ . To derive

the mean field equations for the population densities xi we first write the master

equation for ~N :

∂

∂t
P ( ~N, t) =

M∑
i=1

(E−Ni − 1)
[
T+
i P ( ~N, t)

]
+

M∑
i=1

(E+
Ni
− 1)

[
T−i P ( ~N, t)

]
. (2.24)

Now we find the differential equation for 〈xi〉 =
∑

~N(Ni/N)P ( ~N, t), paying at-
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tention to the fact that now both Ni and N vary in time:

∂

∂t
〈xi〉 =

∑
~N

Ni

K

∂

∂t
P (N, t)

=
∑
~N

Ni

N

{
T+
i ( ~N − ~ei)P ( ~N − ~ei, t) + T−i ( ~N + ~ei)P ( ~N + ~ei, t)

−
(
T+
i ( ~N) + T−i ( ~N)

)
P ( ~N, t)

}
+

∑
j∈{1,...,M}6=i, ~N

Ni

N

{
T+
j ( ~N − ~ej)P ( ~N − ~ej, t) + T−j ( ~N + ~ej)P ( ~N + ~ej, t)

}

−
∑

j∈{1,...,M}6=i, ~N

Ni

N

(
T+
j ( ~N) + T−j ( ~N)

)
P ( ~N, t)

=
∑
~N

{
Ni + 1

N + 1
T+
i ( ~N)P ( ~N, t) +

Ni − 1

N − 1
T−i ( ~N)P ( ~N, t)

− Ni

N

(
T+
i ( ~N) + T−i ( ~N)

)
P ( ~N, t)

}
+

∑
j∈{1,...,M}6=i, ~N

{
Ni

N + 1
T+
j ( ~N)P ( ~N, t) +

Ni

N − 1
T−j ( ~N)P ( ~N, t)

− Ni

N

(
T+
j ( ~N) + T−j ( ~N)

)
P ( ~N, t)

}
. (2.25)

Rearranging the right hand side we have:

∂

∂t
〈xi〉 =

〈(
Ni + 1

N + 1
− Ni

N

)
T+
i ( ~N)

〉
+

〈(
Ni − 1

N − 1
− Ni

N

)
T−i ( ~N)

〉
+

∑
j∈{1,...,M}6=i, ~N

{〈(
Ni

N + 1
− Ni

N

)
T+
j ( ~N)

〉
+

〈(
Ni

N − 1
− Ni

N

)
T−j ( ~N)

〉}

=

〈
T+
i ( ~N)− T−i ( ~N)

N

(
1 + O

(
1

N

))〉
−

〈
xi
N

(
1 + O

(
1

N

)) M∑
j=1

(
T+
j ( ~N)− T−j ( ~N)

)〉

≈ 〈T+
i ( ~N)〉 − 〈T−i ( ~N)〉

〈N〉
− 〈xi〉
〈N〉

∂〈N〉
∂t

, (2.26)

where we make the same assumptions as for (2.12) for the factorisation in the

last line, and that N is large enough for the O
(

1
N

)
terms to be ignored. This
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2.2 Dichotomous Noise and the Logistic Birth-Death Process

equation is similar to (2.12), where the second additional term on the right hand

side accounts for the fact that the total population size also varies in time.

When we are investigating the effect of a variable carrying capacity in Chap-

ters 3 and 5 we will principally be interested in the effect of external noise on the

fixation probability for each species. Even in the case without external noise, it is

not possible to find formula for φ(x) and T (x) directly. However, progress can be

made by approximating the birth-death process defined above as a Moran process

(with fixed N = K), with transition rates Wji = T+
i T

−
j /K. We are then in a

position to use the results of Section 2.1.1 to find φ(x) and T (x) for N = K. The

fixation probability and mean fixation time under the influence of external noise

are then found by weighting this over the relevant probability distribution for N .

We will now discuss the effect of dichotomous Markov noise on the probability

distribution for N in the logistic birth death equation. This form of external

noise will be the focus of this thesis, but it should be noted that other forms of

noise are relevant. In Chapter 3 we will compare the results with periodic noise,

for which the effect on the probability distribution for N can be found in Section

3.3.2. I also have some preliminary work on Ornstein-Uhlenbeck noise, details of

which can be found in Appendix A.2.

2.2 Dichotomous Noise and the Logistic Birth-

Death Process

In this section I will present the results of a randomly switching carrying capacity

on logistic growth. This will underpin much the later work, in which the total

population size follows this process. We will start with a logistic birth death

process, defined by (2.20) with number of speciesM = 1, f, g, ω = 1 and d = N/K

(where the subscript 1 has been dropped because we have only one species). In

the case without external noise, i.e. K(t) = K, this gives the following Master

equation for N :

dPK(N)

dt
= (N−1)PK(N−1)+

(N + 1)2

K
PK(N+1)−

(
N +

N2

K

)
PK(N), (2.27)
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2.2 Dichotomous Noise and the Logistic Birth-Death Process

from which it is possible to find a recursion relation equation for the stationary

probability distribution of N , PK(N), by setting (2.27) equal to zero and imposing

a reflecting boundary at N = 1. This assumes that the probability flux to the

extinction state is negligibly small, justified by the fact that it takes a time of

order eK to reach this (Assaf & Meerson (2010); Assaf et al. (2008); Doering et al.

(2005); Méndez et al. (2015)). In the stochastic setting, N = 0 (extinction) is the

only absorbing state, but since the expected time to reach it is much larger than

the timescale of fixation (i.e. all but one species dying out), we can ignore this.

The normalised solution is:

PK(N) ≈ KN+1e−K

(N + 1)!
(2.28)

which we see from inset of Fig. 2.1 agrees very well with simulation results.

Considering the mean field equation, and writing 〈h(N)〉 → h(N) (for general

h) we have:
dN

dt
= N

(
1− N

K

)
. (2.29)

Hence in the deterministic setting, (2.29) predicts that theN will initially grow/decline

exponentially if N(0) < K (resp. N(0) > K), reaching the stationary state

N = K in time t ∼ O(1). However, given that the process is stochastic, in re-

ality after the ‘exponential phase’ of growth/decline, N(t) will not be constant

but fluctuate around K with fluctuations scaling with
√
K. In this case, the

probability distribution of N relaxes to (2.28) on a timescale O(1)(see Fig. 2.1).

A natural way that fluctuating environmental conditions (e.g. moisture, sun-

light, temperature, pH/nutrient/toxin level etc) might affect a population is by

changing the maximum supportable population size, here modelled by the carry-

ing capacity K. Thus we let the carrying capacity vary in time, focusing on the

case where it switches randomly between two values. As K changes, the inten-

sity of the fluctuations changes, coupling the external (environmental) variability

(noise) with the demographic (internal) fluctuations (noise). As we will see in

later chapters, this has a significant effect on the outcome of two and three species

competition models, for now we will concentrate on single species models, and

investigate the effects on the probability distribution of N .
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2.2 Dichotomous Noise and the Logistic Birth-Death Process

Figure 2.1: Logistic growth in a fixed environment with K = 500. Grey lines are

103 individual realisations of the stochastic process, the red line is the average of

these. We see that N → K in a time t = O(1). Inset: Histogram of the numerical

distribution from 105 realisations, red line is the prediction from (2.28) which we

see agrees with simulations almost perfectly.

Figure 2.2: Asymmetric dichotomous noise switching between K = K+ and

K = K−, spending on average ν−1
± in either state (blue), along with a typical

realisation of N (black) vs time. Parameters: (K0, ν, γ, δ) = (250, 0.03, 0.8, 0.6).

After a switch the total population size is of order K± in a time of order 1,

fluctuating around the carrying capacity until another switch occurs. Strength

of relative fluctuations is greater for smaller population sizes.
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2.2 Dichotomous Noise and the Logistic Birth-Death Process

2.2.1 Dichotomous Markov Noise

The primary form of external noise this thesis will consider is dichotomous Markov

noise (DMN). This form of noise received a lot of attention in the 1980s, and

since then its effects on single variable deterministic and stochastic systems have

been thoroughly studied (see, for example Balakrishnan (1993, 2003); Balakrish-

nan & Van den Broeck (2001); Balakrishnan et al. (2001); Bena (2006); Bena

et al. (2002, 2003); Bressloff (2017); Bressloff & Lawley (2017); Doering & Hors-

themke (1985); Hänggi & Jung (1995); Horsthemke & Lefever (1984); Masoliver

et al. (1986a,b); Rodriguez & Pesquera (1986); Sancho (1984); Sancho & Miguel

(1983); Sancho & San Miguel (1984); Sancho (1985); Schmid et al. (1999); Van

Den Broeck (1983); Van den Broeck & Hänggi (1984)). In this model the carry-

ing capacity switches between a high (K+) and low (K−) value corresponding to

abundant or scarce resources respectively. In this way, the external noise mim-

ics population bottlenecks: a large proportion of the community dies due to an

environmental disturbance and then is repopulated from the small amount of sur-

vivors. Since demographic noise is more important in small population sizes, this

can lead to very different behaviour in multispecies systems when compared to

the case without external noise. Furthermore, DMN has a finite non-zero corre-

lation time (unlike white noise), is straightforward to implement numerically and

is sufficiently simple that it is possible to derive analytical results in some cases

(Bena (2006); Ridolfi et al. (2011)). An example is shown in Fig. 2.2, where the

carrying capacity switches between K+ = 450 and K− = 50, spending more time

on average in K+. We write:

K(t) = K0(1 + γξ(t)), where K0 =
K+ +K−

2
and γ =

K+ −K−
K+ +K−

(2.30)

and ξ(t) is a random variable taking the values ±1, defined by the rate equations:

ξ = +1
ν+−→ ξ = −1 and ξ = −1

ν−−→ ξ = +1. (2.31)

Defining the mean of the switching rates ν = (ν+ +ν−)/2, we write ν± = (1∓ δ)ν
where δ = (ν− − ν+)/(ν− + ν+) is the mean of ξ (see (2.32). This is a form

of coloured noise, with autocorrelation function 〈ξ(t)ξ(t′)〉 − 〈ξ(t)〉〈ξ(t′)〉 = (1 −
δ2)e−2ν|t−t′| (Bena (2006)) (where 〈·〉 denotes the ensemble average). From these
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2.2 Dichotomous Noise and the Logistic Birth-Death Process

it is straight forward to calculate the mean and variance of K(t) as (1+δγ)K0 and

(γK0)2 (1− δ)2. In this context, 0 ≤ γ < 1 can be thought of as the intensity of

the noise: larger values of γ correspond to greater intensity, and γ = 0 corresponds

to the case without external noise with K(t) = K0 ∀t. The parameter −1 < δ < 1

relates to the asymmetry of the switching rates: when it is zero ξ spends the same

amount of average time at K±, negative (positive) values mean more time is spent

on average at K− (K+).

There are two regimes that are particularly relevant: firstly in the slow switch-

ing case, ν± � 1, we observe that there is a very long time between environmental

changes and the population size rapidly approaches K± (depending on ξ), around

which it fluctuates for an average time of ν−1
± until the next switch occurs. The

population size then approaches the new carrying capacity K∓ and the process

continues indefinitely. In this case we expect (and will show later on) the proba-

bility density of N to be peaked around K± (see Fig. 3.4(a)).

However when we consider the fast switching case (ν± � 1), the environment

switches very rapidly compared to the species reactions. Here the external noise

self averages:

〈ξ(t)〉 =
∑
ξ′

ξ′P (ξ = ξ′) =
ν−1

+ − ν−1
−

ν−1
+ + ν−1

−
=
ν− − ν+

ν− + ν+

= δ. (2.32)

Where P (ξ = ξ′) means the probability that ξ takes value ξ′. Here I have omit-

ted the dependence on t because I always consider a stationary process. If the

process is non-stationary and starts with ξ = −1 with probability p then using

Horsthemke & Lefever (1984) we can write 〈ξ(t)〉 = δ + (1− δ − 2p)e−2νt. Now,

using (2.23), we can write the mean field equation for the average population size

〈N〉, replacing 〈ξ〉 with its average δ:

d

dt
〈N〉 ≈ 〈T+〉 − 〈T−〉 = 〈N〉

(
1−

〈
N

K0(1 + γξ(t))

〉)
= 〈N〉

(
1−

〈
N(1− γξ(t))
K0(1− γ2)

〉)
= 〈N〉

(
1− 〈N〉

K0(1− γ2)
(1− γ〈ξ(t)〉)

)
≈ 〈N〉

(
1− 〈N〉

K0 (1− γ2)
(1− δγ)

)
, (2.33)

where the equality in the second line comes from the fact that (ξ(t))2 = 1 ∀t. Thus

when the environmental switching is very rapid we expect to see a probability
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2.2 Dichotomous Noise and the Logistic Birth-Death Process

distribution peaked around Kδ = K0(1 − γ2)/(1 − δγ). For this result to apply,

in addition to ν being very large we also need K0 to be sufficiently large that

demographic fluctuations can be ignored.

The differences between fast and slow regimes illustrate a nice feature of di-

chotomous external noise: the presence of a phase transition in the probability

density of population size (from now on ρν,δ(N)) between bimodal and unimodal,

at some intermediate value of ν. In fact it is possible to find a lowest order ap-

proximation of ρν,δ(N), as I will now show, by treating the process as a piecewise-

deterministic Markov process, i.e. ignoring all demographic noise and considering

only the effect of environmental switching. This is defined by the Master equation

(dropping the dependence on t for notational convenience), where N is treated

as a continuous deterministic process (note that the Master equation for the full

stochastic process will be defined in the relevant sections):

dP (N, ξ)

dt
= − d

dN

[
N

(
1− N

K0(1 + ξγ)

)
P (N, ξ)

]
+ ν (1 + ξδ)P (N,−ξ)− ν (1− ξδ)P (N, ξ), (2.34)

where the first line accounts for the deterministic dynamics, N → K± depending

on the value of ξ, and the second term accounts for the environmental switching.

Following the method of Horsthemke & Lefever (1984), we then define the un-

conditional probability density (i.e. independent of the environmental variable)

for the population size p(N) = P (N, 1) + P (N,−1), and a complementary func-

tion q(N) = ν+P (N, 1) − ν−P (N,−1), so that we may write the simultaneous

equations:

dp(N)

dt
= − d

dN

[
N

(
1− N(1− γδ)

K0(1− γ2)

)
p(N)

]
− 1

ν

d

dN

[
γN2

K0 (1− γ2)
q(N)

]
, and (2.35)

dq(N)

dt
= −

(
d

dN

[
N

(
1− N(1 + γδ)

K0(1− γ2)

)]
+ 2ν

)
q(N)

−
(
1− δ2

)
ν
d

dN

[
γN2

K0 (1− γ2)
p(N)

]
. (2.36)

The stationary distributions (ps and qs) are then found by setting both of these

to 0. The first of these and the fact that - in this deterministic setting - we have
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K− < N(t) < K+ ∀t, implies that

qs(N) = − ν

γN

(
K0(1− γ2)−N(1− δγ)

)
ps(N), (2.37)

which can be differentiated and substituted into (2.36) to give the differential

equation for ps(N):

dps(N)

dN
=

{
− 2ν

K0 [K0 (1− γ2)−N (1− δγ)]

N2 [K0 (1− γ)−N ] [K0 (1 + γ)−N ]

− d ln

dN

[
(K0 (1 + γ)−N) (K0(1− γ)−N)

γK0

]}
ps(N). (2.38)

This can be integrated to find the unconditional lowest order approximation of

the probability density for N , defined within [K−, K+] from here on denoted

ρPDMP
ν,δ (N):

ρPDMP
ν,δ (N) =

Zν,δ

N2

[
K+

N
− 1

]ν+−1 [
1− K−

N

]ν−−1

, (2.39)

where Zν,δ is a normalisation constant. This equation predicts peaks in the prob-

ability distribution in different places depending on the parameters ν, δ and γ.

For a full description see Appendix A.1.1, but if we briefly consider the simpler

symmetric case, δ = 0 we see in Fig. 2.3 major differences in the probability

distribution of N , ρν,0(N), depending on the switching rate, ν, that are captured

well by this approximation ρPDMP
ν,0 (N): in the slow switching regime ν � 1 (2.39)

predicts peaks around K± while in the fast switching regime ν � 1 it predicts

a single peak around Kδ. Hence this lowest order theory (in K−1
0 - equation

(2.34) from which (2.39) is derived is a result of expanding the master equation

in K−1
0 and ignoring terms of order O(K−1

0 )) captures the position of the peaks

of ρν,δ(N) well, and as we will see is sufficient for most of our needs in Chapters

3 and 5. However, since this approximation necessarily ignores internal fluctua-

tions it fails to capture the width of the peaks and the ‘leakage’ of probability

outside [K−, K+]. The next order approximation can be found by performing a

linear noise approximation (LNA) around the conditional PDMP (i.e. the PDMP

given that ξ = ±1), where one assumes that the fluctuations around the PDMP

process for each value of N are Gaussian with mean and variance found to be 0
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2.2 Dichotomous Noise and the Logistic Birth-Death Process

Figure 2.3: N -QSD histogram (blue), pPDMP
ν,δ (N) (red) and linear noise approxi-

mation (black, dashed) for (a) ν = 0.01, (b) ν = 0.1, (c) ν = 1, (d) ν = 2, (e)

ν = 10, (f) ν = 50. Parameters are (K+, K−) = (450, 50). Blue shaded areas

are histograms from simulations, Solid lines are PDMP predictions from (2.39)

and black dashed lines are predictions from LNA (A.5). Vertical lines indicate

N = K± in (a,b), N = N∗ in (c,d), and N = Kδ in (d,e). We see the presence of

a noise induced transition in the N -QSD from bimodal to unimodal as from small

to large ν, which is well predicted by the PDMP. The LNA captures the width

around the peaks for large and small ν, and the leakage of probability outside

the support of (2.39) for small ν.

and N respectively, and that the strength of the fluctuations is the same in each

environmental state (see A.1.2 for details). This is shown by the black dashed

lines in Fig. 2.3, where we see that this is a much better approximation of the

full N -QSD, particularly in the very slow and very fast switching regimes.
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Chapter 3

Two Species Competition with

Variable Carrying Capacity

3.1 Review of Previous work

This Chapter will investigate the coupled effect of internal and external noise on

a two-species competition model, where one species has a fitness advantage over

the other. First of all I shall review some other relevant work, for context.

One area where the relevance of environmental noise is most obvious is in the

evolution of bacterial bet-hedging strategies. This is a survival strategy whereby

an organism spreads risks to increase long-term fitness in a fluctuating envi-

ronment, and other examples are seed banks of annual plants (Cohen (1966)),

polyandry in animal mating systems (Yasui (2001)) and foraging behaviour in

bumble bees (Burns & Dyer (2008)). It has been observed that, due to stochastic

gene expression, bacteria can switch between two phenotypes: one that has a

faster growth rate but is highly susceptible to environmental changes, and the

other which sacrifices its metabolic growth rate to produce structures that help

it survive more stressed environmental conditions (Avery (2006); Casadesús &

Low (2006); Dubnau & Losick (2006); Kaern et al. (2005); Kaufmann & van

Oudenaarden (2007); Kussell & Leibler (2005); Kussell et al. (2005); Lachmann

& Jablonka (1996); Maheshri & OShea (2007); Paulsson (2004); Samoilov et al.

(2006); Thattai & Van Oudenaarden (2004); Wolf et al. (2005)). Hence there is

a trade off between reaching a larger population size in unstressed conditions,
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and not dying out when the environment is more adverse (for example due to the

presence of an antibiotic). In Hufton et al. (2018) they find that for both periodic

and random environmental switching, for small and intermediate switching rates

there are non-trivial phenotypic-switching rates that maximise the average group

growth rate, indicating that heterogeneity (i.e. the presence of both phenotypes

over time) has a fitness advantage. For fast environmental switching, homogene-

ity (i.e. only one phenotype present) is favoured. Furthermore, they find that

the stochastic environment always leads to a higher group growth rate than the

equivalent periodic environment. Many other examples have been investigated,

both experimentally and theoretically (see, for example Acar et al. (2008) and

references above). While the details may change, the uniting feature is that

the switching rate between phenotypes that confers the greatest benefit, whether

through maximising growth rate, protecting best against extinction etc. is highly

dependent on the rate of environmental switching, rather than intrinsic differ-

ence in birth/death rates of the strains in the different conditions, or whether

the switching is periodic or random. That being said, populations can generally

maintain higher fitnesses in stochastic environments compared to periodic ones

(Hufton et al. (2018); Thattai & Van Oudenaarden (2004)). This emphasizes the

importance of incorporating stochastic and/or periodic environmental variability

into models, as it is its presence here that leads to the diversity in phenotypic

expression. This is what we observe in the real world, and would not be seen in

the these models if the environment was constant.

Another way to model environmental stress is in terms of catastrophes: in

Visco et al. (2010) the authors analyse the effect of this on a deterministic two

species bet-hedging model. Catastrophes occur randomly but dependent on the

population composition, reducing the number of faster growing species to a new

value with a given probability, leaving the slower growing species unharmed. Here

it is again found that bet-hedging is an evolutionary strategy that may be able

to mitigate the affect of adverse catastrophes. This is closely related to another

mechanism in nature that is thought to promote co-operative behaviour: popu-

lation bottlenecks. These occur when a large proportion of the population die

out, and the small number of remaining survivors then repopulate it (Brock-

hurst (2007); Brockhurst et al. (2007); Wahl et al. (2002)). The results of these

33
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models suggest that intermediate disturbance rates promote cooperative species

the most, and within this regime cooperation will be further promoted by larger

disturbances.

In the context of evolutionary games, much of the previous work has focused

on either fluctuating selection between individuals, or on fluctuations that affect

the structure of the game. In Ashcroft et al. (2014) a model was investigated in

which the payoff matrix switches randomly between a coexistence (stable inte-

rior fixed point, unstable fixed points on boundaries) and co-ordination (unstable

interior fixed point, stable fixed points on boundaries) game, according to a di-

chotomous Markov process. Here, the fixation probability of a single individual

that is selectively disadvantaged in the co-ordination game is increased in the pres-

ence of noise with respect to a fixed environment. This increase of the fixation

probability of a selectively disadvantaged individual (with respect to a constant

environment) was also found in Assaf et al. (2013a), where the authors analyse

the effect of fluctuating selection as an Ornstein-Uhlenbeck process (see Appendix

A.2) on the outcome of the Prisoner’s Dilemma. Not only did they find that the

fixation probability was increased compared to the static environment, they also

find that the functional dependence of the fixation probability on the population

size was changed when the variance of the noise was large. In Hidalgo et al.

(2017) where selection fluctuates but is neutral overall on average, they found

that external noise can lead to a marked increase in the time taken for a species

to fixate the population, with a super-linear dependence on the population size

for fast switching environments. Clearly, environmental noise can have a drastic

effect on evolutionary games, affecting not only which species is most likely to

fixate the population, but also the time that it takes for this to happen.

The most relevant work for this thesis is that of Wienand et al. (2017, 2018),

in which they examine the effects of symmetric dichotomous noise on two species

of bacteria that compete according to the Prisoner’s Dilemma. In contrast to the

examples in the last paragraph, the external noise affects the death rates through

the carrying capacity, and the total population size fluctuates due this and the

internal noise stemming from birth and death processes. They find that in the

case of pure resource competition, where the species are identical apart from one

having a slower per capita growth rate, survival of the slow growing species is
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favoured either by a slow or fast switching environment, according the size of

the growth rate difference (selection strength, s), compared to a critical strength

sc. In the public good scenario, the slower growing species sacrifices its own

reproductive rate to increase the global growth rate, coupling the evolution of

the total population size with the composition. Here the authors use an ‘effective

theory’ to find that although the survival probability of the slower growing species

is exponentially reduced, it may still be beneficial to produce the public good due

to the large payoff when producers fixate.

This Chapter extends their work in two important ways: Using the same basic

model, we consider asymmetric dichotomous external noise. Here the environ-

ment spends on average unequal amounts of time in each state. We find that this

can produce a non-monotonic dependence on the switching rate, when the noise

asymmetry and intensity are large enough. This non-monotonic dependence is

also observed for the noise intensity when the DMN process spends more time

on average at ξ = 1 (i.e. δ > 0), but the dependence on δ and s is always

monotonically decreasing, as one would expect. Secondly, we compare the ef-

fects with asymmetric periodic noise that has the same mean and variance when

averaged over the period of variation, and in general find that this produces a

sharper transition between switching regimes. In both cases we are able to find a

lowest order (in K−1
0 ) theory that qualitatively describes the dependence of the

fixation probability of the slow-growing species on the selection strength, noise

intensity and noise asymmetry. In the public good case we are also able to use

an ‘effective theory’ to qualitative describe the effect on the fixation probability

of producers, which is shown to have a similar qualitative behaviour as the pure

resource competition case.

3.2 The Model

This model of species competition is inspired by the the Prisoner’s Dilemma, a

prototypical model in Game Theory, defined by the payoff matrix

P =
Strategy S F

S 1− s 0
F 1 0
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where S and F refer to slow growing ‘co-operators’ and faster growing ‘defectors’.

This payoff matrix says that when two S individuals meet, they share the available

resources, taking a payoff of 1−s, where s� 1. When a defector and co-operator

meet the defector steals all the resources for themselves, receiving a payoff of 1,

while the co-operator gets nothing. When two defectors meet, they both try to

steal the resources for themselves. This is unsuccessful and they both receive

nothing. This is the simplest version of a ‘social dilemma’: The best strategy for

any individual is to defect, as this has the higher individual payoff. However the

total payoff recieved when both cooperate is 2− 2s, greater than the total payoff

when one defects and the other co-operates as long as s < 1/2. Thus, the best

strategy for the community (everyone co-operating) is not the same as that for

individuals.

We suppose that at time t there are N(t) = NS(t) +NF (t) individuals, where

S and F correspond to slow growing as fast growing strains respectively. These

have per-capita fitness fS = (1 − s)/f̄ and fF = 1/f̄ , where 0 < s � 1, f̄ =

(NF+(1−s)NS)/N = 1−sx is the average population fitness and x = NS/N . The

rescaling of the species fitnesses fS,F by the population average fitness is to ensure

that the total population size is independent of the population composition in the

pure resource competition case. This average fitness is a function of x, however

the location of the fixed points and their stability is unchanged by this (Bladon

et al. (2010)). Furthermore, we suppose that the slower growing strain provides

a public good to the system, increasing the global growth rate by a factor of

g(x) = 1 + bx. The population size and composition naturally fluctuates due to

the birth-death processes:

Ni

T+
i−−→ Ni + 1, Ni

T−i−−→ Ni − 1, i ∈ {S, F}, (3.1)

where T+
i = g(x)fiNi is the and T−i = NiN/K(t). Thus the species-dependent

relative weakness defined in (2.20) is ωi = 1 for both strains. From the expressions

for the birth rates, we see that they differ only in the fi. This is larger for the F

strain, hence why this is called the ‘fast’ growing species. Environmental noise

is modelled by letting the carrying capacity, K(t), vary in time according to

an asymmetric dichotomous Markov noise process, defined by (2.30) and (2.31)
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(repeated below):

K(t) = K0(1 + γξ(t)), where K0 =
K+ +K−

2
and γ =

K+ −K−
K+ +K−

. (3.2)

K0 is the average of the two carrying capacities, γ measures the intensity of the

environmental noise and ξ(t) is a random variable taking the values ±1, defined

by the rate equations:

ξ = +1
ν+−→ ξ = −1 and ξ = −1

ν−−→ ξ = +1. (3.3)

The mean of the switching rates is ν = (ν+ + ν−)/2, and we write ν± = (1∓ δ)ν
where δ = (ν− − ν+)/(ν− + ν+) is the mean of ξ. Hence δ is a measure of the

asymmetry of the switching: when δ > 0 the process spends more time on average

at K+, when δ < 0 more time is spent at K− and when it is zero it spends the

same average time in both states. Of course, environmental noise could also af-

fect the birth rates through fi for example with selection strength changing with

the environment according to s(t) = s0 + γsξ(t) where s0 ≥ 0 and γs > 0. This

would be particularly interesting in the case where s0 = 0 or γs > s0, since then

different strains would be favoured in each environment. This would model the

effect of bacteriostatic antimicrobials, which stop cells from reproducing (Mar-

rec & Bitbol (2020)). Another possibility would be to let the species-dependent

weakness, ωi, vary with the environment, which would model the presence bac-

tericidal antimicrobials that induce cell death (Coates et al. (2018); Marrec &

Bitbol (2020)). These are not studied here, but when combined with and envi-

ronmentally dependent carrying capacity would be interesting avenues of future

research.

Using the results of Section 2.1.2, when all forms of noise are ignored the mean

field equations for the average values of N and x can be written as (dropping the

〈·〉 notation):

d

dt
N = N

(
g(x)− N

K0

)
(3.4)

d

dt
x = −g(x)s

x(1− x)

1− sx
, (3.5)

with initial population size N0 and initial fraction of cooperators x0. In this

deterministic setting N asymptotically approaches K0, and is of order K0 in a

37



3.2 The Model

time t ∼ O(1), while x decays asymptotically to zero on a timescale t ∼ O(s−1).

This is not the same when demographic fluctuations are taken into account: The

population composition, x, fluctuates in time, and is then fixed once one of the

absorbing boundaries x = 0 or x = 1 is hit. If x = 1 then the slow growing

species has fixated the population, while if x = 0 then the fast growing species is

the one that has fixated the population. After this, the total population size still

fluctuates (due to the birth-death events) around K0 if the fast growing species

fixates (since g(0) = 0), while if the slow growing species fixates it fluctuates

around (1+b)K0 (since g(1) = 1+b). This is in stark contrast to the deterministic

mean field equations and is the focus of the chapter: how does the probability that

the slow growing species is the one to fixate the population, (fixation probability,

φ) depend on the selection strength s, public good parameter b, noise intensity γ

and the noise asymmetry δ? Further, how do these parameters affect the time it

takes for fixation to occur?

In order to answer these questions we first need to know what happens in the

case without external noise. The master equation for the full process is (2.22):

∂

∂t
P ( ~N, t) =

M∑
i=1

[(
E−Ni − 1

)
T+
i +

(
E+
Ni
− 1
)
T−i
]
P ( ~N, t). (3.6)

This is a multivariate process, and as discussed in Section 2.1.2 approximation

methods lead to multidimensional equations that are not possible to solve in a way

that gives meaningful, interpretable results. To get around this, we use the fact

that although the total population size fluctuates in time, it is roughly K0 after

the exponential growing phase (i.e. usually after a transient of order t ∼ O(1)).

We suppose therefore that births and deaths occur simultaneously, keeping the

total population size fixed. A further simplification that we must make to validate

this assumption is that b = 0, since then the mean field equations are decoupled

and N → K0 regardless of the population composition. Thus we approximate

the full process as a Moran Process, defined by:

[NS, NF ]
WFS−−−→ [NS + 1, NF − 1] and

[NS, NF ]
WSF−−−→ [NS − 1, NF + 1] , (3.7)
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where WFS =
T+
S T

−
F

K0

and WSF =
T+
F T

−
S

K0

, (3.8)

and use the results from Section 2.1.1: The exact formula for the fixation proba-

bility of the slow growing species with an initial fraction of x0 co-operators in a

population of size K0 is given by (2.8), substituting α = WSF/WFS:

φ|K0(x0) =
(1− s)−x0K0 − 1

(1− s)−K0 − 1
, (3.9)

which is an exponentially decreasing function with K0 (see Figure 3.1). In the

realm of the diffusion approximation, valid when s � K
−1/2
0 � 1, a simpler

formula can be derived from the Backward Kolmogarov equation (2.17), given by

(2.18) with A(x) = −sx(1−x)K0/f̄ and B(x) = (2−s)x(1−x)/f̄ ≈ 2x(1−x)/f̄

(i.e. keeping the leading order terms in s):

φ|K0(x0) =
exp [−K0s(1− x0)]− exp [−K0s]

1− exp [−K0s]
. (3.10)

With these baseline results for b = 0 without external noise, in the next section

I will show how external noise significantly changes these fixation properties.

Then in Section 3.4 I will show how public good games (b > 0) are affected by

external noise.

3.3 Pure Resource Competition, b = 0

Here I will show that the fixation probability of the slow growing species φ is a

non-trivial function of the mean switching rate ν and the switching asymmetry δ.

This stems from the effect of the external noise on the population size distribution,

ρν,δ(N), which is characterised by three different regimes: slow (ν � 1), fast

(ν � 1) and intermediate (1/(1 + |δ|) < ν < 1/(1 − |δ|)) switching. First, we

need to briefly discuss the quasi-stationary probability distribution for N , the

N -QSD (so called because the only absorbing state is N = 0, but, as discussed

in Section 2.2, the time to reach this scales as eN . Before this the system spends

a long time in this quasi-stationary distribution, and is in effect the distribution

while the competition between the two species occurs).
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3.3 Pure Resource Competition, b = 0

Figure 3.1: Fixation probability, φ when K is constant and x0 = 0.6 for s = 0.02

(red) and s = 0.05 (blue) with logarithmic y-axis. Solid lines are from diffusion

approximation (3.10) and dashed lines are from exact solution of the Master

equation (3.9). Symbols are results from simulations. In both cases we see that

for large K the dependence on K is exponential.

The lowest order approximation ρPDMP
ν,δ (N) can be found using the results

of Section 2.2.1 by ignoring internal noise, assuming that the population size is

driven only by external noise according to the piecewise-deterministic Markov

process (PDMP):

d

dt
N = N

(
1− N

K0(1− γ2)
(1− ξγ)

)
. (3.11)

This is given by equation (2.39) (see Section 2.2.1 for derivation):

ρPDMP
ν,δ (N) =

Zν,δ

N2

[
K+

N
− 1

]ν+−1 [
1− K−

N

]ν−−1

, (3.12)

where K± = K0(1 ± γ), ν± = (1 ∓ δ)ν and Zν,δ is a normalisation constant.

As we see from Figure 3.4 this captures the position of the peaks well, but not

the width or skewness (since these are due to the internal noise). Furthermore,

ρPDMP
ν,δ (N) has support [K−, K+], with ρPDMP

ν,δ (N) = 0 for N /∈ [K−, K+]. Internal

noise causes a ‘leakage’ of probability outside [K−, K+] which is neglected by the
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3.3 Pure Resource Competition, b = 0

PDMP approximation. As discussed in Section 2.2.1, performing a linear noise

approximation (LNA) around the PDMP gives a much more accurate description

of the true N -QSD, but for my purposes (fixation probability and mean fixation

time) does not significantly improve the accuracy of the theoretical predictions

over the PDMP.

In the slow switching regime we have ν± � 1. Here the environmental switch-

ing is very slow compared to the birth-death process, spending a long time at K±

before switching. Hence, as predicted by (3.12) the distribution of the population

size is peaked around K±. When ν → 0 a more accurate formula (that includes

internal noise but is simpler than the LNA) can be found by the weighted sum

of (2.28) for K = K±, where the weights are given by the probability of the

environmental noise equal to ±1, P (ξ = ±1) = (1± δ)/2 (see Figure 3.4 (a)):

ρν→0,δ(N) =
∑
ξ=±1

PK(ξ)(N |ξ)P (ξ) '
(

1 + δ

2

)
KN+1

+ e−K+

(N + 1)!
+

(
1− δ

2

)
KN+1
− e−K−

(N + 1)!
.

(3.13)

In the fast switching regime, ν± � 1, the environmental noise self averages

ξ
ν�1−−→ δ and the population size fluctuates around Kδ := K0(1−γ2)/(1−δγ), the

weighted harmonic mean of K±. Similarly the PDMP approximation predicts a

peak at an intermediate value K− < N∗ < K+, given by the smaller solution to

the quadratic equation:

N2 − (ν (1− δγ) + 1)K0N +
(
1− γ2

)
K2

0ν = 0, (3.14)

found by setting dρPDMP
ν,δ (N)/dN = 0 to find the stationary points. To leading

order in 1/ν the solution to this is also Kδ (see Figure 3.4 (b)). In this regime,

we can use the LNA to discuss the validity of the PDMP formula. When ν →∞
(3.12) becomes very sharply peaked around Kδ, effectively becoming a Dirac-delta

function, and the LNA (which takes into account the demographic fluctuations)

then predicts that the distribution of N is Gaussian with mean and variance Kδ

(see Appendix A.1.2). Whilst a saddle point approximation of var
(
ρPDMP
ν,δ (N)

)
=∫ K+

K−
(N−〈N〉)2ρPDMP

ν,δ (N)dN shows that the variance of the PDMP approximation

is (γKδ/(1− δγ))2 (1 − δ2)/(2ν) (see B.1.2). Hence we see that the PDMP is

valid while ν . K0. After this, the variance is driven mainly by the demographic

fluctuations, which is not captured by the PDMP.
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3.3 Pure Resource Competition, b = 0

The intermediate regime is different dependent on the sign of δ. When δ < 0,

i.e. the carrying capacity spends more time in the less favourable environment

(K−), ρν,δ(N) exhibits a peak at N ≈ K−, as predicted by the PDMP approx-

imation (3.12) (see Figure 3.4 (d)). When δ > 0 the carrying capacity spends

more time at K+, and ρν,δ(N) therefore has a peak at N ≈ K+. Furthermore for

some combinations of (γ, δ, ν) the population size can have an additional peak

at N∗, defined as above (see Figure 3.4 (c). More details, including a complete

phase diagram are in Appendix A.1.1).

3.3.1 Fixation Probability when b = 0

This section will present and explain the effects of random switching on the

fixation probability in the pure resource competition scenario. This can by found

by using the fact that when s� 1 the population size distribution reaches its long

time quasi-stationary distribution in a time t ∼ O(1), while fixation occurs on a

timescale of order 1/s (Wienand et al. (2017, 2018)). Hence there is timescale

separation between the two processes, and φ can be approximated by averaging

φ|K0(x0) (3.10) over the PDMP approximation of the population size distribution

(3.12):

φADN(ν) '
∫ K+

K−

ρPDMP
ν/s,δ (N)φ|N(x0)dN, (3.15)

where (3.12) uses the rescaling ν → ν/s to reflect the fact that there are O(ν/s)

switches prior to fixation. This accurately predicts the qualitative behaviour of

the fixation probability for all values of ν, δ and γ (see Figure 3.2(a,b)), and again

it is useful to consider the three different switching regimes as in the previous

section.

In the slow switching regime, ν → 0, there are no switches before fixation and

the population density is peaked at K±. Hence one can approximate:

lim
ν→0

φADN(ν) ' φADN(0) =
1

2

[
(1− δ)φ|K−(x0) + (1 + δ)φ|K+(x0)

]
, (3.16)

as confirmed in Figure 3.2(a,b).
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3.3 Pure Resource Competition, b = 0

When ν/s � 1 (fast switching), ρν/s,δ is sharply peaked at N ' K0(1 −
γ2)/(1− δγ) =: Kδ and to leading order we have:

lim
ν→∞

φADN(ν) = φADN(∞) ' φ|Kδ(x0). (3.17)

This is also confirmed by simulations (see Figure 3.2(a,b)). Hence, in the fast

switching regime the external noise effectively rescales the selection strength by

(1− γ2)/(1− δγ) relative to a constant environment where the carrying capacity

is K0. The fixation probability therefore will increase (relative to a constant

environment) when δ < γ (i.e. if the switching asymmetry is less than the noise

intensity), and decreases if δ > γ.

In the intermediate switching regime φ exhibits rich behaviour as ν increases

and φ interpolates between φADN(0) and φADN(∞). Under large enough switching

asymmetry, δ and noise intensity γ, φ is a non-monotonic function of ν in a non-

trivial region γ > γc(s), δ > δc(γ, s) that can be found from (3.15) (see Figures

3.2(a,d) and 3.7(d)). This captures the qualitative dependence on ν, and that it

has a maximum at ν∗ADN ∼ s. This optimal switching rate for the fixation of the

slow growing species corresponds to O(1) switches prior to fixation (i.e. fixation

and environmental switching occur on similar timescales), and the percentage

difference, φ(ν∗ADN)/max (φ(0), φ(∞)) can reach up to 30%.

Outside of this critical region, φ is a monotonic function of ν, increasing or

decreasing with ν dependent on the value of s relative to a critical value sc(γ, δ),

the solution of the following transcendental equation, φADN(0) = φADN(∞):

(1− δ)
(
z−x0 − 1

1− z

)
+ (1 + δ)za−1

(
z−ax0 − 1

1− za

)
− 2zb−1

(
z−bx0 − 1

1− zb

)
= 0, (3.18)

where z = exp(−sK−), a = (1 + γ)/(1− γ), b = (1 + γ)/(1− δγ). When s < sc,

φADN(ν) is an increasing function of ν, while it decreases if s > sc. The numerical

result of this equation is plotted in Figure 3.2(c), where we see that sc decreases

with δ and increases with γ. In the critical non-monotonic region, δ > δc(γ, s),

γ > γc(s) this equation determines whether φADN(ν) has a steeper increase at

slow/intermediate switching (s < sc) or fast/intermediate switching for s > sc.
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Figure 3.2: (a,b) Fixation probability for random/periodic switching

(coloured/black): symbols are from simulations, solid lines are from (3.15) and

(3.25) for random and periodic switching. Dashed lines show limiting cases

for ν → (0,∞). (a) Parameters are (s,K0, γ, x0) = (0.05, 250, 0.9, 0.6) and

δ = [0.7, 0.8] (purple/blue). Here the fixation probability is a non-monotonic

function of ν, and the value of ν that maximises φ is lower for periodic switching.

(b) Parameters are (s,K0, x0) = (0.05, 250, 0.6) and (γ, δ) = (0.9,−0.5) (orange),

(γ, δ) = (0.9, 0.5) (purple) and (γ, δ) = (0.8, 0.6) (blue). Here the fixation prob-

ability is monotonic. (c) Critical selection intensity sc as a function of δ for

γ = (0.6, 0.7, 0.8, 0.9) (red to blue) for K0 = 250 and x0 = 0.6. (d,e) Heatmaps of

ν∗ADN (c) and ν∗PN (d) for (K0, s) = (250, 0.05) : ν∗ → 0,∞ in the black and white

areas respectively. In the red/yellow area, φ(ν) is non-monotonic. ν∗ increases

with γ and decreases with δ. However we see that it is smaller for periodic noise

(area is more red).
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3.3.2 Comparison with Periodic Switching

When considering environmental variability, one should also consider periodic

variations, firstly because other studies have found differences between the two

cases (Hufton et al. (2018); Thattai & Van Oudenaarden (2004)). Secondly,

Markovian switching is not entirely realistic: it assumes that the environmental

process is memoryless, while environmental processes often have memory, with

switches more likely to occur at certain moments in time. Periodic switching

has this property taken to an extreme, with switches always occuring after a

prescribed time interval. Environmental variability in real world falls between

these two regimes, so by studying both one can infer what happens in the more

realistic situations in-between (Hufton et al. (2018); Thattai & Van Oudenaarden

(2004)). We consider periodic noise in the form of a periodic rectangular wave,

defined by:

K(t) = K0(1 + γξp(t+ t0))

ξp(t) =
∞∑

j=−∞

{
rec

(
t+ 1

2ν+
+jT

1/ν+

)
−rec

(
t− 1

2ν−
+jT

1/ν−

)}
, (3.19)

where K0 and γ are defined as in (2.30), T = (1/ν+) + (1/ν−) = 2/[(1 − δ2)ν]

is the period of the wave and t0 is a uniformly distributed random variable in

[0, T ] to ensure that K(t) is at stationarity (here, this means that at randomly

selected time point t, the carrying capacity is at K± with probability (1± δ)/2).

Hence this process spends exactly 1/ν± at K± (apart from the time until the first

switch), whereas the random process spends on average 1/ν± at K±. The form

of (3.19) is the typical representation of a rectangular wave in signal processing.

When performing the simulations, it is obviously not practical to perform this

infinite sum since all but one of the terms will be zero. It is equivalent to finding

t′ = t+ t0 mod T , then setting ξp = 1 if t′ ≤ 1/ν+ and ξp = −1 otherwise. This

leads to the mean and variance of the noises ξ and ξp being the same when both

processes are at stationarity, however the effect on the probability distribution for

N , ρPN(N), and the fixation probability, φPN(ν), is different. A typical realisation

is shown in Figure 3.3.

First we will consider the fast and slow switching regimes where it is possible

to find approximations of the N -QSD that account for both internal and external
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Figure 3.3: Asymmetric periodic noise switching between K = K+ and

K = K−, spending ν−1
± in either state (blue), along with typical realisa-

tions of N (black) and NS (red) vs time. Parameters: (s,K0, ν, γ, δ, x0) =

(0.02, 250, 0.03, 0.8, 0.6, 0.5). After a switch the total population size is of order

K± in a time of order 1, fluctuating around the carrying capacity until another

switch occurs.

fluctuations. The approximation in the slow switching regime when ν � 1 has

the same form as for random switching for the same reasons: the system only

experiences one environment ξ = ±1 with probability 1
2

(1± δ) (because the

noise is always started at stationarity) so the probability distribution will be the

weighted sum of (2.28) with K = K±:

ρPN
ν→0,δ(N) =

∑
ξ=±1

PK(ξ)(N |ξ)P (ξ) '
(

1 + δ

2

)
KN+1

+ e−K+

(N + 1)!
+

(
1− δ

2

)
KN+1
− e−K−

(N + 1)!
.

(3.20)

This is the same as equation (3.13), and as such the fixation probability of the

slow growing species is the same for both random and periodic noise in this limit

(see Figures 3.4(a) and 3.2 (a,b)).

In the fast switching regime one can use the Kapitsa method (Assaf et al.

(2008)), which involves separating the dynamics of N into fast and slow vari-

ables, then averaging the fast variables over the period of variation. Unlike the

PDMP approximation for random switching, this approximation includes the ef-

fects of internal and external noise. The calculation for this was performed by a

collaborator in our 2020 PRL paper (Taitelbaum et al. (2020)), in which the full
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Figure 3.4: Comparison of the N -QSD in the random (blue) and periodic (red)

switching cases for different values of ν (a) ν = 0.05, (b) ν = 17.5, (c) ν = 1.4,

(d) ν = 1. Symbols are from simulations; solid black lines are from (2.39), those

in cyan are from (3.20) in (a) and (3.21) in (b); vertical dashed lines in (a,c)

show N = K±; horizontal dashed lines are eyeguides. Here (K0, γ) = (250, 0.8),

δ = 0.7 in (a)-(c) and δ = −0.5 in (d).

details can be found. Here I quote the result:

ρPN
ν�1,δ(N) ' Pν,δ exp

[
N −N ln (N/Kδ)−

K0

72ν2

(
γ

1− γ2

)2(
2N −Kδ

K0

)3
]
,

(3.21)

where Pν,δ is a normalization constant. In the fast switching limit ν →∞ we see

that this is peaked around N = Kδ, as in the random switching case (see Figure

3.4 (b)), but the distribution is much narrower and sharper for periodic switching.

In fact one can use the saddle point approximation to show that the variance is

of order Kδ, for all ν >> 1, whereas the PDMP for random switching predicts a

variance of order K2
0/ν for 1� ν � K0 (see Appendix B.1.2). Thus the fixation

probabilities both tend to the same value, i.e. φPN(∞) ' φADN(∞). ' φ|Kδ(x0).

However the rates of convergence to these values differs for the two forms of

noise (due to the difference in variance of the probability distributions), this is

discussed in more detail in Section 3.3.3.

In the intermediate switching regime, one can use a similar method to O’Dwyer

& Chisholm (2014) to find the probability distribution for N , treating N as a

continuous process as for the PDMP. This calculation was again performed by a
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collaborator on our 2020 PRL paper, and was found to give:

ρPN
ν,δ (N) = Cν,δ

[
1

K+ −N
+

1

N −K−

]
, where (3.22)

C−1 = ln

[
(K+ −Nmin) (Nmax −K−)

(K+ −Nmax) (Nmin −K−)

]
, (3.23)

Nmin =
K0(1− γ2)

1− γ + 2γ 1−e−1/ν−

1−e−T

and Nmax =
K0(1− γ2)

1− γ + 2γ e−1/ν+−e−T

1−e−T

.

(3.24)

The support of the function in this case is [Nmin, Nmax]. Hence ν and δ do not

affect the functional form of the probability distribution, their only influence is

on the boundaries of the support (and therefore the normalisation constant). In

Figure 3.4 (c,d) we see that this does a reasonable job of approximating the N -

QSD, and similarly to the PDMP it fails to capture the ’leakage’ of probability

outside the support. Similarly to random noise, the fixation probability may be

a non-monotonic function of ν (see Figure 3.2(a), and we can use the probability

distribution of N calculated above to write a formula for the fixation probability,

analogous to (3.15):

φPN(ν) '
∫ Nmax

Nmin

ρPN
ν/s,δ(N)φ|N(x0)dN. (3.25)

Again we see that this does a good job of capturing the qualitative dependence of

φ on the parameters of the system (see Figure 3.2 (a,b)), and we use this formula

to find ν∗PN (the optimal switching rate for the slow growing species to fixate)

which is presented in Figure 3.2 (e). We see that the position of the optimum

is at lower switching rates for periodic switching, and this is caused by the fact

that the probability distribution for N is narrower for smaller values of ν i.e.

the transition from the wide, bimodal distribution for small ν to the narrow,

unimodal distribution for large ν happens earlier.

Above, I have investigated the effect of varying ν and s whilst keeping the

other parameters fixed, but it is also interesting to vary the switching asymmetry,

δ, or the noise intensity, γ, whilst keeping the other parameters fixed. First,

note that increasing δ means that one spends more time at ξ = 1 where the

mean fixation time is larger and the fixation probability is smaller, hence φ is a
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3.3 Pure Resource Competition, b = 0

decreasing function of δ while the mean fixation time is an increasing function

(see Figure 3.5).

In ecology, there is a great interest in studying how environmental variations

can effect species diversity. This led to the debate on the Intermediate distur-

bance hypothesis (Brockhurst et al. (2007); Fox (2013); Petraitis et al. (1989)),

which looks at the evolutionary effects of the frequency and amplitude of external

disturbances. In this broad context, and without direct relevance for the IDH, it

is interesting to now study how φ depends on amplitude of the noise, γ, keeping ν

fixed as a parameter. It is found that the effect of varying γ is different dependent

on the asymmetry of the noise, δ: when δ > 0 Figure 3.5 shows that the fixation

probability and mean fixation time (MFT) are non-monotonic in γ, while for

δ ≤ 0, φ is monotonically increasing and the MFT is monotonically decreasing.

Hence, noise may (slightly) prolong species coexistence, but make conditions less

favourable for the slow growing species. For φ, this can be understood analytically

in the fast and slow switching regimes.

When ν/s � 1 (Figure 3.5(c)) the N -QSD for both periodic and random

switching is peaked roughly around Kδ = K0(1 − γ2)/(1 − δγ), which sets the

fixation probability as (3.10) evaluated at Kδ. Hence when γ < δ, Kδ > K0,

and φ|Kδ < φ|K0 , while the opposite is true for γ > δ. For simplicity, we work

in the realm of the diffusion approximation, s � K
−1/2
0 � 1. When ν � 1

(Figure 3.5(a)) one can use (3.16) with the leading order contribution of (3.10)

(i.e φ|K ≈ e−Ks(1−x0)) to write:

φ(γ) ≈ 1

2
e−K0s(1−x0)

[
(1− δ)eγK0s(1−x0) + (1 + δ)e−γK0s(1−x0)

]
. (3.26)

Writing y = eγK0s(1−x0) and setting φ(γ) = φ|K0 allows us to ascertain when

the external noise promotes the slow growing species with respect to a constant

environment, yielding the quadratic equation for the point where φ(γ) is the same

that for a constant environment withK = K0: (1−δ)y2−2y+(1+δ) = 0. This has

solutions y = 1, corresponding to the trivial solution γ = 0, and y = (1+δ)/(1−δ),
corresponding to γ = γ∗ = (K0s(1− x0))−1 ln [(1 + δ)/(1− δ)], which is only

physically realistic if δ > 0. Furthermore, note that differentiating (3.26) with

49



3.3 Pure Resource Competition, b = 0

Figure 3.5: Dependence of φ (main panels) and Mean Fixation Time (insets) on γ

and δ for (K0, s, x0) = (250, 0.05, 0.6) for ν = (0.01, 0.1, 1) in (a,b,c). In all panels,

x-axis shows γ and results for δ = (−0.8,−0.4, 0, 0.4, 0.8) are shown by red to

blue. Squares/crosses represent simulation results for periodic/random variation.

Solid/dashed lines in main panels are theoretical results from (3.25)/(3.15) for

periodic/random variation. See text

respect to γ yields:

d

dγ
φ(γ) ≈ 1

2
e−K0s(1−x0)K0s(1− x0)

[
(1− δ)eγK0s(1−x0) − (1 + δ)e−γK0s(1−x0)

]
.

(3.27)

The term outside the bracket is always greater than zero, and expanding the term

inside the bracket around γ = 0 yields:

d

dγ
φ(γ) ≈ e−K0s(1−x0)K0s(1− x0) [−δ + γK0s(1− x0)] . (3.28)

Hence if δ > 0, φ(γ) initially decreases, then increases, with φ(γ) = φ|K0 when

γ ≈ γ∗. Furthermore, for larger values of the switching asymmetry, δ, larger

values of noise intensity γ are needed to increase the fixation probability relative

to the constant environment.

3.3.3 Fast Switching Regime

In the fast switching regime ν/s � 1, the fixation probabilities in both periodic

and random switching cases tend to the same limit, however the rate at which

they approach this limit is different. This is explained by calculating the next to

leading order term of the fixation probability, achieved by performing a saddle

point expansion of φα(ν), with φ|N(x0) = exp [−N(1− x0) ln(1− s)] (i.e. the
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3.3 Pure Resource Competition, b = 0

leading order contribution of (3.9) - valid when K−1
0 � s � K

−1/2
0 ), and the

PDMP approximation of the probability distribution for the random switching

case, and the Kapitsa method approximation for fast switching in the periodic

switching case, i.e.

φADN(ν) ' Zν,δ

∫ K+

K−

1

N2

[
K+

N
− 1

]ν+−1 [
1− K−

N

]ν−−1

φ|N(x0)dN and (3.29)

φPN(ν) ' Pν,δ

∫ K+

K−

exp

[
N −N ln (N/Kδ)−

K0

72ν2

(
γ

1− γ2

)2(
2N −Kδ

K0

)3
]
φ|N(x0)dN.

(3.30)

Where Zν,δ and Pν,δ are normalisation constants which also have to be approxi-

mated. Full details are in Appendix B.1.1, where we find that:

ln

(
φα(ν)

φ(∞)

)
'

{
AADN(s/ν) (α = ADN)

APN(s/ν)2 (α = PN),
(3.31)

where φ(∞) = em/2, m = 2Kδ(1−x0) ln(1−s), AADN = m(4 +m)(1− δ2)(γ/(1−
δγ))2/16 and APN = Kδ(1−(1+m/Kδ)

3)(γ/(1−δγ))2/72. Hence when K0s� 1,

the fixation probability of the slow growing species exhibits markedly different

behaviours under random and periodic switching: it converges to φ(∞) much

faster in the case of periodic than for random switching (see Figure 3.6). This can

be understood by noting that the N -QSD is much broader for random compared

to periodic switching, with the variances scaling as ν−1 and ν−2 respectively (see

Appendix B.1.2). N therefore attains smaller values under random switching,

increasing φADN with respect to φPN when s > sc. Furthermore, when ν/s � 1

the fixation probability is determined by the mean 〈N〉 ' Kδ of the N -QSD. The

rate of convergence stems from the deviations of the mean 〈N〉 from Kδ, which

decrease as ν−1 for random and ν−2 for periodic switching (see Appendix B.1.2).

This also means that the fact that ρPDMP
ν,δ (N) is not a good approximation of the

variance for DMN is not important for calculating the fixation probability, since

this is determined by the mean. Also, the ratio φADN/φPN has a sharp peak at a

non-trivial intermediate ν.

It should be noted here that other approximation methods are possible. For

example in Hufton et al. (2019), the authors develop an approximation method
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3.4 Public Good Games

Figure 3.6: Fixation probability for random/periodic switching (circles/squares):

symbols are from simulations, in (a) solid lines are from (3.15) and (3.25) for

random and periodic switching respectively. In (b,c) solid lines are from (3.31).

Parameters are (s,K0, γ, x0) = (0.025, 800, 0.7, 0.5). (a) φ(ν) with δ = 0.2, dashed

line shows φ(∞). Inset: φADN/φPN for δ = 0.2. (b,c) ln(φ/φ(∞)) vs s/ν for

random (b) and periodic (c) switching with δ = 0.2 (black) and δ = 0 (blue).

Dashed grey lines are eyeguides ∝ s/ν in (b) and (s/ν)2 in (c).

that combines a system-size expansion with an expansion in the environmental

switching parameter for systems with fast environmental switching. However,

in the model presented in this Chapter, the population size is coupled to the

environment via the carrying capacity. This means that there is no fixed large

system size parameter for the first expansion, so their technique is not applicable

here.

3.4 Public Good Games

Turning our attention to the case of the public goods game, defined by the same

reactions (3.1) with b > 0 which supposes that the slow growing strain produces

a public good available to the entire population, we find that similar qualitative

results are observed in this more intricate case of eco-evolutionary dynamics.

Here, the population composition now affects the population size: the global

growth rate is multiplied by a factor of g(x) = 1 + bx, coupling the population

size with the population composition leading to eco-evolutionary feedback: when

there are more of the slow growing species the population size increases, reducing
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3.4 Public Good Games

the effect of demographic noise and on average reducing fraction of slow growers.

This in turn reduces the total population size, making demographic noise more

important, which can lead to an increase in the density of slow growers, increasing

population size etc..

It should be noted that this a simplification of the true biological process.

Public goods that increase growth rates have been observed as molecules that are

produced by some strains in a nutrient-starved environment that bind to other-

wise inaccessible environmental molecules and are transported into the cell for

use, for example the production of the iron scavenging molecule pyoverdine in

P. aeruginosa (Becker et al. (2018); Buckling et al. (2007); Diggle et al. (2007);

Griffin et al. (2004)). The concentration of these molecules will depend on the

population composition, and should be modelled as an additional ‘species’ in

the birth-death formulation. Furthermore, the amount of resources should also

be included as another independent ‘species’, whose dynamics depends on the

amount of public good and biotic individuals in the system. This would increase

the dimension of the system, in both a stochastic and deterministic setting, by

2 (see Becker et al. (2018) for a deterministic model). Hence, the solutions are

only available through numerical simulation of the stochastic process (or differ-

ential equations if using ODEs). In the model used in this section, the linear

dependence of the global growth rate on the fraction of co-operators captures the

phenomenological effect of public good production without increasing the dimen-

sionality of the system, allowing us to find analytical results for the effect of the

rate of public good production on the fixation probability of slow growing species.

Using a different functional dependence of g on x, e.g. quadratic (peaked at some

0 < x < 1) or sigmoidal (slow increase until some critical 0 < x < 1, then fast

saturation thereafter), would also be an interesting avenue of further research.

In the constant carrying capacity case, i.e. without external noise, the dy-

namics of the model is well described in terms of a population of effective size,

by introducing a parameter 0 ≤ q ≤ b and replacing g(x) by 1 + q in (3.4). Using

the same method as for the pure resource competition case, this decouples the

mean field equations for N and x, and one finds that the PDMP approximation
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now yields

ρPDMP
ν,δ,q (N) =

Zν,δ,q

N2

[
(1 + q)K+

N
− 1

] ν+
1+q
−1 [

1− (1 + q)K−
N

] ν−
1+q
−1

, (3.32)

for the probability distribution of N , where Zν,δ,q is a normalisation constant.

The parameter q is found by matching the simulation results for the fixation

probability of the slow growing species in the fast switching limit (ν/s � 1),

with φ|(1+q)Kδ(x0) (3.10). Results in Figure 3.7(a) show that q increases linearly

with b, while it also exhibits a weak dependence on s and δ. From (3.32) we

see that the effect of increasing b is to effectively increase the carrying capacities

K± → (1+q)K± and reduce the switching rates ν± → ν±/(1+q). Replacing 1+bx

with this effective parameter also allows us to find a closed formula for the fixation

probability of the slow growing species in the same way as for the pure resource

competition case (b = 0): averaging the expression for the fixation probability

in a constant environment (3.10) (here denoted φ|K0(s, x0) for reasons which will

become clear) over the effective probability distribution (3.32) with the rescaled

switching rate ν → ν/s. Furthermore by changing the variable of integration

N ′ = N/(1 + q) we find that this is equivalent to rescaling the selection strength

to seff = (1 + q)s in the model without public good:

φADN(ν, q) =

∫ (1+q)K+

(1+q)K−

φ|N(s, x0)ρPDMP
ν/s,δ,q(N)dN =

∫ K+

K−

φ|N ′(seff, x0)ρPDMP
ν/seff,δ,0

(N ′)dN ′.

(3.33)

Comparisons with numerical simulations show that this is a very good ap-

proximation when ν/s � 1 and ν/s � 1. Hence in these regimes increasing the

public good benefit b is equivalent to rescaling the selection strength s → seff,

and the fixation probability is an exponentially decreasing function of b.

In the intermediate switching regime, (3.33) gives a reasonable qualitative

description of φADN. With this and Figure 3.7 (d) we can understand how raising

b at fixed s changes the phase diagram for φADN(ν) in terms of γ & δ: As b

is increased seff increases, squashing the triangular region (in which the fixation

probability is non-monotonic), since γc increases under the effect of s → seff =

(1 + q)s. In Figure 3.7(b) where δ < δc and φADN(ν) is monotonically increasing

for b = 0, increasing b moves (δ, γ) into the triangular region (γ > γc, δ > δc) and
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φADN(ν, q) varies non-monotonically with ν. In Figure 3.7(c) where δ > δc and

γ > γc and therefore φADN(ν) is a non-monotonic function for b = 0, increasing

b increases γc, eventually attaining a value such that γ < γc, and φADN(ν, q)

becomes a monotonically decreasing function of ν. These are nice examples of

the complex behaviour that eco-evolutionary feedback can generate and similar

behaviour is also observed in the case of periodic switching: with the rescalings

K± → (1 + q)K± and ν± → ν±/(1 + q) in (3.25) we obtain:

φPN(ν, q) =

∫ Nmax(q)

Nmin(q)

φ|N(s, x0)ρPN
ν/s,δ,q(N)dN. (3.34)

However, in this case this does not amount to a rescaling of s, due to the depen-

dence of the support of ρPN
ν/s,δ,q(N) on the switching rate ν (see (3.22)). However

in Figure 3.7(e,f) we see that this is good approximation of φ in the regimes

ν/s � 1 and ν/s � 1. The intermediate switching regime is also characterised

by a transition from either monotonically increasing to non-monotonic (see Figure

3.7(e)), or non-monotonic to monotonically decreasing (see Figure 3.7(f)).

3.5 Summary and Discussion

This chapter has built on the work of Wienand et al. (2017, 2018), analysing

the effects of a randomly switching carrying capacity on the outcome of the

two-species Prisoners Dilemma in a population of fluctuating size. Specifically

I found that asymmetric switching (i.e. spending more time in one state that

the other) can result in a non-trivial dependence of φ on the switching rate, ν.

This occurs when the noise intensity, γ and asymmetry, δ are large, and when the

selection strength s is not too large or too small. Furthermore, when the switching

asymmetry is positive (δ > 0), one also observes a non-monotonic dependence of

φ on the noise intensity, γ, with larger intensities needed to increase the fixation

probability of cooperators relative to a static environment as the external noise

becomes more asymmetric.

These results are interesting when viewed in light of the Intermediate Dis-

turbance Hypothesis (Begon et al. (2006); Brockhurst (2007); Brockhurst et al.
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Figure 3.7: (a) Effective parameter q versus b for δ = −0.5, 0.5 (black, red) and

s = 0.02, 0.05 (squares, circles). Dependence of q on b is approximately linear

while q depends weakly on δ and s (solid lines are eyeguides). (b,c,e,f) φ versus

ν for (K0, γ, s, δ, x0) = (250, 0.9, 0.04, 0.6, 0.6) in (b,e) and (250, 0.9, 0.05, 0.7, 0.6)

in (c,f). Here (b,c) and (e,f) show results for random and periodic switching

respectively. In (b,c,e,f) b = (0, 0.1, 0.3, 0.5, 1) from red to blue. Open symbols

are simulation results and solid lines are from (3.33) in (b,e) and (3.34) in (c,f).

In (b,e), φ is an increasing function of ν for small b, and varies non-monotonically

with ν for intermediate b. In (c,f) φ is a non-monotonic function of ν at low b

and becomes a decreasing function of ν as b increases. (d) Triangular-like region

in parameter space in which φADN(ν) has a non-trivial maximum at ν = ν∗

for s = 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 (red to blue), obtained from (3.15). This

region, defined by γ > γc(s), δ > δc(γ, s) is enclosed by the dashed and solid

lines. Compare with 3.2(d). Also, given that in the random noise case, (3.33)

predicts a rescaling of s, this figure explains the behaviour observed in (b,c).
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(2007); Buckling et al. (2000); Connell (1978); Grime (1973); Lampert & Som-

mer (2007); Petraitis et al. (1989)), which states that cooperative traits are most

favoured by intermediate rates of disturbance in a community. Too slow and the

cheats have enough time to exploit the cooperators, too fast and there is not

enough time for the benefits of cooperation to be felt. Furthermore, the IDH

also says the larger disturbances will promote cooperative behaviour more. How-

ever, the IDH has been criticised because the evidence for disturbances providing

a benefit to cooperators is not widely observed (Fox (2013) for an overview).

Strictly speaking, the IDH refers to situations where multiple species coexist for

a long time, and describes the effect of noise on the proportion of cooperative

strains in the system. Here, we are interested in the fixation probability of slow

growing / co-operative strains, but the model could be extended so as to avoid

fixation and test the IDH: First, one could specify that the selection strength s

also follows DMN process, being neutral on average but favouring different strains

depending on the environment. In some, but not all, cases this has been shown

to lead to a super-linear dependence of the fixation time on the population size.

Hence for very large K0 one could consider the average proportion of coopera-

tors before fixation. Second, a better adjustment would be to include mutation

between the strains. This would avoid the fixation scenario entirely and thus be

a much better test of the IDH. Finally, another interesting extension would be

a meta-population of connected patches following their own DMN process (with

the same statistics). In the public good scenario, this would be an interesting test

of Simpson’s Paradox (Blyth (1972); Chater et al. (2008); Chuang et al. (2009);

Cremer et al. (2011, 2012, 2019); Hauert et al. (2002); Hense et al. (2019); Mel-

binger et al. (2015); Okasha (2006)), where the fraction of cooperators decreases

within each patch but increases overall, due to patches with a larger fraction of

co-operators increasing their total population size by a larger amount. Hence we

could ascertain if this paradox is still observed in systems with environmental

noise, and what effects the statistics of the noise have on the outcome.

Another interesting result is the qualitative difference between periodic and

random switching on the fixation probability of cooperators. When there is an

optimal switching rate, it is lower for periodic switching and reaches a higher

value. Furthermore, in the fast switching regime, while the fixation probability
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tends to the same value, the lowest order correction to the fixation probability

is of order ν−1 for random switching but ν−2 for periodic. Hence for ν � 1

cooperators are more favoured in random switching environment, due to the fact

that the random nature of switching means that system could spend a time

longer than ν−1
− at K−, allowing the system to reach smaller population sizes

(as evidenced by the larger variance in population size), increasing the fixation

probability of cooperators.
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Chapter 4

Rock-Paper-Scissors Games in a

Static Environment: Comparison

of Different Models

The remainder of this thesis will focus on three species models where the fitness

of individuals varies cyclically with the population composition: species 1 out-

competes species 2, species 2 outcompetes 3, and species 3 outcompetes species 1.

These so-called ‘Rock-Paper-Scissors’ models are the paradigmatic model of cyclic

dominance in microbiology and ecology, having been observed in Uta stanisburi-

ana lizards (Sinervo & Lively (1996); Sinervo et al. (2000); Zamudio & Sinervo

(2000)), bacterial communities (Hibbing et al. (2010); Kerr et al. (2002); Kirkup

& Riley (2004); Nahum et al. (2011)), and plant and coral reef communities

(Cameron et al. (2009); Jackson & Buss (1975); Taylor & Aarssen (1990)). There

is large body of work already addressing different forms of cyclic competition,

with different features depending on the precise aspects of cyclic competition un-

der investigation. Here the main focus will be on the well mixed (i.e. no spatial

structure) setting.

In this chapter I will first review two commonly used models of cyclic com-

petition: firstly the ‘chemical cyclic Lotka-Volterra model’ (cCLV), the simplest

form of cyclic competition with three dominance-replacement reactions and fixed

population size, this will be used in Chapter 6 where I will investigate the ef-

fects of a randomly switching reaction rate. Secondly, the May-Leonard model of
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cyclic competition (MLM) defined with the same dominance-replacement reac-

tions as the cCLV, supplemented with 3 dominance-removal reactions and three

birth reactions, hence this model allows for fluctuating population size. Finally

I will introduce a game-theoretic generalisation of this model, the birth-death

cyclic Lotka-Volterra model (BDCLV). This models cyclic competition via com-

position dependent birth rates, which vary according to a payoff matrix. Death

rates are logistic, thus allowing for a fluctuating total population size around the

carrying capacity (that, in contrast to the MLM can be exceeded). In Chapter 5

this model will be used when investigating the effects of dichotomously switching

carrying capacity.

4.1 The chemical Cyclic Lotka-Volterra model

(cCLV)

The chemical cyclic Lotka Volterra model (cCLV) is defined by three pairwise

reactions involving the simultaneous death and birth of individuals of different

species, therefore conserving the total population size N . Hence, in the cCLV,

species i is the predator of species i + 1 and the prey of species i − 1: an i-

individual kills and replaces an (i+ 1)-individual with one of its offspring, while

it is killed and replaced by individual of type i − 1 according to the following

“pairwise chemical reactions”, with N3 = N −N1 −N2:

[N1, N2, N3]
W21−−→ [N1 + 1, N2 − 1, N3]

[N1, N2, N3]
W32−−→ [N1, N2 + 1, N3 − 1] (4.1)

[N1, N2, N3]
W13−−→ [N1 − 1, N2, N3 + 1],

with transition rates (Berr et al. (2009); Reichenbach et al. (2006); West et al.

(2018)):

Wi+1,i = ki
NiNi+1

N
= kixixi+1 N, where ki ≥ 0 and i, j ∈ {1, 2, 3}. (4.2)

From these we see that this is a zero-sum game: when the total gains of all players

are added up and the total losses subtracted, the total is zero. In each reaction,
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one individual of type i + 1 dies and is immediately replaced by one of type i

(with cyclic ordering of species: 1−1 = 3 and 3+1 = 1), and the total population

size is fixed. This form of cyclic competition has been extensively studied in well

mixed (Berr et al. (2009); Broom & Rychtár (2013); Dobrinevski & Frey (2012);

Hofbauer et al. (1998); Ifti & Bergersen (2003); Nowak (2006a); Reichenbach

et al. (2006, 2008); Smith (1982)), spatial (Frachebourg et al. (1996a); Frean &

Abraham (2001); He et al. (2010); Mitarai et al. (2016); Ni et al. (2010); Szabó

& Szolnoki (2002); Tainaka (1989, 1993, 1994)) and network (Sato et al. (1997);

Szabó et al. (2004); Szolnoki & Szabó (2004)) settings, and I will now review the

key properties for this thesis in the well mixed case. We can write the master

equation:

dP ( ~N, t)

dt
= (E−1 E+

2 − 1)[W21( ~N)P ( ~N, t)]

+ (E−2 E+
3 − 1)[W32( ~N)P ( ~N, t)]

+ (E−3 E+
1 − 1)[W13( ~N)P ( ~N, t)], (4.3)

from which one can use Sec. 2.1.1 to find that the cCLV mean field equations for

the xi’s are given by:

dxi
dt

=
Wi+1,i −Wi,i−1

N
= xi (kixi+1 − ki−1xi−1) , i = 1, 2, 3. (4.4)

These mean field equations describe the dynamics when the population size is

infinitely large (N → ∞) where demographic fluctuations are ignored. These

rate equations (4.4) are characterised by three absorbing fixed points ~x = ~ei,

i ∈ {1, 2, 3}, which are saddles and correspond to the survival of one species and

the extinction of the other two. The trivial fixed point [0, 0, 0]T is not relevant

here, since the total population size is always N , so this state can only be attained

if we start with N = 0. Furthermore, they also admit a non-trivial fixed point

associated with the coexistence of the three species with densities given by:

~x∗ =
1

k1 + k2 + k3

(k2, k3, k1) , (4.5)

which is a neutrally stable centre (i.e. has complex complementary eigenvalues

with zero real part). In addition to the total population size being constant, the
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2 1

3

2 1

3

Figure 4.1: Stochastic orbits (thin red) and deterministic trajectories (grey) of

the cCLV with N = 1000, k2 = k3 = 1 and k1 = 0.3 (a), k1 = 5.7 (b). Black

dot shows coexistence fixed point ~x∗, red dot shows final species that fixates the

population and arrows indicate direction of travel. Note that the most likely

species to fixate depends on the location of ~x∗, and is here given by the lowest

ki according to the ‘law of the weakest’: species 1 is the most likely to prevail in

(a) while 2 and 3 are both as likely in (b). See text.

rate equations (4.4) also admit another conserved quantity:

R = xk2
1 x

k3
2 x

k1
3 . (4.6)

The non-trivial constant of motion R(t) = R(0) governs the deterministic cCLV

dynamics, characterised by regular oscillations associated with nested closed or-

bits surrounding ~x∗ in the phase space simplex S3 (Hofbauer et al. (1998), and

trajectories flowing according to 1→ 3→ 2→ 1 (see Figure 4.1).

Given that the coexistence fixed point ~x∗ is a centre and the orbits surrounding

it (defined by conservation of (4.6)) are neutrally stable, the presence of demo-

graphic fluctuations change the dynamics predicted by (4.4) when N < ∞. In

a finite population the cCLV dynamics is characterised by stochastic trajectories

that follow the deterministic orbits of (4.4) for a short transient while performing

a random walk between them until the boundary of S3 is reached (see Figure

4.1). Hence, internal noise leads to the extinction of two species after a charac-

teristic time that depends on N , while individuals of the third species survive (in

this model, once the boundary is reached the fate of the system is known since
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4.1 The chemical Cyclic Lotka-Volterra model (cCLV)

only one dominance-replacement reaction remains) (Reichenbach et al. (2006)).

Hence the fixation probability φcCLV
i of species i is defined as the probability that

individuals of species i take over, given initial densities ~x(0) = ~x∗ i.e.

φcCLV
i = lim

t→∞
P (Ni(t) = N), (4.7)

where the dependence on ~x(0) is dropped, since when N is not too small and ~x∗

is sufficiently far from the boundary, φcCLV
i is independent of the initial condi-

tion. When the reactions rates ki are equal, all species have the same fixation

probability φcCLV
i = 1/3, however, when the rates ki are not equal the fixation

probability depends non-trivially on the population size N .

In sufficiently large but finite populations, it was shown in Berr et al. (2009)

that the fixation probabilities follow the ‘law of the weakest’ (LOW). This says

that the species i that has the largest fixation probability is the one with the

lowest dominance-replacement rate, ki, the ‘weakest species’:

φcCLV
i > φcCLV

j if ki < kj for i 6= j ∈ {1, 2, 3}. (4.8)

the LOW becomes a ‘zero-one’ law in the limit of very large populations (typically

N > 104). Hence it predicts that the weakest species fixates the population with

probability 1, at the expense of the others that go extinct. Hence when N is very

large but finite the fixation probabilities follow:

φcCLV
i = 1, φcCLV

j → 0 if ki < kj for i 6= j ∈ {1, 2, 3}. (4.9)

This was derived in Berr et al. (2009) by studying the effect of demographic

fluctuations on the outermost deterministic orbit set by (4.6). The outermost

orbit is defined as the one orbit for which the minimum distance to the boundary

is 1/N . If two species have the same reaction rate that is less than the other

(e.g. k1 = k2 < k3) the zero-one version of the LOW predicts that φcCLV
3 → 0 and

φcCLV
1,2 = 1/2 (see Figure 4.2). The LOW can be intuitively explained as follows:

if species i has a high ki, then it consumes the predator of its own predator, i+ 1

at a high rate. Hence it indirectly helps its predator i− 1. Thus the species that

benefits the most from this is the one has the lowest ki, therefore consuming its

predator’s predator at the lowest rate.
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In small population sizes a very different scenario emerges. Here the fixation

probabilities follow the law of stay out (LOSO): the most likely species to fixate

is one that predates on the species with the highest dominance-removal rate (the

strongest species):

φcCLV
i > φcCLV

i+1,i−1 if ki+1 > ki, ki−1 for i ∈ {1, 2, 3}. (4.10)

Unlike (4.9) this is a non-strict law, determining which is the most likely species

to fixate for a given set of kis, but never assigns a probability of 1 for any species.

When N = 3 the LOSO explicitly yields φcCLV
i = ri = ki+1/(

∑3
i=1 ki) (See Ap-

pendix C.5). The ris are the rescaled reaction rates so that their sum is 1, in

which the LOW and LOSO in S3 can be conveniently visualised (see Figure 4.2).

The LOSO can be explained as follows: a species is guaranteed to go extinct once

all of its prey are dead. The species that is the most likely to do this is one with

the highest ki. In this case, i + 1 is the first to go extinct, leaving i − 1 and i

remaining. Hence i−1 (the predator of the species with the highest ki) then goes

on to fixate the population.

In Berr et al. (2009) the authors carried out a detailed analysis of the fixa-

tion probabilities, and found that they follow the LOSO when 3 < N . 20, while

they are predominantly determined by the LOW when N > 100, with asymptotic

zero-one behaviour when N & 104. When 20 . N . 100 the fixation probabil-

ity interpolates between the LOSO and the LOW. These laws are both specific

to three species cyclic competition, and are not observed in cyclic competition

models of more than three species, where the situation is more complicated (see

Durney et al. (2011); Knebel et al. (2013)). However, versions of the LOW have

been found in other three species systems, such as the two-dimensional cCLV

with mutation (Tainaka (1993)).

Another quantity of interest is the mean fixation time, tfix, the mean time it

takes for a species to fixate the population. This has been studied in Dobrinevski

& Frey (2012); Reichenbach et al. (2006) where the presence of the conserved

quantity R enables analytical techniques to show that it scales linearly with pop-

ulation size,

tfix ∼ N. (4.11)
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2

3

1
2

3 1

Figure 4.2: Law of the weakest (a) and law of stay out (b) in the simplex S3

spanned by ri = ki/(
∑3

i=1 ki), divided into three regions where the most likely

species to fixate is labelled. On the lines separating these regions, both adjacent

species are equally likely to fixate. (a) Law of the weakest (LOW): In the large

population sizes the most likely species to fixate is that with the lowest ri. The

LOW becomes asymptotically a zero-one law. (b) Law of stay out (LOSO) when

all species initially coexist with the same density: For small population sizes no

species is guaranteed to survive, but the most likely is the one which predates on

the species with the largest ri.
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4.2 The May-Leonard Model (MLM)

Another common formulation of cyclic competition is the ‘May-Leonard Model’

(MLM), first introduced as a deterministic system in May & Leonard (1975).

Since then it has been formulated as a stochastic process (Szolnoki et al. (2014))

as follows. Letting Si denote an individual of species i there are nine reactions:

SiSi+1
k−→ SiSi, SiSi+1

σ−→ Si, Si
b−→ SiSi, i ∈ {1, 2, 3}, (4.12)

where the indices are ordered cyclically (i.e. S3+1 = S1 and S1−1 = S3). The first

reaction is the dominance-replacement reaction introduced for the cCLV, where

in this case the rates for different species are equal. The second is a dominance-

removal reaction, another form of cyclic dominance where the weaker species is

killed and not replaced. The final reaction corresponds to birth of species i, and

its rate is proportional to
(
1−

∑3
i=1 Ni/K

)
, where K is the carrying capacity of

the system. Thus, rather than having separate birth and death reactions for each

species, the logistic growth is included in the birth rate: if the total population

size is at the carrying capacity, (
∑3

i=1 Ni = K) the birth transition rates for all

species are zero, and the total population size never goes above K. The reason

for this is that this model is typically formulated in a spatial system, where each

node has a maximal number of occupants. With the birth rates set like this, no

modifications need to be made between the well mixed and spatial setting. As

you can see this is a more general model of cyclic competition, and coincides with

the cCLV when b = σ = 0.

In the limit of K →∞, the mean field equations for the population densities

Ni/K can be written as:

dxi
dt

= xi [1− xi − (1− k)xi+1 − (1 + k + σ)xi−1] . (4.13)

Where without loss of generality we specify b = 11. These coincide with those of

May & Leonard (1975) with different parameter labels. Using these results, we

can deduce that in addition to the trivial unstable extinction state [0, 0, 0]T this

1if 0 < b 6= 1 we can rescale time as t → bt and the other rates k → k/b, σ → σ/b to find

the same mean field equations.
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4.2 The May-Leonard Model (MLM)

system of equations has steady states ~ei, i ∈ {1, 2, 3} corresponding to the extinc-

tion of all but one species which are saddles (with eigenvalues (−1, k,−(k+σ))),

and a coexistence steady state ~x∗ = [1, 1, 1]T /(3 +σ), whose stability depends on

the parameter σ: the eigenvalues are −1 and 1
2
(σ ± i

√
3(σ + 2k))/(3 + σ) so it is

a neutrally stable centre when σ = 0. In this case the dynamics is characterised

by a family of neutrally stable orbits along which, as in the cCLV, the quantity

R(t) = x1x2x3 is conserved. Trajectories approach one of these asymptotically,

due to the presence of empty spaces, the density of which decreases over time

(May & Leonard (1975)). When σ > 0 the coexistence fixed point is unstable,

and trajectories are attracted to a heteroclinic cycle between the fixation fixed

points ~ei, spending progressively longer times in their vicinity but never reach-

ing them (May & Leonard (1975); Postlethwaite & Rucklidge (2017)). The time

taken to complete each cycle is a factor of σ+k
k

longer than the last (Postleth-

waite & Rucklidge (2019)). It has also been shown that the heteroclinic cycles

become degenerate when k = 0, in the sense that the eigenvalues of the fixation

fixed points are (−1, 0,−σ), so they are neither stable nor unstable, but a small

change in the parameter k would lead to either stability or instability May &

Leonard (1975).

A further consideration is the presence of mutations, since there is evidence

that these occur in the two biological applications of these models: E. coli bacteria

are known to mutate (Kerr et al. (2002)), and U. stansburiana lizards can undergo

throat colour transformations (Sinervo et al. (2000)). The above reactions (4.12)

are therefore supplemented with six further mutation reactions:

Si
µ−→

{
Si−1

Si+1

for i ∈ {1, 2, 3} (4.14)

and the mean field equations become

dxi
dt

= xi [1− xi − (1− k)xi+1 − (1 + k + σ)xi−1]+µ (xi−1 + xi+1 − 2xi) . (4.15)

This has a dramatic effect on the stability of the coexistence fixed point due to

a supercritical Hopf bifurcation when µ = µH = σ
6(3+σ)

(Mobilia (2010); Mobilia

et al. (2016); Szczesny et al. (2013, 2014); Szolnoki et al. (2014)). The coexistence

fixed point is a stable focus when µ > µH, while it is unstable when µ < µH where
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the dynamics is characterised by a stable limit cycle with frequency ωH =
√

3(σ+2k)
2(3+σ)

(Mobilia (2010); Szczesny et al. (2013); Szolnoki et al. (2014)). It should also be

noted that it was shown in Toupo & Strogatz (2015) that stable limit cycles can

also be observed in the deterministic dynamics when a subset of the reactions

(4.14) are added to the MLM. Here the value of µ for which the Hopf bifurcation

happens depends inversely on the number possible mutation pathways.

In finite systems, K < ∞, demographic fluctuations cause deviations from

these trajectories, and fixation of one species is guaranteed when there are no mu-

tations. In this case, as for the cCLV the fixation probabilities are characterised

by the LOW in large finite populations, and the LOSO in small populations. The

time to fixation has been shown via simulations to scale logarithmically with the

carrying capacity K (Rulands et al. (2013)).

4.3 Rock-Paper-Scissors Games with Spatial Struc-

ture

While it is not the focus of thesis, it is worth giving a brief overview of cyclic

competition with spatial structure due to the interesting dynamics this can lead

to. This is because in many biological applications (e.g. biofilms) each individual

interacts with its neighbours, rather than the whole population. This locality of

interactions and the ability of individuals to move become important factors in

determining the outcome of rock-paper scissors models, in some cases leading to

pattern formation and long-time coexistence of all three species. Unless specified,

in the following I consider the cases without mutations.

The simplest form of spatial structure is a 1-D lattice, where each individual

interacts with its two adjacent neighbours. In this case, when the individuals

are immobile, fixation occurs in a time that scales algebraically with N , with the

weaker species prevailing in large systems (Frachebourg et al. (1996a,b); He et al.

(2010); Provata et al. (1999)). However, mobility of individuals in the form of pair

exchange (two neighbours swap places: SiSj
γe−→ SjSi, for i 6= j ∈ {1, 2, 3}) leads

to a stable coexistence state when γe is sufficiently large (Venkat & Pleimling

(2010)).
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On regular (i.e. all individuals have the same number of neighbours) 2-D

square lattices, the result is primarily dependent on the form of cyclic compe-

tition being considered and the presence of mobility. This can take two forms:

pair exchange (defined above) and hopping, where an individual moves into an

adjacent empty space with rate γh (i.e. Si∅
γh−→ ∅Si, for i ∈ {1, 2, 3}, ∅ repre-

senting an empty lattice site). In the MLM (σ, b > 0) the outcome is highly

dependent on the presence and type of mobility. If the populations are immo-

bile, the dynamics is characterised by clusters similar to the cCLV (see below).

However the presence of mobility has a profound effect on the system dynamics:

when the rates of pair exchange and hopping are equal, the diffusion is linear

(Dobramysl et al. (2018)). When the dominance-reproduction rate k = 0, low

mobility promotes species coexistence through the spontaneous formation of spi-

ral waves. The spirals grow in size with increasing mobility, until they reach a

critical threshold, effectively outgrowing the system size leading to a loss in bio-

diversity (Reichenbach et al. (2007a,b, 2008)). When k 6= 0 the result is more

complicated, and mobility can lead to spiral waves of various stabilities (Reichen-

bach & Frey (2008)). When the presence of mutations was considered in Mobilia

et al. (2016) and the lattice was extended to a metapopulation model (i.e. each

node on a lattice is now a well mixed patch with carrying capacity N , intra-species

reactions occur within a patch and mobility occurs between adjacent patches),

the authors found four phases dependent on a variable c, which is a complicated

function of the system parameters (eq. (6) of Mobilia et al. (2016)). These four

phases characterise the different types of stability of spiral waves, which are also

observed when γe 6= γh and the diffusion is non-linear (although the situation is

slightly different, see Szczesny et al. (2013, 2014)). Further characterisation of

the spiral waves in spatial rock-paper-scissors games can also be found in Hasan

et al. (2019); Postlethwaite & Rucklidge (2017, 2019).

In the cCLV, when the dominance-replacement rates ki are of the same order

the dynamics is characterised by clusters of the same species that invade clus-

ters of their prey and are in turn invaded by clusters of their predator. Hence

the species coexist in a long-lived quasi-stationary state, but they do not form

coherent patterns (He et al. (2010); Peltomäki & Alava (2008)). However, spi-

ral patterns similar to those observed in the spatially extended MLM and plane
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waves are observed in off-lattice (i.e. continuous-space) simulations when the in-

teraction range and total species density is large enough (Avelino et al. (2018);

Ni et al. (2010)). In this case, the effect of mobility is dependent on the in-

teraction range: beyond a critical interaction range mobility always jeopardises

coexistence. However below this, and above a critically small interaction range

(so small that the individuals in effect do not interact) coexistence is promoted by

an intermediate value of mobility. These features are also observed in off-lattice

MLM models (Ni et al. (2010)).

Finally, RPS games have also been studied on random and complex networks,

which are particularly relevant for behavioural sciences. This is an even further

departure from the focus of this thesis, but I will briefly note that cCLV dy-

namics on small-world networks (i.e. low connectivity between individuals) is

characterised by limit cycles and noisy oscillations of the species densities (see

e.g. Sato et al. (1997); Szabó et al. (2004); Szolnoki & Szabó (2004); Tainaka

(1994)), while more general reviews for the interested reader can be found in

Perc & Szolnoki (2010); Szabó & Fath (2007); Szolnoki et al. (2014).

4.4 The Birth-Death Cyclic Lotka-Volterra Model

(BDCLV)

In this section I will describe a new formulation of cyclic competition. This is

motivated by the desire for a model in which the total population size can fluctu-

ate in time (unlike the cCLV where the total population size is fixed) in a logistic

but unbounded manner (unlike the MLM which has a maximum total population

size). In contrast to the cCLV and MLM here there are no dominance-replacement

or dominance-removal reactions. Instead there are three birth and three death

reactions, with the cyclic competition entering via the birth rates. As we will

see this allows for a fluctuating total population size around a carrying capac-

ity, which can be exceeded. Using game-theoretic formulation, the underpinning

cyclic competition is described in terms of the payoff matrix (Broom & Rychtár

(2013); Claussen & Traulsen (2008); Dobramysl et al. (2018); Galla (2011); Hof-

bauer et al. (1998); Mobilia (2010); Nowak (2006a); Smith (1982); Szabó & Fath
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(2007); Toupo & Strogatz (2015)):

P =

Species 1 2 3
1 0 r1 −r3(1 + ε)
2 −r1(1 + ε) 0 r2

3 r3 −r2(1 + ε) 0

Here, 0 < ri = O(1),
∑3

i=1 ri = 1, and ε > −1. According to P, intraspecies

interactions do not provide a payoff, while an individual of species i gains a

payoff ri against an (i+1) individual and suffers a negative payoff of −ri−1(1+ ε)

against an (i− 1) individual, where the indices are, as before, ordered cyclically.

With a slight change in terminology to the cCLV and MLM, species (i + 1) is

referred to as the ‘weak opponent’ of species i and (i−1) as the ‘strong opponent’.

When ε 6= 0, P describes the general non-zero-sum RPS game where the payoff

that i receives against (i+ 1) differs from what (i+ 1) loses (Claussen & Traulsen

(2008); Dobramysl et al. (2018); Galla (2011); He et al. (2011); May & Leonard

(1975); Mobilia (2010); Mobilia et al. (2016); Postlethwaite & Rucklidge (2017);

Reichenbach et al. (2007a,b, 2008); Szczesny et al. (2013, 2014); Szolnoki et al.

(2014); Yang et al. (2017)).

As for the cCLV and MLM, it is convenient to discuss the dynamics in terms of

the species densities xi = Ni/N , where N =
∑3

i=1 Ni, that span the phase space

simplex S3. The expected payoff for species i, Πi, and the average population

payoff, Π̄, are:

Πi = (P~x)i = rixi+1 − ri−1(1 + ε)xi−1, (4.16)

Π̄ = ~x · P~x = −ε
3∑
i=1

rixixi+1, (4.17)

where ~x = (x1, x2, x3)T. As is common in evolutionary game theory, the fitness of

each species fi are defined as a linear function of the expected payoff Πi
1 (Broom

1Non-linear dependence is also sometimes used, as in the Fermi Process (Blume et al. (1993);

Claussen & Traulsen (2008); Hauert & Szabó (2005); Szabó & Hauert (2002); Szabó & Tőke

(1998); Traulsen et al. (2006)). However note that features of RPS models are robust to changes

in the microscopic update details (Claussen & Traulsen (2008)).
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& Rychtár (2013); Hofbauer et al. (1998); Nowak (2006a); Szabó & Fath (2007)):

fi = 1 + sΠi and (4.18)

f̄ =
3∑
i=1

xifi = 1 + sΠ̄ (average fitness), (4.19)

where s ≥ 0 is a parameter measuring the contribution to the fitness arising

from P i.e. the strength of the cyclic interactions. When s� 1 (weak selection)

species have similar fitnesses, regardless of the composition, whereas the cyclic

dominance dominates when s = O(1) (strong selection). When ε = 0 the average

fitness f̄ = 1.

The reactions in the BDCLV are defined as:

Ni

T+
i−−→ Ni + 1 and Ni

T−i−−→ Ni − 1, with i ∈ {1, 2, 3}. (4.20)

where the first set of reactions corresponds to the birth of an individual of species

i and the others are associated with the death of an i-individual. These reactions

occur with transition rates:

T+
i = fiNi = (1 + sΠi)Ni = (1 + {αixi+1 − αi−1(1 + ε)xi−1})Ni and

(4.21)

T−i =
N

K
Ni, (4.22)

where N =
∑3

i=1 Ni is the total population size, K is the carrying capacity,∑3
i=1 ri = 1 and αi = sri. The birth rates, T+

i are as usual the per-capita fitnesses

multiplied by the relevant population size, and the death rates are dependent

on the total population density and relevant population size. Also note that I

consider 0 ≤ s ≤ 1/(1 + ε) to ensure that T+
i ≥ 0. It is worth noting that this is

not the only formulation of the transition rates. Another possibility would be to

define T−i as above but rescale the birth rate by the average fitness (as in Chapter

3), T+
i = fiNi/f̄ . When ε = 0 this would coincide with (4.21), but a difference

would arise when ε 6= 0 and f̄ = 1− ε
∑3

i=1 αixixi+1. In this case, the mean field

rate equations (4.37) would be rescaled by the non-linear term 1/f̄ , and would no

longer coincide with replicator equations of the general rock-paper-scissors game
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(Broom & Rychtár (2013); Hofbauer et al. (1998)), agreeing only to leading order

in sε.

The master equation describing the probability P ( ~N, t) find the population

in state ~N = (N1, N2, N3)T at time t is given by (Gardiner (1985); Van Kampen

(1992)):

dP ( ~N, t)

dt
=

3∑
i=1

(
E−i − 1

) [
T+
i P ( ~N, t)

]
+

3∑
i=1

(
E+
i − 1

) [
T−i P ( ~N, t)

]
, (4.23)

where E±i are shift operators, associated with (4.21), such that E±1 h(N1, N2, N3, t) =

h(N1 ± 1, N2, N3, t) etc, for any h( ~N, t). We also specify that P ( ~N, t) = 0 when-

ever any Ni < 0. The process is characterised by a first stage when all three

species coexist, then a second stage where two species compete. This is in con-

trast to the cCLV and MLM where the species that will fixate the population

is known once the first species has died out. Finally, the third stage is charac-

terised by the one remaining species fluctuating around the carrying capacity K

according to the logistic birth-death process (see Section 2.2). The population

will finally collapse into the only absorbing state ~N = ~0. However, as discussed

in Section 2.2 the time-scale for this scales exponentially with K, so I will focus

on the first two stages. First I will consider the case ε = 0 (zero-sum BDCLV)

in the next section (Section 4.4.1), then the case ε 6= 0, |ε| � 1 in Section 4.4.2

(close-to-zero-sum BDCLV).

In presenting the results, I will focus on the general case where the ris are

unequal1, unless otherwise stated. All subsequent figures have been obtained with

initial fraction 1/3 of each species ~x0 = (1/3, 1/3, 1/3)T = ~xc, and I consider two

parameter sets: ~r ≡ (r1, r2, r3) = ~r(1) ≡ (1, 5, 5)/11 and ~r = ~r(2) ≡ (3, 1, 1)/5.

These choices suffice to reveal most of the generic properties of the system. When

I study how φi,i+1, φi and φ̃i depend on sK, in Figures 4.5 and 4.6 I consider

K ∈ κ ≡ {1000, 450, 250, 90, 50} and s = 1 for K = 1000, s ∈ {10−k/4, k =

0 . . . 3} for K = 450, s ∈ {10−(2+k)/4, k = 0 . . . 9} for K = 250, s ∈ {10−k/4, k =

0 . . . 8} for K = 90, and s ∈ {10−(9+k)/4, k = 0 . . . 3} for K = 50. In all figures

(except Figures 4.3 and 4.4), simulation results have been sampled over 104−105

realizations.

1The overall fixation probabilities are trivially 1/3 when the rates are equal
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4.4.1 Zero-Sum BDCLV

When ε = 0, P corresponds to the zero-sum rock-paper-scissors game, as in the

cCLV, where i gains exactly what (i + 1) loses (Berr et al. (2009); Dobramysl

et al. (2018); Dobrinevski & Frey (2012); Frean & Abraham (2001); He et al.

(2010); Hofbauer et al. (1998); Ifti & Bergersen (2003); Knebel et al. (2013);

May & Leonard (1975); Nowak (2006a); Perc & Szolnoki (2010); Reichenbach

et al. (2006); Smith (1982); Szabó & Szolnoki (2002); Tainaka (1989, 1993, 1994);

Venkat & Pleimling (2010); West et al. (2018)). The average payoff and fitness

are given by Π̄ = 0 and f̄ = 1, and the mean field equations (where demographic

fluctuations are ignored) can be found by using the results of Sec. 2.1.2:

d

dt
N = N

(
1− N

K

)
, (4.24)

d

dt
xi = sΠixi = xi (αixi+1 − αi−1xi−1) . (4.25)

These equations are decoupled, and from (4.24) we see that the total population

size follows the logistic equation, and N(t) → K in a time of order O(1), while

(4.25) show that the population composition changes due to cyclic dominance on

a time scale of 1/s so that when s << 1 there is timescale separation: N rapidly

approaches K while the population composition evolves much slower. When time

is rescaled (t→ st), the rate equations (4.25) coincide with the celebrated repli-

cator equations of the zero-sum RPS game (Broom & Rychtár (2013); Hofbauer

et al. (1998); Nowak (2006a); Smith (1982); Szabó & Fath (2007)). As for the

cCLV (Section 4.1) these are characterised by the neutrally stable fixed point

~x∗ = (r2, r3, r1)T and three unstable saddle points {~ei}3
i=1, with the additional

unstable extinction state ~0. They also conserve x1 + x2 + x3 = 1 and R (4.6),

so the deterministic trajectories in the phase space S3 are neutrally stable orbits

around ~x∗, along which R is constant.

In finite populations, trajectories are noisy oscillations around ~x∗ performing

a random walk between the deterministic orbits until the boundary, ∂S3 is hit

(see Figures 4.3 and 4.4). This first stage of dynamics (Stage 1) where three

species coexist is followed by Stage 2, where in contrast to the cCLV the fate of

the system is still not known: the two surviving species (say i and i+ 1) compete
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Figure 4.3: Sample paths of N(t) (black) and Ni(t) (i = 1, 2, 3 shown by red,

blue green respectively) in the BDCLV with constant carrying capacity K = 104

(a) and K = 200 (b) indicated by solid grey lines. Parameters are (s, r1, r2, r3) =

(0.1, 0.6, 0.2, 0.2). N(t) quickly fluctuates around K, while Ni evolve on a much

slower timescale.
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2 1

3

2 1

3

Figure 4.4: Stochastic orbits in S3 of the constant-K BDCLV of, with

(s, r1, r2, r3) = (1/10, 3/5, 1/5, 1/5) and illustration of Stages 1 and 2 dynam-

ics, see text. Initially all species have the same density 1/3 (gray dot), and (a)

K = 104, (b) K = 200. (a) In Stage 1, when sK � 1, erratic trajectories ap-

proach ∂S3 from the outermost orbit (deterministic orbit at a distance 1/K from

∂S3, see text). (b) When sK . 10, in Stage 1, stochastic trajectories reach ∂S3

without settling onto the outermost orbit. Stage 2: Once on an edge of ∂S3 (black

dot), a competition (shown as arrows) takes place between species i and its weak

opponent i+ 1, with the former (long arrows) more likely to win than the latter

(short arrows), see text.
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along the (i, i + 1) edge of S3 until one fixates the system (see Fig. 4.4). This

affects the fixation probabilities: the LOW and LOSO are still applicable, but in

different situations to the cCLV, as I will now discuss.

In order to do this, first note that after a short transient N(t) ≈ K, suggesting

a relationship with models of cyclic competition that preserve total population

size. Replacing the three birth and three death reactions with six dominance-

replacement reactions where an individual of type i replaces one of type j with

rate Tji = T+
i T

−
j /K and i 6= j, we define the Moran CLV (MCLV). This is further

formalised in Appendix C.1, where it is shown that the fixation properties are

the same in the MCLV and BDCLV for K � 1. Furthermore, in Appendix C.2

it is shown that with a suitable rescaling of time, the drift and diffusion terms of

the Fokker-Plank equations for the MCLV and cCLV can be mapped onto each

other. Thus, before the extinction of the first species (Stage 1), the dynamics

of the BDCLV is similar to the dynamics of the cCLV with population of size

O(sK). In Stage 2, the absorption properties of the BDCLV when K � 1 can

are the same as those for the MCLV (see Appendix C.1).

A further complication is that unlike the cCLV, the fate of the system is not

known once the first species dies out. Hence to calculate the fixation probability

of species i, φ̃i, we need to find the probability it survives Stage 1, as either

the stronger (φi,i+1) or weaker (φi−1,i) remaining species (survival probabilities).

Then, in Stage 2 we need to find the probability that it wins the remaining two

player competition game, φi when it is the stronger species, and 1 − φi−1 when

it is the weaker (absorption probabilities). The relationship between the cyclic

selection strength s and carrying capacity K allows us to identify three regimes:

(i) quasi-neutrality, when sK � 1 and K � 1: here the selection strength is

too weak to have an effect on the dynamics, so they are completely driven

by demographic fluctuations.

(ii) weak selection, when sK ≈ 10, s � 1 and K � 1: here the selection

intensity is weak and comparable to that of the demographic fluctuations.

(iii) strong selection, when sK � 1, s = O(1) and K � 1: here the selection

intensity is much stronger than that of the demographic fluctuations.
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Stage 1: Survival probabilities in the BDCLV

Using the fact that the Stage 1 dynamics of the BDCLV and cCLV with N = sK

are similar, the survival probabilities in the BDCLV, φi,i+1 are therefore similar

to the fixation probabilities of species i in the cCLV (φcCLV
i ), and one can use the

LOSO and LOW to determine φi,i+1 in regimes (ii) and (iii):

(i) When sK � 1 and K � 1 the system is in quasi-neutrality, and since we

always start with an equal fraction of each species we find that φi,i+1 ≈ 1/3

∀i.

(ii) When sK ≈ 10, s � 1 and K � 1 the selection intensity is weak and

comparable to that of the demographic fluctuations. We use the relationship

with cCLV to infer that φi,i+1 is given by the fixation probability of i in

the cCLV with N = sK ≈ 10. i.e. in this regime the survival probabilities

follow the law of stay out :

φi−1,i > φi,i+1, φi+1,i−1 if ri > ri±1

φi,i+1 ≈ φi+1,i−1 > φi−1,i if ri+1 = ri−1 > ri. (4.26)

Hence, when ri > ri±1 the (i − 1, i) edge is the most likely to be hit first,

as confirmed by Fig. 4.5(b), and when ri < ri−1 = ri+1 the edges (i, i + 1)

and (i+ 1, i− 1) are the mostly likely to be hit first see Fig. 4.5(a).

(iii) When sK � 1, s = O(1) and K � 1 the dynamics is governed by cyclic

dominance: an edge of S3 is hit from the outermost orbit, see Fig. 4.4(a).

Using the relationship between the BDCLV and cCLV, we have φi,i+1 is

given by the fixation probability of species i in the cCLV with N = sK and

the survival probabilities obey the law of the weakest :

φi,i+1 > φi+1,i−1, φi−1,i if ri < ri±1,

φi,i+1 ≈ φi+1,i−1 > φi−1,i if ri = ri+1 < ri−1. (4.27)

When sK & 103, the LOW becomes asymptotically a zero-one law: φi,i+1 →
1, φi−1,i → 0 and φi+1,i−1 → 0 if ri < ri±1, and φi,i+1 = φi+1,i−1 →
1/2, φi−1,i+1 → 0 if ri = ri+1 < ri−1. Accordingly, when sK � 1 and
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ri < ri±1 species i and i + 1 are most likely to survive and species i − 1

the most likely to die out in Stage 1, in agreement with Fig. 4.5 (a). Simi-

larly, when ri > ri−1 = ri+1, species i is the most likely to die out first, see

Fig. 4.5 (b).

These relations (4.26) and (4.27) explain that φi,i+1 is a function of sK, and can

exhibit non-monotonic behaviour: In Figure 4.5(a), where r1 < r2 = r3 (4.26) give

that φ1,2 ≈ φ2,3 > φ3,1 in regime (ii), while (4.27) predicts that φ1,2 > φ2,3, φ3,1 in

regime (iii). Hence φ1,2 and φ3,1 increase and decrease respectively from regime (i)

to (iii), while φ2,3 increases from regime (i) to (ii), then decreases from (ii) to (ii).

Similarly in Figure 4.5(b), where r1 > r2 = r3 (4.26) give that φ1,2 ≈ φ2,3 < φ3,1

in regime (ii), while (4.27) predicts that φ1,2 < φ2,3 = φ3,1 in regime (iii). Hence

φ1,2 decreases from regime (i) to (iii), while φ2,3 decreases from regime (i) to

(ii), then increases from (ii) to (ii). The non-monotonicity of φ3,1 can be seen

by noting that due to the behaviour of the other two survival probabilities, φ3,1

must increase from regime (i) to (ii) and then decrease from (ii) to (iii).

Stage 2: Absorption probabilities in the constant-K BDCLV

At start of Stage 2, species i competes against i+ 1 (weak opponent), along the

edge (i, i + 1) where their fitnesses are fi = 1 + αi(1 − xi) and fi+1 = 1 − αixi.
Stage 2 ends with the absorption of either i or i+1, respectively with probability

φi and 1− φi.

(i) At quasi neutrality, species i’s selective advantage is negligible since fi −
fi+1 = αi � 1. In regime (i), species i and i + 1 have therefore almost the

same absorption probability φi ≈ 1/2.

(iii) Under strong selection, species i has an important selective advantage over

species i+ 1: fi− fi+1 = O(1). In regime (iii), species i is almost certain to

be absorbed as in Stage 2 of the cCLV dynamics, and therefore φi ≈ 1 as

predicted by the LOW.

(ii) Under weak selection, φi is non-trivial and can be obtained from the fixation

probability φi|K of species i in the MCLV with N = K (see Appendix
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Figure 4.5: (a,b) Constant-K BDCLV survival probabilities simulation results

(♦): φ1,2 (purple), φ2,3 (light blue) and φ3,1 (orange) vs. sK for values of s ∈
(10−3, 1) and K ∈ κ in regimes (i)-(iii) separated by dashed lines, see text. Non-

monotonicity arises across regimes (ii) and (iii) and can be explained in terms of

the LOSO (regime (ii)) and LOW (regime (iii)), see text. (a) ~r = ~r(1); species

1 and 3 are the most likely to die out in regime (ii) and (iii), respectively. (b)

~r = ~r(2) ; species 2 and 1 are the most likely to die out in regime (ii) and (iii),

respectively. (c,d) Constant-K BDCLV absorption probabilities φi vs. sK: φ1

(red), φ2 (blue) and φ3 (green) vs. sK for K = (1000, 450, 250, 50, 20), with (c)

~r = ~r(1) and (d) ~r = ~r(2). The solid line is given by (4.31) and coincide for species

2 and 3. In all panels K = 1000 (B), 450 (◦), 250, (�), 90 (�), 50 (4), ε = 0,

~x0 = ~xc.
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C.1 and 2.1.1). When the Stage 2 dynamics starts with a fraction x̂i of

individuals of species i, φi|K under weak selection is obtained from (2.18),

with A(xi) = αixi(1− xi) and B(x) = A(x)
Kαi

[2 + αi (1− 2xi)] to give:

φi(x̂i)|K =
(2 + αi)

K+1 − [2 + αi (1− 2x̂i)]
K+1

(2 + αi)
K+1 − (2− αi)K+1

. (4.28)

When s� 1, we retrieve the familiar exponential expression:

φi(x̂i)|K '
1− e−αiKx̂i
1− e−αiK

. (4.29)

A difficulty arises from x̂i being a random variable depending on the out-

come of Stage 1: x̂i is distributed according to the probability density

P(i,i+1)(x̂i). The absorption probability is thus obtained by averaging (4.29)

over P(i,i+1):

φi ' φi|K =

∫ 1

0

P(i,i+1)(x̂i) φi(x̂i)|K dx̂i. (4.30)

In practice, P(i,i+1)(x̂i) is obtained from stochastic simulations, see Ap-

pendix C.3. Analytical progress can be made by noticing that in regime

(ii) where s � 1 and sK . 10, each pair i, i + 1 has approximately the

same survival probability at the end of Stage 1 (φi,i+1 ≈ 1/3, see Figure

4.5 (a,b)), and the initial distribution along (i, i+ 1) can be assumed to be

uniform, i.e. Pi,i+1(x̂i) ≈ 1, see Appendix C.3. Substituting in Eq. (4.30),

we obtain the approximation (s� 1, sK . 10):

φi ' φi|K ≈
e−αiK + αiK − 1

αiK(1− e−αiK)
, (4.31)

which is an S-shaped function of αiK that correctly predicts the behaviours

φi → 1/2 when αiK � 1 (regime (i)) and φi → 1 when αiK � 1 (regime

(iii)), see Figure 4.5 (c,d). Comparison with simulation results of Figure

4.5 (c,d) confirm that φi is sigmoid function of sK and Eq. (4.31) provides

a good approximation of φi when the assumption P(i,i+1) ≈ 1 holds, see

Appendix C.3
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Total fixation probabilities in the constant-K BDCLV

Species i’s total fixation probability φ̃i consists of two contributions: φi,i+1φi and

φi−1,i(1 − φi−1). The first one counts the probability for i to fixate after hitting

the edge (i, i + 1), with a probability φi,i+1, and prevailing against i + 1 (weak

opponent) with a probability φi. We also need to consider that, after reaching

the edge (i − 1, i) with a probability φi−1,i, species i has a probability 1 − φi−1

to win against i− 1 (strong opponent), which yields φi−1,i(1− φi−1). With these

two contributions, we obtain

φ̃i = φi,i+1φi + φi−1,i(1− φi−1), (4.32)

which is also a function of sK, see Figure 4.6 (a,b). Of particular interest is the

situation where the selection intensity is weak, s � 1, in which case (4.32) can

be simplified by noting φi,i+1 ≈ φi−1,i ' 1/3 and using the result φi ' φi|K , given

by (4.31), for the absorption probability in the MCLV with N = K, yielding

φ̃i '
1

3
(1 + φi − φi−1) ≈ 1

3
(1 + φi|K − φi−1|K) . (4.33)

Using the properties of the survival and absorption probabilities φi,i+1 and φi

discussed above, we can infer those of φ̃i in the regimes (i)-(iii):

(i) At quasi-neutrality, all species have the same fixation probability to first

order: φ̃i = 1/3 + O(sK). An estimate of the subleading correction is

obtained by noticing φi|K ' 1
2

(1 + αiK/6) when αiK � 1. This, together

with Eq. (4.33), gives

φ̃i '
1

3

(
1 +

sK

12
(ri − ri−1)

)
. (4.34)

This result allows us to understand which are the species (slightly) favoured

by selection: When r1 < r2, r3, Eq. (4.34) predicts that φ̃1 is less than

1/3 and decreases with sK, while φ̃2 > 1/3 and increases with sK, and

φ̃3 = 1/3 + O(s2). These predictions agree with the simulation results of

Figure 4.6 (a) in regime (i).
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(iii) Under strong selection, the total fixation probability obeys the LOW, as in

the cCLV. The species overall fixation probabilities are therefore ordered as

follows:

φ̃i > φ̃i+1, φ̃i−1 if ri < ri±1, and

φ̃i ≈ φ̃i+1 > φ̃i−1 if ri = ri+1 < ri−1, (4.35)

with φ̃i ≈ φi,i+1
sK�1−→ 1, 1/2 or 0. These predictions agree with the simula-

tions results of Figure 4.6 (a,b).

(ii) Under weak selection, φ̃i can vary non-monotonically with sK, see Figure

4.6 (a,b). This behavior can be understood by noticing that near the bound-

ary of regimes (i)-(ii), we have φi ≈ 1/3 that increases with sK if ri > ri−1

and decreases when ri < ri−1, see Eq. (4.34) and Figure 4.6 (a,b). As sK

approaches the boundary of regimes (ii)-(iii), the dynamics is increasingly

governed by the LOW with φ̃i ≈ φi,i+1
sK�1−→ 1, 1/2 or 0. This can lead

to a non-monotonic dependence on sK: For instance, if r1 < r2, r3, φ̃1 de-

creases and φ̃2 increases about the value 1/3 near the (i)-(ii) boundary, and

then respectively increases and decreases as sK approaches the boundary

(ii)-(iii), and through regime (iii) where φ̃1 → 1 while φ̃2 → 0, see Figure

4.6 (a).

The main features of the survival, absorption and overall fixation probabilities

in the constant-K BDCLV are summarized in the chart of Figure 4.6 (c).

Mean Fixation Time

The mean fixation time TF is the average time taken for one species to take over

the population. Similarly to the fixation probability, this quantity consists of one

contribution from Stage 1, referred to as the mean extinction time, T1, and the

mean absorption time, T2, arising from Stage 2. T1 and T2 are studied in detail in

Appendix C.4, the main result of which is that when ~x0 = ~xc, the overall mean

fixation time TF = O(K). Since N(t) ≈ K after a short transient, this means

that species coexistence is lost in a mean time scaling with system size.
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Figure 4.6: (a,b) Total fixation probabilities φ̃1 (red), φ̃2 (blue), φ̃3 (green) vs.

sK for values of s ∈ (10−3, 1) and K ∈ κ with symbols as in Figure 4.5, see

text. Regimes (i)-(iii), from left to right, are indicatively separated by dashed

gray lines. (a) ~r = ~r(1); (b) ~r = ~r(2). The solid black lines show the predictions of

(4.32) using (4.30), with φi,i+1 and P(i,i+1) inferred from simulations. Predictions

from (4.34) are shown as solid colored line. φ̃i can display a non-monotonic

dependence on sK across regimes (ii)-(iii), see text. (c) Chart summarizing the

outcome of Stage 1, Stage 2 and the overall fixation probability φ̃i as function of

sK in regimes (i)-(iii), from left to right. In all panels: ~x0 = ~xc and ε = 0.
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Figure 4.7: Mean fixation time TF in the constant-K BDCLV: TF/K vs. sK for

values of s ∈ (10−3, 1) and K ∈ κ showing that TF = O(K) across all regimes

with subleading prefactors in regime (iii) shorter than in (i) and (ii). Colours

and symbols refer to simulation results for: ~r = ~r(1) (green), ~r = ~r(2) (blue), and

equal ri (black) with K = 1000 (B), 450 (◦), 250, (4), 90 (�), ε = 0, ~x0 = ~xc.

4.4.2 Close-to-Zero-Sum BDCLV

The general non-zero-sum rock-paper-scissors game refers to the payoff matrix

(4.16) with ε 6= 0 and non-zero average fitness f̄ = 1 − ε
∑3

i=1 αixixi+1. In this

case the mean field description from the birth death process (4.20) - (4.22) is

given by (using the results of Section 2.1.2):

d

dt
N = N

(
f̄ − N

K

)
(4.36)

d

dt
xi = xi

[
αixi+1 − (1 + ε)αi−1xi−1 + 1− f̄

]
. (4.37)

Hence in this model the evolution of N is coupled with the xis whose mean field

dynamics is characterised by heteroclinic cycles (as in the MLM with σ > 0)

when ε > 0, and a stable coexistence fixed point when ε < 0 (as in the MLM

with σ < 0 i.e. the dominance removal reaction in (4.12) going in the opposite

direction) Broom & Rychtár (2013); Dobramysl et al. (2018); Hofbauer et al.

(1998); May & Leonard (1975); Smith (1982); Szabó & Fath (2007); Szczesny

et al. (2014).
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Here I will briefly discuss the case of close-to-zero-sum BDCLV when |ε| � 1.

Hence the approximation f̄ ≈ 1 is used and we therefore assume that there

is timescale separation between N and xi. This assumption is backed up by

simulation results which show that the fixation properties are qualitatively the

same as in the zero-sum BDCLV (see Figure 4.8). This suggests that the fixation

properties of the close-to-zero-sum BDCLV can be obtained from those of the

zero-sum BDCLV by rescaling the selection intensity as s → s (1 + βε+ O(ε2)).

Since the fixation properties of the BDCLV vary little with the selection strength

at quasi-neutrality and under strong selection, I focus on regime (ii) of weak

selection in order to determine the parameter β. Here s � 1 and sK ≈ 10 and

we assume that the survival probabilities, φi,j ≈ 1/3, and the initial distribution

in Stage 2, P(i,j)(x̂i) ≈ 1. Using (2.18), with A(xi) = αixi(1 − xi)(1 + εxi)

and B(x) = A(x)
Kαi(1+εxi)

[2 + αi (1− (2 + ε)xi)] to give the absorption probability

of species i with initial fraction x̂i of species i:

φi|K(x̂i) =
(2 + αi)

Kh(ε,αi)+1 − {2 + αi(1− (2 + ε)x̂i)}Kh(ε,αi)+1

(2 + αi)Kh(ε,αi)+1 − (2− αi(1 + ε))Kh(ε,αi)+1
(4.38)

where h(ε, αi) ≡
1 + ε(1 + 1/αi)

(1 + ε/2)2
. (4.39)

When |ε| � 1, this expression simplifies in the weak selection regime (s � 1)

where it takes the form

φi|K(x̂i) '
1− e−Kαi(1+ε/2)x̂i

1− e−Kαi(1+ε/2)
. (4.40)

The absorption probability in regime (ii) is then found by averaging this over

Pi,i+1 ≈ 1, yielding:

φi '
e−αi(1+ ε

2
)K + αi(1 + ε

2
)K − 1

αi(1 + ε
2
)K(1− e−αi(1+ ε

2
)K)

, (4.41)

which coincides with (4.31) upon rescaling s→ s (1 + ε/2). This is confirmed in

Figure 4.8(a) where it is found that this scaling holds across all regimes (i) - (iii).

A similar argument is used for the total fixation time. Since T1 varies little with

s in regime (ii) the mean fixation time TF and mean absorption time T2 can be

obtained from those for the zero-sum BDCLV with s→ s(1 + ε/2). From Figure
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Figure 4.8: (a) φ̃i vs. sK in the close-to-zero-sum RPS game with constant car-

rying capacity K = 450 (circles), 90 (upward triangles), 50 (downward triangles),

~r = ~r(1), ε = −0.2 (light symbols) and ε = 0.2 (dark symbols). Lines show

stochastic simulation results for the BDCLV (ε = 0, see Figure 4.6) with rescaled

selection intensity s → s(1 + ε/2) with ε = 0.2 (solid) and ε = −0.2 (dashed).

Dark symbols / solid lines and light symbols / dashed lines collapse, demonstrat-

ing φ̃εi(s) ' φ̃BDCLV
i (s(1 + ε/2)), see text. (b) Rescaled mean fixation time TF/K

vs. sK in the close-to-zero-sum game (|ε| � 1) and constant K for values of

s ∈ (10−3, 1) and K = 450 (circles), 90 (upward triangles), 50 (downward trian-

gles). Symbols are from stochastic simulations for ε = −0.2 (light) and ε = 0.2

(dark). Lines are from the constant-K BDCLV obtained with the same carrying

capacity but a rescaled selection intensity s(1 + ε/2). Solid lines are for ε = 0.2,

dashed lines are for ε = −0.2. ~r = (1, 1, 1)/3 (black), ~r = ~r(1) (green), ~r = ~r(2)

(blue). In both panels ~x0 = ~xc.

4.8(b) we see that this works well in regimes (i) and (ii), but breaks down in

regime (iii) where sK � 1, overestimating TF when ε > 0 and underestimating

when ε < 0, due to the changes in stability of the interior fixed point compared

to the case for ε = 0.

4.5 Summary

In this section I have introduced three ways of modelling cyclic competition. The

cCLV assumes constant population size and will be used in Chapter 6 when I

investigate the effects of a randomly switching reaction rate, and the MLM is a

more general model of cyclic competition where the total population is not fixed,
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but is bounded from above. This model leads to particularly intriguing behaviour

when considered in a spatial setting, with spiral waves of varying degrees of

stability observed depending on the type and strength of mobility used by the

individuals. In both these models, the fixation probabilities follow the ‘law of the

weakest’ in large populations, and the ‘law of stay out’ when the population size is

small. The mean fixation time in well mixed settings scales linearly with N in the

cCLV while it is of order lnN in the MLM. The final model, the BDCLV, is a new

model of cyclic competition, formulated as a game-theoretic birth-death process,

allowing for a fluctuating total population size that is unbounded above. In the

zero sum case, the fixation probabilities are dependent on sK, with three regimes

characterised by (i) quasi-neutrality, (ii) weak selection and (iii) strong selection,

and those for the close-to-zero-sum case |ε| � 1 can be well approximated by

rescaling s→ s(1 + ε/2) in the zero-sum case. In the next chapter, I will present

the effects of a randomly switching carrying capacity on the BDCLV, where it

will be seen that when the carrying capacities are such that the system switches

between different regimes, novel fixation scenarios arise.
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Chapter 5

Cyclic Competition in

Populations of Fluctuating Size

This Chapter will present the coupled effect of environmental and internal noise

on the fixation properties of a three species rock-paper-scissors game (as in Sec-

tion 4.4) in a population of fluctuating size, where the resources continuously

vary between states of scarcity and abundance. Unlike the two-species compe-

tition model considered in Chapter 3, here the relative size of the species birth

rates change cyclically with the population composition so, while all three species

coexist, no individual species is always the fastest growing. Once the first species

has died out, the two remaining species compete until one fixates the popula-

tion. This stage of the population evolution is similar to Chapter 3, where one

species has a fitness advantage over the other. Hence the fixation statistics are

dependent on these two stages of population evolution: Which species are most

likely to survive the initial cyclic phase and, once this is over, which species are

then more likely to win the subsequent two-player competition? Given that we

have seen in Section 4.4 that the strength of these cyclic interactions compared

to neutral drift increases with the system size, a randomly switching carrying

capacity will lead to different species being favoured for survival to the end of

the first stage, following the ‘LOW’ or ‘LOSO’ dependent on the population size

(see Figures 4.2 and 4.5(a,b)). Furthermore, the outcome of the second stage is

clearly dependent on the first and (as we have seen in Chapter 3) the outcome of
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two species competition models can be greatly affected by a fluctuating environ-

ment. The combination of these results in complex fixation scenarios the result

of which is not obvious a priori. In this Chapter, a combination of numerical and

theoretical techniques will be used to understand:

1. Under what conditions do the fixation rules established in Section 4.4 hold

and when do new fixation scenarios occur?

2. Does environmental noise promote or inhibit species coexistence?

Again, for simplicity, we assume that environmental variability is modelled

by letting the carrying capacity follow a symmetric dichotomous Markov noise

process, switching randomly between a high and low value representing rich and

sparse resources, spending on average the same time at each (see Section 2.2.1).

The general model and its basic properties are introduced in Section 5.1, then in

Section 5.2 the effects on the survival, absorption and fixation probabilities, and

the mean fixation time for the zero-sum BDCLV (i.e. ε = 0) are presented, ex-

plained and compared with their counterparts of Section 4.4.1, obtained when the

population is subject to a constant carrying capacity. In general, it is found that

random switching effectively levels the field of the competition: The species that

is least/most like to fixate in a constant environment has an increased/decreased

fixation probability in a fluctuating one. Furthermore, when the variance of the

noise is large enough new fixation scenarios can occur: the most likely species to

survive is different to that expected without external noise. In Section 5.3 the

results for the close-to-zero-sum BDCLV (i.e. |ε| � 0) with a randomly switching

carrying capacity are presented and compared with those of Section 4.4.2 without

external noise. Similarly to the case in a constant environment it is found that

the fixation statistics can be well approximated by those for the zero-sum BDCLV

with rescaled selection intensity.

5.1 Model Definition

Proceeding as in Section 4.4.1, and using the same notations, the birth-death

cyclic Lotka-Volterra model with randomly switching carrying capacity (switching-
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K BDCLV) is defined by the birth death reactions:

Ni

T+
i−−→ Ni + 1 and Ni

T−i (ξ(t))
−−−−−→ Ni − 1, with i ∈ {1, 2, 3} (5.1)

with rates

T+
i = fiNi = (1 + sΠi)Ni = (1 + {αixi+1 − αi−1(1 + ε)xi−1})Ni and

(5.2)

T−i (ξ(t)) =
N

K(t)
Ni, (5.3)

where Πi accounts for cyclic competition and is defined as in Sec. 4.4, 0 < s < 1 is

the selection strength, measuring the strength of this cyclic competition compared

with neutral drift, |ε| � 1 characterises the stability of the interior fixed point

and therefore the type of cyclic competition (ε = 0: zero-sum game with neutrally

stable interior fixed point, otherwise, a non-zero-sum game with stable (ε < 0) or

unstable (ε > 0) interior fixed point, see Section 4.4), and the death rates vary

in time with the carrying capacity, following a symmetric dichotomous Markov

process that switches between a high (K+) and low (K−) value according to:

K(t) = K0 (1 + γξ(t)) and ξ
ν−→ −ξ, (5.4)

where K0 = K++K−
2

and γ = K+−K−
K++K−

measures the intensity of the environmental

noise. Using the results of Sec. 2.2.1 we find that the mean and variance of

K(t) are 〈K(t)〉 = K0 and var(K(t)) = (γK0)2 and can write K± = (1 ± γ)K0.

We specify that γ = O(1) and K0 � 1 so that the environmental variability

var(K)� 1 is large and the population size itself is large enough to ensure that

demographic fluctuations alone are not the main source of randomness. Note

that when I say ‘compared to the case to case without external noise’ I mean

compared with the model introduced in Section 4.4 with K = K0 and the other

parameters the same.

As we have seen in Section 4.4, when all forms of noise are ignored the total

population size N = N1 + N2 + N3 follows a logistic-like equation. The inclu-

sion of external noise results in the carrying capacity being dependent on the

environmental state:

dN

dt
= N

(
f̄ − N

K
(1− γξ(t))

)
, (5.5)
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where K = (1 − γ2)K0 is the harmonic mean of K±. Since |ε| � 1 we use the

approximation f̄ ≈ 1 as in Section 4.4.2 (although note that in the zero-sum case

f̄ = 1 and this case (5.5) is a logistic equation when γ = 0, while N obeys a

stochastic differential equation defining a PDMP when γ > 0). The mean field

equations for the species densities, xi, are the same as for the constant K case

(see (4.37)), so again there is a timescale separation when s� 1: N evolves faster

than the xi’s, settling into its N -QSD in a time t = O(1), while the xi’s change on

a timescale t = O(1/s) (see Figure 5.1). The results of Section 2.2.1 can be used

to find the approximation of the N -QSD, the marginal stationary distribution of

the PDMP (i.e. independent of the environmental state variable ξ):

pν(N) =
Z

N2

[
(K+ −N) (N −K−)

N2

]ν−1

, (5.6)

where Z is a normalisation constant. In this symmetric case the distribution

is bimodal with peaks at K± if ν < 1, and is unimodal with peak at N∗ =

K0(1 + ν)
(

1−
√

1− 4ν(1− γ2)/(1 + ν2)
)
/2 when ν > 1. In the limit ν → ∞

N∗ → K, as expected from the self averaging of ξ(t) when ν � 1. See Fig. 5.2

where one can see that the pν(N) captures the position of the peaks well, but not

the width around them. Again, this is because the PDMP ignores all internal

noise, and has compact support [K−, K+]. As for the two species competition

model, a next order approximation that takes into account internal noise can be

found by performing a linear noise expansion around the PDMP (see A.1.2 for

details), but is not necessary for my purposes, the lowest order approximation

pν(N) is sufficient to characterise the fixation properties.

In presenting the results, I use the same parameter sets for ~r as in Section 4.4:

~r ≡ (r1, r2, r3) = ~r(1) ≡ (1, 5, 5)/11 and ~r = ~r(2) ≡ (3, 1, 1)/5, with initial fraction

1/3 of each species ~x0 = (1/3, 1/3, 1/3)T = ~xc. In all figures (except Figure 5.1,

simulation results have been sampled over 104 − 105 realizations.
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Figure 5.1: (c) Sample paths of N(t) (black), densities xi(t) = Ni(t)/N(t) (col-

ored), and typical evolution of the randomly switching K(t) (gray). Parameters

are: (s, r1, r2, r3, ν,K+, K−) = (1/20, 1/3, 1/3, 1/3, 1/4, 2700, 300). N(t) quickly

settles into its (quasi) stationary state while xi vary much more slowly until fix-

ation occurs in a time ∼ O(K0), see Section 5.2.4. Colours are x1(t) in red, x2(t)

in blue, and x3(t) in green, ε = 0. Initially, all species have the same density 1/3.

5.2 Fixation Statistics in the zero-sum switching-

K BDCLV

First I present the results for the zero-sum case, ε = 0. As in the constant-K

BDCLV, the total fixation probability φ̃i depends on the Stage 1 survival and

Stage 2 absorption probabilities. Here, the effect of the environmental random-

ness on these quantities is analysed, by distinguishing again the regimes of (i)

quasi-neutrality, where s� 1 and sK0 � 1; (ii) weak selection, where s� 1 and

sK0 ≈ 10; and (iii) strong selection, where s = O(1) and sK0 � 1.

Similarly, the mean fixation time TF depends on the mean extinction and

absorption times, T1 and T2 characterizing Stages 1 and 2, respectively. This

allows us it to be shown that the mean fixation time TF = T1 + T2 = O(〈N〉) =

O(K0) scales linearly with the average population size when ~x0 = ~xc. This is

similar to the constant K BDCLV, hence we ask, how does random switching

alter the cyclic competition and possibly change the species coexistence time?
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5.2 Fixation Statistics in the zero-sum switching-K BDCLV

Figure 5.2: N -QSD and p∗ν(N) for (a) ν = 0.01, (b) ν = 0.1, (c) ν = 2, (d)

ν = 10. Parameters are (s,K+, K−) = (0.02, 450, 50). Solid lines are histograms

from stochastic simulations and colored dashed lines are PDMP predictions from

(5.6), see text. Black dashed lines indicate N = K± in (a) and (b), N = N∗ in

(c), and N = K in (d), see text.
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Figure 5.3: (a) Stage 1 survival probability φi,i+1 vs. γ for K0 = 250 kept fixed

(K+ ∈ [275, 475] and K− ∈ [25, 225]). and s = 0.01 (black), s = 0.4 (gray). Sim-

ulation results for ν = 10 (circles), ν = 1.2 (squares) and ν = 0.001 (triangles).

(b) φi,i+1 vs. sK0 for K0 = 250, γ = 0.8 and s ∈ {10−k/4, k = 0, . . . , 12} kept

fixed, with ν = 2 (circles) and ν = 0.001 (squares); lines are φi,i+1|(1−γ2)K0
(solid)

and 1
2
(φi,i+1|(1+γ)K0 + φi,j|(1−γ)K0) (dashed) are from the constant-K0 BDCLV. In

panels (a,b) ~r = ~r(1), φ1,2 in purple, φ2,3 in light blue, φ3,1 in orange. (c) Stage

2 absorption probabilities φ1 (red triangles) and φ3 (green squares) vs. ν for

K0 = 250 and γ = 0.8 kept fixed and ~r = ~r(2). Symbols are from simulations for

with s = 0.1 (open) and s = 10−5/4 ≈ 0.056 (filled). Lines are from (5.11) (solid),

(5.10) (dashed), (5.9) (dotted), and assume Pi,i+1 ≈ 1; they capture reasonably

well the ν-dependence of φ1 and φ3 when sK0 . 10, see text. (d) Same as in

panel (c) for φ1 (red triangles) and φ2 (blue squares) vs. ν with s = 10−1/4 and

~r = ~r(1). In all panels ~x0 = ~xc, ε = 0.
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5.2.1 Stage 1: Survival probabilities in the switching-K

BDCLV

To analyze the survival probability φi,i+1 in the switching-K BDCLV, it is con-

venient to consider this quantity in the limits ν → ∞ and ν → 0, where φi,i+1

can be expressed in terms of φi,i+1|K , the survival probability in the constant-K

BDCLV studied in Section 4.4.1.

When ν → ∞, many switches occur in Stage 1 and the EN self averages,

ξ → 〈ξ〉 = 0 (Wienand et al. (2017, 2018)). The population thus rapidly settles in

its N -QSD that is peaked at N = (1−γ2)K0 = K when K0 � 1. Hence, the Stage

1 dynamics under fast switching is similar to the cCLV dynamics in a population

of size (1− γ2)sK0 (see Appendix C.2). This yields φi,i+1
ν→∞
= φi,i+1|(1−γ2)K0

.

When ν → 0, there are no switches in Stage 1, and the extinction of the

first species is equally likely to occur in each environmental state ξ = ±1 (with

K = (1± γ)K0). This gives φi,i+1
ν→0
=
(
φi,i+1|(1+γ)K0 + φi,i+1|(1−γ)K0

)
/2.

The case of intermediate ν can be inferred from the above by noting that the

average number of switches occurring in Stage 1 is O(νK0) (average amount of

time spent in Stage 1 is of order K0, and the environment spends on average

1/ν in each environmental state. Hence the average number of switches in Stage

1 is of order K0/(ν
−1) = K0ν - see Appendix C.4.3 and Figure C.5). As the

population experiences a large number of switches in Stage 1 when ν = O(1) and

K0 � 1, the EN effectively self-averages, ξ(t) ' 〈ξ〉 = 0, and therefore

φi,i+1

ν=O(1)
≈ φi,i+1|(1−γ2)K0

. (5.7)

When ν � 1/K0, there are very few or no switches after a time of order O(K0)

prior to extinction the first species, and therefore

φi,i+1

ν�1/K0≈ 1

2

(
φi,i+1|(1+γ)K0 + φi,i+1|(1−γ)K0

)
. (5.8)

Eq. (5.7) implies that for any ν = O(1), the survival probability of species i, i +

1, i.e the probability that species i − 1 dies out first, is given by the survival

probability in the constant-K BDCLV with K = K0 (same average carrying

capacity) and a rescaled selection intensity (1 − γ2)s. The effect of random

switching is therefore to effectively reduce the selection intensity by a factor
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1−γ2 = 1−(var(K(t))/K2
0) proportional to the variance of the carrying capacity.

The sK0-dependence of φi,i+1 can thus readily be obtained from Figure 4.5 (a,b)

by rescaling s → (1 − γ2)s as shown in Figure 5.3 (a,b). Hence, when there is

enough environmental variability (γ large enough) the survival scenarios differ

from those of the constant-K BDCLV and depend on the switching rate:

1. When ν � 1/K0 (i.e. if the average time before a switch, ν−1, is much

less than mean extinction time, T1 ∼ K0 - see Appendix C.4), switching

reduces the selection by a factor 1− γ2, see Figure 5.3 (b). Hence, there is

a critical γ∗, estimated as γ∗ ≈ (1− 50/sK0)1/2, such that φi,i+1 obeys the

LOSO when γ > γ∗ and sK0 � 1, while the LOW still applies when γ < γ∗.

Therefore, when γ > γ∗, all species have a finite chance to survive Stage 1,

with probabilities ordered according to the LOSO, (φ1,2 ≈ φ2,3 > φ3,1 with

γ∗ ≈ 0.7, in Figure 5.3 (a)). Figure 5.3 (a), also shows that the exact value

ν has little influence on φi,i+1 provided that νK0 � 1 (circles and squares

almost coincide).

2. When ν � 1/K0 (i.e. if the average time before a switch, ν−1, is much

greater than mean extinction time, T1 ∼ K0 - see Appendix C.4), we have

φi,i+1 ≈ (φi,i+1|K+ + φi,i+1|K−)/2. Hence, if sK0 � 1 and γ > γ̂, where

γ̂ ≈ 1 − 50/sK0, φi,i+1|K+ follows the LOW whereas φi,i+1|K− obeys the

LOSO, and the φi,i+1’s therefore interpolate between LOW and LOSO val-

ues: For γ > γ̂, the survival probabilities under strong selection and slow

switching deviate markedly from the purely LOW values of φi,i+1|K0 which

asymptotically approach 0, 1 or 1/2 (see triangles in Figure 5.3 (a) where

γ̂ ≈ 0.5).

3. When s� 1 and sK0 ≈ 10 in regime (ii), changing γ has little effect on the

survival probabilities: the survival probabilities φi,i+1 ≈ 1/3, and remain

ordered according to the LOSO (see black symbols in Figure 5.3 (a)).

These results show that environmental variability leads to new survival sce-

narios in the BDCLV under strong selection: When there is enough variability, all

species have a finite probability to survive even when sK0 � 1. The departure

from the pure LOW survival scenario is most marked in the generic case of a
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finite switching rate (ν � 1/K0). With respect to the constant-K BDCLV, the

general effect of random switching in Stage 1 is therefore to “level the field” by

hindering the onset of the zero-one LOW.

5.2.2 Stage 2: Absorption probabilities in the switching-

K BDCLV

Stage 2 consists of the competition between types i and i + 1 along the edge

(i, i+ 1) of S3. This starts with an initial fraction x̂i of i individuals and ends up

with the absorption of one of the species with probabilities φi (for species i) and

1 − φi (for i + 1). Again x̂i is randomly distributed according to a probability

density P(i,i+1) resulting from Stage 1, see Appendix C.31. Since φi ≈ 1/2 at

quasi-neutrality and φi ≈ 1 under strong selection, see Figure 5.3 (c,d), Stage

2 dynamics is nontrivial in regime (ii). To analyze the stage 2 dynamics under

weak selection s� 1 and K0 � 1, it is again useful to consider the limits ν → 0

and ν →∞:

1. When ν → 0, there are no switches in Stage 2 and absorption is equally

likely to occur in the static environment K = K− or K = K+. Hence, if the

fraction x̂i is known, one has φi(x̂i)
ν→0
= φ

(0)
i (x̂i) = 1

2

(
φi(x̂i)|K− + φi(x̂i)|K+

)
,

where φi(x̂i)|K = (1 − e−αiKx̂i)/(1 − e−αiK), see (4.29). Since x̂i is ran-

domly distributed, one needs to integrate over P(i,i+1): φi
ν→0≡ φ

(0)
i =∫ 1

0
φ

(0)
i (x̂i)P(i,i+1)(x̂i) dx̂i. In general, P(i,i+1) is obtained from stochastic

simulations and has been found to be mostly independent of ν, see Figure

C.2 (c,d). When s � 1 with sK0 . 10, one can again assume P(i,i+1) ≈ 1

(uniform distribution), which allows us to obtain

φi
ν→0
= φ

(0)
i '

1

2

(
φi|K− + φi|K+

)
, where (5.9)

φi|K ≡ (e−αiK + αiK − 1)/(αiK(1− e−αiK)), see (4.31).

1The probability density function of x̂i is generally different in the constant-K and

switching-K BDCLV, see Figure C.2. Yet, for the sake of simplicity, with a slight abuse of

notation, these two quantities are denoted by Pi,i+1(x̂i).
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2. When ν →∞, the DMN self averages (ξ → 〈ξ〉 = 0) (Wienand et al. (2017,

2018)), and the absorption occurs subject to the effective K(t) = K, see

(5.5). Hence, when x̂i is known, φi(x̂i)
ν→∞
= φ

(∞)
i (x̂i) = φi(x̂i)|K, whose

integration over P(i,i+1) gives the absorption probability: φi
ν→∞≡ φ

(∞)
i =∫ 1

0
φ

(∞)
i (x̂i) P(i,i+1)(x̂i) dx̂i. When s � 1 with sK0 . 10, and P(i,i+1) ≈ 1,

we have

φi
ν→∞
= φ

(∞)
i ' φi|K =

e−αiK + αiK− 1

αiK(1− e−αiK)
. (5.10)

3. When the switching rate ν is finite and s � 1, with sK0 ≈ 10, the

probability φi can be computed as in Wienand et al. (2017) and Chap-

ter 3 by exploiting the time scale separation between N and xi, and by

approximating the N -QSD by the PDMP marginal stationary probabil-

ity density (5.6). In this framework, φi can be computed by averaging

φi(x̂i)|N = (1 − e−αiNx̂i)/(1 − e−αiN) over the rescaled PDMP probability

(5.6) (Wienand et al. (2017, 2018)):

φi(x̂i) ' φ
(ν)
i (x̂i) =

∫ K+

K−

φi(x̂i)|N pν/αi(N) dN,

where p∗ν/αi is given by (5.6) with a rescaled switching rate ν → ν/αi due

to an average number O(ν/αi) of switches occurring in Stage 2, see Wien-

and et al. (2018) and Appendix C.4.3. As above, the absorption proba-

bility is obtained by formally integrating over P(i,i+1), i.e. φi ' φ
(ν)
i ≡∫ 1

0
φ

(ν)
i (x̂i) P(i,i+1)(xi) dx̂i. Under weak selection, one can approximate

P(i,i+1) ≈ 1, see Appendix C.3, and, using (4.30) and (4.31), we obtain

φi ' φ
(ν)
i ≈

∫ K+

K−

{
e−Nαi + αiN − 1

αiN (1− e−αiN)

}
pν/αi(N) dN. (5.11)

The uniform approximation of P(i,i+1) ≈ 1 is legitimate when sK0 ≈ 10,

and has broader range applicability than in the constant-K case, see Appendix

C.3 and Figure C.2. Hence, Eq. (5.11), along with (5.9) and (5.10), captures

the ν-dependence of φi over a broad range of values ν when s � 1. In fact,

simulation results of Figure 5.3 (c,d) show that the φi’s generally have a non-

trivial ν-dependence. When s � 1 and sK0 ≈ 10, this is satisfactorily captured
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Figure 5.4: Total fixation probabilities φ̃i vs. sK0 for values of s ∈ (10−3, 1) and

with K0 = 250 and γ = 0.8 kept fixed, see text. (a) ~r = ~r(1); (b) ~r = ~r(2). Shaded

areas and symbols are from stochastic simulations with ν = 10 (◦), ν = 0.1

(�), ν = 10−5/2 (�). Solid and dashed black lines show respectively φ̃i|K and

(φ̃i|K− + φ̃i|K+)/2 in both panels and insets, see text. Vertical light gray lines

indicate φ̃i for s = 10−1/4 (a) and s = 10−5/4 (b). φ̃i increases with ν when

the solid black line is above the dashed black line, otherwise φ̃i decreases with

ν, see text. Dashed colored lines show φ̃2 in (a) and φ̃1 in (b) obtained from

φ̃i ≈ (1 + φi − φi−1)/3, with (5.11) and ν = 10. Insets: φ̃i vs. ν for s = 10−1/4

(a) and s = 10−5/4 (b); symbols are from stochastic simulations and solid lines in

inset (b) are predictions of (4.32) obtained using (5.11), with φi,i+1, φi−1,i inferred

from simulations. Fixation scenario changes at ν = ν∗(s) with ν∗ ≈ 10−2 in (a)

and ν∗ ≈ 10−5/2 in (b), see text. In all panels and insets: species 1 in red, species

2 in blue, species 3 in green; ~x0 = ~xc, ε = 0.

by (5.9)-(5.11), with φ
(ν)
i ≈ φ

(0)
i when ν � 1, and φ

(ν)
i ≈ φ

(∞)
i when ν � 1,

see Figure 5.3 (c, filled symbols). Clearly, the assumption P(i,j) ≈ 1 and the

timescale separation break down when s = O(1) (Wienand et al. (2018)), and the

approximations (5.9)-(5.11) are then no longer valid.

5.2.3 Overall fixation probabilities in the switching-K BD-

CLV

The overall fixation probability φ̃i is obtained from the survival and absorption

probabilities according to φ̃i = φi,i+1φi + φi−1,i(1− φi−1), see Eq. (4.32).

In order to study the influence of the environmental variability on φ̃i, it is

again useful to consider the limiting cases of fast/slow switching. In fact, as
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shown in Figure 5.4, when ν →∞, 0, the overall fixation probability is given by

φ̃i → φ̃
(∞)
i when ν →∞ and φ̃i → φ̃

(0)
i when ν → 0, with

φ̃
(∞)
i ≡ φ̃i|K = φ̃i|(1−γ2)K0

(5.12)

φ̃
(0)
i ≡ 1

2

(
φ̃i|(1+γ)K0 + φ̃i|(1−γ)K0

)
, (5.13)

where φ̃i|K is the overall fixation probability in the BDCLV with constant carrying

capacity K, see Figure 4.6 (a,b). These results stem from the outcomes of Stage

2 when αiK0 � 1 and from Stage 1 when αiK0 � 1:

1. When sK0 � 1, in regime (i) and about the boundary of regimes (i)-

(ii): φi,i+1 ≈ 1/3 for all species and P(i,i+1) ≈ 1, see Appendix C.3. The

overall fixation probabilities are thus given by φ̃i ≈ (1 +φi−φi−1)/3, where

φi ≈ φ
(∞)
i if ν/s� 1 and φi ≈ φ

(0)
i if ν/s� 1, yielding (to leading order in

sK0)

φ̃i ≈ φ̃i|κ =
1

3

[
1 +

sκ

12
(ri − ri−1)

]
, (5.14)

where κ = (1−γ2)K0 if ν/s� 1 and κ = K0 if ν/s� 1. In agreement with

Figure 5.4, Eq. (5.14) predicts that φ̃i is greater than 1/3 and increases with

sK0 (at ν fixed) if ri > ri−1, whereas φ̃i is less than 1/3 and is a decreasing

function of sK0 (at ν constant) when ri < ri−1.

2. When αiK0 � 1, about the boundary of regimes (ii)-(iii) and in regime

(iii): Selection strongly favors species i on edge (i, i+ 1) in Stage 2, and the

fixation probability is determined by the outcome of Stage 1: φ̃i ≈ φ̃
(∞)
i if

ν � 1/K0 and φ̃i ≈ φ̃
(0)
i when ν � 1/K0.

Hence, in regime (i) and about the boundary of regimes (i)-(ii) and (ii)-(iii), as

well as in regime (iii) we have φ̃i → φ̃
(∞)
i when ν →∞ and φ̃i → φ̃

(0)
i when ν → 0.

We have found that the fixation probabilities of the species surviving Stage 1 vary

monotonically with ν, whereas the fixation probability of the species most likely

to die out first varies little with ν, see the insets of Figure 5.4. Therefore, as

corroborated by Figure 5.4, for finite switching rates, we have

min
(
φ̃

(0)
i , φ̃

(∞)
i

)
< φ̃i < max

(
φ̃

(0)
i , φ̃

(∞)
i

)
. (5.15)
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5.2 Fixation Statistics in the zero-sum switching-K BDCLV

Taking into account the average number of switches arising in Stages 1 and 2,

see C.4.3, we have φ̃i ≈ φ̃
(∞)
i when ν � max(s, 1/K0) and φ̃i ≈ φ̃

(0)
i if ν �

min(s, 1/K0), see Figure 5.4.

According to Eqs. (5.12)-(5.15), the fixation probabilities under random switch-

ing can be inferred from φ̃i|K obtained in the constant-K BDCLV with a suitable

value of K:

1. Under fast switching, φ̃i coincides with φ̃i|(1−γ2)K0
. Since φ̃i|K is a function

of sK, when the average carrying capacity K0 is kept fixed, φ̃ is thus given

by φ̃i|K0 subject to a rescaled selection intensity (1 − γ2)s. Hence, when

ν � max(s, 1/K0) and K0 is kept fixed, the effect of random switching is

to reduce the selection intensity by a factor 1− var(K(t))/K2
0 .

2. Under slow switching, φ̃i is given by the arithmetic average of φ̃i|K+ and

φ̃i|K− . When the average carrying capacity K0 is kept fixed, φ̃ is thus given

by the average of φ̃|K0 subject to a selection intensity (1 +γ)s and (1−γ)s.

These predictions agree with the results of Figure 5.4, and imply that the sK0-

dependence of φ̃i can be readily obtained from Figure 4.6 (a,b).

At this point, we can discuss the effect of random switching on φ̃i by compar-

ison with φ̃i|K0 in the constant-K BDCLV, when K0 is kept fixed:

• Random switching “levels the field” of competition and balances the effect of

selection: The species that is the least likely to fixate has a higher fixation

probability under random switching than under a constant K = K0, com-

pare Figures 4.6 (a,b) and 5.4 (see also Figure 5.5). The DMN therefore

balances the selection pressure that favours the fixation of the other species,

and hence levels the competition.

• Random switching effectively reduces the selection intensity under fast switch-

ing: When ν � max(s, 1/K0), we have seen φ̃i = φ̃i|K0 subject to a rescaled

selection intensity (1−γ2)s = (1−var(K(t))/K2
0)s. Fast random switching

therefore reduces the selection intensity proportionally to the variance of

K. Hence, under strong selection and fast switching, a zero-one LOW law

appears in the switching-K BDCLV only in a population whose average
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5.2 Fixation Statistics in the zero-sum switching-K BDCLV

size is 1/(1−γ2) times greater than in the constant-K BDCLV. This means

that when K has a large variance (large γ) the onset of the zero-one LOW,

with φ̃i → 0, 1/2, 1, in the fast switching-K BDCLV arises when sK0 � 1

and K0 is at least one order of magnitude larger than in the constant-K

BDCLV (e.g., K0 & 104 instead of K0 & 103 when γ = 0.8), see also Figure

5.5.

• Random switching can yield new fixation scenarios: Which species is the

most likely to fixate can vary with ν and γ, at s and K0 fixed, and does

not generally obey a simple law (neither LOW nor LOSO). When the envi-

ronmental variance is large enough (γ & γ∗) the shaded areas of Figure 5.4

can overlap. This occurs when the fixation probabilities of the two most

likely species to prevail cross, see insets of Figure 5.4. This yields differ-

ent fixation scenarios below/above a critical switching rate ν∗(s): one of

these species is the best off at low switching rate, while the other is the

best to fare under fast switching. These crossings therefore signal a stark

departure from the LOW/LOSO laws. For a crossing between φ̃i and φ̃i+1

to be possible, one, say φ̃i, should decrease and the other increase with ν,

i.e. φ̃
(∞)
i < φ̃

(0)
i and φ̃

(∞)
i+1 > φ̃

(0)
i+1. Thus, if φ̃

(0)
i > φ̃

(0)
i+1 and φ̃

(∞)
i < φ̃

(∞)
i+1 ,

there is a critical switching rate ν = ν∗(s) where φ̃i = φ̃i+1. The crossing

conditions can be determined using (5.12) and (5.13). A new fixation sce-

nario emerges when the switching rate varies across ν∗: φ̃i+1 > φ̃i when

ν > ν∗, while φ̃i+1 ≤ φ̃i when ν ≤ ν∗. Intuitively, crossings are possible

when the variance of K is large (γ & γ∗), ensuring that Stage 1 ends up

with comparable probabilities of hitting two edges of S3, and the two most

likely species to fixate have a different ν-dependence arising from Stage 2,

see Figure 5.3 (c,d). In the inset of Figure 5.4 (a), φ̃1 decreases and φ̃2

increases with ν; they intersect at ν = ν∗ ≈ 0.01 for s = 10−1/4: Species

1 is the most likely to fixate at ν < ν∗ and species 2 the most likely to

prevail at ν > ν∗, and we have φ̃1 > φ̃2 � φ̃3 for ν < ν∗ and φ̃2 � φ̃1 > φ̃3

when ν > ν∗. This is to be contrasted with Figure 4.6 (a), where the LOW

yields φ̃1|K0 � φ̃2|K0 � φ̃3|K0 . The inset of Figure 5.4 (b), shows another
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5.2 Fixation Statistics in the zero-sum switching-K BDCLV

example of a fixation scenario that depends on ν, with φ̃3 > φ̃1 > φ̃2 when

ν < ν∗ ≈ 0.03 and φ̃1 & φ̃3 > φ̃2 when ν > ν∗.

The main effect of the random switching of K is therefore to balance the

influence of selection and to “level the field” of cyclic dominance according to

(5.12)-(5.15). This is particularly important under strong selection and large K

variability, when random switching hinders the LOW by effectively promoting

the fixation of the species that are less likely to prevail under constant K = K0.

This can result in new fixation scenarios in which the most likely species to win

varies with the variance and rate of change of the carrying capacity.

To rationalize further how environmental variability affects the fixation prob-

abilities, we compute the ratio of the fixation probability under switching K and

that in the constant environment with K = K0:

ρi ≡
φ̃i

φ̃i|K0

, (5.16)

which describes the effect of environmental noise on the fixation probability: we

say that random switching enhances the fixation of species i when ρi > 1, whereas

it hinders species i’s fixation when ρi < 1 and environmental variability has no

influence if ρi ≈ 1. Using (5.12) and (5.13), we have ρi → ρ
(∞)
i ≡ φ̃i|(1−γ2)K0

/φ̃i|K0

and ρi → ρ
(0)
i ≡ (φ̃i|K−+ φ̃i|K+)/(2φ̃i|K0) for fast and slow switching, respectively.

Simulation results of Figure 5.5 show that ρi varies non-monotonically across

regime (i)-(iii), with a weak dependence on the switching rate ν, and ρi lying

between ρ
(0)
i and ρ

(∞)
i for intermediate ν.

It is clear in Figure 5.5 that, when there is enough environmental variance

(large γ), the main effect of random switching arises at the boundary of regimes

(ii)-(iii) and in regime (iii): In this case, the DMN balances the strong selection

pressure yielding φ̃i < 1 and ρi < 1 when φ̃i|K0 ≈ 1 (for ri < ri±1), and φ̃i > 0 and

ρi > 1 when φ̃i|K0 ≈ 0 (for ri > ri±1). This signals a systematic deviation from

the asymptotic zero-one law predicted by the LOW in the constant-K BDCLV.

The LOW and the zero-one LOW still arise in the switching-K BDCLV with

s = O(1), but they set in for much larger values of K0 than in the constant-

K BDCLV (for K0 = 103 − 104), see insets of Figure 5.5. This demonstrates
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5.2 Fixation Statistics in the zero-sum switching-K BDCLV

Figure 5.5: ρi vs. sK0 for values of s ∈ (10−3, 1) and with K0 = 250 and γ = 0.8

kept fixed, see text. (a) ~r = ~r(1); (b) ~r = ~r(2). Shaded areas and symbols are from

stochastic simulations with ν = 10 (◦), ν = 0.1 (�), ν = 10−5/2 (�); lines show

ρ
(∞)
i (fast switching, solid) and ρ

(0)
i (slow switching, dashed), see text. Insets: (a)

ρ
(∞)
1 (solid) and ρ

(0)
1 (dashed) vs. sK0; (b) ρ

(∞)
2 and ρ

(∞)
3 (solid), ρ

(0)
2 and ρ

(0)
3

(dashed) vs. sK0 with γ = 0.8 and K0 = 10000 fixed and s varies between 1/K0

and 1. When sK0 = 103 − 104, ρi → 1. In both panels and insets: species 1 in

red, species 2 in blue, and species 3 in green; ~x0 = ~xc; ε = 0.

again that environmental variability acts to “level the field” of cyclic competition

among the species by hindering the onset of the zero-one LOW.

From Eq. (5.14), when sK0 � 1, to leading order, we find

ρi = 1− s(K0 − κ)

(
ri − ri−1

12

)
, (5.17)

with κ = (1 − γ2)K0 if ν/s � 1 and κ = K0 if ν/s � 1. When sK0 � 1

and ν/s � 1, we thus have have ρi ≈ 1 − sγ2(ri − ri−1)/12 when ν/s � 1

and ρi = 1 + O(s2) when ν/s � 1. This means that in regime (i), and at the

boundary of regimes (i)-(ii), when the switching is fast enough (ν � s), ρi > 1

if ri < ri−1 and ρi < 1 if ri > ri−1, which is in agreement with the results of

Figure 5.5. Accordingly, whether a fast switching environment promotes/hinders

species i under weak selection depends only on its growth rate relative to that

of its strong opponent. In Figure 5.5, we notice a non-monotonic dependence of

ρi on sK0 resulting from a different influence of environmental variability under

weak and strong selection: In Figure 5.5, the fixation probability of a species that

is promoted/hindered under weak selection is hindered/promoted under strong

selection.
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5.3 Fixation properties of the close-to-zero-sum switching-K BDCLV

Figure 5.6: TF/K0 vs. ν for r1 = 1/11(green), 1/3(black), 3/5(blue) and r2 =

r3 = (1 − r1)/2, with s = 10−1/2 (circles) and s = 10−3/2 (triangles), showing

TF = O(K0) over a broad range of values ν, see text. Parameters are: K0 =

250, γ = 0.8 (K− = 50, K+ = 450) and ~x0 = ~xc; ε = 0.

5.2.4 Mean Fixation time in the switching-K BDCLV

As for the constant-K BDCLV, the mean fixation time TF is the average time

taken for one species to take over the population. Similarly to the fixation prob-

ability, this quantity consists of one contribution from Stage 1, referred to as the

mean extinction time, T1, and the mean absorption time, T2, arising from Stage 2.

T1 and T2 are studied in detail in Appendix C.4, the main result of which is that

when ~x0 = ~xc, the overall mean fixation time TF = O(〈N〉) = O(K0). This again

means that species coexistence is lost in a mean time scaling with system size,

with subleading prefactors that vary slowly with ν and s, see Figure 5.6. Hence

while random switching balances the effect of selection to make competition more

egalitarian, it does not prolong species coexistence.

5.3 Fixation properties of the close-to-zero-sum

switching-K BDCLV

Here I will briefly discuss the effect of environmental variability on the close-

zero-sum BDCLV, defined as (5.1) - (5.4) with |ε| � 1. As in Section 4.4.2,
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5.3 Fixation properties of the close-to-zero-sum switching-K BDCLV

Figure 5.7: (a) φ̃i vs. sK0 when K switches between K− = 50 and K+ =

450 (K0 = 250, γ = 0.8), with s ∈ (10−3, 1). Symbols are stochastic simulation

results for ε = −0.2 and and ν = 10 (filled diamonds) and ν = 0.001 (open

squares). Lines are stochastic simulation results from the BDCLV with same

switching carrying capacity, ν = 10 (solid) and ν = 0.001 (dashed) and rescaled

selection intensity s → s(1 + ε/2), see text and Figure 5.4. (b) Same as in

panel (a) with ε > 0: Symbols are stochastic simulation results for ε = 0.2; solid

(ν = 10) and dashed (ν = 0.001) lines are results from the BDCLV with same

switching carrying capacity and selection intensity s→ s(1 + ε/2). In all panels:

red denotes species 1, blue species 2, and green species 3; ~r = ~r(1) and ~x0 = ~xc.

we use the approximation f̄ ≈ 1 and assume that there is timescale separation

between N and xi. Then, proceeding as in Section 4.4.2 and focusing on the weak

selection regime where s� 1 and sK ≈ 10, we can assume that φi,i+1 ≈ 1/3 and

P(i,i+1) ≈ 1, and find that φi is given by (5.11) with the same carrying capacity

and rescaled selection intensity s → s(1 + ε/2). With the same arguments as

in Section 4.4.2, the overall fixation probabilities across regimes (i) - (iii) are

approximately the same as in the zero-sum switching-K BDCLV with rescaled

selection intensity s → s(1 + ε/2). This is confirmed by the simulation results

in Figures 5.7, where we present φ̃i for fast and slow switching rates. As in the

zero-sum BDCLV, results for intermediate ν lie between the data shown in Figure

5.7.

The mean fixation time of the close-to-zero-sum rock-paper-scissors game un-

der weak selection can be obtained with a similar argument for the fixation

probabilities. In fact, the mean absorption time T2 and the mean fixation time

TF = T1 +T2 (T1 varies little with s in regime (ii), see Figure C.3(a)) under weak
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5.4 Summary

selection can be obtained from their values in the BDCLV with a rescaled selec-

tion intensity s→ s(1 + (ε/2)), as shown in Figure 5.8 (a,b). This confirms that

the effect of 0 < ε� 1 on the fixation properties simply boils down to increasing

the selection intensity by a factor 1+(ε/2) with respect to the BDCLV when sK0

are in regimes (i) and (ii). When sK0 � 1 (regime (iii)), the above argument

breaks down and rescaling the selection intensity of the BDCLV’s mean fixation

time is no longer a good approximation: As for the close-to-zero-sum constant-K

BDCLV, under strong selection, the actual TF is systematically overestimated

and underestimated by the s → s(1 + (ε/2)) rescaling when ε > 0 and ε < 0

(compare Figure 5.8 with Figure 4.8(b)). This is not surprising when you con-

sider that ε > 0 (resp. < 0) corresponds to the case where the interior fixed point

is now unstable (stable).

Hence, from these observations we can draw the same conclusion as in Sec-

tion 4.4.2: The fixation statistics for close-to-zero-sum rock-paper-scissors games,

|ε| � 1 subject to a randomly switching carrying capacity, are well described by

those of the zero-sum case with a fluctuating carrying capacity, with selection

rescaled as s→ (1 + ε/2)s.

5.4 Summary

This Chapter has shown that external noise in the form of a randomly switching

carrying capacity has a marked effect on the outcome of Rock-Paper-Scissors

games, here formulated as the BDCLV introduced in Section 4.4. This is because

the outcome of the cyclic competition is driven demographic fluctuations which

depend on the population size. This varies with the carrying capacity, hence

internal noise is coupled to environmental noise: In general, the main results

are: Firstly, random switching ‘levels the field’ of competition and balances the

effect of selection. When the average carrying capacity is kept constant, the

species that is least likely to prevail has a higher probability to fixate under

random switching than in a static environment. In particular, when the rate

of switching is very large, the effect of the environmental noise is to effectively

reduce the selection intensity by a factor that increases with the variance of the

carrying capacity. Thus, when the carrying capacity has a large variance, the
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Figure 5.8: (a) TF/K0 vs. sK0 when K switches between K− = 50 and K+ = 450

with s ∈ (10−3, 1), and ν = 10 (closed symbols) and ν = 0.001 (open symbols).

Symbols are from stochastic simulations obtained for ε = −0.2; solid (ν = 10)

and dashed (ν = 0.001) lines are from the switching-K BDCLV obtained with

the same K(t) but selection intensity s(1 + ε/2) = 0.9s. (b) Same as in panel (a)

with ε > 0: Symbols are stochastic simulation results for ε = 0.2; solid (ν = 10)

and dashed (ν = 0.001) lines are results from the BDCLV with same switching

carrying capacity and selection intensity s → s(1 + ε/2) = 1.1s. In both panels:

~r = (1, 1, 1)/3 (black), ~r = (1, 5, 5)/11 (green), ~r = (3, 2, 2)/5 (blue); ~r = ~r(1) and

~x0 = ~xc. ~r = ~r(1) and ~x0 = ~xc.
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‘law of the weakest’ becomes a zero-one only when the average population size

is much larger than in the case without external noise. Additionally, external

noise can produce new fixation scenarios, not obeying the LOSO or LOW, that

are not observed in the case without environmental randomness. This is due the

absorption probabilities in Stage 2 depending on the switching rate, leading to one

species being favoured below a critical ν and the other for fast switching. Fixation

still occurs after a mean time that scales linearly with the average population size,

with a subleading prefactor that depends on the switching rate. Hence, while

environmental switching makes cyclic competition more even, it does not prolong

species coexistence. Finally, as for the case without external noise, the fixation

probabilities of close-to-zero-sum games can be found by rescaling the selection

intensity.
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Chapter 6

cCLV with a Variable Predation

Rate

The final example of external noise that I will consider will be the effect of a

variable reaction rate on the cCLV model introduced in Section 4.1. This is the

simplest model of cyclic competition, with three dominance-replacement reactions

constituting a zero-sum game where the total population size is fixed. Here

the external noise affects one of the dominance-replacement rates: one of them

switches between two values while the other two are assumed constant. This

corresponds to the case where environmental variability corresponds to more or

less favourable conditions for one of the species with the other two unaffected.

As for the previous Chapter, I will be interested in the effect of external noise on

the fixation probability of each species φi and the mean extinction time text (In

this Chapter, this is defined as the time it takes for the first species to die out,

since once this happens the fate of the system is known). In particular, when

does external noise causes a departure from the previously established ‘LOW’ for

large populations, ‘LOSO’ for small populations and the linear dependence of the

mean extinction time on N?

In Section 6.1 I will introduce the model and its basic properties, then the

effect of noise in large populations will be analysed in detail Section 6.2. Section

6.3 gives a special case when the effect of noise can be worked out exactly when

N = 3. A summary of the effect of random switching in terms of the population

size, N , switching rate, ν, and external noise intensity, ∆, is then presented in
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6.1 Model Definition

Section 6.4, and a description of the extension to the case where all three rates

varying time with markedly different time-scales in presented in Section 6.5.

6.1 Model Definition

As in Section 4.1, we consider a well-mixed population of size N , with N1 individ-

uals of species 1, N2 of type 2 and N3 of type 3. The population size (and therefore

strength of demographic noise) is kept fixed, but its composition changes in time

due to cyclic competition between the species: 1 dominates 2, 2 dominates 3 and

3 dominates 1 according to the reaction scheme:

[N1, N2, N3]
k1−→ [N1 + 1, N2 − 1, N3]

[N1, N2, N3]
k2−→ [N1, N2 + 1, N3 − 1] (6.1)

[N1, N2, N3]
k3−→ [N1 − 1, N2, N3 + 1].

These are dominance-replacement reactions, where when two species interact, the

weaker (according to the cyclic competition) dies and is instantaneously replaced

by an offspring of the stronger. For example when individuals of species 1 and

2 interact, 1 kills 2 and replaces it with a species 1 offspring with rate k1. I will

assume that external noise affects the rate that 1 replaces 2, switching between

two values according to a symmetric dichotomous Markov process,

k1 = k1(ξ(t)) = k + ∆ξ =

{
k+ = k + ∆ if ξ = +1

k− = k −∆ if ξ = −1,
(6.2)

where 0 < ∆ < k is the intensity of the environmental noise and ξ varies in time

according to:

ξ
ν−→ −ξ (ξ ∈ {−1,+1}) . (6.3)

To illustrate the most interesting effects of the noise, I will assume that species

1 is the strongest in the fixed environment i.e. k > k2, k3. Hence the states

ξ = {+1,−1} correspond to times when the environment is more/less favourable

to species 1 than in the constant environment. This model will be abbreviated

as ‘CLVDN’
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6.1 Model Definition

As discussed in Section 4.1, in a constant environment the mean field equa-

tions are characterised by a neutrally stable coexistence fixed point at ~x∗ =

(k2, k3, k1)/(k1 + k2 + k3), with orbits characterised by the conservation of R =

xk1
1 x

k3
2 x

k1
3 (where x1 = N1/N etc.). In finite populations, stochastic trajectories

follow the deterministic orbits for a small transient, performing a random walk

between them until the boundary of the state space S3 is hit. The fixation prob-

abilities are characterised by the ‘LOW’ in large populations (N & 100) (which

becomes a zero-one law asymptotically), and the ‘LOSO’ when N . 20. It has

also been shown that the mean fixation time scales with N (see Section 4.1 for a

description of these laws).

With external noise in the form of a variable rate k1, the process forms a

piecewise deterministic Markov process when the population size N → ∞, with

the mean fractions of each species evolving according to:

dx1

dt
= x1 [(k + ∆ξ)x2 − k3x3] ,

dx2

dt
= x2 [k2x3 − (k + ∆ξ)x1] , (6.4)

dx3

dt
= x3 [k3x1 − k2x2] .

Hence each environment is characterised by its own coexistence fixed point, ~x∗±1 =

(k2, k3, k
±)/(k2 + k3 + k±), and conserved quantity R± = xk2

1 x
k3
2 x

k±
3 (see Figure

6.1). Thus, when the environment switches (after an average time of ν−1), the

location of the fixed point changes from ~x∗ξ to ~x∗−ξ. The dynamics then settle onto

a new set of orbits that can be closer to the boundaries of the phase space, the

amplitude and period of the oscillations change and the densities can suddenly

be very close to 0 or 1. (see Figure 6.2). As for the case without external noise,

demographic fluctuations in finite populations cause the extinction of two species

and the fixation of the system by the remaining species.

I will now discuss the effect of a switching rate on the fixation probabilities

in large populations, focusing on the different switching regimes as characterised

by the rate ν.

113



6.1 Model Definition

2 1

3

2 1

3

Figure 6.1: Stochastic orbits (red) of the CLVDN with ν = 0 (i.e. the system

only experiences one environment), k = 3 and ∆ = 2.7: Orbits surrounding (a)

~x∗−1 (circle) in the state ξ = −1, and ~x∗+1 (circle) in the state ξ = +1 in (b).

Black solid lines indicate the ‘outermost orbit’ in each state ξ = ±1 (Berr et al.

(2009)) (see Section 6.2.3) : It passes at a distance 1/N from the absorbing edge

12 in (a) and from either of the absorbing edges 13 and 23 (b). The coexistence

state ~x∗ is shown as a reference (triangle). Other parameters are k2 = k3 = 1 and

N = 1000.

Figure 6.2: Solid: Time series of N3(t) in the CLVDN in a population of size N =

1000 (single simulation realization). Dashed: PDMP sample path for x3(t)N ,

with x3(t) obtained from (6.4). Vertical dotted black lines indicate the points

in time when the environment switches. Light gray indicates the evolution in

the environmental state ξ = +1 and dark gray corresponds to ξ = −1. Other

parameters are: k1 = 2, k2 = k3 = 1,∆ = 1.2 and ν = 0.05.
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6.2 Effect of Noise on Fixation Statistics in Large Populations

6.2 Effect of Noise on Fixation Statistics in Large

Populations

Determining the effect of external noise on the fixation probability is an intriguing

puzzle, the result of which is not obvious a-priori. In this Section I will discuss

the effect of external noise in large populations, in which the fixation probabilities

follow the ‘LOW’ in a constant environment (see (4.8))). I will show that different

scenarios emerge above and below a critical environmental intensity ∆∗ ≡ k−kmin,

where kmin = min{k2, k3}. Here, because k > k2, k3, the LOW predicts that

φ1 → 0 when N � 1, the LOW is no longer valid when the fixation probability

of species 1 no longer vanishes in a large population.

In order to understand the results, in the subsequent subsections extensive

computer simulations are reported with k2 = k3 = 1 and k > 1. Hence in these

examples the critical intensity is ∆∗ = k− 1 > 0, with k− > 1 when ∆ < ∆∗ and

k− < 1 when ∆ > ∆∗, while k+ > 1 for al values of ∆. Hence when ∆ < ∆∗

species 2 and 3 are the weakest in both environments, but when ∆ > ∆∗ species 2

and 3 are the weakest in one environment and 1 is in the other. The simulations

were performed using the Gillespie algorithm (Gillespie (1977)) with averages for

φ and text taken over 10000 runs for each parameter set, with simulations started

at the fixed point in the absence of external noise ~x∗ = (1, 1, k)/(k + 2). The

population size N ∼ 103 is large enough so that in the absence of noise the LOW

holds, where (k1, k2, k3) = (k, 1, 1) predicting that (φ1, φ2, φ3)
N�1−−−→ (0, 1/2, 1/2).

The simulation results of Figures 6.3(a,b), 6.4(a,b) and 6.5(a,b) confirm that

text scales with the population size N in all regimes. This can be explained as

in the cCLV: extinction in the CLVDN results from a random walk between the

nested neutrally stable orbits in the phase space S3 driven by demographic noise,

see Figure 6.1. In the CLVDN the erratic trajectories depend on the environment,

changing with ∆ and k. however it still takes ∼ N2 infinitesimal steps occurring

at time increment ∼ 1/N to reach the edge of S3 starting from the interior of the

phase space. Hence the mean extinction time scales with N , i.e. text ∼ N , as

verified in Figures 6.3(a), 6.4(a) and 6.5(a).

Since text scales with the population size, and as the average time between

two random switches is ν−1, the average number of environmental switches before
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Figure 6.3: text and φi of the CLVDN in the slow-switching regime. (a) Heatmap

of text as function of k/(k + 2) and ∆/k for (N, ν) = (1000, 10−4): text increases

when ∆ is raised from 0 to ∆∗ = k − 1 and decreases after. (b) text vs N for

k = 3, Nν = 0.1 (10−4 ≤ ν ≤ 10−3), ∆ = (0.5, 2, 2.7) represented by blue,

orange and purple circles respectively. Open symbols show results for ∆ = 0.

text scales (approximately) linearly with the population size and is largest when

∆ = k − 1 (see text). (c) φi, i ∈ {1, 2, 3} vs. ∆/k with (N, ν) = (1000, 10−4) and

(N, ν) = (2000, 5× 10−5) represented by crosses and circles respectively. Colour

code: species 1 is in red, 2 in blue, and 3 in green. As an eyeguide, there is a

vertical line at ∆∗/k.

extinction is of order Nν. Thus I will discuss three regimes: (a) the slow switching

regime where Nν � 1 (Section 6.2.1), (b) the fast switching regime where Nν �
1 (Section 6.2.2), and (c) the intermediate switching regime where Nν ∼ O(1)

(Section 6.2.3). These situations correspond to the dichotomous noise having (a)

long correlation time, (b) short correlation time, and (c) a finite correlation time,

when compared to the mean extinction time text.
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6.2.1 Slow-switching regime Nν � 1

In this regime, text � 1/ν, and the external noise has a long correlation time

1/ν � N � 1. Hence, only very few or no switches occur prior to extinction.

This means that in this regime the population is as likely to be locked into either

of the environmental states ξ = ±1 (since 〈ξ〉 = 0) until one species takes over

and the others go extinct after a time of order text ∼ N . This can be used to

determine the fixation probabilities:

• When ∆ < ∆∗ and N is sufficiently large, the LOW is followed because

k± > 1: 2 and 3 are the ‘weakest’ species and therefore the most likely to

survive in a large population, i.e. φ2 ≈ φ3 > φ1 (Berr et al. (2009)). When

N � 1, the LOW takes its zero-one form and thus species 2 or 3 is certain

to be the sole species to survive whereas 1 goes extinct: (φ1, φ2, φ3)
N�1−−−→

(0, 1/2, 1/2), as shown in Figure 6.3(c).

• When ∆ > ∆∗, the LOW is not valid because k− < 1 and k+ > 1: When

ξ = −1, k1 = k− < 1 and 1 is the weakest species, whereas when ξ = +1,

k1 = k+ > 1 and 1 is the strongest species. Since the population is as likely

to be locked in either state ξ = ±1, in half of the realizations species 1 is

the most likely to survive and in the others it is the least likely to survive.

When N � 1, in the former case species 1 is certain to be the sole surviving

species whereas in the latter situation it is guaranteed to go extinct while

species 2 and 3 have the same probability to survive. Hence, when N � 1

we find (φ1, φ2, φ3)
N�1−−−→ (1/2, 1/4, 1/4), which is in good agreement with

the results of Figure 6.3(c). So even though the LOW is valid in either

environmental state, the fact that a realization is effectively locked in the

state it starts in leads the LOW to not being valid overall.

• When ∆ = ∆∗ = k − 1, we have k− = k2 = k3 = 1 and k+ > 1. Hence,

all species are as likely to survive when ξ = −1 (i.e. φi = 1/3 ∀i), while

1 is the strongest species and therefore the least likely to survive when

ξ = +1. When N � 1, this means that species 1 is certain to go extinct

in the environmental state ξ = +1 and the other two species survive with

probability 1/2 each. Taking into account that the system is equally likely
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to stay in either state ξ = ±1, we find (φ1, φ2, φ3)
N�1−−−→ (1/6, 5/12, 5/12),

as confirmed by Figure 6.3(c).

Furthermore, in Figure 6.3(c) the results for different values of (N, ν) are

identical when Nν is kept constant. One can proceed similarly if the rates are

all different, say k > k2 > k3 and finds that (φ1, φ2, φ3)
N�1−−−→ (0, 0, 1) when

∆ < ∆∗ = k−k3, and (φ1, φ2, φ3)
N�1−−−→ (1/2, 0, 1/2) when ∆ > ∆∗. These results

indicate a transition occurring at ∆ = ∆∗, and that external noise alters the

fixation probabilities when ∆ > ∆∗: if the external noise is sufficiently strong,

∆ > ∆∗, no species is guaranteed to survive and the LOW is no longer valid.

The results of the fixation probabilities can qualitatively explain the depen-

dence of text on ∆ and k by noting that when ∆ > 0 and k increase, ~x∗+1 moves

toward the absorbing boundaries of species 2 and 3 while ~x∗−1 moves toward the

absorbing boundary of species 1, see Figure 6.1. When ∆ < ∆∗ and N � 1, the

system attains either the absorbing state of species 2 or 3 which takes longer from

the orbits surrounding ~x∗−1 than from those around ~x∗+1. Hence, when ∆ < ∆∗,

text increases as ∆ increases (with k fixed) because ~x∗−1 moves closer to the center

of S3. However, when ∆ < ∆∗ is kept fixed, text decreases when k increases and

approaches the edges of S3. When ∆ > ∆∗ and N � 1, there is a finite probabil-

ity to reach any of the three absorbing states and this takes approximately the

same time from any of the orbits surrounding ~x∗±1 which decreases as k and ∆

increase (since ~x∗±1 approach the boundaries of S3). Hence, text decreases when k

and ∆ increase and ∆ > ∆∗. text is maximal when (∆, k) = (k − 1, 1), and it is

minimal when ∆→ k � 1.

6.2.2 Fast-switching regime Nν � 1

In this regime, the environment varies rapidly with respect to the time scale of

the population evolution. Hence, k1(ξ) switches many times (∼ Nν � 1 times,

on average) before extinction occurs, and thus self-averages: k1(ξ)→ k1(〈ξ〉) = k

(Bena (2006); Horsthemke & Lefever (1984); Wienand et al. (2017)). In this

regime, the CLVDN is approximately identical to the cCLV with reaction rates

(k1, k2, k3) = (k, 1, 1) and therefore
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Figure 6.4: text and φi of the CLVDN as in Figure 6.3 but in the fast-switching

regime. (a) Heatmap of text as function of k/(k + 2) and ∆/k for (N, ν) =

(1000, 100). (b) text vs N for k = 3, Nν = 105 (100 ≤ ν ≤ 1000), ∆ = (0.5, 2, 2.7)

represented by blue, orange and purple circles respectively. Open symbols show

results for ∆ = 0. text scales (approximately) linearly with the population size and

is almost independent of ∆. (c) φi, i ∈ {1, 2, 3} vs. ∆/k with (N, ν) = (1000, 100)

and (N, ν) = (2000, 50). Same colour code, symbols and vertical line as in Figure

6.3(c).
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• The LOW holds (when N > 20 (Berr et al. (2009)), see also below) for

all values of ∆: species A is the strongest and therefore the least likely to

survive, and we have (φ1, φ2, φ3)
N�1−−−→ (0, 1/2, 1/2) when N � 1, see Figure

6.4(c).

• Figures 6.4(a,b) show that, in this regime, text is independent of ∆ due to

the self-averaging, but it decays when k increases and ~x∗ moves closer to

the 2 and 3 absorbing boundaries, see Figure 6.1(c). text ∼ N is maximal

when k ≈ 1, and all species coexist with densities oscillating about the same

values in the transient prior to extinction.

Again, notice that in Figure 6.4(c) the results for different values of (N, ν) are

identical when Nν is kept constant. In Figure 6.4(c) we notice that φ3 is slightly

greater than φ2 for all values of ∆. This small effect stems from the influence of

the LOSO which says that in small population (without external noise), species

3 is more likely to survive than species 1 and 2 since here k > k2, k3 (∆∗ > 0)

and ξ → 〈ξ〉 = 0 self averages.

One can proceed similarly if the rates are all different, say k > k2 > k3, in

which case, according to the zero-one LOW, we have (φ1, φ2, φ3)
N�1−−−→ (0, 0, 1).

6.2.3 Intermediate-switching regime Nν ∼ O(1)

In this regime, the population composition and the environment vary on com-

parable time scales. On average, there are therefore a finite number of switches

occurring prior to extinction, and the environmental noise does not self-average.

A markedly different fixation behaviour is therefore expected in this regime, where

the external noise has a finite positive correlation time, than in the other regimes.

For large but finite N , in Figure 6.5(c), the following is found:

• When ∆ < ∆∗, species 1 is the strongest species and thus the least likely to

survive according to the LOW, with φ1 ≈ 0, whereas φ2 ≈ φ3 ≈ 1/2 when

∆ ≈ 0. However, φ3 increases and φ2 decreases when ∆ is raised from 0 to

∆∗.
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Figure 6.5: text and φi of the CLVDN as in Figure 6.3 in the intermediate-

switching regime. (a) Heatmap of text as function of k/(k + 2) and ∆/k for

(N, ν) = (1000, 0.05). (b) text vs N for k = 3, Nν = 50 (0.5 ≤ ν ≤ 0.05),

∆ = (0.5, 2, 2.7) represented by blue, orange and purple circles respectively. Open

symbols show results for ∆ = 0. text scales approximately linearly with the pop-

ulation size and decreases as ∆ increases (see text). (c) φi, i ∈ {1, 2, 3} vs. ∆/k

with (N, ν) = (1000, 0.05) and N = (2000, 0.025). Same colour code, symbols

and vertical line as in Figure 6.3
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• When ∆ > ∆∗, both φ2 and φ3 decrease when ∆ is raised, while φ1 increases

with ∆. Hence, when ∆ ≈ k, species 1 is the most likely to be the surviv-

ing one whereas species 2 is the most likely to go extinct: φ1 > φ3 > φ2.

Therefore, under strong external noise, the species that is the strongest

without environmental randomness (species 1) is the most likely to pre-

vail. In this case, the LOW is not valid since these results are in stark

contrast with the predictions of the LOW for the cCLV with reaction rates

(k1, k2, k3) = (k, 1, 1) and k > 1.

• Surprisingly, the fixation probability φ3 exhibits an intriguing non-monotonic

dependence on ∆ and species 3 is most likely to be the surviving one when

∆ ≈ ∆∗, which is explained below. The results for different values of (N, ν)

are identical when Nν is kept constant.

• text decreases when k increases because ~x∗ moves towards the absorbing

boundaries of 2 and 3. Additionally text decreases as ∆ increases, as a

result of the environmental switching changing the parts of the phase space

that are more prone to extinction, as explained below.

To explain the intriguing behaviour of φi reported in Figure 6.5(c), the argu-

ments used in Berr et al. (2009) can be adapted to discuss the fixation probabil-

ities in the cCLV. For this, the authors of Berr et al. (2009) used the so-called

‘outermost orbit’ as the deterministic orbit that lies at a distance 1/N , i.e. one

dominance-replacement reaction away, from the closest edge of S3. In the cCLV,

extinction arises once on the outermost orbit when a chance fluctuation pushes

the trajectory along the edge of S3 that drives it toward the absorbing state of

the weakest species, yielding the LOW. Within a piecewise deterministic Markov

process picture, we can adapt this argument to the CLVDN dynamics by consid-

ering two types of outermost orbits obtained from R±: the orbit that surrounds

~x∗−1 (formed by the points satisfying R−(t) = R−(0)) and is associated with the

environmental state ξ = −1, and that is at a distance 1/N from the 23 and 31

edges of S3 when ∆ < ∆∗, or the 12 edge of S3 when ∆ > ∆∗, as shown in

Figures 6.1(a) (see also Figure 6.6). The other outermost orbit (formed by the
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Figure 6.6: Outermost orbits for N = 1000, (k, k2, k3) = (3, 1, 1) with ∆ = 0.5

(a), ∆ = 2(b) and ∆ = 2.7(c). The orbits in the environmental state ξ = +1

(k1 = k + ∆) are in gray; those in the state ξ = −1 (k1 = k − ∆) are in black.

Region I: area of S3 where the switching of k1 leaves the trajectory within an

outermost orbit. Regions II/III show the areas where where extinction is very

likely, see text. In (a) and (b) the area in Region III (only species 1 survives) is

very small and Region II (species 3 sole surviving species) increases with ∆ up to

∆ ≈ ∆∗. When ∆ > ∆∗, as in (c), the area in Region II/III decreases/increases

when ∆ is increased.

points satisfying R+(t) = R+(0)) surrounds ~x∗+1 and is associated with the envi-

ronmental state ξ = +1, as shown in Figure 6.1(b); it is at a distance 1/N from

the 31 and 23 edges of S3. When ∆ < ∆∗, these two types of outermost orbits

overlap greatly, see Figure 6.6(a,b) where they are approximately equal except

when the density of species 3 is small, whereas there is only a partial overlap

when ∆ > ∆∗ as shown in Figure 6.6(c). These considerations help shed light on

the ∆-dependence of the fixation probabilities.

In fact, when N � 1, a typical CLVDN trajectory in S3 performs a random

walk around ~x∗±1 by approximately moving along the nested deterministic orbits

and moving from one to another, see Figures 6.1 and 6.2. When the environment

switches, the orbit on which the trajectory is instantly changes, as does the co-

existence fixed point. This results in a trajectory on an orbit that is either closer

or further to the absorbing boundary of S3. As in the cCLV, if after a switch the

trajectory lands outside the outermost orbit of the actual environmental state,

internal fluctuations are likely to drive it to extinction into the closest absorbing

state (if no other switches occur prior to extinction). This picture can be ratio-
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nalized by considering the Regions I-III shown in Fig 6.6: Region II denotes the

area within the ξ = −1 outermost orbit that lies outside the ξ = +1 outermost

orbit. Region III is defined similarly for the part of within the ξ = +1 outermost

orbit, while Region I is the area contained within both outermost orbits. The

dynamics in each of these regions is the following:

• When there is a switch ξ = −1 → ξ = +1, the trajectories lying within

Region II are outside the system’s outermost orbit and are very likely to

flow along the 13 edge and reach the species 3 absorbing state (φ3 = 1).

• Similarly, when a switch from ξ = +1 → ξ = −1 occurs, the trajectories

within Region III are outside the actual outermost orbit and therefore flow

along the 23 and 12 edges to attain the species 1 absorbing state (φ1 = 1).

• All trajectories within Region I remain within the outermost orbit inde-

pendently of the environmental state and their dynamics is essentially the

same as in the cCLV and dominated by internal noise. The LOW applies

within Region I and in the case of Figure 6.5(c) lead to the species 2 or 3

absorbing state with probability 1/2 (φ2 = φ3 = 1/2).

As a consequence, the area in Region I indicates the influence of the external noise

in departing from the cCLV/LOW scenario, while the areas of Region II and III

are associated with the probability of species 3 and 1 being the sole surviving

species. When ∆ is small (weak external noise), Regions I and II cover respec-

tively a large and small part of S3 while Region III is negligible, corresponding

to φ1 ≈ 0, see Fig 6.6(a). Since Region II/I slightly increases/decreases when ∆

increases, φ3 increases with ∆ up to ∆ = ∆∗, see Fig 6.6(b). When ∆ & ∆∗,

~x∗±1 are well separated and all Regions I-III have a finite area corresponding to

finite probabilities φi. When ∆ is increased further, the area of Region III grows

and that within Region I and II shrink, see Fig 6.6(c). Hence, φ1 increases while

φ2 and φ3 decrease with ∆ when ∆ > ∆∗, and species 1 is the most likely to be

the surviving one when the amplitude of the external noise is strong enough (for

∆ & 2.4 in Figure 6.5(c)). This analysis explains the features of φi displayed in

Figure 6.5(c) and in particular, the non-monotonic ∆-dependence of φ3.
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Figure 6.7: Survival probabilities for the CLVDN when k2 6= k3. The effect on

the fixation probabilities is the same as in the case for k2 = k3, with differences

due to the expected behaviour in the absence of external noise. Parameters are:

k1 = 3, N = 1000, ν = 0.05. Species (1, 2, 3) represented by (red, blue, green)

circles respectively. (a) k2 = 1 < k3 = 2: B is the weakest species in the absence

of external noise so is initially the most likely species to survive. The qualitative

behaviour of the fixation probabilities is the same as for k2 = k3, except the peak

of φ3 has moved to the right. (b) k2 = 2 > k3 = 1: 3 is the weakest species in the

absence of external noise, so starts of as the most likely species to survive.

This can also explain the monotonic decrease of the text for fixed k: as ∆

increases, the fraction of the phase space contained in Regions II and III increases,

so a larger amount of the phase space is more prone to extinction, reducing the

expected time to extinction.

When k2 6= k3, the results are similar: Figure 6.7 shows the results for (a)

k2 < k3 and (b) k2 > k3. In the first case species 2 is the most likely species to

survive without external noise (EN), and as the intensity ∆ of the EN is increased

φ2 decreases, while φ1 increases after ∆ = ∆∗ and φ3 increases then decreases.

The only difference with Figure 6.5(c) is that φ3 reaches its peak slightly after

∆ = ∆∗. When k2 > k3, species 3 is the surviving one with probability 1 in

the absence of EN, so φ3 ≈ 1 when ∆ ≈ 0 and then φ3 is reduced as the EN

intensity ∆ increases, with most of the variation occurring after ∆ = ∆∗, when

φ1 increases (φ2 ≈ 0 for all values of ∆). Thus the non-monotonic dependence of

φ3 on ∆ is a robust non-trivial joint effect of internal and environmental noise.
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6.3 Deviation from the ‘LOSO’ in Small Popu-

lations

In the cCLV, the fixation probabilities obey the law of stay out (LOSO see (4.10))

in small systems, typically for 3 ≤ N . 20 (Berr et al. (2009)). It has also been

found that the LOSO quantitatively influences φi in populations of greater size

(Berr et al. (2009)). Here, the CLVDN fixation probabilities in small populations

are studied in order to understand how external noise alters the LOSO. In par-

ticular, given (k1, k2, k3) = (k + ∆ξ(t), k2, k3), I ask whether the φi’s satisfy the

LOSO relations in a small population when ∆ > 0. When it is the case, we say

that the LOSO is followed, otherwise the LOSO is not valid when ∆ > 0.

To address this question, first consider a population of size N = 3. Proceeding

as described in Appendix C.5.2, it is found that

φ1 =
(γ + ν) k2

γ2 −∆2 − ν2
, φ2 =

(γ + ν) k3

γ2 −∆2 − ν2
, φ3 =

k(γ + ν)−∆2

γ2 −∆2 − ν2
, (6.5)

where γ = k + k2 + k3 + ν. Clearly, in the absence of external noise (∆ = 0)

one recovers the LOSO according to which φ3 > φ1, φ2 when, as in this section,

k > k2, k3. However, it is clear from (6.5) that when ∆ > 0, it is only when

(γ + ν)(k − max(k2, k3)) > ∆2, that φ3 > φ1, φ2. Hence, even when N = 3,

the LOSO is followed only at sufficiently low ∆ and/or at high enough ν, but is

generally not valid. The results (6.5) indicate that determining which of species

1, 2 or 3 is the species to be the most likely to survive in small systems of size

3 ≤ N . 20 depends non trivially on (∆, ν) and on the kis. Hence, the LOSO is

generally not valid for small systems in the presence of environmental noise, and

there is no simple general “law” to predict which species is most likely to survive

in small populations when ∆ > 0. An exception arises in the fast-switching

regime, Nν � 1, when the noise self-averages and one recovers the LOSO for

3 ≤ N . 20. It has also to be noticed that for such small systems, the initial

condition becomes relevant. What is more important here, is that it is confirmed

that, as for the cCLV, coherent large-system scenarios emerge also in the CLVDN

when N & 100. Hence, small-size effects are marginal in systems of size N ≥ 1000

that we have considered in sections 6.2.1, 6.2.2 and 6.2.3.
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6.4 Summary of Fixation Behaviour in the CLVDN:

Dependence on N, ν and ∆ and Comparison

with Chapter 5

I now summarize the CLVDN fixation behaviour as a function of the population

size N , which controls the demographic noise, and of the external noise parame-

ters ν and ∆. It is always found that the (unconditional) mean extinction time

scales linearly with the population size, i.e. text ∼ N , independently of the initial

condition (when it is well separated from the absorbing boundaries), see Figures

6.3(a,b), 6.4(a,b), 6.5(a,b), however the MET is shortened when the 12 reaction

rate k increases, and has a different dependence on the intensity ∆ of the external

noise depending on the switching rate of the noise ν.

The species fixation probabilities depend greatly on (N,∆, ν) and on the aver-

age number of switches, of order Nν, occurring prior to extinction. Except under

fast switching, when the external noise self-averages and the law of the weakest

holds, non-LOW scenarios emerge both below and above the critical EN intensity

∆∗ = k − kmin. In fact, when k > k2, k3 and N � 1, it is found that:

• When ∆ < ∆∗: Species 1 is almost certain to go extinct for all values of

∆ < ∆∗. The LOW holds only in slow switching regime where Nν � 1. In

the intermediate-switching regime, Nν ∼ O(1), φ2 decreases and φ3 grows

when ∆ increases and no species is guaranteed to survive according to a

non-LOW scenario, see Figure 6.8(a).

• When ∆ > ∆∗: Under slow switching, no species is guaranteed to survive

and φ1 → 1/2 when the intensity of the EN is high (∆ → k). Under

intermediate-switching, φ1 increases while φ2 and φ3 decrease when ∆ in-

creases according to a non-LOW scenario. Hence, species 1 is the most likely

to be the surviving one under external noise of high intensity (∆ ≈ k) and

switching rate ν ∼ O(1/N), see Figures 6.5(b), 6.7 and Figure 6.8(b).

• When ∆ = ∆∗: the main influence of the external noise occurs in the

intermediate-switching regime, as illustrated Figure 6.8(c) where φ3 is much

greater than in the CLV when Nν ∼ O(1). This figure also shows that
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Figure 6.8: Summary of the CLVDN fixation probabilities when k > k2, k3 in N−
ν diagrams showing φi when ∆ < ∆∗ (a) and ∆ > ∆∗ (b). The upward/downward

arrows indicate whether φi increases/decreases when ∆ is increased. The lines

N = ν and Nν = 1 indicatively separate the slow/intermediate/fast switch-

ing regimes. The shaded regions indicate the regime of small populations. (c)

Heatmap of the absolute value of φ3|∆=∆∗−φ3|∆=0 for k = 3, k2 = k3 = 1 as func-

tion of ν and N . The gray area to the left of the line indicating Nν = 1 shows the

slow switching region, where φ3|∆=∆∗ < φ3|∆=0, while the white region to the right

of the N = ν line shows the fast switching regime φ3|∆=∆∗ ≈ φ3|∆=0. Between

these two lines is the intermediate switching regime, where φ3|∆=∆∗ > φ3|∆=0 and

the magnitude of φ3|∆=∆∗ − φ3|∆=0 that increases with N .
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φ3|∆=∆∗ < φ3|∆=0 in the slow switching regime (left-hand light gray area),

and φ3|∆=∆∗ ≈ φ3|∆=0 in the fast switching regime (right-hand white area).

While I have focused on k > k2, k3, the above results also hold for k = k2 = k3

when ∆∗ = 0, in which case the scenarios summarized in Figure 6.8(b) for ∆ > ∆∗

arise. In populations of small size, 3 ≤ N . 20, the fixation probabilities depend

in an intricate way of (N,∆, ν) and generally do not follow neither the LOSO nor

the LOW.

Furthermore, these results are also interesting to compare with those of Chap-

ter 5. While we see that in both cases there are conditions for the LOW and LOSO

to be broken, the fixation scenarios are richer and more complex in Chapter 5,

where the demographic and environmental noise are coupled. In both cases, for

small switching rates the fixation probabilities are found by finding the average of

those in each environmental state, while those for fast switching rates are found

by considering the case without external noise and ξ(t) = 〈ξ〉 = 0. For the

model discussed in this Chapter this is the same the case for zero noise intensity,

∆ = 0. However in Chapter 5 fast switching results in a rescaling of the selection

strength by a factor of (1 − γ2), i.e. different to the case with zero noise inten-

sity, γ = 0. This is due to the way that the noise affects each model: here, rapid

switching between k+ and k− results in an effective rate k, and the intensity of

demographic fluctuations is the same in each environment, due to the population

size being fixed. In Chapter 5, the noise affects the carrying capacity, and hence

the strength of the demographic fluctuations, and rapid switching results in an

effective carrying capacity of K = (1 − γ2)K0, or effectively the same carrying

capacity, K0 with a rescaled selection s(1−γ2). For intermediate switching rates,

the deviation from the LOW in this Chapter results from parts of the phase space

S3 being more prone to extinction (i.e. reaching an absorbing boundary of S3)

after a switch (Regions II and III in Figure 6.6), while in Chapter 5 this is not

the case. There the deviation from the LOW stems from the coupling of N with

the external noise. The randomly switching carrying capacity results in a total

population size probability distribution, with the LOW and LOSO favoured at

different values of N . Furthermore, at intermediate ν the outcome of Stage 2 in

the previous Chapter is not guaranteed, and is itself affected by external noise.
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6.5 Fixation Probabilities with Three Randomly Switching Reaction
Rates

These results suggest that it would be interesting to combine these models to

find the effect of noise operating on both the carrying capacity and one of the

reaction rates, i.e. reactions (5.1) - (5.4), with the rate r1 following the process

defined by (6.2) and (6.3) (but different environmental noise processes for the

carrying capacity and rate). If the rate switches very slowly, then the fixation

probability could be found by considering the results of Chapter 5, finding the

average of those for r1 = r(1±∆), while those for a fast switching rate could also

be found from those of Chapter 5, with r1 = 〈r1(t)〉 = r. Similarly, if the carrying

capacity switches very slowly, the result could be inferred from the results of this

Chapter, averaging the results over those for N = K±, while the fast switching

case could be found from the results of this Chapter with N = K0(1 − γ2).

The most interesting case would be when both processes have an intermediate

switching rate, the implications of which are not obvious a-priori.

6.5 Fixation Probabilities with Three Randomly

Switching Reaction Rates

For simplicity, above I focused on the case where only one reaction rate k1 ran-

domly switches. However it is also possible that all reaction rates are subject to

environmental variability. In general, each ki, with i ∈ {1, 2, 3} would be affected

by different environmental factors, leading to the CLVDN (6.1) with

k1 = k + ∆1ξ1, k2 = k̄ + ∆2ξ2, k3 = k + ∆3ξ3, (6.6)

where ξi ∈ {−1,+1} and i ∈ {1, 2, 3} are independent dichotomous noise vari-

ables, such that ξi
νi−→ −ξi, each with a distinct switching rate νi and intensities

0 < ∆1 < k, 0 < ∆2 < k̄, 0 < ∆3 < k. Each ξi in (6.6) has the same properties as

ξ defined by (6.3), i.e., 〈ξi〉 = 0. The CLVDN with (6.6) spans a large-dimensional

parameter space that is difficult to scrutinize.

Here, for the sake of concreteness, I show that the results obtained so far can

be of direct relevance for the general model (6.1) with noisy rates (6.6) when

these fluctuate on markedly different timescales. Here, I assume ν2 � ν1 � ν3,

with Nν1 ∼ O(1), and I set k̄ = k = 1. This corresponds to the situation where
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6.5 Fixation Probabilities with Three Randomly Switching Reaction
Rates

Figure 6.9: Survival probabilities for the three species switching case, with k1 = 3,

N = 1000, ν1 = 0.05, ν2 = 100 and ν3 = 10−4, ∆2 is kept constant at 0.8 and

different values ∆3 are shown with different markers. The vertical line indicates

∆∗/k. When ∆3 increases, the peak of φ3 moves towards higher values of ∆1, see

text.

species 2 and 3 are subject external factors changing with high and low frequency,

respectively, while the growth rate of species 1 changes with factors varying on

the same times scale O(1/N) on which the population composition changes. Since

k2 switches fast (ν2 � 1/N) and k3 switches slowly (ν3 � 1/N), from Section

6.2, we expect ξ2 to self-average and thus simply consider that k2 = 1, while

k3 = 1 + ∆3 (when ξ3 = +1) or k3 = 1 − ∆3 (when ξ3 = −1), each with a

probability 1/2. By denoting here k± = k±∆1 and ∆∗ = k− 1 > 0, we can thus

make contact with the results of Section 6.2.3.

When ∆1 < ∆∗, we have k± > 1 and the survival behaviour is similar to

that of Section 6.2.3 as shown by Figure 6.9 which is qualitatively very similar

to Figure 6.5(b): φ3 and φ2 respectively increases and decreases with ∆1 while

φ1 ≈ 0. Hence, as in Sec. 6.2.3, species C is the most likely to be the surviving

one under external noise of low intensity while 1 is the “strongest” species and

therefore the most likely to go extinct. When ∆1 > ∆∗, k+ > 1 and k− < 1

which also yields the same qualitative behaviour as in Figure 6.5(c): φ1 and φ2

increase and decreases with ∆1 while φ3 varies non-monotonically with ∆1. For

the same reason explained in Section 6.2.3, species 1 becomes the most likely

to survive under strong external noise. A noticeable, yet marginal, difference
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6.6 Conclusion

between Figures 6.5(c) and 6.9 is the fact that the φ3 is maximum for ∆1 & ∆∗

in Figure 6.9 instead of ∆1 ≈ ∆∗. In Figure 6.9 the peak of φ3 moves towards

higher values of ∆1 because 1 is the “weakest” species under strong EN in the

environmental states ξ1 = ξ3 = −1 when ∆1 > ∆∗ + ∆3.

6.6 Conclusion

In this Chapter, I have shown that even in a simpler model of three species cyclic

competition with fixed population size, the interplay of internal and external noise

can still cause deviations from the behaviour expected in a constant environment.

These results have focused on the case where the species with the variable rate

is the strongest in a constant environment, but can be adapted to the case where

all rates are equal, by noting that in this case ∆∗ = 0.

In a large population, when the switching rate is not too high and the external

noise is of sufficiently high intensity, the law of the weakest no longer holds, with

no species guaranteed to survive and new fixation scenarios emerging. The most

interesting results are under intermediate switching, where the environment and

population evolve on similar time-scales. Here, the fixation probability of the

predator of the species that switches varies non-monotonically with noise intensity

∆, attaining its maximum when ∆ ≈ ∆∗. When the noise intensity is greater

than ∆∗, the fixation probability of the species with the variable rate increases,

becoming the most likely to survive when ∆ ≈ k. Hence, in direct contradiction

to the ‘LOW’, the strongest species can be the most likely to fixate the population.

These results also extend to the case where all three rates switching on markedly

different timescales, however it would be interesting to investigate the case where

all three rates switch at an intermediate rate.

Furthermore, I have also found exact results for the effect of external noise on

the ‘LOSO’, where N = 3. This is achieved using a first-step analysis, and shows

again that under external noise where the rate is not too high and of sufficient

intensity, the ‘LOSO’ again fails to hold and there is no simple law that describes

that fixation properties.
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Chapter 7

Conclusion

The results of this thesis have added to the extensive body of work that suggests

that environmental noise plays an important role in the fate of some biological

systems, in particular microbial communities. Here I have focused on two and

three species systems where fixation of one species is certain: mutations between

species are not considered, and creation of an individual needs a ‘parent’ of the

same species. Hence, once a species has died out, it cannot recover. The majority

of this thesis has focused on environmental noise in the form of a randomly

switching carrying capacity. In this way, the total population size is coupled to

the environmental noise. The total population size itself controls the strength

of the demographic fluctuations and the resulting evolutionary dynamics of the

population composition. Hence a key feature is that the demographic noise is

coupled to the external noise. We find that, in general, coloured environmental

noise can have a marked effect on the species fixation probabilities, especially on

the probability that the least favoured species will take over the population, and

a small effect on the time it takes for fixation to occur.

The results of Chapters 5 and 6 show that symmetric dichotomous Markov

noise can have a drastic effect on the fixation probabilities in models of three

species cyclic competition, where new fixation scenarios that do not follow the

previously established ‘law of stay out’ or ‘law of the weakest’ can arise. When

the carrying capacity of the system varies in time (Chapter 5), we find that exter-

nal noise makes the competition more egalitarian, but does not prolong species

coexistence. When the population size is fixed and one of the rates varies in time
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(Chapter 6), we find that the result of the competition is highly dependent on

the rate and intensity of switching, with the LOW and LOSO broken when the

noise intensity is sufficiently high and the switching rate not too large. It would

be interesting to extend these analyses, considering other forms of coloured noise,

e.g. asymmetric dichotomous Markov noise or periodic noise, which we have seen

can lead to different fixation scenarios to symmetric Markov noise; or continu-

ous noise processes, like the Ornstein-Uhlenbeck process (see Appendix A.2), in

order to ascertain whether the effect on the fixation statistics is characteristic of

all coloured noise processes, or if they change between processes with discrete

or continuous state spaces. Furthermore, it would be interesting to consider a

meta-population of connected patches of well-mixed cyclic competition systems

with external noise, to see if the characteristic spiral patterns are robust to envi-

ronmental variation.

The results of Chapter 3 show that a dichotomously switching carrying ca-

pacity has a drastic effect on the fixation probability of co-operative species in

the Prisoner’s Dilemma, and that the type of switching: periodic or random, is

also an important consideration. A characteristic of both periodic and random

switching is the possibility of the fixation probability of the slow growing species

being maximised at an intermediate switching rate. This is the most interesting

and unexpected result, and can be explained as follows. First, note that an en-

vironmental switch changes the fixed point for the mean field equation for the

total population size, N . When a switch occurs the stochastic system quickly

approaches the new fixed point then fluctuates rapidly around it. When the

switching is very slow this means that N spends most of its time (before one of

the species fixates) around either K+ or K−, depending on the initial condition.

Similarly, for very fast switching the noise self averages and N fluctuates rapidly

around Kδ. Thus in both these limits there is a timescale separation between the

dynamics of N and x, and the formulas (3.15) and (3.25) give good approxima-

tions for the fixation probability. On the other hand, for intermediate switching

rates, N doesn’t have time to settle around one of the equilibrium points K±

before a switch, and the switching is not fast enough for the external noise to self

average. Thus N actually spends a lot of time travelling between K±, and the
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timescale separation between N and x is lost. This leads to the aforementioned

formulae being less accurate, and the unexpected behaviour of φ.

To extend this model, it would again be interesting to compare these results

with continuous noise processes, to see if the dependence of φ on the correlation

time and intensity of noise is different for continuous state-space noise processes.

Another possibility would be to analyse a meta-population model with exter-

nal noise in order to investigate Simpson’s Paradox (Blyth (1972); Chater et al.

(2008); Chuang et al. (2009); Cremer et al. (2011, 2012, 2019); Hauert et al.

(2002); Hense et al. (2019); Melbinger et al. (2015); Okasha (2006)), upon which

the effect of external noise has not been determined. Here, interconnected patches

of populations evolve according to the Prisoner’s Dilemma. The fraction of co-

operators decreases within each patch but paradoxically increases for the whole

system, due to those patches with more cooperators growing to larger sizes. Hence

it would be interesting to see how the type and statistics of external noise affects

this paradox. Alternatively, the model could be extended by allowing mutations

between the two species, analysing the effect of noise on the average number of

cooperative individuals, rather than the fixation probability. This simple exten-

sion of the model would allow one to investigate the ‘Intermediate Disturbance

Hypothesis’ (Begon et al. (2006); Brockhurst (2007); Brockhurst et al. (2007);

Buckling et al. (2000); Connell (1978); Fox (2013); Grime (1973); Lampert &

Sommer (2007); Petraitis et al. (1989)). This states that external disturbances

at an intermediate rates and large intensity will lead to a higher fraction of co-

operators. It has, however, proved controversial, as most empirical studies do

not show this relationship (Fox (2013)). In Chapter 3 it was observed that the

fixation probability of the slow growing species can be maximal at an interme-

diate switching rate for large enough noise intensity and asymmetry, suggesting

that in a version of this model extended by allowing mutations, a higher frac-

tion of co-operators might be maintained in a randomly switching environment

when the noise asymmetry and intensity are large enough, but not otherwise.

This would have implications in the formation and maintenance of biofilms, and

the phenomenon of anti-microbial resistance, both of which are pressing issues in

today’s world.
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Appendix A

Single Species Logistic Growth

with Noise in the Carrying

Capacity

A.1 Dichotomous Markov Noise

When demographic noise is neglected, by assuming that the fluctuating popula-

tion size is always large, and the only source of noise stems from the randomly

switching carrying capacity, we have seen that the N -QSD, P (N), can be de-

scribed in terms of the marginal stationary probability density of the underlying

PDMP. Without the normalisation constant, we have (Horsthemke & Lefever

(1984); Wienand et al. (2018)):

ρPDMP
ν,δ (N) ∝ 1

N2

[(
K+

N
− 1

)ν+−1(
1− K−

N

)ν−−1
]
, (A.1)

where the dependence on γ, δ and ν is given by K± = (1 ± γ)K0 and ν± =

(1∓δ)ν. Clearly, ρPDMP
ν,δ (N) has support [K−, K+] and accounts for environmental

noise, but ignores all demographic fluctuations. The expression of ρPDMP
ν,δ (N)

gives a suitable description of P (N) in the intermediate switching regime where

interesting phenomena arise.
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A.1 Dichotomous Markov Noise

Figure A.1: Phase diagram for the N -QSD, PADN(N), and its approximations

ρPDMP
ν,δ (N) and ρLNA

ν,δ (N) (insets), see Eq. (A.5). We distinguish four regions

described in the text: In addition to a peak about K+, the N -QSD has always

a local maximum K− < N∗ < K+ in the intermediate switching regime in I;

in regime II and III, the N -QSD and ρPDMP
ν,δ (N) have a peak about K+ and,

depending on ν, possibly another peak at some values K− < N∗ < K+, see insets;

the N -QSD and ρPDMP
ν,δ (N) have one single peak about K+ in IV. Insets illustrate

the form of P (N), ρPDMP
ν,δ (N) and ρLNA

ν,δ (N) in regions I-III. In the insets, solid

lines are from the ρPDMP
ν,δ (N), given by Eq. (A.1), dashed lines are from ρLNA

ν,δ (N),

given by Eq. (A.5), solid areas are from computer simulations, and the vertical

dashed lines are eyeguides showing N = K±. Parameters are: (K0, γ, s, x0) =

(250, 0.8, 0.05, 0.5) and (inset I) δ = 0.7, ν = (0.05, 1.4, 17.5) (pink, orange, blue);

(inset II) δ = 0.85, ν = (1, 3, 6.5) (purple, blue, green); (inset III) δ = 0.92,

ν = (1, 3, 12) (purple, blue, green). In inset I, N∗ is in the intermediate regime

for ν = 1.4 (orange). In inset II, N∗ is in the intermediate regime for ν = 1

(purple) and ν = 6.5 (green). In inset III, N∗ is in the intermediate regime for

ν = 1 (purple). We notice that the LNA excellently agrees with simulation results

for the N -QSD: P (N) and ρLNA
ν,δ (N) are almost indistinguishable in each inset.
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A.1 Dichotomous Markov Noise

A.1.1 Phase Diagram for ρPDMP
ν,δ (N) with asymmetric di-

chotomous Markov noise

The N -QSD, P (N), and its PDMP approximation ρPDMP
ν,δ (N) are bimodal, with

peaks about K±, when ν < 1, and unimodal when ν > 1 with a peak N∗ that is

the smaller solution to

N2 − (ν(1− γδ) + 1)K0N + (1− γ2)K2
0ν = 0, (A.2)

with N∗ → Kδ as ν → ∞ (Horsthemke & Lefever (1984); Wienand et al. (2017,

2018)). In addition, two other regimes can arise under asymmetric switching at

intermediate rate when 1/(1 + |δ|) < ν < 1/(1 − |δ|). Here, the N -QSD has a

different form not found when δ = 0: When δ < 0 and 1/(1− δ) < ν < 1/(1 + δ),

ρPDMP
ν,δ (N) and P (N) have a peak at N ' K−. When δ > 0 and 1/(1 + δ) <

ν < 1/(1− δ), ρPDMP
ν,δ (N) and P (N) have a peak at N ' K+ and, depending on

δ, γ and ν, also a peak at N∗. The condition for the existence of such a peak at

K− < N∗ < K+ can be inferred from the PDMP approximation (A.1) by noting

that (A.2) has real roots when

(1− γδ)2ν2 − 2(1 + γ(δ − 2γ))ν + 1 > 0. (A.3)

We thus distinguish four regions, I-IV, in the (δ, γ) - space, see Fig. A.1:

I: δ < γ, where N∗ exists for all intermediate ν.

II: γ < δ < 2γ
1+γ

, where N∗ exists for all intermediate ν that lie outside the

interval between the two solutions of (A.3), here denoted by ν1,2 (with

ν2 ≥ ν1).

III: 2γ
1+γ

< δ < 2γ
1−γ , where N∗ only exists if 1

1+δ
< ν < ν1 .

IV: δ > 2γ
1−γ - where N∗ does not exist.

Simulation results of Figure 3.4 and A.1 confirm that the above analysis correctly

reflects the properties of P (N).
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A.1 Dichotomous Markov Noise

A.1.2 Linear Noise Approximation: Combined effect of

Internal and External noise on the population size

While the PDMP is a good approximation of the true N -QSD, capturing the

position of the peaks in the distribution, it fails to capture the width of the

around them and the ‘leakage’ of probability outside [K−, K+]. This is because

the PDMP approximation necessarily ignores all demographic noise. We can

include this by performing the linear noise approximation (LNA) around the

PDMP to account for the joint effects of internal and external noise on the N-

QSD. Full details can be found in Hufton et al. (2016); Wienand et al. (2018) but

here I give an outline of the major steps and assumptions.

First, one must assume that K+, K− � 1, so that Ω ≡ 〈K〉 (which I use as

the system’s ‘large parameter’) is large and of the same order as K±. We then

work with the more convenient variable n = N/Ω, which decomposes as n(t) =

ψ(t)+η(t)/Ω. The first term ψ(t) = limΩ→∞N/Ω obeys the SDE ψ̇ = ψ(1− ψ
1+ξγ

),

defining the corresponding PDMP, and η(t) accounts for the fluctuations of n

around ψ.

We are then interested in the stationary joint probability density π(η, ψ, ξ) of

the complementary Markov process {n(t), ξ(t)}. This is decomposed as π(η, ψ, ξ) =

π(η|ψ, ξ)π(ψ, ξ), where the second term is the stationary joint pdf of the PDMP,

obtained from:

ρPDMP
ν,δ (N, ξ) ∝


1+δ
N2

[
K+

N
− 1
]ν+−1 [

1− K−
N

]ν−
, (ξ = +1)

1−δ
N2

[
K+

N
− 1
]ν+
[
1− K−

N

]ν−−1

, (ξ = −1)
(A.4)

and the first term accounts for the demographic fluctuations around ψ in en-

vironmental state ξ. We make a further simplification by supposing that the

demographic fluctuations are approximately the same in both states, writing

π(η|ψ,±ξ) = π(η|ψ). This allows us to write an SDE for π(η|ψ), showing that

it is a Gaussian distribution with zero mean and variance ψ. With this one can
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A.2 Ornstein - Uhlenbeck Noise

define the quasi-stationary marginal LNA probability density of N(t) as:

P LNA
ν,δ (N) =

∑
ξ=±1

∫ ∫
π(η|ψ)π(ψ, ξ)δ

(
n− ψ − η

ψ

)
dψdη

∝
∫ K+

K−

e
−(N−Ñ)2

2Ñ

Ñ1/2

{
(1 + δ)

Ñ2

[
K+

Ñ
− 1

]ν+−1 [
1− K−

Ñ

]ν−
+

(1− δ)
Ñ2

[
K+

Ñ
− 1

]ν+
[
1− K−

Ñ

]ν−−1}
dÑ, (A.5)

where δ
(
n− ψ − η

ψ

)
in the first line is the Dirac-delta function. From Figure

A.1 we see that this is an excellent approximation of the N -QSD: it accurately

predicts all the details of the population probability density P (N) obtained from

stochastic simulations.

A.2 Ornstein - Uhlenbeck Noise

While it is not the main focus of this thesis, it is important not to restrict our-

selves to discrete noise sources because real-world environmental variables like

temperature, moisture, pH level etc. do not abruptly switch but rather vary con-

tinuously in time. The simplest continuous-state-space but coloured stochastic

process that the carrying capacity could follow is the Ornstein-Uhlenbeck process,

defined by the equation for K(t) and the stochastic differential equation (SDE):

K(t) = KOU(1 + ξOU(t)) where (A.6)

dξOU = −ξOU

τ
dt+

√
2σ2

τ
dW, (A.7)

where τ is the correlation time (to be compared with 1/(2ν) for dichotomous

noise), σ is the noise intensity and dW is an interval of the Wiener process. The

autocorrelation function of the zero-mean OU process ξOU has been shown to be

(Reimann (1995)) σ2e−|t−t
′|/τ . It is also straightforward to show that the mean

and variance of K(t) are KOU and (σKOU)2.

As mentioned in Chapter 1, using OU noise to drive the carrying capacity has

an important limitation: it is an unbounded process so can go negative leading

to unphysical results. This can be avoided by either adding a reflecting barrier at
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A.2 Ornstein - Uhlenbeck Noise

K = 0, or by changing (A.6) to K(t) = |KOU(1 + ξOU(t))|. These will both affect

the resulting distribution for K (and hence the effect of the noise), but this can

be mitigated by choosing σ small enough so that the chance of going below zero

(before an arbitrary time) is small.

Unlike periodic and random dichotomous noise, approximations for the prob-

ability distribution of N subject to OU noise, ρOU
τ (N), can only be found in the

long and short correlation time limits. When the correlation time is long, τ →∞,

the carrying capacity is approximately fixed and so the total population size tends

to the initial value K(0), drawn from a Gaussian distribution with mean KOU

and variance (σKOU)2. We write:

ρOU
τ→∞(N) ' 1

σKOU

√
2π

exp

[
−1

2

(
N −KOU

σKOU

)2
]

(A.8)

In the short correlation time limit, τ → 0, we separate the dynamics into fast

and slow variables and use the WKB method to average the effect of the noise

over the period of variation. For this to be valid, we need τ � 1, so that the

dynamics of the noise is much faster than that of N , and KOU � 1, so that it can

be used as a large parameter. Full details can be found in, for example, Roberts

et al. (2015) but here we show the main steps. Starting with the Fokker-Planck

equation in terms of ξOU and n = N/KOU:

dP (n, ξOU)

dt
= − d

dn

[
n

(
1− n

1 + ξOU

)
P (n, ξOU)

]
+

1

2KOU

d2

dn2

[
n

(
1 +

n

1 + ξOU

)
P (n, ξOU)

]
− d

dξOU

[
−ξOU

τ
P (n, ξOU)

]
+

1

2

d2

dξ2
OU

[
2σ2

τ
P (n, ξOU)

]
, (A.9)

where the first two terms on the right hand side account for the drift and diffusion

due to births and deaths, and the second two terms account for the change in the

environmental variable ξ, we use the ansatz for the quasi-stationary distribution

π(n, ξOU) ≈ exp [−KOUS(n, ξOU)] to find the effective Hamiltonian:

H(n, pn) = n(1− n)pn + p2
nn
[
1 + n+ εn3

]
, (A.10)
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A.2 Ornstein - Uhlenbeck Noise

where pn = dS/dn and ε = 2KOUσ
2τ . We then set this equal to zero to find an

expression for pn and use the fact that S(n) =
∫ n

0
pn(z)dz to find the QSD:

π(n) ' exp

[
−KOU

∫ n

0

−2 (1− z)

1 + z + εz3
dz

]
. (A.11)

This is still a work in progress and, while not all details are known yet, below I

outline how I plan to compute the fixation probability.

The fixation probability of the slow growing species can then be found in the

long correlation time limit by averaging (3.10) over the population size density

(A.8):

φOU(τ →∞) '
∫ ∞

0

ρOU
τ→∞(N)φ|N(x0)dN, (A.12)

Simulation results for φ and the mean fixation time TF are presented in Figure

A.2. These preliminary results suggest that there are similarities and differences

with two-state noise presented in Chapter 3. Firstly, for large enough noise inten-

sity (σ, which should be compared with γ in Chapter 3) the fixation probability

can be peaked at a finite intermediate correlation time (see Figure 3.2), and

the mean fixation time is of order 1/s and a decreasing increasing function of

the correlation time (see Figure S3(a) of Taitelbaum et al. (2020)). However, in

this case the mean fixation time always decreases with increasing noise intensity

(compared with possible non-monotonic behaviour in insets of Figure 3.5). Ad-

ditionally the biggest difference is that the fixation probability is an increasing

function of σ, whereas in Figure 3.5 it was shown that this is not always the case

in dichotomous noise. This can be explained by noting that here σ defines the

width of the distribution for N , so for larger values of σ the process can attain

lower values of N , increasing the fixation probability.

A disadvantage of using OU noise is that the simulations take a lot longer

to run, so I do not yet have a complete picture of its effects. This is because

the fastest way to simulate the process is to approximate the OU process as a

birth-death process. In the short correlation time limit the rates for this process

are very large compared to the birth-death rates for the species, so most of the

simulation time is taken up with the carrying capacity changing, rather than

the evolution of the species. Preliminary work for a forthcoming publication has

been done, and will be completed shortly. In particular, we plan to ascertain
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A.2 Ornstein - Uhlenbeck Noise

Figure A.2: Fixation probability (a,c) and mean fixation time (b,d) for the 2

species competition model (3.1) with the carrying capacity following the Ornstein-

Uhlenbeck process (A.6). In all panels, (b,KOU, x0) = (0, 250, 0.5) and σ =

(0.1, 0.2, 0.3) (red, purple, blue), while s = 0.05 in (a,b) and s = 0.03 in (c,d).

Results are plotted against ν = 1/(2τ) for easier comparison with DMN and PN.

Dashed lines in (a,c) are from (A.12) (see text).

the similarities and differences between continuous and discrete state space noise,

and see if there is a way to approximate continuous noise with discrete noise in

the case of small correlation times.
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Appendix B

Fast Switching Limit: Large ν

approximations for Two Species

Competition

B.1 Saddle-Point Approximation

The saddle-point approximation is a standard approximation method, used to

approximate integrals of exponential functions that are sharply peaked at a single

value. We write: ∫ ∞
−∞

exp[f(x)]dx ' exp[f(x∗)]√
f ′′(x∗)

, (B.1)

where x∗ is the maximum of f(x) and the dash denotes differentiation w.r.t. x.

I will now show how we use this to approximate the fixation probability and

variance in the fast switching limit of dichotomous Markov noise. These are valid

in the fast switching regime, ν/s � 1. Similar calculations can be performed

for periodic noise, and were performed by a collaborator in (Taitelbaum et al.

(2020)). Details can be found in the supplementary material of that paper.

B.1.1 Fixation Probability

To perform the saddle-point approximation of φADN, we rewrite (3.15) in terms

of the total population density y = N/K0. Accounting for the normalisation
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B.1 Saddle-Point Approximation

constant, the fixation probability can be written:

φADN(ν) =

∫ 1+γ

1−γ ρ
PDMP
ν/s,δ (y) exp [K0y(1− x0) ln(1− s)] dy∫ 1+γ

1−γ ρ
PDMP
ν/s,δ (y)dy

(B.2)

=

∫ 1+γ

1−γ exp
[
fADN

num (y)
]
dy∫ 1+γ

1−γ exp [fADN
den (y)] dy

, (B.3)

where fADN
den (y) = ln ρPDMP

ν/s,δ (y) and fADN
num (y) = ln ρPDMP

ν/s,δ (y)+K0y(1−x0) ln(1−s).
Evaluating both the integrals separately using the saddle point approximation,

we find:

φ(ν) '
√
κADN

1 /κADN
2 exp

[
fADN

num (y2)− fADN
den (y1)

]
, (B.4)

where y1 and y2 are the positions of the saddle points of the denominator and

numerator respectively, satisfying, (d/dy)fADN
den (y1) = 0 and (d/dy)fADN

num (y2) = 0.

Additionally, κADN
1 = (d2/dy2)fADN

den (y1) and κADN
2 = (d2/dy2)fADN

num (y2) are the

curvatures at the saddle-point of the denominator and numerator respectively.

For the denominator, we can write:

fADN
den (y) = ln ρPDMP

ν/s,δ (y) = −2
ν

s
ln y +

[
(1− δ)ν

s
− 1
]

ln (1 + γ − y)

+
[
(1 + δ)

ν

s
− 1
]

ln (y − 1 + γ) , (B.5)

and the saddle point is found at:

y1 '
(1− γ2)

(1− δγ)

[
1 +

γ (δ − γ)

(1− δγ)2 ν/s

(
1 +

(1− 2γ2 + δγ)

(1− δγ)2 ν/s

)]
. (B.6)

Hence we find:

fADN
den (y1) ' (ν/s)

{
(1 + δ) ln

[
γ (1 + δ) (1− γ)

(1− δγ)

]
+ (1− δ) ln

[
γ (1− δ) (1 + γ)

(1− δγ)

]
− 2 ln

[
1− γ2

1− δγ

]}
+ ln

[
(1− δγ)2

γ2 (1− δ2) (1− γ2)

]
+

(δ − γ)2

(1− δ2) (1− δγ)2 ν/s
,

(B.7)

κADN
1 ' −2 (1− δγ)4 ν/s

γ2 (1− δ2) (1− γ2)2 +
2 (1−δγ)2 (1+6δγ−2δ3γ−5γ2−3δ2(1−γ2))

(1− δ2)2 (1− γ2)2 γ2
.

(B.8)
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B.1 Saddle-Point Approximation

For the numerator, we write fADN
num (y) = fADN

den (y) +K0y(1− x0) ln(1− s), and

find the saddle point at:

y2 '
(1− γ2)

(1− δγ)

{
1 +

γ [2 (1− δγ) (δ − γ) + bγ (1− γ2) (1− δ2)]

2 (1− δγ)3 ν/s

[
1 +

2− 2γ2 (2 + δ2 − 2δγ)− bγ (1− γ)2 (2δ − 3γ + δ2γ)

2 (1− δγ)3 ν/s

]}
, (B.9)

where b = K0(1− x0) ln(1− s). As a result, we find:

fADN
num (y2) ' (ν/s)

{
(1 + δ) ln

[
γ (1 + δ) (1− γ)

(1− δγ)

]
+ (1− δ) ln

[
γ (1− δ) (1 + γ)

(1− δγ)

]
− 2 ln

[
1− γ2

1− δγ

]}
+ ln

[
(1− δγ)2

γ2 (1− δ2) (1− γ2)

]
+
b (1− γ2)

1− δγ

+
[2 (δ − γ) (1− δγ) + bγ (1− γ2) (1− δ2)]

2

4 (1− δ2) (1− δγ)4 ν/s
, (B.10)

κADN
2 ' − −2 (1− δγ)4 ν/s

(1− δ2) γ2 (1− γ2)2 −
2 (1− δγ)

(1− δ2)2 (1− γ2)2 γ2

[
(5− 3b) γ2 +

3bγ4 + δ2
(
3 + (3 + 4b) γ2 − 4bγ4

)
− δ4γ2

(
2 + b

(
1− γ2

))
+

δ3γ
(
−1 + 3γ2 − 2b

(
1− γ2

))
+ δγ

(
2b
(
1− γ2

)
− 5

(
1 + γ2

))
− 1

]
.

(B.11)

Putting these together, we find that for fast random switching,

ln

(
φADN

φ(∞)

)
' AADN(ν/s)−1, (B.12)

where

AADN = (1− x0) ln(1− s)Kδ
γ2(1− δ2)

2(1− δγ2)

(
1 +

Kδ(1− x0) ln(1− s)
2

)
. (B.13)

While in the (Taitelbaum et al. (2020)) our collaborator found that (using ρPN
ν�1,δ(N)

(3.21) found using the Kapitsa method):

ln

(
φPN

φ(∞)

)
' APN(ν/s)−2, (B.14)

146



B.1 Saddle-Point Approximation

where

APN =
Kδ

72

{
1− [1 + 2(1− x0) ln(1− s)]3

}(
γ

1− δγ

)2

. (B.15)

From the above, we see that while the saddle-point approximation predicts the

same fixation probability in the fast switching limit, φADN
ν→∞ = φPN

ν→∞ ' φ(∞) =

exp[Kδ(1 − x0) ln(1 − s)], the approach to this value is much faster for periodic

compared to random switching.

B.1.2 Variance of Total Population Size and Validity of

Piecewise-Deterministic Approximations

The saddle-point approximation can also be used to find the mean and variance

of the N -QSD approximations for random and periodic switching, allowing us

to ascertain the validity of the approximations (3.12) and (3.22), the piecewise-

deterministic (i.e. not including demographic noise) approximations for random

and periodic switching respectively. In the limit ν → ∞, the approximations

that include demographic noise, the LNA (A.5) (random switching) and Kapitsa

method (3.21) (periodic switching) both reduce to a Gaussian of mean and vari-

ance Kδ. i.e.:

Pα
ν→∞(N) ∝ 1√

Kδ

exp

[
− (N −Kδ)

2

Kδ

]
for α = ADN, PN. (B.16)

This is because in this limit the population size distribution is affected only by

demographic noise: the rate of environmental switching is much faster than the

reactions in the underlying process, hence the agents feel the average effect of the

noise, which is the same for both random and periodic switching. The variance

of the piecewise-deterministic approximations (3.12) and (3.22) can be found by

performing saddle-point approximations to leading order in 1/ν to find:

σ2
PN =

∫ Nmax

Nmin

(N − 〈N〉)2 ρPN
ν,δ (N)dN =

1

12

(
γ

1− γδ

)2
K2
δ

ν2
,

σ2
ADN =

∫ K+

K−

(N − 〈N〉)2ρPDMP
ν,δ (N)dN =

1

2

(
γ

1− γδ

)2 (
1− δ2

) K2
δ

ν
,

(B.17)
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B.1 Saddle-Point Approximation

where the means are also found from a saddle-point calculation to leading order

in 1/ν:

〈N〉PN =

∫ Nmax

Nmin

NρPN
ν,δ (N)dN = Kδ

[
1 +

γ2

12(1− γδ)2ν2

]
,

〈N〉ADN =

∫ K+

K−

N ρPDMP
ν,δ (N)dN = Kδ

[
1 +

γ2(1− δ2)

2ν(1− δγ)2

]
. (B.18)

Hence when ν � 1, (B.17) shows that the variance of N -QSD for periodic noise

is of order ν−2, while that of random noise is of order ν−1. Hence the width of

the N -QSD under random switching is much larger than in the periodic case,

allowing the total population size to reach smaller values of N . This is because

under random switching there will be periods where the carrying capacity is at

K− for a longer time than 1/ν−, and leads to a larger fixation probability when

s > sc. Furthermore, it is the convergence of the means (B.18) to Kδ at different

rates that leads to the different rates of convergence to φ(∞).

From (B.17) we also note that σ2
PN > Kδ when 1� ν �

√
Kδ and σ2

ADN > Kδ

when 1 � ν � Kδ. These are the cases where the variance caused by environ-

mental noise is much larger than demographic noise, so these approximations are

valid when ν �
√
Kδ (periodic) and ν � Kδ (random).
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Appendix C

Extra Information for Cyclic

Competition Models in Chapters

4, 5 and 6

This Section contains extra details for Chapters 4, 5 and 6. Section C.1 defines

the Moran-CLV, which is used to calculate the absorption probabilities and mean

absorption time of the BDCLV (Stage 2). Section C.2 details the links between

the BDCLV, MCLV and cCLV, in order to justify the use of the cCLV fixation

probabilities and mean fixation time when calculating the BDCLV survival prob-

abilities and mean extinction time (Stage 1). Section C.3 gives details of the

initial probability distribution of the population composition in the BDCLV at

the start of Stage 2. This is used when calculating the absorption probabilities.

Section C.4 shows how the mean extinction (Stage 1) and absorption (Stage 2)

times are calculated in the BDCLV. Section C.5 shows how the ‘law of stay out’

is derived for the cCLV 4.1 and the CLVDN 6.

C.1 The Moran-CLV (MCLV)

Here I will outline the main features of the MCLV. The purpose of this is to use

the fact that it is a good approximation of the BDCLV but is less complex to

analyse, due to the total population being fixed. It is therefore used to make

theoretical predictions about the BDCLV that would otherwise be inaccessible.
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C.1 The Moran-CLV (MCLV)

The MCLV is defined by six pairwise reactions each of which corresponds to the

simultaneous birth of an individual of species i and the death of an individual of

species j 6= i ∈ {1, 2, 3} (Antal & Scheuring (2006); Blythe & McKane (2007);

Ewens (2004); Moran et al. (1962); Nowak (2006a)). This occurs with a rate Tji.

If the state of the system consisting of N1 individuals of type 1, N2 of species

2, and N3 = K − N1 − N2 of the third type is denoted by [N1, N2, N3], the six

reactions of the MCLV are (Claussen & Traulsen (2008); Galla (2011); Mobilia

(2010)):

[N1, N2, N3]
T12−−→ [N1 − 1, N2 + 1, N3]; [N1, N2, N3]

T21−−→ [N1 + 1, N2 − 1, N3]

[N1, N2, N3]
T31−−→ [N1 + 1, N2, N3 − 1]; [N1, N2, N3]

T13−−→ [N1 − 1, N2, N3 + 1]

[N1, N2, N3]
T23−−→ [N1, N2 − 1, N3 + 1]; [N1, N2, N3]

T32−−→ [N1, N2 + 1, N3 − 1],

with the transition rates (Claussen & Traulsen (2008); Mobilia (2010)):

Tji = fixixj N = (1 + sΠi) xixj N = (1 + {αixi+1 − αi−1xi−1}) xixj N, (C.1)

where fi and Πi are given by (4.18) and (4.16) and αi = sri. To make sure

Tji > 0 we use the same assumptions for s and ri: that 0 ≤ s ≤ 1, 0 < ri < 1

and
∑3

i=1 ri = 1. Here the transition rates can be expressed in terms of those of

the BDCLV for a population of constant size N = K: using (4.21), (4.22) with

N = K, we have Tji = T+
i T

−
j /K. Using (2.12) we find that the mean field rate

equations are:

d

dt
xi =

1

N

3∑
j=1;j 6=i

(Tji − Tij) = sΠixi = xi (αixi+1 − αi−1xi−1) . (C.2)

These coincide with the mean field rate equations for the BDCLV (4.25). There-

fore the dynamics of the population composition of the MCLV and BDCLV coin-

cide in the mean field limit K →∞: both are characterised by a neutrally stable

coexistence fixed point ~x∗ = (r2, r3, r1) and constant of motion R = xr21 x
r3
2 x

r1
3 .

Since in the BDCLV dynamics the population size obeys a logistic equation,

after a short transient N(t) ≈ K, see (4.24) and Figure 4.3 This establishes a
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C.1 The Moran-CLV (MCLV)

useful relationship between the BDCLV and MCLV: Except for a short transient

(on a timescale t ∼ O(1)), corresponding to the so-called exponential phase of

the logistic equation, the evolution of the BDCLV is similar to the dynamics of

the MCLV in a population of constant size N = K. The BDCLV and MCLV

relation is particularly useful to determine the absorption/fixation properties of

the former in terms of the well-studied fixation properties of latter. In Figure

C.1 it is shown that the survival and absorption probabilities φi,j and φi in the

BDCLV are almost indistinguishable from those obtained in the MCLV (with

N = K). Since the overall fixation probabilities φ̃i = φi,i+1φi + φi−1,i(1− φi), see

(4.32), we can consider that the absorption and total fixation probabilities in the

BDCLV and those of the MCLV with N = K � 1 coincide. Similarly, the mean

extinction and absorption times T1 and T2 in the BDCLV with and MCLV with

N = K � 1 are indistinguishable, see the insets of Figure C.1 and below.

To study the absorption/fixation properties of the BDCLV and MCLV, it is

useful to write down the two-dimensional forward Fokker-Planck equation (FPE)

obeyed by the probability density PMCLV ≡ PMCLV(~x, t) of the latter. Using stan-

dard methods, (see e.g. Claussen & Traulsen (2008); Gardiner (1985); Mobilia

(2010); Reichenbach et al. (2006); Van Kampen (1992)) we have the forward FPE:

[∂t − GfMCLV(~x)] PMCLV(~x, t) = 0, where

GfMCLV(~x) ≡ −
2∑
i=1

∂iA
MCLV
i (~x) +

1

2

2∑
i,j=1

∂i∂jB
MCLV
ij (~x), (C.3)

is the forward FPE generator, with ∂i ≡ ∂/∂xi
1, defined by

AMCLV
i (~x) ≡

3∑
j=1,j 6=i

(Tji − Tij) , BMCLV
ii (~x) ≡

3∑
j=1,j 6=i

(
Tji + Tij

K

)
,

and BMCLV
12 (~x) = BMCLV

21 (~x) ≡ −
(
T12 + T21

K

)
. (C.4)

Within the linear noise approximation (Gardiner (1985); Van Kampen (1992)),

upon linearising AMCLV
i about the coexistence fixed point ~x∗ and by evaluating

1In Eq. (C.3), the indices i, j ∈ {1, 2} since x3 = 1− x1 − x2 and, as usual in the diffusion

theory, we have rescaled the time t→ t/N .
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C.2 Link Between the BDCLV, MCLV and cCLV

BMCLV
ij (~x) at ~x∗, in the variables ~y = S~x =

√
3

2

(
(r1+r2)ωMCLV

0

r1r2

ωMCLV
0

r1

0 1

)
~x, the

forward FPE reads (Mobilia (2010); Reichenbach et al. (2006))

∂tPMCLV(~y, t) = −ωMCLV
0 [y1∂y1 − y2∂y2 ]PMCLV(~y, t)

+ DMCLV [∂2
y1

+ ∂2
y2

]PMCLV(~y, t), (C.5)

where ωMCLV
0 = s

√
r1r2(1− r1 − r2) and DMCLV = 3[r1 + r2 − 4r1r2 − (r1 −

r2)2]/(4N). To study the fixation properties of the MCLV, the FPEs (C.3) and

(C.5) have to be supplemented with absorbing boundaries at the corners of S3

(Berr et al. (2009); Reichenbach et al. (2006); West et al. (2018)).

C.2 Link Between the BDCLV, MCLV and cCLV

Before elucidating the link between the three models, it is first useful to proceed as

above and consider the two-dimensional forward Fokker-Planck equation (FPE)

obeyed by the cCLV probability density PcCLV ≡ PcCLV(~x, t) (with t→ t/N):

[∂t − GcCLV(~x)] PcCLV(~x, t) = 0, where

GcCLV(~x) ≡ −
2∑
i=1

∂iA
cCLV
i (~x) +

1

2

2∑
i,j=1

∂i∂jB
cCLV
ij (~x), (C.6)

with AcCLV
i (~x) ≡ Wi+1,i − Wi,i−1, BcCLV

ii (~x) ≡ (Wi+1,i +Wi,i−1) /K where i ∈
{1, 2}, and BcCLV

12 (~x) = BcCLV
21 (~x) ≡ −(W12 +W21)/K. It is worth noting that the

drift terms of the cCLV and MCLV are simply related by AcCLV
i = sAMCLV

i /(k1 +

k2 +k3). In the case of symmetric rates, k1 = k2 = k3 = 1, within the linear noise

approximation, this forward FPE in the variables ~y = S~x reads:

∂tPcCLV(~y, t) = −ωcCLV
0 [y1∂y1 − y2∂y2 ]PcCLV(~y, t)

+ DcCLV [∂2
y1

+ ∂2
y2

]PcCLV(~y, t), (C.7)

where ωcCLV
0 = 1/

√
3 and DcCLV = 1/(12N) (Reichenbach et al. (2006)). This

FPE is similar to (C.5). The comparison with the MCLV with equal rates ri = 1/3

is particularly illuminating: ωMCLV
0 = sωcCLV

0 /3 and DMCLV = 2DcCLV. Hence,
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C.2 Link Between the BDCLV, MCLV and cCLV

Figure C.1: Comparison of the fixation properties vs. sK in the BDCLV (solid

lines) with constant carrying capacity K and in the MCLV (symbols) with a

constant population size N = K ∈ {1000 (B), 450 (◦), 250 (�), 90 (�), 50 (4)},
with ~r = ~r(1) in (a,c) and ~r = ~r(2) in (b,d) and different values of selection inten-

sity: s ∈ {10−j/4, j ∈ JMCLV
K } with JMCLV

1000 = {0}, JMCLV
450 = {0, . . . , 3}, JMCLV

250 =

{0, . . . , 4}, JMCLV
90 = {0, . . . , 10}, JMCLV

50 = {7, . . . , 12} for the MCLV and s ∈
{10−j/4, j ∈ JBDCLV

K } with JBDCLV
1000 = {1}, JBDCLV

450 = {0, . . . , 12}, JBDCLV
90 =

{10, 11, 12}, JBDCLV
50 = {12} for the BDCLV. (a,b) Stage 1 survival probabili-

ties φ1,2 (purple), φ2,3 (light blue) and φ3,1 (orange) vs. sK: BCLV results (lines)

match perfectly with those obtained for the MCLV (symbols). Insets: Rescaled

mean extinction times T1/K vs. sK for the BDCLV (solid lines) and MCLV

(symbols) virtually coincide, see text. (c,d) Stage 2 conditional fixation proba-

bilities φ1 (red), φ2 (blue) and φ3 (green) vs. sK: BCLV results (lines) agree

perfectly with those obtained for the MCLV (symbols). Insets: Rescaled mean

absorption times T2/K vs. sK for the BDCLV (solid lines) and MCLV (symbols)

almost coincide, see text. In all panels: ~x0 = ~xc, ε = 0; regimes (i)-(iii), from left

to right, are indicatively separated by dashed lines. Simulation results for the

fixation probabilities of in the constant-K BDCLV and MCLV with N = K are

almost indistinguishable, see text.
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C.2 Link Between the BDCLV, MCLV and cCLV

upon a suitable rescaling of the timescale, the MCLV and cCLV deterministic

drift and diffusive terms (about ~x∗) can be mapped onto each other.

With this, we are now in a position to establish a link between the Stage

1 dynamics in all three models. We have seen that the cCLV survival/fixation

probabilities are set in Stage 1 by the outermost orbit and follow the LOW in

large populations. The MCLV and cCLV obey the same mean-field equations

(up to time rescaling), with the same constant of motion R and fixed points, see

(4.4) and (C.2), and as such they admit the same outermost orbits. Furthermore,

with the same timescale, the diffusion constant in the MCLV is 1/(Ns) and 1/N

in the cCLV. The survival probabilities φMCLV
i,i+1 of a population evolving with the

MCLV are therefore expected to correspond to those of the cCLV in a population

of effective size O(Ns), with rates related according to ri = ki/(k1 + k2 + k3).

We have also seen that in the BDCLV the population size rapidly fluctuates

about K, i.e. N(t) ' K, see (4.24) and Figure 4.3, and its survival probabilities

are the same as in the MCLV with N = K � 1 (see Figure C.1). The survival

probabilities φi,i+1 in the BDCLV are therefore the same as those, φcCLV
i,i+1 |Ks, in the

cCLV with a population of size O(Ks): φi,i+1 ≈ φMCLV
i,i+1 |K ≈ φcCLV

i,i+1 |Ks = φcCLV
i |Ks.

We therefore expect that the survival probabilities of the BDCLV obey the LOW

when Ks & 100, whereas they obey the LOSO when Ks = O(10), see Figure 4.2.

This is confirmed by the results discussed in Section 4.4.1, see Figure 4.5(a,b). It

has also been previously established in (Dobrinevski & Frey (2012); Reichenbach

et al. (2006)) that the mean extinction time in the cCLV scales with K to leading

order and can be obtained within a linear noise approximation about ~x∗. We

can proceed similarly with the MCLV, and since the linear noise approximation

about ~x∗ of the cCLV and MCLV is similar, see Eqs. (C.7) and (C.4), we can

obtain the mean extinction time TMCLV
1 by solving the radial diffusion equation

∂t PMCLV(r, t) = DMCLV [r−1∂r + ∂2
r ] PMCLV(r, θ, t), with absorbing boundary

on ∂S3 and DMCLV = 2DcCLV. This yields TMCLV
1 ' 3

2
R2N ≈ 0.3K (where

R = 1
2
√

3

(
1 + 1√

3

)
(Reichenbach et al. (2006))) when ri = r = 1/3 (symmetric

rates). A similar relation, with a different expression of R, holds when the rates

ri are asymmetric. Since N(t) ' K in the BDCLV (after a time t = O(1)), we

readily obtain its mean extinction time: T1 ' 3
2
R2K ≈ 0.3K to leading order in

K � 1, when ri = 1/3. The insets of Figure C.1 confirm that T1 in BDCLV is
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almost indistinguishable from TMCLV
1 obtained in the MCLV with N = K � 1.

This result also holds when the dynamics towards extinction is driven by diffusion

(weak demographic noise). This is certainly the case when ~x0 = ~x∗ and also when

~x0 6= ~x∗ and s� 1. In fact, under weak selection, the deterministic drift arising

when ~x0 6= ~x∗ is weak and extinction is driven by weak demographic fluctuations

when s� 1. we therefore find T1 ' 3
2
R2N ≈ 0.3N when ri = r = 1/3 and when

s� 1 and sK = O(1), as reported in Figure C.3(a)

C.3 Initial Composition in Stage 2

The stage 2 dynamics of the BDCLV and MCLV, as well as their fixation proper-

ties, depend on the population composition at the end of Stage 1 which coincides

with the inception of Stage 2. In Sections 4.4.1 and 5.2.2, we have seen that the

initial fraction x̂i of i individuals along the edge (i, i + 1) of S3 is given by the

probability density P(i,i+1)(x̂i) which can be approximated by a uniform distribu-

tion P(i,i+1)(x̂i) ≈ 1 when sK . 10 (constant K) and sK0 . 10 (switching K),

yielding an average initial fraction µi =
∫ 1

0
x̂iP(i,i+1)(x̂i) dx̂i ≈ 1/2 of i individuals

along (i, i+1), see Figure C.2. The same holds true also when |ε| � 1, see Section

4.4.2.

This is no longer the case under strong selection, when the P(i,i+1)’s are skewed

and far from being uniform, see the lower insets of Figure C.2. When K � 1 is

constant and the LOW holds, the extinction of the first species in Stage 1 occurs

from the outermost orbit as in the cCLV (Berr et al. (2009); West et al. (2018),

see also Section 4.1), and µi can be estimated as follows: Along the outermost

orbit that is closest (xi−1 = 1/K) to the edge (i, i + 1) in the BDCLV, from the

rate equations (4.25) we have xi/xi+1 = ri+1/ri−1 yielding µi = ri+1/(ri+1 + ri−1).

The results of Figure C.2 (a,b) for sK � 1 are in satisfying agreement with this

prediction.

The results reported in Figure C.2 (c,d) show that the averages µi’s are closer

to 1/2 in regime (ii) than in the constant-K BDCLV. This stems from the en-

vironmental variability operating to balance the effect of selection and implies

that P(i,i+1) ≈ 1 is a better approximation in the regime (ii) when K is randomly

switching than when it is constant. In the lower insets of Figure C.2 (c,d), we
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Figure C.2: Population composition at the inception of Stage 2 vs. sK (a,b)

and sK0 (c,d) with ~r = ~r(1) in (a,c) and ~r = ~r(2) in (b,d). In all panels:

µi =
∫ 1

0
x̂iP(i,i+1)(x̂i) dx̂i is the mean value of x̂i for species i = 1 (red), 2

(blue), 3 (green), with ~x0 = ~xc and ε = 0. (a,b) µi vs. sK in the BDCLV

with K = 1000 (4), 450 (◦), 50 (�) and s ∈ (10−3, 1). (Empty symbols de-

note data arising from small survival probability φi,i+1 < 0.01 that would require

additional sampling). When sK . 10, µi ≈ 1/2 and P(i,i+1) ≈ 1 is approxi-

mately uniform. When sK � 1, the dynamics is dominated by the LOW and

µi ≈ ri+1/(ri+1 + ri−1) shown as dotted lines, see text. Upper insets: Histograms

corresponding to P(i,i+1)(x̂i) with s = 10−7/4 and K = 250, is approximately

uniform, corresponding to P(i,i+1) ≈ 1, along the three edges. Lower insets:

Same with s = 1 and K = 1000, showing that P(i,i+1) is no longer uniform when

sK � 1. (c,d) µi vs. sK0 in the switching-K BDCLV with K0 = 250 and γ = 0.8

kept fixed and s varies with ν = 10 (�), ν = 1 (◦) and ν = 0.001 (4). Insets:

(Upper) Histograms corresponding to P(i,i+1)(x̂i) with s = 10−7/4, ν = 0.1 and

K0 = 250, γ = 0.8 for i = 1, 2, 3. (Lower) Same with s = 1, K0 = 250, γ = 0.8,

ν = 0.1 (left) and ν = 10 (right).
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find very similar probability densities P(i,i+1) for very different switching rates

(µ = 0.1 and µ = 10), showing that in the switching-K BDCLV P(i,i+1) varies

little with ν.

C.4 Mean Extinction and Absorption Time in

the BDCLV and number of switches

We study the overall mean fixation time TF , which is the average time after which

one species takes over the entire population, in the constant-K and switching-K

BDCLV. TF = T1 + T2 consists of the mean extinction time T1 and the mean

absorption time T2 arising from Stages 1 and 2, respectively. We also compute

the average number of switches occurring in Stages 1 and 2 of the switching-K

BDCLV.

C.4.1 Mean extinction, absorption and fixation times in

the constant-K BDCLV

We first consider the case of the constant-K BDCLV and show that the overall

mean fixation time TF = O(K) across all regimes (i)-(iii), see Figure 4.7(a).

Stage 1: Mean extinction time T1 in the constant-K BDCLV

The mean extinction time T1 is the average time for one of the species to go

extinct at the end of Stage 1. As explained in Section C.2, with the results

obtained for the cCLV, we find T1 ' T cCLV
1 /2 ≈ 0.3K when s � 1 (regimes

(i,ii)) and for arbitrary s when all ri = 1/3, see Figure C.3 (a). Deviations from

T1 ≈ 0.3K, and a weak dependence on s and on the ri’s, are found near the

boundary of regimes (ii)-(iii) and in regime (iii), where T1 ' βc(s, ~r)K, where βc

is a decreasing function of s when the ri’s are unequal, see Figure C.3 (a).
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Figure C.3: Mean extinction and absorption times T1 and T2, in the constant-K

BDCLV for K ∈ {1000 (B), 450 (◦), 250 (�), 90 (�), 50 (4)} and the same values

of s as in Figures 4.5 and 4.6: (a) T1/K vs. sK; showing T1 = O(K) when K � 1

and T1 ≈ 0.31K (dotted line) when ri = r and under weak selection (sK . 10)

when ~xc 6= ~x∗ (unequal ri’s), see text. (b) T2/K vs. sK; solid and dashed lines

show the respective predictions of T2|K =
∑

i φi,i+1T
(i,i+1)
2 |K and (C.10), see text.

Inset: sT2/ logK = O(1) when s � 1 and sK � 1, see text. In all panels:

symbols are from stochastic simulations, ~x0 = ~xc, ε = 0 and ~r = ~r(1) (green),

~r = ~r(2) (blue), and equal ri (black).

Stage 2: Mean absorption time T2 in the constant-K BDCLV

The stage 2 mean absorption time T2 is given by

T2 =
3∑
i=1

φi,i+1T
(i,i+1)
2 , (C.8)

where the mean absorption time along the edge (i, i+1) of S3, denoted by T
(i,i+1)
2 ,

is weighted by the probability φi,i+1 that Stage 1 ends on that edge.

The expression of T
(i,i+1)
2 is obtained from the mean fixation time of the MCLV

with N = K, here denoted by T
(i,i+1)
2 |K with T

(i,i+1)
2 ' T

(i,i+1)
2 |K , see Section C.2.

For a given initial fraction x̂i of i’s at the start of Stage 2 is (x̂i), T
(i,i+1)
2 (x̂i)|K when

s� 1 is obtained by solving G(i,i+1)|K(x̂i) T
(i,i+1)
2 (x̂i)|K = −1, with T

(i,i+1)
2 |K(0) =

T
(i,i+1)
2 |K(1) = 0 (see (C.3) and (2.19)). Since the exact population composition

along the edge (i, i + 1) at the inception of Stage 2 is given by P(i,i+1)(x̂i), we
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have:

T2 '
3∑
i=1

φi,i+1T
(i,i+1)
2 |K =

3∑
i=1

φi,i+1

∫ 1

0

P(i,i+1)(x̂i) T
(i,i+1)
2 (x̂i)|K dx̂i. (C.9)

with T
(i,i+1)
2 |K ≡

∫ 1

0
P(i,i+1)(x̂i) T

(i,i+1)
2 (x̂i)|K dx̂i. A simpler expression for T2 is

obtained when s� 1 and sK . 10 upon substituting φi,i+1 ≈ 1/3 and P(i,i+1) ≈ 1

in (C.9):

T2 '
1

3

3∑
i=1

∫ 1

0

T
(i,i+1)
2 (x̂i)|K dx̂i. (C.10)

While the expression of T
(i,i+1)
2 (x̂i) is not particularly illuminating, its asymptotic

behavior is simple and allows us to determine the behavior of T2: In the weak-

selection regime (ii) where s � 1 and sK ≈ 10, we obtain the classical result

T
(i,i+1)
2 |K = O((logK)/s) according to which T2 scales as 1/s with a subleading

prefactor ∼ logK (Blythe & McKane (2007); Ewens (2004)), which is confirmed

by the results of Figure C.3 (c).

On the other hand, since the mean fixation time in the neutral Moran model

scales linearly with the population size (Blythe & McKane (2007); Crow &

Kimura (2009); Ewens (2004)), we readily find T2 = O(K) in the quasi-neutral

regime (i). The mean fixation time in the Moran model with strong selection

favouring species i against i + 1 scales logarithmically with the population size

(Antal & Scheuring (2006)), from which we infer that T2 = O(logK) in regime

(iii).

Putting the asymptotic behaviors of T1 and T2 together, we find that to leading

order in N ' K � 1 the overall mean fixation time TF = T1 + T2 = O(K)

scales linearly with the population size across the regimes (i)-(iii), with different

subleading prefactors in each regime. We also notice that in regime (iii) T1 � T2:

The extinction of a second species (Stage 2) occurs much faster than the death

of a first species in Stage 1, see Figure 4.3 (a). In regime (i) T1/T2 = O(1) and

T1/T2 = O(sK/ logK) in regime (ii), see Figure 4.3(b)

159



C.4 Mean Extinction and Absorption Time in the BDCLV and
number of switches

Figure C.4: (a) T1/〈N〉 vs. ν for r1 = 1/11(green), 1/3(black), 3/5(blue) and

r2 = r3 = (1 − r1)/2, with s = 10−1/2 (circles) and s = 10−3/2 (triangles). In

agreement with (C.11), T1/〈N〉 = βs = O(1) and slowly varies with ν and s. Inset:

〈N〉 vs ν; solid lines are from the average over the marginal probability density

(5.6) of the process defined by (5.5) and symbols are from stochastic simulations

with s = 10−1/2 (circles) and s = 10−3/2 (triangles), showing 〈N〉 = O(K0), see

text. (b) T2 vs. s for ν = 10−3 (circles, light dotted gray), 10−1 (diamonds,

dashed gray), 10 (squares, solid black) and ~r = (1/3, 1/3, 1/3). Symbols are

from stochastic simulations and lines are from (C.12). T2 scales as 1/s with

subleading prefactor ∼ logK0 when s � 1 and sK0 ≈ 10, see text. In both

panels: K0 = 250, γ = 0.8 (K− = 50, K+ = 450) and ~x0 = ~xc; ε = 0.
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C.4.2 Mean extinction, absorption and fixation times in

the switching-K BDCLV

We study the effect of random switching on the mean extinction and absorption

times, T1 and T2 characterizing Stages 1 and 2, respectively. This allows us to

show that the mean fixation time TF = T1 +T2 = O(〈N〉) = O(K0) scales linearly

with the average population size, and to compute the average number of switches

occurring in Stages 1 and 2.

Stage 1: Mean extinction time in the switching-K BDCLV

Guided by the results of the constant-K BDCLV, where T1 scales linearly with

N ≈ K to leading order in K0 � 1, we expect

T1 = βs〈N〉 with βs = βs(s, ~r, ν), (C.11)

where 〈N〉 = O(K0) is the long-time average population size that is in principle

obtained by averaging N over the N -QSD. In the inset of Figure C.4, this quantity

is accurately computed in the realm of the piecewise deterministic Markov process

approximation as 〈N〉 =
∫ K+

K−
Np∗ν(N)dN , see the inset of Figure C.4 (a), and is

shown to be independent of s and a decreasing function of ν. For fast/slow

switching, we have 〈N〉 = (1 − γ2)K0 when ν → ∞ and 〈N〉 = K0 when ν → 0

(Wienand et al. (2017, 2018)). Comparison with simulation results of Figure

C.4 confirm that T1/〈N〉 = βs = O(1) is a slowly varying function of ν and a

weakly decreasing function of s. Since 〈N〉 = O(K0) when γ = O(1), we obtain

T1 = O(〈N〉) = O(K0) to leading order in K0.

Stage 2 mean absorption time and overall mean fixation time in the

switching-K BDCLV

Proceeding as in Appendix C.4.1, the Stage 2 mean absorption time is given by

T2 =
∑3

i=1 φi,i+1T
(i,i+1)
2 . In the realm of the piecewise deterministic Markov pro-

cess approximation, when s � 1 and sK0 � 1, T
(i,i+1)
2 is obtained by averaging

the constant-K0 mean absorption time T
(i,i+1)
2 |K0 along the edge (i, i + 1) over
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the probability density function (5.6) (Wienand et al. (2017, 2018)):

T
(i,i+1)
2 '

∫ 1

0

∫ K+

K−

P(i,i+1)(x̂i) T
(i,i+1)
2 (x̂i)|K0 p

∗
ν/αi

(N) dx̂i dN.

As in Section 5.2.2, the switching rate is rescaled ν → ν/αi due to the average

number O(ν/αi) of switches occurring in Stage 2 along the edge (i, i + 1) when

s � 1 and sK0 � 1 (Wienand et al. (2017, 2018)). The above equation can be

simplified using φi,i+1 ≈ 1/3 and P(i,i+1)(x̂i) ≈ 1 when s � 1 and sK0 . 10 (see

Appendix C.3)

T2 ≈
1

3

3∑
i=1

T
(i,i+1)
2 ' 1

3

3∑
i=1

∫ K+

K−

T
(i,i+1)
2 (x̂i)|K0 p

∗
ν/αi

(N) dN, (C.12)

where T
(i,i+1)
2 ∼ T

(i,i+1)
2 |K0(x̂i) which scales as 1/αi with a prefactor ∼ logK0

and a weak dependence on ν when s� 1 and sK0 � 1 (Wienand et al. (2017)).

This yields T
(i,i+1)
2 = O((logK0)/s) in regime (ii): In agreement with the results

of Figure C.4 (b), T2 = O(1/s) with a subleading prefactor ∼ logK0 when s� 1

and sK0 . 10. As in the constant-K BDCLV, the quasi-neutral regime (i), where

sK0 � 1, T2 = O(K0), whereas under strong selection, sK0 � 1, T2 = O(logK0),

see Figure C.4 (b).

Putting together the results for T1 and T2, we obtain the overall mean fixation

time TF = T1 + T2 ∼ 〈N〉. Since 〈N〉 = O(K0), we have TF = O(K0) which, with

subleading prefactors that vary slowly with ν and s, as illustrated by Figure 5.6.

C.4.3 Average number of switches in Stages 1 and 2 of

the switching-K BDCLV

Since the average duration of Stage 1 in the the switching-K BDCLV is T1 =

βs〈N〉 = O(K0), see Eq. (C.11), the average number of switches occurring prior

one of the species die out scales as O(νK0), as shown in Figure C.5 (a), i.e. the

average number of switches increases as νK0, with a prefactor that depends on s

via βs which is a weakly decreasing function of s (i.e. the number of switches is

greater for smaller values of s). Hence, for any non-vanishingly small switching

rate ν � 1/K0 and K0 � 1, a large number of switches occur during Stage 1
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Figure C.5: Average number of switches in Stage 1 of the BDCLV for ν = 0.1

(circles), 1 (triangles), 10 (squares). Selection intensity is s = 10−3/2 (filled

symbols) and s = 10−1/2 (open symbols). Data for (average number of switches

in Stage 1)/ν vs K0 and different values of ν and ~r essentially collapse onto a curve

(almost a line). Other parameters are: ~r = (1, 1, 1)/3 (black), ~r = (1, 5, 5)/11

(green), ~r = (3, 2, 2)/5 (blue); ~r = ~r(1) and ~x0 = ~xc.

prior to the extinction of the first species and the DMN self averages, see Section

5.2.1.

In Wienand et al. (2017, 2018), it has been shown that that under weak

selection the population experiences, on average, O(ν/αi) switches during the two-

species competition characterizing the Stage 2 dynamics along the edge (i, i+ 1).

This supports the rescaling ν → ν/αi in formula (5.11) which has been found to

be actually valid when the selection intensity s is neither vanishingly small nor

too large (Wienand et al. (2018)).

C.5 Fixation Probabilities in the cCLV and CLVDN

when N = 3

The law of stay out (‘LOSO’ - see (4.10)) states that the most likely species to

fixate the population is the one that predates on the species with the highest

dominance-replacement rate. Here I will use a first-step analysis to derive an

exact expression for the ‘LOSO’ when N = 3 in the cCLV when the environment

is constant (see Section 4.1): I will show that φi = ki+1/
(∑3

i=1 ki
)
. In the case
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where k1 varies in time according to a dichotomous Markov process (see Chapter

6), I will show that the fixation probability depends on the rates, ki, the intensity

of the noise ∆ and the switching rate ν.

C.5.1 LOSO in the cCLV

When N = 3 in the cCLV with one individual of each species initially, the fate of

the system is known after the first reaction has taken place. This is because two

species then remain (say, i and i + 1), the only reaction that can happen is for

the ‘predator’ i to replace the ‘prey’ i+ 1 until only i remains and it has fixated

the population.

If we consider species 1, it will fixate the population if the first reaction is

species 2 replacing species 3. The probability that this occurs first is the rate

at which this occurs, k2, divided by the total rate of all reactions
(∑3

i=1 ki
)
.

Proceeding similarly for species 2 and 3 we have:

φ1 =
k2∑3
i=1 ki

, φ2 =
k3∑3
i=1 ki

, φ3 =
k1∑3
i=1 ki

(C.13)

C.5.2 Fixation Properties in the CLVDN when N = 3

Again in the model described by (6.1) - (6.3) in Chapter 6 the fixation proba-

bility is completely determined by the first dominance replacement reaction to

occur. Considering species 1, it will be the fixating species if the first dominance-

replacement reaction to occur is species 2 replacing species 3. However, in contrast

to the cCLV, here we also have to take into account that the environment may

switch an arbitrary number of times before a dominance replacement reaction

happens. Hence the probability that species 1 fixates the population is:

φ1 = P (23 reaction first) = P (23) + P (switch then 23) (C.14)

+ P (2 switches then 23) + . . . ,

where P (.) stands for “probability of (.)”.
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Considering first that initially ξ = +1 and according to (C.14), with γ =

k + k2 + k3 + ν and α = ν2/(γ2 −∆2), we have :

P (1 fixates| start with ξ = +1) =
k2

γ + ∆
+

ν

γ + ∆

k2

γ −∆

+
ν2

(γ + ∆)(γ −∆)

k2

γ + ∆
+ . . .

=
∞∑
n=0

αn
(

1

γ + ∆
+

ν

γ2 −∆2

)
k2

=
(γ −∆ + ν) k2

γ2 −∆2 − ν2
. (C.15)

The case of the initial state ξ = −1 is treated similarly and yields:

P (1 fixates| start with ξ = −1) =
(γ + ∆ + ν) k2

γ2 −∆2 − ν2
. (C.16)

Since the population is initially as likely to be in either of the environmental

states, we have

φ1 =
1

2
P (1 fixates| start in ξ = +1)

+
1

2
P (1 fixates| start in ξ = −1) =

(γ + ν) k2

γ2 −∆2 − ν2
. (C.17)

Proceeding similarly for φ2 and φ3, we obtain (6.5).
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Appendix D

Simulation Methods

In this thesis, theoretical predictions are backed up by simulations. Depending

on the kind of environmental noise being studied, different simulation methods

must be used. Here I will briefly explain the different simulation methods, and

when they are applicable. Full algorithms can be found in the cited papers.

When considering dichotomous Markov noise (DMN), or no environmental

noise, I use the well-known ‘Gillespie algorithm’ (Gillespie (1977)). This is an

exact realisation of the Master equation, using two random numbers and the rate

of each reaction (T+
i , T

−
i and ν±) to determine the time that the next reaction

takes place, and which one it is. This method is possible here because each

reaction (species reactions and environmental switch) occurs randomly with a

certain rate. DMN is the main focus of the thesis, hence this is the simulation

method I use the most.

In Chapter 3 we compare this to periodic switching, and in this case we use

a modified version of the ‘Next Reaction Method’ (Anderson (2007)), which is

more suitable for systems with explicit time dependent rates. This differs from the

Gillespie algorithm because for each reaction it keeps track of the next time each is

due to occur, along with the global time (i.e. the current time of the system). To

initialise, the ‘internal reaction times’ are set (for the species reactions these are

drawn from an exponential random variable with rate T±i , for the environmental

switches this is known exactly from ν, δ and ξ), and the ’global reaction time’

is initialised to zero. Then at each iteration the reaction with the smallest next

reaction time is selected and the global reaction time set to this internal time, the
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populations are updated, and the internal reaction times for the species reactions

that did not occur are updated according to:

new internal time =
old reaction rate

new reaction rate
(internal reaction time− new global time)

+ new global time.

Finally, for the reaction that occurred the new internal reaction time is calculated

as an exponential random variable with new reaction rate if it was a species

reaction, or calculated from (ν, δ, ξ) if it was an environmental switch. In this

situation this is also an exact realisation of the Master equation and while it has

added advantage of only requiring one random variable to be generated in each

time-step, you are required to keep track of all the internal firing times and the

global time, rather than just the global time for the Gillespie Algorithm.

For the Ornstein-Uhlenbeck (OU) process briefly discussed in Appendix A.2,

all the processes are random processes but there is the added complication that

the OU process has a continuous sample space but the sample spaces for the

species processes are discrete. Simulating these together is made more difficult

by the dependence of the death rates on the OU process. To get around this,

one approximates the OU process via a discrete birth death process that can be

described with a Master equation. To this end, one defines the ‘copy number’ of

the carrying capacity k = KOU(1 + ξOU), where ξOU is the OU process with zero

mean, correlation time τ and intensity σ as in (A.7), and KOU � 1 is the mean

value of the carrying capacity and a large number (Roberts et al. (2015)). The

Master equation describing the probability of finding copy number k, Pk satisfies:

dPk
dt

= bk−1Pk−1 + dk+1Pk+1 − (bk + dk)Pk, (D.1)

where the birth and death rates are

bk =
2K2

OUσ
2 − k +KOU

2τ
and (D.2)

dk =
2K2

OUσ
2 + k −KOU

2τ
(D.3)

respectively. Using these birth and death rates, the stochastic differential equa-

tion (SDE) for the copy number k is:

dk = −(k −KOU)

τ
+

√
2K2

OUσ
2

τ
dW, (D.4)
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where dW is an interval of the Wiener process. This is the same as the SDE for

the carrying capacity K(t) defined by (A.6) and (A.7) which can be found by

noting that dK = KOUdξOU and substituting ξ = K−KOU

KOU
.

With this approximation of the full OU process, all the reactions being sim-

ulated are now birth death processes so one can, in principle, use the Gillespie

algorithm or Next Reaction Method. However, because KOU � 1 the birth and

death rates for the copy number are much larger than those for the species (of

order K2
OU/τ compared to order KOU). So, between successive species reactions

there will be of order KOU/τ copy number reactions. When τ is large the speed

of both algorithms is comparable, but when τ is of order O(1) it is faster to use

the Next Reaction Method, because this requires only one random number per

iteration (which is the slowest step in the algorithms).

Finally one must also recognise that the unboundedness of the OU process

can lead to negative carrying capacities. This is obviously not physically realistic

and is overcome by by specifying that the death rate of the copy number when

k = 1, d1 = 0. This effectively imposes a reflecting boundary at zero and has a

negligible effect on the steady state distribution when σ < 0.3.
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Casadesús, J. & Low, D. (2006). Epigenetic gene regulation in the bacterial

world. Microbiology and Molecular Biology Reviews , 70, 830–856. 32

Chater, N., Vlaev, I. & Grinberg, M. (2008). A new consequence of Simp-

son’s paradox: Stable cooperation in one-shot prisoner’s dilemma from popula-

tions of individualistic learners. Journal of Experimental Psychology: General ,

137, 403. 57, 135

Chesson, P.L. & Warner, R.R. (1981). Environmental variability promotes

coexistence in lottery competitive systems. The American Naturalist , 117, 923–

943. 1

Chuang, J.S., Rivoire, O. & Leibler, S. (2009). Simpson’s paradox in a

synthetic microbial system. Science, 323, 272–275. 57, 135

Claussen, J.C. & Traulsen, A. (2008). Cyclic dominance and biodiversity

in well-mixed populations. Physical Review Letters , 100, 058104. 70, 71, 150,

151

Coates, J., Park, B.R., Le, D., Şimşek, E., Chaudhry, W. & Kim, M.
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