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Abstract

Modelling and reasoning about preference is necessary for applications

such as recommendation and decision support systems. Such systems

are becoming increasingly prevalent in all aspects of our daily lives as

technology advances. Thus, preference representation is a wide area of

interest within the Artificial Intelligence community. Conditional pref-

erence networks, or CP-nets, are one of the most popular models for

representing a person’s preference structure. In this thesis, we address

two issues with this model that make it difficult to utilise in practice.

First, answering dominance queries efficiently. Dominance queries ask

for the relative preference between a given pair of outcomes. Such

queries are natural and essential for effectively reasoning about a per-

son’s preferences. However, they are complex to answer given a CP-net

representation of preference. Second, learning a person’s CP-net from

observational data. In order to utilise a CP-net representation of a

person’s preferences, we must first determine the correct model. As

direct elicitation is not always possible or practical, we must be able

to learn CP-nets passively from the data we can observe.

We provide two distinct methods of improving dominance testing ef-

ficiency for CP-nets. The first utilises a quantitative representation

of preference in order to prune the associated search tree. The sec-

ond reduces the size of a dominance testing problem by preprocessing

the CP-net. Both methods are shown experimentally to significantly

improve dominance testing efficiency. Furthermore, both are shown

to outperform existing methods. These techniques can be combined

with one another, and with the existing methods, in order to further

improve efficiency.

We also introduce a new, score-based learning technique for CP-nets.

Most existing work on CP-net learning uses pairwise outcome prefer-

ences as data. However, such preferences are often impossible to ob-

serve passively from user actions, particularly in online settings, where

users typically choose from a variety of options. Contrastingly, our



method assumes a history of user choices as data, which is observable

in a wide variety of contexts. Experimental evaluation of this method

finds that the learned CP-nets show high levels of agreement with the

true preference structures and with previously unseen (future) data.
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Chapter 1

Introduction

1.1 Motivation and Contributions

As we increasingly rely upon technology in all aspects of our lives, we have come

to expect that it will anticipate our needs and be a personalised experience that

is most helpful to us. This can be seen in content recommendation on platforms

such as Netflix or Spotify, personalised news feeds on our phones, and online

shopping suggestions. Even our autofill prompts when typing are tailored to match

personal writing styles and phrases. We are also developing progressively advanced

technology to assist or automate human decision making. Smart home technology

and route planners are already commonplace, and driverless cars are becoming

an everyday reality. We are even in the process of creating systems to assist

or automate medical diagnoses. In order to provide helpful recommendations or

decision support, these systems must understand the preferences of the intended

user. Hence, modelling and reasoning with human preferences is an important

topic in artificial intelligence.

There have been many methods proposed in the literature for modelling pref-

erence. The most prominent of the existing models are as follows. Conditional

preference networks (Boutilier et al., 2004a), or CP-nets, are a graphical repre-

sentation of qualitative preferences. There have also been many extensions and

generalisations of CP-nets proposed, which we shall discuss below. Conditional im-

portance networks (Bouveret et al., 2009), or CI-nets, are another graphical model,

which represent qualitative preferences over sets of outcomes. We can also repre-

sent qualitative preferences via lexicographic preference trees (Booth et al., 2010),

where the edges represent choices over features, or a more generalised model, pref-

erence trees (Liu and Truszczynski, 2014), where edges represent the satisfaction

of more complex conditions over the features (represented by propositional formu-
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1. Introduction

lae). Qualitative preferences over a set of possibilities can also be expressed via

propositional logic languages, using formulae to dictate desired properties (Coste-

Marquis et al., 2004). Another graphical representation is π-pref nets (Amor et al.,

2015), which model preference via a possibilistic network and can represent both

qualitative and quantitative preference information. Quantitative preferences can

be represented as soft constraints in a constraint satisfaction problem (Bistarelli

et al., 1997; Schiex et al., 1995). Ordinal conditional function networks (Eichhorn

et al., 2016) are another graphical structure that we can use to represent quali-

tative preference information. These structures are similar to Bayesian networks,

however, they express degrees of implausibility rather than probability. Naturally,

one can also represent quantitative preference via a multi-attribute utility func-

tion over the set of alternatives. There are also several graphical representation

of such utilities: CAI-nets (Bacchus and Grove, 1995), GAI-nets (Gonzales and

Perny, 2005), utility diagrams (Abbas and Howard, 2005), CUI networks (Engel

and Wellman, 2008), utility difference networks (Brafman and Engel, 2009), and

bidirectional utility diagrams (Abbas, 2010). These are more compact representa-

tions, which are easier to elicit and reason with, though they rely on assumptions

regarding independence and the decomposability of the utility function.

In this thesis, our focus will be on CP-net models of preference. From here

on, we shall refer to the person whose preferences we are modelling as the user, as

they are the intended user of the system. CP-nets are a compact graphical model

of user preferences over a large combinatorial domain of possible outcomes. They

are based upon natural, qualitative ceteris paribus preference statements, which

make them simple to elicit from non-expert users. A ceteris paribus preference is a

preference made under the assumption of ‘all else being equal’. This is the typical

assumption people make when specifying their preferences; for example, if a person

specified that they ‘would rather have a leather sofa than a fabric sofa’, then they

are implicitly assuming that everything else about these two hypothetical sofas are

the same. Such a statement does not imply that a small, second-hand leather sofa

would be preferable to a large, brand new fabric sofa.

Using qualitative preference statements rather than quantitative also improves

elicitation and applicability of CP-nets. Firstly, relative preferences are simpler

and, thus, more likely to be accurately specified by the user. Secondly, while

quantitative preference information can always be simplified into qualitative pref-

erences, the reverse is not always possible – there are scenarios where there is no

numerical value associated with the possible choices and the user cannot accurately

quantify their preference.

2
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CP-nets can also express conditional (ceteris paribus) preference statements,

such as ‘unless it is a recliner, I would rather have a leather sofa than fabric’. This

allows CP-nets to represent more complex preference structures, despite being

based on natural preference statements.

Preference optimisation is also simple given a CP-net model of user preference.

The globally optimal (most preferred) outcome can be found in linear time, as can

the optimal outcome under certain types of constraint. This is important as it

means that we can quickly identify the best choice for the user.

As well as making CP-nets simple to elicit, their compact, qualitative nature

and simple interpretations allow CP-net models (and any subsequent reasoning)

to be clearly explained to non-experts. As artificial intelligence systems are being

applied to tasks of increasing responsibility, such as medical diagnoses and fraud

detection, the explainability of these systems is becoming more important. CP-

nets offer simple interpretations and transparency in their reasoning, which is

not always possible for other techniques used for recommendation and decision

support such as neural networks. For CP-nets, it is simple to explain to the user

(and correct if necessary) the assumptions and methods used in our reasoning.

These many desirable properties have made CP-nets one of the most popular

models for preference representation in the literature. CP-nets were first intro-

duced in Boutilier et al. (1999), followed by a more comprehensive introduction

in Boutilier et al. (2004a). Since then, many extensions and generalisations of the

CP-net model have been proposed, most notably:

• UCP-Nets: UCP-nets (Boutilier et al., 2001) add quantitative preference

information to CP-nets. Instead of local (conditional) preference rules, UCP-

nets have local (conditional) utility functions.

• mCP-Nets: mCP-nets (Rossi et al., 2004) represent the aggregation of the

preferences of multiple users (who all have their own CP-net representations,

which may be dependent upon one another).

• CP-theories: Conditional preference theories (Wilson, 2004b) are a gener-

alisation of CP-nets. Unlike CP-nets, CP-theories do not have a graphical

representation, rather, they are theories of a defined conditional preference

logic. These theories consist of stronger conditional preference statements (in

the associated formal preference language) that do not require the CP-net

ceteris paribus assumption. CP-theories are strictly more expressive than

3
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CP-nets – all preference structures representable by a CP-net can be repre-

sented by a CP-theory, but not vice versa. Wilson (2004a) shows that all

TCP-nets can also be expressed via CP-theories.

• TCP-Nets: Tradeoff-enhanced CP-nets (Brafman et al., 2006) extend CP-

nets to express (conditional) relative importance statements as well as rela-

tive preference.

• LCP-Nets: Linguistic CP-nets (Châtel et al., 2008) extend TCP-nets by

assigning a linguistic term to each possible feature choice, giving qualitative

local utilities. That is, where (T)CP-nets give local preference orderings

over the possibilities, LCP-nets give each value a linguistic expression of

preference such as “very high” or “low”. This provides more information

about the relative preferences whilst keeping the preferences qualitative.

• WCP-Nets: In weighted CP-nets (Wang et al., 2012), the dependency

structure and local preferences of CP-nets are annotated with weights. These

weights reflect the degree of relative variable importance and relative pref-

erence between values, respectively. Each weight is obtained by assigning

one of five qualitative degrees of importance and then translating this into a

value between 1 and 5.

• PCP-Nets: Probabilistic CP-nets (Bigot et al., 2013; Cornelio et al., 2013)

enable CP-nets to encode uncertainty over user preferences – essentially,

PCP-nets represent a probability distribution over a class of CP-nets. They

give a probability distribution over all possibilities for each local preference

rule. In Cornelio et al. (2013), they present a more generalised framework

where one can also encode uncertainty over the preferential dependency

structure.

In this thesis, however, we address some outstanding problems with the original

CP-net model.

Many applications of CP-nets have also been suggested and explored experi-

mentally in the literature. Wicker (2006) suggests using CP-nets to model user

profiles on social media platforms, in order to evaluate a degree of interest match-

ing between users (for the purpose of suggesting potential ‘friends’ or content).

Bistarelli et al. (2007) propose a method of using CP-nets to assist in the selection

of appropriate countermeasures, in order to mitigate the risk of potential cyber-

attacks. Boubekeur et al. (2007) introduce an information retrieval system based

on CP-net models. The idea is to identify the most relevant documents from a

4
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user’s natural language query. Li et al. (2011b) consider the problem of social

choice when voters preferences are represented via CP-nets. Both Alanazi et al.

(2012) and Mohammed et al. (2015) propose using CP-nets to represent qualita-

tive preferences in a personalised online shopping procedure. This procedure can

also be applied to content recommendation on platforms like Netflix and YouTube.

Aydŏgan et al. (2013) utilises CP-nets as preference representations for automated

negotiations. Cafaro et al. (2013) introduces a method for utilising CP-nets in grid

scheduling – allocating computational resources to submitted job requests. Wang

et al. (2016) and Wang et al. (2019) both propose recommender systems for web

service selection based upon CP-net representations of user preferences. Both eval-

uate their systems on real data and Wang et al. (2016) uses human subjects to

evaluate the recommendation quality. Khoshkangini et al. (2018) propose learning

CP-nets of a particular form in order to use them as recommender systems. They

test this procedure on two real-world data sets. Haqqani et al. (2018) learn CP-net

models over various aspects of transportation from real data, in order to offer per-

sonalised journey planning recommendations. They find that the CP-net models

closely match the true user preference orderings and perform better than other

techniques for preference learning, which do not allow for conditional preferences.

These examples are only a sample of the wide variety of proposed applications

for CP-nets. However, despite their popularity and many proposed uses, CP-nets

have not yet been applied in practice, as far as we are aware.

While CP-nets have many desirable properties and have been popular in aca-

demic research, there remain unresolved issues with these models, which may ex-

plain their lack of adoption in practical applications.

Firstly, accurate preference comparisons are complex when using CP-net mod-

els. CP-nets make certain preference reasoning tasks simple; globally optimal

outcomes can be found in linear time, as can optimal outcomes under certain

plausibility constraints (Boutilier et al., 2004a). Weak preferential comparison is

also possible in linear time (Boutilier et al., 2004a). That is, given two possible

outcomes, a and b, we can determine an ordering that is not contradicted by the

CP-net. Such pairwise comparisons also enable us to obtain non-contradictory

orderings of outcome sets. However, a weak preference a � b means only that the

CP-net model does not include the information ‘b is preferred to a’. As CP-nets

do not typically encode a preference between every outcome pair, weak preferences

may still be incorrect. In order to assess the relative preference of outcome pairs

accurately, we must use dominance queries. These queries tell us precisely what

is known (encoded by the CP-net) about the user’s relative preference between a

and b.
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If CP-nets are to be used for decision support, then it is essential that we

are able to extract the relative preference of the possible options. Boutilier et al.

(2004b) have shown that evaluating optimal outcomes under arbitrary constraints

requires dominance queries. However, answering dominance queries is a complex

task given a CP-net representation of user preference. For general CP-nets, an-

swering dominance queries has been shown to be PSPACE-complete (Goldsmith

et al., 2008) (see Appendix F for definition). Thus, answering these queries effi-

ciently, particularly for larger CP-nets, is a difficult task. In §2.2.3, we review the

existing work on this problem.

Secondly, there is insufficient work on determining a user’s CP-net. In order to

use CP-nets to represent (and reason with) user preferences in practical applica-

tions, one first needs to know what the user’s CP-net looks like. Whilst CP-nets

are simple to elicit directly even from non-experts (Boutilier et al., 2004a), it is

not always possible or practical to obtain a user’s CP-net model via direct queries.

Consider existing recommendation systems for services such as Netflix or Ama-

zon. These platforms, among many others, approximate user preference without

requiring any direct user input about their preferences. A system that requires

users to first specify their preference structure may be off-putting by comparison.

Furthermore, users may be unwilling to reveal their preferences in certain contexts

such as auctions or games played against an adversary. Another disadvantage to

user specified models is that they may be inconsistent or inaccurate due to hu-

man error (particularly for larger systems) or if their abstract preferences do not

match up with their actions when using the system. Preferences are also liable

to change over time, meaning that a user specified preference structure will not

remain accurate.

Hence, for CP-nets to be a plausible model for practical applications, we must

be able to learn a user’s CP-net from observable data, rather than via direct

elicitation. Most existing work on learning CP-nets (reviewed in §4.2) assumes

pairwise preferences as training data. However, in many contexts (including most

online scenarios), users are not presented with choices between pairs of options.

Rather, they typically make a choice out of a number of options, which can vary

between tens and thousands (consider selecting out of recommended videos on

YouTube vs selecting a movie on Netflix). Thus, we observe only which outcome

was successful (the item the user chose to watch or buy). Despite the fact that

pairwise preferences are unrealistic to passively observe in many contexts, learning

from other types of data has received little attention thus far.
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In this thesis, we address both of these problems. We propose two distinct

approaches to improving dominance testing efficiency. The first introduces a quan-

titative representation of preference, which can be used to improve the efficiency

of answering dominance queries by pruning the associated search. The second

method reduces the size of the dominance testing problem by preprocessing the

CP-net (and query) prior to answering. Both methods are shown to improve dom-

inance testing efficiency significantly and more effectively than existing methods.

These methods can also be combined (with one another and existing methods) for

further efficiency. Our third contribution is a novel technique for learning CP-nets

from user choice data – that is, a history of which outcomes were successful (cho-

sen by the user). Experimental analysis finds that this algorithm learns CP-nets

that agree strongly with both the user’s true preference structure and test sets of

previously unseen (future) data.

1.2 Thesis Overview

In the remainder of Chapter 1, we provide the necessary background on CP-nets

and a glossary of common notation.

In Chapters 2 and 3, we address the problem of efficient dominance testing.

In Chapter 2, we introduce a quantitative measure of user preference for a given

CP-net, called outcome ranks. These rank values can be used both to obtain

a preference ordering over a set of possible outcomes and to prune dominance

query search trees in order to improve efficiency. We experimentally evaluate the

performance of rank pruning in comparison to the existing pruning methods, also

considering all possible combinations of these methods. We then go on to generalise

our results to the case of CP-nets that allow indifference.

In Chapter 3, we improve dominance testing efficiency from a different perspec-

tive; rather than making our dominance testing methods faster, we reduce the size

of the dominance query problem. We introduce a novel method of preprocessing

the CP-net, given a specific dominance query, in order to simplify the problem and

make dominance testing more efficient. We evaluate experimentally the effect of

our preprocessing on dominance testing complexity in the binary case. Further,

we compare these results to both the existing preprocessing technique and the

combination of the two. In these experiments, we answer the (original and pre-

processed) queries using an efficient pruning schema from Chapter 2, showing that

preprocessing can further improve upon the efficiency we obtained in Chapter 2

via pruning.

7



1. Introduction

In Chapter 4, we introduce a novel method of learning binary CP-nets from

user choice data. In order to learn a user’s CP-net, we first construct a score that

measures the agreement between the observed data and a given CP-net candidate

model. We then attempt to maximise this score over the space of candidate mod-

els. We evaluate the performance of our learning algorithm experimentally, using

simulated choice data.

The relevant existing literature on these topics is reviewed at the beginning

of Chapters 2 and 4, respectively (§2.2 and §4.2). The relevant literature for

Chapter 3 is covered by the Chapter 2 review. In the final sections of Chapters 2, 3,

and 4, we provide a discussion of our results from that chapter and related future

work.

Finally, in Chapter 5, we provide a summary of our contributions and conclu-

sions.

All proofs can be found in the appendices, except those which can be given

concisely and without significantly disrupting the text. We have also located all

non-essential details about our algorithms (necessary for implementation but not

understanding) in the appendices. Proofs of algorithm completeness as well as

secondary algorithms (minor algorithms which are called in turn by our primary

algorithm of interest) can also be found in the appendices. Similarly, additional

details and further results from our experiments are given in the appendices. These

additional details are of interest but are not necessary to understand the outcomes

of our experiments with respect to our original question of interest. In the case

of Appendix A, we have consigned a novel theoretical result to the appendices

as it is tangential to our other work and too extensive to keep in the main text

without disruption. Appendix F contains a glossary of additional, non-essential

terminology used in the thesis. These are typically terms used in describing the

work of others, which we do not define in the main text. More specific locations

of these additional details are provided where relevant throughout the main text

of the thesis.

In order to evaluate the novel methods we introduce in this thesis, we con-

ducted several experimental evaluations. This required us to write code from

scratch both for the implementation of our methods and for the encoding and

general handling of CP-nets. In our previous publication, Laing et al. (2019), all

code was written in R. In this thesis, all experiments were conducted in C++ (in

some cases via the R package Rcpp). Throughout this thesis, we provide all essen-

tial details for understanding our methods and experiments, including pseudocode

algorithms and some discussion of CP-net encoding. However, for the purposes

of implementation, all of our code (in both languages) has been made available
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1.3 CP-Net Preliminaries

at github.com/KathrynLaing. Further practical details of our CP-net encodings,

experiments, and our results can also be found here. One of the main practical

issues with handling CP-nets computationally is their exponential size and the

constraints of limited accuracy and storage enforced by computers. Some discus-

sion of this is given here, particularly in Chapter 4, but the full details of our

practical solutions to these issues are given in the online repository.

1.3 CP-Net Preliminaries

In this section, we give the necessary background on CP-nets, as defined in Boutilier

et al. (2004a).

Definition 1.1. A conditional preference network (CP-net), N , is a graphical

representation of user preference over a finite set of discrete variables, V . We

assume the domain of each variable, X ∈ V , denoted Dom(X), to be finite. The

CP-net, N , consists of two parts. First, a directed graph, G, with nodes V .

We say G is the structure of N . Second, each node, X ∈ V , is annotated with

a conditional preference table (CPT), denoted CPT(X). Let Pa(X) denote the

parent set of X in G. Then, for each possible assignment of values to Pa(X),

CPT(X) gives the user’s ceteris paribus preference order over all possible values

of X, Dom(X). (Boutilier et al., 2004a)

The ceteris paribus preference a � b means that, all else being equal, the user

prefers a to b. In CPT(X), the preference orders over Dom(X) hold under the

assumption that all other variables, V \X, remain fixed.

The structure, G, is a preferential dependency graph. The edge X → Y means

that the user’s preference over Y is dependent upon the value taken by X. CP-net

semantics assume that, for every pair of variables, X, Y ∈ V , X is preferentially

independent of Y given Pa(X). That is, once Pa(X) is assigned a set of values,

the preference order over Dom(X) is fully determined and does not depend upon

the value taken by Y .

We illustrate these concepts using the following example from our paper, Laing

et al. (2019).

Example 1.2. Suppose that we are modelling a user’s preferences over aeroplane

seats. The variables we might take into account, and their respective domains, are

as follows.
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 A B 

C 

D 

Figure 1.1: Example CP-Net

A = Flight Length Dom(A) = {a : short, ā : long-haul}
B = School Term Time Dom(B) = {b : term, b̄ : holiday}
C = Class Dom(C) = {c : economy, c̄ : business, ¯̄c : first}
D = Pay Extra for Wi-Fi Dom(D) = {d : no, d̄ : yes}

One example of a possible CP-net over these variables is given in Figure 1.1.

The CPTs of this CP-net show that the user has a strict preference for short

flights over long-haul flights (ceteris paribus, that is, given B,C,D take the same

values) and for flying in term time over flying in holiday time (ceteris paribus, that

is, given A,C,D take the same values). These preferences are unaffected by the

values taken by any other variable. However, the user’s preference over which class

they fly in is dependent (conditional) upon the values taken by A and B (Flight

Length and School Term Time). If it is a short flight in term time, then the user

prefers economy to business to first class (ceteris paribus – given that D takes the

same value). However, if it is a short flight in holiday time, then the user prefers

business to first to economy class. Once the values of A and B are determined,

these preferences over C (Class) are fixed and do not change (regardless of the

value taken by D), by our preferential independence assumption above. Similarly,

the user’s preference over D (Pay Extra for Wi-Fi) depends upon the value taken

by C, but these preferences are independent of the values taken by A and B.

CP-nets may contain irrelevant edges that do not contribute additional pref-

erence information. Such edges occur when a variable has a parent that it is not

preferentially dependent upon. Suppose a CP-net contains the edge X → Y . We
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1.3 CP-Net Preliminaries

say this edge is degenerate, or that X is a degenerate parent of Y , if changing

the value of X does not affect the user’s preference over Y . More formally, for

any two assignments of values to Pa(Y ), say u1 and u2, that differ only on the

value of X, the preferences over Dom(Y ) given in CPT(Y ) must be the same un-

der both Pa(Y ) = u1 and Pa(Y ) = u2. For example, if every entry in CPT(D)

was d̄ � d in Example 1.2, then C would be a degenerate parent of D. Such

degenerate edges represent a trivial parent-child relation. As this does not add

any information to the CP-net preference structure, degenerate edges can be re-

moved without changing the CP-net semantics. The child’s CPT can be trivially

simplified as preference is not dependent upon the removed parent.

If all variables in a CP-net are binary, then we say that it is a binary CP-

net. In Chapters 2 and 3, we allow all CP-nets to contain multivalued variables.

In Chapter 4, our learning is restricted to binary CP-nets and, thus, all CP-nets

considered in this chapter are assumed to be binary.

We assume that all CPT preference orders are strict total orderings of the

appropriate domain, except in §2.5, where we consider more general CP-nets with

indifference statements. In this case, we assume CPT preference orders to be

total preorders (transitive and complete). For example, we could have the non-

strict preference ordering ¯̄c � c ∼ c̄ for variable C, meaning that the user would

rather be sat in first class, but is indifferent between economy and business. Such

indifferences are natural preference statements that we may reasonably expect

to find in real world preference structures. This generalisation is therefore an

important CP-net extension to consider, in order to improve the applicability of

our results.

CP-nets consist of (conditional) preference rules over the variable domains.

However, we are primarily interested in the user’s preferences over the outcomes –

the products or scenarios the user is ultimately deciding between.

Definition 1.3. Let N be a CP-net over variables V = {X1, X2, ..., Xn}. An

outcome, o, is an n-tuple representing an assignment to each variable. The set of

outcomes associated with N is

Ω = Dom(X1)×Dom(X2)× · · · ×Dom(Xn),

where × denotes the Cartesian product. We denote the number of outcomes

associated with a CP-net by O = |Ω|.

For the CP-net given in Example 1.2, an outcome is a fully specified flight such

as āb¯̄cd̄ (a long-haul flight in holiday time, sat in first class with wi-fi). For this

example, there are 24 possible outcomes. In general, O ≥ 2n, with equality only
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in the case of binary CP-nets. The user’s preference structure over the outcome

set is given explicitly by the associated preference graph.

Definition 1.4. Let N be a CP-net over variables V with associated outcome

set Ω. The preference graph induced by N , denoted GN , is a directed graph

over Ω. Two outcomes, say o, o′ ∈ Ω, are connected by an edge o → o′ if and

only if the following conditions hold. First, o and o′ differ on exactly one variable,

say X ∈ V (such outcome pairs are called a variable flip). Let u be the assignment

of values to Pa(X) in both o and o′. Second, o′[X] (the value assigned to X in o′)

is preferred to o[X] according to the CPT(X) preference over Dom(X) under the

assignment Pa(X) = u (making o→ o′ an improving flip). (Boutilier et al., 2004a)

As the preference orders in CPTs are ceteris paribus, they imply preferences

between outcomes that differ on exactly one variable. In particular, the prefer-

ences encoded by CPT preference rules are exactly the edges of GN . Thus, the

edges of GN and their transitive closure represent exactly the outcome preferences

encoded by N . The preference graph is, thus, an equivalent representation of the

CP-net itself. We use the CP-net, rather than dealing directly with preference

graphs, as it is more compact and, thus, easier to elicit and reason with.

The preference graph induced by the CP-net in Example 1.2 is given in Fig-

ure 1.2. As this graph has 24 nodes, each of degree 5, it is reasonably complex

to examine. We have therefore coloured all redundant edges in light blue so that

the necessary relationships (given in black) can be seen more easily. That is, any

preference given by a blue edge is also represented via a black path in the dia-

gram. In this graph, an edge or path from outcome a to outcome b tells us that

the user (whose preferences are represented by the CP-net in Figure 1.1) prefers

outcome b to outcome a. These pairwise outcome preferences are exactly the set

of preferences encoded by the CP-net in Figure 1.1.

Definition 1.5. Let N be a CP-net with induced preference graph GN . Let o

and o′ be two outcomes associated with N . We say that N entails the preference

‘o is preferred to o′’, denoted N � o � o′, if and only if there is a directed

path o′  o in GN .

By the definition of GN , a directed path o′  o consists of a sequence of

outcomes, o′ = o1, o2, ..., om = o, such that oi and oi+1 differ on exactly one variable

and N � oi+1 � oi for all i. We call such a sequence an improving flipping sequence

(IFS) (Boutilier et al., 2004a).

If the CP-net structure is acyclic, then the preference graph must also be

acyclic and, thus, the CP-net cannot entail any contradictions such as N � a � b
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Figure 1.2: Example Preference Graph
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and N � b � a (Boutilier et al., 2004a). Throughout this thesis, we assume all

CP-nets to be acyclic in order to ensure consistency. Note that cyclic CP-nets can

also be consistent, but it is not guaranteed and distinguishing the consistent cases

from the inconsistent is a PSPACE-complete problem (Goldsmith et al., 2008).

Given a CP-net, N , a consistent ordering is a complete ordering over the out-

comes that obeys all known (entailed) preference information about the user. We

allow consistent orderings to contain indifference unless we specify that it is a strict

ordering.

Definition 1.6. Let N be a CP-net over outcome set Ω. A consistent ordering

of N is any total preorder (transitive and complete), %C , over Ω such that, for

any o, o′ ∈ Ω, N � o � o′ =⇒ o �C o′. Note that o �C o′ means that o %C o′

but o′ 6%C o.

Due to the connection between GN and entailed preferences, consistent order-

ings can also be considered as the set of topological orderings of NG. Consistent

orderings are the set of true user preference orderings that can be accurately rep-

resented by N . As we assume CP-nets to be acyclic, there will always be at least

one consistent ordering (Boutilier et al., 2004a).

For every pair of outcomes, o and o′, we must have exactly one of the following

cases: N � o � o′, N � o′ � o, or N 2 o � o′ and N 2 o′ � o. In the final

case, we say that the two outcomes are incomparable and denote this N � o ./ o′.

This means that the user’s preference between o and o′ is unknown. Given a pair

of outcomes, there are two types of query to evaluate the relative user preference

between them. Ordering queries ask for an ordering of the outcome pair that is

consistent with the known user preferences.

Definition 1.7. Let N be a CP-net and let o and o′ be two associated outcomes.

An ordering query requires us to prove at least one of N 2 o � o′ or N 2 o′ � o.

(Boutilier et al., 2004a)

If N 2 o � o′, then o′ � o is a consistent ordering of the outcomes, as it

does not contradict any known user preferences. However, as the outcomes may

be incomparable according to N , consistent outcome orderings are not necessarily

true preferences. In fact, they may be in contradiction to the user’s true preference.

Ordering queries are simple to answer, Boutilier et al. (2004a) give a method of

answering these queries in O(|V |) time. On the other hand, dominance queries

seek to determine whether there is a genuine preference between the two outcomes.

Definition 1.8. Let N be a CP-net and let o and o′ be two associated outcomes.

A dominance query asks whether N � o � o′ holds. (Boutilier et al., 2004a)
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Dominance queries are stronger as they determine the entailed preference, not

just a consistent ordering of the outcomes. However, they are consequently much

more complex to answer. For general CP-nets, dominance queries are PSPACE-

complete problems (Goldsmith et al., 2008). The query N � o � o′ is true if

and only if there is a directed path (IFS) o′  o in NG. Thus, we can consider

dominance queries as a search for an IFS, which is how we approach them in

Chapters 2 and 3.

Remark. The above definitions of entailment and consistent orderings have been

modified from those given by Boutilier et al. (2004a) for simplicity, though they

remain equivalent. Boutilier et al. (2004a) define a preference ordering that satisfies

a CP-net (that is, a consistent ordering) to be any total preorder that obeys all

ceteris paribus preference rules in the CPTs. As the preference graph is equivalent

to the transitive closure of the CPT preference rules, obeying all CPT preferences

is equivalent to being consistent with the preference graph structure. Thus, the two

definitions of consistent ordering are equivalent. Boutilier et al. (2004a) then define

an entailed relation to be any preference that occurs in all consistent orderings.

They prove that this condition is equivalent to our definition of entailment. As

both definitions are equivalent, all results from Boutilier et al. (2004a) continue to

hold here.
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1.4 Notation and Abbreviations

The following table summarises the common notation used throughout this thesis.

N,M CP-nets

V Set of all CP-net variables

n Number of CP-net variables, n = |V |
X, Y, Z or X1, X2, X3 CP-net variables

x, x̄ or x1, x2, x3 Possible values of variable X

u,w Tuples of values assigned to a set of variables

CPT(X) Conditional preference table of variable X

Dom(X), X ∈ V Domain of variable X

Dom(Y ), Y ⊆ V
Cartesian product of the domains of the variables in Y ,

Dom(Y ) =×X∈Y Dom(X)

nX Size of the domain of variable X, nX = |Dom(X)|
Pa(X) Set of parents of variable X in the CP-net structure

Ch(X) Set of children of variable X in the CP-net structure

Anc(X) Set of ancestors of variable X in the CP-net structure

Dec(X)
Set of descendants of variable X in the CP-net struc-

ture

dX
Number of descendent paths of variable X (directed

paths originating at X) in the CP-net structure

u : x � x̄
The rule in CPT(X) corresponding to the assignment

Pa(X) = u

GN Preference graph induced by CP-net N

Ω or ΩN Set of all outcomes associated with CP-net N

O Number of CP-net outcomes, O = |Ω|
o, o′ or o1, o2, o3 CP-net outcomes

%C Arbitrary consistent ordering

o � o′ o is strictly preferred to o′

o ∼ o′ o is equally preferred to o′ (the user is indifferent)

o ./ o′ o and o′ are incomparable

N � o � o′
CP-net N entails the preference o � o′. Similarly for

o ∼ o′ and o ./ o′

G(o′) Search tree for the dominance query N � o � o′
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o[X], X ∈ V The value taken by X in outcome o

o[Y ], Y ⊆ V
The |Y |-tuple of values assigned to the variables in Y

in outcome o

e = a→ b A directed edge from a to b

a b A directed path from a to b

T (N) Event tree representation of CP-net N

W (N) or W Weighted event tree representation of CP-net N

AFX Ancestral factor of variable X

PP (X = x|Pa(X) = u)
The preference position of the choice X = x, given the

assignment Pa(X) = u

r(o) Rank of outcome o

rG(o) Generalised rank of outcome o

%R
Rank induced outcome ordering, �R for the strict or-

dering

%G Generalised rank induced outcome ordering

L(X) Least rank improvement of variable X

LD(o1, o2)
Least entailed rank difference between outcomes o1

and o2

MD(o1, o2)
Minimum entailed rank difference between outcomes

o1 and o2

HD(o1, o2)
Hamming distance between outcomes o1 and o2 con-

sidered as vectors

d(o) Number of occurrences of outcome o in the choice data

pi or poi The true probability of the user choosing outcome oi

Sr(u : x � x̄) Rule score of the preference rule u : x � x̄

St(CPT(X)) CPT score of CPT(X)

Sc(N) CP-net score of N

S(G) Structure score of CP-net structure G

T(U,X) Set of all CPT(X) possibilities, given that Pa(X) = U

MaxSt(X|U)
Maximum St(CPT(X)) score over all

CPT(X) ∈ T(X,U)

OptCPT (X|U)
CPT(X) ∈ T(X,U) such that

St(CPT(X)) = MaxSt(X|U)

A⊕ e Structure obtained by changing edge e in structure A

∆(e)
Multiplicative change in structure score caused by

changing edge e
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Ci,j (i, j)th entry (row i column j) of cycles matrix C

α Change threshold for learning

NT The user’s true CP-net

NL CP-net learned from observed data

The following table lists commonly used abbreviations.

CP-Net Conditional preference network

CPT Conditional preference table

DFA Data flip agreement

DOC Data order consistency

IFS Improving flipping sequence

PG Preference graph

UVRS
Unimportant variable removal and separation (prepro-

cessing)
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Chapter 2

Outcome Rank Pruning for

Efficient Dominance Testing

Most of the material presented in this chapter, as well as the associ-

ated proofs and appendices, has been previously published in our paper:

Laing, K., Thwaites, P. A., and Gosling, J. P. (2019). Rank pruning for dominance

queries in CP-nets. Journal of Artificial Intelligence Research, 64:55–107.

2.1 Introduction

CP-nets represent conditional preferences over a given set of variables. These may

be considered as local preferences over different features of a product. However,

most questions of interest are about the user’s preferences over the associated

outcomes – the products the user is ultimately deciding between. In particular,

the main reasoning tasks of interest are outcome optimisation, consistent orderings,

and dominance testing (Allen et al., 2017a; Boutilier et al., 2004a,b; Brafman and

Dimopoulos, 2004; Goldsmith et al., 2008; Santhanam et al., 2016).

Outcome optimisation aims to identify the outcome that is most preferred by

the user (possibly under certain constraints). Answering such queries is important

to applications such as automated decision making as it allows us to identify the

best choice for the user. Boutilier et al. (2004a) show that optimality queries for

acyclic CP-nets can be answered in linear time (in n, the number of variables).

Their method can also obtain the optimal outcome when a partial variable assign-

ment is specified.

In this chapter, we address the remaining two reasoning tasks. Consistent or-

derings are orderings of the outcomes that satisfy all of the known user preferences.
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If the user prefers outcome a to outcome b, then a must come before b in every

consistent ordering. We look at obtaining a consistent ordering over all outcomes

as well as over any subset of the outcomes. Consistent orderings are important to

recommendation systems; for example, in e-commerce, one would prefer the user

to be presented with the products in order of the user’s preferences. This would

mean that the items of most interest to the user are presented first and, thus, the

user is more likely to make a purchase.

Dominance testing asks, given a pair of outcomes, which does the user prefer?

This is essential for decision support applications, as we must be able to determine

the relative preference of potential outcomes. Boutilier et al. (2004b) show that

dominance testing is necessary for constrained optimisation tasks (where the con-

straints are more complex than a partial variable assignment). However, despite

being a natural query, dominance testing has been shown to be PSPACE-complete

(see Appendix F for definition) for acyclic CP-nets (Goldsmith et al., 2008) and

is, thus, difficult to perform efficiently, particularly for larger CP-nets. In order

for CP-nets to be a practical choice of preference representation for applications,

we must be able to perform these reasoning tasks efficiently.

In this chapter, we start by constructing a quantitative representation of user

preference over outcomes, given an acyclic CP-net model of preference. These

quantities are called outcome ranks. We show that these ranks can be used to

construct a consistent ordering of (any subset of) the outcomes. This method

is more efficient for large subsets than the method proposed by Boutilier et al.

(2004a). Furthermore, we can use these ranks to make dominance testing more

efficient via pruning the associated search tree. Our pruning technique can also

be combined with any of the existing pruning methods to further improve dom-

inance testing efficiency. We provide an experimental comparison between the

performance of our rank pruning and the existing pruning methods. These exper-

iments also evaluate the performance of all possible combinations of the different

methods. This enables us to determine the optimal pruning schema for answering

dominance queries efficiently. The results of these experiments show rank pruning

to be more effective than the existing methods and an essential component for a

successful combination of methods. Finally, we shall provide a generalisation of

our outcome ranks that is defined for CP-nets that contain indifferences. This

generalisation extends all of our prior results to CP-nets with indifference. Note,

in particular, that our method of consistently ordering subsets of outcomes has

the same complexity with and without indifference. Comparatively, the method

by Boutilier et al. (2004a) has unknown complexity in the case of indifference,

though they conjecture that it is hard.
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The rest of the chapter is structured as follows; in §2.2, we review the exist-

ing literature on quantifying CP-net preference, consistent ordering methods, and

improving dominance testing efficiency. In §2.3, we introduce our outcome ranks

and demonstrate how they can be used to obtain consistent orderings. In §2.4, we

explain how outcome ranks can be used to improve dominance testing efficiency

and provide an experimental evaluation (and comparison) of the performance of

this method. In §2.5, we generalise our outcome ranks to be defined for CP-nets

with indifference and extend the previous results to this case. Finally, we provide

a discussion of these results and related future work in §2.6.

2.2 Related Work

As discussed in §2.1, in this chapter, we introduce a novel quantification of user

preference and address the problems of obtaining consistent orderings and efficient

dominance testing (all assuming that a user’s preferences are represented by a

CP-net). We review the existing literature on these three topics in the following

three subsections.

2.2.1 Quantitative Preference Representation

Boutilier et al. (2001) introduce an extension of CP-nets called UCP-nets (utility

CP-nets). The motivation for these structures is that they would both represent

a global utility function over the outcomes and a CP-net. The former is a quanti-

tative preference and would make dominance queries trivial. The latter allows the

identification of optimal outcomes in linear time. UCP-nets look identical to CP-

nets except that each CPT row gives a numerical function defined over the variable

domain, rather than a preference ordering. These functions can be considered as

local utility functions. Under the assumption of general additive independence,

the utility of an outcome is simply the sum of the relevant function values. Thus,

such a model represents a complete utility function over the outcomes. However,

in order to obtain this utility function, we must first elicit a UCP-net, which is

more complex than a CP-net. The authors do not discuss how to directly elicit the

local utility functions. Instead, they suggest using normalised UCP-nets, where

each local utility function is in [0, 1]. This makes elicitation of the local utilities

a fairly simple task. However, in this case, calculating the outcome utilities also

requires tradeoff weights. The elicitation method by Boutilier et al. (2001) focuses

on narrowing down the tradeoff weight options with the aim of choosing the op-

timal decision from a given set of options. They do not detail how to obtain or
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elicit the actual tradeoff weights. Thus, given a CP-net and elicited normalised

local utilities, we still cannot construct the global outcome utilities, which is the

aim of quantifying CP-net preference.

Domshlak et al. (2003) introduce two approximations of CP-net preferences in

order to obtain a consistent outcome ordering. The first is a real valued penalty

associated with each outcome. The penalty of an outcome is defined as follows

(notation adapted for clarity):

pen(o) =
∑
X∈V

wXp(o,X),

(2.1)

wX =

{∑
Y ∈Ch(X) wY |Dom(Y )| if Ch(X) 6= ∅,

1 otherwise.

The set of variables that have X as a parent is denoted by Ch(X) and we refer to

this set as the children of X. The local penalties, p(o,X), denote an integer penalty

indicating to what degree the value of X in o is preferred. Suppose CPT(X) con-

tains the rule o[Pa(X)] : x1 � x2 � · · · � x|Dom(X)|. If o[X] = x1, then p(o,X) = 0.

If o[X] = x|Dom(X)|, then p(o,X) = |Dom(X)| − 1. In general, if o[X] = xi,

then p(o,X) = i− 1. This penalty represents how much the user’s preference has

been violated by the choice of X in o (the worse the choice of X is, the higher the

penalty). The weights, wX , are present to ensure that any preference violation of

a variable dominates all possible violations of its children’s preferences. This is

necessary as CP-net semantics dictate that ancestor variables are more important

to the user than their descendants. We say that variable A is an ancestor of vari-

able B (and, similarly, B is a descendant of A) if there is a directed path A B in

the CP-net structure. Domshlak et al. (2003) prove that these penalties accurately

represent the CP-net preferences. That is, N � o1 � o2 =⇒ pen(o1) < pen(o2).

Thus, the outcome ordering induced by the penalty values is a consistent ordering.

These penalties can be computed from the CP-net in polynomial time.

The second approximation associates each outcome with a vector of size |V |
via the following procedure. Let X1, ..., Xn be a topological ordering of the vari-

ables. That is, Pa(Xi) ⊆ {X1, ..., Xi−1}. Let o be an associated outcome. They

first compute a vector for each Xi. Let m = Dmax − 1, where Dmax is the size

of the largest variable domain. The vector for Xi will have the entry m in ev-

ery position except the ith position. Suppose that CPT(Xi) contains the rule

o[Pa(Xi)] : xi1 � xi2 � · · · � xik (where k = |Dom(Xi)|). If o[Xi] = xij, then
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the ith position of the Xi vector contains the value m − j + 1 – the more pre-

ferred o[Xi] is, the larger the ith position entry. The vector associated with o is

then the minimum (lexicographically) of the vectors associated with the variables.

Note that, this implies that the vector of o is the Xi vector where i is the minimum

value such that o[Xi] is not the most preferred value. If no such i exists, then the

vector associated with o has m in every position. Outcomes are then ordered lex-

icographically according to their associated vectors. Domshlak et al. (2003) claim

that this ordering is also consistent with the CP-net and, thus, this approximation

also accurately reflects the CP-net preferences. However, this is contradicted by

the following example.

Example 2.1. Consider a CP-net, N , with four variables, A,B,C,D, and no

edges. Let the CPT of X ∈ V be x � x̄. Let o1 = ab̄cd and o2 = ab̄c̄d. As c � c̄,

we have N � o1 � o2. As there are no edges, A,B,C,D is a topological ordering.

Let us compute the variable vectors for o1. As all vectors are binary,

m = 2 − 1 = 1. As A takes its preferred value, the first entry in the A vec-

tor is m − 1 + 1 = 1. The rest of the entries of the A vector are m = 1, so it

is (1, 1, 1, 1). Similarly, the C and D vectors are also (1, 1, 1, 1). However, B takes

the second most preferred value. Thus, the second entry of the B vector must

be m − 2 + 1 = 0 (and the rest of the positions are m = 1). So the B vector

is (1, 0, 1, 1). Thus, the vector associated with o1 is the lexicographic minimum of

the following set:

{(1, 1, 1, 1), (1, 0, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1)}.

Thus, the o1 vector is (1, 0, 1, 1). Note that this is the B vector and B is the first

variable to not take its most preferred value.

Now let us compute the variable vectors for o2. Again, A and D take their pre-

ferred values, so by the same argument they have vectors (1, 1, 1, 1). B again takes

the second most preferred value, so the B vector is (1, 0, 1, 1) again. However, C

now takes its second most preferred value. Thus, the third entry of the C vector

must now be m− 2 + 1 = 0. So the C vector is (1, 1, 0, 1). The vector associated

with o2 is the lexicographic minimum of the following set:

{(1, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 1)}.

This is again (1, 0, 1, 1). Note that this is the B vector and B is again the first

variable to not take its most preferred value.

This contradicts the claim made by Domshlak et al. (2003) that the lexico-

graphic ordering of the outcome vectors is a consistent ordering. If this were true,

then N � o1 � o2 would imply that the o2 vector is lexicographically smaller than

the o1 vector. However, this is not the case as they are the same vector.
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More generally, this outcome vector representation is contradicted by the fol-

lowing fact; if the (topologically) first variable that takes a not-preferred value in

outcome o1 is the same for outcome o2 (and this variable takes the same value

in both), then o1 and o2 will have the same associated vector. In particular, the

associated vector will be the vector of the first variable that takes a not-preferred

value. If the outcome vectors induce a consistent ordering, then the CP-net cannot

entail a preference between o1 and o2. Any such preference would not be reflected

in the consistent ordering and, thus, would be a contradiction as in the above

example. However, there is no reason why such a pair of outcomes cannot have an

entailed preference. In fact, a counterexample outcome pair can be constructed

for any CP-net with two or more variables.

McGeachie and Doyle (2004) aim to construct a utility function that is consis-

tent with any given set of ceteris paribus preference statements. That is, where

every preference over the models (outcomes in the case of CP-nets) is reflected

by the relative utility values. CP-nets represent a specific form of ceteris paribus

preference statements and so, such a method can be used to obtain a utility func-

tion consistent with a given CP-net. However, as McGeachie and Doyle (2004)

represent preferences as logical statements over Boolean features (variables), their

methods are only appropriate for binary CP-nets. They present two approaches

for obtaining a utility function consistent with a given set of preference rules, R.

The first is to construct a ‘model graph’, G(R). This is a directed graph with the

set of models as nodes. A model assigns every feature exactly one truth value, in

our context these are the CP-net outcomes. There is an edge m1 → m2 in G(R) if

and only if m1 � m2 is a preference implied by the rules in R. For CP-nets, this

graph is equivalent to the preference graph. They then define four possible utility

functions over the models (outcomes) using the features of this graph:

• uM(m) = the number of unique nodes on the longest directed path in G(R)

that originates at m.

• uD(m) = the number of descendants of m in G(R).

• uX(m) = the length of the longest path in G(R) minus the number of unique

nodes on the longest path terminating at m (and originating at a distinct

node).

• uT (m) = the number of nodes in G(R) minus the rank of m in a (given)

topological sort of G(R).
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Each of these utility functions obeys all ceteris paribus preference rules in R. How-

ever, the calculation of these utilities has complexity exponential in the number

of features (variables) in the worst case scenario. CP-nets fall into this worst case

category as the preference graph has an exponential (in n) number of edges.

The second method of constructing a utility by McGeachie and Doyle (2004)

is intended to improve efficiency. If S1 and S2 partition the feature set, then S1 is

utility independent of S2 if the preferences over S1 do not depend upon the values

taken by S2. That is, given any truth assignment to S2, preference over the pos-

sible S1 completions is fixed. Note that this is not a symmetric concept. The first

task when constructing the utility is to find a partition of the features, S ′1, ..., S
′
Q,

such that the following condition holds for each S ′i; there exists some feature set Ti

such that S ′i is dependent on Ti and independent of V \S ′i∪Ti. From this partition

they form the sets Si = S ′i ∪ Ti. The utility function can then be assumed to

be a weighted sum of sub-utilities, ui, where ui is a partial utility over Si. For

CP-nets, we can let S ′i be the variable Xi and Ti = Pa(Xi). To determine the

model (outcome) utility, it remains to find the sub-utilities and the sum weights.

In order to obtain ui, a restricted version of the model graph, Gi(R), is con-

structed over the models of Si by considering only the rules in R that are relevant

to Si. From this graph, they want to construct ui using one of the four methods

used on G(R) above. However, the process of restriction to Si can cause Gi(R) to

contain cycles. Thus, it is necessary to select certain rules (out of those relevant)

to not be included in Gi(R). Selecting which rules are not included (that is, which

rules disagree with the sub-utility functions) is formulated as a SAT problem that

may be solved via a SAT-solver (though sometimes this can be done more simply).

A solution to this SAT problem specifies the restricted model graphs and, thus,

gives the sub-utilities. As the sub-utilities may disagree with certain rules, it is

necessary to set the weights of the utility sum to ensure that the global utility is

still consistent with all rules in R. The necessary conditions for this are a set of

inequalities, which can be solved via linear programming to obtain the weights. If

a solution is obtained, then the associated utility is consistent with all preference

rules in R. However, this process will not always identify a utility function. In

which case, one can either merge some of the Si sets and attempt the process again,

or use the original method. Under certain assumptions, this process has polyno-

mial complexity. However, the worse case scenario complexity remains intractable.

Li et al. (2011a) introduce another penalty function over CP-net outcomes that

is a slight variation on the penalty function by Domshlak et al. (2003). This is

again a preference representation where smaller values indicate that an outcome
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is more preferred by the user. Their definition of outcome penalties is as follows

(notation changed for consistency):

pen(o) =
∑
X∈V

w′Xp(o,X),

(2.2)

w′X =1 +
∑

Y ∈Ch(X)

w′Y (|Dom(Y )| − 1).

This is identical to the penalty function of Domshlak et al. (2003) except for a

slight variation in the weight definition. Li et al. (2011a) have proven that their

penalty function is an accurate representation of the CP-net preferences. That

is, N � o1 � o2 =⇒ pen(o1) < pen(o2). These penalty values can be computed in

polynomial time. Li et al. (2013) go on to generalise this penalty function so that

it is also defined for TCP-nets (CP-nets with additional conditional importance

statements).

Our outcome ranks, as defined in §2.3.2, can be computed directly from a given

CP-net, unlike the utilities described by Boutilier et al. (2001). The global utility

by Boutilier et al. (2001) requires additional local utilities to be elicited from the

user and, further, the authors do not specify how to obtain the weights required to

combine these local utilities. Our outcome ranks can be calculated from the CP-net

with time complexity O(n4). This is more efficient than the utility construction

methods by McGeachie and Doyle (2004), which may be intractable. Further,

outcome ranks are defined for both binary and multivalued CP-nets, whereas the

utilities of McGeachie and Doyle (2004) are defined in the binary case only. The

penalty functions by Domshlak et al. (2003) and Li et al. (2011a) can also be

computed from the CP-net in polynomial time. Both formulations look fairly

similar to our outcome rank formula. However, in Example 2.7 we show that our

outcome ranks are meaningfully distinct from both penalty functions (that is, they

are not simply transformations of one another). In particular, we demonstrate that

our ranks may evaluate the relative preference of a given outcome pair differently

to the penalty functions. Thus, they must be distinct preference representations.

Only Li et al. (2011a) use their qualitative preference representation to improve

upon dominance testing efficiency (details in §2.2.2). We compare our pruning

method to theirs in §2.4.2 and demonstrate that ours is more effective. In §2.4.1,

we show that any consistent ordering can be used to improve dominance testing

efficiency by pruning the search tree. Thus, although it is not addressed by the

authors, the penalty function by Domshlak et al. (2003) and the utility functions
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by McGeachie and Doyle (2004) could also be used to improve dominance testing

efficiency.

We also generalise our rank definition to be defined for CP-nets with indiffer-

ence. Indifference is not permitted by any of the existing preference representation

definitions.

2.2.2 Consistent Ordering

The outcome ordering induced by the CP-net approximation given by Domshlak

et al. (2003) (discussed in §2.2.1) is a consistent ordering. As are the orderings

induced by the utility functions created by McGeachie and Doyle (2004) (if the

utility is constructed from a CP-net). Similarly, the penalty values defined by Li

et al. (2011a) also induce a consistent ordering, though this is not mentioned by

the authors.

Boutilier et al. (2004a) obtain a consistent ordering by ordering the outcomes

lexicographically as follows. Let N be a CP-net over variables {X1, ..., Xn}. As-

sume these variables are in a topological order, that is, each variable’s parents come

before the variable itself. Suppose we have two outcomes, o1 and o2, that have the

same values for X1, ..., Xk, but differ on the value of Xk+1, say o1[Xk+1] = xk+1

and o2[Xk+1] = x̄k+1. If, given the assignment of values to Pa(Xk+1) in both o1

and o2, CPT(Xk+1) dictates that xk+1 � x̄k+1, then o1 is ordered before o2. The

resulting order over the outcomes is a consistent ordering.

Boutilier et al. (2004a) also suggest a method for consistently ordering any

subset of the outcomes. Given a pair of outcomes, o1 and o2, an ordering query

determines an ordering of o1 and o2 that is consistent with the corresponding CP-

net. Note that the ordering o1 � o2 is consistent as long as N 2 o2 � o1 (that

is, as long as it is not contradicting an entailment), we do not need N � o1 � o2.

Boutilier et al. (2004a) demonstrate how ordering queries can be answered in linear

time (in n). A consistent ordering of any subset is then obtained by repeatedly

performing ordering queries on outcome pairs in this subset and using the results

to order them. This method has complexity O(nk2) for a subset of size k.

Sun et al. (2017) obtain all of the consistent orderings of a given CP-net by

successively composing variable preferences to form a single preference table. First,

each variable in the CP-net is turned into a relation table. For variables without

parents, each row corresponds to a domain value and they are ordered according

to user preference (given by the CPT). If a variable, X, has a parent set, U , then
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the rows correspond to the possible value assignments to U ∪ {X}. The rows that

assign the same values to U are adjacent and are ordered according to the user’s

preference over X under this U assignment. Each of these tables has an associated

preference relation over the rows, dictated by the original CPT. This relation is

not necessarily complete, that is, it does not always imply a preference between all

row pairs. In topological order (starting with the variables that have no parents),

these tables are then successively composed by taking Cartesian products. As the

tables are composed, the associated preference relations are also composed via an

extended version of Pareto composition.

Once all of the tables are composed, the resulting table has ≥ 2n rows (corre-

sponding to the CP-net outcomes) and the associated relation implies a relation

between every pair of outcomes (this may be a preference, incomparability, or

uncertainty). Note that, in the binary case, there are 2n−1(2n − 1) unordered

outcome pairs and in general there are even more. Taking the transitive closure

of this relation results in every outcome pair either having a preference or being

incomparable. These preferences are exactly the CP-net entailments. That is, the

original CP-net entails o1 � o2 if and only if this relation dictates o1 � o2. This

relation can be used to construct a simplified version of the CP-net preference

graph. Specifically, if there is a path o1  o2, then there cannot also be a directed

edge o1 → o2. This simplified version of the preference graph has the same topo-

logical outcome orderings as the original (recall that, for the original preference

graph, these topological orderings constitute the consistent orderings of the CP-

net). Thus, the set of all consistent orderings can be found by determining the

topological orderings of this simplified preference graph. However, the authors do

not explore how simplifying the preference graph affects the complexity of finding

topological orderings. Further, it is not clear whether their process of obtaining a

simplified preference graph is more or less efficient than simply constructing the

original preference graph from scratch and omitting any redundant edges.

Note that, as we discuss in §2.3, no consistent ordering is ‘better’ or more

likely than any other. Thus, all of the consistent orderings produced by the above

methods are equally ‘good’. We will use our outcome ranks to induce a consis-

tent ordering over the outcomes in a similar manner to Domshlak et al. (2003),

McGeachie and Doyle (2004), and Li et al. (2011a). This method can be directly

used to obtain a consistent ordering of any subset of the outcomes also. We will

show that, for larger subsets, this is more efficient than the method by Boutilier

et al. (2004a) for consistently ordering outcome subsets. Domshlak et al. (2003),

McGeachie and Doyle (2004), and Li et al. (2011a) could order outcome subsets in
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the same manner, using their respective quantitative preference representations,

but this is not discussed by these papers.

Only Li et al. (2011a) use their consistent ordering (in particular the penalty

values) to make dominance testing more efficient. We use our rank ordering simi-

larly, and in §2.4.2 we show that this is more effective than the penalty pruning by

Li et al. (2011a). In §2.4.1, we show that any consistent ordering can be used to

improve dominance testing efficiency by pruning the search tree. Thus, although

it is not addressed by the authors, any of the consistent orderings obtained by the

methods in this section could be used to prune dominance query search trees.

In §2.5, we generalise outcome ranks to be defined in the case of CP-nets

with indifference statements. This means that we can also obtain a consistent

ordering of (any subset of) the outcomes when the CP-nets contain indifference.

Further, the complexity of finding a consistent ordering, or consistently ordering

any set of outcomes, is the same as for CP-nets without indifference. Out of the

existing methods discussed in this section, only Boutilier et al. (2004a) claim that

their methods extend to this case. However, the complexity of answering ordering

queries in this case is unknown (though they conjecture that it is hard). Thus,

the complexity of their method for consistently ordering subsets of outcomes has

unknown complexity in this case.

2.2.3 Dominance Testing

Suppose we have a CP-net N , and two associated outcomes o and o′. We want

to answer the dominance query ‘Is o preferred to o′?’ efficiently. The standard

method of answering this query is to try and construct an improving flipping

sequence (IFS) from o′ to o (Boutilier et al., 2004a). This is can be visualised

as building up a search tree, G(o′), from the root node o′, that either eventually

reaches o (and so the dominance query is true) or eventually can not expand any

further (and so the dominance query is false). We discuss these notions in further

detail in §2.4.1. There have been several attempts to improve the efficiency of

this method by introducing procedures for pruning the branches of G(o′) as one

constructs it. We will improve dominance testing efficiency similarly by using our

new outcome ranks to prune the search tree.

In this section, we first review the existing methods for pruning the search

tree. Then we look at the other existing methods for improving dominance testing

efficiency. Note that reading the paragraphs on page 58 (§2.4.1) on dominance

testing via the construction of G(o′) will make the following discussion of pruning

methods clearer.

29



2. Outcome Rank Pruning for Efficient Dominance Testing

Search Tree Pruning Methods

Note that, except for Boutilier et al. (2004a), the authors in this section do not

frame their methods as search tree pruning. Even Boutilier et al. (2004a) use a

slightly different search tree definition to us. We have explained their methods

in terms of pruning the search tree G(o′) so that it is clearer how they relate

and compare to the pruning method we present in §2.4.1. However, this is not a

significant alteration of their works. Each work attempts to build up an IFS by

successively moving through the preference graph with certain additional condi-

tions upon which flips they consider. We are simply visualising this process as the

construction of a search tree, where not considering a direction means pruning the

relevant edge from this tree.

Boutilier et al. (2004a) introduced three methods for improving search effi-

ciency. The first, suffix fixing, prunes the search tree, G(o′), as it is constructed.

Let N be a CP-net over variables V and suppose {X1, X2, ..., Xn} is a topological

ordering of V . The kth suffix of any outcome o∗ is o∗[Xk, Xk+1, ..., Xn]. Suppose

we are constructing G(o′) and the leaf ō has the same kth suffix as o. Then,

when adding the improving flips of ō, any improving flips that do not have the

same kth suffix as o and ō are pruned. This pruning condition preserves search

completeness (meaning that if there is a successful path, then one will always be

found and so dominance queries are always answered correctly when using this

pruning method) as Boutilier et al. (2004a) proved the following result; if o and o′

have the same kth suffix and N � o � o′, then there exists an improving flipping

sequence o′ = o1, o2, ..., om = o, such that every oi has the same kth suffix as o

and o′.

The second method is called least-variable flipping, which also prunes G(o′)

as it is constructed. In this case, only least-variable flips are considered and any

other improving flips are pruned. That is, when adding the improving flips of a

leaf, ō, the flips that change least-improvable variables (with respect to o) are added

and any other improving flips are pruned. Given ō, a least improvable variable

with respect to o is any variable, X, that satisfies the following properties; in

the row of CPT(X) corresponding to Pa(X) = ō[Pa(X)], ō[X] is not the most

preferred value – it can be improved. Further, no descendent of X in the structure

of N has this property. That is, X is (one of) the ‘lowest improvable variable’.

Finally, X must not be part of a matching suffix between o and ō. Boutilier et al.

(2004a) proved the following result for the case where N is binary and directed-

path singly connected (that is, there is at most one directed path between any
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pair of nodes); if there is an IFS o′  o, then there is an IFS o′f  o, where o′f
is some outcome obtained from o′ by flipping a least improvable variable with

respect to o. This result implies that, in the case of binary, directed-path singly

connected CP-nets, pruning all flips except the least-improvable variable flips does

not affect search completeness. However, for CP-nets in general (which may be

multiply connected or have non-binary variables), this pruning method does not

preserve search completeness. In fact, Boutilier et al. (2004a) suggest that the set

of binary and directed-path singly connected CP-nets may be the widest class for

which least variable flipping preserves search completeness.

For general CP-nets, Boutilier et al. (2004a) suggest that the notion of least-

variable flips may be used as a search heuristic to improve search efficiency. That

is, rather than pruning flips that do not change least-improvable variables, those

that do are prioritised (these directions of the tree are explored first). For non-

binary CP-nets, they suggest an extension to this heuristic. If X is a multival-

ued, least-improvable variable, then there may be several possible improving flips

of X. Boutilier et al. (2004a) suggest that these flips should be considered in order

of increasing level of improvement. Consider a tertiary variable X with prefer-

ence x � x′ � x′′. If X = x′′, then there are two possible improving flips – X

could change to X = x or to X = x′. By the above heuristic, the flip to X = x′ is

considered first, as it less of an improvement than flipping to X = x.

Their final method is forward pruning. This technique prunes the variable

domains in order to reduce the search space, rather than pruning the search tree as

it is constructed. Let {X1, X2, ..., Xn} be a topological ordering of V . The idea is

to sweep forward through the variables (X1 to Xn) and remove domain values that

cannot appear in an o′  o IFS. For each Xi, they first build a domain transition

graph, DTG(Xi). This graph has Dom(Xi) as its nodes. For u ∈ Dom(Pa(Xi))

that contains only un-pruned values of Pa(Xi), suppose the CPT(Xi) entry cor-

responding to u is x1 � x2 � · · · � xm. Then there is an edge xi → xi−1

in DTG(Xi) for every 1 < i ≤ m. Any Xi value (node) that is not on a directed

path o′[Xi]  o[Xi] in DTG(Xi) is pruned from Dom(Xi). If all of Dom(Xi) is

pruned (that is, there is no directed path o′[Xi]  o[Xi]), then the dominance

query is false. Thus, forward pruning can, in some cases, determine a query to

be false without needing to search at all. If no domain is pruned entirely, the

search tree is then constructed over the set of outcomes that take un-pruned val-

ues only. This will be a smaller search space and so the search will be more efficient.

Further, this pruning process preserves search completeness. The complexity of

forward pruning is O(nrd2), where r is the maximum number of conditional pref-

erence rules for a variable and d is the maximum domain size. Note that r is
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exponential in the size of parent sets, which may be up to n− 1.

Wilson (2004b) suggests an extension to suffix fixing called prefix fixing. He

proposes this as a method of making dominance testing more efficient for CP-

theories, which are a strict generalisation of CP-nets. Suppose we wish to answer

the dominance query N � o � o′. If we have o[X] = o′[X] for some X ∈ V

and o[Y ] = o′[Y ] for all descendants of X (Dec(X)), then when using suffix fixing,

we do not need to consider any X flips (nor any flips of its descendants). This is

because, if there is an IFS o′  o, then there is an IFS that preserves any matching

suffix. Prefix fixing means that we do not consider any flips of X (or its ancestors)

if o[X] = o′[X] and o[Y ] = o′[Y ] for all ancestors of X (Anc(X)). In this case,

Wilson (2004b) asserts that all IFS o′  o preserve such matching prefixes.

The author suggests that both methods should be used to improve the effi-

ciency of searching for an IFS. That is, for CP-nets, if X and Anc(X) take the

same values in both o and o′, then any improving flip that changes variable X is

pruned when constructing G(o′). Similarly, if X and Dec(X) take the same values

in both o and o′, then all X improving flips are pruned when constructing G(o′).

Boutilier et al. (2004a) prove that suffix fixing preserves search completeness in the

case of CP-nets. However, Wilson (2004b) does not provide an explicit proof that

this also holds for CP-theories. He also does not explicitly prove that prefix fixing

preserves completeness in either the CP-net or CP-theory case (nor that every IFS

preserves matching prefixes). In Chapter 3, we provide a proof that prefix fixing

does preserve search completeness (and that all IFSs preserve matching prefixes)

in the case of CP-nets, as we utilise this result in our preprocessing. Thus, as both

prefix and suffix fixing preserve search completeness for CP-nets, the combination

suggested by Wilson (2004b) must also preserve completeness in the CP-net case

at least.

Li et al. (2011a) use their penalty function (defined in §2.2.1) to prune the

search tree in an analogous method to how we use outcome ranks. We shall refer

to this as penalty pruning. With respect to the dominance query ‘Is o � o′?’,

they first define the following evaluation function:

f(o∗) = pen(o∗)− pen(o)− HD(o∗, o),

where HD is Hamming distance, HD(o1, o2) = |{X|o1[X] 6= o2[X]}|. Li et al.

(2011a) have shown that, if there is an IFS o′ = o1, o2, ..., om = o, then f(oi) ≥ 0

for all i. Thus, when constructing G(o′), any improving flips with f < 0 can be
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pruned. This preserves completeness of the search by the above result. Li et al.

(2011a) present this method combined with suffix fixing by Boutilier et al. (2004a).

That is, flips are pruned if they either have f < 0 or they violate a matching suffix.

When constructing G(o′), they prioritise (that is, search first) leaves with smaller f

values. Note that, like forward pruning, this procedure also has the capacity to

determine the dominance query to be false without the need to perform a search;

if f(o′) < 0, then we know the dominance query to be false. Li et al. (2011a)

experimentally compare penalty pruning combined with suffix fixing to suffix fix-

ing alone and also least variable flipping. These experiments compare the size of

the search performed by each method, but they do not compare the time taken

by each method. The results suggest that penalty pruning with suffix fixing is

significantly more effective than suffix fixing alone. There are some cases where

least variable flipping is the most effective pruning method. However, this occurs

for larger n values where least variable flipping is shown to have a high probability

of answering queries incorrectly (due to its lack of completeness). Li et al. (2013)

claim that the Li et al. (2011a) pruning method can be extended to dominance

testing for TCP-nets, however this is not shown explicitly.

Allen et al. (2017a) perform an experimental evaluation of the length of minimal

flipping sequences. That is, for entailed preferences, N � o1 � o2, they evaluated

the length of the shortest o2  o1 IFS. If all entailed preferences can be proved by

an IFS with length below a given bound, this would simplify the task of searching

for an IFS and, hence, simplify dominance testing. From these experimental re-

sults, they conjecture that, in the case of binary CP-nets, the minimum IFS length

(if one exists) has an upper bound of b(n + 1)2/4c. This conjecture is backed up

by their experimental results but is not proven to hold in general. Further, this

bound explicitly does not hold in the case of CP-nets with multivalued variables.

Allen et al. (2017a) propose that dominance testing can be performed more

efficiently by only searching G(o′) to a specified depth. We shall refer to this

as depth-bounded search. In particular, they apply this depth bound to the

dominance testing procedure proposed by Li et al. (2011a) (using penalty pruning

and suffix fixing). In this case, an improving flip is pruned if either f < 0, or it

violates a matching suffix, or it is beyond the specified depth in the search tree.

Such a depth bound could similarly be applied to our rank pruning method for

dominance testing. The authors also construct a formula that is true if and only

if there exists an IFS between the relevant outcome pair that has length below

the specified bound. The form of this formula means it is a SAT problem and can

thus be solved using a SAT-solver. The modified Li et al. (2011a) procedure and
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the SAT-solver will return ‘true’ if and only if there is an o′  o IFS of length

less than the supplied bound, k. Allen et al. (2017a) propose repeatedly applying

one of these methods with successively larger upper bounds up to some specified

bound k. However, as we discussed above, their conjectured bound upon the min-

imal IFS length is not proven and does not hold in the non-binary case. Thus,

there is not a known (non-trivial) bound that could be imposed upon the search

depth that is guaranteed to preserve completeness in general. That is, that guar-

antees that their process will return ‘true’ if and only if the dominance query holds.

Our method for improving dominance testing efficiency prunes the search tree

using outcome ranks, similar to penalty pruning by Li et al. (2011a). We show

that our pruning method preserves search completeness in the case of both binary

and multivalued CP-nets, unlike least variable flipping and depth-bounded search.

Rank pruning can also be combined with any of the existing pruning methods to

further improve efficiency. In our performance evaluation experiments, we compare

rank pruning to both suffix fixing and penalty pruning. We treat penalty pruning

separately (unlike Li et al., 2011a, where they present it in combination with suffix

fixing), in order to see more clearly how effective each of the pruning methods

are, both individually and in different combinations. Our experimental results

show that rank pruning is more effective than both penalty pruning and suffix

fixing, as well as their combination. We also find that, when considering pruning

combinations, rank pruning is an essential component for effective pruning and

efficient dominance testing. These experimental results also demonstrate that all

three pruning methods are distinct – each method prunes branches of the search

tree that are not pruned by the other two. Prefix fixing is not compared in these

experiments (though, by symmetry, we may expect it to perform similarly to suffix

fixing), however, we can see that it is distinct from rank pruning as rank pruning

can prune improving flips of any variable (including variables that take different

values in the outcome pair of interest)

Like penalty pruning, rank pruning can also show the dominance query to be

false via a simple numerical check (performed prior to constructing the search

tree). We compared the performance of these two numerical checks in the ex-

periments discussed above (Li et al., 2011a did not look at the numerical check

results in their experiments). These results show the rank numerical check to be

a much stronger condition. That is, it identified a much higher proportion of the

false dominance queries (thus, a higher proportion of cases were answered without

needing to conduct a search).
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Unlike the pruning methods compared by our experiments, forward pruning

reduces the size of the dominance query by preprocessing the CP-net, rather than

pruning the search tree. Thus, forward pruning reduces the size of the problem

rather than providing a method for answering the query. Forward pruning results

in a smaller dominance query, which then needs to be answered efficiently. Thus,

we do not include it in these experimental comparisons. However, we will consider

it in Chapter 3, where we look at CP-net preprocessing to improve dominance test-

ing efficiency. Note that, if forward pruning was reframed as a pruning condition,

it would have complexity O(nrd2) for every leaf of the search tree considered. In

comparison, suffix fixing, penalty pruning, prefix fixing, and rank pruning are all

linear or polynomial in n to check.

In our experiments, we use outcomes traversed to measure the complexity of the

dominance testing procedure. This is similar to the metric used in the experiments

by Li et al. (2011a). However, we also measure the time elapsed to illustrate the

true efficiency of the different methods. These experiments also vary the leaf

prioritisation method used, in order to see whether this choice has an effect on

performance. Boutilier et al. (2004a) and Li et al. (2011a) have both suggested

leaf prioritisation heuristics (and we shall introduce our own), but there has been

no experimental investigation into their efficacy. Our experimental results suggest

that one of our proposed prioritisation heuristics is the optimal choice for efficient

dominance testing (though in general we do not find the choice of prioritisation

method to make a significant difference to performance).

In §2.5, we generalise our outcome ranks so that they are defined for CP-nets

with indifference statements within their CPTs. Further, we show that this gener-

alisation allows us to use a similar rank pruning procedure to improve dominance

testing efficiency in the case of indifference. Out of all of the existing work on

improving dominance testing efficiency, only Boutilier et al. (2004a) claim that

their methods extend to this case, though this is not shown explicitly.

Other Methods

Santhanam et al. (2010, 2016) introduced the idea of using model checking to

answer dominance queries efficiently. Their method is applicable to more gen-

eral preference structures than CP-nets, for example TCP-nets and CP-theories.

Technically, their procedure may be applied to any preference structure where

dominance is defined in terms of an outcome graph property (for CP-nets this is

reachability within the preference graph). In order to use model checking, the CP-

net (or other preference structure) must first be translated into a Kripke structure
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(see Appendix F for definition). Roughly, the outcomes (with some additional

information about which values may change) translate into the states of the mod-

els and the flips (edges) of the preference graph become the transitions between

states. This Kripke structure is proven to correspond to the original preference

graph.

Once the Kripke structure is constructed, they define a CTL (computational

tree logic) formula, φ, for a given dominance query, o � o′. This formula, φ, is

satisfied by the Kripke structure if and only if, for every state corresponding to o,

there is sequence of state transitions that terminates at a state corresponding to o′

(this sequence corresponds to a worsening flipping sequence). Thus, if the Kripke

structure satisfies φ, o � o′ is true. In order to evaluate whether this holds, the

initial states of the Kripke structure are set to be the states corresponding to o and

a model checker is used to evaluate whether the Kripke structure satisfies φ. If the

model checker returns ‘true’, then the dominance query holds. The authors claim

that any model checker that accepts Kripke structures can be used, though they

use a model checker called NuSVM. This procedure can also be used to obtain

a proof of dominance (a worsening flipping sequence). If φ holds, then using the

model checker to query satisfiability of ¬φ will return ‘false’ with a counterexam-

ple. This counterexample will be a sequence of state transitions from an o state to

an o′ state – corresponding to a worsening flipping sequence o  o′. Santhanam

et al. (2010) provide an experimental evaluation of the efficiency of this method for

dominance testing on CP-nets and TCP-nets. These results showed the average

dominance testing time to be less than 13 seconds for binary CP-nets with up

to 30 variables (with restrictions on variable degrees and CPT sizes). However,

no experimental analysis has been done in the case of CP-nets with multivalued

variables. Thus, it is not clear how well this technique performs when there are

multivalued variables.

Sun et al. (2017) also propose answering dominance queries by successively

composing variable preferences to form a single preference table. In §2.2.2, we

described their method of composing preference tables and relations to obtain a

relation over Ω that specifies exactly the CP-net entailments. Thus, the resulting

relation answers every possible dominance query. However, this procedure requires

building a table of exponential size and applying Pareto composition to an expo-

nential number of outcome pair relations. Further, their experimental evaluation

of the efficiency and space requirements are only provided in the binary case for

CP-nets with up to 10 variables. Thus, we do not know how efficient this method
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is when there are multivalued variables, or for larger n values.

Unlike both of these methods, our experimental comparisons look at both the

binary and non-binary CP-net cases. Thus, we provide a more complete picture of

how efficient our dominance testing procedure is. For practicality, our experimen-

tal comparisons are limited to dominance testing procedures that answer queries

by constructing (and pruning) a search tree. Thus, these two methods are not

included in our comparisons.

Ahmed and Mouhoub (2019) give an algorithm for answering dominance queries

that applies itself recursively. Suppose we are interested in answering the domi-

nance query N � o � o′. The algorithm starts by identifying a variable, X ∈ V ,

such that all ancestors of X take the same values in o and o′, but o[X] 6= o′[X].

It then evaluates some trivial conditions that may answer the query immediately.

If o′[X] � o[X], given the values taken by Pa(X) in o and o′, then the query is

false. If o[X] � o′[X] and all other variables take the same value in both o and o′,

then the query is true. If these checks do not answer the query, then the algorithm

constructs a series of reduced queries and answers them by calling itself recursively.

Depending on the answers of these queries, the original query is determined true

or false.

Let W = V \Anc(X) ∪ {X} and let o[Anc(X)] = o′[Anc(X)] = u, o[X] = x1,

and o′[X] = x2. First, the algorithm considers whether the dominance query

holds when reduced to the CP-net N1, obtained from N by fixing Anc(X) = u

and X = x1. If this smaller query holds, the algorithm returns ‘true’ (the orig-

inal query holds). If this query is false, then the algorithm next evaluates the

original query reduced to the CP-net N2, obtained from N by fixing Anc(X) = u

and X = x2. Again, if this smaller query holds, the algorithm returns ‘true’. If

neither of these queries are true, then the algorithm evaluates the query reduced

to each Ni in turn for xi ∈ Dom(X) such that x1 � xi � x2 (given Anc(X) = u).

If any of these reduced queries are found true, then the algorithm returns ‘true’.

If none of these reduced queries are found true, then the algorithm assess the

two queries N1 � o[W ] � o∗ and N2 � o∗ � o′[W ] for each o∗ ∈ Dom(W ), by

calling itself twice. If both queries hold for some o∗, then the algorithm returns

‘true’. Otherwise, if this is not true for any o∗, the algorithm returns ‘false’ (the

original query is false).

The idea of this algorithm is to improve dominance testing efficiency by break-

ing the problem down into smaller cases and checking trivial conditions that can

answer the query immediately. However, if the final clause of the algorithm is
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called, it is possible that the algorithm will call itself an exponential number of

times (as there are ≥ 2|W | assignments to W ). The authors confirm that the com-

plexity of this algorithm is exponential in the worst case scenario. Furthermore,

no experimental evaluation of the effect of this algorithm on dominance query

efficiency is provided by Ahmed and Mouhoub (2019).

We believe their algorithm to be incorrect. In particular, that there are cases

of true dominance queries where the algorithm returns ‘false’. This is because the

algorithm does not consider the possibility of an entailed preference, N � o � o′,

where all o′  o IFSs utilise more than two X values non-trivially.

This paper was published during the late stages of writing up this thesis. As

we only became aware of this work recently and believe the algorithm to contain

significant errors, we have not included this work in any later comparisons.

2.3 Outcome Ranks

Given a CP-net representing the user’s preferences, our aim is to quantify the

user’s preference for each outcome; we will call this value an outcome rank. These

values should induce a consistent ordering over the outcomes as they must reflect

all preferences entailed by the CP-net. In most cases, CP-nets do not fully spec-

ify the user’s preferences over the outcomes. Rather, there are usually several

outcome orderings that could be the user’s true preference (consistent orderings).

Furthermore, given a basic CP-net and no further information, we are unable to

judge any consistent ordering to be more likely than another to be the user’s true

preference ordering. Thus, if we wish to order the outcomes according to user

preference, then we can do no better than to find any consistent ordering.

We start this section by showing how CP-nets can be represented by event

trees, this representation is necessary for the construction of our outcome ranks.

We then define our outcome ranks and prove that these values accurately reflect

user preference. We demonstrate how outcome ranks can be used to obtain a

consistent ordering over (any subset of) the outcomes. This is also shown to

work for CP-nets with additional plausibility constraints. Finally, we provide an

algorithm that calculates our outcome ranks in O(n4) time.

2.3.1 Event Tree Representation of CP-Nets

Let N be a CP-net over variables V . We have mentioned previously that the

induced preference graph, GN , is an equivalent representation of this informa-

tion. Another equivalent way of representing CP-nets is by an event tree (Ed-

38



2.3 Outcome Ranks

wards, 1983). We use this alternate representation to motivate and construct our

quantification of user preferences in §2.3.2. The event tree representation of N ,

denoted T (N), can be constructed in three steps.

First, put the variables in a topological order according to the CP-net struc-

ture, V = {X1, ..., Xn}. That is, Pa(Xi) ⊆ {X1, ..., Xi−1}. For the CP-net given in

Example 1.2, there are two such orderings, ABCD and BACD. We use ABCD

for simplicity.

Second, construct an event tree representing the successive events of X1 taking

a value, then X2 taking a value, and so on up to Xn. The root node branches

into |Dom(X1)| possibilities (each branch should be labelled with an associated

element of Dom(X1)). Then, each of these nodes branches into |Dom(X2)| possi-

bilities (each labelled with an associated element of Dom(X2)). And so on until

each of X1, X2, ..., Xn have all taken a value. The final tree has |Ω| root-to-leaf

paths, corresponding to the outcomes. Figure 2.1 gives the event tree representa-

tion for the CP-net in Example 1.2 (ignore the branch weights for the moment).

Finally, the branches need to be labelled with the level of preference of the

associated variable assignment. Suppose we are labelling the branch b, which

represents that X = x (for some X ∈ V ). By inspecting the unique path from

the root of the tree to the start of b, identify the values assigned to Pa(X). From

the appropriate row of CPT(X), we can identify the position of preference of the

choice X = x. If x is the best choice under this assignment to Pa(X), then label b

with ‘1st’, if it is the second best, then label it ‘2nd’, and so on. For the event tree

of the CP-net in Example 1.2, at the first stage, we label the A = a branch ‘1st’

and the A = ā branch ‘2nd’ because of CPT(A). Similarly, both B = b branches

have the label ‘1st’ and both B = b̄ branches have the label ‘2nd’. Now, consider

the top-most instance of the tree branching into the options for C (c, c̄, ¯̄c). At

this point, A and B have been assigned values a and b and so we are concerned

with the corresponding (top) row of CPT(C). From the CPT, we can see that,

given the history of this path, c is preferred to c̄ is preferred to ¯̄c. Thus, we give

the C = c branch the label ‘1st’, the C = c̄ branch the label ‘2nd’, and the C = ¯̄c

branch the label ‘3rd’. Labelling the rest of the C and D branches is a similar

process. However, for the D branches we only need to look at the value previously

taken by C to determine which CPT(D) row to consult.

Proposition 2.2. Let N be a CP-net and let T (N) be the event tree represen-

tation of N . Then N and T (N) are equivalent structures (they encode identical

information). Recall that a CP-net consists of both the structure and the CPTs.

Proof. See Appendix E.1.
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Figure 2.1: Weighted Event Tree
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From the example used above, it is clear that T (N) can become very large even

for relatively small CP-nets. This is because T (N) will always branch into |Ω|
distinct paths ending in |Ω| leaf nodes and |Ω| ≥ 2n (with equality only in the case

of binary CP-nets). As mentioned previously, we use this event tree representation

to aid the construction of our outcome ranks in §2.3.2. However, in §2.3.5, we

demonstrate that constructing the event tree is not necessary for their calculation,

so the exponential size of these trees is not a limitation.

Remark. While T (N) quickly becomes an impractical representation due to its

size, it has the advantage of flexibility over the usual CP-net representation. Event

trees can be adapted to represent asymmetric information, whereas the compact

CP-net notation does not have room to incorporate such information and so it

must be reported separately. For example, in §2.3.4, we show how event trees are

adapted in the case of additional plausibility constraints. A similar adaptation can

be used in the case of missing information. Thus, if a CP-net is combined with

a lot of additional information, it may become more practical to work with T (N)

rather than N . Note that, in general, event trees can be used to represent any

qualitative preference structure where each variable is preferentially independent

of its descendants, given its ancestors.

2.3.2 Outcome Rank Construction

In this section, we define our outcome ranks (which successfully induce a consistent

ordering over the outcomes). These ranks are obtained using the event tree rep-

resentation discussed in §2.3.1. Specifically, we first weight the edges of the event

tree representation and then read off the rank of an outcome from this weighted

tree. These outcome ranks reflect user preference, so more preferred outcomes

receive higher scores.

To motivate our weighting convention for the edges of T (N), we must look

at what determines the user’s level of preference for a given outcome, o. The

position of preference of the values taken by the individual variables, according to

the CPTs, needs to be taken into account. However, according to the semantics of

CP-nets, ancestor variables in the CP-net structure are more important to the user

than their descendants (Boutilier et al., 2004a). Thus, if variable A is an ancestor

of variable B, then when quantifying user preference over outcomes, we must have

a larger penalty for violating the user’s preference over A than for violating their

preference over B. Therefore, the position of variables in the CP-net structure will

also need to be taken into account when determining the user’s level of preference

for an outcome.
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As we allow our CP-net variables to be multivalued, we must also take into

account how domain size affects user preference. By the semantics of CP-nets,

domain size should not affect the importance of a variable flip. That is, the

importance of changing variable X from the ith most preferred value to the (i−1)th

should be independent of the size of Dom(X). Suppose we have variables X and Y ,

such that Y is a descendant of X in the CP-net structure. Then any decrease of

preference in X should dominate any decrease of preference in Y , regardless of

their domain sizes. Thus, our quantification of preference must also have this

property.

Motivated by these restrictions imposed by the CP-net semantics, we have

created the following weighting formula for the branches of the event tree repre-

sentation of a CP-net.

Definition 2.3. Let N be a CP-net over variables V = {X1, ..., Xn} and as-

sume that the variables are in a topological ordering with respect to the structure

of N . Now, consider the event tree representation of N , T (N). Let e be the

edge of T (N) that indicates variable Xi takes value xi, given that X1, ..., Xi−1

take values x1, ..., xi−1, respectively. Use p to denote the directed path from

the root of T (N) to the start of e, which dictates in turn that

X1 = x1, X2 = x2, ..., Xi−1 = xi−1. Let u ∈ Dom(Pa(Xi)) be the assign-

ment of values to the parents of Xi dictated by p. We define the edge weight of e

as follows: ( ∏
Y ∈Anc(Xi)

1

nY

)
(dXi

+ 1)
nXi
− k + 1

nXi

, (2.3)

using the following notation:

• nXi
= |Dom(Xi)|,

• dXi
is the number of distinct directed paths of any (positive) length in the

structure of N that originate at Xi (the number of descendent paths of Xi),

• k is the position of preference of the choice of Xi = xi given Pa(Xi) = u.

So, if Xi = xi is the best choice for the user, then k = 1, if it is the second

best choice, then k = 2, and so on. If it is the worst possible choice for Xi,

then k = |Dom(Xi)|.

We refer to the leftmost product term in Equation 2.3 as the ancestral factor

of Xi, AFXi
. This factor scales the weight down by the size of Xi’s ancestors’

domains. The purpose of this is so that any violation of preference for an ancestor

will dominate a violation of preference for Xi, regardless of the size of the ancestor’s

domain relative to |Dom(Xi)|.
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Consider the central term of Equation 2.3, (dXi
+ 1). If X is an ancestor

of Y , then dX > dY . An ancestor variable is more important to the user than

its descendent variables, this term allocates these more important variables more

weight. In particular, this term ensures that reductions in preference of an ancestor

variable have larger penalties than reductions in preference of a descendant.

We refer to the rightmost product term in Equation 2.3 as the preference po-

sition of the choice Xi = xi given Pa(Xi) = u, denoted PP (Xi = xi | Pa(Xi) = u).

This is a value in {1/nXi
, 2/nXi

, ..., (nXi
− 1)/nXi

, 1}. This is simply a factor on

the (0,1] scale indicating to what degree the user prefers this choice of value for Xi.

This naturally impacts the user’s preference for the overall outcome. This factor

gets larger for more preferred values, with the best value assigned a preference

position of 1.

Remark. Notice that the preference position factor decreases in equal incre-

ments. Due to a lack of information provided by the CP-net, we cannot jus-

tify a more complex increment when quantitatively representing the user’s prefer-

ences over Dom(Xi). Consider a variable A with Dom(A) = {a1, a2, a3} and CPT

a1 � a2 � a3. This could mean that, to the user, a2 is slightly worse than a1,

but a3 is much worse than a2. Alternatively, it could be that a2 is much worse

than a1, but a3 is only slightly worse than a2. We cannot determine which of these

is the case as CP-nets provide only qualitative (relative) preferences, and so we

assume that preference decreases in equal increments each time. In this situation,

our preference positions would be 1, 2
3
, and 1

3
for a1, a2, and a3 respectively.

However, note that the validity of outcome ranks does not rely upon the user’s

true preferences increasing in these equal increments. Our interest in outcome

ranks lies in their relative sizes, rather than the actual rank values, and all CP-

net preferences are accurately reflected by the relative outcome ranks (as we shall

prove). This holds because our equal increment assumption is a plausible model

for user preference, given the CP-net. Furthermore, the rank induced ordering is

also not reliant upon the equal increment assumption to be valid; the user’s true

preference order can be our rank ordering even if our equal increment assumption

is not true.

Let W (N) be the event tree representation of N with the weights from Defi-

nition 2.3 attached. We refer to W (N) as the weighted event tree representation

of N .

Example 2.4. We now return to the CP-net, N , from Example 1.2 and the

corresponding event tree, T (N), given in §2.3.1. Simple examination of the CP-
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net structure and CPTs gives us the following results:

Anc(A) = ∅, Anc(B) = ∅, Anc(C) = {A,B}, Anc(D) = {A,B,C},
nA = 2, nB = 2, nC = 3, nD = 2,

dA = 2, dB = 2, dC = 1, dD = 0.

From the nX values and the ancestor sets, we can calculate the ancestral factor of

each variable.

AFA = 1, AFB = 1,

AFC =
1

2
× 1

2
=

1

4
,

AFD =
1

2
× 1

2
× 1

3
=

1

12
.

We can now use these values and the CPTs to directly calculate the edge weights

and, thus, construct the weighted event tree representation of N . W (N) is given

in Figure 2.1, with the preference position in each edge weight given in boldface.

Take, for example, the top-most edge in T (N) that assigns a value to C. This

edge assigns C = c, given that A = a and B = b have been assigned previously.

By Definition 2.3, the associated edge weight is

AFC (dC + 1) PP (C = c|Pa(C) = ab) = AFC (dC + 1)
nC − k + 1

nC
,

where k is the position of preference of the choice C = c, given AB = ab. If

we consult CPT(C) in Example 1.2, we see that it contains the preference rule

ab : c � c̄ � ¯̄c. Thus, C = c is the best choice in this case and so has preference

position 1. If we had C = c̄, then we would have k = 2 and for C = ¯̄c, we would

have k = 3. Using this and the above results, the edge weight is

1

4
· (1 + 1) · 3− 1 + 1

3
=

1

4
· (1 + 1) · 1.

The other edge weights in Figure 2.1 are calculated similarly.

By examining the weighted event tree for this example, it can be seen that,

for any two edges indicating the value taken by the same variable, the attached

weights differ only on the preference position (the boldface number). Consider the

set of edges leaving any node in the tree. By the definition of preference position,

those edges indicating that the next variable takes a more preferred value will have

larger weights. Thus, we can recover T (N) given W (N) (by recovering the edge

labels by ordering them by weight). As T (N) is an equivalent representation to N

(Proposition 2.2), this shows that we can recover N from W (N). Recall that N
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is both the CP-net structure and the CPTs. By definition, W (N) is constructed

from N (after first constructing T (N) from N). Thus, W (N) is also an equivalent

representation to N (and to T (N)).

For ease of notation we shall, from this point on, simplify the notation for the

weighted event tree representation of N from W (N) to W without ambiguity.

Now that we can construct the weighted event tree representation of any given

CP-net, we use this structure to define our quantitative measure of preference for

any outcome. The rank of an outcome will be the sum of the preference weights

of the associated variable assignments.

Definition 2.5. Given a CP-net, N , and an associated outcome, o, we define the

rank of o, r(o), to be the sum of the weights on the edges of the root-to-leaf path

of W that corresponds to o. This gives the following formula:

r(o) =
∑
X∈V

AFX(dX + 1)PP (X = o[X]|Pa(X) = o[Pa(X)]). (2.4)

Example 2.6. Continuing on from Example 2.4, we calculate the ranks of several

outcomes directly from W :

r(āb¯̄cd̄) =

[
1 · (2 + 1) · 1

2

]
+

[
1 · (2 + 1) · 1

]
+

[
1

4
· (1 + 1) · 1

]
+

[
1

12
· (0 + 1) · 1

]
=

61

12
,

r(abc̄d̄) =

[
1 · (2 + 1) · 1

]
+

[
1 · (2 + 1) · 1

]
+

[
1

4
· (1 + 1) · 2

3

]
+

[
1

12
· (0 + 1) · 1

]
=

77

12
,

r(āb̄cd) =

[
1 · (2 + 1) · 1

2

]
+

[
1 · (2 + 1) · 1

2

]
+

[
1

4
· (1 + 1) · 1

3

]
+

[
1

12
· (0 + 1) · 1

]
=

39

12
.

Recall that our aim was to assign higher values to the more preferred outcomes.

Thus, the relative sizes of these ranks are as we would expect, as we can derive

the following preference sequences directly from the CPTs of N :

abc̄d̄ � ab¯̄cd̄ � āb¯̄cd̄,

āb¯̄cd̄ � āb¯̄cd � ābcd � āb̄cd.

Thus, we have N � abc̄d̄ � āb¯̄cd̄ � āb̄cd and r(abc̄d̄) > r(āb¯̄cd̄) > r(āb̄cd). We

prove that this property holds in general in §2.3.3.
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 A 

B C 

F D E 

Figure 2.2: CP-Net Structure

Note that, although we have used W to calculate outcome ranks here, we show

in §2.3.5 that ranks can be calculated efficiently without constructing W (in O(n4)

time). This is reassuring as W is an exponentially large structure (in n).

The above formula for outcome ranks appears similar to the penalty func-

tions defined by Domshlak et al. (2003) and Li et al. (2011a) (full details given

in §2.2.1, Equations 2.1 and 2.2). However, our outcome ranks are meaningfully

distinct from these penalty functions; they are not simply a transformation of

one another. We prove, via the following example, that our outcome ranks give

a distinct preference representation. In order to do so, we demonstrate that the

consistent orderings induced by the penalty functions can be different to those

induced by our outcome ranks. Thus, given a pair of outcomes, our ranks may

assess their relative preference differently to the penalty functions.

Example 2.7. We now give an example of a CP-net where the penalty functions

by Domshlak et al. (2003) and Li et al. (2011a) give (consistent) orderings over

the outcomes that are distinct from our rank ordering. For this example, we refer

to the penalty functions as pen1 and pen2, respectively.

Let N be a CP-net with the structure given in Figure 2.2. Let variable B have

a domain of size five and let every other variable be binary. Let o1 be the outcome

associated with N where every variable takes its most preferred value except B,

which takes the second most preferred value (out of five). Such an outcome can be

constructed by assigning variables their most preferred (or second most preferred

in the case of B) value in topological order. Further, o1 is uniquely specified by

this definition. Similarly, let o2 be the outcome where every variable takes its most

preferred value except C, which takes the second most preferred value (out of two).
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We know o1 6= o2 as they both assign the same value to A but C is its preferred

position in o1 and its not-preferred position in o2 (thus, o1[C] 6= o2[C]).

By the definitions of pen1 and pen2, if a variable takes its most preferred value,

then it has a local penalty of zero, p(o,X) = 0. If it is in the second most preferred

position, it has a local penalty of 1. Thus, we can simplify the penalty definitions

here:

pen1(o1) =
∑
X∈V

wXp(o1, X) =
∑
X 6=B

wX × 0 + wB × 1 = wB,

pen1(o2) =
∑
X∈V

wXp(o2, X) =
∑
X 6=C

wX × 0 + wC × 1 = wC ,

pen2(o1) =
∑
X∈V

w′Xp(o1, X) = w′B,

pen2(o2) =
∑
X∈V

w′Xp(o2, X) = w′C .

We therefore only need to calculate wB, wC , w
′
B, and w′C . By the recursive form

of their definitions, this can be done by calculating wX and w′X from the leaves

of the structure upwards. First, wD = wE = wF = 1 and w′D = w′E = w′F = 1

by definition as D, E, and F have no children. From these values, and the fact

that D, E, and F are all binary, we can calculate wB, wC , w
′
B, and w′C :

wB =
∑

Y ∈Ch(B)

wY |Dom(Y )| = wD|Dom(D)|+ wE|Dom(E)| = 2 + 2 = 4,

wC =
∑

Y ∈Ch(C)

wY |Dom(Y )| = wF |Dom(F )| = 2,

w′B =1 +
∑

Y ∈Ch(B)

w′Y (|Dom(Y )| − 1)

=1 + w′D(|Dom(D)| − 1) + w′E(|Dom(E)| − 1) = 1 + 1 + 1 = 3,

w′C =1 +
∑

Y ∈Ch(C)

w′Y (|Dom(Y )| − 1) = 1 + w′F (|Dom(F )| − 1) = 1 + 1 = 2.

As wC < wB and w′C < w′B, we have that pen1(o2) < pen1(o1) and

pen2(o2) < pen2(o1). Thus, both penalty functions imply that o2 � o1. That

is, both penalty orderings order o2 above o1.

If we calculate our outcome ranks using the formula from Definition 2.5, simi-

larly to our previous rank calculations, we get r(o1) = 8.95 and r(o2) = 8.75. This

means that outcome ranks order o1 above o2, the opposite of both penalty orders.

Thus, ranks produce distinct consistent orderings to both penalty functions and,

therefore, must be a distinct preference representation; it cannot be obtained by

a simple transformation of either penalty function.
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2.3.3 Consistently Ordering with Outcome Ranks

In this section, we demonstrate how our outcome ranks can be used to obtain

consistent orderings. This can be applied to the whole outcome set, in order to get

a complete consistent ordering for the CP-net, or to any subset of the outcomes.

As we constructed our outcome ranks to reflect user preference, they obey all

entailed relations, as we wanted. Thus, our ranks induce a complete consistent

ordering over the outcomes, %R. This %R is obtained simply by ordering the out-

comes according to their rank values, with with higher ranked outcomes considered

to be more preferred. Proofs of these claims are given below.

Theorem 2.8. Given a CP-net, N , for any outcomes o and o′, we have that

N � o � o′ =⇒ r(o) > r(o′).

Proof. See Appendix E.2.

This result shows that, if the CP-net dictates that the user prefers o to o′,

then r(o) > r(o′), that is, o �R o′. Thus, our outcome ranks have been shown

to accurately reflect the user preferences encoded by the CP-net. In fact, we

can say more than r(o) > r(o′); we can give a tight lower bound for the rank

difference, r(o)− r(o′). Details of this lower bound are given in §2.4.1.

Corollary 2.9. Given a CP-net, N , and two distinct associated outcomes, o

and o′, r(o) = r(o′) =⇒ N � o ./ o′. That is, o and o′ are incompara-

ble, N 2 o � o′ and N 2 o′ � o.

Proof. Theorem 2.8 shows that for any two outcomes, o1 and o2, N � o1 � o2 =⇒
r(o1) > r(o2), or equivalently r(o1) ≤ r(o2) =⇒ N 2 o1 � o2. Using this

equivalent result gives us the following:

r(o) = r(o′)

=⇒ (r(o) ≤ r(o′)) ∧ (r(o′) ≤ r(o))

=⇒ (N 2 o � o′) ∧ (N 2 o′ � o)

=⇒ N � o ./ o′.

Corollary 2.10. Let N be a CP-net. Let %R be the complete ordering over the

outcomes of N induced by the outcome ranks. Then %R is a consistent ordering

of the outcomes with respect to N .
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Proof. In order to show that %R is a consistent ordering, we need to show that,

for any two outcomes o1 and o2, N � o1 � o2 =⇒ o1 �R o2. Theorem 2.8 shows

that N � o1 � o2 =⇒ r(o1) > r(o2). By definition of %R, r(o1) > r(o2) =⇒
o1 �R o2. Thus, we have N � o1 � o2 =⇒ o1 �R o2 and so we can conclude

that %R is a consistent ordering of the outcomes.

We cannot guarantee that %R is a strict order. There is a possibility that two

distinct outcomes, o and o′, could be assigned equal rank. However, Corollary 2.9

shows that this can only occur when we do not know which outcome the user

prefers. If we want a strict ordering of the outcomes, then it is enough to force

any outcomes with equal ranks into an arbitrary order. Any strict ordering of the

outcomes obtained from %R in this manner is a consistent ordering of the outcomes

as we have only altered the order of incomparable outcomes.

We have now introduced a novel method of quantifying user preference and

obtaining a consistent outcome ordering given any (possibly multivalued) acyclic

CP-net. Further, we can ensure that this is a strict ordering of the outcomes.

From now on, when we refer to the outcome ordering induced by ranks, we are

referring to a strict ordering, �R.

Example 2.11. For the CP-net given in Example 1.2, the ordering of the outcomes

induced by ranks is as follows:

abcd �R abcd̄ �R abc̄d̄ �R abc̄d �R ab¯̄cd̄ �R ab¯̄cd �R ab̄c̄d̄ ∼R āb¯̄cd̄ �R

ab̄c̄d ∼R āb¯̄cd �R ab̄¯̄cd̄ ∼R ābcd �R ab̄¯̄cd ∼R ābcd̄ �R ab̄cd ∼R ābc̄d̄ �R

ab̄cd̄ ∼R ābc̄d �R āb̄¯̄cd̄ �R āb̄¯̄cd �R āb̄c̄d̄ �R āb̄c̄d �R āb̄cd �R āb̄cd̄.

We can obtain a strict ordering of the outcomes simply by replacing each ∼R with

a �R.

Remark. Going from a CP-net to a consistent ordering gives the impression of los-

ing a great deal of information, especially as there are likely to be many consistent

orderings and we have constructed one that is no better than any other. More-

over, the process of forcing our ordering to be strict arbitrarily discards several

possible orderings. However, we have found that, given this consistent ordering (or

the outcome rank values), we can answer ordering and dominance queries directly,

without needing to consult the CP-net. Further, we can use outcome ranks to im-

prove the efficiency of answering dominance queries. We can therefore determine

whether o �R o′ is entailed by the CP-net (N � o � o′) or constructed (N � o ./ o′)

from �R directly (note that N � o′ � o is not possible as �R is consistent, thus,

answering the dominance query ‘N � o � o′?’ is sufficient). These results are all
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discussed in §2.4.1. It is also possible to update �R given new (consistent) prefer-

ence information, without consulting the CP-net, this is shown in Appendix A. In

fact, despite constructing a consistent ordering somewhat arbitrarily, we have not

lost any information at all, as we shall prove below. These results are not specific

to �R, rather we show that they hold for any consistent ordering.

Theorem 2.12. Let N be a CP-net and %C be any consistent ordering over the

outcomes. Then no information is lost by reducing N to %C. That is, %C encodes

all of the preference information given by N .

Proof. See Appendix E.3.

Corollary 2.13. Let N be a CP-net. Reducing N to outcome ranks, or the asso-

ciated induced ordering, �R, loses no information.

Proof. By Theorem 2.12, reducing N to a consistent ordering loses no informa-

tion. The ordering induced by outcome ranks, �R, is consistent by Corollary 2.10.

Thus, reducing N to this ordering loses no information. The outcome ranks in-

duce this ordering. Thus, �R can be obtained from the outcome ranks and so,

using Theorem 2.12, N can be recovered from the outcome ranks alone. Hence,

reducing N to outcome ranks loses no information.

Our method of obtaining a consistent ordering using outcome ranks has the

advantage of how easily it can be adapted to find a consistent ordering of any subset

of the outcomes. Let N be a CP-net over variables, V , and let S be some subset of

the outcomes, S ⊆ Ω. Suppose we wish to put these outcomes, S, in an order that

agrees with everything the CP-net tells us about the user’s preference. That is, we

wish to find a strict order over S, �S, such that for any two outcomes o1, o2 ∈ S,

we have that N � o1 � o2 =⇒ o1 �S o2. To motivate the consistent ordering of

subsets, consider an online shopping website displaying its products and suppose

the seller wishes to promote a certain range of items; the seller wants exactly these

items to appear on the first page. However, they still want this range of outcomes

to appear in an order such that those items of more interest to the client are higher

up. Thus, a consistent ordering of this specified range of products is required.

A consistent ordering of S ⊆ Ω can be obtained in exactly the same way that we

obtained a consistent ordering for N . For each o ∈ S, calculate the rank of o, r(o),

and then order S according to rank value. To get a strict consistent ordering of S,

force outcomes of equal rank into an arbitrary order. We call this strict ordering

of S, �S. We can see that �S is a consistent ordering of S by using exactly the

same reasoning we used to show that �R is a consistent ordering. In principle,

50



2.3 Outcome Ranks

we could instead obtain �S by constructing �R and then restricting the ordering

to S (as can be done for any consistent ordering, not just �R); however, this is

unnecessary in practice, as the above method is more efficient.

In §2.3.5, we present an algorithm that can calculate r(o) for any outcome in

time O(n4). Thus, a consistent ordering for a subset of size k can be obtained, as

described above, in O(n4k + k2) time. As we discussed in §2.2.2, Boutilier et al.

(2004a) also proposed a solution to the problem of obtaining a consistent ordering

for any subset of the outcomes. They proposed finding a consistent ordering of S

by repeatedly answering ordering queries. Using this method, a consistent ordering

for a subset of size k can be obtained in O(nk2) time. Thus, for larger subsets of

the outcomes, our method becomes more efficient. This is because every ordering

query has complexity O(n), whereas, in our method, once the ranks are calculated

the problem is reduced to a simple sorting task. Note that the total number of

outcomes is at least 2n (with equality only in the case of binary CP-nets), so

subsets of the outcomes can be very large even for relatively small CP-nets.

We have now introduced a novel quantification of user preference, given a CP-

net representation of preference. We have shown that these ranks successfully

reflect all entailed relations and how they can be used to obtain a consistent

ordering of the outcomes. Further, we have shown that this method can be directly

applied to obtain a consistent ordering of any subset of the outcomes.

2.3.4 Consistently Ordering Under Plausibility Constraints

A particularly interesting application of consistently ordering subsets of the out-

comes is finding a consistent ordering for CP-nets that have additional plausibility

constraints. That is, a CP-net where only a specified proper subset of the out-

comes, say P ( Ω, are possible and the remainder are considered impossible. In

real world problems, this kind of asymmetry in a CP-net system is commonplace.

Consider, for example, an airline where there are no flights between specified dates

and destinations with available business class seats, such tickets would then be im-

possible outcomes.

Proposition 2.14. Given a CP-net, N , and the further constraint that the only

outcomes that are possible are those contained in P ( Ω, let NC denote the CP-net

with these additional constraints. Let %P be any total preorder over P such that,

for all o, o′ ∈ P , we have N � o � o′ =⇒ o �P o′. Then %P is a consistent

ordering for NC.
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Proof. In order to show that %P is a consistent ordering for NC , it is enough to

show that NC � o � o′ =⇒ o �P o′. We know that N � o � o′ =⇒ o �P o′

holds, so it is sufficient to prove that NC � o � o′ =⇒ N � o � o′. Recall

that a CP-net entails the relation o � o′ if and only if there is a path o′  o

in the preference graph. Let GN be the preference graph for N and let GNC

be the preference graph for NC . Then GNC
is the induced subgraph of GN on

outcomes (nodes) P . Thus, if there exists a o′  o path in GNC
, then this will be

a path (improving flipping sequence) in GN that exclusively uses outcomes in P .

Therefore, there is a path o′  o in GN and so we have that NC � o � o′ =⇒
N � o � o′.

By Proposition 2.14, every consistent ordering (with respect to N) of the sub-

set P ( Ω is a consistent ordering for NC . Thus, being able to obtain a consistent

ordering of any subset of outcomes for a CP-net, N , means that we can also obtain

a consistent ordering for any constrained CP-net, NC .

In the case of CP-nets with additional plausibility constraints, any consistent

ordering restricted to P will be a consistent ordering for NC . To obtain a consistent

ordering of P using outcome ranks you do not have to construct the full consistent

ordering. In fact, you only need to calculate the edge weights of W for edges that

are on root-to-leaf paths corresponding to some o ∈ P . Depending on the severity

of the plausibility constraints, this could cut down calculations significantly. For

larger possibility sets, P , this would also be more efficient than using the method

by Boutilier et al. (2004a) for ordering outcome subsets (by the same reasoning

as §2.3.3).

Example 2.15. Consider the CP-net given in Example 1.2 with the following

constraints.

C = {¬ā,¬(b ∧ c),¬(b̄ ∧ c̄),¬(b̄ ∧ ¯̄c ∧ d̄)}.

In order to construct a consistent ordering for NC , we only need to consider the

restricted W seen in Figure 2.3 (edge weights are calculated exactly the same way

as in Figure 2.1).

From this much smaller tree, we calculate ranks as usual and order the possible

outcomes (P ) by their rank:

abc̄d̄ �P abc̄d �P ab¯̄cd̄ �P ab¯̄cd �P ab̄¯̄cd �P ab̄cd �P ab̄cd̄.

This is a consistent ordering of P for NC . It can be seen by comparing �P to �R

(given in Example 2.11), that �P is the restriction of �R to P .

Remark. Constrained CP-nets can be considered from two perspectives, which

determine the preference structure they encode. Suppose we have a CP-net, N
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Figure 2.3: Weighted Event Tree for a Constrained CP-Net

and some associated plausibility constraints, C, which result in a constrained CP-

net, NC . Let P denote the plausible outcomes specified by C. Suppose the user

knew about these plausibility constraints, C, when expressing their preferences.

In this case, we cannot assume that these preferences apply to outcomes not in P .

Returning to our flight seat example, suppose we told the user that Wi-Fi is not

available on short flights unless they are seated in first class. This may then affect

their specified preferences over variable C (the class of their seat). Suppose, in

this case, the specified preferences (encoded by N) imply an IFS o1  o2  o3

where o1, o3 ∈ P and o2 6∈ P . The user did not consider o2 when specifying

their preferences and so we cannot consider this to be a valid proof of o3 � o1.

Thus, NC � o � o′ (for o, o′ ∈ P ) only if there is an IFS in N that consists only

of outcomes in P . This makes the preference graph of NC the induced subgraph

of GN on nodes P , which is what we used in the proof of Proposition 2.14.

Alternatively, if the user was unaware of the constraints, then all IFS for N con-

stitute valid preferences. Thus, NC � o � o′ (o, o′ ∈ P ) if and only if N � o � o′.

Note that this alternative interpretation does not affect our results as we still
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2. Outcome Rank Pruning for Efficient Dominance Testing

have NC � o � o′ =⇒ N � o � o′, as required to prove Proposition 2.14.

If the user knew some but not all of the constraints, then the preference graph

of NC would be somewhere between the above two options. The former is the

most conservative in its assumptions regarding the preferences implied under con-

straints. Thus, assuming that the user is aware of any constraints could be con-

sidered the ‘safer’ option if it is unclear from context.

2.3.5 Rank Calculation Algorithm

The outcome ranks defined in §2.3.2 (Definition 2.5) are time consuming to calcu-

late by hand even for fairly small CP-net examples. In this section, we present an

algorithm for calculating the rank of any outcome. In §2.3.2, we used the event

tree representation of CP-nets in both constructing our rank definition and in

calculating example ranks. However, in this section, we show that ranks can be

calculated directly from a CP-net input. Further, we can calculate the rank of any

outcome in O(n4) time.

Algorithm 1 takes a CP-net and an outcome as inputs and outputs the rank of

the given outcome. Recall, the rank of an outcome, o, is the sum of the weights

on the root-to-leaf path of W corresponding to o. Algorithm 1 calls two other

algorithms. Algorithm 6 takes a variable, X, and outputs the set of its ancestors

in the CP-net structure, Anc(X) = {Y | ∃ a directed path Y  X in N}. Algo-

rithm 7 takes a variable, X, and calculates the number of descendent paths of X

in the CP-net structure, dX . Algorithms 6 and 7 are given in Appendix B.3.

For the remainder of this section, suppose we have a CP-net, N , over a

set of variables, V = {X1, ..., Xn}, that are in a topological order with respect

to the structure of N . We assume that N is input to Algorithm 1 as a pair,

N = (A,CPT ), where A is the adjacency matrix for the structure of N . That

is, A is an n × n matrix such that Ai,j = 1 if there is an edge Xi → Xj in the

structure of N , and Ai,j = 0 otherwise. The second entry in the CP-net pair, CPT ,

is the set of CPTs associated with N . We assume this to be input in a partic-

ular format, which is given in Appendix B.1 with an illustrative example. From

this CPT input, we can extract |Dom(Xi)| for any 1 ≤ i ≤ n. To keep Algo-

rithm 1 as readable as possible, we assume that, given i, we can obtain |Dom(Xi)|,
rather than writing the details of how this is achieved (these details are given in

Appendix B.1). We also leave the details of the format for input outcomes to

Appendix B.1.

Algorithm 1 takes the CP-net, N , and some outcome, o, and outputs the rank

of this outcome, r(o). It calculates r(o) by setting the value of r(o) to 0 (step 1) and
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Algorithm 1: Outcome Rank Calculation

Input : N = (A,CPT ) – CP-net

o – Outcome

Output: r(o) – Outcome rank

// Variables and array elements are indexed from 1 (rather

than 0) in the following pseudocode

1 r(o) = 0;

2 for Xi ∈ V = {X1, X2, ..., Xn} do

3 Anc = Anc(Xi); // Calculated using Algorithm 6

4 AF =
∏

Y ∈Anc
1

|Dom(Y )| ;

5 d = dXi
; // Calculated using Algorithm 7

6 Pa = {j | Aj,i = 1}; // Parent set of Xi

7 u = o[Pa]; // Values taken by Pa in outcome o

8 order = CPT [i][u]; // Preference order over Xi, given Pa = u

9 k = order[o[i]]; // o[i] = o[Xi]

// k - position of preference of o[i] in the previous order

10 PP = |Dom(Xi)|−k+1
|Dom(Xi)| ;

11 r(o) = r(o) + AF · (d+ 1) · PP ;

12 end

13 return r(o);
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successively adding the edge weights of the root-to-leaf path in W that corresponds

to o (steps 2-12). A more detailed explanation of how Algorithm 1 works and why

it is correct can be found in Appendix B.2.

We have used W here and in Appendix B.2 to help explain what Algorithm 1

is doing and to show why it is correct. However, notice that the algorithm itself

does not utilise W at any point and instead works directly with the CP-net to

obtain the rank. This shows that, whilst the event tree representation was useful

in motivating and explaining our ranking system, constructing the tree is not a

necessary step in calculating the rankings. This is reassuring as W has exponential

size (in n) and so quickly becomes large even for relatively small CP-nets.

For a CP-net, N , with n variables, Algorithms 6 and 7 both have complex-

ity O(n3) and Algorithm 1 has complexity O(n4). Thus, for any associated out-

come, o, we can compute r(o) in O(n4) time; that is, finding the rank of an outcome

is tractable. Similarly, the penalty values by Domshlak et al. (2003) and Li et al.

(2011a) can be calculated in time polynomial in n. However, the utilities presented

by McGeachie and Doyle (2004) can be intractable to calculate.

Remark. We could use Algorithm 1 to produce a consistent ordering, given a

CP-net, N , as shown by Corollary 2.10. This is done by using Algorithm 1 to cal-

culate the rank of each outcome, and then sorting these outcomes into rank-order.

However, to obtain a consistent ordering in this manner, we are applying Algo-

rithm 1 |Ω| many times, making the time complexity in terms of |Ω|. As |Ω| ≥ 2n

(with equality only in the case of binary CP-nets), this is not a tractable method.

This is unsurprising as putting |Ω| objects into an order will always have time com-

plexity in terms of |Ω| (intractable). Our primary aim is to use these ranks (algo-

rithms) to improve the efficiency of dominance testing, which, as shown in §2.4.1,

does not require a consistent ordering. Thus, we are not concerned by this lack of

tractability.

2.4 Efficient Dominance Testing

In this section, we show how our outcome ranks can be used to improve domi-

nance testing efficiency and compare this to the existing methods for improving

dominance testing efficiency. In §2.4.1, we explain how rank pruning for efficient

dominance testing works. In §2.4.2, we provide an experimental comparison to the

existing methods for improving dominance testing efficiency via search tree prun-

ing. These results show that rank pruning significantly outperforms the existing

methods. We also evaluate all possible combinations of methods and find that

rank pruning is a critical component for a successful combination.
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2.4.1 Rank Pruning for Dominance Testing

As we explained in §2.1, answering dominance queries is an important task (see §1.3

for formal dominance query definition). We must be able to answer these queries

efficiently for CP-nets to be a practical representation of user preference. However,

dominance queries are complex to answer. If N � o � o′, then the user prefers o

to o′ and so o comes before o′ in all consistent orderings. Thus, dominance queries

require us to consider all consistent orderings, whereas previously we have been

concerned only with finding an arbitrary consistent ordering. To answer the query

‘N � o � o′?’, we must prove either that o comes before o′ in every consistent

ordering or, alternatively, prove that there exists a consistent ordering where o′

comes before o. Unless one is lucky enough to construct a consistent ordering

where o′ comes before o, this cannot be answered by considering a single arbitrary

consistent ordering.

Dominance queries have been proven to be complex tasks to answer in gen-

eral. Dominance testing (answering dominance queries) for binary CP-nets has

the following complexities:

• O(n) when the CP-net has a tree structure (Bigot et al., 2013).

• Polynomial in n when the CP-net structure is a polytree (has no cycles when

orientation is removed) (Boutilier et al., 2004a).

• NP-complete when any two variables are connected by at most one directed

path in the CP-net structure (Boutilier et al., 2004a).

• NP-complete when any two variables are connected by at most δ directed

paths in the CP-net structure and δ is polynomially bounded (Boutilier et al.,

2004a).

• PSPACE-complete for CP-nets in general (and if we restrict to consistent

CP-nets) (Goldsmith et al., 2008).

As multivalued CP-nets are a strict generalisation of binary CP-nets, dominance

testing for multivalued CP-nets must have complexities at least as hard as the

above. As we discussed in §2.2.3, there are several existing methods for making

dominance testing more efficient. In this section, we introduce a novel method

of improving dominance testing efficiency (for acyclic, multivalued CP-nets) using

our outcome ranks.

The standard method of answering dominance queries is by searching for an

improving flipping sequence, which can be visualised as constructing a search tree.
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Before we explain how outcome ranks can improve dominance testing efficiency,

we must formalise these notions.

Suppose we have the dominance query ‘N � o � o′?’. This is true if and

only if there is a path o′  o in the preference graph of N , GN (Boutilier et al.,

2004a). This directed path corresponds to an improving flipping sequence (IFS)

of outcomes – o′ = o1, o2, ..., om = o, such that oi and oi+1 differ on the value of

exactly one variable and N � oi+1 � oi. Therefore, a dominance query can be

reframed as a search for an IFS in GN . Thus, the query becomes ‘is o reachable

from o′ in GN?’. This question can be answered by searching through GN from

node o′, to see which outcomes are reachable. We formalise this as the process

of constructing a search tree, G(o′). Note that, by performing the search in the

following manner, we only construct the necessary section of GN .

Given the dominance query N � o � o′, we want to determine whether o is

reachable from o′ in GN . We do this by constructing the dominance query search

tree, G(o′), until either o is reached (and so the dominance query is true) or it

cannot be constructed further (and so the dominance query is false). This search

tree is constructed as follows. Start with o′ at the root of the tree and then repeat

the following procedure. Select some leaf o` ∈ G(o′) that has not previously been

considered and, for every improving flip, o∗` , of o` that is not already in G(o′), add

the edge o` → o∗` to the tree. We now say that o` has been considered. This step

is repeated until either o is reached (the dominance query is true) or all leaves

in G(o′) have been considered previously (the dominance query is false). Boutilier

et al. (2004a) first demonstrated how dominance queries can be answered via the

construction of a search tree. However, they allowed duplicate outcomes in their

search trees and so, in general, their proposed search trees are larger than ours.

The above method correctly answers the dominance query because, when G(o′)

is fully constructed, the outcomes contained in G(o′) are exactly those outcomes

reachable from o′ in GN . This is because, for any outcomes o1 and o2, GN contains

the edge o1 → o2 if and only if o2 is an improving flip of o1 (by the definition

of a preference graph). Thus, constructing G(o′) is equivalent to exploring all

paths in GN originating at o′ until either o is found or no new outcomes can be

found. Note that the fact we do not include outcome duplicates does not affect

these results. There are a fixed set of outcomes in GN reachable from any given

outcome, o∗. If we reach o∗ from o′ in two different ways, there is no reason to

include both instances of o∗ as they will both lead to the same set of outcomes.

Thus, as we are only in interested in whether o ∈ G(o′) or not (not in finding all

possible paths from o′ to o), there is no need to include duplicates and it is more

efficient to exclude them.
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Note that the improving flips of an outcome can be easily found by consulting

the CPTs ofN . Every improving flip of outcome o is obtained by improving exactly

one variable. Suppose we have X ∈ V . We can find the possible improving X flips

of o by consulting the o[Pa(X)] row of CPT(X) to find which X values would be

an improvement on o[X] (if any).

As we discussed in §2.2.3, several existing works improve dominance testing

efficiency by pruning the search tree, G(o′) (Allen et al., 2017a; Boutilier et al.,

2004a; Li et al., 2011a; Wilson, 2004b). In this section, we show how our outcome

ranks can be used to prune G(o′) in a new way, in order to improve dominance

testing efficiency.

In §2.3.2, we constructed an outcome rank that reflects all entailed relations,

that is, N � o1 � o2 =⇒ r(o1) > r(o2). However, this is not all we can say about

the difference between the ranks of o1 and o2; we can also identify a tight lower

bound on the rank difference, r(o1)− r(o2), as we show below.

Definition 2.16. Let N be a CP-net over variables V . For any X ∈ V , we define

the least rank improvement of X, denoted L(X), as

L(X) = AFX(dX + 1)
1

nX
−

∑
Y ∈Ch(X)

AFY (dY + 1)
nY − 1

nY
,

where, for any X ∈ V , nX = |Dom(X)| and Ch(X) = {Y ∈ V |X ∈ Pa(Y )}. We

call Ch(X) the children of X.

This value, L(X), is interpreted as a lower bound on the increase in rank

resulting from flipping X to a more preferred value. That is, L(X) corresponds to

the rank increase of the improving X flip α → β, L(X) = r(β) − r(α), where X

only improves by one preference position and every Y ∈ Ch(X) goes from being

the most preferred value to the least preferred value1. Note that for all other

variables, Z, the values taken by Z and Pa(Z) must be identical in α and β.

Therefore, the preference position of Z must be identical in α and β. As β must

be preferred to α (as it is an improving flip), we would expect L(X) to be a strictly

positive value. This is proven by the following lemma.

Lemma 2.17. Let N be a CP-net over variables V . For any X ∈ V , L(X) > 0.

Proof. See Appendix E.4.

1Note that such outcomes, α and β, may not always exist. We constructed L(X) based on

the ‘worst’ possible improving X flip, this does not occur in every CP-net for every variable
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Least rank improvement terms can be used to define a tight lower bound on the

difference in rank implied by entailment. That is, given N � o1 � o2, Theorem 2.8

tells us that r(o1) > r(o2), but we can use L(X) terms to define a tight, positive

lower bound for r(o1)− r(o2).

Corollary 2.18. Let N be a CP-net over variables V . Let o1 and o2 be associated

outcomes and D = {X ∈ V | o1[X] 6= o2[X]}. Then,

N � o1 � o2 =⇒ r(o1)− r(o2) ≥
∑
X∈D

L(X) > 0.

This is a tight lower bound on the rank difference implied by entailment.

Proof. See Appendix E.5.

Definition 2.19. Let N be a CP-net over variables V , and let o1 and o2 be

associated outcomes. Let D = {X ∈ V | o1[X] 6= o2[X]}. The least (entailed) rank

difference between o1 and o2, denoted LD(o1, o2), is defined as follows:

LD(o1, o2) =
∑
X∈D

L(X).

We now illustrate how Corollary 2.18 can be used to improve dominance testing

efficiency. Suppose we have a CP-net N , and we wish to answer the dominance

query ‘N � o � o′?’. There are three possibilities, either N � o � o′, N � o′ � o,

or N 2 o � o′∧N 2 o′ � o. In the latter case, we say o and o′ are incomparable and

denote this by N � o ./ o′. We can get at least halfway to answering our dominance

query by calculating the ranks of o and o′ and their least rank difference. As shown

in Corollary 2.18, if r(o′) + LD(o, o′) > r(o), then N 2 o � o′ and the dominance

query is false. If r(o) ≥ r(o′) + LD(o, o′), then, by Theorem 2.8 and Lemma 2.17,

N 2 o′ � o and so it remains to determine whether N � o � o′ or N � o ./ o′. To

answer this we would then construct the search tree, G(o′).

Remark. Note that getting ‘halfway’ to answering our dominance query is equiv-

alent to answering an ordering query. An ordering query asks for a consistent

ordering of a given pair outcomes, o and o′ (we assume o 6= o′). We can answer

ordering queries directly from outcome ranks or, as above, using LD terms also.

If r(o) > r(o′) then we know, by Theorem 2.8, that N 2 o′ � o. Thus, o � o′ is a

consistent ordering. If r(o) = r(o′), then, by Corollary 2.9, N � o ./ o′. Thus, we

have answered both associated dominance queries and we know that both o � o′

and o′ � o (and o′ ∼ o) are consistent orderings. As we can calculate rank values

in O(n4) time (see §2.3.5), this means we can also answer ordering queries in O(n4)

time. This test can also be performed directly from the rank induced consistent

ordering (see §2.3.3), %R, rather than from rank values.
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Alternatively, we can also use the LD terms as we have above. If

r(o) ≥ r(o′)+ LD(o, o′), then r(o) > r(o′) by Lemma 2.17 and so, as above, o � o′

is consistent. If r(o) < r(o′) + LD(o, o′), then N 2 o � o′ by Corollary 2.18.

Thus, o′ � o is a consistent ordering. As we show later in this section, calculat-

ing LD also takes O(n4) time. Thus, this method of answering ordering queries also

takes O(n4) time. It is worth performing this test in both direction as it can yield

more information. Suppose r(o) < r(o′) + LD(o, o′) and we conclude that o′ � o

is a consistent ordering. If we then find r(o′) < r(o) + LD(o, o′), we can conclude

similarly that o � o′ is also a consistent ordering. Thus, N � o ./ o′ and we have

now answered both of the associated dominance queries. Note that performing this

test in both directions again has complexity O(n4). In Appendix C.2, we discuss

how often this test is sufficient for answering dominance queries. Further, we show

that this test can be used to predict dominance queries with reasonable accuracy.

In general, more information can also be gained by using more than one test to

answer ordering queries. If one method results in the ordering o � o′ and another

in o′ � o, then N � o ./ o′. Thus, by using both tests, we have gained more

information than either could supply individually.

Boutilier et al. (2004a) give a method of answering ordering queries in linear

time, O(n). Thus, the above tests are not the most efficient methods unless the

rank values (and LD terms) are already known – in this case they become constant

time methods. However, as we discussed above, it can be more informative to

answer ordering queries in multiple distinct ways. Thus, these additional tests

may still be of use despite not being the most efficient choices.

As we mentioned above, the first rank test can be performed using %R rather

than rank values. In fact, given any consistent ordering, %C , the same test can

be used to answer ordering queries directly in constant time. Given any pair of

outcomes, we must have either o �C o′ or o ∼C o′. If o �C o′, then clearly o � o′

is a consistent order. If o ∼C o′, then we must have N � o ./ o′, as N � o1 � o2

implies o1 �C o2 (as %C consistent). Thus, both associated dominance queries are

answered and both o � o′ and o′ � o (and o′ ∼ o) are consistent orderings. As

CP-nets usually have multiple consistent orderings, this general method provides

several distinct tests for answering ordering queries. As we mentioned above, these

can be combined with each other, or with other methods of answering ordering

queries, in order to yield more information.

We propose that our outcome ranks can be used to improve dominance testing

efficiency by imposing an upper bound on the rank values of outcomes in G(o′).

This will allow us to prune the tree as it is constructed and, thus, improve the

efficiency of constructing G(o′) and answering the query. Ideally, our pruning tech-
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nique would be implemented alongside other existing methods of improving search

efficiency. In §2.4.2, we provide an experimental evaluation of the performance of

our rank pruning in comparison to existing methods as well as all possible combi-

nations of methods. However, here we illustrate how our pruning works with the

basic search method only.

Returning to the dominance query, N � o � o′?, suppose we have already

confirmed that r(o) ≥ r(o′) + LD(o, o′). We can answer this dominance query

by determining whether or not there exists an IFS from o′ to o. Note that if

o′ = o1, o2, ..., om = o is such an IFS, then we must have N � oi+1 � oi for

all i. Thus, by transitive closure, N � o � oi for all 1 ≤ i < m. Corollary 2.18

dictates that, if N � o � oi, then the rank difference between o and oi must be at

least LD(o, oi). Therefore, oi must satisfy r(o) ≥ r(oi)+LD(o, oi) for all 1 ≤ i < m;

this enforces an upper bound on the rank values of G(o′) – we only need to consider

outcomes o∗ with rank at most r(o) − LD(o, o∗). We determine whether such an

IFS exists by constructing (and pruning) G(o′) as follows:

For any outcome o∗, define F (o∗) = {o ∈ Ω | o∗ → o is an improving flip}.
That is, F (o∗) is the set of outcomes, o, that differ from o∗ on exactly one variable

and such that N � o � o∗. This set can be evaluated by inspecting the CPTs

of N , as discussed above. We start constructing G(o′) by setting o′ as the root

node. As o′ is the only leaf node, we then add an edge from o′ to all improving

flips of o′, F (o′). If o ∈ F (o′), then clearly there is an o′  o IFS (of length one)

and the answer to the dominance query is yes, N � o � o′. If o 6∈ F (o′), then we

cannot reach o from o′ in one improving flip. The next step is to add the improving

flips of the leaf nodes in order to determine whether o can be reached from o′ in

two improving flips. However, before looking at all outcomes that can be reached

from F (o′) by improving flips, there may be some search directions that can already

be dismissed using our upper bound on rank values for G(o′). For each o∗ ∈ F (o′),

evaluate r(o∗) + LD(o, o∗). Any outcome, o∗, such that r(o∗) + LD(o, o∗) > r(o)

is not on an o′  o IFS by the above argument. Therefore, it is unnecessary

to evaluate which outcomes can be reached by improving flips from o∗. That is,

we know that any paths originating at o∗ will not contain o and so we do not

need to explore in this direction. Any nodes (outcomes), o∗ ∈ F (o′), such that

r(o∗) + LD(o, o∗) > r(o) are pruned from G(o′).

We repeat this process at each new leaf node that we consider in the construc-

tion of G(o′). Let o` be any (not pruned) leaf node of G(o′) that has not been

considered previously. We first evaluate F (o`). If o ∈ F (o`), then our dominance

query is true. As G(o′) is constructed by starting at o′ and adding improving

flips, o` ∈ G(o′) implies that there is an IFS o′  o`. Thus, if o ∈ F (o`) (that is, o
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is an improving flip of o`), there is an IFS o′  o and so our dominance query is

true (N � o � o′). In particular, if o` is at depth i in the tree, there is an IFS of

length i+ 1 from o′  o.

If o is not in F (o`), then we add the improving flips that are not already inG(o′).

Let F (o`)\G(o′) denote the outcomes in F (o`) that are not in G(o′) already. Thus,

we add the edge o` → o∗` to G(o′) for every o∗` ∈ F (o`)\G(o′). However, as before,

if o∗` ∈ F (o`)\G(o′) has outcome rank such that r(o∗`) + LD(o, o∗`) > r(o), then o∗`
cannot lie on an IFS to o. Thus, any paths in G(o′) originating at o∗` will not reach o

and so we do not need to consider these directions. Hence, any such improving

flips of o` are pruned from the tree.

We continue to construct G(o′) like this, pruning any nodes with outcome rank

above our bound. This continues until either o is reached or all leaf nodes of G(o′)

have been considered. If we obtain o ∈ G(o′), then, as we argued above, this proves

that there is an IFS o′  o and so the dominance query is true (N � o � o′). As

we proved in our above arguments, any node that is pruned cannot lead to o.

Thus, in constructing G(o′), we explored every path in GN originating at o′ that

could plausibly lead to o. If all leaf nodes have been considered then no additional

outcomes can be reached by following these plausible paths. Thus, if o is not

present at this point, it cannot be reached from o′ in GN and so the dominance

query is false (N 2 o � o′).

The upper bound on ranks means that we can stop considering an improving

flipping sequence as soon we reach an outcome o∗, such that r(o∗) + LD(o, o∗)

exceeds r(o), rather than pursuing unsuccessful paths until they reach the optimal

outcome (where all IFS terminate). This makes our search more efficient. Consider

the strict, rank induced consistent ordering, �R, that we introduced in §2.3.3.

Visualise this ordering as a list of outcomes with the optimal outcome at the top

and the worst at the bottom. We know that o is above o′ as r(o) ≥ r(o′)+LD(o, o′),

so r(o) > r(o′) and, thus, o �R o′. All IFS invariably move up this list. Thus,

when searching for an o′  o IFS, we are searching for a sequence that starts at o′

and moves up the list to o. By applying our upper bound, we restrict the search

area to the o→ o′ segment of this list, as searching stops as soon as you reach any

outcome above o, as such outcomes have rank greater than or equal to r(o). In

fact, this upper bound will usually restrict the search further, as there are likely

to be outcomes between o and o′ that also violate the upper bound due to the LD

term. The maximum possible number of outcomes we can consider in this search

process is equal to the length of the o→ o′ list segment, though it will generally be

less. Thus, it will always terminate in finite time (it will also generally be quicker

for outcomes o and o′ that are closer in �R). This can also be seen by the fact
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that the search tree cannot contain duplicates and so, as there are finitely many

outcomes, the tree must be of finite size. Thus, there are only finitely many edges

to add and leaves to consider. Therefore, there can only be a finite number of

steps to our search process.

Note that we have not yet addressed how we select which leaf node to consider

next. We discuss the possible methods in §2.4.2, but for the following example we

simply prioritise by depth. That is, leaf nodes higher up in the tree are consid-

ered first. However, in practice, we will find that there is no choice of nodes in

Example 2.20.

Example 2.20. We now use the CP-net given in Example 1.2 to illustrate our

method of answering dominance queries with rank pruning.

Does N � āb¯̄cd � ābc̄d̄ hold? First, we evaluate the ranks of these two out-

comes, which can be done by consulting W , given in Figure 2.1, or using Algo-

rithm 1:

r(āb¯̄cd) =
121

24
, r(ābc̄d̄) =

114

24
.

We must also calculate LD(āb¯̄cd, ābc̄d̄). We calculate L(X) for all X ∈ V :

L(A) =
7

6
, L(B) =

7

6
, L(C) =

1

8
, L(D) =

1

24
.

Then, we calculate LD(āb¯̄cd, ābc̄d̄):

LD(āb¯̄cd, ābc̄d̄) =
∑

X∈{C,D}

L(X) =
1

6
.

As r(āb¯̄cd) > r(ābc̄d̄) + LD(āb¯̄cd, ābc̄d̄), to answer the dominance query we will

need to determine whether there exists an IFS from ābc̄d̄ to āb¯̄cd by construct-

ing G(ābc̄d̄).

First we make ābc̄d̄ the root of the tree. As it is the only leaf node, we start

by adding the improving flips, F (ābc̄d̄), to the tree. From the CPTs, we can see

that only A and C can be changed into a more preferred position from ābc̄d̄. So

we have F (ābc̄d̄) = {abc̄d̄, ābcd̄, āb¯̄cd̄}. As āb¯̄cd 6∈ F (ābcd), we cannot reach āb¯̄cd

from ābc̄d̄ in one improving flip and so we must continue to construct G(ābc̄d̄).

Thus, we add an edge ābc̄d̄ → o for each o ∈ F (ābc̄d̄). We now calculate

r(o) + LD(āb¯̄cd, o) for each o ∈ F (ābc̄d̄). Again, we use W or Algorithm 1 to

calculate the ranks and we can use the L(X) values from above to calculate the LD

terms.
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r(abc̄d̄) + LD(āb¯̄cd, abc̄d̄) =
154

24
+

(
7

6
+

1

8
+

1

24

)
=

186

24
,

r(ābcd̄) + LD(āb¯̄cd, ābcd̄) =
117

24
+

(
1

8
+

1

24

)
=

121

24
,

r(āb¯̄cd̄) + LD(āb¯̄cd, āb¯̄cd̄) =
122

24
+

(
1

24

)
=

123

24
.

As abc̄d̄ and āb¯̄cd̄ both satisfy r(o) + LD(āb¯̄cd, o) > r(āb¯̄cd), we do not need to

pursue these search directions further (as they will not lie on an IFS from ābc̄d̄

to āb¯̄cd). Thus, these nodes are pruned from G(ābc̄d̄).

We again have only one leaf node in the tree (as the others have been

pruned), ābcd̄. Thus, we next add the improving flips of ābcd̄. This will show

us whether āb¯̄cd can be reached from ābc̄d̄ in two improving flips. By inspecting

the CPTs, we find F (ābcd̄) = {abcd̄, āb¯̄cd̄, ābcd}. As āb¯̄cd is not one of these

flips, we have not yet reached āb¯̄cd and so we must continue to construct G(ābc̄d̄).

As āb¯̄cd̄ is already present in the tree, we do not add it again. We add the

edges ābcd̄→ abcd̄ and ābcd̄→ ābcd only. Evaluate the ranks and LD terms of the

new nodes:

r(abcd̄) + LD(āb¯̄cd, abcd̄) =
157

24
+

(
7

6
+

1

8
+

1

24

)
=

189

24
,

r(ābcd) + LD(āb¯̄cd, ābcd) =
118

24
+

(
1

8

)
=

121

24
.

As r(abcd̄) + LD(āb¯̄cd, abcd̄) > r(āb¯̄cd), we do not need to continue searching

from abcd̄ and can prune the node from the tree.

Therefore, there is again only one possible node to consider, ābcd. We start by

evaluating the improving flips, F (ābcd) = {abcd, āb¯̄cd}.
We have āb¯̄cd ∈ F (ābcd), thus āb¯̄cd is in our search tree and is, therefore,

reachable from ābc̄d̄ by improving flips. In particular, there is an IFS from ābc̄d̄

to āb¯̄cd of length three (as ābcd is at depth two). Thus, our dominance query is

true, N � āb¯̄cd � ābc̄d̄ holds. The search tree we have constructed is given in

Figure 2.4.

For efficiency, we calculate all L(X) terms first, then calculate LD terms as

necessary from these values. We start by calculating the AFY and dY terms for

every Y ∈ V . Algorithm 6 can calculate any ancestor set in O(n3) time, from

which AFY can be calculated in time linear in the size of the ancestor set (see

Algorithm 1). Thus, AFY can be calculated from Anc(Y ) in less than O(n) time.

Algorithm 7 can calculate any dY term in O(n3) time. Thus, we can calculate

all AFY and dY terms for each Y ∈ V in O(n(n3 + n+ n3)) = O(n4) time. To cal-

culate L(X) requires determining the Ch(X) set and then L(X) can be calculated
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Figure 2.4: Pruned Dominance Query Search Tree

in linear time using the AFY and dY terms and domain sizes. The latter requires

linear time, O(n), as X must have ≤ n − 1 children so |{X} ∪ Ch(X)| ≤ n. The

children of X can also be determined in linear time, O(n), from the structure of N

(or the equivalent adjacency matrix). Thus, given the AFY and dY terms, it takes

O(n+n) = O(n) time to calculate L(X). Thus, to calculate the AFY and dY terms

and then every L(X) term, it takes O(n4 + n(n)) = O(n4) time. Given o and o′,

we can determine HD(o, o′) in O(n) time. Then, given we have all the L(X) terms

already, we can calculate LD(o, o′) in time linear in HD(o, o′) ≤ n. Thus, we can

find each LD(o, o′) in O(n) time given all L(X) terms, or in O(n4 + n) = O(n4)

time if we had not calculated the L(X) terms previously. As ranks are calcu-

lated in O(n4) time also, this means we can check our pruning condition, ‘is

r(o) ≥ r(o′) + LD(o, o′)?’, in O(n4 + n4 + n4 + 1) = O(n4) time.

We have now provided a new method for pruning the search tree in order

to improve dominance testing efficiency. This method can be applied to binary

or multivalued CP-nets (and CP-nets with indifference, as we discuss in §2.5)

and preserves search completeness in both cases, unlike least variable flipping by

Boutilier et al. (2004a) or depth-bounded search by Allen et al. (2017a).

Remark. In this section, we have shown how outcome ranks can be used to im-

prove dominance testing efficiency by pruning the associated search tree. Given

any consistent ordering, %C , we can define an analogous method for prune domi-

nance query search trees.
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Let %C be a consistent ordering for N and let o and o′ be two outcomes.

Suppose we want to answer the dominance query ‘N � o � o′?’. If there is an

IFS o′  o, say o′ = o1, o2, ..., om = o, then N � oi+1 � oi for all i. Thus, as %C is a

consistent ordering, oi+1 �C oi for all i. That is om �C om−1 �C · · · �C o1. Recall

that om = o and consider o∗ 6= o. If o∗ lies on an IFS terminating at o, then o �C o∗.
Thus, by the same reasoning as we used previously, when constructing the search

tree, G(o′), we can prune any nodes that do not come after o in %C (that is,

any o∗ such that o∗ �C o or o∗ ∼C o). Using this pruning method for %R (the rank

induced ordering) would be equivalent to pruning based on relative rank values

(no LD terms) – using the Theorem 2.8 result.

We can also implement a stronger pruning condition that is analogous to us-

ing LD terms (rather than just relative rank values). Suppose o∗ 6= o and there

is an IFS o∗  o, o∗ = o1, o2, ..., om = o. Suppose that o∗ and o differ on the

value of k variables, HD(o∗, o) = k. As this IFS changes o∗ to o, each of these k

variables must change value at least once. Thus, there must be at least k flips in

this IFS and so m ≥ k + 1. As we discussed above, oi+1 �C oi, so oi+1 is on a

higher level of %C than oi (see Appendix A, page 243, for the definition of ‘level’

here). Thus, as m− 1 ≥ k, o must be at least k levels above o∗. If o∗ is in G(o′),

we only want to pursue this direction if o can be reached from o∗ by improving

flips, that is, there is an IFS o∗  o. Thus, by the same arguments as above, we

can prune any nodes, o∗, in G(o′) where o is not at least HD(o∗, o) levels above o∗

in %C . This is stronger than the above condition as we previously pruned any

nodes that were not at least 1 level below o and HD(o, o∗) ≥ 1. This pruning is

analogous to pruning any nodes that do not have rank at least LD less than r(o).

Note, however, that using rank pruning as detailed in this section (with ranks and

LD terms) is not equivalent to using this method with �R.

This pruning condition can be checked in linear time given %C . Further, as

most CP-nets have multiple consistent orderings, this general method gives several

distinct pruning conditions. These methods can be combined with each other, rank

pruning, or any of the existing pruning conditions (see §2.4.2 for an explanation

of how pruning methods are combined) to create a more effective pruning schema.

The only point at which the above process consults the CP-net, N , is to deter-

mine the improving flips when constructing G(o′). However, this is not necessary.

An improving flip of o is an outcome that can be obtained from o by improving

the value of exactly one variable. If HD(o, o′) = 1, then we must have either

N � o � o′ or N � o′ � o, as o and o′ must be connected by an edge in GN

(by the definition of preference graph). Respectively, we have either o �C o′

or o′ �C o, as %C is consistent. The improving flips of o are those outcomes, o′.
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such that HD(o, o′) and N � o′ � o (otherwise they are worsening flips). Thus,

F (o) = {o′ ∈ Ω|HD(o, o′) = 1 ∧ o′ �C o}. Hence, we can find the improving flips

directly from %C and we can answer dominance queries from %C alone. This is not

surprising as all CP-net information is encoded by consistent orderings, as shown

by Theorem 2.12.

Similarly, we can find improving flips using rank values alone. If HD(o, o′) = 1,

then either N � o � o′ or N � o′ � o and so r(o) > r(o′) or r(o′) > r(o),

respectively (by Theorem 2.8). Thus, F (o) = {o′ ∈ Ω|HD(o, o′) = 1∧r(o′) > r(o)}.
Thus, as the improving flips can be found directly from rank values, then we can

also answer dominance queries (by constructing and pruning G(o′)) directly from

rank and L(X) values. This is also not surprising as ranks contain all CP-net

preference information by Corollary 2.13.

The latter, stronger %C pruning condition also provides another method for

answer ordering queries directly from %C in constant time. Let HD(o, o′) = k

and o 6= o′ (so k > 0). If o is less than k levels above o′ in %C , then we know there

is no o′  o IFS and so N 2 o � o′. Thus, o′ � o is a consistent ordering. If o

is at least k levels above o′, then, as k > 0, o is on a higher level than o′ in %C

and so o �C o′. Thus, o � o′ is a consistent order (as %C is a consistent ordering).

This method can also provide more information if considered in both directions

(as we did with a previous rank test for ordering queries). Suppose that o is less

than k levels above o′ in %C and we conclude that o′ � o is consistent. If o′ is also

not at least k levels above o, then by the same argument, o � o′ is also consistent.

In this case, we now know that N � o ./ o′ and, thus, both associated dominance

queries have been answered. Hence, we can gain more information by considering

both directions. This test is analogous to the rank test for ordering queries that

utilises LD terms, discussed previously. This test can, in some cases, be sufficient

to answer a given dominance query. Thus, we would check this condition (or the

previous %C based method for ordering queries) before commencing the above

search (and pruning) procedures. This is analogous to checking the relative rank

(and LD) values prior to commencing the search tree construction when utilising

rank pruning.

Previously, we saw that combining distinct methods of answering ordering

queries can yield more information. This general method provides a different

test for each consistent ordering, %C , which can be combined with each other or

with any other method of answering ordering queries.
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2.4.2 Experimental Evaluation and Comparison of Rank

Pruning

In §2.4.1, we showed how our outcome ranks can be used to make dominance

testing more efficient by pruning the search tree. In this section, we evaluate

the performance of our rank pruning in comparison with the existing pruning

methods. We also examine the performance of all possible combinations of these

methods, in order to determine the most effective pruning schema for efficient

dominance testing. We first give the details of our experiments, then analyse the

performance results of the different dominance testing methods and combinations.

These results show our rank pruning to be the best of the individual methods, and

the most important to include when considering combinations of techniques.

Experiment

There are many existing methods to improve dominance testing efficiency, as we re-

viewed in §2.2.3. We have chosen to compare rank pruning only to other methods

for pruning the search tree that preserve search completeness (otherwise, domi-

nance queries may be answered incorrectly). In particular, we are comparing our

rank pruning to penalty pruning by Li et al. (2011a) and suffix fixing by Boutilier

et al. (2004a), but not prefix fixing by Wilson (2004b) (due to its symmetry with

suffix fixing, we may expect prefix fixing to perform similarly). We have excluded

from our comparisons least variable flipping by Boutilier et al. (2004a) and the

depth bound on flipping sequences proposed by Allen et al. (2017a), as they do

not preserve search completeness. We also do not compare the model checking

method introduced by Santhanam et al. (2010), the composition of preference ta-

bles introduced by Sun et al. (2017), or the CP-net preprocessing method, forward

pruning, by Boutilier et al. (2004a). Forward pruning reduces the original problem,

rather than providing an efficient search technique. The resulting, smaller, dom-

inance query remains to be answered by some other technique. Forward pruning

and prefix fixing (combined with suffix fixing) are considered in Chapter 3, where

we introduce a new method of reducing the dominance query size via CP-net

preprocessing.

In §2.4.1, we showed that our rank pruning condition can be checked in O(n4)

time. Comparatively, the suffix fixing pruning condition can be checked in O(n)

time and the penalty pruning condition can be checked in polynomial (in n) time.

The efficiency of the dominance testing process is determined both by these com-

plexities and the efficacy of the pruning methods.
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It is simple to combine any of the three pruning measures we are considering.

Suppose we wish to answer the dominance query N � o � o′, utilising the combi-

nation of a set of pruning measures, Γ. We build G(o′) as usual. When considering

the outcome, o∗, let F (o∗) denote the set of all improving flips of o∗, as in §2.4.1.

As usual, we prune any elements of F (o∗) that are already present in G(o′). Then,

for each pruning measure, γ ∈ Γ, in turn, we prune all elements remaining in F (o∗)

that satisfy the pruning condition of γ. Any improving flips that have not been

pruned from F (o∗) are added to G(o′) in the normal manner. We continue until o

is reached, that is, the dominance query is true, or the pruned G(o′) is complete

(that is, all not-pruned leaves have been considered) and, thus, the dominance

query is false.

In our experiment, we evaluated the performance of each pruning measure

individually, all pairwise combinations, and all three methods combined. Thus, we

compare the performance of seven different pruning schemas. However, in order

for these search methods to be fully defined, we must declare how we select the

next leaf for consideration when constructing G(o′). Different methods of leaf

prioritisation have been suggested previously by Boutilier et al. (2004a) (based

upon least variable flipping) and Li et al. (2011a) (based on the evaluation function

value). One can similarly propose prioritisation heuristics based upon rank values.

One could either prioritise the leaf, o∗, with maximal r(o∗) or r(o∗) + LD(o∗, o)

value. We will refer to these as rank prioritisation and rank + diff. prioritisation,

respectively. The reasoning behind both heuristics is that such directions in G(o′)

will quickly either reach o or terminate (that is, when all nodes that o∗ leads to are

pruned or have been previously considered). Thus, either the query is answered

efficiently or the direction can be efficiently ruled out.

No analysis has been done previously on the effect of the leaf prioritisation

choice. Thus, we have varied the heuristics used in our experiments. However, for

the sake of efficiency, we have only allowed heuristics that do not require further

calculations. Both rank prioritisations require the rank (and LD) values of the

leaves, so they are only used by pruning schemas that include rank pruning. The

prioritisation heuristic by Li et al. (2011a) (penalty prioritisation) requires the

evaluation function value of each leaf and is, therefore, only used by schemas

that include penalty pruning. We do not consider pruning based on least variable

flipping in our experiments (as it does not preserve completeness), so we do not

include the associated prioritisation heuristic by Boutilier et al. (2004a) either.

When using suffix fixing only (the only pruning schema that contains neither rank

nor penalty pruning), we use the trivial minimal depth prioritisation of leaves, as

we did in Example 2.20.
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We measured the performance of the dominance testing functions in two ways.

First, we looked at outcomes traversed, this is the number of outcomes added

to the search tree before an answer to the dominance query can be determined

(this count does not include improving flips that are pruned). This is similar

to the measure used by Li et al. (2011a) in their pruning method comparisons

(where they compared penalty pruning combined with suffix fixing to suffix fixing

and least variable flipping). Outcomes traversed provides us with a theoretical

measure of how effective the different methods are at pruning the search tree. It

reflects the number of steps the different algorithms have to go through before the

queries can be answered, thus showing how efficient the different methods are in

a theoretical sense. This measure has the advantage of being independent of the

specific code used and the order in which pruning conditions in combinations are

considered.

Note that it is possible for the number of outcomes traversed to be zero, that is,

the dominance query may be answered without starting to construct a search tree.

This can happen in three different ways for the dominance query N � o � o; first,

if o = o′, then this is trivially false. Second, if (one of) the pruning measure(s) used

is penalty pruning, then, if f(o′) < 0, we can determine the dominance query to

be false (Li et al., 2011a). Finally, if (one of) the pruning measure(s) used is rank

pruning, then, if r(o)−r(o′) < LD(o, o′), we can determine the dominance query to

be false, by Corollary 2.18. As these conditions are all assessed before starting to

construct the search tree, they result in zero outcomes traversed. In Appendix C.2,

we look at the proportion of queries that the different conditions can immediately

determine to be false (that is, those queries that have zero outcomes traversed). By

evaluating this proportion in comparison to the total proportion of false queries,

we can see how accurately these initial conditions predict the dominance query

outcome.

Our second measure of performance is the time elapsed (in seconds) while the

dominance testing algorithm answers the query (this was not measured in the

performance experiments by Li et al., 2011a). Whilst this measure is dependent

upon the exact code used, we have tried to keep the code for the different functions

as uniform as possible, so that differences in performance are due to the methods

rather than the code. From time elapsed, we can identify which method will be

the most efficient in practice. By looking at both performance measures, we can

see the tradeoff between how effective a pruning method is theoretically and the

time cost due to the complexity of implementation. Ultimately, we will see if the

theoretical benefit is worth the cost in complexity by looking at the time elapsed

results.

71



2. Outcome Rank Pruning for Efficient Dominance Testing

The experiments we ran to evaluate performance were as follows. For given n

(number of CP-net variables) and dM (maximum domain size of the variables)

values, 100 CP-nets were randomly generated. Each of these CP-nets has an

acyclic structure over n variables, each variable has a domain size of at most dM

(and at least two), and all parent-child relations are valid (that is, if there is an

edge X → Y in the CP-net structure, it is possible to change the preference over Y

by altering the value of X only). Full details of the CP-net random generation

process is given in Appendix C.1. For each CP-net, 10 dominance queries were

randomly generated by randomly selecting a pair of outcomes. Each of these 1000

dominance queries were answered by all seven dominance testing functions (with

all possible leaf prioritisation heuristics) and the outcomes traversed and time

elapsed were recorded. The average of these results over the 1000 queries are the

values plotted for each (n, dM) pair in the following graphs.

This experiment was run in the binary case, dM = 2, for n = 3, 4, ..., 19. For

the multivalued variable case, we allowed domain size to be up to five. We ran the

experiments in this case (dM = 5) for n = 3, 4, ..., 10.

Results

Note that the results presented in this section (and Appendices C.2 and C.3) differ

from those presented in our journal paper, Laing et al. (2019). Firstly, the original

functions have been translated from R to C++. Secondly, larger values of n are

tested in these experiments (made possible by the translation to C++).

Each of the seven functions were tested with all possible leaf prioritisation

heuristics (as described in the previous experiment section). The full performance

results are given in Appendix C.3. The graphs in this section show only the func-

tions using their respective optimal leaf prioritisation heuristics. For suffix fixing,

penalty pruning, and their combination, the optimal prioritisation methods are

minimal depth prioritisation, penalty prioritisation, and penalty prioritisation, re-

spectively (note that there is only one choice of prioritisation heuristic in these

cases). For all other pruning schemas (that is, all pruning schemas that include

rank pruning), the optimal prioritisation heuristic is rank prioritisation. The re-

sults in Appendix C.3 show that rank prioritisation performs best in almost all

cases, though, in general, changing the leaf prioritisation method does not have a

significant effect on performance. However, the effect of the prioritisation method

can be sufficient, in some cases, to affect which pruning method performs better

on average.
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For each of the seven dominance testing methods (using their optimal leaf

prioritisation method), we have four sets of data – outcomes traversed and time

elapsed data for both the binary and multivalued CP-net cases. These four data

sets are given in Figures 2.5 – 2.8. In each of Figures 2.5 – 2.8, Figure (a) shows

the performance of the three pruning measures when used individually. To keep

this plot legible, a logarithmic scale is used. Figure (b) shows the performance of

all seven possible combinations of the three pruning measures.

In each figure, several±SE (standard error) intervals are illustrated by a shaded

region in the corresponding function’s colour. The standard error interval depicts

where we expect the true mean performance of the function to lie. The uncertainty

represented by this interval comes from the fact that the complexity of a dominance

query, regardless of the pruning technique used, is dependent upon both the CP-net

and the outcomes of interest; CP-nets with denser structures, or more convoluted

preference graphs, are more likely to produce dominance queries that take longer to

answer. Once a CP-net has been chosen, the position of the outcomes of interest

within the preference graph further impacts how difficult the dominance query

is to answer. The efficacy of the different pruning methods are also likely to

vary between queries. As our CP-nets and queries were randomly generated, it

is unsurprising that each function shows variation in performance. However, as

all functions were tested on the same set of dominance queries, our results should

accurately portray their relative performance on average.

In the multivalued case, the domain sizes were allowed to vary between two and

five. Larger domain sizes will produce harder dominance queries in general, so we

would expect this extra uncertainty to result in further variation within the results.

Moreover, CP-nets with larger domain sizes have larger preference graphs, so there

will also be more variation in dominance queries of the same CP-net. Hence, in

the multivalued case, we expect more uncertainty in the average performance of

the functions and this is reflected by the wider error intervals in the multivalued

case plots (Figures 2.7 and 2.8).

From Figures 2.5(b) and 2.7(b), we can see that adding extra pruning condi-

tions always improves the theoretical performance of a method (that is, it results in

fewer outcomes traversed on average). This holds both when optimal prioritisation

methods are used and whenever the prioritisation method is kept fixed and addi-

tional pruning measures are added. This shows that all three pruning measures

are distinct, and that no pruning measure is subsumed by any other. Further, this

shows us that each technique prunes branches that are not affected by either of

the other two methods. It is not obvious from the way in which they are formu-

lated that the three pruning measures are distinct in this manner. Moreover, this
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has not been previously confirmed by existing literature. From this result, it is

unsurprising that the single best performing function, in the theoretical sense, is

that which uses all three pruning measures.

However, finding the best pruning schema is not as simple as applying as many

pruning conditions as possible. As we are aware that additional pruning methods

come at the cost of additional complexity, we would naturally question whether

these improvements are large enough to warrant the additional cost. Looking

at the time elapsed results (Figures 2.6(b) and 2.8(b)), we can see that some of

these ‘improvements’ actually increase the average time taken, so the theoretical

benefit is not worth the complexity cost. In particular, we find that a pairwise

combination is actually the most efficient dominance testing method – faster than

using all three pruning methods.

Consider the Figure (a) plots, which show the performance of the three pruning

methods when used individually. It is clear in all four cases that rank pruning is the

most effective and most efficient method of the three by a large margin. Further,

the performance results of rank pruning (outcomes traversed or time elapsed) show

a slower rate of growth than the others as the number of variables (n) increases.

Thus, if we wanted to use a single pruning method, rank pruning is the best choice

by a large margin.

Now consider the Figure (b) plots, these show the performance of all possi-

ble combinations of the different pruning methods. In all four of these figures,

the black, blue, and orange lines (suffix fixing, penalty pruning, and their com-

bination), perform distinctly worse than the rest as n increases. The remaining

functions perform notably better and show a slower rate of growth with n. These

more effective and efficient pruning methods are exactly those combinations that

include rank pruning. Hence, we can see a clear distinction in performance be-

tween those functions that do and do not apply rank pruning. From this, we may

conclude that rank pruning is a necessary ingredient for a good pruning schema.

In Figure (b), the red shaded area shows the standard error interval for rank

pruning, the best performing of the individual pruning measures. Thus, only func-

tions that lie below this area may be considered significantly better than using

rank pruning alone. In both Figures 2.5(b) and 2.7(b), adding penalty pruning

to rank pruning makes little improvement to the average number of outcomes

traversed. This suggests that there are few branches pruned by penalty pruning

that are not already pruned by rank pruning. This would account for why adding

penalty pruning to rank pruning actually increases the time elapsed. This is be-

cause the additional complexity of checking the penalty condition outweighs the

minor theoretical benefit.
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The combination of rank pruning with suffix fixing and the combination of

all three measures both perform significantly better than rank pruning alone, in

terms of outcomes traversed (Figures 2.5(b) and 2.7(b)). This is probably due

to less overlap in the branches pruned by rank pruning and suffix fixing. The

two combinations show very similar performances in terms of outcomes traversed

(both in the binary and multivalued cases), though the function using all three

methods does slightly better in this theoretical case, as expected. In terms of

time elapsed (Figures 2.6(b) and 2.8(b)), the combination of all three performs

similarly to rank pruning alone, whereas rank pruning and suffix fixing is notably

faster. As using all three techniques takes a similar amount of time to rank pruning

alone, this shows that the associated cost of implementing the additional pruning

measures is not worth the theoretical benefit. The fact that the rank pruning and

suffix fixing combination is notably faster shows, again, that the slight theoretical

improvement provided by penalty pruning is not worth the associated complexity

cost. However, the improvement of using suffix is worth the associated cost –

this is perhaps unsurprising as we can see from the outcomes traversed that suffix

fixing provides a large theoretical improvement and it is a simple (linear) pruning

condition to check.

From the above results, we have seen that our rank pruning is the most effective

and efficient of the individual methods considered. Further, from the clear distinc-

tion between functions that do and do not utilise rank pruning, we can see that

rank pruning constitutes a valuable contribution to the existing methods when we

allow combinations. Considering all possible combinations of the pruning meth-

ods, the above results suggest that the most efficient combination for dominance

testing is rank pruning and suffix fixing.

2.5 Outcome Ranks for CP-nets with Indiffer-

ence

In this section, we provide a more general form of our outcome rank formula that

allows for indifference statements within the CP-net’s CPTs. These generalised

ranks again reflect all entailed relations and, therefore, allow all of our previous

methods and results to be applied to CP-nets that express indifference.

We do not assume in this section that the CPT(X) preference ordering over

Dom(X), given the values taken by Pa(X), is a strict ordering (Boutilier et al.,

2004a). Consider the CP-net given in Example 1.2. We would now permit CPT(C)

to express that, if it is a short flight in term time, then the user prefers to fly
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economy, but is indifferent between first and business class. This would make

the CPT(C) entry that corresponds to AB = ab be c � c̄ ∼ ¯̄c. This kind of

ceteris paribus indifference statement is natural and likely to be commonplace

when looking at real world systems (Allen, 2013). In particular, for problems with

a large number of outcomes, there are likely to be instances of user indifference

between certain outcome pairs. Thus, being able to deal with such indifference

expands the applications of our results. Furthermore, if one were comfortable

modelling unknown preferences as indifference, our results could also be applied

to partially specified CP-nets.

Boutilier et al. (2004a) show that the presence of such indifference allows CP-

nets with acyclic structures to be inconsistent (that is, they have no consistent

ordering as they entail both o1 � o2 and o2 � o1 for some outcome pair). However,

this can be avoided if one assumes the following condition (Boutilier et al., 2004a).

Suppose we have two variables, X, Y ∈ V , such that X is a parent of Y . Let

PX = Pa(X) and P ′Y = Pa(Y )\{X}. Let u1 ∈ Dom(PX) and suppose that the

user is indifferent between x and x′ given PX = u1 (where x, x′ ∈ Dom(X)).

Let W = PX ∩P ′Y and let u2 ∈ Dom(P ′Y ) be such that u1[W ] = u2[W ]. The user’s

preference over Y must be the same under both Pa(Y ) = u2x and Pa(Y ) = u2x
′.

More simply, changing between indifferent parental assignments cannot affect the

preference over the child. To ensure consistency, we assume here that all CP-nets

with indifference statements obey this condition.

Recall from §2.3.2, that the rank of an outcome, o, is the sum of the weights

attached to each variable assignment in o. These weights were constructed to

approximate the utility of each variable choice in o. If o[X] = x and o[Pa(X)] = u,

then the weight attached to the assignment X = x is:

AFX(dX + 1)PP (X = x | Pa(X) = u).

The justification for the presence of each of these factors remains valid for CP-

nets with indifference statements. Thus, we do not need to create a new weighting

convention, we simply need to generalize this formula so that it is defined in

the case of indifference. The AFX and dX terms depend only on the CP-net

structure, not on the CPTs, and thus can remain as they were defined previously.

The PP (X = x | Pa(X) = u) factor, as defined in §2.3.2, needs to be generalised

to permit indifference statements.

Recall that PP (X = x | Pa(X) = u) is a factor on the (0,1] scale, indicating to

what degree the user prefers this choice of value for X (given Pa(X) = u). We re-

define PP (X = x | Pa(X) = u) more generally, while retaining this interpretation,

as follows.
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Definition 2.21. Let N be a CP-net over variables V , which may have indiffer-

ences in its CPTs. Let X ∈ V and u ∈ Dom(Pa(X)). Suppose the row of CPT(X)

that corresponds to Pa(X) = u has ` indifferences. We define the generalised pref-

erence position of the assignment X = x (given Pa(X) = u) as follows:

PP (X = x | Pa(X) = u) =
(nX − `)− k + 1

nX − `
,

where k is the position of preference of the choice of X = x given Pa(X) = u.

Note that we consider all values of X to which the user is pairwise indifferent to

be in the same preference position. That is, there are nX − ` possible positions

of preference (1, 2, ..., nX − `). Here, k = 1 if x is (one of) the most preferred

value(s) X can take, k = 2 if x is (one of) the value(s) of X in the 2nd most

preferred position, and so on.

Example 2.22. Let N be a CP-net over variables V . Let X ∈ V be some variable

with the following row in its CPT:

Pa(X) = u x1 � x2 ∼ x3 ∼ x4 � x5 � x6 ∼ x7 � x8

Then, using the generalised preference position definition above, we have the fol-

lowing PP values:

PP (X = x1 | Pa(X) = u) =
(8− 3)− 1 + 1

8− 3
=

5

5
,

PP (X = x2 | Pa(X) = u) =
(8− 3)− 2 + 1

8− 3
=

4

5
,

PP (X = x3 | Pa(X) = u) =
4

5
, PP (X = x4 | Pa(X) = u) =

4

5
,

PP (X = x5 | Pa(X) = u) =
3

5
, PP (X = x6 | Pa(X) = u) =

2

5
,

PP (X = x7 | Pa(X) = u) =
2

5
, PP (X = x8 | Pa(X) = u) =

1

5
.

Notice that this generalised definition of PP (X = x | Pa(X) = u) is a value

in {1/(nX − `), 2/(nX − `), ..., (nX − `− 1)/(nX − `), 1}. Further, this can still be

interpreted as a factor on the (0,1] scale indicating to what degree the user prefers

this choice of value for X (given Pa(X) = u).

Now that all of the terms in our previous weight formula are defined in the case

of N having indifference statements, we can define outcome ranks for CP-nets with

indifference.

Definition 2.23. Let N be a CP-net over variables V , which may have indifference

statements in its CPTs. Let o be an associated outcome. Then, the (generalised)
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rank of o, rG(o), is defined as

rG(o) =
∑
X∈V

AFX(dX + 1)PP (X = o[X] | Pa(X) = o[Pa(X)]),

where the PP terms are generalised preference positions.

In the special case where there are zero indifference statements, the gener-

alised PP terms clearly simplify to the original definition, given in §2.3.2. Thus, in

this special case, the generalised outcome ranks simplify to the original outcome

ranks given by Definition 2.5 (for multivalued CP-nets in which we assumed no

indifference statements).

Remark. We have could have used an event tree representation to define gener-

alised outcome ranks (as we did for outcome ranks in §2.3) by generalising the

notion of event tree representation to include indifference. This generalised T (N)

would have the same structure as in §2.3.1, but use the k values from Defini-

tion 2.21 in order to label the branches. For example, let N be the CP-net in

Example 2.22. At the point where T (N) branches into the possible values of X,

if Pa(X) were previously assigned the values in u, then the X branches would

be labelled as follows. The branch corresponding to x1 would be labelled ‘1st’.

The x2, x3, and x4 branches would all be labelled ‘2nd’. The x5 branch would be

labelled ‘3rd’, and so on. We again have that N and T (N) are equivalent by an ar-

gument almost identical to the proof of Proposition 2.2. The weighted event tree,

W (N), would be defined in the same way as in §2.3.2, now using the generalised

definition of PP . The generalised outcome ranks would be defined analogously to

the original outcome ranks (Definition 2.5), as the sum of path weights in W (N).

Further, W (N) would be equivalent to both T (N) and N , by almost identical

reasoning to that given in §2.3.2.

All of our applications of outcome ranks in §2.3.3 and §2.3.4 rely solely on the

fact that the ranks reflect all entailed preferences (Theorem 2.8). Naturally, we

also want this property to hold for our generalised outcome ranks and the following

theorem shows that it does.

Theorem 2.24. Let N be a CP-net over a set of variables V , which may have

indifference statements in its CPTs. Let o and o′ be associated outcomes. Then,

N � o � o′ =⇒ rG(o) > rG(o′)

and N � o ∼ o′ =⇒ rG(o) = rG(o′).

Proof. See Appendix E.6.
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By this result, the (not necessarily strict) ordering of the outcomes, %G, in-

duced by the generalised ranks, rG, is again a consistent ordering. That is,

N � o � o′ =⇒ o �G o′ and N � o ∼ o′ =⇒ o ∼G o′. Thus, using the

generalised outcome ranks, we can obtain a (not necessarily strict) consistent or-

dering for any N , which may have indifference statements, using exactly the same

method as given in §2.3.3. Similarly, we can obtain a (not necessarily strict) con-

sistent ordering for any subset of the outcomes or for a CP-net with additional

plausibility constraints using the methods given in §2.3.3 and §2.3.4 (ignoring any

instruction to arbitrarily order outcomes with equal ranks), now using the gen-

eralised ranks, rG, given by Definition 2.23. These orderings can be proven to

be consistent in the same way as the corresponding orderings in Section §2.3.3

and §2.3.4.

Boutilier et al. (2004a) claim that their methods for obtaining a consistent

ordering of (any subset of) the outcomes also apply to CP-nets with indifference.

However, the complexity of ordering queries in this case is unknown (though they

conjecture that it is hard) and, therefore, so is the complexity of their method for

consistently ordering a subset of the outcomes. In contrast, if one uses our method,

the complexity of consistently ordering any subset of the outcomes of size k, in

the case of indifference, is still O(n4k + k2). This is a result of the fact that we

can compute rG(o) in the same time complexity as r(o), as we show below.

Remark. Ordering queries ask, given an outcome pair, o and o′, to find a con-

sistent ordering. In the case of no indifference, this is equivalent to proving at

least one of N 2 o � o′ or N 2 o′ � o. In the case of indifference, one must

prove at least two of N 2 o � o′, N 2 o′ � o, and N 2 o ∼ o′. Boutilier et al.

(2004a) conjecture that ordering queries are hard in the case of indifference. If

a CP-net has indifference statements, then certain outcome pairs are indifferent

and neither o � o′ nor o′ � o is a consistent ordering. Thus, ‘of equal preference’

must be an acceptable result of ordering queries in this case. In which case, we

can answer ordering queries in O(n4) time. Given o and o′, if rG(o) > rG(o′), then

we know N 2 o′ � o and N 2 o ∼ o′ by Theorem 2.24. Thus, either they are

incomparable or the user prefers o and so o � o′ is a consistent ordering (as it does

not contradict known preferences). If rG(o) = rG(o′), then we know N 2 o′ � o

and N 2 o � o′ by Theorem 2.24. Thus, they are either indifferent or incompara-

ble outcomes. In which case, asserting that they are of equal preference (o ∼ o′)

does not contradict any known preference and is, thus, consistent. As we show

below, generalised ranks can be calculated in O(n4) time and, thus, this method

for answering ordering queries has complexity O(n4). We have therefore provided
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a tractable method for answering ordering queries in the case of indifference, if it is

considered acceptable to order some incomparable outcomes as equally preferred.

The above method can be performed using any consistent ordering, %C , or any

values that induce such a consistent ordering (it is not specific to ranks). If o �C o′,

then we know N 2 o′ � o and N 2 o′ ∼ o (otherwise we would have o′ �C o or

o ∼C o′, respectively, as %C is consistent), so o � o′ is a consistent ordering by the

same reasoning as above. If o ∼C o′, then N 2 o′ � o and N 2 o � o′, so o ∼ o′ is a

consistent ordering by the same reasoning as above. Thus, we can answer ordering

queries in the case of indifference in constant time from any consistent ordering.

This general method gives multiple distinct methods for answering ordering queries

as CP-nets usually have multiple consistent orderings. This is useful, as answering

ordering queries in multiple ways can yield more information in the same way as

in the case of CP-nets without indifference.

In all of the above applications of rG, we have obtained a consistent ordering

(of N , some subset of the outcomes, or some constrained CP-net, NC), %G, which

is not necessarily strict. That is, for any entailed relation o � o′ (or o ∼ o′) we

have o �G o′ (or o ∼G o′). The presence of indifference might mean that we do

not mind a non-strict ordering; however o ∼G o′ ; o and o′ are indifferent, they

could also be incomparable. In order to obtain an ordering where only indifferent

outcomes are ranked equally, one would need to perform an indifference query on

every pair o ∼G o′, to determine whether N � o ∼ o′ holds or not. If this does not

hold, then N � o ./ o′, and so the outcomes can be ordered arbitrarily as before.

However, all N � o ∼ o′ pairs must be kept as o ∼G o′ for consistency. Indifference

queries can be answered in O(n) time, as we show below, so the efficiency of this

process depends on the number of ∼G instances in the ordering. Alternatively,

if a strict consistent ordering is required (so we are not interested in preserving

indifference), then we can obtain a strict ordering, �G, from %G simply by forcing

outcomes of equal rank into an arbitrary order. This strict ordering retains the

property that, for any entailed preference, o � o′, we have o �G o′ (by Theorem

2.24). Thus, we can obtain a strict ordering that is consistent with all entailed

preferences (but not indifferences).

Consistent orderings are equivalent to CP-nets in the case of indifference also.

This can be proven using a similar proof to Theorem 2.12, only now one must

allow preference orders to include indifference. Thus, reducing a CP-net to gener-

alised rank values (and thus the associated consistent ordering) does not lose any

information.

The process of updating a consistent ordering given new information, as de-

scribed in Appendix A, can also be adapted to work in the case of CP-nets with
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indifference. In this case, outcomes on the same level of the ordering can either

be indifferent or incomparable. For a CP-net, if o and o′ are on the same level

of a consistent ordering and HD(o, o′) = 1, then they are indifferent outcomes.

Taking the transitive closure of this relation identifies the set(s) of outcomes on a

given level that are pairwise indifferent. This set(s) can be found in O(ndk) time,

where d is the maximum domain size and k is the number of outcomes on the

given level. For a generic preference structure with indifferences, G, we replace

the HD(o, o′) = 1 condition with ‘there is an edge between o and o′ in G’. The

update procedure when a new (consistent) preference is learned can be adapted to

the case of indifference by insisting that pairwise indifference sets can only move

level as a whole. We can use a similar update procedure when new (consistent)

indifference statement is learned.

Algorithms 1, 6, and 7 can be used to calculate rG(o) exactly as described

for r(o) in §2.3.5 (with the same time complexity) if we make two small adjust-

ments. First, line 10 of Algorithm 1 should use |Dom(Xi)|−` in place of |Dom(Xi)|,
where ` = # indifferences in the Pa(Xi) = o[Pa(Xi)] entry of CPT(Xi). Second,

in the case of indifference statements, the preference positions in the input CPTs

must be as defined in Definition 2.21 (these are the k terms). Thus, we can

compute rG(o) in the same time as r(o), that is, O(n4) time. Thus, all previous

complexity results transfer directly to the case of CP-nets with indifferences in

their CPTs.

Suppose N is a CP-net, which may have indifferences in its CPTs, and let o

and o′ be associated outcomes. The dominance query N � o � o′ can be an-

swered using a method very similar to the one described in §2.4.1. First, note

that N � o � o′ if and only if there is an improving flipping sequence o′  o

(Boutilier et al., 2004a). As there may be indifferences, we must clarify what we

mean by an IFS here. An IFS is a sequence of outcomes, o′ = o1, o2, ..., om = o,

such that, for all i, oi and oi+1 differ on the value taken by exactly one variable and

either N � oi+1 � oi or N � oi+1 ∼ oi holds; further, for at least one j, we must

have N � oj+1 � oj. Returning to our dominance query, if rG(o′) ≥ rG(o), then the

dominance query is false by Theorem 2.24. Otherwise, starting from o′, we build

up the search tree as in §2.4.1, only now each outcome branches into all improving

flips and all indifferent flips. Only outcomes that are not already in the tree may

be added. An outcome, o∗, is pruned (not explored further) if rG(o∗) > rG(o) –

if o∗ is on an o′  o IFS, we must have either N � o � o∗ or N � o ∼ o∗ and

so, by Theorem 2.24, rG(o∗) ≤ rG(o). As in §2.4.1, this pruning will improve the

efficiency of answering dominance queries and, in finitely many steps (as there are
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only a finite number of outcomes), we will either reach o (dominance query is true)

or there will be no more valid leaves to consider (dominance query is false).

Once an outcome, o∗, is reached such that rG(o∗) = rG(o), the rank cannot be

increased any further and, thus, only indifferent flips can be considered from this

point. Thus, we are determining whether o can be reached from o∗ via indifference

flips, that is, whether N � o ∼ o∗ holds. We show below that such indifference

queries can be answered in O(n) time. Thus, we can improve efficiency further by

determining whether N � o ∼ o∗ holds directly, rather than continuing to search in

this direction. If N � o ∼ o∗ holds, then the dominance query is true. Otherwise,

we do not need to consider the o∗ direction and it can be considered as pruned.

Boutilier et al. (2004a) claim that their pruning methods for dominance queries

also transfer to CP-nets with indifference, though this is not shown explicitly.

Additionally, Allen (2013) looked at answering dominance queries for CP-nets

with indifference by utilising a SAT solver. In contrast to our work, he considers

‘weak dominance’, that is, asking whether N � o % o′ holds, and does not utilise

our assumption to ensure consistency under indifference

Indifference queries such as ‘N � o ∼ o′?’ (if rG(o) = rG(o′)) hold if and

only if o′ can be reached from o by a sequence of indifferent flips (analogous to an

IFS). As all outcomes considered in searching for such a sequence will have the

same rank as o and o′ (by Theorem 2.24), we cannot utilise rank pruning here

(beyond checking that rG(o) = rG(o′)). However, indifference queries are simple,

and can be answered in O(n) time. By our assumption regarding consistency

under indifference, changing a variable X between indifferent values cannot affect

the preference order over any child of X. Thus, any sequence of indifferent flips

cannot change the variable preference orders; suppose we start at o1 and perform k

indifference flips to reach o2, then the preference order over X ∈ V must be the

same under both Pa(X) = o1[Pa(X)] and Pa(X) = o2[Pa(X)]. Thus, at any point

in a sequence of indifferent flips starting at o, the possible indifferent flips of X ∈ V
will always be the set of values in Dom(X) that are indifferent to o[X] under

Pa(X) = o[Pa(X)] (as Pa(X) have only changed between indifferent values and so

theX preference order is unchanged). Thus, o′ can be reached from o via indifferent

flips if and only if o[X] and o′[X] are indifferent under Pa(X) = o[Pa(X)] for

all X where o[X] 6= o′[X]. Checking this requirement requires consulting each

such CPT(X) once and, thus, we can answer indifference queries in O(n) time.

Note that least rank improvement (L(X)) terms are still well defined in the

case of CP-nets with indifferences, as they are defined exclusively in terms of

the CP-net structure. Thus, Lemma 2.17 still holds in the case where N has
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indifference statements. Further, for the case of CP-nets with indifference, we

have the following analogous result to Corollary 2.18.

Corollary 2.25. Let N be a CP-net over variables V , which may have indifference

statements within its CPTs. Let o1 and o2 be associated outcomes and let

D = {X ∈ V | o1[X] 6= o2[X]}. Then,

N � o1 � o2 =⇒ rG(o1)− rG(o2) ≥ minX∈D{L(X)} > 0.

Proof. The proof of this result is very similar to that of Corollary 2.18. If

N � o1 � o2, then there is an IFS o′  o. The rank difference, rG(o1)− rG(o2),

is again the sum of the rank differences of each flip in the IFS. Indifferent flips

do not change the rank value so these flips result in a rank difference of zero.

Thus, rG(o1)− rG(o2) is the sum of the rank differences of the strictly improving

flips in the IFS.

As N � o � o′, the IFS o′  o must contain at least one strictly improving

(not indifferent) flip. Let I be the set of variables, X, such that the IFS includes

a strictly improving X flip, then we must have I 6= ∅. Let X be a variable in I

with minimal ancestors. This means that no parent of X has a strictly improving

flip in the IFS (as parents of X have strictly less ancestors than X). Thus, any

changes to the assignment of Pa(X) in the IFS are indifferent flips. By our previous

assumption about CP-nets with indifference (to ensure consistency in the case of

indifference), such changes cannot alter the preference order over Dom(X). Thus,

the preference order over X remains fixed throughout the IFS. As only indifferent

and improving flips are allowed in an IFS and we know there is at least one

improving X flip, we must have o[X] 6= o′[X]. This is because, in order for X to

start and end at the same value (and have an improving flip), X would need to flip

to a worse value at some point – not possible in an IFS. Therefore, we have X ∈ D
and we have thus proven that at least one variable in D has an improving flip in

the IFS.

Thus, we know that rG(o1) − rG(o2) is the sum of the improving flip rank

difference and we know that at least one X ∈ D has an improving flip in the IFS.

The result, rG(o1) − rG(o2) ≥ minX∈D{L(X)}, then follows if we prove that the

rank difference of any strictly improving Y flip is ≥ L(Y ) > 0. This can be done

in an almost identical way to the proof of Corollary 2.18.

As N � o1 � o2, we know that o1 6= o2 and so D 6= ∅. As L(Y ) > 0 for all

variables Y ∈ V (by Lemma 2.17), we know that minX∈D{L(X)} > 0.

Definition 2.26. Let N be a CP-net over variables V , which may have in-

difference statements in its CPTs. Let o and o′ be associated outcomes and
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let D = {X ∈ V | o[X] 6= o′[X]}. The minimum (entailed) rank difference of o

and o′, denoted MD(o, o′), is defined to be

MD(o, o′) = minX∈D{L(X)}.

By Corollary 2.25, these terms can be used to prune dominance queries more

effectively. Suppose we are answering the dominance query N � o � o′, such

that rG(o) ≥ rG(o′) + MD(o, o′) and o 6= o′ (otherwise we already know it to

be false). Then, starting at o′, we build up the search tree as described above.

Any outcome, o∗, such that rG(o∗) > rG(o) can be pruned, as before. For any

outcome, o∗, such that rG(o∗) = rG(o), we can use an indifference query rather

than further search, as above. Further, we may prune any outcome, o∗, such that

rG(o∗) < rG(o) and rG(o∗) + MD(o∗, o) > rG(o). This is because, if o∗ is on an

IFS o′  o, then either N � o � o∗ or N � o ∼ o∗, but as rG(o∗) 6= rG(o) we can

not have N � o ∼ o∗ (by Theorem 2.24). However, we can not have N � o � o∗ by

Corollary 2.25, as rG(o∗)+MD(o∗, o) > rG(o). Thus, o∗ is not on an IFS o′  o and

so we do not need to explore this direction further and can prune it from the search

tree. In comparison to our previous method for dominance testing on CP-nets with

indifference, we now have an additional pruning condition. This will further reduce

the size of the dominance query search tree, making it easier to answer. We are

also using a stronger initial condition for testing (rG(o) ≥ rG(o′) + MD(o, o′)

and o 6= o′), which means more queries will be answered immediately, without

needing to construct a search tree.

As we mentioned above, rG(o) < rG(o′) + MD(o, o′) implies that N 2 o � o′.

This condition (and the other direction) might be checked when performing order-

ing queries (as described above) as they can provide additional information. This

can lead to a more definitive conclusion or even answer the associated dominance

queries. Note that these conditions can be checked in O(n4) time.

We can again use any consistent ordering to prune the dominance query search

tree, as we showed for CP-nets without indifference. Suppose again that we are

answering the query N � o � o′ and that we have a consistent ordering, %C .

Suppose we reach outcome o∗ in our search tree. If o∗ is on an IFS o′  o, then

we must have N � o � o∗ (and so o �C o∗) or N � o ∼ o∗ (and so o ∼C o∗).

If o∗ �C o, then either N � o∗ � o or N � o ./ o∗ and, thus, o∗ does not lie on

an IFS o′  o. Hence, if o∗ �C o, then we do not need to explore that direction

further and o∗ can be pruned from the tree. If o∗ ∼C o, then either N � o ∼ o∗ or o∗

does not lie on an IFS o′  o. In this case, to improve efficiency, we can answer

the indifference query N � o ∼ o∗ directly in O(n) time, rather than exploring

further in this direction. Thus, as for CP-nets with no indifference, we can use any
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consistent ordering to improve dominance testing efficiency. As CP-nets generally

have multiple consistent ordering, this gives us several pruning conditions which

can be combined or used in conjunction with other pruning methods, as before,

for a more effective pruning schema.

We can actually answer dominance and indifference queries directly from %C

(as we did for CP-nets without indifference). This is because improving and in-

different flips can be identified directly from %C . Thus, for dominance queries

we can construct (as well as prune) the search tree and for indifference queries,

we can evaluate whether the distinct values are indifferent. The indifferent flips of o

are {o′ ∈ Ω|HD(o, o′) = 1 ∧ o ∼C o′} and the improving flips of o are

{o′ ∈ Ω|HD(o, o′) = 1 ∧ o′ �C o}. Similarly, we can answer (and prune) dom-

inance and indifference queries directly from rG (and L(X)) values as improving

and indifferent flips can be similarly identified from relative rG values. This is not

surprising as consistent orderings (and, thus, rG values) encode the same preference

information as the original CP-nets.

In this section, we have shown how our rank definition can be generalised

to allow for indifference. Further, we have demonstrated that all of our results

now apply or can be adapted to CP-nets with indifference. In particular, we

can obtain and update consistent orderings, answer ordering queries, and improve

the efficiency of dominance queries in almost exactly the same way as for CP-

nets without indifference. We intend to evaluate the performance of rank pruning

experimentally in the case of CP-nets with indifference (as we did in §2.4.2 for the

case of no indifference) in our future work, which we discuss in §2.6.

2.6 Discussion

In this chapter, we introduced a novel method of quantifying user preference over

outcomes, given a CP-net representation of their preferences. These values are

called outcome ranks. We have proven these ranks to be an accurate represen-

tation of the user preferences as the values reflect all entailed preferences. Thus,

these ranks induce a consistent ordering over the outcomes. They can also be

used to order any subset of the outcomes consistently with user preferences (more

efficiently than the existing method) and obtain a consistent ordering for CP-nets

with additional plausibility constraints. We have provided an algorithm that can

calculate these outcome ranks in O(n4) time.

Our outcome ranks can also be used to improve dominance testing efficiency

by pruning the associated search tree. We have experimentally evaluated the
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performance of this pruning method in comparison to (and in combination with)

the existing pruning methods. These experiments showed rank pruning to be

significantly more effective and efficient than the existing methods. By evaluating

the performance of all possible pruning combinations, we also found rank pruning

to be a necessary component for an effective pruning schema – the results showed

that those combinations without rank pruning performed distinctly worse than

those including rank pruning. In particular, we found the combination of rank

pruning and suffix fixing to be the most efficient method of answering dominance

queries (when functions use their optimal leaf prioritisation method).

In these experiments, we also varied the method of leaf prioritisation used

in the search procedures (including two prioritisation heuristics suggested by our-

selves – rank and rank + diff. prioritisation). While several prioritisation heuristics

have been proposed previously, no experimental analysis of their effect has been

performed. Our results found that changing the prioritisation method does not

significantly affect dominance testing performance (neither the effectiveness of the

pruning nor the overall efficiency). However, as certain pruning methods perform

very similarly on average, changing the prioritisation method can be sufficient to

affect which pruning methods perform better than others. Thus, leaf prioritisa-

tion can be a deciding factor in choosing the optimal pruning schema. For those

functions where leaf prioritisation was varied, rank prioritisation was found to

be optimal in every case, both in terms of pruning efficacy and overall efficiency.

Thus, we have introduced new methods for pruning and leaf prioritisation that

both outperform the existing techniques.

All of the dominance testing methods that we compared in our experiments

have some initial conditions they check prior to performing the dominance testing

search. These conditions are simple to check and, if they hold, prove the dominance

query is false – meaning a search is not necessary and, thus, improving dominance

testing efficiency. In Appendix C.2, we examined the performance of these initial

conditions in our experiments. These results showed our rank condition was sig-

nificantly stronger than penalty and answered the majority of dominance queries

immediately. Combining with the penalty condition results in only a minor im-

provement, but this is worth it as the conditions are simple to check. We also

found that these initial conditions (in particular our rank condition) could provide

efficient and reasonably accurate predictions for dominance query results (partic-

ularly in the case of binary CP-nets). In the binary case, using both the penalty

and rank initial conditions correctly classifies almost 95% of dominance queries

as either true or false. In the non-binary case, over 89% of queries are correctly

classified. Most of these cases can be correctly classified by the rank condition
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alone, whereas this is a large improvement upon the performance of the penalty

condition alone. However, as initial conditions are simple to check, it is worth

checking the penalty condition as well, even though the resulting performance im-

provement is small. The relative performance of the rank and penalty conditions

(and their combination) is unsurprising as these initial conditions are equivalent

to their respective pruning conditions. However, in pruning, we found that the

cost of implementing penalty pruning was not worth the minor improvement to

performance.

We have also demonstrated that both ordering queries and dominance queries

can be answered directly from rank values. This is unsurprising as we have also

shown that reducing a CP-net to rank values loses no information. More generally,

we have shown that reducing a CP-net to any consistent ordering does not result

in a loss of information. Further, ordering and dominance queries can be answered

directly from any consistent ordering. CP-nets usually have multiple consistent

orderings, which answer ordering queries in distinct ways. These methods can be

combined in order to yield more information. We have also shown that we can use

any consistent ordering to formulate a pruning condition to improve dominance

testing efficiency (analogously to how we used outcome ranks to prune dominance

query search trees). These methods can also be combined (with each other and

existing pruning techniques) to form more effective pruning schemas. Moreover, we

showed in Appendix A how any consistent ordering (for CP-nets and preference

structures in general) can be iteratively updated in order to be consistent with

additional learned preference information. For CP-net consistent orderings, this

can be done directly, without consulting the CP-net.

These results illustrate the usefulness of consistent orderings in representing

and reasoning with CP-net preferences. While consistent orderings have the draw-

back of being exponentially large structures, most of the above applications do not

require the full ordering. Rather, they need only the ability to assess the relative

positions of outcomes in the ordering (for example, by calculating only the outcome

ranks for the outcomes of interest). Consistent orderings are also fairly simple to

construct, as we, Boutilier et al. (2004a), and Domshlak et al. (2003) illustrate.

They are also more directly applicable than CP-nets, as they provide an explicit

outcome ordering that is consistent with all known user preferences. Despite these

many useful properties, consistent orderings have received little attention in the

existing literature.

We generalised our outcome rank definition to be defined in the case of CP-

nets with indifference statements in their CPTs, making our results more widely

applicable. We have proven that these generalised ranks also reflect all entailed
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relations and indifferences. Thus, we can directly extend our methods for ob-

taining consistent orderings for (any subset of) the outcomes and CP-nets with

additional plausibility constraints to the case of CP-nets with indifference. Fur-

ther, these generalised outcome ranks can be used to answer ordering queries and

dominance queries and improve dominance testing efficiency (with a rank based

pruning condition) in an analogous manner to the outcome ranks for CP-nets with-

out indifference. Again, we can prove that reducing a CP-net (with indifference) to

these generalised outcome ranks loses no information. The above results regarding

general consistent orderings are also extended to this case.

These generalised outcome ranks are calculable in the same time complexity

as the original outcome ranks. This means that all complexity results directly

transfer to the case of indifference. In particular, we can consistently order any

outcome subset in the same time complexity as the case of no indifference. In

contrast, the method by Boutilier et al. (2004a) has unknown complexity in the

case of indifference, though they conjecture that it is hard.

In our future work, we would like to extend our outcome ranks so that they are

also defined for consistent cyclic CP-nets. Such CP-nets can express more complex

preference structures and so this extension would broaden the applicability of our

results. Another generalisation we may consider is to define outcome ranks for

CP-net extensions such as TCP-nets (CP-nets with additional relative importance

statements) (Brafman et al., 2006).

We have shown that many of the applications of outcome ranks can be per-

formed analogously using any consistent ordering. This includes answering order-

ing queries and implementing pruning conditions to improve dominance testing

efficiency. In both of these cases, we have discussed that multiple methods can

be combined either to give more information (in the case of ordering queries) or

improve effectiveness or efficiency (in the case of dominance query pruning). Thus,

in our future work, we would like to see whether we can define a new consistent or-

dering that would further improve ordering queries (by adding to the information

and improving their accuracy as predictors for dominance queries) or dominance

testing efficiency (possibly by combining with existing methods). Further, if this

ordering can be computed more efficiently than rank values, then we can improve

our complexity results in general.

In our dominance testing experiments, the error intervals get fairly wide for the

larger n values. Repeating these experiments (for the larger n cases) on a larger

query set would give more accurate performance estimates. We would also like

to extend any such future experiments to larger n values, in order to see whether

the observed patterns continue. It would also be of interest to see how our time
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elapsed results compare to the other methods of dominance testing, such as the

model checking approach by Santhanam et al. (2010), in future experiments. We

may also include prefix fixing by Wilson (2004b) in future experiments. Further,

we might examine whether least variable leaf prioritisation by Boutilier et al.

(2004a) has a more significant effect on performance than the leaf prioritisations

considered here.

In §2.5, we extended our rank definitions and theoretical results to the case of

CP-nets with indifference statements. In our future work, we would like to perform

our experimental evaluations and comparisons of dominance testing performance

(and prediction) in this case also.

In Appendix C.2, we evaluate how accurately different initial conditions (of

pruning methods) predict dominance query results. These initial conditions are

equivalent to ordering query tests (they give us a consistent ordering of the given

outcome pair). However, as we discussed in §2.4.1, performing ordering query tests

in ‘both directions’ can yield more information. In particular, this can lead to the

conclusion ‘o and o′ are incomparable’. The initial conditions we considered can

only yield two conclusions – the dominance query is false, N 2 o � o′ (o′ � o is a

consistent ordering), or N 2 o′ � o (o � o′ is a consistent ordering), in which case

we would ‘predict’ the query to be true. If we checked these initial conditions in

‘both directions’, then we would have the capacity to classify dominance queries

into three classes (true, false, and incomparable), rather than two (true and false).

In this case, the only uncertainty would be whether some of those predicted as true

were actually incomparable. As we are using more information (and we can now

predict all possible scenarios), the prediction accuracy should increase. This will

also make them stronger when used as initial conditions as more dominance queries

can be answered immediately. This will improve dominance testing efficiency. In

our future work, we would like to evaluate how much the prediction accuracy and

dominance testing efficiency improves. Such future experiments should also com-

pare the prediction accuracy of other ordering query methods and combinations,

rather than considering only those that are used as initial conditions. Note that,

technically, any ordering query test could be used as an initial condition, we simply

utilise the tests that correspond to the pruning method used. We may also com-

pare these methods to existing techniques for approximately answering dominance

queries in our future work.

In Appendix C.1, we described our method of randomly generating CP-nets.

From examining the produced structures, we conjecture that the generator favours

sparser CP-nets, though the exact CP-net distribution produced by this generator

is unknown. The absence of real CP-net data means that we do not know what
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a realistic CP-net distribution is. However, it would be of interest to analyse

the distribution of CP-nets produced by our random generator (for example, the

distribution of structural densities produced). This would show what types of CP-

net our experimental results are most applicable to. Alternatively, one could repeat

our experiments with a CP-net generator that allows more specific parameters. For

example, if the generator allowed you to specify structural density, then we could

evaluate how density affects dominance testing performance. A uniform CP-net

generator would show how the various dominance testing methods perform on

average when all CP-nets are equally likely. Thus, another possible direction

is to determine how we can perform uniform random generation in practice for

sufficiently large n. This could be via making the Allen et al. (2017a) generator

work in practice for larger n, though ideally we would also adapt this generator to

allow different domain sizes.

Another interesting direction for future experiments is to use real elicited CP-

nets rather than simulated ones. This would ensure that a realistic distribution

was being used and so we would be able to evaluate how efficient the dominance

testing methods are on real world data sets. Further, we could evaluate the pre-

dictive power of different ordering queries (initial conditions) more accurately as

incomparable cases can be answered definitively (either there is a true preference or

indifference) by querying the user. Users could also be asked to evaluate proposed

consistent orderings – perhaps one method is more likely to produce accurate (to

the user’s true preferences) consistent orderings than another.

In Appendix A, we show how consistent orderings can be iteratively updated

as additional preference information is learned. However, we require that each

additional preference be consistent with all previous information. This is an unre-

alistic assumption in many contexts due to both natural human inconsistency and

a user’s preferences changing over time. As we discussed in Appendix A, how to

deal with inconsistent information is likely to be context dependent. For example,

the context of the problem may dictate how often a user is likely to change their

preferences and, thus, how quickly we should adapt their ordering to suit new

preference information over (contradictory) historic preferences. We would like

to find a method for updating consistent orderings that can handle inconsistent

information and can be tuned appropriately to a given context. For example, we

might employ an evidence threshold (that may be calibrated), required before new

preferences can be incorporated, in order to protect against one-off events. This

problem is similar to learning user preferences from data (though with an informed

starting point), which we tackle in Chapter 4.
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Chapter 3

CP-Net Preprocessing for

Efficient Dominance Testing

3.1 Introduction

In Chapter 2, we defined quantitative outcome ranks that reflect the user’s level

of preference for the given outcome. These qualitative representations have many

applications but, primarily, they are used to improve the efficiency of dominance

testing. This is done by using rank values to prune the search tree as it is con-

structed. As we discussed in Chapter 2, in order for CP-nets to be practical models

of preference, we must be able to answer dominance queries efficiently. However,

they have been shown to be complex problems to answer (see §2.4.1). There has

been a lot of work done on improving dominance testing efficiency, as we review

in §2.2.3. Many of these methods work by pruning the search tree as it is con-

structed. Our experimental comparisons in §2.4.2 showed rank pruning to be more

effective than existing methods.

In this chapter, we introduce another method for improving dominance testing

efficiency. This method works by preprocessing the CP-net in two stages. The

result of preprocessing is a reduced CP-net (possibly several) and, thus, a domi-

nance query (or queries) that is much simpler to answer. Our preprocessing works

by reducing the number of variables in the CP-net of interest. As the preference

information encoded by a CP-net has size exponential in the number of variables,

removing variables reduces the size of the problem exponentially. In particular, it

reduces the preference graph size exponentially, which is the space one must search

when answering dominance queries. Thus, by reducing the number of variables we

simplify our dominance query.
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The first stage of our preprocessing technique repurposes the suffix fixing re-

sult by Boutilier et al. (2004a) and the prefix fixing result by Wilson (2004b) (we

provide a proof of completeness for the latter) from pruning methods to prepro-

cessing. We combine these results with the removal of conditionally degenerate

parents in order to iteratively identify and remove variables that are unimportant

to our dominance query. We find that this reduces the query in a manner distinct

from the reduction obtained by using the combination of prefix and suffix fixing

as pruning methods. Both methods reduce the problem in ways the other cannot

affect and we can improve the efficiency of answering our preprocessed query by

using prefix and suffix fixing pruning.

The second stage of our preprocessing identifies whether the resulting query

can be separated into smaller sub-queries that are independent of one another. As

they are independent, they can be answered separately. Their answers can then

be combined to answer the original query. As the size of CP-nets is exponential

in the number of variables, partitioning the query in this manner does more than

split up the problem, it exponentially reduces it, again. To see this, consider a

dominance query over a binary CP-net with six variables. To answer this query,

we must search for an IFS over the space of 26 = 64 outcomes. Suppose we can

split this into two queries over CP-nets with three variables each. Now we need to

conduct two searches over spaces of size 23 = 8. This separated problem requires

searching a total space of size 16 rather than 64.

Forward pruning by Boutilier et al. (2004a) is the existing method of CP-net

preprocessing to improve dominance testing efficiency. The full details of this

method are given in §2.2.3. Rather than removing irrelevant variables, forward

pruning removes impossible variable values. We show that our preprocessing and

forward pruning remove distinct (though overlapping) sections of CP-nets. That

is, both methods remove CP-net aspects that cannot be affected by the other.

Via experimental evaluation, we find that our preprocessing is significantly more

effective than forward pruning at improving dominance testing efficiency for binary

CP-nets. Further, we can combine these two preprocessing methods to obtain an

even more effective reduction procedure and, as we find experimentally, a more

efficient procedure for answering dominance queries. We show that using these

two techniques in combination can enable our method to be more effective than it

would be when used individually. Thus, this combination is more powerful than

the sum of its individual components.

The other existing methods of improving dominance testing efficiency all pro-

vide a method of answering the dominance query faster (usually by constructing
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a search tree and applying some pruning condition to the branches). Alterna-

tively, preprocessing results in a new (smaller) dominance query (or possibly sev-

eral queries) that we then need to answer. We can utilise any of these efficient

answering methods to complete our dominance testing procedure. In our experi-

ments, we use the most effective pruning method from our §2.4.2 experiments to

answer the resulting queries. These preprocessing performance experiments show

that using our method of preprocessing can reduce dominance testing time by ap-

proximately half and using the combination of our method with forward pruning

can reduce time by up to 60%. Thus, our preprocessing significantly improves

dominance testing efficiency even when we are already using one of the most effi-

cient answering methods. Hence, by combining this preprocessing with our work

on query pruning in Chapter 2, we obtain an even more efficient procedure for

dominance testing than those we looked at in Chapter 2.

The rest of this chapter is structured as follows. In §3.2, we explain how

our preprocessing procedure works and prove that it does not affect dominance

testing completeness. We also show how our procedure can be combined with

forward pruning and explain why this combination is more powerful than using

both methods individually. In §3.3, we provide an experimental analysis and

comparison of the performances of our preprocessing method, forward pruning,

and their combination. Finally, in §3.4, we provide a discussion of these results

and related future work.

3.2 CP-Net Preprocessing Method

In this section, we present our novel method of simplifying dominance queries by

preprocessing the relevant CP-net. This procedure has two stages. First, we itera-

tively remove variables that are unimportant to the dominance query in question.

This is explained in §3.2.1. Second, we partition the resulting query into smaller,

independent sub-queries, which can be answered separately. This stage is given

in detail in §3.2.2. We refer to our preprocessing as UVRS (unimportant vari-

able removal and separation) preprocessing. In §3.2.3, we explain how UVRS can

be combined with the existing preprocessing method, forward pruning (Boutilier

et al., 2004a), to make a preprocessing procedure that is more powerful than the

simple sum of using UVRS and forward pruning separately.
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3.2.1 Removal of Unimportant Variables

Suppose we wish to answer the dominance query N � o � o′. In this section,

we will show how we can simplify this query by iteratively removing variables

from N that are unimportant to this query. This results in a smaller CP-net and

a simplified query that is equivalent to the original.

Let us first formally define what we mean when we say that a variable is

‘unimportant’ to a given dominance query.

Definition 3.1. Let N be a CP-net over variables V and let G denote the struc-

ture of N . Suppose we are interested in the dominance query N � o � o′.

Let D = {X ∈ V | o[X] 6= o′[X]}. A variable Y ∈ V is important to the

query if either Y ∈ D or there exists X,Z ∈ D such that there is a directed

path X  Y  Z in G. That is, Y has both an ancestor and a descendant in D.

If W ∈ V is not important, then we say it is unimportant to the query.

If a variable, X ∈ V , is unimportant to our query, then we must have X 6∈ D.

Thus, X takes the same value in both o and o′, say o[X] = o′[X] = x. We

remove X from the CP-net by fixing it at this value, X = x, as follows. First,

we remove all unimportant variables and any adjacent edges from the structure.

We also remove their CPTs. This is because these variables are now fixed values

and, thus, no longer variables in our problem. Second, to ensure that the resulting

CP-net is fully defined, we must adjust the CPT of any variable that has lost a

(unimportant) parent. Suppose Z was a parent of Y in N but it has now been

removed. Then Z must be an unimportant variable and we have o[Z] = o′[Z] = z,

for some z ∈ Dom(Z). We remove all rows of CPT(Y ) that correspond to a parent

assignment where Z 6= z. We do this for every parent Y has lost. The resulting

CPT contains exactly the rows corresponding to parent assignments in which all

unimportant variables take their fixed values. We restrict to these rows as they

are now the only possible parental assignments. As only the remaining parents

are allowed to vary, this CPT corresponds to a well defined CPT for the new,

reduced, parent set of Y , as we wanted. To obtain this CPT, we simply ignore the

removed parent assignments (which are fixed). Thus, the resulting structure is a

smaller, fully defined, acyclic CP-net. We illustrate our method of identifying and

removing unimportant variables in the following example.

Example 3.2. Let N be a CP-net with the structure given in Figure 3.1 (ignore

the variable colourings for now). For clarity, we shall denote the ith variable

of N by Xi (for 1 ≤ i ≤ 10). We assume all variables to be either binary or

tertiary. For ease, let binary variables have domain {0, 1} and tertiary variables
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Figure 3.1: CP-Net Structure with Unimportant Variables

Variable 1 2 3 4 5 6 7 8 9 10

Binary/Tertiary B B B B T T B B T T

o 1 1 0 0 2 0 1 1 1 0

o′ 1 0 1 0 0 1 1 1 2 0

Table 3.1: Dominance Query Example

have domain {0, 1, 2}. Thus, for this example, outcomes may be represented by

length 10 vectors with entries in {0, 1, 2}. Table 3.1 shows which variables are

binary and which are tertiary. It also gives two outcomes, o and o′.

Suppose we wish to answer the query N � o � o′. By Definition 3.1, the first

criterion for variable importance is being in the set D = {X ∈ V | o[X] 6= o′[X]}.
In this example, we have D = {X2, X3, X5, X6, X9}. The set D is shaded blue in

Figure 3.1. The second criterion for importance is being on a directed path between

two members of D. These variables are shaded red in Figure 3.1. Thus, the

coloured variables in Figure 3.1 are exactly the set of variables that are important

to our query. The unimportant variables are, therefore, U = {X1, X7, X10} (the

variables that are not coloured).

We want to remove the variables in U by fixing them at the values they take

in both o and o′ (X1 = 1, X7 = 1, X10 = 1). Removing these variables and

their adjacent edges results in the structure given in Figure 3.2 and the reduced

outcomes (that is, the reduced query) given in Table 3.2. We also remove the

CPTs of the variables in U , though this is not illustrated here as it is a simple case

of deletion.
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Figure 3.2: Reduced CP-Net Structure

Variable 2 3 4 5 6 8 9

Binary/Tertiary B B B T T B T

o[V \U ] 1 0 0 2 0 1 1

o′[V \U ] 0 1 0 0 1 1 2

Table 3.2: Reduced Dominance Query

Out of the remaining variables, X3, X5, and X8 have lost parents and, thus,

need their CPTs adjusting. We do not provide the full set of example CPTs as

they are large and mostly unnecessary. However, we give the relevant CPTs and

their adjustments below for illustration.

CPT(X3):

X1 X4 Preference

0 0 0 � 1

0 1 1 � 0

1 0 1 � 0

1 1 0 � 1

X1=1−−−→
X4 Preference

0 1 � 0

1 0 � 1

CPT(X5):

X1 X2 Preference

0 0 1 � 2 � 0

0 1 0 � 1 � 2

1 0 2 � 1 � 0

1 1 2 � 1 � 0

X1=1−−−→
X2 Preference

0 2 � 1 � 0

1 2 � 1 � 0
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CPT(X8):

X5 X7 Preference

0 0 1 � 0

0 1 1 � 0

1 0 0 � 1

1 1 1 � 0

2 0 0 � 1

2 1 1 � 0

X7=1−−−→

X5 Preference

0 1 � 0

1 1 � 0

2 1 � 0

In each case, we have obtained the new CPT by restricting to the rows in which

the unimportant variables take their fixed values (in the parental assignment). As

these parents are now fixed, we eliminate them from the CPT, giving the CPTs

on the right. These CPTs depend only on the new (reduced) parent sets, making

them well defined for the new structure. The CPT of any variable that did not lose

a parent remains well defined in the new structure. Thus, we now have a reduced,

well defined CP-net over the important variables only and an associated reduced

dominance query.

The CP-net that we obtain by removing unimportant variables in this manner

encodes the user’s preferences under the constraint U = o[U ] = o′[U ], where U de-

notes the unimportant variables. Let M denote the CP-net obtained by removing

the unimportant variables from N . Let ΩN denote the outcomes associated with N

and ΩM the outcomes associated with M . By construction, ΩM is the Cartesian

product of the domains of V \U . These correspond to all possible outcomes under

the constraint U = o[U ] = o′[U ] (we simply ignore the fixed assignment to U).

We interpret the outcome α ∈ ΩM to represent αo[U ] ∈ ΩN . That is, we assume

that α ∈ ΩM implies V \U = α and U = o[U ]. By this interpretation, M is a

preference structure over the outcomes of N that satisfy the constraint U = o[U ].

The following proposition shows that M encodes exactly the preferences implied

by N under this constraint.

Proposition 3.3. Let N be a CP-net over variables V and let o and o′ be associ-

ated outcomes. Let U ⊆ V denote the variables that are unimportant to the query

N � o � o′. As the variables in U are unimportant, we must have o[U ] = o′[U ].

Let M be the CP-net obtained by removing U from N as described above (by fix-

ing U = o[U ]). Let C denote the constraint U = o[U ] and let NC denote the

CP-net N with this additional plausibility constraint. Let o1 and o2 be any two

outcomes associated with N that obey constraint C, that is, o1[U ] = o2[U ] = o[U ].

Then NC � o1 � o2 if and only if M � o1[V \U ] � o2[V \U ].

Proof. See Appendix E.7.
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As we discussed above, the outcomes of M can be considered as the outcomes

of N satisfying the constraint U = o[U ](= o′[U ]). This proposition shows that the

preferences implied by M over these outcomes are equivalent to the entailments

implied by N under this constraint. Thus, reasoning with M is equivalent to

reasoning with N under the constraint U = o[U ]. This is as we would expect as M

is obtained from N by fixing U at the values they take in o. Now that we know the

preferences encoded by our reduced CP-net, it remains to prove that the reduced

dominance query, M � o[V \U ] � o′[V \U ], is equivalent to the original, N � o � o′.

It is sufficient to prove that, if there exists an IFS o′  o in N , then there exists

an IFS o′  o that does not change the value of any unimportant variable. We

will formally prove that this is a sufficient condition later on. Informally, this

result shows that, if the preference o � o′ holds, then it holds under the constraint

that U is fixed (U = o[U ]). The other direction of this result is trivial as an IFS

that does not change U is still an o′  o IFS. Thus, the preference o � o′ holds

if and only it holds under the constraint U = o[U ]. As we have seen, M encodes

user preference under this constraint and so the original query is equivalent to its

reduction to M .

We now suppose that N � o � o′ holds and, thus, there exists some IFS o′  o

in GN . To prove that there is an IFS o′  o that does not change any variables

in U we use two results – suffix fixing by Boutilier et al. (2004a) and prefix fixing by

Wilson (2004b). Suppose {X1, ..., Xn} is any topological ordering of the variables

(with respect to the structure of N) and let α ∈ ΩN be any outcome. We define

the kth suffix of α as o[Xk, Xk+1, ..., Xn]. Boutilier et al. (2004a) proved that if o

and o′ have a matching suffix and there is an IFS o′  o, then there is an IFS o′  o

that preserves this suffix (that is, that does not change any variable value in the

matching suffix). Boutilier et al. (2004a) propose utilising this result to prune the

dominance query search tree as it is constructed. This is done by pruning any

improving flips that do not preserve a matching suffix with o. Let S denote the

set of variables, Y , such that Y and all descendants of Y take the same values in

both o and o′. As Y ∈ S implies all descendants of Y are in S, it is possible to

construct a topological ordering in which S comes at the end. For this topological

ordering, S constitutes a matching suffix of o and o′. This is in fact the largest

matching suffix as it is the union of all matching suffices. The suffix fixing result

by Boutilier et al. (2004a) then proves that there exists an IFS o′  o that does

not change any variable in S.

Prefix fixing was proposed by Wilson (2004b) to be used in conjunction with

suffix fixing to improve dominance testing efficiency for CP-theories (a strict gen-

eralisation of CP-nets). Let P denote the set of variables, Y , such that Y and all
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ancestors of Y take the same values in both o and o′. Wilson (2004b) suggests

that, if there is an IFS o′  o in a CP-theory, then there is an o′  o IFS that does

not change any variable in P or in S. In fact, the author claims that all o′  o

IFSs preserve P . Consequently, when searching for an IFS, any improving flips

that change variables in either P or S can be pruned. However, Wilson (2004b)

does not provide a proof of these claims in either the CP-theory case or for CP-

nets specifically. The suffix fixing result above, by Boutilier et al. (2004a), proves

that there does exist an IFS preserving S in the case of CP-nets. We prove in the

following proposition that the claim that all o′  o IFSs preserve P also holds in

the CP-net case. We do not address whether their claims hold in the more general

case of CP-theories as we are only interested in CP-nets here.

Proposition 3.4. Let N be a CP-net over variables V and let o and o′ be any

two associated outcomes. Let P denote the set of variables, Y , such that Y and

all ancestors of Y take the same values in both o and o′. If there is an IFS o′  o

in N , then no variable in P is flipped in this IFS.

Proof. See Appendix E.8.

Recall that we are assuming there exists some o′  o IFS in N . By the

Boutilier et al. (2004a) suffix fixing result, there exists some IFS that does not flip

any variable in S. By the above result, all o′  o IFSs preserve P throughout.

Thus, there exists an o′  o IFS that does not flip any variable in S ∪ P . The

following result shows that U = S ∪P . From this we can conclude that, if there is

an o′  o IFS, then there is an o′  o IFS that does not change the value of any

unimportant variable.

Proposition 3.5. Let N be a CP-net over variables V and let o and o′ be any

two associated outcomes. Let U ⊆ V denote the variables that are unimportant to

the query N � o � o′. Let S denote the set of variables, Y , such that Y and all

descendants of Y take the same values in both o and o′. Let P denote the set of

variables, Z, such that Z and all ancestors of Z take the same values in both o

and o′. Then U = S ∪ P .

Proof. Let D = {X ∈ V |o[X] 6= o′[X]}. Let X ∈ V be any variable. Let Dec(X)

denote the set of descendants of X ∈ V in the structure of N and let Anc(X)

denote the ancestors. By the definition of unimportant variables (Definition 3.1),
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we have the following equivalences:

X ∈ U ⇐⇒ (X 6∈ D) ∧ (Anc(X) ∩D = ∅ ∨Dec(X) ∩D = ∅)

⇐⇒ (o[X] = o′[X])∧
(∀Y ∈ Anc(X), o[Y ] = o′[Y ] ∨ ∀Y ∈ Dec(X), o[Y ] = o′[Y ])

⇐⇒ (o[X] = o′[X] ∧ ∀Y ∈ Anc(X), o[Y ] = o′[Y ])∨
(o[X] = o′[X] ∧ ∀Y ∈ Dec(X), o[Y ] = o′[Y ])

⇐⇒ (X ∈ P ) ∨ (X ∈ S)

⇐⇒ X ∈ P ∪ S.

Thus, U and S ∪ P must be the same set of variables, as we wanted to prove.

The combination of these results shows that, if there is an o′  o IFS, then

there is an IFS that does not change the value of any variable in U , as we wanted

to show. That is, when searching for an IFS, it is sufficient to consider only

those sequences that keep the unimportant variables fixed. As M encodes user

preferences under the constraint that U is fixed, this shows that answering the

reduced query over M is equivalent to answering the original query. This is proven

formally by the following corollary.

Corollary 3.6. Let N be a CP-net over variables V and let o and o′ be two

associated outcomes. Let U ⊆ V be the set of variables that are unimportant to

the query N � o � o′. Let M be the CP-net obtained from N by removing U (by

fixing U = o[U ] = o′[U ]). Then we have

N � o � o′ ⇐⇒ M � o[V \U ] � o′[V \U ].

Proof. We know that N � o � o′ if and only if there is a directed path (that is, an

IFS) o′  o in the preference graph of N , GN . Let S denote the set of variables, Y ,

such that Y and all descendants of Y take the same values in both o and o′. Let P

denote the set of variables, Z, such that Z and all ancestors of Z take the same

values in both o and o′. From the Boutilier et al. (2004a) suffix fixing result and

Proposition 3.4, we know that, if there is an o′  o IFS, then must be an IFS

that preserves both S and P (that is, does not change the value of any variable

in S ∪ P ). By Proposition 3.5, this means there must be an o′  o IFS that

preserves U . Trivially, if there is an o′  o IFS that preserves U , then there is

an o′  o IFS. Thus, N � o � o′ if and only if GN contains a directed path o′  o

that does not change the value of any variable in U . That is, a directed path in

which every outcome (node) satisfies U = o[U ].

Let C be the constraint U = o[U ]. Let NC be the CP-net N with this additional

plausibility constraint. The preference graph of NC is the induced graph of GN
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on the outcomes that obey C. We denote this preference graph GNC
. Thus, GN

contains a directed o′  o path in which every outcome satisfies U = o[U ] if

and only if GNC
contains a directed path o′  o. Thus, we now have shown

that N � o � o′ if and only if GNC
contains a directed path o′  o. That

is, N � o � o′ if and only if NC � o � o′. By proposition 3.3, this holds if and

only if M � o[V \U ] � o′[V \U ], as we wanted.

We have now proven that our reduction of the CP-net is equivalent to fixing the

unimportant variables, U = o[U ]. Further, we have used suffix and prefix fixing to

show that this constraint (reduction) does not affect the dominance query. That

is, answering the reduced query is equivalent to answering the original.

Example 3.7. Consider the CP-net from Example 3.2. By Corollary 3.6, answer-

ing the reduced query (M � o[V \U ] � o′[V \U ], given in Table 3.2) over seven

variables is equivalent to answering the original query over ten variables. For a

more accurate picture of how this has reduced the complexity of our problem, let

us consider the number of outcomes associated with the CP-nets – this is the space

we must search for an IFS in order to answer the queries. The original CP-net, N ,

had 5,184 outcomes. The reduced CP-net, M , has 432, so we have reduced the

size of the problem by over 90% already.

In general, if a CP-net has variables V , then the outcome space has size

|ΩN | =
∏

X∈V |Dom(X)|. If we remove variables U , then the new outcome space

has size

|ΩM | =
∏

X∈V \U

|Dom(X)| = |ΩN |∏
X∈U |Dom(X)|

.

Thus, removing the unimportant variables reduces the outcome space by a factor

of
∏

X∈U |Dom(X)|. In the binary case, this is 2|U |. In the non-binary case, it can

be even larger. Thus, by removing variables, we reduce the outcome space by an

exponential factor (in the number of variables removed). Therefore, the space we

need to search over to find an IFS is exponentially smaller, making our problem

much simpler to answer. This reduction factor will continue to grow exponentially

as we remove more variables as we describe below.

As we claimed at the start of this section, the removal of unimportant variables

can be performed iteratively. This is because the CPT adjustments that accom-

pany the removal of unimportant parents can result in degenerate parent-child

relations, even if all parents are non-degenerate in N . A degenerate parent is a

parent whose value does not affect the preference over the child. If X is a degen-

erate parent of Y , then the relation X → Y in the CP-net structure contributes

no information as Y is not preferentially dependent upon X. Thus, removing such
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edges does not change the preference structure encoded by the CP-net. That is,

removing degenerate edges does not semantically alter the CP-net (the preference

graph is not changed by such removals). Note that only variables that lose a par-

ent in the reduction of N have their CPTs adjusted, so we only need to check for

degeneracy in the remaining parents of such variables.

Adjusting the CPTs can cause remaining parents to become degenerate as

this process restricts the CPT to those rows in which U = o[U ] in the parental

assignment. Such a restriction can eliminate the cases where the child preference

depends upon the parent. If removing the unimportant variables from N results

in X being a degenerate parent of Y , we call X a conditionally degenerate parent.

This is because X becomes a degenerate parent under the condition that U = o[U ]

(as it is degenerate in M). All such degenerate parent-child relations can be

removed from the structure of M without affecting the preference structure M

represents. The CPTs of the children that lose degenerate parents can be reduced

trivially as their preference order is not dependent upon the removed parent. This

is different from the previous CPT adjustments as the removed parent does not

need to be fixed to a specific value.

Removing the conditionally degenerate relations changes the structure of M ,

though it still implies exactly the same set of preferences. This change in structure

can result in variables that are unimportant to the reduced query. Note that, after

the initial removal of unimportant variables from N , all remaining variables are

important to the reduced query. This is because D is the same set for both queries

and the removal of unimportant variables from N does not remove any edges

between important variables. Thus, any variable on a path between D variables

in N is on the same path in M . Therefore, any variable that was important

in N is also important in M . As all unimportant variables in N are removed,

this means that all variables in M are important to the reduced query. Thus, all

conditionally degenerate relations that we remove from M are between pairs of

important variables. Removing such edges changes the structure and can result

in unimportant variables. Note that variables in D are important regardless of

structure. Thus, the variables that become unimportant are those that were on

a path between D variables but, after the removal of degenerate relations, are no

longer on any such path (and are not in D themselves).

Suppose that removing degenerate parents results in variables that are unim-

portant to the current query, M � o[V \U ] � o′[V \U ]. Such variables can then

be removed from M to give a smaller CP-net and dominance query. This reduced

query will be equivalent to M � o[V \U ] � o′[V \U ] (and, thus, to N � o � o′) by

the same reasoning as M � o[V \U ] � o′[V \U ] is equivalent to N � o � o′. Let
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us call this new reduced CP-net P . We can then repeat this process with P . If

there are any new conditionally degenerate relations, these can be removed from

the structure of P . If this results in more unimportant variables, we remove them

to produce an even further reduced CP-net and query that is still equivalent to

the original, though much simpler to answer. We continue to apply this procedure

until we reach a CP-net that has no unimportant variables after any degenerate re-

lations are removed. The result is a simplified dominance query that is equivalent

to our original problem.

At each simplification stage we are identifying variables that are unimportant to

the current query and fixing them to reduce the problem. Thus, the same reasoning

as used with the first reduction can be applied to show the equivalence of the

increasingly reduced queries with the original. However, we can also consider this

process as repeatedly identifying additional constraints that simplify our problem

further without affecting completeness. After each simplification, the next set of

unimportant variables can be considered ‘conditionally unimportant’ to our query

under the current simplifying constraints.

Example 3.8. We now illustrate how to perform iterative removal of unimportant

variables, using our running example. In Example 3.2, after removing the unim-

portant variables and adjusting the CPTs, the resulting CPT(X5) and CPT(X8)

have invalid (degenerate) parents, whereas the resulting CPT(X3) remains non-

degenerate. Changing the value of X2 no longer affects preference over X5. Thus,

the parent-child relationship X2 → X5 is now degenerate. Similarly, the rela-

tion X5 → X8 is also now degenerate. Notice that this occurred despite the fact

that all parent-child relationships were valid in N . These relations become degen-

erate under the condition U = o[U ] (they are conditionally degenerate). Note that

we only have to check the adjusted CPTs for conditional degeneracy as all other

CPTs remain the same as in N .

As we have discussed above, degenerate edges do not add anything to a CP-

net and can, thus, be removed without semantically changing the CP-net or any

associated dominance queries. Thus, we remove these edges from the reduced

CP-net, M (Figure 3.2). The resulting structure is given on the left hand side of

Figure 3.3. We then reduce the CPTs of the variables that have lost a parent by

removing the parent from the CPT. This is a trivial reduction as degenerate parents

do not affect the child’s preference. Thus, all values of the degenerate parent result

in the same preference order in all cases. The reduced CPT is obtained simply

by ignoring the removed parent(s). For example, by removing the edge X2 → X5,

CPT(X5) will become the unconditional preference 2 � 1 � 0. This was the

preference over X5 given by every possible assignment to X2. This is different to
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the previous CPT adjustments as we do not have to fix the invalid parent (X2) at

any particular value – all values result in the same preference rule.

As we have removed only degenerate edges, there has been no change to the

preference structure represented by the CP-net. Thus, our reduced dominance

query has not changed and remains equivalent to the original. We now attempt

to identify and remove further unimportant variables. The set D has not changed

as they are not affected by unimportant variable removal. The variables in D are

coloured blue in our current structure (left hand side of Figure 3.3). These are

important to our reduced query by definition. The second criterion for importance

is to be on a directed path between two variables in D. Variables that meet

this condition are coloured red. The remaining variables without a colour are

unimportant to our reduced query by definition. Thus, X8 is unimportant and

can be removed from the structure by the same reasoning as before. Removing X8

leaves us with the structure on the right hand side of Figure 3.3.

We have now reduced our original dominance query to an equivalent query

over a CP-net with six variables and 216 outcomes. This is about 4% of the

size of the original outcome space to be searched. The reduced query is given

in Table 3.3 (where U denotes the total set of unimportant variables removed).

The removal of variable X8 requires only the adjustment of CPT(X9) (which we

omit from this example). Thus, only the relation X5 → X9 has the possibility

of being conditionally degenerate. If so, we remove it from the structure. In this

new structure, every variable except X4 is in D as the set D is not affected by

this process. As variables in D are permanently important, only X4 can possibly

become unimportant to our query. However, as X4 is on a path between X2

and X6 (or X3), it will remain important as the only possible degenerate edge to

be removed is X5 → X9. Thus, all variables remain important and so we cannot

identify any further unimportant variables. We therefore cannot reduce the CP-

net any further via this method and so we move onto our second preprocessing

stage. However, for other dominance query examples, we can iterate the process

of removing unimportant variables several more times.
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Figure 3.3: Second Iteration of Removing Unimportant Variables
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Variable 2 3 4 5 6 9

Binary/Tertiary B B B T T T

o[V \U ] 1 0 0 2 0 1

o′[V \U ] 0 1 0 0 1 2

Table 3.3: Twice Reduced Dominance Query

Applying suffix fixing and prefix fixing as pruning measures, as Boutilier et al.

(2004a) and Wilson (2004b) suggest, one would prune all improving flips in the

IFS search that change a variable in P ∪S (the matching prefix and suffix variables

for o and o′). By Proposition 3.5, this is equivalent to removing the unimportant

variables from the original CP-net, N , by fixing their values. However, from here

our preprocessing method diverges from prefix and suffix fixing pruning and the

two reduce dominance query complexity in distinct ways.

The prefix and suffix fixing results show that, when searching for an IFS, we

only need to explore directions that preserve any matching suffix and prefix (that

is, that do not change any of P ∪ S). A more effective way of using this result is

to apply it to every new outcome reached by the IFS search. Suppose we reach

the outcome o∗. We have pruned any directions that change P ∪ S, so o∗ must

have the same or more matching prefix and suffix variables with o than o′ does.

Let P ′∪S ′ be the matching prefix and suffix variables of o∗ and o. When continuing

the search from o∗, we are essentially searching for an IFS o∗  o. Thus, by the

prefix and suffix fixing results, when searching from o∗ onwards, we can now prune

any direction that does not preserve P ′ ∪ S ′, where P ∪ S ⊆ P ′ ∪ S ′. Thus, by re-

evaluating the matching prefix and suffix at each new outcome, we obtain stronger

and stronger pruning conditions as we move through the search.

Eventually, as our search continues, the matching suffix and prefix may contain

variables such that o′[X] 6= o[X] originally. Thus, this method will prune flips of

variables in D, important variables. In general, this method can prune flips of any

variable, including those that we cannot remove by iterative unimportant variable

removal. As our preprocessing cannot remove these variables, these flips could not

be removed (pruned) by our preprocessing procedure. Note that, as preprocessing

removes variables (by fixing them) at the beginning (before dominance testing

commences), it prunes all possible flips of these variables from the entire search.

Whereas these stronger pruning conditions offered by suffix fixing and prefix fixing

109



3. CP-Net Preprocessing for Efficient Dominance Testing

are only in place for certain sections of the search – once the larger matching prefix

or suffix is obtained.

Conversely to the above, our preprocessing method can also remove aspects of

the dominance query that are not affected by using prefix and suffix fixing alone.

Any conditionally unimportant variables (unimportant variables identified after

the first iteration) that we identify and remove from the CP-net are removed from

the entire search (no flips of these variables are considered). As these variables

are not in the original matching prefix or suffix, P ∪ S, prefix and suffix fixing

can only prune the flips of such variables for certain sections of the search. In

particular, such directions can only be pruned once an outcome is obtained that

has the conditionally unimportant variable in its matching prefix or suffix with o.

As the two reduce dominance query complexity in distinct ways, they can be used

together to be more effective – that is, using suffix and prefix fixing pruning when

answering a preprocessed query will reduce the query complexity further.

Remark. One can consider the iterative removal of unimportant variables to be

a stronger version of prefix and suffix fixing. It is stronger due to the addition

of fixing conditionally unimportant variables (not just the original unimportant

variables). Thus, one might consider applying this stronger version as a pruning

condition, as we do with prefix and suffix fixing. Like prefix and suffix fixing,

the iterative removal of unimportant variables would be a successively stronger

condition as the search progressed as the number of unimportant variables can

only grow (as previously identified unimportant variables remain fixed). However,

performing the iterative removal of unimportant variables at each new outcome

and storing the reduced structures is likely to result in a high computational cost.

Recall that the existing pruning methods generally have linear or polynomial cost

in n. Further, we could not use the second stage of our preprocessing (separation

of queries) in this manner as it does not prune or reduce the search tree, but rather,

turns it into several smaller search trees. Thus, we decided to apply our method as

a preprocessing procedure, rather than a successively stronger pruning condition.

This means that we apply it only to the original query (not for each outcome

obtained in the subsequent dominance query search). In our experimental results,

we find that our preprocessing significantly improves dominance testing efficiency.

We conjecture that applying it as a pruning method would not improve efficiency

by much. In fact, the additional computational cost is likely to reduce overall

efficiency.

We have now shown how we can iteratively remove unimportant variables in

order to reduce the complexity of a given dominance query. The resulting, reduced
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query is equivalent to the original. However, in general it is far simpler to answer as

we have exponentially reduced the outcomes space we need to search over to find an

IFS (by fixing the variables we removed). We have also shown that, despite being

based on the same theoretical results, this method reduces dominance queries

in a distinct manner from prefix and suffix fixing pruning (in fact, they can be

combined for a more efficient procedure). Once the CP-net and the dominance

query have been reduced via unimportant variable removal, we then apply the

second preprocessing stage – separation into independent sub-queries – to simplify

the query further. This stage is described in the following section.

3.2.2 Separation of Connected Components

In this section, we describe the second stage of our preprocessing method. Once

a query has been reduced by iteratively removing unimportant variables, we then

partition it into independent sub-queries that can be answered separately. Each

sub-query will be much easier to answer and the overall complexity of the problem

will be reduced exponentially again. Moreover, as these sub-queries are indepen-

dent, they can be answered simultaneously for further improved efficiency.

If a CP-net’s structure is disconnected, then the variables in one connected

component cannot impact preferences over variables in another component. This

is because the CP-net structure represents preferential dependence. Thus, two

unconnected variables cannot be preferentially dependent. Hence, if we wish to

answer the query N � o � o′, then we can address each connected component

of N individually, as the preference structure over each component is independent.

We prove this formally in the following proposition. First, we must define the

sub-CP-nets of N that are represented by its connected components.

Definition 3.9. Let N be an acyclic CP-net with structure G. Let G′ be a

connected component of G. Let N ′ be a CP-net with structure G′. For every

variable, X ∈ G′, the CPT for X in N ′ is the same as in N . As G′ is a connected

component, if X ∈ G′, then all parents of X are also in G′. Thus, any X ∈ G′ has

the same parents as in G. Thus, the CPTs from N are also appropriate for the

structure of N ′ and so N ′ is a well defined, acyclic CP-net. We call N ′ the induced

sub-CP-net of N over G′.

These sub-CP-nets essentially partition the preference structure encoded by N .

This is because the preference structure over each connected component is inde-

pendent of the others. Thus, evaluating a dominance query for each sub-CP-net

separately is equivalent to evaluating the query for the whole CP-net.
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Proposition 3.10. Let N be a CP-net over variables V with structure G. Let

G1, G2, ..., Gm be the connected components of G. Let Vi ⊆ V denote the variables

in Gi. Let Ni be the induced sub-CP-net of N over Gi. Let o and o′ be any two

outcomes associated with N such that o 6= o′ (otherwise the dominance query is

trivially false). Then we have

N � o � o′ ⇐⇒ ∀i (o[Vi] = o′[Vi] ∨Ni � o[Vi] � o′[Vi]).

Proof. See Appendix E.9.

This result can be simplified in the case where N has had all unimportant

variables iteratively removed, as will be the case in our preprocessing procedure.

In this case, every connected component must differ between o and o′ on at least

one value. If a whole connected component is the same in both o and o′, then the

variables in this component would be unimportant to our query and, thus, would

have been removed previously. This is proven below.

Corollary 3.11. Let N be a CP-net and let o and o′ be associated outcomes such

that o 6= o′. Let M be the CP-net over variables V obtained by iteratively removing

variables from N that are unimportant to the query N � o � o′. Let U denote

the total set of unimportant variables removed. Let G be the structure of M and

let G1, ..., Gm be the connected components of G. Let Vi ⊆ V denote the variables

in Gi. Let Mi be the induced sub-CP-net of M over Gi. Then we have

M � o[V \U ] � o′[V \U ] ⇐⇒ ∀i Mi � o[Vi] � o′[Vi].

Proof. First note that o 6= o′ implies o[V \U ] 6= o′[V \U ]. All variables removed

from N are unimportant to the query N � o � o′. Thus, every X ∈ U must

satisfy o[X] = o′[X]. Therefore, we have o[U ] = o′[U ]. If o[V \U ] = o′[V \U ], then

we would have o = o′, a contradiction, so we must have o[V \U ] 6= o′[V \U ]. The

result o[U ] = o′[U ] also shows that U 6= V and so M is a non-trivial CP-net with

variables V \U 6= ∅. The result now follows directly from Proposition 3.10 if we

can show that o[Vi] 6= o′[Vi] holds for all Vi.

Suppose, for the sake of contradiction, that there exists some Mi such that

o[Vi] = o′[Vi]. This means that, for every variable, X, in the connected compo-

nent Gi, we have that o[X] = o′[X]. Let X be a variable in Gi (there must be

at least one as we assume connected components to be non-empty). Let D be

the set of variables in M (that is, in V \U) that take different values in o[V \U ]

and o′[V \U ]. As o[X] = o′[X], we know that X is not in D. As Gi is a connected

component, all ancestors of X (in G) are in Gi also. Thus, for every Y ∈ Anc(X),

we have o[Y ] = o′[Y ]. This shows that no ancestors of X are in D either (by a
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similar argument, we can also show that no descendants of X are in D). Thus,

by definition, X is unimportant to the query M � o[V \U ] � o′[V \U ]. This is

a contradiction as the iterative removal of unimportant variables continues until

it reaches a CP-net with no unimportant variables. Thus, X would have been

removed by this process. As we have reached a contradiction, we have proven

that there is no sub-CP-net Mi such that o[Vi] = o′[Vi]. Thus, we have shown

that o[Vi] 6= o′[Vi] for all i and so our result follows from Proposition 3.10.

The process of iteratively removing unimportant variables repeatedly removes

variables and edges from the CP-net structure. This is likely to disconnect the

structure into two or more connected components. In this case, applying the above

result to separate the resulting query into sub-queries will again reduce the query

complexity exponentially. Therefore, despite being a fairly intuitive separation

mechanism, this can be a very powerful addition to our preprocessing method.

Example 3.12. Let N be the CP-net given in Example 3.2. In previous ex-

amples, we iteratively removed unimportant variables from N (with respect to

the dominance query N � o � o′). This resulted in a CP-net with the struc-

ture given on the right hand side of Figure 3.3 and a reduced dominance query

given by Table 3.3. The resulting structure is disconnected and has two connected

components. Let M1 denote the induced sub-CP-net over the connected com-

ponent with variables {X2, X3, X4, X6} and let M2 denote the sub-CP-net over

the {X5, X9} connected component. By Corollary 3.11, our reduced query over M

is true if and only if it locally true for both M1 and M2. That is, if any only

if M1 � (1, 0, 0, 0) � (0, 1, 0, 1) and M2 � (2, 1) � (0, 2). By Corollary 3.6 and

our argument regarding iterative variable removal, our original query, N � o � o′

is equivalent to the reduced query over M . Thus, N � o � o′ is true if and only

if the M1 and M2 queries are both true. This means that we have reduced the

original query over CP-net N , with 5,184 outcomes, to two queries over CP-nets

with 24 (M1) and 9 (M2) outcomes, respectively. Thus, the original problem has

been reduced to searching over a total space of 33 outcomes, less than 1% of the

size of the original space we needed to search for an IFS.

In general, suppose that we obtain CP-net M with n variables by iteratively

removing unimportant variables from N . We then split the reduced dominance

query into k > 1 sub-queries (if k = 1, separation does not reduce the problem)

over k sub-CP-nets, M1, ...,Mk. Let ni be the number of variables in Mi, then

the ni values must sum to n. In the binary case, the space of outcomes we must

search through to answer the Mi sub-query is 2ni . Thus, we can consider the size
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of our new problem (answering all k sub-queries) to be

k∑
i=1

2ni .

This is the total size of the space we must search through to answer these sub-

queries by searching for their relevant IFSs. This size is maximal when one con-

nected component has n − k + 1 variables and the other k − 1 components each

have 1 variable. In this case, the new size of the problem is 2n−k+1 + 2(k−1). The

best scenario (when the new problem size is minimised) is when all connected com-

ponents have equal size (if possible). In this case, the new problem has size k2n/k.

The reduced query over M originally had size 2n. Thus, by separating the query,

we have reduced the size of the problem by an exponential factor (which increases

with k), regardless of how well the components partition the variables. The re-

sults are similar in the non-binary case, though the reduction factors are larger

in general as the domain sizes (multiplicative factors) can be greater than two.

Thus, the proportional reduction in the size of the dominance query problem will

be greater, however, the original size of the problem will also be greater than the

binary case.

The individual sub-queries produced by separation are much simpler to answer

than the reduced query overM . Further, we have shown above that the overall task

of answering all of these sub-queries is still significantly simpler than answering the

query over M . An even more efficient way to answer our query would be to answer

all k sub-queries simultaneously, rather than successively. This is possible because

they do not rely on one another. However, we answer sub-queries successively

in our experiments, as this time elapsed more accurately represents the size of

the reduced task. Further, by answering sub-queries successively, it is possible to

determine the query to be false without answering every sub-query – once one sub-

query is found false, we know the original query to be false also by Corollary 3.11.

Our complete preprocessing method is called UVRS (unimportant variable re-

moval and separation) preprocessing. This method iteratively removes unimpor-

tant variables and then separates the resulting query into independent sub-queries.

The result, as we have demonstrated, is a query or set of queries that are equivalent

to the original but with exponentially reduced complexity. Algorithm 2 gives the

pseudocode for this process. Note that Algorithm 6 (see Appendix B.3) is implic-

itly called here to calculate any ancestor sets. To get descendant sets, we simply

reverse all edge directions in the structure (in practice, we do this by transposing

the corresponding adjacency matrix) before applying Algorithm 6.
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Algorithm 2: UVRS CP-Net Preprocessing

Input : N � o � o′ – Dominance query (o 6= o′)

Output: M1 � o[V1] � o′[V1], ...,Mk � o[Vk] � o′[Vk] – Set of (equivalent)

reduced dominance queries

1 D = {X ∈ V |o[X] 6= o′[X]};
2 I = D; // I - set of important variables

3 for X ∈ V \D do

4 Anc(X) – Set of ancestors of X;

5 if Anc(X) ∩D 6= ∅ then

6 Dec(X) – Set of descendants of X;

7 if Dec(X) ∩D 6= ∅ then

8 Add X to set I;

9 end

10 end

11 end

12 U = V \I; // U - set of unimportant variables

13 M = N ;

14 V ′ = V ;

// Remove unimportant variables iteratively until a CP-net

with no unimportant variables is reached:

15 while U 6= ∅ do

16 Remove variables U from the structure of M ;

17 Adjust CPTs of every variable that has lost a parent;

18 For each variable that lost a parent, remove any parent edges that are

now degenerate (and adjust their CPTs appropriately);

19 Remove U from V ′; // V ′ - variables left in M

20 I = D;

21 for X ∈ V ′\D do

22 Anc(X) – Set of ancestors of X (in M);

23 if Anc(X) ∩D 6= ∅ then

24 Dec(X) – Set of descendants of X(in M);

25 if Dec(X) ∩D 6= ∅ then

26 Add X to set I;

27 end

28 end

29 end

30 U = V ′\I; // Variables unimportant to the reduced query

31 end

// Continued on the next page
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// Continuation of Algorithm 2

// Identify connected components in the reduced structure:

32 V ′ – The set of variables in the reduced CP-net, M ;

33 C – Empty list of connected components;

34 T – Set of variables in V ′ with no parents in M ;

35 TD – List of descendant sets for variables in T ;

36 if |T | = 1 then

// The structure must be connected

37 C = {V ′};
38 end

39 else

40 while T 6= ∅ do

41 Select at random X ∈ T ;

42 Remove X from T ;

// Identify the connected component of X, use TD to

look up descendant sets:

43 G = {X} ∪Dec(X);

44 repeat

45 for Y ∈ T do

46 if Dec(Y ) ∩G 6= ∅ then

47 G = G ∪ {Y } ∪Dec(Y );

48 Remove Y from T ;

49 end

50 end

51 until G does not increase;

52 Add G to list C;

53 end

54 end

// Separate the reduced query into sub-queries over the

identified connected components:

55 k = length(C) ≥ 1 ; // Number of connected components

56 Q – Empty list of sub-queries;

57 for i ∈ {1, ..., k} do

58 Vi – Variables in ith component in list C;

59 Gi – Induced structure of M over Vi; // ith connected component

60 Mi – Sub-CP-net of M over Gi;

61 Add query Mi � o[Vi] � o′[Vi] to list Q;

62 end

63 return Q;
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As Algorithm 6 has time complexity O(n3), our preprocessing method (Algo-

rithm 2) has total complexity O(n5 + mn2p), where m is the maximum parent

set size and p is the maximum number of parental assignments for any variable in

the original CP-net, N . The existing method for CP-net preprocessing, forward

pruning, has complexity O(nrd2), where r is the maximum number of conditional

preference rules for a variable and d is the maximum domain size (Boutilier et al.,

2004a). Note that r and p are essentially equivalent. For reasonably small values

of d and particularly in the binary case, these worst-case complexities suggest that

UVRS would be slower than forward pruning in general. However, our experiments

find that UVRS is in fact significantly faster than forward pruning in practice, even

though we are looking at the binary case. The p (and r) term grows exponentially

with m (which can be as large as n− 1), meaning both methods have intractable

complexity. However, in our experiments, we find that the improvements in query

complexity outweigh their computational cost, even as n increases. This is possible

because dominance testing is also an intractable task and so reduction in query

complexity can outweigh exponential preprocessing times. Furthermore, as we find

UVRS to be more efficient than forward pruning in practice, this suggests that in

general the preprocessing times are faster than the worst case complexity.

3.2.3 Combining UVRS with Forward Pruning

In this section, we explain how UVRS can be combined with forward pruning

(Boutilier et al., 2004a), the existing method of CP-net preprocessing for efficient

dominance testing (full details of forward pruning can be found in §2.2.3). We show

that this combination is more effective at reducing dominance query complexity

than the sum of the two methods used individually. In particular, combining

UVRS with forward pruning enables UVRS to reduce the CP-net further than

when used in isolation.

Rather than removing irrelevant variables from the CP-net, forward pruning

removes impossible variable values from the variable domains. However, if a vari-

able’s domain is reduced down to one value, this is equivalent to fixing (and remov-

ing) the variable, as we do for unimportant variables in UVRS. We shall remove

any variables that have a reduced domain size of one from forward pruning, in the

same way as we remove unimportant variables. Further, we will remove any degen-

erate parent-child relations resulting from forward pruning. Such removals are not

required by Boutilier et al. (2004a). While these modifications do not semantically

change the CP-net produced by forward pruning, they allow forward pruning to

affect the CP-net structure, not just the domains. This is what enables forward
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pruning to improve the efficacy of UVRS when used in combinations. Thus, these

technical modifications are necessary here, in order to obtain a combination that

is more effective than the simple sum of the two methods used individually.

Forward pruning has the advantage that it can prove the dominance query to be

false in some cases, meaning no dominance testing is required. If forward pruning

reduces a variable’s domain to the empty set, then there are no ‘possible’ values

for this variable (that is, there are no plausible values this variable can take in the

required IFS). Thus, in this case, the dominance query is automatically false and

no further action (preprocessing or dominance testing) is required. This can only

be achieved by UVRS in the case where o = o′ as all variables are unimportant

and, thus, removed. However, o = o′ is a trivially false case that it is routine to

check for prior to commencing any dominance testing or preprocessing. The above

failure condition gives forward pruning an advantage over UVRS as it can reduce

non-trivial dominance queries to a problem of size zero (as they are answered).

UVRS and forward pruning reduce CP-nets in distinct but overlapping ways.

Any variable that is identified by UVRS as unimportant or subsequently condi-

tionally unimportant because it does not have ancestors in D will also have its

domain reduced to a single value (thus removing it) by forward pruning. How-

ever, if an unimportant or conditionally unimportant variable has ancestors in D

but no descendants, then it is not guaranteed to be removed, or even reduced, by

forward pruning. Further, separation of the query reduces the dominance query

search in ways that cannot be affected by forward pruning. This is because ap-

plying forward pruning and unimportant variable removal results in two reduced

CP-nets with overlapping variables (if forward pruning does not automatically find

the query false), though they may have smaller domains in the forward pruning

case. Any dominance testing performed after forward pruning must consider all

possible outcomes associated with the reduced CP-net. That is, all possible vari-

able assignment combinations are considered. However, when we apply separation

to the CP-net with unimportant variables removed, we are essentially reducing

the combinations we need to consider. Thus, due to the overlap with the forward

pruning reduced CP-net, separation can remove combinations that are unaffected

by forward pruning. Conversely, forward pruning can prune the domains of (and

possibly remove) important variables, which cannot be reduced by UVRS. Thus,

the two methods both remove aspects of the CP-net that are unaffected by the

other. As they are distinct in this manner, their combination must reduce the

CP-net further than either method can alone. We will actually show that their

combination is stronger than the sum of both methods used individually.
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Combining UVRS with forward pruning is simple. Suppose N � o � o′ is

the dominance query of interest. First, we apply UVRS to reduce it to a simpler

query (or set of queries). We then apply forward pruning to each of the reduced

queries. If forward pruning does not alter the structure of the CP-net associated

with a given query, then we stop reducing that query at this point. Note that,

even if a domain is reduced, if no edge or variable is removed, then the structure is

unchanged and we stop preprocessing this query. For those queries where forward

pruning does alter the CP-net structure, we then re-apply UVRS one last time.

As UVRS and forward pruning both produce reduced queries (or sets of queries)

that are equivalent to the original, each new query (or set of queries) generated by

this method must be equivalent to the previous. Thus, in order for N � o � o′ to

hold, all produced queries must also be true. Therefore, if forward pruning finds

any query to be false in this process, then we can terminate the preprocessing

as N � o � o′ must also be false. The pseudocode for this combined preprocessing

procedure is given by Algorithm 3.

We assume that the query is not the trivial case, N � o � o, as this should be

checked before commencing. As o 6= o′, UVRS cannot find any of the produced

dominance queries false (by removing all variables) in this procedure, by the follow-

ing reasoning. If N has a variable X such that o[X] 6= o′[X], then X is important

to the original query and any reductions. Thus, X cannot be removed by UVRS

and, so, UVRS cannot remove all variables. Furthermore, as we showed in the

proof of Corollary 3.11, if o 6= o′, every connected component produced by UVRS

must differ on some variable between o and o′. Thus, every sub-query produced

by the first UVRS application must contain a variable, X, such that o[X] 6= o′[X]

(that is, each sub-query is non-trivial). Similarly, such variables cannot be re-

moved by forward pruning (without resulting in a failed query). Thus, if UVRS

is applied a second time, then it cannot remove all variables (and find the query

false) by the same reasoning as above as it is, again, applied to a non-trivial query.

Hence, UVRS cannot find a query to be false in this process and always returns a

reduced query or set of queries.

As we apply only forward pruning and UVRS, each new query (or set of queries)

produced is equivalent to the previous. Thus, the resulting reduced query or set

of queries must be equivalent to the original, unless the query is found false by

preprocessing. If Qfinal denotes the set of resulting queries, then N � o � o′ holds

if and only if every query in Qfinal is true.

We stop reducing a query if forward pruning results in no structural changes

because such queries cannot be further reduced by either UVRS or forward prun-

ing. Suppose forward pruning is applied to M � a � b and makes no alterations to
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Algorithm 3: UVRS and Forward Pruning Combined Preprocessing

Input : N � o � o′ – Dominance query (o 6= o′)

Output: M1 � a1 � b1, ...,M` � a` � b` – Set of (equivalent) reduced

dominance queries

OR

The dominance query is false

// Apply UVRS (Algorithm 2) to the query

1 Q – Set of reduced queries produced by applying UVRS to N � o � o′;

// Qcontinue - Set of reduced queries that require a second

application of UVRS

2 Qcontinue – Empty list of dominance queries;

// Qfinal - Set of reduced queries produced by applying our

combined preprocessing

3 Qfinal – Empty list of dominance queries;

// Apply forward pruning to each resulting query:

4 for M � a � b ∈ Q do

5 Apply forward pruning to M � a � b;

6 if Forward pruning finds M � a � b false then

// Procedure terminates

7 return N � o � o′ is false;

8 end

9 else

10 M ′ � a′ � b′ – Query produced by forward pruning;

11 if M and M ′ have identical structures then

12 Add M ′ � a′ � b′ to Qfinal;

13 end

14 else

15 Add M ′ � a′ � b′ to Qcontinue;

16 end

17 end

18 end

// For those queries where forward pruning does change the

structure:

19 for M ′ � a′ � b′ ∈ Qcontinue do

20 Apply UVRS to M ′ � a′ � b′;

21 M1 � a1 � b1, ...,Mk � ak � bk – Resulting set of reduced queries;

22 Add each Mi � ai � bi to Qfinal;

23 end

24 return Qfinal;
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the structure of M (and does not find the query to be false). Let M ′ be the CP-net

produced by forward pruning (note that, as the set of variables has not changed, a

and b are not altered). Re-applying forward pruning to M ′ will not have any effect

as we have already removed all impossible values for the query a � b. By our

procedure, M � a � b is a query produced by UVRS. Thus, M has a connected

structure with no unimportant variables or degenerate parents. Reducing M to M ′

did not change the structure, so the structure remains connected and all variables

remain important. Forward pruning removes degenerate relations so, as no edges

are removed, all relations must remain valid (non-degenerate). Thus, applying

UVRS to M ′ � a � b will not have any effect. Therefore, if forward pruning does

not affect the structure (when applied after UVRS), we cannot further reduce this

query via either method.

Alternatively, if a query is reduced by UVRS, forward pruning, and then UVRS

again (as forward pruning changes the structure), we stop preprocessing as, again,

neither method can make any further progress. As UVRS was applied last, the

resulting structure(s) are connected and cannot contain any unimportant variables

or degenerate relations. Thus, re-applying UVRS to the resulting structure(s) will

have no effect. Suppose Mi � ai � bi is one of the queries produced by the final

application of UVRS. Then this query is the (partial) result of applying UVRS to

some query, M � a � b. As forward pruning was applied previously, M contains

no impossible values. Suppose that UVRS identifies and removes an unimportant

variable, X, from M . If X has no ancestors in D, then X would have been

fixed and removed by forward pruning. Thus, X must have ancestors in D but

no descendants, by definition of unimportance. Thus, all descendants of X are

also unimportant and would be removed by UVRS. Hence, for every unimportant

variable removed, their children are also removed. As no remaining variable has

lost a parent, no CPT adjustment is required and, thus, all relations remain valid.

The unimportant variable removal process then terminates after the first iteration

and we go on to apply separation. Therefore, any variable in Mi has the same

parent set as in M . Applying forward pruning to Mi would, therefore, progress

exactly as before for the remaining variables. As all impossible values were removed

previously, this means that no further values are removed and so forward pruning

has no effect. Thus, once UVRS, forward pruning, and UVRS again have all been

applied, a query cannot be further reduced by either method.

While a second application of forward pruning would have no effect, our second

application of UVRS can result in further reduction. This is because, applying our

modified forward pruning (which removes any fixed variables and degenerate par-

ents) can enable UVRS to be more effective. In general, UVRS does not benefit
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from being applied multiple times. The resulting CP-nets contain only important

variables and valid edges and they have connected structures. Thus, applying

UVRS again would do nothing. However, forward pruning may remove variables

or edges, changing the structure produced by the initial UVRS reduction. Altering

the structure in this manner can result in new unimportant variables1 or a dis-

connected structure, enabling further UVRS reduction. This is why our forward

pruning modifications are necessary – the reductions made by forward pruning

must be reflected in the structure to enable identification of newly unimportant

variables or disconnected structures.

Hence, this combination incorporates both UVRS and forward pruning re-

duction and then additional UVRS reductions enabled by the effects of forward

pruning. This means that our combination reduces the problem further than sim-

ply applying both methods individually (in fact, as further UVRS reduction is

applied, it will be reduced by a further exponential factor). Recall that using both

methods is, in turn, strictly better than using either method alone as they both

prune distinct aspects of the CP-net, unaffected by the other.

This combination reduction can also be performed by applying forward pruning

first and then applying UVRS to the reduced query. By applying forward pruning

first, the single UVRS application has its full effect (that is, including UVRS

reductions enabled by applying forward pruning). Neither method can further

reduce the query from this point, by the same explanations as above. We choose to

apply the combination in the manner detailed by Algorithm 3 instead for efficiency.

As we mentioned in §3.2.2, we find that UVRS is more efficient to apply than

forward pruning in practice. By implementing UVRS first, we only have to apply

forward pruning (and the subsequent UVRS application) to CP-nets of reduced

size. As preprocessing time increases with CP-net size, this is generally more

efficient than applying forward pruning to the original query and then UVRS to

the reduced. We can see this from our experimental results, as our combination of

methods is more efficient to apply than forward pruning alone. If we instead apply

forward pruning and then UVRS, this must take longer than forward pruning alone

and, thus, be slower than our implementation of the combination. These results

can be seen from the experimental results in Figure 3.6, given in §3.3.2.

Remark. The code we use to apply the UVRS and forward pruning combination in

practice differs slightly from the pseudocode given in Algorithm 3. In particular,

1As we showed in our previous explanations of how this second UVRS application acts, these

new unimportant variables must have ancestors but no descendants in D. Further, they are

all identified and removed by the second UVRS application in the first iteration of removing

unimportant variables.
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our code will apply UVRS, then repeatedly attempt to apply forward pruning

and UVRS alternately to the reduced queries until one does not alter the sub-

CP-net structure (unless the query is found false at some point). This causes a

distinction only in the cases where UVRS is implemented a second time and makes

a structural alteration. Our code will attempt (unsuccessfully) to apply forward

pruning a second time to the resulting query before terminating. On the other

hand, Algorithm 3 would not attempt this second forward pruning application.

This means that the combination preprocessing times (and net improvement to

dominance testing efficiency) that we see in the §3.3 experimental results could be

slightly improved upon by using the Algorithm 3 procedure exactly.

Previously, we introduced a novel method of preprocessing CP-nets for more

efficient dominance testing. We have now demonstrated that this method is dis-

tinct from the existing technique, forward pruning, and shown how they can be

combined. We have also shown this combination to be more powerful (by an

exponential factor) at reducing the CP-net than simply applying both methods

individually. That is, by combining the techniques in this manner, we obtain a

preprocessing procedure that is more effective than the sum of its components.

3.3 Experimental Evaluation of Preprocessing

Performance

In this section, we evaluate the performance of our preprocessing method (UVRS)

experimentally. We compare the performance of UVRS to the existing preprocess-

ing method, forward pruning (Boutilier et al., 2004a), and their combination (as

described in §3.2.3). In §3.3.1, we give the details of our experiment and in §3.3.2,

we analyse the results of these experiments. These results show UVRS to be

significantly more effective than forward pruning at improving dominance testing

efficiency in the binary CP-net case. The combination of methods is even more

effective, reducing dominance testing times by up to 60% on average, even as n

increases.

3.3.1 Experiment Details

In this section, we give the details of the experiments we conducted in order

to evaluate and compare the performance of UVRS, forward pruning, and their

combination.
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First, let us consider the performance measures we use in these experiments.

To evaluate the performance of a preprocessing procedure, we must consider how

effectively it reduces dominance query complexity. In §3.2, we used the reduction

in CP-net outcomes to measure the change in dominance query complexity. This

measures the reduction in the associated CP-net size, which is related to query

complexity – the set of CP-net outcomes is the space we must consider when

evaluating whether or not a dominance query holds (usually by searching for an

IFS in this outcome space). Thus, the size of the CP-net reflects the plausible size

of the theoretical dominance testing problem. Further, the reduction in CP-net

size does not depend either on the method we use to answer the resulting queries,

nor the specific code used to implement the preprocessing.

However, CP-net size is not an accurate measure of specific query complexity;

different dominance queries for the same CP-net can have different complexities –

this depends how close the specific outcomes are within the preference graph.

CP-net size reflects the worst case complexity, when the entire outcome space

(preference graph) must be explored in order to answer the query. Further, two

CP-nets can have the same number of outcomes but distinct preference graph

structures. In the non-binary case, they can be distinct even when undirected.

As preference graph structure determines query complexity, two CP-nets with

the same number of outcomes can have distinct distributions of dominance query

complexity. Thus, we cannot predict a ‘likely’ query complexity given only the

number of CP-net outcomes (that is, the worst case query complexity). Thus,

considering CP-net size shows us how preprocessing affects the CP-net and the

worst case query complexity, rather than the exact complexity of the query (or set

of queries) we are interested in.

Alternatively, we can record the time it takes to answer both the original and

reduced queries. This provides a measure of the reduction in specific query com-

plexity. Comparing this reduction in time to the time elapsed by preprocessing

allows us to determine whether the cost of preprocessing is worth the reduction in

query complexity and evaluate the net impact of preprocessing. Time elapsed is

also our primary interest as we are aiming to improve dominance testing efficiency.

These time elapsed results are, however, dependent upon the specific preprocessing

code used and the dominance testing method (and the specific code) used to an-

swer the queries in addition to preprocessing performance, which we are trying to

evaluate. We generally consider relative efficiency, rather than exact time elapsed,

which mitigates the dependence upon dominance testing code to a degree. Ev-

ery preprocessing method uses the same dominance testing code, so their relative

performance is not dependent upon the specific code implementation.
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Finally, we can also consider the outcomes traversed when answering the orig-

inal and reduced queries, as we did in our Chapter 2 experiments. Outcomes

traversed is a theoretical measure of how difficult a query is to answer. Thus, the

reduction in outcomes traversed is not dependent upon the specific code used for

preprocessing or answering dominance queries. This gives us a theoretical measure

of how query complexity has been reduced. However, as different dominance test-

ing methods prune the search tree (and the outcomes traversed) differently, this

measure is still dependent upon the method used to answer the resulting queries.

In particular, the reduction in outcomes traversed reflects how well preprocess-

ing reduces aspects of the query complexity that are not already removed by the

dominance testing method. Thus, the reduction in outcomes traversed is depen-

dent upon the overlap in reduction between the preprocessing method and the

dominance testing method. Further, we cannot compare the reduction in query

outcomes traversed to the cost of applying the preprocessing. Thus, we cannot use

this measure to determine whether the benefit of preprocessing is worth the associ-

ated cost, or determine the net benefit of preprocessing when taking computational

cost into account (as we can with time elapsed).

Each of the above measures has its own distinct benefits and disadvantages.

We will use all three to evaluate the various preprocessing methods. This will

give a more detailed picture of how the preprocessing methods perform, as each

measure illustrates aspects of performance that the others cannot.

While UVRS, forward pruning, and their combination are all applicable to

CP-nets with multivalued variables, our experiments consider only the case of

binary CP-nets. In the multivalued case, we may expect different results as UVRS

benefits from binary variables (and smaller variable domains in general), whereas

forward pruning is likely to be more effective for CP-nets with larger domains,

as we discuss in more detail in §3.4. We intend to evaluate performance in the

multivalued case in our future work.

In order to evaluate and compare their respective performances in the binary

case, we performed the following experiment. Given n (the number of variables),

we generated 1000 random binary CP-nets and then generated 10 random domi-

nance queries for each CP-net. To generate the CP-nets, we used the same random

generator as we used in the Chapter 2 experiments. Full details are given in Ap-

pendix C.1. Generating a dominance query for a binary CP-net over n variables

is done by randomly generating two binary vectors of length n.

We answered each generated query, recording the time elapsed and outcomes

traversed. Then, for each of the three preprocessing methods, we applied the

preprocessing (with slight modifications discussed later in this section) and (if
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necessary) answered the resulting dominance query (or queries). We recorded both

the preprocessing time elapsed and the total time taken to preprocess and then

answer any resulting queries. We also recorded the number of outcomes traversed

in answering the resulting query and the number of outcomes in the reduced CP-

net. If preprocessing results in multiple queries, we record the sum of the number

of outcomes in each associated sub-CP-net and the sum of the outcomes traversed

over the queries that we answer. If preprocessing answers the query (in particular,

finds it to be false), then we recorded zero outcomes traversed for the reduced

query and zero outcomes remaining after CP-net reduction. We repeated this

experiment for each of n = 3, 4, ..., 20.

If preprocessing results in multiple queries, then they must all be true in order

for the original dominance query to be true. Thus, if we find any of these queries

to be false, then we do not need to continue answering the remaining queries, as

we already know the original query to be false. In our experiment, we answer

the resulting queries in increasing order of the number of variables in the asso-

ciated CP-nets. This ordering aims to minimise the dominance testing time for

the reduced queries in the cases where the original query is false; ideally, answer-

ing queries in increasing order of CP-net size until one is found false will avoid

answering more complex queries than necessary.

Let us now consider the method of dominance testing we use in these ex-

periments, in order to answer the original and preprocessed queries. As these

experiments require us to answer a large number of queries, for practicality, we

need to use an efficient dominance testing method; using a basic search algorithm,

or similar, is not feasible. Such methods are also unrealistic in practice and will

be maximally improved by preprocessing as there is no overlap between the query

reduction performed by the preprocessing and answering methods. Thus, using

such basic dominance testing methods will exaggerate the effects of preprocessing

in practice – in reality, we are likely to already be using a more efficient dominance

testing method which may overlap with preprocessing in its reduction methods.

There are many existing methods of answering dominance queries efficiently,

as we reviewed in §2.2.3. Most of these methods improve efficiency by pruning the

associated search tree. In Chapter 2, we introduced a new pruning method and

experimentally compared its performance to several of the existing methods that

preserve search completeness. We also evaluated the performance of all possible

combinations of these methods. For our preprocessing experiments, we have chosen

to use the combination of rank pruning, suffix fixing, and penalty pruning (with

rank prioritisation) for our dominance testing. Out of the methods compared in

Chapter 2, this pruning schema is the most effective (it produces the smallest
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search tree for any given dominance query). This ensures maximal theoretical

overlap with the preprocessing, out of those we considered. Thus, the effect of

preprocessing will not be unrealistically exaggerated. Further, this method is also

one of the most efficient dominance testing methods that we tested. Thus, it

is a realistic choice for dominance testing and will allow our experiments to run

in a practical time frame. Also, as we are aiming to improve dominance testing

efficiency, we naturally want to evaluate whether preprocessing can improve upon

the more efficient dominance testing methods that exist.

Remark. Recall that UVRS uses suffix fixing in the removal of unimportant vari-

ables. In §3.2.1, we showed that our iterative removal of unimportant variables is

distinct from suffix fixing as methods of reducing dominance query complexity. In

particular, we showed that suffix fixing prunes parts of the dominance query that

are unaffected by UVRS (and vice versa). Thus, even though we employ suffix

fixing within UVRS, using suffix fixing pruning when answering the preprocessed

query is not obsolete; it can prune the search tree non-trivially, further improving

dominance testing efficiency. Thus, including suffix fixing in the pruning schema

applied after UVRS (or the combination with forward pruning) can improve the

dominance testing efficiency.

We have elected to use the most effective pruning schema (dominance testing

method) from our Chapter 2 experiments, rather than the most efficient, for two

reasons. Firstly, this method is the union of all of the other pruning techniques

considered. Thus, it will reduce the size of the dominance query search maximally

for every query (rank prioritisation is also shown experimentally to result in the

most effective pruning). This means that this dominance testing method will have

the largest overlap (in regards to query reduction) with the preprocessing method.

Thus, our results will more realistically depict (without exaggeration) the impact

of preprocessing on dominance testing complexity.

Secondly, the CP-nets and dominance queries returned by different preprocess-

ing methods can have different distributions – different from one another as well

as different from the distribution we tested in our Chapter 2 experiments. It is

possible that certain types of preprocessing may produce queries that are partic-

ularly well suited to one pruning method more than another. In general, it is

possible that the relative performances observed in Chapter 2 may not be the case

for these new distributions. However, regardless of distribution, the combination

of all three (suffix fixing, penalty pruning, and rank pruning) will always be the

most effective pruning method, as we explained. By using the combination of all

three, we cannot inadvertently favour one set of reduced queries over another. As
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this combination is also one of the most efficient in our Chapter 2 experiments,

this solution is also practical for our experiments here and a realistic choice in

practice. Further, using this method still illustrates whether preprocessing can

improve upon the more efficient of the existing dominance testing methods.

There are other methods of dominance testing that we did not consider in

our Chapter 2 experiments (see §2.2.3) which may be more efficient. However, our

focus is on how the dominance testing efficiency can be improved by preprocessing.

Thus, it is sufficient for these experiments to use a dominance testing method that

is efficient enough for practical use and that does not exaggerate the impact of

preprocessing.

Our chosen dominance testing method includes a set of three initial conditions

that, if true, prove the dominance query to be false (see Appendix C.2 for details).

These conditions are simple to check and are evaluated before dominance testing

commences. If any of these conditions are found to hold, then no search is required.

Thus, as they are simple conditions to evaluate, these checks improve dominance

testing efficiency. Prior to dominance testing, preprocessing reduces the original

query into several, successively smaller but equivalent queries (or sets of queries)

to which we can apply these simple checks and potentially determine the query

to be false earlier. Thus, we have integrated these checks into our preprocessing

procedures as they allow us to identify cases where no further preprocessing is

required (as we can already determine the query to be false).

For UVRS, we check these conditions for the initial query, then again after each

removal of unimportant variables (and subsequent degenerate relations). After

separation, the initial conditions are checked for each of the new sub-queries before

any dominance testing commences. If any initial condition holds at any stage, we

can stop preprocessing as the original query must be false. This enables UVRS to

determine non-trivial queries to be false and, thus, improves the reduction power of

UVRS as well as the overall efficiency of answering dominance queries with UVRS.

To make our comparisons fair, we have also added these checks to forward pruning.

The initial conditions are evaluated for the original query and the reduced query

produced by forward pruning. For the combination of methods, we implement the

same checks as above each time UVRS or forward pruning is applied. This will

improve the effectiveness and overall efficiency of using forward pruning or the

combined preprocessing.

This modification is particularly likely to improve efficiency in the case of UVRS

and the combined preprocessing. This is because, over the course of its application,

UVRS produces several new (increasingly reduced) queries due to the iterative

removal of unimportant variables and the final separation into multiple sub-queries.
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This offers multiple opportunities to check the initial conditions and, potentially,

answer the query without further preprocessing, nor any dominance testing. It

is worth checking the conditions for each new query, both because the remaining

preprocessing time is saved and because it is possible for a query to satisfy one of

the conditions (proving the query false) prior to reduction but not after. Thus,

checking each new query maximises the chance of finding the query false without

needing to perform dominance testing.

The impact of adding these initial conditions may contribute to why we find

UVRS to be faster than forward pruning in practice, despite its greater theoret-

ical complexity. Initial conditions are simple to check and, therefore, add only a

minor cost to preprocessing. Thus, we would recommend always integrating these

checks (or similar), especially when using UVRS as they are particularly likely to

improve efficiency. Here we have utilised the initial checks associated with our

dominance testing method, however, other initial checks are possible – as we dis-

cuss in Chapter 2, any method of answering an ordering query can be used (several

such methods are given in Chapter 2).

3.3.2 Results

The results of our experiments are summarised in Figures 3.4–3.8. In each plot,

the shaded areas represent the ±SE (standard error) interval for the function of

the corresponding colour. This interval depicts where we expect the true mean

performance of the function to lie. The uncertainty represented by this interval

has different causes in the various graphs, which we discuss below.

Figure 3.4 shows the average proportion of outcomes removed by preprocess-

ing. All dominance queries that can be found immediately false by the initial

conditions are not included in these averages. Such queries are answered in the

preprocessing stage and, thus, the preprocessed CP-net is recorded as size zero.

However, whether or not preprocessing is applied, these queries are answered in

the same way – by the first check of initial conditions. We exclude them from the

average because it is inaccurate to say that preprocessing has removed 100% of

the problem in these cases.

As all original CP-nets have size 2n, the variation in performance here is en-

tirely due to variation in the effectiveness of the various preprocessing methods

at reducing the CP-net size. How many variables are removed by UVRS depends

upon which variables take the same value in the outcome pair, the CP-net struc-

ture, and on certain CPTs (to determine whether edges become degenerate). How

many values are removed by forward pruning depends upon the exact outcome pair
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and the specific preference graph structure. These factors are dominance query

specific and, thus, all three preprocessing methods will show varied performance

in our experiments. The effect of checking initial conditions (which is also query

specific) will add further variation to preprocessing performance. However, for

these results, the intervals remain fairly small, meaning that due to the size of our

experiment, we can estimate the true mean performance (proportional outcome

removal) reasonably precisely.

This graph shows that UVRS significantly reduces the CP-net size, initially re-

moving 60% of the original problem and quickly increasing (with n) to around 90%

and then to almost 93% on average. This shows UVRS to be very effective at re-

ducing the size of our (worst case) dominance testing problem. As CP-nets get

exponentially larger with n and, thus, dominance queries get harder, we are most

interested in effective preprocessing for larger n values. Thus, it is advantageous

that UVRS becomes more effective as n increases, removing more than 90% of

the problem for all n > 15. These results also show that UVRS performs signifi-

cantly better than forward pruning at reducing CP-net size, though the difference

decreases for larger n.

The combination of the two methods performs even better than UVRS alone

and the degree of improvement appears to be increasing with n. For larger values

of n (n > 15), the combination removes approximately 2% more of the original out-
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comes. If one considers that UVRS alone removes over 90% of outcomes, then ap-

plying the combination instead reduces the problem size further by more than 20%.

Thus, by this measure, it is worth applying the combination of methods over UVRS

alone. For scale, consider the largest case, n = 20, which generally gives the most

difficult dominance queries to answer. The original CP-nets have 220 = 1, 048, 576

outcomes. On average, UVRS alone reduces this to roughly 74,000 outcomes, but

the combination reduces it further to approximately 50,000. This is a significant

further reduction in size.

The lines of this graph appear to be beginning to plateau as n increases, par-

ticularly UVRS and the combination. It appears likely that the combination will

plateau at an average of over 95%, a substantial reduction in size. Note that,

as CP-net size is exponential in n, even if this proportion stops increasing, the

number of outcomes removed by the combination (and the other methods) is still

increasing exponentially with n. To illustrate this, consider the n = 15 – 20 re-

sults. The percentage removed by the combination increases only slightly here,

from approximately 91% to 95%. However, the size of the reduction in outcomes

is exponentially increasing. For n = 15 it reduces CP-nets of size 32,768 to ap-

proximately 2881 outcomes on average, whereas in the n = 20 case, it removes

approximately 1,000,000 outcomes on average, as we saw above. The size of this

reduction will continue to grow exponentially with n (regardless of whether the

proportion removed plateaus or continues to grow).

Figure 3.5 shows, for each preprocessing method, the total time taken to apply

preprocessing and answer the reduced queries as a proportion of the total time

taken to answer the unprocessed queries. Note that, if preprocessing answers the

query, then the subsequent dominance testing time is recorded as zero.

For this graph, the standard error interval represents uncertainty due to the

variation in both the time it takes to perform preprocessing and the time it takes

to answer any resulting queries. UVRS preprocessing time depends on how many

iterations of unimportant variable removal are performed, how many variables

lose a parent (meaning CPT adjustment and a degeneracy check is required), and

whether separation is required. Forward pruning time depends on whether the

query is found false at some stage, the number of un-pruned parent values for

each variable and, again, the number of variables that lose a parent. For the

combination, preprocessing time also depends upon whether we must re-apply

UVRS for a second time and the size of CP-nets passed to forward pruning and

the second UVRS application. All three preprocessing times also depend upon

whether initial conditions are met at any stage. All of these factors will depend

upon the specific CP-net and dominance query and, thus, preprocessing times vary
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in our experiments. We will see in Figure 3.6 that the variation in preprocessing

times increases with n. This is because the factors above can vary more as the

number of variables increases.

The second factor contributing to the variation in Figure 3.5 is the time it

takes to answer the resulting dominance queries. As we discussed in §2.4.2, the

complexity of a dominance query depends on both the CP-net and the specific

outcomes. Thus, there will be variation in the time elapsed when answering differ-

ent queries (regardless of what method is used). Further, as we discussed above,

the performance of preprocessing varies. Thus, even if all original CP-nets have n

variables, the reduced queries will be over CP-nets of varying sizes (and possibly

over multiple sub-CP-nets). As CP-nets with more variables generally result in

harder queries, this will result in further variation in the dominance testing times.

Figure 3.4 suggests that the size of the reduced CP-net(s) generally increase

with n. Larger CP-nets have more variation in their query complexities as the

preference graph is larger and so distance between outcomes can vary more (also

the convolution of the preference graph can vary more). Thus, as the size of the

reduced CP-nets grows with n, the variation in the reduced dominance testing

times will also increase with n (as we can see in Figure 3.7). The variation in the

number and sizes of the reduced CP-nets will also increase with n, which will also
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contribute to the increasing variation in dominance testing time.

Hence, both aspects of variation in Figure 3.5 increase with n, which explains

why our error intervals becomes wider with n. In fact, as it is the error of the

proportion that is growing, the variation must be growing faster than the denom-

inator – the average dominance testing time of the unprocessed queries. Thus, for

the larger values of n and any n > 20, a larger experiment is required in order to

obtain accurate estimates of the average proportional time elapsed. However, for

most of our data points, we have reasonably accurate estimates of the true mean

performance.

The results in Figure 3.5 suggest that, for n < 9, it is not worth applying any

of the preprocessing methods; in these cases, the average time taken is longer than

the average time to answer the original, unprocessed query. Thus, the time cost

of preprocessing is not worth the reduction in the dominance testing time in these

cases, which we look at in detail in later plots. However, for the larger values of n

(which are of more interest for preprocessing), utilising UVRS reduces the average

time by approximately half and the combination is even more effective, tending

towards 40% of the original time as n increases (even though we are already using

an efficient dominance testing procedure). Thus, both of these methods result in

a substantial improvement in efficiency. As the combination is more efficient than

UVRS (for larger n), these results suggest that the additional outcomes removed

by the combination (as we saw in Figure 3.4) are worth the extra complexity of

applying the combination over UVRS alone. These results also show that (for

larger n) using UVRS is significantly more efficient than using forward pruning;

forward pruning does not reduce average time to less than 60% of the original time

for any n. While the combination of methods is not significantly better than UVRS

here, it does consistently perform best for n > 11. Thus, when considering the

tradeoff of preprocessing complexity and performance, we find the combination of

methods to be the optimal choice, though it is only worth applying for the n ≥ 10

case.

These relative efficiency results echo the reduction performance we saw in Fig-

ure 3.4, at least for the larger n case (once preprocessing becomes viable). One

might suspect that the relative powers of dominance query reduction seen in Fig-

ure 3.5 follow from these results regarding their ability to reduce CP-nets (though

adjusted for preprocessing costs). However, as we shall see from the following

plots, this is not the case.

To give a sense of the scale of these problems, the average time taken to answer

these queries (with or without preprocessing) for n < 15 is less than 0.01 seconds.

These average times grow rapidly from n = 15 to 20. For unprocessed queries,
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average time goes up to 3.02s. The average time when using forward pruning

grows to 2.39s. UVRS times go up to 1.73s and, for queries preprocessed by the

combination, average time increases to 1.04s. Thus, in our experimental cases,

the preprocessing methods are only seconds faster on average than answering the

unprocessed queries. However, such differences will become significant for any

application that must perform large numbers of queries. Furthermore, dominance

testing times rapidly increase with n. Thus, if the proportional preprocessing times

plateau, as they appear to be doing, (or if they continue to decrease) the time saved

by preprocessing will quickly become minutes and then hours for n > 20 (similarly

to how outcome reduction increases exponentially with n, even if the proportions

removed plateau). If these proportions do plateau then, using the combinations

of methods, we will be able to reduce the dominance testing time by around 60%,

on average, regardless of how large n becomes.

The results in Figure 3.5 do not follow a smooth curve like those in Figure 3.4.

In particular, they become more noisy as n increases. We believe that this is due

to the increasing variation resulting in estimates of decreasing accuracy from our

sample size. As we discussed above, the numerator varies increasingly with n.

Unlike the outcomes removed results in Figure 3.4, the denominator (time taken

to answer the original queries) also varies in these results. This variation increases

with n as the complexity of dominance queries varies increasingly with n, as we

discussed above. Thus, we believe the fluctuations occurring for larger values of n

are caused by the increase in variance of both the numerator and denominator.

To obtain more precise proportion estimates in these large n cases, an experiment

with greater sample size is required.

Figure 3.6 shows the average time it takes to apply preprocessing over the 10,000

queries, for each of the three different preprocessing methods. In this graph, the

uncertainty represented by the error intervals is due to variation in how long it

takes to perform preprocessing. We discussed above the causes of this variation

and why it increases with n, meaning the intervals get wider as n increases. As

you can see from the error intervals in Figure 3.6, we have reasonably accurate

estimates of the mean times for the majority of data points, despite the fact that

variation is increasing with n.

Note that all preprocessing times are growing increasingly rapidly with n. This

is to be expected as, for all methods, preprocessing complexity generally grows

with n. However, dominance testing times also grow increasingly rapidly with n

and Figure 3.5 shows us that preprocessing continues to improve efficiency overall

as n increases. Thus, despite the growth in preprocessing times, they remain

outweighed by the dominance testing time preprocessing saves. Thus, it remains
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Note: n values between 3 and 13 are compressed in order to improve

plot clarity for larger n values

faster to use preprocessing than answer the original, unprocessed query, even as n

increases.

Figure 3.6 shows that forward pruning takes significantly longer than the other

methods for larger values of n. This will contribute to why forward pruning takes

significantly longer than the other methods in Figure 3.5.

The combination of preprocessing methods also takes longer than UVRS. This

is as expected, as the combination starts by applying UVRS and then goes on to

apply forward pruning and then UVRS again (if the query is not answered). How-

ever, applying the combination of methods is more efficient than forward pruning,

for larger n. This is because UVRS is applied first in the combination and, thus,

forward pruning is applied to an already reduced CP-net (as is the second UVRS

application, if used). This is more efficient than applying forward pruning to the

original query as UVRS is more efficient and preprocessing time increases with n.

The fact that the combination is faster to apply than forward pruning alone shows

that our implementation of the combination is more efficient than if we applied

forward pruning first and then UVRS (which would be theoretically equivalent),

as we discussed in §3.2.3.

Despite the fact that the combination takes longer than UVRS to implement,

Figure 3.5 shows that, overall, it is more efficient to use the combination than
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UVRS alone. This shows that the the further reduction in query complexity pro-

vided by the combination outweighs this extra preprocessing time.

Figure 3.7 shows the total time elapsed when answering the reduced queries as

a proportion of the total time elapsed when answering the original, unprocessed

queries. Figure 3.8 similarly shows the proportional outcomes traversed. Recall

that when a query is answered by preprocessing, the time elapsed and outcomes

traversed for the subsequent dominance testing are both recorded as zero. In both

graphs, all cases where the original queries are answered immediately by initial

conditions are excluded. This is because such queries are answered by preprocess-

ing, but it is not accurate to say preprocessing reduced query complexity by 100% –

such queries are answered immediately by initial conditions, regardless of whether

or not preprocessing is applied. In such cases, preprocessing is essentially not even

applied. As these cases do not illustrate the effect of preprocessing reduction, we

exclude them from our results.

In Figures 3.7 and 3.8, the uncertainty represented by the error intervals is

due to the variation in time elapsed and outcomes traversed, respectively, when

answering the reduced queries. We explained previously, for Figure 3.5 (where

time elapsed contributes to variation), the causes of variation in dominance query

complexity and why this variation increases with n. The latter explains why these

error intervals become wider for larger values of n. In fact, these variations must

be growing faster than the respective denominators (the unprocessed query times

and outcomes traversed), as the error of the proportion is growing with n. How-

ever, the variation in proportional time elapsed and in outcomes traversed is less

than the variation of the proportional total time, depicted in Figure 3.5. This is

as we would expect for time elapsed, as the total time variation also incorporates

variation in preprocessing times (as well as the variation in reduced dominance

testing times). Thus, we have more accurate estimates of the true average propor-

tions in Figures 3.7 and 3.8. In these figures, the error intervals remain reasonable

sizes, even for the larger values of n.

Figures 3.7 and 3.8 again do not follow a smooth curve and become more

erratic for larger values of n. This is for the same reasons as Figure 3.5. As

in Figure 3.5, the denominators of the proportions here are the complexity of

the original query and the numerators are the complexity of the reduced queries.

Thus, both numerator and denominator vary increasingly with n. However, unlike

in Figure 3.5, only non-trivial queries are considered and we do not include the

preprocessing time. This removes some of the variation we had in Figure 3.5 and

perhaps explains why these plots behave less erratically for the larger n values.

Despite the fact that Figures 3.7 and 3.8 have more precise estimates and fluctuate
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less, larger experiments are again required for the larger values of n and any n > 20,

in order to obtain more precise estimates of average performance.

In both of Figures 3.7 and 3.8, we can see that the reduced query (or queries)

is always simpler to answer than the original, both in time cost and theoretical

complexity (outcomes traversed), as all data points are < 1 (n = 3 forward pruning

outcomes traversed is the one exception, where complexity is the same as the

original). This is as we would expect, as all preprocessing methods must produce

an equivalent query over the same or a strictly smaller CP-net(s). In particular, all

time elapsed data points show the reduced queries take less than 70% of the time

required by the original queries. This shows that the reason that preprocessing does

not improve efficiency for small n values in Figure 3.5 is not because dominance

testing efficiency is not improved, but because the improvement is not worth the

time cost of applying the preprocessing. From the Figure 3.6 results, we can see

that, for such small n values, the average preprocessing times are between 0.000026

and 0.00013 seconds. Thus, as such minimal time costs outweigh a reduction

of 30−60% in dominance testing time, the original dominance testing must already

be incredibly efficient in these cases. Recall that we are already using one of

the most efficient pruning methods from our Chapter 2 experiments to answer

these queries. Thus, while preprocessing does significantly reduce complexity in

the small n cases, our dominance testing method is already too efficient for the

reduction to be worth even minimal preprocessing costs. As dominance testing

is already very efficient in these cases, further improvement to efficiency is not as

important.

As n increases, the proportional reduction of dominance query complexity

(both time elapsed and outcomes traversed) increases for all three preprocess-

ing methods. For the larger values of n, UVRS reduces the time elapsed to 30% of

the original and reduces outcomes traversed to 45% of the original. UVRS appears

to be plateauing at these proportions, suggesting that, regardless of how large n

becomes, UVRS will, on average, return significantly simpler dominance queries.

The performances of forward pruning and the combination of methods do not show

signs of plateauing in these graphs, though their rate of decrease is perhaps slowing

as n gets closer to 20. As n increases, these methods get more effective, reducing

time elapsed to around 15% of the original and outcomes traversed to around 25%

for the largest values of n. Note that the combination of methods is significantly

more effective at reducing queries than forward pruning, though the difference is

shrinking as n increases.

Figure 3.6 shows that, as n increases and our preprocessing methods get in-

creasingly effective at reducing dominance query complexity, the time required for
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preprocessing grows at an increasingly rapid pace. However, from Figure 3.5, we

can see than the the proportional total dominance testing time when using prepro-

cessing stabilises for larger values of n. In particular, using forward pruning takes

approximately 70% of the original time and using UVRS or the combination takes

less than 50% of the original time. This shows that the increasing reduction in

query complexity for larger n outweighs the growing preprocessing cost. That is,

the time saved by preprocessing must be growing faster than the time it takes to

preprocess, as the proportional net time saved plateaus. Thus, for larger n, the re-

duction of query complexity is worth the preprocessing costs and so preprocessing

becomes an effective way of improving dominance testing efficiency.

For UVRS, the reduction in dominance testing time and total time both appear

to plateau for larger n (Figures 3.5 and 3.7). This shows that, even though UVRS

preprocessing time is growing at an increasingly rapid rate (Figure 3.6), this growth

must be proportional to the growth of the original dominance testing time. As

both the preprocessing time and the reduction in dominance testing time grow

proportionally to the original dominance testing time, this suggests that UVRS

will continue to reduce overall time by over half as n continues to grow. On the

other hand, forward pruning and the combination of methods reduce dominance

query complexity by increasingly large proportions as n increases, but the overall

reduction in time appears to level off (proportionally). This suggests that the

preprocessing times are growing at a faster rate than the original dominance testing

times. This will be a concern if the proportional reductions in query complexity

level off for larger n as Figures 3.7 and 3.8 seem to suggest they may. If this

proportion becomes constant, but the preprocessing times continue to grow faster

than the original dominance testing times, then the overall proportion of time

saved by these methods will begin to decrease – the preprocessing costs will begin

to eclipse the benefits again for sufficiently large n. This is more likely to be a

concern for forward pruning, which already has significantly slower preprocessing

times that are growing faster than those of the combination of methods.

Now let us consider the scale of the reductions presented by Figures 3.7 and 3.8.

Recall that these results exclude any trivial dominance queries. The average time

taken to answer non-trivial queries without any preprocessing is less than 0.03

seconds for all n < 15 cases. Between n = 15 and 20, this average time rapidly

increases to an average of 18.3 seconds. For all three preprocessing methods, the

preprocessed queries are answered on average in less than 0.008 seconds for the

n < 15 cases. This is as we would suspect from our results in Figures 3.7 and 3.8 as

they reduce query times by up to 70 or 80% for n < 15. For n = 15 to 20, UVRS
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preprocessed query times increase to 7.2 seconds on average, forward pruning re-

duced queries increase to 3.0 seconds, and queries reduced by the combination

up to 2.37 seconds on average. Thus, by applying preprocessing, we save several

seconds per query, on average. These savings are particularly large for greater n

values and when utilising the combination of methods. These seconds saved will

quickly add up if a large number of queries are required. Further, if the propor-

tions either plateau or continue to decrease, these reductions in query complexity

will quickly start saving minutes and hours as n continues to increase because

dominance testing time grows rapidly with n.

In both of Figures 3.7 and 3.8, forward pruning is the least effective reduction

method for small n values. However, as n increases, the proportional reduction in

query complexity plateaus for UVRS and forward pruning continues improving.

Thus, for larger values of n, forward pruning is more effective. However, the com-

bination of methods is the most effective at reducing query complexity in all cases.

This is as we would expect, as the combination of methods is a strictly stronger

preprocessing technique than either of UVRS or forward pruning (or both), as

we showed in §3.2.3. Thus, the combination must result in simpler dominance

queries. The improvement in query reduction between forward pruning and the

combination shows that adding UVRS to forward pruning results in a notable

improvement, even though forward pruning has overtaken UVRS in effectiveness.

This is because the two methods reduce queries in distinct manners and, thus, the

combination will always be more effective than either method used individually (it

is also better than using both in this case).

The relative performance of the three methods in Figures 3.7 and 3.8 is distinct

from what we have seen in Figures 3.4 and 3.5. In these plots, UVRS significantly

outperforms forward pruning for larger values of n, in fact, for all cases in Fig-

ure 3.4. Combining the Figure 3.7 and 3.8 results with Figure 3.4 suggests that,

while UVRS is more effective at reducing the CP-net size, forward pruning results

in simpler queries. This is possible because, as we have mentioned previously,

dominance query complexity depends upon the specific CP-net and outcome pair

and is not fully determined by CP-net size, even though larger CP-nets generally

have more complex queries.

Looking at Figure 3.5, we can see that, in the cases where preprocessing is ef-

fective (for larger n values), applying UVRS is more efficient than forward pruning.

In this graph, we consider how long it takes to apply preprocessing and then answer

the reduced query, as a proportion of the time taken to answer the unprocessed

query. Thus, for UVRS to be more efficient than forward pruning for large n here,

despite the fact forward pruning results in faster reduced queries, it must be down
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to the difference in preprocessing times. That is, the longer preprocessing times

for forward pruning (seen in Figure 3.6) outweigh the slight further reduction in

average query complexity.

Alternatively, using the combination of methods results in the simplest and

most efficient reduced queries, as we can seen from Figures 3.7 and 3.8. Further,

because of how we implemented this combination, its preprocessing time is signif-

icantly faster than forward pruning and not that much slower than UVRS alone.

In this case, the superior reduction of query complexity over UVRS outweighs the

slightly slower preprocessing time. We can see this as the combination is shown to

be more efficient than UVRS overall in Figure 3.5. Thus, by combining forward

pruning with UVRS in this manner, we have produced a more effective method of

reducing query complexity that is also significantly more efficient to apply than

forward pruning. As a result, the combination maximally reduces the overall dom-

inance testing time (by approximately 60% for larger n values – see Figure 3.5).

Notice that the proportions in Figure 3.7 are lower than those in Figure 3.8.

That is, preprocessing reduces the query times (proportionally) further than the

number of outcomes traversed (proportionally). This discrepancy could be due to

the fact that outcomes traversed does not consider the complexity of constructing

the search tree, only how big the tree becomes. When constructing a search tree,

we must evaluate the improving flips of a given leaf, apply pruning conditions to

each, and add the un-pruned flips. To find the improving flips, we consider chang-

ing the value of each of the n variables. Finding these improving flips requires

evaluating parents and consulting CPTs, both of which are likely to be larger for

greater values of n. The larger n is, the more improving flips a leaf is likely to

have and we must evaluate the pruning conditions for each. Checking these prun-

ing conditions will also take longer for larger values of n. Furthermore, when n

is greater, the search tree will be a larger computational object and, thus, more

complex to manipulate. Therefore, the time it takes to add α outcomes to the

search tree can depend on the size of the CP-net. This means that two domi-

nance queries can have the same number of outcomes traversed but take different

amounts of time, particularly if they are over CP-nets of distinct sizes. As out-

comes traversed is a theoretical measure of query complexity, it is blind to some

important practicalities that contribute to the complexity of answering dominance

queries. It is possible that the reason the outcomes traversed proportion is higher

(suggesting less reduction in complexity) is because it does not take into account

that the outcomes traversed for the reduced queries were more efficient to perform

(than the original) as the associated CP-net is smaller. In this sense, time elapsed
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is perhaps a more reliable measure of query reduction, though it is sensitive to the

specific code implementation used whereas outcomes traversed is not.

The above results from Figures 3.4 – 3.8 show a general pattern of improve-

ment for all preprocessing methods as n increases; all three preprocessing methods

reduce both CP-net size and query complexities more effectively for larger n and

overall improvement in efficiency increases with n. This is beneficial, as dominance

queries get harder with n and so we are more interested in improving efficiency

in the larger n cases. Furthermore, these results suggest that preprocessing will

continue to be this effective (or better) as n continues to increase.

These results show that UVRS is significantly more effective than forward

pruning at reducing CP-net size, removing on average over 90% of outcomes for

larger n values. Further, UVRS results in more efficient dominance testing overall

than forward pruning for large n. In particular, using UVRS reduces the average

dominance testing time by approximately 50% from the unprocessed query time

(even when using an already efficient method for dominance testing). However,

forward pruning is found to be more effective than UVRS at reducing query com-

plexity. This does not result in forward pruning being more efficient than UVRS

overall because this is outweighed by the cost of applying forward pruning (which is

significantly slower than UVRS). Alternatively, our combination of the two meth-

ods is the most effective at reducing both CP-net size and query complexity. This

combination removes between 90 and 95% of outcomes from the CP-net and re-

sults in queries that can be answered in 15% of the original time for larger n. As it

has modest preprocessing times, the combination is also the most efficient method

overall, reducing the average dominance testing time by up to 60% for larger n.

Hence, the combination of methods is both superior at reducing dominance query

(and CP-net) complexity and the most successful at improving overall dominance

testing efficiency, which was our original aim in this chapter.

3.4 Discussion

In this chapter, we have introduced a novel method of improving dominance test-

ing efficiency by preprocessing the CP-net and, consequently, simplifying the dom-

inance query. We call this method UVRS preprocessing. UVRS works by itera-

tively removing variables that are unimportant to the dominance query (using

results based upon suffix fixing by Boutilier et al., 2004a, and prefix fixing by Wil-

son, 2004b) and then partitioning the reduced problem into several independent

sub-queries that can be answered separately and are equivalent to the original
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query. Each of these steps reduces the size of the CP-net (and, thus, the size

of our dominance query problem) by an exponential factor. We have also shown

how UVRS can be combined with forward pruning, the existing method of CP-net

preprocessing. As forward pruning and UVRS are distinct preprocessing methods,

their combination must be more effective at reducing CP-nets than either method

used individually. We have shown that this combination can also prune aspects of

the CP-net that are unaffected by either of UVRS or forward pruning when used

in isolation. Thus, this combined preprocessing technique is more effective than

the sum of its component methods.

We performed an experimental evaluation of the performance of UVRS, for-

ward pruning, and their combination. Whilst forward pruning was introduced by

Boutilier et al. (2004a) as a heuristic for improving dominance testing efficiency,

our experiments constitute the first evaluation of its effectiveness. In these exper-

iments, we evaluated the effect of preprocessing when using an already efficient

method of answering dominance queries. In particular, we used the most effective

pruning method from our Chapter 2 experiments. This ensures that our results

show a realistic impact of preprocessing, not exaggerated by using a basic or im-

practical search method.

Our results found that UVRS is significantly more effective than forward prun-

ing at reducing the average dominance testing time. On average, UVRS reduces

the time by approximately 50% for larger values of n. Furthermore, as n increases,

this proportion appears to plateau, suggesting that UVRS will halve the average

dominance testing time even as n continues to grow. This is beneficial as CP-

nets with more variables generally have more complex dominance queries. Thus,

we are particularly interested in improving dominance testing efficiency in these

cases. Using the combination of UVRS and forward pruning is even more efficient,

saving, on average, up to 60% of the original, unprocessed query time for larger

values of n. This proportional performance also appears to plateau as n increases.

Thus, we have introduced two methods (UVRS and the combination with forward

pruning) of significantly improving dominance testing efficiency. In particular,

these preprocessing methods can further improve the dominance testing efficiency

we achieved via pruning methods in Chapter 2.

All experiments in this chapter were done on binary CP-nets. However, all three

preprocessing techniques are also applicable to non-binary CP-nets. In the binary

case, UVRS has an advantage in that the number of variables taking the same

value in a given pair of outcomes is likely to be reasonably high, as every variable

can only take one of two possible values. This is important to UVRS performance

because only variables that take the same value in both outcomes can be removed.
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In the multivalued case, domain sizes are larger and the probability of a variable

taking the same value in an outcome pair is smaller. Thus, we might reasonably

expect UVRS to be less effective at reducing CP-nets (and the associated queries)

in the multivalued case. Conversely, for forward pruning, as domain sizes increase

there are more possible values that may be pruned and more ways in which this can

happen (as there are more possible CPTs and, thus, domain transition graphs).

Thus, we may expect forward pruning to remove more domain values on average

in the multivalued case and therefore be more effective.

Hence, we expect the results in the multivalued case to differ from those we

have seen in our binary experiments. In particular, we expect UVRS and forward

pruning to either have closer performance results or perhaps for forward pruning to

be more efficient for multivalued CP-nets (particularly as domain sizes increase).

However, as the two methods reduce CP-nets in distinct ways, their combination

will still be the most powerful preprocessing method (in fact, we have shown this

combination to be more effective than using both methods individually). As the

combination also has reasonable preprocessing times, from what we have seen, we

expect that it will also be the most efficient method overall in the multivalued case.

Evaluating and comparing preprocessing performance in the multivalued case is

one of our main priorities for our future work on CP-net preprocessing. Preliminary

experiments in the multivalued case suggest, as we predicted above, that forward

pruning is more effective than UVRS in this case. Also as we predicted, using

the combination appears to be the most efficient method of dominance testing

again. Further, the combination appears to reduce dominance testing time by a

larger proportion and for smaller values of n than in the binary case. We intend

to explore these results in a larger, more comprehensive experiment in our future

work.

Several of our performance measures for preprocessing have variances that in-

crease with n, as we discussed in §3.3.2. In some cases, this has lead to somewhat

imprecise estimates of the mean preprocessing performance in our experimental

results. Thus, for the larger values of n, we would like to repeat our experiments

with a larger sample size. We would also like to extend our experiments to values

of n > 20 (where a larger sample size is again a necessity for the above reasons).

These n > 20 results will answer some of our outstanding questions about how pre-

processing performance behaves as n continues to increase. For example, whether

various proportional performance values are plateauing (and at what value) or

are going to plateau for larger n values. Also, whether the overall proportional

efficiency of forward pruning or the combination of methods will decrease if their

proportional query reductions do plateau for larger n.
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In future experiments, we would also like to explore how the complexity of the

CP-net structure (measured, for example, by graph density) and the Hamming

distance of the relevant dominance query affect preprocessing performance. We

would expect, in general, that all preprocessing methods would be more effective

given CP-nets with sparser structures and dominance queries with small Hamming

distance. By including such parameters in our evaluations, we get a more detailed

picture of preprocessing performance. In particular, we can more precisely evaluate

where preprocessing will be most effective, as well as when it is not worth applying.

This will show us more accurately where preprocessing should and should not be

applied and, thus, help us to answer dominance queries as efficiently as possible.

In our experiments, we chose the most effective pruning method from Chap-

ter 2 to answer the queries (both before and after preprocessing). This is one of

the most efficient methods we tested in Chapter 2 and utilises the strongest prun-

ing condition. The latter means that it has maximal overlap with preprocessing

in how it reduces query complexity, as we discussed in §3.3.1. This ensures that

our results represent a realistic impact of preprocessing on dominance query com-

plexity. However, the proportional reduction in query complexity performed by

preprocessing is dependent upon this choice of dominance testing method. Thus,

although we have attempted to use the most reasonable choice of method in our ex-

periments (see full discussion in §3.3.1), our results remain specific to this method

(though we expect to find preprocessing equally or more effective when using the

other methods considered in Chapter 2, due to our choice having maximal theoret-

ical overlap). In the future, we would like to evaluate the impact of preprocessing

when a variety of dominance testing methods are used.

Another choice we made in our experiments was to incorporate the initial

conditions of our dominance testing method into the preprocessing methods. In

particular, for all three methods, we checked these initial conditions for the original

query and then again for each subsequent reduced query produced throughout

the preprocessing procedure. If any conditions is met at any point, then we can

conclude the original query to be false, meaning that no further preprocessing or

dominance testing is required. This improves efficiency of preprocessing as the

conditions are quick to check and can identify cases where no further reduction (or

testing) is necessary. However, we did not evaluate the effect of this modification

on our preprocessing.

In our future work, we would like to evaluate the impact of adding these checks,

to see if they are worth implementing and what impact they have on efficiency.

In particular, we would like to evaluate how often these checks find a query to be

false (in non-trivial cases, where the original query cannot be answered by initial
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conditions), how much time is saved by these checks on average, and at what stage

of the preprocessing do they find the query false. The latter will tell us whether

it is worth checking every query produced by preprocessing or if, for example,

only queries produced later on are generally found false by the checks. In our

experiment, we used the initial conditions associated with our dominance testing

method. However, as we discussed in §3.3.1, there are other initial conditions

we can use. In our future work, we would like to consider using other initial

conditions alongside preprocessing and evaluate which conditions give the most

efficient dominance testing times.

When multiple queries are produced by preprocessing, we chose to answer them

in increasing order of the number of variables in the associated CP-nets. Recall

that, if one query is found to be false, then we can stop answering queries as the

original query must also be false. If the original query is true, then all of the

reduced queries must be answered. By answering in increasing CP-net size, we

are aiming to avoid answering any more complex queries than necessary in the

case where the original query is false. However, we did not explore whether this

heuristic was successful at improving dominance testing efficiency. In our future

work, we would like to explore how this ordering affects efficiency and whether

there is a better ordering to use. For example, we might also consider using (in

addition to CP-net size, or separately) the dominance query Hamming distance

or the structural complexity of the associated CP-net (measured, for example, by

graph density) as measures to order the reduced queries. These are different ways

of, again, trying to avoid answering queries that are more complex than necessary.

Another approach we may consider is whether we can efficiently assess which

of the reduced queries are more likely to be false. If we put such queries first

in our ordering, then we are likely to determine the query to be false earlier and

avoid answering the remaining queries. One heuristic we could use to determine

whether a query is likely to be false is to consider how close the relative rank

sizes (see Chapter 2) of the outcomes are (this would also suggest that the query

is likely to be efficient to answer). Alternatively, if the original query is false,

then perhaps the query with the largest CP-net is most likely to also be false

as its associated CP-net contains the most of the original preference information.

Similarly, perhaps the sub-CP-net containing the largest proportion of D (the

set of variables that take different values in the original query) is the most likely

to have a false query as the original dominance problem is primarily about the

variables in D. A third approach we could consider is a tradeoff between ordering

according to query efficiency and ordering according to the likelihood of a query

being false. In our future work, we intend to consider these various approaches to
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ordering reduced queries and evaluate which leads to the most efficient dominance

testing procedure for multiple queries.

In our future work we would also like to analyse which stages of UVRS (in-

dividually and when used in combination with forward pruning) actually have a

significant effect, on average, on query complexity. For example, does repeatedly

iterating unimportant variable removal remove enough outcomes on average to be

worth the cost of repeated application, or would it be more efficient to only at-

tempt removal a maximum of two or three times? By evaluating the progressive

CP-net (and query) reduction performed by the different stages of UVRS and the

combination, we can consider streamlining the processes by removing stages that

cost more to apply than their average benefits. It will also help us to understand

how and why they work as preprocessing techniques.

In our experiments, we evaluated preprocessing performance on simulated dom-

inance queries, generated using the random CP-net generator from Chapter 2 (see

Appendix C.1 for details). Naturally, this makes our results specific to the CP-net

and query distribution produced by this generator (see Appendix C.1 for details).

In our future work, we would like to evaluate preprocessing performance on real

world data, so that we can see the true efficacy of preprocessing in practice.

In Chapter 2, we generalised our outcome ranks and all their applications, in-

cluding efficient dominance testing, to the case of CP-nets with indifference. Hav-

ing users express indifference is likely in real world scenarios, particularly when

there are a large number of choices. Thus, this generalisation extends the applica-

bility of our outcome rank results. In our future work, we would like to similarly

generalise or adapt UVRS so that it can be applied to CP-nets with indifference.

Boutilier et al. (2004a) claim that suffix fixing still applies in the case of indiffer-

ence. The prefix fixing result, Proposition 3.4, does not hold in the indifference

case. This is because variables in a matching prefix can vary between indifferent

values, though they must start and end at the same values. However, by our as-

sumptions about indifference in Chapter 2, switching between indifferent values

does not impact child preference. This means that such changes do not affect any

flips of variables outside of the matching prefix and, thus, omitting such flips does

not affect the validity of any IFS. Therefore, even though matching prefixes do not

have to remain fixed in all IFS, we do not need to consider any flips of variables in

the prefix. This is sufficient to continue using prefix fixing in UVRS as before. As

separation can also be applied when there is indifference (by the same reasoning as

when there is no indifference), it appears that UVRS can be applied in the same

way in this case.
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However, we may be able to modify UVRS to be more effective in the case of

indifference. For example, if a variable takes two distinct but indifferent (in at

least one of the outcomes) values in the query outcomes, then we can exclude this

variable from D, meaning that it may potentially be an unimportant variable that

is, therefore, removed. This works because we can change such variables to be the

same in both outcomes, without affecting whether there exists an IFS (as we are

changing between indifferent values). This modification improves the reduction

performance as it increases the possible number of variables we can remove. In

our future work, we would like to consider whether UVRS can be modified in any

additional ways to improve performance in the case of indifference. Boutilier et al.

(2004a) claim that forward pruning can be applied in the case of indifference but do

not explain how. Thus, we would also like to consider how to apply forward pruning

in the case of indifference and whether any similar modifications can be made here.

We then would like to evaluate the best method of applying a combination of these

preprocessing methods in this case. Once we have determined the best method of

applying preprocessing in this case, we intend to perform a similar experimental

evaluation of their performance. We may also go on to modify preprocessing so

that it is applicable to other extensions of CP-nets such as TCP-nets (CP-nets

with additional relative importance statements) (Brafman et al., 2006).

As they are currently defined, all methods of preprocessing are dominance query

specific. If you then have a second query to answer, you must preprocess the CP-

net again from the beginning. This is not a huge problem as, even when applying

preprocessing every time, we still save significant time on dominance testing, as

we have seen from the experimental results. However, in our future work we might

consider whether we can improve efficiency by preprocessing a CP-net for multi-

ple queries at once. In order for such preprocessing to be effective, it is probably

necessary for the group of queries to be sufficiently ‘similar’ to one another. This

will ensure that there are aspects of the CP-net that are mutually irrelevant to the

whole group of queries (for example, unimportant variables that take same value

in all queries) and can, thus, be removed by our group preprocessing procedure.

Another hurdle for this problem is the additional complexity of grouping queries, if

necessary, and considering multiple queries in the preprocessing procedure. These

additional complexities (and the fact that group preprocessing is likely to be less

effective than single query preprocessing) will need to be outweighed by the im-

proved efficiency of only preprocessing once.
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Chapter 4

CP-Net Learning

4.1 Introduction

In Chapters 2 and 3, we addressed the problem of efficiently answering queries

about user preference. In these scenarios, we have been assuming that the user’s

CP-net is known. However, in order for CP-nets to be useful in practice, even

with the previously discussed improvements, we first must be able to determine

what a given user’s CP-net is. In their introduction to CP-nets, Boutilier et al.

(2004a) argue that the compact and intuitive nature of CP-nets makes it possible

to elicit them from non-expert users. However, in many cases, it is not ideal to

require a user to specify their preference structure prior to using a given service.

It is time consuming and may be off-putting to potential users, particularly if one

considers that many existing services such as Netflix, Amazon, and Apple News

can approximate user preferences for recommendations without explicit user input.

Furthermore, there is the possibility of the user supplying incorrect or inconsistent

preference information. Thus, we introduce a method of identifying a user’s CP-

net from observational data such as the products they buy or the movies they

watch. This allows us to extract the user’s preferences from an accurate source

without affecting user experience. Even if initial preferences are collected from the

user, these preferences may change over time and our method could be used to

check or update the user’s preference structure without querying the user further.

The remainder of this chapter is structured as follows. We first review the ex-

isting work on learning a user’s CP-net in §4.2. In §4.3, we introduce a new method

for learning CP-nets from observational data. We then present an experimental

evaluation of the learning performance in §4.4. Finally, in §4.5, we discuss these

results and how our learning method might be developed further in the future.
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4.2 Related Work

In this section, we review the existing work on CP-net learning. We define CP-

net learning to mean, given some data on user preference, finding a CP-net that

represents or approximates the user’s preference structure. As there are many

approaches to this problem, we split the existing methods into categories. First

we consider the type of preference data the methods use. The most popular choice

in the literature is to use pairwise outcome preferences. We choose to use a different

type of data, as we discuss in §4.3.1. We further split the methods into passive

and active learning methods. A learning method is said to be passive if it learns

a CP-net from the data alone, an active learning method may also (or instead)

query the user about their preferences. Other labels that we may use to describe

methods are batch learning and online learning. Batch learning methods start

with the whole training data whereas online learning methods receive the data

over time and repeatedly update the learned CP-net when new data is received.

In some works, the authors claim that their method can handle noisy or in-

consistent data (Allen, 2016; Allen et al., 2017b; Haqqani and Li, 2017; Labernia

et al., 2018, 2017; Liu et al., 2014, 2013; Liu and Liu, 2019; Liu et al., 2018a,b).

Sometimes these terms are used interchangeably and other times they are distinct

concepts. These terms could have several different interpretations; the data is not

consistent with the user’s preferences, the data is not consistent with a CP-net,

or the data implies impossible preferences such as x � x. Further, these irregu-

larities could be due to the user supplying inconsistent preferences, or errors in

data collection. Which interpretation is intended is not always made clear in the

literature. In §4.3, we explain what we mean by noise in our data and, in general,

we will not use the term ‘inconsistent’ without specifying what we are referring to

with regards to consistency.

4.2.1 CP-Net Learning from Pairwise Outcome Preferences

Passive Learning Methods

Dimopoulos et al. (2009) provide the first method for learning a user’s CP-net.

Their aim is, given a set of pairwise preferences over the outcomes, to obtain a

CP-net that entails all of these preferences. They show that this is an NP-hard

problem. In order to learn such a CP-net, they begin with an empty structure and

try to add one variable at a time by finding a valid parent set, out of the variables

already in the structure. They start by only adding variables with no parents,

then go on to allow parent sets of increasing size. A set of parents is valid if there
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exists a CPT that ensures the outcome preferences are entailed. For this they use

a sufficient, but not necessary, condition that is shown to be a 2-SAT problem (see

Appendix F for definition) to check. This process continues until all variables are

in the CP-net or the algorithm cannot add any more variables (which constitutes a

failure). If a CP-net is produced, then it entails the given preference set. However,

they cannot guarantee that, given such a CP-net exists, one will be found. This

is only guaranteed in the case where the preference set is transparently entailed

(see Appendix F for definition), which is a stronger form of entailment. This is

problematic in real world applications: beyond trivial cases, it is not clear how one

would check whether a given preference set is transparently entailed by a CP-net.

It is likely that any method of confirming this would also enable the construction of

such a CP-net, making learning useless. Thus, it is not clear how one could gather

a (non-trivial) transparently entailed preference set. This means we cannot gather

data for learning in a way that guarantees the learning algorithm will produce

a CP-net. These problems remain even if the user’s preferences are known to

be representable by a CP-net and all supplied preferences are correct (entailed).

When the data is transparently entailed, the algorithm works in polynomial time.

Under similar conditions, the algorithm is shown to be a PAC-learner, that is, the

learned CP-net is probably approximately correct (Valiant, 1984) – see Appendix F

for how this concept is defined for CP-nets.

In Michael and Papageorgiou (2013), an empirical evaluation of the perfor-

mance of this learning algorithm is provided. These experiments are restricted to

the binary CP-net case, despite the fact that the original paper claims the algo-

rithm can be applied similarly for CP-nets with multivalued variables.

Allen (2013) extends the work by Dimopoulos et al. (2009) so that CP-nets

with indifference in their CPTs can also be learned. They also allow the CP-nets

to be non-binary. Dimopoulos et al. (2009) claim that their method can be applied

to the non-binary case, but do not give the details. Allen (2013) allow the prefer-

ence data to be of the form o � o′, o ./ o (incomparable), or o ∼ o′ (indifferent).

Each of these statements can be expressed by assigning a true or false value to

each of o % o′ and o - o′. Thus, the data can be considered to be statements

of the form o % o′ or o 6% o′. The only difference from Dimopoulos et al. (2009)

in the algorithm is how they determine whether, given a hypothetical parent set,

there exists a valid CPT. They construct a 2-SAT problem in the same way, only

using % and 6%, rather than �. However, as the variables may be non-binary,

they introduce additional clauses to ensure transitivity within CPTs. This makes

the task of determining whether a valid CPT exists into a 3-SAT problem, which
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is NP-complete. The algorithm may have to solve these 3-SAT problems expo-

nentially (in n) many times. Note that Dimopoulos et al. (2009) do not mention

this additional requirement for transitivity when they claim their method can be

extended to the non-binary case. Allen (2013) does not prove the soundness or

completeness of this new algorithm. We conjecture that, in the cases when a CP-

net is returned, the preferences and incomparable statements in the data will be

entailed, but the indifference statements will not always be entailed.

Liu et al. (2014, 2013) were the first to allow the preference data to contain

inconsistencies. In Liu et al. (2013), they use chi-squared hypothesis testing on

the noisy data to identify the structure. However, the theoretical foundation for

this chi-squared testing is unclear; they assume that the distribution of variables is

independent, that is, Pr(X = x, Y = y) = Pr(X = x)Pr(Y = y) However, as their

data is pairwise preferences, it is not clear how these probabilities are defined.

They later claim that, due to this independence, the following probabilities are

equal. Let U = V \X,and u ∈ Dom(U).

Pr(o[U ] = u|o � o′, o[X] = x, o′[X] = x̄), (4.1)

Pr(o′[U ] = u|o � o′, o[X] = x, o′[X] = x̄). (4.2)

There is no distribution assumed over the observed pairwise preferences, so we

may assume that this probability is simply the sample frequency. Let us assume

that the sample contains every distinct entailed preference (from the true CP-net)

exactly once – so it is a noiseless sample. Then we can disprove this equality both

in the case where X is preferentially dependent on U and where it is not – these

are hypotheses of the chi-squared test where this probability is tested to determine

dependence. We use two CP-nets in order to demonstrate a counterexample in each

case. First consider a two variable CP-net with no edges. The variables are X

and Y with CPTs x � x̄ and y � ȳ. In this case, U = {Y } and, if we let u = y,

Equations 4.1 and 4.2 become

Pr(o[Y ] = y|o � o′, o[X] = x, o′[X] = x̄),

Pr(o′[Y ] = y|o � o′, o[X] = x, o′[X] = x̄).

The preference graph for this CP-net is:

xy

xȳ

x̄y

x̄ȳ
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From this graph, we can see that the CP-net entails five distinct pairwise prefer-

ences. Of these, three preferences o � o′ satisfy o[X] = x and o′[X] = x̄:

xy � x̄y, xy � x̄ȳ, xȳ � x̄ȳ.

Out of these preferences, two satisfy o[Y ] = y and one satisfies o′[Y ] = y. Thus,

by our assumptions about the sample, we have

Pr(o[Y ] = y|o � o′, o[X] = x, o′[X] = x̄) =
2

3
,

Pr(o′[Y ] = y|o � o′, o[X] = x, o′[X] = x̄) =
1

3
.

Therefore, the claimed equality does not hold in the case where X is not dependent

on U . Now suppose we have the CP-net with structure Y → X and CPTs y � ȳ,

y : x � x̄, and ȳ : x̄ � x. The preference graph is now:

xy x̄y x̄ȳ xȳ

This CP-net entails six distinct preferences, two of which satisfy o[X] = x and

o′[X] = x̄:

xy � x̄y, xy � x̄ȳ.

Of these, both satisfy o[Y ] = y, and only one satisfies o′[Y ] = y. Thus, we have

Pr(o[Y ] = y|o � o′, o[X] = x, o′[X] = x̄) =
2

2
,

Pr(o′[Y ] = y|o � o′, o[X] = x, o′[X] = x̄) =
1

2
.

Thus, the equality also does not hold if X is preferentially dependent on U . These

simple counterexamples suggest that their claimed equality is incorrect.

Putting aside the above issue, the learning method by Liu et al. (2013) pro-

ceeds as follows. For each X ∈ V , they test whether X is preferentially de-

pendent on V \X using a chi-squared test. If they are dependent, then they as-

sign Pa(X) = V \X and the CPT entries are determined by the frequency of

opposing rules in the data; if U = V \X, and the preference ux � ux̄ occurs in

the preference data more often than ux̄ � ux, then they assign the rule u : x � x̄

in CPT(X). All degenerate parents are then removed. This method is not guar-

anteed to produce an acyclic or a consistent CP-net in general, though it will

converge to the true CP-net as the size of the preference data increases. Due to

the requirements of Chi-squared hypothesis testing, this method is unsuitable for

small data sizes.

In Liu et al. (2014), their aim is to find a CP-net that entails the maximum

number of the supplied preferences. If the preferences are weighted, then the aim
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is to find a CP-net that satisfies the set of preferences with maximum weight.

This is achieved by finding the optimal preference graph via a branch and bound

search (along with certain pruning procedures) on a tree of all the possible prefer-

ence graphs. Despite the fact that preference graphs and CP-nets are equivalent

structures, the authors emphasise the fact that they are learning preference graphs

and not CP-nets, even giving an algorithm for transforming the learned preference

graph into a CP-net. They suggest that dominance testing and consistency testing

are easier on preference graphs than CP-nets, which cannot be true as the two are

equivalent. In general, preference graphs are actually more difficult to work with

in practice, as they are exponentially larger than corresponding CP-nets (despite

the fact they encode the same information).

The complexities of the above methods are, respectively, polynomial and ex-

ponential in the size of the preference graph (although Michael and Papageorgiou

2013 express scepticism regarding the claim that the Liu et al. 2013 method is

polynomial). Note that the size of the preference graph is exponential in the num-

ber of variables. Thus, neither method is tractable and, as the authors comment,

the method in Liu et al. (2014) is only appropriate in cases where there are a small

number of variables. The latter would therefore not be of much use in practice, as

real world problems are likely to have more variables than the algorithm can deal

with in reasonable time. In fact, the performance experiments in Liu et al. (2013)

are all done on binary CP-nets with up to five variables, and in Liu et al. (2014)

they only consider the three variable case, which is almost the smallest possible

non-trivial CP-net.

Both papers compare their methods to the algorithm described by Dimopoulos

et al. (2009). Liu et al. (2013) find that their method performs better; however,

due to the testing conditions, the algorithm by Dimopoulos et al. (2009) was not

guaranteed to produce a CP-net. In fact, in some of the experiments, their al-

gorithm resulted in failure over 90% of the time. Both of the methods by Liu

et al. (2014, 2013) produce a CP-net every time. Thus, it is unsurprising that

the method by Dimopoulos et al. (2009) was outperformed in these experiments.

Note that, in the one experiment where the algorithm by Dimopoulos et al. (2009)

succeeded in producing a CP-net more than 50% of the time, it actually performed

better than the method from Liu et al. (2013). Liu et al. (2014) only compare their

performance to Dimopoulos et al. (2009) in conditions where both are guaranteed

to succeed in learning a CP-net. In these experiments, the method by Dimopoulos

et al. (2009) performs similarly and sometimes slightly better than their method.

Thus, while Liu et al. (2014, 2013) have expanded the applicability of CP-net

learning to noisy data, they have not necessarily improved upon the techniques in
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the case of noiseless data.

Allen (2016), Allen et al. (2017b), and Haqqani and Li (2017) frame CP-net

learning as an optimisation problem and use a set of pairwise outcome prefer-

ences, P, as the data. Considering learning as an optimisation problem means

that they can allow this preference set to contain noise. In all three cases, they

are attempting to maximise the fitness function f(N).

f(N) =
|{p ∈ P|N � p}| − |{p ∈ P|N � p′}|

|P|
,

where, if p ∈ P is the preference o � o′, then p′ denotes the opposite prefer-

ence o′ � o. Optimising this fitness function is done by maximising the number

of preferences in P that are implied by the learned CP-net and minimising the

number that are contradicted by the learned CP-net. Note that these are not

equivalent as it is possible that the learned CP-net does not entail either of p or p′.

In this case, the preference is not encoded or contradicted by the learned CP-net,

which could be considered as the neutral scenario. Allen (2016) and Allen et al.

(2017b) give the same learning method, which restricts the search space to binary

tree-structured CP-nets. This allows them to encode each possible CP-net as two

vectors. They attempt to optimise the fitness score over this space using local

search with random starting points and several restarts. Haqqani and Li (2017)

use a genetic algorithm (see Appendix F for definition) to maximise the fitness

function.

All three papers provide empirical evaluation of their techniques, but it is par-

ticularly worth mentioning that the experiments in Haqqani and Li (2017) allowed

up to 100 variables in the CP-nets. In comparison, other empirical evaluations

allow a maximum of 25 variables (recall that CP-nets grow exponentially with the

number of variables). Thus, the fact that their method completes in reasonable

time and with decent performance scores is a testament to the power of genetic al-

gorithms in this application. The experiments by Haqqani and Li (2017) included

a comparison to the methods by Liu et al. (2013) and Liu et al. (2014). All three

papers use the same performance measures and the comparison by Haqqani and Li

(2017) shows their method performs best, though it is slower for the cases with up

to 10 variables. Haqqani et al. (2018) went on to apply their learning method to the

problem of real world journey planning. Here they again provided a comparison to

Liu et al. (2013) and Liu et al. (2014) and found that their method performs better.
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Labernia et al. (2017) require the data to be swap preferences (preferences

between outcome pairs that differ on exactly one variable), but they allow the

data to contain noise. They introduce an online learning method that observes

one preference at a time. As the preferences are between outcomes that differ on

one outcome, each preference supports exactly one rule. Every time a preference

is observed, a count is added to the appropriate rule and for each pair of opposing

rules (u : x � x̄ and u : x̄ � x), the rule with a higher count is used. Once enough

swap preferences relevant to X are observed, they consider assigning additional

parents to X if there are opposing rules in CPT(X) with similar counts. If this

is the case, the parent that would improve the counts most is assigned, out of

those choices that would not introduce cycles. This algorithm runs in polynomial

time and, under certain conditions, is guaranteed to return the optimal CP-net.

There is also an upper bound on the difference between the CP-net learned by this

algorithm and the batch learning version.

The authors provide an experimental evaluation of the learning performance,

including a brief comparison with the method by Guerin et al. (2013), which sug-

gests their algorithm produces a higher rate of agreement with the data. However,

the algorithm by Labernia et al. (2017) requires the data to be swap preferences,

which are always entailed in some direction and, thus, would be determined by an

ordering query. If the algorithm by Guerin et al. (2013) was trained on the same

preferences, then the output should agree or disagree with every preference, there

should not be any indecisive cases. However, the results show Guerin et al. (2013)

has a positive percentage of indecisive cases, suggesting that the two algorithms

were trained or tested on different data. If this is the case, then to some extent it

could be the cause of the difference in learning performance.

Labernia et al. (2018) present a learning method similar to that by Koriche and

Zanuttini (2010). However, they allow the user to provide inconsistent preferences.

They learn from a set of pairwise swap preferences that may contain inconsisten-

cies. They aim to learn an acyclic CP-net, which must therefore be consistent.

As the user may provide inconsistent preferences, it may be impossible to learn

a CP-net that agrees entirely with supplied preference set. Thus, the algorithm

keeps a list, L, of swaps violated by the learned CP-net. They start with an empty

CP-net. Like Koriche and Zanuttini (2010), if the learned CP-net does not agree

with the user’s preference set (ignoring L), a counterexample (swap) preference

from the set is provided. If possible, a rule or parent is added to the CP-net in

order to make it agree with the counterexample. However, if the opposite swap

is entailed by the CP-net and it is not possible to add a parent to explain the
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counterexample, then the counterexample is added to L. If the learned CP-net

now agrees with the user’s preference set, then the process terminates, otherwise

another counterexample is provided.

Suppose o � o′ is a counterexample that swaps variable X. When selecting

a new parent, P , to make the CP-net agree with this counterexample, there are

several criteria to determine which P to add. One is to minimise the number of

user swap preferences, o1 � o2, that flip the same value of X as o � o′, but assign

a different value to P . That is, where o1 � o2 is an X flip and o1[X] = o[X],

o2[X] = o′[X], but o1[P ] = o2[P ] 6= o[P ] = o′[P ]. Unless P is the only parent of X,

this is an unnecessary condition, as there is no reason two parent assignments

cannot imply the same preference order over X. Also note that, as the user may

supply inconsistent preferences, the order of counterexamples will affect the learned

CP-net. If a false counterexample is generated prior to a true counterexample, then

the CP-net could entail the incorrect preference or assign incorrect parents.

If the user’s true preference order is representable by a CP-net, then this algo-

rithm has time complexity polynomial in n, the size of the preference set, the time

it takes to identify whether a counterexample exists, and 2p (p is the maximum

in-degree allowed in the learned CP-net). The latter means that in the worst case

scenario (p = n− 1), the time complexity is exponential in n. They compare this

method to Guerin et al. (2013) experimentally, showing that Guerin et al. (2013)

is faster but their method returns a CP-net that entails a higher proportion of the

user preferences. Note that, while Labernia et al. (2018) have access to the entire

preference set, Guerin et al. (2013) learns from minimal information and has ac-

cess only to the queries the user has answered so far. Thus, it is unsurprising that

Guerin et al. (2013) is faster, but perhaps less accurate. Further, as we commented

on Labernia et al. (2017), the Guerin et al. (2013) method has a positive number

of indecisive cases in this comparison, indicating that it was trained or tested on

general preferences, whereas Labernia et al. (2018) only consider swap preferences

where indecisiveness is impossible. This may also explain the distinction in per-

formance.

Liu et al. (2018a), Liu et al. (2018b), and Liu and Liu (2019) all present CP-

net learning methods that are based upon identifying the structure by evaluating

which variables are dependent in the data. In fact, Liu et al. (2018a) and Liu

and Liu (2019) only learn the structure, not the CPTs. Liu et al. (2018a) suggest

that the CPTs can be filled in afterwards using maximum likelihood estimation.

However, in all three papers, the specifics of the learning methods are unclear.
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In Liu et al. (2018a), they aim to determine the structure using chi-squared

hypothesis testing. However, exactly what hypothesis test they are performing is

not given explicitly. Their learning algorithm is also confusing as, within a loop

over every pair of variables, it repeatedly initialises the CP-net structure with no

edges. That is, for every new pair of variables, they re-set the structure to be

empty, losing all previous progress. Furthermore, the proofs of completeness and

correctness of this algorithm describe the process in a way that does not match

up with the provided pseudocode. The authors claim that the algorithm runs in

time polynomial in the number of variables and edges. In their performance ex-

periments, they compare their method to Liu et al. (2013). These results show

that Liu et al. (2013) is faster, but performs worse with respect to their ‘similarity’

measure. This measure shows the similarity between the structures learned from

training and test data. Whilst this score demonstrates that a method performs

consistently, it does not imply that the learned CP-net is an accurate representa-

tion of user preference. Furthermore, they only give results for two specific users,

so we cannot see how the method performs in general.

Liu et al. (2018b) introduce an online learning approach. Pairwise preference

relations are received in order and viewed in sliding windows of time. Note that

this is not continuously sliding – there is a set granularity to how the window shifts.

For each new window, certain statistics are recorded so that one has a cumulative

database of information regarding all the preferences that have been observed so

far. Their method for learning a CP-net, Algorithm 2, is iterated for each new

window of data. Given a new window, for each pair of variables, their learning

algorithm uses Algorithm 1 to calculate the degree of dependence between the

variable pair. However, Algorithm 1 is defined to determine the relation between

a variable pair, that is, whether one is a parent of the other. Note that even

this is not entirely clear from the pseudocode as it takes the variable pair (U, V )

as an input and yet, the algorithm iterates over all possible values for U and V .

What is clear is that Algorithm 1 does not return a numerical value. However,

Algorithm 2 specifies that Algorithm 1 is used to calculate dependency degrees.

These degrees must be numerical values as they are then put into decreasing order.

The degree of dependency is not defined anywhere else in the paper either. The

algorithm goes on to add to the structure the dependencies that have (undefined)

dependency degree over a certain threshold, removing any cycles that are created.

The authors claim that this method is very efficient as it only deals with the data

in the current window. Its complexity is polynomial in n, the number of windows,

and the length of the windows. However, the authors do not provide proofs that

the algorithm is sound or complete. Further, while they provide an experimental
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evaluation of the algorithm’s efficiency, they give no results regarding its accuracy

in representing user preference.

Liu and Liu (2019) aim to learn the CP-net structure only, from a set of swap

preferences. To do so they define a function for each X that is maximised by a

parent set U if the mutual information between U and X is high and U does not

contain redundant information – this indicates that U is a good candidate set for

the parents of X. Their learning method starts by identifying the variable with

the highest level of mutual information with the empty set, that is, the variable

most likely to have no parents. The authors provide an algorithm for performing

this task; however, the method is unclear from the provided pseudocode. Firstly,

it cycles through every pair of distinct outcomes, despite the fact that the rest

of the calculations are not dependent upon a specific outcome. Secondly, within

the loop over pairs of distinct outcomes, they use an ‘if’ statement that is only

true if the pair of outcomes are equal. The result of this is that the whole loop

should do nothing. The second part of the learning method aims to identify, using

the above function, an optimal parent set for each variable. This algorithm also

cycles through all pairs of distinct outcomes, despite the fact that the rest of the

calculations are not outcome dependent. Furthermore, the given algorithm does

not match up with the explanation used in the proof of correctness, nor with

the illustrative example. Thus, the details of their learning method are unclear.

The authors claim that their method always produces an acyclic CP-net that is

locally optimal. Further, its time complexity is polynomial in n and the number of

examples and its space complexity is linear in n. In their experimental results, they

show that their method performs better than Liu et al. (2018a) in both efficiency

and accuracy. Their measure of accuracy is the amount of mutual information

captured by the learned structure in comparison to the true structure. As they

are learning the structure only, they cannot assess directly whether the learned

CP-net represents user preference – for example, whether the example preferences

are entailed.

Active Learning Methods

Koriche and Zanuttini (2010) present two algorithms for CP-net learning, one for

learning binary CP-nets from swap preferences, and one for learning binary tree

structured CP-nets from arbitrary preferences. Both algorithms assume that the

preferences supplied are always correct and that the user’s preferences can be rep-

resented by a CP-net. They begin with the hypothesis of an empty CP-net. If a

hypothesis does not represent the user’s preferences, a counter example is supplied.
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A small number of queries to the user are then used to add variables, parents, or

rules to the hypothesis so that it becomes consistent with the counterexample.

Note that users are only asked to provide swap preferences, which are more likely

to be answered reliably. This process is iterated until a CP-net that accurately

represents user preference is obtained. Both algorithms run in polynomial time,

are attribute-efficient, and are shown to be quasi-optimal. By attribute efficient,

the authors mean that the required number of queries is polynomial in log(n)

(where n is the number of variables) and the size of the target CP-net (number of

rules added to the number of edges in the CP-net). However, note that the latter

may be exponential in n in a worst case scenario.

Guerin et al. (2013) also use pairwise outcome preferences as data and query

the user as necessary. However, unlike Koriche and Zanuttini (2010), they may

pose non-swap queries to the user. When queried, the user may respond with

‘unable to decide’, but the algorithm relies on the assumption that the provided

preferences are consistent. The algorithm begins with a CP-net with no edges and

each CPT(X) is elicited from the user directly. From here, the method is similar

to that of Dimopoulos et al. (2009); all nodes begin classified as ‘unconfident’ and

the algorithm attempts to reclassify them as confident by assigning a valid parent

set, considering increasing parent set sizes. Given a hypothetical parent set, it is

determined to be valid or invalid using the same condition as in Dimopoulos et al.

(2009). However, there must also be sufficient evidence for the associated CPT.

If there is not sufficient evidence, the algorithm poses a query to the user that

is relevant, and then re-evaluates whether there is a valid CPT. The algorithm

repeatedly attempts to assign parents in this manner until no more edges can be

added. Unlike Dimopoulos et al. (2009), this algorithm will return the CP-net,

even if there are still unconfident variables. This is positive because it means there

is always a CP-net produced, however, it may not entail all of the preferences sup-

plied by the user. Furthermore, it is possible that the supplied preferences only

determine partial CPTs. In these cases, the remaining rows are filled with the

variable’s initial preference. Thus, even the confident variables may have inaccu-

rate CPTs. This algorithm runs in polynomial time.

Alanazi et al. (2016) introduce a method for learning tree structured CP-nets by

querying the user’s preferences over swap pairs of outcomes. This algorithm relies

on the supplied preferences always being correct and that the user’s preferences

can be represented by a CP-net. A conflict pair is defined as a pair of swap

preferences (both entailed), where one swaps X = x to X = x̄ and the other
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swaps X = x̄ to X = x. Such a pair demonstrates that X has a parent (recall that

they are considering tree structures only, so X cannot have multiple parents) and

that the parent takes different values in the two swaps. For each variable, Alanazi

et al. (2016) use a series of swap preference queries to identify a conflict pair (if

one exists). Given a conflict pair, they then use a small number of additional

queries to identify which variable is the parent. The original queries can be used

to fill in the CPT. In the binary case, this method requires fewer queries than the

method for learning tree structured CP-nets by Koriche and Zanuttini (2010) –

recall that they use both user queries and counterexample preferences in their

learning. Alanazi et al. (2016) show that their method is close to optimal with

respect to the number of required queries.

Alanazi (2016) expands upon this work and provides a method for learning

general acyclic CP-nets from user queries over swap preferences. As the variables

are binary, an unordered pair of outcomes that differ only on X is fully determined

by the values taken by V \X – they call this the context. Thus, a preference query

over an X swap is defined by the context. In order to learn a CP-net, they ask the

user a predetermined set of queries that are sufficient to reveal a variable’s parent

set and CPT entries. This method again relies on the user always supplying correct

preferences and that the true preference structure is representable by a CP-net.

They also assume that the maximum number of parents is bounded by k. In order

to determine the queries, they construct an (n−1, k) universal set (see Appendix F

for definition) and use this to provide the context for the queries. Note that the

same set is used for each variable’s swap queries. This process has time complexity

polynomial in n and exponential in k, which, in the worst case scenario, makes

it exponential in n. Alanazi (2016) also provides a slight variation for the cases

where the user cannot answer, or answers incorrectly for a certain set of queries of

limited size.

Alanazi et al. (2020) gives the same method as Alanazi (2016) for learning

general acyclic CP-nets from user queries over swap preferences. However, in

the 2020 paper, they use additional queries beyond those from the universal set.

Alanazi et al. (2020) also adapts the learning methods in both the tree structure

and general acyclicity cases in order to be able to learn incomplete CP-nets (that

is, CP-nets with incomplete CPTs). In both cases, these adaptations increase the

required number of user queries. In the tree-structured case, the algorithm now

uses the same number of queries as the method by Koriche and Zanuttini (2010),

which can also learn incomplete CP-nets. This improves upon the best existing

upper bound on the required number of queries, given by by Chevaleyre et al.

(2010). Alanazi et al. (2020) also show that the difference between their required
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number of queries (for both algorithms) asymptotically differs from the required

number of samples for a PAC-learner by at most a factor of log(n).

4.2.2 CP-Net Learning from Other Data Types

All of the methods discussed in this section are passive learning methods.

Eckhardt and Vojtáš (2009, 2010) provide a method for learning a user model

that is similar to a simple CP-net. The training data is a small set of outcomes to

which the user has assigned a rating. Their user model has two parts; first, each

variable has a local utility function that maps the value assigned to that variable

to a value in [0, 1]. These functions map an outcome to a real vector. Then an

aggregation function is used to map this vector to a value in [0,1] that indicates

the user’s preference for the outcome. The main focus of these papers is learning

the local utility functions from the training data, particularly in the case where

the utility function may be dependent upon the value taken by another variable

(parent variable). The utility functions are estimated from the training data using

different types of regression. In the dependent case, a separate utility function

is estimated for each parent assignment. As they allow preferential dependency

between variables, this is similar to the idea of learning user preferences for CP-

nets. However, this method only considers dependency between two variables and

they do not discuss how to detect this dependency between variables. In CP-net

terms, this means that you would need to know the structure beforehand and

no variable could have more than one parent. Furthermore, regression requires

the variables to be numerical, which we do not require for CP-nets as they are

qualitative models. The aggregation function is also not applicable to CP-nets

as CP-nets can have multiple consistent orderings and so one cannot construct a

utility function over the outcomes. Thus, while their model for user preferences

has certain parallels to simple CP-nets, this method of preference learning can-

not be applied to learning CP-nets in general as the other works in this section can.

Siler (2017) assumes the data to be conditionally optimal outcomes. He as-

sumes the data comes in the form of a pair (cond, opt), which means that under the

condition cond, the outcome opt is optimal. This assumes that there is a true CP-

net representation of user preferences, according to which all of these constrained

optimality statements are true. The condition is assumed to be an assignment

of values to some subset of the variables. This is a very restrictive assumption

on the data, for example, in the non-binary case, the data cannot express the
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optimal value under the condition X 6= x. In the binary case, we cannot specify

the optimal outcome under X = x ∨ Y = y, for example.

The learning algorithm is almost identical to that given by Dimopoulos et al.

(2009), except for the method of determining, given a hypothetical parent set U ,

whether a valid CPT exits. This is determined by checking all of the optimal

outcomes in the data for the following property for each u ∈ Dom(U); for all

examples where U = u and the condition does not specify a value for X, X must

take the same value. If there are no relevant examples, a row can be left blank and

this is considered valid. If all relevant examples have X = x, then the row entry

is x � x̄ and similarly for X = x̄. If every row is filled or left blank, then there

is a valid CPT. If a CP-net is returned, it is acyclic and entails the conditionally

optimal examples. Note that, if such a CP-net exists, then one will be returned.

However, the returned CP-net is not guaranteed to be the truth or even a have a

structure that is a subgraph of the true structure – a variable may be assigned a

completely incorrect parent set by this process. Further, as the author notes, this

method is only tractable when the imposed upper bound on parent set size is small.

Khoshkangini et al. (2018) use historical user outcome choices as data, the

same as in our work. Their aim is to obtain a CP-net to use for recommender

systems. They assume that in this scenario there is some ‘target’ variable for

which we want to predict user preference and this variable is part of the CP-net.

This is a somewhat unusual assumption as such variables would determine the

value of all other variables. Hence, it is not clear how to interpret a conditional

preference over this variable. One of their examples is movie recommendation and

they suggest that the target variable would be film title. Knowing the film surely

determines all other features such as year of release or genre. Thus, having the title

as a variable within the CP-net seems somewhat at odds with CP-net semantics.

Further, in this example, your data would only contain films the user has watched

previously. By including titles as a variable, we limit the CP-net to considering

previous choices when, naturally, one would want to recommend new films to the

user.

The authors use information gain (with respect to the target variable) to per-

form feature selection on the other variables. This reduces the the variable set to

a given size. A CP-net over this reduced variable set is constructed by building

three layers. The first layer is the root layer, which consists of the variable with the

highest information gain only, this is set to be the root of the CP-net and has no

in-degree. The second is the intermediate layer, which consists of the remaining

selected variables (not including the target). The final layer is the target layer
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which contains the target variable only, which has no out-degree. Note that these

layers are in topological order; edges between layers must go from the root layer

to the intermediate or target layers, or from the intermediate to target layer.

The edges within the intermediate layer are constructed as follows; two nodes

are initially connected if their dependence in the data is above a given thresh-

old. They then use hill climbing search to identify the Bayesian network over the

intermediate variables which optimises various metrics used in Bayesian network

learning. Bayesian networks have conditional probability tables that give, for ev-

ery assignment to the parent variables, a probability distribution over the variable

values. They convert their learned Bayesian network into a CP-net by simplifying

these probability distributions into a strict ordering to form conditional preference

tables. However, Bayesian networks and CP-nets are distinct due to their differ-

ences in symmetry (as well as other properties). By learning a Bayesian network,

you are representing the probabilistic dependence in the data, which is symmetric.

CP-nets represent preferential dependence, which is asymmetric. Thus, there is

no guarantee that their learned Bayesian network has the same orientation as the

user’s CP-net. The edges between layers are determined by evaluating which vari-

ables have a sufficient dependence level with the root and target nodes. Note that

edge direction in these cases is enforced by the fact the layers are in topological

order. This CP-net construction is entirely based upon probabilistic dependence.

Thus, for the reasons discussed above, the resulting structure is more of a simpli-

fied Bayesian network than a true CP-net representation.

Several papers have proven results about the complexity of learning CP-nets

from outcome preferences under a variety of conditions (Alanazi, 2016; Alanazi

et al., 2016, 2020; Chevaleyre et al., 2010; Koriche and Zanuttini, 2010; Lang and

Mengin, 2008, 2009). These include both passive and active learning (where it

is generally concluded that active learning makes learning possible in reasonable

time), learning CP-nets with specific structure types, learning both complete and

incomplete CP-nets, and cases where users provide incorrect or incomplete infor-

mation. In many cases, these complexity results are proven by transforming the

learning problem into a SAT problem (see Appendix F for definition).

4.2.3 How and Why Our Method Differs from Existing

Work

In §4.3, we introduce a new method for passively learning acyclic binary CP-

nets. We choose to learn passively as this is less intrusive to the user and we
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do not have to rely on the accuracy of user answers. Existing technology can

estimate user preferences without explicit user input. Thus, requiring users to

specify their preferences could be off-putting. Passive learning also allows us to

learn the preference structure of a user in the event that the user is unwilling to

reveal their preferences, for example in an auction or in general when playing a

game against an adversary.

Our method is less restrictive in its assumptions than many of the works dis-

cussed here; we do not assume that the user’s true preferences are representable

by a CP-net, we do not impose any restrictions on the structure of the learned

CP-net (beyond acyclicity), and we do not assume that the data is always consis-

tent with the true preference order (noiseless). There are other distinctions from

the existing work, which we discuss in §4.3. However, the main difference is that,

unlike the vast majority of the above methods, we do not use pairwise outcome

preferences as data. Instead, we use a history of outcomes chosen by the user,

similar to the data used by Khoshkangini et al. (2018). It is more realistic that

one could passively observe this type of data, as opposed to pairwise preferences,

which makes our method more widely applicable.

In many contexts, there is no way to observe pairwise preferences without pre-

senting pairwise outcome queries to the user. In most online scenarios (this could

be shopping, social media, or content platforms such as Netflix or YouTube), a

user has far more than two options and we observe only which outcome was suc-

cessful, that is, which option they chose. Furthermore, if a user chooses outcome a

out of the available options {a, b, c, d}, this does not automatically imply strict

preferences a � b, a � c, a � d; if a user was presented with the same set of song

choices on two separate occasions, they may make different selections. This could

be because of the user’s mood or activity or other unobservable variables – we

discuss this further in §4.3. Thus, we cannot conclude that the chosen outcome is

strictly the most preferred. Hence, in such scenarios, we cannot observe pairwise

outcome preferences, but we can observe the user’s choice.

In some scenarios, one may be able to observe or extract a set of initial pairwise

preferences from the user. For example, the first time you set up a news app or

create a Netflix account, you may be asked to answer some questions about your

general preferences. In this scenario, one of the existing learning techniques can

be used to learn an initial CP-net, N . Then, using N as a starting point, we can

use our learning algorithm to update and fine tune the CP-net model as more user

actions are observed, without needing to further query the user. We discuss the

idea of using our learning method to update a model further in §4.3.2.

165



4. CP-Net Learning

Siler (2017) uses conditional optimality statements, rather than pairwise out-

come preferences as data. Such statements give the optimal outcome under a

partial variable assignment. However, as we argued above, observing the choice

of a from the available options {a, b, c, d} does not mean that a was optimal in

this case. Further, as we discussed in §4.2.2, requiring the condition to be a par-

tial variable assignment is restrictive. It may not be possible to restrict to the

set {a, b, c, d} using a partial variable assignment. Thus, this data type is more

restrictive than user choices and less realistic to passively observe. Furthermore,

Siler (2017) require the user’s preferences to be representable by a CP-net and

that all conditional optimality statements are true under this CP-net. Our learn-

ing method does not require these assumptions to hold, as we discussed above.

Khoshkangini et al. (2018) uses the same data as we do. However, we do not

use their concept of a ‘target’ variable. We assume the variables to be distinct fea-

tures of the outcomes and our interest lies in determining user preference over the

outcomes, as is usual for CP-nets. More importantly, we do not base our learning

upon probabilistic dependency like Khoshkangini et al. (2018). As we mentioned

above, constructing Bayesian networks and using probabilistic dependence may

lead to incorrectly oriented structures. Our learning is instead based upon a score

that we construct, which is motivated by the agreement between the data and the

conditional preference rules encoded by CP-nets. We learn by identifying a CP-net

that maximises this score.

4.3 A New CP-Net Learning Method

In this section, we introduce our method for passively learning binary CP-nets,

which is distinct from the existing work because we use a history of user choices

as data. As we are learning binary CP-nets, for the remainder of Chapter 4 we

assume all CP-nets to be binary. This section is structured as follows; in §4.3.1, we

discuss the data format. In §4.3.2, we introduce our scoring function for CP-nets as

we utilise score-based learning. In §4.3.3, we give our CP-net learning algorithm.

Finally, in §4.3.4, we discuss a possible variation to this method.

4.3.1 Historical User Choice Data

Most methods in the existing literature utilise pairwise outcome preferences as

data for learning. However, as we discussed in §4.2.3, in many cases, it is not

possible to passively observe such data. Instead, we can only see which outcome

the user chose (for example, which item they bought or which film they watched).
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We learn CP-nets from a history of such user choices. Passively observing this type

of data is more realistic than pairwise preferences. This is particularly true when

the authors required the data to be swap preferences or transparently entailed

preferences.

Many of the methods described in §4.2 require one or both of the following.

First, that the user’s underlying preference order can be represented by a CP-net.

Second, that all supplied preferences or data are consistent with the user’s true

preferences – they cannot handle noise in the data. We do not enforce either of

these assumptions.

We assume that the universe of our user is deterministic, meaning that, if

we could observe all of the variables, we would always know which item they

would pick. However, we wish to model the user’s preferences over a given set of

observable variables only. There are likely to be external, possibly unobservable

variables that affect the user’s choices over this set of variables. We model the

effect of external variables as noise. Due to this effect, we do not expect the user

to pick the optimal outcome every time, but rather we expect the user to pick the

optimal outcome the most often.

Example 4.1. Suppose we are trying to model a user’s music preferences. The

two variables of interest are the style of music, which could be Rock or Country,

and the tempo of a song, which can be Fast or Slow. Suppose the user prefers

rock to country. Suppose also that, if they are listening to a rock song, they prefer

a fast tempo, but, if they listen to country, they prefer a slow tempo. This is a

reasonable set of preferences and it is representable by a simple CP-net that has

fast rock songs as the optimal outcome. This CP-net implies that the user will

always choose fast rock songs when given the option. However, this is not how

people act; they may have a preference for rock over country but still like and

listen to both. This general preference for rock over country may be affected by

additional information, for example, if the user is studying, they prefer to listen

to country music. Thus, variables outside of our model can cause the user to pick

non-optimal outcomes. However, one would assume that the general preference

for rock means that overall the user picks rock more often than country. Carrying

on this logic, one would thus expect the user to pick the optimal outcome most

often.

In this work, we assume that the relevant observable variables are specified

from the problem context. We leave the task of identifying the relevant factors

from the observable data to future works. If we do not consider a variable, Y ,

that is a true parent of X in our learning, then our algorithm may be unable to
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detect some other true parents of X due to this missing information. Alternatively,

the relationship between X and its other parents may be characterised incorrectly

as we cannot distinguish between the different Y assignment cases. However, we

would not expect this to impact variables that are not children of Y . Unfortunately,

such effects are unavoidable if Y is not a variable we can observe.

Remark. Note that a user’s preference and what they choose are not necessarily

one and the same. For example, suppose we have two types of sandwich a and b,

but b is much more expensive. The user may prefer b to a and yet they pick a

most of the time. Thus, from user choice data, we cannot identify the user’s

preferences over sandwiches alone. Rather, we can only observe their sandwich

choices under unknown contexts (assignments to the variables not in our model),

which may not be a reflection of the former as preference may depend upon external

variables. However, the point of modelling user preferences is usually to be able

to reason about and predict what the user would pick, not what they prefer. For

this purpose, it would be appropriate to model a as preferred to b. Thus, we can

use the probability of an outcome being chosen as a proxy for preference.

We assume, in this deterministic universe, that for every outcome oi associated

with our set of observable variables, there is some true proportion of times pi

where the user picks oi. We assume these pi to be fixed, meaning that the user’s

preferences are not changing. Thus, if a user’s preferences are likely to change,

then one might apply this learning to only a limited history of user choices. We

also assume that all outcomes are available each time a choice is made and that

each choice is independent.

Let d(oi) be the number of times oi is chosen in the data and let O = 2n be

the total number of outcomes. By the above assumptions, we may conclude that

the d(oi) values have the following multinomial distribution:

(d(o1), ..., d(oO)) ∼MN(O, (p1, ..., pO)). (4.3)

These pi values give us an ordering over the outcomes induced by how often

they are picked. As we mentioned above, we are using this property as a proxy

for preference. Thus, we have a linear preference ordering. Note that we do not

assume that this preference ordering is representable by or consistent with a CP-

net. Furthermore, if the pi are consistent with some ‘true’ CP-net, the data may

still contain non-optimal outcomes, which is contradictory to the CP-net (noise).

There are several different aims used in CP-net learning. Some authors try

and learn a CP-net that can predict user preferences well (Dimopoulos et al.,

2009; Guerin et al., 2013; Labernia et al., 2018, 2017; Michael and Papageorgiou,
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2013). Others aim to recover the true CP-net (Alanazi, 2016; Alanazi et al., 2016;

Koriche and Zanuttini, 2010). Some aim to learn a structure that entails some or

all of the training set, whether that is outcome preferences or optimal outcomes

(Allen et al., 2017b; Haqqani and Li, 2017; Liu et al., 2014; Siler, 2017). Lang and

Mengin (2008) define three levels of agreement between the learned CP-net and a

set of preference examples; the example set is ‘implied’ when all of the examples

are entailed, it is ‘strongly consistent’ when all examples are included in a single

consistent ordering, and it is ‘weakly consistent’ when every example is contained

in some consistent ordering (that is, their reverse is not entailed).

As the pi induced ordering of the outcomes is the user’s true preference order,

we would like our learned CP-net to agree with this ordering. Very few CP-nets

entail a total order over the outcomes, so looking for a CP-net that implies the

ordering is too strong. Ideally, we would like to learn a CP-net for which the pi

ordering is a consistent ordering. However, some linear orders are not consistent

with any acyclic CP-net. As we do not require the user’s true preference to be

representable by or consistent with a CP-net, obtaining strong consistency is not

always possible. Thus, we aim to learn a CP-net that is weakly consistent with

the pi outcome ordering.

Remark. In the previous chapters, we have considered CP-net outcomes to be the

products or scenarios that the user is deciding between. However, if we consider an

online store or a content platform like Netflix, in order for every product or film to

be its own outcome, the CP-net would need a large number of variables or variables

with large domain sizes, or both. Such a CP-net could be impractical to deal with

and the user is unlikely to be able to specify all of the necessary preference rules,

perhaps due to indifference or because the CP-net contains outcomes or variable

values that the user knows nothing about. Further, users do not often buy the

exact same product or watch the same film repeatedly, even if they really like it.

In our learning method, we use the d(oi) values to represent the user’s preference

for outcome oi (approximately). Thus, for CP-net learning we shall consider a

slightly different interpretation of CP-nets. Instead of products, the outcomes will

be categories of products. Take the Netflix example, instead of films, the outcomes

will be categories of films or programmes. For example, ‘British crime TV series’

is a category specified by the three variables ‘country of origin’, ‘genre’, and ‘film

or TV’. In practice, one can make the categories more fine grained by using more

variables or larger domain sizes.

In general, this interpretation of CP-nets will lead to smaller models and the

user is more likely to have preferences over all of the domains (which should make

it easier to detect the preference structure from the data). Furthermore, in this
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interpretation, it makes sense for d(oi) to be larger if the user prefers outcome oi

(that is, prefers items in category oi). Once a user’s preferences over the relevant

categories are known, one could use a convenient or generic measure for sorting

the products within a category. Netflix may sort the films within a category by

the most recently released or added. Spotify may sort artists within a category

based on whether it is liked by a user’s friends, or by general popularity. Online

retailers may sort a category of products by price, or by how often the products are

purchased in general, or they may promote the products they need to improve sales

for. Alternatively, once the preferred categories are identified, one could employ

more intricate preference learning on the more preferred categories only (where

there is likely to be more relevant data).

4.3.2 CP-Net Scoring Function

In this section, we define our scoring function for CP-nets, which is utilised in

our score-based learning method in §4.3.3. There are two existing CP-net learning

methods that use data similar to ours (Khoshkangini et al., 2018; Siler, 2017).

Siler (2017) did not use score-based learning. Khoshkangini et al. (2018) used

score-based learning for a part of their learning procedure, but this was in order to

learn a Bayesian network. Thus, this is the first time a function has been defined

that evaluates the agreement between a CP-net and user choice data.

The pi values are all in the range [0, 1] and, by definition, they must sum to

one. This set of values is exactly the support space for an O dimensional Dirichlet

distribution. Furthermore, such a Dirichlet distribution is conjugate with our

multinomial data distribution. Thus, an appropriate prior distribution for these pi

values is the following Dirichlet distribution:

p1, p2, ..., pO ∼ Dir(β1, β2, ..., βO).

In this work, we generally assume an uninformed Dirichlet prior is used. In partic-

ular, in our experiments we set βi = 0.01 for all i ∈ {1, 2, ...,O}. However, if our

learning technique was applied as a method of updating a user’s preference model,

or in a context where one has prior knowledge of user preferences, an informed

prior could be used by setting the βi parameters to reflect this prior information.

In selecting an uninformed prior for our experiments, we wanted to use a small

positive βi value to reflect the circumstance of having observed no user choices

and having no prior beliefs. We chose the value βi = 0.01 arbitrarily, as any

value close to 0 would have been appropriate. Due to time and computational

constraints, we were unable to test other choices of uninformed prior parameter in
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our experiments. Thus, we cannot comment on the effect of this choice. We could

also use larger values for the uninformed prior parameters, for example setting

all βi = 1, however this would correspond to the situation where the user picks

every outcome exactly once, which is inaccurate. On the other hand, using larger

parameters may make the prior more robust to small amounts of data. Tuning

the βi parameters and evaluating the effects of our choice of prior (both in the

uninformed and informed case) is an important next step in our future work on

CP-net learning, as we discuss in §4.5.

If we have prior beliefs about user preferences, then we would choose βi to

reflect this information (as we will see later, prior beliefs about variable relations

can also be incorporated in the starting structure of our learning algorithm). If,

for example, we believe the user prefers the property X = x to X = x̄, then

one could make the βi parameters corresponding to oi[X] = x larger than those

corresponding to oi[X] = x̄. Alternatively, suppose we are using our CP-net

learning algorithm as an update procedure. In this case, we already have a CP-

net model of user preference, N1, that we wish to update given newly observed

data. In this case, we would use the existing CP-net as a starting structure for our

algorithm and we could set the βi values to reflect the preference order entailed by

N1 (larger βi values for more preferred outcomes). If prior beliefs can be expressed

via pairwise outcome preference, then another approach to configuring an informed

prior could be to use an existing learning technique to obtain a starting CP-net

model, which we then reflect in the Drichlet parameters (and starting structure),

as in the updating case. The exact details of how to encode the various forms of

prior information in our Dirichlet parameters is not examined here, this is another

direction for future work.

Once the data (history of user choices) is observed, we can use the Dirichlet-

Multinomial conjugacy to update the prior and obtain the posterior distribution:

p1, ..., pO ∼ Dir(β1 + d(o1), ..., βO + d(oO)). (4.4)

Thus, from the data, we obtain a distribution over the pi values for which we

aim to learn a consistent CP-net. We use this distribution to construct a scoring

function that reflects how strongly a given CP-net agrees with the pi values.

We take a Bayesian approach to modelling beliefs about the pi values for several

reasons. First, the Bayesian updating framework allows for expert knowledge

about user preferences to be incorporated by utilising an informed prior, as we

discuss above. Another advantage to the Bayesian approach, particularly in the

case of no prior information, is that it enables us to encode a level of uncertainty
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around the observed proportions. This is essential in general as we have only a

limited number of observed user choices and so we can only estimate the pi values.

In particular, this uncertainty ensures that outcomes that have not yet been chosen

do not get written off as impossible. This is important as the exponential number

of outcomes makes it likely for there to be many outcomes not chosen in our

sample of user choices. The Bayesian model also provides a simple procedure for

updating our beliefs given further observed data. In this scenario, one would use

the previously learned CP-net as a starting structure and then perform learning

again with the updated posterior. However, this convenient update procedure for

the Dirichlet distribution does not allow us to adapt our learning procedure into

an online learning method, as we explain in §4.5. This is another direction to be

explored in our future work.

We will now formally define the scoring function for a given CP-net, N over

variables, V . Suppose that X ∈ V has parent set U ⊆ V and let W = V \U ∪{X}.
A rule in CPT(X) would then be of the form u : x � x̄ for some u ∈ Dom(U).

This rule represents 2|W | many pairwise preferences. In particular, it dictates

(due to the ceteris paribus nature of CP-nets) that, for every w ∈ Dom(W ), we

have uxw � ux̄w. We say that the preference oi � oj is supported if pi > pj. Thus,

the rule u : x � x̄ is supported if all of the 2|W | associated pairwise preferences

are supported. However, as the number of preferences represented by a rule is

exponential, this is a complex condition to check and so we relax it slightly. This

simplification also makes it possible for preference orders that are not representable

by CP-nets to support preference rules.

Definition 4.2. Let N be a CP-net over variables V and let U ⊆ V be the parent

set of X ∈ V . Let us denote W = V \U ∪ {X}. For any u ∈ Dom(U), we say that

the rule u : x � x̄ is supported if∑
w∈Dom(W )

puxw >
∑

w∈Dom(W )

pux̄w. (4.5)

Note that we are sightly abusing notation here, using poi to mean pi.

However, we do not have the exact pi values, but rather a distribution rep-

resenting our beliefs about these values (Equation 4.4). Thus, while we cannot

definitively determine whether or not a rule is supported, we can calculate the

probability. We define the score of a rule to be the probability that it is sup-

ported.
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Definition 4.3. Let N be a CP-net over variables V and let U ⊆ V be the parent

set of X ∈ V . Let us denote W = V \U ∪ {X}. For any u ∈ Dom(U), the rule

score, Sr, of the rule u : x � x̄ is

Sr(u : x � x̄) =Pr(u : x � x̄ is supported)

=Pr

( ∑
w∈Dom(W )

puxw >
∑

w∈Dom(W )

pux̄w

)
.

(4.6)

We say that a given CPT(X) is supported if all of the rules it contains are

supported. However, as we cannot directly determine whether or not a CPT is

supported, we define the score of a CPT to be the probability that it is supported.

Definition 4.4. Let N be a CP-net over variables V and let U ⊆ V be the parent

set of X ∈ V . Let us denote W = V \U ∪ {X}. We say that CPT(X) is supported

if each rule contained in CPT(X) is supported. That is, if∧
u:x1�x2∈CPT(X)

( ∑
w∈Dom(W )

pux1w >
∑

w∈Dom(W )

pux2w

)
.

Definition 4.5. Let N be a CP-net over variables V and let U ⊆ V be the parent

set of X ∈ V . Let us denote W = V \U ∪{X}. The CPT score, St, of CPT(X) is

St(CPT(X)) =Pr(CPT(X) is supported)

=Pr

( ∧
u:x1�x2∈CPT(X)

( ∑
w∈Dom(W )

pux1w >
∑

w∈Dom(W )

pux2w

))
.

(4.7)

This probability cannot be calculated exactly from the Dirichlet distribution

due to the form of the associated integrals. In practice, we estimate this probabil-

ity using Monte Carlo estimation (Robert and Casella, 2004). A full description

of this process and an evaluation of the estimation accuracy can be found in Ap-

pendix D.1.

If a CPT contains a degenerate parent, then removing this parent will increase

the St score. This is an important property as it implies that the CP-net learned

by our algorithm will not contain any degenerate parents, as we explain in §4.3.3.

That is, our learning algorithm will produce the learned CP-net in its simplest

form, which, as we have seen in Chapter 3, makes the CP-net easier to reason

with.

Proposition 4.6. Let N be a CP-net over variables V . Let Pa(X) = U ∪ {Y },
where X, Y ∈ V , U ⊆ V , and Y 6∈ U . Suppose that Y is a degenerate parent

of X. Let CPT1 be the current CPT(X) and let CPT2 be the CPT(X) obtained

by removing Y as a parent, as we did in §3.2.1. Then we have

St(CPT2) ≥ St(CPT1).
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Proof. See Appendix E.10.

Remark. When calculating the score of CPTs, we use the joint probability of all

of the contained rules being supported. We use this joint probability as we cannot

assume from CP-net semantics, or the Dirichlet distribution, that these preference

rules are probabilistically independent. However, when scoring a whole CP-net,

we consider each variable’s CPT score independently (although we cannot assume

that these probabilities are independent either).

The score of a CPT is the probability that all of its rules are supported. If r1

and r2 are rules within the same CPT(X), then their support conditions both

dictate restrictions upon the same partition of the pi variables. In particular,

the partition of the pi variables by their assignments to Pa(X) (the parent set

associated with the CPT containing r1 and r2) and X. However, if r1 and r2 are

rules in distinct CPTs, then their support conditions assert requirements over two

different partitions of the pi variables (corresponding to the appropriate parent

sets and variables of their CPTs). Thus, rules within the same CPT are likely to

have more directly dependent probabilities than rules in different CPTs. We take

the former dependence into account by using the joint probability for CPT scores.

The latter is what we are omitting by treating CPTs as independent from one

another. In order to consider this dependency in our scoring function, we would

need to use the joint probability of the whole CP-net. This would be a much

more complex scoring function and would need to be recalculated from scratch for

every new CP-net. By treating CPTs independently, we can work over the space

of acyclic structures rather than the space of acyclic CP-nets, as we discuss below,

which massively reduces the number of candidate models we need to consider.

Further, we can update the score if the structure changes, by recalculating St

for the variables that have lost or gained a parent only. Our learning algorithm

repeatedly updates the CP-net score given minor structural changes. Thus, this

simplification will reduce the complexity of our algorithm and improve its practical

applicability.

Definition 4.7. Let N be a CP-net over variables V . The CP-net score, Sc, of N

is

Sc(N) =
∏
X∈V

St(CPT(X)). (4.8)

Note that, for a given structure, this score is maximised by maximising the

individual CPT scores. As we calculate St values through Monte Carlo estimation,

finding (one of) the highest scoring CPT for X is almost as easy as determining

the CPT score of a specific table (we discuss this in more detail in Appendix D.2).

Thus, instead of considering specific CP-nets, we will consider only the structure
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from now on. Given a structure, we always assume that the optimal CPTs are

utilised. We formally define the score of a given structure as follows.

Definition 4.8. Let G be an acyclic structure over variables V . Let Pa(X) denote

the set of variables that are parents of X ∈ V in G. The structure score, S, of G

is

S(G) =
∏
X∈V

maxCPT(X)∈T(Pa(X),X){St(CPT(X))}, (4.9)

where T(U,X) denotes the set of all possible CPTs for variable X, given that it

has parent set U .

Note that |T(U,X)| = 22|U| . Thus, by considering only the CP-net structures,

we have massively reduced the number of candidate models we must consider in

our learning process.

Our learning method aims to find a CP-net (structure) that maximises this

score. Such a CP-net has the maximum probability that the preference rules it

represents are supported by the user’s true preference order. Note that it is unlikely

that we will obtain a CP-net with a score of 1 for several reasons. Firstly, we do

not require the user’s preferences to be representable by a CP-net. Secondly, by

representing our beliefs about the pi values via a Dirichlet distribution, we have

encoded a level of uncertainty and, thus, the relevant probabilities will not be

equal to 1. They may get close if there is a lot of data or a strongly informed prior

is used. Finally, even if we have a score of 0.9 for every CPT and there are five

variables, then S = 0.95 = 0.59. That is, even small degrees of uncertainty are

amplified by the multiplication process.

4.3.3 CP-Net Learning Algorithm

In this section, we describe our algorithm for CP-net learning. We use a score-

based approach to learning, aiming to maximise the score given in Equation 4.9

over the space of acyclic structures. To do so, we utilise a greedy search algorithm,

which guarantees that we obtain a locally optimal structure.

Note that we are searching over the space of all acyclic structures (DAGs) over

our variable set V . This means that we are not imposing any restrictions upon

the structures we can learn. Note that the existing works on CP-net learning

often utilise assumptions such as the learned CP-net must be tree-structured or

the maximum in-degree is bounded by some constant k.

The pseudocode for our learning algorithm is given by Algorithm 4. The learn-

ing process begins with a specified acyclic starting structure, A. In our experi-

ments, we either start with the empty structure (with no edges) or a randomised
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structure. If one had prior knowledge, the structure could be populated with any

known dependencies.

Let G be the space of all directed acyclic graphs over our variable set V . Let

us first define the notion of neighbouring graphs within this space.

Definition 4.9. Let G,H ∈ G. Then H is a neighbour of G if they differ on

exactly one edge. That is, there exists some directed edge, e, such that e ∈ G and

e 6∈ H or vice versa. Further, for any edge e′ 6= e, we have that e′ ∈ G if and only

if e′ ∈ H. We denote the set of neighbours of G by Ne(G).

This notion of neighbours is used to move around the space G. The general

design of our learning algorithm is as follows; given the current structure, the

algorithm identifies the best scoring neighbour and moves to this neighbouring

structure. This continues until none of the neighbours of the current structure are

an improvement upon the current score. Thus, the learned CP-net will be locally

optimal according to this structuring of the space G (that is, it will have a better

score than any of its neighbours).

Given the starting structure, A, we first calculate the score S(A), which can

be done using Algorithm 8. Algorithm 8 takes inputs Pa(X) and X and calcu-

lates both the maximum St score for X (given its parent set) and (one of) the

corresponding optimal CPT:

maxCPT(X)∈T(Pa(X),X){St(CPT(X))},

argmaxCPT(X)∈T(Pa(X),X){St(CPT(X))}.

For ease of notation, we will simplify the above terms to MaxSt(X|Pa(X))

and OptCPT (X|Pa(X)). Details of Algorithm 8 are given in Appendix D.2. If

we apply Algorithm 8 with inputs Pa(X) (in structure A) and X for each X ∈ V ,

then S(A) is the product of the returned MaxSt scores. This procedure will also re-

turn the optimal CPTs for structure A. Note that we record the individual MaxSt

scores as well as S(A) in order to calculate ∆ values (defined below).

Now that we know the score of A, we want to evaluate the scores of all neigh-

bours of A. For X, Y ∈ V , let the ordered pair (X, Y ) denote the edge X → Y .

When we refer to changing an edge, e, in A, we mean adding the edge if e 6∈ A and

removing it if e ∈ A. We denote the resulting structure by A⊕e. Every B ∈ Ne(A)

can be written as B = A ⊕ e for some e = (X, Y ), where X 6= Y . We cannot

have X = Y as this would make e a loop edge, which cannot be present in A or B

as both are acyclic. Thus, instead of calculating the scores of each B ∈ Ne(A),

we evaluate how changing edge e affects the score of A, for each e = (X, Y ),
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Algorithm 4: CP-Net Learning

Input : A – Starting structure

D – User choice data

α – Change threshold

Output: N – Learned CP-net

1 Initialise CP-net N with structure A and empty CPTs;

2 TableScores – Empty list of St scores;

3 S(A) = 1;

// Calculate S(A) and identify the optimal CPTs for A:

4 for Xi ∈ V do

5 Calculate MaxSt(Xi|Pa(Xi)); // Using Alg. 8

6 Determine OptCPT (Xi|Pa(Xi)); // Using Alg. 8

7 TableScores[i] = MaxSt(Xi|Pa(Xi));

8 S(A) = S(A) ·MaxSt(Xi|Pa(Xi));

9 CPT(Xi) = OptCPT (Xi|Pa(Xi));

10 end

11 C – Cycles matrix for structure A;

12 Initialise Γ and P as empty |V | × |V | matrices;

// Calculate all ∆(e) values and determine the corresponding

optimal CPTs:

13 for Xi, Xj ∈ V, i 6= j do

14 e = (Xi, Xj);

15 if e 6∈ A then

16 Calculate MaxSt(Xj|Pa(Xj) ∪ {Xi}); // Using Alg. 8

17 Determine OptCPT (Xj|Pa(Xj) ∪ {Xi}); // Using Alg. 8

18 ∆(e) = MaxSt(Xj|Pa(Xj) ∪ {Xi})/TableScores[j];

19 Pi,j = OptCPT (Xj|Pa(Xj) ∪ {Xi});
20 Γi,j = ∆(e);

21 end

22 else

23 Calculate MaxSt(Xj|Pa(Xj)\{Xi}); // Using Alg. 8

24 Determine OptCPT (Xj|Pa(Xj)\{Xi}); // Using Alg. 8

25 ∆(e) = MaxSt(Xj|Pa(Xj)\{Xi})/TableScores[j];

26 Pi,j = OptCPT (Xj|Pa(Xj)\{Xi});
27 Γi,j = ∆(e);

28 end

29 end

// Continued on the next page
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// Continuation of Algorithm 4

30 ValidChanges=
{
e = (Xi, Xj)

∣∣∣Ci,j = 0∧((
e ∈ A ∧ Γi,j >

1
1+α

)
∨
(
e 6∈ A ∧ Γi,j > 1 + α

))}
;

31 while |ValidChanges| > 0 do

// Identify the best valid edge change and update the

structure, scores, and CPTs:

32 e∗ = (Xi∗ , Xj∗) = argmax(Xi,Xj)∈ValidChanges(Γi,j);

33 A = A⊕ e∗;
34 CPT(Xj∗) = Pi∗,j∗ ;

35 ∆(e∗) = Γi∗,j∗ ;

36 S(A) = S(A) ·∆(e∗);

37 TableScores[j∗] = TableScores[j∗] ·∆(e∗);

38 Update C according to the new structure of A; // Using Alg. 9

// Update the ∆ values and corresponding optimal CPTs:

39 for Xk ∈ V, k 6= j do

40 e = (Xk, Xj);

41 if e 6∈ A then

42 Calculate MaxSt(Xj|Pa(Xj) ∪ {Xk}); // Using Alg. 8

43 Determine OptCPT (Xj|Pa(Xj) ∪ {Xk}); // Using Alg. 8

44 ∆(e) = MaxSt(Xj|Pa(Xj) ∪ {Xk})/TableScores[j];

45 Pk,j = OptCPT (Xj|Pa(Xj) ∪ {Xk});
46 Γk,j = ∆(e);

47 end

48 else

49 Calculate MaxSt(Xj|Pa(Xj)\{Xk}); // Using Alg. 8

50 Determine OptCPT (Xj|Pa(Xj)\{Xk}); // Using Alg. 8

51 ∆(e) = MaxSt(Xj|Pa(Xj)\{Xk})/TableScores[j];

52 Pk,j = OptCPT (Xj|Pa(Xj)\{Xk});
53 Γk,j = ∆(e);

54 end

55 end

56 ValidChanges=
{
e = (Xi, Xj)

∣∣∣Ci,j = 0∧((
e ∈ A ∧ Γi,j >

1
1+α

)
∨
(
e 6∈ A ∧ Γi,j > 1 + α

))}
;

57 end

58 return N ;
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where X 6= Y . We record the multiplicative change in score and refer to this value

as ∆(e):

∆(e) =
S(A⊕ e)
S(A)

.

If changing the edge e introduces cycles into the structure, then A ⊕ e 6∈ G.

As this structure is not in our search space, this is not an edge change we need to

consider. We use a cycles matrix, C, to record whether each edge, e, creates cycles

when changed inA. Let us enumerate the variables such that V = {X1, X2, ..., Xn}.

Ci,j =

{
1 if changing the edge (Xi, Xj) creates cycles,

0 if changing the edge (Xi, Xj) does not create cycles.

This information is stored so that it can be updated (rather than recalculated, for

efficiency) once changes to the structure are made. Details on how to calculate

and update C are given in Appendix D.3.

If e = X → Y , then Y is the only variable that has a different parent set

in A and A ⊕ e. Thus, all variables other than Y have the same maximum St

score in both A and A ⊕ e. This simplifies ∆(e) as follows, by the definition of

the score given in Equation 4.9. Let U = Pa(Y ) in A. Note that, if e 6∈ A,

then Pa(Y ) = U ∪ {X} in A⊕ e. If e ∈ A, then Pa(Y ) = U\{X} in A⊕ e.

∆(e) =


MaxSt(Y |U∪{X})
MaxSt(Y |U)

if e 6∈ A,

MaxSt(Y |U\{X})
MaxSt(Y |U)

if e ∈ A.

Thus, to calculate ∆(e) and S(A⊕e), we only need to calculate the maximum St

score for Y in A ⊕ e. This can be done by one application of Algorithm 8. This

also yields the optimal CPT(Y ) for A⊕ e. As no other variable incurs a change of

parents, their optimal CPTs remain unchanged from A.

Our learning algorithm goes through each possible edge change and calcu-

lates the associated ∆ value and new optimal CPT. We record the ∆ values and

possible future CPTs in the change matrix, Γ, and potential CPTs matrix, P , re-

spectively. That is, Γi,j = ∆(Xi → Xj) and Pi,j contains the optimal CPT(Xj)

for A⊕ (Xi, Xj).

Our aim is to maximise the structure score, so one might expect that we are

only interested in edge changes with ∆ > 1 (that is, the changes that improve

this score). However, if ∆ > 1 is enough to implement an edge change, then

we are allowing edge changes that result in arbitrarily small improvements to the

score. This may lead to adding edges due to noise in the data or estimation

variability, rather than because of true improvements in the model fit. Further,

179



4. CP-Net Learning

requiring ∆ > 1 for edge removal may leave unnecessary edges in the structure, as

we show below. Thus, we will require that edges improve the score by a sufficient

margin in order to be present in the structure.

Definition 4.10. Let α be the proportional change threshold parameter. Then,

in order to be in the learned structure, we require an edge to improve the score

proportionally by at least α. Suppose we have structure A and we are considering

changing the edge e 6∈ A (that is, adding e to the structure), then this edge change

is only valid if the following inequality holds:

∆(e) > 1 + α. (4.10)

As a consequence of this requirement, if e ∈ A, the removal of this edge is valid if it

is not improving the score proportionally by α. That is, if S(A) < (1+α)S(A⊕e).
Thus, this edge change (removing e) is valid if the following inequality holds:

∆(e) >
1

1 + α
. (4.11)

The change threshold α is a hyperparameter, which we set experimentally

in §4.4.

As α > 0, the bound given in Equation 4.11, for validity of edge removal,

is actually less than 1. This ensures that any degenerate parents in the learned

structure will be considered valid removals.

Proposition 4.11. Let N be an acyclic CP-net over variables V that has optimal

CPTs. Let Pa(X) = U ∪ {Y }, where X, Y ∈ V , U ⊆ V , and Y 6∈ U . Suppose

that Y is a degenerate parent of X according to CPT(X). Let e = Y → X, then e

is a valid edge for removal. That is,

∆(e) >
1

1 + α
,

where α is our proportional change threshold. In fact, ∆(e) ≥ 1.

Proof. By our assumptions

CPT(X) = OptCPT (X|U ∪ {Y }),
St(CPT(X)) = MaxSt(X|U ∪ {Y }).

Let CPT2 be the CPT(X) we obtain by removing Y as a parent (as we did

in §3.2.1). By Proposition 4.6, we have that

St(CPT2) ≥ St(CPT(X)) = MaxSt(X|U ∪ {Y }).
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As e is an edge for removal, we have

∆(e) =
MaxSt(X|U)

MaxSt(X|U ∪ {Y })
.

As CPT2 was formed by removing Y as a parent, this is a CPT for X with

parents U . That is, CPT2 ∈ T(U,X). This implies that

MaxSt(X|U) = maxCPT(X)∈T(U,X){St(CPT(X))}
≥ St(CPT2)

≥MaxSt(X|U ∪ {Y }).

Thus,

∆(e) =
MaxSt(X|U)

MaxSt(X|U ∪ {Y })
≥ 1 >

1

1 + α
.

Corollary 4.12. If Algorithm 4 returns the CP-net N , then N will have no de-

generate parents.

Proof. Suppose Algorithm 4 returns the CP-net N . By Proposition 4.11, if N has

degenerate parent Y → X, then this edge is valid for removal according to its ∆

value. The removal of an edge cannot create cycles. Thus, removing e is a valid

edge change. This is a contradiction as Algorithm 4 cannot terminate while valid

edge changes remain.

By Definition 4.10, removing edges is easier than adding them. Thus, our

learning method is more likely to return sparser structures and is unlikely to result

in overfitting (although these properties will depend on the chosen α parameter).

Furthermore, by Corollary 4.12, the learned structure will have no degenerate

parents (that is, the learned CP-net will have the simplest possible structure).

Therefore, the returned CP-nets are likely to be easy to interpret and reason with.

Removing all degenerate parents simplifies the final learned structure and also

increases the set of valid edge changes that the algorithm can consider. Suppose

we remove an edge e from structure A. There may be some edge e′ 6∈ A such

that adding e′ to A results in cycles, but adding e′ to A ⊕ e does not. Changing

edge e′ would not be considered from A, but it would be considered from A ⊕ e.
Removing degenerate parents makes the CP-net structure as simple as possible

without changing the CP-net. By having the simplest structure, we maximise the

number of edges that can be added without creating cycles and, thus, maximise the

number of valid edge changes that the algorithm can consider before terminating.

181



4. CP-Net Learning

Returning to our description of the learning method, we now have the score

and CPTs for the starting structure, as well as the ∆ values for all possible edge

changes, as well as the corresponding CPT changes. Out of the edge changes that

do not introduce cycles (that is, the neighbours of A in G), the edges that satisfy the

relevant bound from Definition 4.10 are valid. These are the structural changes

we consider implementing. The remaining edge changes are considered invalid.

These edges are not considered (even if they do not create cycles) as either they

do not sufficiently improve the score or their removal would significantly decrease

the score.

Out of the valid changes, we select the edge change with the largest ∆ value –

that is, the change that improves the score most – as we are performing a greedy

search optimisation of the score. If more than one valid edge change has maxi-

mum ∆, then we choose one such edge change at random. The selected edge is

then changed in the structure. The CP-net score can be updated as follows:

S(A⊕ e) = S(A) ·∆(e).

If e = (X, Y ), then we update the CPT(Y ) from A to the optimal CPT(Y )

for A⊕ e, which is stored in the relevant entry of P . The MaxSt value for Y can

be updated similarly to the overall score. Let PaA(Y ) be the parent set of Y in A

and let PaA⊕e(Y ) be the parent set of Y in A⊕ e, then

MaxSt(Y |PaA⊕e(Y )) = MaxSt(Y |PaA(Y )) ·∆(e).

Now that the structure has changed, C will need updating. The details of how

to update C can be found in Appendix D.3.

For all variables Z ∈ V , Z 6= Y , the parent set of Z has not changed. Thus,

for any edge W → Z, the ∆ value and associated CPT(Z) in P have not changed.

Therefore, the ∆ values and associated CPTs only need updating for edges of the

form W → Y . For each W ∈ V such that W 6= Y , let e′ = W → Y . We can

use Algorithm 8 to calculate the maximum St value for Y in (A⊕ e)⊕ e′ and the

associated optimal CPT(Y ). We then use these values, and MaxSt(Y |PaA⊕e(Y ))

(calculated above), to recalculate ∆(e′) and update Γ. We also update the optimal

CPT in P .

Now that all of the scores, CPTs, and matrices have been appropriately up-

dated to the new structure, A⊕ e, we can assess whether there are any more valid

changes. If so, the best valid change is implemented and the update procedure is

repeated. This continues until there are no more valid changes. The CP-net N is

then returned.
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As our starting structure is acyclic and any edge changes that introduce cycles

are invalid, the learned CP-net must also be acyclic. Furthermore, by the termi-

nating condition, the learned CP-net must be locally optimal. That is, no acyclic

neighbour of N has a significantly (according to change threshold α) greater score

and every edge in N significantly contributes to the score.

Proposition 4.13. Algorithm 4 will always terminate in finite time.

Proof. The space over which Algorithm 4 searches is G, the space of DAGs over

nodes V . As G is finite, if we can prove that Algorithm 4 never considers the same

structure in G twice, then the algorithm must terminate in finite time.

Suppose for the sake of contradiction that Algorithm 4 considers some struc-

ture A ∈ G twice. This means that at some point the algorithm considered A,

then made a sequence of (valid) edge changes (e1, e2, ..., em) that returned the

same structure A. That is,

A = (· · · (((A⊕ e1)⊕ e2)⊕ e3) · · · )⊕ em.

As the sequence of edge changes starts and ends at A, the number of edge removals

and additions must be equal and m must be even. Let m = 2k and assume,

possibly after some reordering, that e1, e2, ..., ek are the edges that were added

and ek+1, ek+2, ..., e2k are the edges that were removed. If we have a structure B1

and B2 = B1⊕ e, then by our definitions we have S(B2) = S(B1) ·∆(e). Thus, we

must have

S(A) = S(A)∆(e1)∆(e2) · · ·∆(em), (4.12)

where each ∆ is defined as appropriate for the context in which the edge change

was implemented. This means that ei = ej does not imply ∆(ei) = ∆(ej) here,

even if both edges were added/removed.

As only valid changes are made in our algorithm, we must have ∆(ei) > 1 + α

for the edges that were added (i = 1, ..., k) and ∆(ei) >
1

1+α
for the edges that

were removed (i = k + 1, k + 2..., 2k). Thus,

m∏
i=1

∆(ei) =
k∏
i=1

∆(ei)∆(ek+i)

>

k∏
i=1

(1 + α)
1

1 + α

= 1.

Thus, Equation 4.12 cannot hold, contradicting our assumption. Hence, the algo-

rithm will always terminate in finite time.
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Thus, Algorithm 4 always terminates in finite time and returns a locally optimal

(as defined above) CP-net.

Algorithm 8 has complexity O
(

2|Pa(X)|2nN + 2|Pa(X)|N2
)

. The worst case

scenario is |Pa(X)| = n − 1, in which case this complexity becomes O(4nN +

2nN2). The complexity of calculating the cycles matrix for a structure and the

complexity of updating it after an edge is changed are given in Appendix D.3.

From these results, we can calculate the complexity of Algorithm 4. Let E1

be number of edges added by Algorithm 4 and let E2 be the number of edges

removed. Let C = 4nN + 2nN2. Then the complexity of Algorithm 4 is

O(n2C + E1(n3 + nC) + E2(n4 +nC)). This expression can be explained by the

fact that Algorithm 4 must call an instance of Algorithm 8 for every possible edge

when calculating the initial ∆ values. Then, after each edge change, the cycles

matrix must be updated and, for some variable X, every edge terminating at X

must have its ∆ value updated, which requires running Algorithm 8.

This complexity shows that our learning method is not theoretically tractable.

In §4.4, we also provide an experimental evaluation of the efficiency of Algorithm 4.

In §4.5, we discuss how our learning method might be made more efficient.

4.3.4 Random Starts Learning Variation

Our algorithm returns a CP-net that is locally optimal. That is, a CP-net that

cannot be significantly improved upon by moving to a neighbouring CP-net. How-

ever, as we are using greedy search, there is no guarantee that this CP-net is

globally optimal. In this section, we propose using multiple random starts in or-

der to improve the score of the learned CP-net. This variation is also tested in

our §4.4 experiments.

When utilising random starts, instead of running the learning algorithm once,

we run it k times, each time using a randomised (acyclic) starting structure. Then,

out of the k learned structures, we return the CP-net that has the greatest score. In

our experiments, we use the empty structure as the starting structure when using

Algorithm 4 only once. When using random starts, we used one empty starting

structure and k − 1 randomised starting structures. This allows us to determine

whether using an empty or random starting structure performs better when there

is no prior information. Using random starts simply multiplies the complexity of

the learning method by k.

When using random starts, it may also be interesting to see which structural

properties the k learned CP-nets agree upon. Such properties may be considered

as more likely to be true. For example, if all k assign Y as a parent of X, we might
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consider this relation more certain than if it only happened in one of the learned

structures.

The random starts variation must perform as well as, or better than, Algo-

rithm 4 on its own, with respect to maximising the structure score. However,

using random starts also increases learning complexity. In our experimental re-

sults section, we shall consider whether the benefit to performance outweighs the

additional computational cost.

Another variation we may consider to improve our optimisation procedure is

incorporating random walks into our learning algorithm. This variation is dis-

cussed further in §4.5, along with other alterations that may improve learning

performance or efficiency.

4.4 Learning Performance Experiments

In this section, we provide an experimental evaluation of our learning method. We

start by giving the details of the experiments and the performance measurements

we use. Then we provide the experimental results and analysis.

4.4.1 Experiments

As we discussed in §4.3.4, we are testing two variations of our learning method:

1. A single application of Algorithm 4, using the empty graph as the starting

structure.

2. Using Algorithm 4 with k random starts. We apply Algorithm 4 once using

the empty graph as the starting structure. We then apply Algorithm 4 k− 1

times using randomly generated acyclic starting structures. Out of the k

learned CP-nets, the one with the highest score is returned as the learned

CP-net. Any ties are broken at random.

Algorithm 4 calls Algorithm 8 in order to estimate the optimal CPT scores via

Monte Carlo methods. This estimation uses a sample from the posterior Dirichlet

distribution in Equation 4.4. As we mention in Appendix D.2, the same sample

is used each time Algorithm 8 is called from Algorithm 4. This sample remains

valid as our posterior distribution does not change over the course of learning. As

we are using Monte Carlo estimation, the score estimates are dependent upon this

sample. By re-using the same sample, we avoid the possibility of the algorithm

moving in circles whilst appearing to consistently improve the score; if different
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samples are used at each estimation point, then it is possible for the algorithm

to improve the score by returning to a CP-net it has visited previously, as two

samples may return different score estimates for the same CP-net. It is possible

that such loops may result in our learning method not terminating.

In the case of our second learning variation, each random start calls Algorithm 4

separately. Different samples are used for each of the k learning attempts. This

was done for practicality, as the k learning attempts are performed independently

of one another. Despite the fact that the scores of the k learned CP-nets come

from different samples, they are still comparable as our estimation error is fairly

low (see Appendix D.1). Thus, the CP-net with the largest estimated score will

have the highest, or close to the highest, true score out of the k attempts.

Data Generation

In order to test both learning variations, we used simulated data that is consistent

with a CP-net. In order to obtain such data, we first generated a random CP-

net. We used outcome ranks (see Chapter 2) to find a consistent ordering for this

CP-net. This gives a complete (not necessarily strict) preference ordering over the

outcomes that is consistent with the generated CP-net. Technically, any consistent

ordering is equally valid for ordering the outcomes here. For example, we could

use the lexicographic consistent ordering defined by Boutilier et al. (2004a). Rank

ordering (unlike lexicographic ordering) is not necessarily strict, meaning that

outcomes can have equal preference. Such indifference is likely in a real person’s

preference order over many outcomes. Thus, rank order could be considered a

more realistic choice in this regard.

Now that we have a preference ordering, we must specify the exact pi values

in order to generate our data. Technically the pi can be any values in [0, 1] that

sum to 1, as long as they are consistent with the preference order. As we do not

have real-world data, we cannot say what a typical distribution of the pi values

is like. However, if two pi values are very close, it is likely that the difference in

preference will be harder to detect from the data. For these reasons, we chose to

make the pi values increase in equal increments. This means that the values are

evenly spaced and also as far apart as possible. These pi values are obtained via

the following procedure.

The outcome which is least preferred according to the preference ordering is

assigned a weight of 1. The outcome(s) in the second least preferred position,

according to the preference ordering, is (are) assigned a weight of 2. As we continue

to move up the preference ordering to the most preferred outcome, the weights
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increase by 1 for each preference position. The pi are then proportional to these

weights. They can be calculated by dividing the outcome weights by the sum of

all weights.

Example 4.14. Suppose we have six outcomes, o1, o2, ..., o6. Below we denote

a possible preference ordering and the outcome weights assigned by the above

method. We also give the corresponding pi values, which are obtained by dividing

the weights by the total sum of weights, 16.

Preference order: o1 � o2 ∼ o3 ∼ o4 � o5 � o6

Weights: 4 3 3 3 2 1

pi values: 1
4

3
16

3
16

3
16

1
8

1
16

The outcomes with weight i are in the ith least preferred position. We call

this ‘preference position i’. The pi values defined above have the property that

any outcome in preference position i is i/j times more likely to be chosen than

an outcome in preference position j (i ≥ j). The weight of the worst outcome

could instead be less than 1, which would increase the distance between consecu-

tive pi values. However, this would put the worst outcome at a disproportionate

disadvantage in comparison to the other outcomes.

Now that we have the pi values, we can generate our data by drawing a random

sample from the multinomial distribution given in Equation 4.3.

Random CP-Net and Structure Generation

As mentioned in the previous section, we have chosen to use data that is consistent

with a CP-net in these experiments. Intuitively, we are assuming our simulated

data to be chosen by a user whose preferences can be modelled by a CP-net (or

at least, whose preferences are consistent with a CP-net). Thus, as we explained

above, in order to generate our simulated data, we first need a CP-net. These CP-

nets are randomly generated by the same CP-net generator used in the experiments

of Chapters 2 and 3 (see Appendix C.1 for details).

In our second learning variation, we consider learning from randomised starting

structures as well as empty structures. Thus, we need to be able to randomly gener-

ate acyclic starting structures. We do this via the following procedure. All acyclic

structures have a topological ordering of the variables. If there is an edge X → Y

in the structure, then X must come before Y in this ordering. Thus, the adjacency

matrix of an acyclic structure is upper triangular (possibly after some re-labelling

of variables). We start by randomly generating an upper triangular adjacency ma-

trix, A. This is done by randomly assigning each Ai,j to be 0 or 1, for all j > i (all
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other entries are 0). We then order the variables randomly, say X1, ..., Xn. Then,

by assuming that the adjacency matrix A corresponds to this variable order, we

have generated an acyclic graph over our variable set. In practice, we re-arrange A

according to this random order so that it corresponds to our standard enumeration

of the variables.

Example 4.15. Suppose we have three variables, {X, Y, Z}. We first want to

create a random, 3×3 upper triangular matrix, A. To do so we randomly allocate

the three top right entries (those above the diagonal) to be 0 or 1. One possibility

(where they are all 1) is given below:

A =

0 1 1

0 0 1

0 0 0


We then order the variables randomly, say {Y, Z,X}. If we consider A to be the

adjacency matrix with respect to this ordering, it gives us the following acyclic

structure.

Y

Z

X

However, if all our working uses the natural ordering {X, Y, Z}, it is inconvenient

to have A using a different ordering. Instead, we re-arrange the rows and columns

of A so that it uses our usual ordering and is, thus, compatible with all other

working. The re-ordered matrix is denoted A′.

A′ =

X Y Z X 0 0 0

Y 1 0 1

Z 1 0 0

Experiment Design

In this section, we give the details of the experiments we have carried out in order

to evaluate the performance of our learning methods. These details are summarised

in Tables 4.1 and 4.2.

We test our learning methods on CP-nets with 5 or 10 variables. In each

case, we randomly generate 100 CP-nets and generate a simulated data sample

of size 1000 for each. We provide our learning methods with increasing amounts

of data, in order to see how much data is required for good performance. These
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increasingly large data sets are nested; for example, we learn from the first 50 data

points, D1, then from the first 100, D2, so D2 ) D1. However, the way in which

we select the training data depends on the performance measure we intend to use.

We use two types of performance measure to evaluate how well our learning

methods perform, the details of which can be found in §4.4.2. The first type

measures the agreement between the CP-net used to generate the data (the true

CP-net), NT , and the learned CP-net, NL. These can be evaluated fromNL andNT

alone. The second type measures the agreement between NL and unseen (future)

user choice data. This requires a test set of data in addition to the training data

we used to learn NL.

If a performance measure evaluates similarity between NT and NL, we supply

the algorithm with successively larger, nested subsets of the data. This is in order

to see how much data we need to observe for our learning method to obtain a

reasonably accurate CP-net model. To get a subset of size m, we simply use the

first m data points in our sample. We use subsets of sizes 50, 100, 200, 300,..., 1000.

If we are measuring the agreement between NL and a test set of unseen user

choices, then performance depends upon the choice of test data used and so we

implement cross validation. However, the size of the test data also impacts these

performance scores. Thus, for effective comparison, the size of the test data set

must remain constant as the training data size grows. We fix the size of all test sets

to be 250. In order to evaluate the average agreement between the learned CP-net

and a test set of 250 unseen user choices, we perform 5-fold cross validation. That

is, we will randomly partition the data into two pieces (training data and test

data) five times. Each time, we learn a CP-net from the training data and then

evaluate agreement with the test set (unseen user choices). Agreement is then

averaged over the five different attempts (and test sets). However, as we must

keep the test set size at 250, but we want to use varying amounts of training data

in our experiment, we cannot simply partition the whole data set. As each test

set must have size 250, the training data can be up to size 750. We test training

data sizes 50, 100, 200,...,700, 750. In order to perform the cross validation for m

training data points, we take the first m+250 data points from our observed data,

call this set D. We then partition D randomly into two parts of size m and 250.

These make up the training and test data sets respectively. We apply learning

using the training data and evaluate the performance measure with respect to the

returned NL and test data set. We repeat this with five random partitions of D

and average the performance results over all five runs. Note that the increasingly

large training sets are still nested to a degree.
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1a 1 N {5, 10} 1

1b 1 Y {5, 10} 1

2a 2 N {5, 10} {10, 20, 30}
2b 2 Y {5} {10, 20, 30}

Table 4.1: Experiment Details 1

Experiment Training Data Size Change Threshold (%)

1a {50, 100, 200, ..., 1000} {0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 10}
1b {50, 100, 200, ..., 700, 750} {0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 10}
2a {50, 100, 200, ..., 1000} {0.005, 0.01, 0.05}
2b {50, 100, 200, ..., 700, 750} {0.005, 0.01, 0.05}

Table 4.2: Experiment Details 2

As the training data is different depending on the performance measures, we

perform two versions of each experiment; one which uses the cross validation

method and one which does not. We can then evaluate each performance measure

on the results of the appropriate version. This gives us four experiments, which we

shall enumerate 1a, 1b, 2a, and 2b. Experiment 1a will test learning variation 1,

without cross validation. Experiment 1b will test learning variation 1, using cross

validation. Similarly for experiments 2a and 2b.

Note that, when using random starts and cross validation (experiment 2b), the

order is as follows; we perform k random starts and pick the highest scoring out

of the k learned CP-nets. The relevant performance measures are then evaluated

for this CP-net with respect to the test set. This is repeated five times and the

performance scores are averaged over the five CP-nets, which were each the best

out of their k random starts.

In our experiments, we also vary the change threshold hyperparameter, α, in

order to find which value optimises performance. The number of random starts
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used in experiment 2 is also varied. This is in order to identify the optimal number

of random starts by considering the tradeoff between the complexity cost of addi-

tional random starts and the benefit to learning performance. Tables 4.1 and 4.2

give the full details of which parameter values are tested in each experiment.

Experiments 1a and 1b use a large range of α values, as there is no intuitive

boundary between a real score improvement and the effects of overfitting. As

we see in §4.4.3, these experiments show that learning performs better as α gets

smaller. Thus, in the subsequent experiments, we use a smaller set of lower values

for α.

Note that the same 100 CP-nets (of each size) and the same 1000 data points

for each CP-net are used in all four experiments.

4.4.2 Performance Evaluation Measures

In this section, we refer to the CP-net used to generate the data as NT and the

learned CP-net as NL.

In order to measure the complexity of our algorithm, we record the time it

takes for our methods return NL. For random starts, we record the time elapsed

for each random start and use the sum to represent the total time elapsed. This

omits the time taken to generate random starting structures and evaluate which

returned structure scores highest. However, these tasks are fairly trivial and would

collectively take only a few seconds. As we see in §4.4.3, the learning times are

fairly large, so this omission will not significantly affect the results.

We also record how many edge changes each learning method performs. Com-

bined with the theoretical complexities in §4.3.3, these results can give us an

approximate complexity for our algorithm and its variations.

The score of each NL is also recorded. Comparing these demonstrates how well

our variations have improved the greedy search optimisation method.

In order to measure the similarity between NT and NL, we use the following

two methods. These measures are evaluated only for the experiments which do

not use cross validation (the ‘a’ experiments). The similarity between NT and NL

illustrates whether our learning algorithm correctly identified the dependencies

and preferences in the data that were implied by NT , the true preference structure.

Keep in mind, however, that this is not the whole story. Our aim was to learn a CP-

net that was consistent with the user’s true preference order – the pi values. The pi

ordering is a linearisation of NT , and so it generally contains more preferences

than just those implied by NT . Thus, while we want NT and NL to agree, we also
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want NL to be consistent with the rest of the pi order. It is possible for NL to

agree with most of the pi ordering while differing from NT .

First, we measure preference graph (PG) similarity. This evaluates how

similar the preference graphs of NT and NL are. Let us denote these preference

graphs by GNT
and GNL

. As NT and NL are CP-nets over the same variable set,

they also have the same associated outcome set. Thus, their preference graphs use

the same set of nodes. In any preference graph, two outcomes are connected by an

edge if and only if they differ on the value of exactly one variable. Thus, any two

outcomes, o1 and o2, are connected by an edge in GNT
if and only if HD(o1, o2) = 1,

which occurs if and only if o1 and o2, are connected by an edge in GNL
. Therefore,

if the orientation of the edges was removed, GNT
and GNL

would be the same

graph. To measure the similarities between these graphs, we can simply measure

the proportion of edges that are oriented the same way in both. Note that, as we

work with binary CP-nets only, both GNT
and GNL

have 2n−1n edges. The PG

similarity of NT and NL is defined by the following metric:

|{o1 → o2 ∈ GNL
} ∩ {o1 → o2 ∈ GNT

}|
|{o1 → o2 ∈ GNL

}|
=
|{o1 → o2 ∈ GNL

|o1 → o2 ∈ GNT
}|

2n−1n
.

By the above argument, this metric is symmetric – swapping NT and NL does not

change the similarity score. Recall that CP-nets and their preference graphs are

equivalent. Thus, PG similarity measures the proportion of all preferences encoded

by NL that agree with NT . As they are swap preferences, all other preferences

encoded by NL must be contradicted by NT . This measure has previously been

used to evaluate the performance of some of the existing CP-net learning methods

(Haqqani and Li, 2017; Liu et al., 2014, 2013).

Our second metric for measuring similarity between NT and NL is entailment

agreement/disagreement/incomparability. To evaluate this, we first gener-

ate a set of distinct pairwise outcome preferences that are entailed by NT , call

this set P. For every preference p ∈ P, we then evaluate whether this preference,

its reverse, or neither are entailed by NL. The proportion of preferences in each

(distinct) case are the entailment agreement, disagreement, and incomparability

measures, respectively:

Entailment Agreement =
|{o1 � o2 ∈ P|NL � o1 � o2}|

|P|
,

Entailment Disagreement =
|{o1 � o2 ∈ P|NL � o2 � o1}|

|P|
,
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Entailment Incomparibility =
|{o1 � o2 ∈ P|NL 2 o1 � o2 ∧NL 2 o2 � o1}|

|P|
.

These metrics (or similar variations) are often used as a measure of CP-net

learning performance (Allen, 2016; Allen et al., 2017b; Guerin et al., 2013; Haqqani

and Li, 2017; Labernia et al., 2018, 2017; Liu et al., 2014, 2013; Michael and

Papageorgiou, 2013; Siler, 2017), though Guerin et al. (2013) were the first to

use them in this exact form. Some works also used these proportions to define

their aim (or optimisation function) in learning (Allen, 2016; Allen et al., 2017b;

Haqqani and Li, 2017; Labernia et al., 2017; Liu et al., 2014). Except for Siler

(2017), these methods all use outcome preferences as training data and, in most

cases, they used the training data as P when evaluating these proportions. This is

clearly a biased set for testing learning performance. We will generate a test set

of preferences, P, that is unrelated to our training data.

In order to generate P, we repeat the following procedure until the set is

sufficiently large; first, generate a random outcome pair (o1, o2) and use domi-

nance testing to determine whether either preference direction is entailed by NT .

If NT � o1 � o2 or NT � o2 � o1, then the entailed preference is added to P. In

order to set a size for P, we must first determine how many distinct preferences a

CP-net may entail.

Proposition 4.16. Let N be a binary acyclic CP-net with n variables. Let EN

denote the number of distinct pairwise outcome preferences that are entailed by N .

Let N0 be the binary CP-net over n variables that has no edges in its structure.

Then we must have

EN ≥ EN0 = 3n − 2n.

Proof. See Appendix E.11.

This gives us a tight lower bound on the number of preferences entailed by an

acyclic binary CP-net over n variables (tight because this bound is achieved by the

CP-net with no edges). For n = 5, this bound is 211 and, for n = 10, it is 58,025.

This means that, for any CP-net with five variables, we can always construct a

set of k distinct entailed preferences if k ≤ 211. Similarly for CP-nets over ten

variables. In our experiments, we use |P| = 211. This set of entailments will be

more representative of NT in the n = 5 case than for n = 10. We can see from

the entailments bound of 58,025 that, to achieve a similarly representative set for

n = 10, we would need an impractically large set of preferences. Thus, we use the
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same |P| for both cases. When generating P and evaluating the entailment agree-

ment/disagreement/incomparability proportions, we need to perform dominance

testing. We use the rank and suffix fixing method of dominance testing that we

introduced in Chapter 2.

Unlike PG similarity, these proportions illustrate the average agreement be-

tween NL and NT on general preferences, not just swap preferences. Further, we

also consider the cases where NL is consistent with NT preferences, even if they

are not entailed by NL – this is the entailment incomparability case. Recall that

we are aiming to find NL that is weakly consistent with the pi ordering. Thus, our

aim is to have all NT preferences be consistent with NL, if not entailed. Note that

every swap preference must be entailed or contradicted (its reverse is entailed),

thus, we do not need to consider consistency separate to entailment in the PG

similarity.

As the preferences in P are all entailed by NT , this metric is not symmetric

like PG similarity; if we swap NT and NL, these proportions may change.

As most of the existing methods for CP-net learning use outcome preferences

as data, there are no existing metrics for measuring agreement between NL and

(unseen) user choice data. Thus, we define the following two metrics. We show

that these metrics can also be used to evaluate the agreement between NL and the

true pi ordering. In general, they can evaluate the agreement between any CP-net

and (quantitative) preference ordering.

These new metrics can be evaluated from NL and a test set of choice data. This

enables us to evaluate learning performance without knowing the true CP-net, as

required by the previous measures. This is important for real world applications,

as we are unlikely to always know what the user’s true CP-net is, if one even exists

(which we do not assume in our learning).

The first metric is called data flip agreement (DFA). This metric evaluates

the sum of the data differences over each swap preference entailed by NL. This is

also the sum of all data differences over the edges of the preference graph, GNL
.

This sum is scaled by the size of the data and |V |, so that it lies on the [−1, 1]

scale. Suppose we want to evaluate the agreement between NL and the choice data

set D. Let d(o) denote the number of times outcome o is chosen in D. We define

DFA as follows:

DFA =

∑
(o,o′)∈F (NL)

d(o)− d(o′)

|V |
∑
o∈Ω

d(o)
=

∑
o′→o∈GNL

d(o)− d(o′)

|V |
∑
o∈Ω

d(o)
,

where F (NL) = {(o, o′) ∈ Ω× Ω|NL � o � o′ ∧ HD(o, o′) = 1}.
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If DFA is large, then the swap preferences, o � o′, entailed by NL are strongly

supported by the data. That is, d(o) − d(o′) is large, meaning that o is picked

a lot more often than o′. We can interpret the value of DFA as follows; recall

that CPT(X) consists of rules of the form u : x1 � x2, for each u ∈ Dom(Pa(X)).

Any outcome, o, such that o[Pa(X)] = u, is ‘X-preferred’ if o[X] = x1. Otherwise

(if o[X] = x2), o is ‘X-undesirable’. These are distinct and exhaustive states,

every outcome is exactly one of X-preferred and X-undesirable. Thus, every user

choice is either X-preferred or X-undesirable. If a CPT is supported, we would

expect there to be more X-preferred choices than X-undesirable choices. DFA

is the average difference between the proportion of X-preferred choices and X-

undesirable choices. Say DFA= 0.2, then, on average, for every variable, 60% of

user-choices were preferred and the other 40% were undesirable. As we assume

there is noise in the data (that is, the user does not always pick the optimal

outcome), we do not expect to obtain DFA= 1. However, if DFA is larger, then

the disparity between X-preferred and X-undesirable choices is greater, which

suggests that CPT(X) is more strongly supported by the user’s true preference

order.

Despite this interpretation, it is still not clear what constitutes a ‘good’ DFA

value, other than DFA> 0. Thus, we will use this measure mostly for comparison

purposes.

We evaluate DFA for NL with a test data set, in order to see how well NL

agrees with unseen (future) user choice data. To evaluate how well NL agrees

with the true preference order (pi order), we use data that represents this ordering

perfectly. In order to construct such a data set, we make d(o) be the weight of o

we used when calculating our pi. Thus, the proportion of times oi is chosen in this

data set is exactly pi. We call this perfect data.

Example 4.17. For the pi values and weights in Example 4.14, the perfect data

set must have

d(o1) = 4, d(o2) = 3, d(o3) = 3, d(o4) = 3, d(o5) = 2, d(o6) = 1.

Thus, the perfect data set is

{o1, o1, o1, o1, o2, o2, o2, o3, o3, o3, o4, o4, o4, o5, o5, o6}.

Our second measure of agreement between NL and unseen choice data is data

order consistency (DOC). This metric estimates the proportion of a given

ordering that is weakly consistent with NL. Recall that our aim is to find NL

that is weakly consistent with the user’s true preference order. In real world
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applications, we are unlikely to know the user’s true preference order. However,

user choice data gives us an ordering over the outcomes (according to how often

they were chosen) that approximates user preference. We use DOC to estimate

the proportion of this ordering that is weakly consistent with NL. However, in our

experiments, the true preference order is known. Thus, we will also evaluate DOC

with respect to this ordering (this is done by using the perfect data instead of a

set of new user choice data).

To evaluate DOC for NL with a given data set, D, we perform the following

procedure. Let d(o) denote the number of times o is chosen in D – these values

induce the data ordering we are considering. Randomly generate a set of distinct,

unordered pairs, {o1, o2}, where o1 6= o2. Evaluate d(o1) and d(o2) and determine

whether NL is consistent with the implied preference. If d(o1) > d(o2), this sug-

gests o1 � o2, which is consistent with (not contradicted by) NL if NL 2 o2 � o1.

Similarly if d(o2) > d(o1). If d(o1) = d(o2), then this implies o1 ∼ o2 (the user is

indifferent), which is consistent with NL if NL � o1 ./ o2. We return the propor-

tion outcome pairs that are consistent with NL. Note that, unlike DFA, DOC also

considers the agreement between NL and the data on non-swap preferences. Let Q

denote the set of randomly generated unordered pairs. Then

DOC =

∣∣∣∣{{o1, o2} ∈ Q

∣∣∣∣d(o1) > d(o2) ∧NL 2 o2 � o1 ∨
d(o1) = d(o2) ∧NL � o1 ./ o2

}∣∣∣∣
|Q|

. (4.13)

As Q can be any set of unordered pairs, we must have |Q| ≤ 2n−1(2n− 1). If Q

is the set of all ordered pairs, |Q| = 2n−1(2n − 1), then DOC is the exact propor-

tion of the ordering that is consistent with NL, otherwise it is an approximation.

For n = 5, we use the set of all ordered pairs, |Q| = 496. For n = 10, this is

impractical as 2n−1(2n − 1) = 523, 776. Thus, for n = 10 we use |Q| = 1000.

Note that, if the entirety of a sub-ordering of the preference order is weakly con-

sistent, then the sub-ordering is strongly consistent. That is, there is a consistent

ordering of NL that contains this sub-ordering.

4.4.3 Results

In this section, we analyse the results of the experiments described above. These

results are summarised via heatmaps in Figures 4.1 – 4.7. These heatmaps show

the average results for each combination of change threshold, α, and training data

size that we tested (as detailed in Tables 4.1 and 4.2). Each data point is averaged

over the 100 simulated CP-nets tested and, in the cross validation case (the ‘b’

experiments), over the five training (and test) sets. For the experiment 2 results,
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we have separated the results into the three cases of 10, 20, and 30 random starts.

However, all three heatmaps use the same scale, making these results directly

comparable and allowing us to evaluate which number of random starts is optimal.

Figure 4.1 shows the preference graph (PG) similarity scores for the experi-

ments without cross validation (the ‘a’ experiments), separated by the number of

variables, n. Recall that PG similarity is a measure on the [0, 1] scale, showing

how similar the learned CP-net, NL, is to the true CP-net, NT . A similarity score

of 1 means that the learned CP-net is NT . All plots show a clear improvement

as the training data size increases. That is, the PG similarity increases with the

training set size. This is as we would expect, as more training data means that

the learning algorithm has more informed beliefs regarding the user’s preferences

and so we would expect the learned CP-net to be more accurate and, thus, closer

to the true CP-net.

In experiment 1a, we see that performance also improves as the change thresh-

old, α, gets smaller (though perhaps for n = 10 performance is beginning to level

off or worsen for the smallest α values). When setting the change threshold, we

want α to be large enough to filter out any score improvements caused by noise in

the data or score estimation error, but small enough that all real improvements are

considered valid. Thus, one might expect learning performance to improve as α

decreases but eventually worsen once α becomes too small and begins allowing

edge changes due to noise or estimation error. This change-point would be the

optimal choice of α. Perhaps this is what we are seeing in the n = 10 data. How-

ever, one would expect the n = 10 change-point to be lower than n = 5 as more

variables means larger possible parent sets and, thus, the relative improvement of

adding or removing a single edge (parent) may be smaller. Thus, it is also possible

that this levelling off for n = 10 is simply due to variation in the learning process

due to score estimation (since the smaller values of α are fairly close together and,

thus, may only marginally affect learning performance).

In experiment 2, we restricted our range of α values for practicality. As learning

appeared to perform best for smaller values of α in experiment 1, we chose the

smallest values of α as well as an additional, smaller value, α = 0.005%, in order

to see whether performance would continue to improve as α decreases.

In experiment 1a, we obtained a maximum similarity score of 87.5% in the

n = 5 case and 73.0% in the n = 10 case. For n = 5, this is fairly close to

the original CP-net. We expect n = 10 learning to be at a disadvantage here

as 10 variable CP-nets have 1,024 outcomes. Thus, even 1000 choice data points

is nowhere near enough to reflect the full preference ordering over the outcomes.

Hence, all learning attempts for n = 10 are using very approximate preference
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(a) Experiment 1a – Single Learning Application

(b) Experiment 2a – Learning With Random Starts

Figure 4.1: Preference Graph Similarity With NT (No Cross Validation)

Yellow – Higher degree of similarity

Blue – Lower degree of similarity
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data. In light of this, a similarity score of 73% is quite impressive. Moving onto

experiment 2a, we do not see much improvement from the addition of random

starts. For experiment 2a, the n = 5 case has maximum similarity score of 87.9%

and the n = 10 case has maximum similarity score of 73.1%. As these random

starts require running the learning algorithm 10, 20, or 30 times instead of one,

the improvement with respect to PG similarity does not seem worth the additional

complexity cost. Furthermore, using additional random starts (moving from 10

to 20 to 30) shows little to no improvement in PG similarity. The change threshold

does not appear to significantly affect performance in experiment 2a, though this

could be because the range of values is too small to have much effect.

The standard errors of these results are fairly small, ranging between approx-

imately 0.70 – 1.00% for experiment 1a, n = 5, 0.72 – 1.00% for experiment 2a,

n = 5, 0.48 – 0.70% for experiment 1a, n = 10, and 0.47 – 0.67% for experiment 2a,

n = 10. In general, these standard errors get smaller as the training data size in-

creases. In experiment 1a, variability also decreases for smaller values of α. In

experiment 2a, there is no clear effect of α (possibly because the tested values are

all fairly close), nor any effect of the number of random starts on standard error.

Figure 4.1 has shown that we achieved a high level of similarity with the original

CP-net (with respect to swap preferences) by using a single application of learning

with smaller values of α. The most likely method of improving performance from

these results is to use more training data, particularly in the n = 10 case. We

might also consider more α values in the range (0%, 0.01%] to see how performance

behaves (if it continues to improve) and identify the optimal change threshold.

Figure 4.2 shows the entailment agreement, disagreement, and incomparability

results for the experiments without cross validation (the ‘a’ experiments). Recall

that these proportions show the agreement between NL and NT regarding general

(not necessarily swap) preferences entailed by NT . Our aim is to learn a CP-

net that is consistent with the user’s true preference order, which is a consistent

ordering for NT . Thus, for entailed preferences of NT , it is sufficient to have NL

be consistent with (not contradictory to) them. That is, our primary interest is

that the entailment disagreement scores are low.

In both experiments 1a and 2a, we again see the general trend of improved

performance as the amount of training data increases, as we would expect. The

proportion of preferences entailed by NL increases, whereas the proportion of pref-

erences that are contradicted or incomparable for NL both decrease. Thus, the

level of agreement between NL and the preferences encoded by NT is increasing.

For experiment 1a, performance also appears to improve as the change thresh-

old, α, decreases, though there is more variation in this trend for n = 10. This is
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(a) Experiment 1a – Single Learning Application

200



4.4 Learning Performance Experiments

(b) Experiment 2a, n = 5 – Learning With Random Starts
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(c) Experiment 2a, n = 10 – Learning With Random Starts

Figure 4.2: Proportions of Entailment Agreement, Disagreement, and

Incomparability With NT Entailed Preferences (No Cross Validation)

Yellow – Larger proportions

Blue – Smaller proportions
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perhaps because there is more variation in how well the data represents the pref-

erence order for n = 10 as even 1000 data points is insufficient to reflect the full

ordering, as we discussed previously. This overall trend again suggests that the op-

timal α value is around 0.01% or lower. For n = 5, the optimal results were 73.2%

entailed, 3.6% contradicted, and 23.0% incomparable. The optimal 3.6% contra-

dicted means that we can achieve a learned CP-net consistent with 96.4% of pref-

erences entailed by NT . For n = 10, the optimal results were 32.2% entailed, 1.8%

contradicted, and 66.0% incomparable. That is, we can achieve a learned CP-net

consistent with 98.2% of NT preferences. Thus, our learned CP-nets are highly

compatible with NT preferences, even though we do not appear to recover NT ex-

actly through learning. The n = 5 case has a higher rate of agreement than n = 10,

which could be because the data is more informative about the true preference or-

der or because larger CP-nets generally have a higher rate of incomparability. The

latter could also explain the lower disagreement proportion for n = 10.

In experiment 2, a smaller, lower range of α values were tested as smaller values

appeared to be the most successful in experiment 1. However, in experiment 2a

we do not see any clear impact of the choice of α, perhaps because we tested such

a small range of values. As in Figure 4.1, there appears to be little improvement in

performance from adding random starts (that is, between the experiment 1a and 2a

results). Improvement from random starts mostly occurs for smaller data sizes,

where learning does not perform as well. Further, moving from 10 to 20 to 30 ran-

dom starts has little effect on the results. In some cases, additional random starts

has made the average results worse. The optimal scores for experiment 2a, n = 5,

are 74.2% entailed, 3.4% contradicted and 22.2% incomparable. For n = 10, the

optimal scores are 32.7% entailed, 1.6% contradicted and 65.3% incomparable.

Note that not all of these optimal results were achieved by 30 random starts, some

are achieved after only 20. These improvements are minimal and don’t appear

worth the extra computational cost of applying learning 10, 20, or 30 times. Fur-

thermore, we see in later plots that non-empty starting structures appear to result

in significantly longer learning times. This means that the computational cost of

random starts is more than 10, 20, or 30 times a single application of learning

from an empty start (as we had in experiment 1).

The standard errors of these results are also low. For n = 5, the standard

errors are between approximately 1.20 – 1.62% for agreement, 0.22 – 0.50% for

disagreement, and 0.96 – 1.30% for incomparability. For n = 10, the standard

errors range between 0.74 – 1.09% for agreement, 0.09 – 0.27% for disagreement,

and 0.69 – 1.05% for incomparability. For the disagreement proportions, variability

is generally smaller for larger training set sizes. For n = 10, the agreement and
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incomparability standard errors increase for larger training sets. Otherwise, there

is no clear effect of either training size or α on variability. The number of random

starts also does not affect variability (in experiment 2a), though the experiment 2a

standard errors are consistently slightly higher than experiment 1a.

These results again show that our learned CP-nets are highly compatible with

the NT preferences. The more training data and the smaller the change threshold,

the better the learning performance. However, additional random starts do not

appear to be worth applying. In future experiments, we would like to evaluate how

performance improves with additional data (particularly in the n = 10 case) and

for smaller values of α, as these results suggest reducing α improves performance –

as mentioned above, however, we expect that at some point α will become too

small and performance will worsen. The Figure 4.2 results are quite similar to the

PG similarity results. This is unsurprising as they both measure the agreement

between NL and NT on preferences entailed by NT . The swap preferences consid-

ered by PG similarity are the building blocks of the general preferences considered

here.

Figure 4.3 shows the average DFA scores for the cross validation learning ex-

periments (the ‘b’ experiments). These results are averaged over the 100 tested

CP-nets and the five training sets for each. For each combination (and for each

choice of training data size and change threshold), we evaluated the DFA between

the learned CP-net, NL, and its corresponding test set as well as between NL and

the corresponding perfect data set. Recall that DFA measures the agreement be-

tween a data set and a CP-net, with respect to the swap preference. DFA scores

lie in the range [−1, 1], where a higher score means better agreement. However,

as we mentioned previously, it is not clear what DFA score constitutes a ‘good’

level of support, other than the requirement that we have DFA> 0. Thus, we are

largely considering these scores relative to one another.

However, we have also evaluated the DFA for the true CP-net, NT , to put these

scores in some context. The average DFA between NT and the test sets for each

experiment are as follows: in experiment 1b, NT has average DFA of 0.1839 with

the test data for n = 5 and 0.1060 for n = 10. In experiment 2b, NT has average

DFA of 0.1840 with the test data for n = 5 (no n = 10 experiment was performed

in this case). We also evaluated the average DFA between NT and the associated

perfect data. As perfect data is CP-net specific and the same set of n = 5 CP-nets

were used for both experiments, these averages are only dependent on n. The

average DFA of NT with perfect data is 0.1832 for n = 5 and 0.1051 for n = 10. It

is unclear why the test data agreement scores are higher, other than it is perhaps

easier to strongly agree with smaller data sets where it is likely that only the more

204



4.4 Learning Performance Experiments

(a) Experiment 1b – Single Learning Application

(b) Experiment 2b – Learning With Random Starts

Figure 4.3: DFA Results for Test Data and Perfect Data

(Cross Validation Experiments)

Yellow – Higher level of agreement

Blue – Lower level of agreement
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strongly preferred outcomes appear (250 data points is insufficient to represent the

full preference ordering for n = 5 or n = 10). A DFA score of approximately 0.18

(for n = 5) implies that, on average, for every variable, X, 59% of data points

are X-preferred and 41% are X-undesirable, as explained in §4.4.2. A DFA score

of approximately 0.11 (for n = 10) implies that, on average, 55.5% of data points

are X-preferred and 44.5% are X-undesirable. Thus, the distribution of the data

over improving flips is closer for n = 10.

All DFA plots show improved scores (improved agreement with both test and

perfect data) as the training data size increases. This is as we would expect; as the

training data increases, the learning algorithm has more informed beliefs about the

user’s true preference ordering and, thus, we would expect NL to model the user’s

true preferences more accurately. Consequently, we expect the learned CP-net to

agree more strongly with data that reflects the user’s true preference order (perfect

data) and data generated according to this ordering (test data). As we have seen

in previous figures, performance also improves as α decreases in experiment 1b,

with slightly more variation in this trend for n = 10. Whereas, in experiment 2b,

there is no clear effect of change threshold on performance.

In experiment 1b, for n = 5, the optimal DFA between NL and test data

is 0.1683 and for perfect data it is 0.1670. For n = 10, the optimal DFA between NL

and test data is 0.0964 and for perfect data it is 0.0950. These scores are all

reasonably close to the agreement scores for NT . Thus, our learned CP-net agrees

with unseen data and the true preference ordering (on swap preferences) almost

as well as the true CP-net (which is consistent with the true preference ordering).

Recall that our learning aim was to obtain a CP-net, NL, consistent with the true

preference order. These results are particularly good for n = 10, where the training

data (of size up to 750) is less informative.

In experiment 2b (n = 5), the optimal DFA between NL and test data is 0.1692

and for perfect data it is 0.1677. Note that the optimal test data DFA is actually

achieved after only 10 random starts. In general, there is little improvement as a

consequence of adding additional random starts (moving from 10, to 20, to 30).

In fact, in some cases, average performance worsens. Thus, it does not appear

worth using more than 10 random starts. Perhaps even fewer random starts are

required to achieve this improvement in DFA score. In general, the experiment 2b

results show that random starts do improve DFA to some degree – the optimal

DFA results are higher and closer to the NT DFA scores. However, as DFA values

are difficult to interpret as ‘good’ or ‘bad’, it is unclear whether this improvement

is worth the additional complexity cost.
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All DFA standard errors are reasonably small. Note that these are the stan-

dard errors of the cross validation averages. That is, for each of the 100 tested

CP-nets, we take the average DFA score over the five training and test sets con-

sidered (for each set of parameters tested) and then take the standard error of

these 100 averaged scores. For n = 5, the standard errors of DFA with test

data lie between approximately 0.0017 – 0.0028 for experiment 1b and between

0.0019 – 0.0030 for experiment 2b. For DFA with perfect data, they lie between

0.00090 – 0.0020 for experiment 1b and between 0.00089 – 0.0019 for experi-

ment 2b. For n = 10 (experiment 1b), the standard errors for DFA with test

data lie between 0.0012 – 0.0019 and for DFA with perfect data, they lie be-

tween 0.0006 – 0.0011. The variability of these scores decreases as the training

data size increases. For experiment 1b, variability of DFA with perfect data also

decreases for smaller values of α, but this is not the case for experiment 2b (possibly

because the tested values of α in experiment 2b are all fairly similar). Otherwise,

there is no clear effect of α, or the number of random starts (in experiment 2b),

on the variability of the DFA scores.

From these results, we have seen that our learned CP-nets (for both n = 5

and 10) can achieve DFA scores close to the NT scores (the optimal DFA) both

with unseen data and the true preference order. This suggests that the learned CP-

nets agree with (swap preferences of) the true preference order almost as well as NT

(which is to say 100%). Learning again performs best with more training data and

smaller α values. Random starts do improve performance, though no more than 10

are required (possibly less) and it is not clear whether this improvement is worth

the associated cost.

In order to interpret DFA values more accurately (not just relative to one

another), we should evaluate DFA between the true CP-net and data for a range

of CP-nets and data. Possibly also considering how the score changes with small

alterations to the true CP-net. We have already seen that the optimal DFA score

depends on the number of variables. Understanding what constitutes a good or

optimal DFA score would be helpful in applications where the true CP-net is

unknown (or does not exist). In such situations, we cannot compare our values to

the optimal as we have done here.

Figure 4.4 shows the average DOC scores for the cross validation experiments

(the ‘b’ experiments). For each learned CP-net in these experiments, we evaluated

the DOC between NL and the associated test data and perfect data. Recall that

DOC gives the proportion of the data-induced ordering that is consistent with NL.

For perfect data, this ordering is the true preference order. For n = 5, DOC is the

exact proportion, but for n = 10, it is an approximation. Recall that our aim was
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(a) Experiment 1b – Single Learning Application

(b) Experiment 2b – Learning With Random Starts

Figure 4.4: DOC Results for Test Data and Perfect Data

(Cross Validation Experiments)

Yellow – Higher level of consistency

Blue – Lower level of consistency
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to learn a CP-net that is weakly consistent with the true preference ordering, so

our primary aim is for the DOC between NL and perfect data to be as close to 1

as possible.

For comparison, we evaluated the DOC scores for NT , the true CP-net. The

average DOC scores for NT over all the test data sets used in each experiment

are as follows. For experiment 1b, the average DOC between NT and the test

data is 0.9029 for n = 5 and 0.7179 for n = 10. For experiment 2b, the average

DOC for n = 5 is 0.9030. As the true preference order is consistent with NT ,

the DOC between NT and perfect data is always 1. The DOC is not always 1

for test data as it consists of 250 choices randomly drawn according to the true

outcome preferences. This data size is insufficient to reflect the true ordering over

all outcomes for n = 5 or n = 10 (for n = 10, most outcomes will not appear at

all). Further, outcomes with similar preferences (probabilities) may have reversed

or equal preferences in the test set due to its size. These issues are likely to be

worse in the n = 10 case, explaining the smaller average DOC score in this case.

For n = 5 we see a similar trend to the previous scores. For experiment 1b,

the DOC scores improve as the training data size increases and α gets smaller.

The optimal average scores are 90.34% consistency with test data and 96.80%

consistency with the true preference order. Thus, our learned CP-nets agree with

new data just as well as NT and they are consistent with almost all of the true

preference ordering. Furthermore, all training data sizes and change thresholds

give fairly good average DOC scores, with all test DOC scores > 86% and all

perfect data DOC scores > 91%. We can obtain scores close to optimal for all

data sizes ≥ 300 for test data and ≥ 500 for perfect data. Thus, our learning

algorithm is very successful at achieving preference order consistency (our primary

aim), even when approximate training data or overly harsh change thresholds are

used. This is good because it means that learning should perform well even if

there is insufficient data and it is not overly sensitive to the α parameter setting.

For experiment 2b (n = 5), performance improves as the amount of training

data increases, as expected, but there is no clear effect of changing α or additional

random starts (increasing from 10 to 20 or 30) in this experiment. In fact, in some

cases, additional random starts result in worse average scores. Thus, we do not

expect further random starts to improve performance. The optimal DOC scores for

experiment 2b are 90.34% DOC between NL and test data and 96.95% for perfect

data. Thus, while utilising random starts does increase the average DOC score, it

is a very minor improvement, not worth the additional complexity. Furthermore,

while the optimal scores have improved, using random starts does not improve the
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average DOC for all choices of α and training data size, so random starts does not

reliably improve DOC.

For n = 10 (experiment 1b), we see the usual patterns for DOC with the

perfect data (our primary aim) but not with test data. For the perfect data, we

again see that performance improves as training data increases and α gets smaller.

The optimal DOC score is 98.82% consistency with the true ordering. In fact,

all data size and α combinations give a good DOC score, with all scores > 96%.

We can obtain near-optimal DOC for any data size ≥ 500. Thus, we again find

our algorithm to be very successful at obtaining high levels of consistency with

the true ordering (our primary aim). In fact, these results are even better than

the n = 5 case, despite the fact that the training data is more reflective of the true

preference ordering in the n = 5 case. This is perhaps because larger CP-nets tend

to have more cases of incomparability. If two outcomes are incomparable, then the

CP-net is always consistent with the data with respect to these outcomes.

However, for the test data, the DOC scores for n = 10 appear to depend

primarily on the value of α. While there is some improvement as the training

data size increases, the performance drastically improves when α = 10% is used.

This is much larger than the other values of α tested, perhaps explaining the

significant jump in DOC score. We have seen similar (though less extreme) jumps

between α = 5% and α = 10% in other plots. This increase in DOC suggests that

the consistency with test data improves as α gets larger. The values of α that are

less than 1% are all fairly close, explaining why little change is visible between

these values.

Using a larger threshold means that only edge changes that improve the score by

a larger amount are implemented. That is, only those edges representing stronger

preferences are implemented – those with large data (and, hence, probability)

differences. Generally, we do not want to make α too large as it means that finer

details of the preference order from the training data are ignored and, hence, the

learned CP-net is less accurate as a model for user preference.

However, a test data set is 250 random choices (drawn according to user pref-

erence). As CP-nets with n = 10 have 1,024 outcomes, 250 data points cannot

represent the whole ordering. In fact, most outcomes will not appear at all –

meaning they all are of ‘equal preference’ in the data ordering. As the test data

set is small, we would expect that it is mostly the more preferred outcomes that

appear and even these may not be in the correct relative frequency. Thus, the

test data induced ordering is likely to only include the stronger preferences – that

the most preferred outcomes are preferred to the least preferred outcomes. A pos-

sible explanation for why DOC with the test data increases with α here is that,
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by using a higher change threshold, learning ensures consistency with the strong

preferences (those present in the test data) but does not force the entailment of

finer grained preferences. If the latter are then largely incomparable, they will

be consistent with the test data, regardless of whether it considers them equally

preferred or has the wrong ordering. On the other hand, all incorrect orderings or

(incorrectly) equal preferences in the test data will be contradicted if NL entails

these finer preferences, as we expect for smaller α values. This is less likely to be

an issue for n = 5 as 250 test data points will be more reflective of a preference

ordering over only 32 outcomes.

The optimal DOC between NL and test data for n = 10 is 88.08%. This is

for α = 10% and 750 training data points. However, in practice, we would utilise

the smaller α values as we can see from the perfect data results that this is where

we achieve optimal consistency with the true preference order. Also, as explained

above, we believe that these high values of DOC are an artefact of the small test

sets rather than better learning. When smaller α values are used, we can still get

DOC scores up to around 86.8% as training size increases. Thus, we still get a

high level of agreement with the test data when we learn the preference order more

accurately. In fact, all α and data size combinations give a good DOC score, with

all average values > 86.1%. Notice that these scores are higher than the DOC

between NT and test data, which was 71.79%. This could be due to the same

reasoning as above, because the training data is ≤ 750 data points which, again,

is not sufficient to represent the whole preference ordering. Thus, even when low

thresholds are used, the algorithm only attempts to enforce the preferences that

occur in the training data. This will again be the ‘stronger’ preferences that are

more likely to appear in the test set. On the other hand, NT is consistent with the

whole ordering, entailing much of it, including preferences unlikely to be reflected

in such a small test set. This may also occur for n = 5, boosting the DOC scores

for test data, but this will be to a smaller degree as, especially for 750 data points,

the training data more accurately represents the full preference ordering.

The standard errors of these DOC scores are all reasonably small. Note

that these are, again, the standard errors of the cross validation averages. For

n = 5, the standard errors of DOC with test data (both experiments) lie between

approximately 0.20 – 0.31% and for DOC with perfect data, they lie between

0.17 – 0.34%. For n = 10 (experiment 1b), the standard errors of DOC with test

data lie between approximately 0.13 – 0.27% and for DOC with perfect data, they

lie between 0.048 – 0.11%. In general, the variability of the DOC scores decreases

for larger training data sizes and shows no clear dependence upon α or the number

of random starts used (in experiment 2b). One exception to this is the DOC with
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test data results for n = 10, where variability is higher for larger training sets and

also increases for smaller values of α.

From the Figure 4.4 results, we have seen that our learning is able to obtain

high levels of consistency with the true preference ordering (which was our aim

in learning), even for n = 10 where the training data is more approximate. This

optimal consistency occurs for larger training sets and smaller change thresholds,

agreeing with the performance results we have seen previously. However, all com-

binations gave fairly high DOC scores, showing that learning can perform similarly

well with even less data. Adding random starts gives minimal improvement, which

is not worth the additional complexity. In future, we would like to evaluate how

performance behaves for smaller values of α, as these results suggest the scores

will continue to improve.

We have also seen that learning can obtain high levels of consistency with

previously unseen data. In fact, in this case, the learned CP-nets perform just

as well or better than NT . However, these results suggest that consistency with

test data is not always best served by a completely accurate preference model

(particularly for small scale test sets) and that learned CP-nets are at an advantage

from being learned from the same type of data as the testing sets use. If one is

using test data DOC to measure order consistency of NL when the true ordering

is unknown, then a test set large enough to reflect the full ordering should be

used. If it is being used to evaluate predictive power on unseen data, then perhaps

incomparability should not be considered a success in cases other than indifference

as the true preference has not necessarily been correctly predicted – in practice,

incomparable outcomes are likely to be ordered arbitrarily.

One might expect DOC to behave similarly to DFA and PG similarity as they

are all measures of agreement between NL and the test or perfect data sets. DFA

and PG similarity consider flip agreements, which are the building blocks of the

general orderings considered by DOC. In the perfect data case, DOC does show

similar performance trends. The differences in behaviour (between DOC and DFA)

in the test data cases are due to the above issues with ‘weaker’ preferences not being

represented correctly in the small test set. For DOC, all orderings are consistent or

not. However, in DFA, we look at weighted agreement. These ‘weaker’ preferences

have either zero or little data difference in the test set and, thus, do not impact

the DFA scores much.

Figure 4.5 shows the average score of the learned CP-nets for experiments 1a

and 2a. The learned CP-net scores were also recorded for the ‘b’ experiments,

averaging over the multiple cross validation iterations as well. These results were

similar to those for the ‘a’ experiments. As the ‘b’ experiments are similar, but do
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(a) Experiment 1a – Single Learning Application

(b) Experiment 2a – Learning With Random Starts

Figure 4.5: Learned CP-net Scores (No Cross Validation)

Yellow – Higher score

Blue – Lower score
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not have n = 10 results for experiment 2 and use a smaller range of training data

sizes, we have chosen to give the more comprehensive ‘a’ experiment results only

here.

In general, edge changes performed by learning improve the CP-net score. The

exception is when an edge is removed that improves the score but not sufficiently.

The change threshold stops the learning process when the improvements to the

score are getting ‘too small’. A lower change threshold means that more edge

additions (which improve the score) are possible and the threshold for edge removal

increases (getting closer to 1), meaning fewer edge removals that worsen the score

are possible. Thus, we expect the final score to be higher in general when a lower

change threshold is used. Note that this improvement is not guaranteed. If we

have the same starting structure and training set, it is possible that a lower change

threshold can still give a worse score as the lower threshold can cause the search

to go in a different direction.

In our results, we find that the CP-net scores generally increase as α gets

smaller, as we expected. These score improvements are fairly small and, thus,

do not show up well apart from the large jump between α = 10% and α = 5%.

More specifically, the range in CP-net scores (for a given training data size and

ignoring α = 10%) is generally less than 0.004 for experiment 1a and less than 0.001

for experiment 2a. There is some variability in this trend of increasing scores.

This could be caused by the variability in the effect of lowering α, as discussed

above, or because of score estimation error as each learning attempt uses a distinct

Dirichlet sample, or, in the case of experiment 2, variation due to the randomised

starting structures. The increase in CP-net scores is particularly inconsistent for

the smaller values of α in experiment 1a and in experiment 2a. This is likely to be

because these values of α are all fairly close together, meaning that the associated

score improvements are likely to be smaller and more easily outweighed by such

variation.

The learned CP-net scores also increase with the size of the training data.

This is perhaps because, as the data size increases, the learning algorithm has

more information about the true preference order. Thus, with larger training sets,

more of the learned CP-net preferences will have associated data and, thus have

larger potential support (and we expect learning to maximise this support). When

we have very little data, most of the preference rules associated with a CP-net will

have little to no data and, thus, the support score for these rules (and thus the

CPTs and the CP-net) will be low as the believed preferences are likely to be equal

or very close. This would also explain why the n = 10 scores are lower than n = 5
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as the training data will be missing a lot more information about the preference

order for n = 10, due to the larger outcome set.

There are some exceptions to CP-net scores increasing with training data size.

For both experiments, we see a dip at 600 training data points (more extreme

in the n = 5 case) and for n = 10 we see another dip at 1000 data points.

As these dips do not occur at 600 data points in the cross validation experiments

(where different training data is used), they must be due to the exact training data

sets. The cross validation experiments did not use training data of size greater

than 750 but we suspect that the n = 10 dip at 1000 data points is also due to the

specific training sets, rather than the size of the training data. Such dips could be

caused by one or several of the size 600 (or 1000) training sets being more difficult

to fit to a CP-net than the preceding size 500 (or 900) training set, causing a

significant decrease in score and lowering the average. This could be because the

additional 100 data points result in conflicting preferences that cannot be satisfied

by one CP-net simultaneously, meaning that any learned CP-net must contradict

the data to some degree. Alternatively, it could be that the additional 100 data

points create preference equality between certain outcomes, lowering the potential

support scores (small or no data differences cannot add much support to any

preference). Note that, although these issues have caused a dip in average CP-net

score, we do not see similar dips in the other heatmaps, meaning that the quality

of NL is not affected even though it is not as well supported by the training data.

In experiment 1a, the best learned CP-net score we achieve is 72.68% prob-

ability of being supported for n = 5 and 35.16% for n = 10. Recall that these

scores are the product of the CPT probabilities of support. Thus, these suggest a

typical CPT support score (obtained by taking the nth root) of 93.82% for n = 5

and 90.07% for n = 10. Thus, learning can obtain a CP-net that is strongly sup-

ported by the data. The minimum scores for these experiments suggest typical

CPT scores of 86.63% for n = 5 and 83.52% for n = 10 so, while learning can fit

any data set reasonably well, we do see significant improvement as the data more

accurately represents a full preference ordering.

Adding random starts should always improve the learned CP-net score ob-

tained as we pick the best score over multiple attempts (including the single empty

start considered in experiment 1). The random start scores (experiment 2a) are

between 0.001 and 0.009 higher than the scores obtained by a single attempt (ex-

periment 1a). Increasing the number of random starts (from 10 to 20 to 30) also

generally improves the average score, as we would expect, by around 0.001 or less,

though in some cases additional random starts made the score worse. The latter
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is possible because the minimal score improvement may be outweighed by vari-

ation due to randomised starting structures and Dirichlet score approximations.

The maximum score we can obtain from using random starts is 73.44% for n = 5

and 35.69% for n = 10. However, while random starts do improve our learning

optimisation, previous results have shown that this corresponds to little to no im-

provement in the quality of the learned CP-net, suggesting that random starts are

not worth their additional computation complexity.

The standard errors of the learned CP-net scores are also small. For n = 5, the

standard errors of the CP-net scores range between approximately 1.31 – 1.58%

for experiment 1a and between 1.33 – 1.54% for experiment 2a. For n = 10,

the standard errors of the CP-net scores lie between approximately 0.65 – 1.25%

for experiment 1a and between 0.66 – 1.24% for experiment 2a. CP-net score

variability is generally lower when smaller training data sets are used. The value

of α and the number of random starts (in experiment 2a) have no apparent effect

on score variability.

From these results, we have seen that, in general, the behaviour of the learned

CP-net scores mimics the performance of our other measures. This is encouraging

as it suggests that our CP-net score is a sensible choice to optimise as this results

in accurate learned CP-nets. These results have also shown that our learning algo-

rithm can obtain CP-nets with very high support probabilities (meaning that our

greedy optimisation works well), even when using only one learning attempt. The

random starts also improve optimisation, showing that we can, at least sometimes,

obtain a higher score by considering non-empty starting structures. However, the

improvement to scores is fairly conservative and, from what we have seen from

other measures, not worth the additional complexity.

Figure 4.6 shows the average learning times for the ‘a’ experiments. In the

case of experiment 2, we recorded the total time it took to perform all k learning

attempts. However, we have divided these times by k here for comparability. We

have again omitted the results from the ‘b’ experiments as they are similar but

do not include training data sizes above 750 or the n = 10 case in experiment 2.

The time taken to perform learning depends on n, as this determines the size

of the CP-net and number of scores we are considering, and the number of edge

changes performed. However, not every score calculation takes the same amount

of time. For example, calculating the score of a variable will take longer if it has

more parents. Therefore, initial score and ∆ calculation times will depend on the

starting structure and ∆ calculation times after each edge change will depend on

the parent set size of the variable that lost or gained a parent. Similarly, calculating

and updating the cycles matrix takes longer for denser structures. These additional
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(a) Experiment 1a – Single Learning Application

(b) Experiment 2a – Learning With Random Starts

Figure 4.6: Learning Time Elapsed Results (No Cross Validation)

Yellow – Faster learning times

Blue – Slower learning times
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(a) Experiment 1a – Single Learning Application

(b) Experiment 2a – Learning With Random Starts

Figure 4.7: Number of Edge Changes in Learning (No Cross Validation)

Yellow – Fewer edge changes

Blue – More edge changes
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effects on learning time may explain the differences we see between the learning

time and edge change results.

We give the average number of edge changes (the number of steps in the learn-

ing procedure) for the ‘a’ experiments in Figure 4.7. For experiment 2, we have

similarly divided the total steps over k random starts by k, to give the average

number of edge changes per learning attempt. The ‘b’ experiment results are omit-

ted as they are, again, similar to the ‘a’ results but over a more restricted set of

configurations.

As α gets smaller, more edge additions and fewer edge removals are considered

‘valid’. As experiment 1 has an empty starting structure, we would expect learning

to perform more edge changes in general for smaller values of α and we do observe

this trend in the experiment 1a results. In experiment 2a, we do not see any clear

effect of α on average steps. This may be because the net effect of more possible

edge additions and less removals is minimal or non-existent in the random start

case. Or it could be because the α values are quite close together and, thus,

changing between them would not often affect whether an edge change is valid.

If the effect is minor, then it could have been outweighed by variation due to the

random starting structures and variation in Dirichlet score approximation.

We can also see a trend of longer learning times as α gets smaller for experi-

ment 1a, though this behaviour is less consistent for n = 5. In experiment 1, we

use empty starting structures and, thus, the only reason for deviation between the

behaviour of steps and time is variation in the time required for ∆ and cyclicity

calculations after each edge change. The increase in average edge changes is fairly

small for n = 5, with a range of 1 to 1.5 learning steps on average. This suggests

that the increasing learning times are less consistent for n = 5 because the increase

in average steps is small and, thus, more easily outweighed by the above learning

time variations. We can see that the (small) increase in edge changes does not

have a large effect on average learning times as they are all within 1.4 seconds of

one another. On the other hand, the learning times for n = 10 closely follow the

behaviour of the corresponding edge change results. This is likely to be because

the increase in average steps (as α decreases) is larger for n = 10 and the effect of

increasing edge changes is larger for n = 10 as edge changes take longer for larger

values of n.

In experiment 2a, we see no clear effect of α on the average learning times.

This is unsurprising as we saw no impact of the change threshold on the average

number of steps either. The average learning times also do not mimic the average

edge change behaviour as α changes, even for n = 10. This is likely to be because

varying α results in only minimal change in the average learning steps and learning
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times have additional variation in experiment 2 due to the randomly selected

starting structures.

Unlike in previous results, the size of the training data does not appear to have

such a strong effect on the length of the learning process. This makes sense as

larger training sets makes learning more accurate but, in practice, all training sets

give a Dirichlet distribution of the same order to which we then try to fit a CP-net

(from an empty or random start). There is, however, a general trend of increasing

edge changes as the data size increases. This is unsurprising as larger training

sets encode more preferences, which we must ensure are reflected by NL. If a

preference has support in the data, then edge changes to support this preference

have higher ∆ values. Therefore, if more preferences have support in the data,

then more edge changes are made. On the other hand, if there is little data, we

only have to ensure a few preferences are satisfied to have maximal agreement, all

other preferences have little to no support (in either direction) from the data. The

learning algorithm will not make edge changes for these preferences as it will not

sufficiently improve the score.

The exception to this trend is the experiment 1a results for n = 10. Here,

there is no clear effect of training data size, though there is perhaps some sugges-

tion that the average edge changes get smaller for large training sets. It is not

clear why the latter would be the case. It is possible that there is no clear effect

for n = 10 because all data sizes ≤ 1000 are similarly ‘small’ when considering

and fitting a preference order over 1,024 outcomes. Comparatively, this would be

like considering only training sets up to size 32 for n = 5. Thus, the improve-

ment (with respect to representing preference) in data size is minimal and, thus,

could be being overshadowed by variability in training sets (which varies more

for n = 10) and score approximation (which determines whether edge changes are

valid or not). We do not see the same behaviour in experiment 2a for n = 10,

which could be because the small increases in data have more of an effect when

utilising non-empty starting structures.

In experiment 1a, we see that the learning times generally follow the same

patterns as the average edge changes with respect to data size, with the n = 10

results mimicking the edge changes more closely, as we had before. For experi-

ment 2a, n = 5, we see that training data of size 50 or 100 appear to be quicker but

other than that, the data size has no clear effect on learning time. This matches

up with what we see in the average edge change results, to a degree, as the in-

crease in average learning steps slows after the smallest data sizes. The differences

in behaviour between learning times and steps can be attributed to the variation

in starting structures and cyclicity and score calculation times after each edge
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change, which cause variation in learning times even when the same number of

steps occur. As the increase in average learning steps is small and results in little

increase in learning times (particularly for the larger data sizes), it is unsurprising

that the effect of increasing average steps is outweighed by this variation.

As for the n = 10 learning time results for experiment 2a, we generally see

learning times decrease as data size increases (with the exception of the smallest

training data of size 50). It is unclear why this happens, as the average edge change

results appear to increase with data size. Learning times also depend upon the

random starting structures as well as cyclicity and score calculation times after

each edge change (which all vary more for n = 10 as the CP-net structure is

larger). However, there is no apparent reason why either of these factors would

cause learning times to decrease for larger training sets.

Recall that previous results have suggested optimal performance occurs when

using the smallest values of α and maximal training data. From the experi-

ment 1a results in Figures 4.6 and 4.7, we can see that learning with these con-

figurations takes approximately 39.1 seconds and performs 1.5 edge changes on

average for n = 5. For n = 10, learning under these configurations takes ap-

proximately 1,410 seconds (23.5 minutes) and performs around 3.5 edge changes

on average. Both average times are impractical if we need to apply learning a

large number of times. Furthermore, it is likely that real applications will require

more than ten variables, making even one learning attempt potentially impracti-

cal. Thus, while our learning performs well, we must find a way of making it more

efficient. This is our primary interest for our future work, as we discuss in more

detail in §4.5.

The average number of edge changes are fairly low, meaning that our learning

algorithm is not exploring much of the search space. Furthermore, as experiment 1

used empty starting structures, these edge changes suggest that, on average, NL

has 1 or 2 edges for n = 5 and up to 4 edges for n = 10. Thus, learning produces

fairly sparse CP-nets, which is as we predicted due to the fact that removing edges

is easier than adding them (because of their respective ∆ thresholds). Sparse NL

structures may also mean that some of the NT preferential dependencies are not

captured. However, our PG similarity scores were high, suggesting no major re-

lationships were missed. Also, recall that our aim is not to recreate NT but to

be consistent with the preference order. Nevertheless, in future experiments, we

may want to make it easier to add edges, both to enable further exploration of

the model space and to allow denser models to be considered. It is possible that

learning more complex structures may increase the likelihood of learning incorrect

preferences from noisy data, whereas sparse structures are more likely to encode
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correct information but perhaps miss out some of the finer details of the model.

This is something to consider in our future work.

Recall that, for experiment 2, we gave the average time and steps for each

learning instance (each random start). For the larger data sizes (where learning

has previously been seen to perform better, α has little to no effect), the aver-

age learning time is between 49 and 50.5 seconds for n = 5 and between 9,500

and 10,300 seconds (between 158.3 and 171.7 minutes) for n = 10. This shows

that learning from a non-empty starting structure takes significantly longer and is

even less practical. These longer learning times are due to both the larger num-

ber of average learning steps and the fact that dealing with denser structures will

make score and cyclicity calculations take longer. This increase in time is more

significant for n = 10 as there is a larger increase in average edge changes, each

edge change takes longer for larger n, and the randomised structures will usually

contain more edges than the randomised starts for n = 5. The average learning

times also grow as we increase the number of random starts (from 10 to 20 to 30).

This is probably because the proportion of (faster) learning instances using an

empty starting structure is decreasing (from 1/10 to 1/20 to 1/30), meaning the

average learning time increases, getting closer to the average learning time when

using a randomised start.

The total learning times for experiment 2a (over all random starts), for the

larger training sets, were approximately 495 seconds (8.25 minutes) for 10 random

starts, 1,000 seconds (16.7 minutes) for 20 random starts, and 1,515 seconds (25.25

minutes) for 30 random starts when n = 5. For n = 10, the total learning times

were approximately 95,000 seconds (26.4 hours) for 10 random starts, 200,000 sec-

onds (55.6 hours) for 20 random starts, and 306,000 seconds (85 hours) for 30

random starts. As expected, using random starts takes significantly longer. How-

ever, as randomised starting structures make learning slower, using k random starts

takes longer than k times as long as experiment 1 learning instances. From these

values, we can see that using multiple random starts is impractical, particularly

if there are more than 5 variables. Furthermore, previous results have shown that

using random starts results in minimal to no improvement to the quality of the

learned CP-net and is, therefore, not worth the drastic increase in computation

time.

The average number of edge changes performed by each random start in ex-

periment 2a (again, for larger training sets) ranges between 5 and 5.5 for n = 5

and between 20.5 and 22.1 for n = 10. This is significantly larger than the average

number of learning steps in experiment 1, meaning that more edge changes occur

when using a randomised starting structure. Furthermore, as we use additional
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random starts (increasing from 10 to 20 to 30), the average edge changes increase,

due to the same reasoning as the time elapsed results. Randomised starting struc-

tures enables the search to make more edge changes and explore a larger area of

the search space. However, the larger number of edge changes could be because

most edges in the starting structure are incorrect or irrelevant and are, thus, re-

moved – this has been observed in several examples of learning with randomised

starts. The average number of edge changes are consistent with this possibility

and it is further supported by the fact that we see little performance improvement

from random starts. This would imply that learning from a random start takes

longer, in part, due to the time taken to remove most of this random structure.

The standard errors of the learning times and the number of edge changes

are slightly high (in comparison to their respective data values), but not exces-

sive. This is particularly true for the time elapsed results and for the exper-

iment 1 results. The following figures give the standard error of the learning

times for experiment 1a and, for experiment 2a, the standard error of the average

learning times for a single random start (obtained from the total time by divid-

ing by the number of random starts, k, as we did for Figure 4.6). For n = 5,

the standard errors lie between approximately 0.17 – 0.43 seconds for experi-

ment 1a and between 0.18 – 0.45 seconds for experiment 2a. For n = 10, the

standard errors lie between 11.46 – 17.04 seconds for experiment 1a and between

67.74 – 159.69 seconds for experiment 2a. The variability of learning time does not

appear to be dependent upon either α or the size of the training data. However,

in experiment 2a, the variability of an average single learning attempt time de-

creases as the number of random starts increases. This may be because the effect

of having a single empty start among k random starts (which will add to learning

time variation) diminishes as k increases.

The following figures give the standard error of the number of edge changes

performed by learning for experiment 1a and, for experiment 2a, the standard

error of the number of edge changes performed (on average) by a single ran-

dom start (obtained by dividing the total number of edge changes by k, as we

did for Figure 4.7). For n = 5, the standard errors lie between approximately

0.077 – 0.10 edge changes for experiment 1a and between 0.043 – 0.79 edge changes

for experiment 2a. For n = 10, the standard errors lie between 0.12 – 0.15 edge

changes for experiment 1a and between 0.075 – 0.14 edge changes for experi-

ment 2a. For experiment 1a, the variability of the number of edge changes is

higher for smaller values of α. Experiment 2a shows no effect of α on variability,

which may be because the tested values are all fairly similar. For n = 5 (both

experiments), variability also increases for larger data sizes. For n = 10, there is
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no clear effect of the training size on variability. For experiment 2a, the standard

error of the average edge changes in a random start decreases as k increases (which

may be caused by the same reasoning as above).

From the results in Figures 4.6 and 4.7, we have seen that the learning algorithm

generally performs more steps and takes longer for smaller values of α (though

there is no noticeable effect in experiment 2). As previous results suggest learning

performs better for smaller α, this means that better performance comes at the

cost of longer learning times. For n = 5, we also see a general increase in the

number of steps and learning times as the training set grows and there are more

preferences for the algorithm to model (which, again, means that as performance

improves, learning times get longer). The effect of data size is less clear for n = 10,

perhaps because all training data up to 1000 data points is similarly small as

representative data over 1,024 outcomes. We will need to run more experiments

with larger training sets in our future work to evaluate the relation between data

size and learning time and steps in this case (though we expect it to be similar

to n = 5).

From the experiment 1 results, we find that even one learning attempt is im-

practically long. Despite these long learning times, few edge changes are performed

by learning. Thus, the algorithm does not explore much of the model space and,

as we start with an empty structure, the learned CP-nets are fairly sparse. In our

future experiments, we may consider making it easier to add edges. This is sup-

ported by previous results which suggest performance would improve for smaller

values of α. The experiment 2 results show that learning from randomised starts

performs significantly more steps and takes much longer. In the n = 10 case,

a single learning attempt with a randomised starts takes hours. As randomised

starting structures increase average learning times, using k random starts takes

significantly longer than k times the single learning times from experiment 1. The

total learning times for k random starts (k = 10, 20, 30) are completely imprac-

tical and confirm that the minor performance improvements from random starts

are not worth the additional complexity costs. Our primary aim in our future

work will be to address the long running times of our learning algorithm. We will

also consider alternative ways of improving the greedy search optimisation, such

as random walks or modifications to our random starts. This is discussed in more

detail in §4.5.

We also observe from the experiment 2 results that the random start utilising an

empty starting structure is more likely to be the optimal random start (obtaining

the highest score) than a randomised starting structure. In particular, for n = 5,

the empty start is between 1.25 and 1.38 times more likely to be the optimal
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random start than any of the other random starts, which use randomly generated

starting structures. For n = 10, the empty start is between 4.32 and 4.63 times

as likely to be optimal. These multiples decrease as the number of random starts

attempted increases. This shows that, when learning is only attempted once (as in

experiment 1), using an empty starting structure is likely to perform better than

a randomly generated starting structure. This could be because the edges in a

random structure are likely to be incorrect or irrelevant. Such edges may be a

hindrance to learning progress, either because they must first be removed or by

making useful edge changes impossible to perform due to cyclicity problems. In

contrast, the empty structure makes no assumptions and only relations supported

by the data will be added. This could explain why the empty structures are even

more likely to be optimal in the n = 10 case, as the randomised structures are likely

to have more edges than for n = 5. The fact that the empty starting structure is

the most likely to be chosen also helps to explain, particularly for n = 10, why we

see little improvement in learning performance from using random starts.

In this section, we have seen that our learning algorithm performs well ac-

cording to all four of our performance evaluation measures. More specifically, this

means that our learned CP-net, NL, has a high level of agreement with the original

CP-net, NT , on swap preference, as well as a high level of consistency with respect

to general preferences. Furthermore, we found that NL is consistent with unseen

data, performing almost as well as NT with respect to both swap and general

preferences. Finally, we also found NL to be consistent with a large proportion of

the true preference ordering, which was our primary aim in learning. This means

that NL will be strongly consistent with large sub-orderings of the true preference

order. In fact, in some cases, learning achieved strong consistency with the to-

tal ordering (meaning NT was recovered). The quality of NL according to these

measures also matches up with the NL score results, implying that we constructed

a sensible score to optimise. Optimal performance generally occurs when larger

training sets are used and for smaller values of α. We also usually see better per-

formance for n = 5 as training sets of size ≤ 1000 cannot reflect the full preference

order for n = 10. However, in general, the performance results for n = 10 are not

far behind n = 5. This is encouraging as it suggests that the algorithm can learn

effectively even with only partial information (even 1000 data points is a small set

for n = 10, to fully reflect a preference order over 1,024 outcomes, we would need

around 500,000 data points). This is important as full information is impractical

for larger values of n and it is likely that real world applications will not always

have such complete data sets to learn from.
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Our initial set of α values (tested in experiment 1) was fairly wide as it is

not obvious what is an appropriate percentage change such that valid improve-

ments are above this threshold and score improvements due to noise in the data

or score estimation error fall below. As learning results improve as α decreases

in experiment 1, we used a smaller set (for practicality) of lower values of α in

experiment 2. We expected that, as α continued to decrease, learning performance

would improve until α became too small and started allowing edge changes due

to noise or estimation error. However, in general, we saw no clear effect of α on

performance in experiment 2, possibly because the small set of values tested were

all fairly close together. Thus, in future experiments, we would like to consider

smaller values of α, in order to find the optimal change threshold.

We find, over all performance measures, that the random starts utilised in

experiment 2 result in minimal or no improvement to NL. Furthermore, when

using these random starts, we find that it is most likely to be the empty starting

structure (as we used in experiment 1) that is found optimal and, thus, returned

as NL. The large increase in learning time when using random starts is not feasible

for practical use; it takes longer than k times a single learning attempt (which alone

are not quick to perform) when applying k random starts as randomised starting

structures result in longer learning times. Thus, the minimal improvements to

learning performance resulting from random starts are not worth their increased

time costs. In our future work, we would like to consider how else we might improve

our greedy optimisation method, perhaps by modifying random starts or utilising

random walks. This is discussed in more detail in §4.5.

For a single learning attempt, as we use in experiment 1, the time costs are

not unreasonable. However, they are impractical for applications that require

many learning attempts or a larger number of variables. Furthermore, these times

are generally longer for the learning configurations we find most successful (more

training data and smaller α values). Our primary goal in our future work is to

improve learning efficiency whilst preserving the good performance results we have

seen here, as we discuss in §4.5.

4.5 Discussion

4.5.1 Summary

In this chapter, we have have introduced our new CP-net learning method. This

method is more widely applicable than existing techniques due to several prop-

erties. First, it uses user choice data rather than pairwise outcome preferences.
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Second, we allow this data to contain noise and we do not assume that the user’s

true preferences are representable by CP-nets. Finally, our method may return

CP-nets with any acyclic structure, whereas other methods often assume restric-

tions upon the in-degree of the learned structures.

We also provided an experimental evaluation of the performance of our learning

algorithm. These results found that maximising our constructed CP-net score

produces learned CP-nets that agree strongly with both the user’s true CP-net and

preference order, as well as previously unseen data sets. In particular, our learning

algorithm can achieve over 95% consistency with the user’s true preference order

(our primary aim in learning), even when the data reflects only partial preference

information. However, a single run of our learning algorithm took up to 40 seconds

for n = 5 and 24 minutes for n = 10. Thus, a single attempt will quickly become

impractical for larger n and any application that requires many learning attempts

will be infeasible even for small values of n. Thus, while our learning algorithm

performs well, further work is required to make it efficient enough to be usable in

practice. We discuss some possibilities for how to improve this efficiency below.

In these experiments, we also tested a second variation of our learning algorithm

in which we utilised several randomised starts in order to improve the CP-net

score optimisation. In general, we found that considering randomised starts did

not improve the learning performance by much. Furthermore, randomised starting

structures greatly increase the already long learning times. Thus, considering k

random starts took even longer than k times a single learning run. Consequently,

the total learning times for randomised starts were completely impractical and

far outweighed any minor benefit to learning performance. Thus, in this form,

randomised starts are not worth considering. In our future work, we intend to

consider how we can improve the performance of random starts as well as other

methods of improving the CP-net score optimisation, as we discuss below.

4.5.2 Potential Improvements to Our Learning Algorithm

and Further Experiments

There are several possible directions for future work on our learning algorithm.

Perhaps the most important is addressing the current limitations on its practi-

cal application. As we have seen in our §4.4 experiments, the run-time of our

algorithm becomes impractical for n = 10. Further, our complexity evaluations

in §4.3.3 showed our learning method to be intractable. This complexity only gets

worse if the random starts variation discussed in §4.3.4 is used. This means that

our learning algorithm is unlikely to be efficient enough for practical purposes.
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Particularly if the data updates regularly, meaning the learned structure would

need routinely updating also. These long run-times are primarily caused by the

calculation of scores (and ∆ values). In Appendix D, we discuss how the score

estimation imposes requirements upon system storage and accuracy that limit the

size of n for which we can learn. Reducing the size of the Dirichlet sample used for

estimation would improve both efficiency and the storage requirements, but at a

cost to the accuracy of our estimations. In the future, it may be worth evaluating

what effect lowering this accuracy has on learning performance and whether the

improvement to efficiency is worth it. However, an entirely new method for score

estimation is likely to be required in order to make our algorithm applicable to n

values much larger than 15.

We would also like to consider different methods of optimising our score over

the space of acyclic structures, other than greedy search. In particular, one might

consider using a genetic algorithm. Haqqani and Li (2017) used a genetic algorithm

for optimisation and their learning returned reasonable CP-nets in less than 25

minutes for n = 100. As CP-nets scale exponentially with n, this is far beyond

what our method can manage currently. Thus, it is possible that, in addition to

improving performance, an alternative optimisation method may also improve the

running time of our algorithm. However, a different score estimation method will

still be required for larger values of n.

Alternatively, we could consider variations to the greedy search method other

than randomised starts. As we mentioned in §4.3.4, another way we may improve

our learned CP-net score (and, thus, learning performance) is by implementing ran-

dom walks within our greedy search. Suppose our learning algorithm has starting

structure A1 and makes k edge changes to reach a locally optimal structure, A2. If

we picture the space of acyclic structures as a surface, with score dictating height,

then we have successively made the k steepest (valid) climbs from A1 and all pos-

sible steps from A2 are not sufficiently steep to be ‘worth’ moving. However, it is

possible that, if we moved away from A2 slightly, we may be able to keep climbing

even higher. For example, it is possible that the presence of one edge, e1, makes

the addition of some other edge, e2, impossible due to the creation of cycles. As

our learning algorithm considers only one edge change at a time and allows only

valid changes, it cannot consider adding e2 (possibly by first removing e1), even if it

would greatly improve the score. Such changes may be explored by implementing

random walks.

Returning to our scenario, we want to see whether the peak we climbed can

go any higher. To do so, we want to move away from A2, but we do not want to

destroy all of the progress we have made. Thus, we perform a random walk from A2
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that changes c < k edges and attempt to continue climbing (that is, we perform

our search algorithm again from this new starting structure). However, if we only

change one edge, it is likely that the search will go straight back to A2, so we

ensure that c ≥ 2. Performing c edge changes creates a new acyclic structure, A′2,

that is not too far from A2. Learning is then performed using A′2 as the starting

structure, returning a locally optimal structure, A3. If we have improved upon A2

(that is, S(A3) > S(A2)), then we repeat this process of searching for a higher peak

by randomly walking from A3. However, if A3 = A2 or S(A3) ≤ S(A2), then we do

not move to A3 and this is counted as a strike. In this case, we randomly select c

again and perform another random walk from A2, then perform learning from this

new starting structure. If enough strikes occur, then we stop random walking

and return the CP-net with structure A2. This random walk variation could also

be combined with random starts. In this case, we would perform learning with

random walks from a set of randomised starting structures, then return the highest

scoring of the learned structures.

Another variation we may consider, as we alluded to above, is enabling the

learning algorithm to consider the effect of more than one edge change in advance.

By allowing the search to consider more complex moves over the model space, we

may be able to improve our optimisation performance.

There are also two possible improvements to random starts that we might con-

sider in our future work. Firstly, as we discussed in §4.4.1, we should use the same

Dirichlet sample for estimation over all k learning attempts – this makes the com-

parison of the k learned structures more exact. Secondly, we could aggregate the k

learned CP-nets in order to form an even better structure. For example, suppose

the k learned structures are N1
L, ..., N

k
L. Each structure has a score, but this score is

simply the product of the CPT scores. For this example, let us consider the scores

to be |V |-vectors of the CPT scores. For example, S(N1
L) = (S1

X1
, S1

X2
, ..., S1

Xn
),

where S1
Xi

is the score of CPT(Xi) in N1
L. The structure score of N1

L is then simply

the product of this vector. Now, suppose that N1
L has the highest score of all the

learned CP-nets. It is possible that, while N1
L has the highest score, we may also

have S2
Xi
> S1

Xi
. That is, CPT(Xi) has a higher score in N2

L than in N1
L. If it is

possible to change the parents of Xi in N1
L to the parent set of Xi in N2

L (without

affecting acyclicity), then we can obtain a CP-net with a score that is even higher

than N1
L. Let N∗L be the structure obtained from N1

L by changing the parents of Xi

to be the parent set of Xi in N2
L. Then S(N∗L) = (S1

X1
, ..., S1

Xi−1
, S2

Xi
, S1

Xi+1
, ..., S1

Xn
).

Thus, N∗L has a greater score than N1
L (note that this assumes the same Dirichlet

sample is used in all k learning attempts, as discussed above).
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One might start with the highest scoring CP-net, and try to successively change

any parent set that can be improved. This would be done in order of the magni-

tude of the score improvement, and only implemented in the cases where acyclicity

is preserved. Alternatively, one might try and construct the best scoring (acyclic)

combination of parent sets from the learned structures via some optimisation pro-

cedure. As we mentioned previously, relations that appear in more of the N i
L may

be considered more likely to be part of the user’s true preference structure. Thus,

one might allocate such relations more weight in these aggregations.

Further experiments on our current learning method is another important di-

rection for future work. Firstly, our previous experiments suggest that performance

improves as the change threshold, α, gets smaller. We predict that when α be-

comes too small, performance will decline as it will allow edge changes due to noise

in the data or score estimation error. We would like to evaluate the performance of

a wider range of values of α in future experiments, in order to identify this change

point and, thus, the optimal threshold.

Secondly, we would like to conduct experiments varying the uninformed prior

parameters, in order to see how this affects learning performance. We would also

like to consider how informed priors might be constructed and evaluate learning

performance in these cases as well. In particular, whether accurate informed priors

improve learning performance. A further discussion of prior possibilities was given

in §4.3.2.

Thirdly, experiments that use data not (necessarily) representable by a CP-

net, or with different pi distributions, would illustrate how our learning procedure

may perform on real data. Finally, we would like to conduct a direct experimental

comparison between our learning method and some of the other existing methods.

Another aspect we would like to consider in any future experiments is exam-

ining directly the structural similarity of the true and learned CP-nets. In the

existing experiments, we primarily looked at the similarity of the implied prefer-

ences, which is related but not directly linked to structural similarity. Structural

similarity will give us an indication as to whether the relations we are extracting

from the data are true or not. As our experiments showed little movement within

the search space, few edges are added in the empty start case. Such an analysis

might reveal whether learning can only find the ‘most important’ of the true rela-

tionships, or whether it is approximating the truth with the closest sparse structure

(whose edges may be distinct from the original CP-net). We might also look at

the effects of graph properties such as connectivity or density (of the true CP-net

structure) on the learning algorithm performance. Perhaps the algorithm is more

likely to identify the true relationships if the true CP-net is sparser. Equally, it
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would be interesting to see the effect of these properties on the other measures of

performance that we considered previously.

4.5.3 Other Future Work

Applying our algorithm to real world data is another interesting direction. One

possible application is to the user data available on Steam. Steam is a gaming

platform with a public web API, through which one can obtain information about

users: their activity on the platform, their friends, and about the games they play.

O’Neill et al. (2016) has already used the Steam API to compile a comprehensive

database. We suggest that game features such as multi-player or not, age rating,

price, whether it is owned by the user’s friends, and game genre could be used as

the CP-net variables. The number of hours a user has played a game can be used

as the user choice data. From this data, we can learn a CP-net that dictates the

user’s preferences over different game categories. This model can then be used for

personalised advertisement, for example.

Our learning method can be extended to non-binary CP-net learning. In order

to do so, we need to generalise our CPT score to non-binary CP-nets. Once this is

defined, learning can proceed as before; the score of a structure is the product of

the maximum CPT score for each variable. Note that we can use the same method

as in Appendix D.2 to estimate the optimal CPT scores for a given structure. We

optimise this new structure score over the space of acyclic structures as we did

before. The ∆ values are defined as before and the same update procedures can

be performed after each structural change. Thus, it only remains to define our

CPT score for non-binary CP-nets.

Let Ω denote our set of outcomes and |Ω| = O. Suppose Ω = {o1, o2, ..., oO}.
Let pi denote the probability that the user chooses outcome oi. We can again

utilise an uninformed Dirichlet prior for the pi values. We then observe some user

choice data. Let d(oi) denote the number of times the user chose outcome oi. This

gives us the same posterior distribution over the pi as before:

p1, ..., pO ∼ Dir(β1 + d(o1), ..., βO + d(oO)).

Now consider CPT(X), for some X ∈ V . Let |Dom(X)| = m. A typical row

of CPT(X) has the form u : x1 � x2 � · · · � xm, where u ∈ Dom(Pa(X)). Let

W = V \{X}∪Pa(X). This rule represents |Dom(W )|m(m−1)/2 pairwise outcome

preferences (note that |Dom(W )| ≥ 2|W |, with equality only if all variables in W

are binary). In particular, for each w ∈ Dom(W ) and 1 ≤ i < j ≤ m, this rule

dictates that uxiw � uxjw. This set of preferences is the transitive closure of m−1
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preferences: ux1w � ux2w, ux2w � ux3w, ..., uxm−1w � uxmw. Thus, the

CPT rule represents the transitive closure of |Dom(W )|(m− 1) pairwise outcome

preferences. An outcome preference, oi � oj, is supported if pi > pj. However, as

each CPT rule represents an exponential number of pairwise preferences, we again

simplify the condition for support. The rule u : x1 � x2 � · · · � xm is supported

if ∧
1≤i<m

∑
w∈Dom(W )

puxiw >
∑

w∈Dom(W )

puxi+1w.

We are abusing notation here, using poi to denote pi for practicality. A CPT is

supported if all of its rules are supported. The score of a CPT is the probability

that it is supported.

St(CPT(X))

=Pr(CPT(X) is supported)

=Pr(All rules in CPT(X) are supported)

=Pr

( ∧
u:x1�x2�···�xm∈CPT(X)

( ∧
1≤i<m

∑
w∈Dom(W )

puxiw >
∑

w∈Dom(W )

puxi+1w

))
.

This support condition for CPTs is more complex to check than the condition in the

binary case. Further, non-binary CP-nets have more outcomes and larger CPTs.

Due to these properties, the complexity of calculating scores will be greater in the

non-binary case and the corresponding storage requirements will also be greater.

Thus, non-binary learning will have more restrictions upon possible n values. Thus,

finding a more efficient score estimation method is even more important in this

case. Perhaps further simplification of the above definitions could make the score

calculation complexity closer to the binary case.

We would like to perform similar experiments in this non-binary case and

determine what size of non-binary CP-net we can learn currently. Further, we

would like to make the non-binary method more widely applicable (with respect

to n and domain sizes) and efficient, similarly to the binary case.

Another modification we would like to explore is learning CP-nets with indif-

ference. As CP-nets encode preferences over a large number of outcomes, indif-

ference between outcomes is likely to occur in real world applications. Suppose

we have x, x̄ ∈ Dom(X). We might say that the user is (conditionally) indifferent

between x and x̄ if the support probabilities for x � x̄ and x̄ � x are sufficiently

close. Alternatively, one might say that they are indifferent if there is a high

probability that the relevant pi sums are sufficiently close. Either definition would

require the CP-net score to be redefined.
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4.5 Discussion

It would be useful to make our learning applicable in the online case also. In

this scenario, we receive small amounts of data over time. The aim is to obtain, at

every time point, a CP-net that is consistent with all data observed so far. This

requires updating our learned CP-net when a small amount of new data is observed.

In order to be practical, this update procedure should be fairly efficient. However,

due to the construction of our score function, a quick update procedure does not

appear possible. Suppose we observe some data, D1, and learn a CP-net, N1.

Suppose we then observe further data, giving us a larger data set, D2 ⊇ D1. We

now want to update N1 so that it is consistent with D2. Even if D2 has only one

more data point than D1, all scores will need re-calculating from scratch. Thus,

the best we can do is to use N1 as an informed starting point for learning with

data set D2. This informed starting point may mean the learning performs fewer

steps than if an empty or random start is used, but this is still not an efficient

update process. As we mentioned above, this may be made quicker by a different

estimation process. However, this still falls under repeated batch learning, rather

than updating as is usual in online learning.

We would like to look into whether our learning technique can be simplified

or transformed into one that can be applied in online learning contexts – perhaps

by simplifying our score function. If this is not possible, we would like to define

a different learning method for online learning from user choice data. Note that

there is currently no such existing method in the literature.

We used two simplifications when defining our CP-net score in the binary case.

The first was simplifying the support condition for a preference rule into a single

inequality. The second was defining the score of a CP-net to be the product of

its CPT scores. The latter treats CPTs independently, ignoring the possible prob-

abilistic dependence between rules in distinct CPTs. Both simplifications were

made for the sake of practicality. If these simplifications were not made, then our

search space would be the space of all acyclic CP-nets over n variables. Further,

every CP-net must have its score calculated from scratch – it cannot simply be

updated if a change is made. Note that the score of a CP-net is now the probabil-

ity that all of the pairwise preferences it encodes are supported. However, these

probabilities will not sum to one as there are pi orderings that are not consistent

with any CP-net. Thus, it may be that all CP-net scores are very small which can

cause problems in estimation and comparison. Optimising the score without these

simplifications will be far more complex. However, for completeness, one might

evaluate the learning performance when one or both of these simplifications are

not utilised. These results would demonstrate whether these simplifications result

in any significant decrease in performance. Further, this would show whether the
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4. CP-Net Learning

practicality of using these simplifications is worth any associated cost to perfor-

mance.

A more distinct direction we may consider in our future work is how user

choice data might be used in constraint based learning (instead of score based).

This has been considered for CP-net learning from preference data but not yet

for choice data. The constraint based approach attempts to detect the significant

relationships in the data to build the CP-net structure. Such approaches have been

developed for learning Bayesian networks, but they are unlikely to be appropriate

for CP-nets due to the differences in symmetry.
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Chapter 5

Conclusions

In this thesis, we addressed two of the key problems with using CP-nets as models

for user preference in practice: being able to answer dominance queries efficiently

and learning a user’s CP-net from choice data. We introduced two methods of

improving dominance testing efficiency (rank pruning and CP-net preprocessing),

which have both been shown to significantly improve dominance testing time.

Furthermore, they can be used in combination and alongside existing methods

to improve dominance testing efficiency even further. We have also designed a

novel learning procedure for CP-nets using choice data. We have shown that

the learned CP-nets both successfully model the user’s true preferences and agree

with previously unseen (future) data. The problem of learning from choice data

has received little previous attention, despite the fact that choice data is a more

realistic format for user preference data than the more commonly used pairwise

preferences.

Dominance testing is an important requirement for reasoning with user pref-

erences modelled by a CP-net. However, unlike other reasoning tasks, answering

dominance queries is complex when using a CP-net model (in fact, it is PSPACE-

complete for CP-nets in general). In Chapters 2 and 3, we developed two distinct

methods of improving the efficiency of answering dominance queries, which can be

combined for further efficiency. In Chapter 2, we constructed outcome ranks, a

quantitative representation of user preference for a given outcome. These outcome

ranks can be used to prune the dominance testing search tree in order to improve

efficiency. We showed via experimental comparison that rank pruning results in

significantly faster dominance testing times than other existing pruning methods.

Furthermore, when considering combinations of pruning methods, we found that

rank pruning is a critical component in order to have an efficient pruning schema.

As outcomes ranks provide a quantitative measure of preference, they can
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also be used to obtain consistent preference orderings over the outcomes or any

subset of outcomes. They can also be used to obtain consistent outcome orderings

under plausibility constraints. In some cases, using outcome ranks allows us to

obtain such orderings more efficiently than existing methods. We can also use

properties of outcome ranks to answer ordering queries for CP-nets in a new way.

In Chapter 2, we also constructed a more generalised outcome rank that is defined

for CP-nets that may have indifference statements in their CPTs and simplifies to

the original ranks in the special case of no indifferences. As these generalised ranks

also reflect all preferences encoded by the CP-net, they have the same properties

as the original ranks. Thus, all of the above results, including dominance query

pruning, also apply to our generalised ranks. In many cases, this is the first time

these results have been achieved in the case of indifference as previous authors

have not considered this generalisation. Indifference between outcomes is a likely

occurrence in real world applications and so these generalised ranks increase the

applicability of our results.

In Chapter 3, we approached the problem of efficient dominance testing from

a different perspective – CP-net preprocessing. We introduced a new method of

preprocessing a CP-net by identifying and iteratively removing variables that are

unimportant to the relevant dominance query. The resulting, reduced CP-net and

query are then partitioned into mutually independent sub-queries. The result is

a set of queries over much smaller CP-nets that can answered separately (and si-

multaneously, if possible, to further improve efficiency). We refer to this method

as UVRS preprocessing. The reduced queries are equivalent to the original; the

original query is true if and only if all reduced sub-queries are true. This means

that finding any sub-query false is sufficient to answer the original problem. The

space of outcomes we must search over to answer the reduced set of queries is

exponentially smaller than the search space of the original query. Thus, prepro-

cessing significantly reduces the size of the original dominance testing problem.

We can combine this preprocessing with our work from Chapter 2 for an even

more efficient dominance testing process by utilising rank pruning (or an efficient

pruning combination) to answer the reduced sub-queries.

We have also shown how UVRS can be applied in combination with the existing

CP-net preprocessing method, forward pruning (Boutilier et al., 2004a). This com-

bination is more effective than both methods used individually as forward pruning

enables UVRS to remove more of the CP-net than it does when used in isolation.

The method of combining the two also makes it reasonably efficient to apply, in

fact, we found that applying the combination is faster than forward pruning alone

in our experiments. We provided an experimental evaluation and comparison of
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the performances of the three preprocessing methods – UVRS, forward pruning,

and their combination – on binary CP-nets. In these experiments, we utilised the

most effective pruning schema from Chapter 2 to answer the queries and compared

the efficiency of answering the unprocessed query to the efficiency of applying pre-

processing and then answering the reduced query (or queries). These experiments

found that UVRS improves dominance testing efficiency significantly more than

forward pruning and the combination of methods performs even better. Further-

more, preprocessing appears to perform better for CP-nets with more variables.

This is advantageous as dominance queries are generally harder for larger CP-nets

and, thus, reducing query efficiency is of more interest in these cases. For larger

binary CP-nets, we found that using UVRS can halve dominance testing times and

using the combination can reduce times by up to 60%, even when using an already

efficient pruning method to answer queries. Thus, by combining the methods from

Chapters 2 and 3, we achieve significantly more efficient dominance testing.

In order to use CP-nets in practice to model and reason with user preferences,

we first need to determine the user’s CP-net. However, eliciting the CP-net directly

from the user is not always possible or practical and may lead to inaccurate models

due to human error or change in preferences over time. Thus, we want to be

able determine a user’s CP-net from observed data (passively). In Chapter 4, we

introduced a new method of learning a user’s CP-net from observed choice data.

Most existing work on CP-net learning uses a collection of pairwise preferences as

data. However, in many contexts it is not possible to observe pairwise preferences.

Rather, we can only observe which outcome was successful (the item the user

chose). Our learning procedure uses such choice data, as it is more realistically

observable. We also relaxed other common assumptions such as the consistency of

the data, the requirement that the user’s true preferences are representable by a

CP-net, and conditions upon the learned CP-net structure (other than acyclicity).

We constructed a CP-net score that measures the agreement between a set of

choice data (also allowing prior beliefs about user preference to be taken into

account) and the preference rules represented by a given CP-net. Given a CP-net

structure, it is simple to evaluate the CPTs that maximise this score. Thus, our

learning procedure explores the space of acyclic CP-net structures, attempting to

maximise the agreement score between the learned CP-net and observed choice

data. Currently, the CP-net score (and, hence, the learning procedure) is only

defined for binary CP-nets. The only other existing method for CP-net learning

from choice data, Khoshkangini et al. (2018), bases their learning on probabilistic

dependence in the data, rather than preferential dependence. This can lead to
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incorrectly oriented structures due to differences in symmetry. Consequently, their

learned structure is closer to a Bayesian network than a CP-net model of the data.

We evaluated the performance of our learning procedure experimentally, using

simulated data where the user’s true preference order was known and representable

by a CP-net. The learned CP-nets were over 95% consistent with the user’s true

preferences and their agreement scores with previously unseen (future) data sets

were similar to the true CP-net’s. This suggests that the learned CP-nets are

a good model for the user’s true preference structure. Unfortunately, the learn-

ing procedure is not yet efficient enough for practical use and cannot handle a

large number of variables due to computational limitations. Thus, further work is

required to address these limitations whilst preserving learning performance.

A discussion of our proposals for improvements and directions for future work

on each of these techniques can be found in the discussion section of the relevant

chapters (§2.6, §3.4, and §4.5).
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Appendix A

Iteratively Updating Consistent

Orderings

In general, CP-nets do not specify a total ordering over the outcomes. That

is, there exist outcomes o1 and o2 such that N 2 o1 � o2 and N 2 o2 � o1

(N � o1 ./ o2). Let %C be a complete consistent ordering for N . As we do not

know the user’s preference between o1 and o2, %C can order them in any manner

without contradicting N . Thus, we can have o1 �C o2, o2 �C o1, or o1 ∼C o2 –

these incomparable outcomes have been forced into an arbitrary order by %C .

Suppose we have o1 �C o2 (or o1 ∼C o2) and we learn that o2 is preferred to o1 by

the user. Our ordering is no longer consistent with all of the known user preference

information and, thus, needs updating to become consistent with o2 � o1. In this

appendix, we present a method for updating any consistent ordering as new (con-

sistent) preference information is learned. We also demonstrate how this process

can be applied iteratively. That is, as more preference information is learned, the

ordering can be repeatedly updated in order to be consistent with all known user

preferences. These methods can be used on any consistent ordering (in particu-

lar, they can be used to update the rank ordering we introduced in §2.3.3 if new

preferences are learned). These methods can also be used to update consistent

orderings for any transitive preference structure (it is not restricted to CP-nets, as

we shall show).

Being able to update a preference order given new information is important

for any system that is continuously learning the user’s preferences. For example,

consider a news app. When a user first downloads the app, it may ask some general

preference queries in order to present the most relevant articles. However, over

time, the system can observe which specific articles the user reads. From this data,

the system learns more specific preference information, which it can use to curate
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A. Iteratively Updating Consistent Orderings

the news feed to suit the user’s preferences more accurately. Alternatively, systems

(such as Amazon, perhaps) may start by assuming some global preferences (for

example, that a user prefers cheaper, more highly rated products) and then use

the user’s data over time to update this preference model to be more personalised.

In this appendix, we assume that the preference model we are updating is a

consistent ordering and that the new preference information comes in the form of

consistent pairwise preferences. Recall that consistent orderings contain all pref-

erence information encoded by CP-nets (by Theorem 2.12). However, consistent

orderings are more directly applicable as they provide an explicit preference order-

ing of any set of outcomes. They also have many preference reasoning applications

as we have seen in §2.3 and §2.4. Thus, it is more useful to be able to directly

update the consistent ordering given new information, rather than updating the

CP-net and then re-generating the ordering, particularly as producing a consistent

ordering is intractable (see the remark in §2.3.5). Note that single pairwise pref-

erences (o1 � o2) cannot be incorporated into a CP-net directly, they are simply

added separately. They can be added into the preference graph by adding the rel-

evant edge, o2 → o1, but there is no CP-net that can express this new preference

structure.

The assumption that the new preference information is a pairwise preference

is not unreasonable; many general preference statements can be decomposed into

a set of pairwise outcome preferences. However, the assumption that every new

preference statement is consistent with the existing preferences (this is formally

defined below) is unlikely to hold in real-world applications. This could be because

a user’s preferences change over time (and so contradict previous information) or

because the user makes contradictory decisions, which is particularly likely if there

are a large number of outcomes or the user does not have strong preferences.

How one updates a preference model given new, inconsistent information is

likely to be context-dependent. For example, how quickly are user preferences

likely to change? Should we immediately prioritise new preferences or do we wait

for sufficient evidence before adjusting the model? If compromises are to be made,

do we prioritise historic or new preference information? As systems are likely to

receive such inconsistent information, we would like to create an update method

that could be tuned as appropriate for different contexts. This is a direction for

our future work. In this appendix, we address the problem of updating given new,

consistent preference information.

Let us first formalise what we mean by consistent information. Let N be our

CP-net and %C be an ordering over the associated outcomes. Let o1 and o2 be

associated outcomes. We say %C is a consistent ordering if N � o � o′ =⇒
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o �C o′. We say o1 � o2 is consistent with N if N 2 o2 � o1. Let GN be the

preference graph of N . The above definitions can also be formulated with regards

to GN . We say %C is a consistent ordering if the following condition holds; if

there is a directed path o′  o in GN , then o �C o′. We say o1 � o2 is consistent

with N if there is no directed path o1  o2 in GN . We shall now generalise these

notions of consistency to an arbitrary graph, G, over the outcomes, representing

user preference.

Definition A.1. Let G be a graph over the outcomes that represents user prefer-

ence such that o � o′ if and only if there is a directed path o′  o in G. Let %C

be any total preorder over the outcomes. The ordering %C is consistent with G if

the following condition holds; if there is a directed path o′  o in G, then o �C o′.
Let o1 and o2 be any two outcomes. The preference o1 � o2 is consistent with G

if there is no path o1  o2 in G.

In general, consistent here means ‘does not contradict’. If G is GN , then these

definitions become the usual notions of consistency with a CP-net.

Note that for G to have a consistent ordering, %C , G must be acyclic. Total

preorders cannot have o �C o. If G is cyclic, then it contains a directed path o o

for some outcome, o. As %C is consistent, we have o �C o, a contradiction. Thus,

if G has a consistent ordering, then it is acyclic.

Let N be a CP-net, let %C0 be a consistent ordering (an ordering consistent

with GN), and suppose we learn the preference o1 � o2, which is consistent with N

(GN). We want to update %C0 to be consistent with all of the current prefer-

ence information – N and o1 � o2. We know that o1 � o2 is consistent with N

so N 2 o2 � o1. Thus, N � o1 � o2 or N � o1 ./ o2. If it is the former,

then o1 � o2 is not new information and %C0 is already consistent with all known

preference information. If N � o1 ./ o2, then there is no directed path between

o1 and o2 in GN . By adding o1 � o2, we add more than one pairwise preference

to N . Suppose we have N � a � o1 and N � o2 � b, but N � a ./ b. Thus,

we have paths b  o2 and o1  a in GN , but a and b are not connected. By

adding o1 � o2, we get an edge o2 → o1 and so there is now a path b a in GN .

So by adding o1 � o2 we also got a � b. Thus, being consistent with all known

preferences is not as simple as being consistent with N and o1 � o2 separately,

we need an order consistent with their combination. This new preference struc-

ture can be obtained from GN by adding the edge o2 → o1. We call this new

graph, which represents all current preference information, G1. In the case where

N � o1 � o2, we have G1 = GN as no new information is gained. We want to

update %C0 to an ordering that is consistent with G1.

241



A. Iteratively Updating Consistent Orderings

Note that, as for CP-nets, orderings consistent with G1 (or any G in general)

are all equally ‘good’. From the given information, we cannot say that one ordering

is more likely to be the user’s true preference than another. Thus, we cannot do

better than obtaining any ordering consistent with G1 (or G in general).

Proposition A.2. Let G be any acyclic graph representing preference. Let o1 � o2

be any preference consistent with G. Let G′ be the graph obtained from G by adding

the edge o2 → o1. Let %C be an ordering over the outcomes that is consistent with G

and such that o1 �C o2. Then %C is consistent with G′ also.

Proof. In order to show %C is consistent with G′, we need to show that, for any

directed path o′  o in G′, we have o �C o′. Let o′  o be any directed path

in G′. If o′  o does not contain the edge o2 → o1, then, by definition of G′, this

path is also in G. As %C is consistent with G, we must therefore have o �C o′.
Now suppose o′  o does contain the edge o2 → o1. Recall that G is acyclic.

As o1 � o2 is consistent withG, there is no directed path o1  o2. Thus, adding the

edge o2 → o1 to G does not create cycles. Hence, G′ is also acyclic. Thus, o′  o

in G′ can only contain the edge o2 → o1 at most once. Let us decompose o′  o

into o′  o2 → o1  o. Assuming o′  o2 and o1  o are non-trivial paths,

they cannot contain the edge o2 → o1 and, thus, (by definition of G′) they are

also in G. As %C is consistent with G, we have o2 �C o′ and o �C o1. We also

have o1 �C o2 and so, by transitivity, we have o �C o′, as we wanted. If o′  o2 is

a trivial path, then o′ = o2 and so o′  o is o2 → o1  o. By the same argument

as above, o1  o is in G and so o �C o1. Thus, as o1 �C o2, we have o �C o2 by

transitivity, which here means o �C o′. A similar argument is used if either o1  o

is a trivial path or both o′  o2 and o1  o are trivial paths. Thus, we have

shown o �C o′ and so %C is consistent with G′.

Thus, in order to update %C0 to be consistent with G1, it is sufficient to ob-

tain %C1 consistent with GN such that o1 �C1 o2. If N � o1 � o2, then we already

have o1 �C0 o2 and so %C1=%C0 as no new information was learned. Now sup-

pose N � o1 ./ o2. If o1 �C0 o2, then it is already consistent with G1 and, again,

no update is required. If o2 �C0 o1 or o1 ∼C0 o2, then %C0 is no longer adequate

as it does not reflect the preference o1 � o2. We update %C0 to an ordering, %C1 ,

that is consistent with G1 as follows.

If o1 ∼C0 o2, then we change %C0 by making o1 preferred to all outcomes it

is equivalent to in %C0 . Let E = {o ∈ Ω|o 6= o1 ∧ o1 ∼C0 o}. We obtain %C1

from %C0 by changing the relation o1 ∼C0 o to o1 �C1 o for every o ∈ E. This

produces a new total preorder, %C1 , and preserves all strict %C0 preferences. We

cannot have N � o � o1 or N � o1 � o for o ∈ E as o ∼C0 o1 and %C0 is consistent
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with N . Thus, if N � a � b, then we know {a, b} 6= {o1, o} for any o ∈ E. As the

relative positions of o1 and E are the only changes, the preference between a and b

must be the same in both %C0 and %C1 . As %C0 is consistent with N , we must

have a �C0 b and so we also have a �C1 b. Thus, as N � a � b =⇒ a �C1 b, we

know %C1 is consistent with N . As o2 ∈ E, we also have o1 �C1 o2, by definition.

Thus, by Proposition A.2, %C1 is consistent with G1.

Let us now formalise how we visualise consistent orderings. We consider con-

sistent orderings to be vertical lists of levels, where the top level contains the

outcomes most preferred by %C . If a �C b, then b is on a lower level than a. If

several outcomes are equivalent (∼C), then they are all on the same level.

Example A.3. Suppose we have outcomes Ω = {a, b, c, d, e, f, g, h} and a consis-

tent ordering %C :

a �C b ∼C c �C d �C e ∼C f ∼C g �C h.

Then %C is made up of five levels:

a

b c

d

e f g

h

We define level k to be the level that is kth from the top – in the above example,

we have levels one to five. By this definition, if o is on level k and o′ is on

level `, with k < `, then o �C o′. If o and o′ are both on level k, then o ∼C o′.

The outcomes on each level have no specific order, but the levels themselves are

uniquely defined. As orderings and levels uniquely define one another, we shall

discuss them interchangeably.

Suppose o1 is on level k. In the above case, o1 ∼C0 o2, we removed o1 from

level k and moved it to a new level between levels k − 1 and k.

Suppose instead that o2 �C0 o1. We now show that, under certain conditions

that are simple to check, outcomes can swap levels without affecting consistency.

Proposition A.4. Let %C0 be any ordering consistent with acyclic graph G. Sup-

pose %C0 has ` levels. Let Ok denote the outcomes on level k of %C0, for any k ≤ `.

Let S = {o ∈ Ok+1|∀o′ ∈ Ok, o → o′ 6∈ G}. Let %C1 be the ordering obtained

from %C0 by moving some o ∈ Ok+1 up to level k. If level k + 1 is now empty, the

level is removed. Then %C1 is also consistent with G if and only if o ∈ S.

Proof. See Appendix E.12.
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Definition A.5. Let %C be an ordering consistent with graph G. Say %C has `

levels. Let Ok denote the outcomes on level k of %C , for any k ≤ `. We say that

outcome o′ ∈ Ok+1 is improvable if there are no outcomes, o ∈ Ok, such that the

edge o′ → o is in G.

Proposition A.6. Let %C be a consistent ordering for CP-net N . Say %C has `

levels. Let Ok denote the outcomes on level k of %C, for any k ≤ `. Then o′ ∈ Ok+1

is improvable if and only if there are no outcomes, o ∈ Ok, such that HD(o, o′) = 1.

HD is Hamming distance, HD(o, o′) = |{X ∈ V |o[X] 6= o′[X]}|.

Proof. To show this, we prove that for o′ ∈ Ok+1 and o ∈ Ok, the edge o′ → o is

in GN if and only if HD(o, o′) = 1.

If HD(o, o′) = 1, then o and o′ differ on the value of exactly one variable. They

constitute a variable flip. Thus, by definition of the preference graph, there is an

edge between o and o′ in GN . If o → o′ is in GN , then N � o′ � o as this edge

constitutes an IFS. Thus, as %C is consistent with N , we must have o′ �C o. This

is a contradiction as o′ is on a lower level of %C than o. Thus, the edge must

be o′ → o. Thus, HD(o, o′) = 1 implies that the edge o′ → o is in GN .

If the edge o′ → o is in GN , then, by definition of GN , this edge constitutes a

variable flip. That is, one variable change transforms o into o′ (and vice versa).

Thus, HD(o, o′) = 1.

By Proposition A.4, if %C is consistent with GN , then moving improvable

outcomes up a level produces another consistent ordering of N . Note that, by

Proposition A.6, we can check whether an outcome is improvable in this case

in O(n|Ok|) time. This proposition makes it possible to check whether an outcome

is improvable from the consistent ordering directly. This will allow us to update

any consistent ordering, given a consistent new preference, without consulting the

CP-net.

Let us return to our ordering, %C0 , with o2 �C0 o1. Let o2 be on level k of %C0 .

If level k of%C0 has multiple outcomes, we start by moving o2 to its own level above.

This is now level k and the levels below all shift down by one. This is equivalent to

what we did in the o1 ∼C0 o2 case and the resulting ordering is consistent with GN

by the same argument. Let o1 be on level ` now, k < `. In order to update %C0 to

be consistent with G1, we perform the following procedure: for i ∈ {k + 1, ..., `},
in increasing order, we perform the following outcome movements; all improvable

outcomes on level i are moved up to level i− 1. If any of these outcomes are still

improvable, then they are moved up to level i−2. This continues until none of the

outcomes are improvable or until the outcomes are moved into the original level k

(the level containing o2, which may not be in position k any more). If outcomes
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reach level k in this manner, they are then moved into their own level above level k.

The ordering produced is %C1 . Intuitively, for each level i in order (k < i ≤ `), we

move all improvable outcomes in this level as far up the ordering as possible until

they pass level k. An example of this process is illustrated below.

Example A.7. Consider a CP-net, N , with three variables, A,B,C, and no edges.

Variable A is binary and variables B and C are tertiary. Let CPT(A) be a1 � a2.

Let CPT(B) be b1 � b2 � b3. Let CPT(C) be c1 � c2 � c3. We will represent

o = aibjck by the triple ijk.

The following levels correspond to a valid consistent ordering of N :

111

112 121 211

113 122 131 212 221

123 132 222

213 231

133 223 232

233

Suppose we now learn the user preference 213 � 121. This is consistent with N

as N � a2b1c3 ./ a1b2c1. However, 121 is above 213 in our consistent ordering.

Thus, our consistent ordering needs to be updated in order to be consistent with

this new preference. To do this, we use the procedure described above. Out-

come 121 is on level 2. As level 2 has multiple outcomes, we start by moving 121

to its own level directly above level 2. This means outcome 213 is now on level 6

(see the first level diagram in Figure A.1). Our update procedure dictates we run

through levels 3 to 6 in order and move the improvable outcomes up the levels as

far as possible until they pass level 2.

We start with level 3. Both of 112 and 211 have Hamming distance 2 from 121.

Thus, by Proposition A.6, they are both improvable. We therefore move them up

to level 2 (see the second level diagram in Figure A.1). As this removes all outcomes

from level 3, the level is removed entirely. As outcomes 112 and 211 have made it

to level 2, they are then moved up to their own level above level 2 (see the third

level diagram in Figure A.1). Note that the level numbers have been been altered

by this process; for example, 121 is no longer on level 2. However, to keep the

procedure implementation clear, we will continue to use the level enumeration from

the first level diagram below – 121 is on level 2 and we next move the improvable
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A. Iteratively Updating Consistent Orderings

outcomes of levels 4 to 6 as far up as possible (until they pass level 2).

111

121

112 211

113 122 131 212 221

123 132 222

213 231

133 223 232

233

→

111

121 112 211

113 122 131 212 221

123 132 222

213 231

133 223 232

233

→

111

112 211

121

113 122 131 212 221

123 132 222

213 231

133 223 232

233

Figure A.1: Consistent Ordering Update Example Part 1

Let us now consider level 4. Outcomes 122, 131, and 221 all have Hamming dis-

tance 1 from 121 and, thus, are not improvable by Proposition A.6. Outcomes 113

and 212 have Hamming distance greater than 1 and are therefore improvable.

These outcomes are thus moved up to level 2 (actually level 3). By our procedure,

these outcomes then moved up to their own level above. The resulting levels are

shown in the first diagram in Figure A.2.

Next consider level 5 (now actually level 6). Each outcome in this level

has a Hamming distance of 1 from some outcome in the above level. We have

HD(123, 122) = 1, HD(132, 131) = 1, and HD(222, 221) = 1. Thus, none of these

outcomes are improvable and so nothing happens. Finally, we consider level 6

(now level 7), which contains 213. Both 213 and 231 have a Hamming distance of

greater than 1 from each of 123, 132, and 222. Thus, they are both improvable

and move up to level 6. Level 7 is removed as it is now empty (see the second

level diagram in Figure A.2). As HD(231, 221) = 1, the outcome 231 is no longer

improvable. However, 213 has a Hamming distance of more than 1 from each

of 122, 131, 221, and 121 (all of levels 4 and 5). Thus, 213 is still improvable and

moves up to level 5, then level 4. Level 4 is the 121 level, the previously named

level 2. Thus, by our procedure, 213 is then moved to its own level above (see

the third level diagram in Figure A.2) and the process terminates as we have now

considered each of levels 3 – 6.

The resulting ordering has 213 above 121 and is therefore consistent with the

new preference 213 � 121. The resulting ordering is also a consistent ordering

for N (as we shall prove below). Thus, by Proposition A.2, this ordering is consis-

tent with the combination of N and the new preference, 213 � 121, as we wanted.
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Note that by using Proposition A.6, we did not need to consult N , we updated

the consistent ordering directly.

111

112 211

113 212

121

122 131 221

123 132 222

213 231

133 223 232

233

→

111

112 211

113 212

121

122 131 221

123 132 222 213 231

133 223 232

233

→

111

112 211

113 212

213

121

122 131 221

123 132 222 231

133 223 232

233

Figure A.2: Consistent Ordering Update Example Part 2

By the general procedure described above, the ordering %C1 is obtained

from %C0 by using two types of action. First, moving improvable outcomes up

a level (and removing empty levels if necessary). Proposition A.4 shows that this

action preserves the consistency of an ordering. Second, moving a (proper) subset

of the level k outcomes up to their own level between levels k − 1 and k. The

following lemma proves that this also preserves consistency. Thus, if we start

with %C0 that is consistent with GN , then the resulting ordering, %C1 , must also

be consistent with GN . To prove that %C1 is consistent with G1, it remains only

to prove that o1 �C1 o2 (by Proposition A.2). We prove that o1 �C1 o2 with the

following theorem.

Lemma A.8. Let %C0 be an ordering consistent with graph G. Let %C0 have `

levels. Suppose there is some k, 1 ≤ k ≤ `, such that level k has more than one

outcome. Let Ok denote the outcomes on level k. Let R ( Ok, R 6= ∅. The

ordering %C1 is obtained from %C0 by moving the outcomes in R from level k up to

a new level between levels k−1 and k. If k = 1, then R is removed up from level 1

and becomes the new top level. All original levels ≥ k have now had their level

index increased by one. The resulting ordering, %C1, is also consistent with G.

Proof. In constructing %C1 from %C0 , the only outcomes that have moved are those

in R. In particular, the only relative positions that have changed are between the

outcomes in R and Ok\R. The outcomes in R remain below outcomes in levels < k

and above outcomes in levels > k (using the %C0 level numbers). Suppose we have
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an outcome pair, (a, b), such that either a 6∈ R or b 6∈ Ok\R (and vice versa).

Then, as their relative positions have not changed, a �C0 b implies that a �C1 b.

Consider any two outcomes, o, o′ ∈ Ok. If there is a path o  o′ in G, then,

as %C0 is consistent with G, we have o′ �C0 o. This is a contradiction as o and o′

are on the same level of %C0 . Thus, no two outcomes in Ok are connected by a

directed path in G.

Let o  o′ be a directed path in G. As %C0 is consistent with G, we

have o′ �C0 o. As there are no directed paths between outcomes in Ok, we cannot

have o ∈ R and o′ ∈ Ok\R (or vice versa). Thus, o′ �C0 o implies o′ �C1 o by

the above argument. This shows that, for any directed path o  o′ in G, we

have o′ �C1 o. That is, %C1 is consistent with G, as we wanted to show.

This result also proves (again) that our update procedure in the o1 ∼C0 o2 case

preserves consistency with N .

Theorem A.9. Let G be a graph representing user preference and let o1 � o2

be a preference consistent with G. Suppose %C0 is an ordering consistent with G

such that o2 �C0 o1. Let G1 be obtained from G by adding the edge o2 → o1 and

let %C1 be the ordering obtained from %C0 by applying Algorithm 5. Then %C1 is

consistent with G1.

Proof. See Appendix E.13.

We now have a method in all possible cases for directly updating %C0 to %C1 ,

which is consistent with G1. Though in some cases this is a trivial update,

%C1=%C0 . In general, this update procedure is faster the closer o1 and o2 are

in %C0 (in the o2 �C0 o1 case).

Suppose now that we learn i successively consistent preference statements.

We start with NG and learn the consistent preference o1 � o′1. This adds the

edge o′1 → o1 to the preference graph, GN , to give G1. We then learn the second

preference, o2 � o′2, which is consistent with G1. This adds the edge o′2 → o2

to the preference structure, G1, to give G2. This continues until we learn the ith

preference, oi � o′i, which is consistent with Gi−1. This adds the edge o′i → oi to

the preference structure, Gi−1, to give Gi. This graph, Gi, represents all current

preference information (N and the i learned preferences combined) by the same

argument used for G1.

As we kept our updating procedure generalised, we can use it to iteratively up-

date consistent orderings to be consistent with all current preference information.

In the above scenario, we want an ordering consistent with Gi. We have already

demonstrated how to update a consistent ordering for N , %C0 , into a consistent

248



Algorithm 5: Consistent Ordering Update

Input : G – Graph representing user preference

o1 � o2 – New preference consistent with G

%C – Ordering consistent with G such that o2 �C o1

Output: %C
∗

– Ordering consistent with G such that o1 �C
∗
o2

1 k – The level of %C containing o2;

2 if Level k contains > 1 outcome then

3 %C
∗

is obtained from %C by moving o2 to its own level between levels

k − 1 and k;

4 end

5 else

6 %C
∗
=%C ;

7 end

8 For the remainder of the algorithm, let ij denote the level number of the

current level j of %C
∗
;

// o2 is on level k in %C
∗

9 ` – The level of %C
∗

containing o1, ` > k;

10 for i ∈ {ik+1, ik+2, ..., i`} do

11 I – The set of outcomes in level i that are improvable;

12 J = I;

13 while J 6= ∅ and J is on level > ik do

14 Move J up to the next highest level;

// Any empty levels created are removed

15 J – The set of outcomes in J that are still improvable;

16 end

17 I ′ ⊆ I – Outcomes in I that are now on level ik;

18 if I ′ 6= ∅ then

19 Remove I ′ from level ik;

20 Create a new level directly above level ik and populate it with I ′;

21 end

22 end

23 return %C
∗
;
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ordering for G1. Now suppose we have a consistent ordering for Gi−1, say %Ci−1 ,

and we want to update this to an ordering, %Ci , consistent with Gi (that is, with

the new preference oi � o′i).

If oi �Ci−1 o′i, then %Ci−1 is consistent with Gi by Proposition A.2. In this case,

we set %Ci=%Ci−1 . If oi ∼Ci−1 o′i, then oi and o′i are both on level k of %Ci−1 , for

some k. We obtain%Ci from%Ci−1 by moving oi from level k up to its own new level

directly above. By Lemma A.8, %Ci is still consistent with Gi−1. Clearly, oi �Ci o′i

by construction. Thus, by Proposition A.2, %Ci is consistent with Gi. Finally,

if o′i �Ci−1 oi, then we can obtain %Ci consistent with Gi by using the update

procedure in Theorem A.9.

The procedure for updating %Ci−1 to %Ci is the same as the procedure for

updating %C0 to %C1 , only now we use Gi−1 rather than GN . Thus, iteratively

applying this general process, using the appropriate G, can update a consistent

ordering given any number of newly learned preferences.

Recall that Gi−1 is obtained from GN by adding the i − 1 edges, o′j → oj

for 1 ≤ j < i. Therefore, we can simplify the definition of improvable for Gi−1,

similarly to Proposition A.6 as follows. Suppose %C is any ordering consistent

with Gi−1. Let outcome o′ be on level k + 1 of %C . Then o′ is improvable if and

only if the edge o′ → o is not in Gi−1 for any outcome, o, on level k. That is, for

any outcome, o, on level k, the edge o′ → o cannot be in GN or be the edge o′j → oj

for any 1 ≤ j < i. Note that, as GN is a sub-graph of Gi−1, %C is also consistent

with N . Thus, by Proposition A.6, for any o on level k, the edge o′ → o is in GN

if and only if HD(o, o′) = 1. Thus, o′ is improvable if, for every o on level k,

we have HD(o, o′) > 1 and if o′ = o′j (for some 1 ≤ j < i), then oj is not on

level k. Thus, we can again check improvability for Gi−1 without consulting N .

Thus, in all cases, %Ci−1 can be updated to %Ci directly, without consulting N

or GN . However, the list of learned preferences (that were not already entailed

when learned) may need to be consulted in the update procedure. Note that the

complexity of checking whether o′ is improvable is now O(n|Ok|+ ni).

We can now iteratively update any consistent ordering directly as additional

(consistent) information about user preference is learned. An illustrative example

of this procedure is given below.

Example A.10. Let us go back to Example A.7. We started with a CP-net, N ,

and a consistent ordering %C0 . We then learned the preference 213 � 121. We

updated %C0 to %C1 such that 213 �C1 121. The current preference information

is representable by G1, which is obtained from NG by adding the edge 121→ 213

(that is, a1b2c1 → a2b1c3). By Theorem A.9, %C1 is consistent with G1.
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Suppose we now learn the preference 122 � 231. There is no directed path be-

tween 231 and 122 in G1, so this preference is consistent with our current preference

information, but it is new information (it is not already encoded by G1). Let G2

be obtained from G1 by adding the edge 231→ 122. This graph now represents all

current preference information. As %C1 is consistent with G1 and 122 �C1 231, %C1

is already consistent with G2 (by Proposition A.2) and does not need updating.

However, while %C1 has not been changed, there are sections of this ordering that

are now fixed that were previously changeable. For example, 122 �C1 231 is now

fixed as we have the preference 112 � 231 in G2. However, this order could have

been reversed when only G1 consistency was required. Note that this is unlikely

to be the only ordering which became fixed by this update. For consistency we

now refer to %C1 as %C2 , even though the ordering has not changed.

Now suppose we learn the preference 133 � 221. Again, there are no edges

between 113 and 221 in G2. Thus, this is a consistent preference and it adds to

our known preferences. We update G2 to G3 by adding the edge 221 → 133.

Currently, 221 �C2 133, so we use the Theorem A.9 procedure to update %C2 to

be consistent with G3. We start with %C2 , which is the same ordering we ended

with in Example A.7. Outcome 221 is on level 6, but so are outcomes 122 and 131.

Thus, our first step is to move outcome 211 to a new level above level 6. The

resulting ordering is given by the first level diagram in Figure A.3. Outcome 221

is now on level 6 and outcome 133 is on level 9. The Theorem A.9 procedure

moves the improvable outcomes of levels 7 – 9 (in order) as far up the ordering as

possible (until they pass level 6).

The ordering has 10 levels. Let Ok denote the outcomes on level k and let o′ be

on level k+1 (for some k ≤ 9). By definition, o′ is improvable if, for every o ∈ Ok,

the edge o′ → o is not in G2. As we explained above, this is equivalent to the follow-

ing condition. Our previously learned preferences are 213 � 121 and 122 � 231.

Thus, o′ is improvable if HD(o, o′) > 1 for all o ∈ Ok and o′ = 121 =⇒ 213 6∈ Ok,

o′ = 231 =⇒ 122 6∈ Ok.

We start by moving the improvable outcomes of level 7 as far up as possible. As

HD(122, 221) = 2 and HD(131, 221) = 2, both 122 and 131 are improvable. Thus,

we move them up to level 6 (level 7 is now empty and thus removed). As they have

reached level 6, they are then moved up to their own level directly above. This

new order is the second level diagram in Figure A.3. The levels now have different

numbers (in particular, levels 6 and 7 have swapped), but we will continue to refer

to the original level numbers for clarity of the procedure.

We now consider level 8. As HD(221, 222) = 1 and HD(221, 231) = 1, 222

and 231 are not improvable. Note that another condition for 231 to not be im-

provable would be if 122 had been in the above level. However, HD(221, 123) = 2
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and HD(221, 132) = 3, so 123 and 132 are improvable and are moved up a level.

As they have reached (the original) level 6, they are then moved to their own

level directly above. The resulting ordering is given by the third level diagram in

Figure A.3.

Finally, we consider level 9, the level containing 133. As HD(223, 222) = 1 and

HD(232, 231) = 1, outcomes 223 and 232 are not improvable. However, 133 has a

Hamming distance of more than 1 from both 222 and 231 and is, thus, improvable.

Therefore, 133 is moved up a level. As HD(133, 221) = 3, 133 remains improvable

and is moved up again. The outcome 133 is now on the original level 6 (the 221

level). Thus, 133 is then moved up into its own level above and the process

terminates. The resulting ordering, %C3 , is the fourth level diagram in Figure A.3.

111

112 211

113 212

213

121

221

122 131

123 132 222 231

133 223 232

233

→

111

112 211

113 212

213

121

122 131

221

123 132 222 231

133 223 232

233

→

111

112 211

113 212

213

121

122 131

123 132

221

222 231

133 223 232

233

→

111

112 211

113 212

213

121

122 131

123 132

133

221

222 231

223 232

233

Figure A.3: Consistent Ordering Update Example Part 3

The resulting ordering, %C3 , is consistent with G3 by Theorem A.9. However,

consistency with N is also simple to check by hand as it is a simple CP-net. Notice

that 213 �C3 121, 122 �C3 231, and 133 �C3 221. Thus, we can see that %C3 is also

consistent with all of the learned preference information. Thus, %C3 is consistent

with G3 by Proposition A.2 (applied repeatedly). That is, it is consistent with N ,

the learned preferences, and their transitive closure.

Note that the preference 112 � 121 is encoded by G3 as it contains a directed

path 121  112. Thus, if we went on to ‘learn’ this preference, no update is

necessary. We do not need to add an edge to G3 or update %C3 and no additional
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parts of the ordering become fixed. Further, when we next update %C3 , we do

not need to take 112 � 121 into account when determining whether an outcome

is improvable as it is not additional information. However, checking wither G3

contains such a path is harder than dominance testing the original CP-net, N .

Thus, unless we are already checking each learned preference for consistency, it is

likely to be more efficient to treat such a preference as new information that %C3

is already consistent with (as we did for 122 � 231), rather than determining

whether such a path exists.

Notice that the update procedure did not require us to consult the CP-net or

graphs Gi. We only need the ordering and the list of previously learned preferences

to perform the update. This is under the assumption that learned preferences are

consistent and so we do not need to first check their consistency with Gi.

Note that, as more information is learned and we update our ordering corre-

spondingly, more aspects of the ordering become fixed. Thus, by updating our

ordering, we are moving towards to a fully specified, fixed preference order. This

means that we have a total linear order and so all levels have size one – there are

no equivalences. Note that most learned preferences fix multiple aspects of the

ordering. Thus, achieving a fixed order will not require learning the preference

of every incomparable pair individually. As the ordering gets increasingly fixed,

future updates are less likely to change large sections of the ordering and, thus,

will be more efficient to perform. The ordering also becomes a more reliable repre-

sentation of the user’s true preference order as more preferences are learned. Once

it becomes completely fixed, their full preference order is known and no further

updating is required. At this point, all preference reasoning tasks become fairly

trivial.

If we start with a strict ordering (no equivalence statements), then we can

ensure that it remains strict by swapping levels instead of adding improvable out-

comes to the above level. In this case, swapping preserves consistency by Propo-

sition A.4 and Lemma A.8. To prove that using swaps successfully updates �C is

done by an almost identical proof to Theorem A.9, with some additional applica-

tions of Lemma A.8. Alternatively, we could ‘flatten’ the updated ordering into

a strict order by arbitrarily ordering the outcomes on any level of size > 1. This

preserves consistency by Lemma A.8. The latter could be done in any case where

a strict ordering is required.

We have now introduced a method for iteratively updating any CP-net consis-

tent ordering directly (without consultingN orGN) as new (consistent) preferences

are learned. This method can be used to update any consistent ordering, in par-

ticular the rank ordering we constructed in §2.3.3. As we defined this method
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in general terms, it can be used to update consistent orderings of any transitive

preference structure (it is not restricted to CP-nets).
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Appendix B

Outcome Rank Calculation

Algorithm Details

In this appendix, we give the additional details necessary to understand and im-

plement Algorithm 1, given in §2.3.5. We describe how CP-nets and outcomes

should be formatted as inputs to Algorithm 1. We also explain how Algorithm 1

works and why it is correct. Further, we give Algorithms 6 and 7 for calculating

ancestor sets and descendent paths, respectively, and we explain why they are

correct. These algorithms are both called by Algorithm 1.

B.1 Rank Calculation Algorithm Input Formats

In this section, we give the input formats of CP-nets and outcomes for Algorithm 1.

For this section, we assume that we have a CP-net N , over a set of variables,

V = {X1, ..., Xn}, which are in a topological order with respect to the structure

of N . Further, we assume that Dom(Xi) = {x1
i , ..., x

ni
i }.

CP-nets are input to Algorithm 1 as a pair, N = (A,CPT ). The first entry, A,

is the adjacency matrix of the structure of N , as described in §2.3.5.

Example B.1. The CP-net given in Example 1.2 has the following adjacency

matrix:
A B C D


A 0 0 1 0

B 0 0 1 0

C 0 0 0 1

D 0 0 0 0

The second entry in the pair is the set of CPTs associated with N . We in-

put CPT as a list of the CPTs so, for any 1 ≤ i ≤ n, we have CPT [i] = CPT(Xi).
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B. Outcome Rank Calculation Algorithm Details

Let Pa(Xi) = {Xβ1 , ..., Xβ`} (β1 < β2 · · · < β`).

Let u be an assignment of values to Pa(Xi), u = xα1
β1
· · ·xα`

β`
. Then u is

a |Pa(Xi)|-tuple in Dom(Pa(Xi)).

CPT(Xi) is input as a multi-dimensional array such that CPT(Xi)[α1, ..., α`]

is a |Dom(Xi)|-tuple, σ.

For all 1 ≤ k ≤ |Dom(Xi)|, σ[k] is the position of preference of Xi = xki

according to the CPTs, given that Pa(Xi) = u (σ[k] = 1 if xki is the most preferred

value and so on).

Example B.2. For the CP-net given in Example 1.2, recall that CPT(C) is as

follows:

ab c � c̄ � ¯̄c

ab̄ c̄ � ¯̄c � c

āb̄ ¯̄c � c̄ � c

āb ¯̄c � c � c̄

In this example, V = {A,B,C,D} (note that B,A,C,D is also a valid topo-

logical ordering, we use A,B,C,D for ease) and so

CPT = [CPT(A),CPT(B),CPT(C),CPT(D)].

We have X1 = A,X2 = B,X3 = C, and Dom(A) = {a, ā}, Dom(B) = {b, b̄},
Dom(C) = {c, c̄, ¯̄c}. Thus, x1

1 = a, x2
1 = ā, and x1

2 = b, x2
2 = b̄, and x1

3 = c, x2
3 = c̄,

x3
3 = ¯̄c. Also, Pa(C) = {A,B}, so we would input CPT(C) (CPT [3]) as the

following array:

[·, 1] [·, 2]

[1, ·] (1, 2, 3) (3, 1, 2)

[2, ·] (2, 3, 1) (3, 2, 1)

This dictates, for example, that CPT(C)[2, 1] = CPT [3][2, 1] = (2, 3, 1). In this

entry, we input the user’s preference over Dom(C) under X1 = x2
1 and X2 = x1

2,

that is, A = ā and B = b. We know that, in this case, we have ¯̄c � c � c̄, so x1
3 = c

is in preference position 2, x2
3 = c̄ is in preference position 3, and x3

3 = ¯̄c is in

preference position 1. Hence CPT(C)[2, 1] = (2, 3, 1).

Note that, from this input, CPT [3], we can clearly extract |Dom(C)| by looking

at the length of the tuples in the array. To keep Algorithm 1 in §2.3.5 as readable

as possible, we assume that, given 1 ≤ i ≤ n, we can extract |Dom(Xi)| from the

CPTs input, rather than putting the details of how this is achieved.

An outcome, o, should be input as a |V |-tuple in {1, ..., n1} × · · · × {1, ..., nn}
(recall that ni = |Dom(Xi)|). If Xi takes value xki and Xj takes value x`j in
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outcome o, then o[i] = k and o[{i, j}] = (k, `). For our running example, consider

the outcome o = āb¯̄cd, we can rewrite this as o = x2
1x

1
2x

3
3x

1
4 and we would input o

as the tuple (2, 1, 3, 1). In o, B takes value b, that is, X2 takes value x1
2, and

so o[2] = 1. Similarly, X3 takes the value x3
3 (C takes value ¯̄c) so o[3] = 3.

B.2 Correctness of Rank Calculation Algorithm

In this section, we give the details of how Algorithm 1 works and why it is correct.

Algorithm 1 takes the CP-net, N , and some associated outcome, o, and outputs

the rank of this outcome, r(o). It calculates r(o) by setting the value of r(o) to 0

(step 1) and successively adding the edge weights of the root-to-leaf path in W

that corresponds to o (steps 2-11). The weight attached to the edge indicating

the value taken by Xi in o is given by Equation 2.3 in §2.3.2.

The algorithm calculates the edge weight given by Equation 2.3 for each Xi

in several steps, and then adds it to the r(o) term. The leftmost product term

in Equation 2.3 is calculated in two steps (3-4). First, calling Algorithm 6 to

obtain Anc(Xi), and then forming the product of the inverses of the domain sizes

of all Y ∈ Anc(Xi) (an explicit explanation of how to obtain domain sizes can be

found in Appendix B.1). We then call Algorithm 7 (step 5) to obtain the number

of descendent paths of Xi, dXi
, in order to calculate the central product term in

Equation 2.3.

Extracting the rightmost product term in Equation 2.3 from N and o is slightly

more convoluted. The parent set of Xi, Pa(Xi), is the set of variables Y such that

there is an edge Y → Xi in the structure of N . We can obtain this set directly

from the adjacency matrix (step 6). We then find the values taken by Pa(Xi) in o

by extracting the appropriate entries of o, we call this assignment to the parent

variables u (step 7). So u is a |Pa(Xi)|-tuple in Dom(Pa(Xi)). Next, we can find

the user’s order of preference over Dom(Xi) under Pa(Xi) = u by extracting the

appropriate entry of the CPT(Xi) array input, CPT(Xi)[u] (step 8).

The k in the rightmost product of Equation 2.3 is the position of preference of

the value taken by Xi in o in the preference order we have just obtained. Thus,

we can find k by extracting the element of this order that indicates the position of

preference of the value taken by Xi in o (this is o[i]) (step 9). This k is the position

of preference of the choice Xi = o[Xi], given that Pa(Xi) = u. Now that we

have k, we can calculate the rightmost term in Equation 2.3 using nXi
= |Dom(Xi)|

(step 10).
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Finally, we form the whole term given in Equation 2.3 and add it to the r(o)

term (step 11). Repeating this for every Xi ∈ V gives us the rank of o by definition.

At this point, Algorithm 1 exits its ‘for’ loop and outputs r(o) correctly (step 12),

as we wanted.

B.3 Ancestor and Descendent Path Calculation

Algorithms

In this section, we give the algorithms for calculating ancestor sets and descendent

paths and explain how they work and why they are correct. These are called by

Algorithm 1 for calculating outcome ranks. These algorithms assume that the

variables are enumerated {X1, ..., Xn} and that the adjacency matrix is configured

in this order. That is, Ai,j = 1 if and only if there is an edge Xi → Xj in the

structure of N .

Algorithm 6: Ancestor Set Calculation

Input : 1 ≤ i ≤ |V | – Index of the variable of interest

A – Adjacency matrix of the structure of N

Output: Anc(Xi) – Set of ancestors of Xi in the structure of N

1 Paths = 0|V |; // 0|V | is the zero |V |-tuple
2 a = A·,i; // A·,i is the ith column of A

3 while sum(a) > 0 do

4 Paths = Paths + a;

5 a = Aa;

6 end

7 Anc = {Xj|Paths[j] 6= 0}; // The set of variables with a non-zero

entry in Paths

8 return Anc;

Algorithm 6 takes an integer, i (1 ≤ i ≤ |V |, indicating which variable’s ances-

tor set we are interested in), and the adjacency matrix, A, and outputs Anc(Xi).

For any X ∈ V , the following statements are equivalent.

Y ∈ Anc(X) ⇐⇒ ∃ directed Y  X path

⇐⇒ (Ak)Y,X 6= 0 for some 1 ≤ k ≤ |V | − 1

because (Ak)i,j = # directed Xi  Xj paths of length k in N . Also, no path

in N can be of length greater than |V | − 1 as there are |V | variables (vertices)
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in the (acyclic) structure. Thus, Algorithm 6 calculates Anc(Xi) by summing,

component-wise, the ith columns of Ak for k = 1, ..., |V | − 1. By the above equiv-

alences, Anc(Xi) are the variables whose corresponding entry is non-zero.

Algorithm 7: Descendent Path Calculation

Input : 1 ≤ i ≤ |V | – Index of the variable of interest

A – Adjacency matrix of the structure of N

Output: dXi
– Number of descendent paths of Xi in the structure of N

1 a = Ai,·; // Ai,· is the ith row of A

2 d = 0;

3 while sum(a) > 0 do

4 d = d+ sum(a);

5 a = aA;

6 end

7 return d;

Algorithm 7 takes an integer, i (1 ≤ i ≤ |V |, indicating which variable’s descen-

dent paths we are interested in), and the adjacency matrix, A, and outputs dXi
.

As (Ak)ij = # directed Xi  Xj paths of length k in N , the following result holds

for any variable, Xi ∈ V :

dXi
=

|V |∑
j=1

#directed paths Xi  Xj

=

|V |∑
j=1

|V |−1∑
k=1

#directed paths Xi  Xj of length k

=

|V |∑
j=1

|V |−1∑
k=1

(Ak)i,j =

|V |−1∑
k=1

|V |∑
j=1

(Ak)i,j.

Therefore, Algorithm 7 calculates dXi
by summing the entries of the ith rows

of Ak for k = 1, ..., |V | − 1.
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Appendix C

Pruning Performance

Experiments – Details and

Further Results

In this appendix, we give some additional details and results from our experi-

ments in §2.4.2. These experiments evaluated the performance of various methods

of pruning the search tree in order to improve dominance testing efficiency. We

first describe our method for randomly generating CP-nets (in order to simulate

dominance queries for testing). We then examine the performance of the initial

conditions of the various methods and consider their accuracy in predicting dom-

inance query result. Finally, we give the performance results of each pruning

measure when tested with all possible leaf prioritisation heuristics. These results

illustrate the effect of the leaf prioritisation choice on performance. The results

given in §2.4.2 show only the results where the various methods use their optimal

prioritisation techniques.

C.1 CP-Net Generator

In this section, we describe how the CP-nets were randomly generated for the

Chapter 2 experiments. In order to randomly generate an acyclic CP-net over n

variables, we need the domain sizes, a directed acyclic graph (DAG) for the struc-

ture, and the CPTs.

Our generation method takes inspiration from Allen et al. (2017a), who il-

lustrate how CP-nets can be generated uniformly at random given certain input

parameters. However, the number of valid CP-nets over a given set of n variables

gets incredibly large as n increases (and as the domain sizes increase). Thus, the
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number of possible CP-nets that can result from each choice in their procedure is

very large. In fact, the associated probability weights become too large for our

computational resources to handle. Because of this, we were unable to use their

uniform generation method, meaning that our CP-nets were generated randomly

but not uniformly. However, our CP-net generation allows CP-net variables to

have distinct domain sizes, whereas Allen et al. (2017a) consider only CP-nets

where all variables have the same domain size. In fact, all valid acyclic CP-nets

can be produced by our generator.

Remark. As we do not have real-world CP-net data, it is not known what a

realistic distribution of CP-nets is. That is, we do not know what properties

a CP-net distribution should have to make our experimental results accurately

reflect real world performance. Thus, while a uniform distribution gives a fair

representation of all possibilities, we do not know if this would be an appropriate

choice.

Suppose that we have n variables and the maximum domain size is M . We

enumerate the variables {X1, X2, ..., Xn} and assign each variable a domain size

between 2 and M by choosing a value in this range uniformly at random.

In order to randomly generate the DAG, we use the dag-codes used by Allen

et al. (2017a). Given n nodes, dag-codes are defined as follows and are in one to

one correspondence with the set of possible DAGs over these nodes.

Definition C.1. Let n be a positive integer. A dag-code is a list A = 〈A1, ..., An−1〉
of subsets Ai ⊆ {1, ..., n} that satisfy the following condition; for every

1 ≤ i ≤ n− 1, ∣∣∣∣∣⋃
k≤i

Ak

∣∣∣∣∣ ≤ i.

Each dag-code corresponds to exactly one DAG over the n nodes. This is

obtained by assuming the Ai sets to be the parent sets of n − 1 of the variables.

Note that, as the graph is acyclic, one variable (at least) has an empty parent set –

this is the implicit final parent set. Allen et al. (2017a) give an explicit method of

transforming a given dag-code into a DAG, which we use in our random generation

procedure.

In order to randomly generate a dag-code, we randomly selected each Ai in

turn, starting at A1. Let U =
⋃
k<iAk. We repeatedly randomly select a subset

Ai ⊆ {1, ..., n} (by randomly selecting a size, |Ai|, from 1 to n each time and then

performing uniform random sampling) until |U ∪Ai| ≤ i holds. This is then fixed

as Ai and we repeat the process for Ai+1.
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Once we have randomly generated a dag-code, we use the algorithm by Allen

et al. (2017a) to transform this into an acyclic structure over our n variables. We

now need to form the CPTs. As we have the structure, we know the parents

of each variable (and their possible value assignments) so we only need to fill

in the preferences order of each row. Suppose Xi has |Dom(Xi)| = k. Each

row of CPT(Xi) is a strict order over the k elements of Dom(Xi), which we can

consider as a permutation of Dom(Xi). We fill each row of CPT(Xi) with a random

permutation of Dom(Xi). However, the structure needs to be valid, that is, we

need to make sure there are no degenerate parents. For any Y ∈ Pa(Xi), Y is a

true parent of Xi if the preference over Xi is dependent on the value of Y . Thus,

we check, for each Y ∈ Pa(Xi), whether there exists u1,u2 ∈ Dom(Pa(Xi)) that

differ on the value of Y only, such that u1 and u2 result in different Xi preferences

in CPT(Xi). If there is any Y ∈ Pa(Xi) for which this condition does not hold,

then the CPT does not accurately reflect the dependency structure as Xi is not

preferentially dependent on Y . In this case, we re-generate the CPT from scratch

in the same way and check again. This continues until a non-degenerate CPT is

obtained (note that there is always at least one such CPT). If Xi has no parents,

any CPT is valid. We use the above process to populate all of the CPTs, resulting

in a complete, randomly generated CP-net.

As we mentioned above, we cannot guarantee the CP-net distribution produced

by this method. However, from what we have seen, it appears to favour sparser

structures. Comparatively, using a uniform distribution is more likely to generate

denser structures due to all of the CPT configuration possibilities. An exact anal-

ysis of the CP-net distribution produced by our generator is something we would

like to pursue in our future work, as we discuss in §2.6.

C.2 Zero Outcomes Traversed Results

In §2.4.2, we experimentally evaluated the performance of seven different domi-

nance testing functions by applying them to the same sets of dominance queries

and recording outcomes traversed and time elapsed. These seven functions were all

possible combinations of suffix fixing (Boutilier et al., 2004a), penalty pruning (Li

et al., 2011a), and rank pruning (§2.4.1). Each combination has certain conditions

that would result in a dominance query being immediately found false, in which

case, the outcomes traversed would be recorded as zero (as discussed in §2.4.2). We

shall refer to these as the initial conditions of the pruning combinations. Suppose
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we wish to answer the dominance query N � o � o′, a summary of these initial

conditions is given below.

Initial Condition Pruning Combination
o = o′ All

f(o′) < 0 All combinations including penalty pruning
r(o)− r(o′) < LD(o, o′) All combinations including rank pruning

In this section, we look at the proportion of queries from our §2.4.2 experiment

that resulted in zero outcomes traversed (that is, that met one or more of the

initial conditions) for each function (pruning combination). This proportion shows

us how often a dominance testing function’s initial conditions are strong enough

to immediately answer the query. Further, by comparing these proportions to the

proportion of queries that were false, we can evaluate how well a function’s initial

conditions can predict the outcome of a dominance query. If these predictions are

reasonably accurate, then we can use them to answer dominance queries efficiently

with good (though not perfect) accuracy.

First note that adding suffix fixing to a combination does not add any initial

conditions. Thus, it is sufficient to evaluate these proportions only for the following

four functions: rank pruning, penalty pruning, suffix fixing, and the combination

of rank pruning and penalty pruning. Further, as initial conditions are assessed

prior to constructing the tree, it does not matter what leaf prioritisation is used

here.

In the case of binary CP-nets, for each of 3 ≤ n ≤ 19, we tested all seven

functions on a set of 1000 dominance queries in the §2.4.2 experiment. Thus,

each function answered the same set of 17,000 dominance queries. Out of these

queries, 13,703 (0.80606) of them were false. Note that, despite the random gen-

eration of queries, this is not close to 0.5. This is because there are three pos-

sibilities, either N � o � o′, N � o′ � o, or N � o ./ o′. For the dominance

query ‘N � o � o′?’, only the first case makes the query true, the other two cases

imply that the query is false. Further, the proportion of incomparable cases is

likely to be greater for larger values of n. As the comparable cases must occur in

equal proportions, this decreases both. In Table C.1, for each function, we give

the proportion of the 17,000 queries that were determined to be false by the initial

conditions (that is, were answered with zero outcomes traversed), ZP , and the

proportion of false queries that were identified correctly as false by these initial

conditions, ZP/0.80606.

The ZP value for suffix fixing shows us the proportion of o = o′ cases. Thus,

the initial rank condition determines 0.73995 = 0.75424 − 0.01429 of the 17,000
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Rank Penalty Suffix Fixing Rank + Penalty

ZP 0.75424 0.58765 0.01429 0.75511

ZP/0.80606 0.93571 0.72904 0.01773 0.93680

Table C.1: Zero Outcomes Traversed Proportions – Binary Case

queries to be false immediately and, similarly, the initial penalty condition deter-

mines 0.57336 of the queries to be false immediately. Clearly, the rank condition

is much stronger than the penalty condition as it determines a greater number

of queries to be false. Further, by looking at the ZP value for rank and penalty

pruning combined, we can see that utilising both conditions is only a slight im-

provement upon the rank condition alone. Thus, most cases identified as false by

the penalty condition are also identified by the rank condition.

The ZP/0.80606 values show us how many of the false dominance queries

were detected by the initial conditions. Using rank pruning alone, over 93%

of the false dominance queries were identified as false by the initial conditions.

This suggests that our initial conditions could be used as fairly accurate predic-

tor for the outcome of a dominance query. Any dominance query determined

to be false by initial conditions must be false. Of those that do not meet any

of the rank pruning initial conditions (that is, those we would ‘predict’ to be

true), only (0.80606 − ZP )/(1 − ZP ) × 100 = 24.576% would actually be false

(in these cases, o and o′ are incomparable). This percentage would be slightly

smaller if both the rank and penalty pruning initial conditions were used. In to-

tal, 1− (0.80606− ZP ) = 0.94818 of dominance queries are successfully classified

as either true or false by the initial rank conditions. This proportion would be

slightly higher if the penalty condition is used as well. Thus, we could use these

initial conditions, which are quick to check (polynomial in n), to predict dominance

query outcomes with a reasonable level of accuracy.

For the multivalued case, we tested all seven functions on a set of 1000 queries

for each 3 ≤ n ≤ 10. In this case, we tested 8000 dominance queries

and 6190 (0.77375) of these were false. Note that larger domains result in larger

and more complex CP-nets and, thus, the proportion of incomparability is likely

to be greater than the binary CP-nets. This explains why we have a similarly high

proportion of false queries despite the fact we are using smaller n values in this

case. Table C.2 gives the proportion of queries with zero outcomes traversed for

each function and the proportion of false queries identified by the initial conditions

for each function.
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Rank Penalty Suffix Fixing Rank + Penalty

ZP 0.66138 0.543 0.0055 0.6655

ZP/0.77375 0.85477 0.70178 0.00711 0.86010

Table C.2: Zero Outcomes Traversed Proportions – Multivalued Case

These proportions show similar patterns to the binary case. The initial rank

condition remains the strongest, determining the greatest number of queries to

be false. Again, adding the penalty condition makes little improvement to this

number. However, the proportions are smaller in general in this case; only 85%

of false queries are identified by the initial conditions of rank pruning in this

case. Thus, these initial conditions would be less accurate at predicting dom-

inance query outcomes in this case. If we used the initial conditions of rank

pruning as a predictor here, then (0.77375 − ZP )/(1 − ZP ) × 100 = 33.185% of

queries predicted to be true would in fact be incomparable cases (false queries). In

total, 1− (0.77375−ZP ) = 0.88763 of dominance queries are successfully classified

as either true or false by the initial rank conditions here. This proportion would

be slightly higher if the penalty condition is used as well.

From the above proportions, we can see that including rank pruning in a dom-

inance testing function results in a much larger proportion of dominance queries

being answered immediately (by initial conditions). Thus, when using rank prun-

ing, we are not required to construct a search tree at all for a large proportion

of queries. The number of queries answered immediately by rank pruning initial

conditions is greater than that answered by the initial conditions of penalty prun-

ing, showing the rank conditions to be stronger. Further, the number of queries

answered by their combination is only slightly greater than those answered by rank

pruning initial conditions alone. This suggests that there are few queries answered

by the initial penalty condition that are not already answered by the initial rank

condition. We have also seen that the rank pruning initial conditions identify the

majority of false queries. Thus, at least in the binary case, these initial conditions

(which are quick to check) could be used as a reasonably accurate predictor of

dominance query results. While using the penalty condition as well only results

in a limited improvement, it is worth using both as they are simple conditions to

check.

The relative performance of the rank and penalty conditions (and their com-

bination) here is unsurprising as these conditions are equivalent to their pruning

conditions. Thus, we see similar patterns as in the dominance testing outcomes
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traversed results. However, in the case of pruning, we found that the minor im-

provement resulting from using penalty pruning was not worth the implementation

cost.

Remark. Note that checking the initial conditions (other than o = o′) is equivalent

to answering an ordering query, as we discussed in §2.4.1. If the initial condition

holds, then the dominance query is false and so o′ � o must be a consistent

ordering. If the initial conditions do not hold, then we know that N 2 o′ � o

and so o � o′ is a consistent ordering (even if it is not an entailed preference).

Thus, in this appendix we have assessed how accurately certain ordering query

methods predict dominance query results. However, as we discussed in §2.4.1,

performing ordering query tests in both directions can give more information.

In particular, it can prove cases of incomparability. All of the misclassification

above are incomparable cases labelled as ‘true’ – initial conditions as used above

cannot predict incomparability, only true or false. Thus, our initial conditions

may be improved as predictors by evaluating both ‘directions’ (that is, the initial

conditions for both N � o � o′ and N � o′ � o).

C.3 Leaf Prioritisation Comparison Results

In this section, we evaluate how the choice of leaf prioritisation heuristic affects

the performance of the different dominance testing functions. Several prioritisation

heuristics have been previously proposed but this is the first evaluation of the effect

of this choice. As we discussed in §2.4.2, we only applied leaf heuristics that did

not require additional calculations. Thus, suffix fixing used minimal depth only,

penalty pruning used penalty prioritisation only, and so did the combination of

penalty pruning with suffix fixing. Thus, we do not consider these pruning methods

here as there was no variation in leaf prioritisation – their full results are given

in §2.4.2.

Rank pruning was applied with both rank and rank + diff. prioritisation, as was

rank pruning combined with suffix fixing. Rank pruning combined with penalty

pruning was applied with rank, rank + diff., and penalty prioritisation, as was the

combination of all three methods. The graphs below show the performance of each

function applied with all possible prioritisation heuristics.

Each function has four sets of data, the same as the §2.4.2 results – outcomes

traversed and time elapsed in both the binary and multivalued CP-net cases. Fig-

ures C.1 and C.2 give the binary and multivalued CP-net results for rank pruning,

respectively. Similarly, the results for the combination of rank pruning and suffix
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fixing are given in Figures C.3 and C.4. The rank and penalty pruning combination

results are given in Figures C.5 and C.6. Finally, the performance results for the

combination of all three pruning measures are given in Figures C.7 and C.8. Each

of Figures C.1 – C.8 have two graphs; plot (a) shows the outcomes traversed results

and plot (b) shows the time elapsed results. In each plot, the shaded area gives

the ±SE (standard error) interval for the method when using rank prioritisation

(note that this is the function depicted in the §2.4.2 graphs). Each plot shows the

results of the relevant pruning method using all possible leaf prioritisation heuris-

tics. Some graphs also include the results of one or two other pruning schemas, in

order to make it clear how these results relate to those given in the §2.4.2 plots.

In these cases, the additional methods all use their optimal prioritisation heuristic

(as they do in §2.4.2). All functions are given in the same colours as the §2.4.2

graphs. Different leaf prioritisation heuristics are distinguished by line type.

In all 16 graphs, all variations of the pruning method of interest lie comfortably

within the standard error interval. This shows us that varying leaf prioritisation

does not have a significant effect on either the effectiveness or efficiency of a pruning

schema.

Despite this, the prioritisation choice can be the deciding factor in which prun-

ing method performs better. As we can see in Figures C.5, C.6, C.7, and C.8

(particularly in the outcomes traversed results), changing the leaf prioritisation

can change whether the relevant pruning method performs better or worse than

another. In particular, in Figures C.7 and C.8, this decision changes which pruning

combination is the most effective overall.

In the binary case (Figures C.1, C.3, C.5, and C.7), we see the following pat-

terns in all graphs except for time elapsed by the combination of all three pruning

methods. Rank prioritisation is always a better choice than penalty prioritisation.

That is, at every data point, rank priority is faster and has less outcomes traversed

on average than penalty prioritisation. In every graph, rank priority also performs

consistently better than rank + diff. with the exception of at most one data point

per graph, where rank + diff. may perform better by a much smaller margin.

Thus, in all of these cases, the outcomes traversed and time elapsed results agree

that rank priority is the optimal choice.

In the time elapsed results for the combination of all three pruning measures

on binary CP-nets, penalty outperforms rank priority at four data points. This is

only for smaller values of n and rank increasingly outperforms penalty priority as n

gets larger. Also, in this case, rank + diff. outperforms rank at six data points,

mostly for small n values and with less frequency as n increases. Thus, while the

results are closer in this case, rank priority still performs best in the majority of
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cases and appears to be more consistently optimal as n increases. Therefore, the

outcomes traversed and time elapsed results again agree that rank priority is the

optimal choice.

In the multivalued case (Figures C.2, C.4, C.6, and C.8), at every data point,

rank priority results in a more effective pruning measure on average (that is, has

fewer outcomes traversed on average) than penalty and rank + diff. prioritisation.

Rank priority is also more efficient on average at every data point for rank pruning

and the combination of rank pruning with suffix fixing. Thus, for these two pruning

schemas, both measures indicate that rank priority is definitively the best choice.

For rank and penalty pruning, rank priority is consistently more efficient than

rank + diff. but is slower than penalty prioritisation at a single data point (by a

relatively small margin). Thus, in general, rank priority is still the most efficient,

as well as the most effective choice here. For the combination of all three pruning

measures, penalty priority is faster than rank at two data points and rank + diff.

is faster at one. However, rank priority is still the most efficient in the majority of

cases. Thus, as rank priority is also the most effective (least outcomes traversed)

choice, it is again the optimal choice of prioritisation heuristic.

In summary, the above results suggest that the choice of leaf prioritisation

method does not make a significant difference to the performance (either outcomes

traversed or time elapsed) of a given pruning method. However, the prioritisation

choice can still affect performance enough to alter whether the given method is

more or less effective and/or efficient than others. In particular, this choice can

determine which pruning method is the most effective overall. In all cases, rank

priority performs best (by both measures) in the majority of data points and, in

general, the amount by which it outperforms the other choices increases with n.

Thus, from these results, we have determined that our rank prioritisation is the

optimal choice for all pruning methods for which priority was varied.
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Figure C.1: Rank Pruning – Binary CP-Net Results
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Figure C.2: Rank Pruning – Multivalued CP-Net Results

271



C. Pruning Performance Experiments – Details and Further Results

0
10

0
20

0
30

0
40

0

Rank and Suffix Pruning

n=|V|

A
vg

. O
ut

co
m

es
 T

ra
ve

rs
ed

Outcomes Traversed − Binary Case (dM=2)

3 10 11 12 13 14 15 16 17 18 19

Leaf Prioritisation Method

Rank Prioritisation
Rank + Diff. Prioritisation

(a) Outcomes Traversed Results

Note: n values between 3 and 10 are compressed in order to improve

plot clarity for larger n values

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Rank and Suffix Pruning

n=|V|

A
vg

. T
im

e 
E

la
ps

ed
 (

S
ec

on
ds

)

Time Elapsed − Binary Case (dM=2)

3 13 14 15 16 17 18 19

Leaf Prioritisation Method

Rank Prioritisation
Rank + Diff. Prioritisation

(b) Time Elapsed Results

Note: n values between 3 and 13 are compressed in order to improve

plot clarity for larger n values
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Figure C.5: Rank and Penalty Pruning – Binary CP-Net Results
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Appendix D

CP-Net Learning Implementation

Details

In this appendix, we give some additional details regarding how to implement our

CP-net learning algorithm in practice.

D.1 Monte Carlo Estimation of CPT Scores

In this appendix, we give the details of how the table score defined in Equation 4.7

is estimated via Monte Carlo methods (Robert and Casella, 2004). We also eval-

uate the accuracy of this estimation.

Let N be a CP-net over variables V and let U ⊆ V be the parent set of X ∈ V .

Let us denote W = V \U ∪ {X}. We want to estimate the probability, S, that a

given CPT(X) is supported. This probability is given in Equation 4.7:

S = Pr

( ∧
u:x1�x2∈CPT(X)

( ∑
w∈Dom(W )

pux1w >
∑

w∈Dom(W )

pux2w

))
.

This probability is calculated with respect to the distribution over the pi values

given in Equation 4.4:

p1, ..., pO ∼ Dir(β1 + d(o1), ..., βO + d(oO)).

A random draw from the above Dirichlet distribution is a O-length vector, θ,

that assigns a value to each pi:

θ = (q1, q2, ..., qO).
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As each pi has a value in θ, we can determine whether the CPT support condition

holds for θ. Let I be the indicator function for this condition:

I(θ) =

1 if
∧

u:x1�x2∈CPT(X)

(∑
w∈Dom(W ) qux1w >

∑
w∈Dom(W ) qux2w

)
,

0 otherwise.

Proposition D.1. Let θ1, θ2, ..., θN be a random sample from the pi Dirichlet dis-

tribution given above. Let us define the estimator, Ŝ, as follows:

Ŝ =
1

N

N∑
i=1

I(θi).

Then Ŝ is an unbiased estimator of S with V ar(Ŝ) ∈ [0, 1/N ].

Proof. Let ∆k be the standard k−simplex. This is the support set for a k + 1

dimensional Dirichlet distribution.

∆k =

{
(a1, a2, ..., ak+1) ∈ Rk+1

∣∣∣∣∣
k+1∑
i=1

ai = 1 and ∀i, ai ∈ [0, 1]

}
.

Let f be the density function for the pi Dirichlet distribution. Then we can

rewrite S as follows:

S = Pr

( ∧
u:x1�x2∈CPT(X)

( ∑
w∈Dom(W )

pux1w >
∑

w∈Dom(W )

pux2w

))
=

∫
· · ·
∫

{θ∈∆O−1|I(θ)=1}

f(θ)

=

∫
· · ·
∫

{θ∈∆O−1}

I(θ)f(θ)

= E[I(θ)].

As Ŝ is a sample mean of I(θ), it is an unbiased estimator of E[I(θ)] and, thus,

an unbiased estimator of S. Now consider the variance of Ŝ. First note that, as I

is an indicator function, I2 = I.

V ar(Ŝ) =
1

N2

N∑
i=1

V ar(I(θi))

=
1

N2

N∑
i=1

(E[I(θi)
2]− E[I(θi)]

2)

=
1

N2

N∑
i=1

(E[I(θi)]− E[I(θi)]
2)

=
1

N2

N∑
i=1

(S − S2)

=
S(1− S)

N
.

As S is a probability, this means V ar(Ŝ) ∈ [0, 1/N ].
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D.1 Monte Carlo Estimation of CPT Scores

We estimate S by Ŝ, which we can calculate by drawing N samples, θi, from

the Dirichlet distribution and evaluating I(θi). The variance of Ŝ indicates the

expected estimation error. As V ar(Ŝ) ∈ [0, 1/N ], one can arbitrarily reduce the

error by increasing the number of Dirichlet samples used. In the §4.4 experiments,

we use 100,000 draws, meaning that the variance is ≤ 10−5 and the standard

deviation (expected error) is ≤ 0.00316.

Remark. Recall that a rule is supported if the left hand sum of Equation 4.5 is

greater than the right hand sum. The opposite rule is supported if the right hand

sum is greater than the left hand sum. However, if the sums are equal, neither

rule is supported. This is not an issue, as these sums are continuous variables and,

thus, the probability that they are equal is zero. Hence, in theory, our rule scores

and our table scores all sum to one as we would expect.

However, in the above estimation process, we draw random samples from a

Dirichlet distribution and evaluate the rule sums to determine whether each rule

is supported or not. These draws are randomly generated by a computer and

stored as a vector of doubles (a C++ data type). Thus, the draws can only

be evaluated to finite precision and there is a non-zero probability that two rule

sums could be evaluated as equal. In our experiments, when evaluating the CPT

supported by a draw, θ, we found equal sums to be a rare occurrence. For n = 5,

this happened less than once every 109 draws and for n = 10 it happened less than

once every 108 draws. The qi values are doubles, meaning they were stored to 16

digits of accuracy. Thus, the probability of equality remained very low, but not

impossible.

If a Dirichlet sample returns equality, this would suggest that the user does

not have a strong preference for either direction of the rule. Thus, such samples

were randomly assigned to a direction of the rule. If such cases are common, they

would produce equal support for each direction of the rule. Otherwise, if N is rea-

sonably large, such samples will not significantly impact the resulting probability

estimations. If many cases of equality occur, this may be a sign that insufficient

accuracy is being used. From our experimental results, equality of sums appears

to happen when evaluating scores for denser CP-net structures (possibly because

the sums are then over a smaller set of qi values or because a single draw has more

inequalities to check) and more frequently when we have less data (meaning more

of the Dirichlet parameters are equal or very close). Equality also occurs more of-

ten for n = 10, which is partially because the former conditions occur more so for

larger n, but also because the qi values will be much smaller (as the outcome set is

larger) and, thus, more affected by the loss of accuracy due to computational lim-

itations. The overall frequency in our experiments suggests that the randomised
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allocations likely had little to no effect on our learning experiments or our re-

sults. However, further work is necessary to determine the exact effect of such

instances of equality and to evaluate at what frequency they become problematic

(by significantly affecting our learning procedure).

D.2 Algorithm for Calculating MaxSt and

OptCPT

In this section, we give the algorithm for calculating both

maxCPT(X)∈T(Pa(X),X){St(CPT(X))}

and argmaxCPT(X)∈T(Pa(X),X){St(CPT(X))}

using the Monte Carlo estimation described in Appendix D.1. For ease of notation,

we will simplify the above terms to MaxSt(X|Pa(X)) and OptCPT (X|Pa(X)).

The pseudocode for this is given in Algorithm 8.

In Appendix D.1, we showed that we could estimate St(CPT(X)) by

Ŝ =
1

N

N∑
i=1

I(θi),

where θ1, ..., θN are drawn at random from the Dirichlet distribution of the pi

values. The I function is the indicator function for the condition that θi supports

CPT(X). See Appendix D.1 for details.

However, as we show in Algorithm 8, identifying the CPT(X) with maximum St

score (given a specified parent set) is almost as easy as evaluating the St score for

a specific CPT(X). To do so, we first draw a sample of size N from the Dirichlet

distribution. Each θi in the sample supports exactly one CPT(X) if Pa(X) is fixed.

Thus, instead of evaluating whether or not θi supports a specific CPT, we identify

which CPT is supported by θi. Then we find (one of) the CPT that is supported

by the largest number of θi. Denote this CPT by CPT∗. Our probability estimates

suggest that this CPT has maximum St score. This St score can be estimated by

|{θi|θi supports CPT∗}|
N

,

by Proposition D.1.

Suppose that, in the observed data, outcome oi was chosen by the user d(oi)

many times. Then the pi values have the following distribution, as we explained

in §4.3.2:

p1, ..., pO ∼ Dir(β1 + d(o1), ..., βO + d(oO)).
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D.2 Algorithm for Calculating MaxSt and OptCPT

Algorithm 8: MaxSt and OptCPT Calculation

Input : Pa(X) – Parent set

X – Variable for which we want to maximise St

D = (d(o1), ..., d(oO)) – User choice data

N – Dirichlet sample size

β1, ..., βO – Dirichlet prior parameters

Output: MaxSt(X|Pa(X)), OptCPT (X|Pa(X))

1 Generate a random sample {θ1, ..., θN} from Dir(β1 + d(o1), ..., βO + d(oO));

2 Initialise two empty vectors, SupportedCPTs and SupportCounts;

3 for θi ∈ {θ1, ..., θN} do

4 Suppose θi = (q1, q2, ..., qO);

5 Initialise an empty CPT(X) with parent set Pa(X);

// Identify the unique CPT supported by θi:

6 for u ∈ Dom(Pa(X)) do

7 I1 = {i|oi[Pa(X)] = u, oi[X] = x};
8 I2 = {i|oi[Pa(X)] = u, oi[X] = x̄};
9 if

∑
i∈I1 qi >

∑
i∈I2 qi then

10 u : x � x̄→ CPT(X); // Add this rule to the CPT

11 end

12 if
∑

i∈I2 qi >
∑

i∈I1 qi then

13 u : x̄ � x→ CPT(X); // Add this rule to the CPT

14 end

15 end

// Either add a support count to CPT(X) or add CPT(X) to

the list of supported CPTs:

16 if CPT(X) ∈ SupportedCPTs then

17 Suppose SupportedCPTs[i] = CPT(X);

18 SupportCounts[i] =SupportCounts[i] + 1;

19 end

20 else

// Append the supported CPT to the vector and assign a

support count of 1:

21 SupportedCPTs.append(CPT(X));

22 SupportCounts.append(1);

23 end

24 end

25 i∗ = argmaxi(SupportCounts[i]);

26 return OptCPT (X|Pa(X)) = SupportedCPTs[i∗];

27 return MaxSt(X|Pa(X)) = SupportCounts[i∗]/N ;
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Algorithm 8 starts by drawing a sample of size N from this distribution. The

value N is a hyperparameter that dictates a tradeoff between the accuracy of our

probability estimations (shown in Appendix D.1) and the efficiency of our learning

algorithm. In our experiments, we set N = 100, 000. Even though the pseudocode

for Algorithm 8 starts by generating a new Dirichlet sample, in practice, the same

sample is used every time Algorithm 8 is called from Algorithm 4. That is, Al-

gorithm 8 only generates a Dirichlet sample the first time it is called. The pi

distribution is fixed, it doesn’t change over the course of our learning process, so

the Dirichlet sample remains valid at all points of Algorithm 4.

For each θi, we then want to identify which unique CPT(X) (given the par-

ent set of X) is supported by θi – see the remark in Appendix D.1 for details

on the possibility of θi supporting more than one CPT. Let θi = (q1, q2, ..., qO)

and W = V \Pa(X) ∪X. Then we have

θi supports CPT(X)

⇐⇒ ∀u ∈ Dom(Pa(X)), θi supports the rule u : x1 � x2 ∈ CPT(X)

⇐⇒ ∀u ∈ Dom(Pa(X)),
∑
w∈W

qux1w >
∑
w∈W

qux2w.

Note that we are abusing notation slightly here for clarity, using qoi to denote qi.

Let us denote the CPT supported by θi by CPTi. Then, by the above, we can

determine for any u ∈ Dom(Pa(X)), which of u : x � x̄ or u : x̄ � x is in CPTi

as follows: ∑
w∈W

quxw >
∑
w∈W

qux̄w =⇒ u : x � x̄ ∈ CPTi,∑
w∈W

qux̄w >
∑
w∈W

quxw =⇒ u : x̄ � x ∈ CPTi.

By determining the rule for every u ∈ Dom(Pa(X)), we have fully determined

CPTi, the unique CPT supported by θi.

For each θi, the algorithm loops through all u ∈ Dom(Pa(X)) and uses the

above method to determine which rule out of u : x � x̄ and u : x̄ � x is supported.

From these results, it builds the unique CPT supported by θi.

We keep a record of the different CPTs supported by the θi samples. For

each supported CPT, we also record the number of θi that support it. These

are recorded in the vectors SupportedCPTs and SupportCounts respectively.

The CPT with the highest support count is then identified. This CPT has the

highest (approximated) St score out of all CPTs in T(Pa(X), X). Thus, this is

returned as OptCPT . The corresponding (approximated) St value is the number of
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supporting samples as a proportion of N (by the estimator given in Appendix D.1),

this is returned as MaxSt.

It is possible that multiple CPTs may have the maximum support count. In

this case, we randomly select one such CPT as any choice will be optimal according

to our Dirichlet distribution. However, Algorithm 8 could return all optimal CPTs

instead, without an increase in complexity. This would produce all optimal CPT

configurations for the learned CP-net. One could then either ask the user to select

from this set of models, or test each optimal model and use the one that performs

best in the required task. This set of models will be much smaller than the space of

all possible CP-nets and so such elicitation or testing will be more feasible. In our

experiments, we use Algorithm 8 as is and return a single locally optimal CP-net.

Remark. When implementing this algorithm in practice, one has to be careful

regarding how the CPTs are stored, due to the magnitude of possibilities. Every

CPT contains 2|Pa(X)| rules, each of which can be one of two possibilities (x � x̄

or x̄ � x). Thus, the number of possible CPTs we are considering is 22|Pa(X)|
(as we

do not have any rules against degenerate parents at this stage). Thus, enumeration

of the possibilities quickly becomes impossible. Even for |Pa(X)| = 6, the number

of possibilities is beyond the range of integers C++ can handle (even if the data

type long long int is used). This will differ between systems, but as the number

of possibilities is double exponential in |Pa(X)|, it is likely to be too much for

most computers even for relatively small parent sets. For similar reasons, it is

not possible to store a vector of length 22|Pa(X)|
in general. Thus, keeping track of

the supported CPTs via enumeration of the CPTs or keeping a vector of support

counts for each CPT is not possible once you start considering larger CP-nets.

We get around this in our experiments as follows. We store CPTs as binary

vectors of length 2|Pa(X)|, where each entry corresponds to a rule – 0 means x � x̄

and 1 means x̄ � x. This makes the task of determining whether a CPT has

been previously supported more difficult, as it requires us to assess the equality

of vectors (rather than checking the equality of integers or checking the relevant

vector entry). By following the method given in Algorithm 8, we only have to

store the distinct supported CPTs. This makes SupportedCPTs a vector of

length ≤ N , with entries of length 2|Pa(X)|. This can be represented as a vector

of length ≤ N · 2|Pa(X)|. In our experiments, we use N = 100, 000. Due to the

maximum length of C++ vectors, this allows parent sets of up to size 13. The

Dirichlet sample is N random vectors of size 2n so, by similar reasoning, this

sample is possible up to n = 13. Thus, using our storage methods, learning can

be implemented for CP-nets with up to 13 variables.

Other variations of the storage process might somewhat increase this limit,
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but due to the exponential growth, this is likely to only be a minor improvement.

Alternatively, we can reduce the value of N , but this reduces the accuracy of our

score estimations. Further, reducing N to 10,000 only increases the maximum

to n = 16, but increases our estimation variance by up to a factor of 10. In

order for this method to be widely implementable, the storage burden needs to be

alleviated. This may be possible by altering the way in which we approximate the

scores.

We previously claimed that the process used by Algorithm 8 was almost as

easy as calculating the St score for a specified CPT(X). As we described in Ap-

pendix D.1, we calculate St by drawing N random Dirichlet samples and evaluating

for each sample the indicator function, I, for supporting the specified CPT. So,

as in Algorithm 8, we are looping through N Dirichlet samples, θi. In order to

evaluate I(θi), we must cycle through u ∈ Dom(Pa(X)) and evaluate the qi sums,

as in Algorithm 8. For each u, we must check that the relative size of the qi sums

supports the relevant rule in the specified CPT(X). The main difference from Al-

gorithm 8 is that, if the qi sums do not support a rule, we can conclude I(θi) = 0

without looking at any more u ∈ Dom(Pa(X)). Thus, when calculating St we may

not cycle through all u values every time. Once this loop is done, St is estimated

by the proportion of θi for which I(θi) = 1. Thus, calculating a specific St is

only simpler than Algorithm 8 in that the second loop does not always need to

consider all u values and the fact that the supported CPTs do not need storing

and searching for equality or highest count.

This comparison of efficiency is important as the other way to determine

MaxSt(X|Pa(X)) and OptCPT (X|Pa(X)) would be to calculate St for each

CPT∈ T(Pa(X), X) and return the CPT with maximum St score. This would

mean 22|Pa(X)|
calculations of St, whereas Algorithm 8 can perform the same task

with only a slightly more complex method than a single St calculation. Note that

the former method does not fix the storage problems as we still need to store a

Dirichlet sample.

D.3 Algorithm for Updating Cycles Matrix

In this section, we give our algorithm for updating the cycles matrix described

in §4.3.3. This algorithm updates the cycles matrix, C, of acyclic structure A to the

cycles matrix for A⊕e, where e is some valid edge change (in particular, changing e

did not introduce cycles). This algorithm is more efficient than calculating the
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cycles matrix for A⊕ e from scratch. This is why we store and update the cycles

matrix in Algorithm 4, rather than recalculating after each structure change.

First consider how we calculate C for structure A in the first place. Let the

variables be enumerated such that V = {X1, X2, ..., Xn}.

Ci,j =

{
1 if changing the edge (Xi, Xj) creates cycles,

0 if changing the edge (Xi, Xj) does not create cycles.

If e = (X, Y ), then this edge change introduces cycles if and only if e 6∈ A (re-

moving edges can’t create cycles) and Y = X or Y is an ancestor of X in A. Recall

that Algorithm 6 calculates the ancestor set of a given variable. We can calculate C

from scratch as follows. For each Xi, calculate Anc(Xi) using Algorithm 6. For

each j, Cj,i = 1 if Aj,i = 0 and either j = i or Xj ∈ Anc(Xi). Otherwise, Cj,i = 0.

This requires calling the ancestor algorithm, Algorithm 6, n times. Algorithm 6

has complexity O(n3), so this process has complexity O(n(n3 + n)) = O(n4). This

is how we calculate C the first time in Algorithm 4.

Now we explain how to update C to the cycles matrix for A ⊕ e, where

e = Xi → Xj. Let us denote the cycles matrix for A ⊕ e by C ′. The pseu-

docode for this method is given by Algorithm 9. We start by setting C ′ = C and

then change the relevant entries. First, let us demonstrate that certain edges do

not need their value updating (that is, the C ′ entry will be the same as the C

entry).

Consider e itself. In order for this change to be implemented, it must have been

valid so Ci,j = 0. If e was added, then e ∈ A ⊕ e. As removing an edge cannot

create cycles, we must have C ′i,j = 0 = Ci,j. If e was removed, then e 6∈ A ⊕ e.
If we add e to A ⊕ e then we obtain A. As A is acyclic by assumption, adding e

to A⊕ e does not create cycles. Thus, C ′i,j = 0 = Ci,j. So the C ′i,j value does not

need changing.

Consider e′ = Xk → Xk for any k. As A and A ⊕ e are acyclic, e′ 6∈ A

and e′ 6∈ A ⊕ e. Adding e′ will always create a cycle so Ck,k = 1. Similarly,

C ′k,k = 1 = Ck,k, so the C ′k,k value does not need changing.

Let e′ = Xk → Xm be any (non-loop) edge other than e or the reverse of e.

That is, {k,m} 6= {i, j} and k 6= m. If e′ ∈ A ⊕ e, then we must have e′ ∈ A

as e′ 6= e. As removing an edge cannot create cycles, Ck,m = 0. By the same

argument, C ′k,m = 0 = Ck,m. Thus, the C ′k,m value does not need changing.

Let e′ = Xk → Xm be any edge such that {k,m} 6= {i, j} and k 6= m again.

Now suppose e′ 6∈ A ⊕ e. We must have e′ 6∈ A also, as e′ 6= e. Suppose

Xm → Xk ∈ A⊕ e, then Xm → Xk ∈ A as e 6= Xm → Xk. Adding e′ to either A
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Algorithm 9: Cycle Matrix Update

Input : A – Original structure

e = (Xi, Xj) – The (valid) edge to be changed

C – Cycles matrix for A

Output: C ′ – Cycles matrix for A⊕ e

1 C ′ = C;

2 if e 6∈ A then

3 Calculate Anc(Xi) (in A⊕ e); // Use Algorithm 6

4 Calculate Dec(Xj) (in A⊕ e); // Use Algorithm 6

5 C ′j,i = 1;

6 for k,m ∈ {1, ..., n} such that k 6= m, and {k,m} 6= {i, j} do

7 e′ = Xk → Xm;

8 e′′ = Xm → Xk;

9 if e′, e′′ 6∈ A⊕ e then

10 if Ck,m = 0 then

11 if (k = j ∨Xk ∈ Dec(Xj)) ∧ (m = i ∨Xm ∈ Anc(Xi)) then

12 C ′k,m = 1;

13 end

14 end

15 end

16 end

17 end

18 else

19 for k,m ∈ {1, ..., n} such that k 6= m, and (k,m) 6= (i, j) do

20 e′ = Xk → Xm;

21 e′′ = Xm → Xk;

22 if e′, e′′ 6∈ A⊕ e then

23 if Ck,m = 1 then

24 Calculate Anc(Xk) (for A⊕ e); // Use Algorithm 6

25 if Xm 6∈ Anc(Xk) then

26 C ′k,m = 0;

27 end

28 end

29 end

30 end

31 end

32 return C ′;
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or A ⊕ e will create cycles as the reverse of e′ is present. Thus, Ck,m = 1 = C ′k,m

so C ′k,m does not need changing.

By the above arguments, the edges that may have different values in C and C ′

are the reverse of e and edges Xk → Xm such that {k,m} 6= {i, j}, k 6= m,

Xk → Xm 6∈ A⊕ e, and Xm → Xk 6∈ A⊕ e. We now split into the two cases e ∈ A
and e 6∈ A and show how the C ′ values should be updated for these edges.

Suppose e 6∈ A, so the edge change added e to the structure A. As e ∈ A⊕ e,

we know that the reverse cannot be in the structure (as it is acyclic) and it can-

not be added, as it would create a cycle, so set C ′j,i = 1. Let e′ = Xk → Xm

such that {k,m} 6= {i, j}, k 6= m, and let e′′ denote the reverse of e′. Suppose

that e′, e′′ 6∈ A ⊕ e. As e′ 6= e and e′′ 6= e, we must have that e′, e′′ 6∈ A. Sup-

pose Ck,m = 1, then adding e′ to A creates cycles. As A⊕e is A with an additional

edge, adding e′ to A⊕ e must also create cycles. That is, C ′k,m = 1 = Ck,m so C ′k,m

does not need changing. Suppose instead that Ck,m = 0. So adding e′ to A does

not create cycles. As A⊕e is obtained from A by adding edge e, adding e′ to A⊕e
can only create a cycle if that cycle contains e (otherwise adding e′ to A would

also create cycles). That is, C ′k,m = 1 if and only if adding e′ to A ⊕ e creates a

cycle containing both e′ and e. As e′ = Xk → Xm and e = Xi → Xj, this occurs

if and only if Xk = Xj or Xj ∈ Anc(Xk) and Xm = Xi or Xm ∈ Anc(Xi) (where

ancestor sets are defined with respect to the A ⊕ e structure). We can rephrase

this condition as

(Xk = Xj ∨Xk ∈ Dec(Xj)) ∧ (Xm = Xi ∨Xm ∈ Anc(Xi)).

Thus, if we calculate Anc(Xi) and Dec(Xj) for A⊕ e, we can check this condition

for each such e′ and change C ′k,m to 1 if it holds. By the above argument, if e 6∈ A,

then we have changed all appropriate C ′ entries and thus it is now the cycles

matrix for A⊕ e.
Note that descendant sets can be found using Algorithm 6 if we flip the direction

of all edges in the relevant structure.

Now consider the case where e ∈ A. Then A ⊕ e is obtained by removing e

from A. Let e′ = Xk → Xm such that k 6= m, e′ 6= e, and let e′′ denote the reverse

of e′. Suppose that e′, e′′ 6∈ A⊕ e. Note that, as e ∈ A, the reverse of e cannot be

in A and thus is also not present in A⊕ e. Thus, the reverse of e is included in the

definition of e′. This means that all edges for which we still need to update C ′ are

included in the definition of e′. Suppose Ck,m = 0, then adding e′ to A does not

create cycles. As A⊕e is obtained from A by removing e, adding e′ to A⊕e cannot

create cycles. If adding e′ to A⊕ e created a cycle, then the same cycle would be
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formed by adding e′ to A, contradicting Ck,m = 0. Thus, C ′k,m = 0 = Ck,m, so C ′k,m
does not need changing.

Now suppose that Ck,m = 1. Adding e′ to A creates a cycle. We want to

determine whether adding e′ to A ⊕ e (A with edge e removed) also creates a

cycle. This is true if and only if there is a directed path from Xm to Xk in A⊕ e,
that is, Xm ∈ Anc(Xk). For each such e′, we calculate Anc(Xk) for A ⊕ e and

determine whether Xm ∈ Anc(Xk). If it is not, then we set C ′k,m = 0. By the

above argument, if e ∈ A, then we have changed all appropriate C ′ entries and

thus it is now the cycles matrix for A⊕ e.
The algorithm returns C ′, which, by the above arguments, is the cycles matrix

for A⊕ e.
Let us consider the complexities of calculating and updating a cycles matrix.

For now, let us ignore the calculation of ancestor sets. When calculating C, for

each i, j pair, some simple conditions are checked and the Ci,j value is assigned.

When updating C, for each i, j pair, some simple conditions are checked and then,

sometimes, the C ′ value is changed. Both of these tasks have complexity O(n2).

Thus, what determines the difference in efficiency is the number of times ances-

tor sets are calculated (using Algorithm 6). Calculating C requires the ancestor

set of every variable to be calculated. Algorithm 6 has complexity O(n3), thus

calculating C has complexity O(n ·n3 +n2) = O(n4). If we have e 6∈ A, then Algo-

rithm 9 only calculates two ancestor sets. Thus, the complexity of updating C is

O(2n3 + n2) = O(n3). If we have e ∈ A, then Algorithm 9 calculates one ancestor

set for every edge that satisfies a certain set of properties. However, if we assume

that calculated ancestors are stored and thus never re-calculated, this means that

the number of ancestor set calculations is ≤ n. In fact, due to the edge conditions,

it must be ≤ n − 2 (if n ≥ 3) and may be much less than that depending on the

structure of A. Thus, in this case, the complexity is O((n − 2)n3 + n2) = O(n4).

Therefore, updating will always be more efficient (to varying degrees) than calcu-

lating a new cycles matrix from scratch, even though theoretical complexity is the

same in the e ∈ A case.
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Appendix E

Proofs

In this Appendix, we provide the proofs of various results stated throughout Chap-

ters 2 – 4 and the previous appendices.

E.1 Proof of Proposition 2.2

Proposition 2.2. Let N be a CP-net and let T (N) be the event tree represen-

tation of N . Then N and T (N) are equivalent structures (they encode identical

information). Recall that a CP-net consists of both the structure and the CPTs.

Proof. We have already described in §2.3.1 the process for obtaining T (N) from N .

Thus, to prove that T (N) encodes exactly the same information as N (that is, no

information is lost by moving from N to T (N)), we will show that N can be

reconstructed from T (N).

From T (N), we can directly obtain the variable domains (from edge labels)

and a topological ordering (this is the order of the variables in the tree). Sup-

pose X1, X2, ..., Xn is this topological ordering, then Pa(Xi) ⊆ {X1, ..., Xi−1}.
If Y ∈ Pa(Xi) (and is non-degenerate), then there must be two Pa(Xi) assign-

ments, u1 and u2, that differ only on the value of Y and that result in distinct Xi

preference orders. Let A denote the predecessors of Xi that are not parents of Xi,

A = {X1, ..., Xi−1}\Pa(Xi). Let a ∈ Dom(A). As a variable’s preference depends

only on the parent values, the assignments au1 and au2 imply distinct ceteris

paribus preference orders over Xi. Further, au1 and au2 differ only on the value

taken by Y . Conversely, if such a pair of assignments to {X1, ..., Xi−1} exist, that

differ only on Y and imply distinct preference orders over Xi, then Xi must be pref-

erentially dependent upon the value taken by Y . Thus, by definition, Y ∈ Pa(Xi).

Therefore, Y ∈ Pa(Xi) if and only if there are two assignments of {X1, ..., Xi−1}
that differ only on Y and that imply distinct preference orders over Xi. By the

way in which we construct T (N) from N , this is equivalent to the existence of two
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directed paths p and p′ in T (N) with the following properties. First, both p and p′

originate at the root of T (N) and have length (i − 1). By definition of T (N), p

and p′ must assign values to {X1, ..., Xi−1} only. Second, p and p′ differ only on the

value assigned to Y and the implied preference order over Xi is different for the

two associated {X1, ..., Xi−1} assignments. That is, the labelling of the branches

corresponding to the Xi assignments that originate at the end of path p is differ-

ent to those that originate at the end of p′. For each Y ∈ {X1, ..., Xi−1}, we can

check whether such a pair of paths exists. In exactly those cases where such paths

exist, Y is a parent of Xi by the above argument. Thus, we can construct the par-

ent set, Pa(Xi) by checking this condition on T (N) for each Y ∈ {X1, ..., Xi−1}.
Identifying the parent set of each variable determines the whole structure of N

and, thus, it only remains to construct the CPTs.

Given the parents of a variable and their respective domains, we know all of

the possible parental assignments, which correspond to the CPT rows. Given a

row of CPT(Xi), that is, an assignment of values u ∈ Dom(Pa(Xi)), we need to

recover the corresponding preference order over Xi. This can be done as follows;

first, obtain any path p of length (i − 1) that begins at the root of T (N) and

assigns Pa(Xi) the values in u. By the way in which we constructed T (N) from N ,

the labels of the Xi value branches that come directly after p encode the preference

order over Xi implied by the assignment of values to {X1, ..., Xi−1} by p. However,

as Xi is only preferentially dependent upon Pa(Xi), this is the preference order

over Xi implied by Pa(Xi) = u. These edge labels can then be used to obtain

the preference order; the value of Xi assigned the label ‘1st’ comes first in the

preference order (most preferred), the value assigned the label ‘2nd’ comes second

and so on. Thus, from these labels we can determine the relevant preference order

over Xi and fill in the CPT row. Following this procedure, we can populate all of

the CPTs for N . Thus, N has been fully reconstructed from T (N).

E.2 Proof of Theorem 2.8

Theorem 2.8. Given a CP-net, N , for any outcomes o and o′, we have that

N � o � o′ =⇒ r(o) > r(o′).

Proof. Before we commence the proof, recall the following. The edge of W (N)

that indicates that X = x, given Pa(X) = u previously, has the following weight:

AFX(dX + 1)PP (X = x | Pa(X) = u). (E.1)

Full explanation of this notation is given in Definition 2.3.

If N � o � o′, then there exists an improving flipping sequence of out-

comes, o′ = o1, o2, ..., om = o, such that oi+1 differs from oi on the value taken by
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exactly one variable and N � oi ≺ oi+1 (Boutilier et al., 2004a). Thus, proving the

theorem for o and o′ that differ on the value of exactly one variable is sufficient,

as the more general result follows by transitivity.

Suppose o and o′ differ only on the value taken by X. Let x and x′ be the values

assigned to X in o and o′ respectively (that is, o[X] = x and o′[X] = x′). Let u be

the set of values assigned to Pa(X) in both outcomes (u = o[Pa(X)] = o′[Pa(X)]).

Let x1 � x2 � · · · � xm be the preference ordering over Dom(X) given

that Pa(X) = u. This is the row of CPT(X) that corresponds to Pa(X) = u.

Suppose x = xi and x′ = xj, we know that i < j as o′ → o is an improving flip

of X (as N � o � o′).

Let ok denote the outcome where ok[X] = xk and, for all variables Y 6= X,

ok[Y ] = o[Y ](= o′[Y ]). Then the sequence of outcomes, om, om−1, ..., o1, is a se-

quence of X flips through the values xm, xm−1, ..., x1. As Pa(X) = u in each ok,

these are improving flips of X, so N � o1 � o2 � · · · � om. Notice that o = oi

and o′ = oj with i < j, so we have N � o = oi � oi+1 � · · · � oj = o′. Hence, it

is sufficient to prove r(o) > r(o′) for the specific case where x and x′ are adjacent

in the ordering x1 � x2 � · · · � xm, that is, when j = i + 1. The more general

case, where x and x′ are not adjacent (j > i + 1), follows by the fact that > is

transitive.

To see this explicitly, suppose we have proven the case where x and x′ are

adjacent (j = i+ 1). If we then have the non-adjacent case (j > i+1), then we have

N � o = oi � oi+1 � · · · � oj = o′. From the adjacent case, we get that

r(oi) > r(oi+1), r(oi+1) > r(oi+2),...,r(oj−1) > r(oj). Thus, by the transitivity

of >, we have r(oi) > r(oj), that is, r(o) > r(o′). It is therefore sufficient to prove

the theorem in the case where o′ → o is an improving flip of X between adjacent

values of X in the ordering x1 � x2 � · · · � xm. Thus, we can assume that x

and x′ are adjacent values, that is, x and x′ are the ith and (i+1)th most preferred

values of X, given Pa(X) = u (for some i).

We now demonstrate that r(o) > r(o′) under the above assumptions. Let p

and p′ be the root-to-leaf paths of W (N) that correspond to o and o′. Recall

that r(o) is the sum of the edge weights of p. Similarly, r(o′) is the sum of the

edge weights of p′. Thus, to evaluate these ranks, we must first determine what

these edge weights are.

Let Y ∈ V be a variable such that Y 6= X and X 6∈ Pa(Y ). As o and o′

differ only on the value of X, Y and Pa(Y ) must take the same values in both o

and o′. Let y = o[Y ] = o′[Y ] (y ∈ Dom(Y )) and w = o[Pa(Y )] = o′[Pa(Y )]

(w ∈ Dom(Pa(Y ))). By Definition 2.3, the weight assigned to the edge of p

indicating that Y takes the value y is AFY (dY + 1)PP (Y = y | Pa(Y ) = w).

The weight assigned by Definition 2.3 to the edge of p′ indicating that Y = y is
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identical. Thus, any such variable (any variable that is neither X itself, nor a child

of X) contributes exactly the same quantity to both sums, r(o) and r(o′). Let α

denote the total contribution to r(o) (and thus r(o′) also) by such variables.

The weight on the edge of p indicating that X takes the value x is

AFX(dX + 1)PP (X = x | Pa(X) = u). As we have assumed x to be the ith

most preferred value of X, given Pa(X) = u, PP (X = x | Pa(X) = u) = nX−i+1
nX

.

The weight on the edge of p′ indicating that X takes the value x′ is

AFX(dX + 1)PP (X = x′ | Pa(X) = u). As we have assumed x′ to be the (i+ 1)th

most preferred value ofX, given Pa(X) = u, PP (X = x′ | Pa(X) = u) = nX−(i+1)+1
nX

.

Let Ch(X) = {Y1, ..., Y`} be the set of variables that have X as one of their

parent variables in the structure of N . These are the children of X. As N is

acyclic, Yj 6= X and so Yj takes the same value in both o and o′. Let yj = o[Yj]

(= o′[Yj]). Let vj = o[Pa(Yj)] and v′j = o′[Pa(Yj)]. The weight on the edge of p

that indicates Yj = yj is AFYj(dYj + 1)PP (Yj = yj | Pa(Yj) = vj). The weight on

the edge of p′ that indicates Yj = yj is AFYj(dYj + 1)PP (Yj = yj | Pa(Yj) = v′j).

Now that we know the weights of all edges in p and p′, we can evaluate r(o)

and r(o′).

r(o) = α + AFX(dX + 1)
nX − i+ 1

nX
+
∑̀
j=1

AFYj(dYj + 1)PP (Yj = yj | Pa(Yj) = vj),

r(o′) = α + AFX(dX + 1)
nX − i
nX

+
∑̀
j=1

AFYj(dYj + 1)PP (Yj = yj | Pa(Yj) = v′j).

Recall that, for any Z ∈ V , AFZ =
∏

W∈Anc(Z)
1
nW

. If Yj is a child of X,

then Anc(X) ∪ {X} ⊆ Anc(Yj). We know X 6∈ Anc(X) as N is acyclic. Thus,

AFYj = AFX
1
nX
βj, for some 0 < βj ≤ 1.

Notice that, for any Z ∈ V , z ∈ Dom(Z), and w ∈ Dom(Pa(Z)), we have
1
nZ
≤ PP (Z = z | Pa(Z) = w) ≤ 1. Thus, for any 1 ≤ j ≤ `, we have

1

nYj
≤ PP (Yj = yj | Pa(Yj) = vj) ≤ 1,

1

nYj
≤ PP (Yj = yj | Pa(Yj) = v′j) ≤ 1.

Using these results, we can rewrite r(o) and r(o′) and obtain the following
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inequalities:

r(o) =α + AFX(dX + 1)
nX − i+ 1

nX

+
∑̀
j=1

AFX
1

nX
βj(dYj + 1)PP (Yj = yj | Pa(Yj) = vj)

≥α + AFX(dX + 1)
nX − i+ 1

nX
+
∑̀
j=1

AFX
1

nX
βj(dYj + 1)

1

nYj
,

r(o′) =α + AFX(dX + 1)
nX − i
nX

+
∑̀
j=1

AFX
1

nX
βj(dYj + 1)PP (Yj = yj | Pa(Yj) = v′j)

≤α + AFX(dX + 1)
nX − i
nX

+
∑̀
j=1

AFX
1

nX
βj(dYj + 1) · 1.

Next we show that dX =
∑`

j=1(dYj + 1). As |Ch(X)| = `, there are ex-

actly ` directed paths of length 1 that originate at X in the structure of N .

Thus, dX − ` is the number of directed paths of length greater than 1 that origi-

nate at X (in the structure of N). Every such path can be turned into a distinct

directed path that originates at one of {Y1, ..., Y`} by removing the first edge.

Further, any path that originates at some Yj ∈ {Y1, ..., Y`} can be turned into a

distinct directed path of length greater than 1 that originates at X by attach-

ing X → Yj to the beginning. Thus, the number of directed paths of length

greater than 1 that originate at X is equal to the number of directed paths that

originate at some Yj ∈ {Y1, ..., Y`}. That is, dX − ` =
∑`

j=1 dYj or, equivalently,

dX =
∑`

j=1 dYj + ` =
∑`

j=1(dYj + 1).

Recall that our aim is to prove that r(o) > r(o′). For the purposes of contra-

diction, suppose that r(o) ≤ r(o′). Then

α + AFX(dX + 1)
nX − i+ 1

nX
+
∑̀
j=1

AFX
1

nX
βj(dYj + 1)

1

nYj

≤ α + AFX(dX + 1)
nX − i
nX

+
∑̀
j=1

AFX
1

nX
βj(dYj + 1) · 1
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=⇒ (dX + 1)(nX − i+ 1) +
∑̀
j=1

βj(dYj + 1)
1

nYj

≤ (dX + 1)(nX − i) +
∑̀
j=1

βj(dYj + 1) · 1

=⇒ dX + 1 ≤
∑̀
j=1

βj(dYj + 1)

(
1− 1

nYj

)
.

Now let m = max{nYj | 1 ≤ j ≤ `}. This implies

dX + 1 ≤
∑̀
j=1

βj(dYj + 1)

(
1− 1

m

)
.

Since 0 < βj ≤ 1 for all 1 ≤ j ≤ `, it follows that

dX + 1 ≤
∑̀
j=1

1 · (dYj + 1)

(
1− 1

m

)
.

Recall that dX =
∑`

j=1(dYj + 1), this implies

(dX + 1) ≤ dX

(
1− 1

m

)
.

If X has no descendent paths, that is, dX = 0, then we have shown r(o) ≤ r(o′)

=⇒ 1 ≤ 0. So we have derived a contradiction.

If dX > 0, then r(o) ≤ r(o′) implies that

1 +
1

dX
≤ 1− 1

m
< 1

=⇒ 1

dX
< 0

=⇒ 1 < 0.

Thus, we have again derived a contradiction and so we can conclude r(o) > r(o′).

The general result, for any outcomes o and o′, follows by transitivity as we discussed

above.

E.3 Proof of Theorem 2.12

Theorem 2.12. Let N be a CP-net and %C be any consistent ordering over the

outcomes. Then no information is lost by reducing N to %C. That is, %C encodes

all of the preference information given by N .
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Proof. To prove this, we will show that we can reconstruct N from %C . The

number of variables and their respective domains can be read off the outcomes

themselves. This gives us the nodes of the CP-net structure. It remains to evaluate

the edges of the structure and the CPTs.

Let X, Y ∈ V , X 6= Y . If X ∈ Pa(Y ) (that is, there is an edge X → Y

in the structure of N), then the preference over Y must be dependent upon X.

Let Dom(Y ) = {y1, ..., ym} and W = V \{X, Y }. If Y is preferentially depen-

dent upon X, then there exists x, x̄ ∈ Dom(X) and w ∈ Dom(W ) such that the

preferential order over Dom(Y ) is different under XW = xw and XW = x̄w –

otherwise, we do not need to know the assignment of X to determine the pref-

erence order over Y and so it cannot be a parent. Every pair of outcomes in

{xy1w, xy2w, ..., xymw} differ only on Y (they constitute a Y flip) and so N entails

a preference between them. Thus, N entails a total ordering over these outcomes

that must be reflected by %C , as it is a consistent ordering. Thus, if %C is re-

stricted to this outcome set, it produces the same strict total ordering. Similarly for

{x̄y1w, x̄y2w, ..., x̄ymw}. By the above argument, there is an edge X → Y if and

only if there exists x, x̄ ∈ Dom(X) and w ∈ Dom(W ) such that the strict �C or-

ders over {xy1w, xy2w, ..., xymw} and {x̄y1w, x̄y2w, ..., x̄ymw} are different. Thus,

by testing this condition for each x, x̄ ∈ Dom(X) and w ∈ Dom(W ), we can de-

termine whether there exists a X → Y edge directly from %C . Thus, the structure

of N can be reconstructed from %C .

Consider CPT(Y ), the rows correspond to the possible assignments of values

to Pa(Y ). We already know these assignments as we know the CP-net struc-

ture and variable domains. Thus, we only need to fill in the relevant preferences.

Let U = Pa(Y ) and redefine W = V \U ∪ {Y }. The row of CPT(Y ) correspond-

ing to u ∈ Dom(U) gives the preference order over Y , given that U = u. By

CP-net semantics, this preference induces the same entailed total ordering over

{uy1w, ...,uymw} for every w ∈ Dom(W ). As this ordering is entailed, it is re-

flected in %C . Thus, the preference order over Y , given U = u, can be read

off %C by restricting %C to {uy1w, ...,uymw} for any w ∈ Dom(W ). Thus, we

can also populate the CPT rows from %C directly. Hence, we have completely

reconstructed N from %C , showing that no information is lost by reducing N to a

consistent ordering.

E.4 Proof of Lemma 2.17

Lemma 2.17. Let N be a CP-net over variables V . For any X ∈ V , L(X) > 0.
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Proof. Let Y ∈ Ch(X) for some Y,X ∈ V , then, by the same reasoning given

in the proof of Theorem 2.8, AFY = AFX
1
nX
βY for some 0 < βY ≤ 1. Also,∑

Y ∈Ch(X)(dY + 1) = dX , as shown in the proof of Theorem 2.8.

Suppose, for the sake of contradiction, that L(X) ≤ 0 for some X ∈ V . This

implies that

AFX(dX + 1)
1

nX
−

∑
Y ∈Ch(X)

AFY (dY + 1)
nY − 1

nY
≤ 0

=⇒ AFX(dX + 1)
1

nX
≤

∑
Y ∈Ch(X)

AFX
1

nX
βY (dY + 1)

nY − 1

nY

=⇒ (dX + 1) ≤
∑

Y ∈Ch(X)

βY (dY + 1)
nY − 1

nY
.

As βY ,
nY −1
nY
≤ 1 for all Y ∈ Ch(X), it follows that

(dX + 1) ≤
∑

Y ∈Ch(X)

(dY + 1) = dX .

Thus, we have reached a contradiction and so we can conclude that L(X) > 0 for

all X ∈ V .

E.5 Proof of Corollary 2.18

Corollary 2.18. Let N be a CP-net over variables V . Let o1 and o2 be associated

outcomes and D = {X ∈ V | o1[X] 6= o2[X]}. Then,

N � o1 � o2 =⇒ r(o1)− r(o2) ≥
∑
X∈D

L(X) > 0.

This is a tight lower bound on the rank difference implied by entailment.

Proof. If N � o1 � o2, then there exists a sequence of outcomes

o2 = p1, p2, ..., pm = o1,

such that N � p1 ≺ p2 ≺ · · · ≺ pm and pi and pi+1 differ on the value taken

by exactly one variable (Boutilier et al., 2004a). That is, starting at o2, we can

reach o1 through m − 1 improving variable flips. By Theorem 2.8, we know that

r(pi+1)− r(pi) > 0. We can rewrite r(o1)− r(o2) as the sum of the rank improve-

ments of each flip as follows:

r(o1)− r(o2) = [r(p2)− r(p1)] + [r(p3)− r(p2)] + · · ·+ [r(pm)− r(pm−1)].
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Suppose α→ β is an improving flip of variable X, that is, α and β differ only

on the value taken by X and N � β � α. Thus, X must be in a more preferred

position in β than α, given Pa(X) = β[Pa(X)](= α[Pa(X)]).

The only variables whose preference position may differ in α and β are X and

the children of X, Ch(X). Thus, we can deduce the following lower bound on the

increase in rank, r(β)− r(α).

r(β)− r(α) =

[
AFX(dX + 1)PP (X = β[X] | Pa(X) = β[Pa(X)])

+
∑

Y ∈Ch(X)

AFY (dY + 1)PP (Y = β[Y ] | Pa(Y ) = β[Pa(Y )])

]

−

[
AFX(dX + 1)PP (X = α[X] | Pa(X) = α[Pa(X)])

+
∑

Y ∈Ch(X)

AFY (dY + 1)PP (Y = α[Y ] | Pa(Y ) = α[Pa(Y )])

]
.

Recall that PP (Y = y | Pa(Y ) = z) ∈ {1/nY , 2/nY , ..., 1} ∀Y ∈ V, y ∈ Dom(Y ),

and z ∈ Dom(Pa(Y )). Thus, we have that

r(β)− r(α) ≥ AFX(dX + 1)

[
PP (X = β[X] | Pa(X) = β[Pa(X)])−

PP (X = α[X] | Pa(X) = α[Pa(X)])

]
+

∑
Y ∈Ch(X)

AFY (dY + 1)

[
1

nY
− 1

]
.

As PP (X = β[X] | Pa(X) = β[Pa(X)]) > PP (X = α[X] | Pa(X) = α[Pa(X)]), we

have that

r(β)− r(α) ≥AFX(dX + 1)
1

nX
−

∑
Y ∈Ch(X)

AFY (dY + 1)
nY − 1

nY

=L(X) > 0.

In order to reach o1 from o2, each X ∈ D must be flipped at least once in

the sequence of m − 1 flips. We know from the above that any improving flip

of X corresponds a rank increase of at least L(X). Thus, as r(o1) − r(o2) is the

sum of the rank increases of each of the m − 1 flips (each of which has been

shown to produce an increase in rank), we have that r(o1)− r(o2) ≥
∑

X∈D L(X).

As N � o1 � o2, we cannot have o1 = o2. Thus D 6= ∅ and so
∑

X∈D L(X) > 0

by Lemma 2.17.

Finally, to show the given lower bound is tight, we simply need to show that,

for any CP-net, the bound is achieved. Let X ∈ V be a variable with no children

(at least one such variable must exist as the structure is acyclic). As X has no
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children, L(X) = AFX(dX + 1) 1
nX

. Let u ∈ Dom(Pa(X)) be any assignment of

values to Pa(X). Let x1 � · · · � xm be the implied preference order over X, given

that Pa(X) = u. Let Y = V \Pa(X) ∪ {X}. Let o1 and o2 be any two outcomes

such that o1[Y ] = o2[Y ], o1[Pa(X)] = o2[Pa(X)] = u, o1[X] = x1, and o2[X] = x2.

Moving from o2 to o1 changes the value of X only and, as Pa(X) = u, improves

the X value (according to the CPT(X) rule, u : x1 � · · · � xm). Thus, o2 → o1

constitutes an improving X flip and so N � o2 � o1. Suppose Y ∈ V such

that Y 6= X. Then Y and Pa(Y ) take the same values in o1 and o2 (as no variable

has X as a parent). Thus, Y is in the same preference position in both o1 and o2.

Thus, every variable Y 6= X contributes the same weight to both rank sums, r(o1)

and r(o2). Therefore,

r(o1)− r(o2) =
∑
Z∈V

AFZ(dZ + 1)PP (Z = o1[Z]|Pa(Z) = o1[Pa(Z)])

−
∑
Z∈V

AFZ(dZ + 1)PP (Z = o2[Z]|Pa(Z) = o2[Pa(Z)])

=AFX(dX + 1)PP (X = o1[X]|Pa(X) = o1[Pa(X)])

− AFX(dX + 1)PP (X = o2[X]|Pa(X) = o2[Pa(X)])

=AFX(dX + 1)PP (X = x1|Pa(X) = u)

− AFX(dX + 1)PP (X = x2|Pa(X) = u)

=AFX(dX + 1)
nX − 1 + 1

nX
− AFX(dX + 1)

nX − 2 + 1

nX

=AFX(dX + 1)

(
nX
nX
− nX − 1

nX

)
=AFX(dX + 1)

1

nx
= L(X).

By construction, o1 and o2 differ only on the value of X, so D = {X} in this

case. Thus,
∑

Y ∈D L(Y ) = L(X). Thus, we have shown that there is a case

where N � o1 � o2 and r(o1)− r(o2) =
∑

Y ∈D L(Y ). That is, there is a case where

the lower bound is achieved (and so it is a tight bound). As such an outcome

pair can be constructed for any acyclic CP-net, our lower bound is tight for every

CP-net.

E.6 Proof of Theorem 2.24

Theorem 2.24. Let N be a CP-net over a set of variables V , which may have

indifference statements in its CPTs. Let o and o′ be associated outcomes. Then,

N � o � o′ =⇒ rG(o) > rG(o′)

and N � o ∼ o′ =⇒ rG(o) = rG(o′).
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Proof. This proof will progress similarly to the proof of Theorem 2.8 (particularly

Part C). It has three main parts, A, B, and C. In Part A, we show that the special

case where o and o′ differ on exactly one variable is sufficient to prove both results

in general. In Part B, we prove that N � o ∼ o′ =⇒ rG(o) = rG(o′) holds in

this special case. In Part C we prove that N � o � o′ =⇒ rG(o) > rG(o′) holds

in this special case. Part C also consists of three parts. In Part C.1, we further

simplify the sufficient special case. In Part C.2, we evaluate rG(o) and rG(o′) in

this special case. Finally, in Part C.3, we prove rG(o) > rG(o′).

Note that, for the entirety of this proof, PP refers to the generalised preference

position given by Definition 2.21. Also, the preference graph of N is defined as

before, with the addition of undirected edges for indifference. That is, if o1 and o2

constitute an X flip, and o1[X] is preferred to o2[X], given the values assigned

to Pa(X) by both o1 and o2, then there is an edge o2 → o1 in the preference

graph. If the user is indifferent between o1[X] and o2[X], given the values assigned

to Pa(X), then there is an undirected edge between o1 and o2 in the preference

graph.

Part A

N � o � o′ holds if and only if there is a directed path o′  o in the preference

graph. A directed path may utilise undirected edges, but must include at least

one directed edge. This means that N � o � o′ holds if and only if there exists a

sequence of outcomes, o = o1, o2, ..., om = o′, such that, for all i, oi and oi+1 differ

on the value of exactly one variable and either N � oi � oi+1 or N � oi ∼ oi+1

(with N � oj � oj+1 for at least one j).

N � o ∼ o′ holds if and only if there is a path in the preference graph between o

and o′ that exclusively uses undirected edges. This means that N � o ∼ o′ holds if

and only if there exists a sequence of outcomes, o = o1, o2, ..., om = o′, such that,

for all i, oi and oi+1 differ on the value of exactly one variable and N � oi ∼ oi+1.

The above results imply that it is sufficient to prove that N � o � o′ =⇒
rG(o) > rG(o′) and N � o ∼ o′ =⇒ rG(o) = rG(o′) hold in the case where o

and o′ differ on exactly one variable. The more general results then follow from

these specific results and the transitivity of = and >.

Let us assume that o and o′ differ only on the value taken by X ∈ V . Let X

take the value x in o (o[X] = x) and the value x′ in o′ (o′[X] = x′).

Part B

First, we show that N � o ∼ o′ =⇒ rG(o) = rG(o′). We assume that N � o ∼ o′.

Let u = o[Pa(X)] = o′[Pa(X)].
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Recall that

rG(o) =
∑
Z∈V

AFZ(dZ + 1)PP (Z = o[Z] | Pa(Z) = o[Pa(Z)])

and similarly for rG(o′). Thus, to evaluate rG(o) and rG(o′), and subsequently prove

that rG(o) = rG(o′), we must first evaluate these summation terms for all Z ∈ V ,

for both rG(o) and rG(o′).

Let Y ∈ V be a variable such that Y 6= X and X 6∈ Pa(Y ). As o and o′ differ

only on the value of X, Y and Pa(Y ) must take the same values in both o and o′.

Let y = o[Y ] = o′[Y ] and w = o[Pa(Y )] = o′[Pa(Y )]. Then we have

AFY (dY + 1)PP (Y = o[Y ] | Pa(Y ) = o[Pa(Y )])

=AFY (dY + 1)PP (Y = y | Pa(Y ) = w)

=AFY (dY + 1)PP (Y = o′[Y ] | Pa(Y ) = o′[Pa(Y )]).

Thus, any such variable (that is, any variable that is neither X itself, nor a child

of X) contributes exactly the same quantity to both sums, rG(o) and rG(o′).

As N � o ∼ o′, and o and o′ differ only on X, we must have that x ∼ x′

under Pa(X) = u. Therefore, x and x′ are in the same preference position in

the row of CPT(X) corresponding to Pa(X) = u. Let x and x′ be in preference

position i, given Pa(X) = u.

Consider the summation term contributed by X. By our assumptions about o

and o′, the X summation terms in rG(o) and rG(o′), respectively, are

AFX(dX + 1)PP (X = x | Pa(X) = u) = AFX(dX + 1)
nX − `− i+ 1

nX − `
,

AFX(dX + 1)PP (X = x′ | Pa(X) = u) = AFX(dX + 1)
nX − `− i+ 1

nX − `
,

where ` is the number of indifferences in the CPT(X) preference order over Dom(X)

corresponding to Pa(X) = u. Thus, X contributes exactly the same quantity to

both sums, rG(o) and rG(o′).

Finally, we must consider the weights contributed by Ch(X) = {Y1, ..., Yk}. Let

yj = o[Yj] = o′[Yj], vj = o[Pa(Yj)], and v′j = o′[Pa(Yj)]. The Yj summation term

in rG(o) is AFYj(dYj + 1)PP (Yj = yj | Pa(Yj) = vj). The Yj summation term

in rG(o′) is AFYj(dYj + 1)PP (Yj = yj | Pa(Yj) = v′j).

We know that x and x′ are indifferent under Pa(X) = u. We know that

o[Pa(X)] = u and o[Pa(Yj)] = vj. Thus, if Pa(X) and Pa(Yj) have a non empty

intersection, vj and u must assign these variables the same values. Similarly, v′j
must also assign the same values as u to this intersection as o′[Pa(X)] = u and

o′[Pa(Yj)] = v′j. Note that vj and v′j differ only on the value taken by X (in
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particular, vj[X] = x and v′j[X] = x′). In §2.5, we discussed that, in order

to ensure consistency, we assume that changing between indifferent parental as-

signments does not affect the user’s preference over children. By this assump-

tion and the above results, the user’s preference over Yj should be identical un-

der Pa(Yj) = vj and Pa(Yj) = v′j. This means that, under both Pa(Yj) = vj and

Pa(Yj) = v′j, there are the same number of indifferences in the preference order

over Dom(Yj), and yj is in the same position of preference in these preference

orders. By our generalised definition of PP (Definition 2.21), this implies that

PP (Yj = yj | Pa(Yj) = vj) = PP (Yj = yj | Pa(Yj) = v′j). Thus, Yj contributes

exactly the same quantity to both sums, rG(o) and rG(o′).

We have now shown that all variables, Z ∈ V , contribute exactly the same

quantity to both sums, rG(o) and rG(o′). Thus, we must have rG(o) = rG(o′). We

have therefore shown that N � o ∼ o′ =⇒ rG(o) = rG(o′). The general case,

where o and o′ may differ on more than one variable, follows from this result and

the transitivity of =.

Part C.1

Next, we show that N � o � o′ =⇒ rG(o) > rG(o′). Suppose N � o � o′.

Let u = o[Pa(X)] = o′[Pa(X)] again. Let x1 % x2 % · · · % xm be the preference

ordering over Dom(X), given that Pa(X) = u. This is the row of CPT(X) that

corresponds to Pa(X) = u. Suppose x = xp and x′ = xq, we know that p < q

as o′ → o is an improving flip of X.

Let ok denote the outcome that has ok[X] = xk and, for all variables Y 6= X,

has ok[Y ] = o[Y ](= o′[Y ]). Then o1, ..., om is a sequence of X flips through the

values x1, x2, ..., xm. As Pa(X) = u in all ok, we know that om, ..., o1 is a sequence

of improving or indifferent flips (as x1 % x2 % · · · % xm when Pa(X) = u). Thus,

we have N � o1 % o2 % · · · % om. Notice that o = op and o′ = oq for p < q, so we

have N � o = op % op+1 % · · · % oq = o′. Further, at least one of these ok % ok+1

relations must be strict, ok � ok+1, as N � o � o′ (not N � o ∼ o′). This shows

that it is sufficient to prove that rG(o) > rG(o′) for the special case where x and x′

are adjacent in the ordering x1, x2, ..., xm, that is, q = p + 1. The more general

case, when x and x′ are not adjacent, follows from this specific case and the result

N � o ∼ o′ =⇒ rG(o) = rG(o′), proven above, and the transitivity of > and = –

this can be seen via similar reasoning to that given in the proof of Theorem 2.8.

Thus, we can assume that x and x′ are adjacent values. This implies that x and x′

are either (one of) the ith and (one of) the (i+1)th most preferred values of X (for

some i), respectively, given Pa(X) = u, or they are in same preference position.

However, x and x′ cannot be in the same preference position, as then we must
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have x ∼ x′ under Pa(X) = u and, therefore, N � o ∼ o′. This is a contradiction

to our assumption that N � o � o′. So we may assume that x and x′ are (one

of) the ith and (one of) the (i + 1)th most preferred values of X, respectively,

given Pa(X) = u.

Part C.2

We have now assumed that o and o′ differ only on the value taken by X ∈ V ,

where o[X] = x and o′[X] = x′. Further, under the values assigned to Pa(X), u,

by both o and o′, we have assumed that x is (one of) the ith most preferred value(s)

of X and x′ is (one of) the (i+ 1)th most preferred value(s).

In order to evaluate rG(o) and rG(o′), and subsequently prove that

rG(o) > rG(o′), we must first consider the individual summation terms in rG(o)

and rG(o′), as we did in the indifference case above.

Let Y ∈ V be a variable such that Y 6= X and X 6∈ Pa(Y ). Then, by the

same reasoning as in the indifference case above, Y contributes exactly the same

quantity to both sums, rG(o) and rG(o′). Let α denote the total contribution

to rG(o) (and thus to rG(o′) also) by such variables.

Now, consider the X summation terms. By our assumptions about o and o′,

the X summation terms in rG(o) and rG(o′) (respectively) are

AFX(dX + 1)PP (X = x | Pa(X) = u) = AFX(dX + 1)
nX − `− i+ 1

nX − `
,

AFX(dX + 1)PP (X = x′ | Pa(X) = u) = AFX(dX + 1)
nX − `− (i+ 1) + 1

nX − `
,

where ` is the number of indifferences in the preference ordering over Dom(X)

under Pa(X) = u, given in CPT(X). Note that 0 ≤ ` ≤ nX − 2 and

1 ≤ i ≤ nX − `− 1.

Finally, we must consider the weights contributed by Ch(X) = {Y1, ..., Yk}. Let

yj = o[Yj] = o′[Yj], vj = o[Pa(Yj)], and v′j = o′[Pa(Yj)]. The Yj summation term

in rG(o) is AFYj(dYj + 1)PP (Yj = yj | Pa(Yj) = vj). The Yj summation term

in rG(o′) is AFYj(dYj + 1)PP (Yj = yj | Pa(Yj) = v′j).

Now that we know all of the summation terms, we can evaluate rG(o) and rG(o′)

as follows:

rG(o) =α + AFX(dX + 1)
nX − `− i+ 1

nX − `

+
k∑
j=1

AFYj(dYj + 1)PP (Yj = yj | Pa(Yj) = vj),
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rG(o′) =α + AFX(dX + 1)
nX − `− (i+ 1) + 1

nX − `

+
k∑
j=1

AFYj(dYj + 1)PP (Yj = yj | Pa(Yj) = v′j).

Part C.3

By the same reasoning given in the proof of Theorem 2.8, AFYj = AFX
1
nX
βj, for

some 0 < βj ≤ 1.

Let Z ∈ V be any variable, z ∈ Dom(Z), w ∈ Dom(Pa(Z)), and let ` be the

number of indifferences in the row of CPT(Z) corresponding to Pa(Z) = w. Then,

by definition, 1
nZ−`

≤ PP (Z = z | Pa(Z) = w) ≤ 1. As 0 ≤ ` ≤ nZ − 1, this means

that 1
nZ
≤ PP (Z = z | Pa(Z) = w) ≤ 1. Thus, for any 1 ≤ j ≤ k, we have that

1

nYj
≤ PP (Yj = yj | Pa(Yj) = vj) ≤ 1,

1

nYj
≤ PP (Yj = yj | Pa(Yj) = v′j) ≤ 1.

Using these results, we can rewrite rG(o) and rG(o′) and obtain the following

inequalities:

rG(o) =α + AFX(dX + 1)
nX − `− i+ 1

nX − `

+
k∑
j=1

AFX
1

nX
βj(dYj + 1)PP (Yj = yj | Pa(Yj) = vj)

≥α + AFX(dX + 1)
nX − `− i+ 1

nX − `
+

k∑
j=1

AFX
1

nX
βj(dYj + 1)

1

nYj
,

rG(o′) =α + AFX(dX + 1)
nX − `− (i+ 1) + 1

nX − `

+
k∑
j=1

AFX
1

nX
βj(dYj + 1)PP (Yj = yj | Pa(Yj) = v′j)

≤α + AFX(dX + 1)
nX − `− (i+ 1) + 1

nX − `
+

k∑
j=1

AFX
1

nX
βj(dYj + 1) · 1.

305



E. Proofs

Recall that our aim is to prove rG(o) > rG(o′). For the purposes of contradic-

tion, suppose that rG(o) ≤ rG(o′). This implies

α + AFX(dX + 1)
nX − `− i+ 1

nX − `
+

k∑
j=1

AFX
1

nX
βj(dYj + 1)

1

nYj

≤ α + AFX(dX + 1)
nX − `− (i+ 1) + 1

nX − `
+

k∑
j=1

AFX
1

nX
βj(dYj + 1) · 1

=⇒ (dX + 1)
nX − `− i+ 1

nX − `
+

k∑
j=1

1

nX
βj(dYj + 1)

1

nYj

≤ (dX + 1)
nX − `− i
nX − `

+
k∑
j=1

1

nX
βj(dYj + 1) · 1

=⇒ (dX + 1)
nX

nX − `
≤

k∑
j=1

βj(dYj + 1)

(
1− 1

nYj

)
.

As 0 ≤ ` ≤ nX − 2 and, thus, 1 ≤ nX

nX−`
, it follows that

dX + 1 ≤
k∑
j=1

βj(dYj + 1)

(
1− 1

nYj

)
.

From this point, we derive a contradiction in an identical manner to the proof of

Theorem 2.8. Thus, we have shown that N � o � o′ =⇒ rG(o) > rG(o′) in the

case of x and x′ adjacent. The non-adjacent case follows from this specific result,

the previous indifference result, and the transitivity of > and =, as we explained

above.

We have now proven the required results for o and o′ that differ on exactly

one variable. The more general results follow from these special cases and the

transitivity of > and =, as we argued above.

E.7 Proof of Proposition 3.3

Proposition 3.3. Let N be a CP-net over variables V and let o and o′ be associ-

ated outcomes. Let U ⊆ V denote the variables that are unimportant to the query

N � o � o′. As the variables in U are unimportant, we must have o[U ] = o′[U ].

Let M be the CP-net obtained by removing U from N as described above (by fix-

ing U = o[U ]). Let C denote the constraint U = o[U ] and let NC denote the

CP-net N with this additional plausibility constraint. Let o1 and o2 be any two

outcomes associated with N that obey constraint C, that is, o1[U ] = o2[U ] = o[U ].

Then NC � o1 � o2 if and only if M � o1[V \U ] � o2[V \U ].
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Proof. If U = ∅, then M = N and C is a trivial constraint and so N = NC . Thus,

we have M = N = NC . As V \U = V , the result follows trivially.

Now suppose U 6= ∅. Recall that, for any CP-net, the preference o1 � o2 is

entailed if and only if the preference graph contains the directed path o2  o1.

Let GNC
denote the preference graph of NC and GM the preference graph of M .

For any outcomes associated with N , o1 and o2, that obey C, we want to show

that the following property holds; GNC
contains a directed path o2  o1 if and

only if GM contains a directed path o2[V \U ] o1[V \U ].

The outcomes associated with the CP-nets N , NC , and M are as follows,

where × denotes Cartesian product:

ΩN =×
X∈V

Dom(X),

ΩNC
= {α ∈ ΩN |α[U ] = o[U ](= o′[U ])},

ΩM = ×
X∈V \U

Dom(X).

The outcomes (nodes) in GNC
are the outcomes of N that obey C. The out-

comes (nodes) in GM are exactly the GNC
outcomes restricted to V \U , as we shall

show. Suppose α ∈ ΩM . Let β ∈ ΩN be the outcome such that β[U ] = o[U ]

and β[V \U ] = α. As β[U ] = o[U ], we have β ∈ ΩNC
and, thus, α is an NC

outcome restricted to V \U . Conversely, any β ∈ ΩNC
must also be in ΩN and so it

is an assignment to all variables in V . Restricting β to V \U gives an assignment

to V \U and so we have β[V \U ] ∈ ΩM . Thus, ΩM is exactly the outcomes in ΩNC

restricted to V \U .

Rather than referring to o1 and o2 as outcomes of N that obey C, we can

instead consider them as outcomes of NC . Given such an outcome, o1, we shall refer

to o1[V \U ] as the reduced form of o1. As we have seen above, ΩM is the reduced

forms of the outcomes in ΩNC
. Outcomes of NC are in one to one correspondence

with their reduced forms. Any outcome o1 ∈ ΩNC
⊆ ΩN specifies exactly one

assignment to V \U , this is its reduced form. If o1 and o2 have the same reduced

form, then they agree on the assignment to V \U . However, they must obey C,

so o1[U ] = o2[U ] = o[U ]. Thus, we have o1 = o2. This shows the outcomes in ΩNC

are in one to one correspondence with their reduced forms.

It is sufficient to prove our result for edges, rather than directed paths in

general. That is, there is an edge o2 → o1 in GNC
if and only if there is an

edge o2[V \U ] → o1[V \U ] in GM . Suppose we have proved this specific case. If

there is a directed path o2  o1 in GNC
, say o2 = p1 → p2 → · · · → pm = o1, then

by the above result, GM contains an edge pi[V \U ]→ pi+1[V \U ] for each i. These

edges form a directed path o2[V \U ]  o1[V \U ] in GM . Now suppose there is a

path o2[V \U ]  o1[V \U ] in GM , say o2[V \U ] = q1 → q2 → · · · → qk = o1[V \U ].

307



E. Proofs

As we have shown above, each qi is the reduced form of a unique outcome in NC ,

say q′i. By the above result, the edge qi → qi+1 in GM implies the edge q′i → q′i+1

is in GNC
. These edges form a directed path q′1  q′k in GNC

. As o2[V \U ] is the

reduced form of o2 and the q′i are unique, we must have o2 = q′1 as o2[V \U ] = q1. By

similar reasoning, we have o1 = q′k. Thus, we have found a directed path o2  o1

in GNC
. This proves that the general result follows from the specific edge case

given above.

We now prove the specific edge case described above. Let o1 and o2 be any

outcomes ofNC and suppose the edge o2 → o1 is inGNC
. The preference graphGNC

is the induced graph of GN on the set of outcomes (nodes) that obey C, ΩNC
. Thus,

if there is an edge o2 → o1 in GNC
, then there is also an edge o2 → o1 in GN . By

preference graph definition, o2 → o1 must be an improving flip for N . As o1 and o2

obey C, we must have o1[U ] = o2[U ] = o[U ]. Thus, o2 → o1 must be an improving

flip of some X 6∈ U , that is, X ∈ V \U . As o1 and o2 differ only on the value

of X, o1[V \U ] and o2[V \U ] also differ on X only. Recall that these reductions

of o1 and o2 are in ΩM . As they differ only on X, o2[V \U ]→ o1[V \U ] constitutes

a variable flip in M . By preference graph definition, there must be an edge in GM

between o1[V \U ] and o2[V \U ]. To prove that it is oriented o2[V \U ] → o1[V \U ],

we must prove this to be an improving flip for M .

Suppose that X lost no parents in obtaining M (by removing variables U

from N). In this case, CPT(X) is the same in both N and M , as no adjustment was

required (C imposes no constraint on this CPT). As o2 → o1 is an improving X flip

in N , we know that, under the Pa(X) assignments in o1 and o2, o1[X] is preferred

to o2[X] according to this CPT. As X lost no parents, it has the same parent set

in N and M , so all of its parents are in V \U . As o1[V \U ] and o2[V \U ] are simply

restrictions of o1 and o2 to V \U , they have the same assignments to Pa(X). Thus,

in determining the preference order of o1[V \U ] and o2[V \U ] as an X flip in M ,

we consult the same row of the CPT as we did for N . Thus, we again conclude

that o1[X] is preferred to o2[X] under this parental assignment (as the CPT is

unchanged) and so o2[V \U ] → o1[V \U ] is an improving flip and, thus, an edge

in GM , as we wanted.

Now suppose that some parents of X are lost in reducing N to M . The CPT

of X in M is obtained by reducing the original CPT to the rows in which U = o[U ]

in the parental assignment. We then omit any U variables from the parental assign-

ments as they are fixed. Let PN denote the parent set of X in N and PM ⊂ PN

the reduced parent set in M . As the PM variables are not removed, we must

have PM ⊆ V \U . To determine whether o2[V \U ] → o1[V \U ] is an improving or

worsening flip, we consult the row of CPT(X) in M that corresponds to the assign-

ment of PM in both o1[V \U ] and o2[V \U ]. Note that this is the same assignment
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given to PM by o1 and o2. The CPT row corresponding to this PM assignment is

the row from the original CPT in N that corresponds to the PN assignment that

has the same PM assignment and fixes all PN ∩U = PN\PM parents to their o[U ]

values (thus, the CPTs in M give the preference rules under constraint C). Recall

that o1 and o2 both assign U = o[U ] and they agree with o1[V \U ] and o2[V \U ] on

the PM assignment. Thus, the CPT row in M corresponding to the PM assignment

by o1[V \U ] and o2[V \U ] is the row in the original CPT corresponding to the PN

assignment by o1 and o2. Thus, as o2 → o1 is an improving flip in N , o1[X] is pre-

ferred to o2[X] in the original CPT (given the PN assignment). Therefore, o1[X]

must be preferred to o2[X] in the CPT of M also (given the reduced PM assign-

ment), as we are consulting the same CPT row. Thus, again, o2[V \U ]→ o1[V \U ]

is an improving flip, and, thus, an edge in GM . This concludes the proof that

if o2 → o1 is an edge in GNC
, then o2[V \U ]→ o1[V \U ] is an edge in GM .

Now, to prove the other direction, let us suppose that GM contains the edge

o2[V \U ] → o1[V \U ]. We want to prove that the edge o2 → o1 is in GNC
.

As o1, o2 ∈ ΩNC
and GNC

is the induced graph of GN on the outcomes in ΩNC
, it is

sufficient to prove that the edge o2 → o1 is in GN . By the definition of a preference

graph, as the edge o2[V \U ] → o1[V \U ] is in GM , this must be an improving flip

of some X ∈ V \U (by construction, these are the variables of M). Thus, o1[V \U ]

and o2[V \U ] differ only on the value of X. As o1 and o2 obey C, we must have

o1[U ] = o2[U ] = o[U ] and so o1 and o2 differ only on the value of X. Thus, o2 → o1

constitutes a variable flip for N and so o1 and o2 are connected by an edge in GN ,

by the preference graph definition. To prove this edge is oriented o2 → o1, we must

prove that it is an improving flip. By the same arguments as above, the CPT(X)

row in N that corresponds to the parental assignment in o1 and o2 must be the

same as the row in the CPT(X) of M corresponding to the parental assignment

in o1[V \U ] and o2[V \U ]. As o2[V \U ] → o1[V \U ] is an improving X flip in M ,

we must have that o1[X] is preferred to o2[X] according to the relevant row of

CPT(X). As this row is the same as the CPT(X) row in N corresponding to

the o1 and o2 parent assignments, o1[X] must also be preferred to o2[X] in N ,

given the parental assignments of o1 and o2. Thus, as o2 → o1 is an X flip, it is

an improving flip for N . Thus, o2 → o1 is an edge in GN (and so in GNC
), as we

wanted to prove. This concludes our proof of the specific edge case of the result.

The general result follows from this case, as we showed above.

E.8 Proof of Proposition 3.4

Proposition 3.4. Let N be a CP-net over variables V and let o and o′ be any

two associated outcomes. Let P denote the set of variables, Y , such that Y and
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all ancestors of Y take the same values in both o and o′. If there is an IFS o′  o

in N , then no variable in P is flipped in this IFS.

Proof. If Y ∈ P , then all ancestors of Y must also be in P . Suppose there is an

IFS o′  o in N that, at some point, flips a variable in P . Let PF 6= ∅ be the set

of variables in P that are flipped by this IFS. Let Y ∈ PF have minimal ancestor

set size. That is

Y = argminX∈PF
{|Anc(X)|},

where Anc(X) denotes the set of ancestors of X. Such a variable, Y , must exist

as PF is non-empty and finite (as V is finite) and |Anc(X)| are finite integers (as N

is acyclic and V is finite). Suppose Z is a parent of Y . As Anc(Z) ( Anc(Y )

(as Z 6∈ Anc(Z)), we must have |Anc(Z)| < |Anc(Y )| and, thus, Z 6∈ PF . As

Y ∈ P implies that all ancestors (including parents) of Y are in P , this means

that none of the parents of Y are flipped in this IFS.

Let u = o[Pa(Y )] = o′[Pa(Y )]. Suppose the associated CPT(Y ) entry is

u : y1 � y2 � · · · � ym. As none of Pa(Y ) change value throughout the IFS, this

preference order over Y is also fixed throughout the IFS. Every variable change

in an IFS must be an improving flip. Thus, every flip of variable Y must be from

some yi to some yj where i > j. Suppose we have o′[Y ] = yi. As Y ∈ PF , Y

must be changed at least once. Thus, at the end of the IFS, we must have Y = yj

with j < i. As the IFS ends at o, we have o[Y ] = yj 6= yi = o′[Y ]. This is a

contradiction as Y ∈ P implies o[Y ] = o′[Y ].

As we have derived a contradiction, our initial assumption that there exists

an o′  o IFS that flips a variable in P must be incorrect. That is, we have shown

that all IFS o′  o preserve P throughout, as we wanted.

E.9 Proof of Proposition 3.10

Proposition 3.10. Let N be a CP-net over variables V with structure G. Let

G1, G2, ..., Gm be the connected components of G. Let Vi ⊆ V denote the variables

in Gi. Let Ni be the induced sub-CP-net of N over Gi. Let o and o′ be any two

outcomes associated with N such that o 6= o′ (otherwise the dominance query is

trivially false). Then we have

N � o � o′ ⇐⇒ ∀i (o[Vi] = o′[Vi] ∨Ni � o[Vi] � o′[Vi]).

Proof. Suppose we have N � o � o′. Then there exists an IFS o′  o. Suppose Ni

satisfies o[Vi] 6= o′[Vi] – there must be at least one, otherwise we have o = o′ (a

contradiction) as they agree on all connected components. As our IFS starts at o′

and ends at o, the variables in Vi must start at o′[Vi] and end at o[Vi]. Thus,
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looking only at the flips of variables in Vi, the o′  o IFS specifies a flipping

sequence for Vi, o
′[Vi]  o[Vi]. If we can prove that each flip in this sequence

is an improving flip in Ni, then we have found an IFS o′[Vi]  o[Vi] and, thus,

proved Ni � o[Vi] � o′[Vi], as we wanted. Suppose that o1 → o2 is an X flip in

the o′  o IFS for some X ∈ Vi. Let u be the assignment of values to Pa(X)

in both o1 and o2. As Gi is a connected component, X has the same parent set

in G and Gi. As o1 → o2 is an improving flip, o2[X] must be preferred to o1[X],

given Pa(X) = u, in the CPT(X) of N . By construction, X has the same CPT

in Ni as N . Thus, o2[X] is also preferred to o1[X], given Pa(X) = u, in Ni.

Thus, o1[Vi] → o2[Vi] is an improving X flip in Ni. As these are the flips we

used to construct the o′[Vi]  o[Vi] flipping sequence, this must be an IFS in Ni.

Thus, we have Ni � o[Vi] � o′[Vi]. We have shown that, if o[Vi] 6= o′[Vi], then

Ni � o[Vi] � o′[Vi]. This is equivalent to showing that, for all i, either o[Vi] = o′[Vi]

or Ni � o[Vi] � o′[Vi], this proves the first direction of our equivalence.

Now suppose that, for every Ni, we have either o[Vi] = o′[Vi] or

Ni � o[Vi] � o′[Vi]. That is, for any Ni such that o[Vi] 6= o′[Vi], there exists

some IFS o′[Vi]  o[Vi] in Ni. We prove our result by constructing an o′  o

flipping sequence that we shall prove to be an IFS in N . To do this we construct

the following series of flipping sequences:

o′ = o1  o2  o2 · · · om  om+1 = o,

where oi[Vj] = o′[Vj] for 1 ≤ j < i and oi[Vj] = o[Vj] for i ≤ j ≤ m.

By definition, we have o′ = o1 and o = om+1. If o[Vi] = o′[Vi], then oi = oi+1.

In this case, we let oi  oi+1 be the trivial sequence with no flips. Now sup-

pose o[Vi] 6= o′[Vi] (there must be at least one such Vi as o 6= o′). The only

difference between oi and oi+1 is that oi[Vi] = o′[Vi] and oi+1[Vi] = o[Vi]. By our

assumption, Ni � o[Vi] � o′[Vi] and so Ni has an IFS o′[Vi]  o[Vi]. The flipping

sequence oi  oi+1 simply performs the Vi flips dictated by this o′[Vi]  o[Vi]

IFS. As no variables outside of Vi are changed, these flips successfully change oi

into oi+1. We have now constructed the above flipping sequence from o1 to om

(o′  o). To prove that N � o � o′, it is sufficient to show that this sequence is

an IFS for N .

Let Ni be such that o[Vi] 6= o′[Vi], then oi  oi+1 is a non-trivial flipping

sequence. Let p→ p′ be some flip in this sequence. By construction, this must be

a flip of some X ∈ Vi. Further, by construction, the flip p[Vi] → p′[Vi] is one of

the flips in an IFS o′[Vi]  o[Vi] in Ni. Let u be the values taken by Pa(X) in p

and p′ (and thus in p[Vi] and p′[Vi], as Gi is a connected component so X ∈ Vi =⇒
Pa(X) ⊆ Vi). As p[Vi] → p′[Vi] is an improving flip in Ni, CPT(X) in Ni must

dictate that p[X] is preferred to p′[X] given Pa(X) = u. By definition, Ni and N
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have the same CPT for X. Thus, p[X] is preferred to p′[X] given Pa(X) = u

in N also. Thus, the flip p′ → p is an improving flip for N . Thus, every flip

on our oi  oi+1 path is an improving flip. Hence, all flips in our constructed

o1  om sequence are improving flips for N (as oi  oi+1 is a trivial sequence

if o[Vi] = o′[Vi]). We have therefore found an o′  o IFS for N , proving that

N � o � o′. This proves the other direction of our equivalence.

E.10 Proof of Proposition 4.6

Proposition 4.6. Let N be a CP-net over variables V . Let Pa(X) = U ∪ {Y },
where X, Y ∈ V , U ⊆ V , and Y 6∈ U . Suppose that Y is a degenerate parent

of X. Let CPT1 be the current CPT(X) and let CPT2 be the CPT(X) obtained

by removing Y as a parent, as we did in §3.2.1. Then we have

St(CPT2) ≥ St(CPT1).

Proof. Let Z = U ∪{Y }, W1 = V \Z ∪{X} and W2 = V \U ∪{X}. As we showed

in Appendix D.1, St(CPT1) = E[I1(θ)], where

θ ∼ Dir(β1 + d(o1), ..., βO + d(oO))

and, if θ = (q1, q2, ..., qO), then

I1(θ) =


1 if

∧
z:x1�x2∈CPT1

(∑
w∈Dom(W1) qzx1w >

∑
w∈Dom(W1) qzx2w

)
,

0 otherwise.

In general, for indicator functions we have that IA∧B = IAIB. For z ∈ Dom(Z),

suppose the corresponding rule in CPT1 is z : x � x̄. Then let us define I1,z as

follows:

I1,z(θ) =

1 if
∑

w∈Dom(W1) qzxw >
∑

w∈Dom(W1) qzx̄w,

0 otherwise.

This is defined similarly if the corresponding rule in CPT1 is z : x̄ � x. By

definition, we have

I1(θ) =
∏

z∈Dom(Z)

I1,z(θ).

As Z = U ∪ {Y }, we can re-write this product as

I1(θ) =
∏

u∈Dom(U)

I1,uy(θ)I1,uȳ(θ). (E.2)
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Now consider CPT2. By similar reasoning, St(CPT2) = E[I2(θ)], where

I2(θ) =


1 if

∧
u:x1�x2∈CPT2

(∑
w∈Dom(W2) qux1w >

∑
w∈Dom(W2) qux2w

)
,

0 otherwise.

For any u ∈ Dom(U), if the associated rule in CPT2 is u : x � x̄, let us define I2,u

as follows:

I2,u(θ) =

1 if
∑

w∈Dom(W2) quxw >
∑

w∈Dom(W2) qux̄w,

0 otherwise.

This is defined similarly if the corresponding rule in CPT2 is u : x̄ � x. By

definition, we have

I2(θ) =
∏

u∈Dom(U)

I2,u(θ). (E.3)

Let u ∈ Dom(U) and suppose the corresponding rule in CPT2 is u : x � x̄.

As Y is a degenerate parent in CPT1, it must contain the rules uy : x � x̄

and uȳ : x � x̄. Thus, if I1,uy(θ) = I1,uȳ(θ) = 1, then we must have both∑
w∈Dom(W1)

quyxw >
∑

w∈Dom(W1)

quyx̄w, (E.4)

∑
w∈Dom(W1)

quȳxw >
∑

w∈Dom(W1)

quȳx̄w. (E.5)

Now consider I2,u(θ).∑
w∈Dom(W2)

quxw =
∑

w∈Dom(W1)

∑
y′∈Dom(Y )

quxwy′

=
∑

w∈Dom(W1)

quxwy +
∑

w∈Dom(W1)

quxwȳ

=
∑

w∈Dom(W1)

quyxw +
∑

w∈Dom(W1)

quȳxw.

Similarly, we have∑
w∈Dom(W2)

qux̄w =
∑

w∈Dom(W1)

quyx̄w +
∑

w∈Dom(W1)

quȳx̄w.

Thus, if the inequalities E.4 and E.5 are true, we must have∑
w∈Dom(W2)

quxw >
∑

w∈Dom(W2)

qux̄w,
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which implies I2,u(θ) = 1. We have therefore shown that I1,uy(θ) = I1,uȳ(θ) = 1 =⇒
I2,u(θ) = 1. From this, we can conclude

I2,u(θ) ≥ I1,uy(θ)I1,uȳ(θ)

=⇒
∏

u∈Dom(U)

I2,u(θ) ≥
∏

u∈Dom(U)

I1,uy(θ)I1,uȳ(θ)

=⇒ I2(θ) ≥ I1(θ) by Equations E.2 and E.3.

Let ∆k be the standard k−simplex. This is the support set for a k + 1 dimen-

sional Dirichlet distribution (see Appendix D.1 for details). Let f be the density

function for the Dirichlet distribution of θ.

I1(θ) ≥ I2(θ)

=⇒
∫
· · ·
∫

θ∈∆O−1

I1(θ)f(θ) ≥
∫
· · ·
∫

θ∈∆O−1

I2(θ)f(θ)

=⇒ E[I2(θ)] ≥ E[I1(θ)]

=⇒ St(CPT2) ≥ St(CPT1).

E.11 Proof of Proposition 4.16

Proposition 4.16. Let N be a binary acyclic CP-net with n variables. Let EN

denote the number of distinct pairwise outcome preferences that are entailed by N .

Let N0 be the binary CP-net over n variables that has no edges in its structure.

Then we must have

EN ≥ EN0 = 3n − 2n.

Proof. Let us begin by proving that EN0 = 3n − 2n. Without loss of generality,

we assume N0 is a CP-net over variables {X1, ..., Xn}, where each Xi has the

CPT xi � x̄i. Let o be an outcome associated with N0. Let us define functions

that identify which variables take the ‘good’ value in o and which take the ‘bad’

value:

g(o) ={Xi|o[Xi] = xi},
b(o) ={Xi|o[Xi] = x̄i}.

We start by proving that N � o � o′ if and only if b(o) ( b(o′). Suppose

b(o) ( b(o′). Let b(o) = {X1, X2, ..., Xk} and b(o′) = {X1, X2, ..., Xm}, m > k

(possibly with some re-labelling). We can transform o′ into o by flipping each
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Xi ∈ {Xk+1, ..., Xm} from x̄i to xi. Each of these flips changes a variable to its

more preferred value (the values taken by other variables are irrelevant, as there

are no parents in N0). That is, performing these flips in any order constitutes

an o′  o IFS in N0. Thus, N0 � o � o′.

Now suppose N0 � o � o′. If b(o) = b(o′), then g(o) = g(o′) also and so o = o′.

This contradicts N0 � o � o′, thus, b(o) 6= b(o′). As N0 � o � o′, there is an

IFS o′  o, o′ = o1 ≺ o2 ≺ · · · ≺ om = o. If Xi ∈ g(o′), then it cannot be

flipped in this sequence, regardless of what changes are made to other variables.

This is because Xi is in its preferred position in o′ and has no parents, thus, Xi

remains in its preferred position whenever other variables are changed. There-

fore, Xi cannot be changed to improve the user’s preference. This means that no

Xi ∈ g(o′) is changed in this sequence. Thus, if o′[Xi] = xi, then o[Xi] = xi,

which implies g(o′) ⊆ g(o). As b(o) = V \g(o) and similarly for o′, this implies that

b(o) ⊆ b(o′). As we know b(o) 6= b(o′), we now have b(o) ( b(o′). We have thus

proven that N � o � o′ if and only if b(o) ( b(o′).

Let |b(o)| = k for some 0 ≤ k ≤ n. The set of outcomes, o′, such that

N0 � o � o′, is the set of outcome o′ such that b(o′) ) b(o). Such o′ can

be identified with the subset G ⊆ g(o), G 6= ∅, such that b(o′) = b(o) ∪ G.

As |g(o)| = n − |b(o)| = n − k, there are 2n−k − 1 such subsets G. Thus, there

are 2n−k − 1 outcomes o′ such that N0 � o � o′.

Any outcome, o, can be fully determined by b(o) as g(o) = V \b(o). Thus, the

outcomes with |b(o)| = k can be identified by b(o), which is a subset of V of size k.

Every subset of V corresponds to b(o) for some outcome. Thus, the number of

outcomes with |b(o)| = k is equal to the number of subsets of V with size k. This

is
(
n
k

)
.

From these results we can conclude the following:

EN0 = |{o � o′|N0 � o � o′}|

=
n∑
k=0

|{o � o′|N0 � o � o′ ∧ |b(o)| = k}|

=
n∑
k=0

∑
o∈Ω

s.t. |b(o)|=k

|{o′|N0 � o � o′}|

=
n∑
k=0

∑
o∈Ω

s.t. |b(o)|=k

2n−k − 1

=
n∑
k=0

(
n

k

)
(2n−k − 1) =

n∑
k=0

(
n

k

)
2n−k −

n∑
k=0

(
n

k

)
.
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The binomial formula states (x+y)n =
∑n

k=0

(
n
k

)
xn−kyk for n ∈ N. Thus, if we

apply this formula to the above with (x, y) = (2, 1) and (x, y) = (1, 1), it simplifies

to EN0 = 3n − 2n.

We shall now demonstrate that, for any acyclic binary CP-net over n vari-

ables, N , we have EN ≥ EN0 . We first define functions g′ and b′ for N that are

analogous to g and b. These need to be re-defined as variables in N may have

parents, so the ‘good’ and ‘bad’ values are not so easily determined – they depend

on the values taken by parents:

g′(o) = {Xi|o[Xi] = x1
i ∧ o[Pa(Xi)] : x1

i � x2
i ∈ CPT(Xi)},

b′(o) = {Xi|o[Xi] = x1
i ∧ o[Pa(Xi)] : x2

i � x1
i ∈ CPT(Xi)}.

We shall now show that b′(o) = b′(o′) =⇒ o = o′. Note that b′(o) = V \g′(o),
so b(o) = b(o′) if and only if g(o) = g′(o). Suppose b′(o) = b′(o′) and that

X1, X2, ..., Xn is a topological ordering of the variables according to N . That

is, Pa(Xi) ∈ {X1, ..., Xi−1}. Such an order exists as N is acyclic. As X1 has no

parents, we can assume (without loss of generality) that CPT(X1) = x1 � x̄1.

If X1 ∈ g′(o) = g′(o′), then by definition of g′, we must have o[X1] = x1 = o′[X1].

Similarly, if X1 ∈ b′(o) = b′(o′), then we must have o[X1] = x̄1 = o′[X1]. Thus,

o[X1] = o′[X1]. Now suppose that, for Xi ∈ {X1, ..., Xk}, we have o[Xi] = o′[Xi].

As this is a topological ordering, we know that o[Pa(Xk+1)] = o′[Pa(Xk+1)] = u.

Suppose (without loss of generality) that CPT(Xk+1) in N has the rule

u : xk+1 � x̄k+1. If Xk+1 ∈ g′(o) = g′(o′), then o[Xk+1] = xk+1 = o′[Xk+1],

by the definition of g′. If Xk+1 ∈ b′(o) = b′(o′), then o[Xk+1] = x̄k+1 = o′[Xk+1],

by the definition of b′. Thus, o[Xk+1] = o′[Xk+1]. By induction, we have shown

o[Xi] = o′[Xi] for all i, therefore o = o′.

Given any subset B ⊆ V , we can determine the unique outcome such that

b′(o) = B as follows. Note that g′(o) = V \B. Suppose that X1, X2, ..., Xn is a

topological ordering. We go through the variables in order, so that a variable’s

parents are always assigned values before the variable itself. If we want Xi ∈ g′(o),
then assign o[Xi] to be the preferred value in the rule of CPT(Xi) corresponding

to o[Pa(Xi)]. If we want Xi ∈ b′(o), assign o[Xi] to be the not preferred value. By

construction, o satisfies the definitions of b′(o) and g′(o). It is unique by the above

result that b′(o) = b′(o′) =⇒ o = o′.

By the above results, we have shown that b′ is a bijection between the outcomes

and the subsets B ⊆ V . Thus, the number of outcomes with |b′(o)| = k, for

0 ≤ k ≤ n, is equal to the number of subsets of V of size k. Thus, there are
(
n
k

)
outcomes with |b′(o)| = k.

Now suppose |b′(o)| = k. Let G ⊆ g′(o), so we have |G| ≤ n − k. Let o′

be the outcome obtained from o by flipping all variables in G. If G 6= ∅, we
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will show that N � o � o′. Let us again assume that X1, ..., Xn is a topological

order of the variables and that G = {Xi1 , ..., Xim}, where i1 < i2 < · · · < im

and m ≥ 1 (as we assume G 6= ∅). We will prove that N � o � o′ by constructing

a sequence of worsening flips from o o′. Let us start by flipping Xim and move

in reverse order to Xi1 . As Xim ∈ G ⊆ g′(o), by the definition of g′, Xim must

be in its preferred position in o, according to the assignment of Pa(Xim) in o.

This means that flipping the value of Xim constitutes a worsening flip from o.

Now suppose we have flipped the values of Xim , Xim−1 , ..., Xim−j+1
successively.

As G is in topological order, this means that none of Pa(Xim−j
), or Xim−j

itself,

have been flipped thus far. Thus, Pa(Xim−j
) still take the same values they did

in o. Thus, as Xim−j
∈ g(o), Xim−j

takes its preferred value, according to the

current assignment to Pa(Xim−j
). Therefore, flipping the value of Xim−j

constitutes

a worsening flip. Hence, by induction, successively flipping Xim , Xim−1 , ..., Xi1

constitutes a worsening flipping sequence from o that returns o′ (as described

above) and so N � o � o′.

Let G1, G2 ⊆ g′(o), such that G1 6= G2 and G1, G2 6= ∅. Let o′1 and o′2 be

the outcomes obtained from o by flipping G1 and G2 respectively. By the above

reasoning, N � o � o′1 and N � o � o′2. Without loss of generality, there exists

X ∈ G1 such that X 6∈ G2. As X ∈ G1, o′1[X] 6= o[X] (as X is flipped) and, as

X 6∈ G2, o′2[X] = o[X] (as X is not flipped). Thus, G1 6= G2 =⇒ o′1 6= o′2.

By the above two arguments, every G ⊆ g′(o), G 6= ∅, corresponds to a

unique o′ such that N � o � o′. As |g(o′)| = |V \b′(o)| = |V |−|b′(o)| = n−k, there

are 2n−k − 1 such subsets, G. Thus, for any outcome o with |b′(o)| = k, there are

at least 2n−k − 1 distinct o′, such that N � o � o′.

From these results, we can conclude the following:

EN = |{o � o′|N � o � o′}|

=
n∑
k=0

|{o � o′|N � o � o′ ∧ |b′(o)| = k}|

=
n∑
k=0

∑
o∈Ω

s.t. |b′(o)|=k

|{o′|N � o � o′}|

≥
n∑
k=0

∑
o∈Ω

s.t. |b′(o)|=k

2n−k − 1

=
n∑
k=0

(
n

k

)
(2n−k − 1) =

n∑
k=0

(
n

k

)
2n−k −

n∑
k=0

(
n

k

)
= 3n − 2n = EN0 .
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E.12 Proof of Proposition A.4

Proposition A.4. Let %C0 be any ordering consistent with acyclic graph G. Sup-

pose %C0 has ` levels. Let Ok denote the outcomes on level k of %C0, for any k ≤ `.

Let S = {o ∈ Ok+1|∀o′ ∈ Ok, o → o′ 6∈ G}. Let %C1 be the ordering obtained

from %C0 by moving some o ∈ Ok+1 up to level k. If level k + 1 is now empty, the

level is removed. Then %C1 is also consistent with G if and only if o ∈ S.

Proof. We first assume that %C1 is obtained by moving some element of S and

prove that the resulting ordering is consistent with G.

Let o ∈ S and o′ ∈ Ok. There cannot be a directed path o′  o in G as this

would imply o �C0 o′ (as %C0 is consistent with G) and o′ is on a higher level

of %C0 than o. Suppose there exists a directed path o o′ in G:

o = p1 → p2 → · · · → pm = o′.

As %C0 is consistent with G, this implies that pm �C0 pm−1 �C0 · · · �C0 p1. This

means that each pi is on a lower level of %C0 than pi+1. Thus, p1 must be at

least m − 1 levels below pm. However, as o and o′ are on adjacent levels of %C0 ,

we must have m = 2 (we can not have m = 1 as o 6= o′). This means that

o = p1 → p2 = o′ is an edge (path) in G. This contradicts the fact that o ∈ S.

Thus, there is no path o o′ in G and so o and o′ are not connected by a directed

path in G.

Now let o, o′ ∈ Ok+1 with o 6= o′. suppose there is a path o  o′ in G. If this

path has length m − 1, then there are at least m − 1 levels between o and o′ by

the same reasoning as above. As o 6= o′, any such path must have a length of at

least 1. Thus, there is at least one level between o and o′. This is a contradiction

as o and o′ are on the same level of %C0 . This shows that distinct outcomes in Ok+1

are not connected by directed paths in G. Thus, if o ∈ S and o′ ∈ Ok+1\{o}, then

there is no directed path between o and o′ in G (as S ⊆ Ok+1 and o 6= o′).

We have now proved that, for any o ∈ S, there is no directed path in G

between o and any element of Ok or Ok+1\{o}.
Let o ∈ S be the outcome that we move up a level in constructing%C1 from%C0 .

The only relative positions that are changed in this construction are between o

and Ok and between o and Ok+1\{o}. The outcome o remains above all outcomes

in levels > k + 1 and below all outcomes in levels < k. Thus, if a �C0 b and

either a 6= o or b 6∈ Ok ∪ Ok+1\{o} (and vice versa), then a �C1 b as the relative

positions of a and b have not changed.

Suppose there exists a directed path o1  o2 in G. As there are no paths

between o and Ok or between o and Ok+1\{o}, we must have either o1 6= o or

o2 6∈ Ok ∪Ok+1\{o} (and vice versa). We know that o2 �C0 o1 as %C0 is consistent
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with G. Thus, by the above argument, we must also have o2 �C1 o1. Hence, we

have shown that, for any path o1  o2 in G, we have o2 �C1 o1. That is, %C1 is

consistent with G.

Now suppose that we obtained %C1 by moving some o ∈ Ok+1\S up to level k.

As o 6∈ S, there must be some o′ ∈ Ok such that the edge o → o′ is in G. As o′

is on level k of %C0 , and only o is moved in the construction of %C1 , o′ is also on

level k of %C1 . By construction, o is also on level k of %C1 . As G contains the

edge (path) o → o′, if %C1 is consistent, then we must have o′ �C1 o. This is a

contradiction as o and o′ are on the same level of %C1 . Thus, in this case, %C1 is

not consistent with G. We have now proven that %C1 is consistent with G if and

only if the moved outcome, o, is in S.

E.13 Proof of Theorem A.9

Theorem A.9. Let G be a graph representing user preference and let o1 � o2

be a preference consistent with G. Suppose %C0 is an ordering consistent with G

such that o2 �C0 o1. Let G1 be obtained from G by adding the edge o2 → o1 and

let %C1 be the ordering obtained from %C0 by applying Algorithm 5. Then %C1 is

consistent with G1.

Proof. As argued in Appendix A, this procedure preserves consistency with G.

This is because only two action types are performed. First, moving an outcome

or set of outcomes on a given level, i, to a new level directly above level i (steps 3

and 19–20). If this leaves level i empty, then it is removed. This preserves

consistency with G by Lemma A.8. The second type of action is moving improvable

outcomes up to the next level, again removing any empty levels produced (step 14).

This preserves consistency with G by Proposition A.4. Therefore, as the original

ordering, %C0 is consistent with G, the produced ordering, %C1 , is also consistent

with G. Thus, in order to prove that %C1 is consistent with G1, it is sufficient to

prove that o1 �C1 o2 (by Proposition A.2).

The first thing Algorithm 5 does (steps 2–7) is move o2 up to its own level (if

it is on a level with multiple outcomes in %C0 . Let o2 now be on level k and o1 be

on level `, k < `. Let outcome o be on any level i such that k < i ≤ `. We will

show that, if there is no directed path o o2 in G, then o �C1 o2. This is proved

by induction. As o1 � o2 is consistent with G, there cannot be a path o1  o2

in G. As o1 is on level `, it constitutes one of the outcomes in question and so this

result proves o1 �C1 o2, as we needed.

Suppose o is on level k+1 after step 7 and suppose there is no o o2 path in G.

The first iteration of the ‘for’ loop (steps 10–22) moves all improvable outcomes on
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level k+ 1 as far up the ordering as possible, until they pass level k. By design, o2

is the only outcome on level k after step 7. We know by assumption that there

is no directed path o  o2 in G and, thus, G cannot contain the edge o → o2.

Therefore, o is improvable and so we move it up a level to level k (step 14). At

this point, the improvable outcomes of level k + 1 are now on level k and, thus,

they are not moved up any higher. The ‘if’ statement (steps 18–21) then moves

them all (including o) up to a new level directly above level k. Thus, o is now on a

level above o2. The remaining iterations of the ‘for’ loop (steps 10–22) move only

outcomes that were on levels k + 2 to ` after step 7 (either moving them between

levels or moving them into a new level). Thus, the remaining procedure will not

impact the relative positions of o and o2. Thus, o will be on a level above o2 in

the resulting order, %C1 . That is, o �C1 o2, as we wanted.

For every outcome, o, that was on level i after step 7, k < i < j ≤ `, such

that G does not contain a directed path o  o2, we now assume that o �C1 o2.

The first j − k − 1 iterations of the ‘for’ loop (steps 10–22) move the improvable

outcomes of levels k+1, k+2, ..., j−1 (using the level numbering from immediately

after step 7) as far up the ordering as possible until they pass level k. As we

discussed above, the remaining procedure will not affect the positions of these

outcomes relative to o2. Thus, by our assumption, if o is on level i after step 7,

k < i < j ≤ `, and G does not contain a directed path o o2, then o must be on

a level above o2 after the first j − k − 1 iterations of the ‘for’ loop.

Let us suppose that o is on level j after step 7 and that G does not con-

tain a directed path o  o2. Recall that after step 7, o2 is on level k. The

first j− k− 1 iterations of the ‘for’ loop (steps 10–22) move only the outcomes on

levels k + 1, k + 2, ..., j − 1. Suppose the first j − k − 1 iterations have occurred.

Let ik denote the level number that o2 is now on and let ij denote level number

of the original (after step 7) level j. If there are levels between ik and ij (that

is ij > ik + 1), then they must consist of outcomes, o′, that were previously on

levels k+ 1, k+ 2, ..., j − 1 (after step 7) as these are the only outcomes that have

moved and were the only outcomes between levels k and j originally. Further, as

any such outcomes, o′, are below o2 in the ordering, G must contain a directed

path o′  o2, by the above assumptions.

Suppose G contains the edge o → o′ for any o′ that lies on a level between ik

and ij. Combining this edge with the o′  o2 path in G implies that there is

a path o  o2 in G, This contradicts our assumptions about o. Thus, for any

outcome, o′, on a level between ik and ij, G does not contain the edge o → o′.

Level ik only contains o2 as any outcomes added to this level are removed at

the end of each iteration of the ‘for’ loop by steps 17–21. We know that the

edge o → o2 is not in G as there is no directed path o  o2 in G. Thus, for
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every outcome, o′, on levels ik to to ij − 1, the edge o → o′ is not in G. Thus, o

is improvable with respect to all of these levels and can continue to be moved up

by the ‘while’ loop (steps 13–16) until it is moved up into level ik. Once the

improvable outcomes on level ij are moved up as far as possible by this ‘while’

loop, those that reached level ik (including o) are moved up to a level above ik by

the ‘if’ statement (steps 18–21). Thus, o is now on a level above o2. As before, the

remaining procedure will not affect this relative position. That is, in the resulting

ordering, %C1 , o will be above o2 and, hence, o �C1 o2, as we wanted.

Thus, by induction, we have proven that, for any outcome on level i (after

step 7), where k < i ≤ `, and G does not contain a directed path o o2, we have

that o �C1 o2. As we argued above, this includes o1 and so o1 �C1 o2. We also

proved above that %C1 is consistent with G. Thus, %C1 is consistent with G1 by

Proposition A.2.
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Appendix F

Glossary – Additional

Terminology

In this Appendix, we define additional, non-essential but relevant terms.

• Genetic Algorithm: A genetic algorithm is an optimisation technique in-

spired by the theory of evolution. The aim is to minimise (or maximise)

some fitness function, f . Genetic algorithms are particularly suited to opti-

mising f over discrete combinatorial domains. The domain over which one

wants to optimise f is the total population and elements of this population

are referred to as ‘chromosomes’. Every chromosome is made up of the same

sequence of k genes and each gene takes exactly one value (allele) in each

chromosome. One can visualise a chromosome as a k length vector, each

entry corresponding to a gene. Each gene takes values in some discrete set

of alleles. The general template of a genetic algorithm is as follows.

Start by selecting a (possibly random) initial set of chromosomes. This is

the initial population.

Until the termination condition is satisfied, we perform the below procedure

repeatedly. The termination condition could be connected to the run time or

complexity of the process. Alternatively, termination could be connected to

population features such as diversity; for example, the algorithm terminates

if the population has sufficiently converged in some aspect.

Given the current population, (if certain conditions are satisfied) we first

perform crossover. This process involves two steps. First, select a set of

parents from the current population. This selection is usually based upon

fitness (fitter chromosomes are more likely to be chosen). Second, apply

323



F. Glossary – Additional Terminology

some technique to combine these parents in order to generate children (new

chromosomes).

We then perform mutation on the population (if certain conditions are sat-

isfied). This involves randomly changing certain genes of some chromosomes

in the population.

Crossover and mutation are repeated until sufficient new chromosomes have

been produced. The next population is formed by replacing chromosomes in

the previous population with these new chromosomes. (Reeves and Rowe,

2003)

• Kripke Structure: Let P be some set of propositional variables. A Kripke

structure consists of four components, S, S0, T , and L. S is a set of states

defined by the values taken by P and S0 ⊆ S is the set of initial states. T is

a binary transition relation over S, T ⊆ S × S, such that every state, s ∈ S,

is related to at least one other. That is, for every s ∈ S, there is some s′ ∈ S
such that (s, s′) ∈ T . We can consider T to represent directed edges between

states. Finally, L is a labelling function, L : S 7→ 2P , that maps each s ∈ S
to the set of variables in P that are true in s. (Santhanam et al., 2010)

• PAC-learner (for the case of CP-nets): Defined by Chevaleyre et al.

(2010), a polynomial time algorithm A is a PAC-learner (probably approx-

imately correct learner) by a set of ‘examples’ E ⊆ Ω × Ω, for a class of

CP-nets C, if the following property holds:

Let D be some distribution over E and let δ, ε ∈ (0, 1). There exists some

polynomial, p, such that for any N ∈ C and any D, ε, δ we have the following

condition; if we let A have access to at least p(|V |, 1/δ, 1/ε) many examples

drawn randomly from D, then with probability ≥ 1 − δ, the algorithm A

returns a CP-net, M , such that, given an example (o1, o2) drawn randomly

from distribution D, we have

Pr((N � o1 � o2 and M 2 o1 � o2) ∨ (M � o1 � o2 and N 2 o1 � o2)) ≤ ε.

Note that an example is an ordered pair of outcomes that is labelled either

entailed or not entailed by N .

• PSPACE-Complete: PSPACE is the set of decision problems that can be

solved using an amount of memory space that is polynomial in the input size.

A problem, p, is PSPACE-complete if it is in PSPACE and all other PSPACE

problems can be transformed into p in polynomial time. Intuitively, these
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are the ‘hardest’ problems in PSPACE. To give some perspective, PSPACE

contains NP and so PSPACE-complete problems are at least as hard (or

harder) than any NP or NP-complete problems.

• Satisfiability (SAT) problem: A SAT problem is the task of determining

whether a given Boolean formula is satisfiable. In general, this is an NP-

complete problem.

• Transparent entailment: Defined by Dimopoulos et al. (2009), an entailed

preference, o � o′, is transparently entailed if the following condition holds

for all X ∈ V such that o[X] 6= o′[X]:

Let U = Pa(X) and W = V \{X} ∪ U . If o[U ] = u, o′[U ] = u′, o[X] = x,

and o′[X] = x′, then there exists some w ∈ Dom(W ) such that wux � wux′

or wu′x � wu′x′ is entailed. Note that this definition is equivalent to

requiring that CPT(X) contains at least one of the rules u : x � x′ or

u′ : x � x′. This means that either wux � wux′ holds for all w ∈ Dom(W )

or wu′x � wu′x′ holds for all w ∈ Dom(W ) (or both).

• Universal set: An (n, k) universal set is a set of n length binary vectors,

such that, if you restrict to any k indices, all 2k possible assignments are

present in the set. Formally, let U ⊆ {0, 1}n, then U is an (n, k) universal

set if the following property holds:

For any S ⊆ {1, 2, ..., n}, such that |S| = k, let S = {i1, ..., ik} and define U
S

as follows:

U
S

= {(ui1 , ui2 , ..., uik)|(u1, u2, ..., un) ∈ U}.

Then we must have
∣∣∣U

S

∣∣∣ = 2k.

• 2-SAT problem: A 2-SAT problem can be described as determining whether

a formula, φ, can be satisfied, where φ is a conjunction of clauses that are

all disjunctions between two variables. That is, φ has the following form:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xk ∨ xk+1).

Such problems can be solved in polynomial time.
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